Science.gov

Sample records for aerospike experiment configuration

  1. Linear Aerospike SR-71 Experiment (LASRE)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A NASA SR-71 successfully completed its first flight October 31, 1997 as part of the NASA/Rocketdyne/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a maximum speed of Mach 1.2 before landing at Edwards at 10:21 a.m. PST, successfully validating the SR-71/linear aerospike experiment configuration.

  2. Wind-tunnel development of an SR-71 aerospike rocket flight test configuration

    NASA Technical Reports Server (NTRS)

    Smith, Stephen C.; Shirakata, Norm; Moes, Timothy R.; Cobleigh, Brent R.; Conners, Timothy H.

    1996-01-01

    A flight experiment has been proposed to investigate the performance of an aerospike rocket motor installed in a lifting body configuration. An SR-71 airplane would be used to carry the aerospike configuration to the desired flight test conditions. Wind-tunnel tests were completed on a 4-percent scale SR-71 airplane with the aerospike pod mounted in various locations on the upper fuselage. Testing was accomplished using sting and blade mounts from Mach 0.6 to Mach 3.2. Initial test objectives included assessing transonic drag and supersonic lateral-directional stability and control. During these tests, flight simulations were run with wind-tunnel data to assess the acceptability of the configurations. Early testing demonstrated that the initial configuration with the aerospike pod near the SR-71 center of gravity was unsuitable because of large nosedown pitching moments at transonic speeds. The excessive trim drag resulting from accommodating this pitching moment far exceeded the excess thrust capability of the airplane. Wind-tunnel testing continued in an attempt to find a configuration suitable for flight test. Multiple configurations were tested. Results indicate that an aft-mounted model configuration possessed acceptable performance, stability, and control characteristics.

  3. Linear Aerospike SR-71 Experiment (LASRE) first flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A NASA SR-71 successfully completed its first flight 31 October 1997 as part of the NASA/Rocketdyne/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a maximum speed of Mach 1.2 before landing at Edwards at 10:21 a.m. PST, successfully validating the SR-71/linear aerospike experiment configuration. The goal of the first flight was to evaluate the aerodynamic characteristics and the handling of the SR-71/linear aerospike experiment configuration. The engine was not fired during the flight. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with

  4. Linear Aerospike SR-71 Experiment (LASRE) first flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A NASA SR-71 made its successful first flight Oct. 31 as part of the NASA/Rocketdyne/ Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a maximum speed of Mach 1.2 before landing at Edwards at 10:21 a.m. PST, successfully validating the SR-71/linear aerospike experiment configuration. The goal of the first flight was to evaluate the aerodynamic characteristics and the handling of the SR-71/linear aerospike experiment configuration. The engine was not fired during the flight. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust

  5. Linear Aerospike SR-71 Experiment (LASRE) refueling during first flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A NASA SR-71 refuels with an Edwards Air Force Base KC-135 during the first flight of the NASA/Rocketdyne/ Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE). The flight took place Oct. 31 at NASA's Dryden Flight Research Center, Edwards, California. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a maximum speed of Mach 1.2 before landing at Edwards at 10:21 a.m. PST, successfully validating the SR-71/linear aerospike experiment configuration. The goal of the first flight was to evaluate the aerodynamic characteristics and the handling of the SR-71/linear aerospike experiment configuration. The engine was not fired during the flight. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It

  6. Linear Aerospike SR-71 Experiment (LASRE) first flight takeoff

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A NASA SR-71 takes off Oct. 31, making its first flight as part of the NASA/Rocketdyne/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a maximum speed of Mach 1.2 before landing at Edwards at 10:21 a.m. PST, successfully validating the SR-71/linear aerospike experiment configuration. The goal of the first flight was to evaluate the aerodynamic characteristics and the handling of the SR-71/linear aerospike experiment configuration. The engine was not fired during the flight. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust

  7. Flight Testing the Linear Aerospike SR-71 Experiment (LASRE)

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Neal, Bradford A.; Moes, Timothy R.; Cox, Timothy H.; Monaghan, Richard C.; Voelker, Leonard S.; Corpening, Griffin P.; Larson, Richard R.; Powers, Bruce G.

    1998-01-01

    The design of the next generation of space access vehicles has led to a unique flight test that blends the space and flight research worlds. The new space vehicle designs, such as the X-33 vehicle and Reusable Launch Vehicle (RLV), are powered by linear aerospike rocket engines. Conceived of in the 1960's, these aerospike engines have yet to be flown, and many questions remain regarding aerospike engine performance and efficiency in flight. To provide some of these data before flying on the X-33 vehicle and the RLV, a spacecraft rocket engine has been flight-tested atop the NASA SR-71 aircraft as the Linear Aerospike SR-71 Experiment (LASRE). A 20 percent-scale, semispan model of the X-33 vehicle, the aerospike engine, and all the required fuel and oxidizer tanks and propellant feed systems have been mounted atop the SR-71 airplane for this experiment. A major technical objective of the LASRE flight test is to obtain installed-engine performance flight data for comparison to wind-tunnel results and for the development of computational fluid dynamics-based design methodologies. The ultimate goal of firing the aerospike rocket engine in flight is still forthcoming. An extensive design and development phase of the experiment hardware has been completed, including approximately 40 ground tests. Five flights of the LASRE and firing the rocket engine using inert liquid nitrogen and helium in place of liquid oxygen and hydrogen have been successfully completed.

  8. Linear Aerospike SR-71 Experiment (LASRE) first flight view from above

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A NASA SR-71 made its successful first flight Oct. 31 as part of the NASA/Rocketdyne/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a maximum speed of Mach 1.2 before landing at Edwards at 10:21 a.m. PST, successfully validating the SR-71/linear aerospike experiment configuration. The goal of the first flight was to evaluate the aerodynamic characteristics and the handling of the SR-71/linear aerospike experiment configuration. The engine was not fired during the flight. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust

  9. Flight Stability and Control and Performance Results from the Linear Aerospike SR-71 Experiment (LASRE)

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.; Cobleigh, Brent R.; Cox, Timothy H.; Conners, Timothy R.; Iliff, Kenneth W.; Powers, Bruce G.

    1998-01-01

    The Linear Aerospike SR-71 Experiment (LASRE) is presently being conducted to test a 20-percent-scale version of the Linear Aerospike rocket engine. This rocket engine has been chosen to power the X-33 Single Stage to Orbit Technology Demonstrator Vehicle. The rocket engine was integrated into a lifting body configuration and mounted to the upper surface of an SR-71 aircraft. This paper presents stability and control results and performance results from the envelope expansion flight tests of the LASRE configuration up to Mach 1.8 and compares the results with wind tunnel predictions. Longitudinal stability and elevator control effectiveness were well-predicted from wind tunnel tests. Zero-lift pitching moment was mispredicted transonically. Directional stability, dihedral stability, and rudder effectiveness were overpredicted. The SR-71 handling qualities were never significantly impacted as a result of the missed predictions. Performance results confirmed the large amount of wind-tunnel-predicted transonic drag for the LASRE configuration. This drag increase made the performance of the vehicle so poor that acceleration through transonic Mach numbers could not be achieved on a hot day without depleting the available fuel.

  10. Linear Aerospike SR-71 Experiment (LASRE) dumps water after first in-flight cold flow test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The NASA SR-71A successfully completed its first cold flow flight as part of the NASA/Rocketdyne/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California on March 4, 1998. During a cold flow flight, gaseous helium and liquid nitrogen are cycled through the linear aerospike engine to check the engine's plumbing system for leaks and to check the engine operating characterisitics. Cold-flow tests must be accomplished successfully before firing the rocket engine experiment in flight. The SR-71 took off at 10:16 a.m. PST. The aircraft flew for one hour and fifty-seven minutes, reaching a maximum speed of Mach 1.58 before landing at Edwards at 12:13 p.m. PST. 'I think all in all we had a good mission today,' Dryden LASRE Project Manager Dave Lux said. Flight crew member Bob Meyer agreed, saying the crew 'thought it was a really good flight.' Dryden Research Pilot Ed Schneider piloted the SR-71 during the mission. Lockheed Martin LASRE Project Manager Carl Meade added, 'We are extremely pleased with today's results. This will help pave the way for the first in-flight engine data-collection flight of the LASRE.' The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous

  11. Evaluation of the Linear Aerospike SR-71 Experiment (LASRE) Oxygen Sensor

    NASA Technical Reports Server (NTRS)

    Ennix, Kimberly A.; Corpening, Griffin P.; Jarvis, Michele; Chiles, Harry R.

    1999-01-01

    The Linear Aerospike SR-71 Experiment (LASRE) was a propulsion flight experiment for advanced space vehicles such as the X-33 and reusable launch vehicle. A linear aerospike rocket engine was integrated into a semi-span of an X-33-like lifting body shape (model), and carried on top of an SR-71 aircraft at NASA Dryden Flight Research Center. Because no flight data existed for aerospike nozzles, the primary objective of the LASRE flight experiment was to evaluate flight effects on the engine performance over a range of altitudes and Mach numbers. Because it contained a large quantity of energy in the form of fuel, oxidizer, hypergolics, and gases at very high pressures, the LASRE propulsion system posed a major hazard for fire or explosion. Therefore, a propulsion-hazard mitigation system was created for LASRE that included a nitrogen purge system. Oxygen sensors were a critical part of the nitrogen purge system because they measured purge operation and effectiveness. Because the available oxygen sensors were not designed for flight testing, a laboratory study investigated oxygen-sensor characteristics and accuracy over a range of altitudes and oxygen concentrations. Laboratory test data made it possible to properly calibrate the sensors for flight. Such data also provided a more accurate error prediction than the manufacturer's specification. This predictive accuracy increased confidence in the sensor output during critical phases of the flight. This paper presents the findings of this laboratory test.

  12. Test Report for NASA MSFC Support of the Linear Aerospike SR-71 Experiment (LASRE)

    NASA Technical Reports Server (NTRS)

    Elam, S. K.

    2000-01-01

    The Linear Aerospike SR-71 Experiment (LASRE) was performed in support of the Reusable Launch Vehicle (RLV) program to help develop a linear aerospike engine. The objective of this program was to operate a small aerospike engine at various speeds and altitudes to determine how slipstreams affect the engine's performance. The joint program between government and industry included NASA!s Dryden Flight Research Center, The Air Force's Phillips Laboratory, NASA's Marshall Space Flight Center, Lockheed Martin Skunkworks, Lockheed-Martin Astronautics, and Rocketdyne Division of Boeing North American. Ground testing of the LASRE engine produced two successful hot-fire tests, along with numerous cold flows to verify sequencing and operation before mounting the assembly on the SR-71. Once installed on the aircraft, flight testing performed several cold flows on the engine system at altitudes ranging from 30,000 to 50,000 feet and Mach numbers ranging from 0.9 to 1.5. The program was terminated before conducting hot-fires in flight because excessive leaks in the propellant supply systems could not be fixed to meet required safety levels without significant program cost and schedule impacts.

  13. Linear Aerospike SR-71 Experiment (LASRE): Aerospace Propulsion Hazard Mitigation Systems

    NASA Technical Reports Server (NTRS)

    Mizukami, Masashi; Corpening, Griffin P.; Ray, Ronald J.; Hass, Neal; Ennix, Kimberly A.; Lazaroff, Scott M.

    1998-01-01

    A major hazard posed by the propulsion system of hypersonic and space vehicles is the possibility of fire or explosion in the vehicle environment. The hazard is mitigated by minimizing or detecting, in the vehicle environment, the three ingredients essential to producing fire: fuel, oxidizer, and an ignition source. The Linear Aerospike SR-71 Experiment (LASRE) consisted of a linear aerospike rocket engine integrated into one-half of an X-33-like lifting body shape, carried on top of an SR-71 aircraft. Gaseous hydrogen and liquid oxygen were used as propellants. Although LASRE is a one-of-a-kind experimental system, it must be rated for piloted flight, so this test presented a unique challenge. To help meet safety requirements, the following propulsion hazard mitigation systems were incorporated into the experiment: pod inert purge, oxygen sensors, a hydrogen leak detection algorithm, hydrogen sensors, fire detection and pod temperature thermocouples, water misting, and control room displays. These systems are described, and their development discussed. Analyses, ground test, and flight test results are presented, as are findings and lessons learned.

  14. Propellant Feed System Leak Detection: Lessons Learned From the Linear Aerospike SR-71 Experiment (LASRE)

    NASA Technical Reports Server (NTRS)

    Hass, Neal; Mizukami, Masashi; Neal, Bradford A.; St. John, Clinton; Beil, Robert J.; Griffin, Timothy P.

    1999-01-01

    This paper presents pertinent results and assessment of propellant feed system leak detection as applied to the Linear Aerospike SR-71 Experiment (LASRE) program flown at the NASA Dryden Flight Research Center, Edwards, California. The LASRE was a flight test of an aerospike rocket engine using liquid oxygen and high-pressure gaseous hydrogen as propellants. The flight safety of the crew and the experiment demanded proven technologies and techniques that could detect leaks and assess the integrity of hazardous propellant feed systems. Point source detection and systematic detection were used. Point source detection was adequate for catching gross leakage from components of the propellant feed systems, but insufficient for clearing LASRE to levels of acceptability. Systematic detection, which used high-resolution instrumentation to evaluate the health of the system within a closed volume, provided a better means for assessing leak hazards. Oxygen sensors detected a leak rate of approximately 0.04 cubic inches per second of liquid oxygen. Pressure sensor data revealed speculated cryogenic boiloff through the fittings of the oxygen system, but location of the source(s) was indeterminable. Ultimately, LASRE was cancelled because leak detection techniques were unable to verify that oxygen levels could be maintained below flammability limits.

  15. Automated Testing Experience of the Linear Aerospike SR-71 Experiment (LASRE) Controller

    NASA Technical Reports Server (NTRS)

    Larson, Richard R.

    1999-01-01

    System controllers must be fail-safe, low cost, flexible to software changes, able to output health and status words, and permit rapid retest qualification. The system controller designed and tested for the aerospike engine program was an attempt to meet these requirements. This paper describes (1) the aerospike controller design, (2) the automated simulation testing techniques, and (3) the real time monitoring data visualization structure. Controller cost was minimized by design of a single-string system that used an off-the-shelf 486 central processing unit (CPU). A linked-list architecture, with states (nodes) defined in a user-friendly state table, accomplished software changes to the controller. Proven to be fail-safe, this system reported the abort cause and automatically reverted to a safe condition for any first failure. A real time simulation and test system automated the software checkout and retest requirements. A program requirement to decode all abort causes in real time during all ground and flight tests assured the safety of flight decisions and the proper execution of mission rules. The design also included health and status words, and provided a real time analysis interpretation for all health and status data.

  16. A Base Drag Reduction Experiment on the X-33 Linear Aerospike SR-71 Experiment (LASRE) Flight Program

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Moes, Timothy R.

    1999-01-01

    Drag reduction tests were conducted on the LASRE/X-33 flight experiment. The LASRE experiment is a flight test of a roughly 20% scale model of an X-33 forebody with a single aerospike engine at the rear. The experiment apparatus is mounted on top of an SR-71 aircraft. This paper suggests a method for reducing base drag by adding surface roughness along the forebody. Calculations show a potential for base drag reductions of 8-14%. Flight results corroborate the base drag reduction, with actual reductions of 15% in the high-subsonic flight regime. An unexpected result of this experiment is that drag benefits were shown to persist well into the supersonic flight regime. Flight results show no overall net drag reduction. Applied surface roughness causes forebody pressures to rise and offset base drag reductions. Apparently the grit displaced streamlines outward, causing forebody compression. Results of the LASRE drag experiments are inconclusive and more work is needed. Clearly, however, the forebody grit application works as a viable drag reduction tool.

  17. X-33 Linear Aerospike Engine

    NASA Technical Reports Server (NTRS)

    Vinson, John

    1998-01-01

    In July of 1999 two linear aerospike rocket engines will power the first flight of NASA's X-33 advanced technology demonstrator. A successful X-33 flight test program will validate the aerospike nozzle concept, a key technical feature of Lockheed Martin's VentureStar(trademark) reusable launch vehicle. The aerospike received serious consideration for NASA's current space shuttle, but was eventually rejected in 1969 in favor of high chamber pressure bell engines, in part because of perceived technical risk. The aerospike engine (discussed below) has several performance advantages over conventional bell engines. However, these performance advantages are difficult to validate by ground test. The space shuttle, a multibillion dollar program intended to provide all of NASA's future space lift could not afford the gamble of choosing a potentially superior though unproven aerospike engine over a conventional bell engine. The X-33 demonstrator provides an opportunity to prove the aerospike's performance advantage in flight before commiting to an operational vehicle.

  18. A Modular Aerospike Engine Design Using Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Peugeot, John; Garcia, Chance; Burkhardt, Wendel

    2014-01-01

    A modular aerospike engine concept has been developed with the objective of demonstrating the viability of the aerospike design using additive manufacturing techniques. The aerospike system is a self-compensating design that allows for optimal performance over the entire flight regime and allows for the lowest possible mass vehicle designs. At low altitudes, improvements in Isp can be traded against chamber pressure, staging, and payload. In upper stage applications, expansion ratio and engine envelope can be traded against nozzle efficiency. These features provide flexibility to the System Designer optimizing a complete vehicle stage. The aerospike concept is a good example of a component that has demonstrated improved performance capability, but traditionally has manufacturing requirements that are too expensive and complex to use in a production vehicle. In recent years, additive manufacturing has emerged as a potential method for improving the speed and cost of building geometrically complex components in rocket engines. It offers a reduction in tooling overhead and significant improvements in the integration of the designer and manufacturing method. In addition, the modularity of the engine design provides the ability to perform full scale testing on the combustion devices outside of the full engine configuration. The proposed design uses a hydrocarbon based gas-generator cycle, with plans to take advantage of existing powerhead hardware while focusing DDT&E resources on manufacturing and sub-system testing of the combustion devices. The major risks for the modular aerospike concept lie in the performance of the propellant feed system, the structural integrity of the additive manufactured components, and the aerodynamic efficiency of the exhaust flow.

  19. Interface Configuration Experiment: Preliminary results

    SciTech Connect

    Concus, P.; Finn, R.; Weislogel, M.

    1993-09-01

    The Interface Configuration Experiment (ICE) was carried out on USML-1 to investigate liquid-gas interfaces in certain rotationally-symmetric containers having prescribed, mathematically derived shapes. These containers have the property that they admit an entire continuum of distinct equilibrium rotationally-symmetric interfaces for a given liquid volume and contact angle. Furthermore, it can be shown that none of these interfaces can be stable. It was found, after the containers were filled in orbit, that an initial equilibrium interface from the symmetric continuum reoriented, when perturbed, to a stable interface that was not rotationally symmetric, in accordance with the mathematical theory.

  20. Interface Configuration Experiment: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Concus, Paul; Finn, Robert; Weislogel, Mark

    1994-01-01

    The Interface Configuration Experiment (ICE) was carried out on USML-1 to investigate liquid-gas interfaces in certain rotationally-symmetric containers having prescribed, mathematically derived shapes. These containers have the property that they admit an entire continuum of distinct equilibrium rotationally-symmetric interfaces for a given liquid volume and contact angle. Furthermore, it can be shown that none of these interfaces can be stable. It was found, after the containers were filled in orbit, that an initial equilibrium interface from the symmetric continuum re-oriented, when perturbed, to a stable interface that was not rotationally symmetric, in accordance with the mathematical theory.

  1. Experiment Configurations for the DAST

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This image shows three vehicle configurations considered for the Drones for Aerodynamic and Structural Testing (DAST) program, conducted at NASA's Dryden Flight Research Center between 1977 and 1983. The DAST project planned for three wing configurations. These were the Instrumented Standard Wing (ISW), the Aeroelastic Research Wing-1 (ARW-1), and the ARW-2. After the DAST-1 crash, project personnel fitted a second Firebee II with a rebuilt ARW-1 wing. Due to the project's ending, it never flew the ARW-2 wing. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of the structure, driven by aerodynamic

  2. Parametric Model of an Aerospike Rocket Engine

    NASA Technical Reports Server (NTRS)

    Korte, J. J.

    2000-01-01

    A suite of computer codes was assembled to simulate the performance of an aerospike engine and to generate the engine input for the Program to Optimize Simulated Trajectories. First an engine simulator module was developed that predicts the aerospike engine performance for a given mixture ratio, power level, thrust vectoring level, and altitude. This module was then used to rapidly generate the aerospike engine performance tables for axial thrust, normal thrust, pitching moment, and specific thrust. Parametric engine geometry was defined for use with the engine simulator module. The parametric model was also integrated into the iSIGHTI multidisciplinary framework so that alternate designs could be determined. The computer codes were used to support in-house conceptual studies of reusable launch vehicle designs.

  3. Parametric Model of an Aerospike Rocket Engine

    NASA Technical Reports Server (NTRS)

    Korte, J. J.

    2000-01-01

    A suite of computer codes was assembled to simulate the performance of an aerospike engine and to generate the engine input for the Program to Optimize Simulated Trajectories. First an engine simulator module was developed that predicts the aerospike engine performance for a given mixture ratio, power level, thrust vectoring level, and altitude. This module was then used to rapidly generate the aerospike engine performance tables for axial thrust, normal thrust, pitching moment, and specific thrust. Parametric engine geometry was defined for use with the engine simulator module. The parametric model was also integrated into the iSIGHT multidisciplinary framework so that alternate designs could be determined. The computer codes were used to support in-house conceptual studies of reusable launch vehicle designs.

  4. Visualization and Analyses of Jet Structures from a Cluster-Type Linear Aerospike Nozzle

    NASA Astrophysics Data System (ADS)

    Niimi, Tomohide; Mori, Hideo; Okabe, Kazuki; Masai, Yusuke; Taniguchi, Mashio

    Aerospike nozzles have been expected as a candidate for an engine of reusable space shuttles to respond to growing demand for rocket-launching and its cost reduction. In this study, the flow field structure in any cross sections around the linear-type aerospike nozzle are visualized and analyzed, using laser induced fluorescence (LIF) of NO seeded in the carrier gas N2. Since the flow field structure is affected mainly by the pressure ratio (P/P), the linear-type aerospike nozzle is set inside the vacuum chamber to carry out the experiments in the wide range of pressure ratios from 75 to 250. Flow fields are visualized in several cross-sections, demonstrating the complicated three-dimensional flow field structures. Pressure sensitive paint (PSP) of PtTFPP bound by poly(TMSP) is also applied successfully to measurement of the complicated pressure distribution on the spike surface.

  5. Aerospike nozzle contour design and its performance validation

    NASA Astrophysics Data System (ADS)

    Wang, Chang-Hui; Liu, Yu; Qin, Li-Zi

    2009-06-01

    A simplified design and optimization method of aerospike nozzle contour and the results of tests and numerical simulation of aerospike nozzles are presented. The primary nozzle contour is approximated by two circular arcs and a parabola; the plug contour is approximated by a parabola and a third-order polynomial. The maximum total impulse from sea level to design altitude is adopted as objective to optimize the aerospike nozzle contour. Experimental studies were performed on a 6-cell tile-shaped aerospike nozzle, a 1-cell linear aerospike nozzle and a 3-cell aerospike nozzle with round-to-rectangle (RTR) primary nozzles designed by method proposed in present paper. Three aerospike nozzles achieved good altitude compensation capacities in the tests and still had better performance at off-design altitudes compared with that of the bell-shaped nozzle. In cold-flow tests, 6-cell tile-shaped aerospike nozzle and 1-cell linear aerospike nozzle obtained high thrust efficiency at design altitude. Employing gas H 2/gas O 2 (GH 2/GO 2) as propellants, hot-firing tests were carried out on a 3-cell aerospike nozzle engine with RTR primary nozzles. The performance was obtained under two nozzle pressure ratios (NPR) lower than design altitude. Efficiency reached 92.0-93.5% and 95.0-96.0%, respectively. Pressure distribution along plug ramp was measured and the effects of variation in the amount of base bleed on performance were also examined in the tests.

  6. Experimental Analyses of Flow Field Structures around Clustered Linear Aerospike Nozzles

    NASA Astrophysics Data System (ADS)

    Taniguchi, Mashio; Mori, Hideo; Nishihira, Ryutaro; Niimi, Tomohide

    2005-05-01

    An aerospike nozzle has been expected as a candidate for an engine of a reusable space shuttle to respond to growing demand for rocket-launching and its cost reduction. In this study, the flow field structures in any cross sections around clustered linear aerospike nozzles are visualized and analyzed, using laser induced fluorescence (LIF) of NO seeded in the carrier gas N2. Since flow field structures are affected mainly by pressure ratio (Ps/Pa, Ps: the source pressure in a reservoir, Pa: the ambient pressure in the vacuum chamber), the clustered linear aerospike nozzle is set inside a vacuum chamber to carry out the experiments in the wide range of pressure ratios from 75 to 200. Flow fields are visualized in several cross-sections, demonstrating the complicated three-dimensional flow field structures. Pressure sensitive paint (PSP) of PtTFPP bound by poly-IBM-co-TFEM is also applied to measurement of the complicated pressure distribution on the spike surface, and to verification of contribution of a truncation plane to the thrust. Finally, to examine the effect of the sidewalls attached to the aerospike nozzle, the flow fields around the nozzle with the sidewalls are compared with those without sidewalls.

  7. Aerodynamic Characteristics of Telescopic Aerospikes with Multiple-Row-Disk

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiroaki; Maru, Yusuke; Sato, Tetsuya

    This paper reports experimental studies on telescopic aerospikes with multiple disks. The telescopic aerospike is useful as an aerodynamic control device; however, changing its length causes a buzz phenomenon, which many researchers have reported. The occurrence of buzzing might be critical to the vehicle because it brings about severe pressure oscillations on the surface. Disks on the shaft produce stable recirculation regions by dividing the single separation flow into several conical cavity flows. The telescopic aerospikes with stabilizer disks are useful without any length constraints. Aerodynamic characteristics of the telescopic aerospikes were investigated through a series of wind tunnel tests. Transition of recirculation/reattachment flow modes of a plain spike causes a large change in the drag coefficient. Because of this hysteresis phenomenon and the buzzing, the plain spike is unsuitable for fine aerodynamic control devices. Adding stabilizer disks is effective for the improved control of aerospikes.

  8. Aerospike thrust chamber program. [cumulative damage and maintenance of structural members in hydrogen oxygen engines

    NASA Technical Reports Server (NTRS)

    Campbell, J., Jr.; Cobb, S. M.

    1976-01-01

    An existing, but damaged, 25,000-pound thrust, flightweight, oxygen/hydrogen aerospike rocket thrust chamber was disassembled and partially repaired. A description is presented of the aerospike chamber configuration and of the damage it had suffered. Techniques for aerospike thrust chamber repair were developed, and are described, covering repair procedures for lightweight tubular nozzles, titanium thrust structures, and copper channel combustors. Effort was terminated prior to completion of the repairs and conduct of a planned hot fire test program when it was found that the copper alloy walls of many of the thrust chamber's 24 combustors had been degraded in strength and ductility during the initial fabrication of the thrust chamber. The degradation is discussed and traced to a reaction between oxygen and/or oxides diffused into the copper alloy during fabrication processes and the hydrogen utilized as a brazing furnace atmosphere during the initial assembly operation on many of the combustors. The effects of the H2/O2 reaction within the copper alloy are described.

  9. Experimental Results for an Annular Aerospike with Differential Throttling

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; McDaniels, David M.

    2005-01-01

    A) MSFC funded an internal study on Altitude Compensating Nozzles: 1) Develop an ACN design and performance prediction tool. 2) Design, build and test cold flow ACN nozzles. 3) An annular aerospike nozzle was designed and tested. 4) Incorporated differential throttling to assess Thrust Vector Control. B) Objective of the test hardware: 1) Provide design tool verification. 2) Provide benchmark data for CFD calculations. 3) Experimentally measure side force, or TVC, for a differentially throttled annular aerospike.

  10. Shock Tunnel Studies of the Hypersonic Flowfield around the Hypervelocity Ballistic Models with Aerospikes

    NASA Astrophysics Data System (ADS)

    Balakalyani, G.; Saravanan, S.; Jagadeesh, G.

    Reduced drag and aerodynamic heating are the two basic design requirements for any hypersonic vehicle [1]. The flowfield around an axisymmetric blunt body is characterized by a bow shockwave standing ahead of its nose. The pressure and temperature behind this shock wave are very high. This increased pressure and temperature are responsible for the high levels of drag and aerodynamic heating over the body. In the past, there have been many investigations on the use of aerospikes as a drag reduction tool. These studies on spiked bodies aim at reducing both the drag and aerodynamic heating by modifying the hypersonic flowfield ahead of the nose of the body [2]. However, most of them used very simple configurations to experimentally study the drag reduction using spikes at hypersonic speeds [3] and therefore very little experimental data is available for a realistic geometric configuration. In the present study, the standard AGARD Hypervelocity Ballistic model 1 is used as the test model. The addition of the spike to the blunt body significantly alters the flowfield ahead of the nose, leading to the formation of a low pressure conical recirculation region, thus causing a reduction in drag and wall heat flux [4]. In the present investigation, aerodynamic drag force is measured over the Hypervelocity Ballistic model-1, with and without spike, at a flow enthalpy of 1.7 MJ/kg. The experiments are carried out at a Mach number of 8 and at zero angle of attack. An internally mountable accelerometer based 3-component force balance system is used to measure the aerodynamic forces on the model. Also computational studies are carried out to complement the experiments.

  11. Multidisciplinary Approach to Linear Aerospike Nozzle Optimization

    NASA Technical Reports Server (NTRS)

    Korte, J. J.; Salas, A. O.; Dunn, H. J.; Alexandrov, N. M.; Follett, W. W.; Orient, G. E.; Hadid, A. H.

    1997-01-01

    A model of a linear aerospike rocket nozzle that consists of coupled aerodynamic and structural analyses has been developed. A nonlinear computational fluid dynamics code is used to calculate the aerodynamic thrust, and a three-dimensional fink-element model is used to determine the structural response and weight. The model will be used to demonstrate multidisciplinary design optimization (MDO) capabilities for relevant engine concepts, assess performance of various MDO approaches, and provide a guide for future application development. In this study, the MDO problem is formulated using the multidisciplinary feasible (MDF) strategy. The results for the MDF formulation are presented with comparisons against sequential aerodynamic and structural optimized designs. Significant improvements are demonstrated by using a multidisciplinary approach in comparison with the single- discipline design strategy.

  12. Multidisciplinary Approach to Aerospike Nozzle Design

    NASA Technical Reports Server (NTRS)

    Korte, J. J.; Salas, A. O.; Dunn, H. J.; Alexandrov, N. M.; Follett, W. W.; Orient, G. E.; Hadid, A. H.

    1997-01-01

    A model of a linear aerospike rocket nozzle that consists of coupled aerodynamic and structural analyses has been developed. A nonlinear computational fluid dynamics code is used to calculate the aerodynamic thrust, and a three-dimensional finite-element model is used to determine the structural response and weight. The model will be used to demonstrate multidisciplinary design optimization (MDO) capabilities for relevant engine concepts, assess performance of various MDO approaches, and provide a guide for future application development. In this study, the MDO problem is formulated using the multidisciplinary feasible (MDF) strategy. The results for the MDF formulation are presented with comparisons against separate aerodynamic and structural optimized designs. Significant improvements are demonstrated by using a multidisciplinary approach in comparison with the single-discipline design strategy.

  13. Configuring NIF for direct drive experiments

    SciTech Connect

    Eimerl, D.; Rothenberg, J.; Key, M.

    1995-07-11

    The National Ignition Facility (NIF) is a proposed 1.8 MJ laser facility for carrying out experiments in inertial confinement fusion, currently designed for indirect drive experiments. The direct drive approach is being pursued at the 30 kJ Omega facility at the University of Rochester. In this paper we discuss the modifications to the NIF laser that would be required for both indirect and direct drive experiments. A primary concern is the additional cost of adding direct drive capability to the facility.

  14. An interface configuration experiment on USML-1

    SciTech Connect

    Concus, P.; Finn, R.; Weislogel, M.

    1993-01-01

    Experiments were carried out for ``exotic`` rotationally symmetric containers aboard the first NASA United States Microgravity Laboratory Space Shuttle flight (USML-1). The containers have the property that they admit an entire continuum of distinct equilibrium rotationally-symmetric capillary free-surfaces for a given liquid volume and contact angle. It was found, after the containers were filled in orbit, that an initial equilibrium interface from the symmetric continuum reoriented, when perturbed, to a stable interface that was not rotationally symmetric, as predicted by the mathematical theory.

  15. An interface configuration experiment on USML-1

    SciTech Connect

    Concus, P. ); Finn, R. . Dept. of Mathematics); Weislogel, M. . Lewis Research Center)

    1993-01-01

    Experiments were carried out for exotic'' rotationally symmetric containers aboard the first NASA United States Microgravity Laboratory Space Shuttle flight (USML-1). The containers have the property that they admit an entire continuum of distinct equilibrium rotationally-symmetric capillary free-surfaces for a given liquid volume and contact angle. It was found, after the containers were filled in orbit, that an initial equilibrium interface from the symmetric continuum reoriented, when perturbed, to a stable interface that was not rotationally symmetric, as predicted by the mathematical theory.

  16. EAST alternative magnetic configurations: modelling and first experiments

    NASA Astrophysics Data System (ADS)

    Calabrò, G.; Xiao, B. J.; Chen, S. L.; Duan, Y. M.; Guo, Y.; Li, J. G.; Liu, L.; Luo, Z. P.; Wang, L.; Xu, J.; Zhang, B.; Albanese, R.; Ambrosino, R.; Crisanti, F.; Pericoli Ridolfini, V.; Villone, F.; Viola, B.; Barbato, L.; De Magistris, M.; De Tommasi, G.; Giovannozzi, E.; Mastrostefano, S.; Minucci, S.; Pironti, A.; Ramogida, G.; Tuccillo, A. A.; Zagórski, R.

    2015-08-01

    Heat and particle loads on the plasma facing components are among the most challenging issues to be solved for a reactor design. Alternative magnetic configurations may enable tokamak operation with a lower peak heat load than a standard single null (SN) divertor. This papers reports on the creation and control of one of such alternatives: a two-null nearby divertor configuration. An important element of this study is that this two-null divertor was produced on a large superconducting tokamak as an experimental advanced superconducting tokamak. A preliminary experiment with the second null forming a configuration with significant distance between the two nulls and a contracting geometry near the target plates was performed in 2014. These configurations have been designed using the FIXFREE code and optimized with CREATE-NL tools and are discussed in the paper. Predictive edge simulations using the TECXY code are also presented by comparing the advanced divertor and SN configuration. Finally, the experimental results of ohmic and low confinement (L-mode) two-null divertor and SN discharges and interpretative two-dimensional edge simulations are discussed. Future experiments will be devoted to varying the distance between the two nulls in high confinement (H-mode) discharges.

  17. Comparison of Response Surface and Kriging Models in the Multidisciplinary Design of an Aerospike Nozzle

    NASA Technical Reports Server (NTRS)

    Simpson, Timothy W.

    1998-01-01

    The use of response surface models and kriging models are compared for approximating non-random, deterministic computer analyses. After discussing the traditional response surface approach for constructing polynomial models for approximation, kriging is presented as an alternative statistical-based approximation method for the design and analysis of computer experiments. Both approximation methods are applied to the multidisciplinary design and analysis of an aerospike nozzle which consists of a computational fluid dynamics model and a finite element analysis model. Error analysis of the response surface and kriging models is performed along with a graphical comparison of the approximations. Four optimization problems are formulated and solved using both approximation models. While neither approximation technique consistently outperforms the other in this example, the kriging models using only a constant for the underlying global model and a Gaussian correlation function perform as well as the second order polynomial response surface models.

  18. X-33/RLV Program Aerospike Engines

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Substantial progress was made during the past year in support of the X-33/RLV program. X-33 activity was directed towards completing the remaining design work and building hardware to support test activities. RLV work focused on the nozzle ramp and powerpack technology tasks and on supporting vehicle configuration studies. On X-33, the design activity was completed to the detail level and the remainder of the drawings were released. Component fabrication and engine assembly activity was initiated, and the first two powerpacks and the GSE and STE needed to support powerpack testing were completed. Components fabrication is on track to support the first engine assembly schedule. Testing activity included powerpack testing and component development tests consisting of thrust cell single cell testing, CWI system spider testing, and EMA valve flow and vibration testing. Work performed for RLV was divided between engine system and technology development tasks. Engine system activity focused on developing the engine system configuration and supporting vehicle configuration studies. Also, engine requirements were developed, and engine performance analyses were conducted. In addition, processes were developed for implementing reliability, mass properties, and cost controls during design. Technology development efforts were divided between powerpack and nozzle ramp technology tasks. Powerpack technology activities were directed towards the development of a prototype powerpack and a ceramic turbine technology demonstrator (CTTD) test article which will allow testing of ceramic turbines and a close-coupled gas generator design. Nozzle technology efforts were focused on the selection of a composite nozzle supplier and on the fabrication and test of composite nozzle coupons.

  19. Experimental Results on the Feasibility of an Aerospike for Hypersonic Missiles

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Mitchell, Anthony M.; Boudreaux, Ellis J.

    1995-01-01

    A series of wind tunnel tests have been performed on an aerospike-protected missile dome at a Mach number of 6 to obtain quantitative surface pressure and temperature-rise data, as well as qualitative flow visualization data. These data were used to determine aerospike concept feasibility and will also provide a database to be used for calibration of computational fluid dynamics codes. Data were obtained on the hemispherical missile dome with and without an aerospike that protrudes ahead of the dome along the axisymmetric center line. Data were obtained on two models (one pressure, one temperature) in the NASA Langley 20-Inch Mach 6 Tunnel at a freestream Reynolds number of 8.0 x 10(exp 6) per feet and angles of attack from 0 to 40 degrees. Surface pressure and temperature-rise results indicate that the aerospike is effective for very low angles of attack (less than 5 degrees) at Mach 6. Above 5 degrees, impingement of the aerospike bow shock and the flow separation shock from the recirculation region created by the aerospike causes pressure and temperature increases on the windward side of the dome which exceed values observed in the same region with the aerospike removed. Flow characterization obtained via oil-flow and schlieren photographs provides some insight into the quantitative surface data results, including vortical flow and shock-wave impingement.

  20. COLD-SAT orbital experiment configured for Atlas launch

    NASA Technical Reports Server (NTRS)

    Shuster, J. R.; Bennett, F. O.; Wachter, J. P.

    1989-01-01

    The design and requirements for the proposed cryogenic on-orbit liquid depot storage, acquisition, and transfer (COLD-SAT) satellite experiment, which is to be launched by Atlas I, are examined. The COLD-SAT experiments are categorized as class I and II; class I involves technology related to space transportation missions and class II represents alternative fluid management operations and data. The hardware for the COLD-SAT experiments consists of three hydrogen tanks contained in the experimental module; the experimental module is connected to a three-axis-controlled spacecraft bus, and thrusters are positioned on the forward and aft ends of the spacecraft and on the cylindrical portion of the experimental module. The components and systems of the experiment module and the types of experiments that can be conducted in each tank are described. Diagrams of the spacecraft configuration are provided.

  1. High-Speed Observer: Automated Streak Detection for the Aerospike Engine

    NASA Technical Reports Server (NTRS)

    Rieckhoff, T. J.; Covan, M. A.; OFarrell, J. M.

    2001-01-01

    A high-frame-rate digital video camera, installed on test stands at Stennis Space Center (SSC), has been used to capture images of the aerospike engine plume during test. These plume images are processed in real time to detect and differentiate anomalous plume events. Results indicate that the High-Speed Observer (HSO) system can detect anomalous plume streaking events that are indicative of aerospike engine malfunction.

  2. Optimizing Field-Reversed Configuration Plasmas for Plasma Compression Experiments

    NASA Astrophysics Data System (ADS)

    Grabowski, C.; Degnan, J. H.; Amdahl, D. J.; Domonkos, M.; Ruden, E. L.; White, W.; Wurden, G. A.; Frese, M. H.; Frese, S. D.; Camacho, J. F.; Coffey, S. K.; Kostora, M.; McCullough, J.; Sommars, W.; Kiuttu, G. F.; Lynn, A. G.; Yates, K.; Bauer, B. S.; Fuelling, S.; Pahl, R.

    2013-10-01

    The Field-Reversed Configuration Heating Experiment (FRCHX) is a collaborative experiment between the Air Force Research Laboratory (AFRL) and Los Alamos National Laboratory (LANL) to study high energy density plasmas and various associated phenomena. With FRCHX, a field-reversed configuration (FRC) plasma is formed via reversed-field theta pinch and then translated a short distance into a cylindrical aluminum shell (solid liner), where it is either compressed by the magnetically-driven implosion of the shell or diagnosed in preparation for such compression tests. The lifetime of the trapped magnetic flux within the FRC is an important parameter affecting the confinement of plasma during the compression and ultimately the final density, temperature, and yield of neutrons from the plasma. Processes occurring during formation, initial plasma temperature, and instabilities in turn all affect the trapped-flux lifetime and the integrity of the FRC. A discussion of FRC parameters measured on FRCHX and efforts that have been made to improve these parameters and the FRC stability will be presented in connection with results from recent FRCHX experiments. This work is supported by DOE-OFES.

  3. Analysis of Aerospike Plume Induced Base-Heating Environment

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    1998-01-01

    Computational analysis is conducted to study the effect of an aerospike engine plume on X-33 base-heating environment during ascent flight. To properly account for the effect of forebody and aftbody flowfield such as shocks and to allow for potential plume-induced flow-separation, thermo-flowfield of trajectory points is computed. The computational methodology is based on a three-dimensional finite-difference, viscous flow, chemically reacting, pressure-base computational fluid dynamics formulation, and a three-dimensional, finite-volume, spectral-line based weighted-sum-of-gray-gases radiation absorption model computational heat transfer formulation. The predicted convective and radiative base-heat fluxes are presented.

  4. Linear aerospike engine study. [for reusable launch vehicles

    NASA Technical Reports Server (NTRS)

    Diem, H. G.; Kirby, F. M.

    1977-01-01

    Parametric data on split-combustor linear engine propulsion systems are presented for use in mixed-mode single-stage-to-orbit (SSTO) vehicle studies. Preliminary design data for two selected engine systems are included. The split combustor was investigated for mixed-mode operations with oxygen/hydrogen propellants used in the inner combustor in Mode 2, and in conjunction with either oxygen/RP-1, oxygen/RJ-5, O2/CH4, or O2/H2 propellants in the outer combustor for Mode 1. Both gas generator and staged combustion power cycles were analyzed for providing power to the turbopumps of the inner and outer combustors. Numerous cooling circuits and cooling fluids (propellants) were analyzed and hydrogen was selected as the preferred coolant for both combustors and the linear aerospike nozzle. The maximum operating chamber pressure was determined to be limited by the availability of hydrogen coolant pressure drop in the coolant circuit.

  5. The Control System for the X-33 Linear Aerospike Engine

    NASA Technical Reports Server (NTRS)

    Jackson, Jerry E.; Espenschied, Erich; Klop, Jeffrey

    1998-01-01

    The linear aerospike engine is being developed for single-stage -to-orbit (SSTO) applications. The primary advantages of a linear aerospike engine over a conventional bell nozzle engine include altitude compensation, which provides enhanced performance, and lower vehicle weight resulting from the integration of the engine into the vehicle structure. A feature of this integration is the ability to provide thrust vector control (TVC) by differential throttling of the engine combustion elements, rather than the more conventional approach of gimballing the entire engine. An analysis of the X-33 flight trajectories has shown that it is necessary to provide +/- 15% roll, pitch and yaw TVC authority with an optional capability of +/- 30% pitch at select times during the mission. The TVC performance requirements for X-33 engine became a major driver in the design of the engine control system. The thrust level of the X-33 engine as well as the amount of TVC are managed by a control system which consists of electronic, instrumentation, propellant valves, electro-mechanical actuators, spark igniters, and harnesses. The engine control system is responsible for the thrust control, mixture ratio control, thrust vector control, engine health monitoring, and communication to the vehicle during all operational modes of the engine (checkout, pre-start, start, main-stage, shutdown and post shutdown). The methodology for thrust vector control, the health monitoring approach which includes failure detection, isolation, and response, and the basic control system design are the topic of this paper. As an additional point of interest a brief description of the X-33 engine system will be included in this paper.

  6. Configurations for a proof of principle stellarator experiment.

    PubMed

    Garabedian, P R

    2000-02-01

    One of the serious limitations of tokamaks as reactors is the occurrence of disruptions. Stellarators designed by advanced computational methods provide an attractive alternative for a major experiment in magnetic fusion research. Configurations with approximate two-dimensional magnetic symmetry have been found with high beta limits and good transport. Specifications are given for a compact stellarator with three field periods and 18 moderately twisted modular coils that has equilibrium with robust flux surfaces, a deep magnetic well assuring favorable stability, and adequate confinement of hot particles at reactor conditions. Fast computer codes with sufficient accuracy to resolve the mathematical problems of equilibrium, stability and transport that arise in the more complicated geometry of the stellarator have produced this breakthrough. The mathematical analysis of the methods used is presented. PMID:11038620

  7. Focused RBCC Experiments: Two-Rocket Configuration Experiments and Hydrocarbon/Oxygen Rocket Ejector Experiments

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh

    2003-01-01

    This addendum report documents the results of two additional efforts for the Rocket Based Combined Cycle (RBCC) rocket-ejector mode research work carried out at the Penn State Propulsion Engineering Research Center in support of NASA s technology development efforts for enabling 3 d generation Reusable Launch Vehicles (RLV). The tasks reported here build on an earlier NASA MSFC funded research program on rocket ejector investigations. The first task investigated the improvements of a gaseous hydrogen/oxygen twin thruster RBCC rocket ejector system over a single rocket system. The second task investigated the performance of a hydrocarbon (liquid JP-7)/gaseous oxygen single thruster rocket-ejector system. To gain a systematic understanding of the rocket-ejector s internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static diffusion and afterburning (DAB) configurations for a range of rocket operating conditions. For all experimental conditions, overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust. Detailed mixing and combustion information was obtained through Raman spectroscopy measurements of major species (gaseous oxygen, hydrogen, nitrogen and water vapor) for the gaseous hydrogen/oxygen rocket ejector experiments.

  8. Coolant Design System for Liquid Propellant Aerospike Engines

    NASA Astrophysics Data System (ADS)

    McConnell, Miranda; Branam, Richard

    2015-11-01

    Liquid propellant rocket engines burn at incredibly high temperatures making it difficult to design an effective coolant system. These particular engines prove to be extremely useful by powering the rocket with a variable thrust that is ideal for space travel. When combined with aerospike engine nozzles, which provide maximum thrust efficiency, this class of rockets offers a promising future for rocketry. In order to troubleshoot the problems that high combustion chamber temperatures pose, this research took a computational approach to heat analysis. Chambers milled into the combustion chamber walls, lined by a copper cover, were tested for their efficiency in cooling the hot copper wall. Various aspect ratios and coolants were explored for the maximum wall temperature by developing our own MATLAB code. The code uses a nodal temperature analysis with conduction and convection equations and assumes no internal heat generation. This heat transfer research will show oxygen is a better coolant than water, and higher aspect ratios are less efficient at cooling. This project funded by NSF REU Grant 1358991.

  9. Test bed experiments for various telerobotic system characteristics and configurations

    NASA Technical Reports Server (NTRS)

    Duffie, Neil A.; Wiker, Steven F.; Zik, John J.

    1990-01-01

    Dexterous manipulation and grasping in telerobotic systems depends on the integration of high-performance sensors, displays, actuators and controls into systems in which careful consideration has been given to human perception and tolerance. Research underway at the Wisconsin Center for Space Automation and Robotics (WCSAR) has the objective of enhancing the performance of these systems and their components, and quantifying the effects of the many electrical, mechanical, control, and human factors that affect their performance. This will lead to a fundamental understanding of performance issues which will in turn allow designers to evaluate sensor, actuator, display, and control technologies with respect to generic measures of dexterous performance. As part of this effort, an experimental test bed was developed which has telerobotic components with exceptionally high fidelity in master/slave operation. A Telerobotic Performance Analysis System has also been developed which allows performance to be determined for various system configurations and electro-mechanical characteristics. Both this performance analysis system and test bed experiments are described.

  10. Linear test bed. Volume 1: Test bed no. 1. [aerospike test bed with segmented combustor

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Linear Test Bed program was to design, fabricate, and evaluation test an advanced aerospike test bed which employed the segmented combustor concept. The system is designated as a linear aerospike system and consists of a thrust chamber assembly, a power package, and a thrust frame. It was designed as an experimental system to demonstrate the feasibility of the linear aerospike-segmented combustor concept. The overall dimensions are 120 inches long by 120 inches wide by 96 inches in height. The propellants are liquid oxygen/liquid hydrogen. The system was designed to operate at 1200-psia chamber pressure, at a mixture ratio of 5.5. At the design conditions, the sea level thrust is 200,000 pounds. The complete program including concept selection, design, fabrication, component test, system test, supporting analysis and posttest hardware inspection is described.

  11. Demystifying Introductory Chemistry. Part 1: Electron Configurations from Experiment.

    ERIC Educational Resources Information Center

    Gillespie, Ronald J.; And Others

    1996-01-01

    Presents suggestions for alternative presentations of some of the material that usually forms part of the introductory chemistry course. Emphasizes development of concepts from experimental results. Discusses electronic configurations and quantum numbers, experimental evidence for electron configurations, deducing the shell model from the periodic…

  12. Configuring the National Ignition Facility for direct-drive experiments

    SciTech Connect

    Eimerl, D.

    1995-07-01

    The National Ignition Facility (NIF) is a project whose primary mission is to provide an above-ground experimental capability for maintaining nuclear competence and weapons effects simulation, and to pursue the achievement of fusion ignition utilizing solid state lasers as the energy driver. In this facility a large number of laser beams are focused onto a small target located at the center of a spherical target chamber. The laser energy is delivered in a few billionths of a second, raising the temperature and density of the nuclear materials in the target to levels where significant thermonuclear energy is released. The thermonuclear reaction proceeds very rapidly, so that the target materials remain confined by their own inertia during the thermonuclear reaction. This type of approach is called inertial confinement fusion (ICF). The proposed project is described in a conceptual design report (CDR) that was released in May 1994. Early in FY95, a collaboration between the University of Rochester and the Lawrence Livermore National Laboratory was established to study reconfiguring the NIF to accommodate direct-drive experiments. The present paper is a report to the scientific community, primarily the scientists and engineers working on the design of the NIF. It represents results from work in progress, specifically work completed by the end of the second quarter FY95. This report has two main sections. The first describes the target requirements on the laser drive, and the second part describes how the NIF laser can be configured to accommodate both indirect and direct drive. The report includes a description of the scientific basis for these conclusions. Though a complete picture does not exist, the present understanding is sufficient to conclude that the primary target requirements and laser functional requirements for indirect and direct drive are quite compatible. It is evidently straightforward to reconfigure the NIF to accommodate direct and indirect drive.

  13. Overview of C-2 Field Reversed Configuration Experiments

    NASA Astrophysics Data System (ADS)

    Guo, Houyang; TAE Team

    2013-10-01

    The C-2 compact toroid merging (CT) facility was built to form and sustain high temperature Field Reversed Configurations (FRC) with extremely high beta (i.e., with the ratio of confined plasma to external total magnetic pressure approaching 100%). Significant progress has been made in C-2 on both technology and physics fronts, achieving stable plasmas up to 5 ms with a dramatic improvement in confinement, far beyond the prediction from the conventional FRC scaling. The key approaches to these exciting achievements are (1) dynamic FRC formation by collisional merging of super-Alfvénic CTs, (2) effective control of stability and transport by plasma guns and neutral beam injection, and (3) active wall conditioning. The emerging confinement scaling for this new plasma regime shows a strong dependence on temperature in contrast to the usually observed Bohm or gyro-Bohm scaling in other magnetic confinement systems. This presentation highlights these recent advances.

  14. Fractional Factorial Experiment Designs to Minimize Configuration Changes in Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard; Cler, Daniel L.; Graham, Albert B.

    2002-01-01

    This paper serves as a tutorial to introduce the wind tunnel research community to configuration experiment designs that can satisfy resource constraints in a configuration study involving several variables, without arbitrarily eliminating any of them from the experiment initially. The special case of a configuration study featuring variables at two levels is examined in detail. This is the type of study in which each configuration variable has two natural states - 'on or off', 'deployed or not deployed', 'low or high', and so forth. The basic principles are illustrated by results obtained in configuration studies conducted in the Langley National Transonic Facility and in the ViGYAN Low Speed Tunnel in Hampton, Virginia. The crucial role of interactions among configuration variables is highlighted with an illustration of difficulties that can be encountered when they are not properly taken into account.

  15. Optimal configurations of the Deep Underground Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Barger, Vernon; Bhattacharya, Atri; Chatterjee, Animesh; Gandhi, Raj; Marfatia, Danny; Masud, Mehedi

    2016-02-01

    We perform a comprehensive study of the ability of the Deep Underground Neutrino Experiment (DUNE) to answer outstanding questions in the neutrino sector. We consider the sensitivities to the mass hierarchy, the octant of θ23 and to CP violation using data from beam and atmospheric neutrinos. We evaluate the dependencies on the precision with which θ13 will be measured by reactor experiments, on the detector size, beam power and exposure time, on detector magnetization, and on the systematic uncertainties achievable with and without a near detector. We find that a 35 kt far detector in DUNE with a near detector will resolve the eightfold degeneracy that is intrinsic to long baseline experiments and will meet the primary goals of oscillation physics that it is designed for.

  16. COLD-SAT orbital experiment configured for Altas launch

    NASA Technical Reports Server (NTRS)

    Schuster, J. R.; Bennett, F. O.; Wachter, J. P.

    1990-01-01

    A study was done of the feasibility of conducting liquid hydrogen orbital storage, acquisition, and transfer experiments aboard a spacecraft launched by a commercial Atlas launch vehicle. Three hydrogen tanks are mated to a spacecraft bus that is similar to that used for three-axis-controlled satellites. The bus provides power, communications, and attitude control along with acceleration levels ranging from 10 exp -6 to 10 exp -4 g. At launch, all the liquid hydrogen is contained in the largest tank, which has an insulation system designed for both space operation and the short-term launch pad and ascent environment. This tank is much lighter and lower in cost than a vacuum-jacketed design, and is made possible by the experiment tanking options available due to the hydrogen-fueled Centaur upper stage of the Atlas I.

  17. Optimized Minimal Inductance Transmission Line Configuration for Z-Pinch Experiments

    SciTech Connect

    Hurricane, O

    2003-10-16

    Successful dynamic Z-pinch experiments generally require good current delivery to the target load. Power flow losses through highly inductive transmission line configurations reduce the current available to the load. In this Brief Report, a variational calculus technique is used to determine the transmission line configuration that produces the least possible inductance and therefore the best possible current delivery for Z-pinch experiments.

  18. Euler and Potential Experiment/CFD Correlations for a Transport and Two Delta-Wing Configurations

    NASA Technical Reports Server (NTRS)

    Hicks, R. M.; Cliff, S. E.; Melton, J. E.; Langhi, R. G.; Goodsell, A. M.; Robertson, D. D.; Moyer, S. A.

    1990-01-01

    A selection of successes and failures of Computational Fluid Dynamics (CFD) is discussed. Experiment/CFD correlations involving full potential and Euler computations of the aerodynamic characteristics of four commercial transport wings and two low aspect ratio, delta wing configurations are shown. The examples consist of experiment/CFD comparisons for aerodynamic forces, moments, and pressures. Navier-Stokes equations are not considered.

  19. Learning your way in a city: experience and gender differences in configurational knowledge of one's environment.

    PubMed

    De Goede, Maartje; Postma, Albert

    2015-01-01

    Males tend to outperform females in their knowledge of relative and absolute distances in spatial layouts and environments. It is unclear yet in how far these differences are innate or develop through life. The aim of the present study was to investigate whether gender differences in configurational knowledge for a natural environment might be modulated by experience. In order to examine this possibility, distance as well as directional knowledge of the city of Utrecht in the Netherlands was assessed in male and female inhabitants who had different levels of familiarity with this city. Experience affected the ability to solve difficult distance knowledge problems, but only for females. While the quality of the spatial representation of metric distances improved with more experience, this effect was not different for males and females. In contrast directional configurational measures did show a main gender effect but no experience modulation. In general, it seems that we obtain different configurational aspects according to different experiential time schemes. Moreover, the results suggest that experience may be a modulating factor in the occurrence of gender differences in configurational knowledge, though this seems dependent on the type of measurement. It is discussed in how far proficiency in mental rotation ability and spatial working memory accounts for these differences. PMID:25914663

  20. Capability of cross-hole electrical configurations for monitoring rapid plume migration experiments

    NASA Astrophysics Data System (ADS)

    Bellmunt, F.; Marcuello, A.; Ledo, J.; Queralt, P.

    2016-01-01

    Cross-hole electrical resistivity tomography is a useful tool in geotechnical, hydrogeological or fluid/gas plume migration studies. It allows better characterization of deep subsurface structures and monitoring of the involved processes. However, due to the large amount of possible four-electrode combinations between boreholes, the choice of the most efficient ones for rapid plume migration experiments (real-time monitoring), becomes a challenge. In this work, a numerical simulation to assess the capabilities and constraints of the most common cross-hole configurations for real-time monitoring is presented. Four-electrode configurations, sensitivity, dependence on the body location and amount of data were taken into account. The analysis of anomaly detection and the symmetry of the sensitivity pattern of cross-hole configurations allowed significant reduction of the amount of data and maintaining the maximum potential resolution of each configuration for real-time monitoring. The obtained results also highlighted the benefit of using the cross-hole AB-MN configuration (with both current - or potential - electrodes located in the same borehole) combined with other configurations with complementary sensitivity pattern.

  1. The Modern Design of Experiments for Configuration Aerodynamics: A Case Study

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard

    2006-01-01

    The effects of slowly varying and persisting covariate effects on the accuracy and precision of experimental result is reviewed, as is the rationale for run-order randomization as a quality assurance tactic employed in the Modern Design of Experiments (MDOE) to defend against such effects. Considerable analytical complexity is introduced by restrictions on randomization in configuration aerodynamics tests because they involve hard-to-change configuration variables that cannot be randomized conveniently. Tradeoffs are examined between quality and productivity associated with varying degrees of rigor in accounting for such randomization restrictions. Certain characteristics of a configuration aerodynamics test are considered that may justify a relaxed accounting for randomization restrictions to achieve a significant reduction in analytical complexity with a comparably negligible adverse impact on the validity of the experimental results.

  2. Managing Hardware Configurations and Data Products for the Canadian Hydrogen Intensity Mapping Experiment

    NASA Astrophysics Data System (ADS)

    Hincks, A. D.; Shaw, J. R.; Chime Collaboration

    2015-09-01

    The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is an ambitious new radio telescope project for measuring cosmic expansion and investigating dark energy. Keeping good records of both physical configuration of its 1280 antennas and their analogue signal chains as well as the ˜100 TB of data produced daily from its correlator will be essential to the success of CHIME. In these proceedings we describe the database-driven software we have developed to manage this complexity.

  3. Measured and predicted aerodynamic coefficients and shock shapes for Aeroassist Flight Experiment (AFE) configuration

    NASA Technical Reports Server (NTRS)

    Wells, William L.

    1989-01-01

    Two scaled models of the Aeroassist Flight Experiment (AFE) vehicle were tested in two air wind tunnels and one CF4 tunnel. The tests were to determine the static longitudinal aerodynamic characteristics, and shock shapes for the configuration in hypersonic continuum flow. The tests were conducted with a range of angle of attack to evaluate the effects of Mach number, Reynolds numbers, and normal shock density ratio.

  4. X-33 XRS-2200 Linear Aerospike Engine Sea Level Plume Radiation

    NASA Technical Reports Server (NTRS)

    DAgostino, Mark G.; Lee, Young C.; Wang, Ten-See; Turner, Jim (Technical Monitor)

    2001-01-01

    Wide band plume radiation data were collected during ten sea level tests of a single XRS-2200 engine at the NASA Stennis Space Center in 1999 and 2000. The XRS-2200 is a liquid hydrogen/liquid oxygen fueled, gas generator cycle linear aerospike engine which develops 204,420 lbf thrust at sea level. Instrumentation consisted of six hemispherical radiometers and one narrow view radiometer. Test conditions varied from 100% to 57% power level (PL) and 6.0 to 4.5 oxidizer to fuel (O/F) ratio. Measured radiation rates generally increased with engine chamber pressure and mixture ratio. One hundred percent power level radiation data were compared to predictions made with the FDNS and GASRAD codes. Predicted levels ranged from 42% over to 7% under average test values.

  5. Effects of landscape composition and configuration on pollination in a native herb: a field experiment.

    PubMed

    Ekroos, Johan; Jakobsson, Anna; Wideen, Joel; Herbertsson, Lina; Rundlöf, Maj; Smith, Henrik G

    2015-10-01

    Bumble bee abundance in agricultural landscapes is known to decrease with increasing distance from seminatural grasslands, but whether the pollination of bumble-bee-pollinated wild plants shows a similar pattern is less well known. In addition, the relative effects of landscape composition (landscape heterogeneity) and landscape configuration (distance from seminatural grassland) on wild plant pollination, and the interaction between these landscape effects, have not been studied using landscape-level replication. We performed a field experiment to disentangle these landscape effects on the pollination of a native herb, the sticky catchfly (Lychnis viscaria), while accounting for the proportion of oilseed rape across landscapes and the local abundance of bee forage flowers. We measured pollen limitation (the degree to which seed set is pollen-limited), seed set, and seed set stability using potted plants placed in landscapes that differed in heterogeneity (composition) and distance from seminatural grassland (configuration). Pollen limitation and seed set in individual plants did not respond to landscape composition, landscape configuration, or proportion of oilseed rape. Instead, seed set increased with increasing local bee forage flower cover. However, we found within-plant variability in pollen limitation and seed set to increase with increasing distance from seminatural pasture. Our results suggest that average within-plant levels of pollen limitation and seed set respond less swiftly than the within-plant variability in pollen limitation and seed set to changes in landscape configuration. Although landscape effects on pollination were less important than predicted, we conclude that landscape configuration and local habitat characteristics play larger roles than landscape composition in the pollination of L. viscaria. PMID:26085467

  6. Simulation of turbulent supersonic separated base flows using enhanced turbulence modeling techniques with application to an X-33 aerospike rocket nozzle system

    NASA Astrophysics Data System (ADS)

    Papp, John Laszlo

    2000-10-01

    The successful application of CFD and turbulence modeling methods to an aerospike nozzle system first involves the successful simulation of its key flow components. This report addresses the task using the Chien low-Re k-epsilon and the Yakhot et al. high-Re RNG k-epsilon turbulence models. An improved implicit axis of symmetry boundary condition is also developed to increase stability and lower artificial dissipation. Grid adaptation through the SAGE post-processing package is used throughout the study. The RNG model, after low-Re modifications, and the Chien low-Re k-epsilon model are applied to the supersonic axisymmetric base flow problem. Both models predict a peak recirculation velocity almost twice as large as experiment. The RNG model predicts a flatter base pressure and lower recirculation velocity more consistent with experimental data using less grid points than a comparable Chien model solution. The turbulent quantities predicted by both models are typical of other numerical results and generally under predict peak values obtained in experiment suggesting that too little turbulent eddy viscosity is produced. After several test cases, the full 3-D aerospike nozzle is simulated using both the Chien and modified RNG low-Re models. The Chien model outperforms the RNG model in all circumstances. The surface pressure predicted by the Chien model along the nozzle center-plane is very near experiment while mid-plane results are not as close but useful for design purposes. The lack of a thick boundary layer along the nozzle surface in RNG simulations is the cause of poor surface pressure comparisons. Although initial base flow comparisons between the model predictions and experiment are poor, the profiles are relatively flat. To accelerate the progress to a steady-state solution, a process involving the artificial lowering of the base pressure and subsequent iteration to a new steady state is undertaken. After several of these steps, the resulting steady

  7. Experiment/facility requirements document for the Space Station Furnace Facility. Section 1: Integrated configuration

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The function of the Space Station Furnace Facility (SSFF) is to support materials research into the crystal growth and solidification processes of electronic and photonic materials, metals and alloys, and glasses and ceramics. To support this broad base of research requirements, the SSFF will employ a variety of furnace modules which will be operated, regulated, and supported by a core of common subsystems. Furnace modules may be reconfigured or specifically developed to provide unique solidification conditions for each set of experiments. The SSFF modular approach permits the addition of new or scaled-up furnace modules to support the evolution of the facility as new science requirements are identified. The SSFF Core is of modular design to permit augmentation for enhanced capabilities. The fully integrated configuration of the SSFF will consist of three racks with the capability of supporting up to two furnace modules per rack. The initial configuration of the SSFF will consist of two of the three racks and one furnace module. This Experiment/Facility Requirements Document (E/FRD) describes the integrated facility requirements for the Space Station Freedom (SSF) Integrated Configuration-1 (IC1) mission. The IC1 SSFF will consist of two racks: the Core Rack, with the centralized subsystem equipment; and the Experiment Rack-1, with Furnace Module-1 and the distributed subsystem equipment to support the furnace. The SSFF support functions are provided by the following Core subsystems: power conditioning and distribution subsystem (SSFF PCDS); data management subsystem (SSFF DMS); thermal control Subsystem (SSFF TCS); gas distribution subsystem (SSFF GDS); and mechanical structures subsystem (SSFF MSS).

  8. Simulations of Experiments on Electron Magnetohydrodynamic Reconnection in a Field Reversed Configuration

    NASA Astrophysics Data System (ADS)

    Correa, Cynthia; Horton, Wendel

    2012-10-01

    Theory and simulations are developed to interpret laboratory electron magnetohydrodynamic reconnection experiments involving nonlinear whistlers by Stenzel et.al. [R.L. Stenzel, M.C. Griskey, J. M. Urrutia, and K.D. Strohmaier, Phys. Plasma 10, 2780 (2003)]. In that experiment, two current-carrying 30 cm antennas form a Helmholtz coil configuration and produce an elongated dipole field that opposes the uniform ambient field. The current is increased until a field-reversed-configuration with two 3D null points and a 2D null line has been established, and then the current is switched off. The EMHD dynamics are simulated with a 3D three-field nonlinear MHD code. The analytical model includes Poisson bracket nonlinearities that can give rise to vortices and couple energy to higher modes, as well as hyperviscosity to balance the energy exchange. Simulation field topology and dynamics are compared to the laboratory experiment as verification of the simulation code. The experimental setup and other variations are simulated and examined for occurrences of driven and undriven electron magnetohydrodynamic (EMHD) reconnection.

  9. Transonic pressure measurements and comparison of theory to experiment for three arrow-wing configurations

    NASA Technical Reports Server (NTRS)

    Manro, M. E.

    1982-01-01

    Wind tunnel tests of arrow-wing body configurations consisting of flat, twisted, and cambered twisted wings, as well as a variety of leading and trailing edge control surface deflections, were conducted at Mach numbers from 0.4 to 1.05 to provide an experimental pressure data base for comparison with theoretical methods. Theory to experiment comparisons of detailed pressure distributions were made using state of the art attached flow methods. Conditions under which these theories are valid for these wings are presented.

  10. Supersonic pressure measurements and comparison of theory to experiment for an arrow-wing configuration

    NASA Technical Reports Server (NTRS)

    Manro, M. E.

    1976-01-01

    A wind tunnel test of an arrow-wing-body configuration consisting of flat and twisted wings, as well as leading- and trailing-edge control surface deflections, was conducted at Mach numbers from 1.54 to 2.50 to provide an experimental pressure data base for comparison with theoretical methods. Theory-to-experiment comparisons of detailed pressure distributions were made using a state-of-the-art inviscid flow, constant-pressure-panel method. Emphasis was on conditions under which this theory is valid for both flat and twisted wings.

  11. Double cathode experiments using radial foil configurations on the COBRA generator

    NASA Astrophysics Data System (ADS)

    Pang, B. H.; Gorenstein, A. Y.; Kim, J. E.; Gourdain, P.-A.; Hammer, D. A.; Kusse, B. R.

    2010-11-01

    As part of the Laboratory of Plasma Studies at Cornell University, our research group has been investigating the dynamics and the collision of plasma bubbles formed by the explosion of metallic foils. A 100-ns rise time 1MA current runs through an aluminum foil, five micron thick, stretched horizontally onto the anode of the COBRA pulsed power generator. Cathode contacts consist of two hollow stainless pins equally spaced about the center of the foil. The parameters of this experiment include the spacing (3 mm) and inclination of the cathode pins (parallel or at a 45 degree angle). During the explosion, plasma bubbles are formed around each pin. As the bubbles grow and collide, interesting features appear in both experiments. For the parallel cathode configuration, a plasma plume forms above the center between the two bubbles before collision occurs. The plume resembles a twisted helix. For the slanted cathode configuration a plasma sheet forms when the two bubbles collide, and possibly a shock front is formed after the collision. The sheet extends inside a vertical plane just above the foil geometrical center. The electron density of this plasma sheet is approximately 5x10^18 cm-3, and its velocity is below 150 km/s.

  12. Advanced target configurations for gigabar equation of state experiments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Sullivan, K.; Kuntz, J.; Swift, D.; Hawreliak, J.; Kritcher, A.; Doeppner, T.

    2013-06-01

    The initial version of the converging-shock equation of state (EOS) platform demonstrated at NIF used a configuration based as closely as possible on inertial confinement fusion (ICF) targets. The success of this platform and the accuracy of the design simulations gives confidence that future experiments can be more flexible in both the hohlraum and target configurations. Changes in the target will enable significant improvements in EOS measurements. The first targets used a proven ICF ablator design, and the sample was a uniform sphere of CH-based plastic. As well as optimizing designs for other sample compositions, we are developing methods of fabricating samples with buried radiographic marker layers-a narrow layer with a high-Z dopant-using direct ink writing and electrophoretic deposition. The incorporation of multiple marker layers is an important step forward in converging shock experiments. The particle speed can be measured directly as the shock passes, and an average compression and opacity can be determined directly from the separation between markers and local x-ray attenuation. The markers can also be used to improve the precision of the radiographic unfold used to reconstruct the spatial dependence of the compression and opacity profiles. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Advanced Biasing Experiments on the C-2 Field-Reversed Configuration Device

    NASA Astrophysics Data System (ADS)

    Thompson, Matthew; Korepanov, Sergey; Garate, Eusebio; Yang, Xiaokang; Gota, Hiroshi; Douglass, Jon; Allfrey, Ian; Valentine, Travis; Uchizono, Nolan; TAE Team

    2014-10-01

    The C-2 experiment seeks to study the evolution, heating and sustainment effects of neutral beam injection on field-reversed configuration (FRC) plasmas. Recently, substantial improvements in plasma performance were achieved through the application of edge biasing with coaxial plasma guns located in the divertors. Edge biasing provides rotation control that reduces instabilities and E × B shear that improves confinement. Typically, the plasma gun arcs are run at ~ 10 MW for the entire shot duration (~ 5 ms), which will become unsustainable as the plasma duration increases. We have conducted several advanced biasing experiments with reduced-average-power plasma gun operating modes and alternative biasing cathodes in an effort to develop an effective biasing scenario applicable to steady state FRC plasmas. Early results show that several techniques can potentially provide effective, long-duration edge biasing.

  14. Interface Configuration Experiments (ICE) Explore the Effects of Microgravity on Fluids

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Interface Configuration Experiment (ICE) is actually a series of experiments that explore the striking behavior of liquid-vapor interfaces (i.e., fluid surfaces) in a low gravity environment under which major shifts in liquid position can arise from small changes in container shape or contact angle. Although these experiments are designed to test current mathematical theory, there are numerous practical applications that could result from these studies. When designing fluid management systems for space-based operations, it is important to be able to predict the locations and configurations that fluids will assume in containers under low-gravity conditions. The increased ability to predict, and hence control, fluid interfaces is vital to systems and/or processes where capillary forces play a significant role both in space and on the Earth. Some of these applications are in general coating processes (paints, pesticides, printing, etc.), fluid transport in porous media (ground water flows, oil recovery, etc.), liquid propellant systems in space (liquid fuel and oxygen), capillary-pumped loops and heat pipes, and space-based life-support systems. In space, almost every fluid system is affected, if not dominated, by capillarity. Knowledge of the liquid-vapor interface behavior, and in particular the interface shape from which any analysis must begin, is required as a foundation to predict how these fluids will react in microgravity and on Earth. With such knowledge, system designs can be optimized, thereby decreasing costs and complexity, while increasing performance and reliability. ICE has increased, and will continue to increase this knowledge, as it probes the specific peculiarities of current theory upon which our current understanding of these effects is based. Several versions of ICE were conducted in NASA Lewis Research Center's drop towers and on the space shuttle during the first and second United States Microgravity Laboratory missions (USML-1 and USML-2

  15. Using Computational Fluid Dynamics and Experiments to Design Sweeping Jets for High Reynolds Number Cruise Configurations

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Milholen, William E., II; Fell, Jared S.; Webb, Sandy R.; Cagle, C. Mark

    2016-01-01

    The application of a sweeping jet actuator to a circulation control system was initiated by a risk reduction series of experiments to optimize the authority of a single sweeping jet actuator. The sweeping jet design was integrated into the existing Fundamental Aerodynamic Subsonic Transonic- Modular Active Control (FAST-MAC) model by replacing the steady blowing system with an array of thirty-nine sweeping jet cartridges. A constant slot height to wing chord ratio was similar to the steady blowing configuration resulting in each actuator having a unique in size for the sweeping jet configuration. While this paper will describe the scaling and optimization of the actuators for future high Reynolds number applications, the major focus of this effort was to target the transonic flight regime by increasing the amplitude authority of the actuator. This was accomplished by modifying the diffuser of the sweeping jet actuator, and this paper highlights twelve different diffuser designs. The experimental portion of this work was completed in the NASA Langley National Transonic Facility.

  16. OH PLIF Visualization of the UVa Supersonic Combustion Experiment: Configuration C

    NASA Technical Reports Server (NTRS)

    McRae, Colin D.; Johansen, Craig T.; Danehy, Paul M.; Gallo, Emanuela C. A.; Cantu, Luca M. L.; Magnotti, Gaetano; Cutler, Andrew D.; Rockwell, Robert D., Jr.; Goyne, Christopher P.; McDnaiel, James C.

    2013-01-01

    Non-intrusive hydroxyl radical (OH) planar laser-induced fluorescence (PLIF) measurements were obtained in configuration C of the University of Virginia supersonic combustion experiment. The combustion of hydrogen fuel injected through an unswept compression ramp into a supersonic cross-flow was imaged over a range of streamwise positions. Images were corrected for optical distortion, variations in the laser sheet profile, and different camera views. Results indicate an effect of fuel equivalence ratio on combustion zone shape and local turbulence length scale. The streamwise location of the reaction zone relative to the fuel injector was also found to be sensitive to the fuel equivalence ratio. The flow boundary conditions in the combustor section, which are sensitive to the fuel flow rate, are believed to have caused this effect. A combination of laser absorption and radiative trapping effects are proposed to have caused asymmetry observed in the images. The results complement previously published OH PLIF data obtained for configuration A along with other non-intrusive measurements to form a database for computational fluid dynamics (CFD) model validation.

  17. Interaction of Fast Ions with Global Plasma Modes in the C-2 Field Reversed Configuration Experiment

    NASA Astrophysics Data System (ADS)

    Smirnov, Artem; Dettrick, Sean; Clary, Ryan; Korepanov, Sergey; Thompson, Matthew; Trask, Erik; Tuszewski, Michel

    2012-10-01

    A high-confinement operating regime [1] with plasma lifetimes significantly exceeding past empirical scaling laws was recently obtained by combining plasma gun edge biasing and tangential Neutral Beam Injection (NBI) in the C-2 field-reversed configuration (FRC) experiment [2, 3]. We present experimental and computational results on the interaction of fast ions with the n=2 rotational and n=1 wobble modes in the C-2 FRC. It is found that the n=2 mode is similar to quadrupole magnetic fields in its detrimental effect on the fast ion transport due to symmetry breaking. The plasma gun generates an inward radial electric field, thus stabilizing the n=2 rotational instability without applying the quadrupole magnetic fields. The resultant FRCs are nearly axisymmetric, which enables fast ion confinement. The NBI further suppresses the n=2 mode, improves the plasma confinement characteristics, and increases the plasma configuration lifetime [4]. The n=1 wobble mode has relatively little effect on the fast ion transport, likely due to the approximate axisymmetry about the displaced plasma column. [4pt] [1] M. Tuszewski et al., Phys. Rev. Lett. 108, 255008 (2012).[0pt] [2] M. Binderbauer et al., Phys. Rev. Lett. 105, 045003 (2010).[0pt] [3] H.Y. Guo et al., Phys. Plasmas 18, 056110 (2011).[0pt] [4] M. Tuszewski et al., Phys. Plasmas 19, 056108 (2012)

  18. Crystal Growth Furnace System Configuration and Planned Experiments on the Second United States Microgravity Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Srinivas, R.; Hambright, G.; Ainsworth, M.; Fiske, M.; Schaefer, D.

    1995-01-01

    The Crystal Growth Furnace (CGF) is currently undergoing modifications and refurbishment and is currently undergoing modifications and refurbishment and is manifested to refly on the Second United States Microgravity Laboratory (USML-2) mission scheduled for launch in September 1995. The CGF was developed for the National Aeronautics and Space Administration (NASA) under the Microgravity Science and Applications Division (MSAD) programs at NASA Headquarters. The refurbishment and reflight program is being managed by the Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Funding and program support for the CGF project is provided to MSFC by the office of Life and Microgravity Sciences and Applications at NASA Headquarters. This paper presents an overview of the CGF system configuration for the USML-2 mission, and provides a brief description of the planned on-orbit experiment operation.

  19. Isentropic Compression with a Rectangular Configuration for Tungstene and Tantalum, Computations and Comparison with Experiments

    SciTech Connect

    Lefrancois, A.; Reisman, D. B.; Bastea, M.; L'Eplattenier, P.; Burger, M.

    2006-02-13

    Isentropic compression experiments and numerical simulations on metals are performed at Z accelerator facility from Sandia National Laboratory and at Lawrence Livermore National Laboratory in order to study the isentrope, associated Hugoniot and phase changes of these metals. 3D configurations have been calculated here to benchmark the new beta version of the electromagnetism package coupled with the dynamics in Ls-Dyna and compared with the ICE Z shots 1511 and 1555. The electromagnetism module is being developed in the general-purpose explicit and implicit finite element program LS-DYNA{reg_sign} in order to perform coupled mechanical/thermal/electromagnetism simulations. The Maxwell equations are solved using a Finite Element Method (FEM) for the solid conductors coupled with a Boundary Element Method (BEM) for the surrounding air (or vacuum). More details can be read in the references.

  20. OH PLIF Visualization of the UVa Supersonic Combustion Experiment: Configuration A

    NASA Technical Reports Server (NTRS)

    Johansen, Craig T.; McRae, Colin D.; Danehy, Paul M.; Gallo, Emanuela C. A.; Cantu, Luca M. L.; Magnotti, Gaetano; Cutler, Andrew D.; Rockwell, Robert D., Jr.; Goyne, Chris P.; McDaniel, James C.

    2013-01-01

    Hydroxyl radical (OH) planar laser-induced fluorescence (PLIF) measurements were performed in the University of Virginia supersonic combustion experiment. The test section was set up in configuration A, which includes a Mach 2 nozzle, combustor, and extender section. Hydrogen fuel was injected through an unswept compression ramp at two different equivalence ratios. Through the translation of the optical system and the use of two separate camera views, the entire optically accessible range of the combustor was imaged. Single-shot, average, and standard deviation images of the OH PLIF signal are presented at several streamwise locations. The results show the development of a highly turbulent flame structure and provide an experimental database to be used for numerical model assessment.

  1. OH PLIF Visualization of the UVa Supersonic Combustion Experiment: Configuration A

    NASA Technical Reports Server (NTRS)

    Johansen, Craig T.; McRae, Colin D.; Danehy, Paul M.; Gallo, Emanuela; Cantu, Luca Maria Luigi; Magnotti, Gaetano; Cutler, Andrew D.; Rockwell, Robert D.; Goyne, Christopher P.; McDaniel, James C.

    2012-01-01

    Hydroxyl radical (OH) planar laser-induced fluorescence (PLIF) measurements were performed in the University of Virginia s dual-mode scramjet experiment. The test section was set up in configuration A, which includes a Mach 2 nozzle, combustor, and extender section. Hydrogen fuel was injected through an unswept compression ramp at two different equivalence ratios. Through the translation of the optical system and the use of two separate camera views, the entire optical range of the combustor was accessed. Single-shot, average, and standard deviation images of the OH PLIF signal are presented at several streamwise locations. The results show the development of a highly turbulent flame structure and provide an experimental database to be used for numerical model assessment.

  2. Spherical shock-ignition experiments with the 40 + 20-beam configuration on OMEGA

    SciTech Connect

    Theobald, W.; Anderson, K. S.; Delettrez, J. A.; Glebov, V. Yu.; Gotchev, O. V.; Hohenberger, M.; Hu, S. X.; Marshall, F. J.; Sangster, T. C.; Seka, W.; Stoeckl, C.; Yaakobi, B.; Nora, R.; Betti, R.; Meyerhofer, D. D.; Lafon, M.; Casner, A.; Ribeyre, X.; Schurtz, G.; Frenje, J. A.; and others

    2012-10-15

    Spherical shock-ignition experiments on OMEGA used a novel beam configuration that separates low-intensity compression beams and high-intensity spike beams. Significant improvements in the performance of plastic-shell, D{sub 2} implosions were observed with repointed beams. The analysis of the coupling of the high-intensity spike beam energy into the imploding capsule indicates that absorbed hot-electron energy contributes to the coupling. The backscattering of laser energy was measured to reach up to 36% at single-beam intensities of {approx}8 Multiplication-Sign 10{sup 15} W/cm{sup 2}. Hard x-ray measurements revealed a relatively low hot-electron temperature of {approx}30 keV independent of intensity and timing. At the highest intensity, stimulated Brillouin scattering occurs near and above the quarter-critical density and the two-plasmon-decay instability is suppressed.

  3. Neutral beam system for the C-2-Upgrade Field Reversed Configuration Experiment

    NASA Astrophysics Data System (ADS)

    Korepanov, Sergey; Smirnov, Artem; Clary, Ryan; Dunaevsky, Alexandr; Isakov, Ivan; Magee, Richard; Matvienko, Vasily; van Drie, Alan; Deichuli, Petr; Ivanov, Alexandr; Pirogov, Konstantin; Sorokin, Aleksey; Stupishin, Nickolay; Vakhrushev, Roman; TAE Team; Budker Team

    2015-11-01

    In the C-2 field-reversed configuration (FRC) experiment, tangential neutral beam injection (NBI), coupled with electrically-biased plasma guns at the plasma ends and advanced surface conditioning, led to dramatic reductions in turbulence-driven losses. Under such conditions, highly reproducible, macroscopically stable, hot FRCs with a significant fast-ion population, total plasma temperature of ~ 1 keV and record lifetimes were achieved. To further improve the FRC sustainment and provide a better coupling with beams, the C-2 device has been upgraded with a new NBI system, which can deliver up to a total of 10 MW of hydrogen beam power (15 keV, 8 ms pulse), by far the largest ever used in compact toroid plasma experiments. The NBI system consists of six positive-ion based injectors featuring flexible, modular design. This presentation will provide an overview of the C-2U NBI system, including: 1) NBI test facility, beam characterization, and acceptance tests, 2) integration with the machine and operating experience, 3) improvements in plasma performance with increased beam power.

  4. Analysis of Linear Aerospike Plume Induced X-33 Base Heating Environment

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    1998-01-01

    Computational analysis is conducted to study the effect of an linear aerospike engine plume on the X-33 base-heating environment during ascent flight. To properly account for the freestream-body interaction and to allow for potential plume-induced flow-separation, the thermo-flowfield of the entire vehicle at several trajectory points is computed. A sequential grid-refinement technique is used in conjunction with solution-adaptive, patched, and embedded grid methods to limit the model to a manageable size. The computational methodology is based on a three-dimensional, finite-difference, viscous flow, chemically reacting, pressure-based computational fluid dynamics formulation, and a three-dimensional, finite-volume, spectral-line based weighted-sum-of-gray-gases absorption, computational radiation heat transfer formulation. The computed forebody and afterbody surface pressure coefficients and base pressure characteristic curves are compared with those of a cold-flow test. The predicted convective and radiative base-heat fluxes, the effect of base-bleed, and the potential of plume-induced flow separation are presented.

  5. Fiber optic microsensor hydrogen leak detection system on Aerospike X-33

    NASA Astrophysics Data System (ADS)

    Kazemi, Alex A.; Goepp, John W.; Larson, David B.; Wuestling, Mark E.

    2007-09-01

    Commercial and military launch vehicles are designed to use cryogenic hydrogen as the main propellant, which is very volatile, extremely flammable, and highly explosive. Current detection system uses Teflon transfer tubes at small number of vehicle location through which gas samples are drawn and stream analyzed by a mass spectrometer. A concern with this approach is the high cost of the system. Also, the current system does not provide leak location and is not in real time. This system is very complex and cumbersome for production and ground support measurement personnel. This paper describes the successful test of a multipoint fiber optic hydrogen microsensors system on the Linear Aerospike X-33 rocket engine at NASA's Stennis Flight Center. The system consisted of a reversible chemical interaction causing a change in reflective of a thin film of coated Palladium. The sensor using a passive element consisting of chemically reactive microcoatings deposited on the surface of a glass microlens, which is then bonded to an optical fiber. The system uses a multiplexing technique with a fiber optic driver-receiver consisting of a modulated LED source that is launched into the sensor, and photodiode detector that synchronously measures the reflected signal. The system incorporates a microprocessor to perform the data analysis and storage, as well as trending and set alarm function. The paper illustrates the sensor design and performance data under field deployment conditions.

  6. Preshot Calculations for a Small-Scale HE Experiment. Overview and Results for Symmetric Configurations

    SciTech Connect

    Holmes, Richard L.

    2015-05-27

    Explosively-driven magnetic flux compression generators create substantial currents (10’s of mega-amps) by compressing magnetic fields initially created by injected seed currents. In a Ranchero generator it is the field between two cylinders of aluminum that is compressed when the inner cylinder (armature) is driven across the magnetized gap toward the second cylinder (stator) [1]. All Rancheros to date have used the explosive PBXN-110, but future devices are expected to use PBX-9501 because of several advantages of the latter over the former. For Ranchero applications, though, a potentially important disadvantage stems from the requirement that the large PBX-9501 charges (15 to 50 kg) must built up from smaller machined pieces rather than cast into the appropriate shape as with PBXN-110. Calculations [2] and related experiments [3] raise the possibility that jetting may occur at gaps between machined pieces of PBX-9501 and lead to localized failure of the soft aluminum armature causing premature contact of the armature with the stator or, in the most extreme case, a severing of the armature into separate pieces and a subsequent loss of current. A set of small-scale experiments has been designed to provide Ranchero designers and users insight into the effects of gaps and also to provide useful data for the validation of Ranchero calculations. These experiments should be executed in early May 2015. The code Rage [4] was used to model the small-scale experiment and this paper presents the results. The emphasis here is on the calculations and the experimental details are limited, so the interested reader is referred to reference 5 for a fuller description of the experimental configuration and diagnostics. Less-interested readers may be interested in only a summary of results and are directed to the “Summary of key results” section later in this paper.

  7. An object-oriented approach to deploying highly configurable Web interfaces for the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Lange, Bruno; Maidantchik, Carmen; Pommes, Kathy; Pavani, Varlen; Arosa, Breno; Abreu, Igor

    2015-12-01

    The ATLAS Technical Coordination disposes of 17 Web systems to support its operation. These applications, whilst ranging from managing the process of publishing scientific papers to monitoring radiation levels in the equipment in the experimental cavern, are constantly prone to changes in requirements due to the collaborative nature of the experiment and its management. In this context, a Web framework is proposed to unify the generation of the supporting interfaces. FENCE assembles classes to build applications by making extensive use of JSON configuration files. It relies heavily on Glance, a technology that was set forth in 2003 to create an abstraction layer on top of the heterogeneous sources that store the technical coordination data. Once Glance maps out the database modeling, records can be referenced in the configuration files by wrapping unique identifiers around double enclosing brackets. The deployed content can be individually secured by attaching clearance attributes to their description thus ensuring that view/edit privileges are granted to eligible users only. The framework also provides tools for securely writing into a database. Fully HTML5-compliant multi-step forms can be generated from their JSON description to assure that the submitted data comply with a series of constraints. Input validation is carried out primarily on the server- side but, following progressive enhancement guidelines, verification might also be performed on the client-side by enabling specific markup data attributes which are then handed over to the jQuery validation plug-in. User monitoring is accomplished by thoroughly logging user requests along with any POST data. Documentation is built from the source code using the phpDocumentor tool and made readily available for developers online. Fence, therefore, speeds up the implementation of Web interfaces and reduces the response time to requirement changes by minimizing maintenance overhead.

  8. Crystal Growth Furnace - An overview of the system configuration and planned experiments on the First United States Microgravity Laboratory mission

    NASA Technical Reports Server (NTRS)

    Srinivas, R.; Schaefer, D. A.

    1992-01-01

    The Crystal Growth Furnace (CGF) system configuration for the First United States Microgravity Laboratory (USML-1) mission is reviewed, and the planned on-orbit experiments are briefly described. The CGF is configured to accommodate four scientific experiments involving crystal growth which are based on the classical Bridgman method and CVT method, including vapor transport crystal growth of mercury cadmium telluride; crystal growth of mercury zinc telluride by directional solidification; seeded Bridgman growth of zinc-doped cadmium telluride; and Bridgman growth of selenium-doped gallium arsenide.

  9. Robust Low Cost Aerospike/RLV Combustion Chamber by Advanced Vacuum Plasma Process

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Ellis, David; McKechnie

    1999-01-01

    Next-generation, regeneratively cooled rocket engines will require materials that can withstand high temperatures while retaining high thermal conductivity. At the same time, fabrication techniques must be cost efficient so that engine components can be manufactured within the constraints of a shrinking NASA budget. In recent years, combustion chambers of equivalent size to the Aerospike chamber have been fabricated at NASA-Marshall Space Flight Center (MSFC) using innovative, relatively low-cost, vacuum-plasma-spray (VPS) techniques. Typically, such combustion chambers are made of the copper alloy NARloy-Z. However, current research and development conducted by NASA-Lewis Research Center (LeRC) has identified a Cu-8Cr-4Nb alloy which possesses excellent high-temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability. In fact, researchers at NASA-LeRC have demonstrated that powder metallurgy (P/M) Cu-8Cr-4Nb exhibits better mechanical properties at 1,200 F than NARloy-Z does at 1,000 F. The objective of this program was to develop and demonstrate the technology to fabricate high-performance, robust, inexpensive combustion chambers for advanced propulsion systems (such as Lockheed-Martin's VentureStar and NASA's Reusable Launch Vehicle, RLV) using the low-cost, VPS process to deposit Cu-8Cr-4Nb with mechanical properties that match or exceed those of P/M Cu-8Cr-4Nb. In addition, oxidation resistant and thermal barrier coatings can be incorporated as an integral part of the hot wall of the liner during the VPS process. Tensile properties of Cu-8Cr-4Nb material produced by VPS are reviewed and compared to material produced previously by extrusion. VPS formed combustion chamber liners have also been prepared and will be reported on following scheduled hot firing tests at NASA-Lewis.

  10. Asymmetric Base-Bleed Effect on Aerospike Plume-Induced Base-Heating Environment During Power-Pack Out

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Droege, Alan; D'Agostino, Mark; Lee, Young-Ching; Williams, Robert

    2003-01-01

    A computational heat transfer design methodology was developed to study tbe dual-engine linear aerospike plume-induced base-heating environment during one power-pack out, in ascent flight. It includes a three-dimensional, finite volume, viscous, chemically reacting, and pressure-based computational fluid dynamics formulation, a special base-bleed boundary condition, and a three-dimensional, finite volume, and spectral-line-based weighted-sum-of-gray-gases absorption computational radiation heat transfer formulation. A separate radiation model was used for diagnostic purposes. The computational methodology was systematically benchmarked. in this study, near-base radiative heat fluxes were computed, and they compared well with those measured during static linear aerospike engine tests. The base-heating environment of 18 trajectory points secected from three power-pack out scenarios was computed. The computed asymmetric base-heating physics were analyzed. The power-pack out condition has the most impact on convective base heating when it happens early in flight. The soume of its impact comes from the asymmetric and reduced base bleed.

  11. Study of plume behaviour of a convergent-divergent and aerospike nozzle at high altitudes using DSMC

    NASA Astrophysics Data System (ADS)

    Donbosco, Ferdin S.; Kumar, Rakesh

    2014-12-01

    The focus of this research endeavor is the numerical investigation of the aerospike nozzle design for aerospace applications, principally due to the design's inherent altitude compensation ability. Our concern is limited to the nozzle's performance at high altitudes and the rarefied atmospheres. The rarefied nature of the study has enabled the use of kinetic particle based methods. In the present work an in-house code based on Direct Simulation Monte Carlo (DSMC) is used to analyze the problem. In the first part of this work, the validity of the usage of DSMC for such a complex flow problem is established by comparison of results with experimental and computational data available in literature. In the second part of the work, the Method of characteristics is used to design an aerospike and convergent-divergent (CD) nozzle optimized for an altitude of 55 km. The parameters such as throat area and chamber conditions are maintained for both cases. In both studies, the exhaust gas is assumed to be Nitrogen at a temperature of 300 K thus, characterizing it as a cold flow analysis.

  12. Base-Bleed Effect on X-33 Aerospike Plume Induced Base-Heating Environment During Power-Pack Out

    NASA Technical Reports Server (NTRS)

    Wang, Tee-See; Droege, Alan; D'Agostino, Mark; Lee, Young-Ching; Williams, Robert

    2003-01-01

    A computational heat transfer methodology was developed to study the dual-engine linear aerospike plume induced base-heating environment during one power-pack out, in ascent flight. One power-pack out results in reduction of power levels for both engines. That, in turn, reduces the amount of base-bleed and changes the distribution of base-bleed on the two pillows. Hence, the concern of increased base-heating during power-pack out. The thermo-flowfield of the entire vehicle was computed. The computational methodology for the convective heating is based on a three-dimensional, finite-volume, viscous, chemically reacting, and pressure-based computational fluid dynamics formulation. The computational methodology for the radiative heating is based on a three-dimensional, finite-volume, and spectral-line-based weighted-sum-of-gray-gases absorption computational radiation heat transfer formulation. A separate radiation model was used for diagnostic purposes. The computational methodology was systematically benchmarked. In this study, near-base radiative heat fluxes were computed and they compared well with those measured from an installed linear aerospike engine tests. The base-heating environment of 18 trajectory points selected from three power-pack out ascent scenarios was computed and is presented here. The power-pack out condition has the most impact on convective base-heating when it happens early in flight. The some of its impact comes from the asymmetric and reduced base-bleed.

  13. Apollo experience report: Flight-control data needs, terminal display devices, and ground system configuration requirements

    NASA Technical Reports Server (NTRS)

    Hoover, R. A.

    1974-01-01

    The development of flight-control facilities for the Apollo program is reviewed from the viewpoint of the user organization. These facilities are treated in three categories: data systems, ground-based display and control systems, and configuration management. The effects of certain Apollo program factors on the selection, sizing, and configuration management of these systems are discussed. Recommendations are made regarding improvement of the systems and the reduction of system sensitivity to the program factors.

  14. Expediting Experiments across Testbeds with AnyBed: A Testbed-Independent Topology Configuration System and Its Tool Set

    NASA Astrophysics Data System (ADS)

    Suzuki, Mio; Hazeyama, Hiroaki; Miyamoto, Daisuke; Miwa, Shinsuke; Kadobayashi, Youki

    Building an experimental network within a testbed has been a tiresome process for experimenters, due to the complexity of the physical resource assignment and the configuration overhead. Also, the process could not be expedited across testbeds, because the syntax of a configuration file varies depending on specific hardware and software. Re-configuration of an experimental topology for each testbed wastes time, an experimenter could not carry out his/her experiments during the limited lease time of a testbed at worst. In this paper, we propose the AnyBed: the experimental network-building system. The conceptual idea of AnyBed is “If experimental network topologies can be portable across any kinds of testbed, then, it would expedite building an experimental network on a testbed while manipulating experiments by each testbed support tool”. To achieve this concept, AnyBed divide an experimental network configuration into the logical and physical network topologies. Mapping these two topologies, AnyBed can build intended logical network topology on any PC clusters. We have evaluated the AnyBed implementation using two distinct clusters. The evaluation result shows a BGP topology with 150 nodes can be constructed on a large scale testbed in less than 113 seconds.

  15. Transonic pressure measurements and comparison of theory to experiment for an arrow-wing configuration. Volume 1: Experimental data report, base configuration and effects of wing twist and leading-edge configuration. [wind tunnel tests, aircraft models

    NASA Technical Reports Server (NTRS)

    Manro, M. E.; Manning, K. J. R.; Hallstaff, T. H.; Rogers, J. T.

    1975-01-01

    A wind tunnel test of an arrow-wing-body configuration consisting of flat and twisted wings, as well as a variety of leading- and trailing-edge control surface deflections, was conducted at Mach numbers from 0.4 to 1.1 to provide an experimental pressure data base for comparison with theoretical methods. Theory-to-experiment comparisons of detailed pressure distributions were made using current state-of-the-art attached and separated flow methods. The purpose of these comparisons was to delineate conditions under which these theories are valid for both flat and twisted wings and to explore the use of empirical methods to correct the theoretical methods where theory is deficient.

  16. Numerical Experiments of Counterflowiing Jet Effects on Supersonic Slender-Body Configurations

    NASA Technical Reports Server (NTRS)

    Venkatachari, Balaji Shankar; Mullane, Michael; Cheng, Gary C.; Chang, Chau-Lyan

    2015-01-01

    Previous studies have demonstrated that the use of counterflowing jets can greatly reduce the drag and heat loads on blunt-body geometries, especially when the long penetration mode jet condition can be established. Previously, the authors had done some preliminary numerical studies to determine the ability to establish long penetration mode jets on a typical Mach 1.6 slender configuration, and study its impact on the boom signature. The results indicated that a jet with a longer penetration length was required to achieve any impact on the boom signature of a typical Mach 1.6 slender configuration. This paper focuses on an in-depth parametric study, done using the space-time conservation element solution element Navier-Stokes flow solver, for investigating the effect of various counterflowing jet conditions/configurations on two supersonic slender-body models (cone-cylinder and quartic body of revolution). The study is aimed at gaining a better understanding of the relationship between the shock penetration length and reduction of drag and boom signature for these two supersonic slender-body configurations. Different jet flow rates, Mach numbers, nozzle jet exit diameters and jet-to-base diameter ratios were examined. The results show the characteristics of a short-to-long-to-short penetration-mode pattern with the increase of jet mass flow rates, observed across various counterflowing jet nozzle configurations. Though the optimal shock penetration length for potential boom-signature mitigation is tied to the long penetration mode, it often results in a very unsteady flow and leads to large oscillations of surface pressure and drag. Furthermore, depending on the geometry of the slender body, longer jet penetration did not always result in maximum drag reduction. For the quartic geometry, the maximum drag reduction corresponds well to the longest shock penetration length, while this was not the case for the cone-cylinder-as the geometry was already optimized for

  17. Linear Test Bed. Volume 2: Test Bed No. 2. [linear aerospike test bed for thrust vector control

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Test bed No. 2 consists of 10 combustors welded in banks of 5 to 2 symmetrical tubular nozzle assemblies, an upper stationary thrust frame, a lower thrust frame which can be hinged, a power package, a triaxial combustion wave ignition system, a pneumatic control system, pneumatically actuated propellant valves, a purge and drain system, and an electrical control system. The power package consists of the Mark 29-F fuel turbopump, the Mark 29-0 oxidizer turbopump, a gas generator assembly, and propellant ducting. The system, designated as a linear aerospike system, was designed to demonstrate the feasibility of the concept and to explore technology related to thrust vector control, thrust vector optimization, improved sequencing and control, and advanced ignition systems. The propellants are liquid oxygen/liquid hydrogen. The system was designed to operate at 1200-psia chamber pressure at an engine mixture ratio of 5.5. With 10 combustors, the sea level thrust is 95,000 pounds.

  18. Benchmark Evaluation of the Medium-Power Reactor Experiment Program Critical Configurations

    SciTech Connect

    Margaret A. Marshall; John D. Bess

    2013-02-01

    A series of small, compact critical assembly (SCCA) experiments were performed in 1962-1965 at the Oak Ridge National Laboratory Critical Experiments Facility (ORCEF) for the Medium-Power Reactor Experiment (MPRE) program. The MPRE was a stainless-steel clad, highly enriched uranium (HEU)-O2 fuelled, BeO reflected reactor design to provide electrical power to space vehicles. Cooling and heat transfer were to be achieved by boiling potassium in the reactor core and passing vapor directly through a turbine. Graphite- and beryllium-reflected assemblies were constructed at ORCEF to verify the critical mass, power distribution, and other reactor physics measurements needed to validate reactor calculations and reactor physics methods. The experimental series was broken into three parts, with the third portion of the experiments representing the beryllium-reflected measurements. The latter experiments are of interest for validating current reactor design efforts for a fission surface power reactor. The entire series has been evaluated as acceptable benchmark experiments and submitted for publication in the International Handbook of Evaluated Criticality Safety Benchmark Experiments and in the International Handbook of Evaluated Reactor Physics Benchmark Experiments.

  19. Overview of C-2 field-reversed configuration experiment plasma diagnostics.

    PubMed

    Gota, H; Thompson, M C; Tuszewski, M; Binderbauer, M W

    2014-11-01

    A comprehensive diagnostic suite for field-reversed configuration (FRC) plasmas has been developed and installed on the C-2 device at Tri Alpha Energy to investigate the dynamics of FRC formation as well as to understand key FRC physics properties, e.g., confinement and stability, throughout a discharge. C-2 is a unique, large compact-toroid merging device that produces FRC plasmas partially sustained for up to ∼5 ms by neutral-beam (NB) injection and end-on plasma-guns for stability control. Fundamental C-2 FRC properties are diagnosed by magnetics, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, and NB-related fast-ion/neutral diagnostics. These diagnostics (totaling >50 systems) are essential to support the primary goal of developing a deep understanding of NB-driven FRCs. PMID:25430249

  20. Rapid torque-limited line-of-sight pointing of SCOLE (Spacecraft Control Laboratory Experiment) configuration

    NASA Technical Reports Server (NTRS)

    Lin, J. G.

    1986-01-01

    The design concept of a control for rapid torque-limited slewing of a rigid-mast version of the NASA SCOLE configuration is presented and demonstrated by means of numerical simulation. The time-optimal control problem for the system is decomposed into separate single-axis problems, expanding analytically the implicit nonlinear transcendental expression for the SCOLE line-of-sight error, and the final Euler attitude angles and slew angles are determined. The simulation results are presented in tables and graphs, and it is found that bang-bang or bang-pause-bang slew maneuvers with control moment applied to the Shuttle and control force applied to the reflector, and with a 5-deg/s slew-rate limit, produce the best pointing accuracy and the shortest slew times, although the specified line-of-sight error of 0.02 deg cannot be achieved using such open-loop single-axis maneuvers.

  1. Labyrinth seal leakage resistance and visualization experiments in a novel, variable-configuration facility

    NASA Astrophysics Data System (ADS)

    Rhode, D. L.; Broussard, D. H.; Veldanda, S. B.

    1993-04-01

    The present experimental investigation is concerned with measuring and understanding the variation of leakage resistance of stepped labyrinth seals over a wide range of geometries. Important details of the novel test facility design and operation are discussed. It was observed that several of the geometrical dimensions are often coupled in a complicated way, which produces a significant and unexpected variation in leakage resistance for a slight change in geometry. Both flow visualization and leakage resistance data were taken and analyzed in an integrated fashion. The result was an improved understanding of the mainstream path and turbulence resulting from the cavity geometry. Each of the three values of radial clearance considered here resulted in a generally different relationship between cavity configuration and leakage resistance.

  2. Theory and experiment on cavity magnon-polariton in the one-dimensional configuration

    NASA Astrophysics Data System (ADS)

    Yao, B. M.; Gui, Y. S.; Xiao, Y.; Guo, H.; Chen, X. S.; Lu, W.; Chien, C. L.; Hu, C.-M.

    2015-11-01

    We have theoretically and experimentally investigated the dispersion of the cavity-magnon-polariton (CMP) in a one-dimensional (1D) configuration, created by inserting a low damping magnetic insulator into a high-quality 1D microwave cavity. By simplifying the full-wave simulation based on the transfer matrix approach in the long wavelength limit, an analytic approximation of the CMP dispersion has been obtained. The resultant coupling strength of the CMP shows different dependence on the sample thickness as well as the permittivity of the sample, determined by the parity of the cavity modes. These scaling effects of the cavity and material parameters are confirmed by experimental data. Our work provides a detailed understanding of the 1D CMP, which could help to engineer a coupled magnon-photon system.

  3. Overview of C-2 field-reversed configuration experiment plasma diagnostics

    SciTech Connect

    Gota, H. Thompson, M. C.; Tuszewski, M.; Binderbauer, M. W.

    2014-11-15

    A comprehensive diagnostic suite for field-reversed configuration (FRC) plasmas has been developed and installed on the C-2 device at Tri Alpha Energy to investigate the dynamics of FRC formation as well as to understand key FRC physics properties, e.g., confinement and stability, throughout a discharge. C-2 is a unique, large compact-toroid merging device that produces FRC plasmas partially sustained for up to ∼5 ms by neutral-beam (NB) injection and end-on plasma-guns for stability control. Fundamental C-2 FRC properties are diagnosed by magnetics, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, and NB-related fast-ion/neutral diagnostics. These diagnostics (totaling >50 systems) are essential to support the primary goal of developing a deep understanding of NB-driven FRCs.

  4. Overview of C-2 field-reversed configuration experiment plasma diagnosticsa)

    NASA Astrophysics Data System (ADS)

    Gota, H.; Thompson, M. C.; Tuszewski, M.; Binderbauer, M. W.

    2014-11-01

    A comprehensive diagnostic suite for field-reversed configuration (FRC) plasmas has been developed and installed on the C-2 device at Tri Alpha Energy to investigate the dynamics of FRC formation as well as to understand key FRC physics properties, e.g., confinement and stability, throughout a discharge. C-2 is a unique, large compact-toroid merging device that produces FRC plasmas partially sustained for up to ˜5 ms by neutral-beam (NB) injection and end-on plasma-guns for stability control. Fundamental C-2 FRC properties are diagnosed by magnetics, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, and NB-related fast-ion/neutral diagnostics. These diagnostics (totaling >50 systems) are essential to support the primary goal of developing a deep understanding of NB-driven FRCs.

  5. Interpreting tracer breakthrough tailing from different forced-gradient tracer experiment configurations in fractured bedrock

    USGS Publications Warehouse

    Becker, M.W.; Shapiro, A.M.

    2003-01-01

    Conceptual and mathematical models are presented that explain tracer breakthrough tailing in the absence of significant matrix diffusion. Model predictions are compared to field results from radially convergent, weak-dipole, and push-pull tracer experiments conducted in a saturated crystalline bedrock. The models are based upon the assumption that flow is highly channelized, that the mass of tracer in a channel is proportional to the cube of the mean channel aperture, and the mean transport time in the channel is related to the square of the mean channel aperture. These models predict the consistent -2 straight line power law slope observed in breakthrough from radially convergent and weak-dipole tracer experiments and the variable straight line power law slope observed in push-pull tracer experiments with varying injection volumes. The power law breakthrough slope is predicted in the absence of matrix diffusion. A comparison of tracer experiments in which the flow field was reversed to those in which it was not indicates that the apparent dispersion in the breakthrough curve is partially reversible. We hypothesize that the observed breakthrough tailing is due to a combination of local hydrodynamic dispersion, which always increases in the direction of fluid velocity, and heterogeneous advection, which is partially reversed when the flow field is reversed. In spite of our attempt to account for heterogeneous advection using a multipath approach, a much smaller estimate of hydrodynamic dispersivity was obtained from push-pull experiments than from radially convergent or weak dipole experiments. These results suggest that although we can explain breakthrough tailing as an advective phenomenon, we cannot ignore the relationship between hydrodynamic dispersion and flow field geometry at this site. The design of the tracer experiment can severely impact the estimation of hydrodynamic dispersion and matrix diffusion in highly heterogeneous geologic media.

  6. Hypersonic lateral and directional stability characteristics of aeroassist flight experiment configuration in air and CF4

    NASA Technical Reports Server (NTRS)

    Micol, John R.; Wells, William L.

    1993-01-01

    Hypersonic lateral and directional stability characteristics measured on a 60 deg half-angle elliptical cone, which was raked at an angle of 73 deg from the cone centerline and with an ellipsoid nose (ellipticity equal to 2.0 in the symmetry plane), are presented for angles of attack from -10 to 10 deg. The high normal-shock density ratio of a real gas was simulated by tests at a Mach number of 6 in air and CF4 (density ratio equal to 5.25 and 12.0, respectively). Tests were conducted in air at Mach 6 and 10 and in CF4 at Mach 6 to examine the effects of Mach number, Reynolds number, and normal-shock density ratio. Changes in Mach number from 6 to 10 in air or in Reynolds number by a factor of 4 at Mach 6 had a negligible effect on lateral and directional stability characteristics. Variations in normal-shock density ratio had a measurable effect on lateral and directional aerodynamic coefficients, but no significant effect on lateral and directional stability characteristics. Tests in air and CF4 indicated that the configuration was laterally and directionally stable through the test range of angle of attack.

  7. Modelling of Field-Reversed Configuration Experiment with Large Safety Factor

    SciTech Connect

    Steinhauer, L; Guo, H; Hoffman, A; Ishida, A; Ryutov, D D

    2005-11-28

    The Translation-Confinement-Sustainment facility has been operated in the 'translation-formation' mode in which a plasma is ejected at high-speed from a {theta}-pinch-like source into a confinement chamber where it settles into a field-reversed-configuration state. Measurements of the poloidal and toroidal field have been the basis of modeling to infer the safety factor. It is found that the edge safety factor exceeds two, and that there is strong forward magnetic shear. The high-q arises because the large elongation compensates for the modest ratio of toroidal-to-poloidal field in the plasma. This is the first known instance of a very high-{beta} plasma with a safety factor greater than unity. Two-fluid modeling of the measurements also indicate several other significant features: a broad 'transition layer' at the plasma boundary with probable line-tying effects, complex high-speed flows, and the appearance of a two-fluid minimum-energy state in the plasma core. All these features may contribute to both the stability and good confinement of the plasma.

  8. Investigation of lower hybrid wave coupling and current drive experiments at different configurations in experimental advanced superconducting tokamak

    SciTech Connect

    Ding, B. J.; Qin, Y. L.; Li, W. K.; Li, M. H.; Kong, E. H.; Zhang, L.; Wang, M.; Xu, H. D.; Hu, H. C.; Xu, G. S.; Shan, J. F.; Liu, F. K.; Zhao, Y. P.; Wan, B. N.; Li, J. G.; Group, EAST; Ekedahl, A.; Peysson, Y.; Decker, J.

    2011-08-15

    Using a 2 MW 2.45 GHz lower hybrid wave (LHW) system installed in experimental advanced superconducting tokamak, we have systematically carried out LHW-plasma coupling and lower hybrid current drive experiments in both divertor (double null and lower single null) and limiter plasma configuration with plasma current (I{sub p}) {approx} 250 kA and central line averaged density (n{sub e}) {approx} 1.0-1.3 x 10{sup 19} m{sup -3} recently. Results show that the reflection coefficient (RC) first is flat up to some distance between plasma and LHW grill, and then increases with the distance. Studies indicate that with the same plasma parameters, the best coupling is obtained in the limiter case (with plasma leaning on the inner wall), followed by the lower single null, and the one with the worst coupling is the double null configuration, explained by different magnetic connection length. The RCs in the different poloidal rows show that they have different coupling characteristics, possibly due to local magnetic connection length. Current drive efficiency has been investigated by a least squares fit with N{sub //}{sup peak}=2.1, where N{sub //}{sup peak} is the peak value of parallel refractive index of the launched wave. Results show that there is no obvious difference in the current drive efficiency between double null and lower single null cases, whereas the efficiency is somewhat small in the limiter configuration. This is in agreement with the ray tracing/Fokker-Planck code simulation by LUKE/C3PO and can be interpreted by the power spectrum up-shift factor in different plasma configurations. A transformer recharge is realized with {approx}0.8 MW LHW power and the energy conversion efficiency from LHW to poloidal field energy is about 2%.

  9. Investigation of lower hybrid wave coupling and current drive experiments at different configurations in experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Ding, B. J.; Qin, Y. L.; Li, W. K.; Li, M. H.; Kong, E. H.; Zhang, L.; Ekedahl, A.; Peysson, Y.; Decker, J.; Wang, M.; Xu, H. D.; Hu, H. C.; Xu, G. S.; Shan, J. F.; Liu, F. K.; Zhao, Y. P.; Wan, B. N.; Li, J. G.; Group, EAST

    2011-08-01

    Using a 2 MW 2.45 GHz lower hybrid wave (LHW) system installed in experimental advanced superconducting tokamak, we have systematically carried out LHW-plasma coupling and lower hybrid current drive experiments in both divertor (double null and lower single null) and limiter plasma configuration with plasma current (Ip) ˜ 250 kA and central line averaged density (ne) ˜ 1.0-1.3 × 1019 m-3 recently. Results show that the reflection coefficient (RC) first is flat up to some distance between plasma and LHW grill, and then increases with the distance. Studies indicate that with the same plasma parameters, the best coupling is obtained in the limiter case (with plasma leaning on the inner wall), followed by the lower single null, and the one with the worst coupling is the double null configuration, explained by different magnetic connection length. The RCs in the different poloidal rows show that they have different coupling characteristics, possibly due to local magnetic connection length. Current drive efficiency has been investigated by a least squares fit with N//peak=2.1, where N//peak is the peak value of parallel refractive index of the launched wave. Results show that there is no obvious difference in the current drive efficiency between double null and lower single null cases, whereas the efficiency is somewhat small in the limiter configuration. This is in agreement with the ray tracing/Fokker-Planck code simulation by LUKE/C3PO and can be interpreted by the power spectrum up-shift factor in different plasma configurations. A transformer recharge is realized with ˜0.8 MW LHW power and the energy conversion efficiency from LHW to poloidal field energy is about 2%.

  10. Equilibrium liquid free-surface configurations: Mathematical theory and space experiments

    NASA Technical Reports Server (NTRS)

    Concus, P.; Finn, R.

    1996-01-01

    Small changes in container shape or in contact angle can give rise to large shifts of liquid in a microgravity environment. We describe some of our mathematical results that predict such behavior and that form the basis for physical experiments in space. The results include cases of discontinuous dependence on data and symmetry-breaking type of behavior.

  11. Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns

    SciTech Connect

    Hand, M. M.; Simms, D. A.; Fingersh, L. J.; Jager, D. W.; Cotrell, J. R.; Schreck, S.; Larwood, S. M.

    2001-12-01

    The primary objective of the insteady aerodynamics experiment was to provide information needed to quantify the full-scale, three-dimensional aerodynamic behavior of horizontal-axis wind turbines. This report is intended to familiarize the user with the entire scope of the wind tunnel test and to support the use of the resulting data.

  12. Tandem mirror experiment-upgrade vacuum system: a new configuration and operating parameters

    SciTech Connect

    Lang, D.D.; Calderon, M.O.; Hunt, A.; Nexsen, W.E.; Pickles, W.L.; Turner, W.C.

    1983-12-02

    The Tandem Mirror Experiment-Upgrade (TMX-U) vacuum system has been installed and operating since December 1981. In 1982 and early 1983 the performance of the internal, dynamic pumping system was evaluated during physics experiments. The plasma region gas loads caused the pressure to exceed that allowable for achieving thermal barrier plasmas. The unified, multiple-beamline concept used on TMX-U to pump the neutral-beam injector gas was modified. The modifications to the system were designed to reduce conductance between the injectors and the plasma region to better use the differential pumping in the pumping regions. The modifications made were a smaller cross section neutralizer, replacing apertures with ducts between regions, eliminating the injector scrape-off in the plasma region, relocating the neutral beam dumps, and eliminating the gaps around various penetrations.

  13. Experiments using electronic display information in the NASA terminal configured vehicle

    NASA Technical Reports Server (NTRS)

    Morello, S. A.

    1980-01-01

    The results of research experiments concerning pilot display information requirements and visualization techniques for electronic display systems are presented. Topics deal with display related piloting tasks in flight controls for approach-to-landing, flight management for the descent from cruise, and flight operational procedures considering the display of surrounding air traffic. Planned research of advanced integrated display formats for primary flight control throughout the various phases of flight is also discussed.

  14. Configuration and Heating Power Dependence of Edge Parameters and H-mode Dynamics in National Spherical Torus Experiment (NSTX)

    SciTech Connect

    C.E. Bush; M.G. Bell; R.E. Bell; J. Boedo; E.D. Fredrickson; S.M. Kaye; S. Kubota; B.P. LeBlanc; R. Maingi; R.J. Maqueda; S.A. Sabbagh; V.A. Soukhanovskii; D. Stutman; D.W. Swain; J.B. Wilgen; S.J. Zweben; W.M. Davis; D.A. Gates; D.W. Johnson; R. Kaita; H.W. Kugel; D. Mastrovito; S. Medley; J.E. Menard; D. Mueller; M. Ono; F. Paoletti; S.J. Paul; Y-K.M. Peng; R. Raman; P.G. Roney; A.L. Roquemore; C.H. Skinner; E.J. Synakowski; G. Taylor; the NSTX Team

    2003-01-09

    Edge parameters play a critical role in H-mode (high-confinement mode) access, which is a key component of plasma discharge optimization in present-day toroidal confinement experiments and the design of next-generation devices. Because the edge magnetic topology of a spherical torus (ST) differs from a conventional aspect ratio tokamak, H-modes in STs exhibit important differences compared with tokamaks. The dependence of the NSTX (National Spherical Torus Experiment) edge plasma on heating power, including the L-H transition requirements and the occurrence of edge-localized modes (ELMs), and on divertor configuration is quantified. Comparisons between good L-modes (low-confinement modes) and H-modes show greater differences in the ion channel than the electron channel. The threshold power for the H-mode transition in NSTX is generally above the predictions of a recent ITER (International Thermonuclear Experimental Reactor) scaling. Correlations of transition and ELM phenomena with turbulent fluctuations revealed by Gas Puff Imaging (GPI) and reflectometry are observed. In both single-null and double-null divertor discharges, the density peaks off-axis, sometimes developing prominent ''ears'' which can be sustained for many energy confinement times, tau subscript ''E'', in the absence of ELMs. A wide variety of ELM behavior is observed, and ELM characteristics depend on configuration and fueling.

  15. Force sensor for chameleon and Casimir force experiments with parallel-plate configuration

    NASA Astrophysics Data System (ADS)

    Almasi, Attaallah; Brax, Philippe; Iannuzzi, Davide; Sedmik, René I. P.

    2015-05-01

    The search for non-Newtonian forces has been pursued following many different paths. Recently it was suggested that hypothetical chameleon interactions, which might explain the mechanisms behind dark energy, could be detected in a high-precision force measurement. In such an experiment, interactions between parallel plates kept at constant separation could be measured as a function of the pressure of an ambient gas, thereby identifying chameleon interactions by their unique inverse dependence on the local mass density. During the past years we have been developing a new kind of setup complying with the stringent requirements of the proposed experiment. In this article we present the first and most important part of this setup—the force sensor. We discuss its design, fabrication, and characterization. From the results of the latter, we derive limits on chameleon interaction parameters that could be set by the forthcoming experiment. Finally, we describe the opportunity to use the same setup to measure Casimir forces at large surface separations with unprecedented accuracy, thereby potentially giving unambiguous answers to long-standing open questions.

  16. Crystal Growth Furnace - An overview of the system configuration and planned experiments on the first United States Microgravity Laboratory mission

    NASA Technical Reports Server (NTRS)

    Srinivas, R.; Lee, K. N.; Schaefer, D. A.

    1991-01-01

    Attention is given to the Crystal Growth Furnace (CGF) currently in the Level IV integration cycle at the Kennedy Space Center in preparation for its maiden flight on the first United States Microgravity Laboratory (USML-1) mission to be launched in May 1992. CGF was developed for NASA under the Microgravity Science and Application division programs at NASA Headquarters. An overview of the CGF system and the system configuration for the USML-1 mission are presented, and the planned on-orbit experiments are described. The four important scientific experiments selected from industry and educational institutions for the CGF USML-1 mission will enable a better understanding of the complex phenomena inherent in materials processing that will lead to the ultimate improvement of both processes and materials. Crystal growth by chemical vapor transport has resulted in improved growth conditions with crystal morphology, lower defect densities, and higher growth rates than terrestrially observed.

  17. High-performance nonequilibrium-plasma magnetohydrodynamic electrical power generator using slightly divergent channel configuration: II. Experiment

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Okuno, Yoshihiro

    2008-06-01

    We describe experiments carried out to evaluate a newly developed high-performance nonequilibrium-plasma magnetohydrodynamic (MHD) electrical power generator equipped with a slightly divergent supersonic channel. The slightly divergent generator and a similar-scale highly divergent generator are evaluated in shock-tube experiments. The effects of electrical conductivity control and magnetic flux density control on the generator operation are investigated, and Hall voltage-Hall current characteristics, plasma-fluid behaviour and plasma structures are described. The slightly divergent channel configuration and the application of high- and uniform-density magnetic flux overcome the disadvantages of the generator due to its compactness, and markedly improves its performance. The ratio of isentropic efficiency to enthalpy extraction ratio and the power output density are outstanding compared with previous MHD power generators. The experimental results are supported by the numerically simulated results. This paper is the second part of a duology.

  18. Numerical studies on electrostatic field configuration of Resistive Plate Chambers for the INO-ICAL experiment

    NASA Astrophysics Data System (ADS)

    Jash, A.; Majumdar, N.; Mukhopadhyay, S.; Chattopadhyay, S.

    2015-11-01

    As a part of detailed optimization studies on Resistive Plate Chambers (RPC) to be used in INO-ICAL experiment, the effect of geometrical artifacts like edge, corner, spacers on the device response should be investigated thoroughly. In this context, the electrostatic field within an RPC has been computed following Finite Element Method and Boundary Element Method to study the effect of these artifacts on the field map. The weighting field distribution for the given geometry has also been evaluated which is necessary for simulating the device signal. A unified model to calculate both physical and weighting field within RPC has been proposed and tested for its validity.

  19. The effect of tracking network configuration on GPS baseline estimates for the CASA Uno experiment

    NASA Technical Reports Server (NTRS)

    Wolf, S. Kornreich; Dixon, T. H.; Freymueller, J. T.

    1990-01-01

    The effect of the tracking network on long (greater than 100 km) GPS baseline estimates was estimated using various subsets of the global tracking network initiated by the first Central and South America (CASA Uno) experiment. It was found that best results could be obtained with a global tacking network consisting of three U.S. stations, two sites in the southwestern Pacific, and two sites in Europe. In comparison with smaller subsets, this global network improved the baseline repeatability, the resolution of carrier phase cycle ambiguities, and formal errors of the orbit estimates.

  20. Comparative thermal analysis of alternate Cryogenic Fluid Management Experiment (CFME) configurations

    NASA Technical Reports Server (NTRS)

    Merino, F.; Oneill, R. F.

    1980-01-01

    The Cryogenic Fluid Management Experiment (CFME) was analyzed to assess the feasibility and advisability of deleting the vapor cooled shield (VCS) from the baseline CFME insulation and pressure control system. Two alternate concepts of CFME insulation and pressure control, neither of which incorporated the VCS, were investigated. The first concept employed a thermodynamic vent system (TVS) to throttle the flow through an internal wall mounted heat exchanger (HX) within the pressure vessel to decrease boiloff and pressure rise rate, while the second concept utilized a TVS without an internal heat exchanger. Only the first concept was viable. Its performance was assessed for a seven day mission and found to be satisfactory. It was also concluded that VCS development costs would be greater than for an internal HX installation. Based upon the above comparisons, the HX was recommended as a replacement for the VCS.

  1. Bighorns Arch Seismic Experiment (BASE): Amplitude Response to Different Seismic Charge Configurations

    SciTech Connect

    Harder, S. H., Killer, K. C., Worthington, L. L., Snelson, C. M.

    2010-09-02

    Contrary to popular belief, charge weight is not the most important engineering parameter determining the seismic amplitudes generated by a shot. The scientific literature has long claimed that the relationship, A ~R2L1/2, where A is the seismic amplitude generated by a shot, R is the radius of the seismic charge and L is the length of that charge, holds. Assuming the coupling to the formation and the pressure generated by the explosive are constants, this relationship implies that the one should be able to increase the charge radius while decreasing the charge length and obtain more seismic amplitude with less charge weight. This has significant implications for the economics of lithospheric seismic shots, because shallower holes and small charge sizes decrease cost. During the Bighorns Array Seismic Experiment (BASE) conducted in the summer of 2010, 24 shots with charge sizes ranging from 110 to 900 kg and drill hole diameters of 300 and 450 mm were detonated and recorded by an array of up to 2000 single-channel Texan seismographs. Maximum source-receiver offset of 300 km. Five of these shots were located within a one-acre square in an effort to eliminate coupling effects due to differing geological formations. We present a quantitative comparison of the data from these five shots to experimentally test the equation above.

  2. Ice-sheet configuration in the CMIP5/PMIP3 Last Glacial Maximum experiments

    NASA Astrophysics Data System (ADS)

    Abe-Ouchi, A.; Saito, F.; Kageyama, M.; Braconnot, P.; Harrison, S. P.; Lambeck, K.; Otto-Bliesner, B. L.; Peltier, W. R.; Tarasov, L.; Peterschmitt, J.-Y.; Takahashi, K.

    2015-11-01

    We describe the creation of a data set describing changes related to the presence of ice sheets, including ice-sheet extent and height, ice-shelf extent, and the distribution and elevation of ice-free land at the Last Glacial Maximum (LGM), which were used in LGM experiments conducted as part of the fifth phase of the Coupled Modelling Intercomparison Project (CMIP5) and the third phase of the Palaeoclimate Modelling Intercomparison Project (PMIP3). The CMIP5/PMIP3 data sets were created from reconstructions made by three different groups, which were all obtained using a model-inversion approach but differ in the assumptions used in the modelling and in the type of data used as constraints. The ice-sheet extent in the Northern Hemisphere (NH) does not vary substantially between the three individual data sources. The difference in the topography of the NH ice sheets is also moderate, and smaller than the differences between these reconstructions (and the resultant composite reconstruction) and ice-sheet reconstructions used in previous generations of PMIP. Only two of the individual reconstructions provide information for Antarctica. The discrepancy between these two reconstructions is larger than the difference for the NH ice sheets, although still less than the difference between the composite reconstruction and previous PMIP ice-sheet reconstructions. Although largely confined to the ice-covered regions, differences between the climate response to the individual LGM reconstructions extend over the North Atlantic Ocean and Northern Hemisphere continents, partly through atmospheric stationary waves. Differences between the climate response to the CMIP5/PMIP3 composite and any individual ice-sheet reconstruction are smaller than those between the CMIP5/PMIP3 composite and the ice sheet used in the last phase of PMIP (PMIP2).

  3. A multiframe soft x-ray camera with fast video capture for the LSX field reversed configuration (FRC) experiment

    SciTech Connect

    Crawford, E.A. )

    1992-10-01

    Soft x-ray pinhole imaging has proven to be an exceptionally useful diagnostic for qualitative observation of impurity radiation from field reversed configuration plasmas. We used a four frame device, similar in design to those discussed in an earlier paper (E. A. Crawford, D. P. Taggart, and A. D. Bailey III, Rev. Sci. Instrum. {bold 61}, 2795 (1990)) as a routine diagnostic during the last six months of the Large s Experiment (LSX) program. Our camera is an improvement over earlier implementations in several significant aspects. It was designed and used from the onset of the LSX experiments with a video frame capture system so that an instant visual record of the shot was available to the machine operator as well as facilitating quantitative interpretation of intensity information recorded in the images. The camera was installed in the end region of the LSX on axis approximately 5.5 m from the plasma midplane. Experience with bolometers on LSX showed serious problems with particle dumps'' at the axial location at various times during the plasma discharge. Therefore, the initial implementation of the camera included an effective magnetic sweeper assembly. Overall performance of the camera, video capture system, and sweeper is discussed.

  4. Application of Optimization Techniques to Design of Unconventional Rocket Nozzle Configurations

    NASA Technical Reports Server (NTRS)

    Follett, W.; Ketchum, A.; Darian, A.; Hsu, Y.

    1996-01-01

    Several current rocket engine concepts such as the bell-annular tri-propellant engine, and the linear aerospike being proposed for the X-33 require unconventional three dimensional rocket nozzles which must conform to rectangular or sector shaped envelopes to meet integration constraints. These types of nozzles exist outside the current experience database, therefore, the application of efficient design methods for these propulsion concepts is critical to the success of launch vehicle programs. The objective of this work is to optimize several different nozzle configurations, including two- and three-dimensional geometries. Methodology includes coupling computational fluid dynamic (CFD) analysis to genetic algorithms and Taguchi methods as well as implementation of a streamline tracing technique. Results of applications are shown for several geometeries including: three dimensional thruster nozzles with round or super elliptic throats and rectangualar exits, two- and three-dimensional thrusters installed within a bell nozzle, and three dimensional thrusters with round throats and sector shaped exits. Due to the novel designs considered for this study, there is little experience which can be used to guide the effort and limit the design space. With a nearly infinite parameter space to explore, simple parametric design studies cannot possibly search the entire design space within the time frame required to impact the design cycle. For this reason, robust and efficient optimization methods are required to explore and exploit the design space to achieve high performance engine designs. Five case studies which examine the application of various techniques in the engineering environment are presented in this paper.

  5. Experiments and modeling on FTU tokamak for EC assisted plasma start-up studies in ITER-like configuration

    NASA Astrophysics Data System (ADS)

    Granucci, G.; Garavaglia, S.; Ricci, D.; Artaserse, G.; Belli, F.; Bin, W.; Calabrò, G.; Cavinato, M.; Farina, D.; Figini, L.; Moro, A.; Ramogida, G.; Sozzi, C.; Tudisco, O.; FTU Team

    2015-09-01

    The intrinsic limited toroidal electric field (0.3 V m-1) in devices with superconducting poloidal coils (ITER, JT-60SA) requires additional heating, like electron cyclotron (EC) waves, to initiate plasma and to sustain it during the burn-through phase. The FTU tokamak has contributed to studying the perspective of EC assisted plasma breakdown. Afterward, a new experimental and modeling activity addressing the study of assisted plasma start-up in a configuration close to the ITER one (magnetic field, oblique injection, and polarization) has been performed and is presented here. These experiments have been supported by a 0D code, BKD0, developed to model the plasma start-up and linked to a beam tracing code computing, in a consistent way, EC absorption. The FTU results demonstrate the role of polarization conversion at the inner wall reflection. Dedicated experiments also showed the capability of EC power to sustain plasma start-up in the presence of strong error field (12 mT), with a null outside the vacuum vessel. The BKD0 code, applied to FTU data, has been used to determine the operational window of sustained breakdown as a function of toroidal electric field and neutral pressure. Experimental results in agreement with the BKD0 simulations support the use of the code to predict start-up in future tokamaks, like ITER and JT60SA.

  6. Replacing the Singlet Spinor of the EPR-B Experiment in the Configuration Space with Two Single-Particle Spinors in Physical Space

    NASA Astrophysics Data System (ADS)

    Gondran, Michel; Gondran, Alexandre

    2016-04-01

    Recently, for spinless non-relativistic particles, Norsen (Found Phys 40:1858-1884, 2010) and Norsen et al. (Synthese 192:3125-3151, 2015) show that in the de Broglie-Bohm interpretation it is possible to replace the wave function in the configuration space by single-particle wave functions in physical space. In this paper, we show that this replacment of the wave function in the configuration space by single-particle functions in the 3D-space is also possible for particles with spin, in particular for the particles of the EPR-B experiment, the Bohm version of the Einstein-Podolsky-Rosen experiment.

  7. Analysis of magnetic probe signals including effect of cylindrical conducting wall for field-reversed configuration experiment

    SciTech Connect

    Ikeyama, Taeko; Hiroi, Masanori; Nemoto, Yuuichi; Nogi, Yasuyuki

    2008-06-15

    A confinement field is disturbed by magnetohydrodynamic (MHD) motions of a field-reversed configuration (FRC) plasma in a cylindrical conductor. The effect of the conductor should be included to obtain a spatial structure of the disturbed field with a good precision. For this purpose, a toroidal current in the plasma and an eddy current on a conducting wall are replaced by magnetic dipole and image magnetic dipole moments, respectively. Typical spatial structures of the disturbed field are calculated by using the dipole moments for such MHD motions as radial shift, internal tilt, external tilt, and n=2 mode deformation. Then, analytic formulas for estimating the shift distance, tilt angle, and deformation rate of the MHD motions from magnetic probe signals are derived. It is estimated from the calculations by using the dipole moments that the analytic formulas include an approximately 40% error. Two kinds of experiment are carried out to investigate the reliability of the calculations. First, a magnetic field produced by a circular current is measured in an aluminum pipe to confirm the replacement of the eddy current with the image magnetic dipole moments. The measured fields coincide well with the calculated values including the image magnetic dipole moments. Second, magnetic probe signals measured from the FRC plasma are substituted into the analytic formulas to obtain shift distance and deformation rate. The experimental results are compared to the MHD motions measured by using a radiation from the plasma. If the error included in the analytic formulas and the difference between the magnetic and optical structures in the plasma are considered, the results of the radiation measurement support well those of the magnetic analysis.

  8. JEF-2 data check by reanalysis of the Rossendorf experiments in reactor configurations with specially designed adjoint spectra

    SciTech Connect

    Dietze, K.; Fort, E.; Rahlfs, S.; Rimpault, G.; Salvatores, M.

    1994-12-31

    The Rossendorf RRRJSEG configurations characterized by, energy-independent or continuously rising adjoint spectra have been recalculated using the full European scheme JEF2/ECCO/ERANOS. C/E-values are given for structural materials and fission product nuclides using the results of sample reactivity measurements at the central position of these configurations. Due to the specially designed adjoint spectra, capture or scattering cross- sections can be checked separately. Recommendations for data corrections are given based on perturbation theory calculations.

  9. Module Configuration

    DOEpatents

    Oweis, Salah; D'Ussel, Louis; Chagnon, Guy; Zuhowski, Michael; Sack, Tim; Laucournet, Gaullume; Jackson, Edward J.

    2002-06-04

    A stand alone battery module including: (a) a mechanical configuration; (b) a thermal management configuration; (c) an electrical connection configuration; and (d) an electronics configuration. Such a module is fully interchangeable in a battery pack assembly, mechanically, from the thermal management point of view, and electrically. With the same hardware, the module can accommodate different cell sizes and, therefore, can easily have different capacities. The module structure is designed to accommodate the electronics monitoring, protection, and printed wiring assembly boards (PWAs), as well as to allow airflow through the module. A plurality of modules may easily be connected together to form a battery pack. The parts of the module are designed to facilitate their manufacture and assembly.

  10. Detached Eddy Simulation Results for a Space Launch System Configuration at Liftoff Conditions and Comparison with Experiment

    NASA Technical Reports Server (NTRS)

    Krist, Steven E.; Ghaffari, Farhad

    2015-01-01

    Computational simulations for a Space Launch System configuration at liftoff conditions for incidence angles from 0 to 90 degrees were conducted in order to generate integrated force and moment data and longitudinal lineloads. While the integrated force and moment coefficients can be obtained from wind tunnel testing, computational analyses are indispensable in obtaining the extensive amount of surface information required to generate proper lineloads. However, beyond an incidence angle of about 15 degrees, the effects of massive flow separation on the leeward pressure field is not well captured with state of the art Reynolds Averaged Navier-Stokes methods, necessitating the employment of a Detached Eddy Simulation method. Results from these simulations are compared to the liftoff force and moment database and surface pressure data derived from a test in the NASA Langley 14- by 22-Foot Subsonic Wind Tunnel.

  11. Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment.

    PubMed

    Ding, Dong-Sheng; Zhou, Zhi-Yuan; Shi, Bao-Sen; Zou, Xu-Bo; Guo, Guang-Can

    2012-05-01

    We experimentally generate a non-classical correlated two-color photon pair at 780 and 1529.4 nm in a ladder-type configuration using a hot 85Rb atomic vapor with the production rate of ~10(7)/s. The non-classical correlation between these two photons is demonstrated by strong violation of Cauchy-Schwarz inequality by the factor R = 48 ± 12. Besides, we experimentally investigate the relations between the correlation and some important experimental parameters such as the single-photon detuning, the powers of pumps. We also make a theoretical analysis in detail and the theoretical predictions are in reasonable agreement with our experimental results. PMID:22565763

  12. Experience of CAD application for the software design of a control and measuring system with changeable configuration

    NASA Astrophysics Data System (ADS)

    Zaitsev, V. I.; Papazyan, Yu. V.; Savochkin, V. N.

    1994-12-01

    A method of software design for measurement and control systems with changeable configuration is presented. This method is used for the data acquisition system of the pulse thermonuclear "ANGARA-5" installation. The description of the system composition is produced by means of a computer-aided design tool. This description is saved in the special data base and is used by the system software for automatic initialisation of the real hardware. Any change of the connection scheme and device types does not require a new design of the system software. It is only necessary to edit the scheme inside the data base. This method requires object-oriented programming techniques and the hierarchical structure of the system. At the same time the full documentation about the system structure is produced.

  13. Surface flow and heating distributions on a cylinder in near wake of Aeroassist Flight Experiment (AFE) configuration at incidence in Mach 10 Air

    NASA Technical Reports Server (NTRS)

    Wells, William L.

    1990-01-01

    Experimental heat transfer distributions and surface streamline directions are presented for a cylinder in the near wake of the Aeroassist Flight Experiment forebody configuration. Tests were conducted in air at a nominal free stream Mach number of 10, with post shock Reynolds numbers based on model base height of 6,450 to 50,770, and angles of attack of 5, 0, -5, and -10 degrees. Heat transfer data were obtained with thin film resistance gage and surface streamline directions by the oil flow technique. Comparisons between measured values and predicted values were made by using a Navier-Stokes computer code.

  14. Numerical experiments on the evolution in coronal magnetic configurations including a filament in response to the change in the photosphere

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Juan; Liu, Si-Qing; Gong, Jian-Cun; Lin, Jun

    2015-03-01

    We investigate equilibrium height of a flux rope, and its internal equilibrium in a realistic plasma environment by carrying out numerical simulations of the evolution of systems including a current-carrying flux rope. We find that the equilibrium height of a flux rope is approximately described by a power-law function of the relative strength of the background field. Our simulations indicate that the flux rope can escape more easily from a weaker background field. This further confirms that a catastrophe in the magnetic configuration of interest can be triggered by a decrease in strength of the background field. Our results show that it takes some time to reach internal equilibrium depending on the initial state of the flux rope. The plasma flow inside the flux rope due to the adjustment for the internal equilibrium of the flux rope remains small and does not last very long when the initial state of the flux rope commences from the stable branch of the theoretical equilibrium curve. This work also confirms the influence of the initial radius of the flux rope in its evolution; the results indicate that a flux rope with a larger initial radius erupts more easily. In addition, by using a realistic plasma environment and a much higher resolution in our simulations, we notice some different characteristics compared to previous studies in Forbes. Supported by the National Natural Science Foundation of China.

  15. Aerodynamic characteristics of a distinct wing-body configuration at Mach 6: Experiment, theory, and the hypersonic isolation principle

    NASA Technical Reports Server (NTRS)

    Penland, J. A.; Pittman, J. L.

    1985-01-01

    An experimental investigation has been conducted to determine the effect of wing leading edge sweep and wing translation on the aerodynamic characteristics of a wing body configuration at a free stream Mach number of about 6 and Reynolds number (based on body length) of 17.9 x 10 to the 6th power. Seven wings with leading edge sweep angles from -20 deg to 60 deg were tested on a common body over an angle of attack range from -12 deg to 10 deg. All wings had a common span, aspect ratio, taper ratio, planform area, and thickness ratio. Wings were translated longitudinally on the body to make tests possible with the total and exposed mean aerodynamic chords located at a fixed body station. Aerodynamic forces were found to be independent of wing sweep and translation, and pitching moments were constant when the exposed wing mean aerodynamic chord was located at a fixed body station. Thus, the Hypersonic Isolation Principle was verified. Theory applied with tangent wedge pressures on the wing and tangent cone pressures on the body provided excellent predictions of aerodynamic force coefficients but poor estimates of moment coefficients.

  16. The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Evaluation of initial perforated configuration

    NASA Technical Reports Server (NTRS)

    Harris, Charles D.; Brooks, Cuyler W., Jr.; Clukey, Patricia G.; Stack, John P.

    1992-01-01

    The initial evaluation of a large-chord, swept, supercritical airfoil incorporating an active laminar-flow-control (LFC) suction system with a perforated upper surface is documented in a chronological manner, and the deficiencies in the suction capability of the perforated panels as designed are described. The experiment was conducted in the Langley 8-Foot Transonic Pressure Tunnel. Also included is an evaluation of the influence of the proximity of the tunnel liner to the upper surface of the airfoil pressure distribution.

  17. Fingernail Configuration

    PubMed Central

    Jung, Jin Woo; Shin, Jun Ho; Kwon, Yu Jin; Hwang, Jae Ha; Lee, Sam Yong

    2015-01-01

    Background A number of conditions can alter a person's fingernail configuration. The ratio between fingernail width and length (W/L) is an important aesthetic criterion, and some underlying diseases can alter the size of the fingernail. Fingernail curvature can be altered by systemic disorders or disorders of the fingernail itself. Although the shape and curvature of the fingernail can provide diagnostic clues for various diseases, few studies have precisely characterized normal fingernail configuration. Methods We measured the W/L ratio of the fingernail, transverse fingernail curvature, hand length, hand breadth, and distal interphalangeal joint width in 300 volunteers with healthy fingernails. We also investigated whether age, sex, height, and handedness influenced the fingernail W/L ratio and transverse fingernail curvature. Results In women, fingernail W/L ratios were similar across all five fingers, and were lower than those in men. The highest value of transverse fingernail curvature was found in the thumb, followed by the index, middle, ring, and little fingers. Handedness and aging influenced transverse fingernail curvature, but not the fingernail W/L ratio. Fingernails were flatter on the dominant hand than on the non-dominant hand. The radius of transverse fingernail curvature increased with age, indicating that fingernails tended to flatten with age. Conclusions Our quantitative data on fingernail configuration can be used as a reference range for diagnosing various diseases and deformities of the fingernail, and for performing reconstructive or aesthetic fingernail surgery. PMID:26618124

  18. The NASA Langley Laminar-Flow-Control Experiment on a Swept Supercritical Airfoil: Basic Results for Slotted Configuration

    NASA Technical Reports Server (NTRS)

    Harris, Charles D.; Brooks, Cuyler W., Jr.; Clukey, Patricia G.; Stack, John P.

    1989-01-01

    The effects of Mach number and Reynolds number on the experimental surface pressure distributions and transition patterns for a large chord, swept supercritical airfoil incorporating an active Laminar Flow Control suction system with spanwise slots are presented. The experiment was conducted in the Langley 8 foot Transonic Pressure Tunnel. Also included is a discussion of the influence of model/tunnel liner interactions on the airfoil pressure distribution. Mach number was varied from 0.40 to 0.82 at two chord Reynolds numbers, 10 and 20 x 1,000,000, and Reynolds number was varied from 10 to 20 x 1,000,000 at the design Mach number.

  19. ORR core re-configuration measurements to increase the fast neutron flux in the Magnetic Fusion Energy (MFE) experiments

    NASA Astrophysics Data System (ADS)

    Hobbs, R. W.; Stinnett, R. M.; Sims, T. M.

    1985-06-01

    The relative increases obtainable in the fast neutron flux in the Magnetic Fusion Energy (MFE) experiment positions were studied by reconfiguring the current ORR core. The percentage increase possible in the current displacement per atom (dpa) rate was examined. The principle methods to increase the fast flux, consisted of reducing the current core size (number of fuel elements), to increase the core average power density and arrangement of the fuel elements in the reduced-size core to tilt the core power distribution towards the MFE positions were investigated. It is concluded that fast fluxes in the E-3 core position can be increased by approximately 15 to 20% over current values and in E-5 by approximately 45 to 55%.

  20. Data assimilative twin-experiment in a high-resolution Bay of Biscay configuration: 4DEnOI based on stochastic modeling of the wind forcing

    NASA Astrophysics Data System (ADS)

    Vervatis, V.; Testut, C. E.; De Mey, P.; Ayoub, N.; Chanut, J.; Quattrocchi, G.

    2016-04-01

    A twin-experiment is carried out introducing elements of an Ensemble Kalman Filter (EnKF), to assess and correct ocean uncertainties in a high-resolution Bay of Biscay configuration. Initially, an ensemble of 102 members is performed by applying stochastic modeling of the wind forcing. The target of this step is to simulate the envelope of possible realizations and to explore the robustness of the method at building ensemble covariances. Our second step includes the integration of the ensemble-based error estimates into a data assimilative system adopting a 4D Ensemble Optimal Interpolation (4DEnOI) approach. In the twin-experiment context, synthetic observations are simulated from a perturbed member not used in the subsequent analyses, satisfying the condition of an unbiased probability distribution function against the ensemble by performing a rank histogram. We evaluate the assimilation performance on short-term predictability focusing on the ensemble size, the observational network, and the enrichment of the ensemble by inexpensive time-lagged techniques. The results show that variations in performance are linked to intrinsic oceanic processes, such as the spring shoaling of the thermocline, in combination with external forcing modulated by river runoffs and time-variable wind patterns, constantly reshaping the error regimes. Ensemble covariances are able to capture high-frequency processes associated with coastal density fronts, slope currents and upwelling events near the Armorican and Galician shelf break. Further improvement is gained when enriching model covariances by including pattern phase errors, with the help of time-neighbor states augmenting the ensemble spread.

  1. DOES CRITICAL MASS DECREASE AS TEMPERATURE INCREASES: A REVIEW OF FIVE BENCHMARK EXPERIMENTS THAT SPAN A RANGE OF ELEVATED TEMPERATURES AND CRITICAL CONFIGURATIONS

    SciTech Connect

    Yates, K.

    2009-06-10

    Five sets of benchmark experiments are reviewed herein that cover a diverse set of fissile system configurations. The review specifically focused on the change in critical mass of these systems at elevated temperatures and the temperature reactivity coefficient ({alpha}{sub T}) on the system. Because plutonium-based critical benchmark experiments at varying temperatures were not found at the time this review was prepared, only uranium-based systems are included, as follows: (1) HEU-SOL-THERM-010 - UO{sub 2}F{sub 2} solutions with high U{sup 235} enrichment; (2) HEU-COMP-THERM-016 - uranium-graphite blocks with low U concentration; (3) LEU-COMP-THERM-032 - water moderated lattices of UO{sub 2} with stainless steel cladding, and intermediate U{sup 235} enrichment; (4) IEU-COMP-THERM-002 - water moderated lattices of annular UO{sub 2} with/without absorbers, and intermediate U{sup 235} enrichment; and (5) LEU-COMP-THERM-026 - water moderated lattices of UO{sub 2} at different pitches, and low U{sup 235} enrichment. In three of the five benchmarks (1, 3 and 5), modeling of the critical system at room temperature is conservative compared to modeling the system at elevated temperatures, i.e., a greater fissile mass is required at elevated temperature. In one benchmark (4), there was no difference in the fissile mass between the room temperature system and the system at the examined elevated temperature. In benchmark (2), the system clearly had a negative temperature reactivity coefficient. Some of the high temperature benchmark experiments were treated with appropriate (and comprehensive) adjustments to the cross section sets and thermal expansion coefficients, while other experiments were treated with partial adjustments. Regardless of the temperature treatment, modeling the systems at room temperature was found to be conservative for the examined systems, i.e., a smaller critical mass was obtained. While the five benchmarks presented herein demonstrate that, for the

  2. Inversion and Configuration of Faces.

    ERIC Educational Resources Information Center

    Bartlett, James C.; Searcy, Jean

    1993-01-01

    The Thatcher illusion, in which the inverted mouth and eyes of a face appear grotesque when upright, but not when the whole configuration is inverted, was studied in 3 experiments involving 89 undergraduates. Results suggest that the illusion represents a disruption of encoding of holistic information when faces are inverted. (SLD)

  3. Configural Processing and Face Viewpoint

    ERIC Educational Resources Information Center

    McKone, Elinor

    2008-01-01

    Configural/holistic processing, a key property of face recognition, has previously been examined only for front views of faces. Here, 6 experiments tested front (0 degree), three-quarter (45 degree), and profile views (90 degree), using composite and peripheral inversion tasks. Results showed an overall disadvantage in identifying profiles. This…

  4. Operational Dynamic Configuration Analysis

    NASA Technical Reports Server (NTRS)

    Lai, Chok Fung; Zelinski, Shannon

    2010-01-01

    Sectors may combine or split within areas of specialization in response to changing traffic patterns. This method of managing capacity and controller workload could be made more flexible by dynamically modifying sector boundaries. Much work has been done on methods for dynamically creating new sector boundaries [1-5]. Many assessments of dynamic configuration methods assume the current day baseline configuration remains fixed [6-7]. A challenging question is how to select a dynamic configuration baseline to assess potential benefits of proposed dynamic configuration concepts. Bloem used operational sector reconfigurations as a baseline [8]. The main difficulty is that operational reconfiguration data is noisy. Reconfigurations often occur frequently to accommodate staff training or breaks, or to complete a more complicated reconfiguration through a rapid sequence of simpler reconfigurations. Gupta quantified a few aspects of airspace boundary changes from this data [9]. Most of these metrics are unique to sector combining operations and not applicable to more flexible dynamic configuration concepts. To better understand what sort of reconfigurations are acceptable or beneficial, more configuration change metrics should be developed and their distribution in current practice should be computed. This paper proposes a method to select a simple sequence of configurations among operational configurations to serve as a dynamic configuration baseline for future dynamic configuration concept assessments. New configuration change metrics are applied to the operational data to establish current day thresholds for these metrics. These thresholds are then corroborated, refined, or dismissed based on airspace practitioner feedback. The dynamic configuration baseline selection method uses a k-means clustering algorithm to select the sequence of configurations and trigger times from a given day of operational sector combination data. The clustering algorithm selects a simplified

  5. An Inviscid Computational Study of an X-33 Configuration at Hypersonic Speeds

    NASA Technical Reports Server (NTRS)

    Prabhu, Ramadas K.

    1999-01-01

    This report documents the results of a study conducted to compute the inviscid longitudinal aerodynamic characteristics of a simplified X-33 configuration. The major components of the X-33 vehicle, namely the body, the canted fin, the vertical fin, and the body-flap, were simulated in the CFD (Computational Fluid Dynamic) model. The rear-ward facing surfaces at the base including the aerospike engine surfaces were not simulated. The FELISA software package consisting of an unstructured surface and volume grid generator and two inviscid flow solvers was used for this study. Computations were made for Mach 4.96, 6.0, and 10.0 with perfect gas air option, and for Mach 10 with equilibrium air option with flow condition of a typical point on the X-33 flight trajectory. Computations were also made with CF4 gas option at Mach 6.0 to simulate the CF4 tunnel flow condition. An angle of attack range of 12 to 48 deg was covered. The CFD results were compared with available wind tunnel data. Comparison was good at low angles of attack; at higher angles of attack (beyond 25 deg) some differences were found in the pitching moment. These differences progressively increased with increase in angle of attack, and are attributed to the viscous effects. However, the computed results showed the trends exhibited by the wind tunnel data.

  6. Studying the Effect of the Air-Cap Configuration in Twin-Wire Arc-Spraying Process on the Obtained Flow Characteristics Using Design of Experiment Oriented Fluid Simulation

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Abdulgader, M.; Anjami, N.; Hagen, L.

    2015-01-01

    The computational fluid dynamics approach is adopted in this work using the design of experiments to reveal the effect of the air-cap configurations on the obtained gas velocity, the shear stresses, the high velocity zone, and the convergence of the obtained spraying plume in the twin-wire arc-spraying process. The parameters, which are revealed to optimize the air-cap configuration, are the throat diameter, the convergence angle of the throat inlet, the throat length, and the distance between the throat outlet and the intersection point of the approaching wires. The throat length is dependent upon the other configuration parameters. Outlet gas velocity, the turbulence in the flow, and the exerted shear stresses at wire tips are directly affected by the dominating flow regimes near the intersection point of the approaching wires. The presence of wires and the contact tips in the gas flow has enormous impact on the obtained flow characteristics. Air-cap throat diameter and the distance between throat outlet and intersection point determine the shape and length of the obtained high velocity zone in the spraying plum.

  7. Dynamic simulations of under-rib convection-driven flow-field configurations and comparison with experiment in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Duy, Vinh Nguyen; Lee, Jungkoo; Kim, Kyungcheol; Ahn, Jiwoong; Park, Seongho; Kim, Taeeun; Kim, Hyung-Man

    2015-10-01

    The under-rib convection-driven flow-field design for the uniform distribution of reacting gas and the generation of produced water generates broad scientific interest, especially among those who study the performance of polymer electrolyte membrane fuel cells (PEMFCs). In this study, we simulate the effects of an under-rib convection-driven serpentine flow-field with sub-channel and by-pass (SFFSB) and a conventional advanced serpentine flow-field (CASFF) on single cell performance, and we compare the simulation results with experimental measurements. In the under-rib convection-driven flow-field configuration with SFFSB, the pressure drop is decreased because of the greater cross-sectional area for gas flow, and the decreased pressure drop results in the reduction of the parasitic loss. The anode liquid water mass fraction increases with increasing channel height because of increased back diffusion, while the cathode liquid water mass fraction does not depend upon the sub-channels but is ascribed mainly to the electro-osmotic drag. Simulation results verify that the maximum current and the power densities of the SFFSB are increased by 18.85% and 23.74%, respectively, due to the promotion of under-rib convection. The findings in this work may enable the optimization of the design of under-rib convection-driven flow-fields for efficient PEMFCs.

  8. NCSX Machine Configuration Design Progress

    NASA Astrophysics Data System (ADS)

    Neilson, G. H.; Brooks, A.; Johnson, D.; Kugel, H.; Majeski, R.; Reiersen, W.; Zarnstorff, M.; Berry, L.; Cole, M.; Hirshman, S.; Nelson, B.; Strickler, D.

    2000-10-01

    A new experimental facility, the National Compact Stellarator Experiment, is being designed to support the development of high-beta, low aspect-ratio stellarators. To fulfill its mission, the facility design is required to: 1)be based on a stellarator magnetic configuration which enables it to address reactor physics issues, 2)have high probability of achieving its physics mission within the uncertainties of present-day physics models, and 3)provide access for experimental tools such as plasma heating systems and diagnostics. The most critical machine component is the coil system which determines the plasma configuration and its properties. To gain an understanding of the practical implications of the mission requirements and determine the optimum approach to satisfying them, a range of coil configuration options was investigated. To address requirement 1, each option was designed to reconstruct a common stellarator plasma configuration with desired stability and transport properties. To mitigate mission risk (requirement 2), magnetic configuration flexibility features, e.g., coils for inductive current drive and axisymmetric field shaping and an operating space exceeding the nominal magnetic field and pulse-length requirements, were included in all designs. To implement requirement 3, port access requirements for neutral-beam and radiofrequency heating systems, a diagnostic array, and vacuum pumping were determined and these were used to analyze the various designs. Differential costs were evaluated to provide a basis for assessing benefit/cost.

  9. Computer Lab Configuration.

    ERIC Educational Resources Information Center

    Wodarz, Nan

    2003-01-01

    Describes the layout and elements of an effective school computer lab. Includes configuration, storage spaces, cabling and electrical requirements, lighting, furniture, and computer hardware and peripherals. (PKP)

  10. Generalized Ellipsometry in Unusual Configurations

    SciTech Connect

    Jellison Jr, Gerald Earle; Holcomb, David Eugene; Hunn, John D; Rouleau, Christopher M; Wright, Gomez W

    2006-01-01

    Most ellipsometry experiments are performed by shining polarized light onto a sample at a large angle of incidence, and the results are interpreted in terms of thin film thicknesses and isotropic optical functions of the film or substrate. However, it is possible to alter the geometrical arrangement, either by observing the sample in transmission or at normal-incidence reflection. In both cases, the experiment is fundamentally the same, but the interpretation of the results is considerably different. Both configurations can be used in conjunction with microscope optics, allowing for images to be made of the sample. The results of three examples of these different configurations using the two-modulator generalized ellipsometer (2-MGE) are reported: (1) spectroscopic birefringence measurements of ZnO, (2) electric field-induced birefringence (Pockels effect) in GaAs, and (3) normal-incidence reflection anisotropy of highly oriented pyrolytic graphite (HOPG).

  11. End-on soft x ray imaging of Field-Reversed Configurations (FRCs) on the Field-Reversal-C (FRX-C)/Large Scale Modification (LSM) experiment

    NASA Astrophysics Data System (ADS)

    Taggart, D. P.; Gribble, R. J.; Bailey, A. D., III; Sugimoto, S.

    Recently, a prototype soft x ray pinhole camera was fielded on FRX-C/LSM at Los Alamos and TRX at Spectra Technology. The soft x ray FRC images obtained using this camera stand out in high contrast to their surroundings. It was particularly useful for studying the FRC during and shortly after formation when, at certain operating conditions, flute-like structures at the edge and internal structures of the FRC were observed which other diagnostics could not resolve. Building on this early experience, a new soft x ray pinhole camera was installed on FRX-C/LSM, which permits more rapid data acquisition and briefer exposures. It will be used to continue studying FRC formation and to look for internal structure later in time which could be a signature of instability. The initial operation of this camera is summarized.

  12. Configuration Effects on Liner Performance

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Brown, Martha C.; Jones, Michael G.; Howerton, Brian M.

    2012-01-01

    The acoustic performance of a duct liner depends not only on the intrinsic properties of the liner but also on the configuration of the duct in which it is used. A series of experiments is performed in the NASA Langley Research Center Curved Duct Test Rig (at Mach 0.275) to evaluate the effect of duct configuration on the acoustic performance of single degree of freedom perforate-over-honeycomb liners. The liners form the sidewalls of the duct's test section. Variations of duct configuration include: asymmetric (liner on one side and hard wall opposite) and symmetric (liner on both sides) wall treatment; inlet and exhaust orientation, in which the sound propagates either against or with the flow; and straight and curved flow path. The effect that duct configuration has on the overall acoustic performance, particularly the shift in frequency and magnitude of peak attenuation, is quantified. The redistribution of incident mode content is shown. The liners constitute the side walls of the liner test section and the scatter of incident horizontal order 1 mode by the asymmetric treatment and order 2 mode by the symmetric treatment into order 0 mode is shown. Scatter of order 0 incident modes into higher order modes is also shown. This redistribution of mode content is significant because it indicates that the liner design can be manipulated such that energy is scattered into more highly attenuated modes, thus enhancing liner performance.

  13. PDSS configuration control plan and procedures

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The payload development support system (PDSS) configuration control plan and procedures are presented. These plans and procedures establish the process for maintaining configuration control of the PDSS system, especially the Spacelab experiment interface device's (SEID) RAU, HRM, and PDI interface simulations and the PDSS ECOS DEP Services simulation. The plans and procedures as specified are designed to provide a simplified but complete configuration control process. The intent is to require a minimum amount of paperwork but provide total traceability of PDSS during experiment test activities.

  14. LASRE Pod Matting to SR-71

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This is a rear/side view of the Linear Aerospike SR Experiment (LASRE) pod on NASA SR-71, tail number 844. This photo was taken during the fit-check of the pod on Feb. 15, 1996, at Lockheed Martin Skunkworks in Palmdale, California. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center.

  15. Trace gas emissions from combustion of peat, crop residue, biofuels, grasses, and other fuels: configuration and FTIR component of the fourth Fire Lab at Missoula Experiment (FLAME-4)

    NASA Astrophysics Data System (ADS)

    Stockwell, C. E.; Yokelson, R. J.; Kreidenweis, S. M.; Robinson, A. L.; DeMott, P. J.; Sullivan, R. C.; Reardon, J.; Ryan, K. C.; Griffith, D. W. T.; Stevens, L.

    2014-04-01

    During the fourth Fire Lab at Missoula Experiment (FLAME-4, October-November~2012) a~large variety of regionally and globally significant biomass fuels was burned at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The particle emissions were characterized by an extensive suite of instrumentation that measured aerosol chemistry, size distribution, optical properties, and cloud-nucleating properties. The trace gas measurements included high resolution mass spectrometry, one- and two-dimensional gas chromatography, and open-path Fourier transform infrared (OP-FTIR) spectroscopy. This paper summarizes the overall experimental design for FLAME-4 including the fuel properties, the nature of the burn simulations, the instrumentation employed, and then focuses on the OP-FTIR results. The OP-FTIR was used to measure the initial emissions of 20 trace gases: CO2, CO, CH4, C2H2, C2H4, C3H6, HCHO, HCOOH, CH3OH, CH3COOH, glycolaldehyde, furan, H2O, NO, NO2, HONO, NH3, HCN, HCl, and SO2. These species include most of the major trace gases emitted by biomass burning and for several of these compounds it is the first time their emissions are reported for important fuel types. The main fuel types included: African grasses, Asian rice straw, cooking fires (open (3-stone), rocket, and gasifier stoves), Indonesian and extratropical peat, temperate and boreal coniferous canopy fuels, US crop residue, shredded tires, and trash. Comparisons of the OP-FTIR emission factors (EF) and emission ratios (ER) to field measurements of biomass burning verify that the large body of FLAME-4 results can be used to enhance the understanding of global biomass burning and its representation in atmospheric chemistry models.

  16. FEL phased array configurations

    NASA Astrophysics Data System (ADS)

    Shellan, Jeffrey B.

    1986-01-01

    The advantages and disadvantages of various phased array and shared aperture concepts for FEL configurations are discussed. Consideration is given to the characteristics of intra- and inter-micropulse phasing; intra-macropulse phasing; an internal coupled resonator configuration; and an injection locked oscillator array. The use of a master oscillator power amplifier (MOPA) configuration with multiple or single master oscillators for FELs is examined. The venetian blind, rotating plate, single grating, and grating rhomb shared aperture concepts are analyzed. It is noted that the shared aperture approach using a grating rhomb and the MOPA concept with a single master oscillator and a coupled resonator are useful for FEL phased array configurations; and the MOPA concept is most applicable.

  17. ION Configuration Editor

    NASA Technical Reports Server (NTRS)

    Borgen, Richard L.

    2013-01-01

    The configuration of ION (Inter - planetary Overlay Network) network nodes is a manual task that is complex, time-consuming, and error-prone. This program seeks to accelerate this job and produce reliable configurations. The ION Configuration Editor is a model-based smart editor based on Eclipse Modeling Framework technology. An ION network designer uses this Eclipse-based GUI to construct a data model of the complete target network and then generate configurations. The data model is captured in an XML file. Intrinsic editor features aid in achieving model correctness, such as field fill-in, type-checking, lists of valid values, and suitable default values. Additionally, an explicit "validation" feature executes custom rules to catch more subtle model errors. A "survey" feature provides a set of reports providing an overview of the entire network, enabling a quick assessment of the model s completeness and correctness. The "configuration" feature produces the main final result, a complete set of ION configuration files (eight distinct file types) for each ION node in the network.

  18. Evolution of the Configuration Database Design

    SciTech Connect

    Salnikov, A

    2006-04-19

    The BABAR experiment at SLAC successfully collects physics data since 1999. One of the major parts of its on-line system is the configuration database which provides other parts of the system with the configuration data necessary for data taking. Originally the configuration database was implemented in the Objectivity/DB ODBMS. Recently BABAR performed a successful migration of its event store from Objectivity/DB to ROOT and this prompted a complete phase-out of the Objectivity/DB in all other BABAR databases. It required the complete redesign of the configuration database to hide any implementation details and to support multiple storage technologies. In this paper we describe the process of the migration of the configuration database, its new design, implementation strategy and details.

  19. Field-reversed configuration (FRC) experiments

    NASA Astrophysics Data System (ADS)

    Siemon, R. E.; Chrien, R. E.; Hugrass, W. N.; Okada, S.; Rej, D. J.; Taggart, D. P.; Tuszewski, M.; Webster, R. B.; Wright, B. L.; Slough, J. T.

    FRCs with equilibrium separatrix radii up to 0.18 m have been formed and studied in FRX-C/LSM. For best formation conditions at low fill pressure, the particle confinement exceeds the predictions of LHD transport calculations by up to a factor of two; however, the inferred flux confinement is more anomalous than in smaller FRCs. Higher bias field produces axial shocks and degradation in confinement, while higher fill pressure results in gross fluting during formation. FRCs have been formed in TRX with s from 2 to 6. These relatively collisional FRCs exhibit flux lifetimes of 10 yields 20 kinetic growth times for the internal tilt mode. The coaxial slow source has produced annular FRCs in a coaxial coil geometry on slow time scales using low voltages.

  20. Software Configuration Management Guidebook

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The growth in cost and importance of software to NASA has caused NASA to address the improvement of software development across the agency. One of the products of this program is a series of guidebooks that define a NASA concept of the assurance processes which are used in software development. The Software Assurance Guidebook, SMAP-GB-A201, issued in September, 1989, provides an overall picture of the concepts and practices of NASA in software assurance. Lower level guidebooks focus on specific activities that fall within the software assurance discipline, and provide more detailed information for the manager and/or practitioner. This is the Software Configuration Management Guidebook which describes software configuration management in a way that is compatible with practices in industry and at NASA Centers. Software configuration management is a key software development process, and is essential for doing software assurance.

  1. Predictive Modeling of Tokamak Configurations*

    NASA Astrophysics Data System (ADS)

    Casper, T. A.; Lodestro, L. L.; Pearlstein, L. D.; Bulmer, R. H.; Jong, R. A.; Kaiser, T. B.; Moller, J. M.

    2001-10-01

    The Corsica code provides comprehensive toroidal plasma simulation and design capabilities with current applications [1] to tokamak, reversed field pinch (RFP) and spheromak configurations. It calculates fixed and free boundary equilibria coupled to Ohm's law, sources, transport models and MHD stability modules. We are exploring operations scenarios for both the DIII-D and KSTAR tokamaks. We will present simulations of the effects of electron cyclotron heating (ECH) and current drive (ECCD) relevant to the Quiescent Double Barrier (QDB) regime on DIII-D exploring long pulse operation issues. KSTAR simulations using ECH/ECCD in negative central shear configurations explore evolution to steady state while shape evolution studies during current ramp up using a hyper-resistivity model investigate startup scenarios and limitations. Studies of high bootstrap fraction operation stimulated by recent ECH/ECCD experiments on DIIID will also be presented. [1] Pearlstein, L.D., et al, Predictive Modeling of Axisymmetric Toroidal Configurations, 28th EPS Conference on Controlled Fusion and Plasma Physics, Madeira, Portugal, June 18-22, 2001. * Work performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  2. Oxygen configurations in silica

    SciTech Connect

    Chelikowsky, James R.; Chadi, D. J.; Binggeli, N.

    2000-07-15

    We propose a transition state for oxygen in silica. This state is produced by the insertion of an oxygen molecule into the Si-O-Si bond, i.e., it consists of producing a Si-O-O-O-Si bond. This state allows molecular oxygen diffusion in silica without breaking the molecular O{sub 2} bond and it is energetically more stable than a peroxy configuration. This configuration may allow for exchange of molecular oxygen with the oxygen in the silica framework. (c) 2000 The American Physical Society.

  3. SOFIA (Stratospheric Observatory For Infrared Astronomy) with Telescope Configuration Changes

    NASA Technical Reports Server (NTRS)

    2001-01-01

    SOFIA (Stratospheric Observatory For Infrared Astronomy) with Telescope Configuration Changes Artwork. Concepts: Based on 18 Years of Experience of Kuiper Airborne Observatory (KAO) Operation, Characteristics, Operations and Science

  4. Sonic boom configuration minimization

    NASA Technical Reports Server (NTRS)

    Sohn, Robert A.

    1992-01-01

    The topics covered include the following: the sonic boom 'big picture'; current low boom technology; Mach number impact on gross weight; equal loudness equivalent areas; performance and sizing results; potential configuration modifications; equivalent area matching; and impact of nose bluntness on aerodynamic characteristics.

  5. Space Station Final Configuration

    NASA Technical Reports Server (NTRS)

    1994-01-01

    An artist's conception of what the final configuration of the International Space Station (ISS) will look like when it is fully built and deployed. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide an unprecedented undertaking in scientific, technological, and international experimentation.

  6. Inclusive Services Innovation Configuration

    ERIC Educational Resources Information Center

    Holdheide, Lynn R.; Reschly, Daniel J.

    2011-01-01

    Teacher preparation to deliver inclusive services to students with disabilities is increasingly important because of changes in law and policy emphasizing student access to, and achievement in, the general education curriculum. This innovation configuration identifies the components of inclusive services that should be incorporated in teacher…

  7. Multidisciplinary Optimization Branch Experience Using iSIGHT Software

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Korte, J. J.; Dunn, H. J.; Salas, A. O.

    1999-01-01

    The Multidisciplinary Optimization (MDO) Branch at NASA Langley Research Center is investigating frameworks for supporting multidisciplinary analysis and optimization research. An optimization framework call improve the design process while reducing time and costs. A framework provides software and system services to integrate computational tasks and allows the researcher to concentrate more on the application and less on the programming details. A framework also provides a common working environment and a full range of optimization tools, and so increases the productivity of multidisciplinary research teams. Finally, a framework enables staff members to develop applications for use by disciplinary experts in other organizations. Since the release of version 4.0, the MDO Branch has gained experience with the iSIGHT framework developed by Engineous Software, Inc. This paper describes experiences with four aerospace applications: (1) reusable launch vehicle sizing, (2) aerospike nozzle design, (3) low-noise rotorcraft trajectories, and (4) acoustic liner design. All applications have been successfully tested using the iSIGHT framework, except for the aerospike nozzle problem, which is in progress. Brief overviews of each problem are provided. The problem descriptions include the number and type of disciplinary codes, as well as all estimate of the multidisciplinary analysis execution time. In addition, the optimization methods, objective functions, design variables, and design constraints are described for each problem. Discussions on the experience gained and lessons learned are provided for each problem. These discussions include the advantages and disadvantages of using the iSIGHT framework for each case as well as the ease of use of various advanced features. Potential areas of improvement are identified.

  8. Versatile composite amplifier configuration

    NASA Astrophysics Data System (ADS)

    Gift, Stephan J. G.; Maundy, Brent

    2015-06-01

    This paper describes a versatile composite amplifier in which a current feedback amplifier (CFA) drives an operational amplifier (OPA). In the conventional OPA-CFA composite amplifier, an OPA drives a CFA resulting in a composite structure that combines the DC input stability of the OPA and the high speed capability of the CFA. The proposed composite configuration combines different features of the CFA and OPA, specifically the constant bandwidth property of the CFA and the high power and high current output capacity of the OPA. The new circuit is easily implemented in the standard inverting and non-inverting configurations using commercially available devices, and the accuracy and constant bandwidth features were experimentally verified. Local feedback around the associated CFA ensures that the proposed composite amplifier possesses a higher level of bandwidth constancy than a single CFA.

  9. Dynamic Airspace Configuration

    NASA Technical Reports Server (NTRS)

    Bloem, Michael J.

    2014-01-01

    In air traffic management systems, airspace is partitioned into regions in part to distribute the tasks associated with managing air traffic among different systems and people. These regions, as well as the systems and people allocated to each, are changed dynamically so that air traffic can be safely and efficiently managed. It is expected that new air traffic control systems will enable greater flexibility in how airspace is partitioned and how resources are allocated to airspace regions. In this talk, I will begin by providing an overview of some previous work and open questions in Dynamic Airspace Configuration research, which is concerned with how to partition airspace and assign resources to regions of airspace. For example, I will introduce airspace partitioning algorithms based on clustering, integer programming optimization, and computational geometry. I will conclude by discussing the development of a tablet-based tool that is intended to help air traffic controller supervisors configure airspace and controllers in current operations.

  10. Modular small hydro configuration

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Smaller sites (those under 750 kilowatts) which previously were not attractive to develop using equipment intended for application at larger scale sites, were the focal point in the conception of a system which utilizes standard industrial components which are generally available within short procurement times. Such components were integrated into a development scheme for sites having 20 feet to 150 feet of head. The modular small hydro configuration maximizes the use of available components and minimizes modification of existing civil works. A key aspect of the development concept is the use of a vertical turbine multistage pump, used in the reverse mode as a hydraulic turbine. The configuration allows for automated operation and control of the hydroelectric facilities with sufficient flexibility for inclusion of potential hydroelectric sites into dispersed storage and generation (DSG) utility grid systems.

  11. Weighted Configuration Model

    NASA Astrophysics Data System (ADS)

    Serrano, M. Ángeles; Boguñá, Marián

    2005-06-01

    The configuration model is one of the most successful models for generating uncorrelated random networks. We analyze its behavior when the expected degree sequence follows a power law with exponent smaller than two. In this situation, the resulting network can be viewed as a weighted network with non trivial correlations between strength and degree. Our results are tested against large scale numerical simulations, finding excellent agreement.

  12. Fuel cell system configurations

    DOEpatents

    Kothmann, Richard E.; Cyphers, Joseph A.

    1981-01-01

    Fuel cell stack configurations having elongated polygonal cross-sectional shapes and gaskets at the peripheral faces to which flow manifolds are sealingly affixed. Process channels convey a fuel and an oxidant through longer channels, and a cooling fluid is conveyed through relatively shorter cooling passages. The polygonal structure preferably includes at least two right angles, and the faces of the stack are arranged in opposite parallel pairs.

  13. Aquarius main structure configuration

    NASA Astrophysics Data System (ADS)

    Eremenko, A.

    The Aquarius/SAC-D Observatory is a joint US-Argentine mission to map the salinity at the ocean surface. This information is critical to improving our understanding of two major components of Earth's climate system - the water cycle and ocean circulation. By measuring ocean salinity from space, the Aquarius/SAC-D Mission will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Aquarius is the primary instrument on the SAC-D spacecraft. It consists of a Passive Microwave Radiometer to detect the surface emission that is used to obtain salinity and an Active Scatterometer to measure the ocean waves that affect the precision of the salinity measurement. The Aquarius Primary Structure houses instrument electronics, feed assemblies, and supports a deployable boom with a 2.5 m Reflector, and provides the structural interface to the SAC-D Spacecraft. The key challenge for the Aquarius main structure configuration is to satisfy the needs of component accommodations, ensuring that the instrument can meet all operational, pointing, environmental, and launch vehicle requirements. This paper describes the evolution of the Aquarius main structure configuration, the challenges of balancing the conflicting requirements, and the major configuration driving decisions and compromises.

  14. The Configuration Interaction Method

    NASA Astrophysics Data System (ADS)

    Sherrill, C. David; Schaefer, Henry F., III

    Highly correlated configuration interaction (CI) wavefunctions going beyond the simple singles and doubles (CISD) model space can provide very reliable potential energy surfaces, describe electronic excited states, and yield benchmark energies and molecular properties for use in calibrating more approximate methods. Unfortunately, such wavefunctions are also notoriously difficult to evaluate due to their extreme computational demands. The dimension of a full CI procedure, which represents the exact solution of the electronic Schrödinger equation for a fixed one-particle basis set, grows factorially with the number of electrons and basis functions. For very large configuration spaces, the number of CI coupling coefficients becomes prohibitively large to store on disk; these coefficients must be evaluated as needed in a so-called direct CI procedure. Work done by several groups since 1980 has focused on using Slater determinants rather than spin (S2) eigenfunctions because coupling coefficients are easier to compute with the former. We review the fundamentals of the configuration interaction method and discuss various determinant-based CI algorithms. Additionally, we consider some applications of highly correlated CI methods.

  15. Analyzing Visibility Configurations.

    PubMed

    Dachsbacher, C

    2011-04-01

    Many algorithms, such as level of detail rendering and occlusion culling methods, make decisions based on the degree of visibility of an object, but do not analyze the distribution, or structure, of the visible and occluded regions across surfaces. We present an efficient method to classify different visibility configurations and show how this can be used on top of existing methods based on visibility determination. We adapt co-occurrence matrices for visibility analysis and generalize them to operate on clusters of triangular surfaces instead of pixels. We employ machine learning techniques to reliably classify the thus extracted feature vectors. Our method allows perceptually motivated level of detail methods for real-time rendering applications by detecting configurations with expected visual masking. We exemplify the versatility of our method with an analysis of area light visibility configurations in ray tracing and an area-to-area visibility analysis suitable for hierarchical radiosity refinement. Initial results demonstrate the robustness, simplicity, and performance of our method in synthetic scenes, as well as real applications. PMID:20498504

  16. Configural information is processed differently in human action.

    PubMed

    Loucks, Jeff

    2011-01-01

    Recent evidence indicates that observers' sensitivity to configural information in dynamic human action is disrupted when action is inverted, whereas sensitivity to featural action information is not. The current research involved two experiments that expand upon this basic finding. Experiment 1 revealed that featural and configural action information are processed similarly in static representations of action as in dynamic action. Experiment 2 indicated that configural processing is uniquely sensitive to orientation only in human action as compared to a similar control stimulus. These findings further support the idea that the perception of action recruits specialized orientation-specific configural processing, and parallel similar findings in face perception and visual expertise. PMID:22208127

  17. Computational methods for stellerator configurations

    NASA Astrophysics Data System (ADS)

    Betancourt, O.

    This project had two main objectives. The first one was to continue to develop computational methods for the study of three dimensional magnetic confinement configurations. The second one was to collaborate and interact with researchers in the field who can use these techniques to study and design fusion experiments. The first objective has been achieved with the development of the spectral code BETAS and the formulation of a new variational approach for the study of magnetic island formation in a self consistent fashion. The code can compute the correct island width corresponding to the saturated island, a result shown by comparing the computed island with the results of unstable tearing modes in Tokamaks and with experimental results in the IMS Stellarator. In addition to studying three dimensional nonlinear effects in Tokamaks configurations, these self consistent computed island equilibria will be used to study transport effects due to magnetic island formation and to nonlinearly bifurcated equilibria. The second objective was achieved through direct collaboration with Steve Hirshman at Oak Ridge, D. Anderson and R. Talmage at Wisconsin as well as through participation in the Sherwood and APS meetings.

  18. GSC configuration management plan

    NASA Technical Reports Server (NTRS)

    Withers, B. Edward

    1990-01-01

    The tools and methods used for the configuration management of the artifacts (including software and documentation) associated with the Guidance and Control Software (GCS) project are described. The GCS project is part of a software error studies research program. Three implementations of GCS are being produced in order to study the fundamental characteristics of the software failure process. The Code Management System (CMS) is used to track and retrieve versions of the documentation and software. Application of the CMS for this project is described and the numbering scheme is delineated for the versions of the project artifacts.

  19. Configurational Entropy Revisited

    NASA Astrophysics Data System (ADS)

    Lambert, Frank L.

    2007-09-01

    Entropy change is categorized in some prominent general chemistry textbooks as being either positional (configurational) or thermal. In those texts, the accompanying emphasis on the dispersal of matter—independent of energy considerations and thus in discord with kinetic molecular theory—is most troubling. This article shows that the variants of entropy can be treated from a unified viewpoint and argues that to decrease students' confusion about the nature of entropy change these variants of entropy should be merged. Molecular energy dispersal in space is implicit but unfortunately tacit in the cell models of statistical mechanics that develop the configurational entropy change in gas expansion, fluids mixing, or the addition of a non-volatile solute to a solvent. Two factors are necessary for entropy change in chemistry. An increase in thermodynamic entropy is enabled in a process by the motional energy of molecules (that, in chemical reactions, can arise from the energy released from a bond energy change). However, entropy increase is only actualized if the process results in a larger number of arrangements for the system's energy, that is, a final state that involves the most probable distribution for that energy under the new constraints. Positional entropy should be eliminated from general chemistry instruction and, especially benefiting "concrete minded" students, it should be replaced by emphasis on the motional energy of molecules as enabling entropy change.

  20. SIM Configuration Evolution

    NASA Technical Reports Server (NTRS)

    Aaron, Kim M.

    2000-01-01

    The Space Interferometry Mission (SIM) is a space-based 10 m baseline Michelson interferometer. Planned for launch in 2005 aboard a Delta III launch vehicle, or equivalent, its primary objective is to measure the positions of stars and other celestial objects with an unprecedented accuracy of 4 micro arc seconds. With such an instrument, tremendous advancement can be expected in our understanding of stellar and galactic dynamics. Using triangulation from opposite sides of the orbit around the sun (i.e. by using parallax) one can measure the distance to any observable object in our galaxy. By directly measuring the orbital wobble of nearby stars, the mass and orbit of planets can be determined over a wide range of parameters. The distribution of velocity within nearby galaxies will be measurable. Observations of these and other objects will improve the calibration of distance estimators by more than an order of magnitude. This will permit a much better determination of the Hubble Constant as well as improving our overall understanding of the evolution of the universe. SIM has undergone several transformations, especially over the past year and a half since the start of Phase A. During this phase of a project, it is desirable to perform system-level trade studies, so the substantial evolution of the design that has occurred is quite appropriate. Part of the trade-off process has addressed two major underlying architectures: SIM Classic; and Son of SIM. The difference between these two architectures is related to the overall arrangement of the optical elements and the associated metrology system. Several different configurations have been developed for each architecture. Each configuration is the result of design choices that are influenced by many competing considerations. Some of the more important aspects will be discussed. The Space Interferometry Mission has some extremely challenging goals: millikelvin thermal stability, nanometer stabilization of optics

  1. Ames Optimized TCA Configuration

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Reuther, James J.; Hicks, Raymond M.

    1999-01-01

    Configuration design at Ames was carried out with the SYN87-SB (single block) Euler code using a 193 x 49 x 65 C-H grid. The Euler solver is coupled to the constrained (NPSOL) and the unconstrained (QNMDIF) optimization packages. Since the single block grid is able to model only wing-body configurations, the nacelle/diverter effects were included in the optimization process by SYN87's option to superimpose the nacelle/diverter interference pressures on the wing. These interference pressures were calculated using the AIRPLANE code. AIRPLANE is an Euler solver that uses a unstructured tetrahedral mesh and is capable of computations about arbitrary complete configurations. In addition, the buoyancy effects of the nacelle/diverters were also included in the design process by imposing the pressure field obtained during the design process onto the triangulated surfaces of the nacelle/diverter mesh generated by AIRPLANE. The interference pressures and nacelle buoyancy effects are added to the final forces after each flow field calculation. Full details of the (recently enhanced) ghost nacelle capability are given in a related talk. The pseudo nacelle corrections were greatly improved during this design cycle. During the Ref H and Cycle 1 design activities, the nacelles were only translated and pitched. In the cycle 2 design effort the nacelles can translate vertically, and pitch to accommodate the changes in the lower surface geometry. The diverter heights (between their leading and trailing edges) were modified during design as the shape of the lower wing changed, with the drag of the diverter changing accordingly. Both adjoint and finite difference gradients were used during optimization. The adjoint-based gradients were found to give good direction in the design space for configurations near the starting point, but as the design approached a minimum, the finite difference gradients were found to be more accurate. Use of finite difference gradients was limited by the

  2. Skylab Components in Launch Configuration

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This cutaway drawing illustrates major Skylab components in launch configuration on top of the Saturn V. In an early effort to extend the use of Apollo for further applications, NASA established the Apollo Applications Program (AAP) in August of 1965. The AAP was to include long duration Earth orbital missions during which astronauts would carry out scientific, technological, and engineering experiments in space by utilizing modified Saturn launch vehicles and the Apollo spacecraft. Established in 1970, the Skylab Program was the forerurner of the AAP. The goals of the Skylab were to enrich our scientific knowledge of the Earth, the Sun, the stars, and cosmic space; to study the effects of weightlessness on living organisms, including man; to study the effects of the processing and manufacturing of materials utilizing the absence of gravity; and to conduct Earth resource observations. The Skylab also conducted 19 selected experiments submitted by high school students. Skylab's 3 different 3-man crews spent up to 84 days in Earth orbit. The Marshall Space Flight Center (MSFC) had responsibility for developing and integrating most of the major components of the Skylab: the Orbital Workshop (OWS), Airlock Module (AM), Multiple Docking Adapter (MDA), Apollo Telescope Mount (ATM), Payload Shroud (PS), and most of the experiments. MSFC was also responsible for providing the Saturn IB launch vehicles for three Apollo spacecraft and crews and a Saturn V launch vehicle for the Skylab.

  3. Power converter connection configuration

    DOEpatents

    Beihoff, Bruce C.; Kehl, Dennis L.; Gettelfinger, Lee A.; Kaishian, Steven C.; Phillips, Mark G.; Radosevich, Lawrence D.

    2008-11-11

    EMI shielding is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  4. Configurable Aperture Space Telescope

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Bendek, Eduardo

    2015-01-01

    In December 2014, we were awarded Center Innovation Fund to evaluate an optical and mechanical concept for a novel implementation of a segmented telescope based on modular, interconnected small sats (satlets). The concept is called CAST, a Configurable Aperture Space Telescope. With a current TRL is 2 we will aim to reach TLR 3 in Sept 2015 by demonstrating a 2x2 mirror system to validate our optical model and error budget, provide straw man mechanical architecture and structural damping analyses, and derive future satlet-based observatory performance requirements. CAST provides an alternative access to visible and/or UV wavelength space telescope with 1-meter or larger aperture for NASA SMD Astrophysics and Planetary Science community after the retirement of HST

  5. Software Configurable Multichannel Transceiver

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.; Cornelius, Harold; Hickling, Ron; Brooks, Walter

    2009-01-01

    Emerging test instrumentation and test scenarios increasingly require network communication to manage complexity. Adapting wireless communication infrastructure to accommodate challenging testing needs can benefit from reconfigurable radio technology. A fundamental requirement for a software-definable radio system is independence from carrier frequencies, one of the radio components that to date has seen only limited progress toward programmability. This paper overviews an ongoing project to validate the viability of a promising chipset that performs conversion of radio frequency (RF) signals directly into digital data for the wireless receiver and, for the transmitter, converts digital data into RF signals. The Software Configurable Multichannel Transceiver (SCMT) enables four transmitters and four receivers in a single unit the size of a commodity disk drive, programmable for any frequency band between 1 MHz and 6 GHz.

  6. Inductrack magnet configuration

    DOEpatents

    Post, Richard Freeman

    2003-10-14

    A magnet configuration comprising a pair of Halbach arrays magnetically and structurally connected together are positioned with respect to each other so that a first component of their fields substantially cancels at a first plane between them, and a second component of their fields substantially adds at this first plane. A track of windings is located between the pair of Halbach arrays and a propulsion mechanism is provided for moving the pair of Halbach arrays along the track. When the pair of Halbach arrays move along the track and the track is not located at the first plane, a current is induced in the windings and a restoring force is exerted on the pair of Halbach arrays.

  7. Inductrack magnet configuration

    DOEpatents

    Post, Richard Freeman

    2003-12-16

    A magnet configuration comprising a pair of Halbach arrays magnetically and structurally connected together are positioned with respect to each other so that a first component of their fields substantially cancels at a first plane between them, and a second component of their fields substantially adds at this first plane. A track of windings is located between the pair of Halbach arrays and a propulsion mechanism is provided for moving the pair of Halbach arrays along the track. When the pair of Halbach arrays move along the track and the track is not located at the first plane, a current is induced in the windings and a restoring force is exerted on the pair of Halbach arrays.

  8. In-step Inflatable Antenna Experiment

    NASA Technical Reports Server (NTRS)

    Veal, G.; Freeland, R. E.

    1992-01-01

    The topics are presented in viewgraph form and include the following: potential space antenna applications; experiment objectives; experiment technical approach; experiment scenario; spartan services; experiment orbital configuration; experiment canister structure; surface measurement system configuration; and orbital functional sequences.

  9. Spatial Configurations: Erickson Reexamined.

    ERIC Educational Resources Information Center

    Budd, Barbara E.; And Others

    1985-01-01

    Erickson's 1951 study of gender differences in preadolescents' play construction was replicated and expanded to correct for sex bias of materials. Erickson's finding of innate biological differences in the experience and perception of space was not confirmed. Instead, differences were attributed to the materials provided. (KH)

  10. Hubble Space Telescope Configuration

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This image illustrates the overall Hubble Space Telescope (HST) configuration. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  11. Three Studies on Configural Face Processing by Chimpanzees

    ERIC Educational Resources Information Center

    Parr, Lisa A.; Heintz, Matthew; Akamagwuna, Unoma

    2006-01-01

    Previous studies have demonstrated the sensitivity of chimpanzees to facial configurations. Three studies further these findings by showing this sensitivity to be specific to second-order relational properties. In humans, this type of configural processing requires prolonged experience and enables subordinate-level discriminations of many…

  12. Configural learning in contextual cuing of visual search.

    PubMed

    Beesley, Tom; Vadillo, Miguel A; Pearson, Daniel; Shanks, David R

    2016-08-01

    Two experiments were conducted to explore the role of configural representations in contextual cuing of visual search. Repeating patterns of distractors (contexts) were trained incidentally as predictive of the target location. Training participants with repeating contexts of consistent configurations led to stronger contextual cuing than when participants were trained with contexts of inconsistent configurations. Computational simulations with an elemental associative learning model of contextual cuing demonstrated that purely elemental representations could not account for the results. However, a configural model of associative learning was able to simulate the ordinal pattern of data. (PsycINFO Database Record PMID:26913779

  13. Space Station reference configuration update

    NASA Technical Reports Server (NTRS)

    Bonner, Tom F., Jr.

    1985-01-01

    The reference configuration of the NASA Space Station as of November 1985 is presented in a series of diagrams, drawings, graphs, and tables. The configurations for components to be contributed by ESA, Canada, and Japan are included. Brief captions are provided, along with answers to questions raised at the conference.

  14. An experimental study of several wind tunnel wall configurations using two V/STOL model configurations. [low speed wind tunnels

    NASA Technical Reports Server (NTRS)

    Binion, T. W., Jr.

    1975-01-01

    Experiments were conducted in the low speed wind tunnel using two V/STOL models, a jet-flap and a jet-in-fuselage configuration, to search for a wind tunnel wall configuration to minimize wall interference on V/STOL models. Data were also obtained on the jet-flap model with a uniform slotted wall configuration to provide comparisons between theoretical and experimental wall interference. A test section configuration was found which provided some data in reasonable agreement with interference-free results over a wide range of momentum coefficients.

  15. Radiant-interchange Configuration Factors

    NASA Technical Reports Server (NTRS)

    Hamilton, D C :; Morgan, W R

    1952-01-01

    A study is presented of the geometric configuration factors required for computing radiant heat transfer between opaque surfaces separated by a nonabsorbing medium and various methods of determining the configuration factors are discussed. Configuration-factor solutions available in the literature have been checked and the more complicated equations are presented as families of curves. Cases for point, line, and finite-area sources are worked out over a wide range of geometric proportions. These cases include several new configurations involving rectangles, triangles, and cylinders of finite length which are integrated and tabulated. An analysis is presented, in which configuration factors are employed of the radiant heat transfer to the rotor blades of a typical gas turbine under different conditions of temperature and pressure. (author)

  16. Parametric analysis of ATT configurations.

    NASA Technical Reports Server (NTRS)

    Lange, R. H.

    1972-01-01

    This paper describes the results of a Lockheed parametric analysis of the performance, environmental factors, and economics of an advanced commercial transport envisioned for operation in the post-1985 time period. The design parameters investigated include cruise speeds from Mach 0.85 to Mach 1.0, passenger capacities from 200 to 500, ranges of 2800 to 5500 nautical miles, and noise level criteria. NASA high performance configurations and alternate configurations are operated over domestic and international route structures. Indirect and direct costs and return on investment are determined for approximately 40 candidate aircraft configurations. The candidate configurations are input to an aircraft sizing and performance program which includes a subroutine for noise criteria. Comparisons are made between preferred configurations on the basis of maximum return on investment as a function of payload, range, and design cruise speed.

  17. Aeropropulsion facilities configuration control: Procedures manual

    NASA Technical Reports Server (NTRS)

    Lavelle, James J.

    1990-01-01

    Lewis Research Center senior management directed that the aeropropulsion facilities be put under configuration control. A Configuration Management (CM) program was established by the Facilities Management Branch of the Aeropropulsion Facilities and Experiments Division. Under the CM program, a support service contractor was engaged to staff and implement the program. The Aeronautics Directorate has over 30 facilities at Lewis of various sizes and complexities. Under the program, a Facility Baseline List (FBL) was established for each facility, listing which systems and their documents were to be placed under configuration control. A Change Control System (CCS) was established requiring that any proposed changes to FBL systems or their documents were to be processed as per the CCS. Limited access control of the FBL master drawings was implemented and an audit system established to ensure all facility changes are properly processed. This procedures manual sets forth the policy and responsibilities to ensure all key documents constituting a facilities configuration are kept current, modified as needed, and verified to reflect any proposed change. This is the essence of the CM program.

  18. Viscous Design of TCA Configuration

    NASA Technical Reports Server (NTRS)

    Krist, Steven E.; Bauer, Steven X. S.; Campbell, Richard L.

    1999-01-01

    The goal in this effort is to redesign the baseline TCA configuration for improved performance at both supersonic and transonic cruise. Viscous analyses are conducted with OVERFLOW, a Navier-Stokes code for overset grids, using PEGSUS to compute the interpolations between overset grids. Viscous designs are conducted with OVERDISC, a script which couples OVERFLOW with the Constrained Direct Iterative Surface Curvature (CDISC) inverse design method. The successful execution of any computational fluid dynamics (CFD) based aerodynamic design method for complex configurations requires an efficient method for regenerating the computational grids to account for modifications to the configuration shape. The first section of this presentation deals with the automated regridding procedure used to generate overset grids for the fuselage/wing/diverter/nacelle configurations analysed in this effort. The second section outlines the procedures utilized to conduct OVERDISC inverse designs. The third section briefly covers the work conducted by Dick Campbell, in which a dual-point design at Mach 2.4 and 0.9 was attempted using OVERDISC; the initial configuration from which this design effort was started is an early version of the optimized shape for the TCA configuration developed by the Boeing Commercial Airplane Group (BCAG), which eventually evolved into the NCV design. The final section presents results from application of the Natural Flow Wing design philosophy to the TCA configuration.

  19. Device configuration-management system

    SciTech Connect

    Nowell, D.M.

    1981-01-01

    The Fusion Chamber System, a major component of the Magnetic Fusion Test Facility, contains several hundred devices which report status to the Supervisory Control and Diagnostic System for control and monitoring purposes. To manage the large number of diversity of devices represented, a device configuration management system was required and developed. Key components of this software tool include the MFTF Data Base; a configuration editor; and a tree structure defining the relationships between the subsystem devices. This paper will describe how the configuration system easily accomodates recognizing new devices, restructuring existing devices, and modifying device profile information.

  20. SAMI Automated Plug Plate Configuration

    NASA Astrophysics Data System (ADS)

    Lorente, N. P. F.; Farrell, T.; Goodwin, M.

    2013-10-01

    The Sydney-AAO Multi-object Integral field spectrograph (SAMI) is a prototype wide-field system at the Anglo-Australian Telescope (AAT) which uses a plug-plate to mount its 13×61-core imaging fibre bundles (hexabundles) in the optical path at the telescope's prime focus. In this paper we describe the process of determining the positions of the plug-plate holes, where plates contain three or more stacked observation configurations. The process, which up until now has involved several separate processes and has required significant manual configuration and checking, is now being automated to increase efficiency and reduce error. This is carried out by means of a thin Java controller layer which drives the configuration cycle. This layer controls the user interface and the C++ algorithm layer where the plate configuration and optimisation is carried out. Additionally, through the Aladin display package, it provides visualisation and facilitates user verification of the resulting plates.

  1. Space Station reference configuration description

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The data generated by the Space Station Program Skunk Works over a period of 4 months which supports the definition of a Space Station reference configuration is documented. The data were generated to meet these objectives: (1) provide a focal point for the definition and assessment of program requirements; (2) establish a basis for estimating program cost; and (3) define a reference configuration in sufficient detail to allow its inclusion in the definition phase Request for Proposal (RFP).

  2. Context based configuration management system

    NASA Technical Reports Server (NTRS)

    Gawdiak, Yuri O. (Inventor); Gurram, Mohana M. (Inventor); Maluf, David A. (Inventor); Mederos, Luis A. (Inventor)

    2010-01-01

    A computer-based system for configuring and displaying information on changes in, and present status of, a collection of events associated with a project. Classes of icons for decision events, configurations and feedback mechanisms, and time lines (sequential and/or simultaneous) for related events are displayed. Metadata for each icon in each class is displayed by choosing and activating the corresponding icon. Access control (viewing, reading, writing, editing, deleting, etc.) is optionally imposed for metadata and other displayed information.

  3. Dynamic configuration of the CMS Data Acquisition cluster

    NASA Astrophysics Data System (ADS)

    Bauer, G.; Behrens, U.; Biery, K.; Boyer, V.; Branson, J.; Cano, E.; Cheung, H.; Ciganek, M.; Cittolin, S.; Coarasa, J. A.; Deldicque, C.; Dusinberre, E.; Erhan, S.; Fortes Rodrigues, F.; Gigi, D.; Glege, F.; Gomez-Reino, R.; Gutleber, J.; Hatton, D.; Laurens, J. F.; Lopez Perez, J. A.; Meijers, F.; Meschi, E.; Meyer, A.; Mommsen, R. K.; Moser, R.; O'Dell, V.; Oh, A.; Orsini, L. B.; Patras, V.; Paus, C.; Petrucci, A.; Pieri, M.; Racz, A.; Sakulin, H.; Sani, M.; Schieferdecker, P.; Schwick, C.; Shpakov, D.; Simon, S.; Sumorok, K.; Zanetti, M.

    2010-04-01

    The CMS Data Acquisition cluster, which runs around 10000 applications, is configured dynamically at run time. XML configuration documents determine what applications are executed on each node and over what networks these applications communicate. Through this mechanism the DAQ System may be adapted to the required performance, partitioned in order to perform (test-) runs in parallel, or re-structured in case of hardware faults. This paper presents the configuration procedure and the CMS DAQ Configurator tool, which is used to generate comprehensive configurations of the CMS DAQ system based on a high-level description given by the user. Using a database of configuration templates and a database containing a detailed model of hardware modules, data and control links, nodes and the network topology, the tool automatically determines which applications are needed, on which nodes they should run, and over which networks the event traffic will flow. The tool computes application parameters and generates the XML configuration documents and the configuration of the run-control system. The performance of the configuration procedure and the tool as well as operational experience during CMS commissioning and the first LHC runs are discussed.

  4. A modified electrode configuration for brain EIT

    NASA Astrophysics Data System (ADS)

    Manwaring, P. K.; Halter, R. J.; Borsic, A.; Hartov, A.

    2010-04-01

    Electrical impedance tomography (EIT) of the brain holds great promise for long term non-ionizing detection and imaging of blood flow, ischemia, stroke, and even neuronal activity. One of the most difficult challenges with this modality, however, is overcoming the high impedance of the skull, which severely limits current passage through the intracranial space and "washes out" the tissue property images. There are situations, however, in which invasive electrode configurations are appropriate to overcome this limitation. We propose the use of a central and circumferential-electrode configuration to improve detection and localization of edema, hemorrhage, and ischemia within the cranium. Results from a simulation study and a phantom experiment verifying the simulation are shown.

  5. Computation of Lifting Wing-Flap Configurations

    NASA Technical Reports Server (NTRS)

    Cantwell, Brian; Kwak, Dochan

    1996-01-01

    Research has been carried out on the computation of lifting wing-flap configurations. The long term goal of the research is to develop improved computational tools for the analysis and design of high lift systems. Results show that state-of-the-art computational methods are sufficient to predict time-averaged lift and overall flow field characteristics on simple high-lift configurations. Recently there has been an increased interest in the problem of airframe generated noise and experiments carried out in the 7 x 10 wind tunnel at NASA Ames have identified the flap edge as an important source of noise. A follow-on set of experiments will be conducted toward the end of 1995. The computations being carried out under this project are coordinated with these experiments. In particular, the model geometry being used in the computations is the same as that in the experiments. The geometry consists of a NACA 63-215 Mod B airfoil section which spans the 7 x lO tunnel. The wing is unswept and has an aspect ratio of two. A 30% chord Fowler flap is deployed modifications of the flap edge geometry have been shown to be effective in reducing noise and the existing code is currently being used to compute the effect of a modified geometry on the edge flow.

  6. Observation-Driven Configuration of Complex Software Systems

    NASA Astrophysics Data System (ADS)

    Sage, Aled

    2010-06-01

    The ever-increasing complexity of software systems makes them hard to comprehend, predict and tune due to emergent properties and non-deterministic behaviour. Complexity arises from the size of software systems and the wide variety of possible operating environments: the increasing choice of platforms and communication policies leads to ever more complex performance characteristics. In addition, software systems exhibit different behaviour under different workloads. Many software systems are designed to be configurable so that policies can be chosen to meet the needs of various stakeholders. For complex software systems it can be difficult to accurately predict the effects of a change and to know which configuration is most appropriate. This thesis demonstrates that it is useful to run automated experiments that measure a selection of system configurations. Experiments can find configurations that meet the stakeholders' needs, find interesting behavioural characteristics, and help produce predictive models of the system's behaviour. The design and use of ACT (Automated Configuration Tool) for running such experiments is described, in combination a number of search strategies for deciding on the configurations to measure. Design Of Experiments (DOE) is discussed, with emphasis on Taguchi Methods. These statistical methods have been used extensively in manufacturing, but have not previously been used for configuring software systems. The novel contribution here is an industrial case study, applying the combination of ACT and Taguchi Methods to DC-Directory, a product from Data Connection Ltd (DCL). The case study investigated the applicability of Taguchi Methods for configuring complex software systems. Taguchi Methods were found to be useful for modelling and configuring DC- Directory, making them a valuable addition to the techniques available to system administrators and developers.

  7. Optimized configurations of autostable superconducting magnetic bearings for practical applications

    SciTech Connect

    Schoechlin, A.; Ritter, T.; Bornemann, H.J.

    1995-11-01

    In order to establish an optimized bearing design for a flywheel for energy storage, the authors have studied model bearing configurations involving bulk YBCO pellets and double-dipole magnet configurations. They were interested to see what is the correlation between the maximum attainable levitation force, measured for a typical bearing gap of 3 mm, and the separation between the magnetic poles. Equal polarity (north-north) and alternate polarity (north-south) configurations were investigated. The maximum levitation force was obtained with the alternate polarity arrangement for a separation between the magnetic poles of 6 mm. It represents an increase of 19% compared to a non-optimized configuration. The experiments demonstrate that configurations of superconducting magnetic bearings can be optimized to obtain better levitation properties.

  8. Configurational entropy in thermoset polymers.

    PubMed

    Jensen, Martin; Jakobsen, Johnny

    2015-04-30

    The configurational entropy describes the atomic structure in a material and controls several material properties. Often the configurational entropy is determined through dielectric or calorimetric measurements where the difference between the entropies of the crystalline state and the amorphous state is determined. Many amorphous materials such as thermoset polymers have a high crystallization barrier, greatly limiting the applicability of the existing methods for determining the configurational entropy. In this work, a novel differential scanning calorimetry (DSC) method, based on measurement of the glass transition temperature at different heating rates, for determination of the configurational entropy is introduced. The theory behind the method has a universal character for amorphous materials, as it solely involves measurement of the glass transition temperature. The temperature dependency of the configurational entropy is determined for epoxy resins and PMMA (poly(methyl methacrylate)) to demonstrate the versatility of the method. On the basis of the findings of the introduced method, the influence of the degree of cross-linking and the chemical structure of the network is discussed. PMID:25844504

  9. Redundant Array Configurations for 21 cm Cosmology

    NASA Astrophysics Data System (ADS)

    Dillon, Joshua S.; Parsons, Aaron R.

    2016-08-01

    Realizing the potential of 21 cm tomography to statistically probe the intergalactic medium before and during the Epoch of Reionization requires large telescopes and precise control of systematics. Next-generation telescopes are now being designed and built to meet these challenges, drawing lessons from first-generation experiments that showed the benefits of densely packed, highly redundant arrays—in which the same mode on the sky is sampled by many antenna pairs—for achieving high sensitivity, precise calibration, and robust foreground mitigation. In this work, we focus on the Hydrogen Epoch of Reionization Array (HERA) as an interferometer with a dense, redundant core designed following these lessons to be optimized for 21 cm cosmology. We show how modestly supplementing or modifying a compact design like HERA’s can still deliver high sensitivity while enhancing strategies for calibration and foreground mitigation. In particular, we compare the imaging capability of several array configurations, both instantaneously (to address instrumental and ionospheric effects) and with rotation synthesis (for foreground removal). We also examine the effects that configuration has on calibratability using instantaneous redundancy. We find that improved imaging with sub-aperture sampling via “off-grid” antennas and increased angular resolution via far-flung “outrigger” antennas is possible with a redundantly calibratable array configuration.

  10. Configurable silicon photonic crystal waveguides

    SciTech Connect

    Prorok, Stefan; Petrov, Alexander; Eich, Manfred; Luo, Jingdong; Jen, Alex K.-Y.

    2013-12-23

    In this Letter, we demonstrate that the mode cut off of a photonic crystal waveguide can be trimmed with high accuracy by electron beam bleaching of a chromophore doped polymer cladding. Using this method, configurable waveguides are realized, which allow for spatially resolved changes of the photonic crystal's effective lattice constant as small as 7.6 pm. We show three different examples how to take advantage of configurable photonic crystal waveguides: Shifting of the complete transmission spectrum, definition of cavities with high quality factor, and tuning of existing cavities.

  11. Runway configuration improvement programming model.

    NASA Technical Reports Server (NTRS)

    Yu, J. C.; Gibson, D. R.

    1973-01-01

    The basic objectives of the study were to subject a set of runway configurations to cost analysis and to develop a dynamic programming model which would enable an airport to economically match the ground capacity to its air traffic demand. Quantitative differences in the capacity of runway configurations result from the various aircraft/aircraft and aircraft/air-system interactions. A problem formulation and solution procedure is presented which is intended to be a meaningful technique for the long-range planning of runway expansion programs.

  12. Configurable silicon photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Prorok, Stefan; Petrov, Alexander; Eich, Manfred; Luo, Jingdong; Jen, Alex K.-Y.

    2013-12-01

    In this Letter, we demonstrate that the mode cut off of a photonic crystal waveguide can be trimmed with high accuracy by electron beam bleaching of a chromophore doped polymer cladding. Using this method, configurable waveguides are realized, which allow for spatially resolved changes of the photonic crystal's effective lattice constant as small as 7.6 pm. We show three different examples how to take advantage of configurable photonic crystal waveguides: Shifting of the complete transmission spectrum, definition of cavities with high quality factor, and tuning of existing cavities.

  13. CMS Configuration Editor: GUI based application for user analysis job

    NASA Astrophysics Data System (ADS)

    de Cosa, A.

    2011-12-01

    We present the user interface and the software architecture of the Configuration Editor for the CMS experiment. The analysis workflow is organized in a modular way integrated within the CMS framework that organizes in a flexible way user analysis code. The Python scripting language is adopted to define the job configuration that drives the analysis workflow. It could be a challenging task for users, especially for newcomers, to develop analysis jobs managing the configuration of many required modules. For this reason a graphical tool has been conceived in order to edit and inspect configuration files. A set of common analysis tools defined in the CMS Physics Analysis Toolkit (PAT) can be steered and configured using the Config Editor. A user-defined analysis workflow can be produced starting from a standard configuration file, applying and configuring PAT tools according to the specific user requirements. CMS users can adopt this tool, the Config Editor, to create their analysis visualizing in real time which are the effects of their actions. They can visualize the structure of their configuration, look at the modules included in the workflow, inspect the dependences existing among the modules and check the data flow. They can visualize at which values parameters are set and change them according to what is required by their analysis task. The integration of common tools in the GUI needed to adopt an object-oriented structure in the Python definition of the PAT tools and the definition of a layer of abstraction from which all PAT tools inherit.

  14. A Communication Configuration of AIDS.

    ERIC Educational Resources Information Center

    Hughey, Jim D.

    A study focused on the way that image, knowledge, behavioral intent, and communicative responsiveness are configured for Acquired Immunodeficiency Syndrome (AIDS). The classic model of the adoption process expects that knowledge about a subject will lead to a favorable evaluation of it, which in turn will lead to a decision to act. But the…

  15. NCCDS configuration management process improvement

    NASA Technical Reports Server (NTRS)

    Shay, Kathy

    1993-01-01

    By concentrating on defining and improving specific Configuration Management (CM) functions, processes, procedures, personnel selection/development, and tools, internal and external customers received improved CM services. Job performance within the section increased in both satisfaction and output. Participation in achieving major improvements has led to the delivery of consistent quality CM products as well as significant decreases in every measured CM metrics category.

  16. Configuration Aerodynamics: Past - Present - Future

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Agrawal, Shreekant; Bencze, Daniel P.; Kulfan, Robert M.; Wilson, Douglas L.

    1999-01-01

    The Configuration Aerodynamics (CA) element of the High Speed Research (HSR) program is managed by a joint NASA and Industry team, referred to as the Technology Integration Development (ITD) team. This team is responsible for the development of a broad range of technologies for improved aerodynamic performance and stability and control characteristics at subsonic to supersonic flight conditions. These objectives are pursued through the aggressive use of advanced experimental test techniques and state of the art computational methods. As the HSR program matures and transitions into the next phase the objectives of the Configuration Aerodynamics ITD are being refined to address the drag reduction needs and stability and control requirements of High Speed Civil Transport (HSCT) aircraft. In addition, the experimental and computational tools are being refined and improved to meet these challenges. The presentation will review the work performed within the Configuration Aerodynamics element in 1994 and 1995 and then discuss the plans for the 1996-1998 time period. The final portion of the presentation will review several observations of the HSR program and the design activity within Configuration Aerodynamics.

  17. Configuration based Collisional-Radiative Model including configuration interaction

    NASA Astrophysics Data System (ADS)

    Busquet, Michel

    2007-11-01

    Atomic levels mixing through Configuration Interaction (CI) yields important effects. It transfers oscillator strengthes from allowed lines to forbidden lines, and produces strong shift and broadening of line arrays, although the total emissivity is almost insensitive to CI, being proportional to the average wave number. However for hi Z material, like Xe or Sn (potential xuv-ray source for micro-lithography), a non-LTE calculation accounting for all relevant levels wiill be untractable with billions of states. The model we constructed, CAVCRM (caf'e-crème), is a non-LTE C.R.M. where states are configurations but it includes C.I. to give full richness of spectral quantities, using the latest version of the HULLAC-v9 suite of codes and our newly developped algorithm for large set of states with as many as 50,000 states [1]. [1] M.Klapisch et al, this conference

  18. Terminal configured vehicle program: Test facilities guide

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The terminal configured vehicle (TCV) program was established to conduct research and to develop and evaluate aircraft and flight management system technology concepts that will benefit conventional take off and landing operations in the terminal area. Emphasis is placed on the development of operating methods for the highly automated environment anticipated in the future. The program involves analyses, simulation, and flight experiments. Flight experiments are conducted using a modified Boeing 737 airplane equipped with highly flexible display and control equipment and an aft flight deck for research purposes. The experimental systems of the Boeing 737 are described including the flight control computer systems, the navigation/guidance system, the control and command panel, and the electronic display system. The ground based facilities used in the program are described including the visual motion simulator, the fixed base simulator, the verification and validation laboratory, and the radio frequency anechoic facility.

  19. Emotion recognition: the role of featural and configural face information.

    PubMed

    Bombari, Dario; Schmid, Petra C; Schmid Mast, Marianne; Birri, Sandra; Mast, Fred W; Lobmaier, Janek S

    2013-01-01

    Several studies investigated the role of featural and configural information when processing facial identity. A lot less is known about their contribution to emotion recognition. In this study, we addressed this issue by inducing either a featural or a configural processing strategy (Experiment 1) and by investigating the attentional strategies in response to emotional expressions (Experiment 2). In Experiment 1, participants identified emotional expressions in faces that were presented in three different versions (intact, blurred, and scrambled) and in two orientations (upright and inverted). Blurred faces contain mainly configural information, and scrambled faces contain mainly featural information. Inversion is known to selectively hinder configural processing. Analyses of the discriminability measure (A') and response times (RTs) revealed that configural processing plays a more prominent role in expression recognition than featural processing, but their relative contribution varies depending on the emotion. In Experiment 2, we qualified these differences between emotions by investigating the relative importance of specific features by means of eye movements. Participants had to match intact expressions with the emotional cues that preceded the stimulus. The analysis of eye movements confirmed that the recognition of different emotions rely on different types of information. While the mouth is important for the detection of happiness and fear, the eyes are more relevant for anger, fear, and sadness. PMID:23679155

  20. Solar disk sextant optical configuration

    NASA Technical Reports Server (NTRS)

    Chiu, H.-Y.; Maier, E.; Schatten, K. H.; Sofia, S.

    1984-01-01

    In this paper the performance of a plausible configuration for the solar disk sextant, an instrument to be used to monitor the solar diameter, is evaluated. Overall system requirements are evaluated, and tolerable uncertainties are obtained. It is concluded that by using a beam splitting wedge, a folded optics design can be used to measure the solar diameter to an accuracy of 10 to the -6th, despite the greater aberrations present in such optical systems.

  1. Unlimited full configuration interaction calculations

    NASA Astrophysics Data System (ADS)

    Knowles, Peter J.; Handy, Nicholas C.

    1989-08-01

    In very large full configuration interaction (full CI), nearly all of the CI coefficients are very small. Calculations, using a newly developed algorithm which exploits this fact, on NH3 with a DZP basis are reported, involving 2×108 Slater determinants. Such calculations are impossible with other existing full CI codes. The new algorithm opens up the opportunity of full CI calculations which are unlimited in size.

  2. Stereoscopic Configurations To Minimize Distortions

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B.

    1991-01-01

    Proposed television system provides two stereoscopic displays. Two-camera, two-monitor system used in various camera configurations and with stereoscopic images on monitors magnified to various degrees. Designed to satisfy observer's need to perceive spatial relationships accurately throughout workspace or to perceive them at high resolution in small region of workspace. Potential applications include industrial, medical, and entertainment imaging and monitoring and control of telemanipulators, telerobots, and remotely piloted vehicles.

  3. Configuration Management Process Assessment Strategy

    NASA Technical Reports Server (NTRS)

    Henry, Thad

    2014-01-01

    Purpose: To propose a strategy for assessing the development and effectiveness of configuration management systems within Programs, Projects, and Design Activities performed by technical organizations and their supporting development contractors. Scope: Various entities CM Systems will be assessed dependent on Project Scope (DDT&E), Support Services and Acquisition Agreements. Approach: Model based structured against assessing organizations CM requirements including best practices maturity criteria. The model is tailored to the entity being assessed dependent on their CM system. The assessment approach provides objective feedback to Engineering and Project Management of the observed CM system maturity state versus the ideal state of the configuration management processes and outcomes(system). center dot Identifies strengths and risks versus audit gotcha's (findings/observations). center dot Used "recursively and iteratively" throughout program lifecycle at select points of need. (Typical assessments timing is Post PDR/Post CDR) center dot Ideal state criteria and maturity targets are reviewed with the assessed entity prior to an assessment (Tailoring) and is dependent on the assessed phase of the CM system. center dot Supports exit success criteria for Preliminary and Critical Design Reviews. center dot Gives a comprehensive CM system assessment which ultimately supports configuration verification activities.*

  4. Ringed Accretion Disks: Equilibrium Configurations

    NASA Astrophysics Data System (ADS)

    Pugliese, D.; Stuchlík, Z.

    2015-12-01

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  5. Three studies on configural face processing by chimpanzees

    PubMed Central

    Parr, Lisa A.; Heintz, Matthew; Akamagwuna, Unoma

    2010-01-01

    Previous studies have demonstrated the sensitivity of chimpanzees to facial configurations. Three studies further these findings by showing this sensitivity to be specific to second-order relational properties. In humans, this type of configural processing requires prolonged experience and enables subordinate-level discriminations of many individuals. Chimpanzees showed evidence of a composite-like effect for conspecific but not human faces despite extensive experience with humans. Chimpanzee face recognition was impaired only when manipulations targeted second-order properties. Finally, face processing was impaired when individual features were blurred through pixelation. Results confirm that chimpanzee face discrimination, like humans, depends on the integrity of second-order relational properties. PMID:16678323

  6. The Memory of MICE: The Configuration Database

    NASA Astrophysics Data System (ADS)

    Wilson, A. J.; Colling, D. J.; Hanlet, P.

    2012-12-01

    The configuration database (CDB) is the memory of the Muon Ionisation Cooling Experiment (MICE). Its principle aim is to store temporal data associated with the running of the experiment; these data are used throughout the life cycle of experiment, from running the experiment through data analysis. The CDB also serves as a moderator in the MICE state machine by defining allowable operating states of subsystems depending on the overall state of MICE and other subsystems. Master and slave CDBs, with multiple mirrored pair raid arrays, have been set up in different parts of the site to increase resilience, as well as off site backups. Access to the CDB is via a Python API, which communicates with a WSDL interface provided by a web-service on the CDB. The priority is to ensure availability of the CDB in the experiment control room. The master CDB is located in the MICE control where it is only used by the running experiment. In the event of the failure of the master, the slave can easily be promoted to master. Read only access to the CDB for data analysis and reconstruction is provided by the slave which has an up to the minute copy of the data. As MICE is a precision experiment which will measure a 10% muon cooling effect with 1% precision, it is imperative that we minimize our systematic errors; the CDB will ensure reproducible and documented running conditions in a highly resilient manner. A description of the hardware and software used in the the MICE CDB will be described in what follows.

  7. ATLAS software configuration and build tool optimisation

    NASA Astrophysics Data System (ADS)

    Rybkin, Grigory; Atlas Collaboration

    2014-06-01

    ATLAS software code base is over 6 million lines organised in about 2000 packages. It makes use of some 100 external software packages, is developed by more than 400 developers and used by more than 2500 physicists from over 200 universities and laboratories in 6 continents. To meet the challenge of configuration and building of this software, the Configuration Management Tool (CMT) is used. CMT expects each package to describe its build targets, build and environment setup parameters, dependencies on other packages in a text file called requirements, and each project (group of packages) to describe its policies and dependencies on other projects in a text project file. Based on the effective set of configuration parameters read from the requirements files of dependent packages and project files, CMT commands build the packages, generate the environment for their use, or query the packages. The main focus was on build time performance that was optimised within several approaches: reduction of the number of reads of requirements files that are now read once per package by a CMT build command that generates cached requirements files for subsequent CMT build commands; introduction of more fine-grained build parallelism at package task level, i.e., dependent applications and libraries are compiled in parallel; code optimisation of CMT commands used for build; introduction of package level build parallelism, i. e., parallelise the build of independent packages. By default, CMT launches NUMBER-OF-PROCESSORS build commands in parallel. The other focus was on CMT commands optimisation in general that made them approximately 2 times faster. CMT can generate a cached requirements file for the environment setup command, which is especially useful for deployment on distributed file systems like AFS or CERN VMFS. The use of parallelism, caching and code optimisation significantly-by several times-reduced software build time, environment setup time, increased the efficiency of

  8. Multidisciplinary Optimization Branch Experience Using iSIGHT Software

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Korte, J. J.; Dunn, H. J.; Salas, A. O.

    1999-01-01

    The Multidisciplinary Optimization (MDO) Branch at NASA Langley is investigating frameworks for supporting multidisciplinary analysis and optimization research. A framework provides software and system services to integrate computational tasks and allows the researcher to concentrate more on the application and less on the programming details. A framework also provides a common working environment and a full range of optimization tools, and so increases the productivity of multidisciplinary research teams. Finally, a framework enables staff members to develop applications for use by disciplinary experts in other organizations. This year, the MDO Branch has gained experience with the iSIGHT framework. This paper describes experiences with four aerospace applications, including: (1) reusable launch vehicle sizing, (2) aerospike nozzle design, (3) low-noise rotorcraft trajectories, and (4) acoustic liner design. Brief overviews of each problem are provided, including the number and type of disciplinary codes and computation time estimates. In addition, the optimization methods, objective functions, design variables, and constraints are described for each problem. For each case, discussions on the advantages and disadvantages of using the iSIGHT framework are provided as well as notes on the ease of use of various advanced features and suggestions for areas of improvement.

  9. Multiple forearm robotic elbow configuration

    SciTech Connect

    Fisher, J.J.

    1990-09-11

    This patent describes a dual forearmed robotic elbow configuration comprises a main arm having a double elbow from which two coplanar forearms depend, two actuators carried in the double elbow for moving the forearms, and separate, independent end effectors, operated by a cable carried from the main arm through the elbow, is attached to the distal end of each forearm. Coiling the cables around the actuators prevents bending or kinking when the forearms are rotated 360 degrees. The end effectors can have similar or different capabilities. Actuator canisters within the dual elbow are modular for rapid replacement or maintenance. Coarse and fine resolver transducers within the actuators provide accurate position referencing information.

  10. Self-Configuring Network Monitor

    2004-05-01

    Self-Configuring Network Monitor (SCNM) is a passive monitoring that can collect packet headers from any point in a network path. SCNM uses special activation packets to automatically activate monitors deployed at the layer three ingress and egress routers of the wide-area network, and at critical points within the site networks. Monitoring output data is sent back to the application data source or destination host. No modifications are required to the application or network routing infrastructuremore » in order to activate monitoring of traffic for an application. This ensures that the monitoring operation does not add a burden to the networks administrator.« less

  11. Configuration optimization of space structures

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos; Crivelli, Luis A.; Vandenbelt, David

    1991-01-01

    The objective is to develop a computer aid for the conceptual/initial design of aerospace structures, allowing configurations and shape to be apriori design variables. The topics are presented in viewgraph form and include the following: Kikuchi's homogenization method; a classical shape design problem; homogenization method steps; a 3D mechanical component design example; forming a homogenized finite element; a 2D optimization problem; treatment of volume inequality constraint; algorithms for the volume inequality constraint; object function derivatives--taking advantage of design locality; stiffness variations; variations of potential; and schematics of the optimization problem.

  12. Configurational diffusion of coal macromolecules

    SciTech Connect

    Guin, J.A.; Curtis, C.W.; Tarrer, A.R.

    1990-01-01

    As shown in last quarter's report on the configurational diffusion of coal macromolecules, the hindered diffusion data for both TPP and coal macromolecules were significantly different from the theoretical correlations. In order to evaluate the factors which could lead to this difference an error analysis was conducted, and the detailed results reported herein. Generally, we did not find any errors which could account for the deviation from the theory, and thus we conclude that this deviation is real and can be ascribed to some factor not considered by the hindered diffusion theory, i.e., attractive or repulsive forces. 2 refs., 4 figs., 4 tabs.

  13. Multiple forearm robotic elbow configuration

    SciTech Connect

    Fisher, John J.

    1990-01-01

    A dual forearmed robotic elbow configuration comprises a main arm having a double elbow from which two coplanar forearms depend, two actuators carried in the double elbow for moving the forearms, and separate, independent end effectors, operated by a cable carried from the main arm through the elbow, is attached to the distal end of each forearm. Coiling the cables around the actuators prevents bending or kinking when the forearms are rotated 360 degrees. The end effectors can have similar or different capabilities. Actuator cannisters within the dual elbow are modular for rapid replacement or maintenance. Coarse and fine resolver transducers within the actuators provide accurate position referencing information.

  14. Dimensional regularization in configuration space

    SciTech Connect

    Bollini, C.G. |; Giambiagi, J.J.

    1996-05-01

    Dimensional regularization is introduced in configuration space by Fourier transforming in {nu} dimensions the perturbative momentum space Green functions. For this transformation, the Bochner theorem is used; no extra parameters, such as those of Feynman or Bogoliubov and Shirkov, are needed for convolutions. The regularized causal functions in {ital x} space have {nu}-dependent moderated singularities at the origin. They can be multiplied together and Fourier transformed (Bochner) without divergence problems. The usual ultraviolet divergences appear as poles of the resultant analytic functions of {nu}. Several examples are discussed. {copyright} {ital 1996 The American Physical Society.}

  15. Configurational diffusion of coal macromolecules

    SciTech Connect

    Guin, J.A.; Curtis, C.W.; Tarrer, A.R.; Kim, S.; Hwang, D.; Chen, C.C.; Chiou, Z.

    1991-01-01

    The objective of our research was to obtain fundamental information regarding the functional dependence of the diffusion coefficient of coal molecules on the ratio of molecule to pore diameter. That is, the objective of our study was to examine the effect of molecule size and configuration on hindered diffusion of coal macromolecules through as porous medium. To best accomplish this task, we circumvented the complexities of an actual porous catalyst by using a well defined porous matrix with uniform capillaric pores, i.e., a track-etched membrane. In this way, useful information was obtained regarding the relationship of molecular size and configuration on the diffusion rate of coal derived macromolecules through a pore structure with known geometry. Similar studies were performed using a pellet formed of porous alumina, to provide a link between the idealized membranes and the actual complex pore structure of real catalyst extrudates. The fundamental information from our study will be useful toward the tailoring of catalysts to minimize diffusional influences and thereby increase coal conversion and selectivity for desirable products. (VC)

  16. Vertical and horizontal access configurations

    SciTech Connect

    Spampinato, P.T.

    1987-01-01

    A number of configuration features and maintenance operations are influenced by the choice of whether a design is based on vertical or horizontal access for replacing reactor components. The features which are impacted most include the first wall/blanket segmentation, the poloidal field coil locations, the toroidal field coil number and size, access port size for in-vessel components, and facilities. Since either configuration can be made to work, the choice between the two is not clear cut because both have certain advantages. It is apparent that there are large cost benefits in the poloidal field coil system for ideal coil locations for high elongation plasmas and marginal savings for the INTOR case. If we assume that a new tokamak design will require a higher plasma elongation, the recommendation is to arrange the poloidal field coils in a cost-effective manner while providing reasonable midplane access for heating interfaces and test modules. If a new design study is not based on a high elongation plasma, it still appears prudent to consider this approach so that in-vessel maintenance can be accomplished without moving very massive structures such as the bulk shield. 10 refs., 29 figs., 3 tabs.

  17. Relatedness with different interaction configurations.

    PubMed

    Taylor, Peter D; Grafen, A

    2010-02-01

    In an inclusive fitness model of social behaviour, a key concept is that of the relatedness between two interactants. This is typically calculated with reference to a "focal" actor taken to be representative of all actors, but when there are different interaction configurations, relatedness must be constructed as an average over all such configurations. We provide an example of such a calculation in an island model with local reproduction but global mortality, leading to variable island size and hence variable numbers of individual interactions. We find that the analysis of this example significantly sharpens our understanding of relatedness. As an application, we obtain a version of Hamilton's rule for a tag-based model of altruism in a randomly mixed population. For large populations, the selective advantage of altruism is enhanced by low (but not too low) tag mutation rates and large numbers of tags. For moderate population sizes and moderate numbers of tags, we find a window of tag mutation rates with critical benefit/cost ratios of between 1 and 3. PMID:19833134

  18. Entropies for severely contracted configuration space.

    PubMed

    Yalcin, G Cigdem; Velarde, Carlos; Robledo, Alberto

    2015-11-01

    We demonstrate that dual entropy expressions of the Tsallis type apply naturally to statistical-mechanical systems that experience an exceptional contraction of their configuration space. The entropic index [Formula: see text] describes the contraction process, while the dual index [Formula: see text] defines the contraction dimension at which extensivity is restored. We study this circumstance along the three routes to chaos in low-dimensional nonlinear maps where the attractors at the transitions, between regular and chaotic behavior, drive phase-space contraction for ensembles of trajectories. We illustrate this circumstance for properties of systems that find descriptions in terms of nonlinear maps. These are size-rank functions, urbanization and similar processes, and settings where frequency locking takes place. PMID:27441229

  19. Tank waste remediation system configuration management plan

    SciTech Connect

    Vann, J.M.

    1998-01-08

    The configuration management program for the Tank Waste Remediation System (TWRS) Project Mission supports management of the project baseline by providing the mechanisms to identify, document, and control the functional and physical characteristics of the products. This document is one of the tools used to develop and control the mission and work. It is an integrated approach for control of technical, cost, schedule, and administrative information necessary to manage the configurations for the TWRS Project Mission. Configuration management focuses on five principal activities: configuration management system management, configuration identification, configuration status accounting, change control, and configuration management assessments. TWRS Project personnel must execute work in a controlled fashion. Work must be performed by verbatim use of authorized and released technical information and documentation. Application of configuration management will be consistently applied across all TWRS Project activities and assessed accordingly. The Project Hanford Management Contract (PHMC) configuration management requirements are prescribed in HNF-MP-013, Configuration Management Plan (FDH 1997a). This TWRS Configuration Management Plan (CMP) implements those requirements and supersedes the Tank Waste Remediation System Configuration Management Program Plan described in Vann, 1996. HNF-SD-WM-CM-014, Tank Waste Remediation System Configuration Management Implementation Plan (Vann, 1997) will be revised to implement the requirements of this plan. This plan provides the responsibilities, actions and tools necessary to implement the requirements as defined in the above referenced documents.

  20. Grade-Span Configuration and School-to-School Transitions

    ERIC Educational Resources Information Center

    Anderson, Pauline F.

    2012-01-01

    The grade-span configuration of a school district determines the number of school-to-school transitions students experience; a review of the literature concludes that these factors may have an impact on students' sense of belonging, the continuity of curriculum and instruction, and student academic achievement. This study derived input from…

  1. Impacts of aquatic macrophytes configuration modes on water quality.

    PubMed

    Liu, Jiakai; Liu, Jinglan; Zhang, Rong; Zou, Yuqi; Wang, Huihui; Zhang, Zhenming

    2014-01-01

    Constructed wetland technology is regarded as an important ecological restoration technology and used widely in sewage disposal. In order to give them a wider scope of application and to improve their performance in water restoration, the current experiment was designed. Four aquatic macrophytes (dwarf cattail (TM), yellow-flowered iris (WI), water shallot (ST) and watermifoil (MS)) were picked and planted in artificial floating islands (AFIs) in different configurations (TM + WI, ST + MS and TM + WI + MS) and two patterns, radiation pattern (RP) and annular pattern (AP), for a 60-day experiment. Then, water quality and growth were monitored every 10 days. The results indicate that the different configurations performed diversely on waste water purification. First, a composite plant configuration removed more pollutant than a single one with the same total increment of biomass. Second, the plant configuration of MS + ST was most effective in total nitrogen (TN), total phosphorus (TP) or PO4(3-) removal, and TM + IW + MS was good at chemical oxygen demand (COD) and NO3(-) removal. However, different patterns comprised from the same species had a certain effect on absorption of pollutants. Generally speaking, plant configurations with a RP were better than an AP in purification. Accordingly, these provided the methods for the pollution wetland restoration. PMID:24473292

  2. Trace gas emissions from combustion of peat, crop residue, domestic biofuels, grasses, and other fuels: configuration and Fourier transform infrared (FTIR) component of the fourth Fire Lab at Missoula Experiment (FLAME-4)

    NASA Astrophysics Data System (ADS)

    Stockwell, C. E.; Yokelson, R. J.; Kreidenweis, S. M.; Robinson, A. L.; DeMott, P. J.; Sullivan, R. C.; Reardon, J.; Ryan, K. C.; Griffith, D. W. T.; Stevens, L.

    2014-09-01

    During the fourth Fire Lab at Missoula Experiment (FLAME-4, October-November 2012) a large variety of regionally and globally significant biomass fuels was burned at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The particle emissions were characterized by an extensive suite of instrumentation that measured aerosol chemistry, size distribution, optical properties, and cloud-nucleating properties. The trace gas measurements included high-resolution mass spectrometry, one- and two-dimensional gas chromatography, and open-path Fourier transform infrared (OP-FTIR) spectroscopy. This paper summarizes the overall experimental design for FLAME-4 - including the fuel properties, the nature of the burn simulations, and the instrumentation employed - and then focuses on the OP-FTIR results. The OP-FTIR was used to measure the initial emissions of 20 trace gases: CO2, CO, CH4, C2H2, C2H4, C3H6, HCHO, HCOOH, CH3OH, CH3COOH, glycolaldehyde, furan, H2O, NO, NO2, HONO, NH3, HCN, HCl, and SO2. These species include most of the major trace gases emitted by biomass burning, and for several of these compounds, this is the first time their emissions are reported for important fuel types. The main fire types included African grasses, Asian rice straw, cooking fires (open (three-stone), rocket, and gasifier stoves), Indonesian and extratropical peat, temperate and boreal coniferous canopy fuels, US crop residue, shredded tires, and trash. Comparisons of the OP-FTIR emission factors (EFs) and emission ratios (ERs) to field measurements of biomass burning verify that the large body of FLAME-4 results can be used to enhance the understanding of global biomass burning and its representation in atmospheric chemistry models. Crop residue fires are widespread globally and account for the most burned area in the US, but their emissions were previously poorly characterized. Extensive results are presented for burning rice and wheat straw: two major global crop residues

  3. Preliminary design study of lunar housing configurations

    NASA Technical Reports Server (NTRS)

    Reynolds, K. H.

    1992-01-01

    A preliminary design study assesses various configurations for habitation of the lunar surface. The study assumes an initial 4-man habitation module expandable to a 48-man concept. Through the numerous coupling combinations of identical modules, five basic configuration types are identified. A design model presents each configuration in light of certain issues. The issues include circulation, internal and external spatial characteristics, functional organizations, and future growth potential. The study discusses the attributes, potentials, and unique requirements of each configuration.

  4. 47 CFR 22.623 - System configuration.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false System configuration. 22.623 Section 22.623... Paging and Radiotelephone Service Point-To-Multipoint Operation § 22.623 System configuration. This section requires a minimum configuration for point-to-multipoint systems using the channels listed in §...

  5. 47 CFR 22.623 - System configuration.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false System configuration. 22.623 Section 22.623... Paging and Radiotelephone Service Point-To-Multipoint Operation § 22.623 System configuration. This section requires a minimum configuration for point-to-multipoint systems using the channels listed in §...

  6. Resolvability and the Tetrahedral Configuration of Carbon.

    ERIC Educational Resources Information Center

    Kauffman, George B.

    1983-01-01

    Discusses evidence for the tetrahedral configuration of the carbon atom, indicating that three symmetrical configurations are theoretically possible for coordination number four. Includes table indicating that resolvability of compounds of type CR'R"R"'R"" is a necessary but not sufficient condition for proving tetrahedral configuration. (JN)

  7. Robust model-based controller synthesis for the SCOLE configuration

    NASA Technical Reports Server (NTRS)

    Armstrong, E. S.; Joshi, S. M.; Stewart, E. J.

    1988-01-01

    The design of a robust compensator is considered for the SCOLE configuration using a frequency-response shaping technique based on the LQG/LTR algorithm. Results indicate that a tenth-order compensator can be used to meet stability-performance-robustness conditions for a 26th-order SCOLE model without destabilizing spillover effects. Since the SCOLE configuration is representative of many proposed spaceflight experiments, the results and design techniques employed potentially should be applicable to a wide range of large space structure control problems.

  8. Reactor Configuration Development for ARIES-CS

    SciTech Connect

    Ku LP, the ARIES-CS Team

    2005-09-27

    New compact, quasi-axially symmetric stellarator configurations have been developed as part of the ARIES-CS reactor studies. These new configurations have good plasma confinement and transport properties, including low losses of α particles and good integrity of flux surfaces at high β. We summarize the recent progress by showcasing two attractive classes of configurationsconfigurations with judiciously chosen rotational transforms to avoid undesirable effects of low order resonances on the flux surface integrity and configurations with very small aspect ratios (∼2.5) that have excellent quasi-axisymmetry and low field ripples.

  9. Stable molecular configuration in crystalline carboxylic acids

    NASA Astrophysics Data System (ADS)

    Hayashi, Soichi; Umemura, Junzo; Nakamura, Ryoko

    1980-12-01

    The stable (lower enthalpy) molecular configurations of propionic, butyric, Jeric and lauric acids in the crystalline state have been examined via their atom-atom potentials. It was found that the cis configuration is more stable than the trans configuration for propionic, butyric and valeric acids, and that the trans configuration is more stable than the cis configuration for lauric acid, in accord with a previous IR spectral analysis. The potential energy of benzoic acid was recalculated using the positions of atoms given by Speakman, and indicates that the A form is more stable than the B form, in agreement with the results of previous work.

  10. Recent Advances in the Design of Quasi-axisymmetric Stellarator Plasma Configurations

    SciTech Connect

    Reiman, A.; Ku, L.; Monticello, D.; Hirschman, S.; Hudson, S.; Kessel, C.

    2001-01-30

    Strategies for the improvement of quasi-axisymmetric stellarator configurations are explored. Calculations of equilibrium flux surfaces for candidate configurations are also presented. One optimization strategy is found to generate configurations with improved neoclassical confinement, simpler coils with lower current density, and improved flux surface quality relative to previous designs. The flux surface calculations find significant differences in the extent of islands and stochastic regions between candidate configurations. (These calculations do not incorporate the predicted beneficial effects of perturbed bootstrap currents.) A method is demonstrated for removing low-order islands from candidate configurations by relatively small modifications of the configuration. One configuration is identified as having particularly desirable properties for a proposed experiment.

  11. Configuring The REU Experience To Maximize Student Collaboration

    NASA Astrophysics Data System (ADS)

    Majkowski, L.; Pullin, M. J.

    2012-12-01

    The New Mexico Tech NSF-funded REU Program, Interdisciplinary Science for the Environment (ISE), hosted six cohorts of students between 2005 and 2010. The program ran for eight weeks during the first cycle and nine weeks during the second cycle, bringing in an average of twelve student participants per year. Students were provided with a stipend, food allowance, travel from home to New Mexico Tech, and free campus housing. The program sponsored weekend group field trips to scientific, environmental, and cultural sites of significance in New Mexico. For the second cycle, the ISE shared some programmatic elements with the New Mexico EPSCoR Undergraduate Research Opportunities Program (UROP). The majority of the research projects focused on the geosciences, with interdepartmental participation from researchers in earth science, hydrology, chemistry, environmental science, and biology. The ISE adopted a non-traditional approach to matching student participants with research projects and faculty mentors. Students were selected from different disciplines to work together in pairs on each project. This model provided the students with a peer collaborator in addition to the guidance of their faculty mentors and support from graduate students associated with the different projects. The focus on cohort, both within the individual research projects and each year's group, enabled and enhanced the students' critical thinking, problem-solving and teamwork skills. Students would routinely seek out the advice of their peers when they hit a roadblock in their research. This collaboration also occurred across the boundaries of the ISE and UROP cohorts. Long-term follow up has shown that a significant number of the student participants have continued on to graduate school. Students credit the program with developing their capacity to work on complex problems in an interdisciplinary group environment. Additionally, many students have continued contact with their research partners, faculty mentors and other members of their REU cohort.

  12. Acoustic Liner Drag: A Parametric Study of Conventional Configurations

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M.; Jones, Michael G.

    2015-01-01

    Interest in the characterization of the aerodynamic drag performance of acoustic liners has increased in the past several years. This paper details experiments in NASA Langley's Grazing Flow Impedance Tube to quantify the relative drag of several conventional perforate-over-honeycomb liner configurations. For a fixed porosity, facesheet hole diameter and cavity depth are varied to study the effect of each. These configurations are selected to span the range of conventional liner geometries used in commercial aircraft engines. Detailed static pressure and acoustic measurements are made for grazing flows up to M=0.5 at 140 dB SPL for tones between 400 and 2800 Hz. These measurements are used to calculate a resistance factor (?) for each configuration. Analysis shows a correlation between perforate hole size and the resistance factor but cavity depth seems to have little influence. Acoustic effects on liner drag are observed to be limited to the lower Mach numbers included in this investigation.

  13. Improved radial segregation via the destabilizing vertical Bridgman configuration

    NASA Astrophysics Data System (ADS)

    Sonda, Paul; Yeckel, Andrew; Daoutidis, Prodromos; Derby, Jeffrey J.

    2004-01-01

    We employ a computational model to revisit the classic crystal growth experiments conducted by Kim et al. (J. Electrochem. Soc. 119 (1972) 1218) and Müller et al. (J. Crystal Growth 70 (1984) 78), which were among the first to clearly document the effects of flow transitions on segregation. Analysis of the growth of tellerium-doped indium antimonide within a destabilizing vertical Bridgman configuration reveals the existence of multiple states, each of which can be reached by feasible paths of process operation. Transient growth simulations conducted on the different solution branches reveal striking differences in hydrodynamic and segregation behavior. We show that crystals grown in the destabilizing configuration exhibit considerably better radial segregation than those grown in the stabilizing configuration, a result which challenges conventional wisdom and practice.

  14. Configurational forces in solid nanostructures

    SciTech Connect

    Zhigang Suo

    2006-06-12

    The DOE grant (DE-FG02-99ER45787) to Princeton University, entitled Configurational Forces in Solid Nanostructures, was intended to cover the four-year period from September 1999 to September 2003. Effective 1 July 2003, the PI will relocate from Princeton to join the Harvard faculty. Princeton University will submit the Final Financial Report, the Final Property Report, and the Final Patent Report. The expenditures to date are $261,513 with %8,487 remaining of the awarded amount of $320,000. Harvard University will submit a request for the remaining amount. This Final Technical Report covers from the period between September 1999 to June 2003. Three Ph.D. students, Wei Lu, Yanfei Gao and Wei Hong, admitted to Princeton in the fall of 1998, 1999, 2002, respectively, have been dedicated to this project. Wei Lu earned his Ph.D. in August 2001, and is now an assistant professor at The University of Michigan, Ann Arbor. Yanfei Gao earned his Ph.D. in February 2003, and is now a post-doc at Brown University. The amount of funding covers one student at a time. All three students received first-year fellowships from Princeton University. In the Mechanical and Aerospace Engineering Department, to fulfill a doctoral degree requirement, every student serves as a teaching assistant for three semesters, for which the student is partially paid by the University.

  15. High Performance Field Reversed Configurations

    NASA Astrophysics Data System (ADS)

    Binderbauer, Michl

    2014-10-01

    The field-reversed configuration (FRC) is a prolate compact toroid with poloidal magnetic fields. FRCs could lead to economic fusion reactors with high power density, simple geometry, natural divertor, ease of translation, and possibly capable of burning aneutronic fuels. However, as in other high-beta plasmas, there are stability and confinement concerns. These concerns can be addressed by introducing and maintaining a significant fast ion population in the system. This is the approach adopted by TAE and implemented for the first time in the C-2 device. Studying the physics of FRCs driven by Neutral Beam (NB) injection, significant improvements were made in confinement and stability. Early C-2 discharges had relatively good confinement, but global power losses exceeded the available NB input power. The addition of axially streaming plasma guns, magnetic end plugs as well as advanced surface conditioning leads to dramatic reductions in turbulence driven losses and greatly improved stability. As a result, fast ion confinement significantly improved and allowed for build-up of a dominant fast particle population. Under such appropriate conditions we achieved highly reproducible, long-lived, macroscopically stable FRCs with record lifetimes. This demonstrated many beneficial effects of large orbit particles and their performance impact on FRCs Together these achievements point to the prospect of beam-driven FRCs as a path toward fusion reactors. This presentation will review and expand on key results and present context for their interpretation.

  16. Space Station-Baseline Configuration

    NASA Technical Reports Server (NTRS)

    1989-01-01

    In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts the baseline configuration, which features a 110-meter-long horizontal boom with four pressurized modules attached in the middle. Located at each end are four photovoltaic arrays generating a total of 75-kW of power. Two attachment points for external payloads are provided along this boom. The four pressurized modules include the following: A laboratory and habitation module provided by the United States; two additional laboratories, one each provided by the European Space Agency (ESA) and Japan; and an ESA-provided Man-Tended Free Flyer, a pressurized module capable of operations both attached to and separate from the Space Station core. Canada was expected to provide the first increment of a Mobile Serving System.

  17. RCA direct broadcast satellite configuration

    NASA Astrophysics Data System (ADS)

    Miller, R.; Buntschuh, R. F.

    System requirements and the spacecraft configuration for a DBS mission in 1986, contracted by RCA Americom, are presented. Performance features are to include a dc power of 315 W, a stationkeeping accuracy of up to 0.1 deg, a pointing accuracy of up to 0.05 deg, and continental U.S. coverage. Four on-orbit operating satellites are needed, each weighing at least 1100 kg, having antennas of about 3 m diam, six RF channels, and no eclipse operating requirements. Three-axis stabilization, a pivoted momentum wheel, hydrazine thrusters, a bipropellant liquid perigee stage, a solid apogee kick motor, Ni-Cd batteries, 230 W power amplifiers, and launch compatibility with the STS. The spacecraft length will be approximately 23 m with solar panels deployed. Feedhorns will be used on for transmissions and a switching network will be installed to optimize time zone coverage. Each spacecraft will generate over 1.38 kW of on-board RF power.

  18. Breast tomosynthesis imaging configuration analysis.

    PubMed

    Rayford, Cleveland E; Zhou, Weihua; Chen, Ying

    2013-01-01

    Traditional two-dimensional (2D) X-ray mammography is the most commonly used method for breast cancer diagnosis. Recently, a three-dimensional (3D) Digital Breast Tomosynthesis (DBT) system has been invented, which is likely to challenge the current mammography technology. The DBT system provides stunning 3D information, giving physicians increased detail of anatomical information, while reducing the chance of false negative screening. In this research, two reconstruction algorithms, Back Projection (BP) and Shift-And-Add (SAA), were used to investigate and compare View Angle (VA) and the number of projection images (N) with parallel imaging configurations. In addition, in order to better determine which method displayed better-quality imaging, Modulation Transfer Function (MTF) analyses were conducted with both algorithms, ultimately producing results which improve upon better breast cancer detection. Research studies find evidence that early detection of the disease is the best way to conquer breast cancer, and earlier detection results in the increase of life span for the affected person. PMID:23900440

  19. New Classes of Quasi-Axisymmetric Stellarator Configurations

    SciTech Connect

    Ku LP, Garabedian PR

    2005-10-03

    We have identified and developed new classes of quasi-axially symmetric configurations which have attractive properties from the standpoint of both near-term physics experiments and long-term power producing reactors. These new configurations were developed as a result of surveying the aspect ratio-rotational transform space to identify regions endowed with particularly interesting features. These include configurations with very small aspect ratios ({approx}2.5) having superior quasi-symmetry and energetic particle confinement characteristics, and configurations with strongly negative global magnetic shear from externally supplied rotational transforms so that the overall rotational transform, when combined with the transform from bootstrap currents at finite plasma pressures, will yield a small but positive shear, making the avoidance of low order rational surfaces at a given operating beta possible. Additionally, we have found configurations with NCSX-like characteristics but with the biased components in the magnetic spectrum that allow us to improve the confinement of energetic particles. For each new class of configurations, we have designed coils as well to ensure that the new configurations are realizable and engineering-wise feasible. The coil designs typically have coil aspect ratios R/{Delta}{sub min}(C-P) {le} 6 and coil separation ratios R/{Delta}{sub min}(C-C) {le} 10, where R is the plasma major radius, {Delta}{sub min}(C-P) and {Delta}{sub min}(C-C) are the minimum coil to plasma and coil to coil separations, respectively. These coil properties allow power producing reactors be designed with major radii less than 9 meters for DT plasmas with a full breeding blanket. The good quasi-axisymmetry limits the energy loss of {alpha} particles to below 10%.

  20. Reliability comparison of various nuclear propulsion configurations for Mars mission

    SciTech Connect

    Segna, D.R.; Dagle, J.E.; Lyon, W.F. III

    1992-01-01

    Currently, trade-offs are being made among the various propulsion systems being considered for the Space Exploration Initiative (SEI) missions. It is necessary to investigate the reliability aspects as well as the efficiency, mass savings, and experience characteristics of the various configurations. Reliability is a very important factor for the SEI missions because of the long duration and because problems will be fixed onboard. The propulsion options that were reviewed consist of nuclear thermal propulsion (NTP), nuclear electric propulsion (NEP) and various configurations of each system. There were four configurations developed for comparison with the NTP as baselined in the Synthesis (1991): (1) NEP, (2) hybrid NEP/NTP, (3) hybrid with power beaming, and (4) NTP upper stage on the heavy lift launch vehicle (HLLV). The comparisons were based more or less on a qualitative review of complexity, stress levels and operations for each of the four configurations. Each configuration included a pressurized NEP and an NTP ascent stage propulsion system for the Mars mission.

  1. High-Energy Electron Confinement in a Magnetic Cusp Configuration

    NASA Astrophysics Data System (ADS)

    Park, Jaeyoung; Krall, Nicholas A.; Sieck, Paul E.; Offermann, Dustin T.; Skillicorn, Michael; Sanchez, Andrew; Davis, Kevin; Alderson, Eric; Lapenta, Giovanni

    2015-04-01

    We report experimental results validating the concept that plasma confinement is enhanced in a magnetic cusp configuration when β (plasma pressure/magnetic field pressure) is of order unity. This enhancement is required for a fusion power reactor based on cusp confinement to be feasible. The magnetic cusp configuration possesses a critical advantage: the plasma is stable to large scale perturbations. However, early work indicated that plasma loss rates in a reactor based on a cusp configuration were too large for net power production. Grad and others theorized that at high β a sharp boundary would form between the plasma and the magnetic field, leading to substantially smaller loss rates. While not able to confirm the details of Grad's work, the current experiment does validate, for the first time, the conjecture that confinement is substantially improved at high β . This represents critical progress toward an understanding of the plasma dynamics in a high-β cusp system. We hope that these results will stimulate a renewed interest in the cusp configuration as a fusion confinement candidate. In addition, the enhanced high-energy electron confinement resolves a key impediment to progress of the Polywell fusion concept, which combines a high-β cusp configuration with electrostatic fusion for a compact, power-producing nuclear fusion reactor.

  2. Reliability comparison of various nuclear propulsion configurations for Mars mission

    NASA Astrophysics Data System (ADS)

    Segna, Donald R.; Dagle, Jeffrey E.; Lyon, William F.

    1992-01-01

    Currently, trade-offs are being made among the various propulsion systems being considered for the Space Exploration Initiative (SEI) missions. It is necessary to investigate the reliability aspects as well as the efficiency, mass savings and experience characteristics of the various configurations. Reliability is a very important factor for the SEI missions because of the long duration and because problems will be fixed onboard. The propulsion options that were reviewed consist of nuclear thermal propulsion (NTP), nuclear electric propulsion (NEP) and various configurations of each system. There were four configurations developed for comparison with the NTP as baselined in the Synthesis (1991): 1) NEP, 2) hybrid NEP/NTP, 3) hybrid with power beaming, and 4) NTP upper stage on the heavy lift launch vehicle (HLLV). The comparisons were based more or less on a qualitative review of complexity, stress levels and operations for each of the four configurations. Each configuration included a pressurized NEP and an NTP ascent stage propulsion system for the Mars mission.

  3. Student Planning of Town Configuration

    ERIC Educational Resources Information Center

    Baird, John C.; And Others

    1972-01-01

    Two experiments are presented on the planning of ideal towns by undergraduates. The basic approach involved a modified map-sketching technique in which subjects placed sixteen town elements into two-dimensional physical environments. Results were analyzed by information theory, cluster analysis, and multidimensional scaling. (BL)

  4. Stability of a compound sessile drop at the axisymmetric configuration.

    PubMed

    Zhang, Ying; Chatain, Dominique; Anna, Shelley L; Garoff, Stephen

    2016-01-15

    The equilibrium configuration of compound sessile drops has been calculated previously in the absence of gravity. Using the Laplace equations, we establish seven dimensionless parameters describing the axisymmetric configuration in the presence of gravity. The equilibrium axisymmetric configuration can be either stable or unstable depending on the fluid properties. A stability criterion is established by calculating forces on a perturbed Laplacian shape. In the zero Bond number limit, the stability criterion depends on the density ratio, two ratios of interfacial tensions, the volume ratio of the two drops, and the contact angle. We use Surface Evolver to examine the stability of compound sessile drops at small and large Bond numbers and compare with the zero Bond number approximation. Experimentally, we realize a stable axisymmetric compound sessile drop in air, where the buoyancy force exerted by the air is negligible. Finally, using a pair of fluids in which the density ratio can be tuned nearly independently of the interfacial tensions, the stability transition is verified for the axisymmetric configuration. Even though the perturbations are different for the theory, simulations and experiments, both simulations and experiments agree closely with the zero Bond number approximation, exhibiting a small discrepancy at large Bond number. PMID:26433481

  5. Metrics for measuring distances in configuration spaces.

    PubMed

    Sadeghi, Ali; Ghasemi, S Alireza; Schaefer, Bastian; Mohr, Stephan; Lill, Markus A; Goedecker, Stefan

    2013-11-14

    In order to characterize molecular structures we introduce configurational fingerprint vectors which are counterparts of quantities used experimentally to identify structures. The Euclidean distance between the configurational fingerprint vectors satisfies the properties of a metric and can therefore safely be used to measure dissimilarities between configurations in the high dimensional configuration space. In particular we show that these metrics are a perfect and computationally cheap replacement for the root-mean-square distance (RMSD) when one has to decide whether two noise contaminated configurations are identical or not. We introduce a Monte Carlo approach to obtain the global minimum of the RMSD between configurations, which is obtained from a global minimization over all translations, rotations, and permutations of atomic indices. PMID:24320265

  6. Metrics for measuring distances in configuration spaces

    SciTech Connect

    Sadeghi, Ali Ghasemi, S. Alireza; Schaefer, Bastian; Mohr, Stephan; Goedecker, Stefan; Lill, Markus A.

    2013-11-14

    In order to characterize molecular structures we introduce configurational fingerprint vectors which are counterparts of quantities used experimentally to identify structures. The Euclidean distance between the configurational fingerprint vectors satisfies the properties of a metric and can therefore safely be used to measure dissimilarities between configurations in the high dimensional configuration space. In particular we show that these metrics are a perfect and computationally cheap replacement for the root-mean-square distance (RMSD) when one has to decide whether two noise contaminated configurations are identical or not. We introduce a Monte Carlo approach to obtain the global minimum of the RMSD between configurations, which is obtained from a global minimization over all translations, rotations, and permutations of atomic indices.

  7. Effects of roadway configurations on near-road air quality and the implications on roadway designs

    EPA Science Inventory

    This paper presents an analysis of wind tunnel experiments of twelve different roadway configurations and modeling of these configurations using a Large-Eddy Simulation (LES) model, aiming at investigating how flow structures affect the impact of roadway features on near-road and...

  8. UCTM: A user friendly configurable trigger, scaler and delay module for nuclear and particle physics

    NASA Astrophysics Data System (ADS)

    Bourrion, O.; Boyer, B.; Derome, L.

    2011-02-01

    A configurable trigger scaler and delay NIM module has been designed to equip nuclear physics experiments and lab teaching classes. It is configurable through a Graphical User Interface (GUI) and provides a large number of possible trigger conditions without any Hardware Description Language (HDL) required knowledge. The design, performances and typical applications are presented.

  9. Configuration management: Phase II implementation guidance

    SciTech Connect

    Not Available

    1994-03-01

    Configuration management (CM) is essential to maintaining an acceptable level of risk to the public, workers, environment, or mission success. It is a set of activities and techniques used to maintain consistency among physical and functional configuration, applicable requirements, and key documents. This document provides guidance for continuing the implementation of CM in a phased and graded manner. It describes a cost-effective approach to documented consistency with requirements, with early emphasis on items most important to safety and environmental protection. It is intended to help responsible line managers and configuration management staff personnel in meeting the Energy Systems configuration management policy standard.

  10. The Database Driven ATLAS Trigger Configuration System

    NASA Astrophysics Data System (ADS)

    Chavez, Carlos; Gianelli, Michele; Martyniuk, Alex; Stelzer, Joerg; Stockton, Mark; Vazquez, Will

    2015-12-01

    The ATLAS trigger configuration system uses a centrally provided relational database to store the configurations for all levels of the ATLAS trigger system. The configuration used at any point during data taking is maintained in this database. A interface to this database is provided by the TriggerTool, a Java-based graphical user interface. The TriggerTool has been designed to work as both a convenient browser and editor of configurations in the database for both general users and experts. The updates to the trigger system necessitated by the upgrades and changes in both hardware and software during the first long shut down of the LHC will be explored.

  11. International Space Station Configuration Analysis and Integration

    NASA Technical Reports Server (NTRS)

    Anchondo, Rebekah

    2016-01-01

    Ambitious engineering projects, such as NASA's International Space Station (ISS), require dependable modeling, analysis, visualization, and robotics to ensure that complex mission strategies are carried out cost effectively, sustainably, and safely. Learn how Booz Allen Hamilton's Modeling, Analysis, Visualization, and Robotics Integration Center (MAVRIC) team performs engineering analysis of the ISS Configuration based primarily on the use of 3D CAD models. To support mission planning and execution, the team tracks the configuration of ISS and maintains configuration requirements to ensure operational goals are met. The MAVRIC team performs multi-disciplinary integration and trade studies to ensure future configurations meet stakeholder needs.

  12. Peltier Current Leads with conical configuration

    NASA Astrophysics Data System (ADS)

    Hakimi, I.; Nikulshin, Y.; Wolfus, S.; Yeshurun, Y.

    2016-04-01

    Current leads in cryogenic systems are a major heat source which eventually affects the entire system. It has been shown in recent years that Peltier elements are useful in reducing incoming heat into the cold system. In this article we present a new tapered cone-like configuration of the Peltier Current Leads which increases the power saving. This configuration is compared to the standard cylindrical configuration utilizing advanced ANSYS simulations. The simulations show an additional power saving of 4% when using the tapered lead configuration.

  13. Configurable Multi-Purpose Processor

    NASA Technical Reports Server (NTRS)

    Valencia, J. Emilio; Forney, Chirstopher; Morrison, Robert; Birr, Richard

    2010-01-01

    Advancements in technology have allowed the miniaturization of systems used in aerospace vehicles. This technology is driven by the need for next-generation systems that provide reliable, responsive, and cost-effective range operations while providing increased capabilities such as simultaneous mission support, increased launch trajectories, improved launch, and landing opportunities, etc. Leveraging the newest technologies, the command and telemetry processor (CTP) concept provides for a compact, flexible, and integrated solution for flight command and telemetry systems and range systems. The CTP is a relatively small circuit board that serves as a processing platform for high dynamic, high vibration environments. The CTP can be reconfigured and reprogrammed, allowing it to be adapted for many different applications. The design is centered around a configurable field-programmable gate array (FPGA) device that contains numerous logic cells that can be used to implement traditional integrated circuits. The FPGA contains two PowerPC processors running the Vx-Works real-time operating system and are used to execute software programs specific to each application. The CTP was designed and developed specifically to provide telemetry functions; namely, the command processing, telemetry processing, and GPS metric tracking of a flight vehicle. However, it can be used as a general-purpose processor board to perform numerous functions implemented in either hardware or software using the FPGA s processors and/or logic cells. Functionally, the CTP was designed for range safety applications where it would ultimately become part of a vehicle s flight termination system. Consequently, the major functions of the CTP are to perform the forward link command processing, GPS metric tracking, return link telemetry data processing, error detection and correction, data encryption/ decryption, and initiate flight termination action commands. Also, the CTP had to be designed to survive and

  14. Equilibrium rotation in field-reversed configurations

    SciTech Connect

    Steinhauer, Loren

    2008-01-15

    The turbulence that drives anomalous transport in field-reversed configurations (FRCs) is believed to break the otherwise closed magnetic surfaces inside the separatrix. This places electrons in the core of the plasma in electrical contact with those in the periphery. This effect was proposed and investigated in the context of spheromaks [D. D. Ryutov, Phys. Plasmas 14, 022506 (2007)]. The opening up of internal magnetic field lines serves to regulate the electrostatic potential in the interior of the plasma, and in turn drives ion rotation. In effect, 'end-shorting', a well-known phenomenon in the FRC scrape-off layer, also extends into the plasma interior. For conditions relevant to experiments, the ion rotation can be expressed in terms of equilibrium properties (density and temperature gradients) and as such is the 'equilibrium' rotation. This theory is incomplete in that it neglects evolving, transport-related effects that modify the equilibrium and, indirectly, the rotation rate. Consequently, the equilibrium rotation theory is only partially successful in predicting experimental results: although it predicts the average rotation well, the estimated degree of rotational shear seems unlikely, especially at late times in the plasma lifetime.

  15. Biosensing Configurations Using Guided Wave Resonant Structures

    NASA Astrophysics Data System (ADS)

    Abdulhalim, I.

    Resonant structures are characterized by a high quality factor representing the sensitivity to perturbations in a cavity. In guided wave resonant structures the optical field is evanescent, forming a region where the resonance can be modified by externally varying the refractive index within this evanescence region. The resonance nature of these structures then allows high sensitivity to analytes, gases, or other external index perturbations down to the order of 10-8 RIU. In this article several configurations of guided wave resonant structures and their use for sensing are reviewed with special emphasis on grating coupled resonant structures. The sensor performance is discussed using analytic approaches based on planar waveguide sensors theory and using the 4 × 4 characteristic matrix approaches for multilayered structure and with homogenized grating treated as a uniaxial thin film. The results agree very well with experiment and with rigorous electromagnetic calculations even when the cover is anisotropic medium such as a liquid crystal that can be used for tunable filtering or temperature sensing.

  16. Reusable Reentry Satellite (RRS): Configuration trade study

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The overall Reusable Reentry Satellite (RRS) Phase B Study objective is to design a relatively inexpensive satellite to access space for extended periods of time, with eventual recovery of experiments on Earth. The expected principal use for such a system is research on the effects of variable gravity (0-1.5 g) and radiation on small animals, plants, lower life forms, tissue samples, and materials processes. The RRS will be capable of: (1) being launched by a variety of expendable launch vehicles; (2) operating in low earth orbit as a free flying unmanned laboratory; and (3) executing independent atmospheric reentry and soft landing. The RRS will be designed to be refurbished and reused up to three times a year for a period of 10 years. The information provided in this report describes the process involved in the evolution of the RRS overall configuration. This process considered reentry aerodynamics, aerothermodynamics, internal equipment layout, and vehicle mass properties. This report delineates the baseline design decisions that were used to initiate the RRS design effort. As a result, there will be deviations between this report and the RRS Final Report. In those instances, the RRS Final Report shall be considered to be the definitive reference.

  17. Equilibrium configurations of flexible fibers in a flow

    NASA Astrophysics Data System (ADS)

    Allaire, Ryan; Nita, Bogdan; Vaidya, Ashwin

    2015-11-01

    In this presentation, we discuss the equilibrium configurations of flexible fibers attached to a sphere and immersed in a laminar flow. Comsol Multiphysics is used to solve this coupled problem and the resulting drag and lift forces, bending angles and Vogel exponents are computed. Specifically, the three-dimensional aspects of the flow structure interaction are numerically analyzed and compared with experiments and also to its two-dimensional counterpart.

  18. Rare Relativistic Configuration Interaction Calculations

    NASA Astrophysics Data System (ADS)

    Dinov, Konstantin Dimitrov

    1995-01-01

    Valence shell Relativistic Configuration Interaction (RCI) Calculations for several Rare Earth elements resulted the following electron affinities: (1) Ce^ - 6p attachment to the 4f 5d 6s^2 ^1G_sp{4 }{circ} ground state: (2J,EA) = (9,259 meV), (7,147 meV), [7_ {rm first exc.},55 rm meV], (5,105 meV), (3,43 meV). The electron affinity of the 5d attachment in 4f 5d^2 6s^2 ^5H _{7/2} is 178 meV. (2) Pr ^- 6p attachment to the 4f^3 6s^2 ^4I_sp {9/2}{circ} ground state gives 128 meV for the 4f^3 6s^2 6p J = 5 state (^5K 60%), and 110 meV for the J = 4 state (^5I 42%). No evidence for 5d attachment was found. (3) U^- 7p attachment to the 5f ^3 6d 7s^2 ^5L _sp{6}{circ} ground state gives: 175 meV for the 2J = 13 state (^6M 54%). No other 7p or 6d bound states were found. The hyperfine structure constants for the 5f^3 6d 7s^2 7p, 2J = 13 state are A = -72.4 MHz, B = 2644 MHz. No evidence is found to support f attachment in these species. We investigated two low lying 4f ^2 thresholds in Ce, to which one could attach s or p electron, but neither attachment gives enough energy to bind the negative ion. The missing core-valence effects may reduce the EAs by 0.06 eV, based on the difference between the theoretical predictions and experimental measurements for the electron affinity of Strontium. These results correspond to the observed negative ion yields: high for Ce^ -, moderate for Pr^-, and small for U^-.. The REDUCE method was extensively used for the U^- case. The current version of the RCI program allows up to 7 000 vectors (10M elements) in RAM. The enhancement of the computer programs is by a speed factor of 6, and 7 times bigger matrices. A parallel version of the RCI programs was developed. All of these systems are unbound at the MCDF level (single manifold). By far the biggest contributor to the binding is nsto (n-1)d correlation, while the biggest unbinding comes from ns^2 to np^2 correlation. Other important correlations are: ns^2to (n-1)d^2, (n-1)d nsto np^2 & np

  19. Configuration analysis of nickel hydrogen cell

    NASA Technical Reports Server (NTRS)

    Holleck, G.

    1978-01-01

    The significance of various stack configurations and components on the cycle life for nickel hydrogen cells for synchronous orbit used was evaluated. Failure modes of electrolyte management and 02 management were solved by modifications in the reservoir, the wick, and/or the stack configuration.

  20. Configuration-Control Scheme Copes With Singularities

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun; Colbaugh, Richard D.

    1993-01-01

    Improved configuration-control scheme for robotic manipulator having redundant degrees of freedom suppresses large joint velocities near singularities, at expense of small trajectory errors. Provides means to enforce order of priority of tasks assigned to robot. Basic concept of configuration control of redundant robot described in "Increasing The Dexterity Of Redundant Robots" (NPO-17801).

  1. 40 CFR 610.41 - Test configurations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Test configurations. 610.41 Section... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria General Vehicle Test Procedures § 610.41 Test configurations. (a) In order to measure the effectiveness of a retrofit device at least two,...

  2. 14 CFR 35.2 - Propeller configuration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller configuration. 35.2 Section 35.2 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS General § 35.2 Propeller configuration. The applicant must provide a list of all the components, including references...

  3. Marking up lattice QCD configurations and ensembles

    SciTech Connect

    P.Coddington; B.Joo; C.M.Maynard; D.Pleiter; T.Yoshie

    2007-10-01

    QCDml is an XML-based markup language designed for sharing QCD configurations and ensembles world-wide via the International Lattice Data Grid (ILDG). Based on the latest release, we present key ingredients of the QCDml in order to provide some starting points for colleagues in this community to markup valuable configurations and submit them to the ILDG.

  4. When One Configuration Is Not Enough

    ERIC Educational Resources Information Center

    McMillin, David R.

    2008-01-01

    For most molecules molecular orbital theory predicts a ground-state electronic configuration that is useful for rationalizing relative bond lengths, magnetic properties, and so forth. However, when electron correlation is a dominant consideration, the ground-state configuration may provide a poor representation of the system. In such cases,…

  5. System for Configuring Modular Telemetry Transponders

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta A. (Inventor); Sims, William Herbert, III (Inventor)

    2014-01-01

    A system for configuring telemetry transponder cards uses a database of error checking protocol data structures, each containing data to implement at least one CCSDS protocol algorithm. Using a user interface, a user selects at least one telemetry specific error checking protocol from the database. A compiler configures an FPGA with the data from the data structures to implement the error checking protocol.

  6. 40 CFR 610.41 - Test configurations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Test configurations. 610.41 Section... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria General Vehicle Test Procedures § 610.41 Test configurations. (a) In order to measure the effectiveness of a retrofit device at least two,...

  7. 40 CFR 610.41 - Test configurations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Test configurations. 610.41 Section... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria General Vehicle Test Procedures § 610.41 Test configurations. (a) In order to measure the effectiveness of a retrofit device at least two,...

  8. 40 CFR 610.41 - Test configurations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Test configurations. 610.41 Section... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria General Vehicle Test Procedures § 610.41 Test configurations. (a) In order to measure the effectiveness of a retrofit device at least two,...

  9. 14 CFR 35.2 - Propeller configuration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller configuration. 35.2 Section 35.2 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS General § 35.2 Propeller configuration. The applicant must provide a list of all...

  10. Configurations of self-identity formations of adults who stutter.

    PubMed

    Kathard, Harsha; Norman, Vivienne; Pillay, Mershen

    2010-12-01

    It is important for clinicians to understand how adults who stutter construct who they are, i.e. their self-identity, in order to offer personally meaningful interventions. Early research on stuttering and self-concept provided initial knowledge, but there has been a dearth of further research in this field. This article, the third in a series of papers emanating from a doctoral study, provides new insight into the configurations of self-identity formations of adults who stutter. Previous articles from the study described how 'Able' (positive self-identity) and 'DisOther' (negative self-identity) self-identity formations developed over time. This paper describes the configurations of self-identities, Able and DisOther, evident across participants' stories. The study used a life-history methodology in which 7 adult participants (5 men and 2 women) shared their experiences of living with stuttering through open-ended interviews. The data from the interviews were analysed at two levels. The first level of analysis resulted in a description of the types of self-identity formations (positive and negative) and processes (personal, social and temporal) shaping the self-identity formations. This result was represented as a research story for each participant. The second level of analysis described the configurations of the self-identities, Able and DisOther, across the research stories. The main findings, illustrated through three research stories, were that the two types of self-identity formations, Able and DisOther, were present in singular and dual configurations. The dual presentation of self-identity formations occurred in co-existing, competing and coalescing configurations at particular time periods, illuminating the complexity of the stuttering experience. The clinical implications are discussed. PMID:21329266

  11. Configuration Management Plan for K Basins

    SciTech Connect

    Weir, W.R.; Laney, T.

    1995-01-27

    This plan describes a configuration management program for K Basins that establishes the systems, processes, and responsibilities necessary for implementation. The K Basins configuration management plan provides the methodology to establish, upgrade, reconstitute, and maintain the technical consistency among the requirements, physical configuration, and documentation. The technical consistency afforded by this plan ensures accurate technical information necessary to achieve the mission objectives that provide for the safe, economic, and environmentally sound management of K Basins and the stored material. The configuration management program architecture presented in this plan is based on the functional model established in the DOE Standard, DOE-STD-1073-93, {open_quotes}Guide for Operational Configuration Management Program{close_quotes}.

  12. CFD Simulations of Tiltrotor Configurations in Hover

    NASA Technical Reports Server (NTRS)

    Potsdam, Mark a.; Strawn, Roger C.

    2002-01-01

    Navier-Stokes computational fluid dynamics calculations are presented for isolated, half-span, and full-span V-22 tiltrotor hover configurations. These computational results extend the validity of CFD hover methodology beyond conventional rotorcraft applications to tiltrotor configurations. Computed steady-state, isolated rotor performance agrees well with experimental measurements, showing little sensitivity to grid resolution. However, blade-vortex interaction flowfield details are sensitive to numerical dissipation and are more difficult to model accurately. Time-dependent, dynamic, half- and full-span installed configurations show sensitivities in performance to the tiltrotor fountain flow. As such, the full-span configuration exhibits higher rotor performance and lower airframe download than the half-span configuration. Half-span rotor installation trends match available half-span data, and airframe downloads are reasonably well predicted. Overall, the CFD solutions provide a wealth of flowfield details that can be used to analyze and improve tiltrotor aerodynamic performance.

  13. Optimization of baffle configuration for stray light reduction

    NASA Astrophysics Data System (ADS)

    Pancrazzi, M.; Vivès, S.; Landini, F.; Guillon, C.; Escolle, C.; Garcia, J.

    2013-09-01

    Reducing the stray light level is one of the issues that astronomical instruments have to face. In particular, the design of baffles requires special attention in order to minimize the light scattered and diffracted by the edge of the baffle's vanes. The choice of the materials and the treatments used to manufacturing those parts can significantly increase the performance of stray light suppression. This is particularly critical for instruments in which the main source of stray light is in the field-of-view and its brightness is much higher than the signal the experiment aims to measure, such as solar and stellar coronagraphs. In order to identify the best configuration to adopt in the design and manufacture of a future coronagraph, we designed a dedicated set-up that allows comparing different edge geometries and finishing in a fast and comprehensive approach. A reference edge configuration was chosen and all the other configurations were compared with it. In this paper, we describe the set-up, the characterized configurations and the obtained results.

  14. A highly versatile and easily configurable system for plant electrophysiology.

    PubMed

    Gunsé, Benet; Poschenrieder, Charlotte; Rankl, Simone; Schröeder, Peter; Rodrigo-Moreno, Ana; Barceló, Juan

    2016-01-01

    In this study we present a highly versatile and easily configurable system for measuring plant electrophysiological parameters and ionic flow rates, connected to a computer-controlled highly accurate positioning device. The modular software used allows easy customizable configurations for the measurement of electrophysiological parameters. Both the operational tests and the experiments already performed have been fully successful and rendered a low noise and highly stable signal. Assembly, programming and configuration examples are discussed. The system is a powerful technique that not only gives precise measuring of plant electrophysiological status, but also allows easy development of ad hoc configurations that are not constrained to plant studies. •We developed a highly modular system for electrophysiology measurements that can be used either in organs or cells and performs either steady or dynamic intra- and extracellular measurements that takes advantage of the easiness of visual object-oriented programming.•High precision accuracy in data acquisition under electrical noisy environments that allows it to run even in a laboratory close to electrical equipment that produce electrical noise.•The system makes an improvement of the currently used systems for monitoring and controlling high precision measurements and micromanipulation systems providing an open and customizable environment for multiple experimental needs. PMID:27298766

  15. Improving motorcycle conspicuity through innovative headlight configurations.

    PubMed

    Ranchet, Maud; Cavallo, Viola; Dang, Nguyen-Thong; Vienne, Fabrice

    2016-09-01

    Most motorcycle crashes involve another vehicle that violated the motorcycle's right-of-way at an intersection. Two kinds of perceptual failures of other road users are often the cause of such accidents: motorcycle-detection failures and motion-perception errors. The aim of this study is to investigate the effect of different headlight configurations on motorcycle detectability when the motorcycle is in visual competition with cars. Three innovative headlight configurations were tested: (1) standard yellow (central yellow headlight), (2) vertical white (one white light on the motorcyclist's helmet and two white lights on the fork in addition to the central white headlight), and (3) vertical yellow (same configuration as (2) with yellow lights instead of white). These three headlight configurations were evaluated in comparison to the standard configuration (central white headlight) in three environments containing visual distractors formed by car lights: (1) daytime running lights (DRLs), (2) low beams, or (3) DRLs and low beams. Video clips of computer-generated traffic situations were displayed briefly (250ms) to 57 drivers. The results revealed a beneficial effect of standard yellow configuration and the vertical yellow configuration on motorcycle detectability. However, this effect was modulated by the car-DRL environment. Findings and practical recommendations are discussed with regard to possible applications for motorcycles. PMID:27280780

  16. Zigzag configurations and air classifier performance

    SciTech Connect

    Peirce, J.; Wittenberg, N.

    1984-03-01

    The fundamental aspects of zigzag air classifier configurations are studied in terms of the design and operation of a waste-to-energy production facility. The development of a method of performance evaluation defined by operating range is examined. Historically, air classification has been used in industry and agriculture in mineral extraction, limestone sizing, and seed and grain cleaning. However, the adaption of air classifiers to resource recovery and waste-to-energy production facilities presents new problems due to the complex and variable nature of the wastes. A series of configurations providing a continuous range of zigzag classifier shape components are tested. Each configuration is evaluated to determine its efficiency of separation, and sensitivity to operating air speeds. Results indicate that the configuration of a zigzag classifier does not influence its peak efficiency of separation. However, findings point to distinct limits on operating parameters which lead to peak efficiencies for the different configurations. These operating range values represent the sensitivity of the air classifier to changes in the air flow. A major finding concerns the effect of configuration on the particle size distribution observed in the material exiting the classifier: smaller particles appear to be influenced by configuration changes and larger particles do not. A new method for classifer performance evaluation is developed and applied.

  17. Zigzag configurations and air classifier performance

    SciTech Connect

    Peirce, J.J.; Wittenberg, N.

    1984-03-01

    The fundamental aspects of zigzag air classifier configurations are studied in terms of the design and operation of a waste-to-energy production facility. The development of a method of performance evaluation defined by operating range is examined. Historically, air classification has been used in industry and agriculture in mineral extraction, limestone sizing, and seed and grain cleaning. However, the adaption of air classifiers to resource recovery and waste-to-energy production facilities presents new problems due to the complex and variable nature of the wastes. A series of configurations providing a continuous range of zigzag classifier shape components are tested. Each configuration is evaluated to determine its efficiency of separation, and sensitivity to operating air speeds. Results indicate that the configuration of a zigzag classifier does not influence its peak efficiency of separation. However, findings point to distinct limits on operating parameters which lead to peak efficiencies for the different configurations. These operating range values represent the sensitivity of the air classifier to changes in the air flow. A major finding concerns the effect of configuration on the particle size distribution observed in the material exiting the classifier: smaller particles appear to be influenced by configuration changes and larger particles do not. A new method for classifier performance evaluation is developed and applied.

  18. Configuration effects on satellite charging response

    NASA Technical Reports Server (NTRS)

    Purvis, C. K.

    1980-01-01

    The response of various spacecraft configurations to a charging environment in sunlight was studied using the NASA Charging Analyzer Program code. The configuration features geometry, type of stabilization, and overall size. Results indicate that sunlight charging response is dominated by differential charging effects. Shaded insulation charges negatively result in the formation of potential barriers which suppress photoelectron emission from sunlit surfaces. Sunlight charging occurs relatively slowly: with 30 minutes of charging simulations, in none of the configurations modeled did the most negative surface cell reach half its equilibrium potential in eclipse.

  19. Atom localization with double-cascade configuration

    NASA Astrophysics Data System (ADS)

    Gordeev, Maksim Yu; Efremova, Ekaterina A.; Rozhdestvensky, Yuri V.

    2016-03-01

    We investigate the one-dimensional (1D) and two-dimensional (2D) atom localization of a four-level system in a double-cascade configuration. We demonstrate the possibility of 1D localization in the field of a standing wave, 2D localization in the field of two standing waves and 2D localization only in the field of running waves by using different configurations of driven waves on transitions. In addition, for each configuration we reached a high-precision atom localization in one of the states at scales much smaller than the wavelength of the incident optical radiation.

  20. Space Transportation Booster Engine (STBE) configuration study

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The overall objective of this Space Transportation Booster Engine (STBE) study is to identify candidate engine configurations which enhance vehicle performance and provide operational flexibility at low cost. The specific objectives are as follows: (1) to identify and evaluate candidate LOX/HC engine configurations for the Advanced Space Transportation System for an early 1995 IOC and a late 2000 IOC; (2) to select one optimum engine for each time period; 3) to prepare a conceptual design for each configuration; (4) to develop a technology plan for the 2000 IOC engine; and, (5) to prepare preliminary programmatic planning and analysis for the 1995 IOC engine.

  1. Metastable configurations of small-world networks.

    PubMed

    Heylen, R; Skantzos, N S; Blanco, J Busquets; Bollé, D

    2006-01-01

    We calculate the number of metastable configurations of Ising small-world networks that are constructed upon superimposing sparse Poisson random graphs onto a one-dimensional chain. Our solution is based on replicated transfer-matrix techniques. We examine the denegeracy of the ground state and find a jump in the entropy of metastable configurations exactly at the crossover between the small-world and the Poisson random graph structures. We also examine the difference in entropy between metastable and all possible configurations, for both ferromagnetic and bond-disordered long-range couplings. PMID:16486247

  2. Metastable configurations of small-world networks

    NASA Astrophysics Data System (ADS)

    Heylen, R.; Skantzos, N. S.; Blanco, J. Busquets; Bollé, D.

    2006-01-01

    We calculate the number of metastable configurations of Ising small-world networks that are constructed upon superimposing sparse Poisson random graphs onto a one-dimensional chain. Our solution is based on replicated transfer-matrix techniques. We examine the denegeracy of the ground state and find a jump in the entropy of metastable configurations exactly at the crossover between the small-world and the Poisson random graph structures. We also examine the difference in entropy between metastable and all possible configurations, for both ferromagnetic and bond-disordered long-range couplings.

  3. Rigged Configurations and the Bethe Ansatz

    NASA Astrophysics Data System (ADS)

    Schilling, Anne

    2003-07-01

    This note is a review of rigged configurations and the Bethe Ansatz. In the first part, we focus on the algebraic Bethe Ansatz for the spin 1/2 XXX model and explain how rigged configurations label the solutions of the Bethe equations. This yields the bijection between rigged configurations and crystal paths/Young tableaux of Kerov, Kirillov and Reshetikhin. In the second part, we discuss a generalization of this bijection for the symmetry algebra Dn(1) , based on work in collaboration with Okado and Shimozono.

  4. Adaptive Structures Flight Experiments

    NASA Technical Reports Server (NTRS)

    Martin, Maurice

    1992-01-01

    The topics are presented in viewgraph form and include the following: adaptive structures flight experiments; enhanced resolution using active vibration suppression; Advanced Controls Technology Experiment (ACTEX); ACTEX program status; ACTEX-2; ACTEX-2 program status; modular control patch; STRV-1b Cryocooler Vibration Suppression Experiment; STRV-1b program status; Precision Optical Bench Experiment (PROBE); Clementine Spacecraft Configuration; TECHSAT all-composite spacecraft; Inexpensive Structures and Materials Flight Experiment (INFLEX); and INFLEX program status.

  5. Adaptive structures flight experiments

    NASA Astrophysics Data System (ADS)

    Martin, Maurice

    The topics are presented in viewgraph form and include the following: adaptive structures flight experiments; enhanced resolution using active vibration suppression; Advanced Controls Technology Experiment (ACTEX); ACTEX program status; ACTEX-2; ACTEX-2 program status; modular control patch; STRV-1b Cryocooler Vibration Suppression Experiment; STRV-1b program status; Precision Optical Bench Experiment (PROBE); Clementine Spacecraft Configuration; TECHSAT all-composite spacecraft; Inexpensive Structures and Materials Flight Experiment (INFLEX); and INFLEX program status.

  6. Shuttle Liquid Fly Back Booster Configuration Options

    NASA Technical Reports Server (NTRS)

    Healy, T. J., Jr.

    1998-01-01

    This paper surveys the basic configuration options available to a Liquid Fly Back Booster (LFBB), integrated with the Space Shuttle system. The background of the development of the LFBB concept is given. The influence of the main booster engine (BME) installations and the Fly Back Engine (FBE) installation on the aerodynamic configurations are also discussed. Limits on the LFBB configuration design space imposed by the existing Shuttle flight and ground elements are also described. The objective of the paper is to put the constrains and design space for an LFBB in perspective. The object of the work is to define LFBB configurations that significantly improve safety, operability, reliability and performance of the Shuttle system and dramatically lower operations costs.

  7. Handling qualities requirements for control configured vehicles

    NASA Technical Reports Server (NTRS)

    Woodcock, R. J.; George, F. L.

    1976-01-01

    The potential effects of fly by wire and control configured vehicle concepts on flying qualities are considered. Failure mode probabilities and consequences, controllability, and dynamics of highly augmented aircraft are among the factors discussed in terms of design criteria.

  8. Shuttle Liquid Fly Back Booster Configuration Options

    NASA Technical Reports Server (NTRS)

    Healy, Thomas J., Jr.

    1998-01-01

    This paper surveys the basic configuration options available to a Liquid Fly Back Booster (LFBB), integrated with the Space Shuttle system. The background of the development of the LFBB concept is given. The influence of the main booster engine (BME) installations and the fly back engine (FBE) installation on the aerodynamic configurations are also discussed. Limits on the LFBB configuration design space imposed by the existing Shuttle flight and ground elements are also described. The objective of the paper is to put the constrains and design space for an LFBB in perspective. The object of the work is to define LFBB configurations that significantly improve safety, operability, reliability and performance of the Shuttle system and dramatically lower operations costs.

  9. CICADA -- Configurable Instrument Control and Data Acquisition

    NASA Astrophysics Data System (ADS)

    Young, Peter J.; Roberts, William H.; Sebo, Kim M.

    CICADA (Young et al. 1997) is a multi-process, distributed application for the control of astronomical data acquisition systems. It comprises elements that control the operation of, and data flow from CCD camera systems; and the operation of telescope instrument control systems. CICADA can be used to dynamically configure support for astronomical instruments that can be made up of multiple cameras and multiple instrument controllers. Each camera is described by a hierarchy of parts that are each individually configured and linked together. Most of CICADA is written in C++ and much of the configurability of CICADA comes from the use of inheritance and polymorphism. An example of a multiple part instrument configuration -- a wide field imager (WFI) -- is described here. WFI, presently under construction, is made up of eight 2k x 4k CCDs with dual SDSU II controllers and will be used at Siding Spring's ANU 40in and AAO 3.9m telescopes.

  10. Habitat Demonstration Unit - Deep Space Habitat Configuration

    NASA Video Gallery

    This animated video shows the process of transporting, assembling and testing the Habitat Demonstration Unit - Deep Space Habitat (HDU DSH) configuration, which will be deployed during the 2011 Des...

  11. Space shuttle configuration accounting functional design specification

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis is presented of the requirements for an on-line automated system which must be capable of tracking the status of requirements and engineering changes and of providing accurate and timely records. The functional design specification provides the definition, description, and character length of the required data elements and the interrelationship of data elements to adequately track, display, and report the status of active configuration changes. As changes to the space shuttle program levels II and III configuration are proposed, evaluated, and dispositioned, it is the function of the configuration management office to maintain records regarding changes to the baseline and to track and report the status of those changes. The configuration accounting system will consist of a combination of computers, computer terminals, software, and procedures, all of which are designed to store, retrieve, display, and process information required to track proposed and proved engineering changes to maintain baseline documentation of the space shuttle program levels II and III.

  12. A New Gimmick for Assigning Absolute Configuration.

    ERIC Educational Resources Information Center

    Ayorinde, F. O.

    1983-01-01

    A five-step procedure is provided to help students in making the assignment absolute configuration less bothersome. Examples for both single (2-butanol) and multi-chiral carbon (3-chloro-2-butanol) molecules are included. (JN)

  13. Design and analysis of air acoustic vector-sensor configurations for two-dimensional geometry.

    PubMed

    Wajid, Mohd; Kumar, Arun; Bahl, Rajendar

    2016-05-01

    Acoustic vector-sensors (AVS) have been designed using the P-P method for different microphone configurations. These configurations have been used to project the acoustic intensity on the orthogonal axes through which the direction of arrival (DoA) of a sound source has been estimated. The analytical expressions for the DoA for different microphone configurations have been derived for two-dimensional geometry. Finite element method simulation using COMSOL-Multiphysics has been performed, where the microphone signals for AVS configurations have been recorded in free field conditions. The performance of all the configurations has been evaluated with respect to angular error and root-mean-square angular error. The simulation results obtained with ideal geometry for different configurations have been corroborated experimentally with prototype AVS realizations and also compared with microphone-array method, viz., Multiple Signal Classification and Generalized Cross Correlation. Experiments have been performed in an anechoic room using different prototype AVS configurations made from small size microphones. The DoA performance using analytical expressions, simulation studies, and experiments with prototype AVS in anechoic chamber are presented in the paper. The square and delta configurations are found to perform better in the absence and presence of noise, respectively. PMID:27250174

  14. The configuration space of vibrated granular rings.

    NASA Astrophysics Data System (ADS)

    Daya, Zahir A.; Rivera, Michael K.; Ben-Naim, Eli; Ecke, Robert E.

    2003-03-01

    When granular chains, which consist of spherical beads connected by rods, are energetically excited by vertical vibration they explore the space of permissible geometric configurations. The size of the configuration space is determined by the physical constraints of the chain's construction and possibly by its dynamics. Under weak vibration when the chain is largely two-dimensional (2D) its configuration resembles a 2D self-avoiding walk (SAW). Here we consider chains whose ends are joined to form rings and compare them to SAWs that return to the origin. From large numbers of digital images of rings with N beads we estimate the size of the configuration space as a function of N. We obtain the estimate from an extrapolation of a coarse-grained counting of distinct configurations. The same procedure was applied to return-to-the-origin SAWs on a square lattice that were generated using Monte Carlo simulations. We compare our results with enumerations of SAWs and discuss the role of a configuration entropy for granular chains and generic filamentary objects such as flexible polymers and bio-macromolecules.

  15. Detailed Configuration Calculations for Non-LTE Modeling

    NASA Astrophysics Data System (ADS)

    Fontes, Christopher J.; Abdallah, Joseph, Jr.; Clark, Robert E. H.; Kilcrease, David P.

    1998-11-01

    We continue our work to explore the feasibility of creating detailed atomic models for radiation-hydrodynamics simulations of ICF applications. By further optimizing our atomic data codes we are able to create non-LTE models with a level of complexity approximately one order of magnitude greater (in size) than previously obtained. We present emissivities for gold which include on the order of 75,000 configurations per temperature-density point. The inclusion of additional configurations has yielded improved results for quantities such as the ion fraction distributions, but the question of spectral convergence is yet unanswered. The creation of still larger models will be discussed as well as comparison with experiment and other theories. The possibility of using these models for in-line simulations will also be discussed.

  16. Eddy Current Pulsed Thermography with Different Excitation Configurations for Metallic Material and Defect Characterization

    PubMed Central

    Tian, Gui Yun; Gao, Yunlai; Li, Kongjing; Wang, Yizhe; Gao, Bin; He, Yunze

    2016-01-01

    This paper reviews recent developments of eddy current pulsed thermography (ECPT) for material characterization and nondestructive evaluation (NDE). Due to the fact that line-coil-based ECPT, with the limitation of non-uniform heating and a restricted view, is not suitable for complex geometry structures evaluation, Helmholtz coils and ferrite-yoke-based excitation configurations of ECPT are proposed and compared. Simulations and experiments of new ECPT configurations considering the multi-physical-phenomenon of hysteresis losses, stray losses, and eddy current heating in conjunction with uniform induction magnetic field have been conducted and implemented for ferromagnetic and non-ferromagnetic materials. These configurations of ECPT for metallic material and defect characterization are discussed and compared with conventional line-coil configuration. The results indicate that the proposed ECPT excitation configurations can be applied for different shapes of samples such as turbine blade edges and rail tracks. PMID:27338389

  17. Eddy Current Pulsed Thermography with Different Excitation Configurations for Metallic Material and Defect Characterization.

    PubMed

    Tian, Gui Yun; Gao, Yunlai; Li, Kongjing; Wang, Yizhe; Gao, Bin; He, Yunze

    2016-01-01

    This paper reviews recent developments of eddy current pulsed thermography (ECPT) for material characterization and nondestructive evaluation (NDE). Due to the fact that line-coil-based ECPT, with the limitation of non-uniform heating and a restricted view, is not suitable for complex geometry structures evaluation, Helmholtz coils and ferrite-yoke-based excitation configurations of ECPT are proposed and compared. Simulations and experiments of new ECPT configurations considering the multi-physical-phenomenon of hysteresis losses, stray losses, and eddy current heating in conjunction with uniform induction magnetic field have been conducted and implemented for ferromagnetic and non-ferromagnetic materials. These configurations of ECPT for metallic material and defect characterization are discussed and compared with conventional line-coil configuration. The results indicate that the proposed ECPT excitation configurations can be applied for different shapes of samples such as turbine blade edges and rail tracks. PMID:27338389

  18. Study of Spatial Configurations of Equipment for Online Sign Interpretation Service

    NASA Astrophysics Data System (ADS)

    Nakazono, Kaoru; Tanaka, Saori

    This paper discusses the design of configurations of videophone equipment aimed at online sign interpretation. We classified interpretation services into three types of situations: on-site interpretation, partial online interpretation, and full online interpretation. For each situation, the spatial configurations of the equipment are considered keeping the issue of nonverbal signals in mind. Simulation experiments of sign interpretation were performed using these spatial configurations and the qualities of the configurations were assessed. The preferred configurations had the common characteristics that the hearing subject could see the face of his/her principal conversation partner, that is, the deaf subject. The results imply that hearing people who do not understand sign language utilize nonverbal signals for facilitating interpreter-mediated conversation.

  19. A Vertical Differential Configuration in GPR prospecting

    NASA Astrophysics Data System (ADS)

    Persico, Raffaele; Pochanin, Gennadiy; Varianytsia-Roshchupkina, Liudmyla; Catapano, Ilaria; Gennarelli, Gianluca; Soldovieri, Francesco

    2015-04-01

    The rejection of the direct coupling between the antennas is an issue of interest in several GPR applications, especially when it is important to distinguish the targets of interest from the clutter and the signal reflected from the air soil interface. Therefore, in this framework several hardware and software strategies have been proposed. Among the software strategies, probably the most common one is the background removal [1], whereas as an hardware strategy the differential configuration has been introduced in [2-3] and then further on studied in [4] with respect to the spatial filtering properties of the relevant mathematical operator. In particular, the studies proposed in [1] and [4] have shown that, in general, all the strategies for the rejection of the direct coupling have necessarily some drawback, essentially because it is not possible to erase all and only the undesired contributions leaving "untouched" the contributions of the targets of interest to the gathered signal. With specific regard to the differential configuration, in [2-3], the differential configuration consisted in a couple of receiving antennas symmetrically placed around the transmitting one, being the three antennas placed along the same horizontal segment. Therefore, we might define that configuration as a "horizontal differential configuration". Here, we propose a novel differential GPR configuration, where the two receiving antennas are still symmetrically located with respect to the transmitting one, but are placed piled on each other at different heights from the air-soil interface, whereas the transmitting antenna is at the medium height between the two receiving one (however, it is not at the same abscissa but at a fixed horizontal offset from the receiving antennas). Such a differential configuration has been previously presented in [5-6] and allows a good isolation between the antennas, while preserving the possibility to collect backscattered signals from both electrically

  20. Configuring Airspace Sectors with Approximate Dynamic Programming

    NASA Technical Reports Server (NTRS)

    Bloem, Michael; Gupta, Pramod

    2010-01-01

    In response to changing traffic and staffing conditions, supervisors dynamically configure airspace sectors by assigning them to control positions. A finite horizon airspace sector configuration problem models this supervisor decision. The problem is to select an airspace configuration at each time step while considering a workload cost, a reconfiguration cost, and a constraint on the number of control positions at each time step. Three algorithms for this problem are proposed and evaluated: a myopic heuristic, an exact dynamic programming algorithm, and a rollouts approximate dynamic programming algorithm. On problem instances from current operations with only dozens of possible configurations, an exact dynamic programming solution gives the optimal cost value. The rollouts algorithm achieves costs within 2% of optimal for these instances, on average. For larger problem instances that are representative of future operations and have thousands of possible configurations, excessive computation time prohibits the use of exact dynamic programming. On such problem instances, the rollouts algorithm reduces the cost achieved by the heuristic by more than 15% on average with an acceptable computation time.

  1. Thruster configurations for maneuvering heavy payloads

    NASA Technical Reports Server (NTRS)

    Tsugawa, Roy K.; Draznin, Michael E.; Dabney, Richard W.

    1991-01-01

    The cargo transfer vehicle (CTV) will be required to perform six degree of freedom (6DOF) maneuvers while carrying a wide range of payloads varying from 100,000 lbm to no payload. The current baseline design configuration for the CTV uses a forward propulsion module (FPM) mounted in front of the payload and the CTV behind the payload so that the center of gravity (CG) of the combined stack is contained between the thruster sets. This allows for efficient rotation and translations of heavy payloads in all directions; however, the FPM is a costly item, so it is desirable to find design solutions which do not require the FPM. This presentation provides an overview of the work performed in analyzing the FPM requirements for the CTV. Specifically, key issues related to thruster configuration requirements for operating the CTV without the FPM, throughout the 100,000 lbm payload to no payload range, will be highlighted. In this study, only the reaction control system (RCS) thruster configurations are considered and the orbit adjust engines are not addressed. An important output of this study is the viable alternative thruster configurations which eliminate the need for the FPM. Initial results were derived using analytical techniques and simulation analysis tools. Results from the preliminary analysis were used as inputs for our 6DOF simulation. The 6DOF simulation was used to validate our design guidelines and to verify the performance of the thruster configurations.

  2. Snowflake divertor configuration studies for NSTX-Upgrade

    SciTech Connect

    Soukhanovskii, V A

    2011-11-12

    Snowflake divertor experiments in NSTX provide basis for PMI development toward NSTX-Upgrade. Snowflake configuration formation was followed by radiative detachment. Significant reduction of steady-state divertor heat flux observed in snowflake divertor. Impulsive heat loads due to Type I ELMs are partially mitigated in snowflake divertor. Magnetic control of snowflake divertor configuration is being developed. Plasma material interface development is critical for NSTX-U success. Four divertor coils should enable flexibility in boundary shaping and control in NSTX-U. Snowflake divertor experiments in NSTX provide good basis for PMI development in NSTX-Upgrade. FY 2009-2010 snowflake divertor experiments in NSTX: (1) Helped understand control of magnetic properties; (2) Core H-mode confinement unchanged; (3) Core and edge carbon concentration reduced; and (4) Divertor heat flux significantly reduced - (a) Steady-state reduction due to geometry and radiative detachment, (b) Encouraging results for transient heat flux handling, (c) Combined with impurity-seeded radiative divertor. Outlook for snowflake divertor in NSTX-Upgrade: (1) 2D fluid modeling of snowflake divertor properties scaling - (a) Edge and divertor transport, radiation, detachment threshold, (b) Compatibility with cryo-pump and lithium conditioning; (2) Magnetic control development; and (3) PFC development - PFC alignment and PFC material choice.

  3. Oblique wing transonic transport configuration development

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Studies of transport aircraft designed for boom-free supersonic flight show the variable sweep oblique wing to be the most efficient configuration for flight at low supersonic speeds. Use of this concept leads to a configuration that is lighter, quieter, and more fuel efficient than symmetric aircraft designed for the same mission. Aerodynamic structural, weight, aeroelastic and flight control studies show the oblique wing concept to be technically feasible. Investigations are reported for wing planform and thickness, pivot design and weight estimation, engine cycle (bypass ratio), and climb, descent and reserve fuel. Results are incorporated into a final configuration. Performance, weight, and balance characteristics are evaluated. Flight control requirements are reviewed, and areas in which further research is needed are identified.

  4. Fiber optic configurations for local area networks

    NASA Technical Reports Server (NTRS)

    Nassehi, M. M.; Tobagi, F. A.; Marhic, M. E.

    1985-01-01

    A number of fiber optic configurations for a new class of demand assignment multiple-access local area networks requiring a physical ordering among stations are proposed. In such networks, the data transmission and linear-ordering functions may be distinguished and be provided by separate data and control subnetworks. The configurations proposed for the data subnetwork are based on the linear, star, and tree topologies. To provide the linear-ordering function, the control subnetwork must always have a linear unidirectional bus structure. Due to the reciprocity and excess loss of optical couplers, the number of stations that can be accommodated on a linear fiber optic bus is severely limited. Two techniques are proposed to overcome this limitation. For each of the data and control subnetwork configurations, the maximum number of stations as a function of the power margin, for both reciprocal and nonreciprocal couplers, is computed.

  5. DAQMAN - A flexible configurable data acquisition system

    SciTech Connect

    Sivertz, Michael; Larry Hoff, Seth Nemesure

    2012-08-01

    DAQMAN is a flexible configurable interface that allows the user to build and operate a VME-based data acquisition system on a Linux workstation. It consists of two parts: a Java-based Graphical User Interface to configure the system, and a C-based utility that reads out the data and creates the output ASCII data file, with two levels of diagnostic tools. The data acquisition system requires a CAEN CONET-VME Bridge to communicate between the hardware in the VME crate and the Linux workstation. Data acquisition modules, such as ADCs, TDC, Scalers, can be loaded into the system, or removed easily. The GUI allows users to activate modules, and channels within modules by clicking on icons. Running configurations are stored; data are collected and can be viewed either as raw numbers, or by charts and histograms that update as the data are accumulated. Data files are written to disk in ASCII format, with a date and time stamp.

  6. Comparing Methods for Dynamic Airspace Configuration

    NASA Technical Reports Server (NTRS)

    Zelinski, Shannon; Lai, Chok Fung

    2011-01-01

    This paper compares airspace design solutions for dynamically reconfiguring airspace in response to nominal daily traffic volume fluctuation. Airspace designs from seven algorithmic methods and a representation of current day operations in Kansas City Center were simulated with two times today's demand traffic. A three-configuration scenario was used to represent current day operations. Algorithms used projected unimpeded flight tracks to design initial 24-hour plans to switch between three configurations at predetermined reconfiguration times. At each reconfiguration time, algorithms used updated projected flight tracks to update the subsequent planned configurations. Compared to the baseline, most airspace design methods reduced delay and increased reconfiguration complexity, with similar traffic pattern complexity results. Design updates enabled several methods to as much as half the delay from their original designs. Freeform design methods reduced delay and increased reconfiguration complexity the most.

  7. Visible upconversion fiber lasers in ring configuration

    NASA Astrophysics Data System (ADS)

    Caspary, Reinhard; Baraniecki, Tomasz P.; Kozak, Marcin M.; Kowalsky, Wolfgang

    2005-09-01

    Up-conversion fiber lasers based on Pr3+/Yb3+ doped fluoride fibers and pumped at 835 nm can operate on emission lines in the red, orange, green, and blue spectral region. Up to now only Fabry-Perot configurations with two mirrors butt-coupled to the fiber ends were investigated. In this paper we present the first visible Pr3+/Yb3+ fiber lasers in a ring configuration. In contrast to the usual Fabry-Perot configuration, the basic ring resonator setup contains no free-space optics and no parts which need to be adjusted. The main challenge for such a setup is the connection between the fluoride laser fiber and the remaining part of the ring resonator, which is made from silica fibers. Due to the very different melting temperatures of both glasses usual fusion splices are impossible. We use a special technique to couple the fibers with glue.

  8. Configurations of Time in Bereaved Parents' Narratives.

    PubMed

    Barak, Adi; Leichtentritt, Ronit D

    2014-06-25

    In this study, we examined the configurations of time within narratives of bereaved Israeli parents, employing Gadamer's hermeneutic philosophy as the research methodology. Our results reveal that following a sudden violent loss, parents experienced a change in their sense of time. Three nonexclusive time possibilities were evident in the participants' narratives: time stopped, time moved forward, and time moved backward. Although most of the social science literature highlights the importance of linear temporal configuration to enhance the coherence of text, based on our study we call for other forms of temporal ordering, as varied time configurations were used by the bereaved and were perceived to have beneficial outcomes. Finally, we outline implications for mental health professionals. PMID:24966197

  9. Omnidirectional Structured Light in a Flexible Configuration

    PubMed Central

    Paniagua, Carmen; Puig, Luis; Guerrero, José J.

    2013-01-01

    Structured light is a perception method that allows us to obtain 3D information from images of the scene by projecting synthetic features with a light emitter. Traditionally, this method considers a rigid configuration, where the position and orientation of the light emitter with respect to the camera are known and calibrated beforehand. In this paper we propose a new omnidirectional structured light system in flexible configuration, which overcomes the rigidness of the traditional structured light systems. We propose the use of an omnidirectional camera combined with a conic pattern light, i.e., the 3D information of the conic in the space. This reconstruction considers the recovery of the depth and orientation of the scene surface where the conic pattern is projected. One application of our proposed structured light system in flexible configuration consists of a wearable omnicamera with a low-cost laser in hand for visual impaired personal assistance. PMID:24129024

  10. A historic review of canard configurations

    NASA Technical Reports Server (NTRS)

    Anderson, S. B.; Feistel, T. W.

    1985-01-01

    The first human-powered flight was achieved by a canard-configured aircraft (Wright Brothers). Although other canard concepts were flown with varying degrees of success over the years, the tail-aft configuration has dominated the aircraft market for both military and civil use. This paper reviews the development of canard aircraft with emphasis on stability and control, handling qualities, and operating problems. The results show that early canard concepts suffered adversely in flight behavior because of a lack of understanding of the sensitivities of these concepts to basic stability and control principles. Modern canard designs have been made competitive with tail-aft configurations by using appropriate handling qualities design criteria.

  11. Effect of injector configuration in rocket nozzle film cooling

    NASA Astrophysics Data System (ADS)

    Kumar, A. Lakshya; Pisharady, J. C.; Shine, S. R.

    2016-04-01

    Experimental and numerical investigations are carried out to analyze the effect of coolant injector configuration on overall film cooling performance in a divergent section of a rocket nozzle. Two different injector orientations are investigated: (1) shaped slots with a divergence angle of 15° (semi-divergent injector) (2) fully divergent slot (fully divergent injector). A 2-dimensional, axis-symmetric, multispecies computational model using finite volume formulation has been developed and validated against the experimental data. The experiments provided a consistent set of measurements for cooling effectiveness for different blowing ratios ranging from 3.7 to 6. Results show that the semi divergent configuration leads to higher effectiveness compared to fully divergent slot at all blowing ratios. The spatially averaged effectiveness results show that the difference between the two configurations is significant at higher blowing ratios. The increase in effectiveness was around 2 % at BR = 3.7 whereas it was around 12 % in the case of BR = 6. Numerical results show the presence of secondary flow recirculation zones near the jet exit for both the injectors. An additional recirculation zone present in the case of fully divergent injector caused an increase in mixing of the coolant and mainstream, and a reduction in film cooling performance.

  12. On cuff imbalance and tripolar ENG amplifier configurations.

    PubMed

    Triantis, Iasonas F; Demosthenous, Andreas; Donaldson, Nick

    2005-02-01

    Electroneurogram (ENG) recording techniques benefit from the use of tripolar cuffs because they assist in reducing interference from sources outside the cuff. However, in practice the performance of ENG amplifier configurations, such as the quasi-tripole and the true-tripole, has been widely reported to be degraded due to the departure of the tripolar cuff from ideal behavior. This paper establishes the presence of cuff imbalance and investigates its relationship to cuff asymmetry, cuff end-effects and interference source proximity. The paper also presents a comparison of the aforementioned amplifier configurations with a new alternative, termed the adaptive-tripole, developed to automatically compensate for cuff imbalance. The output signal-to-interference ratio of the three amplifier configurations were compared in vivo for two interference signals (stimulus artifact and M-wave) superimposed on compound action potentials. The experiments showed (for the first time) that the two interference signals result in different cuff imbalance values. Nevertheless, even with two distinct cuff imbalances present, the adaptive-tripole performed better than the other two systems in 61.9% of the trials. PMID:15709669

  13. High resolution interferometer with multiple-pass optical configuration.

    PubMed

    Ahn, Jeongho; Kim, Jong-Ahn; Kang, Chu-Shik; Kim, Jae-Wan; Kim, Soohyun

    2009-11-01

    An interferometer having fourteen times higher resolution than a conventional single-pass interferometer has been developed by making multiple-pass optical path. To embody the multiple-pass optical configuration, a two-dimensional corner cube array block was designed, and its symmetric structure minimized the measurement error. The effect from the alignment error and the imperfection of corner cube is calculated as picometer level. An experiment proves that the suggested interferometer has about 45 nm of optical resolution and its nonlinearity is about 0.5 nm in peak-to-valley. PMID:19997342

  14. Configurations of the amphiphilic molecules in micelles

    SciTech Connect

    Dill, K.A.

    1982-04-29

    Several theoretic models aim to account for the properties of micelles in terms of the configurations of the constituent amphiphilic chain molecules. Recent /sup 13/C NMR measurement of one property of the configuration distribution of the the hydrocarbon chain segments allows critical evaluation of these theories. It is concluded that the interphase and singly-bent chain theories, which fully account for chain continuity and for intermolecular constraints imposed by hydrophobic and steric forces, give a more satisfactory description of micellar molecular organization than models in which chains are ordered and radially aligned, or in which they have the complete disorder characteristic of an amorphous hydrocarbon liquid.

  15. Minimum induced drag configurations with jet interaction

    NASA Technical Reports Server (NTRS)

    Pao, J. L.; Lan, C. E.

    1978-01-01

    A theoretical method is presented for determining the optimum camber shape and twist distribution for the minimum induced drag in the wing-alone case without prescribing the span loading shape. The same method was applied to find the corresponding minimum induced drag configuration with the upper-surface-blowing jet. Lan's quasi-vortex-lattice method and his wing-jet interaction theory was used. Comparison of the predicted results with another theoretical method shows good agreement for configurations without the flowing jet. More applicable experimental data with blowing jets are needed to establish the accuracy of the theory.

  16. CFDP Configuration: Enclid and Juice Scenarios

    NASA Astrophysics Data System (ADS)

    Valverde, Alberto; Taylor, Chris; Montesinos, Juan Antonio; Maiorano, Elena; Colombo, Cyril; Erd, Christian; Magistrati, Giorgio

    2014-08-01

    This paper presents the work done within the ESA ESTEC Data Systems Division, targeting the implementation of CFDP in future ESA Science Missions. EUCLID and JUICE currently include CCSDS File Delivery Protocol (CFDP) as baseline for payload data transfer to ground. The two missions have completely different characteristics, although both present quite demanding scenarios. Using the communication link characteristics as an input, some simulations have been performed to optimize the CFDP configuration and get some preliminary figures on the retransmission overhead, payload data bandwidth and number of parallel transactions needed to maintain full bandwidth utilization. The paper provides some guidelines on CFDP configuration and usage that can be useful in future CFDP implementations.

  17. Some aerodynamic considerations for advanced aircraft configurations

    NASA Technical Reports Server (NTRS)

    Williams, L. J.; Johnson, J. L., Jr.; Yip, L. P.

    1984-01-01

    Recent NASA wind-tunnel investigations of advanced unconventional configurations are surveyed, with an emphasis on those applicable to general-aviation aircraft. Photographs of typical models and graphs of aerodynamic parameters are provided. The designs discussed include aft installation of tractor or pusher-propellor engines; forward-swept wings; canards; combinations of canard, wing, and horizontal tail; and propeller-over-the-wing configurations. Consideration is given to canard-wing flow-field interactions, natural laminar flow, the choice of canard airfoil, directional stability and control, and propulsion-system location.

  18. CFD Computations on Multi-GPU Configurations.

    NASA Astrophysics Data System (ADS)

    Menon, Sandeep; Perot, Blair

    2007-11-01

    Programmable graphics processors have shown favorable potential for use in practical CFD simulations -- often delivering a speed-up factor between 3 to 5 times over conventional CPUs. In recent times, most PCs are supplied with the option of installing multiple GPUs on a single motherboard, thereby providing the option of a parallel GPU configuration in a shared-memory paradigm. We demonstrate our implementation of an unstructured CFD solver using a set up which is configured to run two GPUs in parallel, and discuss its performance details.

  19. A methodology to determine the optimum WRF-ARW configuration over Andalusia (Spain)

    NASA Astrophysics Data System (ADS)

    Porras, Ignasi; Domingo-Dalmau, Anna; Picanyol, Miquel; Arasa, Raúl; Ángeles González-Serrano, M.°

    2016-04-01

    There is an inherent uncertainty in NWP modelling results. The objective of this study is to present a methodology to find the optimum Weather Research and Forecast (WRF-ARW) configuration which reduces this uncertainty. The project is located over a coastal region in Andalusia (South Spain). Different dynamical (diffusion and damping options) and physical (microphysics, long- and short-wave radiation, cumulus and planetary boundary layer schemes) configurations have been tested in order to evaluate the sensitivity of the model. We have also studied the influence of different vertical levels distributions as well as the impact of different high resolution elevation (ASTER and SRTM) and land use (CLC2006 and CCI-LC) data inputs. Finally, we have realized experiments using 3-dimensional variation data assimilation. Each configuration has been modelled for four chosen months in 2014. Each month selected belongs to a different season. The best configuration has been selected using the results from a numerical deterministic validation (RMSE,MB,MAGE). The optimum configuration is the one which reduces the uncertainty in all the meteorological variables evaluated. The optimum configuration obtained has been validated using a two years period (2012 and 2013). We have done a numerical deterministic validation and also a categorical validation for the wind speed using the Beaufort scale as categories. A significant reduction in the model uncertainty is found comparing the results of the final configuration and the results of WRF default configuration.

  20. The effects of governing board configuration on profound organizational change in hospitals.

    PubMed

    Alexander, Jeffrey A; Ye, Yining; Lee, Shoou-Yih D; Weiner, Bryan J

    2006-09-01

    This study extends the literature on governing boards and organizational change by examining how governing board configurations have influenced profound organizational change in U.S. hospitals, and the conditions under which such change occurs. Hospitals governed by boards that more closely resembled a corporate governance model were more likely to experience positive changes such as diversification and merger and less likely to undergo negative changes such as closure. Organizational performance influenced change, but largely independent of governance configurations. Only in the case of closure did we find that governance configuration operated jointly with organizational performance. PMID:17066778

  1. 14 CFR 23.1524 - Maximum passenger seating configuration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Maximum passenger seating configuration. 23... Operating Limitations and Information § 23.1524 Maximum passenger seating configuration. The maximum passenger seating configuration must be established....

  2. 14 CFR 23.1524 - Maximum passenger seating configuration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Maximum passenger seating configuration. 23... Operating Limitations and Information § 23.1524 Maximum passenger seating configuration. The maximum passenger seating configuration must be established....

  3. 14 CFR 23.1524 - Maximum passenger seating configuration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Maximum passenger seating configuration. 23... Operating Limitations and Information § 23.1524 Maximum passenger seating configuration. The maximum passenger seating configuration must be established....

  4. 14 CFR 23.1524 - Maximum passenger seating configuration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Maximum passenger seating configuration. 23... Operating Limitations and Information § 23.1524 Maximum passenger seating configuration. The maximum passenger seating configuration must be established....

  5. 14 CFR 23.1524 - Maximum passenger seating configuration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Maximum passenger seating configuration. 23... Operating Limitations and Information § 23.1524 Maximum passenger seating configuration. The maximum passenger seating configuration must be established....

  6. Chiral resolution and absolute configuration of a pair of rare racemic spirodienone sesquineolignans from Xanthium sibiricum.

    PubMed

    Shi, Yusheng; Liu, Yunbao; Li, Yong; Li, Li; Qu, Jing; Ma, Shuanggang; Yu, Shishan

    2014-10-17

    A pair of racemic spirodienone neolignan enantiomers, (±)-sibiricumin A, were isolated from the extract of the fruits of Xanthium sibiricum. The resolution of (+)- and (-)-sibiricumin A was achieved by chiral HPLC. The absolute configurations of the racemes were assigned by X-ray and by electronic circular dichroism (ECD). This experiment is the first unambiguous determination of the absolute configuration of spirodienone neolignan. PMID:25275854

  7. 24 CFR 3285.304 - Pier configuration.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... configuration. (a) Concrete blocks. Installation instructions for concrete block piers must be developed in...-bearing (not decorative) concrete blocks must have nominal dimensions of at least 8 inches × 8 inches × 16 inches; (2) The concrete blocks must be stacked with their hollow cells aligned vertically; and (3)...

  8. 24 CFR 3285.304 - Pier configuration.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... configuration. (a) Concrete blocks. Installation instructions for concrete block piers must be developed in...-bearing (not decorative) concrete blocks must have nominal dimensions of at least 8 inches × 8 inches × 16 inches; (2) The concrete blocks must be stacked with their hollow cells aligned vertically; and (3)...

  9. 24 CFR 3285.304 - Pier configuration.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... configuration. (a) Concrete blocks. Installation instructions for concrete block piers must be developed in...-bearing (not decorative) concrete blocks must have nominal dimensions of at least 8 inches × 8 inches × 16 inches; (2) The concrete blocks must be stacked with their hollow cells aligned vertically; and (3)...

  10. 24 CFR 3285.304 - Pier configuration.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... configuration. (a) Concrete blocks. Installation instructions for concrete block piers must be developed in...-bearing (not decorative) concrete blocks must have nominal dimensions of at least 8 inches × 8 inches × 16 inches; (2) The concrete blocks must be stacked with their hollow cells aligned vertically; and (3)...

  11. 24 CFR 3285.304 - Pier configuration.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... configuration. (a) Concrete blocks. Installation instructions for concrete block piers must be developed in...-bearing (not decorative) concrete blocks must have nominal dimensions of at least 8 inches × 8 inches × 16 inches; (2) The concrete blocks must be stacked with their hollow cells aligned vertically; and (3)...

  12. Linking Assessment and Instruction Innovation Configuration

    ERIC Educational Resources Information Center

    Hosp, John L.

    2011-01-01

    This innovation configuration identifies the skills and competencies teachers need to make sound decisions about using assessment information to improve instruction and establishes a framework and justification for effective ways that teachers can collect and use assessment data to make instructional decisions. It is designed to provide a…

  13. Configurations of Common Childhood Psychosocial Risk Factors

    ERIC Educational Resources Information Center

    Copeland, William; Shanahan, Lilly; Costello, E. Jane; Angold, Adrian

    2009-01-01

    Background: Co-occurrence of psychosocial risk factors is commonplace, but little is known about psychiatrically-predictive configurations of psychosocial risk factors. Methods: Latent class analysis (LCA) was applied to 17 putative psychosocial risk factors in a representative population sample of 920 children ages 9 to 17. The resultant class…

  14. Examining issues with water quality model configuration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Complex watershed–scale, water quality models require a considerable amount of data in order to be properly configured, especially in view of the scarcity of data in many regions due to temporal and economic constraints. In this study, we examined two different input issues incurred while building ...

  15. Optimal triple configurations of stationary shocks

    NASA Astrophysics Data System (ADS)

    Tao, G.; Uskov, V. N.; Chernyshov, M. V.

    Shock-wave systems consisted of three stationary shocks with common (triple) point T (Fig. 1,a-e) are called triple configurations. The slipstream (τ) emanates from the triple point and divides the streams that have gone through the sequence of shocks 1-2 and through the alone (main) shock 3 at another side of the triple point.

  16. Status Configurations, Military Service and Higher Education

    ERIC Educational Resources Information Center

    Wang, Lin; Elder, Glen H., Jr.; Spence, Naomi J.

    2012-01-01

    The U.S. Armed Forces offer educational and training benefits as incentives for service. This study investigates the influence of status configurations on military enlistment and their link to greater educational opportunity. Three statuses (socioeconomic status of origin, cognitive ability and academic performance) have particular relevance for…

  17. Advanced Multiple Processor Configuration Study. Final Report.

    ERIC Educational Resources Information Center

    Clymer, S. J.

    This summary of a study on multiple processor configurations includes the objectives, background, approach, and results of research undertaken to provide the Air Force with a generalized model of computer processor combinations for use in the evaluation of proposed flight training simulator computational designs. An analysis of a real-time flight…

  18. The Diversity of School Organizational Configurations

    ERIC Educational Resources Information Center

    Lee, Linda C.

    2013-01-01

    School reform on a large scale has largely been unsuccessful. Approaches designed to document and understand the variety of organizational conditions that comprise our school systems are needed so that reforms can be tailored and results scaled. Therefore, this article develops a configurational framework that allows a systematic analysis of many…

  19. Film bonded fuel cell interface configuration

    DOEpatents

    Kaufman, Arthur; Terry, Peter L.

    1985-01-01

    An improved interface configuration for use between adjacent elements of a fuel cell stack. The interface is impervious to gas and liquid and provides resistance to corrosion by the electrolyte of the fuel cell. A multi-layer arrangement for the interface provides bridging electrical contact with a hot-pressed resin filling the void space.

  20. NASA's acquisition requirements for configuration management

    NASA Technical Reports Server (NTRS)

    Coletta, Mark P.

    1992-01-01

    A viewgraph presentation on NASA's acquisition requirements for configuration management (CM) goes over CM requirements for single mission and multi-mission orientations, CM automation and CALS implementation initiatives, NASA implementation of DOD standards and DID's (data item descriptions), impact of traceability in NASA CM support, NASA's CM efforts in modifying/upgrading equipment, and CM control of multi-vendor hardware.

  1. Sandia software guidelines, Volume 4: Configuration management

    SciTech Connect

    Not Available

    1992-06-01

    This volume is one in a series of Sandia Software Guidelines for use in producing quality software within Sandia National Laboratories. This volume is based on the IEEE standard and guide for software configuration management. The basic concepts and detailed guidance on implementation of these concepts are discussed for several software project types. Example planning documents for both projects and organizations are included.

  2. 40 CFR 610.50 - Test configurations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Test configurations. 610.50 Section... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.50 Test... the same test sequence for fuel economy and exhaust emissions as specified in subpart D....

  3. A determinant based full configuration interaction program

    NASA Astrophysics Data System (ADS)

    Knowles, Peter J.; Handy, Nicholas C.

    1989-04-01

    The program FCI solves the Full Configuration Interaction (Full CI) problem of quantum chemistry, in which the electronic Schrödinger equation is solved exactly within a given one particle basis set. The Slater determinant based algorithm leads to highly efficient implementation on a vector computer, and has enabled Full CI calculations of dimension more than 10 7 to be performed.

  4. 40 CFR 610.50 - Test configurations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Test configurations. 610.50 Section... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.50 Test... the same test sequence for fuel economy and exhaust emissions as specified in subpart D....

  5. 40 CFR 610.50 - Test configurations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Test configurations. 610.50 Section... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.50 Test... the same test sequence for fuel economy and exhaust emissions as specified in subpart D....

  6. 40 CFR 610.50 - Test configurations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Test configurations. 610.50 Section... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.50 Test... the same test sequence for fuel economy and exhaust emissions as specified in subpart D....

  7. Thruster configurations for maneuvering heavy payloads

    NASA Technical Reports Server (NTRS)

    Tsugawa, Roy K.; Draznin, Michael E.; Dabney, Richard W.

    1991-01-01

    The Cargo Transfer Vehicle (CTV) will be required to perform six degree of freedom (6 DOF) maneuvers while carrying a wide range of payloads varying from 100,000 lbm to no payload. The current baseline design configuration for the CTV uses a forward propulsion module (FPM) mounted in front of the payload with the CTV behind the payload so that the center of gravity (CG) of the combined stack is centered between the thruster sets. This allows for efficient rotations and translations of heavy payloads in all directions; however, the FPM is a costly item, so it is desirable to find design solutions that do not require the FPM. This presentation provides an overview of the analysis of the FPM requirements for the CTV. In this study, only the reaction control system (RCS) thruster configurations are considered for 6 DOF maneuvers of various CTV cargo configurations. An important output of this study are the viable alternative thruster configurations that eliminate the need for the FPM. Initial results were derived using analytical techniques and simulation analysis tools. Results from the preliminary analysis were validated using our 6 DOF simulation.

  8. Stimulus Configuration, Classical Conditioning, and Hippocampal Function.

    ERIC Educational Resources Information Center

    Schmajuk, Nestor A.; DiCarlo, James J.

    1991-01-01

    The participation of the hippocampus in classical conditioning is described in terms of a multilayer network portraying stimulus configuration. A model of hippocampal function is presented, and computer simulations are used to study neural activity in the various brain areas mapped according to the model. (SLD)

  9. Dynamics and configurations of galaxy triplets

    NASA Technical Reports Server (NTRS)

    Anosova, Joanna P.; Orlov, Victor V.; Chernin, Arthur D.; Ivanov, Alexei V.; Kiseleva, Ljudmila G.

    1990-01-01

    The purpose is to infer the probable dynamical states of galaxy triplets by the observed data on their configurations. Two methods are proposed for describing the distributions of the triplet configuration parameters characterizing a tendency to alignment and hierarchy: (1) obtaining a representative sample of configurations and determining its statistical parameters (moments and percentages); and (2) dividing the region of possible configurations of triple systems (Agekian and Anosova, 1967) into a set of segments and finding the probabilities for the configurations to find themselves in each of them. Both these methods allow representation of the data by numerical simulations as well as observations. The effect of projection was studied. It rather overestimates the alignment and hierarchy of the triple systems. Among the parameters of interest there are found some parameters that are least sensitive to projection effects. The samples consist of simulated galaxy triplets (with hidden mass) as well as of 46 probably physical triple galaxies (Karachentseva et al., 1979). The observed triples as well as numerical models show a tendency to alignment. The triple galaxies do not show any tendency to hierarchy (formation of the temporary binaries), but this tendency may be present for simulated triplets without significant dark matter. The significant hidden mass (of order ten times the total mass of a triplet) decreases the probability of forming a binary and so weakens the hierarchy. Small galaxy groups consisting of 3 to 7 members are probably the most prevalent types of galaxy aggregate (Gorbatsky, 1987). Galaxy triplets are the simplest groups, but dynamically nontrivial ones.

  10. Liquid-Vapor Interface Configurations Investigated in Low Gravity

    NASA Technical Reports Server (NTRS)

    Concus, Paul; Finn, Robert; Weislogel, Mark M.

    1998-01-01

    The Interface Configuration Experiment (ICE) is part of a multifaceted study that is exploring the often striking behavior of liquid-vapor interfaces in low-gravity environments. Although the experiment was posed largely as a test of current mathematical theory, applications of the results should be manifold. In space almost every fluid system is affected, if not dominated, by capillarity (the effects of surface tension). As a result, knowledge of fluid interface behavior, in particular an equilibrium interface shape from which any analysis must begin, is fundamental--from the control of liquid fuels and oxygen in storage tanks to the design and development of inspace thermal systems, such as heat pipes and capillary pumped loops. ICE has increased, and should continue to increase, such knowledge as it probes the specific peculiarities of current theory upon which our present understanding rests. Several versions of ICE have been conducted in the drop towers at the NASA Lewis Research Center, on the space shuttles during the first and second United States Microgravity Laboratory missions (USML-1 and USML-2), and most recently aboard the Russian Mir space station. These studies focused on interfacial problems concerning the existence, uniqueness, configuration, stability, and flow characteristics of liquid-vapor interfaces. Results to date have clearly demonstrated the value of the present theory and the extent to which it can predict the behavior of capillary systems.

  11. Tilting of Field-Reversed Configurations in an EMHD Plasma

    NASA Astrophysics Data System (ADS)

    Stenzel, R. L.; Urrutia, J. M.; Strohmaier, K. D.

    2004-11-01

    A field-reversed configuration (FRC) is established with a pulsed coil inside a large, magnetized laboratory plasma in the regime of electron magnetohydrodynamics (EMHD) ( R. L. Stenzel J. M. Urrutia K. D. Strohmaier M. C. Griskey, Experiments on Nonlinear EMHD Fields. Physica Scripta T107, 163 (2004)). The three-dimensional field configuration is measured with a movable probe from repeated experiments. During the free relaxation of the FRC, a tilt and precession of the current layer are observed. An axially symmetric FRC has two 3D null points on axis, a 2D toroidal null line and a closed separatrix surface. The tilt of such an FRC changes the topology to four null points (2 radial and 2 spiral nulls) and an open separatrix, both observed experimentally and in simulations. All the field lines are open, but the high pitch of the spiral nulls slows down the free flow of electrons along field lines. Observations show that a tilt of the field is coupled to a precession around the ambient field direction. In the late stage of the relaxation, the tilted current layer loses its 2D structure, which has not yet been investigated.

  12. Experimental beta limits of symmetric linear heliac configurations

    NASA Astrophysics Data System (ADS)

    Spanjers, G. G.; Nelson, B. A.; Ribe, F. L.; Jarboe, T. R.

    1994-08-01

    Helically symmetric heliac equilibria [H. P. Furth, Plasma Physics and Controlled Fusion Research (International Atomic Energy Agency, Vienna, 1966), Vol. 1, p. 103] are formed on the High Beta Q Machine (HBQM) [C. M. Greenfield, Phys. Fluids B 2, 133 (1990)] by using a fast-rising central conductor (hardcore) current in conjunction with a shock-heated l=1 stellarator configuration. The equilibria are found to possess a high global beta and the plasma pressure is approximately a flux-surface quantity. Under the effects of plasma, the magnetic well is found to deepen and the rotational transform is greatly increased and becomes highly sheared, owing to plasma currents induced by the fast-rising hardcore current. In the second phase of the experiment, the equilibrium fields of the symmetric heliac are lowered while maintaining the same shock heating in an attempt to raise the global beta. No substantial change in global beta is seen, indicating that the configuration forms at the beta limit in the shock-heated HBQM, and that the plasma beta seen in the first phase of the experiment is the symmetric heliac beta limit.

  13. Effects of electrode configuration and place of stimulation on speech perception with cochlear prostheses.

    PubMed

    Pfingst, B E; Franck, K H; Xu, L; Bauer, E M; Zwolan, T A

    2001-06-01

    Recent research and clinical experience with cochlear implants suggest that subjects' speech recognition with monopolar or broad bipolar stimulation might be equal to or better than that obtained with narrow bipolar stimulation or other spatially restricted electrode configurations. Furthermore, subjects often prefer the monopolar configurations. The mechanisms underlying these effects are not clear. Two hypotheses are (a) that broader configurations excite more neurons resulting in a more detailed and robust neural representation of the signal and (b) that broader configurations achieve a better spatial distribution of the excited neurons. In this study we compared the effects of electrode configuration and the effects of longitudinal placement and spacing of the active electrodes on speech recognition in human subjects. We used experimental processor maps consisting of 11 active electrodes in a 22-electrode scala tympani array. Narrow bipolar (BP), wide bipolar (BP + 6), and monopolar (MP2) configurations were tested with various locations of active electrodes. We tested basal, centered, and apical locations (with adjacent active electrodes) and spatially distributed locations (with every other electrode active) with electrode configuration held constant. Ten postlingually deafened adult human subjects with Nucleus prostheses were tested using the SPEAK processing strategy. The effects of electrode configuration and longitudinal place of stimulation on recognition of CNC phonemes and words in quiet and CUNY sentences in noise (+10 dB S/N) were similar. Both independent variables had large effects on speech recognition and there were interactions between these variables. These results suggest that the effects of electrode configuration on speech recognition might be due, in part, to differences among the various configurations in the spatial location of stimulation. Correlations of subjective judgments of sound quality with speech-recognition ability were moderate

  14. Future MAUS payload and the TWIN-MAUS configuration

    NASA Technical Reports Server (NTRS)

    Staniek, S.; Otto, G.; Doepkens, J.

    1988-01-01

    The German MAUS project (materials science autonomous experiments in weightlessness) was initiated in 1979 for optimum utilization of NASA's Get Away Special (GAS) program. The standard MAUS system was developed to meet GAS requirements and can accommodate a wide variety of GAS-type experiments. The system offers a range of services to experimenters within the framework of standardized interfaces. Four MAUS payloads being prepared for future space shuttle flight opportunities are described. The experiments include critical Marangoni convection, oscillatory Marangoni convection, pool boiling, and gas bubbles in glass melts. Scientific objectives as well as equipment hardware are presented together with recent improvements to the MAUS standard system, e.g., a new experiment control and data management unit and a semiconductor memory. A promising means of increasing resources in the field of GAS experiments is the interconnection of GAS containers. This important feature has been studied to meet the challenge of future advanced payloads. In the TWIN-MAUS configuration, electrical power and data will be transferred between two containers mounted adjacent to each other.

  15. Regimes of pulsed formation of a compact plasma configuration with a high energy input

    SciTech Connect

    Romadanov, I. V.; Ryzhkov, S. V.

    2015-10-15

    Results of experiments on the formation of a compact toroidal magnetic configuration at the Compact Toroid Challenge setup are presented. The experiments were primarily aimed at studying particular formation stages. Two series of experiments, with and without an auxiliary capacitor bank, were conducted. The magnetic field was measured, its time evolution and spatial distribution over the chamber volume were determined, and its influence on the formation regimes was investigated.

  16. Application of measurement configuration optimization for accurate metrology of sub-wavelength dimensions in multilayer gratings using optical scatterometry.

    PubMed

    Zhu, Jinlong; Shi, Yating; Goddard, Lynford L; Liu, Shiyuan

    2016-09-01

    Critical dimension measurement accuracy in optical scatterometry relies not only on the systematic noise level of instruments and the reliability of forward modeling algorithms, but also heavily on the measurement configuration. To construct a set of potentially high-accuracy configurations, we apply a general measurement configuration optimization method based on error propagation theory and singular value decomposition, by which the measurement accuracy is approximated as a function of a pseudo Jacobian with respect to the measurement configurations. Simulations and experiments for the optical metrology of a sub-wavelength deep-etched multilayer grating establish the feasibility of the proposed method. PMID:27607258

  17. A Vertical Differential Configuration in GPR prospecting

    NASA Astrophysics Data System (ADS)

    Persico, Raffaele; Pochanin, Gennadiy; Varianytsia-Roshchupkina, Liudmyla; Catapano, Ilaria; Gennarelli, Gianluca; Soldovieri, Francesco

    2015-04-01

    The rejection of the direct coupling between the antennas is an issue of interest in several GPR applications, especially when it is important to distinguish the targets of interest from the clutter and the signal reflected from the air soil interface. Therefore, in this framework several hardware and software strategies have been proposed. Among the software strategies, probably the most common one is the background removal [1], whereas as an hardware strategy the differential configuration has been introduced in [2-3] and then further on studied in [4] with respect to the spatial filtering properties of the relevant mathematical operator. In particular, the studies proposed in [1] and [4] have shown that, in general, all the strategies for the rejection of the direct coupling have necessarily some drawback, essentially because it is not possible to erase all and only the undesired contributions leaving "untouched" the contributions of the targets of interest to the gathered signal. With specific regard to the differential configuration, in [2-3], the differential configuration consisted in a couple of receiving antennas symmetrically placed around the transmitting one, being the three antennas placed along the same horizontal segment. Therefore, we might define that configuration as a "horizontal differential configuration". Here, we propose a novel differential GPR configuration, where the two receiving antennas are still symmetrically located with respect to the transmitting one, but are placed piled on each other at different heights from the air-soil interface, whereas the transmitting antenna is at the medium height between the two receiving one (however, it is not at the same abscissa but at a fixed horizontal offset from the receiving antennas). Such a differential configuration has been previously presented in [5-6] and allows a good isolation between the antennas, while preserving the possibility to collect backscattered signals from both electrically

  18. Magnetospheric equilibrium configurations and slow adiabatic convection

    NASA Technical Reports Server (NTRS)

    Voigt, Gerd-Hannes

    1986-01-01

    This review paper demonstrates how the magnetohydrostatic equilibrium (MHE) theory can be used to describe the large-scale magnetic field configuration of the magnetosphere and its time evolution under the influence of magnetospheric convection. The equilibrium problem is reviewed, and levels of B-field modelling are examined for vacuum models, quasi-static equilibrium models, and MHD models. Results from two-dimensional MHE theory as they apply to the Grad-Shafranov equation, linear equilibria, the asymptotic theory, magnetospheric convection and the substorm mechanism, and plasma anisotropies are addressed. Results from three-dimensional MHE theory are considered as they apply to an intermediate analytical magnetospheric model, magnetotail configurations, and magnetopause boundary conditions and the influence of the IMF.

  19. Sustainable Supply Chain Design: A Configurational Approach

    PubMed Central

    Masoumik, S. Maryam; Raja Ghazilla, Raja Ariffin

    2014-01-01

    Designing the right supply chain that meets the requirements of sustainable development is a significant challenge. Although there are a considerable number of studies on issues relating to sustainable supply chain design (SSCD) in terms of designing the practices, processes, and structures, they have rarely demonstrated how these components can be aligned to form an effective sustainable supply chain (SSC). Considering this gap in the literature, this study adopts the configurational approach to develop a conceptual framework that could configure the components of a SSC. In this respect, a process-oriented approach is utilized to classify and harmonize the design components. A natural-resource-based view (NRBV) is adopted to determine the central theme to align the design components around. The proposed framework presents three types of SSC, namely, efficient SSC, innovative SSC, and reputed SSC. The study culminates with recommendations concerning the direction for future research. PMID:24523652

  20. Space station configuration and flight dynamics identification

    NASA Technical Reports Server (NTRS)

    Metter, E.; Milman, M. H.

    1985-01-01

    The Space Station will be assembled in low earth orbit by a combination of deployable and space erectable modules that are progressively integrated during successive flights of the Shuttle. The crew assisted space construction will result in a configuration which is a large scale composite of structural elements having connectivity with a wide range of possible end conditions and imprecisely known dynamic characteristics. The generic applications of Flight Dynamics Identification to the candidate Space Station configurations currently under consideration are described. Identification functions are categorized, and the various methods for extracting parameter estimates are correlated with the sensing of parameter estimates are correlated with the sensing of specific characteristics of interest to both engineering subsystems and users of the Station's commercial and scientific facilities. Onboard implementation architecture and constraints are discussed from the viewpoint of maximizing integration of the Identification process with the flight subsystem's data and signal flow.

  1. Applicability of a double-undulator configuration

    NASA Astrophysics Data System (ADS)

    Huang, Jui-Che; Kitamura, Hideo; Yang, Chin-Kang; Chiu, Mau-Sen; Chang, Cheng-Hsiang; Hwang, Ching-Shiang

    2016-02-01

    The applicability of the double-undulator concept for an electron storage ring of 3-GeV class is evaluated based on the parameters of Taiwan Photon Source. In the soft X-ray case, the fundamental harmonic is mainly used, the interference effect is preserved at some level, which means that the brilliance from a double-undulator is expected to be much greater than that of a single undulator. In the hard X-ray case, harmonics number greater than five are generally used, the interference effect cannot, however, be preserved, which means that a double undulator configuration can be assumed to comprise two independent and uncorrelated sources. The total coherent flux obtained from a double-undulator configuration is found to be much less than twice that of a single undulator. The double-undulator concept is hence inapplicable in the hard X-ray region from the viewpoint of high coherent flux performance.

  2. Configuration management; Operating power station electrical systems

    SciTech Connect

    Beavers, R.R.; Sumiec, K.F. )

    1989-01-01

    Increasing regulatory and industry attention has been focused on properly controlling electrical design changes. These changes can be controlled by using configuration management techniques. Typically, there are ongoing modifications to various process systems or additions due to new requirements at every power plant. Proper control of these changes requires that an organized method be used to ensure that all important parameters of the electrical auxiliary systems are analyzed and that these parameters are evaluated accurately. This process, commonly referred to as configuration management, is becoming more important on both fossil and nuclear plants. Recent NRC- and utility-initiated inspections have identified problems due to incomplete analysis of changes to electrical auxiliary systems at nuclear stations.

  3. Calculation of vortex flows on complex configurations

    NASA Technical Reports Server (NTRS)

    Maskew, B.; Rao, B. M.

    1982-01-01

    The calculation of aerodynamic characteristics of complex configurations having strongly coupled vortex flows is a non-linear problem requiring iterative solution techniques. This paper discusses the use of a low-order panel method as a means of obtaining practical solutions to such problems. The panel method is based on piecewise constant source and doublet quadrilateral panels and uses the internal Dirichlet boundary condition of zero perturbation potential. The problems of predicting vortex/surface interaction and vortex separation are discussed. Some example calculations are included but further test cases have yet to be carried out, in particular for comparisons with experimental data. The problem of convergence on the iterative calculation for the shape of the free vortex sheet is addressed and a preprocessor routine, based on an unsteady, two-dimensional version of the panel method, is put forward as a cost-effective way of generating an initial vortex structure for use as a starting solution for general configurations.

  4. Sustainable supply chain design: a configurational approach.

    PubMed

    Masoumik, S Maryam; Abdul-Rashid, Salwa Hanim; Olugu, Ezutah Udoncy; Raja Ghazilla, Raja Ariffin

    2014-01-01

    Designing the right supply chain that meets the requirements of sustainable development is a significant challenge. Although there are a considerable number of studies on issues relating to sustainable supply chain design (SSCD) in terms of designing the practices, processes, and structures, they have rarely demonstrated how these components can be aligned to form an effective sustainable supply chain (SSC). Considering this gap in the literature, this study adopts the configurational approach to develop a conceptual framework that could configure the components of a SSC. In this respect, a process-oriented approach is utilized to classify and harmonize the design components. A natural-resource-based view (NRBV) is adopted to determine the central theme to align the design components around. The proposed framework presents three types of SSC, namely, efficient SSC, innovative SSC, and reputed SSC. The study culminates with recommendations concerning the direction for future research. PMID:24523652

  5. On configurational weak phase transitions in graphene

    NASA Astrophysics Data System (ADS)

    Sfyris, Dimitris

    2016-07-01

    We report a study on configurational weak phase transitions for a freestanding monolayer graphene. Firstly, we characterize weak transformation neighborhoods by suitably bounding the metric components. Then, we distinguish between structural and configurational phase changes and elaborate on the second class of them. We evaluate the irreducible invariant subspaces corresponding to these phase changes and lay down symmetry-breaking as well as symmetry-preserving stretches. In the reduced bifurcation diagram, symmetry-preserving stretches are related to a turning point with a change of stability but not of symmetry. Symmetry-breaking stretches are related to a first-order weak phase transition. We evaluate symmetry-breaking stretches as well as their generating cosets. The reduced bifurcation diagram consists of three transcritical bifurcating curves which are all unstable but can be stabilized producing a subcritical bifurcation. We, also, shortly comment on the hysteretical behavior that might appear in this case.

  6. Spacecraft (Mobile Satellite) configuration design study

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The relative costs to procure and operate a two-satellite mobile satellite system designed to operate either in the UHF band of the L Band, and with several antenna diameter options in each frequency band was investigated. As configured, the size of the spacecraft is limited to the current RCA Series 4000 Geosynchronous Communications Spacecraft bus, which spans the range from 4000 to 5800 pounds in the transfer orbit. The Series 4000 bus forms the basis around which the Mobile Satellite transponder and associated antennas were appended. Although the resultant configuration has little outward resemblance to the present Series 4000 microwave communications spacecraft, the structure, attitude control, thermal, power, and command and control subsystems of the Series 4000 spacecraft are all adapted to support the Mobile Satellite mission.

  7. Inhibition drives configural superiority of illusory Gestalt: Combined behavioral and drift-diffusion model evidence.

    PubMed

    Nie, Qi-Yang; Maurer, Mara; Müller, Hermann J; Conci, Markus

    2016-05-01

    Illusory Kanizsa figures demonstrate that a perceptually completed whole is more than the sum of its composite parts. In the current study, we explored part/whole relationships in object completion using the configural superiority effect (CSE) with illusory figures (Pomerantz & Portillo, 2011). In particular, we investigated to which extent the CSE is modulated by closure in target and distractor configurations. Our results demonstrated a typical CSE, with detection of a configural whole being more efficient than the detection of a corresponding part-level target. Moreover, the CSE was more pronounced when grouped objects were presented in distractors rather than in the target. A follow-up experiment systematically manipulated closure in whole target or, respectively, distractor configurations. The results revealed the effect of closure to be again stronger in distractor, rather than in target configurations, suggesting that closure primarily affects the inhibition of distractors, and to a lesser extent the selection of the target. In addition, a drift-diffusion model analysis of our data revealed that efficient distractor inhibition expedites the rate of evidence accumulation, with closure in distractors particularly speeding the drift toward the decision boundary. In sum, our findings demonstrate that the CSE in Kanizsa figures derives primarily from the inhibition of closed distractor objects, rather than being driven by a conspicuous target configuration. Altogether, these results support a fundamental role of inhibition in driving configural superiority effects in visual search. PMID:26896900

  8. Multiblock grid generation for jet engine configurations

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E. M.

    1992-01-01

    The goal was to create methods for generating grids with minimal human intervention that are applicable to a wide range of problems and compatible with existing numerical methods and with existing and proposed computers. The following topics that are related to multiblock grid generation are briefly covered in viewgraph form: finding a domain decomposition, dimensioning grids, grid smoothing, manipulating grids and decompositions, and some specializations for jet engine configurations.

  9. Very large full configuration interaction calculations

    NASA Astrophysics Data System (ADS)

    Knowles, Peter J.

    1989-03-01

    The extreme sparsity of the solution of the full configuration interaction (full CI) secular equations is exploited in a new algorithm. For very large problems, the high speed memory, disk storage, and CPU requirements are reduced considerably, compared to previous techniques. This allows the possibility of full CI calculations with more than 10 8 Slater determinants. The power of the method is demonstrated in preliminary full CI calculations for the NH molecule, including up to 27901690 determinants.

  10. Equilibrium configurations of degenerate fluid spheres

    SciTech Connect

    Whitman, P.G.

    1985-04-01

    Equilibrium configurations of degenerate fluid spheres which assume a polytropic form in the ultrahigh-density regime are considered. We show that analytic solutions more general than those of Misner and Zapolsky exist which possess the asymptotic equation of state. Simple expressions are derived which indicate this nature of the fluids in the extreme relativistic limit, and the stability of these interiors is considered in the asymptotic region.

  11. Synchronization configurations of two coupled double pendula

    NASA Astrophysics Data System (ADS)

    Koluda, Piotr; Perlikowski, Przemyslaw; Czolczynski, Krzysztof; Kapitaniak, Tomasz

    2014-04-01

    We consider the synchronization of two self-excited double pendula hanging from a horizontal beam which can roll on the parallel surface. We show that such pendula can obtain four different robust synchronous configurations. Our approximate analytical analysis allows to derive the synchronization conditions and explains the observed types of synchronizations. We consider the energy balance in the system and show how the energy is transferred between the pendula via the oscillating beam allowing the pendula' synchronization.

  12. Adaptive anisotropic kernels for nonparametric estimation of absolute configurational entropies in high-dimensional configuration spaces.

    PubMed

    Hensen, Ulf; Grubmüller, Helmut; Lange, Oliver F

    2009-07-01

    The quasiharmonic approximation is the most widely used estimate for the configurational entropy of macromolecules from configurational ensembles generated from atomistic simulations. This method, however, rests on two assumptions that severely limit its applicability, (i) that a principal component analysis yields sufficiently uncorrelated modes and (ii) that configurational densities can be well approximated by Gaussian functions. In this paper we introduce a nonparametric density estimation method which rests on adaptive anisotropic kernels. It is shown that this method provides accurate configurational entropies for up to 45 dimensions thus improving on the quasiharmonic approximation. When embedded in the minimally coupled subspace framework, large macromolecules of biological interest become accessible, as demonstrated for the 67-residue coldshock protein. PMID:19658735

  13. Configurationally exhaustive first-principles study of a quaternary superalloy with a vast configuration space

    NASA Astrophysics Data System (ADS)

    Maisel, S. B.; Höfler, M.; Müller, S.

    2016-07-01

    Exploration of the vast configuration space encountered in a multicomponent alloy is impossible without a suitable engine like the cluster-expansion (CE) method. While a CE ansatz can be formulated for an arbitrary number of components n , the combinatorial explosion of configuration space with increasing n can still be prohibitive. In this paper, we present a configurationally exhaustive study of a four-component nickel-based superalloy. We obtain all ground-state compounds, temperature- and concentration-dependent configurational energies, and micrographs of the γ /γ' microstructure of the γ'-strengthened superalloy Ni-Al-Ta-W. Several phenomena that cannot be studied from the binary building blocks Ni-Al, Ni-W, or Ni-Ta alone are discussed, e.g., the suppression of γ'' formation in Al-Ni-Ta-W, the effect of Ta on the γ' composition, and the tungsten partitioning ratio as a function of both temperature and bulk composition.

  14. Permutation-invariant distance between atomic configurations

    NASA Astrophysics Data System (ADS)

    Ferré, Grégoire; Maillet, Jean-Bernard; Stoltz, Gabriel

    2015-09-01

    We present a permutation-invariant distance between atomic configurations, defined through a functional representation of atomic positions. This distance enables us to directly compare different atomic environments with an arbitrary number of particles, without going through a space of reduced dimensionality (i.e., fingerprints) as an intermediate step. Moreover, this distance is naturally invariant through permutations of atoms, avoiding the time consuming associated minimization required by other common criteria (like the root mean square distance). Finally, the invariance through global rotations is accounted for by a minimization procedure in the space of rotations solved by Monte Carlo simulated annealing. A formal framework is also introduced, showing that the distance we propose verifies the property of a metric on the space of atomic configurations. Two examples of applications are proposed. The first one consists in evaluating faithfulness of some fingerprints (or descriptors), i.e., their capacity to represent the structural information of a configuration. The second application concerns structural analysis, where our distance proves to be efficient in discriminating different local structures and even classifying their degree of similarity.

  15. DAQMAN - A flexible configurable data acquisition system

    2012-08-01

    DAQMAN is a flexible configurable interface that allows the user to build and operate a VME-based data acquisition system on a Linux workstation. It consists of two parts: a Java-based Graphical User Interface to configure the system, and a C-based utility that reads out the data and creates the output ASCII data file, with two levels of diagnostic tools. The data acquisition system requires a CAEN CONET-VME Bridge to communicate between the hardware in themore » VME crate and the Linux workstation. Data acquisition modules, such as ADCs, TDC, Scalers, can be loaded into the system, or removed easily. The GUI allows users to activate modules, and channels within modules by clicking on icons. Running configurations are stored; data are collected and can be viewed either as raw numbers, or by charts and histograms that update as the data are accumulated. Data files are written to disk in ASCII format, with a date and time stamp.« less

  16. Computational Aeroheating Predictions for Mars Lander Configurations

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Alter, Stephen J.

    2003-01-01

    The proposed Mars Science Laboratory (MSL) mission is intended to deliver a large rover to the Martian surface within 10 km of the target site. This paper presents computational fluid dynamics (CFD) predictions of forebody heating rates for two MSL entry configurations with fixed aerodynamic trim tabs. Results are compared to heating on a 70-deg sphere-cone reference geometry. All three heatshield geometries are designed to trim hypersonically at a 16 deg angle of attack in order to generate the lift-to-drag ratio (LID) required for precision landing. Comparisons between CFD and tunnel data are generally in good agreement for each configuration, but the computations predict more flow separation and higher heating on a trim tab inclined 10 deg relative to the surface. CFD solutions at flight conditions were obtained using an 8-species Mars gas in chemical and thermal non-equilibrium. Laminar and Baldwin-Lomax solutions were used to estimate the effects of the trim tabs and turbulence on heating. A tab extending smoothly from the heatshield flank is not predicted to increase laminar or turbulent heating rates above the reference levels. Laminar heating on a tab deflected 10 deg from the conical heatshield is influenced by flow separation and is up to 35% above the baseline heating rate. The turbulent solution on the inclined tab configuration predicts attached flow and a 43% heating increase above the reference level.

  17. Computational Aeroheating Predictions for Mars Lander Configurations

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Alter, Stephen J.

    2003-01-01

    The proposed Mars Science Laboratory (MSL) mission is intended to deliver a large rover to the Martian surface within 10 km of the target site. This paper presents computational fluid dynamics (CFD) predictions of forebody heating rates for two MSL entry configurations with fixed aerodynamic trim tabs. Results are compared to heating on a 70-deg sphere-cone reference geometry. All three heatshield geometries are designed to trim hypersonically at a 16 deg angle of attack in order to generate the lift-to-drag ratio (L/D) required for precision landing. Comparisons between CFD and tunnel data are generally in good agreement for each configuration, but the computations predict more flow separation and higher heating on a trim tab inclined 10 deg relative to the surface. CFD solutions at flight conditions were obtained using an 8-species Mars gas in chemical and thermal nonequilibrium. Laminar and Baldwin-Lomax solutions were used to estimate the effects of the trim tabs and turbulence on heating. A tab extending smoothly from the heatshield flank is not predicted to increase laminar or turbulent heating rates above the reference levels. Laminar heating on a tab deflected 10 deg from the conical heatshield is influenced by flow separation and is up to 35% above the baseline heating rate. The turbulent solution on the inclined tab configuration predicts attached flow and a 43% heating increase above the reference level.

  18. Permutation-invariant distance between atomic configurations

    SciTech Connect

    Ferré, Grégoire; Maillet, Jean-Bernard; Stoltz, Gabriel

    2015-09-14

    We present a permutation-invariant distance between atomic configurations, defined through a functional representation of atomic positions. This distance enables us to directly compare different atomic environments with an arbitrary number of particles, without going through a space of reduced dimensionality (i.e., fingerprints) as an intermediate step. Moreover, this distance is naturally invariant through permutations of atoms, avoiding the time consuming associated minimization required by other common criteria (like the root mean square distance). Finally, the invariance through global rotations is accounted for by a minimization procedure in the space of rotations solved by Monte Carlo simulated annealing. A formal framework is also introduced, showing that the distance we propose verifies the property of a metric on the space of atomic configurations. Two examples of applications are proposed. The first one consists in evaluating faithfulness of some fingerprints (or descriptors), i.e., their capacity to represent the structural information of a configuration. The second application concerns structural analysis, where our distance proves to be efficient in discriminating different local structures and even classifying their degree of similarity.

  19. Future configurations of the Intelsat space segment

    NASA Astrophysics Data System (ADS)

    Quaglione, G.; Fariello, E.; Bartone, F.

    The potential of implementing a coupled satellite configuration, one operating at 6/4 GHz and the other at 14/11 GHz, in future Intelsat configurations is discussed. The formation flying concept is suggested as a means to avoiding orbital congestion in high demand service areas, such as over the Atlantic and Indian Oceans. It is projected that 257,000 circuits will be needed in the Atlantic segment by the year 2000, double that of the projected 1990 capacity using Intelsat VI spacecraft. The links will be divided among a small number of countries with a large volume traffic and a large number of countries with a relatively low volume of interconnections. The former spacecraft could have only a few transponders with high data rate handling capabilities, while the latter could have a high number of links with lower data rates. Both configurations would be smaller than current Intelsat spacecraft, thus saving on launch and component costs due to lighter weight and simplified designs. Specific assignment areas, performance specifications, and applicable launch vehicles are outlined for the coupled satellite system.

  20. Process configuration role in anaerobic biotransformations

    SciTech Connect

    Speece, R.E.

    1998-07-01

    Defining the environmental conditions which would enable anaerobic processes to consistently produce effluents containing only non-detectable concentrations of degradable organics would remove one of the main drawbacks to wider application of this important treatment technology. Recently specific metabolic intermediates formed in the anaerobic biotransformation of complex organics have been found to enhance or curtail process performance. Using acrylate and acrolein as representative hazardous chemicals, modifications in staging and reactor operation procedures have been observed in the author's laboratory to profoundly impact the rate and completeness of the biotransformation process. Specific metabolic intermediates formed in the biotransformation of complex substrates to a large extent will control a given process performance and process configuration greatly impacts the metabolic pathway, thus impacting the intermediates formed as well. There is a growing body of literature to indicate that process performance in anaerobic biotransformation is greatly impacted by reactor configuration. There is also some evidence that metabolic precursors impact the subsequent efficiency of conversion of volatile fatty acids (VFA) ultimately to CH{sub 4}. But although profound differences in the performance of anaerobic biotransformation are reported for various process configurations, there are no published criteria to guide the rational design of stages/phased processes. Clarification of the relative merits of single stage, two stage, two phase, granules and biofilms as well as CSTR and plug flow modes in the biotransformation of hazardous pollutants would be foundational for future research and development.

  1. Spectral Functions for Generalized Piston Configurations

    NASA Astrophysics Data System (ADS)

    Morales-Almazan, Pedro Fernando

    In this work we explore various piston configurations with different types of potentials. We analyze Laplace-type operators P = --gij 1Ei1Ej + V where V is the potential. First we study delta potentials and rectangular potentials as examples of non-smooth potentials and find the spectral zeta functions for these piston configurations on manifolds I x N , where I is an interval and N is a smooth compact Riemannian d - 1 dimensional manifold. Then we consider the case of any smooth potential with a compact support and develop a method to find spectral functions by finding the asymptotic behavior of the characteristic function of the eigenvalues for P. By means of the spectral zeta function on these various configurations, we obtain the Casimir force and the one-loop effective action for these systems as the values at s = -1/2 and the derivative at s = 0. Information about the heat kernel coefficients can also be found in the spectral zeta function in the form of residues, which provide an indirect way of finding this geometric information about the manifold and the operator.

  2. Hybrid Wing Body Configuration Scaling Study

    NASA Technical Reports Server (NTRS)

    Nickol, Craig L.

    2012-01-01

    The Hybrid Wing Body (HWB) configuration is a subsonic transport aircraft concept with the potential to simultaneously reduce fuel burn, noise and emissions compared to conventional concepts. Initial studies focused on very large applications with capacities for up to 800 passengers. More recent studies have focused on the large, twin-aisle class with passenger capacities in the 300-450 range. Efficiently scaling this concept down to the single aisle or smaller size is challenging due to geometric constraints, potentially reducing the desirability of this concept for applications in the 100-200 passenger capacity range or less. In order to quantify this scaling challenge, five advanced conventional (tube-and-wing layout) concepts were developed, along with equivalent (payload/range/technology) HWB concepts, and their fuel burn performance compared. The comparison showed that the HWB concepts have fuel burn advantages over advanced tube-and-wing concepts in the larger payload/range classes (roughly 767-sized and larger). Although noise performance was not quantified in this study, the HWB concept has distinct noise advantages over the conventional tube-and-wing configuration due to the inherent noise shielding features of the HWB. NASA s Environmentally Responsible Aviation (ERA) project will continue to investigate advanced configurations, such as the HWB, due to their potential to simultaneously reduce fuel burn, noise and emissions.

  3. Configuration management plan for the GENII software

    SciTech Connect

    Rittmann, P.D.

    1994-12-12

    The GENII program calculates doses from radionuclides released into the environment for a variety of possible exposure scenarios. The user prepares an input data file with the necessary modelling assumptions and parameters. The program reads the user`s input file, computes the necessary doses and stores these results in an output file. The output file also contains a listing of the user`s input and gives the title lines from the data libraries which are accessed in the course of the calculations. The purpose of this document is to provide users of the GENII software with the configuration controls which are planned for use by WHC in accordance with WHC-CM-3-10. The controls are solely for WHC employees. Non-WHC individuals are not excluded, but no promise is made or implied that they will be informed of errors or revisions to the software. The configuration controls cover the GENII software, the GENII user`s guide, the list of GENII users at WHC, and the backup copies. Revisions to the software must be approved prior to distribution in accordance with this configuration management plan.

  4. Closeup of rear of LASRE pod

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This rear view of the Linear Aerospike SR Experiment (LASRE) pod shows the business end of the linear aerospike rocket engine prior to the experiment's fit-check on Feb. 15, 1996, at Lockheed Martin Skunkworks in Palmdale, California. One of the differences between linear aerospike and traditional rocket engines is that the linear aerospike utilizes the airflow around the engine to form the outer 'nozzle.' There is no bell-shaped nozzle as is commonly seen on most rocket engines. The engine is made of a high strength copper alloy called NARloy-Z. The white curved ramps next to the copper area pictured act as the inner half of the engine's 'nozzle.' There are four thrusters (copper area) on each side of the engine for a total of eight which combine the fuel, oxidizer, and ignition source for the engine. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The

  5. Annoyance caused by advanced turboprop aircraft flyover noise: Comparison of different propeller configurations

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1991-01-01

    A laboratory experiment was conducted to compare the annoyance of flyover noise from advanced turboprop aircraft having different propeller configurations with the annoyance of conventional turboprop and turbofan aircraft flyover noise. A computer synthesis system was used to generate 40 realistic, time varying simulations of advanced turboprop takeoff noise. Of the 40 noises, single-rotating propeller configurations (8) and counter-rotating propeller configurations with an equal (12) and unequal (20) number of blades on each rotor were represented. Analyses found that advanced turboprops with single-rotating propellers were, on average, slightly less annoying than the other aircraft. Fundamental frequency and tone-to-broadband noise ratio affected annoyance response to advanced turboprops, but the effects varied with propeller configuration and noise metric. The addition of duration corrections and corrections for tones above 500 Hz to the noise measurement procedures improved annoyance prediction ability.

  6. Configuration and Data Management Process and the System Safety Professional

    NASA Technical Reports Server (NTRS)

    Shivers, Charles Herbert; Parker, Nelson C. (Technical Monitor)

    2001-01-01

    This article presents a discussion of the configuration management (CM) and the Data Management (DM) functions and provides a perspective of the importance of configuration and data management processes to the success of system safety activities. The article addresses the basic requirements of configuration and data management generally based on NASA configuration and data management policies and practices, although the concepts are likely to represent processes of any public or private organization's well-designed configuration and data management program.

  7. Progress in Compact Toroid Experiments

    SciTech Connect

    Dolan, Thomas James

    2002-09-01

    The term "compact toroids" as used here means spherical tokamaks, spheromaks, and field reversed configurations, but not reversed field pinches. There are about 17 compact toroid experiments under construction or operating, with approximate parameters listed in Table 1.

  8. Ignition, Transition, Flame Spread in Multidimensional Configurations in Microgravity

    NASA Technical Reports Server (NTRS)

    Kashiwagi, Takashi; Mell, William E.; Baum, Howard R.; Olson, Sandra

    1999-01-01

    In the inhabited quarters of orbiting spacecraft, fire is a greatly feared hazard. Thus, the fire safety strategy in a spacecraft is (1) to keep any fire as small as possible, (2) to detect any fire as early as possible, and (3) to extinguish any fire as quickly as possible. This suggests that a material which undergoes a momentary ignition might be tolerable but a material which permits a transition from a localized ignition to flame spread would significantly increase the fire hazard in a spacecraft. If the transition does not take place, fire growth does not occur. Therefore, it is critical to understand what process controls the transition. Many previous works have studied ignition and flame spread separately or were limited to a two-dimensional configuration. In this study, time-dependent phenomena of the transition over a thermally thin sample is studied experimentally and theoretically in two- and three-dimensional (2D,3D) configurations. Furthermore, localized ignition can be initiated at the center portion of thermally thin paper sample instead of at one end of the sample. Thus, the transition to flame spread could occur either toward upstream or downstream or both directions simultaneously with an external flow. In this presentation, the difference in the transition between the 3D and 2D configurations is explained with the numerically calculated data. For sufficiently narrow samples edge effects exist. Some results on this issue are presented. New analysis of the surface smoldering experiments conducted in the space shuttle STS-75 flight is also described.

  9. The Change of Expression Configuration Affects Identity-Dependent Expression Aftereffect but Not Identity-Independent Expression Aftereffect

    PubMed Central

    Song, Miao; Shinomori, Keizo; Qian, Qian; Yin, Jun; Zeng, Weiming

    2015-01-01

    The present study examined the influence of expression configuration on cross-identity expression aftereffect. The expression configuration refers to the spatial arrangement of facial features in a face for conveying an emotion, e.g., an open-mouth smile vs. a closed-mouth smile. In the first of two experiments, the expression aftereffect is measured using a cross-identity/cross-expression configuration factorial design. The facial identities of test faces were the same or different from the adaptor, while orthogonally, the expression configurations of those facial identities were also the same or different. The results show that the change of expression configuration impaired the expression aftereffect when the facial identities of adaptor and tests were the same; however, the impairment effect disappears when facial identities were different, indicating the identity-independent expression representation is more robust to the change of the expression configuration in comparison with the identity-dependent expression representation. In the second experiment, we used schematic line faces as adaptors and real faces as tests to minimize the similarity between the adaptor and tests, which is expected to exclude the contribution from the identity-dependent expression representation to expression aftereffect. The second experiment yields a similar result as the identity-independent expression aftereffect observed in Experiment 1. The findings indicate the different neural sensitivities to expression configuration for identity-dependent and identity-independent expression systems. PMID:26733922

  10. Flammability Configuration Analysis for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Pedley, Michael D.

    2014-01-01

    Fire is one of the many potentially catastrophic hazards associated with the operation of crewed spacecraft. A major lesson learned by NASA from the Apollo 204 fire in 1966 was that ignition sources in an electrically powered vehicle should and can be minimized, but can never be eliminated completely. For this reason, spacecraft fire control is based on minimizing potential ignition sources and eliminating materials that can propagate fire. Fire extinguishers are always provided on crewed spacecraft, but are not considered as part of the fire control process. "Eliminating materials that can propagate fire" does not mean eliminating all flammable materials - the cost of designing and building spacecraft using only nonflammable materials is extraordinary and unnecessary. It means controlling the quantity and configuration of such materials to eliminate potential fire propagation paths and thus ensure that any fire would be small, localized, and isolated, and would self-extinguish without harm to the crew. Over the years, NASA has developed many solutions for controlling the configuration of flammable materials (and potentially flammable materials in commercial "off-the-shelf" hardware) so that they can be used safely in air and oxygen-enriched environments in crewed spacecraft. This document describes and explains these design solutions so payload customers and other organizations can use them in designing safe and cost-effective flight hardware. Proper application of these guidelines will produce acceptable flammability configurations for hardware located in any compartment of the International Space Station or other program crewed vehicles and habitats. However, use of these guidelines does not exempt hardware organizations of the responsibility for safety of the hardware under their control.

  11. Rotational stability of a long field-reversed configuration

    SciTech Connect

    Barnes, D. C. Steinhauer, L. C.

    2014-02-15

    Rotationally driven modes of long systems with dominantly axial magnetic field are considered. We apply the incompressible model and order axial wavenumber small. A recently developed gyro-viscous model is incorporated. A one-dimensional equilibrium is assumed, but radial profiles are arbitrary. The dominant toroidal (azimuthal) mode numbers ℓ=1 and ℓ=2 modes are examined for a variety of non-reversed (B) and reversed profiles. Previous results for both systems with rigid rotor equilibria are reproduced. New results are obtained by incorporation of finite axial wavenumber and by relaxing the assumption of rigid electron and ion rotation. It is shown that the frequently troublesome ℓ=2 field reversed configuration (FRC) mode is not strongly affected by ion kinetic effects (in contrast to non-reversed cases) and is likely stabilized experimentally only by finite length effects. It is also shown that the ℓ=1 wobble mode has a complicated behavior and is affected by a variety of configuration and profile effects. The rotationally driven ℓ=1 wobble is completely stabilized by strong rotational shear, which is anticipated to be active in high performance FRC experiments. Thus, observed wobble modes in these systems are likely not driven by rotation alone.

  12. Evaluation of Sensor Configurations for Robotic Surgical Instruments

    PubMed Central

    Gómez-de-Gabriel, Jesús M.; Harwin, William

    2015-01-01

    Designing surgical instruments for robotic-assisted minimally-invasive surgery (RAMIS) is challenging due to constraints on the number and type of sensors imposed by considerations such as space or the need for sterilization. A new method for evaluating the usability of virtual teleoperated surgical instruments based on virtual sensors is presented. This method uses virtual prototyping of the surgical instrument with a dual physical interaction, which allows testing of different sensor configurations in a real environment. Moreover, the proposed approach has been applied to the evaluation of prototypes of a two-finger grasper for lump detection by remote pinching. In this example, the usability of a set of five different sensor configurations, with a different number of force sensors, is evaluated in terms of quantitative and qualitative measures in clinical experiments with 23 volunteers. As a result, the smallest number of force sensors needed in the surgical instrument that ensures the usability of the device can be determined. The details of the experimental setup are also included. PMID:26516863

  13. Uniformity on the grid via a configuration framework

    SciTech Connect

    Igor V Terekhov et al.

    2003-03-11

    As Grid permeates modern computing, Grid solutions continue to emerge and take shape. The actual Grid development projects continue to provide higher-level services that evolve in functionality and operate with application-level concepts which are often specific to the virtual organizations that use them. Physically, however, grids are comprised of sites whose resources are diverse and seldom project readily onto a grid's set of concepts. In practice, this also creates problems for site administrators who actually instantiate grid services. In this paper, we present a flexible, uniform framework to configure a grid site and its facilities, and otherwise describe the resources and services it offers. We start from a site configuration and instantiate services for resource advertisement, monitoring and data handling; we also apply our framework to hosting environment creation. We use our ideas in the Information Management part of the SAM-Grid project, a grid system which will deliver petabyte-scale data to the hundreds of users. Our users are High Energy Physics experimenters who are scattered worldwide across dozens of institutions and always use facilities that are shared with other experiments as well as other grids. Our implementation represents information in the XML format and includes tools written in XQuery and XSLT.

  14. Evaluation of Sensor Configurations for Robotic Surgical Instruments.

    PubMed

    Gómez-de-Gabriel, Jesús M; Harwin, William

    2015-01-01

    Designing surgical instruments for robotic-assisted minimally-invasive surgery (RAMIS) is challenging due to constraints on the number and type of sensors imposed by considerations such as space or the need for sterilization. A new method for evaluating the usability of virtual teleoperated surgical instruments based on virtual sensors is presented. This method uses virtual prototyping of the surgical instrument with a dual physical interaction, which allows testing of different sensor configurations in a real environment. Moreover, the proposed approach has been applied to the evaluation of prototypes of a two-finger grasper for lump detection by remote pinching. In this example, the usability of a set of five different sensor configurations, with a different number of force sensors, is evaluated in terms of quantitative and qualitative measures in clinical experiments with 23 volunteers. As a result, the smallest number of force sensors needed in the surgical instrument that ensures the usability of the device can be determined. The details of the experimental setup are also included. PMID:26516863

  15. Configuration management for hardware-software codesign

    SciTech Connect

    Kobialka, H.U.; Gnedina, A.; Wilberg, J.

    1996-12-31

    Configuration Management (CM) has a long tradition in the area of software development. In other areas CM is still more a promise than a product to be used. During HW/SW codesign a large design space has to be explored in order to find the optimal combination of software and hardware. This is an optimization process where many variants (> 1000) and associated analysis results have to be maintained for later exploration. Each variant consists of hundreds of files. This paper describes the CM requirements we encountered when introducing CM in a HW/SW codesign project. CM support for HW/SW codesign has been implemented in the ADDD development environment.

  16. Sitnikov problem in the cyclic kite configuration

    NASA Astrophysics Data System (ADS)

    Shahbaz Ullah, M.; Bhatnagar, K. B.; Hassan, M. R.

    2014-12-01

    This manuscript deals with the development of the series solutions of the Sitnikov kite configuration by the methods given of Lindstedt-Poincarė, using Green's function and MacMillan. Next we have developed averaged equation of motion by applying the Van der Pol transformation and averaging technique of Guckenheimer and Holmes (Nonlinear oscillations, dynamical system bifurcations of vector fields. Springer, Berlin, 1983). In addition to the resonance criterion at the 3/2 commensurability we have chosen ω=2 n/3, n=2, ω is the angular velocity of the coordinate system. Lastly the periodicity of the solutions has been examined by the Poincarė section.

  17. Soliton configurations in generalized Mie electrodynamics

    SciTech Connect

    Rybakov, Yu. P.

    2011-07-15

    The generalization of the Mie electrodynamics within the scope of the effective 8-spinor field model is suggested, with the Lagrangian including Higgs-like potential and higher degrees of the invariant A{sub Micro-Sign }A{sup Micro-Sign }. Using special Brioschi 8-spinor identity, we show that the model includes the Skyrme and the Faddeev models as particular cases. We investigate the large-distance asymptotic of static solutions and estimate the electromagnetic contribution to the energy of the localized charged configuration.

  18. Optimization of reactor configuration in coal liquefaction

    SciTech Connect

    Comolli, A.G.; Johanson, E.S.; Lee, L.K.; Stalzer, R.M.

    1992-12-01

    This quarterly report covers activities of optimization of Reactor Configuration in Coal Liquefaction during the period July 1--September 30, 1992, at Hydrocarbon Research, Inc. in Lawrenceville and Princeton, New Jersey. This DOE contract period is from October 1, 1991 to September 30, 1993. The overall objective of the program is to achieve a new approach to liquefaction that generates an all distillates product slate at reduced cost of about $25 per barrel of crude oil equivalent. The quarterly report covers work on Laboratory Support, Laboratory Scale Operations, Technical Assessment, and Project Management.

  19. Spill response system configuration study. Final report

    SciTech Connect

    Desimone, R.V.; Agosta, J.M.

    1996-05-01

    This report describes the development of a prototype decision support system for oil spill response configuration planning that will help U.S. Coast Guard planners to determine the appropriate response equipment and personnel for major spills. The report discusses the application of advanced artificial intelligence planning techniques, as well as other software tools for spill trajectory modeling, plan evaluation and map display. The implementation of the prototype system is discussed in the context of two specific major spill scenarios in the San Francisco Bay.

  20. New QP/QI Symmetric Stellarator Configurations

    SciTech Connect

    Spong, Donald A; Harris, Jeffrey H

    2010-01-01

    A unique characteristic of the quasi-poloidal/isodynamic transport optimization strategy is that it can lead to stellarators that deviate from the usual 'doughnut' shape; i.e., they can have extended relatively straight cylindrical sections of plasma (connected by corner regions). This offers a number of potential design advantages, including simplified coil geometries, novel divertor approaches, low bootstrap current (less potential for ELMs and disruptions), more acceptable wall heat fluxes, and demountable blankets for reactors. The STELLOPT approach has been used to develop optimized configurations of this type for two and four field periods with aspect ratio / in the range of 8 to 16.

  1. In-Tube Laser Propulsion Configurations

    NASA Astrophysics Data System (ADS)

    Kim, Sukyum; Urabe, Naohide; Torikai, Hiroyuki; Sasoh, Akihiro; Jeung, In-Seuck

    2003-05-01

    Laser propulsion research activities at Shock Wave Research Center, Institute of Fluid Science, Tohoku University, focus themselves on `in-tube' configurations. The thrust is enhanced in a confined acceleration region. Other advantages are obtained from the viewpoint of practical application. We are now investigating various extensions of the Laser-driven In-Tube Accelerator (LITA) (1) ablative in-tube propulsion, (2) thrust enhancement using applied magnetic field, (3) plasma pre-generation using a pilot laser irradiation, (4) demonstration of supersonic laser propulsion. The progresses in these subjects are presented.

  2. Distance distribution in configuration-model networks

    NASA Astrophysics Data System (ADS)

    Nitzan, Mor; Katzav, Eytan; Kühn, Reimer; Biham, Ofer

    2016-06-01

    We present analytical results for the distribution of shortest path lengths between random pairs of nodes in configuration model networks. The results, which are based on recursion equations, are shown to be in good agreement with numerical simulations for networks with degenerate, binomial, and power-law degree distributions. The mean, mode, and variance of the distribution of shortest path lengths are also evaluated. These results provide expressions for central measures and dispersion measures of the distribution of shortest path lengths in terms of moments of the degree distribution, illuminating the connection between the two distributions.

  3. Tunable configurational anisotropy of concave triangular nanomagnets

    NASA Astrophysics Data System (ADS)

    Nanayakkara, Kasuni; Vasil'evskii, Ivan S.; Eremin, Igor S.; Kolentsova, Olga S.; Kargin, Nikolay I.; Anferov, Alexander; Kozhanov, Alexander

    2016-06-01

    Shape and dimension variation effects on the configurational anisotropy and magnetization ground states of single domain triangular nano-magnets are investigated using micromagnetic simulations and magnetic force microscopy. We show that introducing concavity or elongating vertexes stabilize the Y magnetization ground states of triangular nanomagnets. A phenomenological model relating the magnetization anisotropy and triangle geometry parameters is developed. MFM imaging reveals shape defined buckle and Y ground states that are in good agreement with numeric simulations. Concavity and vertex extrusion allow for the form-ruled magnetization ground state engineering in the shapes with higher orders of symmetry.

  4. VU: A configurable environment for data visualization

    NASA Astrophysics Data System (ADS)

    Ozell, B.; Guibault, F.; Camarero, R.; Magnan, R.

    A software package, VU, resulting from an ongoing activity in the area of data visualization issued from the numerical solution of partial differential equations is presented. The goal is to produce a visualization program stemming from the computational engineering world rather than the computer science world and, as such, targeting the requirements of field practitioners. The functional structure of VU is described and its configurability is discussed. The basic objects of VU and its capabilities are detailed. Implementation details and integration into a code development environment, PIRATE, are described.

  5. Structural complexity and configurational entropy of crystals.

    PubMed

    Krivovichev, Sergey V

    2016-04-01

    Using a statistical approach, it is demonstrated that the complexity of a crystal structure measured as the Shannon information per atom [Krivovichev (2012). Acta Cryst. A68, 393-398] represents a negative contribution to the configurational entropy of a crystalline solid. This conclusion is in full accordance with the general agreement that information and entropy are reciprocal variables. It also agrees well with the understanding that complex structures possess lower entropies relative to their simpler counterparts. The obtained equation is consistent with the Landauer principle and points out that the information encoded in a crystal structure has a physical nature. PMID:27048729

  6. Confinement of translated field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Tuszewski, M.; Armstrong, W. T.; Chrien, R. E.; Klingner, P. L.; McKenna, K. F.; Rej, D. J.; Sherwood, E. G.; Siemon, R. E.

    1986-03-01

    The confinement properties of translating field-reversed configurations (FRC) in the FRX-C/T device [Phys. Fluids 29, (1986)] are analyzed and compared to previous data without translation and to available theory. Translation dynamics do not appear to appreciably modify the FRC confinement. Some empirical scaling laws with respect to various plasma parameters are extracted from the data. These are qualitatively similar to those obtained in the TRX-1 device [Phys. Fluids 28, 888 (1985)] without translation and with a different formation method. Translation with a static gas fill offers new opportunities such as improved particle confinement or refueling of the FRC particle inventory.

  7. CFD configurations for hydraulic turbine startup

    NASA Astrophysics Data System (ADS)

    Nicolle, J.; Giroux, A. M.; Morissette, J. F.

    2014-03-01

    This paper presents various numerical setups for modelling Francis turbine startups involving moving meshes and variable runner speed in order to help define best practices. During the accelerating phase of the startup, the flow is self-similar between channels, thus making single sector configuration appropriate. Adding the draft tube improves the results by allowing pressure recovery midway during in the startup. At the speed no-load regime, a rotating stall phenomenon occurs and can only be capted with the full runner included in the simulation. Comparison with experimental data, such as runner speed and strain gauge measurements, generally shows good agreement.

  8. Operational benefits from the terminal configured vehicle

    NASA Technical Reports Server (NTRS)

    Reeder, J. P.; Schmitz, R. A.; Clark, L. V.

    1979-01-01

    The NASA Terminal Configured Vehicle is a flying laboratory used to conduct research and development on improved airborne systems (including avionics) and operational flight procedures, with particular emphasis on utilization in the terminal area environment. The objectives of this technology development activity, focused on conventional transport aircraft, are to develop and demonstrate improvements which can lead to increased airport and runway capacity, increased air traffic controller productivity, energy efficient terminal area operations, reduced weather minima with safety, and reduced community noise by use of appropriate procedures. This paper discusses some early results of this activity in addition to defining present efforts and future research plans.

  9. On Problems Associated with Modeling Wing-Tail Configurations from Wind Tunnel Data

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Klein, Vladislav

    2007-01-01

    This paper considers factors that contribute to poor identification of unsteady aerodynamics from wind tunnel data for an airliner configuration. One approach to modeling a wing-tail configuration is considered and applied to both steady and large-amplitude forced pitch oscillation wind tunnel data taken over a wide range of angles of attack but a limited range of amplitude and frequencies. The identified models fit the measured data well but in some cases with inaccurate parameters. Only limited conclusions can be drawn from analysis of the current data set until further experiments can be performed to resolve the identification issues. The analysis of measured and simulated data provides some insights and guidance on how an effective experiment may be designed for wing-tail configurations with nonlinear unsteady aerodynamics.

  10. Sensitivity of detachment extent to magnetic configuration and external parameters

    NASA Astrophysics Data System (ADS)

    Lipschultz, Bruce; Parra, Felix I.; Hutchinson, Ian H.

    2016-05-01

    Divertor detachment may be essential to reduce heat loads to magnetic fusion tokamak reactor divertor surfaces. Yet in experiments it is difficult to control the extent of the detached, low pressure, plasma region. At maximum extent the front edge of the detached region reaches the X-point and can lead to degradation of core plasma properties. We define the ‘detachment window’ in a given position control variable C (for example, the upstream plasma density) as the range in C within which the front location can be stably held at any position from the target to the X-point; increased detachment window corresponds to better control. We extend a 1D analytic model [1] to determine the detachment window for the following control variables: the upstream plasma density, the impurity concentration and the power entering the scrape-off layer (SOL). We find that variations in magnetic configuration can have strong effects; increasing the ratio of the total magnetic field at the X-point to that at the target, {{B}×}/{{B}t} , (total flux expansion, as in the super-x divertor configuration) strongly increases the detachment window for all control variables studied, thus strongly improving detachment front control and the capability of the divertor plasma to passively accommodate transients while still staying detached. Increasing flux tube length and thus volume in the divertor, through poloidal flux expansion (as in the snowflake or x-divertor configurations) or length of the divertor, also increases the detachment window, but less than the total flux expansion does. The sensitivity of the detachment front location, z h , to each control variable, C, defined as \\partial {{z}h}/\\partial C , depends on the magnetic configuration. The size of the radiating volume and the total divertor radiation increase \\propto {{≤ft({{B}×}/{{B}t}\\right)}2} and \\propto {{B}×}/{{B}t} , respectively, but not by increasing divertor poloidal flux expansion or field line length. We

  11. Advanced discretizations and multigrid methods for liquid crystal configurations

    NASA Astrophysics Data System (ADS)

    Emerson, David B.

    Liquid crystals are substances that possess mesophases with properties intermediate between liquids and crystals. Here, we consider nematic liquid crystals, which consist of rod-like molecules whose average pointwise orientation is represented by a unit-length vector, n( x, y, z) = (n1, n 2, n3)T. In addition to their self-structuring properties, nematics are dielectrically active and birefringent. These traits continue to lead to many important applications and discoveries. Numerical simulations of liquid crystal configurations are used to suggest the presence of new physical phenomena, analyze experiments, and optimize devices. This thesis develops a constrained energy-minimization finite-element method for the efficient computation of nematic liquid crystal equilibrium configurations based on a Lagrange multiplier formulation and the Frank-Oseen free-elastic energy model. First-order optimality conditions are derived and linearized via a Newton approach, yielding a linear system of equations. Due to the nonlinear unit-length constraint, novel well-posedness theory for the variational systems, as well as error analysis, is conducted. The approach is shown to constitute a convergent and well-posed approach, absent typical simplifying assumptions. Moreover, the energy-minimization method and well-posedness theory developed for the free-elastic case are extended to include the effects of applied electric fields and flexoelectricity. In the computational algorithm, nested iteration is applied and proves highly effective at reducing computational costs. Additionally, an alternative technique is studied, where the unit-length constraint is imposed by a penalty method. The performance of the penalty and Lagrange multiplier methods is compared. Furthermore, tailored trust-region strategies are introduced to improve robustness and efficiency. While both approaches yield effective algorithms, the Lagrange multiplier method demonstrates superior accuracy per unit cost. In

  12. Configurational phases in elastic foams under lengthscale-free punching

    NASA Astrophysics Data System (ADS)

    Sabuwala, Tapan; Dai, Xiangyu; Gioia, Gustavo

    2016-08-01

    We carry out experiments with brick-like specimens of elastic open-cell (EOC) foams of three relative densities. Individual specimens may be "tall" (height = width = depth) or "short" (2 height = width = depth). We place each specimen on a supporting plate and use a lengthscale-free (wedge-shaped or conical) punch to apply forces downward along the specimen's height. Regardless of the type of specimen, the force-penetration curves remain linear, for the wedge-shaped punch, or quadratic, for the conical punch, up to a sizable penetration commensurate with the smallest lengthscale of the specimen. After that there is an abrupt, all-but-discontinuous change in stiffness: if the specimen is tall, the stiffness drops; if the specimen is short, the stiffness shoots up. To analyze these curious experimental results, we posit that EOC foams can be found in either of two configurational phases, here termed the low-strain phase and the high-strain phase, which share a two-dimensional interface (a surface of strain discontinuity). The analysis may be outlined as follows. In the first part of an experiment, there obtains a "similarity regime" in which the penetration of the punch and the radius of the interface are the only prevailing lengthscales (because the punch is lengthscale free). In this case, it is possible to show that the force-penetration curve must be linear, or quadratic, depending on whether the punch be wedge-shaped or conical, respectively. This prediction of the analysis is consistent with the experiments. In time, the similarity regime breaks down when the interface reaches one of the specimen's boundaries distal to the tip of the punch. If the specimen is tall, the soft, stress-free lateral boundary is reached first, and the stiffness must drop; if the specimen is short, the hard boundary in contact with the supporting plate is reached first, and the stiffness must shoot up. These predictions too are consistent with the experiments. To provide direct

  13. HotSpot Software Configuration Management Plan

    SciTech Connect

    Walker, H; Homann, S G

    2009-03-12

    This Software Configuration Management Plan (SCMP) describes the software configuration management procedures used to ensure that the HotSpot dispersion model meets the requirements of its user base, which includes: (1) Users of the PC version of HotSpot for consequence assessment, hazard assessment and safety analysis calculations; and (2) Users of the NARAC Web and iClient software tools, which allow users to run HotSpot for consequence assessment modeling These users and sponsors of the HotSpot software and the organizations they represent constitute the intended audience for this document. This plan is intended to meet Critical Recommendations 1 and 3 from the Software Evaluation of HotSpot and DOE Safety Software Toolbox Recommendation for inclusion of HotSpot in the Department of Energy (DOE) Safety Software Toolbox. HotSpot software is maintained for the Department of Energy Office of Emergency Operations by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL). An overview of HotSpot and NARAC are provided.

  14. Technical activities of the configuration aeroelasticity branch

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R. (Editor)

    1991-01-01

    A number of recent technical activities of the Configuration Aeroelasticity Branch of the NASA Langley Research Center are discussed in detail. The information on the research branch is compiled in twelve separate papers. The first of these topics is a summary of the purpose of the branch, including a full description of the branch and its associated projects and program efforts. The next ten papers cover specific projects and are as follows: Experimental transonic flutter characteristics of supersonic cruise configurations; Aeroelastic effects of spoiler surfaces mounted on a low aspect ratio rectangular wing; Planform curvature effects on flutter of 56 degree swept wing determined in Transonic Dynamics Tunnel (TDT); An introduction to rotorcraft testing in TDT; Rotorcraft vibration reduction research at the TDT; A preliminary study to determine the effects of tip geometry on the flutter of aft swept wings; Aeroelastic models program; NACA 0012 pressure model and test plan; Investigation of the use of extension twist coupling in composite rotor blades; and Improved finite element methods for rotorcraft structures. The final paper describes the primary facility operation by the branch, the Langley TDT.

  15. The configuration of the Brazilian scientific field.

    PubMed

    Barata, Rita B; Aragão, Erika; de Sousa, Luis E P Fernandes; Santana, Taris M; Barreto, Mauricio L

    2014-03-01

    This article describes the configuration of the scientific field in Brazil, characterizing the scientific communities in every major area of knowledge in terms of installed capacity, ability to train new researchers, and capacity for academic production. Empirical data from several sources of information are used to characterize the different communities. Articulating the theoretical contributions of Pierre Bourdieu, Ludwik Fleck, and Thomas Kuhn, the following types of capital are analyzed for each community: social capital (scientific prestige), symbolic capital (dominant paradigm), political capital (leadership in S & T policy), and economic capital (resources). Scientific prestige is analyzed by taking into account the volume of production, activity index, citations, and other indicators. To characterize symbolic capital, the dominant paradigms that distinguish the natural sciences, the humanities, applied sciences, and technology development are analyzed theoretically. Political capital is measured by presidency in one of the main agencies in the S & T national system, and research resources and fellowships define the economic capital. The article discusses the composition of these different types of capital and their correspondence to structural capacities in various communities with the aim of describing the configuration of the Brazilian scientific field. PMID:24676181

  16. Ligand configurational entropy and protein binding.

    PubMed

    Chang, Chia-en A; Chen, Wei; Gilson, Michael K

    2007-01-30

    The restriction of a small molecule's motion on binding to a protein causes a loss of configurational entropy, and thus a penalty in binding affinity. Some energy models used in computer-aided ligand design neglect this entropic penalty, whereas others account for it based on an expected drop in the number of accessible rotamers upon binding. However, the validity of the physical assumptions underlying the various approaches is largely unexamined. The present study addresses this issue by using Mining Minima calculations to analyze the association of amprenavir with HIV protease. The computed loss in ligand configurational entropy is large, contributing approximately 25 kcal/mol (4.184 kJ/kcal) to DeltaG degrees. Most of this loss results from narrower energy wells in the bound state, rather than a drop in the number of accessible rotamers. Coupling among rotation/translation and internal degrees of freedom complicates the decomposition of the entropy change into additive terms. The results highlight the potential to gain affinity by designing conformationally restricted ligands and have implications for the formulation of energy models for ligand scoring. PMID:17242351

  17. Configuration interaction calculations with infinite angular = expansions

    SciTech Connect

    Goldman, S.P.; Glickman, T.

    1996-05-01

    The Modified Configuration Interaction (MCI) method improves the angular convergence of Configuration Interaction (CI) calculations by several orders of magnitude by mixing a priori a large number of angular basis functions. With MCI one can therefore use basis functions with very large angular momentum quantum numbers, overcoming an important limitation of conventional CI. Although this is desirable given the excellent convergence obtained, the large number of angular integrations and the calculation of n-j symbols with large values of l to high accuracy, make the angular calculations lengthy. In this work a new angular representation for CI calculations is presented that is much more efficient and powerful. Instead of the large number of angular functions of MCI the authors use a basis set containing an infinite linear combination of angular functions. All the necessary integrations involving these infinite expansions are done in closed form and are actually easy and fast to compute. The linear coefficients in the angular expansion are optimized in terms of a few non-linear parameters. Several examples will be presented with applications to two-electron systems.

  18. Ligand configurational entropy and protein binding

    PubMed Central

    Chang, Chia-en A.; Chen, Wei; Gilson, Michael K.

    2007-01-01

    The restriction of a small molecule's motion on binding to a protein causes a loss of configurational entropy, and thus a penalty in binding affinity. Some energy models used in computer-aided ligand design neglect this entropic penalty, whereas others account for it based on an expected drop in the number of accessible rotamers upon binding. However, the validity of the physical assumptions underlying the various approaches is largely unexamined. The present study addresses this issue by using Mining Minima calculations to analyze the association of amprenavir with HIV protease. The computed loss in ligand configurational entropy is large, contributing ∼25 kcal/mol (4.184 kJ/kcal) to ΔG°. Most of this loss results from narrower energy wells in the bound state, rather than a drop in the number of accessible rotamers. Coupling among rotation/translation and internal degrees of freedom complicates the decomposition of the entropy change into additive terms. The results highlight the potential to gain affinity by designing conformationally restricted ligands and have implications for the formulation of energy models for ligand scoring. PMID:17242351

  19. Average configuration of the induced venus magnetotail

    SciTech Connect

    McComas, D.J.; Spence, H.E.; Russell, C.T.

    1985-01-01

    In this paper we discuss the interaction of the solar wind flow with Venus and describe the morphology of magnetic field line draping in the Venus magnetotail. In particular, we describe the importance of the interplanetary magnetic field (IMF) X-component in controlling the configuration of field draping in this induced magnetotail, and using the results of a recently developed technique, we examine the average magnetic configuration of this magnetotail. The derived J x B forces must balance the average, steady state acceleration of, and pressure gradients in, the tail plasma. From this relation the average tail plasma velocity, lobe and current sheet densities, and average ion temperature have been derived. In this study we extend these results by making a connection between the derived consistent plasma flow speed and density, and the observational energy/charge range and sensitivity of the Pioneer Venus Orbiter (PVO) plasma analyzer, and demonstrate that if the tail is principally composed of O/sup +/, the bulk of the plasma should not be observable much of the time that the PVO is within the tail. Finally, we examine the importance of solar wind slowing upstream of the obstacle and its implications for the temperature of pick-up planetary ions, compare the derived ion temperatures with their theoretical maximum values, and discuss the implications of this process for comets and AMPTE-type releases.

  20. Magnetic topology of a candidate NCSX plasma boundary configuration

    NASA Astrophysics Data System (ADS)

    Koniges, A. E.; Grossman, A.; Fenstermacher, M.; Kisslinger, J.; Mioduszewski, P.; Rognlien, T.; Strumberger, E.; Umansky, M.

    2003-02-01

    A candidate magnetic topology of the plasma boundary of the proposed compact stellarator national compact stellarator experiment (NCSX) is investigated using field-line tracing with diffusion. The required magnetic fields are obtained from a free-boundary equilibrium using the magnetic fields from external coils and bootstrap plasma currents inside the last closed magnetic surface (LCMS). These results are used to calculate the magnetic fields of the finite beta equilibria inside and outside the LCMS in a form suitable for field-line tracing. Poincaré plots of field lines that diffuse outwards from starting points just inside the LCMS indicate an ergodic divertor region. Intersections of field lines with a simple limiting surface show contained patches suitable for divertor control. Undesirable regions of sharply inclined angle of intersection with the limiting surface are localized, indicating the suitability of the configuration for optimized divertor design techniques. We also discuss physics implications of field-line lengths in the divertor region.

  1. Profile stabilization of tilt mode in a Field Reversed Configuration

    SciTech Connect

    Cobb, J.W.; Tajima, T.; Barnes, D.C.

    1993-06-01

    The possibility of stabilizing the tilt mode in Field Reversed Configurations without resorting to explicit kinetic effects such as large ion orbits is investigated. Various pressure profiles, P({Psi}), are chosen, including ``hollow`` profiles where current is strongly peaked near the separatrix. Numerical equilibria are used as input for an initial value simulation which uses an extended Magnetohydrodynamic (MHD) model that includes viscous and Hall terms. Tilt stability is found for specific hollow profiles when accompanied by high values of separatrix beta, {beta}{sub sep}. The stable profiles also have moderate to large elongation, racetrack separatrix shape, and lower values of 3, average ratio of Larmor radius to device radius. The stability is unaffected by changes in viscosity, but the neglect of the Hall term does cause stable results to become marginal or unstable. Implications for interpretation of recent experiments are discussed.

  2. Impaired Spatial and Non-Spatial Configural Learning in Patients with Hippocampal Pathology

    ERIC Educational Resources Information Center

    Kumaran, Dharshan; Hassabis, Demis; Spiers, Hugo J.; Vann, Seralynne D.; Vargha-Khadem, Faraneh; Maguire, Eleanor A.

    2007-01-01

    The hippocampus has been proposed to play a critical role in memory through its unique ability to bind together the disparate elements of an experience. This hypothesis has been widely examined in rodents using a class of tasks known as "configural" or "non-linear", where outcomes are determined by specific combinations of elements, rather than…

  3. The Transition to a Configurator Based Design Process in an MTO+C+E Environment

    ERIC Educational Resources Information Center

    Ahrens, Fred

    2009-01-01

    University student internships can be an important pre-professional experience for the student and be an immense benefit to an employer. Because of the findings of a 6-Sigma project to reduce engineering errors, a design configurator was to be rebuilt to include updated design information and expanded product coverage. Lacking available full time…

  4. Tolerance for distorted faces: challenges to a configural processing account of familiar face recognition.

    PubMed

    Sandford, Adam; Burton, A Mike

    2014-09-01

    Face recognition is widely held to rely on 'configural processing', an analysis of spatial relations between facial features. We present three experiments in which viewers were shown distorted faces, and asked to resize these to their correct shape. Based on configural theories appealing to metric distances between features, we reason that this should be an easier task for familiar than unfamiliar faces (whose subtle arrangements of features are unknown). In fact, participants were inaccurate at this task, making between 8% and 13% errors across experiments. Importantly, we observed no advantage for familiar faces: in one experiment participants were more accurate with unfamiliars, and in two experiments there was no difference. These findings were not due to general task difficulty - participants were able to resize blocks of colour to target shapes (squares) more accurately. We also found an advantage of familiarity for resizing other stimuli (brand logos). If configural processing does underlie face recognition, these results place constraints on the definition of 'configural'. Alternatively, familiar face recognition might rely on more complex criteria - based on tolerance to within-person variation rather than highly specific measurement. PMID:24853629

  5. Developmental Trajectories of Part-Based and Configural Object Recognition in Adolescence

    ERIC Educational Resources Information Center

    Juttner, Martin; Wakui, Elley; Petters, Dean; Kaur, Surinder; Davidoff, Jules

    2013-01-01

    Three experiments assessed the development of children's part and configural (part-relational) processing in object recognition during adolescence. In total, 312 school children aged 7-16 years and 80 adults were tested in 3-alternative forced choice (3-AFC) tasks. They judged the correct appearance of upright and inverted presented familiar…

  6. Effects of spatial configurations on the resolution of spatial working memory.

    PubMed

    Mutluturk, Aysu; Boduroglu, Aysecan

    2014-11-01

    Recent research demonstrated that people represent spatial information configurally and preservation of configural cues at retrieval helps memory for spatial locations (Boduroğlu & Shah, Memory & Cognition, 37(8), 1120-1131 2009; Jiang, Olson, & Chun, Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(3), 683-702 2000). The present study investigated the effects of spatial configurations on the resolution of individual location representations. In an open-ended task, participants first studied a set of object locations (three and five locations). Then, in a test display where available configural cues were manipulated, participants were asked to determine the original location of a target object whose color was auditorially cued. The difference between the reported location and the original location was taken as a measure of spatial resolution. In three experiments, we consistently observed that the resolution of spatial representations was facilitated by the preservation of spatial configurations at retrieval. We argue that participants may be using available configural cues in conjunction with the summary representation (e.g., centroid) of the original display in the computation of target locations. PMID:24939236

  7. Ab initio study of biphenyl chemisorption on Si(001): Configurational stability

    NASA Astrophysics Data System (ADS)

    Mamatkulov, M.; Stauffer, L.; Minot, C.; Sonnet, Ph.

    2006-01-01

    We present an ab initio energetical and structural study of the configurational stability of the biphenyl molecule adsorbed on the Si(001) surface. A number of models in biphenyl tight-bridge, butterfly, twisted, and tilted configurations are considered. For an undissociated biphenyl adsorption, the tight-bridge configuration is found to be the most stable one, slightly favored over the butterfly configuration. The effect on the stability of various parameters is investigated. The position with respect to the surface of the first phenyl ring atom (C1) on which the second ring is bound plays a determinant role. The tilted dimer under the second ring mainly acts in the biphenyl butterfly and tilted configurations, and a second ring location above a silicon down-atom favors stability. The effect of the second ring height above the surface is also discussed. Our results allow us to classify these different contributions by decreasing importance. By the hypothesis of a dissociative biphenyl adsorption, the calculated adsorption energies are clearly lower than in the corresponding undissociated model and the dissociated butterfly configuration is largely favored. Comparing our results to the experimental data, we propose some interpretations relative to the weakly and strongly chemisorbed biphenyl molecule observed in the scanning tunneling microscopy experiments.

  8. 3D magnetic field configuration of small-scale reconnection events in the solar plasma atmosphere

    SciTech Connect

    Shimizu, T.

    2015-10-15

    The outer solar atmosphere, i.e., the corona and the chromosphere, is replete with small energy-release events, which are accompanied by transient brightening and jet-like ejections. These events are considered to be magnetic reconnection events in the solar plasma, and their dynamics have been studied using recent advanced observations from the Hinode spacecraft and other observatories in space and on the ground. These events occur at different locations in the solar atmosphere and vary in their morphology and amount of the released energy. The magnetic field configurations of these reconnection events are inferred based on observations of magnetic fields at the photospheric level. Observations suggest that these magnetic configurations can be classified into two groups. In the first group, two anti-parallel magnetic fields reconnect to each other, yielding a 2D emerging flux configuration. In the second group, helical or twisted magnetic flux tubes are parallel or at a relative angle to each other. Reconnection can occur only between anti-parallel components of the magnetic flux tubes and may be referred to as component reconnection. The latter configuration type may be more important for the larger class of small-scale reconnection events. The two types of magnetic configurations can be compared to counter-helicity and co-helicity configurations, respectively, in laboratory plasma collision experiments.

  9. Effects of configural processing on the perceptual spatial resolution for face features.

    PubMed

    Namdar, Gal; Avidan, Galia; Ganel, Tzvi

    2015-11-01

    Configural processing governs human perception across various domains, including face perception. An established marker of configural face perception is the face inversion effect, in which performance is typically better for upright compared to inverted faces. In two experiments, we tested whether configural processing could influence basic visual abilities such as perceptual spatial resolution (i.e., the ability to detect spatial visual changes). Face-related perceptual spatial resolution was assessed by measuring the just noticeable difference (JND) to subtle positional changes between specific features in upright and inverted faces. The results revealed robust inversion effect for spatial sensitivity to configural-based changes, such as the distance between the mouth and the nose, or the distance between the eyes and the nose. Critically, spatial resolution for face features within the region of the eyes (e.g., the interocular distance between the eyes) was not affected by inversion, suggesting that the eye region operates as a separate 'gestalt' unit which is relatively immune to manipulations that would normally hamper configural processing. Together these findings suggest that face orientation modulates fundamental psychophysical abilities including spatial resolution. Furthermore, they indicate that classic psychophysical methods can be used as a valid measure of configural face processing. PMID:25998751

  10. Advanced design concepts in nuclear electric propulsion. [and spacecraft configurations

    NASA Technical Reports Server (NTRS)

    Peelgren, M. L.; Mondt, J. F.

    1974-01-01

    Conceptual designs of the nuclear propulsion programs are reported. Major areas of investigation were (1) design efforts on spacecraft configuration and heat rejection subsystem, (2) high-voltage thermionic reactor concepts, and (3) dual-mode spacecraft configuration study.

  11. Individual differences in spatial configuration learning predict the occurrence of intrusive memories.

    PubMed

    Meyer, Thomas; Smeets, Tom; Giesbrecht, Timo; Quaedflieg, Conny W E M; Girardelli, Marta M; Mackay, Georgina R N; Merckelbach, Harald

    2013-03-01

    The dual-representation model of posttraumatic stress disorder (PTSD; Brewin, Gregory, Lipton, & Burgess, Psychological Review, 117, 210-232 2010) argues that intrusions occur when people fail to construct context-based representations during adverse experiences. The present study tested a specific prediction flowing from this model. In particular, we investigated whether the efficiency of temporal-lobe-based spatial configuration learning would account for individual differences in intrusive experiences and physiological reactivity in the laboratory. Participants (N = 82) completed the contextual cuing paradigm, which assesses spatial configuration learning that is believed to depend on associative encoding in the parahippocampus. They were then shown a trauma film. Afterward, startle responses were quantified during presentation of trauma reminder pictures versus unrelated neutral and emotional pictures. PTSD symptoms were recorded in the week following participation. Better configuration learning performance was associated with fewer perceptual intrusions, r = -.33, p < .01, but was unrelated to physiological responses to trauma reminder images (ps > .46) and had no direct effect on intrusion-related distress and overall PTSD symptoms, rs > -.12, ps > .29. However, configuration learning performance tended to be associated with reduced physiological responses to unrelated negative images, r = -.20, p = .07. Thus, while spatial configuration learning appears to be unrelated to affective responding to trauma reminders, our overall findings support the idea that the context-based memory system helps to reduce intrusions. PMID:23001992

  12. Design and Computational/Experimental Analysis of Low Sonic Boom Configurations

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Baker, Timothy J.; Hicks, Raymond M.

    1999-01-01

    Recent studies have shown that inviscid CFD codes combined with a planar extrapolation method give accurate sonic boom pressure signatures at distances greater than one body length from supersonic configurations if either adapted grids swept at the approximate Mach angle or very dense non-adapted grids are used. The validation of CFD for computing sonic boom pressure signatures provided the confidence needed to undertake the design of new supersonic transport configurations with low sonic boom characteristics. An aircraft synthesis code in combination with CFD and an extrapolation method were used to close the design. The principal configuration of this study is designated LBWT (Low Boom Wing Tail) and has a highly swept cranked arrow wing with conventional tails, and was designed to accommodate either 3 or 4 engines. The complete configuration including nacelles and boundary layer diverters was evaluated using the AIRPLANE code. This computer program solves the Euler equations on an unstructured tetrahedral mesh. Computations and wind tunnel data for the LBWT and two other low boom configurations designed at NASA Ames Research Center are presented. The two additional configurations are included to provide a basis for comparing the performance and sonic boom level of the LBWT with contemporary low boom designs and to give a broader experiment/CFD correlation study. The computational pressure signatures for the three configurations are contrasted with on-ground-track near-field experimental data from the NASA Ames 9x7 Foot Supersonic Wind Tunnel. Computed pressure signatures for the LBWT are also compared with experiment at approximately 15 degrees off ground track.

  13. An alternative experimental approach for subcritical configurations of the IPEN/MB-01 nuclear reactor

    NASA Astrophysics Data System (ADS)

    Gonnelli, E.; Lee, S. M.; Pinto, L. N.; Landim, H. R.; Diniz, R.; Jerez, R.; dos Santos, A.

    2015-07-01

    This work presents an alternative approach for the reactivity worth experiments analysis in the IPEN/MB-01 reactor considering highly subcritical arrays. In order to reach the subcritical levels, the removal of a specific number of fuel rods is proposed. Twenty three configurations were carried out for this purpose. The control bank insertion experiment was used only as reference for the fuel rod experiment and, in addition, the control banks were maintained completely withdrawn during all the fuel rods experiment. The theoretical simulation results using the MCNP5 code and the ENDF/B-VII.0 library neutron data are in a very good agreement to experimental results.

  14. SEPAC software configuration control plan and procedures, revision 1

    NASA Technical Reports Server (NTRS)

    1981-01-01

    SEPAC Software Configuration Control Plan and Procedures are presented. The objective of the software configuration control is to establish the process for maintaining configuration control of the SEPAC software beginning with the baselining of SEPAC Flight Software Version 1 and encompass the integration and verification tests through Spacelab Level IV Integration. They are designed to provide a simplified but complete configuration control process. The intent is to require a minimum amount of paperwork but provide total traceability of SEPAC software.

  15. Optimized geometric configuration of active ring laser gyroscopes

    NASA Astrophysics Data System (ADS)

    Gormley, John; Salloum, Tony

    2016-05-01

    We present a thorough derivation of the Sagnac effect for a ring laser gyroscope of any arbitrary polygonal configuration. We determine optimized alternative geometric configurations for the mirrors. The simulations incur the implementation of a lasing medium with the standard square system, triangular, pentagonal, and oblongated square configuration (diamond). Simulations of possible new geometric configurations are considered, as well as the possibility of adjusting the concavity of the mirrors.

  16. Neuroplasmonics: From Kretschmann configuration to plasmonic crystals

    NASA Astrophysics Data System (ADS)

    Sohrabi, Foozieh; Hamidi, Seyedeh Mehri

    2016-07-01

    Recently, a worldwide attempt for understanding the functions of brain and nervous system has been made. Hence, various aspects of neuroscience have been investigated through different techniques. Among these techniques, neuroplasmonics as a newborn branch of this science tries to seize the realm of in vitro and in vivo neural imaging, recording and healing. Neuroplasmonics offers advantages comprising rapidity, high sensitivity, biological compatibility, label-free and real-time detection by benefiting from the sensing and thermal characteristics of surface plasmon resonances (SPRs). This paper reviews four main branches of neuroplasmonics comprising prism coupler configurations, the combination of SPR and fluorescence microscopy and methods based on nanorods and plasmonic crystals. For each division, the advantages, disadvantages and the provided facilities will be discussed in detail.

  17. Generator configuration for solid oxide fuel cells

    DOEpatents

    Reichner, Philip

    1989-01-01

    Disclosed are improvements in a solid oxide fuel cell generator 1 having a multiplicity of electrically connected solid oxide fuel cells 2, where a fuel gas is passed over one side of said cells and an oxygen-containing gas is passed over the other side of said cells resulting in the generation of heat and electricity. The improvements comprise arranging the cells in the configuration of a circle, a spiral, or folded rows within a cylindrical generator, and modifying the flow rate, oxygen concentration, and/or temperature of the oxygen-containing gases that flow to those cells that are at the periphery of the generator relative to those cells that are at the center of the generator. In these ways, a more uniform temperature is obtained throughout the generator.

  18. SOFIA Optical Design for the Aft Configuration

    NASA Technical Reports Server (NTRS)

    Davis, Paul K.; Melugin, Ramsey K.

    1994-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a planned NASA facility consisting of an infrared telescope of 2.5 meter system aperture flying in a modified Boeing 747. It will have an image diameter of 1.5 arc seconds, an operating wavelength range from visible through 1 millimeter, an 8 arc minute field of view, and a chopping secondary. the configuration is a Cassegrian with a diagonal tertiary to direct the beam to a Nasmyth focus. The new choice of a location aft of the wings allows the primary mirror to have about an f/1.4 focal ratio, which is preferable to f/1.1 previously planned for the forward location.

  19. Optimal configuration algorithm of a satellite transponder

    NASA Astrophysics Data System (ADS)

    Sukhodoev, M. S.; Savenko, I. I.; Martynov, Y. A.; Savina, N. I.; Asmolovskiy, V. V.

    2016-04-01

    This paper describes the algorithm of determining the optimal transponder configuration of the communication satellite while in service. This method uses a mathematical model of the pay load scheme based on the finite-state machine. The repeater scheme is shown as a weighted oriented graph that is represented as plexus in the program view. This paper considers an algorithm example for application with a typical transparent repeater scheme. In addition, the complexity of the current algorithm has been calculated. The main peculiarity of this algorithm is that it takes into account the functionality and state of devices, reserved equipment and input-output ports ranged in accordance with their priority. All described limitations allow a significant decrease in possible payload commutation variants and enable a satellite operator to make reconfiguration solutions operatively.

  20. Intermediate filaments in small configuration spaces.

    PubMed

    Nöding, Bernd; Köster, Sarah

    2012-02-24

    Intermediate filaments play a key role in cell mechanics. Apart from their great importance from a biomedical point of view, they also act as a very suitable micrometer-sized model system for semiflexible polymers. We perform a statistical analysis of the thermal fluctuations of individual filaments confined in microchannels. The small channel width and the resulting deflections at the walls give rise to a reduction of the configuration space by about 2 orders of magnitude. This circumstance enables us to precisely measure the intrinsic persistence length of vimentin intermediate filaments and to show that they behave as ideal wormlike chains; we observe that small fluctuations in perpendicular planes decouple. Furthermore, the inclusion of results for confined actin filaments demonstrates that the Odijk confinement regime is valid over at least 1 order of magnitude in persistence length. PMID:22463576

  1. Configuration space representation in parallel coordinates

    NASA Technical Reports Server (NTRS)

    Fiorini, Paolo; Inselberg, Alfred

    1989-01-01

    By means of a system of parallel coordinates, a nonprojective mapping from R exp N to R squared is obtained for any positive integer N. In this way multivariate data and relations can be represented in the Euclidean plane (embedded in the projective plane). Basically, R squared with Cartesian coordinates is augmented by N parallel axes, one for each variable. The N joint variables of a robotic device can be represented graphically by using parallel coordinates. It is pointed out that some properties of the relation are better perceived visually from the parallel coordinate representation, and that new algorithms and data structures can be obtained from this representation. The main features of parallel coordinates are described, and an example is presented of their use for configuration space representation of a mechanical arm (where Cartesian coordinates cannot be used).

  2. Canard configured aircraft with 2-D nozzle

    NASA Technical Reports Server (NTRS)

    Child, R. D.; Henderson, W. P.

    1978-01-01

    A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.

  3. TIBER II configuration and structural design

    SciTech Connect

    Doggett, J.N.

    1986-08-29

    The TIBER-II machine is a minimum-size steady-state tokamak with sufficient fusion power, wall flux, and fluence to be used for undertaking a nuclear test mission. Although the machine is envisioned as an engineering device, it will demonstrate reactor-relevant physics. To achieve the small size and high performance goals of TIBER II, the engineered systems must be based on aggressive assumptions. In addition, the machine must be designed for ease of maintenance to ensure reaching the fluence goal of 5 MW yr/m/sup 2/ in a design lifetime of 13 years. This paper concentrates on the configuration and structural issues of designing a small, high-field, and high-flux device.

  4. MarFS-Requirements-Design-Configuration-Admin

    SciTech Connect

    Kettering, Brett Michael; Grider, Gary Alan

    2015-07-08

    This document will be organized into sections that are defined by the requirements for a file system that presents a near-POSIX (Portable Operating System Interface) interface to the user, but whose data is stored in whatever form is most efficient for the type of data being stored. After defining the requirement the design for meeting the requirement will be explained. Finally there will be sections on configuring and administering this file system. More and more, data dominates the computing world. There is a “sea” of data out there in many different formats that needs to be managed and used. “Mar” means “sea” in Spanish. Thus, this product is dubbed MarFS, a file system for a sea of data.

  5. Initial dynamic load estimates during configuration design

    NASA Technical Reports Server (NTRS)

    Schiff, Daniel

    1987-01-01

    This analysis includes the structural response to shock and vibration and evaluates the maximum deflections and material stresses and the potential for the occurrence of elastic instability, fatigue and fracture. The required computations are often performed by means of finite element analysis (FEA) computer programs in which the structure is simulated by a finite element model which may contain thousands of elements. The formulation of a finite element model can be time consuming, and substantial additional modeling effort may be necessary if the structure requires significant changes after initial analysis. Rapid methods for obtaining rough estimates of the structural response to shock and vibration are presented for the purpose of providing guidance during the initial mechanical design configuration stage.

  6. Potential flow applications to complex configurations

    NASA Technical Reports Server (NTRS)

    Cenko, A.; Tseng, W.; Madson, M.

    1991-01-01

    Recent advances in CFD methods have enabled the analytic calculation of the carriage loads for stores mounted on complex aircraft. The latest results have demonstrated excellent agreement with test data for the F-15 at M = 0.98. However, in a preliminary design environment, the necessity of generating and validating a Euler grid to fit the aircraft and store arrangement may not be feasible, particularly when effects of configuration changes are considered. For that reason alternative approaches which require less time to arrive at an answer deserve consideration. The paper presents the results of a study to determine if potential flow solutions can give acceptable estimates of store carriage loads at transonic speeds in a timely manner.

  7. Optimal Configurations for Rotating Spacecraft Formations

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Hall, Christopher D.

    2000-01-01

    In this paper a new class of formations that maintain a constant shape as viewed from the Earth is introduced. An algorithm is developed to place n spacecraft in a constant shape formation spaced equally in time using the classical orbital elements. To first order, the dimensions of the formation are shown to be simple functions of orbit eccentricity and inclination. The performance of the formation is investigated over a Keplerian orbit using a performance measure based on a weighted average of the angular separations between spacecraft in formation. Analytic approximations are developed that yield optimum configurations for different values of n. The analytic approximations are shown to be in excellent agreement with the exact solutions.

  8. Vehicle drive module having improved cooling configuration

    DOEpatents

    Radosevich, Lawrence D.; Meyer, Andreas A.; Kannenberg, Daniel G.; Kaishian, Steven C.; Beihoff, Bruce C.

    2007-02-13

    An electric vehicle drive includes a thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. Power electronic circuits are thermally matched, such as between component layers and between the circuits and the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  9. Hierarchical motion organization in random dot configurations

    NASA Technical Reports Server (NTRS)

    Bertamini, M.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)

    2000-01-01

    Motion organization has 2 aspects: the extraction of a (moving) frame of reference and the hierarchical organization of moving elements within the reference frame. Using a discrimination of relative motions task, the authors found large differences between different types of motion (translation, divergence, and rotation) in the degree to which each can serve as a moving frame of reference. Translation and divergence are superior to rotation. There are, however, situations in which rotation can serve as a reference frame. This is due to the presence of a second factor, structural invariants (SIs). SIs are spatial relationships persisting among the elements within a configuration such as a collinearity among points or one point coinciding with the center of rotation for another (invariant radius). The combined effect of these 2 factors--motion type and SIs-influences perceptual motion organization.

  10. 40 CFR 204.55-3 - Configuration identification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Configuration identification. 204.55-3... Configuration identification. (a) A separate compressor configuration shall be determined by each combination of... compressor stages. (3) Maximum pressure (psi). (4) Air intake system of compressor: (i) Number of...

  11. 40 CFR 205.55-3 - Configuration identification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Configuration identification. 205.55-3... identification. (a) A separate vehicle configuration shall be determined by each combination of the following parameters: (1) Exhaust system configuration. (i) Single vertical. (ii) Dual vertical. (iii)...

  12. 40 CFR 205.55-3 - Configuration identification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Configuration identification. 205.55-3... identification. (a) A separate vehicle configuration shall be determined by each combination of the following parameters: (1) Exhaust system configuration. (i) Single vertical. (ii) Dual vertical. (iii)...

  13. 40 CFR 204.55-3 - Configuration identification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Configuration identification. 204.55-3... Configuration identification. (a) A separate compressor configuration shall be determined by each combination of... compressor stages. (3) Maximum pressure (psi). (4) Air intake system of compressor: (i) Number of...

  14. 40 CFR 204.55-3 - Configuration identification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Configuration identification. 204.55-3... Configuration identification. (a) A separate compressor configuration shall be determined by each combination of... compressor stages. (3) Maximum pressure (psi). (4) Air intake system of compressor: (i) Number of...

  15. 40 CFR 204.55-3 - Configuration identification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Configuration identification. 204.55-3... Configuration identification. (a) A separate compressor configuration shall be determined by each combination of... compressor stages. (3) Maximum pressure (psi). (4) Air intake system of compressor: (i) Number of...

  16. School Configurations in Indiana and Their Perceived Impact in Education

    ERIC Educational Resources Information Center

    Hauswald, Jeff

    2012-01-01

    Despite the research conducted on school configurations, little is known about the landscape of school configurations in Indiana and about the perspectives of school leaders on school configurations and their perceived impact in education. District leaders do not have the information to make informed decisions relative to the best configuration…

  17. autokonf - A Configuration Script Generator Implemented in Perl

    SciTech Connect

    Reus, J F

    2005-01-12

    This paper discusses configuration scripts in general and the scripting language issues involved. A brief description of GNU autoconf is provided along with a contrasting overview of autokonf, a configuration script generator implemented in Perl, whose macros are implemented in Perl, generating a configuration script in Perl. It is very portable, easily extensible, and readily mastered.

  18. Toward a Phonetic Representation of Hand Configuration: The Thumb

    ERIC Educational Resources Information Center

    Johnson, Robert E.; Liddell, Scott K.

    2012-01-01

    In this article, we present a system for the representation of the configurations of the thumb in the hand configurations of signed languages and for the interactions of the thumb with the four fingers proper. The configuration of the thumb is described as a componential combination of the descriptions of thumb opposition, abduction of the CM…

  19. Microscopic Approaches to Nuclear Structure: Configuration Interaction

    SciTech Connect

    Ormand, W E

    2007-09-21

    The configuration interaction (CI) approach to solving the nuclear many-body problem, also known as the interacting shell model, has proven to be powerful tool in understanding the structure of nuclei. The principal criticism of past applications of the shell model is the reliance on empirical tuning to interaction matrix elements. If an accurate description of nuclei far from the valley of stability, where little or no data is available, a more fundamental approach is needed. This starts with recent ab initio approaches with effective interactions in the no-core shell model (NCSM). Using effective-field theory for guidance, fully ab initio descriptions of nuclei up to {sup 16}O with QCD based NN, NNN, and NNNN interactions will be possible within the next five years. An important task is then to determine how to use these NCSM results to develop effective interactions to describe heavier nuclei without the need to resort to an empirical retuning with every model space. Thus, it is likely that more traditional CI applications utilizing direct diagonalization and more fundamental interactions will be applicable to nuclei with perhaps up to one hundred constituents. But, these direct diagonalization CI applications will always be computationally limited due to the rapid increase in the number of configurations with particle number. Very recently, the shifted-contour method has been applied to the Auxiliary-field Monte Carlo approach to the Shell Model (AFMCSM), and preliminary applications exhibit a remarkable taming of the notorious sign problem. If the mitigation of the sign problem holds true, the AFMCSM will offer a method to compute quantum correlations to mean-field applications for just about all nuclei; giving exact results for CI model spaces that can approach 10{sup 20-25}. In these lectures, I will discuss modern applications of CI to the nuclear many-body problem that have the potential to guide nuclear structure theory into the next decade.

  20. Nonequilibrium dynamics of emergent field configurations

    NASA Astrophysics Data System (ADS)

    Howell, Rafael Cassidy

    The processes by which nonlinear physical systems approach thermal equilibrium is of great importance in many areas of science. Central to this is the mechanism by which energy is transferred between the many degrees of freedom comprising these systems. With this in mind, in this research the nonequilibrium dynamics of nonperturbative fluctuations within Ginzburg-Landau models are investigated. In particular, two questions are addressed. In both cases the system is initially prepared in one of two minima of a double-well potential. First, within the context of a (2 + 1) dimensional field theory, we investigate whether emergent spatio-temporal coherent structures play a dynamcal role in the equilibration of the field. We find that the answer is sensitive to the initial temperature of the system. At low initial temperatures, the dynamics are well approximated with a time-dependent mean-field theory. For higher temperatures, the strong nonlinear coupling between the modes in the field does give rise to the synchronized emergence of coherent spatio-temporal configurations, identified with oscillons. These are long-lived coherent field configurations characterized by their persistent oscillatory behavior at their core. This initial global emergence is seen to be a consequence of resonant behavior in the long wavelength modes in the system. A second question concerns the emergence of disorder in a highly viscous system modeled by a (3 + 1) dimensional field theory. An integro-differential Boltzmann equation is derived to model the thermal nucleation of precursors of one phase within the homogeneous background. The fraction of the volume populated by these precursors is computed as a function of temperature. This model is capable of describing the onset of percolation, characterizing the approach to criticality (i.e. disorder). It also provides a nonperturbative correction to the critical temperature based on the nonequilibrium dynamics of the system.

  1. Hybrid Wing Body Configuration System Studies

    NASA Technical Reports Server (NTRS)

    Nickol, Craig L.; McCullers, Arnie

    2009-01-01

    The objective of this study was to develop a hybrid wing body (HWB) sizing and analysis capability, apply that capability to estimate the fuel burn potential for an HWB concept, and identify associated technology requirements. An advanced tube with wings concept was also developed for comparison purposes. NASA s Flight Optimization System (FLOPS) conceptual aircraft sizing and synthesis software was modified to enable the sizing and analysis of HWB concepts. The noncircular pressurized centerbody of the HWB concept was modeled, and several options were created for defining the outboard wing sections. Weight and drag estimation routines were modified to accommodate the unique aspects of an HWB configuration. The resulting capability was then utilized to model a proprietary Boeing blended wing body (BWB) concept for comparison purposes. FLOPS predicted approximately a 15 percent greater drag, mainly caused by differences in compressibility drag estimation, and approximately a 5 percent greater takeoff gross weight, mainly caused by the additional fuel required, as compared with the Boeing data. Next, a 777-like reference vehicle was modeled in FLOPS and calibrated to published Boeing performance data; the same mission definition was used to size an HWB in FLOPS. Advanced airframe and propulsion technology assumptions were applied to the HWB to develop an estimate for potential fuel burn savings from such a concept. The same technology assumptions, where applicable, were then applied to an advanced tube-with-wings concept. The HWB concept had a 39 percent lower block fuel burn than the reference vehicle and a 12 percent lower block fuel burn than the advanced tube-with-wings configuration. However, this fuel burn advantage is partially derived from assuming the high-risk technology of embedded engines with boundary-layer-ingesting inlets. The HWB concept does have the potential for significantly reduced noise as a result of the shielding advantages that are inherent

  2. Using HPC within an operational forecasting configuration

    NASA Astrophysics Data System (ADS)

    Jagers, H. R. A.; Genseberger, M.; van den Broek, M. A. F. H.

    2012-04-01

    Various natural disasters are caused by high-intensity events, for example: extreme rainfall can in a short time cause major damage in river catchments, storms can cause havoc in coastal areas. To assist emergency response teams in operational decisions, it's important to have reliable information and predictions as soon as possible. This starts before the event by providing early warnings about imminent risks and estimated probabilities of possible scenarios. In the context of various applications worldwide, Deltares has developed an open and highly configurable forecasting and early warning system: Delft-FEWS. Finding the right balance between simulation time (and hence prediction lead time) and simulation accuracy and detail is challenging. Model resolution may be crucial to capture certain critical physical processes. Uncertainty in forcing conditions may require running large ensembles of models; data assimilation techniques may require additional ensembles and repeated simulations. The computational demand is steadily increasing and data streams become bigger. Using HPC resources is a logical step; in different settings Delft-FEWS has been configured to take advantage of distributed computational resources available to improve and accelerate the forecasting process (e.g. Montanari et al, 2006). We will illustrate the system by means of a couple of practical applications including the real-time dynamic forecasting of wind driven waves, flow of water, and wave overtopping at dikes of Lake IJssel and neighboring lakes in the center of The Netherlands. Montanari et al., 2006. Development of an ensemble flood forecasting system for the Po river basin, First MAP D-PHASE Scientific Meeting, 6-8 November 2006, Vienna, Austria.

  3. ISE structural dynamic experiments

    NASA Technical Reports Server (NTRS)

    Lock, Malcolm H.; Clark, S. Y.

    1988-01-01

    The topics are presented in viewgraph form and include the following: directed energy systems - vibration issue; Neutral Particle Beam Integrated Space Experiment (NPB-ISE) opportunity/study objective; vibration sources/study plan; NPB-ISE spacecraft configuration; baseline slew analysis and results; modal contributions; fundamental pitch mode; vibration reduction approaches; peak residual vibration; NPB-ISE spacecraft slew experiment; goodbye ISE - hello Zenith Star Program.

  4. A software package for the configuration of hardware devices following a generic model

    NASA Astrophysics Data System (ADS)

    Almeida, N.; Alemany, R.; Glege, F.; da Silva, J. C.; Varela, J.

    2004-10-01

    This paper describes a software package developed in C++ under the Linux environment that is intended for automatic hardware configuration in VME or PCI buses. Based on a generic model, users specify the configuration procedures and data in configuration files. Actual hardware configuration is performed by the software package, accessed through a simple C++ interface. The model is well suited for storage of configuration data in XML files or databases. The package is now being used in the local data acquisition system of the Electromagnetic Calorimeter of the CMS experiment at CERN. Program summaryTitle of program: Generic Configurator Catalogue identifier: ADUK Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUK Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: Intel Pentium IV PC Installations: ECAL Data Acquisition of the CMS experiment at CERN Operating systems or monitors under which the program has been tested: Linux 2.4.2 Programming language used: C++ Memory required to execute with typical data: depends on the complexity of the module configuration. Test runs requires less then 500 KB Number of bits in a word: 32 Number of processors used: 1 Distribution format: tar gzip file Number of bytes in distributed program, including test data, etc.: 234 542 Number of lines in distributed program, including test data etc.: 17 365 Nature of physical problem: Generalization of hardware device configuration procedure in VME or PCI buses. Method of solution: The developed package uses a generic configuration model that allows users to configure VME and PCI devices. The hardware configuration parameters and the data structures associated to each hardware register are specified in XML files. The package performs the desired configuration using these files along with a description of the hardware access proprieties of each register. Typical

  5. Effect of magnetic field configuration on the multiply charged ion and plume characteristics in Hall thruster plasmas

    SciTech Connect

    Kim, Holak; Lim, Youbong; Choe, Wonho Park, Sanghoo; Seon, Jongho

    2015-04-13

    Multiply charged ions and plume characteristics in Hall thruster plasmas are investigated with regard to magnetic field configuration. Differences in the plume shape and the fraction of ions with different charge states are demonstrated by the counter-current and co-current magnetic field configurations, respectively. The significantly larger number of multiply charged and higher charge state ions including Xe{sup 4+} are observed in the co-current configuration than in the counter-current configuration. The large fraction of multiply charged ions and high ion currents in this experiment may be related to the strong electron confinement, which is due to the strong magnetic mirror effect in the co-current magnetic field configuration.

  6. Effect of magnetic field configuration on the multiply charged ion and plume characteristics in Hall thruster plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Holak; Lim, Youbong; Choe, Wonho; Park, Sanghoo; Seon, Jongho

    2015-04-01

    Multiply charged ions and plume characteristics in Hall thruster plasmas are investigated with regard to magnetic field configuration. Differences in the plume shape and the fraction of ions with different charge states are demonstrated by the counter-current and co-current magnetic field configurations, respectively. The significantly larger number of multiply charged and higher charge state ions including Xe4+ are observed in the co-current configuration than in the counter-current configuration. The large fraction of multiply charged ions and high ion currents in this experiment may be related to the strong electron confinement, which is due to the strong magnetic mirror effect in the co-current magnetic field configuration.

  7. Estimating the Configuration of a Continuum Dexterous Manipulator with Variable Curvature Bending Using Partial Shape-Sensing

    PubMed Central

    Murphy, Ryan J.; Armand, Mehran

    2016-01-01

    Reliably estimating the shape of variable curvature continuum dexterous manipulators (CDMs) is necessary to use these devices in biomedical applications. Embedding shape-sensing elements have been shown to effectively measure the shape of constant curvature CDMs. This paper explores several methods for estimating the configuration of variable curvature CDMs. Experiments bent the CDM in varying configurations, applied an external load, and measured the configuration. Three methods are described that use the measurements from simulated shape-sensing elements. Analyses included varying the number and placement of the shape sensors. The results showed at least three shape-sensing elements are necessary to predict manipulator configuration, with one method demonstrating average error less than 0.35 mm for a CDM under an external load. The presented techniques offer promise for successfully predicting, tracking, and controlling CDM configuration during surgery. PMID:26737480

  8. Effect of collector configuration on test section turbulence levels in an open-jet wind tunnel

    NASA Technical Reports Server (NTRS)

    Manuel, G. S.; Molloy, John K.; Barna, P. Stephen

    1992-01-01

    Flow quality studies in the Langley 14- by 22-Foot Subsonic Tunnel indicated periodic flow pulsation at discrete frequencies in the test section when the tunnel operated in an open-jet configuration. To alleviate this problem, experiments were conducted in a 1/24-scale model of the full-scale tunnel to evaluate the turbulence reduction potential of six collector configurations. As a result of these studies, the original bell-mouth collector of the 14- by 22-Foot Subsonic Tunnel was replaced by a collector with straight walls, and a slot was incorporated between the trailing edge of the collector and the entrance of the diffuser.

  9. Formation of Field-reversed-Configuration Plasma with Punctuated-betatron-orbit Electrons

    SciTech Connect

    Welch, D. R.; Cohen, S. A.; Genoni, T. C.; Glasser, A. H.

    2010-06-28

    We describe ab initio, self-consistent, 3D, fully electromagnetic numerical simulations of current drive and field-reversed-configuration plasma formation by odd-parity rotating magnetic fields (RMFo). Magnetic-separatrix formation and field reversal are attained from an initial mirror configuration. A population of punctuated-betatron-orbit electrons, generated by the RMFo, carries the majority of the field-normal azimuthal electrical current responsible for field reversal. Appreciable current and plasma pressure exist outside the magnetic separatrix whose shape is modulated by the RMFo phase. The predicted plasma density and electron energy distribution compare favorably with RMFo experiments. __________________________________________________

  10. The Face Inversion Effect: Roles of First- and Second-Order Configural Information.

    PubMed

    Civile, Ciro; McLaren, Rossy; McLaren, Ian P L

    2016-01-01

    The face inversion effect (FIE) is a reduction in recognition performance for inverted faces compared with upright faces. Several studies have proposed that a type of configural information, called second-order relational information, becomes more important with increasing expertise and gives rise to the FIE. However, recently it has been demonstrated that it is possible to obtain an FIE with facial features presented in isolation, showing that configural information is not necessary for this effect to occur. In this article we test whether there is a role for configural information in producing the FIE and whether second- or first-order relational information is particularly important. In Experiment 1, we investigated the role of configural information and local feature orientation by using a new type of "Thatcherizing" transformation on our set of faces, aiming to disrupt second-order and local feature orientation information but keeping all first-order properties unaltered. The results showed a significant reduction in the FIE for these "new" Thatcherized faces, but it did not entirely disappear. Experiment 2 confirmed the FIE for new Thatcherized faces, and Experiment 3 establishes that both local feature orientation and first-order relational information have a role in determining the FIE. PMID:27029104

  11. Configuration Studies and Recommendations for the ILC DampingRings

    SciTech Connect

    Wolski, Andrzej; Gao, Jie; Guiducci, Susanna

    2006-02-04

    We describe the results of studies comparing different options for the baseline configuration of the ILC damping rings. The principal configuration decisions apply to the circumference, beam energy, lattice type, and technology options for key components, including the injection/extraction kickers and the damping wigglers. To arrive at our recommended configuration, we performed detailed studies of a range of lattices representing a variety of different configuration options; these lattices are described in Chapter 2. The results of the various studies are reported in chapters covering issues of beam dynamics, technical subsystems, costs, and commissioning, reliability and upgrade ability. Our detailed recommendations for the baseline configuration are given in Chapter 7, where we also outline further research and development that is needed before a machine using our recommended configuration can be built and operated successfully. In the same chapter, we suggest possible alternatives to the baseline configuration.

  12. Method and apparatus configured for identification of a material

    DOEpatents

    Slater, John M.; Crawford, Thomas M.

    2000-01-01

    The present invention includes an apparatus configured for identification of a material, and methods of identifying a material. One embodiment of the invention provides an apparatus including a first region configured to receive a first sample, the first region being configured to output a first spectrum corresponding to the first sample and responsive to exposure of the first sample to radiation; a modulator configured to modulate the first spectrum according to a first frequency; a second region configured to receive a second sample, the second region being configured to output a second spectrum corresponding to the second sample and responsive to exposure of the second sample to the modulated first spectrum; and a detector configured to detect the second spectrum having a second frequency greater than the first frequency.

  13. Suprathermal ion transport in simple magnetized torus configurations

    SciTech Connect

    Gustafson, K.; Ricci, P.; Bovet, A.; Furno, I.; Fasoli, A.

    2012-06-15

    Inspired by suprathermal ion experiments in the basic plasma experiment TORPEX, the transport of suprathermal ions in ideal interchange mode turbulence is theoretically examined in the simple magnetized torus configuration. We follow ion tracer trajectories as specified by ideal interchange mode turbulence imported from a numerical simulation of drift-reduced Braginskii equations. Using the variance of displacements, {sigma}{sup 2}(t){approx}t{sup {gamma}}, we find that {gamma} depends strongly on suprathermal ion injection energy and the relative magnitude of turbulent fluctuations. The value of {gamma} also changes significantly as a function of time after injection, through three distinguishable phases: ballistic, interaction, and asymmetric. During the interaction phase, we find the remarkable presence of three regimes of dispersion: superdiffusive, diffusive, and subdiffusive, depending on the energy of the suprathermal ions and the amplitude of the turbulent fluctuations. We contrast these results with those from a 'slab' magnetic geometry in which subdiffusion does not occur during the interaction phase. Initial results from TORPEX are consistent with data from a new synthetic diagnostic used to interpret our simulation results. The simplicity of the simple magnetized torus makes the present work of interest to analyses of more complicated contexts ranging from fusion devices to astrophysics and space plasma physics.

  14. Field Reversed Configuration Translation and the Magnetized Target Fusion Collaboration

    NASA Astrophysics Data System (ADS)

    Intrator, T. P.; Wurden, G. A.; Sieck, P. E.; Waganaar, W. J.; Dorf, L.; Kostora, M.; Cortez, R. J.; Degnan, J. H.; Ruden, E. L.; Domonkos, M.; Adamson, P.; Grabowski, C.; Gale, D. G.; Kostora, M.; Sommars, W.; Frese, M.; Frese, S.; Camacho, J. F.; Parks, P.; Siemon, R. E.; Awe, T.; Lynn, A. G.; Gribble, R.

    2009-06-01

    After considerable design and construction, we describe the status of a physics exploration of magnetized target fusion (MTF) that will be carried out with the first flux conserving compression of a high pressure field-reversed configuration (FRC). The upgraded Los Alamos (LANL) high density FRC experiment FRXL has demonstrated that an appropriate FRC plasma target can be created and translated on a time scale fast enough to be useful for MTF. Compression to kilovolt temperature is expected to form a Mbar pressure, high energy density laboratory plasma (HEDLP). Integrated hardware on the new Field Reversed Compression and Heating Experiment (FRCHX) at the Air Force Research Laboratory Shiva Star facility, has formed initial FRC's and will radially compress them within a cylindrically symmetric aluminum "liner". FRXL has shown that time scales for FRC translation to the target region are significantly shorter than the typical FRC lifetime. The hardware, diagnostics, and design rationales are presented. Pre-compression plasma formation and trapping experimental data from FRXL and FRCHX are shown.

  15. Stability Of Plasma Configurations During Compression

    SciTech Connect

    Ruden, E L; Hammer, J H

    2006-10-27

    Magnetized Target Fusion (MTF) efforts are based on calculations showing that the addition of a closed magnetic field reduces the driver pressure and rise time requirements for inertial confinement fusion by reducing thermal conductivity. Instabilities that result in convective bulk transport at the Alphen time scale are of particular concern since they are much faster than the implosion time. Such instabilities may occur during compression due to, for example, an increase in the plasma-magnetic pressure ratio {beta} or, in the case of a rotating plasma, spin-up due to angular momentum conservation. Details depend on the magnetic field topology and compression geometry. A hard core z pinch with purely azimuthal magnetic field can theoretically be made that relaxes into a wall supported diffuse profile satisfying the Kadomtsev criterion for the stability of m = 0 modes, which is theoretically preserved during cylindrical outer wall compression. The center conductor radius and current must also be large enough to keep the {beta} below stability limits to stabilize modes with m > 0. The stability of m > 0 modes actually improves during compression. A disadvantage of this geometry, though, is plasma contact with the solid boundaries. In addition to the risk of high Z impurity contamination during the (turbulent) relaxation process, contact thereafter can cause plasma pressure near the outer surface to drop, violating the Kadomtsev criterion locally. The resultant m = 0 instability can then convect impurities inward. Also, the center conductor (which is not part of the Kadomtsev profile) can go m = 0 unstable, convecting impurities outward. One way to mitigate impurity convection is to instead use a Woltjer-Taylor minimum magnetic energy configuration (spheromak). The sheared magnetic field inhibits convection, and the need for the center conductor is eliminated. The plasma, however, would likely still have to be wall supported due to unfavorable {beta} scaling during

  16. Configurationally-Coupled Protonation of Polyproline-7.

    PubMed

    Shi, Liuqing; Holliday, Alison E; Khanal, Neelam; Russell, David H; Clemmer, David E

    2015-07-15

    Structure and dynamics regulate protein function, but much less is known about how biomolecule-solvent interactions affect the structure-function relationship. Even less is known about the thermodynamics of biomolecule-solvent interactions and how such interactions influence conformational entropy. When transferred from propanol into 40:60 propanol:water under acidic conditions, a remarkably slow protonation reaction coupled with the conversion of the polyproline-I helix (PPI, having all cis-configured peptide bonds) into polyproline-II (PPII, all trans) helix is observed in this work. Kinetics and equilibrium measurements as a function of temperature allow determination of the thermochemistry and insight into how proton transfer is regulated in this system. For the proton-transfer process, PPI(+)(PrOH) + H3O(+) → PPII(2+)(PrOH/aq) + H2O, we determine ΔG = -20 ± 19 kJ·mol(-1), ΔH = -75 ± 14 kJ·mol(-1), and ΔS= -188 ± 48 J·mol(-1)·K(-1) for the overall reaction, and values of ΔG(⧧) = 91 ± 3 kJ·mol(-1), ΔH(⧧) = 84 ± 9 kJ·mol(-1), and ΔS(⧧) = -23 ± 31 J·mol(-1)·K(-1) for the transition state. For a minor process, PPI(+)(PrOH) → PPII(+)(PrOH/aq) without protonation, we determine ΔG = -9 ± 20 kJ·mol(-1), ΔH = 64 ± 14 kJ·mol(-1), and ΔS= 247 ± 50 J·mol(-1)·K(-1). This thermochemistry yields ΔG = -10 ± 29 kJ·mol(-1), ΔH = -139 ± 20 kJ·mol(-1), and ΔS= -435 ± 70 J·mol(-1)·K(-1) for PPII(+)(PrOH/aq) + H3O(+) → PPII(2+)(PrOH/aq) +H2O. The extraordinarily slow proton transfer appears to be an outcome of configurational coupling through a PPI-like transition state. PMID:26115587

  17. An artificial gravity demonstration experiment

    NASA Technical Reports Server (NTRS)

    Rupp, C.; Lemke, L.; Penzo, P.

    1989-01-01

    An artificial gravity experiment which is tethered to a Delta second stage and which uses the Small Expendable Deployer System is proposed. Following tether deployment, the Delta vehicle performs the required spin-up maneuver and can then be passivated. A surplus reentry vehicle houses the artificial gravity life science experiments. When the experiments are completed, the reentry phase of the experiment is initiated by synchronizing the spin of the configuration with the required deorbit impulse.

  18. On the relevance of the acquisition configuration for seismoelectric recording

    NASA Astrophysics Data System (ADS)

    Sénéchal, P.; Bordes, C.

    2012-04-01

    The seismo-electric method consists in measuring electric field induced by seismic wave propagation in porous media. The characterization of transfer functions obtained by the ratio of electric field and seismic grain acceleration for the longitudinal fast P wave presents the potential to characterize physico-chemical properties of the medium. Laboratory and field acquisitions are performed by measuring seismic signals and its associated electric field respectively recorded by an accelerometer (or a geophone) and by an electrical dipole composed of two electrodes. When the acquisition configuration must be chosen, several questions arise, in particular, about the optimum dipole length and the location of the corresponding accelerometer. It is necessary to verify whether these parameters induce variations on (1) amplitude, (2) spectral content and (3) propagation time related to seismoelectric first arrival or not. For this purpose, we perform laboratory experiments in order to characterize seismoelectric signals for various dipole lengths and locations. The data are recorded with a reference electrode allowing for a recombination of all dipole configurations. Experimental data are obtained in the laboratory with a specifically designed experimental device including an acoustic source (0-20 kHz), 10 accelerometers (0.0001-17 kHz), 10 stainless steel electrodes (and their home-made pre-amplifiers), placed in a container (57 cm x 30 cm x 15 cm) full of sand (99% silica). This sand is uncompacted, homogeneous and partially saturated (around 60 %). The amplitude and the propagation time of seismoelectric signal are obtained by picking respectively the maximum of first lobe and the first arrival time. In order to analyse only the frequency content of longitudinal P wave without the effects due to the other waves, we chose to perform spectral analysis of the first lobe by using a Continuous Wavelet Transform (CWT). The results clearly show that the dipole length and the

  19. Structural dynamics model and response of the deployable reference configuration space station

    NASA Technical Reports Server (NTRS)

    Housner, J. M.

    1985-01-01

    The analytical models and results of a structural dynamics investigation of the reference initial operation and evolutionary configurations of the nine foot bay space station are presented. This investigation was carried out between April and August 1984 as part of a team effort to define a reference configuration for the first U.S. manned space station. The results presented herein serve as a guide, a point of departure and a standard for future NASA and contractor studies leading to the design of the Space Station. The reference initial operation configuration of the nine foot bay station was found to be very flexible, with its lowest mode between 0.096 and 0.138 Hertz depending on station attachments. However, for the transient load cases which were then available, internal member loads had positive margins of safety and preliminary results indicate that laboratory experiments which require quiescent conditions can be satisfied down to the order of 0.0001 g's.

  20. Characteristics of shock-compressed configuration of Ti and Si powder mixtures

    SciTech Connect

    Thadhani, N.N.; Dunbar, E.; Graham, R.A.

    1993-08-01

    Shock-compression recovery experiments were performed on mixtures of Ti and Si powders of fine, medium, and coarse morphology, and packed at different initial densities, using the Sandia Momma and Poppa Bear fixtures with Baratol explosive. The shock-compressed configuration revealed characteristics typical of either chemically reacted material with fine equiaxed grains, or unreacted material with densely packed Ti and Si particles. The unreacted configuration showed that Ti particles were extensively deformed, irrespective of powder morphology and shock conditions generated by either fixture. In contrast Si particles showed different characteristics depending on the powder morphology, packing density, and shock conditions. The microstructural characteristics of unreacted configuration of Ti and Si powder mixtures were investigated. Mechanistic processes occurring prior to the inception of shock-induced chemical reactions in this system are described.