Science.gov

Sample records for aerospace system design

  1. The Aerospace Vehicle Interactive Design system

    NASA Technical Reports Server (NTRS)

    Wilhite, A. W.

    1981-01-01

    The aerospace vehicle interactive design (AVID) is a computer aided design that was developed for the conceptual and preliminary design of aerospace vehicles. The AVID system evolved from the application of several design approaches in an advanced concepts environment in which both mission requirements and vehicle configurations are continually changing. The basic AVID software facilitates the integration of independent analysis programs into a design system where the programs can be executed individually for analysis or executed in groups for design iterations and parametric studies. Programs integrated into an AVID system for launch vehicle design include geometry, aerodynamics, propulsion, flight performance, mass properties, and economics.

  2. Research and Development of Rapid Design Systems for Aerospace Structure

    NASA Technical Reports Server (NTRS)

    Schaeffer, Harry G.

    1999-01-01

    This report describes the results of research activities associated with the development of rapid design systems for aerospace structures in support of the Intelligent Synthesis Environment (ISE). The specific subsystems investigated were the interface between model assembly and analysis; and, the high performance NASA GPS equation solver software system in the Windows NT environment on low cost high-performance PCs.

  3. Valuation of design adaptability in aerospace systems

    NASA Astrophysics Data System (ADS)

    Fernandez Martin, Ismael

    As more information is brought into early stages of the design, more pressure is put on engineers to produce a reliable, high quality, and financially sustainable product. Unfortunately, requirements established at the beginning of a new project by customers, and the environment that surrounds them, continue to change in some unpredictable ways. The risk of designing a system that may become obsolete during early stages of production is currently tackled by the use of robust design simulation, a method that allows to simultaneously explore a plethora of design alternatives and requirements with the intention of accounting for uncertain factors in the future. Whereas this design technique has proven to be quite an improvement in design methods, under certain conditions, it fails to account for the change of uncertainty over time and the intrinsic value embedded in the system when certain design features are activated. This thesis introduces the concepts of adaptability and real options to manage risk foreseen in the face of uncertainty at early design stages. The method described herein allows decision-makers to foresee the financial impact of their decisions at the design level, as well as the final exposure to risk. In this thesis, cash flow models, traditionally used to obtain the forecast of a project's value over the years, were replaced with surrogate models that are capable of showing fluctuations on value every few days. This allowed a better implementation of real options valuation, optimization, and strategy selection. Through the option analysis model, an optimization exercise allows the user to obtain the best implementation strategy in the face of uncertainty as well as the overall value of the design feature. Here implementation strategy refers to the decision to include a new design feature in the system, after the design has been finalized, but before the end of its production life. The ability to do this in a cost efficient manner after the system

  4. Comprehensive Design Reliability Activities for Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Christenson, R. L.; Whitley, M. R.; Knight, K. C.

    2000-01-01

    This technical publication describes the methodology, model, software tool, input data, and analysis result that support aerospace design reliability studies. The focus of these activities is on propulsion systems mechanical design reliability. The goal of these activities is to support design from a reliability perspective. Paralleling performance analyses in schedule and method, this requires the proper use of metrics in a validated reliability model useful for design, sensitivity, and trade studies. Design reliability analysis in this view is one of several critical design functions. A design reliability method is detailed and two example analyses are provided-one qualitative and the other quantitative. The use of aerospace and commercial data sources for quantification is discussed and sources listed. A tool that was developed to support both types of analyses is presented. Finally, special topics discussed include the development of design criteria, issues of reliability quantification, quality control, and reliability verification.

  5. Aerospace Engineering Systems and the Advanced Design Technologies Testbed Experience

    NASA Technical Reports Server (NTRS)

    VanDalsem, William R.; Livingston, Mary E.; Melton, John E.; Torres, Francisco J.; Stremel, Paul M.

    1999-01-01

    Continuous improvement of aerospace product development processes is a driving requirement across much of the aerospace community. As up to 90% of the cost of an aerospace product is committed during the first 10% of the development cycle, there is a strong emphasis on capturing, creating, and communicating better information (both requirements and performance) early in the product development process. The community has responded by pursuing the development of computer-based systems designed to enhance the decision-making capabilities of product development individuals and teams. Recently, the historical foci on sharing the geometrical representation and on configuration management are being augmented: 1) Physics-based analysis tools for filling the design space database; 2) Distributed computational resources to reduce response time and cost; 3) Web-based technologies to relieve machine-dependence; and 4) Artificial intelligence technologies to accelerate processes and reduce process variability. The Advanced Design Technologies Testbed (ADTT) activity at NASA Ames Research Center was initiated to study the strengths and weaknesses of the technologies supporting each of these trends, as well as the overall impact of the combination of these trends on a product development event. Lessons learned and recommendations for future activities are reported.

  6. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    NASA Astrophysics Data System (ADS)

    Monell, Donald W.; Piland, William M.

    2000-07-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often led to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative

  7. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    NASA Technical Reports Server (NTRS)

    Monell, Donald W.; Piland, William M.

    1999-01-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g. manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative

  8. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    NASA Technical Reports Server (NTRS)

    Monell, Donald W.; Piland, William M.

    2000-01-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operation). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographical distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative

  9. Reliability-based design optimization of multiphysics, aerospace systems

    NASA Astrophysics Data System (ADS)

    Allen, Matthew R.

    Aerospace systems are inherently plagued by uncertainties in their design, fabrication, and operation. Safety factors and expensive testing at the prototype level traditionally account for these uncertainties. Reliability-based design optimization (RBDO) can drastically decrease life-cycle development costs by accounting for the stochastic nature of the system response in the design process. The reduction in cost is amplified for conceptually new designs, for which no accepted safety factors currently exist. Aerospace systems often operate in environments dominated by multiphysics phenomena, such as the fluid-structure interaction of aeroelastic wings or the electrostatic-mechanical interaction of sensors and actuators. The analysis of such phenomena is generally complex and computationally expensive, and therefore is usually simplified or approximated in the design process. However, this leads to significant epistemic uncertainties in modeling, which may dominate the uncertainties for which the reliability analysis was intended. Therefore, the goal of this thesis is to present a RBDO framework that utilizes high-fidelity simulation techniques to minimize the modeling error for multiphysics phenomena. A key component of the framework is an extended reduced order modeling (EROM) technique that can analyze various states in the design or uncertainty parameter space at a reduced computational cost, while retaining characteristics of high-fidelity methods. The computational framework is verified and applied to the RBDO of aeroelastic systems and electrostatically driven sensors and actuators, utilizing steady-state analysis and design criteria. The framework is also applied to the design of electrostatic devices with transient criteria, which requires the use of the EROM technique to overcome the computational burden of multiple transient analyses.

  10. System design for active vibration control of aerospace structures

    NASA Astrophysics Data System (ADS)

    Shankar, V.; Nagaraja, B. V.; Balasubramaniam, R.; Shree S, Amrutha; Muthaiah, Skanda N.

    2003-10-01

    Instrumentation, electronics, digital signal processing and related software form the basic building blocks of a system for implementation of Active Vibration Control (AVC) for smart aerospace structures. This paper essentially deals with the design, development and implementation of a 4 channel analog input sub-system essentially consisting of charge amplifiers, filters, gain amplifiers & Analog to Digital Converters (ADC), the subsequent Digital Signal Processor (DSP) hardware for implementation of the controller and finally a 4 Channel analog output subsystem consisting of Digital to Analog Converters (DAC), reconstruction filters & high voltage amplifiers. This system essentially interfaces to a structure with piezo-ceramic sensors and actuators for implementation of real time AVC on a smart beam. The paper also highlights some of the new ideas that have been incorporated into the system design.

  11. Aerospace Power Systems Design and Analysis (APSDA) Tool

    NASA Technical Reports Server (NTRS)

    Truong, Long V.

    1998-01-01

    The conceptual design of space and/or planetary electrical power systems has required considerable effort. Traditionally, in the early stages of the design cycle (conceptual design), the researchers have had to thoroughly study and analyze tradeoffs between system components, hardware architectures, and operating parameters (such as frequencies) to optimize system mass, efficiency, reliability, and cost. This process could take anywhere from several months to several years (as for the former Space Station Freedom), depending on the scale of the system. Although there are many sophisticated commercial software design tools for personal computers (PC's), none of them can support or provide total system design. To meet this need, researchers at the NASA Lewis Research Center cooperated with Professor George Kusic from the University of Pittsburgh to develop a new tool to help project managers and design engineers choose the best system parameters as quickly as possible in the early design stages (in days instead of months). It is called the Aerospace Power Systems Design and Analysis (APSDA) Tool. By using this tool, users can obtain desirable system design and operating parameters such as system weight, electrical distribution efficiency, bus power, and electrical load schedule. With APSDA, a large-scale specific power system was designed in a matter of days. It is an excellent tool to help designers make tradeoffs between system components, hardware architectures, and operation parameters in the early stages of the design cycle. user interface. It operates on any PC running the MS-DOS (Microsoft Corp.) operating system, version 5.0 or later. A color monitor (EGA or VGA) and two-button mouse are required. The APSDA tool was presented at the 30th Intersociety Energy Conversion Engineering Conference (IECEC) and is being beta tested at several NASA centers. Beta test packages are available for evaluation by contacting the author.

  12. Aerospace energy systems laboratory: Requirements and design approach

    NASA Technical Reports Server (NTRS)

    Glover, Richard D.

    1988-01-01

    The NASA Ames-Dryden Flight Research Facility at Edwards, California, operates a mixed fleet of research aircraft employing nickel-cadmium (NiCd) batteries in a variety of flight-critical applications. Dryden's Battery Systems Laboratory (BSL), a computerized facility for battery maintenance servicing, has developed over two decades into one of the most advanced facilities of its kind in the world. Recently a major BSL upgrade was initiated with the goal of modernization to provide flexibility in meeting the needs of future advanced projects. The new facility will be called the Aerospace Energy Systems Laboratory (AESL) and will employ distributed processing linked to a centralized data base. AESL will be both a multistation servicing facility and a research laboratory for the advancement of energy storage system maintenance techniques. This paper describes the baseline requirements for the AESL and the design approach being taken for its mechanization.

  13. Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 4: IPAD system design

    NASA Technical Reports Server (NTRS)

    Goldfarb, W.; Carpenter, L. C.; Redhed, D. D.; Hansen, S. D.; Anderson, L. O.; Kawaguchi, A. S.

    1973-01-01

    The computing system design of IPAD is described and the requirements which form the basis for the system design are discussed. The system is presented in terms of a functional design description and technical design specifications. The functional design specifications give the detailed description of the system design using top-down structured programming methodology. Human behavioral characteristics, which specify the system design at the user interface, security considerations, and standards for system design, implementation, and maintenance are also part of the technical design specifications. Detailed specifications of the two most common computing system types in use by the major aerospace companies which could support the IPAD system design are presented. The report of a study to investigate migration of IPAD software between the two candidate 3rd generation host computing systems and from these systems to a 4th generation system is included.

  14. Development of integrated programs for Aerospace-vehicle Design (IPAD): Product program management systems

    NASA Technical Reports Server (NTRS)

    Isenberg, J. M.; Southall, J. W.

    1979-01-01

    The Integrated Programs for Aerospace Vehicle Design (IPAD) is a computing system to support company-wide design information processing. This document presents a brief description of the management system used to direct and control a product-oriented program. This document, together with the reference design process (CR 2981) and the manufacture interactions with the design process (CR 2982), comprises the reference information that forms the basis for specifying IPAD system requirements.

  15. Towards Requirements in Systems Engineering for Aerospace IVHM Design

    NASA Technical Reports Server (NTRS)

    Saxena, Abhinav; Roychoudhury, Indranil; Lin, Wei; Goebel, Kai

    2013-01-01

    Health management (HM) technologies have been employed for safety critical system for decades, but a coherent systematic process to integrate HM into the system design is not yet clear. Consequently, in most cases, health management resorts to be an after-thought or 'band-aid' solution. Moreover, limited guidance exists for carrying out systems engineering (SE) on the subject of writing requirements for designs with integrated vehicle health management (IVHM). It is well accepted that requirements are key to developing a successful IVHM system right from the concept stage to development, verification, utilization, and support. However, writing requirements for systems with IVHM capability have unique challenges that require the designers to look beyond their own domains and consider the constraints and specifications of other interlinked systems. In this paper we look at various stages in the SE process and identify activities specific to IVHM design and development. More importantly, several relevant questions are posed that system engineers must address at various design and development stages. Addressing these questions should provide some guidance to systems engineers towards writing IVHM related requirements to ensure that appropriate IVHM functions are built into the system design.

  16. Dynamic (Vibration) Testing: Design-Certification of Aerospace System

    NASA Technical Reports Server (NTRS)

    Aggarwal, Pravin K.

    2010-01-01

    Various types of dynamic testing of structures for certification purposes are described, including vibration, shock and acoustic testing. Modal testing is discussed as it frequently complements dynamic testing and is part of the structural verification/validation process leading up to design certification. Examples of dynamic and modal testing are presented as well as the common practices, procedures and standards employed.

  17. A Conceptual Aerospace Vehicle Structural System Modeling, Analysis and Design Process

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    2007-01-01

    A process for aerospace structural concept analysis and design is presented, with examples of a blended-wing-body fuselage, a multi-bubble fuselage concept, a notional crew exploration vehicle, and a high altitude long endurance aircraft. Aerospace vehicle structures must withstand all anticipated mission loads, yet must be designed to have optimal structural weight with the required safety margins. For a viable systems study of advanced concepts, these conflicting requirements must be imposed and analyzed early in the conceptual design cycle, preferably with a high degree of fidelity. In this design process, integrated multidisciplinary analysis tools are used in a collaborative engineering environment. First, parametric solid and surface models including the internal structural layout are developed for detailed finite element analyses. Multiple design scenarios are generated for analyzing several structural configurations and material alternatives. The structural stress, deflection, strain, and margins of safety distributions are visualized and the design is improved. Over several design cycles, the refined vehicle parts and assembly models are generated. The accumulated design data is used for the structural mass comparison and concept ranking. The present application focus on the blended-wing-body vehicle structure and advanced composite material are also discussed.

  18. Automated design of aerospace structures

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.; Mccomb, H. G.

    1974-01-01

    The current state-of-the-art in structural analysis of aerospace vehicles is characterized, automated design technology is discussed, and an indication is given of the future direction of research in analysis and automated design. Representative computer programs for analysis typical of those in routine use in vehicle design activities are described, and results are shown for some selected analysis problems. Recent and planned advances in analysis capability are indicated. Techniques used to automate the more routine aspects of structural design are discussed, and some recently developed automated design computer programs are described. Finally, discussion is presented of early accomplishments in interdisciplinary automated design systems, and some indication of the future thrust of research in this field is given.

  19. An expert system for integrated structural analysis and design optimization for aerospace structures

    NASA Astrophysics Data System (ADS)

    1992-04-01

    The results of a research study on the development of an expert system for integrated structural analysis and design optimization is presented. An Object Representation Language (ORL) was developed first in conjunction with a rule-based system. This ORL/AI shell was then used to develop expert systems to provide assistance with a variety of structural analysis and design optimization tasks, in conjunction with procedural modules for finite element structural analysis and design optimization. The main goal of the research study was to provide expertise, judgment, and reasoning capabilities in the aerospace structural design process. This will allow engineers performing structural analysis and design, even without extensive experience in the field, to develop error-free, efficient and reliable structural designs very rapidly and cost-effectively. This would not only improve the productivity of design engineers and analysts, but also significantly reduce time to completion of structural design. An extensive literature survey in the field of structural analysis, design optimization, artificial intelligence, and database management systems and their application to the structural design process was first performed. A feasibility study was then performed, and the architecture and the conceptual design for the integrated 'intelligent' structural analysis and design optimization software was then developed. An Object Representation Language (ORL), in conjunction with a rule-based system, was then developed using C++. Such an approach would improve the expressiveness for knowledge representation (especially for structural analysis and design applications), provide ability to build very large and practical expert systems, and provide an efficient way for storing knowledge. Functional specifications for the expert systems were then developed. The ORL/AI shell was then used to develop a variety of modules of expert systems for a variety of modeling, finite element analysis, and

  20. An expert system for integrated structural analysis and design optimization for aerospace structures

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The results of a research study on the development of an expert system for integrated structural analysis and design optimization is presented. An Object Representation Language (ORL) was developed first in conjunction with a rule-based system. This ORL/AI shell was then used to develop expert systems to provide assistance with a variety of structural analysis and design optimization tasks, in conjunction with procedural modules for finite element structural analysis and design optimization. The main goal of the research study was to provide expertise, judgment, and reasoning capabilities in the aerospace structural design process. This will allow engineers performing structural analysis and design, even without extensive experience in the field, to develop error-free, efficient and reliable structural designs very rapidly and cost-effectively. This would not only improve the productivity of design engineers and analysts, but also significantly reduce time to completion of structural design. An extensive literature survey in the field of structural analysis, design optimization, artificial intelligence, and database management systems and their application to the structural design process was first performed. A feasibility study was then performed, and the architecture and the conceptual design for the integrated 'intelligent' structural analysis and design optimization software was then developed. An Object Representation Language (ORL), in conjunction with a rule-based system, was then developed using C++. Such an approach would improve the expressiveness for knowledge representation (especially for structural analysis and design applications), provide ability to build very large and practical expert systems, and provide an efficient way for storing knowledge. Functional specifications for the expert systems were then developed. The ORL/AI shell was then used to develop a variety of modules of expert systems for a variety of modeling, finite element analysis, and

  1. Conceptual design for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Gratzer, Louis B.

    1989-01-01

    The designers of aircraft and more recently, aerospace vehicles have always struggled with the problems of evolving their designs to produce a machine which would perform its assigned task(s) in some optimum fashion. Almost invariably this involved dealing with more variables and constraints than could be handled in any computationally feasible way. With the advent of the electronic digital computer, the possibilities for introducing more variable and constraints into the initial design process led to greater expectations for improvement in vehicle (system) efficiency. The creation of the large scale systems necessary to achieve optimum designs has, for many reason, proved to be difficult. From a technical standpoint, significant problems arise in the development of satisfactory algorithms for processing of data from the various technical disciplines in a way that would be compatible with the complex optimization function. Also, the creation of effective optimization routines for multi-variable and constraint situations which could lead to consistent results has lagged. The current capability for carrying out the conceptual design of an aircraft on an interdisciplinary bases was evaluated to determine the need for extending this capability, and if necessary, to recommend means by which this could be carried out. Based on a review of available documentation and individual consultations, it appears that there is extensive interest at Langley Research Center as well as in the aerospace community in providing a higher level of capability that meets the technical challenges. By implication, the current design capability is inadequate and it does not operate in a way that allows the various technical disciplines to participate and cooperately interact in the design process. Based on this assessment, it was concluded that substantial effort should be devoted to developing a computer-based conceptual design system that would provide the capability needed for the near

  2. RASC-AL (Revolutionary Aerospace Systems Concepts-Academic Linkage): 2002 Advanced Concept Design Presentation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Revolutionary Aerospace Systems Concepts-Academic Linkage (RASC-AL) is a program of the Lunar and Planetary Institute (LPI) in collaboration with the Universities Space Research Association's (USRA) ICASE institute through the NASA Langley Research Center. The RASC-AL key objectives are to develop relationships between universities and NASA that lead to opportunities for future NASA research and programs, and to develop aerospace systems concepts and technology requirements to enable future NASA missions. The program seeks to look decades into the future to explore new mission capabilities and discover what's possible. NASA seeks concepts and technologies that can make it possible to go anywhere, at anytime, safely, reliably, and affordably to accomplish strategic goals for science, exploration, and commercialization. University teams were invited to submit research topics from the following themes: Human and Robotic Space Exploration, Orbital Aggregation & Space Infrastructure Systems (OASIS), Zero-Emissions Aircraft, and Remote Sensing. RASC-AL is an outgrowth of the HEDS-UP (University Partners) Program sponsored by the LPI. HEDS-UP was a program of the Lunar and Planetary Institute designed to link universities with NASA's Human Exploration and Development of Space (HEDS) enterprise. The first RASC-AL Forum was held November 5-8, 2002, at the Hilton Cocoa Beach Oceanfront Hotel in Cocoa Beach, Florida. Representatives from 10 university teams presented student research design projects at this year's Forum. Each team contributed a written report and these reports are presented.

  3. Managing complexity of aerospace systems

    NASA Astrophysics Data System (ADS)

    Tamaskar, Shashank

    Growing complexity of modern aerospace systems has exposed the limits of conventional systems engineering tools and challenged our ability to design them in a timely and cost effective manner. According to the US Government Accountability Office (GAO), in 2009 nearly half of the defense acquisition programs are expecting 25% or more increase in unit acquisition cost. Increase in technical complexity has been identified as one of the primary drivers behind cost-schedule overruns. Thus to assure the affordability of future aerospace systems, it is increasingly important to develop tools and capabilities for managing their complexity. We propose an approach for managing the complexity of aerospace systems to address this pertinent problem. To this end, we develop a measure that improves upon the state-of-the-art metrics and incorporates key aspects of system complexity. We address the problem of system decomposition by presenting an algorithm for module identification that generates modules to minimize integration complexity. We demonstrate the framework on diverse spacecraft and show the impact of design decisions on integration cost. The measure and the algorithm together help the designer track and manage complexity in different phases of system design. We next investigate how complexity can be used as a decision metric in the model-based design (MBD) paradigm. We propose a framework for complexity enabled design space exploration that introduces the idea of using complexity as a non-traditional design objective. We also incorporate complexity with the component based design paradigm (a sub-field of MBD) and demonstrate it on several case studies. The approach for managing complexity is a small but significant contribution to the vast field of complexity management. We envision our approach being used in concert with a suite of complexity metrics to provide an ability to measure and track complexity through different stages of design and development. This will not

  4. An Improved Design for Air Removal from Aerospace Fluid Loop Coolant Systems

    NASA Technical Reports Server (NTRS)

    Ritchie, Stephen M. C.; Holladay, Jon B.; Holt, J. Mike; Clark, Dallas W.

    2003-01-01

    Aerospace applications with requirements for large capacity heat removal (launch vehicles, platforms, payloads, etc.) typically utilize a liquid coolant fluid as a transport media to increase efficiency and flexibility in the vehicle design. An issue with these systems however, is susceptibility to the presence of noncondensable gas (NCG) or air. The presence of air in a coolant loop can have numerous negative consequences, including loss of centrifugal pump prime, interference with sensor readings, inhibition of heat transfer, and coolant blockage to remote systems. Hardware ground processing to remove this air is also cumbersome and time consuming which continuously drives recurring costs. Current systems for maintaining the system free of air are tailored and have demonstrated only moderate success. An obvious solution to these problems is the development and advancement of a passive gas removal device, or gas trap, that would be installed in the flight cooling system simplifying the initial coolant fill procedure and also maintaining the system during operations. The proposed device would utilize commercially available membranes thus increasing reliability and reducing cost while also addressing both current and anticipated applications. In addition, it maintains current pressure drop, water loss, and size restrictions while increasing tolerance for pressure increases due to gas build-up in the trap.

  5. Applications of integrated design/analysis systems in aerospace structural design

    NASA Technical Reports Server (NTRS)

    Mason, Philip; Lerner, Edwin; Sobel, Lawrence

    1989-01-01

    Integrated structural analysis and design systems and structural optimization procedures are being used in a production environment. Successful use of these systems requires experienced personnel. Interactive computer graphics can and will play a significant role in the analysis, optimization, design and manufacturing areas. Practical structural optimization procedures are tools that must be made available to the team. Much work still needs to be done to tie finite-element modeling to actual design details which are being tracked on systems such as CADAM or CATIA. More work needs to be done to automate the detailed design and analysis process. More emphasis should be placed on the real design problems.

  6. A generalized concept for cost-effective structural design. [Statistical Decision Theory applied to aerospace systems

    NASA Technical Reports Server (NTRS)

    Thomas, J. M.; Hawk, J. D.

    1975-01-01

    A generalized concept for cost-effective structural design is introduced. It is assumed that decisions affecting the cost effectiveness of aerospace structures fall into three basic categories: design, verification, and operation. Within these basic categories, certain decisions concerning items such as design configuration, safety factors, testing methods, and operational constraints are to be made. All or some of the variables affecting these decisions may be treated probabilistically. Bayesian statistical decision theory is used as the tool for determining the cost optimum decisions. A special case of the general problem is derived herein, and some very useful parametric curves are developed and applied to several sample structures.

  7. Cost-effectiveness of integrated analysis/design systems /IPAD/ An executive summary. II. [for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Miller, R. E., Jr.; Hansen, S. D.; Redhed, D. D.; Southall, J. W.; Kawaguchi, A. S.

    1974-01-01

    Evaluation of the cost-effectiveness of integrated analysis/design systems with particular attention to Integrated Program for Aerospace-Vehicle Design (IPAD) project. An analysis of all the ingredients of IPAD indicates the feasibility of a significant cost and flowtime reduction in the product design process involved. It is also concluded that an IPAD-supported design process will provide a framework for configuration control, whereby the engineering costs for design, analysis and testing can be controlled during the air vehicle development cycle.

  8. The Role of Aerospace Technology in Agriculture. The 1977 Summer Faculty Fellowship Program in Engineering Systems Design

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Possibilities were examined for improving agricultural productivity through the application of aerospace technology. An overview of agriculture and of the problems of feeding a growing world population are presented. The present state of agriculture, of plant and animal culture, and agri-business are reviewed. Also analyzed are the various systems for remote sensing, particularly applications to agriculture. The report recommends additional research and technology in the areas of aerial application of chemicals, of remote sensing systems, of weather and climate investigations, and of air vehicle design. Also considered in detail are the social, legal, economic, and political results of intensification of technical applications to agriculture.

  9. Knowledge-based diagnosis for aerospace systems

    NASA Technical Reports Server (NTRS)

    Atkinson, David J.

    1988-01-01

    The need for automated diagnosis in aerospace systems and the approach of using knowledge-based systems are examined. Research issues in knowledge-based diagnosis which are important for aerospace applications are treated along with a review of recent relevant research developments in Artificial Intelligence. The design and operation of some existing knowledge-based diagnosis systems are described. The systems described and compared include the LES expert system for liquid oxygen loading at NASA Kennedy Space Center, the FAITH diagnosis system developed at the Jet Propulsion Laboratory, the PES procedural expert system developed at SRI International, the CSRL approach developed at Ohio State University, the StarPlan system developed by Ford Aerospace, the IDM integrated diagnostic model, and the DRAPhys diagnostic system developed at NASA Langley Research Center.

  10. Machine intelligence and autonomy for aerospace systems

    NASA Technical Reports Server (NTRS)

    Heer, Ewald (Editor); Lum, Henry (Editor)

    1988-01-01

    The present volume discusses progress toward intelligent robot systems in aerospace applications, NASA Space Program automation and robotics efforts, the supervisory control of telerobotics in space, machine intelligence and crew/vehicle interfaces, expert-system terms and building tools, and knowledge-acquisition for autonomous systems. Also discussed are methods for validation of knowledge-based systems, a design methodology for knowledge-based management systems, knowledge-based simulation for aerospace systems, knowledge-based diagnosis, planning and scheduling methods in AI, the treatment of uncertainty in AI, vision-sensing techniques in aerospace applications, image-understanding techniques, tactile sensing for robots, distributed sensor integration, and the control of articulated and deformable space structures.

  11. Aerospace environmental systems

    SciTech Connect

    Not Available

    1986-01-01

    This book presents the papers given at a conference on space vehicles. Topics considered at the conference included a ram air driven air cycle cooling system for avionics pods, the analysis and composition of a model trace gaseous mixture for a spacecraft, nuclear powered submarines and the space station, and advanced energy saving designs for air evaporation closed cycle water recovery technology.

  12. Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 6: IPAD system development and operation

    NASA Technical Reports Server (NTRS)

    Redhed, D. D.; Tripp, L. L.; Kawaguchi, A. S.; Miller, R. E., Jr.

    1973-01-01

    The strategy of the IPAD implementation plan presented, proposes a three phase development of the IPAD system and technical modules, and the transfer of this capability from the development environment to the aerospace vehicle design environment. The system and technical module capabilities for each phase of development are described. The system and technical module programming languages are recommended as well as the initial host computer system hardware and operating system. The cost of developing the IPAD technology is estimated. A schedule displaying the flowtime required for each development task is given. A PERT chart gives the developmental relationships of each of the tasks and an estimate of the operational cost of the IPAD system is offered.

  13. Interdisciplinary optimum design. [of aerospace structures

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.

    1986-01-01

    Problems related to interdisciplinary interactions in the design of a complex engineering systems are examined with reference to aerospace applications. The interdisciplinary optimization problems examined include those dealing with controls and structures, materials and structures, control and stability, structure and aerodynamics, and structure and thermodynamics. The discussion is illustrated by the following specific applications: integrated aerodynamic/structural optimization of glider wing; optimization of an antenna parabolic dish structure for minimum weight and prescribed emitted signal gain; and a multilevel optimization study of a transport aircraft.

  14. Aerospace Meteorology Lessons Learned Relative to Aerospace Vehicle Design and Operations

    NASA Technical Reports Server (NTRS)

    Vaughan, William W.; Anderson, B. Jeffrey

    2004-01-01

    Aerospace Meteorology came into being in the 1950s as the development of rockets for military and civilian usage grew in the United States. The term was coined to identify those involved in the development of natural environment models, design/operational requirements, and environment measurement systems to support the needs of aerospace vehicles, both launch vehicles and spacecraft. It encompassed the atmospheric environment of the Earth, including Earth orbit environments. Several groups within the United States were active in this area, including the Department of Defense, National Aeronautics and Space Administration, and a few of the aerospace industry groups. Some aerospace meteorology efforts were similar to those being undertaken relative to aviation interests. As part of the aerospace meteorology activities a number of lessons learned resulted that produced follow on efforts which benefited from these experiences, thus leading to the rather efficient and technologically current descriptions of terrestrial environment design requirements, prelaunch monitoring systems, and forecast capabilities available to support the development and operations of aerospace vehicles.

  15. Design and fabrication of metallic thermal protection systems for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Varisco, A.; Bell, P.; Wolter, W.

    1978-01-01

    A program was conducted to develop a lightweight, efficient metallic thermal protection system (TPS) for application to future shuttle-type reentry vehicles, advanced space transports, and hypersonic cruise vehicles. Technical requirements were generally derived from the space shuttle. A corrugation-stiffened beaded-skin TPS design was used as a baseline. The system was updated and modified to incorporate the latest technology developments and design criteria. The primary objective was to minimize mass for the total system.

  16. Using Aerospace Technology To Design Orthopedic Implants

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Mraz, P. J.; Davy, D. T.

    1996-01-01

    Technology originally developed to optimize designs of composite-material aerospace structural components used to develop method for optimizing designs of orthopedic implants. Development effort focused on designing knee implants, long-term goal to develop method for optimizing designs of orthopedic implants in general.

  17. Cybersecurity for aerospace autonomous systems

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2015-05-01

    High profile breaches have occurred across numerous information systems. One area where attacks are particularly problematic is autonomous control systems. This paper considers the aerospace information system, focusing on elements that interact with autonomous control systems (e.g., onboard UAVs). It discusses the trust placed in the autonomous systems and supporting systems (e.g., navigational aids) and how this trust can be validated. Approaches to remotely detect the UAV compromise, without relying on the onboard software (on a potentially compromised system) as part of the process are discussed. How different levels of autonomy (task-based, goal-based, mission-based) impact this remote characterization is considered.

  18. Development of Integrated Programs for Aerospace-Vehicle Design (IPAD)

    NASA Technical Reports Server (NTRS)

    Anderson, O. L.; Calvery, A. L.; Davis, D. A.; Dickmann, L.; Folger, D. H.; Jochem, E. N.; Kitto, C. M.; Vonlimbach, G.

    1977-01-01

    Integrated Programs for Aerospace Vehicle Design (IPAD) system design requirements are given. The information is based on the IPAD User Requirements Document (D6-IPAD-70013-D) and the Integrated Information Processing Requirements Document (D6-IPAD-70012-D). General information about IPAD and a list of the system design requirements that are to be satisfied by the IPAD system are given. The system design requirements definition is to be considered as a baseline definition of the IPAD system design requirements.

  19. Human-Centered Design of Human-Computer-Human Dialogs in Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1998-01-01

    A series of ongoing research programs at Georgia Tech established a need for a simulation support tool for aircraft computer-based aids. This led to the design and development of the Georgia Tech Electronic Flight Instrument Research Tool (GT-EFIRT). GT-EFIRT is a part-task flight simulator specifically designed to study aircraft display design and single pilot interaction. ne simulator, using commercially available graphics and Unix workstations, replicates to a high level of fidelity the Electronic Flight Instrument Systems (EFIS), Flight Management Computer (FMC) and Auto Flight Director System (AFDS) of the Boeing 757/767 aircraft. The simulator can be configured to present information using conventional looking B757n67 displays or next generation Primary Flight Displays (PFD) such as found on the Beech Starship and MD-11.

  20. Developing IVHM Requirements for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Rajamani, Ravi; Saxena, Abhinav; Kramer, Frank; Augustin, Mike; Schroeder, John B.; Goebel, Kai; Shao, Ginger; Roychoudhury, Indranil; Lin, Wei

    2013-01-01

    The term Integrated Vehicle Health Management (IVHM) describes a set of capabilities that enable sustainable and safe operation of components and subsystems within aerospace platforms. However, very little guidance exists for the systems engineering aspects of design with IVHM in mind. It is probably because of this that designers have to use knowledge picked up exclusively by experience rather than by established process. This motivated a group of leading IVHM practitioners within the aerospace industry under the aegis of SAE's HM-1 technical committee to author a document that hopes to give working engineers and program managers clear guidance on all the elements of IVHM that they need to consider before designing a system. This proposed recommended practice (ARP6883 [1]) will describe all the steps of requirements generation and management as it applies to IVHM systems, and demonstrate these with a "real-world" example related to designing a landing gear system. The team hopes that this paper and presentation will help start a dialog with the larger aerospace community and that the feedback can be used to improve the ARP and subsequently the practice of IVHM from a systems engineering point-of-view.

  1. Integration of pyrotechnics into aerospace systems

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Schimmel, Morry L.

    1993-01-01

    The application of pyrotechnics to aerospace systems has been resisted because normal engineering methods cannot be used in design and evaluation. Commonly used approaches for energy sources, such as electrical, hydraulic and pneumatic, do not apply to explosive and pyrotechnic devices. This paper introduces the unique characteristics of pyrotechnic devices, describes how functional evaluations can be conducted, and demonstrates an engineering approach for pyrotechnic integration. Logic is presented that allows evaluation of two basic types of pyrotechnic systems to demonstrate functional margin.

  2. Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 2: The design process

    NASA Technical Reports Server (NTRS)

    Gillette, W. B.; Turner, M. J.; Southall, J. W.; Whitener, P. C.; Kowalik, J. S.

    1973-01-01

    The extent to which IPAD is to support the design process is identified. Case studies of representative aerospace products were developed as models to characterize the design process and to provide design requirements for the IPAD computing system.

  3. Toward Co-Design of Autonomous Aerospace Cyber-Physical Systems

    NASA Astrophysics Data System (ADS)

    Bradley, Justin M.

    Modern vehicles are equipped with a complex suite of computing (cyber) and electromechanical (physical) systems. Holistic design, modeling, and optimization of such Cyber-Physical Systems (CPS) requires new techniques capable of integrated analysis across the full CPS. This dissertations introduces two methods for balancing cyber and physical resources in a step toward holistic co-design of CPS. First, an ordinary differential equation model abstraction of controller sampling rate is developed and added to the equations of motion of a physical system to form a holistic discrete-time-varying linear system representing the CPS controller. Using feedback control, this cyber effector, sampling rate, is then co-regulated alongside physical effectors in response to physical system tracking error. This technique is applied to a spring-mass-damper, inverted pendulum, and finally to attitude control of a small satellite (CubeSat). Additionally, two new controllers for discrete-time-varying systems are introduced; a gain-scheduled discrete-time linear regulator (DLQR) in which DLQR gains are scheduled over time-varying sampling rates, and a forward-propagation Riccati-based (FPRB) controller. The FPRB CPS controller shows promise in balancing cyber and physical resources. Second, we propose a cost function of cyber and physical parameters to optimize an Unmanned Aircraft System (UAS) trajectory for a pipeline surveillance mission. Optimization parameters are UAV velocity and mission-critical surveillance task execution rate. Metrics for pipeline image information, energy, cyber utilization, and time comprise the cost function and Pareto fronts are analyzed to gain insight into cyber and physical tradeoffs for mission success. Finally, the cost function is optimized using numerical methods, and results from several cost weightings and Pareto front analyses are tabulated. We show that increased mission success can be achieved by considering both cyber and physical parameters

  4. A modular approach to large-scale design optimization of aerospace systems

    NASA Astrophysics Data System (ADS)

    Hwang, John T.

    Gradient-based optimization and the adjoint method form a synergistic combination that enables the efficient solution of large-scale optimization problems. Though the gradient-based approach struggles with non-smooth or multi-modal problems, the capability to efficiently optimize up to tens of thousands of design variables provides a valuable design tool for exploring complex tradeoffs and finding unintuitive designs. However, the widespread adoption of gradient-based optimization is limited by the implementation challenges for computing derivatives efficiently and accurately, particularly in multidisciplinary and shape design problems. This thesis addresses these difficulties in two ways. First, to deal with the heterogeneity and integration challenges of multidisciplinary problems, this thesis presents a computational modeling framework that solves multidisciplinary systems and computes their derivatives in a semi-automated fashion. This framework is built upon a new mathematical formulation developed in this thesis that expresses any computational model as a system of algebraic equations and unifies all methods for computing derivatives using a single equation. The framework is applied to two engineering problems: the optimization of a nanosatellite with 7 disciplines and over 25,000 design variables; and simultaneous allocation and mission optimization for commercial aircraft involving 330 design variables, 12 of which are integer variables handled using the branch-and-bound method. In both cases, the framework makes large-scale optimization possible by reducing the implementation effort and code complexity. The second half of this thesis presents a differentiable parametrization of aircraft geometries and structures for high-fidelity shape optimization. Existing geometry parametrizations are not differentiable, or they are limited in the types of shape changes they allow. This is addressed by a novel parametrization that smoothly interpolates aircraft

  5. A probabilistic multi-criteria decision making technique for conceptual and preliminary aerospace systems design

    NASA Astrophysics Data System (ADS)

    Bandte, Oliver

    It has always been the intention of systems engineering to invent or produce the best product possible. Many design techniques have been introduced over the course of decades that try to fulfill this intention. Unfortunately, no technique has succeeded in combining multi-criteria decision making with probabilistic design. The design technique developed in this thesis, the Joint Probabilistic Decision Making (JPDM) technique, successfully overcomes this deficiency by generating a multivariate probability distribution that serves in conjunction with a criterion value range of interest as a universally applicable objective function for multi-criteria optimization and product selection. This new objective function constitutes a meaningful Xnetric, called Probability of Success (POS), that allows the customer or designer to make a decision based on the chance of satisfying the customer's goals. In order to incorporate a joint probabilistic formulation into the systems design process, two algorithms are created that allow for an easy implementation into a numerical design framework: the (multivariate) Empirical Distribution Function and the Joint Probability Model. The Empirical Distribution Function estimates the probability that an event occurred by counting how many times it occurred in a given sample. The Joint Probability Model on the other hand is an analytical parametric model for the multivariate joint probability. It is comprised of the product of the univariate criterion distributions, generated by the traditional probabilistic design process, multiplied with a correlation function that is based on available correlation information between pairs of random variables. JPDM is an excellent tool for multi-objective optimization and product selection, because of its ability to transform disparate objectives into a single figure of merit, the likelihood of successfully meeting all goals or POS. The advantage of JPDM over other multi-criteria decision making

  6. Advanced Aerospace Materials by Design

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Djomehri, Jahed; Wei, Chen-Yu

    2004-01-01

    The advances in the emerging field of nanophase thermal and structural composite materials; materials with embedded sensors and actuators for morphing structures; light-weight composite materials for energy and power storage; and large surface area materials for in-situ resource generation and waste recycling, are expected to :revolutionize the capabilities of virtually every system comprising of future robotic and :human moon and mars exploration missions. A high-performance multiscale simulation platform, including the computational capabilities and resources of Columbia - the new supercomputer, is being developed to discover, validate, and prototype next generation (of such advanced materials. This exhibit will describe the porting and scaling of multiscale 'physics based core computer simulation codes for discovering and designing carbon nanotube-polymer composite materials for light-weight load bearing structural and 'thermal protection applications.

  7. NASA Aerospace Flight Battery Systems Program

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; O'Donnell, Patricia M.

    1990-01-01

    The major objective of the NASA Aerospace Flight Battery Systems Program is to provide NASA with the policy and posture to increase and ensure the safety, performance and reliability of batteries for space power systems. The program plan has been modified in the past year to reflect changes in the agency's approach to battery related problems that are affecting flight programs. Primary attention in the Battery Program is being devoted to the development of an advanced nickel-cadmium cell design and the qualification of vendors to produce cells for flight programs. As part of a unified Battery Program, the development of a nickel-hydrogen standard and primary cell issues are also being pursued to provide high-performance NASA Standards and space qualified state-of-the-art primary cells. The resolution of issues is being addressed with the full participation of the aerospace battery community.

  8. NASA aerospace flight battery systems program

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Odonnell, Patricia M.

    1990-01-01

    The major objective of the NASA Aerospace Flight Battery Systems Program is to provide NASA with the policy and posture to increase and ensure the safety, performance and reliability of batteries for space power systems. The program plan has been modified in the past year to reflect changes in the agency's approach to battery related problems that are affecting flight programs. Primary attention in the Battery Program is being devoted to the development of an advanced nickel-cadmium cell design and the qualification of vendors to produce cells for flight programs. As part of a unified Battery Program, the development of a nickel-hydrogen standard and primary cell issues are also being pursued to provide high performance NASA Standards and space qualified state-of-the-art primary cells. The resolution of issues is being addressed with the full participation of the aerospace battery community.

  9. Case-Based Capture and Reuse of Aerospace Design Rationale

    NASA Technical Reports Server (NTRS)

    Leake, David B.

    2001-01-01

    The goal of this project was to apply artificial intelligence techniques to facilitate capture and reuse of aerospace design rationale. The project combined case-based reasoning (CBR) and concept maps (CMaps) to develop methods for capturing, organizing, and interactively accessing records of experiences encapsulating the methods and rationale underlying expert aerospace design, in order to bring the captured knowledge to bear to support future reasoning. The project's results contribute both principles and methods for effective design-aiding systems that aid capture and access of useful design knowledge. The project has been guided by the tenets that design-aiding systems must: (1) Leverage a designer's knowledge, rather than attempting to replace it; (2) Be able to reflect different designers' differing conceptualizations of the design task, and to clarify those conceptualizations to others; (3) Include capabilities to capture information both by interactive knowledge modeling and during normal use; and (4) Integrate into normal designer tasks as naturally and unobtrusive as possible.

  10. Feasibility study of an Integrated Program for Aerospace-vehicle Design (IPAD) system. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Garrocq, C. A.; Hurley, M. J.

    1973-01-01

    An overview is provided of the Ipad System, including its goals and objectives, organization, capabilities and future usefulness. The systems implementation is also presented with operational cost summaries.

  11. High-End Computing Challenges in Aerospace Design and Engineering

    NASA Technical Reports Server (NTRS)

    Bailey, F. Ronald

    2004-01-01

    High-End Computing (HEC) has had significant impact on aerospace design and engineering and is poised to make even more in the future. In this paper we describe four aerospace design and engineering challenges: Digital Flight, Launch Simulation, Rocket Fuel System and Digital Astronaut. The paper discusses modeling capabilities needed for each challenge and presents projections of future near and far-term HEC computing requirements. NASA's HEC Project Columbia is described and programming strategies presented that are necessary to achieve high real performance.

  12. NASA Aerospace Flight Battery Systems Program Update

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle; ODonnell, Patricia

    1997-01-01

    The objectives of NASA's Aerospace Flight Battery Systems Program is to: develop, maintain and provide tools for the validation and assessment of aerospace battery technologies; accelerate the readiness of technology advances and provide infusion paths for emerging technologies; provide NASA projects with the required database and validation guidelines for technology selection of hardware and processes relating to aerospace batteries; disseminate validation and assessment tools, quality assurance, reliability, and availability information to the NASA and aerospace battery communities; and ensure that safe, reliable batteries are available for NASA's future missions.

  13. IPAD: Integrated Programs for Aerospace-vehicle Design

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The conference was organized to promote wider awareness of the IPAD program and its coming impact on American industry. The program focuses on technology issues that are critical to computer aided design manufacturing. Included is a description of a representative aerospace design process and its interface with manufacturing, the design of a future IPAD integrated computer aided design system, results to date in developing IPAD products and associated technology, and industry experiences and plans to exploit these products.

  14. Control system estimation and design for aerospace vehicles with time delay

    NASA Technical Reports Server (NTRS)

    Allgaier, G. R.; Williams, T. L.

    1972-01-01

    The problems of estimation and control of discrete, linear, time-varying systems are considered. Previous solutions to these problems involved either approximate techniques, open-loop control solutions, or results which required excessive computation. The estimation problem is solved by two different methods, both of which yield the identical algorithm for determining the optimal filter. The partitioned results achieve a substantial reduction in computation time and storage requirements over the expanded solution, however. The results reduce to the Kalman filter when no delays are present in the system. The control problem is also solved by two different methods, both of which yield identical algorithms for determining the optimal control gains. The stochastic control is shown to be identical to the deterministic control, thus extending the separation principle to time delay systems. The results obtained reduce to the familiar optimal control solution when no time delays are present in the system.

  15. IPAD: Integrated Programs for Aerospace-vehicle Design

    NASA Technical Reports Server (NTRS)

    Miller, R. E., Jr.

    1985-01-01

    Early work was performed to apply data base technology in support of the management of engineering data in the design and manufacturing environments. The principal objective of the IPAD project is to develop a computer software system for use in the design of aerospace vehicles. Two prototype systems are created for this purpose. Relational Information Manager (RIM) is a successful commercial product. The IPAD Information Processor (IPIP), a much more sophisticated system, is still under development.

  16. Human-centered design of human-computer-human dialogs in aerospace systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1994-01-01

    The second six months of this grant saw further development of GT-CATS, the Georgia Tech Crew Activity Tracking System, and progress on research exploring tutoring concepts for tutors for mode management. The latter included data analysis and a preliminary paper summarizing the development and evaluation of the VNAV Tutor. A follow-on to the VNAV Tutor is planned. Research in this direction will examine the use of OFMspert and GT-CATS to create an 'intelligent' tutor for mode management, a more extensive domain of application than only vertical navigation, and alternative pedagogy, such as substituting focused 'cases' of reported mode management situations rather than lessons defined by full LOFT scenarios.

  17. Materials Selection for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Cebon, David; Ashby, Mike

    2012-01-01

    A systematic design-oriented, five-step approach to material selection is described: 1) establishing design requirements, 2) material screening, 3) ranking, 4) researching specific candidates and 5) applying specific cultural constraints to the selection process. At the core of this approach is the definition performance indices (i.e., particular combinations of material properties that embody the performance of a given component) in conjunction with material property charts. These material selection charts, which plot one property against another, are introduced and shown to provide a powerful graphical environment wherein one can apply and analyze quantitative selection criteria, such as those captured in performance indices, and make trade-offs between conflicting objectives. Finding a material with a high value of these indices maximizes the performance of the component. Two specific examples pertaining to aerospace (engine blades and pressure vessels) are examined, both at room temperature and elevated temperature (where time-dependent effects are important) to demonstrate the methodology. The discussion then turns to engineered/hybrid materials and how these can be effectively tailored to fill in holes in the material property space, so as to enable innovation and increases in performance as compared to monolithic materials. Finally, a brief discussion is presented on managing the data needed for materials selection, including collection, analysis, deployment, and maintenance issues.

  18. PCSYS: The optimal design integration system picture drawing system with hidden line algorithm capability for aerospace vehicle configurations

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Vanderburg, J. D.

    1977-01-01

    A vehicle geometric definition based upon quadrilateral surface elements to produce realistic pictures of an aerospace vehicle. The PCSYS programs can be used to visually check geometric data input, monitor geometric perturbations, and to visualize the complex spatial inter-relationships between the internal and external vehicle components. PCSYS has two major component programs. The between program, IMAGE, draws a complex aerospace vehicle pictorial representation based on either an approximate but rapid hidden line algorithm or without any hidden line algorithm. The second program, HIDDEN, draws a vehicle representation using an accurate but time consuming hidden line algorithm.

  19. NASA Ames aerospace systems directorate research

    NASA Technical Reports Server (NTRS)

    Albers, James A.

    1991-01-01

    The Aerospace Systems Directorate is one of four research directorates at the NASA Ames Research Center. The Directorate conducts research and technology development for advanced aircraft and aircraft systems in intelligent computational systems and human-machine systems for aeronautics and space. The Directorate manages research and aircraft technology development projects, and operates and maintains major wind tunnels and flight simulation facilities. The Aerospace Systems Directorate's research and technology as it relates to NASA agency goals and specific strategic thrusts are discussed.

  20. Artificial Immune System Approaches for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    KrishnaKumar, Kalmanje; Koga, Dennis (Technical Monitor)

    2002-01-01

    Artificial Immune Systems (AIS) combine a priori knowledge with the adapting capabilities of biological immune system to provide a powerful alternative to currently available techniques for pattern recognition, modeling, design, and control. Immunology is the science of built-in defense mechanisms that are present in all living beings to protect against external attacks. A biological immune system can be thought of as a robust, adaptive system that is capable of dealing with an enormous variety of disturbances and uncertainties. Biological immune systems use a finite number of discrete "building blocks" to achieve this adaptiveness. These building blocks can be thought of as pieces of a puzzle which must be put together in a specific way-to neutralize, remove, or destroy each unique disturbance the system encounters. In this paper, we outline AIS models that are immediately applicable to aerospace problems and identify application areas that need further investigation.

  1. NASA aerospace pyrotechnically actuated systems: Program plan

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1992-01-01

    The NASA Aerospace Pyrotechnically Actuated Systems (PAS) Program, a focused technology program, is being initiated to enhance the reliability, safety, and performance of pyrotechnically actuated systems. In broad terms, this Program Plan presents the approach that helps to resolve concerns raised by the NASA/DOD/DOE Aerospace Pyrotechnic Steering Committee. This Plan reflects key efforts needed in PAS technology. The resources committed to implement the Program will be identified in the Program Implementation Plan (PIP). A top level schedule is included along with major Program milestones and products. Responsibilities are defined in the PIP. The Plan identifies the goals and detailed objectives which define how those goals are to be accomplished. The Program will improve NASA's capabilities to design, develop, manufacture, and test pyrotechnically actuated systems for NASA's programs. Program benefits include the following: advanced pyrotechnic systems technology developed for NASA programs; hands-on pyrotechnic systems expertise; quick response capability to investigate and resolve pyrotechnic problems; enhanced communications and intercenter support among the technical staff; and government-industry PAS technical interchange. The PAS Program produces useful products that are of a broad-based technology nature rather than activities intended to meet specific technology objectives for individual programs. Serious problems have occurred with pyrotechnic devices although near perfect performance is demanded by users. The lack of a program to address those problems in the past is considered a serious omission. The nature of problems experienced as revealed by a survey are discussed and the origin of the program is explained.

  2. IPAD applications to the design, analysis, and/or machining of aerospace structures. [Integrated Program for Aerospace-vehicle Design

    NASA Technical Reports Server (NTRS)

    Blackburn, C. L.; Dovi, A. R.; Kurtze, W. L.; Storaasli, O. O.

    1981-01-01

    A computer software system for the processing and integration of engineering data and programs, called IPAD (Integrated Programs for Aerospace-Vehicle Design), is described. The ability of the system to relieve the engineer of the mundane task of input data preparation is demonstrated by the application of a prototype system to the design, analysis, and/or machining of three simple structures. Future work to further enhance the system's automated data handling and ability to handle larger and more varied design problems are also presented.

  3. Design search and optimization in aerospace engineering.

    PubMed

    Keane, A J; Scanlan, J P

    2007-10-15

    In this paper, we take a design-led perspective on the use of computational tools in the aerospace sector. We briefly review the current state-of-the-art in design search and optimization (DSO) as applied to problems from aerospace engineering, focusing on those problems that make heavy use of computational fluid dynamics (CFD). This ranges over issues of representation, optimization problem formulation and computational modelling. We then follow this with a multi-objective, multi-disciplinary example of DSO applied to civil aircraft wing design, an area where this kind of approach is becoming essential for companies to maintain their competitive edge. Our example considers the structure and weight of a transonic civil transport wing, its aerodynamic performance at cruise speed and its manufacturing costs. The goals are low drag and cost while holding weight and structural performance at acceptable levels. The constraints and performance metrics are modelled by a linked series of analysis codes, the most expensive of which is a CFD analysis of the aerodynamics using an Euler code with coupled boundary layer model. Structural strength and weight are assessed using semi-empirical schemes based on typical airframe company practice. Costing is carried out using a newly developed generative approach based on a hierarchical decomposition of the key structural elements of a typical machined and bolted wing-box assembly. To carry out the DSO process in the face of multiple competing goals, a recently developed multi-objective probability of improvement formulation is invoked along with stochastic process response surface models (Krigs). This approach both mitigates the significant run times involved in CFD computation and also provides an elegant way of balancing competing goals while still allowing the deployment of the whole range of single objective optimizers commonly available to design teams. PMID:17519198

  4. Textile mechanical elements in aerospace vehicle parachute systems

    NASA Technical Reports Server (NTRS)

    Lindgren, M. J.; French, K. E.

    1972-01-01

    Materials, design considerations, and design details for textile mechanical elements used in aerospace vehicle parachute systems are briefly reviewed. Friction burns are noted as a major cause of parachute system failures. The friction burn hazard can be minimized by designing for predeployment and deployment sequence control with textile mechanical restraints. Two basic restraint designs (restraint loops and line ties) are discussed and various applications of the designs shown.

  5. Reliability-based econometrics of aerospace structural systems: Design criteria and test options. Ph.D. Thesis - Georgia Inst. of Tech.

    NASA Technical Reports Server (NTRS)

    Thomas, J. M.; Hanagud, S.

    1974-01-01

    The design criteria and test options for aerospace structural reliability were investigated. A decision methodology was developed for selecting a combination of structural tests and structural design factors. The decision method involves the use of Bayesian statistics and statistical decision theory. Procedures are discussed for obtaining and updating data-based probabilistic strength distributions for aerospace structures when test information is available and for obtaining subjective distributions when data are not available. The techniques used in developing the distributions are explained.

  6. D3: A Collaborative Infrastructure for Aerospace Design

    NASA Technical Reports Server (NTRS)

    Walton, Joan; Filman, Robert E.; Knight, Chris; Korsmeyer, David J.; Lee, Diana D.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    DARWIN is a NASA developed, Internet-based system for enabling aerospace researchers to securely and remotely access and collaborate on the analysis of aerospace vehicle design data, primarily the results of wind-tunnel testing and numeric (e.g., computational fluid dynamics) model executions. DARWIN captures, stores and indexes data, manages derived knowledge (such as visualizations across multiple data sets) and provides an environment for designers to collaborate in the analysis of the results of testing. DARWIN is an interesting application because it supports high volumes of data, integrates multiple modalities of data display (e.g. images and data visualizations), and provides non-trivial access control mechanisms. DARWIN enables collaboration by allowing not only sharing visualizations of data, but also commentary about and view of data.

  7. HASA: Hypersonic Aerospace Sizing Analysis for the Preliminary Design of Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Harloff, Gary J.; Berkowitz, Brian M.

    1988-01-01

    A review of the hypersonic literature indicated that a general weight and sizing analysis was not available for hypersonic orbital, transport, and fighter vehicles. The objective here is to develop such a method for the preliminary design of aerospace vehicles. This report describes the developed methodology and provides examples to illustrate the model, entitled the Hypersonic Aerospace Sizing Analysis (HASA). It can be used to predict the size and weight of hypersonic single-stage and two-stage-to-orbit vehicles and transports, and is also relevant for supersonic transports. HASA is a sizing analysis that determines vehicle length and volume, consistent with body, fuel, structural, and payload weights. The vehicle component weights are obtained from statistical equations for the body, wing, tail, thermal protection system, landing gear, thrust structure, engine, fuel tank, hydraulic system, avionics, electral system, equipment payload, and propellant. Sample size and weight predictions are given for the Space Shuttle orbiter and other proposed vehicles, including four hypersonic transports, a Mach 6 fighter, a supersonic transport (SST), a single-stage-to-orbit (SSTO) vehicle, a two-stage Space Shuttle with a booster and an orbiter, and two methane-fueled vehicles.

  8. Decomposition-Based Decision Making for Aerospace Vehicle Design

    NASA Technical Reports Server (NTRS)

    Borer, Nicholas K.; Mavris, DImitri N.

    2005-01-01

    Most practical engineering systems design problems have multiple and conflicting objectives. Furthermore, the satisfactory attainment level for each objective ( requirement ) is likely uncertain early in the design process. Systems with long design cycle times will exhibit more of this uncertainty throughout the design process. This is further complicated if the system is expected to perform for a relatively long period of time, as now it will need to grow as new requirements are identified and new technologies are introduced. These points identify a need for a systems design technique that enables decision making amongst multiple objectives in the presence of uncertainty. Traditional design techniques deal with a single objective or a small number of objectives that are often aggregates of the overarching goals sought through the generation of a new system. Other requirements, although uncertain, are viewed as static constraints to this single or multiple objective optimization problem. With either of these formulations, enabling tradeoffs between the requirements, objectives, or combinations thereof is a slow, serial process that becomes increasingly complex as more criteria are added. This research proposal outlines a technique that attempts to address these and other idiosyncrasies associated with modern aerospace systems design. The proposed formulation first recasts systems design into a multiple criteria decision making problem. The now multiple objectives are decomposed to discover the critical characteristics of the objective space. Tradeoffs between the objectives are considered amongst these critical characteristics by comparison to a probabilistic ideal tradeoff solution. The proposed formulation represents a radical departure from traditional methods. A pitfall of this technique is in the validation of the solution: in a multi-objective sense, how can a decision maker justify a choice between non-dominated alternatives? A series of examples help the

  9. Gear Design Effects on the Performance of High Speed Helical Gear Trains as Used in Aerospace Drive Systems

    NASA Technical Reports Server (NTRS)

    Handschuh, R.; Kilmain, D.; Ehinger, R.; Sinusas, E.

    2013-01-01

    The performance of high-speed helical gear trains is of particular importance for tiltrotor aircraft drive systems. These drive systems are used to provide speed reduction/torque multiplication from the gas turbine output shaft and provide the necessary offset between these parallel shafts in the aircraft. Four different design configurations have been tested in the NASA Glenn Research Center, High Speed Helical Gear Train Test Facility. The design configurations included the current aircraft design, current design with isotropic superfinished gear surfaces, double helical design (inward and outward pumping), increased pitch (finer teeth), and an increased helix angle. All designs were tested at multiple input shaft speeds (up to 15,000 rpm) and applied power (up to 5,000 hp). Also two lubrication, system-related, variables were tested: oil inlet temperature (160 to 250 F) and lubricating jet pressure (60 to 80 psig). Experimental data recorded from these tests included power loss of the helical system under study, the temperature increase of the lubricant from inlet to outlet of the drive system and fling off temperatures (radially and axially). Also, all gear systems were tested with and without shrouds around the gears. The empirical data resulting from this study will be useful to the design of future helical gear train systems anticipated for next generation rotorcraft drive systems.

  10. Gear Design Effects on the Performance of High Speed Helical Gear Trains as Used in Aerospace Drive Systems

    NASA Technical Reports Server (NTRS)

    Handschuh, R.; Kilmain, C.; Ehinger, R.; Sinusas, E.

    2013-01-01

    The performance of high-speed helical gear trains is of particular importance for tiltrotor aircraft drive systems. These drive systems are used to provide speed reduction / torque multiplication from the gas turbine output shaft and provide the necessary offset between these parallel shafts in the aircraft. Four different design configurations have been tested in the NASA Glenn Research Center, High Speed Helical Gear Train Test Facility. The design configurations included the current aircraft design, current design with isotropic superfinished gear surfaces, double helical design (inward and outward pumping), increased pitch (finer teeth), and an increased helix angle. All designs were tested at multiple input shaft speeds (up to 15,000 rpm) and applied power (up to 5,000 hp). Also two lubrication, system-related, variables were tested: oil inlet temperature (160 to 250 degF) and lubricating jet pressure (60 to 80 psig). Experimental data recorded from these tests included power loss of the helical system under study, the temperature increase of the lubricant from inlet to outlet of the drive system and fling off temperatures (radially and axially). Also, all gear systems were tested with and without shrouds around the gears. The empirical data resulting from this study will be useful to the design of future helical gear train systems anticipated for next generation rotorcraft drive systems.

  11. National meeting to review IPAD status and goals. [Integrated Programs for Aerospace-vehicle Design

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.

    1980-01-01

    A joint NASA/industry project called Integrated Programs for Aerospace-vehicle Design (IPAD) is described, which has the goal of raising aerospace-industry productivity through the application of computers to integrate company-wide management of engineering data. Basically a general-purpose interactive computing system developed to support engineering design processes, the IPAD design is composed of three major software components: the executive, data management, and geometry and graphics software. Results of IPAD activities include a comprehensive description of a future representative aerospace vehicle design process and its interface to manufacturing, and requirements and preliminary design of a future IPAD software system to integrate engineering activities of an aerospace company having several products under simultaneous development.

  12. Case-Based Capture and Reuse of Aerospace Design Rationale

    NASA Technical Reports Server (NTRS)

    Leake, David B.

    1998-01-01

    The goal of this project is to apply artificial intelligence techniques to facilitate capture and reuse of aerospace design rationale. The project applies case-based reasoning (CBR) and concept mapping (CMAP) tools to the task of capturing, organizing, and interactively accessing experiences or "cases" encapsulating the methods and rationale underlying expert aerospace design. As stipulated in the award, Indiana University and Ames personnel are collaborating on performance of research and determining the direction of research, to assure that the project focuses on high-value tasks. In the first five months of the project, we have made two visits to Ames Research Center to consult with our NASA collaborators, to learn about the advanced aerospace design tools being developed there, and to identify specific needs for intelligent design support. These meetings identified a number of task areas for applying CBR and concept mapping technology. We jointly selected a first task area to focus on: Acquiring the convergence criteria that experts use to guide the selection of useful data from a set of numerical simulations of high-lift systems. During the first funding period, we developed two software systems. First, we have adapted a CBR system developed at Indiana University into a prototype case-based reasoning shell to capture and retrieve information about design experiences, with the sample task of capturing and reusing experts' intuitive criteria for determining convergence (work conducted at Indiana University). Second, we have also adapted and refined existing concept mapping tools that will be used to clarify and capture the rationale underlying those experiences, to facilitate understanding of the expert's reasoning and guide future reuse of captured information (work conducted at the University of West Florida). The tools we have developed are designed to be the basis for a general framework for facilitating tasks within systems developed by the Advanced Design

  13. Hybrid Solid Oxide Fuel Cell/Gas Turbine System Design for High Altitude Long Endurance Aerospace Missions

    NASA Technical Reports Server (NTRS)

    Himansu, Ananda; Freeh, Joshua E.; Steffen, Christopher J., Jr.; Tornabene, Robert T.; Wang, Xiao-Yen J.

    2006-01-01

    A system level analysis, inclusive of mass, is carried out for a cryogenic hydrogen fueled hybrid solid oxide fuel cell and bottoming gas turbine (SOFC/GT) power system. The system is designed to provide primary or secondary electrical power for an unmanned aerial vehicle (UAV) over a high altitude, long endurance mission. The net power level and altitude are parametrically varied to examine their effect on total system mass. Some of the more important technology parameters, including turbomachinery efficiencies and the SOFC area specific resistance, are also studied for their effect on total system mass. Finally, two different solid oxide cell designs are compared to show the importance of the individual solid oxide cell design on the overall system. We show that for long mission durations of 10 days or more, the fuel mass savings resulting from the high efficiency of a SOFC/GT system more than offset the larger powerplant mass resulting from the low specific power of the SOFC/GT system. These missions therefore favor high efficiency, low power density systems, characteristics typical of fuel cell systems in general.

  14. Sensor Selection and Optimization for Health Assessment of Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Kopasakis, George; Santi, Louis M.; Sowers, Thomas S.; Chicatelli, Amy

    2008-01-01

    Aerospace systems are developed similarly to other large-scale systems through a series of reviews, where designs are modified as system requirements are refined. For space-based systems few are built and placed into service these research vehicles have limited historical experience to draw from and formidable reliability and safety requirements, due to the remote and severe environment of space. Aeronautical systems have similar reliability and safety requirements, and while these systems may have historical information to access, commercial and military systems require longevity under a range of operational conditions and applied loads. Historically, the design of aerospace systems, particularly the selection of sensors, is based on the requirements for control and performance rather than on health assessment needs. Furthermore, the safety and reliability requirements are met through sensor suite augmentation in an ad hoc, heuristic manner, rather than any systematic approach. A review of the current sensor selection practice within and outside of the aerospace community was conducted and a sensor selection architecture is proposed that will provide a justifiable, defendable sensor suite to address system health assessment requirements.

  15. Sensor Selection and Optimization for Health Assessment of Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Kopasakis, George; Santi, Louis M.; Sowers, Thomas S.; Chicatelli, Amy

    2007-01-01

    Aerospace systems are developed similarly to other large-scale systems through a series of reviews, where designs are modified as system requirements are refined. For space-based systems few are built and placed into service. These research vehicles have limited historical experience to draw from and formidable reliability and safety requirements, due to the remote and severe environment of space. Aeronautical systems have similar reliability and safety requirements, and while these systems may have historical information to access, commercial and military systems require longevity under a range of operational conditions and applied loads. Historically, the design of aerospace systems, particularly the selection of sensors, is based on the requirements for control and performance rather than on health assessment needs. Furthermore, the safety and reliability requirements are met through sensor suite augmentation in an ad hoc, heuristic manner, rather than any systematic approach. A review of the current sensor selection practice within and outside of the aerospace community was conducted and a sensor selection architecture is proposed that will provide a justifiable, dependable sensor suite to address system health assessment requirements.

  16. Northrop Grumman Aerospace Systems cryocooler overview

    NASA Astrophysics Data System (ADS)

    Raab, J.; Tward, E.

    2010-09-01

    Mechanical long life cryocoolers are an enabling technology used to cool a wide variety of detectors in space applications. These coolers provide cooling over a range of temperatures from 2 K to 200 K, cooling powers from tens of mW to tens of watts. Typical applications are missile warning, Earth and climate sciences, astronomy and cryogenic propellant management. Northrop Grumman Aerospace Systems (NGAS) has delivered many of the US flight cooler systems and has 12 long life pulse tube and Stirling coolers on orbit with two having over 11 years of continuous operation. This paper will provide an overview of the NGAS cryocooler capabilities.

  17. Knowledge-based simulation for aerospace systems

    NASA Technical Reports Server (NTRS)

    Will, Ralph W.; Sliwa, Nancy E.; Harrison, F. Wallace, Jr.

    1988-01-01

    Knowledge-based techniques, which offer many features that are desirable in the simulation and development of aerospace vehicle operations, exhibit many similarities to traditional simulation packages. The eventual solution of these systems' current symbolic processing/numeric processing interface problem will lead to continuous and discrete-event simulation capabilities in a single language, such as TS-PROLOG. Qualitative, totally-symbolic simulation methods are noted to possess several intrinsic characteristics that are especially revelatory of the system being simulated, and capable of insuring that all possible behaviors are considered.

  18. Multidisciplinary aerospace design optimization: Survey of recent developments

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.

    1995-01-01

    The increasing complexity of engineering systems has sparked increasing interest in multidisciplinary optimization (MDO). This paper presents a survey of recent publications in the field of aerospace where interest in MDO has been particularly intense. The two main challenges of MDO are computational expense and organizational complexity. Accordingly the survey is focussed on various ways different researchers use to deal with these challenges. The survey is organized by a breakdown of MDO into its conceptual components. Accordingly, the survey includes sections on Mathematical Modeling, Design-oriented Analysis, Approximation Concepts, Optimization Procedures, System Sensitivity, and Human Interface. With the authors' main expertise being in the structures area, the bulk of the references focus on the interaction of the structures discipline with other disciplines. In particular, two sections at the end focus on two such interactions that have recently been pursued with a particular vigor: Simultaneous Optimization of Structures and Aerodynamics, and Simultaneous Optimization of Structures Combined With Active Control.

  19. Adaptive Modeling, Engineering Analysis and Design of Advanced Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Hsu, Su-Yuen; Mason, Brian H.; Hicks, Mike D.; Jones, William T.; Sleight, David W.; Chun, Julio; Spangler, Jan L.; Kamhawi, Hilmi; Dahl, Jorgen L.

    2006-01-01

    This paper describes initial progress towards the development and enhancement of a set of software tools for rapid adaptive modeling, and conceptual design of advanced aerospace vehicle concepts. With demanding structural and aerodynamic performance requirements, these high fidelity geometry based modeling tools are essential for rapid and accurate engineering analysis at the early concept development stage. This adaptive modeling tool was used for generating vehicle parametric geometry, outer mold line and detailed internal structural layout of wing, fuselage, skin, spars, ribs, control surfaces, frames, bulkheads, floors, etc., that facilitated rapid finite element analysis, sizing study and weight optimization. The high quality outer mold line enabled rapid aerodynamic analysis in order to provide reliable design data at critical flight conditions. Example application for structural design of a conventional aircraft and a high altitude long endurance vehicle configuration are presented. This work was performed under the Conceptual Design Shop sub-project within the Efficient Aerodynamic Shape and Integration project, under the former Vehicle Systems Program. The project objective was to design and assess unconventional atmospheric vehicle concepts efficiently and confidently. The implementation may also dramatically facilitate physics-based systems analysis for the NASA Fundamental Aeronautics Mission. In addition to providing technology for design and development of unconventional aircraft, the techniques for generation of accurate geometry and internal sub-structure and the automated interface with the high fidelity analysis codes could also be applied towards the design of vehicles for the NASA Exploration and Space Science Mission projects.

  20. Geometric requirements for multidisciplinary analysis of aerospace-vehicle design

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.; Kerr, Patirca A.

    1992-01-01

    The geometric requirements for creating surfaces and grids for multidisciplinary analysis and optimization of aerospace-vehicle designs are described. Geometric surface representations are outlined and compared. Directions for future designs are proposed. High-speed civil transport aircraft configurations are targeted to demonstrate the processes.

  1. Variant terminology. [for aerospace information systems

    NASA Technical Reports Server (NTRS)

    Buchan, Ronald L.

    1991-01-01

    A system called Variant Terminology Switching (VTS) is set forth that is intended to provide computer-assisted spellings for terms that have American and British versions. VTS is based on the use of brackets, parentheses, and other symbols in conjunction with letters that distinguish American and British spellings. The symbols are used in the systems as indicators of actions such as deleting, adding, and replacing letters as well as replacing entire words and concepts. The system is shown to be useful for the intended purpose and also for the recognition of misspellings and for the standardization of computerized input/output. The VTS system is of interest to the development of international retrieval systems for aerospace and other technical databases that enhance the use by the global scientific community.

  2. Visualization in aerospace research with a large wall display system

    NASA Astrophysics Data System (ADS)

    Matsuo, Yuichi

    2002-05-01

    National Aerospace Laboratory of Japan has built a large- scale visualization system with a large wall-type display. The system has been operational since April 2001 and comprises a 4.6x1.5-meter (15x5-foot) rear projection screen with 3 BARCO 812 high-resolution CRT projectors. The reason we adopted the 3-gun CRT projectors is support for stereoscopic viewing, ease with color/luminosity matching and accuracy of edge-blending. The system is driven by a new SGI Onyx 3400 server of distributed shared-memory architecture with 32 CPUs, 64Gbytes memory, 1.5TBytes FC RAID disk and 6 IR3 graphics pipelines. Software is another important issue for us to make full use of the system. We have introduced some applications available in a multi- projector environment such as AVS/MPE, EnSight Gold and COVISE, and been developing some software tools that create volumetric images with using SGI graphics libraries. The system is mainly used for visualization fo computational fluid dynamics (CFD) simulation sin aerospace research. Visualized CFD results are of our help for designing an improved configuration of aerospace vehicles and analyzing their aerodynamic performances. These days we also use it for various collaborations among researchers.

  3. The aerospace plane design challenge: Credible computational fluid dynamics results

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B.

    1990-01-01

    Computational fluid dynamics (CFD) is necessary in the design processes of all current aerospace plane programs. Single-stage-to-orbit (STTO) aerospace planes with air-breathing supersonic combustion are going to be largely designed by means of CFD. The challenge of the aerospace plane design is to provide credible CFD results to work from, to assess the risk associated with the use of those results, and to certify CFD codes that produce credible results. To establish the credibility of CFD results used in design, the following topics are discussed: CFD validation vis-a-vis measurable fluid dynamics (MFD) validation; responsibility for credibility; credibility requirement; and a guide for establishing credibility. Quantification of CFD uncertainties helps to assess success risk and safety risks, and the development of CFD as a design tool requires code certification. This challenge is managed by designing the designers to use CFD effectively, by ensuring quality control, and by balancing the design process. For designing the designers, the following topics are discussed: how CFD design technology is developed; the reasons Japanese companies, by and large, produce goods of higher quality than the U.S. counterparts; teamwork as a new way of doing business; and how ideas, quality, and teaming can be brought together. Quality control for reducing the loss imparted to the society begins with the quality of the CFD results used in the design process, and balancing the design process means using a judicious balance of CFD and MFD.

  4. Industrial Design in Aerospace/Role of Aesthetics

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2006-01-01

    Industrial design creates and develops concepts and specifications that seek to simultaneously and synergistically optimize function, production, value and appearance. The inclusion of appearance, or esthetics, as a major design metric represents both an augmentation of conventional engineering design and an intersection with artistic endeavor(s). Report surveys past and current industrial design practices and examples across aerospace including aircraft and spacecraft, both exterior and interior.

  5. NASA Aerospace Flight Battery Systems Program: An Update

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    1992-01-01

    The major objective of the NASA Aerospace Flight Battery Systems Program is to provide NASA with the policy and posture to increase and ensure the safety, performance, and reliability of batteries for space power systems. The program was initiated in 1985 to address battery problems experienced by NASA and other space battery users over the previous ten years. The original program plan was approved in May 1986 and modified in 1990 to reflect changes in the agency's approach to battery related problems that are affecting flight programs. The NASA Battery Workshop is supported by the NASA Aerospace Flight Battery Systems Program. The main objective of the discussions is to aid in defining the direction which the agency should head with respect to aerospace battery issues. Presently, primary attention in the Battery Program is being devoted to issues revolving around the future availability of nickel-cadmium batteries as a result of the proposed OSHA standards with respect to allowable cadmium levels in the workplace. The decision of whether or not to pursue the development of an advanced nickel-cadmium cell design and the qualification of vendors to produce cells for flight programs hinges on the impact of the OSHA ruling. As part of a unified Battery Program, the evaluation of a nickel-hydrogen cell design options and primary cell issues are also being pursued to provide high performance NASA Standards and space qualified state-of-the-art cells. The resolution of issues is being addressed with the full participation of the aerospace battery community.

  6. Emerging CFD technologies and aerospace vehicle design

    NASA Technical Reports Server (NTRS)

    Aftosmis, Michael J.

    1995-01-01

    With the recent focus on the needs of design and applications CFD, research groups have begun to address the traditional bottlenecks of grid generation and surface modeling. Now, a host of emerging technologies promise to shortcut or dramatically simplify the simulation process. This paper discusses the current status of these emerging technologies. It will argue that some tools are already available which can have positive impact on portions of the design cycle. However, in most cases, these tools need to be integrated into specific engineering systems and process cycles to be used effectively. The rapidly maturing status of unstructured and Cartesian approaches for inviscid simulations makes suggests the possibility of highly automated Euler-boundary layer simulations with application to loads estimation and even preliminary design. Similarly, technology is available to link block structured mesh generation algorithms with topology libraries to avoid tedious re-meshing of topologically similar configurations. Work in algorithmic based auto-blocking suggests that domain decomposition and point placement operations in multi-block mesh generation may be properly posed as problems in Computational Geometry, and following this approach may lead to robust algorithmic processes for automatic mesh generation.

  7. Critical Systems Engineering Accelerator: Aerospace Demonstrator

    NASA Astrophysics Data System (ADS)

    Moreno, Ricardo; Fernandez, Gonzalo; Regada, Raul; Basanta, Luis; Alana, Elena; Del Carmen Lomba, Maria

    2014-08-01

    Nowadays, the complexity and functionality of space systems is increasing more and more. Safety critical systems have to guarantee strong safety and dependability constraints. This paper presents CRYSTAL (Critical sYSTem engineering AcceLeration), a cross-domain ARTEMIS project for increasing the efficiency of the embedded software development in the industry through the definition of an integrated tool chain. CRYSTAL involves four major application domains: Aerospace, Automotive, Rail and Medical Healthcare. The impact in the Space Domain will be evaluated through a demonstrator implemented using CRYSTAL framework: the Low Level Software for an Avionics Control Unit, capable to run Application SW for autonomous navigation, image acquisition control, data compression and/or data handling. Finally, the results achieved will be evaluated taking into account the ECSS (European Committee for Space Standardization) standards and procedures.

  8. Post-Optimality Analysis In Aerospace Vehicle Design

    NASA Technical Reports Server (NTRS)

    Braun, Robert D.; Kroo, Ilan M.; Gage, Peter J.

    1993-01-01

    This analysis pertains to the applicability of optimal sensitivity information to aerospace vehicle design. An optimal sensitivity (or post-optimality) analysis refers to computations performed once the initial optimization problem is solved. These computations may be used to characterize the design space about the present solution and infer changes in this solution as a result of constraint or parameter variations, without reoptimizing the entire system. The present analysis demonstrates that post-optimality information generated through first-order computations can be used to accurately predict the effect of constraint and parameter perturbations on the optimal solution. This assessment is based on the solution of an aircraft design problem in which the post-optimality estimates are shown to be within a few percent of the true solution over the practical range of constraint and parameter variations. Through solution of a reusable, single-stage-to-orbit, launch vehicle design problem, this optimal sensitivity information is also shown to improve the efficiency of the design process, For a hierarchically decomposed problem, this computational efficiency is realized by estimating the main-problem objective gradient through optimal sep&ivity calculations, By reducing the need for finite differentiation of a re-optimized subproblem, a significant decrease in the number of objective function evaluations required to reach the optimal solution is obtained.

  9. The aerospace plane design challenge - Credible computational fluid dynamics results

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B.

    1990-01-01

    In order to establish the credibility of CFD results utilized in aerospace plane design, the following topics are discussed: CFD validation in relation to 'measureable' fluid dynamics (MFD) validation, credibility requirements, responsibility for credibility, and a guide for establishing credibility. What is of paramount concern for fluid dynamic design is not CFD code validation but qualification of CFD unknowns so that their magnitude is greatly reduced and that these uncertainties are employed for designing with margin. The designers must be trained to properly use CFD if they are to produce good designs. In approximately 70 percent of the flight envelopes of SSTO aerospace planes with supersonic combustion, CFD will be necessary to determine dynamics performance and specifications.

  10. Computational Control of Flexible Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Sharpe, Lonnie, Jr.; Shen, Ji Yao

    1994-01-01

    The main objective of this project is to establish a distributed parameter modeling technique for structural analysis, parameter estimation, vibration suppression and control synthesis of large flexible aerospace structures. This report concentrates on the research outputs produced in the last two years of the project. The main accomplishments can be summarized as follows. A new version of the PDEMOD Code had been completed. A theoretical investigation of the NASA MSFC two-dimensional ground-based manipulator facility by using distributed parameter modelling technique has been conducted. A new mathematical treatment for dynamic analysis and control of large flexible manipulator systems has been conceived, which may provide a embryonic form of a more sophisticated mathematical model for future modified versions of the PDEMOD Codes.

  11. Requirements for effective use of CFD in aerospace design

    NASA Technical Reports Server (NTRS)

    Raj, Pradeep

    1995-01-01

    This paper presents a perspective on the requirements that Computational Fluid Dynamics (CFD) technology must meet for its effective use in aerospace design. General observations are made on current aerospace design practices and deficiencies are noted that must be rectified for the U.S. aerospace industry to maintain its leadership position in the global marketplace. In order to rectify deficiencies, industry is transitioning to an integrated product and process development (IPPD) environment and design processes are undergoing radical changes. The role of CFD in producing data that design teams need to support flight vehicle development is briefly discussed. An overview of the current state of the art in CFD is given to provide an assessment of strengths and weaknesses of the variety of methods currently available, or under development, to produce aerodynamic data. Effectiveness requirements are examined from a customer/supplier view point with design team as customer and CFD practitioner as supplier. Partnership between the design team and CFD team is identified as an essential requirement for effective use of CFD. Rapid turnaround, reliable accuracy, and affordability are offered as three key requirements that CFD community must address if CFD is to play its rightful role in supporting the IPPD design environment needed to produce high quality yet affordable designs.

  12. Feasibility study of an Integrated Program for Aerospace-vehicle Design (IPAD) system. Volume 5: Design of the IPAD system. Part 2: System design. Part 3: General purpose utilities, phase 1, task 2

    NASA Technical Reports Server (NTRS)

    Garrocq, C. A.; Hurley, M. J.

    1973-01-01

    Viable designs are presented of various elements of the IPAD framework software, data base management system, and required new languages in relation to the capabilities of operating systems software. A thorough evaluation was made of the basic systems functions to be provide by each software element, its requirements defined in the conceptual design, the operating systems features affecting its design, and the engineering/design functions which it was intended to enhance.

  13. Aerospace Vehicle Design, Spacecraft Section. Volume 3

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Research results are presented for the following groups: Project Mars Airplane Vehicle and Reconnaissance Instrument Carrier (MAVRIC), ACME, ARES, Project ACRONYM, Mars Aircraft Recepticle with Technical Instruments, Aerobraking, and Navigation (MARTIAN), and NOMADS. Each project is described by the following areas of focus: mission planning and costs; aerobraking systems; structures and thermal control systems; attitude and articulation control systems; comman and data control systems; science instrumentation; and power and propulsion systems.

  14. Overview of integrated programs for aerospace-vehicle design (IPAD)

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.

    1980-01-01

    An overview of a joint industry/government project, denoted Integrated Programs for Aerospace-Vehicle Design (IPAD), which focuses on development of technology and associated software for integrated company-wide management of engineering information is presented. Results to date are summarized and include an in-depth documentation of a representative design process for a large engineering project, the definition and design of computer-aided design software needed to support that process, and the release of prototype software to integrated selected design functions.

  15. Aerospace vehicle design, spacecraft section. Volume 1

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The objective was to create a manned Martian aircraft which can perform: scientific surveys of particular sites distant from the base; a deployment of scientific instrument packages by air drop that land rovers cannot accomplish; and rescue operations. Designing the airfoil requires a wing which can operate within the low Reynolds numbers apparent on Mars. The airfoil, NASA NLF(1)-1015 was chosen. The design of the aircraft is comparable to a P-38 military aircraft. The aircraft uses fuel cells to power the two propellers. A rocket-assisted takeoff is necessary to enable Romulus to liftoff. Although the design and creation of Romulus would be an expensive adventure, such a vehicle could be most useful in evaluating the Mars surface and in creating a habitat for mankind.

  16. An operating system for future aerospace vehicle computer systems

    NASA Technical Reports Server (NTRS)

    Foudriat, E. C.; Berman, W. J.; Will, R. W.; Bynum, W. L.

    1984-01-01

    The requirements for future aerospace vehicle computer operating systems are examined in this paper. The computer architecture is assumed to be distributed with a local area network connecting the nodes. Each node is assumed to provide a specific functionality. The network provides for communication so that the overall tasks of the vehicle are accomplished. The O/S structure is based upon the concept of objects. The mechanisms for integrating node unique objects with node common objects in order to implement both the autonomy and the cooperation between nodes is developed. The requirements for time critical performance and reliability and recovery are discussed. Time critical performance impacts all parts of the distributed operating system; e.g., its structure, the functional design of its objects, the language structure, etc. Throughout the paper the tradeoffs - concurrency, language structure, object recovery, binding, file structure, communication protocol, programmer freedom, etc. - are considered to arrive at a feasible, maximum performance design. Reliability of the network system is considered. A parallel multipath bus structure is proposed for the control of delivery time for time critical messages. The architecture also supports immediate recovery for the time critical message system after a communication failure.

  17. Development of Integrated Programs for Aerospace-Vehicle Design (IPAD) - IPAD user requirements

    NASA Technical Reports Server (NTRS)

    Anderton, G. L.

    1979-01-01

    Results of a requirements analysis task for Integrated Programs for Aerospace Vehicle Design (IPAD) are presented. User requirements which, in part, will shape the IPAD system design are given. Requirements considered were: generation, modification, storage, retrieval, communication, reporting, and protection of information. Data manipulation and controls on the system and the information were also considered. Specific needs relative to the product design process are also discussed.

  18. Applied virtual reality in aerospace design

    NASA Technical Reports Server (NTRS)

    Hale, Joseph P.

    1995-01-01

    A virtual reality (VR) applications program has been under development at the Marshall Space Flight Center (MSFC) since 1989. The objectives of the MSFC VR Applications Program are to develop, assess, validate, and utilize VR in hardware development, operations development and support, mission operations training and science training. Before VR can be used with confidence in a particular application, VR must be validated for that class of applications. For that reason, specific validation studies for selected classes of applications have been proposed and are currently underway. These include macro-ergonomic 'control room class' design analysis, Spacelab stowage reconfiguration training, a full-body microgravity functional reach simulator, a gross anatomy teaching simulator, and micro-ergonomic design analysis. This paper describes the MSFC VR Applications Program and the validation studies.

  19. Aerospace vehicle design, spacecraft section. Volume 2

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The next major step in the evolution of the space program is the exploration of the planet Mars. In preparation for this, much research is needed on the problem of surveying the planet surface. An aircraft appears to be a viable solution because it can carry men and equipment large distances in a short period of time as compared with ground transportation. The problems and design of an aircraft which would be able to survey the planet Mars are examined.

  20. Multistage aerospace craft. [perspective drawings of conceptual design

    NASA Technical Reports Server (NTRS)

    Kelly, D. L. (Inventor)

    1973-01-01

    A conceptual design of a multi-stage aerospace craft is presented. Two perspective views of the vehicle are developed to show the two component configuration with delta wing, four vertical tail surfaces, tricycle landing gear, and two rocket exhaust nozzles at the rear of the fuselage. Engines for propulsion in the atmosphere are mounted on the fuselage in front of the wing root attachment.

  1. Computational control of flexible aerospace systems

    NASA Technical Reports Server (NTRS)

    Sharpe, Lonnie, Jr.; Shen, Ji Yao

    1994-01-01

    The main objective of this project is to establish a distributed parameter modeling technique for structural analysis, parameter estimation, vibration suppression and control synthesis of large flexible aerospace structures. This report concentrates on the research outputs produced in the last two years. The main accomplishments can be summarized as follows. A new version of the PDEMOD Code had been completed based on several incomplete versions. The verification of the code had been conducted by comparing the results with those examples for which the exact theoretical solutions can be obtained. The theoretical background of the package and the verification examples has been reported in a technical paper submitted to the Joint Applied Mechanics & Material Conference, ASME. A brief USER'S MANUAL had been compiled, which includes three parts: (1) Input data preparation; (2) Explanation of the Subroutines; and (3) Specification of control variables. Meanwhile, a theoretical investigation of the NASA MSFC two-dimensional ground-based manipulator facility by using distributed parameter modeling technique has been conducted. A new mathematical treatment for dynamic analysis and control of large flexible manipulator systems has been conceived, which may provide an embryonic form of a more sophisticated mathematical model for future modified versions of the PDEMOD Codes.

  2. Feasibility study of an Integrated Program for Aerospace-vehicle Design (IPAD) system. Volume 4: Design of the IPAD system. Part 1: IPAD system design requirements, phase 1, task 2

    NASA Technical Reports Server (NTRS)

    Garrocq, C. A.; Hurley, M. J.

    1973-01-01

    System requirements, software elements, and hardware equipment required for an IPAD system are defined. An IPAD conceptual design was evolved, a potential user survey was conducted, and work loads for various types of interactive terminals were projected. Various features of major host computing systems were compared, and target systems were selected in order to identify the various elements of software required.

  3. Linear-array systems for aerospace NDE

    SciTech Connect

    Smith, Robert A.; Willsher, Stephen J.; Bending, Jamie M.

    1999-12-02

    Rapid large-area inspection of composite structures for impact damage and multi-layered aluminum skins for corrosion has been a recognized priority for several years in both military and civil aerospace applications. Approaches to this requirement have followed two clearly different routes: the development of novel large-area inspection systems, and the enhancement of current ultrasonic or eddy-current methods to reduce inspection times. Ultrasonic inspection is possible with standard flaw detection equipment but the addition of a linear ultrasonic array could reduce inspection times considerably. In order to investigate their potential, 9-element and 17-element linear ultrasonic arrays for composites, and 64-element arrays for aluminum skins, have been developed to DERA specifications for use with the ANDSCAN area scanning system. A 5 m{sup 2} composite wing surface has been scanned with a scan resolution of approximately 3 mm in 6 hours. With subsequent software and hardware improvements all four composite wing surfaces (top/bottom, left/right) of a military fighter aircraft can potentially be inspected in less than a day. Array technology has been very widely used in the medical ultrasound field although rarely above 10 MHz, whereas lap-joint inspection requires a pulse center-frequency of 12 to 20 MHz in order to resolve the separate interfaces in the lap joint. A 128 mm-long multi-element array of 5 mmx2 mm ultrasonic elements for use with the ANDSCAN scanning software was produced to a DERA specification by an NDT manufacturer with experience in the medical imaging field. This paper analyses the performance of the transducers that have been produced and evaluates their use in scanning systems of different configurations.

  4. Linear-array systems for aerospace NDE

    NASA Astrophysics Data System (ADS)

    Smith, Robert A.; Willsher, Stephen J.; Bending, Jamie M.

    1999-12-01

    Rapid large-area inspection of composite structures for impact damage and multi-layered aluminum skins for corrosion has been a recognized priority for several years in both military and civil aerospace applications. Approaches to this requirement have followed two clearly different routes: the development of novel large-area inspection systems, and the enhancement of current ultrasonic or eddy-current methods to reduce inspection times. Ultrasonic inspection is possible with standard flaw detection equipment but the addition of a linear ultrasonic array could reduce inspection times considerably. In order to investigate their potential, 9-element and 17-element linear ultrasonic arrays for composites, and 64-element arrays for aluminum skins, have been developed to DERA specifications for use with the ANDSCAN® area scanning system. A 5 m2 composite wing surface has been scanned with a scan resolution of approximately 3 mm in 6 hours. With subsequent software and hardware improvements all four composite wing surfaces (top/bottom, left/right) of a military fighter aircraft can potentially be inspected in less than a day. Array technology has been very widely used in the medical ultrasound field although rarely above 10 MHz, whereas lap-joint inspection requires a pulse center-frequency of 12 to 20 MHz in order to resolve the separate interfaces in the lap joint. A 128 mm-long multi-element array of 5 mm×2 mm ultrasonic elements for use with the ANDSCAN® scanning software was produced to a DERA specification by an NDT manufacturer with experience in the medical imaging field. This paper analyses the performance of the transducers that have been produced and evaluates their use in scanning systems of different configurations.

  5. Risk communication strategy development using the aerospace systems engineering process

    NASA Technical Reports Server (NTRS)

    Dawson, S.; Sklar, M.

    2004-01-01

    This paper explains the goals and challenges of NASA's risk communication efforts and how the Aerospace Systems Engineering Process (ASEP) was used to map the risk communication strategy used at the Jet Propulsion Laboratory to achieve these goals.

  6. Multidisciplinary Design Technology Development: A Comparative Investigation of Integrated Aerospace Vehicle Design Tools

    NASA Technical Reports Server (NTRS)

    Renaud, John E.; Batill, Stephen M.; Brockman, Jay B.

    1999-01-01

    This research effort is a joint program between the Departments of Aerospace and Mechanical Engineering and the Computer Science and Engineering Department at the University of Notre Dame. The purpose of the project was to develop a framework and systematic methodology to facilitate the application of Multidisciplinary Design Optimization (MDO) to a diverse class of system design problems. For all practical aerospace systems, the design of a systems is a complex sequence of events which integrates the activities of a variety of discipline "experts" and their associated "tools". The development, archiving and exchange of information between these individual experts is central to the design task and it is this information which provides the basis for these experts to make coordinated design decisions (i.e., compromises and trade-offs) - resulting in the final product design. Grant efforts focused on developing and evaluating frameworks for effective design coordination within a MDO environment. Central to these research efforts was the concept that the individual discipline "expert", using the most appropriate "tools" available and the most complete description of the system should be empowered to have the greatest impact on the design decisions and final design. This means that the overall process must be highly interactive and efficiently conducted if the resulting design is to be developed in a manner consistent with cost and time requirements. The methods developed as part of this research effort include; extensions to a sensitivity based Concurrent Subspace Optimization (CSSO) NMO algorithm; the development of a neural network response surface based CSSO-MDO algorithm; and the integration of distributed computing and process scheduling into the MDO environment. This report overviews research efforts in each of these focus. A complete bibliography of research produced with support of this grant is attached.

  7. An overview of Ball Aerospace cryogen storage and delivery systems

    NASA Astrophysics Data System (ADS)

    Marquardt, J.; Keller, J.; Mills, G.; Schmidt, J.

    2015-12-01

    Starting on the Gemini program in the 1960s, Beech Aircraft (now Ball Aerospace) has been designing and manufacturing dewars for a variety of cryogens including liquid hydrogen and oxygen. These dewars flew on the Apollo, Skylab and Space Shuttle spacecraft providing fuel cell reactants resulting in over 150 manned spaceflights. Since Space Shuttle, Ball has also built the liquid hydrogen fuel tanks for the Boeing Phantom Eye unmanned aerial vehicle. Returning back to its fuel cell days, Ball has designed, built and tested a volume-constrained liquid hydrogen and oxygen tank system for reactant delivery to fuel cells on unmanned undersea vehicles (UUVs). Herein past history of Ball technology is described. Testing has been completed on the UUV specific design, which will be described.

  8. Multidisciplinary Design Technology Development: A Comparative Investigation of Integrated Aerospace Vehicle Design Tools

    NASA Technical Reports Server (NTRS)

    Renaud, John E.; Batill, Stephen M.; Brockman, Jay B.

    1998-01-01

    This research effort is a joint program between the Departments of Aerospace and Mechanical Engineering and the Computer Science and Engineering Department at the University of Notre Dame. Three Principal Investigators; Drs. Renaud, Brockman and Batill directed this effort. During the four and a half year grant period, six Aerospace and Mechanical Engineering Ph.D. students and one Masters student received full or partial support, while four Computer Science and Engineering Ph.D. students and one Masters student were supported. During each of the summers up to four undergraduate students were involved in related research activities. The purpose of the project was to develop a framework and systematic methodology to facilitate the application of Multidisciplinary Design Optimization (N4DO) to a diverse class of system design problems. For all practical aerospace systems, the design of a systems is a complex sequence of events which integrates the activities of a variety of discipline "experts" and their associated "tools". The development, archiving and exchange of information between these individual experts is central to the design task and it is this information which provides the basis for these experts to make coordinated design decisions (i.e., compromises and trade-offs) - resulting in the final product design. Grant efforts focused on developing and evaluating frameworks for effective design coordination within a MDO environment. Central to these research efforts was the concept that the individual discipline "expert", using the most appropriate "tools" available and the most complete description of the system should be empowered to have the greatest impact on the design decisions and final design. This means that the overall process must be highly interactive and efficiently conducted if the resulting design is to be developed in a manner consistent with cost and time requirements. The methods developed as part of this research effort include; extensions to

  9. Active wireless temperature sensors for aerospace thermal protection systems

    NASA Astrophysics Data System (ADS)

    Milos, Frank S.; Karunaratne, K. S. G.

    2003-07-01

    Vehicle system health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles in order to reduce life-cycle costs, to increase safety margins, and to improve mission reliability. NASA Ames is leading the effort to advance inspection and health management technologies for thermal protection systems. This paper summarizes a joint effort by NASA Ames and Korteks to develop active "wireless" sensors that can be embedded in the thermal protection system to monitor subsurface temperature histories. These devices are thermocouples integrated with radio-frequency identification circuits to enable non-contact communication of temperature data through aerospace thermal protection materials. Two generations of prototype sensors are discussed. The advanced prototype collects data from three type-k thermocouples attached to a 25-mm square integrated circuit and can communicate through 7 to 10 cm thickness of thermal protection materials.

  10. Development of an advanced high-temperature fastener system for advanced aerospace vehicle application

    NASA Technical Reports Server (NTRS)

    Kull, F. R.

    1975-01-01

    The results of a program to develop a lightweight high temperature reusable fastening system for aerospace vehicle thermal protection system applications are documented. This feasibility program resulted in several fastener innovations which will meet the specific needs of the heat shield application. Three systems were designed from Hayes 188 alloy and tested by environmental exposure and residual mechanical properties. The designs include a clinch stud with a collar retainer, a weld stud with a split ring retainer, and a caged stud with a collar retainer. The results indicated that a lightweight, reusable, high temperature fastening system can be developed for aerospace vehicle application.

  11. Active Wireless Temperature Sensors for Aerospace Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Karunaratne, K.; Arnold, Jim (Technical Monitor)

    2002-01-01

    Health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles in order to reduce life-cycle costs, to increase safety margins, and to improve mission reliability. NASA Ames is leading the effort to advance inspection and health management technologies for thermal protection systems. This paper summarizes a joint project between NASA Ames and Korteks to develop active wireless sensors that can be embedded in the thermal protection system to monitor sub-surface temperature histories. These devices are thermocouples integrated with radio-frequency identification circuitry to enable acquisition and non-contact communication of temperature data through aerospace thermal protection materials. Two generations of prototype sensors are discussed. The advanced prototype collects data from three type-k thermocouples attached to a 2.54-cm square integrated circuit.

  12. An Overview of the NASA Aerospace Flight Battery Systems Program

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2003-01-01

    The NASA Aerospace Flight Battery Systems Program is an agency-wide effort aimed at ensuring the quality, safety, reliability and performance of flight battery systems for NASA applications. The program provides for the validation of primary and secondary cell and battery level technology advances to ensure their availability and readiness for use in NASA missions. It serves to bridge the gap between the development of technology advances and the realization and incorporation of these advances into mission applications. The program is led by the Glenn Research Center and involves funded task activities at each of the NASA mission centers and JPL. The overall products are safe, reliable, high quality batteries for mission applications. The products are defined along three product lines: 1. Battery Systems Technology - Elements of this task area cover the systems aspects of battery operation and generally apply across chemistries. This includes the development of guidelines documents, the establishment and maintenance of a central battery database that serves a central repository for battery characterization and verification test data from tests performed under the support of this program, the NASA Battery Workshop, and general test facility support. 2. Secondary Battery Technology - l h s task area focuses on the validation of battery technology for nickel-cadmium, nickel-hydrogen, nickel-metal-hydride and lithium-ion secondary battery systems. Standardized test regimes are used to validate the quality of a cell lot or cell design for flight applications. In this area, efforts are now concentrated on the validation and verification of lithium-ion battery technology for aerospace applications. 3. Primary Battery Technology - The safety and reliability aspects for primary lithium battery systems that are used in manned operations on the Shuttle and International Space Station are addressed in the primary battery technology task area. An overview of the task areas

  13. Development of a Dynamically Configurable,Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation

    NASA Technical Reports Server (NTRS)

    Afjeh, Abdollah A.; Reed, John A.

    2003-01-01

    This research is aimed at developing a neiv and advanced simulation framework that will significantly improve the overall efficiency of aerospace systems design and development. This objective will be accomplished through an innovative integration of object-oriented and Web-based technologies ivith both new and proven simulation methodologies. The basic approach involves Ihree major areas of research: Aerospace system and component representation using a hierarchical object-oriented component model which enables the use of multimodels and enforces component interoperability. Collaborative software environment that streamlines the process of developing, sharing and integrating aerospace design and analysis models. . Development of a distributed infrastructure which enables Web-based exchange of models to simplify the collaborative design process, and to support computationally intensive aerospace design and analysis processes. Research for the first year dealt with the design of the basic architecture and supporting infrastructure, an initial implementation of that design, and a demonstration of its application to an example aircraft engine system simulation.

  14. Development of Integrated Programs for Aerospace-vehicle design (IPAD): Integrated information processing requirements

    NASA Technical Reports Server (NTRS)

    Southall, J. W.

    1979-01-01

    The engineering-specified requirements for integrated information processing by means of the Integrated Programs for Aerospace-Vehicle Design (IPAD) system are presented. A data model is described and is based on the design process of a typical aerospace vehicle. General data management requirements are specified for data storage, retrieval, generation, communication, and maintenance. Information management requirements are specified for a two-component data model. In the general portion, data sets are managed as entities, and in the specific portion, data elements and the relationships between elements are managed by the system, allowing user access to individual elements for the purpose of query. Computer program management requirements are specified for support of a computer program library, control of computer programs, and installation of computer programs into IPAD.

  15. The suitability of selected multidisciplinary design and optimization techniques to conceptual aerospace vehicle design

    NASA Technical Reports Server (NTRS)

    Olds, John R.

    1992-01-01

    Four methods for preliminary aerospace vehicle design are reviewed. The first three methods (classical optimization, system decomposition, and system sensitivity analysis (SSA)) employ numerical optimization techniques and numerical gradients to feed back changes in the design variables. The optimum solution is determined by stepping through a series of designs toward a final solution. Of these three, SSA is argued to be the most applicable to a large-scale highly coupled vehicle design where an accurate minimum of an objective function is required. With SSA, several tasks can be performed in parallel. The techniques of classical optimization and decomposition can be included in SSA, resulting in a very powerful design method. The Taguchi method is more of a 'smart' parametric design method that analyzes variable trends and interactions over designer specified ranges with a minimum of experimental analysis runs. Its advantages are its relative ease of use, ability to handle discrete variables, and ability to characterize the entire design space with a minimum of analysis runs.

  16. An international aerospace information system: A cooperative opportunity

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Blados, Walter R.

    1992-01-01

    Scientific and technical information (STI) is a valuable resource which represents the results of large investments in research and development (R&D), and the expertise of a nation. NASA and its predecessor organizations have developed and managed the preeminent aerospace information system. We see information and information systems changing and becoming more international in scope. In Europe, consistent with joint R&D programs and a view toward a united Europe, we have seen the emergence of a European Aerospace Database concept. In addition, the development of aeronautics and astronautics in individual nations have also lead to initiatives for national aerospace databases. Considering recent technological developments in information science and technology, as well as the reality of scarce resources in all nations, it is time to reconsider the mutually beneficial possibilities offered by cooperation and international resource sharing. The new possibilities offered through cooperation among the various aerospace database efforts toward an international aerospace database initiative which can optimize the cost/benefit equation for all participants are considered.

  17. Development of Parametric Mass and Volume Models for an Aerospace SOFC/Gas Turbine Hybrid System

    NASA Technical Reports Server (NTRS)

    Tornabene, Robert; Wang, Xiao-yen; Steffen, Christopher J., Jr.; Freeh, Joshua E.

    2005-01-01

    In aerospace power systems, mass and volume are key considerations to produce a viable design. The utilization of fuel cells is being studied for a commercial aircraft electrical power unit. Based on preliminary analyses, a SOFC/gas turbine system may be a potential solution. This paper describes the parametric mass and volume models that are used to assess an aerospace hybrid system design. The design tool utilizes input from the thermodynamic system model and produces component sizing, performance, and mass estimates. The software is designed such that the thermodynamic model is linked to the mass and volume model to provide immediate feedback during the design process. It allows for automating an optimization process that accounts for mass and volume in its figure of merit. Each component in the system is modeled with a combination of theoretical and empirical approaches. A description of the assumptions and design analyses is presented.

  18. Nondeterministic Approaches and Their Potential for Future Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler)

    2001-01-01

    This document contains the proceedings of the Training Workshop on Nondeterministic Approaches and Their Potential for Future Aerospace Systems held at NASA Langley Research Center, Hampton, Virginia, May 30-3 1, 2001. The workshop was jointly sponsored by Old Dominion University's Center for Advanced Engineering Environments and NASA. Workshop attendees were from NASA, other government agencies, industry, and universities. The objectives of the workshop were to give overviews of the diverse activities in nondeterministic approaches, uncertainty management methodologies, reliability assessment and risk management techniques, and to identify their potential for future aerospace systems.

  19. A Hazardous Gas Detection System for Aerospace and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Chen, L. - Y.; Makel, D. B.; Liu, C. C.; Wu, Q. H.; Knight, D.

    1998-01-01

    The detection of explosive conditions in aerospace propulsion applications is important for safety and economic reasons. Microfabricated hydrogen, oxygen, and hydrocarbon sensors as well as the accompanying hardware and software are being developed for a range of aerospace safety applications. The development of these sensors is being done using MEMS (Micro ElectroMechanical Systems) based technology and SiC-based semiconductor technology. The hardware and software allows control and interrogation of each sensor head and reduces accompanying cabling through multiplexing. These systems are being applied on the X-33 and on an upcoming STS-95 Shuttle mission. A number of commercial applications are also being pursued. It is concluded that this MEMS-based technology has significant potential to reduce costs and increase safety in a variety of aerospace applications.

  20. A Hazardous Gas Detection System for Aerospace and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Chen, L.-Y.; Makel, D. B.; Liu, C. C.; Wu, Q. H.; Knight, D.

    1998-01-01

    The detection of explosive conditions in aerospace propulsion applications is important for safety and economic reasons. Microfabricated hydrogen, oxygen, and hydrocarbon sensors as well as the accompanying hardware and software are being, developed for a range of aerospace safety applications. The development of these sensors is being done using MEMS (Micro ElectroMechanical Systems) based technology and SiC-based semiconductor technology. The hardware and software allows control and interrocation of each sensor head and reduces accompanying cabling through multiplexing. These systems are being, applied on the X-33 and on an upcoming STS-95 Shuttle mission. A number of commercial applications are also being pursued. It is concluded that this MEMS-based technology has significant potential to reduce costs and increase safety in a variety of aerospace applications.

  1. Aerospace Vehicle Design, Spacecraft Section. Volume 1: Project Groups 3-5

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Three groups of student engineers in an aerospace vehicle design course present their designs for a vehicle that can be used to resupply the Space Station Freedom and provide an emergency crew return to earth capability. The vehicle's requirements include a lifetime that exceeds six years, low cost, the capability for withstanding pressurization, launch, orbit, and reentry hazards, and reliability. The vehicle's subsystems are analyzed. These subsystems are structures, communication and command data systems, attitude and articulation control, life support and crew systems, power and propulsion, reentry and recovery systems, and mission management, planning, and costing.

  2. Aerospace Vehicle Design, Spacecraft Section. Final Project Reports. Volume 2; Project Groups 6-8

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Three groups of student engineers in an aerospace vehicle design course present their designs for a vehicle that can be used to resupply the Space Station Freedam and provide emergency crew return to earth capability. The vehicle's requirements include a lifetime that exceeds six years, low cost, the capability for withstanding pressurization, launch, orbit, and reentry hazards, and reliability. The vehicle's subsystems are structures, communication and command data systems, attitude and articulation control, life support and crew systems, power and propulsion, reentry and recovery systems, and mission management, planning, and costing. Special attention is given to spacecraft communications.

  3. Development of Integrated Programs for Aerospace-vehicle design (IPAD): Reference design process

    NASA Technical Reports Server (NTRS)

    Meyer, D. D.

    1979-01-01

    The airplane design process and its interfaces with manufacturing and customer operations are documented to be used as criteria for the development of integrated programs for the analysis, design, and testing of aerospace vehicles. Topics cover: design process management, general purpose support requirements, design networks, and technical program elements. Design activity sequences are given for both supersonic and subsonic commercial transports, naval hydrofoils, and military aircraft.

  4. New approaches to optimization in aerospace conceptual design

    NASA Technical Reports Server (NTRS)

    Gage, Peter J.

    1995-01-01

    Aerospace design can be viewed as an optimization process, but conceptual studies are rarely performed using formal search algorithms. Three issues that restrict the success of automatic search are identified in this work. New approaches are introduced to address the integration of analyses and optimizers, to avoid the need for accurate gradient information and a smooth search space (required for calculus-based optimization), and to remove the restrictions imposed by fixed complexity problem formulations. (1) Optimization should be performed in a flexible environment. A quasi-procedural architecture is used to conveniently link analysis modules and automatically coordinate their execution. It efficiently controls a large-scale design tasks. (2) Genetic algorithms provide a search method for discontinuous or noisy domains. The utility of genetic optimization is demonstrated here, but parameter encodings and constraint-handling schemes must be carefully chosen to avoid premature convergence to suboptimal designs. The relationship between genetic and calculus-based methods is explored. (3) A variable-complexity genetic algorithm is created to permit flexible parameterization, so that the level of description can change during optimization. This new optimizer automatically discovers novel designs in structural and aerodynamic tasks.

  5. Post-optimality analysis in aerospace vehicle design

    NASA Technical Reports Server (NTRS)

    Braun, Robert D.; Kroo, Ilan M.; Gage, Peter J.

    1993-01-01

    This analysis pertains to the applicability of optimal sensitivity information to aerospace vehicle design. The present analysis demonstrates that post-optimality information generated through first-order computations can be used to accurately predict file effect of constraint and parameter perturbations on the optimal solution. This assessment is based on the solution of an aircraft design problem in which the post-optimality estimates are shown to be within a few percent of the true solution over the practical range of constraint and parameter variations. Through solution of a reusable, single-stage-to-orbit, launch vehicle design problem, this optimal sensitivity information is also shown to improve the efficiency of the design process. For a hierarchically decomposed problem, this computational efficiency is realizable by estimating the main-problem objective gradient through optimal sensitivity calculations. By reducing the need for finite differentiation of a re-optimized subproblem, a significant decrease in the number of objective function evaluations required to reach the optimal solution is obtained.

  6. A preliminary investigation of the potential applicability of the IPAD system to non-aerospace industry

    NASA Technical Reports Server (NTRS)

    Hulbert, L. E.

    1975-01-01

    A study of the applicability of the planned Integrated Programs for Aerospace-Vehicle Design (IPAD) system to the design activities of non-aerospace industries was carried out. It was determined that IPAD could be of significant benefit to a number of industries, with the most likely users being the heavy construction and automotive industries. Two additional short studies were initiated to investigate the possible impact of IPAD on a national energy program and on urban and regional planning activities of local and state governments. These initial studies indicated the possibility of significant payoff in these areas and the need for further investigations. It was also determined that utilization of IPAD by non-aerospace industries will probably involve a long stepwise process, since these industries maintain a policy of gradual introduction of new technology.

  7. Propulsion Systems for Aircraft. Aerospace Education II. Instructional Unit II.

    ERIC Educational Resources Information Center

    Elmer, James D.

    This curriculum guide accompanies another publication in the Aerospace Education II series entitled "Propulsion Systems for Aircraft." The guide includes specific guidelines for teachers on each chapter in the textbook. Suggestions are included for objectives (traditional and behavioral), suggested outline, orientation, suggested key points,…

  8. Gaseous fuel reactor systems for aerospace applications

    NASA Technical Reports Server (NTRS)

    Thom, K.; Schwenk, F. C.

    1977-01-01

    Research on the gaseous fuel nuclear rocket concept continues under the programs of the U.S. National Aeronautics and Space Administration (NASA) Office for Aeronautics and Space Technology and now includes work related to power applications in space and on earth. In a cavity reactor test series, initial experiments confirmed the low critical mass determined from reactor physics calculations. Recent work with flowing UF6 fuel indicates stable operation at increased power levels. Preliminary design and experimental verification of test hardware for high-temperature experiments have been accomplished. Research on energy extraction from fissioning gases has resulted in lasers energized by fission fragments. Combined experimental results and studies indicate that gaseous-fuel reactor systems have significant potential for providing nuclear fission power in space and on earth.

  9. Aerospace - Aviation Education.

    ERIC Educational Resources Information Center

    Martin, Arthur I.; Jones, K. K.

    This document outlines the aerospace-aviation education program of the State of Texas. In this publication the course structures have been revised to fit the quarter system format of secondary schools in Texas. The four courses outlined here have been designed for students who will be consumers of aerospace products, spinoffs, and services or who…

  10. Development of components for waste management systems using aerospace technology

    SciTech Connect

    Rousar, D.; Young, M.; Sieger, A.

    1995-09-01

    An aerospace fluid management technology called ``platelets`` has been applied to components that are critical to the economic operation of waste management systems. Platelet devices are made by diffusion bonding thin metal plates which have been etched with precise flow passage circuitry to control and meter fluid to desired locations. Supercritical water oxidation (SCWO) is a promising waste treatment technology for safe and environmentally acceptable destruction of hazardous wastes. Performance and economics of current SCWO systems are limited by severe salt deposition on and corrosion of the reactor walls. A platelet transpiring-wall reactor has been developed that provides a protective layer of water adjacent to the reactor walls which prevents salt deposition and corrosion. Plasma arc processing is being considered as a method for stabilizing mixed radioactive wastes. Plasma arc torch systems currently require frequent shutdown to replace failed electrodes and this increases operating costs. A platelet electrode design was developed that has more than 10 times the life of conventional electrodes. It has water cooling channels internal to the electrode wall and slots through the wall for injecting gas into the arc.

  11. Verification and Validation of Neural Networks for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale; Nelson, Stacy; Schumman, Johann; Clancy, Daniel (Technical Monitor)

    2002-01-01

    The Dryden Flight Research Center V&V working group and NASA Ames Research Center Automated Software Engineering (ASE) group collaborated to prepare this report. The purpose is to describe V&V processes and methods for certification of neural networks for aerospace applications, particularly adaptive flight control systems like Intelligent Flight Control Systems (IFCS) that use neural networks. This report is divided into the following two sections: 1) Overview of Adaptive Systems; and 2) V&V Processes/Methods.

  12. Verification and Validation of Neural Networks for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale; Nelson, Stacy; Schumann, Johann

    2002-01-01

    The Dryden Flight Research Center V&V working group and NASA Ames Research Center Automated Software Engineering (ASE) group collaborated to prepare this report. The purpose is to describe V&V processes and methods for certification of neural networks for aerospace applications, particularly adaptive flight control systems like Intelligent Flight Control Systems (IFCS) that use neural networks. This report is divided into the following two sections: Overview of Adaptive Systems and V&V Processes/Methods.

  13. Development of Integrated Programs for Aerospace-vechicle Design (IPAD). IPAD user requirements: Implementation (first-level IPAD)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The requirements implementation strategy for first level development of the Integrated Programs for Aerospace Vehicle Design (IPAD) computing system is presented. The capabilities of first level IPAD are sufficient to demonstrated management of engineering data on two computers (CDC CYBER 170/720 and DEC VAX 11/780 computers) using the IPAD system in a distributed network environment.

  14. Aerospace Sensor Systems: From Sensor Development To Vehicle Application

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2008-01-01

    This paper presents an overview of years of sensor system development and application for aerospace systems. The emphasis of this work is on developing advanced capabilities for measurement and control of aeropropulsion and crew vehicle systems as well as monitoring the safety of those systems. Specific areas of work include chemical species sensors, thin film thermocouples and strain gages, heat flux gages, fuel gages, SiC based electronic devices and sensors, space qualified electronics, and MicroElectroMechanical Systems (MEMS) as well as integrated and multifunctional sensor systems. Each sensor type has its own technical challenges related to integration and reliability in a given application. The general approach has been to develop base sensor technology using microfabrication techniques, integrate sensors with "smart" hardware and software, and demonstrate those systems in a range of aerospace applications. Descriptions of the sensor elements, their integration into sensors systems, and examples of sensor system applications will be discussed. Finally, suggestions related to the future of sensor technology will be given. It is concluded that smart micro/nano sensor technology can revolutionize aerospace applications, but significant challenges exist in maturing the technology and demonstrating its value in real-life applications.

  15. Multidisciplinary Design Techniques Applied to Conceptual Aerospace Vehicle Design. Ph.D. Thesis Final Technical Report

    NASA Technical Reports Server (NTRS)

    Olds, John Robert; Walberg, Gerald D.

    1993-01-01

    Multidisciplinary design optimization (MDO) is an emerging discipline within aerospace engineering. Its goal is to bring structure and efficiency to the complex design process associated with advanced aerospace launch vehicles. Aerospace vehicles generally require input from a variety of traditional aerospace disciplines - aerodynamics, structures, performance, etc. As such, traditional optimization methods cannot always be applied. Several multidisciplinary techniques and methods were proposed as potentially applicable to this class of design problem. Among the candidate options are calculus-based (or gradient-based) optimization schemes and parametric schemes based on design of experiments theory. A brief overview of several applicable multidisciplinary design optimization methods is included. Methods from the calculus-based class and the parametric class are reviewed, but the research application reported focuses on methods from the parametric class. A vehicle of current interest was chosen as a test application for this research. The rocket-based combined-cycle (RBCC) single-stage-to-orbit (SSTO) launch vehicle combines elements of rocket and airbreathing propulsion in an attempt to produce an attractive option for launching medium sized payloads into low earth orbit. The RBCC SSTO presents a particularly difficult problem for traditional one-variable-at-a-time optimization methods because of the lack of an adequate experience base and the highly coupled nature of the design variables. MDO, however, with it's structured approach to design, is well suited to this problem. The result of the application of Taguchi methods, central composite designs, and response surface methods to the design optimization of the RBCC SSTO are presented. Attention is given to the aspect of Taguchi methods that attempts to locate a 'robust' design - that is, a design that is least sensitive to uncontrollable influences on the design. Near-optimum minimum dry weight solutions are

  16. Recent GRC Aerospace Technologies Applicable to Terrestrial Energy Systems

    NASA Technical Reports Server (NTRS)

    Kankam, David; Lyons, Valerie J.; Hoberecht, Mark A.; Tacina, Robert R.; Hepp, Aloysius F.

    2000-01-01

    This paper is an overview of a wide range of recent aerospace technologies under development at the NASA Glenn Research Center, in collaboration with other NASA centers, government agencies, industry and academia. The focused areas are space solar power, advanced power management and distribution systems, Stirling cycle conversion systems, fuel cells, advanced thin film photovoltaics and batteries, and combustion technologies. The aerospace-related objectives of the technologies are generation of space power, development of cost-effective and reliable, high performance power systems, cryogenic applications, energy storage, and reduction in gas-turbine emissions, with attendant clean jet engines. The terrestrial energy applications of the technologies include augmentation of bulk power in ground power distribution systems, and generation of residential, commercial and remote power, as well as promotion of pollution-free environment via reduction in combustion emissions.

  17. Computer Aided Control System Design (CACSD)

    NASA Technical Reports Server (NTRS)

    Stoner, Frank T.

    1993-01-01

    The design of modern aerospace systems relies on the efficient utilization of computational resources and the availability of computational tools to provide accurate system modeling. This research focuses on the development of a computer aided control system design application which provides a full range of stability analysis and control design capabilities for aerospace vehicles.

  18. Controls and Health Management Technologies for Intelligent Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2004-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Technology Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of an Intelligent Engine. The key enabling technologies for an Intelligent Engine are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This paper describes the current activities of the Controls and Dynamics Technology Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  19. The 2nd NASA Aerospace Pyrotechnic Systems Workshop

    NASA Technical Reports Server (NTRS)

    St.Cyr, William W. (Compiler)

    1994-01-01

    This NASA Conference Publication contains the proceedings of the Second NASA Aerospace Pyrotechnics Systems Workshop held at Sandia National Laboratories, Albuquerque, New Mexico, February 8-9, 1994. The papers are grouped by sessions: (1) Session 1 - Laser Initiation and Laser Systems; (2) Session 2 - Electric Initiation; (3) Session 3 - Mechanisms & Explosively Actuated Devices; (4) Session 4 - Analytical Methods and Studies; and (5) Session 5 - Miscellaneous. A sixth session, a panel discussion and open forum, concluded the workshop.

  20. The aerospace energy systems laboratory: Hardware and software implementation

    NASA Technical Reports Server (NTRS)

    Glover, Richard D.; Oneil-Rood, Nora

    1989-01-01

    For many years NASA Ames Research Center, Dryden Flight Research Facility has employed automation in the servicing of flight critical aircraft batteries. Recently a major upgrade to Dryden's computerized Battery Systems Laboratory was initiated to incorporate distributed processing and a centralized database. The new facility, called the Aerospace Energy Systems Laboratory (AESL), is being mechanized with iAPX86 and iAPX286 hardware running iRMX86. The hardware configuration and software structure for the AESL are described.

  1. Marshall system for aerospace system simulation (MARSYAS), user's manual

    NASA Technical Reports Server (NTRS)

    Ventre, A.; Sevigny, R.; Mccollum, W.; Balentine, T.

    1973-01-01

    The capabilities of the Marshall system for aerospace system simulation (MARSYAS) and how to use it are described. MARSYAS is a software system that allows easy setup and control of the simulation of the dynamics of large physical systems on a digital computer. The physical systems are modeled in the form of block diagrams or equations. The blocks can have multiple inputs and multiple outputs, and they can be nested to form hierarchies. The block diagrams can contain transfer functions, nonlinear and logical functions, equations, analog computer elements and FORTRAN programs. The input format of the equations can be combinations of nonlinear, time-varying differential equations and algebraic equations in their original format. MARSYAS could also serve as a storage and retrieval system for models as a basis for a model configuration control system on a central time-shared computer. The outputs of the simulation system can be not only time-responses but also other analysis data such as frequency response, power spectrum and stability parameters. The MARSYAS translator is written in FORTRAN running on the Univac 1108 computer under the EXEC 8 operating system.

  2. Design and analysis of aerospace structures at elevated temperatures. [aircraft, missiles, and space platforms

    NASA Technical Reports Server (NTRS)

    Chang, C. I.

    1989-01-01

    An account is given of approaches that have emerged as useful in the incorporation of thermal loading considerations into advanced composite materials-based aerospace structural design practices. Sources of structural heating encompass not only propulsion system heat and aerodynamic surface heating at supersonic speeds, but the growing possibility of intense thermal fluxes from directed-energy weapons. The composite materials in question range from intrinsically nonheat-resistant polymer matrix systems to metal-matrix composites, and increasingly to such ceramic-matrix composites as carbon/carbon, which are explicitly intended for elevated temperature operation.

  3. Interdisciplinary and multilevel optimum design. [in aerospace structural engineering

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.

    1987-01-01

    Interactions among engineering disciplines and subsystems in engineering system design are surveyed and specific instances of such interactions are described. Examination of the interactions that a traditional design process in which the numerical values of major design variables are decided consecutively is likely to lead to a suboptimal design. Supporting numerical examples are a glider and a space antenna. Under an alternative approach introduced, the design and its sensitivity data from the subsystems and disciplines are generated concurrently and then made available to the system designer enabling him to modify the system design so as to improve its performance. Examples of a framework structure and an airliner wing illustrate that approach.

  4. Report to the administrator by the NASA Aerospace Safety Advisory Panel on the Skylab program. Volume 2: Program implementation and maturity. [systems management evaluation and design analysis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results of the design and manufacturing reviews on the maturity of the Skylab modules are presented along with results of investigations on the scope of the cluster risk assessment efforts. The technical management system and its capability to assess and resolve problems are studied.

  5. Intelligent Systems for Aerospace Engineering: An Overview

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje; Clancey, Daniel (Technical Monitor)

    2002-01-01

    Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become extremely important for advancing the current trends in information technology. Artificially intelligent systems currently utilize computers to emulate various faculties of human intelligence and biological metaphors. They use a combination of symbolic and sub-symbolic systems capable of evolving human cognitive skills and intelligence, not just systems capable of doing things humans do not do well. Intelligent systems are ideally suited for tasks such as search and optimization, pattern recognition and matching, planning, uncertainty management, control, and adaptation. In this paper, the intelligent system technologies and their application potential are highlighted via several examples.

  6. Intelligent Systems For Aerospace Engineering: An Overview

    NASA Technical Reports Server (NTRS)

    KrishnaKumar, K.

    2003-01-01

    Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become extremely important for advancing the current trends in information technology. Artificially intelligent systems currently utilize computers to emulate various faculties of human intelligence and biological metaphors. They use a combination of symbolic and sub-symbolic systems capable of evolving human cognitive skills and intelligence, not just systems capable of doing things humans do not do well. Intelligent systems are ideally suited for tasks such as search and optimization, pattern recognition and matching, planning, uncertainty management, control, and adaptation. In this paper, the intelligent system technologies and their application potential are highlighted via several examples.

  7. Impact of knowledge-based software engineering on aerospace systems

    NASA Technical Reports Server (NTRS)

    Peyton, Liem; Gersh, Mark A.; Swietek, Gregg

    1991-01-01

    The emergence of knowledge engineering as a software technology will dramatically alter the use of software by expanding application areas across a wide spectrum of industries. The engineering and management of large aerospace software systems could benefit from a knowledge engineering approach. An understanding of this technology can potentially make significant improvements to the current practice of software engineering, and provide new insights into future development and support practices.

  8. Passivity-based Robust Control of Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Kelkar, Atul G.; Joshi, Suresh M. (Technical Monitor)

    2000-01-01

    This report provides a brief summary of the research work performed over the duration of the cooperative research agreement between NASA Langley Research Center and Kansas State University. The cooperative agreement which was originally for the duration the three years was extended by another year through no-cost extension in order to accomplish the goals of the project. The main objective of the research was to develop passivity-based robust control methodology for passive and non-passive aerospace systems. The focus of the first-year's research was limited to the investigation of passivity-based methods for the robust control of Linear Time-Invariant (LTI) single-input single-output (SISO), open-loop stable, minimum-phase non-passive systems. The second year's focus was mainly on extending the passivity-based methodology to a larger class of non-passive LTI systems which includes unstable and nonminimum phase SISO systems. For LTI non-passive systems, five different passification. methods were developed. The primary effort during the years three and four was on the development of passification methodology for MIMO systems, development of methods for checking robustness of passification, and developing synthesis techniques for passifying compensators. For passive LTI systems optimal synthesis procedure was also developed for the design of constant-gain positive real controllers. For nonlinear passive systems, numerical optimization-based technique was developed for the synthesis of constant as well as time-varying gain positive-real controllers. The passivity-based control design methodology developed during the duration of this project was demonstrated by its application to various benchmark examples. These example systems included longitudinal model of an F-18 High Alpha Research Vehicle (HARV) for pitch axis control, NASA's supersonic transport wind tunnel model, ACC benchmark model, 1-D acoustic duct model, piezo-actuated flexible link model, and NASA

  9. Oxygen Systems Cleaners for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Davis, Samuel E.; Lowery, Freida

    1997-01-01

    New environmental regulations have forced extensive evaluations of many different cleaning agents for use in oxygen systems. This is no simple process because pure oxygen is a very strong oxidizer, and when placed in contact with a foreign substance, the combination may be explosive. This foreign substance can easily be a cleaning agent residue left over in the oxygen system after cleaning. This paper focuses on the factors that must be considered when selecting a cleaning agent for oxygen systems, as well as the approval processes which are currently being utilized by NASA for oxygen compatibility of materials. This paper will provide a working description of how to begin selecting a cleaning agent for oxygen systems. The paper will present the following: Background information on the necessity of a stringent selection process for oxygen system cleaners; Specifications and regulations concerning cleaning for oxygen service; Changing oxygen cleaning specifications given current environmental concerns; Testing for cleanliness in oxygen systems, Cleaning agents that have been tested for oxygen systems, including an extensive list of some of the newer 'environmentally friendly' cleaning agents; and Test results and conclusions from the testing. The paper will also provide instructions on the proper procedures for obtaining NASA approval on a candidate oxygen systems cleaning agent.

  10. The Aerospace Energy Systems Laboratory: A BITBUS networking application

    NASA Technical Reports Server (NTRS)

    Glover, Richard D.; Oneill-Rood, Nora

    1989-01-01

    The NASA Ames-Dryden Flight Research Facility developed a computerized aircraft battery servicing facility called the Aerospace Energy Systems Laboratory (AESL). This system employs distributed processing with communications provided by a 2.4-megabit BITBUS local area network. Customized handlers provide real time status, remote command, and file transfer protocols between a central system running the iRMX-II operating system and ten slave stations running the iRMX-I operating system. The hardware configuration and software components required to implement this BITBUS application are required.

  11. Elements of a collaborative systems model within the aerospace industry

    NASA Astrophysics Data System (ADS)

    Westphalen, Bailee R.

    2000-10-01

    Scope and method of study. The purpose of this study was to determine the components of current aerospace collaborative efforts. There were 44 participants from two selected groups surveyed for this study. Nineteen were from the Oklahoma Air National Guard based in Oklahoma City representing the aviation group. Twenty-five participants were from the NASA Johnson Space Center in Houston representing the aerospace group. The surveys for the aviation group were completed in reference to planning missions necessary to their operations. The surveys for the aerospace group were completed in reference to a well-defined and focused goal from a current mission. A questionnaire was developed to survey active participants of collaborative systems in order to consider various components found within the literature. Results were analyzed and aggregated through a database along with content analysis of open-ended question comments from respondents. Findings and conclusions. This study found and determined elements of a collaborative systems model in the aerospace industry. The elements were (1) purpose or mission for the group or team; (2) commitment or dedication to the challenge; (3) group or team meetings and discussions; (4) constraints of deadlines and budgets; (5) tools and resources for project and simulations; (6) significant contributors to the collaboration; (7) decision-making formats; (8) reviews of project; (9) participants education and employment longevity; (10) cross functionality of team or group members; (11) training on the job plus teambuilding; (12) other key elements identified relevant by the respondents but not included in the model such as communication and teamwork; (13) individual and group accountability; (14) conflict, learning, and performance; along with (15) intraorganizational coordination. These elements supported and allowed multiple individuals working together to solve a common problem or to develop innovation that could not have been

  12. Challenging Aerospace Problems for Intelligent Systems

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje; Kanashige, John; Satyadas, A.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    In this paper we highlight four problem domains that are well suited and challenging for intelligent system technologies. The problems are defined and an outline of a probable approach is presented. No attempt is made to define the problems as test cases. In other words, no data or set of equations that a user can code and get results are provided. The main idea behind this paper is to motivate intelligent system researchers to examine problems that will elevate intelligent system technologies and applications to a higher level.

  13. Parametric Studies for the Structural Pre-Design of Hypersonic Aerospace Vehicles

    NASA Astrophysics Data System (ADS)

    Kopp, Alexander

    2012-07-01

    The Space Launcher Systems Analysis Group (SART) of the German Aerospace Center DLR is involved in various internal and multilateral hypersonic vehicle studies. Hypersonic transportation vehicles require structural analysis already in an early design phase to enable accurate structural mass estimations. A program for preliminary structural analysis of hypersonic transportation vehicles will be presented here. The program HySAP serves for rapid, parametric trade studies. The requirements will be derived and the program structure described in detail. Furthermore, first application cases for the program version will be discussed.

  14. The First NASA Aerospace Pyrotechnic Systems Workshop

    NASA Technical Reports Server (NTRS)

    St.cyr, William W. (Compiler)

    1993-01-01

    Papers from the conference proceedings are presented, and they are grouped by the following sessions: pyrotechnically actuated systems, laser initiation, and modeling and analysis. A fourth session, a panel discussion and open forum, concluded the workshop.

  15. Estimating Basic Preliminary Design Performances of Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Luz, Paul L.; Alexander, Reginald

    2004-01-01

    Aerodynamics and Performance Estimation Toolset is a collection of four software programs for rapidly estimating the preliminary design performance of aerospace vehicles represented by doing simplified calculations based on ballistic trajectories, the ideal rocket equation, and supersonic wedges through standard atmosphere. The program consists of a set of Microsoft Excel worksheet subprograms. The input and output data are presented in a user-friendly format, and calculations are performed rapidly enough that the user can iterate among different trajectories and/or shapes to perform "what-if" studies. Estimates that can be computed by these programs include: 1. Ballistic trajectories as a function of departure angles, initial velocities, initial positions, and target altitudes; assuming point masses and no atmosphere. The program plots the trajectory in two-dimensions and outputs the position, pitch, and velocity along the trajectory. 2. The "Rocket Equation" program calculates and plots the trade space for a vehicle s propellant mass fraction over a range of specific impulse and mission velocity values, propellant mass fractions as functions of specific impulses and velocities. 3. "Standard Atmosphere" will estimate the temperature, speed of sound, pressure, and air density as a function of altitude in a standard atmosphere, properties of a standard atmosphere as functions of altitude. 4. "Supersonic Wedges" will calculate the free-stream, normal-shock, oblique-shock, and isentropic flow properties for a wedge-shaped body flying supersonically through a standard atmosphere. It will also calculate the maximum angle for which a shock remains attached, and the minimum Mach number for which a shock becomes attached, all as functions of the wedge angle, altitude, and Mach number.

  16. The pultrusion process for structures on advanced aerospace transportation systems

    NASA Technical Reports Server (NTRS)

    Wilson, Maywood L.; Macconochie, Ian O.; Johnson, Gary S.

    1986-01-01

    The pultrusion process, which has the potential for use in the manufacture of structures for aerospace hardware, is described. In this process, reinforcing fibers are pulled continuously through a resin system for wetting and subsequently through a heated die for polymerization. By using this process, fabrication of very long lengths of high strength, lightweight structures with consistently high quality for aerospace applications is possible. The more conventional processes involve hand lay-up, vacuum bagging, autoclaving or oven curing techniques such that lengths of structural elements produced are limited by the lengths of autoclaves or curing ovens. Several types of developmental structural elements are described in which fiberglass, aramid, graphite, and hybrid fiber systems have been used as reinforcements in an epoxy matrix and their flexural properties compared. Reinforcement fibers having tailor-made orientations which achieve tailor-made strength in the pultrusions are described. The potential aerospace applications for the pultruded products are described with advantages cited over conventional hand lay-up methods.

  17. Biomedical Application of Aerospace Personal Cooling Systems

    NASA Technical Reports Server (NTRS)

    Ku, Yu-Tsuan E.; Lee, Hank C.; Montgomery, Leslie D.; Webbon, Bruce W.; Kliss, Mark (Technical Monitor)

    1997-01-01

    Personal thermoregulatory systems which are used by astronauts to alleviate thermal stress during extravehicular activity have been applied to the therapeutic management of multiple sclerosis. However, little information is available regarding the physiologic and circulatory changes produced by routine operation of these systems. The objectives of this study were to compare the effectiveness of two passive and two active cooling vests and to measure the body temperature and circulatory changes produced by each cooling vest configuration. The MicroClimate Systems and the Life Enhancement Tech(LET) lightweight liquid cooling vests, the Steele Vest and LET's Zipper Front Garment were used to cool the chest region of 10 male and female subjects (25 to 55 yr.) in this study. Calf, forearm and finger blood flows were measured using a tetrapolar impedance rheograph. The subjects, seated in an upright position at normal room temperature (approx.22C), were tested for 60 min. with the cooling system operated at its maximum cooling capacity. Blood flows were recorded continuously using a computer data acquisition system with a sampling frequency of 250 Hz. Oral, right and left ear temperatures and cooling system parameters were logged manually every 5 min. Arm, leg, chest and rectal temperatures; heart rate; respiration; and an activity index were recorded continuously on a U.F.I., Inc. Biolog ambulatory monitor. In general, the male and female subjects' oral and ear temperature responses to cooling were similar for all vest configurations tested. Oral temperatures during the recovery period were significantly (P<0.05) lower than during the control period, approx. 0.2 - 0.5C, for both men and women wearing any of the four different garments. The corresponding ear temperatures were significantly (P<0.05) decreased approx.0.2 - 0.4C by the end of the recovery period. Compared to the control period, no significant differences were found in rectal temperatures during cooling and

  18. NASA aerospace battery system program initiation

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1987-01-01

    Preflight and flight battery system problems in flight programs at NASA created high-level concern and interest in the current battery technology status. As a result, NASA conducted an in-house review of problems experienced both internally and by other government users. The derived issues which encompassed the programmatic scope from cell manufacturing to in-flight operations of the system are discussed. From the identified deficiencies, a modestly scaled battery program was established to alleviate or minimize the risks of future occurrences.

  19. ASRC Aerospace Corporation Selects Dynamically Reconfigurable Anadigm(Registered Trademark) FPAA For Advanced Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Mata, Carlos T.

    2003-01-01

    Anadigm(registered trademark) today announced that ASRC Aerospace Corporation has designed Anadigm's dynamically reconfigurable Field Programmable Analog Array (FPAA) technology into an advanced data acquisition system developed under contract for NASA. ASRC Aerospace designed in the Anadigm(registered trademark) FPAA to provide complex analog signal conditioning in its intelligent, self-calibrating, and self-healing advanced data acquisition system (ADAS). The ADAS has potential applications in industrial, manufacturing, and aerospace markets. This system offers highly reliable operation while reducing the need for user interaction. Anadigm(registered trademark)'s dynamically reconfigurable FPAAs can be reconfigured in-system by the designer or on the fly by a microprocessor. A single device can thus be programmed to implement multiple analog functions and/or to adapt on-the-fly to maintain precision operation despite system degradation and aging. In the case of the ASRC advanced data acquisition system, the FPAA helps ensure that the system will continue to operating at 100% functionality despite changes in the environment, component degradation, and/or component failures.

  20. Report to the administrator by the NASA Aerospace Safety Advisory Panel on the Skylab program. Volume 1: Summary report. [systems management evaluation and design analysis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Contractor and NASA technical management for the development and manufacture of the Skylab modules is reviewed with emphasis on the following management controls: configuration and interface management; vendor control; and quality control of workmanship. A review of the modified two-stage Saturn V launch vehicle which focused on modifications to accommodate the Skylab payload; resolution of prior flight anomalies; and changes in personnel and management systems is presented along with an evaluation of the possible age-life and storage problems for the Saturn 1-B launch vehicle. The NASA program management's visibility and control of contractor operations, systems engineering and integration, the review process for the evaluation of design and flight hardware, and the planning process for mission operations are investigated. It is concluded that the technical management system for development and fabrication of the modules, spacecraft, and launch vehicles, the process of design and hardware acceptance reviews, and the risk assessment activities are satisfactory. It is indicated that checkout activity, integrated testing, and preparations for and execution of mission operation require management attention.

  1. Microwave Antennas: Design. (Latest citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning the design of microwave antennas. Topics include a discussion of the recent developments in microwave antennas, and in design techniques such as computer-aided design (CAD). Various types of antenna configurations are covered, including rectangular, elliptical, and reflectarray microstrip antennas, multibeam, circular-disc, Yagi-Uda, and horn reflectors. Applications include microwave antennas for satellite communication systems, telemetry links, and solid state microwave power transmission systems.

  2. Integrated Vehicle Health Management (IVHM) for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Baroth, Edmund C.; Pallix, Joan

    2006-01-01

    To achieve NASA's ambitious Integrated Space Transportation Program objectives, aerospace systems will implement a variety of new concept in health management. System level integration of IVHM technologies for real-time control and system maintenance will have significant impact on system safety and lifecycle costs. IVHM technologies will enhance the safety and success of complex missions despite component failures, degraded performance, operator errors, and environment uncertainty. IVHM also has the potential to reduce, or even eliminate many of the costly inspections and operations activities required by current and future aerospace systems. This presentation will describe the array of NASA programs participating in the development of IVHM technologies for NASA missions. Future vehicle systems will use models of the system, its environment, and other intelligent agents with which they may interact. IVHM will be incorporated into future mission planners, reasoning engines, and adaptive control systems that can recommend or execute commands enabling the system to respond intelligently in real time. In the past, software errors and/or faulty sensors have been identified as significant contributors to mission failures. This presentation will also address the development and utilization of highly dependable sohare and sensor technologies, which are key components to ensure the reliability of IVHM systems.

  3. Development of an aggregation methodology for risk analysis in aerospace conceptual vehicle design

    NASA Astrophysics Data System (ADS)

    Chytka, Trina Marsh

    2003-10-01

    The growing complexity of technical systems has emphasized a need to gather as much information as possible regarding specific systems of interest in order to make robust, sound decisions about their design and deployment. Acquiring as much data as possible requires the use of empirical statistics, historical information and expert opinion. In much of the aerospace conceptual design environment, the lack of historical information and infeasibility of gathering empirical data relegates the data collection to expert opinion. The conceptual design of a space vehicle requires input from several disciplines (weights and sizing, operations, trajectory, etc.). In this multidisciplinary environment, the design variables are often not easily quantified and have a high degree of uncertainty associated with their values. Decision-makers must rely on expert assessments of the uncertainty associated with the design variables to evaluate the risk level of a conceptual design. Since multiple experts are often queried for their evaluation of uncertainty, a means to combine/aggregate multiple expert assessments must be developed. Providing decision-makers with a solitary assessment that captures the consensus of the multiple experts would greatly enhance the ability to evaluate risk associated with a conceptual design. The objective of this research has been to develop an aggregation methodology that efficiently combines the uncertainty assessments of multiple experts in multiple disciplines involved in aerospace conceptual design. Bayesian probability augmented by uncertainty modeling and expert calibration was employed in the methodology construction. Appropriate questionnaire techniques were used to acquire expert opinion; the responses served as input distributions to the aggregation algorithm. Application of the derived techniques were applied as part of a larger expert assessment elicitation and calibration study. Results of this research demonstrate that aggregation of

  4. Micro/Nanoscale Chemicalsensor Systems for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary; Xu, Jennifer; Evans, Laura; Biaggi-Labiosa, Azlin; Ward, Benjamin; Rowe, Scott; Makel, Darby; Liu, Chung Chiun; Dutta, Prabir; Berger, Gordon; VanderWal, Randy

    2010-01-01

    The aerospace industry requires development of a range of chemical-sensor technologies for applications including emissions monitoring as well as fuel-leak and fire detection. Improvements in sensing technology are necessary to increase safety, reduce emissions, and increase performance. The overall aim is to develop intelligent-vehicle systems that can autonomously monitor their state and respond to environmental changes. A range of chemical sensors is under development to meet these needs, based in part on microfabrication technology which produces sensors of minimal size, weight, and power consumption. We have fabricated a range of sensor platforms, integrated them with hardware to form complete sensor systems, and demonstrated their applicability.

  5. Aerospace power system automation-using Everett method

    NASA Astrophysics Data System (ADS)

    Momoh, James A.; Zhu, Jizhong; Dolce, James L.

    1999-01-01

    This paper studies aerospace power system automation using the optimal power flow (OPF) and Everett method. Several system performance indices are developed to evaluate the degree of system congestion for different operation time stages. These performance indices include a circuit overload index and a system voltage problem index and obtained through the OPF calculation. The congested system is alleviated by the available control such as load shedding. In order to reach this objective, the mathematical model of load shedding, in which the objective is payoff function, is devised. The Everett method-Generalized Lagrange Multipliers is employed to solve the problem. The results on NASA power system and IEEE-30 bus test system are given in the paper.

  6. Advanced Aerospace Tribological Systems - Current Status and Future Technology Needs

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1993-01-01

    The state of the art of space and aeronautics tribology, the current and future technology problems, and perceived needs for future missions are discussed. Mechanisms of liquid and solid lubrication, and liquid- and solid-lubrication factors are examined. Such current and future tribological problem areas as aerospace plane, space simulation, and accelerated testing are addressed. Consideration is also given to the following novel lubrication technologies: inerted lubrication systems, mist lubrication, vapor deposition, catalytically gas-generated carbon, dense thin films of solid lubricants, powder lubrication, and gas and magnetic bearings. Recommendations for ensuring the success of current and future space and aeronautics missions are presented.

  7. Optimum Design of Aerospace Structural Components Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Berke, L.; Patnaik, S. N.; Murthy, P. L. N.

    1993-01-01

    The application of artificial neural networks to capture structural design expertise is demonstrated. The principal advantage of a trained neural network is that it requires a trivial computational effort to produce an acceptable new design. For the class of problems addressed, the development of a conventional expert system would be extremely difficult. In the present effort, a structural optimization code with multiple nonlinear programming algorithms and an artificial neural network code NETS were used. A set of optimum designs for a ring and two aircraft wings for static and dynamic constraints were generated using the optimization codes. The optimum design data were processed to obtain input and output pairs, which were used to develop a trained artificial neural network using the code NETS. Optimum designs for new design conditions were predicted using the trained network. Neural net prediction of optimum designs was found to be satisfactory for the majority of the output design parameters. However, results from the present study indicate that caution must be exercised to ensure that all design variables are within selected error bounds.

  8. A Knowledge-Based System Developer for aerospace applications

    NASA Technical Reports Server (NTRS)

    Shi, George Z.; Wu, Kewei; Fensky, Connie S.; Lo, Ching F.

    1993-01-01

    A prototype Knowledge-Based System Developer (KBSD) has been developed for aerospace applications by utilizing artificial intelligence technology. The KBSD directly acquires knowledge from domain experts through a graphical interface then builds expert systems from that knowledge. This raises the state of the art of knowledge acquisition/expert system technology to a new level by lessening the need for skilled knowledge engineers. The feasibility, applicability , and efficiency of the proposed concept was established, making a continuation which would develop the prototype to a full-scale general-purpose knowledge-based system developer justifiable. The KBSD has great commercial potential. It will provide a marketable software shell which alleviates the need for knowledge engineers and increase productivity in the workplace. The KBSD will therefore make knowledge-based systems available to a large portion of industry.

  9. Micromechanical Machining Processes and their Application to Aerospace Structures, Devices and Systems

    NASA Technical Reports Server (NTRS)

    Friedrich, Craig R.; Warrington, Robert O.

    1995-01-01

    Micromechanical machining processes are those micro fabrication techniques which directly remove work piece material by either a physical cutting tool or an energy process. These processes are direct and therefore they can help reduce the cost and time for prototype development of micro mechanical components and systems. This is especially true for aerospace applications where size and weight are critical, and reliability and the operating environment are an integral part of the design and development process. The micromechanical machining processes are rapidly being recognized as a complementary set of tools to traditional lithographic processes (such as LIGA) for the fabrication of micromechanical components. Worldwide efforts in the U.S., Germany, and Japan are leading to results which sometimes rival lithography at a fraction of the time and cost. Efforts to develop processes and systems specific to aerospace applications are well underway.

  10. Development of a Dynamically Configurable, Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation

    NASA Technical Reports Server (NTRS)

    Afjeh, Abdollah A.; Reed, John A.

    2003-01-01

    The following reports are presented on this project:A first year progress report on: Development of a Dynamically Configurable,Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; A second year progress report on: Development of a Dynamically Configurable, Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; An Extensible, Interchangeable and Sharable Database Model for Improving Multidisciplinary Aircraft Design; Interactive, Secure Web-enabled Aircraft Engine Simulation Using XML Databinding Integration; and Improving the Aircraft Design Process Using Web-based Modeling and Simulation.

  11. Feasibility study of an Integrated Program for Aerospace-vehicle Design (IPAD) system. Volume 3: Engineering creative/evaluation processes, phase 1, task 2

    NASA Technical Reports Server (NTRS)

    Garrocq, C. A.; Hosek, J. J.

    1973-01-01

    A series of functional flow charts are considered that were developed to properly identify and record the degree of participation of the disciplines considered in this feasibility study and the type of data required in the design process.

  12. L-C Measurement Acquisition Method for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, B. Douglas; Shams, Qamar A.; Fox, Robert L.

    2003-01-01

    This paper describes a measurement acquisition method for aerospace systems that eliminates the need for sensors to have physical connection to a power source (i.e., no lead wires) or to data acquisition equipment. Furthermore, the method does not require the sensors to be in proximity to any form of acquisition hardware. Multiple sensors can be interrogated using this method. The sensors consist of a capacitor, C(p), whose capacitance changes with changes to a physical property, p, electrically connected to an inductor, L. The method uses an antenna to broadcast electromagnetic energy that electrically excites one or more inductive-capacitive sensors via Faraday induction. This method facilitates measurements that were not previously possible because there was no practical means of providing power and data acquisition electrical connections to a sensor. Unlike traditional sensors, which measure only a single physical property, the manner in which the sensing element is interrogated simultaneously allows measurement of at least two unrelated physical properties (e.g., displacement rate and fluid level) by using each constituent of the L-C element. The key to using the method for aerospace applications is to increase the distance between the L-C elements and interrogating antenna; develop all key components to be non-obtrusive and to develop sensing elements that can easily be implemented. Techniques that have resulted in increased distance between antenna and sensor will be presented. Fluid-level measurements and pressure measurements using the acquisition method are demonstrated in the paper.

  13. Reusable aerospace system with horizontal take-off

    NASA Astrophysics Data System (ADS)

    Lozino-Lozinskii, G. E.; Shkadov, L. M.; Plokhikh, V. P.

    1990-10-01

    An aerospace system (ASS) concept aiming at cost reductions for launching facilities, reduction of ground preparations for start and launch phases, flexibility of use, international inspection of space systems, and emergency rescue operations is presented. The concept suggests the utilization of an AN-225 subsonic carrier aircraft capable of carrying up to 250 ton of the external load, external fuel tank, and orbital spacecraft. It includes a horizontal take-off, full reusable or single-use system, orbital aircraft with hypersonic characteristics, the use of an air-breathing jet engine on the first stage of launch, and the utilization of advanced structural materials. Among possible applications for ASS are satellite launches into low supporting orbits, suborbital cargo and passenger flights, scientific and economic missions, and the technical servicing of orbital vehicles and stations.

  14. A Digital Methodology for the Design Process of Aerospace Assemblies with Sustainable Composite Processes & Manufacture

    NASA Astrophysics Data System (ADS)

    McEwan, W.; Butterfield, J.

    2011-05-01

    The well established benefits of composite materials are driving a significant shift in design and manufacture strategies for original equipment manufacturers (OEMs). Thermoplastic composites have advantages over the traditional thermosetting materials with regards to sustainability and environmental impact, features which are becoming increasingly pertinent in the aerospace arena. However, when sustainability and environmental impact are considered as design drivers, integrated methods for part design and product development must be developed so that any benefits of sustainable composite material systems can be assessed during the design process. These methods must include mechanisms to account for process induced part variation and techniques related to re-forming, recycling and decommissioning, which are in their infancy. It is proposed in this paper that predictive techniques related to material specification, part processing and product cost of thermoplastic composite components, be integrated within a Through Life Management (TLM) product development methodology as part of a larger strategy of product system modeling to improve disciplinary concurrency, realistic part performance, and to place sustainability at the heart of the design process. This paper reports the enhancement of digital manufacturing tools as a means of drawing simulated part manufacturing scenarios, real time costing mechanisms, and broader lifecycle performance data capture into the design cycle. The work demonstrates predictive processes for sustainable composite product manufacture and how a Product-Process-Resource (PPR) structure can be customised and enhanced to include design intent driven by `Real' part geometry and consequent assembly. your paper.

  15. Aerospace Toolbox---a flight vehicle design, analysis, simulation ,and software development environment: I. An introduction and tutorial

    NASA Astrophysics Data System (ADS)

    Christian, Paul M.; Wells, Randy

    2001-09-01

    This paper presents a demonstrated approach to significantly reduce the cost and schedule of non real-time modeling and simulation, real-time HWIL simulation, and embedded code development. The tool and the methodology presented capitalize on a paradigm that has become a standard operating procedure in the automotive industry. The tool described is known as the Aerospace Toolbox, and it is based on the MathWorks Matlab/Simulink framework, which is a COTS application. Extrapolation of automotive industry data and initial applications in the aerospace industry show that the use of the Aerospace Toolbox can make significant contributions in the quest by NASA and other government agencies to meet aggressive cost reduction goals in development programs. The part I of this paper provides a detailed description of the GUI based Aerospace Toolbox and how it is used in every step of a development program; from quick prototyping of concept developments that leverage built-in point of departure simulations through to detailed design, analysis, and testing. Some of the attributes addressed include its versatility in modeling 3 to 6 degrees of freedom, its library of flight test validated library of models (including physics, environments, hardware, and error sources), and its built-in Monte Carlo capability. Other topics to be covered in this part include flight vehicle models and algorithms, and the covariance analysis package, Navigation System Covariance Analysis Tools (NavSCAT). Part II of this paper, to be published at a later date, will conclude with a description of how the Aerospace Toolbox is an integral part of developing embedded code directly from the simulation models by using the Mathworks Real Time Workshop and optimization tools. It will also address how the Toolbox can be used as a design hub for Internet based collaborative engineering tools such as NASA's Intelligent Synthesis Environment (ISE) and Lockheed Martin's Interactive Missile Design Environment

  16. The Effect of Online Systems Analysis Training on Aerospace Industry Business Performance: A Qualitative Study

    ERIC Educational Resources Information Center

    Burk, Erlan

    2012-01-01

    Aerospace companies needed additional research on technology-based training to verify expectations when enhancing human capital through online systems analysis training. The research for online systems analysis training provided aerospace companies a means to verify expectations for systems analysis technology-based training on business…

  17. An international aerospace information system - A cooperative opportunity

    NASA Technical Reports Server (NTRS)

    Blados, Walter R.; Cotter, Gladys A.

    1992-01-01

    This paper presents for consideration new possibilities for uniting the various aerospace database efforts toward a cooperative international aerospace database initiative that can optimize the cost-benefit equation for all members. The development of astronautics and aeronautics in individual nations has led to initiatives for national aerospace databases. Technological developments in information technology and science, as well as the reality of scarce resources, makes it necessary to reconsider the mutually beneficial possibilities offered by cooperation and international resource sharing.

  18. Novel atmospheric extinction measurement techniques for aerospace laser system applications

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark

    2013-01-01

    Novel techniques for laser beam atmospheric extinction measurements, suitable for manned and unmanned aerospace vehicle applications, are presented in this paper. Extinction measurements are essential to support the engineering development and the operational employment of a variety of aerospace electro-optical sensor systems, allowing calculation of the range performance attainable with such systems in current and likely future applications. Such applications include ranging, weaponry, Earth remote sensing and possible planetary exploration missions performed by satellites and unmanned flight vehicles. Unlike traditional LIDAR methods, the proposed techniques are based on measurements of the laser energy (intensity and spatial distribution) incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Various laser sources can be employed with wavelengths from the visible to the far infrared portions of the spectrum, allowing for data correlation and extended sensitivity. Errors affecting measurements performed using the proposed methods are discussed in the paper and algorithms are proposed that allow a direct determination of the atmospheric transmittance and spatial characteristics of the laser spot. These algorithms take into account a variety of linear and non-linear propagation effects. Finally, results are presented relative to some experimental activities performed to validate the proposed techniques. Particularly, data are presented relative to both ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 kHz PRF NIR laser systems in a large variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft.

  19. Development of lightweight structural health monitoring systems for aerospace applications

    NASA Astrophysics Data System (ADS)

    Pearson, Matthew

    This thesis investigates the development of structural health monitoring systems (SHM) for aerospace applications. The work focuses on each aspect of a SHM system covering novel transducer technologies and damage detection techniques to detect and locate damage in metallic and composite structures. Secondly the potential of energy harvesting and power arrangement methodologies to provide a stable power source is assessed. Finally culminating in the realisation of smart SHM structures. 1. Transducer Technology A thorough experimental study of low profile, low weight novel transducers not normally used for acoustic emission (AE) and acousto-ultrasonics (AU) damage detection was conducted. This included assessment of their performance when exposed to aircraft environments and feasibility of embedding these transducers in composites specimens in order to realise smart structures. 2. Damage Detection An extensive experimental programme into damage detection utilising AE and AU were conducted in both composites and metallic structures. These techniques were used to assess different damage mechanism within these materials. The same transducers were used for novel AE location techniques coupled with AU similarity assessment to successfully detect and locate damage in a variety of structures. 3. Energy Harvesting and Power Management Experimental investigations and numerical simulations were undertaken to assess the power generation levels of piezoelectric and thermoelectric generators for typical vibration and temperature differentials which exist in the aerospace environment. Furthermore a power management system was assessed to demonstrate the ability of the system to take the varying nature of the input power and condition it to a stable power source for a system. 4. Smart Structures The research conducted is brought together into a smart carbon fibre wing showcasing the novel embedded transducers for AE and AU damage detection and location, as well as vibration energy

  20. A Systems Engineering Approach to Quality Assurance for Aerospace Testing

    NASA Technical Reports Server (NTRS)

    Shepherd, Christena C.

    2014-01-01

    On the surface, it appears that AS9100 has little to say about how to apply a Quality Management System (QMS) to major aerospace test programs (or even smaller ones). It also appears that there is little in the quality engineering Body of Knowledge (BOK) that applies to testing, unless it is nondestructive examination (NDE), or some type of lab or bench testing associated with the manufacturing process. However, if one examines: a) how the systems engineering (SE) processes are implemented throughout a test program; and b) how these SE processes can be mapped to the requirements of AS9100, a number of areas for involvement of the quality professional are revealed. What often happens is that quality assurance during a test program is limited to inspections of the test article; what could be considered a manufacturing al fresco approach. This limits the quality professional and is a disservice to the programs and projects, since there are a number of ways that quality can enhance critical processes, and support efforts to improve risk reduction, efficiency and effectiveness. The Systems Engineering (SE) discipline is widely used in aerospace to ensure the progress from Stakeholder Expectations (the President, Congress, the taxpayers) to a successful, delivered product or service. Although this is well known, what is not well known is that these same SE processes are implemented in varying complexity, to prepare for and implement test projects that support research, development, verification and validation, qualification, and acceptance test projects. Although the test organization's terminology may vary from the SE terminology, and from one test service provider to another, the basic process is followed by successful, reliable testing organizations. For this analysis, NASA Procedural Requirements (NPR) 7123.1, NASA Systems Engineering Processes and Requirements is used to illustrate the SE processes that are used for major aerospace testing. Many of these processes

  1. Advanced aerospace remote sensing systems for global resource applications

    NASA Technical Reports Server (NTRS)

    Taranik, J. V.

    1981-01-01

    The Landsat program, which was concerned with testing the use of satellite data for global resource observations, has been an unqualified success, and users of Landsat data demand now that repetitive global multispectral data be provided on a routine basis for a wide variety of applications. A review is provided of the current status of NASA's land observation program, new developments in advanced aerospace remote sensing techniques, and issues related to the development and testing of new prototype systems by the U.S. The current Landsat program is considered along with developments in solid-state imaging technology, short wave infrared research using the Space Shuttle, the Shuttle Orbiter camera payload system large format camera, and advanced research in thermal remote sensing. Attention is also given to the potential of imaging radar for global resource observations, and research related to geopotential field mapping.

  2. Technical Note: Some Issues Related to the Selection of Polymers for Aerospace Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Beeson, Harold

    2004-01-01

    Materials intended for use in aerospace oxygen systems are commonly screened for oxygen compatibility following NASA STD 6001. This standard allows qualification of materials based on results provided by only one test method. Potential issues related to this practice are reviewed and recommendations are proposed that would lead to improved aerospace oxygen systems safety.

  3. Design-oriented thermoelastic analysis, sensitivities, and approximations for shape optimization of aerospace vehicles

    NASA Astrophysics Data System (ADS)

    Bhatia, Manav

    Aerospace structures operate under extreme thermal environments. Hot external aerothermal environment at high Mach number flight leads to high structural temperatures. At the same time, cold internal cryogenic-fuel-tanks and thermal management concepts like Thermal Protection System (TPS) and active cooling result in a high temperature gradient through the structure. Multidisciplinary Design Optimization (MDO) of such structures requires a design-oriented approach to this problem. The broad goal of this research effort is to advance the existing state of the art towards MDO of large scale aerospace structures. The components required for this work are the sensitivity analysis formulation encompassing the scope of the physical phenomena being addressed, a set of efficient approximations to cut-down the required CPU cost, and a general purpose design-oriented numerical analysis tool capable of handling problems of this scope. In this work finite element discretization has been used to solve the conduction partial differential equations and the Poljak method has been used to discretize the integral equations for internal cavity radiation. A methodology has been established to couple the conduction finite element analysis to the internal radiation analysis. This formulation is then extended for sensitivity analysis of heat transfer and coupled thermal-structural problems. The most CPU intensive operations in the overall analysis have been identified, and approximation methods have been proposed to reduce the associated CPU cost. Results establish the effectiveness of these approximation methods, which lead to very high savings in CPU cost without any deterioration in the results. The results presented in this dissertation include two cases: a hexahedral cavity with internal and external radiation with conducting walls, and a wing box which is geometrically similar to the orbiter wing.

  4. Advanced Tools and Techniques for Formal Techniques in Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Knight, John C.

    2005-01-01

    This is the final technical report for grant number NAG-1-02101. The title of this grant was "Advanced Tools and Techniques for Formal Techniques In Aerospace Systems". The principal investigator on this grant was Dr. John C. Knight of the Computer Science Department, University of Virginia, Charlottesville, Virginia 22904-4740. This report summarizes activities under the grant during the period 7/01/2002 to 9/30/2004. This report is organized as follows. In section 2, the technical background of the grant is summarized. Section 3 lists accomplishments and section 4 lists students funded under the grant. In section 5, we present a list of presentations given at various academic and research institutions about the research conducted. Finally, a list of publications generated under this grant is included in section 6.

  5. Internal computational fluid mechanics on supercomputers for aerospace propulsion systems

    NASA Technical Reports Server (NTRS)

    Andersen, Bernhard H.; Benson, Thomas J.

    1987-01-01

    The accurate calculation of three-dimensional internal flowfields for application towards aerospace propulsion systems requires computational resources available only on supercomputers. A survey is presented of three-dimensional calculations of hypersonic, transonic, and subsonic internal flowfields conducted at the Lewis Research Center. A steady state Parabolized Navier-Stokes (PNS) solution of flow in a Mach 5.0, mixed compression inlet, a Navier-Stokes solution of flow in the vicinity of a terminal shock, and a PNS solution of flow in a diffusing S-bend with vortex generators are presented and discussed. All of these calculations were performed on either the NAS Cray-2 or the Lewis Research Center Cray XMP.

  6. Internal fluid mechanics research on supercomputers for aerospace propulsion systems

    NASA Technical Reports Server (NTRS)

    Miller, Brent A.; Anderson, Bernhard H.; Szuch, John R.

    1988-01-01

    The Internal Fluid Mechanics Division of the NASA Lewis Research Center is combining the key elements of computational fluid dynamics, aerothermodynamic experiments, and advanced computational technology to bring internal computational fluid mechanics (ICFM) to a state of practical application for aerospace propulsion systems. The strategies used to achieve this goal are to: (1) pursue an understanding of flow physics, surface heat transfer, and combustion via analysis and fundamental experiments, (2) incorporate improved understanding of these phenomena into verified 3-D CFD codes, and (3) utilize state-of-the-art computational technology to enhance experimental and CFD research. Presented is an overview of the ICFM program in high-speed propulsion, including work in inlets, turbomachinery, and chemical reacting flows. Ongoing efforts to integrate new computer technologies, such as parallel computing and artificial intelligence, into high-speed aeropropulsion research are described.

  7. The Role of Uncertainty in Aerospace Vehicle Analysis and Design

    NASA Technical Reports Server (NTRS)

    Kenny, Sean P.; Crespo, Luis G.

    2011-01-01

    Effective uncertainty quantification (UQ) begins at the earliest phase in the design phase for which there are adequate models and continues tightly integrated to the analysis and design cycles as the refinement of the models and the fidelity of the tools increase. It is essential that uncertainty quantification strategies provide objective information to support the processes of identifying, analyzing and accommodating for the effects of uncertainty. Assessments of uncertainty should never render the results more difficult for engineers and decision makers to comprehend, but instead provide them with critical information to assist with resource utilization decisions and risk mitigation strategies. Success would be measured by the tools to enable engineers and decision makers to effectively balance critical project resources against system requirements while accounting for the impact of uncertainty.

  8. The design and fabrication of microstrip omnidirectional array antennas for aerospace applications

    NASA Technical Reports Server (NTRS)

    Campbell, T. G.; Appleton, M. W.; Lusby, T. K.

    1976-01-01

    A microstrip antenna design concept was developed that will provide quasi-omnidirectional radiation pattern characteristics about cylindrical and conical aerospace structures. L-band and S-band antenna arrays were designed, fabricated, and, in some cases, flight tested for rocket, satellite, and aircraft drone applications. Each type of array design is discussed along with a thermal cover design that was required for the sounding rocket applications.

  9. Aerospace engineering design by systematic decomposition and multilevel optimization

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; Barthelemy, J. F. M.; Giles, G. L.

    1984-01-01

    A method for systematic analysis and optimization of large engineering systems, by decomposition of a large task into a set of smaller subtasks that is solved concurrently is described. The subtasks may be arranged in hierarchical levels. Analyses are carried out in each subtask using inputs received from other subtasks, and are followed by optimizations carried out from the bottom up. Each optimization at the lower levels is augmented by analysis of its sensitivity to the inputs received from other subtasks to account for the couplings among the subtasks in a formal manner. The analysis and optimization operations alternate iteratively until they converge to a system design whose performance is maximized with all constraints satisfied. The method, which is still under development, is tentatively validated by test cases in structural applications and an aircraft configuration optimization.

  10. Contamination control engineering design guidelines for the aerospace community

    NASA Technical Reports Server (NTRS)

    Tribble, A. C. (Principal Investigator); Boyadjian, B.; Davis, J.; Haffner, J.; McCullough, E.

    1996-01-01

    Thermal control surfaces, solar arrays, and optical devices may be adversely affected by a small quantity of molecular and/or particulate contamination. What is rarely discussed is how one: (1) quantifies the level of contamination that must be maintained in order for the system to function properly, and (2) enforces contamination control to ensure compliance with requirements. This document is designed to address these specific issues and is intended to serve as a handbook on contamination control for the reader, illustrating process and methodology while providing direction to more detailed references when needed. The effects of molecular contamination on reflecting and transmitting surfaces are examined and quantified in accordance with MIL STD 1246C. The generation, transportation, and deposition of molecular contamination is reviewed and specific examples are worked to illustrate the process a design engineer can use to estimate end of life cleanliness levels required by solar arrays, thermal control surfaces, and optical surfaces. A similar process is used to describe the effect of particulate contamination as related to percent area coverage (PAC) and bi-directional reflectance distribution function (BRDF). Relationships between PAC and surface cleanliness, which include the effects of submicron sized particles, are developed and BRDF is related to specific sensor design parameters such as Point Source Transmittance (PST). The pros and cons of various methods of preventing, monitoring, and cleaning surfaces are examined and discussed.

  11. Grid Generation for Multidisciplinary Design and Optimization of an Aerospace Vehicle: Issues and Challenges

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2000-01-01

    The purpose of this paper is to discuss grid generation issues and to challenge the grid generation community to develop tools suitable for automated multidisciplinary analysis and design optimization of aerospace vehicles. Special attention is given to the grid generation issues of computational fluid dynamics and computational structural mechanics disciplines.

  12. Teaching an Aerospace Engineering Design Course via Virtual Worlds: A Comparative Assessment of Learning Outcomes

    ERIC Educational Resources Information Center

    Okutsu, Masataka; DeLaurentis, Daniel; Brophy, Sean; Lambert, Jason

    2013-01-01

    To test the concept of multiuser 3D virtual environments as media to teach semester-long courses, we developed a software prototype called Aeroquest. An aerospace design course--offered to 135 second-year students for university credits in Fall 2009--was divided into two groups: the real-world group attending lectures, physically, in a campus hall…

  13. Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems, part 2

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence W., Jr. (Compiler)

    1991-01-01

    A collection of papers presented at the Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems is given. The papers address modeling, systems identification, and control of flexible aircraft, spacecraft and robotic systems.

  14. Competitive assessment of aerospace systems using system dynamics

    NASA Astrophysics Data System (ADS)

    Pfaender, Jens Holger

    Aircraft design has recently experienced a trend away from performance centric design towards a more balanced approach with increased emphasis on engineering an economically successful system. This approach focuses on bringing forward a comprehensive economic and life-cycle cost analysis. Since the success of any system also depends on many external factors outside of the control of the designer, this traditionally has been modeled as noise affecting the uncertainty of the design. However, this approach is currently lacking a strategic treatment of necessary early decisions affecting the probability of success of a given concept in a dynamic environment. This suggests that the introduction of a dynamic method into a life-cycle cost analysis should allow the analysis of the future attractiveness of such a concept in the presence of uncertainty. One way of addressing this is through the use of a competitive market model. However, existing market models do not focus on the dynamics of the market. Instead, they focus on modeling and predicting market share through logit regression models. The resulting models exhibit relatively poor predictive capabilities. The method proposed here focuses on a top-down approach that integrates a competitive model based on work in the field of system dynamics into the aircraft design process. Demonstrating such integration is one of the primary contributions of this work, which previously has not been demonstrated. This integration is achieved through the use of surrogate models, in this case neural networks. This enabled not only the practical integration of analysis techniques, but also reduced the computational requirements so that interactive exploration as envisioned was actually possible. The example demonstration of this integration is built on the competition in the 250 seat large commercial aircraft market exemplified by the Boeing 767-400ER and the Airbus A330-200. Both aircraft models were calibrated to existing performance

  15. Development of sensor augmented robotic weld systems for aerospace propulsion system fabrication

    NASA Technical Reports Server (NTRS)

    Jones, C. S.; Gangl, K. J.

    1986-01-01

    In order to meet stringent performance goals for power and reuseability, the Space Shuttle Main Engine was designed with many complex, difficult welded joints that provide maximum strength and minimum weight. To this end, the SSME requires 370 meters of welded joints. Automation of some welds has improved welding productivity significantly over manual welding. Application has previously been limited by accessibility constraints, requirements for complex process control, low production volumes, high part variability, and stringent quality requirements. Development of robots for welding in this application requires that a unique set of constraints be addressed. This paper shows how robotic welding can enhance production of aerospace components by addressing their specific requirements. A development program at the Marshall Space Flight Center combining industrial robots with state-of-the-art sensor systems and computer simulation is providing technology for the automation of welds in Space Shuttle Main Engine production.

  16. Engineering derivatives from biological systems for advanced aerospace applications

    NASA Technical Reports Server (NTRS)

    Winfield, Daniel L.; Hering, Dean H.; Cole, David

    1991-01-01

    The present study consisted of a literature survey, a survey of researchers, and a workshop on bionics. These tasks produced an extensive annotated bibliography of bionics research (282 citations), a directory of bionics researchers, and a workshop report on specific bionics research topics applicable to space technology. These deliverables are included as Appendix A, Appendix B, and Section 5.0, respectively. To provide organization to this highly interdisciplinary field and to serve as a guide for interested researchers, we have also prepared a taxonomy or classification of the various subelements of natural engineering systems. Finally, we have synthesized the results of the various components of this study into a discussion of the most promising opportunities for accelerated research, seeking solutions which apply engineering principles from natural systems to advanced aerospace problems. A discussion of opportunities within the areas of materials, structures, sensors, information processing, robotics, autonomous systems, life support systems, and aeronautics is given. Following the conclusions are six discipline summaries that highlight the potential benefits of research in these areas for NASA's space technology programs.

  17. Fiber optic liquid level sensor system for aerospace applications

    NASA Astrophysics Data System (ADS)

    Kazemi, Alex A.; Yang, Chenging; Chen, Shiping

    2014-09-01

    Detection of the liquid level in fuel tank becomes a critical element for the safety and efficiency in aerospace operations. Two liquid level sensing techniques are presented in this paper. The first technique is based on optical fiber Long Period Gratings (LPG). In this system, the full length of a specially fabricated fiber is the body of the probe because the length of the sensing fiber that is submerged in the liquid can be detected by the interrogation system. The second system based on Total Internal Reflection (TIR) uses optical fibers to guide light to and from an array of point probes. These probes are specially fabricated, miniature optical components which reflects a substantial amount of light back into the lead fiber when the probe is gas but almost no light when it is in liquid. A detailed theoretical study by computer simulation was carried out on these two techniques in order to determine which technique was more suitable for experimental investigation. The study revealed that although the first technique may provide more potential benefits in terms of weight and easy installation; a number of technical challenges make it not suitable for a short term solution. The second, probe array based technique, on the other hand, is more mature technically. The rest of the research program was therefore focused on the experimental investigation of the probe array detection technique and the test results are presented in this paper.

  18. Aerospace Toolbox--a flight vehicle design, analysis, simulation, and software development environment II: an in-depth overview

    NASA Astrophysics Data System (ADS)

    Christian, Paul M.

    2002-07-01

    This paper presents a demonstrated approach to significantly reduce the cost and schedule of non real-time modeling and simulation, real-time HWIL simulation, and embedded code development. The tool and the methodology presented capitalize on a paradigm that has become a standard operating procedure in the automotive industry. The tool described is known as the Aerospace Toolbox, and it is based on the MathWorks Matlab/Simulink framework, which is a COTS application. Extrapolation of automotive industry data and initial applications in the aerospace industry show that the use of the Aerospace Toolbox can make significant contributions in the quest by NASA and other government agencies to meet aggressive cost reduction goals in development programs. The part I of this paper provided a detailed description of the GUI based Aerospace Toolbox and how it is used in every step of a development program; from quick prototyping of concept developments that leverage built-in point of departure simulations through to detailed design, analysis, and testing. Some of the attributes addressed included its versatility in modeling 3 to 6 degrees of freedom, its library of flight test validated library of models (including physics, environments, hardware, and error sources), and its built-in Monte Carlo capability. Other topics that were covered in part I included flight vehicle models and algorithms, and the covariance analysis package, Navigation System Covariance Analysis Tools (NavSCAT). Part II of this series will cover a more in-depth look at the analysis and simulation capability and provide an update on the toolbox enhancements. It will also address how the Toolbox can be used as a design hub for Internet based collaborative engineering tools such as NASA's Intelligent Synthesis Environment (ISE) and Lockheed Martin's Interactive Missile Design Environment (IMD).

  19. A Systems Engineering Approach to Quality Assurance for Aerospace Testing

    NASA Technical Reports Server (NTRS)

    Shepherd, Christena C.

    2015-01-01

    On the surface, it appears that AS91001 has little to say about how to apply a Quality Management System (QMS) to major aerospace test programs (or even smaller ones). It also appears that there is little in the quality engineering Body of Knowledge (BOK)2 that applies to testing, unless it is nondestructive examination (NDE), or some type of lab or bench testing associated with the manufacturing process. However, if one examines: a) how the systems engineering (SE) processes are implemented throughout a test program; and b) how these SE processes can be mapped to the requirements of AS9100, a number of areas for involvement of the quality professional are revealed. What often happens is that quality assurance during a test program is limited to inspections of the test article; what could be considered a manufacturing al fresco approach. This limits the quality professional and is a disservice to the programs and projects, since there are a number of ways that quality can enhance critical processes, and support efforts to improve risk reduction, efficiency and effectiveness.

  20. Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD) Volume 7: IPAD benefits and impact

    NASA Technical Reports Server (NTRS)

    Hansen, S. D.; Southall, J. W.

    1973-01-01

    The potential benefits, impact and spinoff of IPAD technology are described. The benefits are projected from a flowtime and labor cost analysis of the design process and a study of the flowtime and labor cost savings being experienced with existing integrated systems. Benefits in terms of designer productivity, company effectiveness, and IPAD as a national resource are developed. A description is given of the potential impact of information handling as an IPAD technology, upon task and organization structure and people who use IPAD. Spinoff of IPAD technology to nonaerospace industries is discussed. The results of a personal survey made of aerospace, nonaerospace, government and university sources are given.

  1. Multidisciplinary analysis and synthesis - Needs and opportunities. [for aerospace design

    NASA Technical Reports Server (NTRS)

    Tolson, R. H.; Sobieszczanski-Sobieski, J.

    1985-01-01

    A comprehensive evaluation is conducted of structural analysis and synthesis opportunities which emerge through a multidisciplinary design program approach that simultaneously and interactively encompasses, in its determination of a given aircraft design, aerodynamics, structure, structural dynamics, materials, controls, and propulsion. In this way, it becomes possible to rapidly exploit technological advances in order to yield synergistic effects among configurational subsystems. The aircraft type presently considered as recipients of this treatment are commercial transports, high performance military aircraft, rotorcraft, and large space antennas, giving attention to common features among the multidisciplinary design tasks represented.

  2. Energy Harvesting for Aerospace Structural Health Monitoring Systems

    NASA Astrophysics Data System (ADS)

    Pearson, M. R.; Eaton, M. J.; Pullin, R.; Featherston, C. A.; Holford, K. M.

    2012-08-01

    Recent research into damage detection methodologies, embedded sensors, wireless data transmission and energy harvesting in aerospace environments has meant that autonomous structural health monitoring (SHM) systems are becoming a real possibility. The most promising system would utilise wireless sensor nodes that are able to make decisions on damage and communicate this wirelessly to a central base station. Although such a system shows great potential and both passive and active monitoring techniques exist for detecting damage in structures, powering such wireless sensors nodes poses a problem. Two such energy sources that could be harvested in abundance on an aircraft are vibration and thermal gradients. Piezoelectric transducers mounted to the surface of a structure can be utilised to generate power from a dynamic strain whilst thermoelectric generators (TEG) can be used to generate power from thermal gradients. This paper reports on the viability of these two energy sources for powering a wireless SHM system from vibrations ranging from 20 to 400Hz and thermal gradients up to 50°C. Investigations showed that using a single vibrational energy harvester raw power levels of up to 1mW could be generated. Further numerical modelling demonstrated that by optimising the position and orientation of the vibrational harvester greater levels of power could be achieved. However using commercial TEGs average power levels over a flight period between 5 to 30mW could be generated. Both of these energy harvesting techniques show a great potential in powering current wireless SHM systems where depending on the complexity the power requirements range from 1 to 180mW.

  3. Enhanced Multiobjective Optimization Technique for Comprehensive Aerospace Design. Part A

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Rajadas, John N.

    1997-01-01

    A multidisciplinary design optimization procedure which couples formal multiobjectives based techniques and complex analysis procedures (such as computational fluid dynamics (CFD) codes) developed. The procedure has been demonstrated on a specific high speed flow application involving aerodynamics and acoustics (sonic boom minimization). In order to account for multiple design objectives arising from complex performance requirements, multiobjective formulation techniques are used to formulate the optimization problem. Techniques to enhance the existing Kreisselmeier-Steinhauser (K-S) function multiobjective formulation approach have been developed. The K-S function procedure used in the proposed work transforms a constrained multiple objective functions problem into an unconstrained problem which then is solved using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. Weight factors are introduced during the transformation process to each objective function. This enhanced procedure will provide the designer the capability to emphasize specific design objectives during the optimization process. The demonstration of the procedure utilizes a computational Fluid dynamics (CFD) code which solves the three-dimensional parabolized Navier-Stokes (PNS) equations for the flow field along with an appropriate sonic boom evaluation procedure thus introducing both aerodynamic performance as well as sonic boom as the design objectives to be optimized simultaneously. Sensitivity analysis is performed using a discrete differentiation approach. An approximation technique has been used within the optimizer to improve the overall computational efficiency of the procedure in order to make it suitable for design applications in an industrial setting.

  4. Lubrication System Failure Baseline Testing on an Aerospace Quality Gear Mesh

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Morales, Wilfredo

    2000-01-01

    Aerospace drive systems are required to survive a loss-of-lubrication test for qualification. In many cases emergency lubrication systems need to be designed and utilized to permit the drive system to pass this difficult requirement. The weight of emergency systems can adversely affect the mission capabilities of the aircraft. The possibility to reduce the emergency system weight through the use of mist lubrication will be described. Mist lubrication involves the delivery of a minute amount of an organic liquid as a vapor or fine mist in flowing compressed air to rubbing surfaces. At the rubbing surface, the vapor or mist reacts to form a solid lubricating film. The aim of this study was to establish a baseline for gear behavior under oil depleted conditions. A reactive vapor-mist lubrication method is described and proposed as a candidate emergency lubrication system.

  5. Aerospace Concurrent Engineering Design Teams: Current State, Next Steps and a Vision for the Future

    NASA Technical Reports Server (NTRS)

    Hihn, Jairus; Chattopadhyay, Debarati; Karpati, Gabriel; McGuire, Melissa; Borden, Chester; Panek, John; Warfield, Keith

    2011-01-01

    Over the past sixteen years, government aerospace agencies and aerospace industry have developed and evolved operational concurrent design teams to create novel spaceflight mission concepts and designs. These capabilities and teams, however, have evolved largely independently. In today's environment of increasingly complex missions with limited budgets it is becoming readily apparent that both implementing organizations and today's concurrent engineering teams will need to interact more often than they have in the past. This will require significant changes in the current state of practice. This paper documents the findings from a concurrent engineering workshop held in August 2010 to identify the key near term improvement areas for concurrent engineering capabilities and challenges to the long-term advancement of concurrent engineering practice. The paper concludes with a discussion of a proposed vision for the evolution of these teams over the next decade.

  6. Toward smart aerospace structures: design of a piezoelectric sensor and its analog interface for flaw detection.

    PubMed

    Boukabache, Hamza; Escriba, Christophe; Fourniols, Jean-Yves

    2014-01-01

    Structural health monitoring using noninvasive methods is one of the major challenges that aerospace manufacturers face in this decade. Our work in this field focuses on the development and the system integration of millimetric piezoelectric sensors/ actuators to generate and measure specific guided waves. The aim of the application is to detect mechanical flaws on complex composite and alloy structures to quantify efficiently the global structures' reliability. The study begins by a physical and analytical analysis of a piezoelectric patch. To preserve the structure's integrity, the transducers are directly pasted onto the surface which leads to a critical issue concerning the interfacing layer. In order to improve the reliability and mitigate the influence of the interfacing layer, the global equations of piezoelectricity are coupled with a load transfer model. Thus we can determine precisely the shear strain developed on the surface of the structure. To exploit the generated signal, a high precision analog charge amplifier coupled to a double T notch filter were designed and scaled. Finally, a novel joined time-frequency analysis based on a wavelet decomposition algorithm is used to extract relevant structures signatures. Finally, this paper provides examples of application on aircraft structure specimens and the feasibility of the system is thus demonstrated. PMID:25365457

  7. Toward Smart Aerospace Structures: Design of a Piezoelectric Sensor and Its Analog Interface for Flaw Detection

    PubMed Central

    Boukabache, Hamza; Escriba, Christophe; Fourniols, Jean-Yves

    2014-01-01

    Structural health monitoring using noninvasive methods is one of the major challenges that aerospace manufacturers face in this decade. Our work in this field focuses on the development and the system integration of millimetric piezoelectric sensors/ actuators to generate and measure specific guided waves. The aim of the application is to detect mechanical flaws on complex composite and alloy structures to quantify efficiently the global structures' reliability. The study begins by a physical and analytical analysis of a piezoelectric patch. To preserve the structure's integrity, the transducers are directly pasted onto the surface which leads to a critical issue concerning the interfacing layer. In order to improve the reliability and mitigate the influence of the interfacing layer, the global equations of piezoelectricity are coupled with a load transfer model. Thus we can determine precisely the shear strain developed on the surface of the structure. To exploit the generated signal, a high precision analog charge amplifier coupled to a double T notch filter were designed and scaled. Finally, a novel joined time-frequency analysis based on a wavelet decomposition algorithm is used to extract relevant structures signatures. Finally, this paper provides examples of application on aircraft structure specimens and the feasibility of the system is thus demonstrated. PMID:25365457

  8. The Evaluation and Implementation of a Water Containment System to Support Aerospace Flywheel Testing

    NASA Technical Reports Server (NTRS)

    Trase, Larry M.

    2002-01-01

    High-energy flywheel systems for aerospace power storage and attitude control applications are being developed because of the potential for increasing the energy density and reducing operational costs. A significant challenge facing the development of the test hardware is containment of the rotating elements in the event of a failure during the development and qualification stages of testing. This containment is critical in order to ensure the safety of the test personnel and the facility. A containment system utilizing water as the containment media is presented. Water containment was found to be a low cost, flexible, and highly effective containment system. Ballistic test results and analytical results are discussed along with a description of a flywheel test facility that was designed and built utilizing the water containment system at the NASA Glenn Research Center at Lewis Field in Cleveland, Ohio.

  9. National Aero-Space Plane team selects design

    NASA Astrophysics Data System (ADS)

    Kandebo, Stanley W.

    1990-10-01

    The selection of a design configuration for the NASP currently favors a directionally stable lifting body that incorporates dual stabilizers, short wings, and a two-man, dorsal crew compartment. The X-30 is expected to be 150-200 ft long and to have a takeoff gross weight of 250,000-300,000 lb. Three to five scramjet engines and a single 50,000 to 70,000 lb thrust rocket integrated into the airframe are expected to power the vehicle. The rocket will provide the X-30 with the burst of energy it will require to obtain orbital velocity and also to maneuver the craft out of earth orbit. Continuing propulsion and technical advances that include materials, aerodynamics, and simulations areas are being developed by program researchers. One of the most important achievements has been the progress made in locating the boundary-layer transition point on the NASP; engine, airframe integration, and flight-test issues are being addressed in separate study programs.

  10. Design and Test of Low-Profile Composite Aerospace Tank Dome

    NASA Technical Reports Server (NTRS)

    Ahmed, R.

    1999-01-01

    This report summarizes the design, analysis, manufacture, and test of a subscale, low-profile composite aerospace dome under internal pressure. A low-profile dome has a radius-to-height ratio greater than the square root of two. This effort demonstrated that a low-profile composite dome with a radius-to-height ratio of three was a feasible design and could adequately withstand the varying stress states resulting from internal pressurization. Test data for strain and displacement versus pressure are provided to validate the design.

  11. Needs and Opportunities for Uncertainty-Based Multidisciplinary Design Methods for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Zang, Thomas A.; Hemsch, Michael J.; Hilburger, Mark W.; Kenny, Sean P; Luckring, James M.; Maghami, Peiman; Padula, Sharon L.; Stroud, W. Jefferson

    2002-01-01

    This report consists of a survey of the state of the art in uncertainty-based design together with recommendations for a Base research activity in this area for the NASA Langley Research Center. This report identifies the needs and opportunities for computational and experimental methods that provide accurate, efficient solutions to nondeterministic multidisciplinary aerospace vehicle design problems. Barriers to the adoption of uncertainty-based design methods are identified. and the benefits of the use of such methods are explained. Particular research needs are listed.

  12. Development of a Solid-Oxide Fuel Cell/Gas Turbine Hybrid System Model for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Freeh, Joshua E.; Pratt, Joseph W.; Brouwer, Jacob

    2004-01-01

    Recent interest in fuel cell-gas turbine hybrid applications for the aerospace industry has led to the need for accurate computer simulation models to aid in system design and performance evaluation. To meet this requirement, solid oxide fuel cell (SOFC) and fuel processor models have been developed and incorporated into the Numerical Propulsion Systems Simulation (NPSS) software package. The SOFC and reformer models solve systems of equations governing steady-state performance using common theoretical and semi-empirical terms. An example hybrid configuration is presented that demonstrates the new capability as well as the interaction with pre-existing gas turbine and heat exchanger models. Finally, a comparison of calculated SOFC performance with experimental data is presented to demonstrate model validity. Keywords: Solid Oxide Fuel Cell, Reformer, System Model, Aerospace, Hybrid System, NPSS

  13. Analysis of fatigue, fatique-crack propagation, and fracture data. [design of metallic aerospace structural components

    NASA Technical Reports Server (NTRS)

    Jaske, C. E.; Feddersen, C. E.; Davies, K. B.; Rice, R. C.

    1973-01-01

    Analytical methods have been developed for consolidation of fatigue, fatigue-crack propagation, and fracture data for use in design of metallic aerospace structural components. To evaluate these methods, a comprehensive file of data on 2024 and 7075 aluminums, Ti-6A1-4V, and 300M and D6Ac steels was established. Data were obtained from both published literature and unpublished reports furnished by aerospace companies. Fatigue and fatigue-crack-propagation analyses were restricted to information obtained from constant-amplitude load or strain cycling of specimens in air at room temperature. Fracture toughness data were from tests of center-cracked tension panels, part-through crack specimens, and compact-tension specimens.

  14. Characterizing Distributed Concurrent Engineering Teams: A Descriptive Framework for Aerospace Concurrent Engineering Design Teams

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Debarati; Hihn, Jairus; Warfield, Keith

    2011-01-01

    As aerospace missions grow larger and more technically complex in the face of ever tighter budgets, it will become increasingly important to use concurrent engineering methods in the development of early conceptual designs because of their ability to facilitate rapid assessments and trades in a cost-efficient manner. To successfully accomplish these complex missions with limited funding, it is also essential to effectively leverage the strengths of individuals and teams across government, industry, academia, and international agencies by increased cooperation between organizations. As a result, the existing concurrent engineering teams will need to increasingly engage in distributed collaborative concurrent design. This paper is an extension of a recent white paper written by the Concurrent Engineering Working Group, which details the unique challenges of distributed collaborative concurrent engineering. This paper includes a short history of aerospace concurrent engineering, and defines the terms 'concurrent', 'collaborative' and 'distributed' in the context of aerospace concurrent engineering. In addition, a model for the levels of complexity of concurrent engineering teams is presented to provide a way to conceptualize information and data flow within these types of teams.

  15. Experimental design of an interlaboratory study for trace metal analysis of liquid fluids. [for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Greenbauer-Seng, L. A.

    1983-01-01

    The accurate determination of trace metals and fuels is an important requirement in much of the research into and development of alternative fuels for aerospace applications. Recognizing the detrimental effects of certain metals on fuel performance and fuel systems at the part per million and in some cases part per billion levels requires improved accuracy in determining these low concentration elements. Accurate analyses are also required to ensure interchangeability of analysis results between vendor, researcher, and end use for purposes of quality control. Previous interlaboratory studies have demonstrated the inability of different laboratories to agree on the results of metal analysis, particularly at low concentration levels, yet typically good precisions are reported within a laboratory. An interlaboratory study was designed to gain statistical information about the sources of variation in the reported concentrations. Five participant laboratories were used on a fee basis and were not informed of the purpose of the analyses. The effects of laboratory, analytical technique, concentration level, and ashing additive were studied in four fuel types for 20 elements of interest. The prescribed sample preparation schemes (variations of dry ashing) were used by all of the laboratories. The analytical data were statistically evaluated using a computer program for the analysis of variance technique.

  16. A Hydrogen Leak Detection System for Aerospace and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Makel, D. B.; Jansa, E. D.; Patterson, G.; Cova, P. J.; Liu, C. C.; Wu, Q. H.; Powers, W. T.

    1995-01-01

    Leaks on the space shuttle while on the launch pad have generated interest in hydrogen leak monitoring technology. Microfabricated hydrogen sensors are being fabricated at Case Western Reserve University (CWRU) and tested at NASA Lewis Research Center (LeRC). These sensors have been integrated into hardware and software designed by Aerojet. This complete system allows for multipoint leak monitoring designed to provide leak source and magnitude information in real time. The monitoring system processes data from the hydrogen sensors and presents the operator with a visual indication of the leak location and magnitude. Although the leak monitoring system was designed for hydrogen propulsion systems, the possible applications of this monitoring system are wide ranged. This system is in operation in an automotive application which requires high sensitivity to hydrogen.

  17. High Bandwidth, Multi-Purpose Passive Radar Receiver Design For Aerospace and Geoscience Targets

    NASA Astrophysics Data System (ADS)

    Vertatschitsch, Laura

    uninterruptible power supply (UPS) for up to 1 hour of continuous operation. In this document we provide technical details of the hardware, firmware, and software of the system and design strategies and decisions. We cover the topic of coherent processing for passive radar, specifically an overview of the cross-ambiguity function as a detection mechanism. While the applications of a system like this are incredibly broad, the initial validation and performance analysis was applied specifically to detection of aircraft using Digital Television (DTV) broadcast as an illuminator. We present results of both stationary and mobile operation. In stationary operation, the same helicopter has been detected using two different DTV transmissions. Early mobile operation results show the Doppler-spread ground clutter and possible detection of aircraft. In addition to the fully-functional aircraft detection signal chain, alternative FPGA designs are presented with modes for fast sampling on two antennas or four antennas, with access to an aggregate 240 MHz of spectrum, with 8-bit samples. At these extremely high data rates, moderate data loss occurs while saving this data to disk, but as detailed within this document, it can be accounted for and the effects minimalized, still allowing for detection of aircraft. With these modes, FM transmission and DTV transmission can be captured synchronously from a single antenna and digitizer feed, an exciting result that offers promise for both aerospace and geoscience applications.

  18. Performance and Reliability Optimization for Aerospace Systems subject to Uncertainty and Degradation

    NASA Technical Reports Server (NTRS)

    Miller, David W.; Uebelhart, Scott A.; Blaurock, Carl

    2004-01-01

    This report summarizes work performed by the Space Systems Laboratory (SSL) for NASA Langley Research Center in the field of performance optimization for systems subject to uncertainty. The objective of the research is to develop design methods and tools to the aerospace vehicle design process which take into account lifecycle uncertainties. It recognizes that uncertainty between the predictions of integrated models and data collected from the system in its operational environment is unavoidable. Given the presence of uncertainty, the goal of this work is to develop means of identifying critical sources of uncertainty, and to combine these with the analytical tools used with integrated modeling. In this manner, system uncertainty analysis becomes part of the design process, and can motivate redesign. The specific program objectives were: 1. To incorporate uncertainty modeling, propagation and analysis into the integrated (controls, structures, payloads, disturbances, etc.) design process to derive the error bars associated with performance predictions. 2. To apply modern optimization tools to guide in the expenditure of funds in a way that most cost-effectively improves the lifecycle productivity of the system by enhancing the subsystem reliability and redundancy. The results from the second program objective are described. This report describes the work and results for the first objective: uncertainty modeling, propagation, and synthesis with integrated modeling.

  19. An Object Oriented Extensible Architecture for Affordable Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Follen, Gregory J.

    2003-01-01

    Driven by a need to explore and develop propulsion systems that exceeded current computing capabilities, NASA Glenn embarked on a novel strategy leading to the development of an architecture that enables propulsion simulations never thought possible before. Full engine 3 Dimensional Computational Fluid Dynamic propulsion system simulations were deemed impossible due to the impracticality of the hardware and software computing systems required. However, with a software paradigm shift and an embracing of parallel and distributed processing, an architecture was designed to meet the needs of future propulsion system modeling. The author suggests that the architecture designed at the NASA Glenn Research Center for propulsion system modeling has potential for impacting the direction of development of affordable weapons systems currently under consideration by the Applied Vehicle Technology Panel (AVT).

  20. Heat transfer in aerospace propulsion

    NASA Technical Reports Server (NTRS)

    Simoneau, Robert J.; Hendricks, Robert C.; Gladden, Herbert J.

    1988-01-01

    Presented is an overview of heat transfer related research in support of aerospace propulsion, particularly as seen from the perspective of the NASA Lewis Research Center. Aerospace propulsion is defined to cover the full spectrum from conventional aircraft power plants through the Aerospace Plane to space propulsion. The conventional subsonic/supersonic aircraft arena, whether commercial or military, relies on the turbine engine. A key characteristic of turbine engines is that they involve fundamentally unsteady flows which must be properly treated. Space propulsion is characterized by very demanding performance requirements which frequently push systems to their limits and demand tailored designs. The hypersonic flight propulsion systems are subject to severe heat loads and the engine and airframe are truly one entity. The impact of the special demands of each of these aerospace propulsion systems on heat transfer is explored.

  1. Current research activities at the NASA-sponsored Illinois Computing Laboratory of Aerospace Systems and Software

    NASA Technical Reports Server (NTRS)

    Smith, Kathryn A.

    1994-01-01

    The Illinois Computing Laboratory of Aerospace Systems and Software (ICLASS) was established to: (1) pursue research in the areas of aerospace computing systems, software and applications of critical importance to NASA, and (2) to develop and maintain close contacts between researchers at ICLASS and at various NASA centers to stimulate interaction and cooperation, and facilitate technology transfer. Current ICLASS activities are in the areas of parallel architectures and algorithms, reliable and fault tolerant computing, real time systems, distributed systems, software engineering and artificial intelligence.

  2. Overview of the Integrated Programs for Aerospace Vehicle Design (IPAD) project

    NASA Technical Reports Server (NTRS)

    Venneri, S. L.

    1983-01-01

    To respond to national needs for improved productivity in engineering design and manufacturing, a NASA supported joint industry/government project is underway denoted Integrated Programs for Aerospace Vehicle Design (IPAD). The objective is to improve engineering productivity through better use of computer technology. It focuses on development of data base management technology and associated software for integrated company wide management of engineering and manufacturing information. Results to date on the IPAD project include an in depth documentation of a representative design process for a large engineering project, the definition and design of computer aided design software needed to support that process, and the release of prototype software to manage engineering information. This paper provides an overview of the IPAD project and summarizes progress to date and future plans.

  3. Concurrent Engineering Working Group White Paper Distributed Collaborative Design: The Next Step in Aerospace Concurrent Engineering

    NASA Technical Reports Server (NTRS)

    Hihn, Jairus; Chattopadhyay, Debarati; Karpati, Gabriel; McGuire, Melissa; Panek, John; Warfield, Keith; Borden, Chester

    2011-01-01

    As aerospace missions grow larger and more technically complex in the face of ever tighter budgets, it will become increasingly important to use concurrent engineering methods in the development of early conceptual designs because of their ability to facilitate rapid assessments and trades of performance, cost and schedule. To successfully accomplish these complex missions with limited funding, it is essential to effectively leverage the strengths of individuals and teams across government, industry, academia, and international agencies by increased cooperation between organizations. As a result, the existing concurrent engineering teams will need to increasingly engage in distributed collaborative concurrent design. The purpose of this white paper is to identify a near-term vision for the future of distributed collaborative concurrent engineering design for aerospace missions as well as discuss the challenges to achieving that vision. The white paper also documents the advantages of creating a working group to investigate how to engage the expertise of different teams in joint design sessions while enabling organizations to maintain their organizations competitive advantage.

  4. A Model-Based Approach to Engineering Behavior of Complex Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Ingham, Michel; Day, John; Donahue, Kenneth; Kadesch, Alex; Kennedy, Andrew; Khan, Mohammed Omair; Post, Ethan; Standley, Shaun

    2012-01-01

    One of the most challenging yet poorly defined aspects of engineering a complex aerospace system is behavior engineering, including definition, specification, design, implementation, and verification and validation of the system's behaviors. This is especially true for behaviors of highly autonomous and intelligent systems. Behavior engineering is more of an art than a science. As a process it is generally ad-hoc, poorly specified, and inconsistently applied from one project to the next. It uses largely informal representations, and results in system behavior being documented in a wide variety of disparate documents. To address this problem, JPL has undertaken a pilot project to apply its institutional capabilities in Model-Based Systems Engineering to the challenge of specifying complex spacecraft system behavior. This paper describes the results of the work in progress on this project. In particular, we discuss our approach to modeling spacecraft behavior including 1) requirements and design flowdown from system-level to subsystem-level, 2) patterns for behavior decomposition, 3) allocation of behaviors to physical elements in the system, and 4) patterns for capturing V&V activities associated with behavioral requirements. We provide examples of interesting behavior specification patterns, and discuss findings from the pilot project.

  5. Analysis and Perspective from the Complex Aerospace Systems Exchange (CASE) 2013

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Parker, Peter A.; Detweiler, Kurt N.; McGowan, Anna-Maria R.; Dress, David A.; Kimmel, William M.

    2014-01-01

    NASA Langley Research Center embedded four rapporteurs at the Complex Aerospace Systems Exchange (CASE) held in August 2013 with the objective to capture the essence of the conference presentations and discussions. CASE was established to provide a discussion forum among chief engineers, program managers, and systems engineers on challenges in the engineering of complex aerospace systems. The meeting consists of invited presentations and panels from industry, academia, and government followed by discussions among attendees. This report presents the major and reoccurring themes captured throughout the meeting and provides analysis and insights to further the CASE mission.

  6. Propositions concerning creation of international aerospace system for monitoring of global phenomena

    NASA Astrophysics Data System (ADS)

    Menshikov, V. A.

    2009-01-01

    The paper expounds propositions concerning architecture of international aerospace system for monitoring of global geophysical phenomena and forecast of natural and man-caused disasters. This system in proper time provides institutions of state governing and population with information relative to imminent natural and man-caused disasters that give the real opportunity to prevent or reduce their negative effect on environment, infrastructure and people. The paper describes procedure for delivery of information to state and local authorities, different customers, reviews efficient stages of creation of international aerospace system for monitoring of global geophysical phenomena taking into consideration current task priority, technological backlog and financial limitations.

  7. An Object Oriented Extensible Architecture for Affordable Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Follen, Gregory J.; Lytle, John K. (Technical Monitor)

    2002-01-01

    Driven by a need to explore and develop propulsion systems that exceeded current computing capabilities, NASA Glenn embarked on a novel strategy leading to the development of an architecture that enables propulsion simulations never thought possible before. Full engine 3 Dimensional Computational Fluid Dynamic propulsion system simulations were deemed impossible due to the impracticality of the hardware and software computing systems required. However, with a software paradigm shift and an embracing of parallel and distributed processing, an architecture was designed to meet the needs of future propulsion system modeling. The author suggests that the architecture designed at the NASA Glenn Research Center for propulsion system modeling has potential for impacting the direction of development of affordable weapons systems currently under consideration by the Applied Vehicle Technology Panel (AVT). This paper discusses the salient features of the NPSS Architecture including its interface layer, object layer, implementation for accessing legacy codes, numerical zooming infrastructure and its computing layer. The computing layer focuses on the use and deployment of these propulsion simulations on parallel and distributed computing platforms which has been the focus of NASA Ames. Additional features of the object oriented architecture that support MultiDisciplinary (MD) Coupling, computer aided design (CAD) access and MD coupling objects will be discussed. Included will be a discussion of the successes, challenges and benefits of implementing this architecture.

  8. Multidisciplinary Aerospace Systems Optimization: Computational AeroSciences (CAS) Project

    NASA Technical Reports Server (NTRS)

    Kodiyalam, S.; Sobieski, Jaroslaw S. (Technical Monitor)

    2001-01-01

    The report describes a method for performing optimization of a system whose analysis is so expensive that it is impractical to let the optimization code invoke it directly because excessive computational cost and elapsed time might result. In such situation it is imperative to have user control the number of times the analysis is invoked. The reported method achieves that by two techniques in the Design of Experiment category: a uniform dispersal of the trial design points over a n-dimensional hypersphere and a response surface fitting, and the technique of krigging. Analyses of all the trial designs whose number may be set by the user are performed before activation of the optimization code and the results are stored as a data base. That code is then executed and referred to the above data base. Two applications, one of the airborne laser system, and one of an aircraft optimization illustrate the method application.

  9. Smart Sensor Systems for Aerospace Applications: From Sensor Development to Application Testing

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Xu, J. C.; Dungan, L. K.; Ward, B. J.; Rowe, S.; Williams, J.; Makel, D. B.; Liu, C. C.; Chang, C. W.

    2008-01-01

    The application of Smart Sensor Systems for aerospace applications is a multidisciplinary process consisting of sensor element development, element integration into Smart Sensor hardware, and testing of the resulting sensor systems in application environments. This paper provides a cross-section of these activities for multiple aerospace applications illustrating the technology challenges involved. The development and application testing topics discussed are: 1) The broadening of sensitivity and operational range of silicon carbide (SiC) Schottky gas sensor elements; 2) Integration of fire detection sensor technology into a "Lick and Stick" Smart Sensor hardware platform for Crew Exploration Vehicle applications; 3) Extended testing for zirconia based oxygen sensors in the basic "Lick and Stick" platform for environmental monitoring applications. It is concluded that that both core sensor platform technology and a basic hardware platform can enhance the viability of implementing smart sensor systems in aerospace applications.

  10. Development of a multiplexed bypass control system for aerospace batteries

    NASA Technical Reports Server (NTRS)

    Frank, H. A.

    1977-01-01

    A breadboard bypass control system was developed to control a battery comprised of 26 JPL-developed negative limited Ni-Cd cells. The system was designed to automatically remove cells from the circuit when their voltages exceeded a fixed limit on charge and fell below a fixed limit on discharge. Major components of the system consisted of a cell voltage monitor, a multiplexing circuit, and individual electromechanical relays for each cell. The system was found to function well in controlling the battery during a simulated 10-month MM-71 mission and a 2-month simulated low earth orbit cycling mission. A flight version of the bypass system was estimated to have a total parts count of 150 and total weight of 1.63 kg. When fully developed, the system shows promise for improving life and reliability of spacecraft batteries.

  11. Ceramic Integration Technologies for Aerospace and Energy Systems: Technical Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2007-01-01

    Ceramic integration technology has been recognized as an enabling technology for the implementation of advanced ceramic systems in a number of high-temperature applications in aerospace, power generation, nuclear, chemical, and electronic industries. Various ceramic integration technologies (joining, brazing, attachments, repair, etc.) play a role in fabrication and manufacturing of large and complex shaped parts of various functionalities. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Experimental results for bonding and integration of SiC based LDI fuel injector, high conductivity C/C composite based heat rejection system, solid oxide fuel cells system, ultra high temperature ceramics for leading edges, and ceramic composites for thermostructural applications will be presented. Potential opportunities and need for the development of innovative design philosophies, approaches, and integrated system testing under simulated application conditions will also be discussed.

  12. An integrated analytic tool and knowledge-based system approach to aerospace electric power system control

    NASA Astrophysics Data System (ADS)

    Owens, William R.; Henderson, Eric; Gandikota, Kapal

    1986-10-01

    Future aerospace electric power systems require new control methods because of increasing power system complexity, demands for power system management, greater system size and heightened reliability requirements. To meet these requirements, a combination of electric power system analytic tools and knowledge-based systems is proposed. The continual improvement in microelectronic performance has made it possible to envision the application of sophisticated electric power system analysis tools to aerospace vehicles. These tools have been successfully used in the measurement and control of large terrestrial electric power systems. Among these tools is state estimation which has three main benefits. The estimator builds a reliable database for the system structure and states. Security assessment and contingency evaluation also require a state estimator. Finally, the estimator will, combined with modern control theory, improve power system control and stability. Bad data detection as an adjunct to state estimation identifies defective sensors and communications channels. Validated data from the analytic tools is supplied to a number of knowledge-based systems. These systems will be responsible for the control, protection, and optimization of the electric power system.

  13. A perspective on future directions in aerospace propulsion system simulation

    NASA Technical Reports Server (NTRS)

    Miller, Brent A.; Szuch, John R.; Gaugler, Raymond E.; Wood, Jerry R.

    1989-01-01

    The design and development of aircraft engines is a lengthy and costly process using today's methodology. This is due, in large measure, to the fact that present methods rely heavily on experimental testing to verify the operability, performance, and structural integrity of components and systems. The potential exists for achieving significant speedups in the propulsion development process through increased use of computational techniques for simulation, analysis, and optimization. This paper outlines the concept and technology requirements for a Numerical Propulsion Simulation System (NPSS) that would provide capabilities to do interactive, multidisciplinary simulations of complete propulsion systems. By combining high performance computing hardware and software with state-of-the-art propulsion system models, the NPSS will permit the rapid calculation, assessment, and optimization of subcomponent, component, and system performance, durability, reliability and weight-before committing to building hardware.

  14. Introduction to System Health Engineering and Management in Aerospace

    NASA Technical Reports Server (NTRS)

    Johnson, Stephen B.

    2005-01-01

    This paper provides a technical overview of Integrated System Health Engineering and Management (ISHEM). We define ISHEM as "the paper provides a techniques, and technologies used to design, analyze, build, verify, and operate a system to prevent faults and/or minimize their effects." This includes design and manufacturing techniques as well operational and managerial methods. ISHEM is not a "purely technical issue" as it also involves and must account for organizational, communicative, and cognitive f&ms of humans as social beings and as individuals. Thus the paper will discuss in more detail why all of these elements, h m the technical to the cognitive and social, are necessary to build dependable human-machine systems. The paper outlines a functional homework and architecture for ISHEM operations, describes the processes needed to implement ISHEM in the system life-cycle, and provides a theoretical framework to understand the relationship between the different aspects of the discipline. It then derives from these and the social and cognitive bases a set of design and operational principles for ISHEM.

  15. Computerized structural sizing at NASA Langley Research Center. [low mass design for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Stroud, W. J.; Sobieszczanski-Sobieski, J.; Walz, J. E.; Bush, H. G.

    1978-01-01

    Programs at the NASA Langley Research Center associated with the development of computerized structural sizing technology are reviewed. Particular attention is given to (1) lightweight columns for space structure applications, (2) stiffened composite panels for aerospace structures, (3) thermal structures for high-speed aircraft and space vehicles, (4) structural sizing methodology for finite-element structural models, (5) the sizing of large complex structural systems in multidisciplinary environments. Improvements to computational efficiency are noted with reference to a reduced number of sizing variables, a reduced number of constraints, and improved sizing algorithms.

  16. Advanced information processing system - Status report. [for fault tolerant and damage tolerant data processing for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Brock, L. D.; Lala, J.

    1986-01-01

    The Advanced Information Processing System (AIPS) is designed to provide a fault tolerant and damage tolerant data processing architecture for a broad range of aerospace vehicles. The AIPS architecture also has attributes to enhance system effectiveness such as graceful degradation, growth and change tolerance, integrability, etc. Two key building blocks being developed by the AIPS program are a fault and damage tolerant processor and communication network. A proof-of-concept system is now being built and will be tested to demonstrate the validity and performance of the AIPS concepts.

  17. Advanced EVA Capabilities: A Study for NASA's Revolutionary Aerospace Systems Concept Program

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2004-01-01

    This report documents the results of a study carried out as part of NASA s Revolutionary Aerospace Systems Concepts Program examining the future technology needs of extravehicular activities (EVAs). The intent of this study is to produce a comprehensive report that identifies various design concepts for human-related advanced EVA systems necessary to achieve the goals of supporting future space exploration and development customers in free space and on planetary surfaces for space missions in the post-2020 timeframe. The design concepts studied and evaluated are not limited to anthropomorphic space suits, but include a wide range of human-enhancing EVA technologies as well as consideration of coordination and integration with advanced robotics. The goal of the study effort is to establish a baseline technology "road map" that identifies and describes an investment and technical development strategy, including recommendations that will lead to future enhanced synergistic human/robot EVA operations. The eventual use of this study effort is to focus evolving performance capabilities of various EVA system elements toward the goal of providing high performance human operational capabilities for a multitude of future space applications and destinations. The data collected for this study indicate a rich and diverse history of systems that have been developed to perform a variety of EVA tasks, indicating what is possible. However, the data gathered for this study also indicate a paucity of new concepts and technologies for advanced EVA missions - at least any that researchers are willing to discuss in this type of forum.

  18. Introduction: Aims and Requirements of Future Aerospace Vehicles. Chapter 1

    NASA Technical Reports Server (NTRS)

    Rodriguez, Pedro I.; Smeltzer, Stanley S., III; McConnaughey, Paul (Technical Monitor)

    2001-01-01

    The goals and system-level requirements for the next generation aerospace vehicles emphasize safety, reliability, low-cost, and robustness rather than performance. Technologies, including new materials, design and analysis approaches, manufacturing and testing methods, operations and maintenance, and multidisciplinary systems-level vehicle development are key to increasing the safety and reducing the cost of aerospace launch systems. This chapter identifies the goals and needs of the next generation or advanced aerospace vehicle systems.

  19. Modeling the Behaviour of an Advanced Material Based Smart Landing Gear System for Aerospace Vehicles

    SciTech Connect

    Varughese, Byji; Dayananda, G. N.; Rao, M. Subba

    2008-07-29

    The last two decades have seen a substantial rise in the use of advanced materials such as polymer composites for aerospace structural applications. In more recent years there has been a concerted effort to integrate materials, which mimic biological functions (referred to as smart materials) with polymeric composites. Prominent among smart materials are shape memory alloys, which possess both actuating and sensory functions that can be realized simultaneously. The proper characterization and modeling of advanced and smart materials holds the key to the design and development of efficient smart devices/systems. This paper focuses on the material characterization; modeling and validation of the model in relation to the development of a Shape Memory Alloy (SMA) based smart landing gear (with high energy dissipation features) for a semi rigid radio controlled airship (RC-blimp). The Super Elastic (SE) SMA element is configured in such a way that it is forced into a tensile mode of high elastic deformation. The smart landing gear comprises of a landing beam, an arch and a super elastic Nickel-Titanium (Ni-Ti) SMA element. The landing gear is primarily made of polymer carbon composites, which possess high specific stiffness and high specific strength compared to conventional materials, and are therefore ideally suited for the design and development of an efficient skid landing gear system with good energy dissipation characteristics. The development of the smart landing gear in relation to a conventional metal landing gear design is also dealt with.

  20. Modeling the Behaviour of an Advanced Material Based Smart Landing Gear System for Aerospace Vehicles

    NASA Astrophysics Data System (ADS)

    Varughese, Byji; Dayananda, G. N.; Rao, M. Subba

    2008-07-01

    The last two decades have seen a substantial rise in the use of advanced materials such as polymer composites for aerospace structural applications. In more recent years there has been a concerted effort to integrate materials, which mimic biological functions (referred to as smart materials) with polymeric composites. Prominent among smart materials are shape memory alloys, which possess both actuating and sensory functions that can be realized simultaneously. The proper characterization and modeling of advanced and smart materials holds the key to the design and development of efficient smart devices/systems. This paper focuses on the material characterization; modeling and validation of the model in relation to the development of a Shape Memory Alloy (SMA) based smart landing gear (with high energy dissipation features) for a semi rigid radio controlled airship (RC-blimp). The Super Elastic (SE) SMA element is configured in such a way that it is forced into a tensile mode of high elastic deformation. The smart landing gear comprises of a landing beam, an arch and a super elastic Nickel-Titanium (Ni-Ti) SMA element. The landing gear is primarily made of polymer carbon composites, which possess high specific stiffness and high specific strength compared to conventional materials, and are therefore ideally suited for the design and development of an efficient skid landing gear system with good energy dissipation characteristics. The development of the smart landing gear in relation to a conventional metal landing gear design is also dealt with.

  1. Collection, processing, and reporting of damage tolerant design data for non-aerospace structural materials

    NASA Technical Reports Server (NTRS)

    Huber, P. D.; Gallagher, J. P.

    1994-01-01

    This report describes the organization, format and content of the NASA Johnson damage tolerant database which was created to store damage tolerant property data for non aerospace structural materials. The database is designed to store fracture toughness data (K(sub IC), K(sub c), J(sub IC) and CTOD(sub IC)), resistance curve data (K(sub R) VS. delta a (sub eff) and JR VS. delta a (sub eff)), as well as subcritical crack growth data (a vs. N and da/dN vs. delta K). The database contains complementary material property data for both stainless and alloy steels, as well as for aluminum, nickel, and titanium alloys which were not incorporated into the Damage Tolerant Design Handbook database.

  2. Design of Inorganic Water Repellent Coatings for Thermal Protection Insulation on an Aerospace Vehicle

    NASA Technical Reports Server (NTRS)

    Fuerstenau, D. W.; Ravikumar, R.

    1997-01-01

    In this report, thin film deposition of one of the model candidate materials for use as water repellent coating on the thermal protection systems (TPS) of an aerospace vehicle was investigated. The material tested was boron nitride (BN), the water-repellent properties of which was detailed in our other investigation. Two different methods, chemical vapor deposition (CVD) and pulsed laser deposition (PLD), were used to prepare the BN films on a fused quartz substrate (one of the components of thermal protection systems on aerospace vehicles). The deposited films were characterized by a variety of techniques including X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. The BN films were observed to be amorphous in nature, and a CVD-deposited film yielded a contact angle of 60 degrees with water, similar to the pellet BN samples investigated previously. This demonstrates that it is possible to use the bulk sample wetting properties as a guideline to determine the candidate waterproofing material for the TPS.

  3. NASA Glenn Research in Controls and Diagnostics for Intelligent Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    2005-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. Also the propulsion systems required to enable the NASA (National Aeronautics and Space Administration) Vision for Space Exploration in an affordable manner will need to have high reliability, safety and autonomous operation capability. The Controls and Dynamics Branch at NASA Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. The key enabling technologies for an Intelligent Propulsion System are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance operational reliability and component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This paper describes the current activities of the Controls and Dynamics Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  4. Eascon '83: 16th annual IEEE electronics and aerospace systems conference and explosition. Proceedings

    SciTech Connect

    Not Available

    1983-01-01

    The following topics are dealt with: space stations; future satellite applications; direct broadcast systems; NASA advanced satellite communications technology; aerospace surveillance; surface surveillance; undersea surveillance; advanced software systems; fault-tolerant electronics; command control communications intelligence (c/sup 3/i) systems; distributed database systems; computer networking; and interactive displays. Abstracts of individual papers can be found under the relevant classification codes in this or future issues.

  5. Conceptual design of a Mars transportation system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In conjunction with NASA Marshall Space Flight Center and several major aerospace corporations the University of Minnesota has developed a scenario to place humans on Mars by the year 2016. The project took the form of a year-long design course in the senior design curricula at the University's Aerospace Engineering and Mechanics Department. Students worked with the instructor, teaching assistants and engineers in industry to develop a vehicle and the associated mission profile to fulfill the requirements of the Mars Transportation System. This report is a summary of the final design and the process though which the final product was developed.

  6. NASA Engineering Safety Center NASA Aerospace Flight Battery Systems Working Group 2007 Proactive Task Status

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2007-01-01

    In 2007, the NASA Engineering Safety Center (NESC) chartered the NASA Aerospace Flight Battery Systems Working Group to bring forth and address critical battery-related performance/manufacturing issues for NASA and the aerospace community. A suite of tasks identifying and addressing issues related to Ni-H2 and Li-ion battery chemistries was submitted and selected for implementation. The current NESC funded are: (1) Wet Life of Ni-H2 Batteries (2) Binding Procurement (3) NASA Lithium-Ion Battery Guidelines (3a) Li-Ion Performance Assessment (3b) Li-Ion Guidelines Document (3b-i) Assessment of Applicability of Pouch Cells for Aerospace Missions (3b-ii) High Voltage Risk Assessment (3b-iii) Safe Charge Rates for Li-Ion Cells (4) Availability of Source Material for Li-Ion Cells (5) NASA Aerospace Battery Workshop This presentation provides a brief overview of the tasks in the 2007 plan and serves as an introduction to more detailed discussions on each of the specific tasks.

  7. Systems design analysis applied to launch vehicle configuration

    NASA Technical Reports Server (NTRS)

    Ryan, R.; Verderaime, V.

    1993-01-01

    As emphasis shifts from optimum-performance aerospace systems to least lift-cycle costs, systems designs must seek, adapt, and innovate cost improvement techniques in design through operations. The systems design process of concept, definition, and design was assessed for the types and flow of total quality management techniques that may be applicable in a launch vehicle systems design analysis. Techniques discussed are task ordering, quality leverage, concurrent engineering, Pareto's principle, robustness, quality function deployment, criteria, and others. These cost oriented techniques are as applicable to aerospace systems design analysis as to any large commercial system.

  8. Supercomputing in Aerospace

    NASA Technical Reports Server (NTRS)

    Kutler, Paul; Yee, Helen

    1987-01-01

    Topics addressed include: numerical aerodynamic simulation; computational mechanics; supercomputers; aerospace propulsion systems; computational modeling in ballistics; turbulence modeling; computational chemistry; computational fluid dynamics; and computational astrophysics.

  9. Performance Prediction of a Synchronization Link for Distributed Aerospace Wireless Systems

    PubMed Central

    Shao, Huaizong

    2013-01-01

    For reasons of stealth and other operational advantages, distributed aerospace wireless systems have received much attention in recent years. In a distributed aerospace wireless system, since the transmitter and receiver placed on separated platforms which use independent master oscillators, there is no cancellation of low-frequency phase noise as in the monostatic cases. Thus, high accurate time and frequency synchronization techniques are required for distributed wireless systems. The use of a dedicated synchronization link to quantify and compensate oscillator frequency instability is investigated in this paper. With the mathematical statistical models of phase noise, closed-form analytic expressions for the synchronization link performance are derived. The possible error contributions including oscillator, phase-locked loop, and receiver noise are quantified. The link synchronization performance is predicted by utilizing the knowledge of the statistical models, system error contributions, and sampling considerations. Simulation results show that effective synchronization error compensation can be achieved by using this dedicated synchronization link. PMID:23970828

  10. NASA Glenn Research in Controls and Diagnostics for Intelligent Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2007-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. This presentation describes the current CDB activities in support of the NASA Aeronautics Research Mission, with an emphasis on activities under the Integrated Vehicle Health Management (IVHM) and Integrated Resilient Aircraft Control (IRAC) projects of the Aviation Safety Program. Under IVHM, CDB focus is on developing advanced techniques for monitoring the health of the aircraft engine gas path with a focus on reliable and early detection of sensor, actuator and engine component faults. Under IRAC, CDB focus is on developing adaptive engine control technologies which will increase the probability of survival of aircraft in the presence of damage to flight control surfaces or to one or more engines. The technology development plans are described as well as results from recent research accomplishments.

  11. Dynamic fiber Bragg gratings based health monitoring system of composite aerospace structures

    NASA Astrophysics Data System (ADS)

    Panopoulou, A.; Loutas, T.; Roulias, D.; Fransen, S.; Kostopoulos, V.

    2011-09-01

    The main purpose of the current work is to develop a new system for structural health monitoring of composite aerospace structures based on real-time dynamic measurements, in order to identify the structural state condition. Long-gauge Fibre Bragg Grating (FBG) optical sensors were used for monitoring the dynamic response of the composite structure. The algorithm that was developed for structural damage detection utilizes the collected dynamic response data, analyzes them in various ways and through an artificial neural network identifies the damage state and its location. Damage was simulated by slightly varying locally the mass of the structure (by adding a known mass) at different zones of the structure. Lumped masses in different locations upon the structure alter the eigen-frequencies in a way similar to actual damage. The structural dynamic behaviour has been numerically simulated and experimentally verified by means of modal testing on two different composite aerospace structures. Advanced digital signal processing techniques, e.g. the wavelet transform (WT), were used for the analysis of the dynamic response for feature extraction. WT's capability of separating the different frequency components in the time domain without loosing frequency information makes it a versatile tool for demanding signal processing applications. The use of WT is also suggested by the no-stationary nature of dynamic response signals and the opportunity of evaluating the temporal evolution of their frequency contents. Feature extraction is the first step of the procedure. The extracted features are effective indices of damage size and location. The classification step comprises of a feed-forward back propagation network, whose output determines the simulated damage location. Finally, dedicated training and validation activities were carried out by means of numerical simulations and experimental procedures. Experimental validation was performed initially on a flat stiffened panel

  12. Aerospace Community. Aerospace Education I.

    ERIC Educational Resources Information Center

    Mickey, V. V.

    This book, one in the series on Aerospace Education I, emphasizes the two sides of aerospace--military aerospace and civilian aerospace. Chapter 1 includes a brief discussion on the organization of Air Force bases and missile sites in relation to their missions. Chapter 2 examines the community services provided by Air Force bases. The topics…

  13. Aerothermodynamic systems engineering and design

    NASA Astrophysics Data System (ADS)

    A reference source for various aspects of aerothermodynamic systems engineering and design is presented. Air conditioning load analysis is addressed, including physiological requirements, heat and cooling load equations, skin temperature computational methods, cooling loads due to radiation through transparent areas, heating and cooling loads due to internal sources, and practical considerations in the determination of overall heating and cooling loads. Refrigeration system design is considered, including air cycle systems, vapor cycle systems, combined vapor cycle and air cycle systems, and thermoelectric cooling. Heating methods is heating system design and low pressure and high pressure systems in air distribution system design are addressed. Procedures and equations commonly used for aerospace applications of these technologies are included.

  14. Off-Design Performance Analysis of a Solid-Oxide Fuel Cell/Gas Turbine Hybrid for Auxiliary Aerospace Power

    NASA Technical Reports Server (NTRS)

    Freeh, Joshua E.; Steffen, J., Jr.; Larosiliere, Louis M.

    2005-01-01

    A solid-oxide fuel cell/gas turbine hybrid system for auxiliary aerospace power is analyzed using 0-D and 1-D system-level models. The system is designed to produce 440 kW of net electrical power, sized for a typical long-range 300-passenger civil airplane, at both sea level and cruise flight level (12,500 m). In addition, a part power level of 250 kW is analyzed at the cruise condition, a requirement of the operating power profile. The challenge of creating a balanced system for the three distinct conditions is presented, along with the compromises necessary for each case. A parametric analysis is described for the cruise part power operating point, in which the system efficiency is maximized by varying the air flow rate. The system is compared to an earlier version that was designed solely for cruise operation. The results show that it is necessary to size the turbomachinery, fuel cell, and heat exchangers at sea level full power rather than cruise full power. The resulting estimated mass of the system is 1912 kg, which is significantly higher than the original cruise design point mass, 1396 kg. The net thermal efficiencies with respect to the fuel LHV are calculated to be 42.4 percent at sea level full power, 72.6 percent at cruise full power, and 72.8 percent at cruise part power. The cruise conditions take advantage of pre-compressed air from the on-board Environmental Control System, which accounts for a portion of the unusually high thermal efficiency at those conditions. These results show that it is necessary to include several operating points in the overall assessment of an aircraft power system due to the variations throughout the operating profile.

  15. An Integrated MEMS Sensor Cluster System for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Kahng, Seun; Scott, Michael A.; Beeler, George B.; Bartlett, James E.; Collins, Richard S.

    2000-01-01

    Efforts to reduce viscous drag on airfoils could results in a considerable saving for the operation of flight vehicles including those of space transportation. This reduction of viscous drag effort requires measurement and active control of boundary layer flow property on an airfoil. Measurement of viscous drag of the boundary layer flow over an airfoil with minimal flow disturbance is achievable with newly developed MEMS sensor clusters. These sensor clusters provide information that can be used to actively control actuators to obtain desired flow properties or design a vehicle to satisfy particular boundary layer flow criteria. A series of MEMS sensor clusters has been developed with a data acquisition and control module for local measurements of shear stress, pressure, and temperature on an airfoil. The sensor cluster consists of two shear stress sensors, two pressure sensors, and two temperature sensors on a surface area of 1.24 mm x 1.86 mm. Each sensor is 300 microns square and is placed on a flexible polyimide sheet. The shear stress sensor is a polysilicon hot-film resistor, which is insulated by a vacuum cavity of 200 x 200 x 2 microns. The pressure sensors are silicon piezoresistive type, and the temperature sensors are also hot film polysilicon resistors. The total size of the cluster including sensors and electrical leads is 1 Omm x 1 Omm x 0.1 mm. A typical sensitivity of shear stress sensor is 150 mV/Pascal, the pressure sensors are an absolute type with a measurement range from 9 to 36 psia with 0.8mV/V/psi sensitivity, and the temperature sensors have a measurement resolution of 0.1 degree C. The sensor clusters are interfaced to a data acquisition and control module that consists of two custom ASICs (Application Specific Integrated Circuits) and a micro-controller. The data acquisition and control module transfers data to a host PC that configures and controls a total of three sensor clusters. Functionality of the entire system has been tested in

  16. Multiscale Modeling, Simulation and Visualization and Their Potential for Future Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler)

    2002-01-01

    This document contains the proceedings of the Training Workshop on Multiscale Modeling, Simulation and Visualization and Their Potential for Future Aerospace Systems held at NASA Langley Research Center, Hampton, Virginia, March 5 - 6, 2002. The workshop was jointly sponsored by Old Dominion University's Center for Advanced Engineering Environments and NASA. Workshop attendees were from NASA, other government agencies, industry, and universities. The objectives of the workshop were to give overviews of the diverse activities in hierarchical approach to material modeling from continuum to atomistics; applications of multiscale modeling to advanced and improved material synthesis; defects, dislocations, and material deformation; fracture and friction; thin-film growth; characterization at nano and micro scales; and, verification and validation of numerical simulations, and to identify their potential for future aerospace systems.

  17. Adhesives for Aerospace

    NASA Technical Reports Server (NTRS)

    Meade, L. E.

    1985-01-01

    The industry is hereby challenged to integrate adhesive technology with the total structure requirements in light of today's drive into automation/mechanization. The state of the art of adhesive technology is fairly well meeting the needs of the structural designers, the processing engineer, and the inspector, each on an individual basis. The total integration of these needs into the factory of the future is the next collective hurdle to be achieved. Improved processing parameters to fit the needs of automation/mechanization will necessitate some changes in the adhesive forms, formulations, and chemistries. Adhesives have, for the most part, kept up with the needs of the aerospace industry, normally leading the rest of the industry in developments. The wants of the aerospace industry still present a challenge to encompass all elements, achieving a totally integrated joined and sealed structural system. Better toughness with hot-wet strength improvements is desired. Lower cure temperatures, longer out times, and improved corrosion inhibition are desired.

  18. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 5: Aerospace librarians and technical information specialists as information intermediaries: A report of phase 2 activities of the NASA/DOD Aerospace Knowledge Diffusion Research Project

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.

    1990-01-01

    The objective of the NASA/DOD Aerospace Knowledge Diffusion Research Project is to provide descriptive and analytical data regarding the flow of scientific and technical information (STI) at the individual, organizational, national, and international levels, placing emphasis on the systems used to diffuse the results of federally funded aerospace STI. An overview of project assumptions, objectives, and design is presented and preliminary results of the phase 2 aerospace library survey are summarized. Phase 2 addressed aerospace knowledge transfer and use within the larger social system and focused on the flow of aerospace STI in government and industry and the role of the information intermediary in knowledge transfer.

  19. The comparative analysis of various aerospace system concepts

    NASA Astrophysics Data System (ADS)

    Shkadov, L. M.; Denisov, V. Ye.; Lazarev, V. V.; Plokhikh, V. P.; Buzuluk, V. I.; Volodin, S. V.; Chervonenko, K. A.; Skipenko, V. V.

    1995-01-01

    Consideration is given to fully reusable winged two- and single-stage systems powered by hydrogen/oxygen rocket engines, which differ in types of takeoff [horizontal takeoff (HTO) using an undercarriage; ground sled-assisted takeoff; air launch from a subsonic carrier; and launching-pad vertical takeoff (VTO)]. The systems have been optimized and compared using two criteria: payload mass and "dry mass to payload mass" ratio. The influence of the gross weight of a system and the technological level on the criteria involved is being investigated.

  20. Computational simulation for concurrent engineering of aerospace propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined.

  1. Computational simulation of concurrent engineering for aerospace propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1992-01-01

    Results are summarized of an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulations methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties - fundamental in developing such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering for propulsion systems and systems in general. Benefits and facets needing early attention in the development are outlined.

  2. Future Concepts for Modular, Intelligent Aerospace Power Systems

    NASA Technical Reports Server (NTRS)

    Button, Robert M.; Soeder, James F.

    2004-01-01

    Nasa's resent commitment to Human and Robotic Space Exploration obviates the need for more affordable and sustainable systems and missions. Increased use of modularity and on-board intelligent technologies will enable these lofty goals. To support this new paradigm, an advanced technology program to develop modular, intelligent power management and distribution (PMAD) system technologies is presented. The many benefits to developing and including modular functionality in electrical power components and systems are shown to include lower costs and lower mass for highly reliable systems. The details of several modular technologies being developed by NASA are presented, broken down into hierarchical levels. Modularity at the device level, including the use of power electronic building blocks, is shown to provide benefits in lowering the development time and costs of new power electronic components.

  3. Sensor applications for structural diagnostics and prognostics in aerospace systems

    NASA Astrophysics Data System (ADS)

    Ghoshal, Anindya; Ayers, James T.; Haile, Mulugeta; Shiao, Michael; Le, Dy D.

    2012-04-01

    There are emerging sensor technologies that will be deployed in future rotorcraft or retrofitted to existing rotorcraft and aircraft for structural diagnostics and prognostics. The vehicle health management system is likely to contain heterogeneous sensor arrays. Thus the structural state awareness may require information data fusion from dissimilar sensor (heterogeneous) system. This paper reviews the state of the art commercial of the shelf (COTS) and emerging sensor technologies for structural damage monitoring of rotorcraft and aircraft health.

  4. NAVSTAR Global Positioning System. (Latest citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning the global system of navigation satellites developed to provide immediate and accurate worldwide three-dimensional positioning by air, land, and sea vehicles equipped with appropriate receiving equipment. Technological forecasting, reliability, performance tests, and evaluations are discussed. Developments and applications of the NAVSTAR system are included. (Contains 50-250 citations and includes a subject term index and title list.)

  5. NAVSTAR Global Positioning System. (Latest citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The bibliography contains citations concerning the global system of navigation satellites developed to provide immediate and accurate worldwide three-dimensional positioning by air, land, and sea vehicles equipped with appropriate receiving equipment. Technological forecasting, reliability, performance tests, and evaluations are discussed. Developments and applications of the NAVSTAR system are included.(Contains 50-250 citations and includes a subject term index and title list.)

  6. A new SMART sensing system for aerospace structures

    NASA Astrophysics Data System (ADS)

    Zhang, David C.; Yu, Pin; Beard, Shawn; Qing, Peter; Kumar, Amrita; Chang, Fu-Kuo

    2007-04-01

    It is essential to ensure the safety and reliability of in-service structures such as unmanned vehicles by detecting structural cracking, corrosion, delamination, material degradation and other types of damage in time. Utilization of an integrated sensor network system can enable automatic inspection of such damages ultimately. Using a built-in network of actuators and sensors, Acellent is providing tools for advanced structural diagnostics. Acellent's integrated structural health monitoring system consists of an actuator/sensor network, supporting signal generation and data acquisition hardware, and data processing, visualization and analysis software. This paper describes the various features of Acellent's latest SMART sensing system. The new system is USB-based and is ultra-portable using the state-of-the-art technology, while delivering many functions such as system self-diagnosis, sensor diagnosis, through-transmission mode and pulse-echo mode of operation and temperature measurement. Performance of the new system was evaluated for assessment of damage in composite structures.

  7. Design of flight vehicles and their systems

    NASA Astrophysics Data System (ADS)

    Budnik, V. S.

    A multiple approach to the design of aerospace vehicles is considered along with the processing characteristics of systems for automated design work in the initial stage of aerospace vehicle design, complex problems in the theory of optimal control and differential games, the choice of allowable errors regarding the parameters of mathematical models of aerospace vehicles, and a study of the sensitivity of mathematical models of aerospace vehicles. Attention is also given to the combination of a semigroup approach and the method of Lagrange multipliers as a suitable means for the solution of distinct optimization problems with constraints in the form of inequalities, a method for increasing the search rate in a search for extrema, and the realization of combinatorial objectives on an electronic computer. Other subjects discussed are related to the construction of a graphical structural representation of a layout diagram for an aerospace vehicle, a flywheel energy storage device, and the effect of vibration on the tightness of rubber-metal valve seals.

  8. Event Detection in Aerospace Systems using Centralized Sensor Networks: A Comparative Study of Several Methodologies

    NASA Technical Reports Server (NTRS)

    Mehr, Ali Farhang; Sauvageon, Julien; Agogino, Alice M.; Tumer, Irem Y.

    2006-01-01

    Recent advances in micro electromechanical systems technology, digital electronics, and wireless communications have enabled development of low-cost, low-power, multifunctional miniature smart sensors. These sensors can be deployed throughout a region in an aerospace vehicle to build a network for measurement, detection and surveillance applications. Event detection using such centralized sensor networks is often regarded as one of the most promising health management technologies in aerospace applications where timely detection of local anomalies has a great impact on the safety of the mission. In this paper, we propose to conduct a qualitative comparison of several local event detection algorithms for centralized redundant sensor networks. The algorithms are compared with respect to their ability to locate and evaluate an event in the presence of noise and sensor failures for various node geometries and densities.

  9. NASA Activities as they Relate to Microwave Technology for Aerospace Communications Systems

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2011-01-01

    This presentation discusses current NASA activities and plans as they relate to microwave technology for aerospace communications. The presentations discusses some examples of the aforementioned technology within the context of the existing and future communications architectures and technology development roadmaps. Examples of the evolution of key technology from idea to deployment are provided as well as the challenges that lay ahead regarding advancing microwave technology to ensure that future NASA missions are not constrained by lack of communication or navigation capabilities. The presentation closes with some examples of emerging ongoing opportunities for establishing collaborative efforts between NASA, Industry, and Academia to encourage the development, demonstration and insertion of communications technology in pertinent aerospace systems.

  10. Feasibility study of an Integrated Program for Aerospace-vehicle Design (IPAD) system. Volume 6: Implementation schedule, development costs, operational costs, benefit assessment, impact on company organization, spin-off assessment, phase 1, tasks 3 to 8

    NASA Technical Reports Server (NTRS)

    Garrocq, C. A.; Hurley, M. J.; Dublin, M.

    1973-01-01

    A baseline implementation plan, including alternative implementation approaches for critical software elements and variants to the plan, was developed. The basic philosophy was aimed at: (1) a progressive release of capability for three major computing systems, (2) an end product that was a working tool, (3) giving participation to industry, government agencies, and universities, and (4) emphasizing the development of critical elements of the IPAD framework software. The results of these tasks indicate an IPAD first release capability 45 months after go-ahead, a five year total implementation schedule, and a total developmental cost of 2027 man-months and 1074 computer hours. Several areas of operational cost increases were identified mainly due to the impact of additional equipment needed and additional computer overhead. The benefits of an IPAD system were related mainly to potential savings in engineering man-hours, reduction of design-cycle calendar time, and indirect upgrading of product quality and performance.

  11. Simulation of a Flywheel Electrical System for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Truong, Long V.; Wolff, Frederick J.; Dravid, Narayan V.

    2000-01-01

    A Flywheel Energy Storage Demonstration Project was initiated at the NASA Glenn Research Center as a possible replacement for the battery energy storage system on the International Space Station (ISS). While the hardware fabrication work was being performed at a university and contractor's facility, the related simulation activity was begun at Glenn. At the top level, Glenn researchers simulated the operation of the ISS primary electrical system (as described in another paper) with the Flywheel Energy Storage Unit (FESU) replacing one Battery Charge and Discharge Unit (BCDU). The FESU consists of a Permanent Magnet Synchronous Motor/Generator (PMSM), which is connected to the flywheel; the power electronics that connects the PMSM to the ISS direct-current bus; and the associated controller. The PMSM model is still under development, but this paper describes the rest of the FESU model-the simulation of the converter and the associated control system that regulates energy transfer to and from the flywheel.

  12. The 18th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Topics concerning aerospace mechanisms, their functional performance, and design specifications are presented. Discussed subjects include the design and development of release mechanisms, actuators, linear driver/rate controllers, antenna and appendage deployment systems, position control systems, and tracking mechanisms for antennas and solar arrays. Engine design, spaceborne experiments, and large space structure technology are also examined.

  13. Aerospace Medicine

    NASA Technical Reports Server (NTRS)

    Michaud, Vince

    2015-01-01

    NASA Aerospace Medicine overview - Aerospace Medicine is that specialty area of medicine concerned with the determination and maintenance of the health, safety, and performance of those who fly in the air or in space.

  14. Generalized Predictive and Neural Generalized Predictive Control of Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Kelkar, Atul G.

    2000-01-01

    The research work presented in this thesis addresses the problem of robust control of uncertain linear and nonlinear systems using Neural network-based Generalized Predictive Control (NGPC) methodology. A brief overview of predictive control and its comparison with Linear Quadratic (LQ) control is given to emphasize advantages and drawbacks of predictive control methods. It is shown that the Generalized Predictive Control (GPC) methodology overcomes the drawbacks associated with traditional LQ control as well as conventional predictive control methods. It is shown that in spite of the model-based nature of GPC it has good robustness properties being special case of receding horizon control. The conditions for choosing tuning parameters for GPC to ensure closed-loop stability are derived. A neural network-based GPC architecture is proposed for the control of linear and nonlinear uncertain systems. A methodology to account for parametric uncertainty in the system is proposed using on-line training capability of multi-layer neural network. Several simulation examples and results from real-time experiments are given to demonstrate the effectiveness of the proposed methodology.

  15. Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 1A: Summary

    NASA Technical Reports Server (NTRS)

    Miller, R. E., Jr.; Redhed, D. D.; Kawaguchi, A. S.; Hansen, S. D.; Southall, J. W.

    1973-01-01

    IPAD was defined as a total system oriented to the product design process. This total system was designed to recognize the product design process, individuals and their design process tasks, and the computer-based IPAD System to aid product design. Principal elements of the IPAD System include the host computer and its interactive system software, new executive and data management software, and an open-ended IPAD library of technical programs to match the intended product design process. The basic goal of the IPAD total system is to increase the productivity of the product design organization. Increases in individual productivity were feasible through automation and computer support of routine information handling. Such proven automation can directly decrease cost and flowtime in the product design process.

  16. Atmospheric statistics for aerospace vehicle operations

    NASA Technical Reports Server (NTRS)

    Smith, O. E.; Batts, G. W.

    1993-01-01

    Statistical analysis of atmospheric variables was performed for the Shuttle Transportation System (STS) design trade studies and the establishment of launch commit criteria. Atmospheric constraint statistics have been developed for the NASP test flight, the Advanced Launch System, and the National Launch System. The concepts and analysis techniques discussed in the paper are applicable to the design and operations of any future aerospace vehicle.

  17. A smart pattern recognition system for the automatic identification of aerospace acoustic sources

    NASA Technical Reports Server (NTRS)

    Cabell, R. H.; Fuller, C. R.

    1989-01-01

    An intelligent air-noise recognition system is described that uses pattern recognition techniques to distinguish noise signatures of five different types of acoustic sources, including jet planes, propeller planes, a helicopter, train, and wind turbine. Information for classification is calculated using the power spectral density and autocorrelation taken from the output of a single microphone. Using this system, as many as 90 percent of test recordings were correctly identified, indicating that the linear discriminant functions developed can be used for aerospace source identification.

  18. Second Conference on NDE for Aerospace Requirements

    NASA Technical Reports Server (NTRS)

    Woodis, Kenneth W. (Compiler); Bryson, Craig C. (Compiler); Workman, Gary L. (Compiler)

    1990-01-01

    Nondestructive evaluation and inspection procedures must constantly improve rapidly in order to keep pace with corresponding advances being made in aerospace material and systems. In response to this need, the 1989 Conference was organized to provide a forum for discussion between the materials scientists, systems designers, and NDE engineers who produce current and future aerospace systems. It is anticipated that problems in current systems can be resolved more quickly and that new materials and structures can be designed and manufactured in such a way as to be more easily inspected and to perform reliably over the life cycle of the system.

  19. Integrated Component-based Data Acquisition Systems for Aerospace Test Facilities

    NASA Technical Reports Server (NTRS)

    Ross, Richard W.

    2001-01-01

    The Multi-Instrument Integrated Data Acquisition System (MIIDAS), developed by the NASA Langley Research Center, uses commercial off the shelf (COTS) products, integrated with custom software, to provide a broad range of capabilities at a low cost throughout the system s entire life cycle. MIIDAS combines data acquisition capabilities with online and post-test data reduction computations. COTS products lower purchase and maintenance costs by reducing the level of effort required to meet system requirements. Object-oriented methods are used to enhance modularity, encourage reusability, and to promote adaptability, reducing software development costs. Using only COTS products and custom software supported on multiple platforms reduces the cost of porting the system to other platforms. The post-test data reduction capabilities of MIIDAS have been installed at four aerospace testing facilities at NASA Langley Research Center. The systems installed at these facilities provide a common user interface, reducing the training time required for personnel that work across multiple facilities. The techniques employed by MIIDAS enable NASA to build a system with a lower initial purchase price and reduced sustaining maintenance costs. With MIIDAS, NASA has built a highly flexible next generation data acquisition and reduction system for aerospace test facilities that meets customer expectations.

  20. Meeting the Challenges of Exploration Systems: Health Management Technologies for Aerospace Systems With Emphasis on Propulsion

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.; Sowers, T. Shane; Maul, William A.

    2005-01-01

    The constraints of future Exploration Missions will require unique Integrated System Health Management (ISHM) capabilities throughout the mission. An ambitious launch schedule, human-rating requirements, long quiescent periods, limited human access for repair or replacement, and long communication delays all require an ISHM system that can span distinct yet interdependent vehicle subsystems, anticipate failure states, provide autonomous remediation, and support the Exploration Mission from beginning to end. NASA Glenn Research Center has developed and applied health management system technologies to aerospace propulsion systems for almost two decades. Lessons learned from past activities help define the approach to proper ISHM development: sensor selection- identifies sensor sets required for accurate health assessment; data qualification and validation-ensures the integrity of measurement data from sensor to data system; fault detection and isolation-uses measurements in a component/subsystem context to detect faults and identify their point of origin; information fusion and diagnostic decision criteria-aligns data from similar and disparate sources in time and use that data to perform higher-level system diagnosis; and verification and validation-uses data, real or simulated, to provide variable exposure to the diagnostic system for faults that may only manifest themselves in actual implementation, as well as faults that are detectable via hardware testing. This presentation describes a framework for developing health management systems and highlights the health management research activities performed by the Controls and Dynamics Branch at the NASA Glenn Research Center. It illustrates how those activities contribute to the development of solutions for Integrated System Health Management.

  1. Review of the probabilistic failure analysis methodology and other probabilistic approaches for application in aerospace structural design

    NASA Technical Reports Server (NTRS)

    Townsend, J.; Meyers, C.; Ortega, R.; Peck, J.; Rheinfurth, M.; Weinstock, B.

    1993-01-01

    Probabilistic structural analyses and design methods are steadily gaining acceptance within the aerospace industry. The safety factor approach to design has long been the industry standard, and it is believed by many to be overly conservative and thus, costly. A probabilistic approach to design may offer substantial cost savings. This report summarizes several probabilistic approaches: the probabilistic failure analysis (PFA) methodology developed by Jet Propulsion Laboratory, fast probability integration (FPI) methods, the NESSUS finite element code, and response surface methods. Example problems are provided to help identify the advantages and disadvantages of each method.

  2. Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 1B: Concise review

    NASA Technical Reports Server (NTRS)

    Miller, R. E., Jr.; Southall, J. W.; Kawaguchi, A. S.; Redhed, D. D.

    1973-01-01

    Reports on the design process, support of the design process, IPAD System design catalog of IPAD technical program elements, IPAD System development and operation, and IPAD benefits and impact are concisely reviewed. The approach used to define the design is described. Major activities performed during the product development cycle are identified. The computer system requirements necessary to support the design process are given as computational requirements of the host system, technical program elements and system features. The IPAD computer system design is presented as concepts, a functional description and an organizational diagram of its major components. The cost and schedules and a three phase plan for IPAD implementation are presented. The benefits and impact of IPAD technology are discussed.

  3. Integrated software health management for aerospace guidance, navigation, and control systems: A probabilistic reasoning approach

    NASA Astrophysics Data System (ADS)

    Mbaya, Timmy

    Embedded Aerospace Systems have to perform safety and mission critical operations in a real-time environment where timing and functional correctness are extremely important. Guidance, Navigation, and Control (GN&C) systems substantially rely on complex software interfacing with hardware in real-time; any faults in software or hardware, or their interaction could result in fatal consequences. Integrated Software Health Management (ISWHM) provides an approach for detection and diagnosis of software failures while the software is in operation. The ISWHM approach is based on probabilistic modeling of software and hardware sensors using a Bayesian network. To meet memory and timing constraints of real-time embedded execution, the Bayesian network is compiled into an Arithmetic Circuit, which is used for on-line monitoring. This type of system monitoring, using an ISWHM, provides automated reasoning capabilities that compute diagnoses in a timely manner when failures occur. This reasoning capability enables time-critical mitigating decisions and relieves the human agent from the time-consuming and arduous task of foraging through a multitude of isolated---and often contradictory---diagnosis data. For the purpose of demonstrating the relevance of ISWHM, modeling and reasoning is performed on a simple simulated aerospace system running on a real-time operating system emulator, the OSEK/Trampoline platform. Models for a small satellite and an F-16 fighter jet GN&C (Guidance, Navigation, and Control) system have been implemented. Analysis of the ISWHM is then performed by injecting faults and analyzing the ISWHM's diagnoses.

  4. Emerging and Future Computing Paradigms and Their Impact on the Research, Training, and Design Environments of the Aerospace Workforce

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler)

    2003-01-01

    The document contains the proceedings of the training workshop on Emerging and Future Computing Paradigms and their impact on the Research, Training and Design Environments of the Aerospace Workforce. The workshop was held at NASA Langley Research Center, Hampton, Virginia, March 18 and 19, 2003. The workshop was jointly sponsored by Old Dominion University and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to a) provide broad overviews of the diverse activities related to new computing paradigms, including grid computing, pervasive computing, high-productivity computing, and the IBM-led autonomic computing; and b) identify future directions for research that have high potential for future aerospace workforce environments. The format of the workshop included twenty-one, half-hour overview-type presentations and three exhibits by vendors.

  5. Preliminary design of a future integrated design system

    NASA Technical Reports Server (NTRS)

    Diggins, R. M.

    1980-01-01

    IPAD is a system of computer programs and data supporting the aerospace-vehicle design process by providing a set of services to aid in the management of a design project, project technical work, and project support work. Its purpose is to integrate people, programs, and data into a unified aerospace-vehicle design system. All project-management and technical data, together with certain standard data, are stored in a data base. The IPAD functions allow project personnel to query the data base and to perform operations on the data. This permits the orderly sequencing of the task elements of a complex operation and provides common access to a single data base by various participating groups who otherwise would require many separate files. These capabilities will be provided on a single host computer or across multiple heterogeneous computers on a distributed progress basis.

  6. Additive Manufacturing Enabled Ubiquitous Sensing in Aerospace and Integrated Building Systems

    NASA Astrophysics Data System (ADS)

    Mantese, Joseph

    2015-03-01

    Ubiquitous sensing is rapidly emerging as a means for globally optimizing systems of systems by providing both real time PHM (prognostics, diagnostics, and health monitoring), as well as expanded in-the-loop control. In closed or proprietary systems, such as in aerospace vehicles and life safety or security building systems; wireless signals and power must be supplied to a sensor network via single or multiple data concentrators in an architecture that ensures reliable/secure interconnectivity. In addition, such networks must be robust to environmental factors, including: corrosion, EMI/RFI, and thermal/mechanical variations. In this talk, we describe the use of additive manufacturing processes guided by physics based models for seamlessly embedding a sensor suite into aerospace and building system components; while maintaining their structural integrity and providing wireless power, sensor interrogation, and real-time diagnostics. We detail this approach as it specifically applies to industrial gas turbines for stationary land power. This work is supported through a grant from the National Energy Technology Laboratory (NETL), a division of the Department of Energy.

  7. Progress at the starshade testbed at Northrop Grumman Aerospace Systems: comparisons with computer simulations

    NASA Astrophysics Data System (ADS)

    Samuele, Rocco; Varshneya, Rupal; Johnson, Tim P.; Johnson, Adam M. F.; Glassman, Tiffany

    2010-07-01

    We report on progress at the Northrop Grumman Aerospace Systems (NGAS) starshade testbed. The starshade testbed is a 42.8 meter vacuum chamber that replicates the Fresnel number of an equivalent full-scale starshade mission, namely the flagship New Worlds Observer (NWO) configuration. This paper reports on recent upgrades to the testbed and comparisons of previously published experimental results with computer simulations - which show encouraging agreement to within a factor of 1.5. We also report on a new generation of sub-scale starshades that for the first time allow us to exactly match the Fresnel number of a full-scale mission.

  8. Dynamics of aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.

    1991-01-01

    The focus of this research was to address the modeling, including model reduction, of flexible aerospace vehicles, with special emphasis on models used in dynamic analysis and/or guidance and control system design. In the modeling, it is critical that the key aspects of the system being modeled be captured in the model. In this work, therefore, aspects of the vehicle dynamics critical to control design were important. In this regard, fundamental contributions were made in the areas of stability robustness analysis techniques, model reduction techniques, and literal approximations for key dynamic characteristics of flexible vehicles. All these areas are related. In the development of a model, approximations are always involved, so control systems designed using these models must be robust against uncertainties in these models.

  9. User interface for integrated computer aided design systems

    NASA Technical Reports Server (NTRS)

    Schwing, James L.

    1986-01-01

    The purpose was the development of a user interface and other appropriate tools to be used in Computer Aided Design systems which can integrate a wide variety of independently developed design and analysis tools. The interface was intended for the integration of programs to be used in the conceptual design of aerospace systems. A user's manual is included.

  10. Job-mix modeling and system analysis of an aerospace multiprocessor.

    NASA Technical Reports Server (NTRS)

    Mallach, E. G.

    1972-01-01

    An aerospace guidance computer organization, consisting of multiple processors and memory units attached to a central time-multiplexed data bus, is described. A job mix for this type of computer is obtained by analysis of Apollo mission programs. Multiprocessor performance is then analyzed using: 1) queuing theory, under certain 'limiting case' assumptions; 2) Markov process methods; and 3) system simulation. Results of the analyses indicate: 1) Markov process analysis is a useful and efficient predictor of simulation results; 2) efficient job execution is not seriously impaired even when the system is so overloaded that new jobs are inordinately delayed in starting; 3) job scheduling is significant in determining system performance; and 4) a system having many slow processors may or may not perform better than a system of equal power having few fast processors, but will not perform significantly worse.

  11. Science Applications Appropriate for Investigation with Uninhabited Aerospace Systems (UASs) in the next 10 years

    NASA Astrophysics Data System (ADS)

    McFarquhar, G. M.

    2008-05-01

    The Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program Uninhabited Aerospace Vehicle (ARM UAV) program and the ARM Aerial Vehicle Program (ARM AVP) have explored the use of uninhabited aerospace systems (UASs) for collecting data to address the largest source of uncertainty in global warming studies, namely the interaction of clouds with solar and terrestrial radiation. This presentation will review the past use of UASs and the measurement techniques and instruments suitable for UASs that were developed within ARM UAV. Thereafter it will be shown that UASs have unique capabilities (long endurance flights, the potential to make routine or continuous flights, the ability to fly in under sampled regions, and the capability to fly closely stacked patterns at multiple levels) that make them highly appropriate for research in the atmospheric sciences. Science questions better suited for exploration with UASs than with piloted aircraft will then be reviewed. These include observing convective cloud systems over their complete lifetime, determining how atmospheric properties vary over multiple scales, resolving how cloud properties vary with meteorological conditions and aerosol composition and optical depth, determining how cloud properties vary with sea surface temperature, making observations in data sparse regions, providing a comprehensive data set for evaluation of remote sensing retrievals, and quantifying atmospheric heating rate profiles.

  12. Performances and reliability predictions of optical data transmission links using a system simulator for aerospace applications

    NASA Astrophysics Data System (ADS)

    Bechou, L.; Deshayes, Y.; Aupetit-Berthelemot, C.; Guerin, A.; Tronche, C.

    Space missions for Earth Observation are called upon to carry a growing number of instruments in their payload, whose performances are increasing. Future space systems are therefore intended to generate huge amounts of data and a key challenge in coming years will therefore lie in the ability to transmit that significant quantity of data to ground. Thus very high data rate Payload Telemetry (PLTM) systems will be required to face the demand of the future Earth Exploration Satellite Systems and reliability is one of the major concern of such systems. An attractive approach associated with the concept of predictive modeling consists in analyzing the impact of components malfunctioning on the optical link performances taking into account the network requirements and experimental degradation laws. Reliability estimation is traditionally based on life-testing and a basic approach is to use Telcordia requirements (468GR) for optical telecommunication applications. However, due to the various interactions between components, operating lifetime of a system cannot be taken as the lifetime of the less reliable component. In this paper, an original methodology is proposed to estimate reliability of an optical communication system by using a dedicated system simulator for predictive modeling and design for reliability. At first, we present frameworks of point-to-point optical communication systems for space applications where high data rate (or frequency bandwidth), lower cost or mass saving are needed. Optoelectronics devices used in these systems can be similar to those found in terrestrial optical network. Particularly we report simulation results of transmission performances after introduction of DFB Laser diode parameters variations versus time extrapolated from accelerated tests based on terrestrial or submarine telecommunications qualification standards. Simulations are performed to investigate and predict the consequence of degradations of the Laser diode (acting as a

  13. Recent advances in AM OLED technologies for application to aerospace and military systems

    NASA Astrophysics Data System (ADS)

    Sarma, Kalluri R.; Roush, Jerry; Chanley, Charles

    2012-06-01

    While initial AM OLED products have been introduced in the market about a decade ago, truly successful commercialization of OLEDs has started only a couple of years ago, by Samsung Mobile Display (SMD), with small high performance displays for smart phone applications. This success by Samsung has catalyzed significant interest in AM OLED technology advancement and commercialization by other display manufacturers. Currently, significant manufacturing capacity for AM OLED displays is being established by the industry to serve the growing demand for these displays. The current development in the AM OLED industry are now focused on the development and commercialization of medium size (~10") AM OLED panels for Tablet PC applications and large size (~55") panels for TV applications. This significant progress in commercialization of AM OLED technology is enabled by major advances in various enabling technologies that include TFT backplanes, OLED materials and device structures and manufacturing know-how. In this paper we will discuss these recent advances, particularly as they relate to supporting high performance applications such as aerospace and military systems, and then discuss the results of the OLED testing for aerospace applications.

  14. Advanced lightweight alloys for aerospace applications

    NASA Astrophysics Data System (ADS)

    Frazier, William E.; Lee, Eui W.; Donnellan, Mary E.; Thompson, James J.

    1989-05-01

    The design requirements of the next generation of advanced aerospace vehicles and propulsion systems necessitate the development of structural materials with properties vastly superior to those which are currently achievable. Recognizing that each class of materials possesses its own unique set of advantages and disadvantages, the designers of tomorrow's aircraft must choose wisely from the plethora of available alloys.

  15. Modelling and experimental verification of a water alleviation system for the NASP. [National Aerospace Plane

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. James

    1992-01-01

    One possible low speed propulsion system for the National Aerospace Plane is a liquid air cycle engine (LACE). The LACE system uses the heat sink in the liquid hydrogen propellant to liquefy air in a heat exchanger which is then pumped up to high pressure and used as the oxidizer in a hydrogen liquid air rocket. The inlet airstream must be dehumidified or moisture could freeze on the cryogenic heat exchangers and block them. The main objective of this research has been to develop a computer simulation of the cold tube/antifreeze-spray water alleviation system and to verify the model with experimental data. An experimental facility has been built and humid air tests were conducted on a generic heat exchanger to obtain condensing data for code development. The paper describes the experimental setup, outlines the method of calculation used in the code, and presents comparisons of the calculations and measurements. Cause of discrepancies between the model and data are explained.

  16. Control design for robust stability in linear regulators: Application to aerospace flight control

    NASA Technical Reports Server (NTRS)

    Yedavalli, R. K.

    1986-01-01

    Time domain stability robustness analysis and design for linear multivariable uncertain systems with bounded uncertainties is the central theme of the research. After reviewing the recently developed upper bounds on the linear elemental (structured), time varying perturbation of an asymptotically stable linear time invariant regulator, it is shown that it is possible to further improve these bounds by employing state transformations. Then introducing a quantitative measure called the stability robustness index, a state feedback conrol design algorithm is presented for a general linear regulator problem and then specialized to the case of modal systems as well as matched systems. The extension of the algorithm to stochastic systems with Kalman filter as the state estimator is presented. Finally an algorithm for robust dynamic compensator design is presented using Parameter Optimization (PO) procedure. Applications in a aircraft control and flexible structure control are presented along with a comparison with other existing methods.

  17. Military Aerospace. Aerospace Education II.

    ERIC Educational Resources Information Center

    Smith, J. C.

    This book is a revised publication in the series on Aerospace Education II. It describes the employment of aerospace forces, their methods of operation, and some of the weapons and equipment used in combat and combat support activities. The first chapter describes some of the national objectives and policies served by the Air Force in peace and…

  18. Aerospace Environment. Aerospace Education I.

    ERIC Educational Resources Information Center

    Savler, D. S.; Smith, J. C.

    This book is one in the series on Aerospace Education I. It briefly reviews current knowledge of the universe, the earth and its life-supporting atmosphere, and the arrangement of celestial bodies in outer space and their physical characteristics. Chapter 1 includes a brief survey of the aerospace environment. Chapters 2 and 3 examine the…

  19. Application of artificial neural networks to the design optimization of aerospace structural components

    NASA Technical Reports Server (NTRS)

    Berke, Laszlo; Patnaik, Surya N.; Murthy, Pappu L. N.

    1993-01-01

    The application of artificial neural networks to capture structural design expertise is demonstrated. The principal advantage of a trained neural network is that it requires trivial computational effort to produce an acceptable new design. For the class of problems addressed, the development of a conventional expert system would be extremely difficult. In the present effort, a structural optimization code with multiple nonlinear programming algorithms and an artificial neural network code NETS were used. A set of optimum designs for a ring and two aircraft wings for static and dynamic constraints were generated by using the optimization codes. The optimum design data were processed to obtain input and output pairs, which were used to develop a trained artificial neural network with the code NETS. Optimum designs for new design conditions were predicted by using the trained network. Neural net prediction of optimum designs was found to be satisfactory for most of the output design parameters. However, results from the present study indicate that caution must be exercised to ensure that all design variables are within selected error bounds.

  20. Applications of artificial intelligence 1993: Knowledge-based systems in aerospace and industry; Proceedings of the Meeting, Orlando, FL, Apr. 13-15, 1993

    NASA Technical Reports Server (NTRS)

    Fayyad, Usama M. (Editor); Uthurusamy, Ramasamy (Editor)

    1993-01-01

    The present volume on applications of artificial intelligence with regard to knowledge-based systems in aerospace and industry discusses machine learning and clustering, expert systems and optimization techniques, monitoring and diagnosis, and automated design and expert systems. Attention is given to the integration of AI reasoning systems and hardware description languages, care-based reasoning, knowledge, retrieval, and training systems, and scheduling and planning. Topics addressed include the preprocessing of remotely sensed data for efficient analysis and classification, autonomous agents as air combat simulation adversaries, intelligent data presentation for real-time spacecraft monitoring, and an integrated reasoner for diagnosis in satellite control. Also discussed are a knowledge-based system for the design of heat exchangers, reuse of design information for model-based diagnosis, automatic compilation of expert systems, and a case-based approach to handling aircraft malfunctions.

  1. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The development of several types of graphite/polyimide (GR/PI) bonded and bolted joints is reported. The program consists of two concurrent tasks: (1) design and test of specific built up attachments; and (2) evaluation of standard advanced bonded joint concepts. A data base for the design and analysis of advanced composite joints for use at elevated temperatures (561K (550 deg F)) to design concepts for specific joining applications, and the fundamental parameters controlling the static strength characteristics of such joints are evaluated. Data for design and build GR/PI of lightly loaded flight components for advanced space transportation systems and high speed aircraft are presented. Results for compression and interlaminar shear strengths of Celion 6000/PMR-15 laminates are given. Static discriminator test results for type 3 and type 4 bonded and bolted joints and final joint designs for TASK 1.4 scale up fabrication and testing are presented.

  2. NSWC Crane Aerospace Cell Test History Database

    NASA Technical Reports Server (NTRS)

    Brown, Harry; Moore, Bruce

    1994-01-01

    The Aerospace Cell Test History Database was developed to provide project engineers and scientists ready access to the data obtained from testing of aerospace cell designs at Naval Surface Warfare Center, Crane Division. The database is intended for use by all aerospace engineers and scientists involved in the design of power systems for satellites. Specifically, the database will provide a tool for project engineers to review the progress of their test at Crane and to have ready access to data for evaluation. Additionally, the database will provide a history of test results that designers can draw upon to answer questions about cell performance under certain test conditions and aid in selection of a cell for a satellite battery. Viewgraphs are included.

  3. Reducing Undue Conservatism in "Higher Frequency" Structural Design Loads in Aerospace Components

    NASA Technical Reports Server (NTRS)

    Knight, J. Brent

    2012-01-01

    This study is intended to investigate the frequency dependency of significant strain due to vibratory loads in aerospace vehicle components. The notion that "higher frequency" dynamic loads applied as static loads is inherently conservative is perceived as widely accepted. This effort is focused on demonstrating that principle and attempting to evolve methods to capitalize on it to mitigate undue conservatism. It has been suggested that observations of higher frequency modes that resulted in very low corresponding strain did so due to those modes not being significant. Two avionics boxes, one with its first significant mode at 341 Hz and the other at 857 Hz, were attached to a flat panel installed on a curved orthogrid panel which was driven acoustically in tests performed at NASA/MSFC. Strain and acceleration were measured at select locations on each of the boxes. When possible, strain gage rosettes and accelerometers were installed on either side of a given structural member so that measured strain and acceleration data would directly correspond to one another. Ultimately, a frequency above which vibratory loads can be disregarded for purposes of static structural analyses and sizing of typical robust aerospace components is sought.

  4. Atmospheric/Space Environment Support Lessons Learned Regarding Aerospace Vehicle Design and Operations

    NASA Technical Reports Server (NTRS)

    Vaughan, William W.; Anderson, B. Jeffrey

    2005-01-01

    In modern government and aerospace industry institutions the necessity of controlling current year costs often leads to high mobility in the technical workforce, "one-deep" technical capabilities, and minimal mentoring for young engineers. Thus, formal recording, use, and teaching of lessons learned are especially important in the maintenance and improvement of current knowledge and development of new technologies, regardless of the discipline area. Within the NASA Technical Standards Program Website http://standards.nasa.gov there is a menu item entitled "Lessons Learned/Best Practices". It contains links to a large number of engineering and technical disciplines related data sets that contain a wealth of lessons learned information based on past experiences. This paper has provided a small sample of lessons learned relative to the atmospheric and space environment. There are many more whose subsequent applications have improved our knowledge of the atmosphere and space environment, and the application of this knowledge to the engineering and operations for a variety of aerospace programs.

  5. Aerospace Technology.

    ERIC Educational Resources Information Center

    Paschke, Jean; And Others

    1991-01-01

    Describes the Sauk Rapids (Minnesota) High School aviation and aerospace curriculum that was developed by Curtis Olson and the space program developed by Gerald Mayall at Philadelphia's Northeast High School. Both were developed in conjunction with NASA. (JOW)

  6. 75 FR 3141 - Airworthiness Directives; AVOX Systems and B/E Aerospace Oxygen Cylinder Assemblies, as Installed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ...-16049 (74 FR 63063, December 2, 2009). That AD applies to certain AVOX Systems and B/E Aerospace oxygen... ``significant rule'' under the DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979); and 3....13 by removing amendment 39-16049 (74 FR 63063, December 2, 2009) and adding the following new...

  7. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 42: An analysis of the transfer of Scientific and Technical Information (STI) in the US aerospace industry

    NASA Technical Reports Server (NTRS)

    Kennedy, John M.; Pinelli, Thomas E.; Hecht, Laura F.; Barclay, Rebecca O.

    1994-01-01

    The U.S. aerospace industry has a long history of federal support for research related to its needs. Since the establishment of the National Advisory Committee for Aeronautics (NACA) in 1915, the federal government has provided continuous research support related to flight and aircraft design. This research has contributed to the international preeminence of the U.S. aerospace industry. In this paper, we present a sociological analysis of aerospace engineers and scientists and how their attitudes and behaviors impact the flow of scientific and technical information (STI). We use a constructivist framework to explain the spotty dissemination of federally funded aerospace research. Our research is aimed towards providing federal policymakers with a clearer understanding of how and when federally funded aerospace research is used. This understanding will help policymakers design improved information transfer systems that will aid the competitiveness of the U.S. aerospace industry.

  8. The Advantages of Non-Flow-Through Fuel Cell Power Systems for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark; Burke, Kenneth; Jakupca, Ian

    2011-01-01

    NASA has been developing proton-exchange-membrane (PEM) fuel cell power systems for the past decade, as an upgraded technology to the alkaline fuel cells which presently provide power for the Shuttle Orbiter. All fuel cell power systems consist of one or more fuel cell stacks in combination with appropriate balance-of-plant hardware. Traditional PEM fuel cells are characterized as flow-through, in which recirculating reactant streams remove product water from the fuel cell stack. NASA recently embarked on the development of non-flow-through fuel cell systems, in which reactants are dead-ended into the fuel cell stack and product water is removed by internal wicks. This simplifies the fuel cell power system by eliminating the need for pumps to provide reactant circulation, and mechanical water separators to remove the product water from the recirculating reactant streams. By eliminating these mechanical components, the resulting fuel cell power system has lower mass, volume, and parasitic power requirements, along with higher reliability and longer life. These improved non-flow-through fuel cell power systems therefore offer significant advantages for many aerospace applications.

  9. Common Cause Failure Modeling: Aerospace Versus Nuclear

    NASA Technical Reports Server (NTRS)

    Stott, James E.; Britton, Paul; Ring, Robert W.; Hark, Frank; Hatfield, G. Spencer

    2010-01-01

    Aggregate nuclear plant failure data is used to produce generic common-cause factors that are specifically for use in the common-cause failure models of NUREG/CR-5485. Furthermore, the models presented in NUREG/CR-5485 are specifically designed to incorporate two significantly distinct assumptions about the methods of surveillance testing from whence this aggregate failure data came. What are the implications of using these NUREG generic factors to model the common-cause failures of aerospace systems? Herein, the implications of using the NUREG generic factors in the modeling of aerospace systems are investigated in detail and strong recommendations for modeling the common-cause failures of aerospace systems are given.

  10. A review of multifunctional structure technology for aerospace applications

    NASA Astrophysics Data System (ADS)

    Sairajan, K. K.; Aglietti, G. S.; Mani, K. M.

    2016-03-01

    The emerging field of multifunctional structure (MFS) technologies enables the design of systems with reduced mass and volume, thereby improving their overall efficiency. It requires developments in different engineering disciplines and their integration into a single system without degrading their individual performances. MFS is particularly suitable for aerospace applications where mass and volume are critical to the cost of the mission. This article reviews the current state of the art of multifunctional structure technologies relevant to aerospace applications.

  11. 38th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler)

    2006-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, the National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for hosting the AMS. Now in its 38th symposium, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 38th AMs, hosted by the NASA Langley Research Center in Williamsburg, Virginia, was held May 17-19, 2006. During these three days, 34 papers were presented. Topics included gimbals, tribology, actuators, aircraft mechanisms, deployment mechanisms, release mechanisms, and test equipment. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components.

  12. 37th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler)

    2004-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is reporting problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, NASA and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for hosting the AMS. Now in its 37th symposium, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 37th AMS, hosted by the Johnson Space Center (JSC) in Galveston, Texas, was held May 19, 20 and 21, 2004. During these three days, 34 papers were presented. Topics included deployment mechanisms, tribology, actuators, pointing and optical mechanisms, Space Station and Mars Rover mechanisms, release mechanisms, and test equipment. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components.

  13. 39th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, E. A. (Compiler)

    2008-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production, and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, NASA Marshall Space Flight Center (MSFC) and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for hosting the AMS. Now in its 39th symposium, the AMS continues to be well attended, attracting participants from both the United States and abroad. The 39th AMS was held in Huntsville, Alabama, May 7-9, 2008. During these 3 days, 34 papers were presented. Topics included gimbals and positioning mechanisms, tribology, actuators, deployment mechanisms, release mechanisms, and sensors. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components.

  14. 34th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler)

    2000-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. The National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for organizing the AMS. Now in its 34th year, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 34th AMS, hosted by the Goddard Space Flight Center (GSFC) in Greenbelt, Maryland, was held May 10, 11 and 12, 2000. During these three days, 34 papers were presented. Topics included deployment mechanisms, bearings, actuators, pointing and optical mechanisms, Space Station mechanisms, release mechanisms, and test equipment. Hardware displays during the vendor fair gave attendees an opportunity to meet with developers of current and future mechanism components.

  15. Optical Information Processing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Current research in optical processing is reviewed. Its role in future aerospace systems is determined. The development of optical devices and components demonstrates that system concepts can be implemented in practical aerospace configurations.

  16. Current Trends on the Applicability of Ground Aerospace Materials Test Data to Space System Environments

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.

    2010-01-01

    This slide presentation discusses the application of testing aerospace materials to the environment of space for flammability. Test environments include use of drop towers, and the parabolic flight to simulate the low gravity environment of space.

  17. Effective safety measures with tests followed by design correction for aerospace structures

    NASA Astrophysics Data System (ADS)

    Matsumura, Taiki

    Analytical and computational prediction tools enable us to design aircraft and spacecraft components with high degree of confidence. While the accuracy of such predictions has been improved over the years, uncertainty continues to be added by new materials and new technology introduced in order to improve performance. This requires us to have reality checks, such as tests, in order to make sure that the prediction tools are reliable enough to ensure safety. While tests can reveal unsafe designs and lead to design correction, these tests are very costly. Therefore, it is important to manage such a design-test-correction cycle effectively. In this dissertation, we consider three important test stages in the lifecycle of an aviation system. First, we dealt with characterization tests that reveal failure modes of new materials or new geometrical arrangements. We investigated the challenge associated with getting the best characterization with a limited number of tests. We have found that replicating tests to attenuate the effect of noise in observation is not necessary because some surrogate models can serve as a noise filter without having replicated data. Instead, we should focus on exploring the design space with different structural configurations in order to discover unknown failure modes. Next, we examined post-design tests for design acceptance followed by possible redesign. We looked at the question of how to balance the desire for better performance achieved by redesign against the cost of redesign. We proposed a design optimization framework that provides tradeoff information between the expected performance improvement by redesign and the probability of redesign, equivalent to the cost of redesign. We also demonstrated that the proposed method can reduce the performance loss due to a conservative reliability estimate. The ultimate test, finally, is whether the structures do not fail in flight. Once an accident occurs, an accident investigation takes place

  18. Ball Aerospace Hybrid Space Cryocoolers

    NASA Astrophysics Data System (ADS)

    Gully, W.; Glaister, D. S.; Hendershott, P.; Kotsubo, V.; Lock, J. S.; Marquardt, E.

    2008-03-01

    This paper describes the design, development, testing, and performance at Ball Aerospace of a long-life hybrid (combination of Stirling and Joule-Thomson [J-T] thermodynamic cycles) space cryocooler. Hybrid coolers are synergistic combinations of two thermodynamic cycles that combine advantages of each cycle to yield overall improved performance. Hybrid cooler performance advantages include: 1) load leveling of large heat loads; 2) remote cryogenic cooling with very low to negligible induced vibration and jitter; 3) very low redundant (off state) cooler penalties; 4) high power efficiency, especially at low temperatures; and 5) simplified system integration with capability to cross gimbals and no need for thermal straps or switches. Ball Aerospace is currently developing several different hybrid cooler systems. The 35 K hybrid cooler provides 2.0 W at 35 K and 8.5 W at 85 K with an emphasis on load leveling of high transient heat loads and remote, low vibration cooling. The 10 K hybrid cooler provides 200 mW at 10 K, 700 mW at 15 K, and 10.7 W at 85 K with an emphasis on power efficiency. In addition, Ball Aerospace built and tested a complete hybrid cooler that met the requirements of the JWST Mid-Infrared Instrument (MIRI) cooler including providing 80 mW at 6 K and 100 mW at 18 K for a total system (28 V) power of 310 W.

  19. A Diagnostic Approach for Electro-Mechanical Actuators in Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Balaban, Edward; Saxena, Abhinav; Bansal, Prasun; Goebel, Kai Frank; Stoelting, Paul; Curran, Simon

    2009-01-01

    Electro-mechanical actuators (EMA) are finding increasing use in aerospace applications, especially with the trend towards all all-electric aircraft and spacecraft designs. However, electro-mechanical actuators still lack the knowledge base accumulated for other fielded actuator types, particularly with regard to fault detection and characterization. This paper presents a thorough analysis of some of the critical failure modes documented for EMAs and describes experiments conducted on detecting and isolating a subset of them. The list of failures has been prepared through an extensive Failure Modes and Criticality Analysis (FMECA) reference, literature review, and accessible industry experience. Methods for data acquisition and validation of algorithms on EMA test stands are described. A variety of condition indicators were developed that enabled detection, identification, and isolation among the various fault modes. A diagnostic algorithm based on an artificial neural network is shown to operate successfully using these condition indicators and furthermore, robustness of these diagnostic routines to sensor faults is demonstrated by showing their ability to distinguish between them and component failures. The paper concludes with a roadmap leading from this effort towards developing successful prognostic algorithms for electromechanical actuators.

  20. Theoretical considerations in designing operator interfaces for automated systems

    NASA Technical Reports Server (NTRS)

    Norman, Susan D.

    1987-01-01

    The domains most amenable to techniques based on artificial intelligence (AI) are those that are systematic or for which a systematic domain can be generated. In aerospace systems, many operational tasks are systematic owing to the highly procedural nature of the applications. However, aerospace applications can also be nonprocedural, particularly in the event of a failure or an unexpected event. Several techniques are discussed for designing automated systems for real-time, dynamic environments, particularly when a 'breakdown' occurs. A breakdown is defined as operation of an automated system outside its predetermined, conceptual domain.

  1. Proceedings of the Fifth NASA/NSF/DOD Workshop on Aerospace Computational Control

    NASA Technical Reports Server (NTRS)

    Wette, M. (Editor); Man, G. K. (Editor)

    1993-01-01

    The Fifth Annual Workshop on Aerospace Computational Control was one in a series of workshops sponsored by NASA, NSF, and the DOD. The purpose of these workshops is to address computational issues in the analysis, design, and testing of flexible multibody control systems for aerospace applications. The intention in holding these workshops is to bring together users, researchers, and developers of computational tools in aerospace systems (spacecraft, space robotics, aerospace transportation vehicles, etc.) for the purpose of exchanging ideas on the state of the art in computational tools and techniques.

  2. Design-for-reliability (DfR) of aerospace electronics: Attributes and challenges

    NASA Astrophysics Data System (ADS)

    Bensoussan, A.; Suhir, E.

    The next generation of multi-beam satellite systems that would be able to provide effective interactive communication services will have to operate within a highly flexible architecture. One option to develop such flexibility is to employ microwaves and/or optoelectronic components and to make them reliable. The use of optoelectronic devices, equipments and systems will result indeed in significant improvement in the state-of-the-art only provided that the new designs will suggest a novel and effective architecture that will combine the merits of good functional performance, satisfactory mechanical (structural) reliability and high cost effectiveness. The obvious challenge is the ability to design and fabricate equipment based on EEE components that would be able to successfully withstand harsh space environments for the entire duration of the mission. It is imperative that the major players in the space industry, such as manufacturers, industrial users, and space agencies, understand the importance and the limits of the achievable quality and reliability of optoelectronic devices operated in harsh environments. It is equally imperative that the physics of possible failures is well understood and, if necessary, minimized, and that adequate Quality Standards are developed and employed. The space community has to identify and to develop the strategic approach for validating optoelectronic products. This should be done with consideration of numerous intrinsic and extrinsic requirements for the systems' performance. When considering a particular next generation optoelectronic space system, the space community needs to address the following major issues: proof of concept for this system, proof of reliability and proof of performance. This should be done with taking into account the specifics of the anticipated application. High operational reliability cannot be left to the prognostics and health monitoring/management (PHM) effort and stage, no matter how important and

  3. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Barclay, D. L.

    1980-01-01

    Results of an experimental program to develop several types of graphite/polyimide (GR/PI) bonded and bolted joints for lightly loaded flight components for advanced space transportation systems and high speed aircraft are presented. Tasks accomplished include: a literature survey; design of static discriminator specimens; design allowables testing; fabrication of test panels and specimens; small specimen testing; and standard joint testing. Detail designs of static discriminator specimens for each of the four major attachment types are presented. Test results are given for the following: (1) transverse tension of Celion 3000/PMR-15 laminate; (2) net tension of a laminate for both a loaded and unloaded bolt hole; (3) comparative testing of bonded and co-cured doublers along with pull-off tests of single and double bonded angles; (4) single lap shear tests, transverse tension and coefficient of thermal expansion tests of A7F (LARC-13 amide-imide modified) adhesive; and (5) tension tests of standard single lap, double lap, and symmetric step lap bonded joints. Also, included are results of a finite element analysis of a single lap bonded composite joint.

  4. Revolutionary Aerospace Systems Concepts - Planning for the Future of Technology Investments

    NASA Technical Reports Server (NTRS)

    Ferebee, Melvin J., Jr.; Breckenridge, Roger A.; Hall, John B., Jr.

    2002-01-01

    In January, 2000, the NASA Administrator gave the following directions to Langley: "We will create a new role for Langley as a leader for the assessment of revolutionary aerospace system concepts and architectures, and provide resources needed to assure technology breakthroughs will be there to support these advanced concepts. This is critical in determining how NASA can best invest its resources to enable future missions." The key objective of the RASC team is to look beyond current research and technology (R&T) programs and missions and evolutionary technology development approaches with a "top-down" perspective to explore possible new mission capabilities. The accomplishment of this objective will allow NASA to provide the ability to go anywhere, anytime - safely, and affordably- to meet its strategic goals for exploration, science, and commercialization. The RASC Team will seek to maximize the cross-Enterprise benefits of these revolutionary capabilities as it defines the revolutionary enabling technology areas and performance levels needed. The product of the RASC Team studies will be revolutionary systems concepts along with enabling technologies and payoffs in new mission capabilities, which these concepts can provide. These results will be delivered to the NASA Enterprises and the NASA Chief Technologist for use in planning revolutionary future NASA R&T program investments.

  5. A Survey of Emerging Materials for Revolutionary Aerospace Vehicle Structures and Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Shuart, Mark J.; Gray, Hugh R.

    2002-01-01

    The NASA Strategic Plan identifies the long-term goal of providing safe and affordable space access, orbital transfer, and interplanetary transportation capabilities to enable scientific research, human, and robotic exploration, and the commercial development of space. Numerous scientific and engineering breakthroughs will be required to develop the technology required to achieve this goal. Critical technologies include advanced vehicle primary and secondary structure, radiation protection, propulsion and power systems, fuel storage, electronics and devices, sensors and science instruments, and medical diagnostics and treatment. Advanced materials with revolutionary new capabilities are an essential element of each of these technologies. A survey of emerging materials with applications to aerospace vehicle structures and propulsion systems was conducted to assist in long-term Agency mission planning. The comprehensive survey identified materials already under development that could be available in 5 to 10 years and those that are still in the early research phase and may not be available for another 20 to 30 years. The survey includes typical properties, a description of the material and processing methods, the current development status, and the critical issues that must be overcome to achieve commercial viability.

  6. Fiber Bragg Grating Sensor System for Monitoring Smart Composite Aerospace Structures

    NASA Technical Reports Server (NTRS)

    Moslehi, Behzad; Black, Richard J.; Gowayed, Yasser

    2012-01-01

    Lightweight, electromagnetic interference (EMI) immune, fiber-optic, sensor- based structural health monitoring (SHM) will play an increasing role in aerospace structures ranging from aircraft wings to jet engine vanes. Fiber Bragg Grating (FBG) sensors for SHM include advanced signal processing, system and damage identification, and location and quantification algorithms. Potentially, the solution could be developed into an autonomous onboard system to inspect and perform non-destructive evaluation and SHM. A novel method has been developed to massively multiplex FBG sensors, supported by a parallel processing interrogator, which enables high sampling rates combined with highly distributed sensing (up to 96 sensors per system). The interrogation system comprises several subsystems. A broadband optical source subsystem (BOSS) and routing and interface module (RIM) send light from the interrogation system to a composite embedded FBG sensor matrix, which returns measurand-dependent wavelengths back to the interrogation system for measurement with subpicometer resolution. In particular, the returned wavelengths are channeled by the RIM to a photonic signal processing subsystem based on powerful optical chips, then passed through an optoelectronic interface to an analog post-detection electronics subsystem, digital post-detection electronics subsystem, and finally via a data interface to a computer. A range of composite structures has been fabricated with FBGs embedded. Stress tensile, bending, and dynamic strain tests were performed. The experimental work proved that the FBG sensors have a good level of accuracy in measuring the static response of the tested composite coupons (down to submicrostrain levels), the capability to detect and monitor dynamic loads, and the ability to detect defects in composites by a variety of methods including monitoring the decay time under different dynamic loading conditions. In addition to quasi-static and dynamic load monitoring, the

  7. A comparative analysis of user preference-based and existing knowledge management systems attributes in the aerospace industry

    NASA Astrophysics Data System (ADS)

    Varghese, Nishad G.

    Knowledge management (KM) exists in various forms throughout organizations. Process documentation, training courses, and experience sharing are examples of KM activities performed daily. The goal of KM systems (KMS) is to provide a tool set which serves to standardize the creation, sharing, and acquisition of business critical information. Existing literature provides numerous examples of targeted evaluations of KMS, focusing on specific system attributes. This research serves to bridge the targeted evaluations with an industry-specific, holistic approach. The user preferences of aerospace employees in engineering and engineering-related fields were compared to profiles of existing aerospace KMS based on three attribute categories: technical features, system administration, and user experience. The results indicated there is a statistically significant difference between aerospace user preferences and existing profiles in the user experience attribute category, but no statistically significant difference in the technical features and system administration attribute categories. Additional analysis indicated in-house developed systems exhibit higher technical features and user experience ratings than commercial-off-the-self (COTS) systems.

  8. Aerospace Medicine

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.

    2006-01-01

    This abstract describes the content of a presentation for ground rounds at Mt. Sinai School of Medicine. The presentation contains three sections. The first describes the history of aerospace medicine beginning with early flights with animals. The second section of the presentation describes current programs and planning for future missions. The third section describes the medical challenges of exploration missions.

  9. Modelling and designing digital control systems with averaged measurements

    NASA Technical Reports Server (NTRS)

    Polites, Michael E.; Beale, Guy O.

    1988-01-01

    An account is given of the control systems engineering methods applicable to the design of digital feedback controllers for aerospace deterministic systems in which the output, rather than being an instantaneous measure of the system at the sampling instants, instead represents an average measure of the system over the time interval between samples. The averaging effect can be included during the modeling of the plant, thereby obviating the iteration of design/simulation phases.

  10. Cognitive engineering in aerospace applications

    NASA Technical Reports Server (NTRS)

    Woods, David D.

    1993-01-01

    The progress that was made with respect to the objectives and goals of the research that is being carried out in the Cognitive Systems Engineering Laboratory (CSEL) under a Cooperative Agreement with NASA Ames Research Center is described. The major objective of this project is to expand the research base in Cognitive Engineering to be able to support the development and human-centered design of automated systems for aerospace applications. This research project is in support of the Aviation Safety/Automation Research plan and related NASA research goals in space applications.

  11. System Risk Assessment and Allocation in Conceptual Design

    NASA Technical Reports Server (NTRS)

    Mahadevan, Sankaran; Smith, Natasha L.; Zang, Thomas A. (Technical Monitor)

    2003-01-01

    As aerospace systems continue to evolve in addressing newer challenges in air and space transportation, there exists a heightened priority for significant improvement in system performance, cost effectiveness, reliability, and safety. Tools, which synthesize multidisciplinary integration, probabilistic analysis, and optimization, are needed to facilitate design decisions allowing trade-offs between cost and reliability. This study investigates tools for probabilistic analysis and probabilistic optimization in the multidisciplinary design of aerospace systems. A probabilistic optimization methodology is demonstrated for the low-fidelity design of a reusable launch vehicle at two levels, a global geometry design and a local tank design. Probabilistic analysis is performed on a high fidelity analysis of a Navy missile system. Furthermore, decoupling strategies are introduced to reduce the computational effort required for multidisciplinary systems with feedback coupling.

  12. Hydrogen FBG sensor using Pd/Ag film with application in propulsion system fuel tank model of aerospace vehicle

    NASA Astrophysics Data System (ADS)

    Saad, Said; Hassine, Lotfi; Elfahem, Wassim

    2014-09-01

    The high efficiency hydrogen fiber Bragg grating (FBG) sensor is presented. The sensitive film was a new alliance of palladium-silver (Pd-Ag). In addition, the titanium (Ti) layer was used as the adhesive layer. The presented sensor showed the resolution of more than 60 pm/1% H2, and a fast response time of 4 s-5 s was guaranteed in the 0.1% H2-4% H2 range. Moreover, the life time of the sensor was investigated. The obtained results showed that the sensor had an enhanced life time. Furthermore, the sensor was applied in the propulsion system fuel tank model of the aerospace vehicle. The obtained results indicated that it is a prevention system against the disaster aerospace due to hydrogen leakage.

  13. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This report provides findings, conclusions and recommendations regarding the National Space Transportation System (NSTS), the Space Station Freedom Program (SSFP), aeronautical projects and other areas of NASA activities. The main focus of the Aerospace Safety Advisory Panel (ASAP) during 1988 has been monitoring and advising NASA and its contractors on the Space Transportation System (STS) recovery program. NASA efforts have restored the flight program with a much better management organization, safety and quality assurance organizations, and management communication system. The NASA National Space Transportation System (NSTS) organization in conjunction with its prime contractors should be encouraged to continue development and incorporation of appropriate design and operational improvements which will further reduce risk. The data from each Shuttle flight should be used to determine if affordable design and/or operational improvements could further increase safety. The review of Critical Items (CILs), Failure Mode Effects and Analyses (FMEAs) and Hazard Analyses (HAs) after the Challenger accident has given the program a massive data base with which to establish a formal program with prioritized changes.

  14. Aerospace Safety Advisory Panel

    NASA Astrophysics Data System (ADS)

    1989-03-01

    This report provides findings, conclusions and recommendations regarding the National Space Transportation System (NSTS), the Space Station Freedom Program (SSFP), aeronautical projects and other areas of NASA activities. The main focus of the Aerospace Safety Advisory Panel (ASAP) during 1988 has been monitoring and advising NASA and its contractors on the Space Transportation System (STS) recovery program. NASA efforts have restored the flight program with a much better management organization, safety and quality assurance organizations, and management communication system. The NASA National Space Transportation System (NSTS) organization in conjunction with its prime contractors should be encouraged to continue development and incorporation of appropriate design and operational improvements which will further reduce risk. The data from each Shuttle flight should be used to determine if affordable design and/or operational improvements could further increase safety. The review of Critical Items (CILs), Failure Mode Effects and Analyses (FMEAs) and Hazard Analyses (HAs) after the Challenger accident has given the program a massive data base with which to establish a formal program with prioritized changes.

  15. Lightning Protection Guidelines for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Goodloe, C. C.

    1999-01-01

    This technical memorandum provides lightning protection engineering guidelines and technical procedures used by the George C. Marshall Space Flight Center (MSFC) Electromagnetics and Aerospace Environments Branch for aerospace vehicles. The overviews illustrate the technical support available to project managers, chief engineers, and design engineers to ensure that aerospace vehicles managed by MSFC are adequately protected from direct and indirect effects of lightning. Generic descriptions of the lightning environment and vehicle protection technical processes are presented. More specific aerospace vehicle requirements for lightning protection design, performance, and interface characteristics are available upon request to the MSFC Electromagnetics and Aerospace Environments Branch, mail code EL23.

  16. The electronic transfer of information and aerospace knowledge diffusion

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Bishop, Ann P.; Barclay, Rebecca O.; Kennedy, John M.

    1992-01-01

    Increasing reliance on and investment in information technology and electronic networking systems presupposes that computing and information technology will play a motor role in the diffusion of aerospace knowledge. Little is known, however, about actual information technology needs, uses, and problems within the aerospace knowledge diffusion process. The authors state that the potential contributions of information technology to increased productivity and competitiveness will be diminished unless empirically derived knowledge regarding the information-seeking behavior of the members of the social system - those who are producing, transferring, and using scientific and technical information - is incorporated into a new technology policy framework. Research into the use of information technology and electronic networks by U.S. aerospace engineers and scientists, collected as part of a research project designed to study aerospace knowledge diffusion, is presented in support of this assertion.

  17. Frontier Aerospace Opportunities

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2014-01-01

    Discussion and suggested applications of the many ongoing technology opportunities for aerospace products and missions, resulting in often revolutionary capabilities. The, at this point largely unexamined, plethora of possibilities going forward, a subset of which is discussed, could literally reinvent aerospace but requires triage of many possibilities. Such initial upfront homework would lengthen the Research and Development (R&D) time frame but could greatly enhance the affordability and performance of the evolved products and capabilities. Structural nanotubes and exotic energetics along with some unique systems approaches are particularly compelling.

  18. Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor)

    1995-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards. The Executive Summary of this Conference is published as NASA CP-3297.

  19. Low-order design and high-order simulation of active closed-loop control for aerospace structures under construction

    NASA Technical Reports Server (NTRS)

    Balas, Mark J.

    1989-01-01

    Partially constructed/assembled structures in space are complicated enough but their dynamics will also be operating in closed-loop with feedback controllers. The dynamics of such structures are modeled by large-scale finite element models. The model dimension L is extremely large (approximately 10,000) while the numbers of actuators (M) and sensors (P) are small. The model parameters M(sub m) mass matrix, D(sub o) damping matrix, and K(sub o) stiffness matrix, are all symmetric and sparse (banded). Thus simulation of open-loop structure models of very large dimension can be accomplished by special integration techniques for sparse matrices. The problem of simulation of closed-loop control of such structures is complicated by the addition of controllers. Simulation of closed-loop controlled structures is an essential part of the controller design and evaluation process. Current research in the following areas is presented: high-order simulation of actively controlled aerospace structures; low-order controller design and SCI compensation for unmodeled dynamics; prediction of closed-loop stability using asymptotic eigenvalue series; and flexible robot manipulator control experiment.

  20. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Principal program activities dealt with the literature survey, design of joint concepts, assessment of GR/PI material quality, fabrication of test panels and specimens, and small specimen testing. Bonded and bolted designs are presented for each of the four major attachment types. Quality control data are presented for prepreg Lots 2W4651 and 3W2020. Preliminary design allowables test results for tension tests and compression tests of laminates are also presented.

  1. NASA/DoD Aerospace Knowledge Diffusion Research Project. Paper 30: The electronic transfer of information and aerospace knowledge diffusion

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Bishop, Ann P.; Barclay, Rebecca O.; Kennedy, John M.

    1992-01-01

    Increasing reliance on and investment in information technology and electronic networking systems presupposes that computing and information technology will play a major role in the diffusion of aerospace knowledge. Little is known, however, about actual information technology needs, uses, and problems within the aerospace knowledge diffusion process. The authors state that the potential contributions of information technology to increased productivity and competitiveness will be diminished unless empirically derived knowledge regarding the information-seeking behavior of the members of the social system - those who are producing, transferring, and using scientific and technical information - is incorporated into a new technology policy framework. Research into the use of information technology and electronic networks by U.S. aerospace engineers and scientists, collected as part of a research project designed to study aerospace knowledge diffusion, is presented in support of this assertion.

  2. Hypersonic airbreathing vehicle conceptual design (focus on aero-space plane)

    NASA Technical Reports Server (NTRS)

    Hunt, James L.; Martin, John G.

    1989-01-01

    The airbreathing single stage to orbit (SSTO) vehicle design environment is variable-rich, intricately networked and sensitivity intensive. As such, it represents a tremondous technology challenge. Creating a viable design will require sophisticated configuration/synthesis and the synergistic integration of advanced technologies across the discipline spectrum. In design exercises, reductions in the fuel weight-fraction requirements projected for an orbital vehicle concept can result from improvements in aerodynamics/controls, propulsion efficiencies and trajectory optimization; also, gains in the fuel weight-fraction achievable for such a concept can result from improvements in structural design, heat management techniques, and material properties. As these technology advances take place, closure on a viable vehicle design will be realizable.

  3. Analysis of 12 AH aerospace nickel-cadmium cells from the design variable program

    NASA Technical Reports Server (NTRS)

    Vasanth, Kunigahalli L.; Morrow, George

    1987-01-01

    The Design Variable Program of NASA/GSFC provided a systematic approach to evaluate the performance of 12 Ampere-Hour Nickel-Cadmium cells of different designs. Design Variables tested in this program included teflonated negative plates, silver treated negative plates, lightly loaded negative plates, positive plates with no cadmium treatment, plate design of 1968 utilizing old and new processing techniques and electrochemically impregnated positive plates. These cells were life cycled in a Low-Earth Orbit (LEO) regime for 3 to 4 years. Representative cells taken from the Design Variable Program were examined via chemical, electrochemical and surface analyses. The results indicate the following: (1) positive swelling and carbonate content in the electrolyte increase as a function of number of cycles; (2) electrolyte distribution follows a general order NEG greater than POS greater than SEP; (3) control and No PQ groups outperformed the rest of the groups; and (4) the polyproylene group exhibited heavy cadmium migration and poor performance.

  4. Advanced Engineering Environments: Implications for Aerospace Manufacturing

    NASA Technical Reports Server (NTRS)

    Thomas, D.

    2001-01-01

    There are significant challenges facing today's aerospace industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker all face the developer of aerospace systems. New information technologies offer promising opportunities to develop advanced engineering environments (AEEs) to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. These advances will enable modeling and simulation of manufacturing methods, which will in turn allow manufacturing considerations to be included much earlier in the system development cycle. Significant cost savings, increased quality, and decreased manufacturing cycle time are expected to result. This paper will give an overview of the NASA's Intelligent Synthesis Environment, the agency initiative to develop an AEE, with a focus on the anticipated benefits in aerospace manufacturing.

  5. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The following areas of NASA's responsibilities are examined: (1) the Space Transportation System (STS) operations and evolving program elements; (2) establishment of the Space Station program organization and issuance of requests for proposals to the aerospace industry; and (3) NASA's aircraft operations, including research and development flight programs for two advanced X-type aircraft.

  6. Full potential methods for analysis/design of complex aerospace configurations

    NASA Technical Reports Server (NTRS)

    Shankar, Vijaya; Szema, Kuo-Yen; Bonner, Ellwood

    1986-01-01

    The steady form of the full potential equation, in conservative form, is employed to analyze and design a wide variety of complex aerodynamic shapes. The nonlinear method is based on the theory of characteristic signal propagation coupled with novel flux biasing concepts and body-fitted mapping procedures. The resulting codes are vectorized for the CRAY XMP and the VPS-32 supercomputers. Use of the full potential nonlinear theory is demonstrated for a single-point supersonic wing design and a multipoint design for transonic maneuver/supersonic cruise/maneuver conditions. Achievement of high aerodynamic efficiency through numerical design is verified by wind tunnel tests. Other studies reported include analyses of a canard/wing/nacelle fighter geometry.

  7. Enabling the Discovery of Recurring Anomalies in Aerospace System Problem Reports using High-Dimensional Clustering Techniques

    NASA Technical Reports Server (NTRS)

    Srivastava, Ashok, N.; Akella, Ram; Diev, Vesselin; Kumaresan, Sakthi Preethi; McIntosh, Dawn M.; Pontikakis, Emmanuel D.; Xu, Zuobing; Zhang, Yi

    2006-01-01

    This paper describes the results of a significant research and development effort conducted at NASA Ames Research Center to develop new text mining techniques to discover anomalies in free-text reports regarding system health and safety of two aerospace systems. We discuss two problems of significant importance in the aviation industry. The first problem is that of automatic anomaly discovery about an aerospace system through the analysis of tens of thousands of free-text problem reports that are written about the system. The second problem that we address is that of automatic discovery of recurring anomalies, i.e., anomalies that may be described m different ways by different authors, at varying times and under varying conditions, but that are truly about the same part of the system. The intent of recurring anomaly identification is to determine project or system weakness or high-risk issues. The discovery of recurring anomalies is a key goal in building safe, reliable, and cost-effective aerospace systems. We address the anomaly discovery problem on thousands of free-text reports using two strategies: (1) as an unsupervised learning problem where an algorithm takes free-text reports as input and automatically groups them into different bins, where each bin corresponds to a different unknown anomaly category; and (2) as a supervised learning problem where the algorithm classifies the free-text reports into one of a number of known anomaly categories. We then discuss the application of these methods to the problem of discovering recurring anomalies. In fact the special nature of recurring anomalies (very small cluster sizes) requires incorporating new methods and measures to enhance the original approach for anomaly detection. ?& pant 0-

  8. An Enhanced Multi-Objective Optimization Technique for Comprehensive Aerospace Design

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Rajadas, John N.

    2000-01-01

    An enhanced multiobjective formulation technique, capable of emphasizing specific objective functions during the optimization process, has been demonstrated on a complex multidisciplinary design application. The Kreisselmeier-Steinhauser (K-S) function approach, which has been used successfully in a variety of multiobjective optimization problems, has been modified using weight factors which enables the designer to emphasize specific design objectives during the optimization process. The technique has been implemented in two distinctively different problems. The first is a classical three bar truss problem and the second is a high-speed aircraft (a doubly swept wing-body configuration) application in which the multiobjective optimization procedure simultaneously minimizes the sonic boom and the drag-to-lift ratio (C(sub D)/C(sub L)) of the aircraft while maintaining the lift coefficient within prescribed limits. The results are compared with those of an equally weighted K-S multiobjective optimization. Results demonstrate the effectiveness of the enhanced multiobjective optimization procedure.

  9. Advances in the analysis and design of adhesive-bonded joints in composite aerospace structures

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1974-01-01

    Several aspects of adhesive-bonded joint analysis and design are presented from the reference of size of structure or load intensity. This integrates the individual characterizations of double-lap, single-lap, stepped-lap, tapered-lap and scarf joints. The paper includes an overview of bonded joint selection from the standpoints of design, fabrication, and processing, each bearing in mind the influence of such considerations on the strength of the joint. A case study is presented of the optimization of a specific relatively thick titanium-to-graphite epoxy stepped-lap joint, using the digital computer analysis program A4EG. The factors accounted for are adhesive plasticity, adherend stiffness imbalance, adherend thermal mismatch, and change of material properties within the range of temperature environment and with load direction. The strength increases obtainable by refining the initial design are demonstrated.

  10. Multiphysics design optimization for aerospace applications: Case study on helicopter loading hanger

    NASA Astrophysics Data System (ADS)

    Xue, Hui; Khawaja, H.; Moatamedi, M.

    2014-12-01

    This paper presents the Multiphysics technique applied in the design optimization of a loading hanger for an aerial crane. In this study, design optimization is applied on the geometric modelling of a part being used in an aerial crane operation. A set of dimensional and loading requirements are provided. Various geometric models are built using SolidWorks® Computer Aided Design (CAD) Package. In addition, Finite Element Method (FEM) is applied to study these geometric models using ANSYS® Multiphysics package. Appropriate material is chosen based on the strength to weight ratio. Efforts are made to optimize the geometry to reduce the weight of the part. Based on the achieved results, conclusions are drawn.

  11. The use of subjective expert opinions in cost optimum design of aerospace structures. [probabilistic failure models

    NASA Technical Reports Server (NTRS)

    Thomas, J. M.; Hanagud, S.

    1975-01-01

    The results of two questionnaires sent to engineering experts are statistically analyzed and compared with objective data from Saturn V design and testing. Engineers were asked how likely it was for structural failure to occur at load increments above and below analysts' stress limit predictions. They were requested to estimate the relative probabilities of different failure causes, and of failure at each load increment given a specific cause. Three mathematical models are constructed based on the experts' assessment of causes. The experts' overall assessment of prediction strength fits the Saturn V data better than the models do, but a model test option (T-3) based on the overall assessment gives more design change likelihood to overstrength structures than does an older standard test option. T-3 compares unfavorably with the standard option in a cost optimum structural design problem. The report reflects a need for subjective data when objective data are unavailable.

  12. Cost-effective lightweight mirrors for aerospace and defense

    NASA Astrophysics Data System (ADS)

    Woodard, Kenneth S.; Comstock, Lovell E.; Wamboldt, Leonard; Roy, Brian P.

    2015-05-01

    The demand for high performance, lightweight mirrors was historically driven by aerospace and defense (A&D) but now we are also seeing similar requirements for commercial applications. These applications range from aerospace-like platforms such as small unmanned aircraft for agricultural, mineral and pollutant aerial mapping to an eye tracking gimbaled mirror for optometry offices. While aerospace and defense businesses can often justify the high cost of exotic, low density materials, commercial products rarely can. Also, to obtain high performance with low overall optical system weight, aspheric surfaces are often prescribed. This may drive the manufacturing process to diamond machining thus requiring the reflective side of the mirror to be a diamond machinable material. This paper summarizes the diamond machined finishing and coating of some high performance, lightweight designs using non-exotic substrates to achieve cost effective mirrors. The results indicate that these processes can meet typical aerospace and defense requirements but may also be competitive in some commercial applications.

  13. Stochastic model for fatigue crack size and cost effective design decisions. [for aerospace structures

    NASA Technical Reports Server (NTRS)

    Hanagud, S.; Uppaluri, B.

    1975-01-01

    This paper describes a methodology for making cost effective fatigue design decisions. The methodology is based on a probabilistic model for the stochastic process of fatigue crack growth with time. The development of a particular model for the stochastic process is also discussed in the paper. The model is based on the assumption of continuous time and discrete space of crack lengths. Statistical decision theory and the developed probabilistic model are used to develop the procedure for making fatigue design decisions on the basis of minimum expected cost or risk function and reliability bounds. Selections of initial flaw size distribution, NDT, repair threshold crack lengths, and inspection intervals are discussed.

  14. Aerospace Nickel-cadmium Cell Verification

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Strawn, D. Michael; Hall, Stephen W.

    2001-01-01

    During the early years of satellites, NASA successfully flew "NASA-Standard" nickel-cadmium (Ni-Cd) cells manufactured by GE/Gates/SAFF on a variety of spacecraft. In 1992 a NASA Battery Review Board determined that the strategy of a NASA Standard Cell and Battery Specification and the accompanying NASA control of a standard manufacturing control document (MCD) for Ni-Cd cells and batteries was unwarranted. As a result of that determination, standards were abandoned and the use of cells other than the NASA Standard was required. In order to gain insight into the performance and characteristics of the various aerospace Ni-Cd products available, tasks were initiated within the NASA Aerospace Flight Battery Systems Program that involved the procurement and testing of representative aerospace Ni-Cd cell designs. A standard set of test conditions was established in order to provide similar information about the products from various vendors. The objective of this testing was to provide independent verification of representative commercial flight cells available in the marketplace today. This paper will provide a summary of the verification tests run on cells from various manufacturers: Sanyo 35 Ampere-hour (Ali) standard and 35 Ali advanced Ni-Cd cells, SAFr 50 Ah Ni-Cd cells and Eagle-Picher 21 Ali Magnum and 21 Ali Super Ni-CdTM cells from Eagle-Picher were put through a full evaluation. A limited number of 18 and 55 Ali cells from Acme Electric were also tested to provide an initial evaluation of the Acme aerospace cell designs. Additionally, 35 Ali aerospace design Ni-MH cells from Sanyo were evaluated under the standard conditions established for this program. Ile test program is essentially complete. The cell design parameters, the verification test plan and the details of the test result will be discussed.

  15. Aerospace gerontology

    NASA Technical Reports Server (NTRS)

    Comfort, A.

    1982-01-01

    The relevancy of gerontology and geriatrics to the discipline of aerospace medicine is examined. It is noted that since the shuttle program gives the facility to fly passengers, including specially qualified older persons, it is essential to examine response to acceleration, weightlessness, and re-entry over the whole adult lifespan, not only its second quartile. The physiological responses of the older person to weightlessness and the return to Earth gravity are reviewed. The importance of the use of the weightless environment to solve critical problems in the fields of fundamental gerontology and geriatrics is also stressed.

  16. Development and Deployment of an Aerospace Recommended Practice (ARP) Compliant Measurement System for nvPM Certification Measurements of Aircraft Engines - Current Status.

    NASA Astrophysics Data System (ADS)

    Whitefield, P. D.; Hagen, D. E.; Lobo, P.; Miake-Lye, R. C.

    2015-12-01

    The Society of Automotive Engineers (SAE) Aircraft Exhaust Emissions Measurement Committee (E-31) has published an Aerospace Information Report (AIR) 6241 detailing the sampling system for the measurement of non-volatile particulate matter (nvPM) from aircraft engines (SAE 2013). The system is designed to operate in parallel with existing International Civil Aviation Organization (ICAO) Annex 16 compliant combustion gas sampling systems used for emissions certification from aircraft engines captured by conventional (Annex 16) gas sampling rakes (ICAO, 2008). The SAE E-31 committee is also working to ballot an Aerospace Recommended Practice (ARP) that will provide the methodology and system specification to measure nvPM from aircraft engines. The ARP is currently in preparation and is expected to be ready for ballot in 2015. A prototype AIR-compliant nvPM measurement system - The North American Reference System (NARS) has been built and evaluated at the MSTCOE under the joint sponsorship of the FAA, EPA and Transport Canada. It has been used to validate the performance characteristics of OEM AIR-compliant systems and is being used in engine certification type testing at OEM facilities to obtain data from a set of representative engines in the fleet. The data collected during these tests will be used by ICAO/CAEP/WG3/PMTG to develop a metric on which on the regulation for nvPM emissions will be based. This paper will review the salient features of the NARS including: (1) emissions sample transport from probe tip to the key diagnostic tools, (2) the mass and number-based diagnostic tools for nvPM mass and number concentration measurement and (3) methods employed to assess the extent of nvPM loss throughout the sampling system. This paper will conclude with a discussion of the recent results from inter-comparison studies conducted with other US - based systems that gives credence to the ARP's readiness for ballot.

  17. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Skoumal, D. E.

    1980-01-01

    Bonded and bolted designs are presented for each of four major attachment types. Prepreg processing problems are discussed and quality control data are given for lots 2W4604, 2W4632 and 2W4643. Preliminary design allowables test results for tension tests and compression tests of laminates are included. The final small specimen test matrix is defined and the configuration of symmetric step-lap joint specimens are shown. Finite element modeling studies of a double lap joint were performed to evaluate the number of elements required through the adhesive thickness to assess effects of various joint parameters on stress distributions. Results of finite element analyses assessing the effect of an adhesive fillet on the stress distribution in a double lap joint are examined.

  18. AI aerospace components

    SciTech Connect

    Heindel, T.A.; Murphy, T.B.; Rasmussen, A.N.; Mcfarland, R.Z.; Montgomery, R.E.; Pohle, G.E.; Heard, A.E.; Atkinson, D.J.; Wedlake, W.E.; Anderson, J.M. Mitre Corp., Houston, TX Unisys Corp., Houston, TX Rockwell International Corp., El Segundo, CA NASA, Kennedy Space Center, Cocoa Beach, FL JPL, Pasadena, CA Lockheed Missiles and Space Co., Inc., Austin, TX McDonnell Douglas Electronic Systems Co., McLean, VA )

    1991-10-01

    An evaluation is made of the application of novel, AI-capabilities-related technologies to aerospace systems. Attention is given to expert-system shells for Space Shuttle Orbiter mission control, manpower and processing cost reductions at the NASA Kennedy Space Center's 'firing rooms' for liftoff monitoring, the automation of planetary exploration systems such as semiautonomous mobile robots, and AI for battlefield staff-related functions.

  19. Innovative Design of Complex Engineering Systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler)

    2004-01-01

    The document contains the proceedings of the training workshop on Innovative Design of Complex Engineering Systems. The workshop was held at the Peninsula Higher Education Center, Hampton, Virginia, March 23 and 24, 2004. The workshop was jointly sponsored by Old Dominion University and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to a) provide broad overviews of the diverse activities related to innovative design of high-tech engineering systems; and b) identify training needs for future aerospace work force development in the design area. The format of the workshop included fifteen, half-hour overview-type presentations, a panel discussion on how to teach and train engineers in innovative design, and three exhibits by commercial vendors.

  20. Anechoic Chambers: Aerospace Applications. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning the design, development, performance, and applications of anechoic chambers in the aerospace industry. Anechoic chamber testing equipment, techniques for evaluation of aerodynamic noise, microwave and radio antennas, and other acoustic measurement devices are considered. Shock wave studies on aircraft models and components, electromagnetic measurements, jet flow studies, and antenna radiation pattern measurements for industrial and military aerospace equipment are discussed. (Contains 50-250 citations and includes a subject term index and title list.)

  1. Anechoic Chambers: Aerospace Applications. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The bibliography contains citations concerning the design, development, performance, and applications of anechoic chambers in the aerospace industry. Anechoic chamber testing equipment, techniques for evaluation of aerodynamic noise, microwave and radio antennas, and other acoustic measurement devices are considered. Shock wave studies on aircraft models and components, electromagnetic measurements, jet flow studies, and antenna radiation pattern measurements for industrial and military aerospace equipment are discussed. (Contains 50-250 citations and includes a subject term index and title list.)

  2. Basic Aerospace Education Library

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1975

    1975-01-01

    Lists the most significant resource items on aerospace education which are presently available. Includes source books, bibliographies, directories, encyclopedias, dictionaries, audiovisuals, curriculum/planning guides, aerospace statistics, aerospace education statistics and newsletters. (BR)

  3. Aerospace Education - An Overview

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1975

    1975-01-01

    Discusses the surge of interest throughout the country in aerospace education and discusses what aerospace education is, the implications in career education and the relevance of aerospace education in the curriculum. (BR)

  4. Miniature fiber Bragg grating sensor interrogator (FBG-Transceiver) system for use in aerospace and automotive health monitoring systems

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Kempen, Cornelia; Panahi, Allan; Lopatin, Craig

    2007-09-01

    Fiber Bragg grating sensors (FBGs) have gained rapid acceptance in aerospace and automotive structural health monitoring applications for the measurement of strain, stress, vibration, acoustics, acceleration, pressure, temperature, moisture, and corrosion distributed at multiple locations within the structure using a single fiber element. The most prominent advantages of FBGs are: small size and light weight, multiple FBG transducers on a single fiber, and immunity to radio frequency interference. A major disadvantage of FBG technology is that conventional state-of-the-art fiber Bragg grating interrogation systems are typically bulky and heavy bench top instruments that are assembled from off-the-shelf fiber optic and optical components integrated with a signal electronics board into an instrument console. Based on the need for a compact FBG interrogation system, this paper describes recent progress towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-Transceiver TM) system based on multi-channel integrated optic sensor (InOSense) microchip technology. The hybrid InOSense microchip technology enables the integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogators systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm small form factor (SFF) package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation. The sponsor of this program is NAVAIR under a DOD SBIR contract.

  5. Electronically controled mechanical seal for aerospace applications -- Part 1: Design, analysis, and steady state tests

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.; Wolff, Paul; Navon, Samuel

    1994-01-01

    An electronically-controlled mechanial seal, for use as the purge gas seal in a liquid oxygen turbopump, has been designed, analyzed, and built. The thickness of the lubricating film between the faces is controlled by adjusting the coning of the carbon face. This is done by applying a voltage across a piezoelectric element to which the carbon face is bound. Steady state tests have shown that the leakage rate (and film thickness) can be adjusted over a substantial range, utilizing the available range of voltage.

  6. CAD/CAM in packaging aerospace electronics

    NASA Astrophysics Data System (ADS)

    Gargione, F.

    1980-04-01

    It is noted that hard-wired, welded circuits hold an important place in aerospace systems because they allow short production runs to be prepared quickly. However, the electronic system designs are very complicated and demanding to work on manually. The article describes a design process which saves time and effort without reducing the designer's freedom. It is shown that the CAD/CAM equipment produces all the drawings and extracts from the data needed to generate NC tapes for drilling and welding boards. In addition, it produces the artwork for etching the boards. Discussion covers the advance the system represents in cost effectiveness, versatility, and reliability.

  7. Trends in aerospace structures

    NASA Technical Reports Server (NTRS)

    Card, M. F.

    1978-01-01

    Recent developments indicate that there may soon be a revolution in aerospace structures. Increases in allowable operational stress levels, utilization of high-strength, high-toughness materials, and new structural concepts will highlight this advancement. Improved titanium and aluminum alloys and high-modulus, high-strength advanced composites, with higher specific properties than aluminum and high-strength nickel alloys, are expected to be the principal materials. Significant advances in computer technology will cause major changes in the preliminary design cycle and permit solutions of otherwise too-complex interactive structural problems and thus the development of vehicles and components of higher performance. The energy crisis will have an impact on material costs and choices and will spur the development of more weight-efficient structures. There will also be significant spinoffs of aerospace structures technology, particularly in composites and design/analysis software.

  8. Effects of Aerospace Contaminants on EPIKOTE(TM) 862 / EPIKURE(TM)-W Filament Winding Resin System: An Experimental Study

    NASA Astrophysics Data System (ADS)

    Moffet, Mitchell Lee

    This thesis presents the findings of extensive experiments to determine the effects of various common aerospace chemicals on EPIKOTE(TM) 862 (resin) and EPIKURE(TM) W (curing agent), a resin system utilized in filament wound carbon fiber reinforced polymer (CRP) structures. Test specimens of the neat resin system were fabricated and exposed for up to 6 months at room temperature to 11 fluids representing typical aerospace chemicals found on the flight line, and to 74°C tap water. Post exposure the samples were tested in torsion using a rheometer, which performed strain sweeps and frequency sweeps on all the samples. In addition, a subset of the samples received a temperatures sweep. The rheology test parameters represented the nominal stress levels CRP structures would expect to see in operation. In addition to the rheological tests, dimensional and mass measurements were made of the samples both pre and post exposure to study the physical changes due to the chemical interactions. Based on the results, a common detergent, MEK on structures manufactured with the 862W resin system should be prevented or severely limited. It had a significant impact on the performance of the resin system within 3 months, with no visible indications of the degradation. The resins system had good chemical resistance to all the other chemicals used in this study including hot water.

  9. Design considerations for honeycomb double-bubble tanks utilized in aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Lentz, Christopher A.; Bush, Lance B.

    1990-01-01

    Future earth-to-orbit vehicles will utilize reusable internal fuel tanks requiring most of the vehicle volume. Because weight reduction and volumetric efficiency are essential, these tanks will be integral to the vehicle structure, and the vehicle cross section will dictate the size and shape of the tank. For a fuselage with a noncircular cross section, a multibubble tank configuration may be employed. Multibubble tanks offer a reduction in tank weight over a single-lobe tank or several cylindrical tanks in a noncircular cross section but sacrifice the efficiency of utilizing the entire fuselage cross section. This paper includes a general configuration analysis of a double-bubble tank, a materials and efficiency study, and a complete mission design analysis centers on sizing the tank to withstand ascent and reentry loads while minimizing the structural weight.

  10. Ball Aerospace AMSD Progress Update

    NASA Technical Reports Server (NTRS)

    Blair, Mark; Brown, Robert; Chaney, David; Lightsey, Paul; Russell, J. Kevin (Technical Monitor)

    2002-01-01

    The current status of the Advanced Mirror System Demonstrator program being performed by Ball Aerospace is presented. The hexagonal low-areal density Beryllium mirror blank has been fabricated and undergoing polishing at the time of this presentation.

  11. Wiring for aerospace applications

    NASA Technical Reports Server (NTRS)

    Christian, J. L., Jr.; Dickman, J. E.; Bercaw, R. W.; Myers, I. T.; Hammoud, A. N.; Stavnes, M.; Evans, J.

    1992-01-01

    In this paper, the authors summarize the current state of knowledge of arc propagation in aerospace power wiring and efforts by the National Aeronautics and Space Administration (NASA) towards the understanding of the arc tracking phenomena in space environments. Recommendations will be made for additional testing. A database of the performance of commonly used insulating materials will be developed to support the design of advanced high power missions, such as Space Station Freedom and Lunar/Mars Exploration.

  12. Improved Tensile Adhesion Specimens for High Strength Epoxy Systems in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Haddock, M. Reed; McLennan, Michael L.

    2000-01-01

    An improved tensile adhesion button has been designed and tested that results in higher measured tensile adhesion strength while providing increased capability for testing high strength epoxy adhesive systems. The best attributes of two well-established tensile button designs were combined and refined into an optimized tensile button. The most significant design change to the tensile button was to improve alignment of the bonded tensile button specimens during tensile testing by changing the interface between the tensile button and the tensile test machine. The established or old button design uses a test fixture that pulls from a grooved annulus or anvil head while the new button design pulls from a threaded hole in the centerline of the button. Finite element (FE) analysis showed that asymmetric loading of the established anvil head tensile button significantly increases the stress concentration in the adhesive, causing failure at lower tensile test loads. The new tensile button was designed to eliminate asymmetric loading and eliminate misalignment sensitivity. Enhanced alignment resulted in improved tensile adhesion strength measurement up to 13.8 MPa (2000psi) over the established button design. Another design change increased the capability of the button by increasing the threaded hole diameter allowing it to test high strength epoxy systems up to 85 MPa(less than 12,000 psi). The improved tensile button can be used in button- to-button or button-to-panel configurations.

  13. Forced-flow once-through boilers. [structural design criteria/aerospace environments

    NASA Technical Reports Server (NTRS)

    Stone, J. R.; Gray, V. H.; Gutierrez, O. A.

    1975-01-01

    A compilation and review of NASA-sponsored research on boilers for use in spacecraft electrical power generation systems is presented. Emphasis is on the heat-transfer and fluid-flow problems. In addition to space applications, much of the boiler technology is applicable to terrestrial and marine uses such as vehicular power, electrical power generation, vapor generation, and heating and cooling. Related research areas are discussed such as condensation, cavitation, line and boiler dynamics, the SNAP-8 project (Mercury-Rankine cycle), and conventional terrestrial boilers (either supercritical or gravity-assisted liquid-vapor separation types). The research effort was directed at developing the technology for once-through compact boilers with high heat fluxes to generate dry vapor stably, without utilizing gravity for phase separations. A background section that discusses, tutorially, the complex aspects of the boiling process is presented. Discussions of tests on alkali metals are interspersed with those on water and other fluids on a phenomenological basis.

  14. The Aerospace Age. Aerospace Education I.

    ERIC Educational Resources Information Center

    Smith, J. C.

    This book is written for use only in the Air Force ROTC program and cannot be purchased on the open market. The book describes the historical development of aerospace industry. The first chapter contains a brief review of the aerospace environment and the nature of technological changes brought by the aerospace revolution. The following chapter…

  15. Mass spectrometry of aerospace materials

    NASA Technical Reports Server (NTRS)

    Colony, J. A.

    1976-01-01

    Mass spectrometry is used for chemical analysis of aerospace materials and contaminants. Years of analytical aerospace experience have resulted in the development of specialized techniques of sampling and analysis which are required in order to optimize results. This work has resulted in the evolution of a hybrid method of indexing mass spectra which include both the largest peaks and the structurally significant peaks in a concise format. With this system, a library of mass spectra of aerospace materials was assembled, including the materials responsible for 80 to 90 percent of the contamination problems at Goddard Space Flight Center during the past several years.

  16. Manufacturing cost/design system: A CAD/CAM dialogue

    NASA Technical Reports Server (NTRS)

    Loshigian, H. H.; Rachowitz, B. I.; Judson, D.

    1980-01-01

    The development of the Manufacturing Cost/Design System (MC/DS) will provide the aerospace design engineer a tool with which to perform heretofore impractical design manufacturing cost tradeoffs. The Air Force Integrated Computer Aided Manufacturing (ICAM) Office has initiated the development and demonstration of an MC/DS which, when fully implemented, will integrate both design and manufacturing data bases to provide real time visibility into the manufacturing costs associated with various design options. The first release of a computerized system will be made before the end of 1981.

  17. Some cable suspension systems and their effects on the flexural frequencies of slender aerospace structures

    NASA Technical Reports Server (NTRS)

    Herr, R. W.

    1974-01-01

    The effects of several cable suspension configurations on the first free-free flexural frequency of uniform beams have been determined by experiment and analysis. The results of this study confirm that in general the larger the test vehicle the larger is the flexural frequency measurement error attributable to a given cable suspension configuration. For horizontally oriented beams representing modern aerospace vehicles of average size and flexibility, the restraining effects of all but the shortest support cables were minor. The restraining effects of support cables of moderate length attached near the base of vertically oriented vehicles were overshadowed by the effects of beam compression due to gravity.

  18. Innovative features providing proven solutions for integration of composite pressure vessels into aerospace systems

    NASA Astrophysics Data System (ADS)

    Braun, C. A.

    1993-06-01

    Some specific proven aerospace applications of pressure vessels made of a thin aluminum liner overwrapped with a composite of epoxy resin and high-strength carbon fiber are discussed. The discussion focuses on the safety and reliability of carbon overwrapped vessels. In particular, attention is given to safety with respect to impact damage and exposure to corrosive fluids, safety factor on operating pressure, stress rupture of carbon fiber, and the ability of the aluminum liner to contain the fluid for the life of the mission.

  19. Software Design Analyzer System

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.

    1985-01-01

    CRISP80 software design analyzer system a set of programs that supports top-down, hierarchic, modular structured design, and programing methodologies. CRISP80 allows for expression of design as picture of program.

  20. Development of Integrated Programs for Aerospace-vehicle Design (IPAD): Product manufacture interactions with the design process

    NASA Technical Reports Server (NTRS)

    Crowell, H. A.

    1979-01-01

    The product manufacturing interactions with the design process and the IPAD requirements to support the interactions are described. The data requirements supplied to manufacturing by design are identified and quantified. Trends in computer-aided manufacturing are discussed and the manufacturing process of the 1980's is anticipated.

  1. 1993 Aerospace Avionic Systems Division Conference, 3rd, Denver, CO, Apr. 22, 1993, Proceedings

    NASA Astrophysics Data System (ADS)

    Topics addressed include a single-supply monolithic, MIL-STD-1553 transreceiver implemented in BiCMOS wafer fabrication technology, a development methodology for contemporary avionics systems, MIL-STD-1553 remote terminal design using ASIC megacell technology, a modular electrooptic bus coupler, experiences in validating MIL-STD-1553 remote terminals, and the STANAG 3910 data bus for the next generation of European avionics systems. Attention is also given to JIAWG compatible development boards for the i960, high-speed databus evaluation, the space avionics architecture standard tailored to the common lunar lander conceptual design, and 1553 RT mechanizations for data sample consistency and multimessage transfers.

  2. Computer Architecture. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning research and development in the field of computer architecture. Design of computer systems, microcomputer components, and digital networks are among the topics discussed. Multimicroprocessor system performance, software development, and aerospace avionics applications are also included. (Contains 50-250 citations and includes a subject term index and title list.)

  3. Ceramic Integration Technologies for Energy and Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Asthana, Ralph N.

    2007-01-01

    Robust and affordable integration technologies for advanced ceramics are required to improve the performance, reliability, efficiency, and durability of components, devices, and systems based on them in a wide variety of energy, aerospace, and environmental applications. Many thermochemical and thermomechanical factors including joint design, analysis, and optimization must be considered in integration of similar and dissimilar material systems.

  4. Towards Comprehensive Variation Models for Designing Vehicle Monitoring Systems

    NASA Technical Reports Server (NTRS)

    McAdams, Daniel A.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    When designing vehicle vibration monitoring systems for aerospace devices, it is common to use well-established models of vibration features to determine whether failures or defects exist. Most of the algorithms used for failure detection rely on these models to detect significant changes in a flight environment. In actual practice, however, most vehicle vibration monitoring systems are corrupted by high rates of false alarms and missed detections. This crucial roadblock makes their implementation in real vehicles (e.g., helicopter transmissions and aircraft engines) difficult, making their operation costly and unreliable. Research conducted at the NASA Ames Research Center has determined that a major reason for the high rates of false alarms and missed detections is the numerous sources of statistical variations that are not taken into account in the modeling assumptions. In this paper, we address one such source of variations, namely, those caused during the design and manufacturing of rotating machinery components that make up aerospace systems. We present a novel way of modeling the vibration response by including design variations via probabilistic methods. Using such models, we develop a methodology to account for design and manufacturing variations, and explore the changes in the vibration response to determine its stochastic nature. We explore the potential of the methodology using a nonlinear cam-follower model, where the spring stiffness values are assumed to follow a normal distribution. The results demonstrate initial feasibility of the method, showing great promise in developing a general methodology for designing more accurate aerospace vehicle monitoring systems.

  5. Applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    Rouse, Doris J.

    1984-01-01

    The objective of the Research Triangle Institute Technology Transfer Team is to assist NASA in achieving widespread utilization of aerospace technology in terrestrial applications. Widespread utilization implies that the application of NASA technology is to benefit a significant sector of the economy and population of the Nation. This objective is best attained by stimulating the introduction of new or improved commercially available devices incorporating aerospace technology. A methodology is presented for the team's activities as an active transfer agent linking NASA Field Centers, industry associations, user groups, and the medical community. This methodology is designed to: (1) identify priority technology requirements in industry and medicine, (2) identify applicable NASA technology that represents an opportunity for a successful solution and commercial product, (3) obtain the early participation of industry in the transfer process, and (4) successfully develop a new product based on NASA technology.

  6. VLSI system design

    NASA Astrophysics Data System (ADS)

    Muroga, S.

    A complete picture of LSI/VLSI system design is provided, encompassing both engineering and economic considerations. The subjects discussed include: cost analysis based on production volume, yield, chip size, design manpower and other factors; bipolar and MOS logic families, logic design procedures, and mask designs; use of ROMs and PLAs in logic design, along with design algorithms; a survey of CAD used in LSI/VLSI chip design. Also covered are: full-custom and semicustom designs; microprocessor and dedicated processor chips; system design and hardware-software tradeoffs; LSI/VLSI technological trends; new products realized by LSI/VLSI technology; future production and management problems.

  7. Materials for aerospace

    SciTech Connect

    Steinberg, M.A.

    1986-10-01

    Early last year the US Office of Science and Technology put forward an agenda for American aerospace activity in the coming decades. The plan established goals for subsonic, supersonic and transatmospheric hypersonic flight. Those goals, together with Reagan Administration's programs for a space station and the Strategic Defense Initiative, serve as a driving force for extensive improvements in the materials that enable airplanes and spacecraft to function efficiently. The development of materials, together with advances in the technology of fabricating parts, will play a key role in aerospace systems of the future. Among the materials developments projected for the year 2000 are new composites and alloys for structural members; superalloys, ceramics and glass composites for propulsion systems, and carbon-carbon composites (carbon fibers in a carbon matrix) for high-temperature applications in places where resistance to heat and ablation is critical. 5 figures.

  8. Energy Systems Design

    NASA Technical Reports Server (NTRS)

    1986-01-01

    PRESTO, a COSMIC program, handles energy system specifications and predicts design efficiency of cogeneration systems. These systems allow a company to use excess energy produced to generate electricity. PRESTO is utilized by the Energy Systems Division of Thermo Electron Corporation in the custom design of cogeneration systems.

  9. 76 FR 41041 - Special Conditions: Gulfstream Aerospace LP (GALP) Model G250 Airplane, Interaction of Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... effects on structural ] performance of this system and its failures. Discussion Active flight control... controls and are given sufficient control authority to maneuver the airplane to its structural design.... Therefore, it is necessary to determine the structural factors of safety and operating margins such that...

  10. AERIS: An Integrated Domain Information System for Aerospace Science and Technology

    ERIC Educational Resources Information Center

    Hatua, Sudip Ranjan; Madalli, Devika P.

    2011-01-01

    Purpose: The purpose of this paper is to discuss the methodology in building an integrated domain information system with illustrations that provide proof of concept. Design/methodology/approach: The present work studies the usual search engine approach to information and its pitfalls. A methodology was adopted for construction of a domain-based…

  11. U.S. aerospace industry opinion of the effect of computer-aided prediction-design technology on future wind-tunnel test requirements for aircraft development programs

    NASA Technical Reports Server (NTRS)

    Treon, S. L.

    1979-01-01

    A survey of the U.S. aerospace industry in late 1977 suggests that there will be an increasing use of computer-aided prediction-design technology (CPD Tech) in the aircraft development process but that, overall, only a modest reduction in wind-tunnel test requirements from the current level is expected in the period through 1995. Opinions were received from key spokesmen in 23 of the 26 solicited major companies or corporate divisions involved in the design and manufacture of nonrotary wing aircraft. Development programs for nine types of aircraft related to test phases and wind-tunnel size and speed range were considered.

  12. Making intelligent systems team players: Case studies and design issues. Volume 1: Human-computer interaction design

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schreckenghost, Debra L.; Woods, David D.; Potter, Scott S.; Johannesen, Leila; Holloway, Matthew; Forbus, Kenneth D.

    1991-01-01

    Initial results are reported from a multi-year, interdisciplinary effort to provide guidance and assistance for designers of intelligent systems and their user interfaces. The objective is to achieve more effective human-computer interaction (HCI) for systems with real time fault management capabilities. Intelligent fault management systems within the NASA were evaluated for insight into the design of systems with complex HCI. Preliminary results include: (1) a description of real time fault management in aerospace domains; (2) recommendations and examples for improving intelligent systems design and user interface design; (3) identification of issues requiring further research; and (4) recommendations for a development methodology integrating HCI design into intelligent system design.

  13. Control system design guide

    SciTech Connect

    Sellers, David; Friedman, Hannah; Haasl, Tudi; Bourassa, Norman; Piette, Mary Ann

    2003-05-01

    The ''Control System Design Guide'' (Design Guide) provides methods and recommendations for the control system design process and control point selection and installation. Control systems are often the most problematic system in a building. A good design process that takes into account maintenance, operation, and commissioning can lead to a smoothly operating and efficient building. To this end, the Design Guide provides a toolbox of templates for improving control system design and specification. HVAC designers are the primary audience for the Design Guide. The control design process it presents will help produce well-designed control systems that achieve efficient and robust operation. The spreadsheet examples for control valve schedules, damper schedules, and points lists can streamline the use of the control system design concepts set forth in the Design Guide by providing convenient starting points from which designers can build. Although each reader brings their own unique questions to the text, the Design Guide contains information that designers, commissioning providers, operators, and owners will find useful.

  14. The Need for an Aerospace Pharmacy Residency

    NASA Technical Reports Server (NTRS)

    Bayuse, T.; Schuyler, C.; Bayuse, Tina M.

    2007-01-01

    This viewgraph poster presentation reviews the rationale for a call for a new program in residency for aerospace pharmacy. Aerospace medicine provides a unique twist on traditional medicine, and a specialty has evolved to meet the training for physicians, and it is becoming important to develop such a program for training in pharmacy designed for aerospace. The reasons for this specialist training are outlined and the challenges of developing a program are reviewed.

  15. Ethernet for Aerospace Applications - Ethernet Heads for the Skies

    NASA Technical Reports Server (NTRS)

    Grams, Paul R.

    2015-01-01

    One of the goals of aerospace applications is to reduce the cost and complexity of avionic systems. Ethernet is a highly scalable, flexible, and popular protocol. The aerospace market is large, with a forecasted production of over 50,000 turbine-powered aircraft valued at $1.7 trillion between 2012 and 2022. Boeing estimates demand for commercial aircraft by 2033 to total over 36,000 with a value of over $5 trillion. In 2014 US airlines served over 750 million passengers and this is growing over 2% yearly. Electronic fly-by-wire is now used for all airliners and high performance aircraft. Although Ethernet has been widely used for four decades, its use in aerospace applications is just beginning to become common. Ethernet is the universal solution in commercial networks because of its high bandwidths, lower cost, openness, reliability, maintainability, flexibility, and interoperability. However, when Ethernet was designed applications with time-critical, safety relevant and deterministic requirements were not given much consideration. Many aerospace applications use a variety of communication architectures that add cost and complexity. Some of them are SpaceWire, MIL-STD-1553, Avionics Full Duplex Switched Ethernet (AFDX), and Time-Triggered Ethernet (TTE). Aerospace network designers desire to decrease the number of networks to reduce cost and effort while improving scalability, flexibility, openness, maintainability, and reliability. AFDX and TTE are being considered more for critical aerospace systems because they provide redundancy, failover protection, guaranteed timing, and frame priority and are based on Ethernet IEEE 802.3. This paper explores the use of AFDX and TTE for aerospace applications.

  16. Compilation and development of K-6 aerospace materials for implementation in NASA spacelink electronic information system

    NASA Technical Reports Server (NTRS)

    Blake, Jean A.

    1987-01-01

    Spacelink is an electronic information service to be operated by the Marshall Space Flight Center. It will provide NASA news and educational resources including software programs that can be accessed by anyone with a computer and modem. Spacelink is currently being installed and will soon begin service. It will provide daily updates of NASA programs, information about NASA educational services, manned space flight, unmanned space flight, aeronautics, NASA itself, lesson plans and activities, and space program spinoffs. Lesson plans and activities were extracted from existing NASA publications on aerospace activities for the elementary school. These materials were arranged into 206 documents which have been entered into the Spacelink program for use in grades K-6.

  17. Optical Characterization of Window Materials for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Tedjojuwono, Ken K.; Clark, Natalie; Humphreys, William M., Jr.

    2013-01-01

    An optical metrology laboratory has been developed to characterize the optical properties of optical window materials to be used for aerospace applications. Several optical measurement systems have been selected and developed to measure spectral transmittance, haze, clarity, birefringence, striae, wavefront quality, and wedge. In addition to silica based glasses, several optical lightweight polymer materials and transparent ceramics have been investigated in the laboratory. The measurement systems and selected empirical results for non-silica materials are described. These measurements will be used to form the basis of acceptance criteria for selection of window materials for future aerospace vehicle and habitat designs.

  18. Output Feedback M-MRAC Backstepping With Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vahram; Krishnakumar, Kalmanje Sriniva

    2014-01-01

    The paper presents a certainty equivalence output feedback backstepping adaptive control design method for the systems of any relative degree with unmatched uncertainties without over-parametrization. It uses a fast prediction model to estimate the unknown parameters, which is independent of the control design. It is shown that the system's input and output tracking errors can be systematically decreased by the proper choice of the design parameters. The approach is applied to aerospace control problems and tested in numerical simulations.

  19. The 1975 NASA/ASEE summer faculty fellowship research program. [research in the areas of aerospace engineering, aerospace systems, and information systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A research program was conducted to further the professional knowledge of qualified engineering and science faculty members, to stimulate an exchange of ideas between participants and NASA engineers and scientists, and to enrich the research activities of the participants' institutions. Abstracts of reports submitted at the end of the program are presented. Topics investigated include multispectral photography, logic circuits, gravitation theories, information systems, fracture mechanics, holographic interferometry, surface acoustic wave technology, ion beams in the upper atmosphere, and hybrid microcircuits.

  20. Unification - An international aerospace information issue

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.

    1992-01-01

    Scientific and Technical Information (STI) represents the results of large investments in research and development (R&D) and the expertise of a nation and is a valuable resource. For more than four decades, NASA and its predecessor organizations have developed and managed the preeminent aerospace information system. NASA obtains foreign materials through its international exchange relationships, continually increasing the comprehensiveness of the NASA Aerospace Database (NAD). The NAD is de facto the international aerospace database. This paper reviews current NASA goals and activities with a view toward maintaining compatibility among international aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  1. Bringing Back the Social Affordances of the Paper Memo to Aerospace Systems Engineering Work

    NASA Technical Reports Server (NTRS)

    Davidoff, Scott; Holloway, Alexandra

    2014-01-01

    Model-based systems engineering (MBSE) is a relatively new field that brings together the interdisciplinary study of technological components of a project (systems engineering) with a model-based ontology to express the hierarchical and behavioral relationships between the components (computational modeling). Despite the compelling promises of the benefits of MBSE, such as improved communication and productivity due to an underlying language and data model, we observed hesitation to its adoption at the NASA Jet Propulsion Laboratory. To investigate, we conducted a six-month ethnographic field investigation and needs validation with 19 systems engineers. This paper contributes our observations of a generational shift in one of JPL's core technologies. We report on a cultural misunderstanding between communities of practice that bolsters the existing technology drag. Given the high cost of failure, we springboard our observations into a design hypothesis - an intervention that blends the social affordances of the narrative-based work flow with the rich technological advantages of explicit data references and relationships of the model-based approach. We provide a design rationale, and the results of our evaluation.

  2. KRON's Method Applied to the Study of Electromagnetic Interference Occurring in Aerospace Systems

    NASA Astrophysics Data System (ADS)

    Leman, S.; Reineix, A.; Hoeppe, F.; Poiré, Y.; Mahoudi, M.; Démoulin, B.; Üstüner, F.; Rodriquez, V. P.

    2012-05-01

    In this paper, spacecraft and aircraft mock-ups are used to simulate the performance of KRON based tools applied to the simulation of large EMC systems. These tools aim to assist engineers in the design phase of complex systems. This is done by effectively evaluating the EM disturbances between antennas, electronic equipment, and Portable Electronic Devices found in large systems. We use a topological analysis of the system to model independent sub-volumes such as antennas, cables, equipments, PED and cavity walls. Each of these sub- volumes is modelled by an appropriate method which can be based on, for example, analytical expressions, transmission line theory or other numerical tools such as the full wave FDFD method. This representation associated with the electrical tensorial method of G.KRON leads to reasonable simulation times (typically a few minutes) and accurate results. Because equivalent sub-models are built separately, the main originality of this method is that each sub- volume can be easily replaced by another one without rebuilding the entire system. Comparisons between measurements and simulations will be also presented.

  3. Aerospace structures supportability

    NASA Astrophysics Data System (ADS)

    Smith, Howard Wesley

    1989-04-01

    This paper is about supportability in its general sense, with emphasis on aerospace structures. Reliability and maintainability (R&M) are described and defined from the standpoint of both structural analysis. Accessability, inspectability, and replaceability are described as design attributes. Reliability and probability of failure are shown to be in the domain of the analysis. Availability and replaceability are traditional logistic responsibilities which are influenced by supportability engineers. The USAF R&M 2000 process is described, and the R&M 1988 Workshop at Wright-Patterson Air Force Base is also included in the description.

  4. The 42nd Aerospace Mechanism Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Editor); Hakun, Claef (Editor)

    2014-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production, and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development, and flight certification of new mechanisms.

  5. Summary of aerospace and nuclear engineering activities

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Texas A&M Nuclear and Aerospace engineering departments have worked on five different projects for the NASA/USRA Advanced Design Program during the 1987/88 year. The aerospace department worked on two types of lunar tunnelers that would create habitable space. The first design used a heated cone to melt the lunar regolith, and the second used a conventional drill to bore its way through the crust. Both used a dump truck to get rid of waste heat from the reactor as well as excess regolith from the tunneling operation. The nuclear engineering department worked on three separate projects. The NEPTUNE system is a manned, outer-planetary explorer designed with Jupiter exploration as the baseline mission. The lifetime requirement for both reactor and power-conversion systems was twenty years. The second project undertaken for the power supply was a Mars Sample Return Mission power supply. This was designed to produce 2 kW of electrical power for seven years. The design consisted of a General Purpose Heat Source (GPHS) utilizing a Stirling engine as the power conversion unit. A mass optimization was performed to aid in overall design. The last design was a reactor to provide power for propulsion to Mars and power on the surface. The requirements of 300 kW of electrical power output and a mass of less than 10,000 Rg were set. This allowed the reactor and power conversion unit to fit within the Space Shuttle cargo bay.

  6. Designing Simulation Systems

    ERIC Educational Resources Information Center

    Twelker, Paul A.

    1969-01-01

    "The purpose of this paper is to outline the approach to designing instructional simulation systems developed at Teaching Research. The 13 phases of simulation design will be summarized, and an effort will be made to expose the vital decision points that confront the designer as he develops simulation experiences. (Author)

  7. Development and Evaluation of Sensor Concepts for Ageless Aerospace Vehicles: Report 3 - Design of the Concept Demonstrator

    NASA Technical Reports Server (NTRS)

    Abbott, David; Ables, Jon; Batten, Adam; Carpenter, David; Collings, Tony; Doyle, Briony; Dunlop, John; Edwards, Graeme; Farmer, Tony; Gaffney, Bruce; Hedley, Mark; Isaacs, Peter; Johnson, Mark; Joshi, Bhautik; Lewis, Chris; Poilton, Geoff; Price, Don; Prokopenko, Mikhail; Reda, Torsten; Rees, David; Scott, Andrew; Seneviratne, Sarath; Valencia, Philip; Wang, Peter; Whitnall, Denis

    2008-01-01

    This report provides an outline of the essential features of a Structural Health Monitoring Concept Demonstrator (CD) that will be constructed during the next eight months. It is emphasized that the design cannot be considered to be complete, and that design work will continue in parallel with construction and testing. A major advantage of the modular design is that small modules of the system can be developed, tested and modified before a commitment is made to full system development. The CD is expected to develop and evolve for a number of years after its initial construction. This first stage will, of necessity, be relatively simple and have limited capabilities. Later developments will improve all aspects of the functionality of the system, including sensing, processing, communications, intelligence and response. The report indicates the directions this later development will take.

  8. An Aerospace Workshop

    ERIC Educational Resources Information Center

    Hill, Bill

    1972-01-01

    Describes the 16-day, 10,000 mile national tour of the nation's major aerospace research and development centers by 65 students enrolled in Central Washington State College's Summer Aerospace Workshop. (Author/MB)

  9. System Engineering of Aerospace and Advanced Technology Programs at AN Astronautics Company

    NASA Astrophysics Data System (ADS)

    Kennedy, Mike O.

    The purpose of this Record of Study is to document an internship with the Martin Marietta Astronautics Group in Denver, Colorado that was performed in partial fulfillment of the requirements for the Doctor of Engineering degree at Texas A&M University, and to demonstrate that the internship objectives have been met. The internship included assignments with two Martin Marietta companies, on three different programs and in four areas of engineering. The Record of Study takes a first-hand look at system engineering, SDI and advanced program management, and the way Martin Marietta conducts business. The five internship objectives were related to assignments in system modeling, system integration, engineering analysis and technical management. In support of the first objective, the effects of thermally and mechanically induced mirror surface distortions upon the wavefront intensity field of a high energy laser beam passing through the optical train of a space-based laser system were modeled. To satisfy the second objective, the restrictive as opposed to the broad interpretation of the 1972 ABM Treaty, and the capability of the Strategic Defense Initiative Zenith Star Program to comply with the Treaty were evaluated. For the third objective, the capability of Martin Marietta to develop an automated analysis system to integrate and analyze Superconducting Super Collider detector designs was investigated. For the fourth objective, the thermal models that were developed in support of the Small Intercontinental Ballistic Missile flight tests were described. And in response to the fifth objective, the technical management role of the Product Integrity Engineer assigned to the Zenith Star spacecraft's Beam Control and Transfer Subsystem was discussed. This Record of Study explores the relationships between the engineering, business, security and social concerns associated with the practice of engineering and the management of programs by a major defense contractor.

  10. Propulsion and Power Generation Capabilities of a Dense Plasma Focus (DPF) Fusion System for Future Military Aerospace Vehicles

    NASA Astrophysics Data System (ADS)

    Knecht, Sean D.; Thomas, Robert E.; Mead, Franklin B.; Miley, George H.; Froning, David

    2006-01-01

    The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF) fusion system in support of a USAF advanced military aerospace vehicle concept study. This vehicle is an aerospace plane that combines clean ``aneutronic'' dense plasma focus (DPF) fusion power and propulsion technology, with advanced ``lifting body''-like airframe configurations utilizing air-breathing MHD propulsion and power technology within a reusable single-stage-to-orbit (SSTO) vehicle. The applied approach was to evaluate the fusion system details (geometry, power, T/W, system mass, etc.) of a baseline p-11B DPF propulsion device with Q = 3.0 and thruster efficiency, ɛprop = 90% for a range of thrust, Isp and capacitor specific energy values. The baseline details were then kept constant and the values of Q and ɛprop were varied to evaluate excess power generation for communication systems, pulsed-train plasmoid weapons, ultrahigh-power lasers, and gravity devices. Thrust values were varied between 100 kN and 1,000 kN with Isp of 1,500 s and 2,000 s, while capacitor specific energy was varied from 1 - 15 kJ/kg. Q was varied from 3.0 to 6.0, resulting in gigawatts of excess power. Thruster efficiency was varied from 0.9 to 1.0, resulting in hundreds of megawatts of excess power. Resulting system masses were on the order of 10's to 100's of metric tons with thrust-to-weight ratios ranging from 2.1 to 44.1, depending on capacitor specific energy. Such a high thrust/high Isp system with a high power generation capability would allow military versatility in sub-orbital space, as early as 2025, and beyond as early as 2050. This paper presents the results that coincide with a total system mass between 15 and 20 metric tons.

  11. Propulsion and Power Generation Capabilities of a Dense Plasma Focus (DPF) Fusion System for Future Military Aerospace Vehicles

    SciTech Connect

    Knecht, Sean D.; Mead, Franklin B.; Miley, George H.; Froning, David

    2006-01-20

    The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF) fusion system in support of a USAF advanced military aerospace vehicle concept study. This vehicle is an aerospace plane that combines clean 'aneutronic' dense plasma focus (DPF) fusion power and propulsion technology, with advanced 'lifting body'-like airframe configurations utilizing air-breathing MHD propulsion and power technology within a reusable single-stage-to-orbit (SSTO) vehicle. The applied approach was to evaluate the fusion system details (geometry, power, T/W, system mass, etc.) of a baseline p-11B DPF propulsion device with Q = 3.0 and thruster efficiency, {eta}prop = 90% for a range of thrust, Isp and capacitor specific energy values. The baseline details were then kept constant and the values of Q and {eta}prop were varied to evaluate excess power generation for communication systems, pulsed-train plasmoid weapons, ultrahigh-power lasers, and gravity devices. Thrust values were varied between 100 kN and 1,000 kN with Isp of 1,500 s and 2,000 s, while capacitor specific energy was varied from 1 - 15 kJ/kg. Q was varied from 3.0 to 6.0, resulting in gigawatts of excess power. Thruster efficiency was varied from 0.9 to 1.0, resulting in hundreds of megawatts of excess power. Resulting system masses were on the order of 10's to 100's of metric tons with thrust-to-weight ratios ranging from 2.1 to 44.1, depending on capacitor specific energy. Such a high thrust/high Isp system with a high power generation capability would allow military versatility in sub-orbital space, as early as 2025, and beyond as early as 2050. This paper presents the results that coincide with a total system mass between 15 and 20 metric tons.

  12. Challenges to Laser-Based Imaging Techniques in Gas Turbine Combustor Systems for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Locke, Randy J.; Anderson, Robert C.; Zaller, Michelle M.; Hicks, Yolanda R.

    1998-01-01

    Increasingly severe constraints on emissions, noise and fuel efficiency must be met by the next generation of commercial aircraft powerplants. At NASA Lewis Research Center (LeRC) a cooperative research effort with industry is underway to design and test combustors that will meet these requirements. To accomplish these tasks, it is necessary to gain both a detailed understanding of the combustion processes and a precise knowledge of combustor and combustor sub-component performance at close to actual conditions. To that end, researchers at LeRC are engaged in a comprehensive diagnostic investigation of high pressure reacting flowfields that duplicate conditions expected within the actual engine combustors. Unique, optically accessible flame-tubes and sector rig combustors, designed especially for these tests. afford the opportunity to probe these flowfields with the most advanced, laser-based optical diagnostic techniques. However, these same techniques, tested and proven on comparatively simple bench-top gaseous flame burners, encounter numerous restrictions and challenges when applied in these facilities. These include high pressures and temperatures, large flow rates, liquid fuels, remote testing, and carbon or other material deposits on combustor windows. Results are shown that document the success and versatility of these nonintrusive optical diagnostics despite the challenges to their implementation in realistic systems.

  13. Potential Application of NASA Aerospace Technology to Ground-Based Power System

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.; Welch, Gerard E.; Bakhle, Milind A.; Brown, Gerald V.

    2000-01-01

    A review of some of the basic gas turbine technology being developed at the NASA John H. Glenn Research Center at Lewis Field, which may have the potential to be applied to ground-based systems, is presented in this paper. Only a sampling of the large number of research activities underway at the Glenn Research Center can be represented here. The items selected for presentation are those that may lead to increased power and efficiency, reduced cycle design time and cost, improved thermal design, reduced fatigue and fracture, reduced mechanical friction and increased operating margin. The topic of improved material will be presented in this conference and shall not be discussed here. The topics selected for presentation are key research activities at the Glenn Center of Excellence on Turbo-machinery. These activities should be of interest and utility to this ISABE (International Symposium on Air Breathing Engines) Special Forum on Aero-Derivative Land-Based Gas Turbines and to the power industry.

  14. Worst-case analysis and linear parameter-varying gain-scheduled control of aerospace systems

    NASA Astrophysics Data System (ADS)

    Shin, Jong-Yeob

    In this thesis, two main subjects are discussed. The first is a worst-case performance analysis, the second is a linear parameter varying (LPV) synthesis using a blending approach. On the first subject, a linear fractional transformation (LFT) model of the linearized X-38 Crew Return Vehicle (CRV) has been developed to facilitate the analysis of its flight control system. The LFT model represents uncertainty in nine aerodynamic stability derivatives at a given flight condition. The X-38 LFT model, combined with a controller at specific flight conditions, is used to determine the aerodynamic coefficients within a predefined set that result in the worst-case performance and worst-case gain/phase margins of the closed-loop system. LPV and mu controllers are synthesized for the X-38 CRV lateral-directional axes over the candidate flight envelope and compared with the baseline gain-scheduled classical control design. Worst-case analysis of the LPV and mu controllers are compared with the baseline gain-scheduled classical control design. Analysis and time simulations show that the LPV controller achieves significant performance and robustness improvements when compared to a linear mu controller and the baseline gain-scheduled controller. On the second subject, a quasi-LPV model of the F-16 longitudinal axes was developed using three methods: Jacobian linearization, state transformation and function substitution. Time simulations of quasi-LPV models show that the quasi-LPV models developed using state transformation and function substitution accurately represent the nonlinear dynamics of the F-16 longitudinal axes. In designing an LPV controller for the F-16 longitudinal axes, the function substitution quasi-LPV models are used since these quasi-LPV models can represent the nonlinear dynamics at non-trim points. Two LPV controllers are synthesized for the F-16 longitudinal axes for two separated flight envelopes: low and high altitude regions. Blending these controllers

  15. Modeling and Analysis of Power Processing Systems. [use of a digital computer for designing power plants

    NASA Technical Reports Server (NTRS)

    Fegley, K. A.; Hayden, J. H.; Rehmann, D. W.

    1974-01-01

    The feasibility of formulating a methodology for the modeling and analysis of aerospace electrical power processing systems is investigated. It is shown that a digital computer may be used in an interactive mode for the design, modeling, analysis, and comparison of power processing systems.

  16. Applications of aerospace technology in biology and medicine

    NASA Technical Reports Server (NTRS)

    Beall, H. C.; Beadles, R. L.; Brown, J. N., Jr.; Clingman, W. H.; Courtney, M. W.; Rouse, D. J.; Scearce, R. W.

    1979-01-01

    Medical products utilizing and incorporating aerospace technology were studied. A bipolar donor-recipient model for medical transfer is presented. The model is designed to: (1) identify medical problems and aerospace technology which constitute opportunities for successful medical products; (2) obtain early participation of industry in the transfer process; and (3) obtain acceptance by medical community of new medical products based on aerospace technology.

  17. Residential photovoltaic system designs

    SciTech Connect

    Russell, M. C.

    1981-01-01

    A project to develop Residential Photovoltaic Systems has begun at Massachusetts Institute of Technology Lincoln Laboratory with the construction and testing of five Prototype Systems. All of these systems utilize a roof-mounted photovoltaic array and allow excess solar-generated electric energy to be fed back to the local utility grid, eliminating the need for on-site storage. Residential photovoltaic system design issues are discussed and specific features of the five Prototype Systems now under test are presented.

  18. Aerospace for the Very Young.

    ERIC Educational Resources Information Center

    2003

    This packet includes games and activities concerning aerospace education for the very young. It is designed to develop and strengthen basic concepts and skills in a non-threatening atmosphere of fun. Activities include: (1) "The Sun, Our Nearest Star"; (2) "Twinkle, Twinkle, Little Star, How I Wonder Where You Are"; (3) "Shadows"; (4) "The Earth…

  19. Control system design method

    DOEpatents

    Wilson, David G.; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  20. Development of Advanced Verification and Validation Procedures and Tools for the Certification of Learning Systems in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen; Schumann, Johann; Gupta, Pramod; Richard, Michael; Guenther, Kurt; Soares, Fola

    2005-01-01

    Adaptive control technologies that incorporate learning algorithms have been proposed to enable automatic flight control and vehicle recovery, autonomous flight, and to maintain vehicle performance in the face of unknown, changing, or poorly defined operating environments. In order for adaptive control systems to be used in safety-critical aerospace applications, they must be proven to be highly safe and reliable. Rigorous methods for adaptive software verification and validation must be developed to ensure that control system software failures will not occur. Of central importance in this regard is the need to establish reliable methods that guarantee convergent learning, rapid convergence (learning) rate, and algorithm stability. This paper presents the major problems of adaptive control systems that use learning to improve performance. The paper then presents the major procedures and tools presently developed or currently being developed to enable the verification, validation, and ultimate certification of these adaptive control systems. These technologies include the application of automated program analysis methods, techniques to improve the learning process, analytical methods to verify stability, methods to automatically synthesize code, simulation and test methods, and tools to provide on-line software assurance.

  1. Nanomaterials and future aerospace technologies: opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Vaia, Richard A.

    2012-06-01

    Two decades of extensive investment in nanomaterials, nanofabrication and nanometrology have provided the global engineering community a vast array of new technologies. These technologies not only promise radical change to traditional industries, such as transportation, information and aerospace, but may create whole new industries, such as personalized medicine and personalized energy harvesting and storage. The challenge today for the defense aerospace community is determining how to accelerate the conversion of these technical opportunities into concrete benefits with quantifiable impact, in conjunction with identifying the most important outstanding scientific questions that are limiting their utilization. For example, nanomaterial fabrication delivers substantial tailorablity beyond a traditional material data sheet. How can we integrate this tailorability into agile manufacturing and design methods to further optimize the performance, cost and durability of future resilient aerospace systems? The intersection of nano-based metamaterials and nanostructured devices with biotechnology epitomizes the technological promise of autonomous systems and enhanced human-machine interfaces. What then are the key materials and processes challenges that are inhibiting current lab-scale innovation from being integrated into functioning systems to increase effectiveness and productivity of our human resources? Where innovation is global, accelerating the use of breakthroughs, both for commercial and defense, is essential. Exploitation of these opportunities and finding solutions to the associated challenges for defense aerospace will rely on highly effective partnerships between commercial development, scientific innovation, systems engineering, design and manufacturing.

  2. Computer graphics application in the engineering design integration system

    NASA Technical Reports Server (NTRS)

    Glatt, C. R.; Abel, R. W.; Hirsch, G. N.; Alford, G. E.; Colquitt, W. N.; Stewart, W. A.

    1975-01-01

    The computer graphics aspect of the Engineering Design Integration (EDIN) system and its application to design problems were discussed. Three basic types of computer graphics may be used with the EDIN system for the evaluation of aerospace vehicles preliminary designs: offline graphics systems using vellum-inking or photographic processes, online graphics systems characterized by direct coupled low cost storage tube terminals with limited interactive capabilities, and a minicomputer based refresh terminal offering highly interactive capabilities. The offline line systems are characterized by high quality (resolution better than 0.254 mm) and slow turnaround (one to four days). The online systems are characterized by low cost, instant visualization of the computer results, slow line speed (300 BAUD), poor hard copy, and the early limitations on vector graphic input capabilities. The recent acquisition of the Adage 330 Graphic Display system has greatly enhanced the potential for interactive computer aided design.

  3. Instructional Design: System Strategies.

    ERIC Educational Resources Information Center

    Ledford, Bruce R.; Sleeman, Phillip J.

    This book is intended as a source for those who desire to apply a coherent system of instructional design, thereby insuring accountability. Chapter 1 covers the instructional design process, including: instructional technology; the role of evaluation; goal setting; the psychology of teaching and learning; task analysis; operational objectives;…

  4. Optical Information Processing for Aerospace Applications 2

    NASA Technical Reports Server (NTRS)

    Stermer, R. L. (Compiler)

    1984-01-01

    Current research in optical processing, and determination of its role in future aerospace systems was reviewed. It is shown that optical processing offers significant potential for aircraft and spacecraft control, pattern recognition, and robotics. It is demonstrated that the development of optical devices and components can be implemented in practical aerospace configurations.

  5. High Flight. Aerospace Activities, K-12.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    Following discussions of Oklahoma aerospace history and the history of flight, interdisciplinary aerospace activities are presented. Each activity includes title, concept fostered, purpose, list of materials needed, and procedure(s). Topics include planets, the solar system, rockets, airplanes, air travel, space exploration, principles of flight,…

  6. Aerospace Power Technology for Potential Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.

    2012-01-01

    Aerospace technology that is being developed for space and aeronautical applications has great potential for providing technical advances for terrestrial power systems. Some recent accomplishments arising from activities being pursued at the National Aeronautics and Space Administration (NASA) Centers is described in this paper. Possible terrestrial applications of the new aerospace technology are also discussed.

  7. Remote Systems Design & Deployment

    SciTech Connect

    Bailey, Sharon A.; Baker, Carl P.; Valdez, Patrick LJ

    2009-08-28

    The Pacific Northwest National Laboratory (PNNL) was tasked by Washington River Protection Solutions, LLC (WRPS) to provide information and lessons learned relating to the design, development and deployment of remote systems, particularly remote arm/manipulator systems. This report reflects PNNL’s experience with remote systems and lays out the most important activities that need to be completed to successfully design, build, deploy and operate remote systems in radioactive and chemically contaminated environments. It also contains lessons learned from PNNL’s work experiences, and the work of others in the national laboratory complex.

  8. Designing future photovoltaic systems

    SciTech Connect

    Jones, G.J.

    1984-01-01

    The large scale use of photovoltaic systems to generate our electricity is a dream for the future; but if this dream is to be realized, we must understand these systems today. As a result, there has been extensive research into the design and economic tradeoffs of utility interconnected photovoltaic applications. The understanding gained in this process has shown that photovoltaic system design can be a very simple and straight-forward endeavor. This paper reviews those past studies and shows how we have reached the present state of system design evolution. The concept of the utility interactive PV system with energy value determined by the utility's avoided cost will be explored. This concept simplifies the screening of potential applications for economic viability, and we will present several rules-of-thumb for this purpose.

  9. Aerospace Applications of Magnetic Suspension Technology, part 2

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J. (Editor); Britcher, Colin P. (Editor)

    1991-01-01

    In order to examine the state of technology of all areas of magnetic suspension with potential aerospace applications, and to review related recent developments in sensors and control approaches, superconducting technology, and design/implementation practices, a workshop was held at NASA-Langley. Areas of concern are pointing and isolation systems, microgravity and vibration isolation, bearing applications, wind tunnel model suspension systems, large gap magnetic suspension systems, controls, rotating machinery, science and applications of superconductivity, and sensors. Papers presented are included.

  10. Development and Use of Engineering Standards for Computational Fluid Dynamics for Complex Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Lee, Hyung B.; Ghia, Urmila; Bayyuk, Sami; Oberkampf, William L.; Roy, Christopher J.; Benek, John A.; Rumsey, Christopher L.; Powers, Joseph M.; Bush, Robert H.; Mani, Mortaza

    2016-01-01

    Computational fluid dynamics (CFD) and other advanced modeling and simulation (M&S) methods are increasingly relied on for predictive performance, reliability and safety of engineering systems. Analysts, designers, decision makers, and project managers, who must depend on simulation, need practical techniques and methods for assessing simulation credibility. The AIAA Guide for Verification and Validation of Computational Fluid Dynamics Simulations (AIAA G-077-1998 (2002)), originally published in 1998, was the first engineering standards document available to the engineering community for verification and validation (V&V) of simulations. Much progress has been made in these areas since 1998. The AIAA Committee on Standards for CFD is currently updating this Guide to incorporate in it the important developments that have taken place in V&V concepts, methods, and practices, particularly with regard to the broader context of predictive capability and uncertainty quantification (UQ) methods and approaches. This paper will provide an overview of the changes and extensions currently underway to update the AIAA Guide. Specifically, a framework for predictive capability will be described for incorporating a wide range of error and uncertainty sources identified during the modeling, verification, and validation processes, with the goal of estimating the total prediction uncertainty of the simulation. The Guide's goal is to provide a foundation for understanding and addressing major issues and concepts in predictive CFD. However, this Guide will not recommend specific approaches in these areas as the field is rapidly evolving. It is hoped that the guidelines provided in this paper, and explained in more detail in the Guide, will aid in the research, development, and use of CFD in engineering decision-making.

  11. Second Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor); Clark-Ingram, M. (Editor)

    1997-01-01

    The mandated elimination of CFC'S, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application, verification, compliant coatings including corrosion protection system and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards.

  12. Second Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F.; Clark-Ingram, M.; Hessler, S. L.

    1997-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards.

  13. Designing automatic resupply systems.

    PubMed

    Harding, M L

    1999-02-01

    This article outlines the process for designing and implementing autoresupply systems. The planning process includes determination of goals and appropriate participation. Different types of autoresupply mechanisms include kanban, breadman, consignment, systems contracts, and direct shipping from an MRP schedule. PMID:10345630

  14. Digital systems design language

    NASA Technical Reports Server (NTRS)

    Shiva, S. G.

    1979-01-01

    Digital Systems Design Language (DDL) is implemented on the SEL-32 Computer Systems. The detaileds of the language, the translator, and the simulator, and the smulator programs are given. Several example descriptions and a tutorial on hardware description languages are provided, to guide the user.

  15. Key Issues for Aerospace Applications of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Levine, S. R.

    1998-01-01

    Ceramic matrix composites (CMC) offer significant advantages for future aerospace applications including turbine engine and liquid rocket engine components, thermal protection systems, and "hot structures". Key characteristics which establish ceramic matrix composites as attractive and often enabling choices are strength retention at high temperatures and reduced weight relative to currently used metallics. However, due to the immaturity of this class of materials which is further compounded by the lack of experience with CMC's in the aerospace industry, there are significant challenges involved in the development and implementation of ceramic matrix composites into aerospace systems. Some of the more critical challenges are attachment and load transfer methodologies; manufacturing techniques, particularly scale up to large and thick section components; operational environment resistance; damage tolerance; durability; repair techniques; reproducibility; database availability; and the lack of validated design and analysis tools. The presentation will examine the technical issues confronting the application of ceramic matrix composites to aerospace systems and identify the key material systems having potential for substantial payoff relative to the primary requirements of light weight and reduced cost for future systems. Current programs and future research opportunities will be described in the presentation which will focus on materials and processes issues.

  16. Magnetic Gearing Versus Conventional Gearing in Actuators for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Puchhammer, Gregor

    2014-01-01

    Magnetic geared actuators (MGA) are designed to perform highly reliable, robust and precise motion on satellite platforms or aerospace vehicles. The design allows MGA to be used for various tasks in space applications. In contrast to conventional geared drives, the contact and lubrication free force transmitting elements lead to a considerable lifetime and range extension of drive systems. This paper describes the fundamentals of magnetic wobbling gears (MWG) and the deduced inherent characteristics, and compares conventional and magnetic gearing.

  17. 43rd Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A.

    2016-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Sponsored and organized by the Mechanisms Education Association, responsibility for hosting the AMS is shared by the National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC). Now in its 43rd symposium, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 43rd AMS was held in Santa Clara, California on May 4, 5 and 6, 2016. During these three days, 42 papers were presented. Topics included payload and positioning mechanisms, components such as hinges and motors, CubeSats, tribology, and mechanism testing. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components. The high quality of this symposium is a result of the work of many people, and their efforts are gratefully acknowledged. This extends to the voluntary members of the symposium organizing committee representing the eight NASA field centers, LMSSC, and the European Space Agency. Appreciation is also extended to the session chairs, the authors, and particularly the personnel at ARC responsible for the symposium arrangements and the publication of these proceedings. A sincere thank you also goes to the symposium executive committee who is responsible for the year-to-year management of the AMS, including paper processing and preparation of the program. The use of trade names of manufacturers in this publication does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the National Aeronautics and Space Administration.

  18. Flight feeding systems design and evaluation. [the Apollo inflight menu design

    NASA Technical Reports Server (NTRS)

    Huber, C. S.

    1973-01-01

    The Apollo flight menu design is fully recounted for Apollo missions 7 through 17, to show modifications that were introduced to the Apollo food system, to document the range of menus and nutritional quality, and to describe packaging and preparation procedures for each class of food item. Papers concerning the Apollo 14 food system, and nutrition systems for pressure suits are included, and the following special topics are treated in depth: (1) food handling procedures; (2) modification of the physical properties of freeze dried rice; (3) stabilization of aerospace food waste; and (4) identification and quantitation of hexadecanal and octadecanal in broiler muscle phospholipids.

  19. Emerging Standards with Application to Accelerator Safety System Design

    NASA Astrophysics Data System (ADS)

    Mahoney, K.; Robertson, H.

    1997-05-01

    This paper addresses international standards which can be applied to the requirements for accelerator personnel safety systems. Particular emphasis is given to standards which specify requirements for safety interlock systems which employ programmable electronic subsystems. The work draws on methodologies currently under development for the medical, process control, and aerospace industries. The paper then goes on to show how these methods may be applied to accelerator safety system design. Detailed examples are drawn from the recently approved standard ``ISA-S84'' and the draft standard ``IEC1508''.

  20. The 11th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Various mechanisms in aerospace engineering were presented at this conference. Specifications, design, and use of spacecraft and missile components are discussed, such as tail assemblies, radiometers, magnetormeters, pins, reaction wheels, ball bearings, actuators, mirrors, nutation dampers, airfoils, solar arrays, etc.

  1. On-board energy management for high-speed aerospace vehicles: System and component-level energy-based optimization and analysis

    NASA Astrophysics Data System (ADS)

    Taylor, Trent Matthew

    This dissertation addresses in detail three main topics for advancing the state-of-the-art in hypersonic aerospace systems: (1) the development of a synergistic method based on entropy generation in order to analyze, evaluate, and optimize vehicle performance, (2) the development and analysis of innovative unconventional flow-control methods for increasing vehicle performance utilizing entropy generation as a fundamental descriptor and predictor of performance, and (3) an investigation of issues arising when evaluating (predicting) actual flight vehicle performance using ground test facilities. Vehicle performance is analyzed beginning from fundamental considerations involving fluid and thermodynamic balance relationships. The results enable the use of entropy generation as the true "common currency" (single loss parameter) for systematic and consistent evaluation of performance losses across the vehicle as an integrated system. Innovative flow control methods are modeled using state of the art CFD codes in which the flow is energized in targeted local zones with emphasis on shock wave modification. Substantial drag reductions are observed such that drag can decrease to 25% of the baseline. Full vehicle studies are then conducted by comparing traditional and flow-controlled designs and very similar axial force is found with an accompanying increase in lift for the flow-control design to account for on-board energy-addition components. Finally, a full engine flowpath configuration is designed for computational studies of ground test performance versus actual flight performance with emphasis on understanding the effect of ground-based vitiate (test contaminant). It is observed that the presence of vitiate in the test medium can also have a significant first-order effect on ignition delay as well as the thermodynamic response to a given heat release in the fuel.

  2. An integrated computer system for preliminary design of advanced aircraft.

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.; Sobieszczanski, J.; Landrum, E. J.

    1972-01-01

    A progress report is given on the first phase of a research project to develop a system of Integrated Programs for Aerospace-Vehicle Design (IPAD) which is intended to automate to the largest extent possible the preliminary and detailed design of advanced aircraft. The approach used is to build a pilot system and simultaneously to carry out two major contractual studies to define a practical IPAD system preparatory to programing. The paper summarizes the specifications and goals of the IPAD system, the progress to date, and any conclusion reached regarding its feasibility and scope. Sample calculations obtained with the pilot system are given for aircraft preliminary designs optimized with respect to discipline parameters, such as weight or L/D, and these results are compared with designs optimized with respect to overall performance parameters, such as range or payload.

  3. 41st Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Editor)

    2012-01-01

    The proceedings of the 41st Aerospace Mechanisms Symposium are reported. JPL hosted the conference, which was held in Pasadena Hilton, Pasadena, California on May 16-18, 2012. Lockheed Martin Space Systems cosponsored the symposium. Technology areas covered include gimbals and positioning mechanisms, components such as hinges and motors, CubeSats, tribology, and Mars Science Laboratory mechanisms.

  4. Graphical simulation for aerospace manufacturing

    NASA Technical Reports Server (NTRS)

    Babai, Majid; Bien, Christopher

    1994-01-01

    Simulation software has become a key technological enabler for integrating flexible manufacturing systems and streamlining the overall aerospace manufacturing process. In particular, robot simulation and offline programming software is being credited for reducing down time and labor cost, while boosting quality and significantly increasing productivity.

  5. Ball Aerospace Actuator Cryogenic Testing

    NASA Technical Reports Server (NTRS)

    Kingsbury, Lana; Lightsey, Paul; Quigley, Phil; Rutkowski, Joel; Russell, J. Kevin (Technical Monitor)

    2002-01-01

    The ambient testing characterizing step size and repeatability for the Ball Aerospace Cryogenic Nano-Positioner actuators for the AMSD (Advanced Mirror System Demonstrator) program has been completed and are presented. Current cryogenic testing is underway. Earlier cryogenic test results for a pre-cursor engineering model are presented.

  6. Aerospace applications of magnetic bearings

    NASA Technical Reports Server (NTRS)

    Downer, James; Goldie, James; Gondhalekar, Vijay; Hockney, Richard

    1994-01-01

    Magnetic bearings have traditionally been considered for use in aerospace applications only where performance advantages have been the primary, if not only, consideration. Conventional wisdom has been that magnetic bearings have certain performance advantages which must be traded off against increased weight, volume, electric power consumption, and system complexity. These perceptions have hampered the use of magnetic bearings in many aerospace applications because weight, volume, and power are almost always primary considerations. This paper will review progress on several active aerospace magnetic bearings programs at SatCon Technology Corporation. The magnetic bearing programs at SatCon cover a broad spectrum of applications including: a magnetically-suspended spacecraft integrated power and attitude control system (IPACS), a magnetically-suspended momentum wheel, magnetic bearings for the gas generator rotor of a turboshaft engine, a vibration-attenuating magnetic bearing system for an airborne telescope, and magnetic bearings for the compressor of a space-rated heat pump system. The emphasis of these programs is to develop magnetic bearing technologies to the point where magnetic bearings can be truly useful, reliable, and well tested components for the aerospace community.

  7. Resource Management and Contingencies in Aerospace Concurrent Engineering

    NASA Technical Reports Server (NTRS)

    Karpati, Gabe; Hyde, Tupper; Peabody, Hume; Garrison, Matthew

    2012-01-01

    significant concern in designing complex systems implementing new technologies is that while knowledge about the system is acquired incrementally, substantial financial commitments, even make-or-break decisions, must be made upfront, essentially in the unknown. One practice that helps in dealing with this dichotomy is the smart embedding of contingencies and margins in the design to serve as buffers against surprises. This issue presents itself in full force in the aerospace industry, where unprecedented systems are formulated and committed to as a matter of routine. As more and more aerospace mission concepts are generated by concurrent design laboratories, it is imperative that such laboratories apply well thought-out contingency and margin structures to their designs. The first part of this publication provides an overview of resource management techniques and standards used in the aerospace industry. That is followed by a thought provoking treatise on margin policies. The expose presents the actual flight telemetry data recorded by the thermal discipline during several recent NASA Goddard Space Flight Center missions. The margins actually achieved in flight are compared against pre-flight predictions, and the appropriateness and the ramifications of having designed with rigid margins to bounding stacked worst case conditions are assessed. The second half of the paper examines the particular issues associated with the application of contingencies and margins in the concurrent engineering environment. In closure, a discipline-by-discipline disclosure of the contingency and margin policies in use at the Integrated Design Center at NASA s Goddard Space Flight Center is made.

  8. NASA Non-Flow-Through PEM Fuel Cell System for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Araghi, Koorosh R.

    2011-01-01

    NASA is researching passive NFT Proton Exchange Membrane (PEM) fuel cell technologies for primary fuel cell power plants in air-independent applications. NFT fuel cell power systems have a higher power density than flow through systems due to both reduced parasitic loads and lower system mass and volume. Reactant storage still dominates system mass/volume considerations. NFT fuel cell stack testing has demonstrated equivalent short term performance to flow through stacks. More testing is required to evaluate long-term performance.

  9. An integrated approach to system design, reliability, and diagnosis

    NASA Technical Reports Server (NTRS)

    Patterson-Hine, F. A.; Iverson, David L.

    1990-01-01

    The requirement for ultradependability of computer systems in future avionics and space applications necessitates a top-down, integrated systems engineering approach for design, implementation, testing, and operation. The functional analyses of hardware and software systems must be combined by models that are flexible enough to represent their interactions and behavior. The information contained in these models must be accessible throughout all phases of the system life cycle in order to maintain consistency and accuracy in design and operational decisions. One approach being taken by researchers at Ames Research Center is the creation of an object-oriented environment that integrates information about system components required in the reliability evaluation with behavioral information useful for diagnostic algorithms. Procedures have been developed at Ames that perform reliability evaluations during design and failure diagnoses during system operation. These procedures utilize information from a central source, structured as object-oriented fault trees. Fault trees were selected because they are a flexible model widely used in aerospace applications and because they give a concise, structured representation of system behavior. The utility of this integrated environment for aerospace applications in light of our experiences during its development and use is described. The techniques for reliability evaluation and failure diagnosis are discussed, and current extensions of the environment and areas requiring further development are summarized.

  10. Integrated system design report

    SciTech Connect

    Not Available

    1989-07-01

    The primary objective of the integrated system test phase is to demonstrate the commercial potential of a coal fueled diesel engine in its actual operating environment. The integrated system in this project is defined as a coal fueled diesel locomotive. This locomotive, shown on drawing 41D715542, is described in the separate Concept Design Report. The test locomotive will be converted from an existing oil fueled diesel locomotive in three stages, until it nearly emulates the concept locomotive. Design drawings of locomotive components (diesel engine, locomotive, flatcar, etc.) are included.

  11. Development of high frequency low weight power magnetics for aerospace power systems

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.

    1984-01-01

    A dominant design consideration in the development of space type power mangetic devices is the application of reliable thermal control methods to prevent device failure which is due to excessive temperature rises and hot temperatures in critical areas. The resultant design must also yield low weight, high efficiency, high reliability and maintainability, and long life. The weight savings and high efficiency that results by going to high frequency and unique thermal control techniques is demonstrated by the development of a 25 kVA, 20 kHz space type transformer under the power magnetics technology program. Work in the area of power rotary transformer is also discussed.

  12. EHF SATCOM system design

    NASA Astrophysics Data System (ADS)

    Ahmed, M. Jamil

    Future satellite systems will differ considerably from the current versions. The impetus for change is a result of the need for more capacity, wider bandwidth requirements for enhanced services, increasing demand for mobile communications, advances in technology, developments in satellite payload systems, and a demand for secure military communications. To a large extent all of these needs can be satisfied by the use of extremely high frequency satellite communication (EHF Satcom) systems. EHF Satcom system design, features, pros and cons of using the system, particularly for military applications, and the current status of EHF SATCOM in Canada, U.S., Europe, and Japan are examined. The demand for bandwidth will continue to increase due to the growth of communication as well as due to enhanced services for business and entertainment. The increased bandwidth needs will be met by operating at higher frequencies, and perhaps by using extremely high frequency/superhigh frequency (EHF/SHF) satellites. Design of such systems involves a consideration of numerous aspects of design, technology, cost, and services. Advances in technology will make EHF/SHF systems feasible for military applications, as well as commercial mobile terminals, and high data rate terminals. The use of higher frequencies and small antennas will aid mobile communications. On-board processing will be akin to putting a switch in the space, providing flexibility of rates, connectivity, and services.

  13. Distributed System Design Checklist

    NASA Technical Reports Server (NTRS)

    Hall, Brendan; Driscoll, Kevin

    2014-01-01

    This report describes a design checklist targeted to fault-tolerant distributed electronic systems. Many of the questions and discussions in this checklist may be generally applicable to the development of any safety-critical system. However, the primary focus of this report covers the issues relating to distributed electronic system design. The questions that comprise this design checklist were created with the intent to stimulate system designers' thought processes in a way that hopefully helps them to establish a broader perspective from which they can assess the system's dependability and fault-tolerance mechanisms. While best effort was expended to make this checklist as comprehensive as possible, it is not (and cannot be) complete. Instead, we expect that this list of questions and the associated rationale for the questions will continue to evolve as lessons are learned and further knowledge is established. In this regard, it is our intent to post the questions of this checklist on a suitable public web-forum, such as the NASA DASHLink AFCS repository. From there, we hope that it can be updated, extended, and maintained after our initial research has been completed.

  14. The 2004 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Topics covered include: Super NiCd(TradeMark) Energy Storage for Gravity Probe-B Relativity Mission; Hubble Space Telescope 2004 Battery Update; The Development of Hermetically Sealed Aerospace Nickel-Metal Hydride Cell; Serial Charging Test on High Capacity Li-Ion Cells for the Orbiter Advanced Hydraulic Power System; Cell Equalization of Lithium-Ion Cells; The Long-Term Performance of Small-Cell Batteries Without Cell-Balancing Electronics; Identification and Treatment of Lithium Battery Cell Imbalance under Flight Conditions; Battery Control Boards for Li-Ion Batteries on Mars Exploration Rovers; Cell Over Voltage Protection and Balancing Circuit of the Lithium-Ion Battery; Lithium-Ion Battery Electronics for Aerospace Applications; Lithium-Ion Cell Charge Control Unit; Lithium Ion Battery Cell Bypass Circuit Test Results at the U.S. Naval Research Laboratory; High Capacity Battery Cell By-Pass Switches: High Current Pulse Testing of Lithium-Ion; Battery By-Pass Switches to Verify Their Ability to Withstand Short-Circuits; Incorporation of Physics-Based, Spatially-Resolved Battery Models into System Simulations; A Monte Carlo Model for Li-Ion Battery Life Projections; Thermal Behavior of Large Lithium-Ion Cells; Thermal Imaging of Aerospace Battery Cells; High Rate Designed 50 Ah Li-Ion Cell for LEO Applications; Evaluation of Corrosion Behavior in Aerospace Lithium-Ion Cells; Performance of AEA 80 Ah Battery Under GEO Profile; LEO Li-Ion Battery Testing; A Review of the Feasibility Investigation of Commercial Laminated Lithium-Ion Polymer Cells for Space Applications; Lithium-Ion Verification Test Program; Panasonic Small Cell Testing for AHPS; Lithium-Ion Small Cell Battery Shorting Study; Low-Earth-Orbit and Geosynchronous-Earth-Orbit Testing of 80 Ah Batteries under Real-Time Profiles; Update on Development of Lithium-Ion Cells for Space Applications at JAXA; Foreign Comparative Technology: Launch Vehicle Battery Cell Testing; 20V, 40 Ah Lithium Ion Polymer

  15. Maglev system design considerations

    SciTech Connect

    Coffey, H.T.

    1991-01-01

    Although efforts are now being made to develop magnetic levitation technologies in the United States, they have been underway for two decades in Germany and Japan. The characteristics of maglev systems being considered for implementation in the United States are speculative. A conference was held at Argonne National Laboratory on November 28--29, 1990, to discuss these characteristics and their implications for the design requirements of operational systems. This paper reviews some of the factors considered during that conference.

  16. Aerospace Applications of Microprocessors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An assessment of the state of microprocessor applications is presented. Current and future requirements and associated technological advances which allow effective exploitation in aerospace applications are discussed.

  17. Resilience Engineering in Critical Long Term Aerospace Software Systems: A New Approach to Spacecraft Software Safety

    NASA Astrophysics Data System (ADS)

    Dulo, D. A.

    Safety critical software systems permeate spacecraft, and in a long term venture like a starship would be pervasive in every system of the spacecraft. Yet software failure today continues to plague both the systems and the organizations that develop them resulting in the loss of life, time, money, and valuable system platforms. A starship cannot afford this type of software failure in long journeys away from home. A single software failure could have catastrophic results for the spaceship and the crew onboard. This paper will offer a new approach to developing safe reliable software systems through focusing not on the traditional safety/reliability engineering paradigms but rather by focusing on a new paradigm: Resilience and Failure Obviation Engineering. The foremost objective of this approach is the obviation of failure, coupled with the ability of a software system to prevent or adapt to complex changing conditions in real time as a safety valve should failure occur to ensure safe system continuity. Through this approach, safety is ensured through foresight to anticipate failure and to adapt to risk in real time before failure occurs. In a starship, this type of software engineering is vital. Through software developed in a resilient manner, a starship would have reduced or eliminated software failure, and would have the ability to rapidly adapt should a software system become unstable or unsafe. As a result, long term software safety, reliability, and resilience would be present for a successful long term starship mission.

  18. Data bases and data base systems related to NASA's Aerospace Program: A bibliography with indexes

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This bibliography lists 641 reports, articles, and other documents introduced into the NASA scientific and technical information system during the period January 1, 1981 through June 30, 1982. The directory was compiled to assist in the location of numerical and factual data bases and data base handling and management systems.

  19. Lattice Structures For Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Del Olmo, E.; Grande, E.; Samartin, C. R.; Bezdenejnykh, M.; Torres, J.; Blanco, N.; Frovel, M.; Canas, J.

    2012-07-01

    The way of mass reduction improving performances in the aerospace structures is a constant and relevant challenge in the space business. The designs, materials and manufacturing processes are permanently in evolution to explore and get mass optimization solutions at low cost. In the framework of ICARO project, EADS CASA ESPACIO (ECE) has designed, manufactured and tested a technology demonstrator which shows that lattice type of grid structures is a promising weight saving solution for replacing some traditional metallic and composite structures for space applications. A virtual testing methodology was used in order to support the design of a high modulus CFRP cylindrical lattice technology demonstrator. The manufacturing process, based on composite Automatic Fiber Placement (AFP) technology developed by ECE, allows obtaining high quality low weight lattice structures potentially applicable to a wide range of aerospace structures. Launcher payload adaptors, satellite platforms, antenna towers or instrument supports are some promising candidates.

  20. The Search for Nonflammable Solvent Alternatives for Cleaning Aerospace Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Mark A.; Lowrey, Nikki

    2012-01-01

    To obtain a high degree of cleanliness without risk of corrosion or hazardous reactivity, hydrochlorofluorocarbon (HCFC)-225 is used for cleaning and cleanliness verification of oxygen system components used on NASA fs bipropellant launch vehicles, associated test stands and support equipment. HCFC-225 is a Class II Ozone Depleting Substance (ODS ]II) that was introduced to replace chlorofluorocarbon (CFC)-113, a Class I ODS solvent that is now banned. To meet environmental regulations to eliminate the use of ozone depleting substances, a replacement solvent is required for HCFC ]225 that is effective at removing oils, greases, and particulate from large oxygen system components, is compatible with materials used in the construction of these systems, and is nonflammable and non ]reactive in enriched oxygen environments. A solvent replacement is also required for aviator fs breathing oxygen systems and other related equipment currently cleaned and verified with HCFC ]225 and stockpiled CFC -113. Requirements and challenges in the search for nonflammable replacement solvents are discussed.

  1. NASA Workshop on Distributed Parameter Modeling and Control of Flexible Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Marks, Virginia B. (Compiler); Keckler, Claude R. (Compiler)

    1994-01-01

    Although significant advances have been made in modeling and controlling flexible systems, there remains a need for improvements in model accuracy and in control performance. The finite element models of flexible systems are unduly complex and are almost intractable to optimum parameter estimation for refinement using experimental data. Distributed parameter or continuum modeling offers some advantages and some challenges in both modeling and control. Continuum models often result in a significantly reduced number of model parameters, thereby enabling optimum parameter estimation. The dynamic equations of motion of continuum models provide the advantage of allowing the embedding of the control system dynamics, thus forming a complete set of system dynamics. There is also increased insight provided by the continuum model approach.

  2. A Data Acquisition System (DAS) for marine and ecological research from aerospace technology

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.

    1972-01-01

    The efforts of researchers at Mississippi State University to utilize space-age technology in the development of a self-contained, portable data acquisition system for use in marine and ecological research are presented. The compact, lightweight data acquisition system is capable of recording 14 variables in its present configuration and is suitable for use in either a boat, pickup truck, or light aircraft. This system will provide the acquisition of reliable data on the structure of the environment and the effect of man-made and natural activities on the observed phenomenon. Utilizing both self-contained analog recording and a telemetry transmitter for real-time digital readout and recording, the prototype system has undergone extensive testing.

  3. Hardware Specific Integration Strategy for Impedance-Based Structural Health Monitoring of Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Owen, Robert B.; Gyekenyesi, Andrew L.; Inman, Daniel J.; Ha, Dong S.

    2011-01-01

    The Integrated Vehicle Health Management (IVHM) Project, sponsored by NASA's Aeronautics Research Mission Directorate, is conducting research to advance the state of highly integrated and complex flight-critical health management technologies and systems. An effective IVHM system requires Structural Health Monitoring (SHM). The impedance method is one such SHM technique for detection and monitoring complex structures for damage. This position paper on the impedance method presents the current state of the art, future directions, applications and possible flight test demonstrations.

  4. The Search for Nonflammable Solvent Alternatives for Cleaning Aerospace Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Mark; Lowrey, Nikki

    2012-01-01

    Oxygen systems are susceptible to fires caused by particle and nonvolatile residue (NVR) contaminants, therefore cleaning and verification is essential for system safety. . Cleaning solvents used on oxygen system components must be either nonflammable in pure oxygen or complete removal must be assured for system safety. . CFC -113 was the solvent of choice before 1996 because it was effective, least toxic, compatible with most materials of construction, and non ]reactive with oxygen. When CFC -113 was phased out in 1996, HCFC -225 was selected as an interim replacement for cleaning propulsion oxygen systems at NASA. HCFC-225 production phase-out date is 01/01/2015. HCFC ]225 (AK ]225G) is used extensively at Marshall Space Flight Center and Stennis Space Center for cleaning and NVR verification on large propulsion oxygen systems, and propulsion test stands and ground support equipment. . Many components are too large for ultrasonic agitation - necessary for effective aqueous cleaning and NVR sampling. . Test stand equipment must be cleaned prior to installation of test hardware. Many items must be cleaned by wipe or flush in situ where complete removal of a flammable solvent cannot be assured. The search for a replacement solvent for these applications is ongoing.

  5. National Combustion Code: A Multidisciplinary Combustor Design System

    NASA Technical Reports Server (NTRS)

    Stubbs, Robert M.; Liu, Nan-Suey

    1997-01-01

    The Internal Fluid Mechanics Division conducts both basic research and technology, and system technology research for aerospace propulsion systems components. The research within the division, which is both computational and experimental, is aimed at improving fundamental understanding of flow physics in inlets, ducts, nozzles, turbomachinery, and combustors. This article and the following three articles highlight some of the work accomplished in 1996. A multidisciplinary combustor design system is critical for optimizing the combustor design process. Such a system should include sophisticated computer-aided design (CAD) tools for geometry creation, advanced mesh generators for creating solid model representations, a common framework for fluid flow and structural analyses, modern postprocessing tools, and parallel processing. The goal of the present effort is to develop some of the enabling technologies and to demonstrate their overall performance in an integrated system called the National Combustion Code.

  6. Metal- and intermetallic-matrix composites for aerospace propulsion and power systems

    NASA Technical Reports Server (NTRS)

    Doychak, J.

    1992-01-01

    The requirements for high specific strength refractory materials of prospective military, civil, and space propulsion systems are presently addressed in the context of emerging capabilities in metal- and intermetallic-matrix composites. The candidate systems encompass composite matrix compositions of superalloy, Nb-Zr refractory alloy, Cu-base, and Ti-base alloy types, as well as such intermetallics as TiAl, Ti3Al, NiAl, and MoSi2. The brittleness of intermetallic matrices remains a major consideration, as does their general difficulty of fabrication.

  7. BWID System Design Study

    SciTech Connect

    O`Brien, M.C.; Rudin, M.J.; Morrison, J.L.; Richardson, J.G.

    1991-12-31

    The mission of the Buried Waste Integrated Demonstration (BWID) System Design Study is to identify and evaluate technology process options for the cradle-to-grave remediation of Transuranic (TRU)-Contaminated Waste Pits and Trenches buried at the Idaho National Engineering Laboratory (INEL). Emphasis is placed upon evaluating system configuration options and associated functional and operational requirements for retrieving and treating the buried wastes. A Performance-Based Technology Selection Filter was developed to evaluate the identified remediation systems and their enabling technologies based upon system requirements and quantification of technical Comprehensive Environmental Response, Compensation, and Liability (CERCLA) balancing criteria. Remediation systems will also be evaluated with respect to regulatory and institutional acceptance and cost-effectiveness.

  8. BWID System Design Study

    SciTech Connect

    O'Brien, M.C.; Rudin, M.J.; Morrison, J.L.; Richardson, J.G.

    1991-01-01

    The mission of the Buried Waste Integrated Demonstration (BWID) System Design Study is to identify and evaluate technology process options for the cradle-to-grave remediation of Transuranic (TRU)-Contaminated Waste Pits and Trenches buried at the Idaho National Engineering Laboratory (INEL). Emphasis is placed upon evaluating system configuration options and associated functional and operational requirements for retrieving and treating the buried wastes. A Performance-Based Technology Selection Filter was developed to evaluate the identified remediation systems and their enabling technologies based upon system requirements and quantification of technical Comprehensive Environmental Response, Compensation, and Liability (CERCLA) balancing criteria. Remediation systems will also be evaluated with respect to regulatory and institutional acceptance and cost-effectiveness.

  9. Linear Aerospike SR-71 Experiment (LASRE): Aerospace Propulsion Hazard Mitigation Systems

    NASA Technical Reports Server (NTRS)

    Mizukami, Masashi; Corpening, Griffin P.; Ray, Ronald J.; Hass, Neal; Ennix, Kimberly A.; Lazaroff, Scott M.

    1998-01-01

    A major hazard posed by the propulsion system of hypersonic and space vehicles is the possibility of fire or explosion in the vehicle environment. The hazard is mitigated by minimizing or detecting, in the vehicle environment, the three ingredients essential to producing fire: fuel, oxidizer, and an ignition source. The Linear Aerospike SR-71 Experiment (LASRE) consisted of a linear aerospike rocket engine integrated into one-half of an X-33-like lifting body shape, carried on top of an SR-71 aircraft. Gaseous hydrogen and liquid oxygen were used as propellants. Although LASRE is a one-of-a-kind experimental system, it must be rated for piloted flight, so this test presented a unique challenge. To help meet safety requirements, the following propulsion hazard mitigation systems were incorporated into the experiment: pod inert purge, oxygen sensors, a hydrogen leak detection algorithm, hydrogen sensors, fire detection and pod temperature thermocouples, water misting, and control room displays. These systems are described, and their development discussed. Analyses, ground test, and flight test results are presented, as are findings and lessons learned.

  10. Optical memory system technology. Citations from the International Aerospace Abstracts data base

    NASA Technical Reports Server (NTRS)

    Zollars, G. F.

    1980-01-01

    Approximately 213 citations from the international literature which concern the development of the optical data storage system technology are presented. Topics covered include holographic computer storage devices, crystal, magneto, and electro-optics, imaging techniques, in addition to optical data processing and storage.

  11. Autonomic and Apoptotic, Aeronautical and Aerospace Systems, and Controlling Scientific Data Generated Therefrom

    NASA Technical Reports Server (NTRS)

    Sterritt, Roy (Inventor); Hinchey, Michael G. (Inventor)

    2015-01-01

    A self-managing system that uses autonomy and autonomicity is provided with the self-* property of autopoiesis (self-creation). In the event of an agent in the system self-destructing, autopoiesis auto-generates a replacement. A self-esteem reward scheme is also provided and can be used for autonomic agents, based on their performance and trust. Art agent with greater self-esteem may clone at a greater rate compared to the rate of an agent with lower self-esteem. A self-managing system is provided for a high volume of distributed autonomic/self-managing mobile agents, and autonomic adhesion is used to attract similar agents together or to repel dissimilar agents from an event horizon. An apoptotic system is also provided that accords an "expiry date" to data and digital objects, for example, that are available on the internet, which finds usefulness not only in general but also for controlling the loaning and use of space scientific data.

  12. Aerospace and military

    SciTech Connect

    Adam, J.A.; Esch, K

    1990-01-01

    This article reviews military and aerospace developments of 1989. The Voyager spacecraft returned astounding imagery from Neptune, sophisticated sensors were launched to explore Venus and Jupiter, and another craft went into earth orbit to explore cosmic rays, while a huge telescope is to be launched early in 1990. The U.S. space shuttle redesign was completed and access to space has become no longer purely a governmental enterprise. In the military realm, events within the Soviet bloc, such as the Berlin Wall's destruction, have popularized arms control. Several big treaties could be signed within the year. Massive troop, equipment, and budget reductions are being considered, along with a halt or delay of major new weapons systems. For new missions, the U.S. military is retreating to its role of a century ago - patrolling the nation's borders, this time against narcotics traffickers.

  13. Fiber optic oxygen sensor detection system for harsh environments of aerospace applications

    NASA Astrophysics Data System (ADS)

    Kazemi, Alex A.; Mendoza, Edgar; Goswami, Kish; Kempen, Lothar

    2013-05-01

    This paper describes the first successful fiber optic oxygen detection sensor systems developed for the Boeing Delta IV Launch Vehicle harsh environment of engine section. It illustrates a novel multi-point fiber optic microsensor (optrode) based on dynamic luminescence quenching that was developed for measuring oxygen leak detection for the space applications. The sensor optrodes employ the quenching by oxygen of the fluorescence from a ruthenium complex. These optrodes were fabricated using Ruthenium-based fluorescent indicator immobilized in a porous glass rod placed at the end of multimode fiber. The light from a blue LED is launched into the optrode via a fiber optic bundle and used as the excitation source. The optrode's fluorescent emission intensity in the range of 0% to 10% oxygen is measured as a function of time. The measuring system is based on high reliability and low cost. The system consists of four units: 1) temperature compensated oxygen optrodes combined with an optical setup, 2) multipoint sensor communication fiber optic network cable, 3) digital/analogue optoelectronic signal processing unit with built-in micro controller for control of data acquisition and processing, and 4) a laptop computer for data display and storage. In testing, the sensor exhibited excellent response time and reversibility. To qualify the sensors, performed detail investigation for thermal, humidity, temperature, vibration and accelerate testing for life expectancy of harsh environmental of engine section. Extensive networking using MatLab were carried out for lab and actual field demonstrations.

  14. Ikhana: Unmanned Aircraft System Western States Fire Missions. Monographs in Aerospace History, Number 44

    NASA Technical Reports Server (NTRS)

    Merlin, Peter W.

    2009-01-01

    In 2006, NASA Dryden Flight Research Center, Edwards, Calif., obtained a civil version of the General Atomics MQ-9 unmanned aircraft system and modified it for research purposes. Proposed missions included support of Earth science research, development of advanced aeronautical technology, and improving the utility of unmanned aerial systems in general. The project team named the aircraft Ikhana a Native American Choctaw word meaning intelligent, conscious, or aware in order to best represent NASA research goals. Building on experience with these and other unmanned aircraft, NASA scientists developed plans to use the Ikhana for a series of missions to map wildfires in the western United States and supply the resulting data to firefighters in near-real time. A team at NASA Ames Research Center, Mountain View, Calif., developed a multispectral scanner that was key to the success of what became known as the Western States Fire Missions. Carried out by team members from NASA, the U.S. Department of Agriculture Forest Service, National Interagency Fire Center, National Oceanic and Atmospheric Administration, Federal Aviation Administration, and General Atomics Aeronautical Systems Inc., these flights represented an historic achievement in the field of unmanned aircraft technology.

  15. Intelligent design system for design automation

    NASA Astrophysics Data System (ADS)

    Shakeri, Cirrus; Deif, Ismail; Katragadda, Prasanna; Knutson, Stanley

    2000-10-01

    In order to succeed in today's global, competitive market, companies need continuous improvements in their product development processes. These improvements should result in expending fewer resources on the design process while achieving better quality. Automating the design process reduces resources needed and allows designers to spend more time on creative aspects that improve the quality of design. For the last three decades, engineers and designers have been searching for better ways to automate the product development process. For certain classes of design problems, which cover a large portion of real world design situations, the process can be automated using knowledge-based systems. These are design problems in which the knowledge sources are known in advance. Using techniques from Knowledge-Based Engineering, knowledge is codified and inserted into a knowledge-based system. The system activates the design knowledge, automatically generating designs that satisfy the design constraints. To increase the return on investment of building automated design systems, Knowledge management methodologies and techniques are required for capturing, formalizing, storing, and searching design knowledge.

  16. An air launched, highly responsive military transatmospheric vehicle (TAV), based on existing aerospace systems

    NASA Astrophysics Data System (ADS)

    Hampsten, Kenneth R.

    1996-03-01

    A novel vehicle design is presented that minimizes Research Development Test and Evaluation (RDT&E) cost. The proposed TAV can satisfy a broad range of military mission applications for the 21st century. TAV deployment is provided by a Rockwell B-1B bomber. Pre-launch orientation of the vehicle is centerline, underneath the B-1B forward weapon bays. Launch occurs at 30,000 ft, Mach 0.90, and at a flight path angle of 15-20 degrees. The TAV is a Two-Stage-To-Orbit (TSTO) vehicle utilizing Liquid Oxygen (LOX) and RP-1 (kerosene) propellants. The reusable upper stage, or TAV, incorporates a 130 cubic foot payload bay for mission specific equipment. The booster can either be expended, or potentially recovered for reuse. TAV reentry relies on a biconic aeroshell for the hypersonic flight phase and a parafoil for the subsonic, terminal recovery phase. Nominal mission performance is between 1,150-1,800 lbs of payload into a 100 nmi circular orbit.

  17. Design and Development of Aerogel-Based Antennas for Aerospace Applications: A Final Report to the NARI Seedling

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Miranda, Felix A.

    2014-01-01

    As highly porous solids possessing low density and low dielectric permittivity combined with good mechanical properties, polyimide (PI) aerogels offer great promise as an enabling technology for lightweight aircraft antenna systems. While they have been aggressively explored for thermal insulation, barely any effort has been made to leverage these materials for antennas or other applications that take advantage of their aforementioned attributes. In Phase I of the NARI Seedling Project, we fabricated PI aerogels with properties tailored to enable new antenna concepts with performance characteristics (wide bandwidth and high gain) and material properties (low density, environmental stability, and robustness) superior to the state of practice (SOP). We characterized electromagnetic properties, including permittivity, reflectivity, and propagation losses for the aerogels. Simple, prototype planar printed circuit patch antennas from down-selected aerogel formulations were fabricated by molding the aerogels to net shapes and by gold-metalizing the pattern onto the templates via electron beam evaporation in a clean room environment. These aerogel based antennas were benchmarked against current antenna SOP, and exhibited both broader bandwidth and comparable or higher gain performance at appreciably lower mass. Phase II focused on the success of the Phase I results pushing the PI aerogel based antenna technology further by exploring alternative antenna design (i.e., slot coupled antennas) and by examining other techniques for fabricating the antennas including ink jet printing with the goal of optimizing antenna performance and simplifying production. We also examined new aerogel formulations with better moisture and solvent resistance to survive processing conditions. In addition, we investigated more complex antenna designs including passive phased arrays such as 2x4 and 4x8 element arrays to assess the scalability of the aerogel antenna concept. Furthermore, we

  18. The 11th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Mechanical devices and drives developed for aerospace applications are described. Satellite flywheels, magnetic bearings, a missile umbilical system, a cartridge firing device, and an oiler for satellite bearing lubrication are among the topics discussed.

  19. Magnetic Gearboxes for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Perez-Diaz, Jose Luis; Diez-Jimenez, Efren; Alvarez-Valenzuela, Marco A.; Sanchez-Garcia-Casarrubios, Juan; Cristache, Christian; Valiente-Blanco, Ignacio

    2014-01-01

    Magnetic gearboxes are contactless mechanisms for torque-speed conversion. They present no wear, no friction and no fatigue. They need no lubricant and can be customized for other mechanical properties as stiffness or damping. Additionally, they can protect structures and mechanisms against overloads, limitting the transmitted torque. In this work, spur, planetary and "magdrive" or "harmonic drive" configurations are compared considering their use in aerospace applications. The most recent test data are summarized to provide some useful help for the design engineer.

  20. Development of the engineering design integration (EDIN) system: A computer aided design development

    NASA Technical Reports Server (NTRS)

    Glatt, C. R.; Hirsch, G. N.

    1977-01-01

    The EDIN (Engineering Design Integration) System which provides a collection of hardware and software, enabling the engineer to perform man-in-the-loop interactive evaluation of aerospace vehicle concepts, was considered. Study efforts were concentrated in the following areas: (1) integration of hardware with the Univac Exec 8 System; (2) development of interactive software for the EDIN System; (3) upgrading of the EDIN technology module library to an interactive status; (4) verification of the soundness of the developing EDIN System; (5) support of NASA in design analysis studies using the EDIN System; (6) provide training and documentation in the use of the EDIN System; and (7) provide an implementation plan for the next phase of development and recommendations for meeting long range objectives.

  1. Acoustic Emission Health Monitoring of Fill Purge COPV's Used in Aerospace and Automotive Applications and Designed for Long Cycle Life

    NASA Technical Reports Server (NTRS)

    Waller, Jess

    2013-01-01

    Cumulative composite damage in composite pressure vessels (CPVs) currently is not monitored on-orbit. Consequently, hazards due to catastrophic burst before leak (BBL) or compromised CPV reliability cannot be ascertained or mitigated, posing a risk to crew and mission assurance. The energy associated with CPV rupture can be significant, especially with high pressure gases are under containment, and the energy releases can be severe enough to cause injury, death, loss of assets or mission. Dual-Use Rationale: CPVs similar to those used by NASA on ISS, for example, are finding increasing use in automotive and transportation industry applications. These CPVs generally have a nonload sharing liner and are repeatedly filled over their service lifetime, typically with hydrogen or compressed natural gas (CNG). The same structural health monitoring equipment and software developed by NASA WSTF for evaluating, in real-time, the health of NASA CPVs on ISS will be used to evaluate the health of automotive CPVs, the only differences being the type and design of the CPV, and the in-service lifetime pressure histories. HSF Need(s)/Performance Characteristic(s) Supported: 1) Enable on-board vehicle systems management for mission critical functions at destinations with > 3 second time delay 2) Enable autonomous nominal operations and FDIR for crewed and un-crewed systems 3) Reduce on-board crew time to sustain and manage vehicle by factor of 2x at destinations with > 6 second time delay (see Crew Autonomy sheet) 4) Reduce earth-based mission ops "back room engineering" requirements for distant mission support delay (see Mission Autonomy sheet)

  2. Mobile Computing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Swietek, Gregory E. (Technical Monitor)

    1994-01-01

    The use of commercial computer technology in specific aerospace mission applications can reduce the cost and project cycle time required for the development of special-purpose computer systems. Additionally, the pace of technological innovation in the commercial market has made new computer capabilities available for demonstrations and flight tests. Three areas of research and development being explored by the Portable Computer Technology Project at NASA Ames Research Center are the application of commercial client/server network computing solutions to crew support and payload operations, the analysis of requirements for portable computing devices, and testing of wireless data communication links as extensions to the wired network. This paper will present computer architectural solutions to portable workstation design including the use of standard interfaces, advanced flat-panel displays and network configurations incorporating both wired and wireless transmission media. It will describe the design tradeoffs used in selecting high-performance processors and memories, interfaces for communication and peripheral control, and high resolution displays. The packaging issues for safe and reliable operation aboard spacecraft and aircraft are presented. The current status of wireless data links for portable computers is discussed from a system design perspective. An end-to-end data flow model for payload science operations from the experiment flight rack to the principal investigator is analyzed using capabilities provided by the new generation of computer products. A future flight experiment on-board the Russian MIR space station will be described in detail including system configuration and function, the characteristics of the spacecraft operating environment, the flight qualification measures needed for safety review, and the specifications of the computing devices to be used in the experiment. The software architecture chosen shall be presented. An analysis of the

  3. Engineering Software Suite Validates System Design

    NASA Technical Reports Server (NTRS)

    2007-01-01

    EDAptive Computing Inc.'s (ECI) EDAstar engineering software tool suite, created to capture and validate system design requirements, was significantly funded by NASA's Ames Research Center through five Small Business Innovation Research (SBIR) contracts. These programs specifically developed Syscape, used to capture executable specifications of multi-disciplinary systems, and VectorGen, used to automatically generate tests to ensure system implementations meet specifications. According to the company, the VectorGen tests considerably reduce the time and effort required to validate implementation of components, thereby ensuring their safe and reliable operation. EDASHIELD, an additional product offering from ECI, can be used to diagnose, predict, and correct errors after a system has been deployed using EDASTAR -created models. Initial commercialization for EDASTAR included application by a large prime contractor in a military setting, and customers include various branches within the U.S. Department of Defense, industry giants like the Lockheed Martin Corporation, Science Applications International Corporation, and Ball Aerospace and Technologies Corporation, as well as NASA's Langley and Glenn Research Centers

  4. Blowdown Wind Tunnels: Latest Citations from the Aerospace Database

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning the design, construction, operation, and performance of blowdown wind tunnels. The use of compressed gas, mechanical piston, or combustion exhaust to provide continuous or short-duration operation from transonic to hypersonic approach velocities is discussed. Also covered are invasive and non-invasive aerothermodynamic instrumentation, data acquisition and reduction techniques, and test reports on aerospace components. Comprehensive coverage of wind tunnel force balancing systems and supersonic wind tunnels are covered in separate bibliographies.

  5. Design Language for Digital Systems

    NASA Technical Reports Server (NTRS)

    Shiva, S. G.

    1985-01-01

    Digital Systems Design Language (DDL) is convenient hardware description language for developing and testing digital designs and for inputting design details into design automation system. Describes digital systems at gate, register transfer, and combinational block levels. DDL-based programs written in FORTRAN IV for batch execution.

  6. Doppler Lidar System Design via Interdisciplinary Design Concept at NASA Langley Research Center - Part III

    NASA Technical Reports Server (NTRS)

    Barnes, Bruce W.; Sessions, Alaric M.; Beyon, Jeffrey; Petway, Larry B.

    2014-01-01

    Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. The existing power system was analyzed to rank components in terms of inefficiency, power dissipation, footprint and mass. Design considerations and priorities are compared along with the results of each design iteration. Overall power system improvements are summarized for design implementations.

  7. Doppler lidar system design via interdisciplinary design concept at NASA Langley Research Center: Part III

    NASA Astrophysics Data System (ADS)

    Barnes, Bruce W.; Sessions, Alaric M.; Beyon, Jeffrey Y.; Petway, Larry B.

    2014-06-01

    Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. The existing power system was analyzed to rank components in terms of inefficiency, power dissipation, footprint and mass. Design considerations and priorities are compared along with the results of each design iteration. Overall power system improvements are summarized for design implementations.

  8. The engineering design integration (EDIN) system. [digital computer program complex

    NASA Technical Reports Server (NTRS)

    Glatt, C. R.; Hirsch, G. N.; Alford, G. E.; Colquitt, W. N.; Reiners, S. J.

    1974-01-01

    A digital computer program complex for the evaluation of aerospace vehicle preliminary designs is described. The system consists of a Univac 1100 series computer and peripherals using the Exec 8 operating system, a set of demand access terminals of the alphanumeric and graphics types, and a library of independent computer programs. Modification of the partial run streams, data base maintenance and construction, and control of program sequencing are provided by a data manipulation program called the DLG processor. The executive control of library program execution is performed by the Univac Exec 8 operating system through a user established run stream. A combination of demand and batch operations is employed in the evaluation of preliminary designs. Applications accomplished with the EDIN system are described.

  9. Evaluating Aerospace Workshops.

    ERIC Educational Resources Information Center

    Leonard, Rex L.

    1978-01-01

    Declining enrollments in aerospace teacher workshops suggest the need for evaluation and cost effectiveness measurements. A major purpose of this article is to illustrate some typical evaluation methodologies, including the semantic differential. (MA)

  10. Aerospace bibliography, seventh edition

    NASA Technical Reports Server (NTRS)

    Blashfield, J. F. (Compiler)

    1983-01-01

    Space travel, planetary probes, applications satellites, manned spaceflight, the impacts of space exploration, future space activities, astronomy, exobiology, aeronautics, energy, space and the humanities, and aerospace education are covered.

  11. Ninteenth Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The proceedings of the 19th Aerospace Mechanisms Symposium are reported. Technological areas covered include space lubrication, bearings, aerodynamic devices, spacecraft/Shuttle latches, deployment, positioning, and pointing. Devices for spacecraft docking and manipulator and teleoperator mechanisms are also described.

  12. Light weight, high-speed, and self-powered wireless fiber optic sensor (WiFOS) structural health monitor system for avionics and aerospace environments

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Kempen, Cornelia; Sun, Sunjian; Esterkin, Yan

    2014-09-01

    This paper describes recent progress towards the development of an innovative light weight, high-speed, and selfpowered wireless fiber optic sensor (WiFOS™) structural health monitor system suitable for the onboard and in-flight unattended detection, localization, and classification of load, fatigue, and structural damage in advanced composite materials commonly used in avionics and aerospace systems. The WiFOS™ system is based on ROI's advancements on monolithic photonic integrated circuit microchip technology, integrated with smart power management, on-board data processing, wireless data transmission optoelectronics, and self-power using energy harvesting tools such as solar, vibration, thermoelectric, and magneto-electric. The self-powered, wireless WiFOS™ system offers a versatile and powerful SHM tool to enhance the reliability and safety of avionics platforms, jet fighters, helicopters, commercial aircraft that use lightweight composite material structures, by providing comprehensive information about the structural integrity of the structure from a large number of locations. Immediate SHM applications are found in rotorcraft and aircraft, ships, submarines, and in next generation weapon systems, and in commercial oil and petrochemical, aerospace industries, civil structures, power utilities, portable medical devices, and biotechnology, homeland security and a wide spectrum of other applications.

  13. Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 5: Catalog of IPAD technical program elements

    NASA Technical Reports Server (NTRS)

    Gillette, W. B. (Editor); Southall, J. W. (Editor)

    1973-01-01

    The catalog is presented of technical program elements which are required to support the design activities for a subsonic and supersonic commercial transport. Information for each element consists of usage and storage information, ownership, status and an abstract describing the purpose of the element.

  14. In-Situ Load System for Calibrating and Validating Aerodynamic Properties of Scaled Aircraft in Ground-Based Aerospace Testing Applications

    NASA Technical Reports Server (NTRS)

    Commo, Sean A. (Inventor); Lynn, Keith C. (Inventor); Landman, Drew (Inventor); Acheson, Michael J. (Inventor)

    2016-01-01

    An In-Situ Load System for calibrating and validating aerodynamic properties of scaled aircraft in ground-based aerospace testing applications includes an assembly having upper and lower components that are pivotably interconnected. A test weight can be connected to the lower component to apply a known force to a force balance. The orientation of the force balance can be varied, and the measured forces from the force balance can be compared to applied loads at various orientations to thereby develop calibration factors.

  15. System design description cone penetrometer system

    SciTech Connect

    Seda, R.Y., Westinghouse Hanford

    1996-08-12

    The system design description documents in detail the design of the cone penetrometer system. The systems includes the cone penetrometer physical package, raman spectroscopy package and moisture sensor package. Information pertinent to the system design, development, fabrication and testing is provided.

  16. Unification - An international aerospace information opportunity

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.

    1992-01-01

    Science and technology projects are becoming more and more international and interdisciplinary. Other parts of the world, notably Europe, are increasingly powerful players in the aerospace industry. This change has led to the development of various aerospace information initiatives in other countries. With scarce resources in all areas of government and industry, the NASA STI Program is reviewing its current acquisition and exchange practices and policies to factor in the changing requirements and new opportunities within the international community. Current NASA goals and activities are reviewed with a new view toward developing a scenario for establishing an international aerospace database, maintaining compatibility among national aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  17. Unification: An international aerospace information issue

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.

    1991-01-01

    Science and technology projects are becoming more and more international and interdisciplinary. Other parts of the world, notably Europe, are increasingly powerful players in the aerospace business. This change has led to the development of various aerospace information initiatives in other countries. With scarce resources in all areas of government and industry, the NASA STI Program is reviewing its current acquisition and exchange practices and policies to factor in the changing requirements and new opportunities within the international community. Current NASA goals and activities are reviewed with a view toward developing a scenario for establishing an international aerospace data base, maintaining compatibility among national aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  18. Unification: An international aerospace information opportunity

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.; Carroll, Bonnie C.

    1992-01-01

    Science and technology projects are becoming more and more international and interdisciplinary. Other parts of the world, notably Europe, are increasingly powerful players in the aerospace industry. This change has led to the development of various aerospace information initiatives in other countries. With scarce resources in all areas of government and industry, the NASA STI Program is reviewing its current acquisition and exchange practices and policies to factor in the changing requirements and new opportunities within the international community. Current NASA goals and activities are reviewed with a new view toward developing a scenario for establishing an international aerospace database, maintaining compatibility among national aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  19. Index of aerospace mechanisms symposia proceedings 1-19

    NASA Technical Reports Server (NTRS)

    Rinaldo, A.; Wilson, J.

    1986-01-01

    This index, organized in five sections (by symposium, by title, by author, by subject, and by project), brings together information on the first 19 Aerospace Mechanisms symposia. Key words are included, cross-referencing all the symposia, and the eighteenth and nineteenth symposia are cross-indexed by project. The Aerospace Mechanisms symposia are devoted to discussions of design, fabrication, test, and operational use of aerospace mechanisms; this is the first index that compiles information on symposia held from 1966 through 1985.

  20. National Aero-Space Plane

    NASA Technical Reports Server (NTRS)

    Piland, William M.

    1987-01-01

    An account is given of the technology development management objectives thus far planned for the DOD/NASA National Aero-Space Plane (NASP). The technology required by NASP will first be developed in ground-based facilities and then integrated during the design and construction of the X-30 experimental aircraft. Five airframe and three powerplant manufacturers are currently engaged in an 18-month effort encompassing design studies and tradeoff analyses. The first flight of the X-30 is scheduled for early 1993.