Science.gov

Sample records for aerotaxis receptor aer

  1. Magneto-aerotaxis in marine coccoid bacteria.

    PubMed Central

    Frankel, R B; Bazylinski, D A; Johnson, M S; Taylor, B L

    1997-01-01

    Magnetotactic cocci swim persistently along local magnetic field lines in a preferred direction that corresponds to downward migration along geomagnetic field lines. Recently, high cell concentrations of magnetotactic cocci have been found in the water columns of chemically stratified, marine and brackish habitats, and not always in the sediments, as would be expected for persistent, downward-migrating bacteria. Here we report that cells of a pure culture of a marine magnetotactic coccus, designated strain MC-1, formed microaerophilic bands in capillary tubes and used aerotaxis to migrate to a preferred oxygen concentration in an oxygen gradient. Cells were able to swim in either direction along the local magnetic field and used magnetotaxis in conjunction with aerotaxis, i.e., magnetically assisted aerotaxis, or magneto-aerotaxis, to more efficiently migrate to and maintain position at their preferred oxygen concentration. Cells of strain MC-1 had a novel, aerotactic sensory mechanism that appeared to function as a two-way switch, rather than the temporal sensory mechanism used by other bacteria, including Magnetospirillum megnetotacticum, in aerotaxis. The cells also exhibited a response to short-wavelength light (< or = 500 nm), which caused them to swim persistently parallel to the magnetic field during illumination. Images FIGURE 1 FIGURE 2 PMID:9251816

  2. Role of methylation in aerotaxis in Bacillus subtilis.

    PubMed Central

    Wong, L S; Johnson, M S; Zhulin, I B; Taylor, B L

    1995-01-01

    Taxis to oxygen (aerotaxis) in Bacillus subtilis was characterized in a capillary assay and in a temporal assay in which the concentration of oxygen in a flow chamber was changed abruptly. A strong aerophilic response was present, but there was no aerophobic response to high concentrations of oxygen. Adaptation to a step increase in oxygen concentration was impaired when B. subtilis cells were depleted of methionine to prevent methylation of the methyl-accepting chemotaxis proteins. There was a transient increase in methanol release when wild-type B. subtilis, but not a cheR mutant that was deficient in methyltransferase activity, was stimulated by a step increase or a step decrease in oxygen concentration. The methanol released was quantitatively correlated with demethylation of methyl-accepting chemotaxis proteins. This indicated that methylation is involved in aerotaxis in B. subtilis in contrast to aerotaxis in Escherichia coli and Salmonella typhimurium, which is methylation independent. PMID:7608071

  3. Influence of magnetic fields on magneto-aerotaxis.

    PubMed

    Bennet, Mathieu; McCarthy, Aongus; Fix, Dmitri; Edwards, Matthew R; Repp, Felix; Vach, Peter; Dunlop, John W C; Sitti, Metin; Buller, Gerald S; Klumpp, Stefan; Faivre, Damien

    2014-01-01

    The response of cells to changes in their physico-chemical micro-environment is essential to their survival. For example, bacterial magnetotaxis uses the Earth's magnetic field together with chemical sensing to help microorganisms move towards favoured habitats. The studies of such complex responses are lacking a method that permits the simultaneous mapping of the chemical environment and the response of the organisms, and the ability to generate a controlled physiological magnetic field. We have thus developed a multi-modal microscopy platform that fulfils these requirements. Using simultaneous fluorescence and high-speed imaging in conjunction with diffusion and aerotactic models, we characterized the magneto-aerotaxis of Magnetospirillum gryphiswaldense. We assessed the influence of the magnetic field (orientation; strength) on the formation and the dynamic of a micro-aerotactic band (size, dynamic, position). As previously described by models of magnetotaxis, the application of a magnetic field pointing towards the anoxic zone of an oxygen gradient results in an enhanced aerotaxis even down to Earth's magnetic field strength. We found that neither a ten-fold increase of the field strength nor a tilt of 45° resulted in a significant change of the aerotactic efficiency. However, when the field strength is zeroed or when the field angle is tilted to 90°, the magneto-aerotaxis efficiency is drastically reduced. The classical model of magneto-aerotaxis assumes a response proportional to the cosine of the angle difference between the directions of the oxygen gradient and that of the magnetic field. Our experimental evidence however shows that this behaviour is more complex than assumed in this model, thus opening up new avenues for research. PMID:24983865

  4. Influence of Magnetic Fields on Magneto-Aerotaxis

    PubMed Central

    Bennet, Mathieu; McCarthy, Aongus; Fix, Dmitri; Edwards, Matthew R.; Repp, Felix; Vach, Peter; Dunlop, John W. C.; Sitti, Metin; Buller, Gerald S.; Klumpp, Stefan; Faivre, Damien

    2014-01-01

    The response of cells to changes in their physico-chemical micro-environment is essential to their survival. For example, bacterial magnetotaxis uses the Earth's magnetic field together with chemical sensing to help microorganisms move towards favoured habitats. The studies of such complex responses are lacking a method that permits the simultaneous mapping of the chemical environment and the response of the organisms, and the ability to generate a controlled physiological magnetic field. We have thus developed a multi-modal microscopy platform that fulfils these requirements. Using simultaneous fluorescence and high-speed imaging in conjunction with diffusion and aerotactic models, we characterized the magneto- aerotaxis of Magnetospirillum gryphiswaldense. We assessed the influence of the magnetic field (orientation; strength) on the formation and the dynamic of a micro-aerotactic band (size, dynamic, position). As previously described by models of magnetotaxis, the application of a magnetic field pointing towards the anoxic zone of an oxygen gradient results in an enhanced aerotaxis even down to Earth's magnetic field strength. We found that neither a ten-fold increase of the field strength nor a tilt of 45° resulted in a significant change of the aerotactic efficiency. However, when the field strength is zeroed or when the field angle is tilted to 90°, the magneto-aerotaxis efficiency is drastically reduced. The classical model of magneto-aerotaxis assumes a response proportional to the cosine of the angle difference between the directions of the oxygen gradient and that of the magnetic field. Our experimental evidence however shows that this behaviour is more complex than assumed in this model, thus opening up new avenues for research. PMID:24983865

  5. Influence of magnetic fields on magneto-aerotaxis.

    PubMed

    Bennet, Mathieu; McCarthy, Aongus; Fix, Dmitri; Edwards, Matthew R; Repp, Felix; Vach, Peter; Dunlop, John W C; Sitti, Metin; Buller, Gerald S; Klumpp, Stefan; Faivre, Damien

    2014-01-01

    The response of cells to changes in their physico-chemical micro-environment is essential to their survival. For example, bacterial magnetotaxis uses the Earth's magnetic field together with chemical sensing to help microorganisms move towards favoured habitats. The studies of such complex responses are lacking a method that permits the simultaneous mapping of the chemical environment and the response of the organisms, and the ability to generate a controlled physiological magnetic field. We have thus developed a multi-modal microscopy platform that fulfils these requirements. Using simultaneous fluorescence and high-speed imaging in conjunction with diffusion and aerotactic models, we characterized the magneto-aerotaxis of Magnetospirillum gryphiswaldense. We assessed the influence of the magnetic field (orientation; strength) on the formation and the dynamic of a micro-aerotactic band (size, dynamic, position). As previously described by models of magnetotaxis, the application of a magnetic field pointing towards the anoxic zone of an oxygen gradient results in an enhanced aerotaxis even down to Earth's magnetic field strength. We found that neither a ten-fold increase of the field strength nor a tilt of 45° resulted in a significant change of the aerotactic efficiency. However, when the field strength is zeroed or when the field angle is tilted to 90°, the magneto-aerotaxis efficiency is drastically reduced. The classical model of magneto-aerotaxis assumes a response proportional to the cosine of the angle difference between the directions of the oxygen gradient and that of the magnetic field. Our experimental evidence however shows that this behaviour is more complex than assumed in this model, thus opening up new avenues for research.

  6. GaAsP Nanowires Grown by Aerotaxy.

    PubMed

    Metaferia, Wondwosen; Persson, Axel R; Mergenthaler, Kilian; Yang, Fangfang; Zhang, Wei; Yartsev, Arkady; Wallenberg, Reine; Pistol, Mats-Erik; Deppert, Knut; Samuelson, Lars; Magnusson, Martin H

    2016-09-14

    We have grown GaAsP nanowires with high optical and structural quality by Aerotaxy, a new continuous gas phase mass production process to grow III-V semiconductor based nanowires. By varying the PH3/AsH3 ratio and growth temperature, size selected GaAs1-xPx nanowires (80 nm diameter) with pure zinc-blende structure and with direct band gap energies ranging from 1.42 to 1.90 eV (at 300 K), (i.e., 0 ≤ x ≤ 0.43) were grown, which is the energy range needed for creating tandem III-V solar cells on silicon. The phosphorus content in the NWs is shown to be controlled by both growth temperature and input gas phase ratio. The distribution of P in the wires is uniform over the length of the wires and among the wires. This proves the feasibility of growing GaAsP nanowires by Aerotaxy and results indicate that it is a generic process that can be applied to the growth of other III-V semiconductor based ternary nanowires.

  7. GaAsP Nanowires Grown by Aerotaxy.

    PubMed

    Metaferia, Wondwosen; Persson, Axel R; Mergenthaler, Kilian; Yang, Fangfang; Zhang, Wei; Yartsev, Arkady; Wallenberg, Reine; Pistol, Mats-Erik; Deppert, Knut; Samuelson, Lars; Magnusson, Martin H

    2016-09-14

    We have grown GaAsP nanowires with high optical and structural quality by Aerotaxy, a new continuous gas phase mass production process to grow III-V semiconductor based nanowires. By varying the PH3/AsH3 ratio and growth temperature, size selected GaAs1-xPx nanowires (80 nm diameter) with pure zinc-blende structure and with direct band gap energies ranging from 1.42 to 1.90 eV (at 300 K), (i.e., 0 ≤ x ≤ 0.43) were grown, which is the energy range needed for creating tandem III-V solar cells on silicon. The phosphorus content in the NWs is shown to be controlled by both growth temperature and input gas phase ratio. The distribution of P in the wires is uniform over the length of the wires and among the wires. This proves the feasibility of growing GaAsP nanowires by Aerotaxy and results indicate that it is a generic process that can be applied to the growth of other III-V semiconductor based ternary nanowires. PMID:27564139

  8. Evaluation of bacterial aerotaxis for its potential use in detecting the toxicity of chemicals to microorganisms.

    PubMed

    Shitashiro, Maiko; Kato, Junichi; Fukumura, Tsuyoshi; Kuroda, Akio; Ikeda, Tsukasa; Takiguchi, Noboru; Ohtake, Hisao

    2003-02-27

    Bacterial aerotaxis (the movement of a cell toward oxygen) was evaluated for its potential use in detecting the toxicity of chemicals to microorganisms. The level of toxicity was determined by the concentration of test chemicals resulting in a 50% inhibition of aerotaxis of Pseudomonas aeruginosa PAO1 after 40 min of exposure. The aerotactic responses of P. aeruginosa were measured by using chemotaxis well chambers. Each clear acrylic chamber had a lower and upper well separated by a polycarbonate filter with a uniform pore size of 8.0 microm. To automatically detect bacterial cells that crossed the filter in response to a gradient of oxygen, P. aeruginosa PAO1 was marked with green fluorescent protein (GFP), and the GFP fluorescence intensity in the upper well was continuously monitored by using a fluorescence spectrometer. By using this technique, volatile chlorinated aliphatic compounds, including trichloroethylene (TCE), trichloroethane, and tetrachloroethylene, were found to be inhibitory to bacterial aerotaxis, suggesting their possible toxicity to microorganisms. We also examined more than 20 potential toxicants for their ability to inhibit the aerotaxis of P. aeruginosa. Based on these experimental results, we concluded that bacterial aerotaxis has potential for use as a fast and reliable indicator in assessing the toxicity of chemicals to microorganisms.

  9. Recombination dynamics in aerotaxy-grown Zn-doped GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Yang, Fangfang; Messing, Maria E.; Mergenthaler, Kilian; Pistol, Mats-Erik; Deppert, Knut; Samuelson, Lars; Magnusson, Martin H.; Yartsev, Arkady

    2016-11-01

    In this paper we have investigated the dynamics of photo-generated charge carriers in a series of aerotaxy-grown GaAs nanowires (NWs) with different levels of Zn doping. Time-resolved photo-induced luminescence and transient absorption have been employed to investigate radiative (band edge transition) and non-radiative charge recombination processes, respectively. We find that the photo-luminescence (PL) lifetime of intrinsic GaAs NWs is significantly increased after growing an AlGaAs shell over them, indicating that an AlGaAs shell can effectively passivate the surface of aerotaxy-grown GaAs NWs. We observe that PL decay time as well as PL intensity decrease with increasing Zn doping, which can be attributed to thermally activated electron trapping with the trap density increased due to the Zn doping level.

  10. Weldability of AerMet 100

    SciTech Connect

    Kautz, D.D.; Hoffman, D.E.; Westrich, C.N.

    1991-01-01

    Several test welds were made on AerMet 100 alloy. Both electron beam and pulsed Nd:YAG laser beam welding processes were used to make the welds. All welds were satisfactory, with no cracking or porosity noted in weld cross-sections. 2 refs., 6 figs.

  11. Experimental investigation of magneto-aerotaxis on wild-type magnetotactic bacteria in sediment

    NASA Astrophysics Data System (ADS)

    Mao, X.; Egli, R.

    2012-12-01

    Magnetotactic bacteria (MB) synthesize chains of magnetic particles, called magnetosomes, which provide a magnetic dipole that passively aligns the cells along the geomagnetic field. Flagellar propulsion allows MB to swim straight along field lines in what is known as magnetotaxis. The flagellum rotation sense is controlled by the chemical environment, so that MB can efficiently move across chemically stratified environments to reach the so-called oxic-anoxic interface (OAI). This combination of oriented swimming controlled by chemical (oxygen) sensing is called magneto-aerotaxis (Frankel 1997). Experiments with MB cultures show that magnetic spirilla can change instantaneously the swimming direction, while the behaviour of cocci depends on a sort of 'internal state' dictated by their original location with respect to the OAI. Here, we present first results the magneto-aerotactic behaviour of wild-type MB living in microcosms created with sediment retrieved from lake Chiemsee (Bavaria, Germany). In these microcosms, a stable population of MB (mainly unidentified strains of cocci, and Magnetobacterium Bavaricum) occur in the upmost few cm below the sediment surface, with maximum concentrations just below the OAI. We tested the reaction of this MB population to changes in chemical conditions by putting the microcosm inside a glove box with controlled oxygen-free atmospheres (N2 and CO2). A new equilibrium was reached within few weeks, with the OAI first moving upward and then disappearing. The depth distribution and swimming direction of MB was tested during and after the formation of a new equilibrium. We were never able to observe swimming directions consistent with bacteria moving upward in the sediment, as it was the case with cultured cocci in Frankel [1997], even long time after the entire sediment column became completely anoxic. Nevertheless, the disappearance of the OAI was accompanied by a slight but significant decrease of the total MB population

  12. On algorithmic rate-coded AER generation.

    PubMed

    Linares-Barranco, Alejandro; Jimenez-Moreno, Gabriel; Linares-Barranco, Bernabé; Civit-Balcells, Antón

    2006-05-01

    This paper addresses the problem of converting a conventional video stream based on sequences of frames into the spike event-based representation known as the address-event-representation (AER). In this paper we concentrate on rate-coded AER. The problem is addressed as an algorithmic problem, in which different methods are proposed, implemented and tested through software algorithms. The proposed algorithms are comparatively evaluated according to different criteria. Emphasis is put on the potential of such algorithms for a) doing the frame-based to event-based representation in real time, and b) that the resulting event streams ressemble as much as possible those generated naturally by rate-coded address-event VLSI chips, such as silicon AER retinae. It is found that simple and straightforward algorithms tend to have high potential for real time but produce event distributions that differ considerably from those obtained in AER VLSI chips. On the other hand, sophisticated algorithms that yield better event distributions are not efficient for real time operations. The methods based on linear-feedback-shift-register (LFSR) pseudorandom number generation is a good compromise, which is feasible for real time and yield reasonably well distributed events in time. Our software experiments, on a 1.6-GHz Pentium IV, show that at 50% AER bus load the proposed algorithms require between 0.011 and 1.14 ms per 8 bit-pixel per frame. One of the proposed LFSR methods is implemented in real time hardware using a prototyping board that includes a VirtexE 300 FPGA. The demonstration hardware is capable of transforming frames of 64 x 64 pixels of 8-bit depth at a frame rate of 25 frames per second, producing spike events at a peak rate of 10(7) events per second. PMID:16722179

  13. SMART- Small Motor AerRospace Technology

    NASA Astrophysics Data System (ADS)

    Balucani, M.; Crescenzi, R.; Ferrari, A.; Guarrea, G.; Pontetti, G.; Orsini, F.; Quattrino, L.; Viola, F.

    2004-11-01

    This paper presents the "SMART" (Small Motor AerRospace Tecnology) propulsion system, constituted of microthrusters array realised by semiconductor technology on silicon wafers. SMART system is obtained gluing three main modules: combustion chambers, igniters and nozzles. The module was then filled with propellant and closed by gluing a piece of silicon wafer in the back side of the combustion chambers. The complete assembled module composed of 25 micro- thrusters with a 3 x 5 nozzle is presented. The measurement showed a thrust of 129 mN and impulse of 56,8 mNs burning about 70mg of propellant for the micro-thruster with nozzle and a thrust of 21 mN and impulse of 8,4 mNs for the micro-thruster without nozzle.

  14. Transient Inhibition of FGFR2b-Ligands Signaling Leads to Irreversible Loss of Cellular β-Catenin Organization and Signaling in AER during Mouse Limb Development

    PubMed Central

    Tabatabai, Reza; Baptista, Sheryl; Tiozzo, Caterina; Carraro, Gianni; Wheeler, Matthew; Barreto, Guillermo; Braun, Thomas; Li, Xiaokun; Hajihosseini, Mohammad K.; Bellusci, Saverio

    2013-01-01

    The vertebrate limbs develop through coordinated series of inductive, growth and patterning events. Fibroblast Growth Factor receptor 2b (FGFR2b) signaling controls the induction of the Apical Ectodermal Ridge (AER) but its putative roles in limb outgrowth and patterning, as well as in AER morphology and cell behavior have remained unclear. We have investigated these roles through graded and reversible expression of soluble dominant-negative FGFR2b molecules at various times during mouse limb development, using a doxycycline/transactivator/tet(O)-responsive system. Transient attenuation (≤24 hours) of FGFR2b-ligands signaling at E8.5, prior to limb bud induction, leads mostly to the loss or truncation of proximal skeletal elements with less severe impact on distal elements. Attenuation from E9.5 onwards, however, has an irreversible effect on the stability of the AER, resulting in a progressive loss of distal limb skeletal elements. The primary consequences of FGFR2b-ligands attenuation is a transient loss of cell adhesion and down-regulation of P63, β1-integrin and E-cadherin, and a permanent loss of cellular β-catenin organization and WNT signaling within the AER. Combined, these effects lead to the progressive transformation of the AER cells from pluristratified to squamous epithelial-like cells within 24 hours of doxycycline administration. These findings show that FGFR2b-ligands signaling has critical stage-specific roles in maintaining the AER during limb development. PMID:24167544

  15. Signal detection in FDA AERS database using Dirichlet process.

    PubMed

    Hu, Na; Huang, Lan; Tiwari, Ram C

    2015-08-30

    In the recent two decades, data mining methods for signal detection have been developed for drug safety surveillance, using large post-market safety data. Several of these methods assume that the number of reports for each drug-adverse event combination is a Poisson random variable with mean proportional to the unknown reporting rate of the drug-adverse event pair. Here, a Bayesian method based on the Poisson-Dirichlet process (DP) model is proposed for signal detection from large databases, such as the Food and Drug Administration's Adverse Event Reporting System (AERS) database. Instead of using a parametric distribution as a common prior for the reporting rates, as is the case with existing Bayesian or empirical Bayesian methods, a nonparametric prior, namely, the DP, is used. The precision parameter and the baseline distribution of the DP, which characterize the process, are modeled hierarchically. The performance of the Poisson-DP model is compared with some other models, through an intensive simulation study using a Bayesian model selection and frequentist performance characteristics such as type-I error, false discovery rate, sensitivity, and power. For illustration, the proposed model and its extension to address a large amount of zero counts are used to analyze statin drugs for signals using the 2006-2011 AERS data. PMID:25924820

  16. Fusion Welding of AerMet 100 Alloy

    SciTech Connect

    ENGLEHART, DAVID A.; MICHAEL, JOSEPH R.; NOVOTNY, PAUL M.; ROBINO, CHARLES V.

    1999-08-01

    A database of mechanical properties for weldment fusion and heat-affected zones was established for AerMet{reg_sign}100 alloy, and a study of the welding metallurgy of the alloy was conducted. The properties database was developed for a matrix of weld processes (electron beam and gas-tungsten arc) welding parameters (heat inputs) and post-weld heat treatment (PWHT) conditions. In order to insure commercial utility and acceptance, the matrix was commensurate with commercial welding technology and practice. Second, the mechanical properties were correlated with fundamental understanding of microstructure and microstructural evolution in this alloy. Finally, assessments of optimal weld process/PWHT combinations for cotildent application of the alloy in probable service conditions were made. The database of weldment mechanical properties demonstrated that a wide range of properties can be obtained in welds in this alloy. In addition, it was demonstrated that acceptable welds, some with near base metal properties, could be produced from several different initial heat treatments. This capability provides a means for defining process parameters and PWHT's to achieve appropriate properties for different applications, and provides useful flexibility in design and manufacturing. The database also indicated that an important region in welds is the softened region which develops in the heat-affected zone (HAZ) and analysis within the welding metallurgy studies indicated that the development of this region is governed by a complex interaction of precipitate overaging and austenite formation. Models and experimental data were therefore developed to describe overaging and austenite formation during thermal cycling. These models and experimental data can be applied to essentially any thermal cycle, and provide a basis for predicting the evolution of microstructure and properties during thermal processing.

  17. dackel acts in the ectoderm of the zebrafish pectoral fin bud to maintain AER signaling.

    PubMed

    Grandel, H; Draper, B W; Schulte-Merker, S

    2000-10-01

    Classical embryological studies have implied the existence of an apical ectodermal maintenance factor (AEMF) that sustains signaling from the apical ectodermal ridge (AER) during vertebrate limb development. Recent evidence suggests that AEMF activity is composed of different signals involving both a sonic hedgehog (Shh) signal and a fibroblast growth factor 10 (Fgf10) signal from the mesenchyme. In this study we show that the product of the dackel (dak) gene is one of the components that acts in the epidermis of the zebrafish pectoral fin bud to maintain signaling from the apical fold, which is homologous to the AER of tetrapods. dak acts synergistically with Shh to induce fgf4 and fgf8 expression but independently of Shh in promoting apical fold morphogenesis. The failure of dak mutant fin buds to progress from the initial fin induction phase to the autonomous outgrowth phase causes loss of both AER and Shh activity, and subsequently results in a proximodistal truncation of the fin, similar to the result obtained by ridge ablation experiments in the chicken. Further analysis of the dak mutant phenotype indicates that the activity of the transcription factor engrailed 1 (En1) in the ventral non-ridge ectoderm also depends on a maintenance signal probably provided by the ridge. This result uncovers a new interaction between the AER and the dorsoventral organizer in the zebrafish pectoral fin bud.

  18. Radiative Forcing by Long-Lived Greenhouse Gases: Calculations with the AER Radiative Transfer Models

    SciTech Connect

    Collins, William; Iacono, Michael J.; Delamere, Jennifer S.; Mlawer, Eli J.; Shephard, Mark W.; Clough, Shepard A.; Collins, William D.

    2008-04-01

    A primary component of the observed, recent climate change is the radiative forcing from increased concentrations of long-lived greenhouse gases (LLGHGs). Effective simulation of anthropogenic climate change by general circulation models (GCMs) is strongly dependent on the accurate representation of radiative processes associated with water vapor, ozone and LLGHGs. In the context of the increasing application of the Atmospheric and Environmental Research, Inc. (AER) radiation models within the GCM community, their capability to calculate longwave and shortwave radiative forcing for clear sky scenarios previously examined by the radiative transfer model intercomparison project (RTMIP) is presented. Forcing calculations with the AER line-by-line (LBL) models are very consistent with the RTMIP line-by-line results in the longwave and shortwave. The AER broadband models, in all but one case, calculate longwave forcings within a range of -0.20 to 0.23 W m{sup -2} of LBL calculations and shortwave forcings within a range of -0.16 to 0.38 W m{sup -2} of LBL results. These models also perform well at the surface, which RTMIP identified as a level at which GCM radiation models have particular difficulty reproducing LBL fluxes. Heating profile perturbations calculated by the broadband models generally reproduce high-resolution calculations within a few hundredths K d{sup -1} in the troposphere and within 0.15 K d{sup -1} in the peak stratospheric heating near 1 hPa. In most cases, the AER broadband models provide radiative forcing results that are in closer agreement with high 20 resolution calculations than the GCM radiation codes examined by RTMIP, which supports the application of the AER models to climate change research.

  19. Vitamin B12 regulates photosystem gene expression via the CrtJ antirepressor AerR in Rhodobacter capsulatus

    PubMed Central

    Cheng, Zhuo; Li, Keran; Hammad, Loubna A.; Karty, Jonathan A.; Bauer, Carl E.

    2014-01-01

    Summary The tetrapyrroles heme, bacteriochlorophyll and cobalamin (B12) exhibit a complex interrelationship regarding their synthesis. In this study, we demonstrate that AerR functions as an antirepressor of the tetrapyrrole regulator CrtJ. We show that purified AerR contains B12 that is bound to a conserved histidine (His145) in AerR. The interaction of AerR to CrtJ was further demonstrated in vitro by pull down experiments using AerR as bait and quantified using microscale thermophoresis. DNase I DNA footprint assays show that AerR containing B12 inhibits CrtJ binding to the bchC promoter. We further show that bchC expression is greatly repressed in a B12 auxotroph of Rhodobacter capsulatus and that B12 regulation of gene expression is mediated by AerR’s ability to function as an antirepressor of CrtJ. This study thus provides a mechanism for how the essential tetrapyrrole, cobalamin controls the synthesis of bacteriochlorophyll, an essential component of the photosystem. PMID:24329562

  20. A polishing hybrid AER/UF membrane process for the treatment of a high DOC content surface water.

    PubMed

    Humbert, H; Gallard, H; Croué, J-P

    2012-03-15

    The efficacy of a combined AER/UF (Anion Exchange Resin/Ultrafiltration) process for the polishing treatment of a high DOC (Dissolved Organic Carbon) content (>8 mgC/L) surface water was investigated at lab-scale using a strong base AER. Both resin dose and bead size had a significant impact on the kinetic removal of DOC for short contact times (i.e. <15 min). For resin doses higher than 700 mg/L and median bead sizes below 250 μm DOC removal remained constant after 30 min of contact time with very high removal rates (80%). Optimum AER treatment conditions were applied in combination with UF membrane filtration on water previously treated by coagulation-flocculation (i.e. 3 mgC/L). A more severe fouling was observed for each filtration run in the presence of AER. This fouling was shown to be mainly reversible and caused by the progressive attrition of the AER through the centrifugal pump leading to the production of resin particles below 50 μm in diameter. More important, the presence of AER significantly lowered the irreversible fouling (loss of permeability recorded after backwash) and reduced the DOC content of the clarified water to l.8 mgC/L (40% removal rate), concentration that remained almost constant throughout the experiment.

  1. Adiabatic shear band formation in explosively driven AerMet-100 alloy cylinders

    SciTech Connect

    Sunwoo, A J; Becker, R; Goto, D M; Orzechowski, T J; Springer, H K; Syn, C K; Zhou, J

    2006-02-08

    Two differently heat-treated AerMet-100 alloy cylinders were explosively driven to fragmentation. Soft-captured fragments were studied to characterize the deformation and damage induced by high explosive loading. The characterization of the fragments reveals that the dominant failure mechanism appears to be dynamic fracture along adiabatic shear bands. These shear bands differ in size and morphology depending on the heat-treated conditions. Nanoindentation measurements of the adiabatic shear bands in either material condition indicate higher hardness in the bands compared to the matrix regions of the fragments.

  2. HSCT Assessment Calculations with the AER 2-D Model: Sensitivities to Transport Formulation, PSC Formulation, Interannual Temperature Variation. Appendix C

    NASA Technical Reports Server (NTRS)

    Weisenstein, Debra K.; Ko, Malcolm K. W.; Scott, Courtney J.; Shia, Run-Lie; Jackman, Charles; Fleming, Eric; Considine, David; Kinnison, Douglas; Connell, Peter; Rotman, Douglas

    1998-01-01

    The summary are: (1) Some chemical differences in background atmosphere are surprisingly large (NOY). (2) Differences in model transport explain a majority of the intertnodel differences in the absence of PSCs. (3) With PSCS, large differences exist in predicted O3 depletion between models with the same transport. (4) AER/LLNL model calculates more O3 depletion in NH than LLNL. (5) AER/GSFC model cannot match calculated O3 depletion of GSFC model in SH. and (6) Results sensitive to interannual temperature variations (at least in NH).

  3. AerGOM, an improved algorithm for stratospheric aerosol extinction retrieval from GOMOS observations - Part 1: Algorithm description

    NASA Astrophysics Data System (ADS)

    Vanhellemont, Filip; Mateshvili, Nina; Blanot, Laurent; Étienne Robert, Charles; Bingen, Christine; Sofieva, Viktoria; Dalaudier, Francis; Tétard, Cédric; Fussen, Didier; Dekemper, Emmanuel; Kyrölä, Erkki; Laine, Marko; Tamminen, Johanna; Zehner, Claus

    2016-09-01

    The GOMOS instrument on Envisat has successfully demonstrated that a UV-Vis-NIR spaceborne stellar occultation instrument is capable of delivering quality data on the gaseous and particulate composition of Earth's atmosphere. Still, some problems related to data inversion remained to be examined. In the past, it was found that the aerosol extinction profile retrievals in the upper troposphere and stratosphere are of good quality at a reference wavelength of 500 nm but suffer from anomalous, retrieval-related perturbations at other wavelengths. Identification of algorithmic problems and subsequent improvement was therefore necessary. This work has been carried out; the resulting AerGOM Level 2 retrieval algorithm together with the first data version AerGOMv1.0 forms the subject of this paper. The AerGOM algorithm differs from the standard GOMOS IPF processor in a number of important ways: more accurate physical laws have been implemented, all retrieval-related covariances are taken into account, and the aerosol extinction spectral model is strongly improved. Retrieval examples demonstrate that the previously observed profile perturbations have disappeared, and the obtained extinction spectra look in general more consistent. We present a detailed validation study in a companion paper; here, to give a first idea of the data quality, a worst-case comparison at 386 nm shows SAGE II-AerGOM correlation coefficients that are up to 1 order of magnitude larger than the ones obtained with the GOMOS IPFv6.01 data set.

  4. Members of the PpaA/AerR Antirepressor Family Bind Cobalamin

    PubMed Central

    Vermeulen, Arjan J.

    2015-01-01

    ABSTRACT PpaA from Rhodobacter sphaeroides is a member of a family of proteins that are thought to function as antirepressors of PpsR, a widely disseminated repressor of photosystem genes in purple photosynthetic bacteria. PpaA family members exhibit sequence similarity to a previously defined SCHIC (sensor containing heme instead of cobalamin) domain; however, the tetrapyrrole-binding specificity of PpaA family members has been unclear, as R. sphaeroides PpaA has been reported to bind heme while the Rhodobacter capsulatus homolog has been reported to bind cobalamin. In this study, we reinvestigated tetrapyrrole binding of PpaA from R. sphaeroides and show that it is not a heme-binding protein but is instead a cobalamin-binding protein. We also use bacterial two-hybrid analysis to show that PpaA is able to interact with PpsR and activate the expression of photosynthesis genes in vivo. Mutations in PpaA that cause loss of cobalamin binding also disrupt PpaA antirepressor activity in vivo. We also tested a number of PpaA homologs from other purple bacterial species and found that cobalamin binding is a conserved feature among members of this family of proteins. IMPORTANCE Cobalamin (vitamin B12) has only recently been recognized as a cofactor that affects gene expression by interacting in a light-dependent manner with transcription factors. A group of related antirepressors known as the AppA/PpaA/AerR family are known to control the expression of photosynthesis genes in part by interacting with either heme or cobalamin. The specificity of which tetrapyrroles that members of this family interact with has, however, remained cloudy. In this study, we address the tetrapyrrole-binding specificity of the PpaA/AerR subgroup and establish that it preferentially binds cobalamin over heme. PMID:26055116

  5. AerGOM, an improved algorithm for stratospheric aerosol extinction retrieval from GOMOS observations - Part 2: Intercomparisons

    NASA Astrophysics Data System (ADS)

    Étienne Robert, Charles; Bingen, Christine; Vanhellemont, Filip; Mateshvili, Nina; Dekemper, Emmanuel; Tétard, Cédric; Fussen, Didier; Bourassa, Adam; Zehner, Claus

    2016-09-01

    AerGOM is a retrieval algorithm developed for the GOMOS instrument onboard Envisat as an alternative to the operational retrieval (IPF). AerGOM enhances the quality of the stratospheric aerosol extinction retrieval due to the extension of the spectral range used, refines the aerosol spectral parameterization, the simultaneous inversion of all atmospheric species as well as an improvement of the Rayleigh scattering correction. The retrieval algorithm allows for a good characterization of the stratospheric aerosol extinction for a wide range of wavelengths.In this work, we present the results of stratospheric aerosol extinction comparisons between AerGOM and various spaceborne instruments (SAGE II, SAGE III, POAM III, ACE-MAESTRO and OSIRIS) for different wavelengths. The aerosol extinction intercomparisons for λ < 700 nm and above 20 km show agreements with SAGE II version 7 and SAGE III version 4.0 within ±15 % and ±45 %, respectively. There is a strong positive bias below 20 km at λ < 700 nm, which suggests that cirrus clouds at these altitudes have a large impact on the extinction values. Comparisons performed with GOMOS IPF v6.01 alongside AerGOM show that at short wavelengths and altitudes below 20 km, IPF retrievals are more accurate when evaluated against SAGE II and SAGE III but are much less precise than AerGOM. A modified aerosol spectral parameterization can improve AerGOM in this spectral and altitude range and leads to results that have an accuracy similar to IPF retrievals. Comparisons of AerGOM aerosol extinction coefficients with OSIRIS and SAGE III measurements at wavelengths larger than 700 nm show a very large negative bias at altitudes above 25 km. Therefore, the use of AerGOM aerosol extinction data is not recommended for λ > 700 nm.Due to the unique observational technique of GOMOS, some of the results appear to be dependent on the star occultation parameters such as star apparent temperature and magnitude, solar zenith angle

  6. A Bio-Inspired AER Temporal Tri-Color Differentiator Pixel Array.

    PubMed

    Farian, Łukasz; Leñero-Bardallo, Juan Antonio; Häfliger, Philipp

    2015-10-01

    This article investigates the potential of a bio-inspired vision sensor with pixels that detect transients between three primary colors. The in-pixel color processing is inspired by the retinal color opponency that are found in mammalian retinas. Color transitions in a pixel are represented by voltage spikes, which are akin to a neuron's action potential. These spikes are conveyed off-chip by the Address Event Representation (AER) protocol. To achieve sensitivity to three different color spectra within the visual spectrum, each pixel has three stacked photodiodes at different depths in the silicon substrate. The sensor has been fabricated in the standard TSMC 90 nm CMOS technology. A post-processing method to decode events into color transitions has been proposed and implemented as a custom interface to display real-time color changes in the visual scene. Experimental results are provided. Color transitions can be detected at high speed (up to 2.7 kHz). The sensor has a dynamic range of 58 dB and a power consumption of 22.5 mW. This type of sensor can be of use in industrial, robotics, automotive and other applications where essential information is contained in transient emissions shifts within the visual spectrum.

  7. Continued development and validation of the AER two-dimensional interactive model

    NASA Technical Reports Server (NTRS)

    Ko, M. K. W.; Sze, N. D.; Shia, R. L.; Mackay, M.; Weisenstein, D. K.; Zhou, S. T.

    1996-01-01

    Results from two-dimensional chemistry-transport models have been used to predict the future behavior of ozone in the stratosphere. Since the transport circulation, temperature, and aerosol surface area are fixed in these models, they cannot account for the effects of changes in these quantities, which could be modified because of ozone redistribution and/or other changes in the troposphere associated with climate changes. Interactive two-dimensional models, which calculate the transport circulation and temperature along with concentrations of the chemical species, could provide answers to complement the results from three-dimension model calculations. In this project, we performed the following tasks in pursuit of the respective goals: (1) We continued to refine the 2-D chemistry-transport model; (2) We developed a microphysics model to calculate the aerosol loading and its size distribution; (3) The treatment of physics in the AER 2-D interactive model were refined in the following areas--the heating rate in the troposphere, and wave-forcing from propagation of planetary waves.

  8. A Bio-Inspired AER Temporal Tri-Color Differentiator Pixel Array.

    PubMed

    Farian, Łukasz; Leñero-Bardallo, Juan Antonio; Häfliger, Philipp

    2015-10-01

    This article investigates the potential of a bio-inspired vision sensor with pixels that detect transients between three primary colors. The in-pixel color processing is inspired by the retinal color opponency that are found in mammalian retinas. Color transitions in a pixel are represented by voltage spikes, which are akin to a neuron's action potential. These spikes are conveyed off-chip by the Address Event Representation (AER) protocol. To achieve sensitivity to three different color spectra within the visual spectrum, each pixel has three stacked photodiodes at different depths in the silicon substrate. The sensor has been fabricated in the standard TSMC 90 nm CMOS technology. A post-processing method to decode events into color transitions has been proposed and implemented as a custom interface to display real-time color changes in the visual scene. Experimental results are provided. Color transitions can be detected at high speed (up to 2.7 kHz). The sensor has a dynamic range of 58 dB and a power consumption of 22.5 mW. This type of sensor can be of use in industrial, robotics, automotive and other applications where essential information is contained in transient emissions shifts within the visual spectrum. PMID:26540694

  9. Extraction of pure thermal neutron beam for the proposed PGNAA facility at the TRIGA research reactor of AERE, Savar, Bangladesh

    NASA Astrophysics Data System (ADS)

    Alam, Sabina; Zaman, M. A.; Islam, S. M. A.; Ahsan, M. H.

    1993-10-01

    A study on collimators and filters for the design of a spectrometer for prompt gamma neutron activation analysis (PGNAA) at one of the radial beamports of the TRIGA Mark II reactor at AERE, Savar has been carried out. On the basis of this study a collimator and a filter have been designed for the proposed PGNAA facility. Calculations have been done for measuring neutron flux at various positions of the core of the reactor using the computer code TRIGAP. Gamma dose in the core of the reactor has also been measured experimentally using TLD technique in the present work.

  10. Sequence Stratigraphy of the Lower Cretaceous in Aer Sag, Erlian Basin, North China

    NASA Astrophysics Data System (ADS)

    Yao, Wei; De Batist, Marc; Wu, Chonglong

    2014-05-01

    The concepts of sequence stratigraphy, initially developed for the study of marine depositional systems, are increasingly also being applied to sequences deposited in lacustrine basins, particularly in the context of petroleum exploration. However, lacustrine basins differ from marine basins. They are typically smaller, exhibit a strong diversification in sedimentary facies, generally contain thinner sequences and are characterized by multiple sedimentary source regions. These characteristics should be taken into account when analyzing sequence stratigraphy in lacustrine basins. Aer Sag is a balanced-fill sag in Erlian basin, North China. During the Early Cretaceous tectonic subsidence is the main controlling factor for sequence development. Based on the unconformities observed at the top of different inversion-induced depositional cycles, the 2nd-order sequence of the Lower Cretaceous can be sub-divided into six 3rd-order sequences of which the lower four, which bear most of the hydrocarbon reservoirs, are the focus of this study. Generally, a complete 3rd-order sequence can be partitioned into four systems tracts: i.e. lowstand systems tract (LST), transgressive systems tract (TST), highstand systems tract (HST) and forced regression systems tract (FRST). In LSTs, tectonic activity is weak and there is a slow subsidence rate. Thus, the rate of creation of accommodation space is so slow that coarsening-upward prograding sedimentary units develop. In TSTs, tectonic activity becomes stronger and the rate of creation of accommodation space outpaces the rate of sediment supply. TSTs are characterized by fining-upward retrograding sedimentary units and by onlaps on seismic profiles that are caused by the expansion of the lake. In HSTs, tectonic activity slows down again and the rate of creation of accommodation space becomes lower than the rate of sediment supply, which causes the lake to shrink and the development of coarsening-upward prograding sedimentary units. In

  11. Uncertainties in modelling Mt. Pinatubo eruption with 2-D AER model and CCM SOCOL

    NASA Astrophysics Data System (ADS)

    Kenzelmann, P.; Weisenstein, D.; Peter, T.; Luo, B. P.; Rozanov, E.; Fueglistaler, S.; Thomason, L. W.

    2009-04-01

    Large volcanic eruptions may introduce a strong forcing on climate. They challenge the skills of climate models. In addition to the short time attenuation of solar light by ashes the formation of stratospheric sulphate aerosols, due to volcanic sulphur dioxide injection into the lower stratosphere, may lead to a significant enhancement of the global albedo. The sulphate aerosols have a residence time of about 2 years. As a consequence of the enhanced sulphate aerosol concentration both the stratospheric chemistry and dynamics are strongly affected. Due to absorption of longwave and near infrared radiation the temperature in the lower stratosphere increases. So far chemistry climate models overestimate this warming [Eyring et al. 2006]. We present an extensive validation of extinction measurements and model runs of the eruption of Mt. Pinatubo in 1991. Even if Mt. Pinatubo eruption has been the best quantified volcanic eruption of this magnitude, the measurements show considerable uncertainties. For instance the total amount of sulphur emitted to the stratosphere ranges from 5-12 Mt sulphur [e.g. Guo et al. 2004, McCormick, 1992]. The largest uncertainties are in the specification of the main aerosol cloud. SAGE II, for instance, could not measure the peak of the aerosol extinction for about 1.5 years, because optical termination was reached. The gap-filling of the SAGE II [Thomason and Peter, 2006] using lidar measurements underestimates the total extinctions in the tropics for the first half year after the eruption by 30% compared to AVHRR [Rusell et. al 1992]. The same applies to the optical dataset described by Stenchikov et al. [1998]. We compare these extinction data derived from measurements with extinctions derived from AER 2D aerosol model calculations [Weisenstein et al., 2007]. Full microphysical calculations with injections of 14, 17, 20 and 26 Mt SO2 in the lower stratosphere were performed. The optical aerosol properties derived from SAGE II

  12. Building a knowledge base of severe adverse drug events based on AERS reporting data using semantic web technologies.

    PubMed

    Jiang, Guoqian; Wang, Liwei; Liu, Hongfang; Solbrig, Harold R; Chute, Christopher G

    2013-01-01

    A semantically coded knowledge base of adverse drug events (ADEs) with severity information is critical for clinical decision support systems and translational research applications. However it remains challenging to measure and identify the severity information of ADEs. The objective of the study is to develop and evaluate a semantic web based approach for building a knowledge base of severe ADEs based on the FDA Adverse Event Reporting System (AERS) reporting data. We utilized a normalized AERS reporting dataset and extracted putative drug-ADE pairs and their associated outcome codes in the domain of cardiac disorders. We validated the drug-ADE associations using ADE datasets from SIDe Effect Resource (SIDER) and the UMLS. We leveraged the Common Terminology Criteria for Adverse Event (CTCAE) grading system and classified the ADEs into the CTCAE in the Web Ontology Language (OWL). We identified and validated 2,444 unique Drug-ADE pairs in the domain of cardiac disorders, of which 760 pairs are in Grade 5, 775 pairs in Grade 4 and 2,196 pairs in Grade 3.

  13. 75 FR 27332 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources, LLC; Eagle Creek Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... Energy Regulatory Commission AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources... Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources, LLC.... For the transferee: Mr. Paul Ho, Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC,...

  14. 77 FR 13592 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, Eagle Creek Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Energy Regulatory Commission AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources... Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources, LLC (transferees) filed an...) 805-1469. Transferees: Mr. Bernard H. Cherry, Eagle Creek Hydro Power, LLC, Eagle Creek...

  15. Increased Uptake of HCV Testing through a Community-Based Educational Intervention in Difficult-to-Reach People Who Inject Drugs: Results from the ANRS-AERLI Study

    PubMed Central

    Roux, Perrine; Rojas Castro, Daniela; Ndiaye, Khadim; Debrus, Marie; Protopopescu, Camélia; Le Gall, Jean-Marie; Haas, Aurélie; Mora, Marion; Spire, Bruno; Suzan-Monti, Marie; Carrieri, Patrizia

    2016-01-01

    Aims The community-based AERLI intervention provided training and education to people who inject drugs (PWID) about HIV and HCV transmission risk reduction, with a focus on drug injecting practices, other injection-related complications, and access to HIV and HCV testing and care. We hypothesized that in such a population where HCV prevalence is very high and where few know their HCV serostatus, AERLI would lead to increased HCV testing. Methods The national multisite intervention study ANRS-AERLI consisted in assessing the impact of an injection-centered face-to-face educational session offered in volunteer harm reduction (HR) centers (“with intervention”) compared with standard HR centers (“without intervention”). The study included 271 PWID interviewed on three occasions: enrolment, 6 and 12 months. Participants in the intervention group received at least one face-to-face educational session during the first 6 months. Measurements The primary outcome of this analysis was reporting to have been tested for HCV during the previous 6 months. Statistical analyses used a two-step Heckman approach to account for bias arising from the non-randomized clustering design. This approach identified factors associated with HCV testing during the previous 6 months. Findings Of the 271 participants, 127 and 144 were enrolled in the control and intervention groups, respectively. Of the latter, 113 received at least one educational session. For the present analysis, we selected 114 and 88 participants eligible for HCV testing in the control and intervention groups, respectively. In the intervention group, 44% of participants reported having being tested for HCV during the previous 6 months at enrolment and 85% at 6 months or 12 months. In the control group, these percentages were 51% at enrolment and 78% at 12 months. Multivariable analyses showed that participants who received at least one educational session during follow-up were more likely to report HCV testing

  16. Big Data in AER

    NASA Astrophysics Data System (ADS)

    Kregenow, Julia M.

    2016-01-01

    Penn State University teaches Introductory Astronomy to more undergraduates than any other institution in the U.S. Using a standardized assessment instrument, we have pre-/post- tested over 20,000 students in the last 8 years in both resident and online instruction. This gives us a rare opportunity to look for long term trends in the performance of our students during a period in which online instruction has burgeoned.

  17. Resistance and uptake of cadmium by yeast, Pichia hampshirensis 4Aer, isolated from industrial effluent and its potential use in decontamination of wastewater.

    PubMed

    Khan, Zaman; Rehman, Abdul; Hussain, Syed Z

    2016-09-01

    Pichia hampshirensis 4Aer is first ever used yeast for the bioremediation of environmental cadmium (Cd(+2)) which could maximally remove 22 mM/g and 28 mM/g Cd(+2) from aqueous medium at lab and large scales, respectively. The biosorption was found to be the function of temperature, pH of solution, initial Cd(+2) concentration and biomass dosage. Competitive biosorption was investigated in binary and multi-metal system which indicated the decrease in Cd(+2) biosorption with increasing the competitive metal ions attributed to their higher electronegativity and larger radius. FTIR analysis revealed the active participation of amide and carbonyl moieties in Cd(+2) adsorption confirmed by EDX analysis. Electron micrographs summoned further surface adsorption and increased cell size due to intracellular Cd(+2) accumulation. Cd(+2) was the causative agent of some metal binding proteins as well as prodigious increase in glutathione and other non-protein thiols levels which is the crucial for the yeast to thrive oxidative stress generated by Cd(+2). Our experimental data were consistent with Langmuir as well as Freundlich isotherm models. The yeast obeyed pseudo second order kinetic model which makes it an effective biosorbent for Cd(+2). High bioremediation potential and spontaneity and feasibility of the process make P. hampshirensis 4Aer an impending foundation for green chemistry to exterminate environmental Cd(+2).

  18. Resistance and uptake of cadmium by yeast, Pichia hampshirensis 4Aer, isolated from industrial effluent and its potential use in decontamination of wastewater.

    PubMed

    Khan, Zaman; Rehman, Abdul; Hussain, Syed Z

    2016-09-01

    Pichia hampshirensis 4Aer is first ever used yeast for the bioremediation of environmental cadmium (Cd(+2)) which could maximally remove 22 mM/g and 28 mM/g Cd(+2) from aqueous medium at lab and large scales, respectively. The biosorption was found to be the function of temperature, pH of solution, initial Cd(+2) concentration and biomass dosage. Competitive biosorption was investigated in binary and multi-metal system which indicated the decrease in Cd(+2) biosorption with increasing the competitive metal ions attributed to their higher electronegativity and larger radius. FTIR analysis revealed the active participation of amide and carbonyl moieties in Cd(+2) adsorption confirmed by EDX analysis. Electron micrographs summoned further surface adsorption and increased cell size due to intracellular Cd(+2) accumulation. Cd(+2) was the causative agent of some metal binding proteins as well as prodigious increase in glutathione and other non-protein thiols levels which is the crucial for the yeast to thrive oxidative stress generated by Cd(+2). Our experimental data were consistent with Langmuir as well as Freundlich isotherm models. The yeast obeyed pseudo second order kinetic model which makes it an effective biosorbent for Cd(+2). High bioremediation potential and spontaneity and feasibility of the process make P. hampshirensis 4Aer an impending foundation for green chemistry to exterminate environmental Cd(+2). PMID:27268792

  19. Measurements and ALE3D Simulations for Violence in a Scaled Thermal Explosion Experiment with LX-10 and AerMet 100 Steel

    SciTech Connect

    McClelland, M A; Maienschein, J L; Yoh, J J; deHaven, M R; Strand, O T

    2005-06-03

    We completed a Scaled Thermal Explosion Experiment (STEX) and performed ALE3D simulations for the HMX-based explosive, LX-10, confined in an AerMet 100 (iron-cobalt-nickel alloy) vessel. The explosive was heated at 1 C/h until cookoff at 182 C using a controlled temperature profile. During the explosion, the expansion of the tube and fragment velocities were measured with strain gauges, Photonic-Doppler-Velocimeters (PDVs), and micropower radar units. These results were combined to produce a single curve describing 15 cm of tube wall motion. A majority of the metal fragments were captured and cataloged. A fragment size distribution was constructed, and a typical fragment had a length scale of 2 cm. Based on these results, the explosion was considered to be a violent deflagration. ALE3D models for chemical, thermal, and mechanical behavior were developed for the heating and explosive processes. A four-step chemical kinetics model is employed for the HMX while a one-step model is used for the Viton. A pressure-dependent deflagration model is employed during the expansion. The mechanical behavior of the solid constituents is represented by a Steinberg-Guinan model while polynomial and gamma-law expressions are used for the equation of state of the solid and gas species, respectively. A gamma-law model is employed for the air in gaps, and a mixed material model is used for the interface between air and explosive. A Johnson-Cook model with an empirical rule for failure strain is used to describe fracture behavior. Parameters for the kinetics model were specified using measurements of the One-Dimensional-Time-to-Explosion (ODTX), while measurements for burn rate were employed to determine parameters in the burn front model. The ALE3D models provide good predictions for the thermal behavior and time to explosion, but the predicted wall expansion curve is higher than the measured curve. Possible contributions to this discrepancy include inaccuracies in the chemical models

  20. Expression of the AsbA1, OXA-12, and AsbM1 beta-lactamases in Aeromonas jandaei AER 14 is coordinated by a two-component regulon.

    PubMed Central

    Alksne, L E; Rasmussen, B A

    1997-01-01

    Aeromonas jandaei AER 14 (formerly Aeromonas sobria AER 14) expresses three inducible beta-lactamases, AsbA1, OXA-12 (AsbB1), and AsbM1. Mutant strains that constitutively overexpress all three enzyme simultaneously, suggesting that they share a common regulatory pathway, have been isolated. Detectable expression of the cloned genes of AsbA1 and OXA-12 in some Escherichia coli K-12 laboratory strains is achieved only in the presence of a blp mutation. These mutations map to the cre operon at 0 min, which encodes a classical two-component regulatory system of unknown function. Two regulatory elements from A. jandaei which permit high-level constitutive expression of OXA-12 in E. coli were cloned. Both loci encode proteins with characteristics of response regulator proteins of two-component regulatory systems. One of these loci, designated blrA, bestowed constitutive expression of all three beta-lactamases in A. jandaei AER 14 when present on a multicopy plasmid, confirming its role in the regulatory pathway of beta-lactamase production in this organism. PMID:9068648

  1. Fuel characteristics pertinent to the design of aircraft fuel systems, Supplement I : additional information on MIL-F-7914(AER) grade JP-5 fuel and several fuel oils

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C; Hibbard, Robert R

    1953-01-01

    Since the release of the first NACA publication on fuel characteristics pertinent to the design of aircraft fuel systems (NACA-RM-E53A21), additional information has become available on MIL-F7914(AER) grade JP-5 fuel and several of the current grades of fuel oils. In order to make this information available to fuel-system designers as quickly as possible, the present report has been prepared as a supplement to NACA-RM-E53A21. Although JP-5 fuel is of greater interest in current fuel-system problems than the fuel oils, the available data are not as extensive. It is believed, however, that the limited data on JP-5 are sufficient to indicate the variations in stocks that the designer must consider under a given fuel specification. The methods used in the preparation and extrapolation of data presented in the tables and figures of this supplement are the same as those used in NACA-RM-E53A21.

  2. A 0.35 μm sub-ns wake-up time ON-OFF switchable LVDS driver-receiver chip I/O pad pair for rate-dependent power saving in AER bit-serial links.

    PubMed

    Zamarreño-Ramos, Carlos; Serrano-Gotarredona, Teresa; Linares-Barranco, Bernabé

    2012-10-01

    This paper presents a low power switchable current mode driver/receiver I/O pair for high speed serial transmission of asynchronous address event representation (AER) information. The sparse nature of AER packets (also called events) allows driver/receiver bias currents to be switched off to save power. The on/off times must be lower than the bit time to minimize the latency introduced by the switching mechanism. Using this technique, the link power consumption can be scaled down with the event rate without compromising the maximum system throughput. The proposed technique has been implemented on a typical push/pull low voltage differential signaling (LVDS) circuit, but it can easily be extended to other widely used current mode standards, such as current mode logic (CML) or low-voltage positive emitter-coupled logic (LVPECL). A proof of concept prototype has been fabricated in 0.35 μm CMOS incorporating the proposed driver/receiver pair along with a previously reported switchable serializer/deserializer scheme. At a 500 Mbps bit rate, the maximum event rate is 11 Mevent/s for 32-bit events. In this situation, current consumption is 7.5 mA and 9.6 mA for the driver and receiver, respectively, while differential voltage amplitude is ±300 mV. However, if event rate is lower than 20-30 Kevent/s, current consumption has a floor of 270 μA for the driver and 570 μA for the receiver. The measured ON/OFF switching times are in the order of 1 ns. The serial link could be operated at up to 710 Mbps bit rate, resulting in a maximum 32-bit event rate of 15 Mevent/s . This is the same peak event rate as that obtained with the same SerDes circuits and a non-switched driver/receiver pair.

  3. Interaction of Vault Particles with Estrogen Receptor in the MCF-7 Breast Cancer Cell

    PubMed Central

    Abbondanza, Ciro; Rossi, Valentina; Roscigno, Annarita; Gallo, Luigi; Belsito, Angela; Piluso, Giulio; Medici, Nicola; Nigro, Vincenzo; Molinari, Anna Maria; Moncharmont, Bruno; Puca, Giovanni A.

    1998-01-01

    A 104-kD protein was coimmunoprecipitated with the estrogen receptor from the flowtrough of a phosphocellulose chromatography of MCF-7 cell nuclear extract. mAbs to this protein identified several cDNA clones coding for the human 104-kD major vault protein. Vaults are large ribonucleoprotein particles of unknown function present in all eukaryotic cells. They have a complex morphology, including several small molecules of RNA, but a single protein species, the major vault protein, accounts for >70% of their mass. Their shape is reminiscent of the nucleopore central plug, but no proteins of known function have been described to interact with them. Western blot analysis of vaults purified on sucrose gradient showed the presence of estrogen receptor co-migrating with the vault peak. The AER317 antibody to estrogen receptor coimmunoprecipitated the major vault protein and the vault RNA also in the 20,000 g supernatant fraction. Reconstitution experiments of estrogen receptor fragments with the major vault protein mapped the site of the interaction between amino acids 241 and 280 of human estrogen receptor, where the nuclear localization signal sequences are located. Estradiol treatment of cells increased the amount of major vault protein present in the nuclear extract and coimmunoprecipitated with estrogen receptor, whereas the anti-estrogen ICI182,780 had no effect. The hormone-dependent interaction of vaults with estrogen receptor was reproducible in vitro and was prevented by sodium molybdate. Antibodies to progesterone and glucocorticoid receptors were able to coimmunoprecipitate the major vault protein. The association of nuclear receptors with vaults could be related to their intracellular traffic. PMID:9628887

  4. Somatostatin receptors.

    PubMed

    Srikant, C B; Patel, Y C

    1985-01-01

    It is now well established that the biological actions of tetradecapeptide somatostatin (somatostatin-14, S-14) are receptor-mediated. These receptors were first quantified in GH4C pituitary tumor cells using [125I-Tyr1] S-14 as radioligand which was found to exhibit high non-specific binding to membrane receptor preparations from normal tissues. Our studies have shown that [125I-Tyr11] S-14 in which the radiolabel is situated away from the N-terminus exhibits significantly lower non-specific binding and therefore is more suitable for S-14 receptor studies. In the CNS, highest concentration of S-14 receptors was found in the cerebral cortex, followed by thalamus, hypothalamus, striatum, amygdala and hippocampus while medulla-pons, cerebellum and spinal cord exhibited negligible binding. Outside the CNS membrane receptors for S-14 have been characterized in pituitary, adrenal cortex and pancreatic acini. In all these tissues a single class of high affinity binding sites for S-14 were present, the receptors in pancreatic acinar cells exhibiting significantly greater affinity for binding S-14 than in other tissues.

  5. Somatostatin receptors.

    PubMed

    Patel, Y C; Srikant, C B

    1997-12-01

    The diverse biological effects of somatostatin (SRIF) are mediated by a family of G protein-coupled receptors (termed sst) that are encoded by five nonallelic genes located on separate chromosomes. The receptors can be further divided into two subfamilies: sst(2,3,5) react with octapeptide and hexapeptide SRIF analogues and belong to one subclass; sst(1,4) react poorly with these compounds and fall into another subclass. This review focuses on the molecular pharmacology and function of these receptors, with particular emphasis on the ligand-binding domain, subtype-selective analogues, agonist-dependent receptor regulation and desensitization responses, subtype-specific effector coupling, and signal transduction pathways responsible for inhibiting cell secretion and cell growth or induction of apoptosis.

  6. Lipoxin receptors.

    PubMed

    Romano, Mario; Recchia, Irene; Recchiuti, Antonio

    2007-01-01

    Lipoxins (LXs) represent a class of arachidonic acid (AA) metabolites that carry potent immunoregulatory and anti-inflammatory properties, LXA4 and LXB4 being the main components of this series. LXs are generated by cooperation between 5-lipoxygenase (LO) and 12- or 15-LO during cell-cell interactions or by single cell types. LX epimers at carbon 15, the 15-epi-LXs, are formed by aspirin-acetylated cyclooxygenase-2 (COX-2) in cooperation with 5-LO. 15-epi-LXA4 is also termed aspirin-triggered LX (ATL). In vivo studies with stable LX and ATL analogs have established that these eicosanoids possess potent anti-inflammatory activities. A LXA4 receptor has been cloned. It belongs to the family of chemotactic receptors and clusters with formyl peptide receptors on chromosome 19. Therefore, it was initially denominated formyl peptide receptor like 1 (FPRL1). This receptor binds with high affinity and stereoselectivity LXA4 and ATL. It also recognizes a variety of peptides, synthetic, endogenously generated, or disease associated, but with lower affinity compared to LXA4. For this reason, this receptor has been renamed ALX. This review summarizes the current knowledge on ALX expression, signaling, and potential pathophysiological role. The involvement of additional recognition sites in LX bioactions is also discussed. PMID:17767357

  7. Digit patterning during limb development as a result of the BMP-receptor interaction

    PubMed Central

    Badugu, Amarendra; Kraemer, Conradin; Germann, Philipp; Menshykau, Denis; Iber, Dagmar

    2012-01-01

    Turing models have been proposed to explain the emergence of digits during limb development. However, so far the molecular components that would give rise to Turing patterns are elusive. We have recently shown that a particular type of receptor-ligand interaction can give rise to Schnakenberg-type Turing patterns, which reproduce patterning during lung and kidney branching morphogenesis. Recent knockout experiments have identified Smad4 as a key protein in digit patterning. We show here that the BMP-receptor interaction meets the conditions for a Schnakenberg-type Turing pattern, and that the resulting model reproduces available wildtype and mutant data on the expression patterns of BMP, its receptor, and Fgfs in the apical ectodermal ridge (AER) when solved on a realistic 2D domain that we extracted from limb bud images of E11.5 mouse embryos. We propose that receptor-ligand-based mechanisms serve as a molecular basis for the emergence of Turing patterns in many developing tissues. PMID:23251777

  8. A 1.5 ns OFF/ON switching-time voltage-mode LVDS driver/receiver pair for asynchronous AER bit-serial chip grid links with up to 40 times event-rate dependent power savings.

    PubMed

    Zamarreno-Ramos, Carlos; Kulkarni, Raghavendra; Silva-Martinez, Jose; Serrano-Gotarredona, Teresa; Linares-Barranco, Bernabe

    2013-10-01

    This paper presents a low power fast ON/OFF switchable voltage mode implementation of a driver/receiver pair intended to be used in high speed bit-serial Low Voltage Differential Signaling (LVDS) Address Event Representation (AER) chip grids, where short (like 32-bit) sparse data packages are transmitted. Voltage-Mode drivers require intrinsically half the power of their Current-Mode counterparts and do not require Common-Mode Voltage Control. However, for fast ON/OFF switching a special high-speed voltage regulator is required which needs to be kept ON during data pauses, and hence its power consumption must be minimized, resulting in tight design constraints. A proof-of-concept chip test prototype has been designed and fabricated in low-cost standard 0.35 μ m CMOS. At ± 500 mV voltage swing with 500 Mbps serial bit rate and 32 bit events, current consumption scales from 15.9 mA (7.7 mA for the driver and 8.2 mA for the receiver) at 10 Mevent/s rate to 406 μ A ( 343 μ A for the driver and 62.5 μA for the receiver) for an event rate below 10 Kevent/s, therefore achieving a rate dependent power saving of up to 40 times, while keeping switching times at 1.5 ns. Maximum achievable event rate was 13.7 Meps at 638 Mbps serial bit rate. Additionally, differential voltage swing is tunable, thus allowing further power reductions.

  9. The LDL receptor.

    PubMed

    Goldstein, Joseph L; Brown, Michael S

    2009-04-01

    In this article, the history of the LDL receptor is recounted by its codiscoverers. Their early work on the LDL receptor explained a genetic cause of heart attacks and led to new ways of thinking about cholesterol metabolism. The LDL receptor discovery also introduced three general concepts to cell biology: receptor-mediated endocytosis, receptor recycling, and feedback regulation of receptors. The latter concept provides the mechanism by which statins selectively lower plasma LDL, reducing heart attacks and prolonging life. PMID:19299327

  10. The Azospirillum brasilense Che1 chemotaxis pathway controls swimming velocity, which affects transient cell-to-cell clumping.

    PubMed

    Bible, Amber; Russell, Matthew H; Alexandre, Gladys

    2012-07-01

    The Che1 chemotaxis-like pathway of Azospirillum brasilense contributes to chemotaxis and aerotaxis, and it has also been found to contribute to regulating changes in cell surface adhesive properties that affect the propensity of cells to clump and to flocculate. The exact contribution of Che1 to the control of chemotaxis and flocculation in A. brasilense remains poorly understood. Here, we show that Che1 affects reversible cell-to-cell clumping, a cellular behavior in which motile cells transiently interact by adhering to one another at their nonflagellated poles before swimming apart. Clumping precedes and is required for flocculation, and both processes appear to be independently regulated. The phenotypes of a ΔaerC receptor mutant and of mutant strains lacking cheA1, cheY1, cheB1, or cheR1 (alone or in combination) or with che1 deleted show that Che1 directly mediates changes in the flagellar swimming velocity and that this behavior directly modulates the transient nature of clumping. Our results also suggest that an additional receptor(s) and signaling pathway(s) are implicated in mediating other Che1-independent changes in clumping identified in the present study. Transient clumping precedes the transition to stable clump formation, which involves the production of specific extracellular polysaccharides (EPS); however, production of these clumping-specific EPS is not directly controlled by Che1 activity. Che1-dependent clumping may antagonize motility and prevent chemotaxis, thereby maintaining cells in a metabolically favorable niche.

  11. Historical overview of nuclear receptors.

    PubMed

    Gustafsson, Jan-Ake

    2016-03-01

    This review summarizes the birth of the field of nuclear receptors, from Jensen's discovery of estrogen receptor alpha, Gustafsson's discovery of the three-domain structure of the glucocorticoid receptor, the discovery of the glucocorticoid response element and the first partial cloning of the glucocorticoid receptor. Furthermore the discovery of the novel receptors called orphan receptors is described.

  12. Standardizing Scavenger Receptor Nomenclature

    PubMed Central

    PrabhuDas, Mercy; Bowdish, Dawn; Drickamer, Kurt; Febbraio, Maria; Herz, Joachim; Kobzik, Lester; Krieger, Monty; Loike, John; Means, Terry K.; Moestrup, Soren K.; Post, Steven; Sawamura, Tatsuya; Silverstein, Samuel; Wang, Xiang-Yang; El Khoury, Joseph

    2014-01-01

    Scavenger receptors constitute a large family of proteins that are structurally diverse and participate in a wide range of biological functions. These receptors are expressed predominantly by myeloid cells and recognize a variety of ligands, including endogenous and modified host-derived molecules and microbial pathogens. There are currently eight classes of scavenger receptors, many of which have multiple names, leading to inconsistencies and confusion in the literature. To address this problem, a workshop was organized by the U.S. National Institute of Allergy and Infectious Diseases, National Institutes of Health to help develop a clear definition of scavenger receptors and a standardized nomenclature based on that definition. Fifteen experts in the scavenger receptor field attended the workshop and, after extensive discussion, reached a consensus regarding the definition of scavenger receptors and a proposed scavenger receptor nomenclature. Scavenger receptors were defined as cell surface receptors that typically bind multiple ligands and promote the removal of non-self or altered-self targets. They often function by mechanisms that include endocytosis, phagocytosis, adhesion, and signaling that ultimately lead to the elimination of degraded or harmful substances. Based on this definition, nomenclature and classification of these receptors into 10 classes were proposed. The discussion and nomenclature recommendations described in this report only refer to mammalian scavenger receptors. The purpose of this article is to describe the proposed mammalian nomenclature and classification developed at the workshop and to solicit additional feedback from the broader research community. PMID:24563502

  13. P2X receptors.

    PubMed

    North, R Alan

    2016-08-01

    Extracellular adenosine 5'-triphosphate (ATP) activates cell surface P2X and P2Y receptors. P2X receptors are membrane ion channels preferably permeable to sodium, potassium and calcium that open within milliseconds of the binding of ATP. In molecular architecture, they form a unique structural family. The receptor is a trimer, the binding of ATP between subunits causes them to flex together within the ectodomain and separate in the membrane-spanning region so as to open a central channel. P2X receptors have a widespread tissue distribution. On some smooth muscle cells, P2X receptors mediate the fast excitatory junction potential that leads to depolarization and contraction. In the central nervous system, activation of P2X receptors allows calcium to enter neurons and this can evoke slower neuromodulatory responses such as the trafficking of receptors for the neurotransmitter glutamate. In primary afferent nerves, P2X receptors are critical for the initiation of action potentials when they respond to ATP released from sensory cells such as taste buds, chemoreceptors or urothelium. In immune cells, activation of P2X receptors triggers the release of pro-inflammatory cytokines such as interleukin 1β. The development of selective blockers of different P2X receptors has led to clinical trials of their effectiveness in the management of cough, pain, inflammation and certain neurodegenerative diseases.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. PMID:27377721

  14. Signals and Receptors.

    PubMed

    Heldin, Carl-Henrik; Lu, Benson; Evans, Ron; Gutkind, J Silvio

    2016-04-01

    Communication between cells in a multicellular organism occurs by the production of ligands (proteins, peptides, fatty acids, steroids, gases, and other low-molecular-weight compounds) that are either secreted by cells or presented on their surface, and act on receptors on, or in, other target cells. Such signals control cell growth, migration, survival, and differentiation. Signaling receptors can be single-span plasma membrane receptors associated with tyrosine or serine/threonine kinase activities, proteins with seven transmembrane domains, or intracellular receptors. Ligand-activated receptors convey signals into the cell by activating signaling pathways that ultimately affect cytosolic machineries or nuclear transcriptional programs or by directly translocating to the nucleus to regulate transcription. PMID:27037414

  15. Signaling by Sensory Receptors

    PubMed Central

    Julius, David; Nathans, Jeremy

    2012-01-01

    Sensory systems detect small molecules, mechanical perturbations, or radiation via the activation of receptor proteins and downstream signaling cascades in specialized sensory cells. In vertebrates, the two principal categories of sensory receptors are ion channels, which mediate mechanosensation, thermosensation, and acid and salt taste; and G-protein-coupled receptors (GPCRs), which mediate vision, olfaction, and sweet, bitter, and umami tastes. GPCR-based signaling in rods and cones illustrates the fundamental principles of rapid activation and inactivation, signal amplification, and gain control. Channel-based sensory systems illustrate the integration of diverse modulatory signals at the receptor, as seen in the thermosensory/pain system, and the rapid response kinetics that are possible with direct mechanical gating of a channel. Comparisons of sensory receptor gene sequences reveal numerous examples in which gene duplication and sequence divergence have created novel sensory specificities. This is the evolutionary basis for the observed diversity in temperature- and ligand-dependent gating among thermosensory channels, spectral tuning among visual pigments, and odorant binding among olfactory receptors. The coding of complex external stimuli by a limited number of sensory receptor types has led to the evolution of modality-specific and species-specific patterns of retention or loss of sensory information, a filtering operation that selectively emphasizes features in the stimulus that enhance survival in a particular ecological niche. The many specialized anatomic structures, such as the eye and ear, that house primary sensory neurons further enhance the detection of relevant stimuli. PMID:22110046

  16. Leukotriene receptor antagonist therapy

    PubMed Central

    Dempsey, O

    2000-01-01

    Leukotriene receptor antagonists (LTRA) are a new class of drugs for asthma treatment, available in tablet form. Their unique mechanism of action results in a combination of both bronchodilator and anti-inflammatory effects. While their optimal place in asthma management is still under review, LTRA represent an important advance in asthma pharmacotherapy.


Keywords: leukotriene receptor antagonist; asthma; montelukast; zafirlukast PMID:11085767

  17. Genetics of Taste Receptors

    PubMed Central

    Bachmanov, Alexander A.; Bosak, Natalia P.; Lin, Cailu; Matsumoto, Ichiro; Ohmoto, Makoto; Reed, Danielle R.; Nelson, Theodore M.

    2016-01-01

    Taste receptors function as one of the interfaces between internal and external milieus. Taste receptors for sweet and umami (T1R [taste receptor, type 1]), bitter (T2R [taste receptor, type 2]), and salty (ENaC [epithelial sodium channel]) have been discovered in the recent years, but transduction mechanisms of sour taste and ENaC-independent salt taste are still poorly understood. In addition to these five main taste qualities, the taste system detects such noncanonical “tastes” as water, fat, and complex carbohydrates, but their reception mechanisms require further research. Variations in taste receptor genes between and within vertebrate species contribute to individual and species differences in taste-related behaviors. These variations are shaped by evolutionary forces and reflect species adaptations to their chemical environments and feeding ecology. Principles of drug discovery can be applied to taste receptors as targets in order to develop novel taste compounds to satisfy demand in better artificial sweeteners, enhancers of sugar and sodium taste, and blockers of bitterness of food ingredients and oral medications. PMID:23886383

  18. Genetics of taste receptors.

    PubMed

    Bachmanov, Alexander A; Bosak, Natalia P; Lin, Cailu; Matsumoto, Ichiro; Ohmoto, Makoto; Reed, Danielle R; Nelson, Theodore M

    2014-01-01

    Taste receptors function as one of the interfaces between internal and external milieus. Taste receptors for sweet and umami (T1R [taste receptor, type 1]), bitter (T2R [taste receptor, type 2]), and salty (ENaC [epithelial sodium channel]) have been discovered in the recent years, but transduction mechanisms of sour taste and ENaC-independent salt taste are still poorly understood. In addition to these five main taste qualities, the taste system detects such noncanonical "tastes" as water, fat, and complex carbohydrates, but their reception mechanisms require further research. Variations in taste receptor genes between and within vertebrate species contribute to individual and species differences in taste-related behaviors. These variations are shaped by evolutionary forces and reflect species adaptations to their chemical environments and feeding ecology. Principles of drug discovery can be applied to taste receptors as targets in order to develop novel taste compounds to satisfy demand in better artificial sweeteners, enhancers of sugar and sodium taste, and blockers of bitterness of food ingredients and oral medications. PMID:23886383

  19. Dopamine Receptors and Neurodegeneration

    PubMed Central

    Rangel-Barajas, Claudia; Coronel, Israel; Florán, Benjamín

    2015-01-01

    Dopamine (DA) is one of the major neurotransmitters and participates in a number of functions such as motor coordination, emotions, memory, reward mechanism, neuroendocrine regulation etc. DA exerts its effects through five DA receptors that are subdivided in 2 families: D1-like DA receptors (D1 and D5) and the D2-like (D2, D3 and D4). All DA receptors are widely expressed in the central nervous system (CNS) and play an important role in not only in physiological conditions but also pathological scenarios. Abnormalities in the DAergic system and its receptors in the basal ganglia structures are the basis Parkinson’s disease (PD), however DA also participates in other neurodegenerative disorders such as Huntington disease (HD) and multiple sclerosis (MS). Under pathological conditions reorganization of DAergic system has been observed and most of the times, those changes occur as a mechanism of compensation, but in some cases contributes to worsening the alterations. Here we review the changes that occur on DA transmission and DA receptors (DARs) at both levels expression and signals transduction pathways as a result of neurotoxicity, inflammation and in neurodegenerative processes. The better understanding of the role of DA receptors in neuropathological conditions is crucial for development of novel therapeutic approaches to treat alterations related to neurodegenerative diseases. PMID:26425390

  20. Ionotropic Crustacean Olfactory Receptors

    PubMed Central

    Corey, Elizabeth A.; Bobkov, Yuriy; Ukhanov, Kirill; Ache, Barry W.

    2013-01-01

    The nature of the olfactory receptor in crustaceans, a major group of arthropods, has remained elusive. We report that spiny lobsters, Panulirus argus, express ionotropic receptors (IRs), the insect chemosensory variants of ionotropic glutamate receptors. Unlike insects IRs, which are expressed in a specific subset of olfactory cells, two lobster IR subunits are expressed in most, if not all, lobster olfactory receptor neurons (ORNs), as confirmed by antibody labeling and in situ hybridization. Ligand-specific ORN responses visualized by calcium imaging are consistent with a restricted expression pattern found for other potential subunits, suggesting that cell-specific expression of uncommon IR subunits determines the ligand sensitivity of individual cells. IRs are the only type of olfactory receptor that we have detected in spiny lobster olfactory tissue, suggesting that they likely mediate olfactory signaling. Given long-standing evidence for G protein-mediated signaling in activation of lobster ORNs, this finding raises the interesting specter that IRs act in concert with second messenger-mediated signaling. PMID:23573266

  1. Taste Receptors in Innate Immunity

    PubMed Central

    Lee, Robert J.

    2014-01-01

    Taste receptors were first identified on the tongue, where they initiate a signaling pathway that communicates information to the brain about the nutrient content or potential toxicity of ingested foods. However, recent research has shown that taste receptors are also expressed in a myriad of other tissues, from the airway and gastrointestinal epithelia to the pancreas and brain. The functions of many of these extraoral taste receptors remain unknown, but emerging evidence suggests that bitter and sweet taste receptors in the airway are important sentinels of innate immunity. This review discusses taste receptor signaling, focusing on the G-protein coupled–receptors that detect bitter, sweet, and savory tastes, followed by an overview of extraoral taste receptors and in-depth discussion of studies demonstrating the roles of taste receptors in airway innate immunity. Future research on extraoral taste receptors has significant potential for identification of novel immune mechanisms and insights into host-pathogen interactions. PMID:25323130

  2. New insights into receptor regulation.

    PubMed

    Poste, G

    1984-11-01

    This review provides a brief summary of certain recent advances in our understanding of receptor regulation, signal transduction, and the diverse pathways by which receptor-ligand complexes are internalized and delivered to specific organelles, together with recycling of receptors back to the cell surface. Emphasis is also given to the importance of methodological advances in receptor isolation, immunologic analysis of receptor structure and function, the development of new instrumentation for microchemical characterization of very small amounts of receptor material, and the increasing use of genetic engineering techniques to isolate the genes for receptors and their regulatory subunits, to transfer such genes between cells, and to study receptor function by creating structurally modified receptors via subtle changes in gene structure. PMID:6151557

  3. Olfactory receptor signaling.

    PubMed

    Antunes, Gabriela; Simoes de Souza, Fabio Marques

    2016-01-01

    The guanine nucleotide protein (G protein)-coupled receptors (GPCRs) superfamily represents the largest class of membrane protein in the human genome. More than a half of all GPCRs are dedicated to interact with odorants and are termed odorant-receptors (ORs). Linda Buck and Richard Axel, the Nobel Prize laureates in physiology or medicine in 2004, first cloned and characterized the gene family that encode ORs, establishing the foundations to the understanding of the molecular basis for odor recognition. In the last decades, a lot of progress has been done to unravel the functioning of the sense of smell. This chapter gives a general overview of the topic of olfactory receptor signaling and reviews recent advances in this field. PMID:26928542

  4. Progesterone Receptor Signaling Mechanisms.

    PubMed

    Grimm, Sandra L; Hartig, Sean M; Edwards, Dean P

    2016-09-25

    Progesterone receptor (PR) is a master regulator in female reproductive tissues that controls developmental processes and proliferation and differentiation during the reproductive cycle and pregnancy. PR also plays a role in progression of endocrine-dependent breast cancer. As a member of the nuclear receptor family of ligand-dependent transcription factors, the main action of PR is to regulate networks of target gene expression in response to binding its cognate steroid hormone, progesterone. This paper summarizes recent advances in understanding the structure-function properties of the receptor protein and the tissue/cell-type-specific PR signaling pathways that contribute to the biological actions of progesterone in the normal breast and in breast cancer. PMID:27380738

  5. CONTAMINANT INTERACTIONS WITH STEROID RECEPTORS: EVIDENCE FOR RECEPTOR BINDING.

    EPA Science Inventory

    Steroid receptors are important determinants of endocrine disrupter consequences. As the most frequently proposed mechanism of endocrine-disrupting contaminant (EDC) action, steroid receptors are not only targets of natural steroids but are also commonly sites of nonsteroidal com...

  6. Vasopressin receptor antagonists.

    PubMed

    Palmer, Biff F

    2015-01-01

    Arginine vasopressin (AVP) is the principal hormone involved in regulating the tonicity of body fluids. Less appreciated is the role that AVP plays in a variety of other physiologic functions including glucose metabolism, cardiovascular homeostasis, bone metabolism, and cognitive behavior. AVP receptor antagonists are now available and currently approved to treat hyponatremia. There is a great deal of interest in exploring the potential benefits that these drugs may play in blocking AVP-mediated effects in other organ systems. The purpose of this report is to provide an update on the expanding role of AVP receptor antagonists and what disease states these drugs may eventually be used for.

  7. Vasopressin receptor antagonists.

    PubMed

    Palmer, Biff F

    2015-01-01

    Arginine vasopressin (AVP) is the principal hormone involved in regulating the tonicity of body fluids. Less appreciated is the role that AVP plays in a variety of other physiologic functions including glucose metabolism, cardiovascular homeostasis, bone metabolism, and cognitive behavior. AVP receptor antagonists are now available and currently approved to treat hyponatremia. There is a great deal of interest in exploring the potential benefits that these drugs may play in blocking AVP-mediated effects in other organ systems. The purpose of this report is to provide an update on the expanding role of AVP receptor antagonists and what disease states these drugs may eventually be used for. PMID:25604388

  8. Biomimetic Receptors and Sensors

    PubMed Central

    Dickert, Franz L.

    2014-01-01

    In biomimetics, living systems are imitated to develop receptors for ions, molecules and bioparticles. The most pertinent idea is self-organization in analogy to evolution in nature, which created the key-lock principle. Today, modern science has been developing host-guest chemistry, a strategy of supramolecular chemistry for designing interactions of analytes with synthetic receptors. This can be realized, e.g., by self-assembled monolayers (SAMs) or molecular imprinting. The strategies are used for solid phase extraction (SPE), but preferably in developing recognition layers of chemical sensors. PMID:25436653

  9. Computational Biology of Olfactory Receptors

    PubMed Central

    Crasto, Chiquito J.

    2011-01-01

    Olfactory receptors, in addition to being involved in first step of the physiological processes that leads to olfaction, occupy an important place in mammalian genomes. ORs constitute super families in these genomes. Elucidating ol-factory receptor function at a molecular level can be aided by a computationally derived structure and an understanding of its interactions with odor molecules. Experimental functional analyses of olfactory receptors in conjunction with computational studies serve to validate findings and generate hypotheses. We present here a review of the research efforts in: creating computational models of olfactory receptors, identifying binding strategies for these receptors with odorant molecules, performing medium to long range simulation studies of odor ligands in the receptor binding region, and identifying amino acid positions within the receptor that are responsible for ligand-binding and olfactory receptor activation. Written as a primer and a teaching tool, this review will help researchers extend the methodologies described herein to other GPCRs. PMID:21984880

  10. Synaptic Neurotransmitter-Gated Receptors

    PubMed Central

    Smart, Trevor G.; Paoletti, Pierre

    2012-01-01

    Since the discovery of the major excitatory and inhibitory neurotransmitters and their receptors in the brain, many have deliberated over their likely structures and how these may relate to function. This was initially satisfied by the determination of the first amino acid sequences of the Cys-loop receptors that recognized acetylcholine, serotonin, GABA, and glycine, followed later by similar determinations for the glutamate receptors, comprising non-NMDA and NMDA subtypes. The last decade has seen a rapid advance resulting in the first structures of Cys-loop receptors, related bacterial and molluscan homologs, and glutamate receptors, determined down to atomic resolution. This now provides a basis for determining not just the complete structures of these important receptor classes, but also for understanding how various domains and residues interact during agonist binding, receptor activation, and channel opening, including allosteric modulation. This article reviews our current understanding of these mechanisms for the Cys-loop and glutamate receptor families. PMID:22233560

  11. Human placental calcitonin receptors.

    PubMed Central

    Nicholson, G C; D'Santos, C S; Evans, T; Moseley, J M; Kemp, B E; Michelangeli, V P; Martin, T J

    1988-01-01

    Receptors for the hypocalcaemic hormone, calcitonin (CT), have been identified in a membrane fraction prepared from term human placentae. Binding of 125I-labelled salmon CT (125I-sCT) to the membranes was time- and temperature-dependent, saturable (Bmax. 58 +/- 11 fmol/mg of protein), of high affinity (Kd 80 +/- 21 pM) and poorly reversible. Species-specific CTs and CT analogues competed for 125I-sCT binding with potencies proportional to their known biological potencies. Various unrelated peptide hormones did not compete, indicating that receptor binding was specific for CT. Photoaffinity labelling using a derivatized biologically active sCT analogue, [Arg11,18,3-nitrophenylazide-Lys14]sCT, identified a receptor component of Mr approximately 85,000, comparable with findings in osteoclasts and other target cells. The presence of CT receptors in the human placenta supports other evidence that CT may have a role in the regulation of placental function. PMID:2839149

  12. Nicotinic Receptors in Neurodegeneration

    PubMed Central

    Posadas, Inmaculada; López-Hernández, Beatriz; Ceña, Valentín

    2013-01-01

    Many studies have focused on expanding our knowledge of the structure and diversity of peripheral and central nicotinic receptors. Nicotinic acetylcholine receptors (nAChRs) are members of the Cys-loop superfamily of pentameric ligand-gated ion channels, which include GABA (A and C), serotonin, and glycine receptors. Currently, 9 alpha (α2-α10) and 3 beta (β2-β4) subunits have been identified in the central nervous system (CNS), and these subunits assemble to form a variety of functional nAChRs. The pentameric combination of several alpha and beta subunits leads to a great number of nicotinic receptors that vary in their properties, including their sensitivity to nicotine, permeability to calcium and propensity to desensitize. In the CNS, nAChRs play crucial roles in modulating presynaptic, postsynaptic, and extrasynaptic signaling, and have been found to be involved in a complex range of CNS disorders including Alzheimer’s disease (AD), Parkinson’s disease (PD), schizophrenia, Tourette´s syndrome, anxiety, depression and epilepsy. Therefore, there is growing interest in the development of drugs that modulate nAChR functions with optimal benefits and minimal adverse effects. The present review describes the main characteristics of nAChRs in the CNS and focuses on the various compounds that have been tested and are currently in phase I and phase II trials for the treatment of neurodegenerative diseases including PD, AD and age-associated memory and mild cognitive impairment. PMID:24179465

  13. Diversification of TAM receptor function

    PubMed Central

    Zagórska, Anna; Través, Paqui G.; Lew, Erin D.; Dransfield, Ian; Lemke, Greg

    2014-01-01

    Apoptotic cell clearance is critical for both tissue homeostasis and the resolution of inflammation. We found that the TAM receptor tyrosine kinases Axl and Mer played distinct roles as phagocytic receptors in these two settings, where they exhibited divergent expression, regulation, and activity. Mer acted as a tolerogenic receptor in resting macrophages and in settings of immune suppression. Conversely, Axl was an inflammatory response receptor whose expression was induced by pro-inflammatory stimuli. Axl and Mer displayed distinct ligand specificities, ligand-receptor complex formation in tissues, and receptor shedding upon activation. These differences notwithstanding, phagocytosis by either protein was strictly dependent on receptor activation that was triggered by bridging TAM receptor–ligand complexes to the ‘eat-me’ signal phosphatidylserine on apoptotic cell surfaces. PMID:25194421

  14. Taste Receptor Genes

    PubMed Central

    Bachmanov, Alexander A.; Beauchamp, Gary K.

    2009-01-01

    In the past several years, tremendous progress has been achieved with the discovery and characterization of vertebrate taste receptors from the T1R and T2R families, which are involved in recognition of bitter, sweet, and umami taste stimuli. Individual differences in taste, at least in some cases, can be attributed to allelic variants of the T1R and T2R genes. Progress with understanding how T1R and T2R receptors interact with taste stimuli and with identifying their patterns of expression in taste cells sheds light on coding of taste information by the nervous system. Candidate mechanisms for detection of salts, acids, fat, complex carbohydrates, and water have also been proposed, but further studies are needed to prove their identity. PMID:17444812

  15. TSH RECEPTOR AUTOANTIBODIES

    PubMed Central

    Michalek, Krzysztof; Morshed, Syed A.; Latif, Rauf; Davies, Terry F.

    2009-01-01

    Thyrotropin receptor autoantibodies (TSHR-Abs) of the stimulating variety are the hallmark of Graves’ disease. The presence of immune defects leading to synthesis of TSHR-Abs causes hyperthyroidism and is associated with other extrathyroidal manifestations. Further characterization of these antibodies has now been made possible by the generation of monoclonal antibodies with this unique stimulating capacity as well as similar TSHR-Abs not associated with hyperthyroidism. Their present classification divides TSHR-Abs into stimulating, blocking (competing with TSH binding) and neutral (no signaling). Recent studies using monoclonal TSHR-Abs has revealed that stimulating and blocking antibodies bind to the receptor using mostly conformational epitopes, whilst neutral antibodies utilize exclusively linear peptides. Subtle differences in epitopes for stimulating and blocking antibodies account for the diversity of their biological actions. Recently non-classical signaling elicited by neutral antibodies has also been described, raising the need for a new classification of TSHR-Abs. PMID:19332151

  16. The interleukin-4 receptor: signal transduction by a hematopoietin receptor.

    PubMed

    Keegan, A D; Pierce, J H

    1994-02-01

    Over the last several years, the receptors for numerous cytokines have been molecularly characterized. Analysis of their amino acid sequences shows that some of these receptors bear certain motifs in their extracellular domains that define a family of receptors called the Hematopoietin receptor superfamily. Significant advances in characterizing the structure, function, and mechanisms of signal transduction have been made for several members of this family. The purpose of this review is to discuss the recent advances made for one of the family members, the interleukin (IL) 4 receptor. Other receptor systems have recently been reviewed elsewhere. The IL-4 receptor consists of, at the minimum, the cloned 140 kDa IL-4-binding chain with the potential for associating with other chains. The IL-4 receptor transduces its signal by activating a tyrosine kinase that phosphorylates cellular substrates, including the receptor itself, and the 170 kDa substrate called 4PS. Phosphorylated 4PS interacts with the SH2 domain of the enzyme PI-3'-kinase and increases its enzymatic activity. These early events in the IL-4 receptor initiated signaling pathway may trigger a series of signals that will ultimately lead to an IL-4 specific biologic outcome.

  17. Quantitative receptor autoradiography

    SciTech Connect

    Boast, C.A.; Snowhill, E.W.; Altar, C.A.

    1986-01-01

    Quantitative receptor autoradiography addresses the topic of technical and scientific advances in the sphere of quantitative autoradiography. The volume opens with a overview of the field from a historical and critical perspective. Following is a detailed discussion of in vitro data obtained from a variety of neurotransmitter systems. The next section explores applications of autoradiography, and the final two chapters consider experimental models. Methodological considerations are emphasized, including the use of computers for image analysis.

  18. Receptors for enterovirus 71

    PubMed Central

    Yamayoshi, Seiya; Fujii, Ken; Koike, Satoshi

    2014-01-01

    Enterovirus 71 (EV71) is one of the major causative agents of hand, foot and mouth disease (HFMD). Occasionally, EV71 infection is associated with severe neurological diseases, such as acute encephalitis, acute flaccid paralysis and cardiopulmonary failure. Several molecules act as cell surface receptors that stimulate EV71 infection, including scavenger receptor B2 (SCARB2), P-selectin glycoprotein ligand-1 (PSGL-1), sialylated glycan, heparan sulfate and annexin II (Anx2). SCARB2 plays critical roles in attachment, viral entry and uncoating, and it can facilitate efficient EV71 infection. The three-dimensional structures of the mature EV71 virion, procapsid and empty capsid, as well as the exofacial domain of SCARB2, have been elucidated. This structural information has greatly increased our understanding of the early steps of EV71 infection. Furthermore, SCARB2 plays essential roles in the development of EV71 neurological disease in vivo. Adult mice are not susceptible to infection by EV71, but transgenic mice that express human SCARB2 become susceptible to EV71 infection and develop similar neurological diseases to those found in humans. This mouse model facilitates the in vivo investigation of many issues related to EV71. PSGL-1, sialylated glycan, heparan sulfate and Anx2 are attachment receptors, which enhance viral infection by retaining the virus on the cell surface. These molecules also contribute to viral infection in vitro either by interacting with SCARB2 or independently of SCARB2. However, the cooperative effects of these receptors, and their contribution to EV71 pathogenicity in vivo, remain to be elucidated. PMID:26038749

  19. [Lipoprotein receptors. Old acquaintances and newcomers].

    PubMed

    Ducobu, J

    1997-02-01

    Lipoprotein receptors are plasma membrane proteins of high affinity which interact with circulating lipoprotein particles. The well characterized LDL receptor continues to be analysed and some new findings on its intracellular mechanisms of action have emerged. New lipoprotein receptors have recently been described: the chylomicron remnant receptor or LDL-related protein (LRP), the lipolysis stimulated receptor (LSR), the very low density lipoprotein receptor (VLDLR), the HDL receptor (HDLR) and the scavenger receptor (SR). The molecular details of the receptors will facilitate the development of new therapeutic means to improve receptor-mediated clearance of lipoproteins.

  20. Melatonin Receptor Genes in Vertebrates

    PubMed Central

    Li, Di Yan; Smith, David Glenn; Hardeland, Rüdiger; Yang, Ming Yao; Xu, Huai Liang; Zhang, Long; Yin, Hua Dong; Zhu, Qing

    2013-01-01

    Melatonin receptors are members of the G protein-coupled receptor (GPCR) family. Three genes for melatonin receptors have been cloned. The MT1 (or Mel1a or MTNR1A) and MT2 (or Mel1b or MTNR1B) receptor subtypes are present in humans and other mammals, while an additional melatonin receptor subtype, Mel1c (or MTNR1C), has been identified in fish, amphibians and birds. Another melatonin related orphan receptor, GPR50, which does not bind melatonin, is found exclusively in mammals. The hormone melatonin is secreted primarily by the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone acts systemically in numerous organs. In the brain, it is involved in the regulation of various neural and endocrine processes, and it readjusts the circadian pacemaker, the suprachiasmatic nucleus. This article reviews recent studies of gene organization, expression, evolution and mutations of melatonin receptor genes of vertebrates. Gene polymorphisms reveal that numerous mutations are associated with diseases and disorders. The phylogenetic analysis of receptor genes indicates that GPR50 is an outgroup to all other melatonin receptor sequences. GPR50 may have separated from a melatonin receptor ancestor before the split between MTNR1C and the MTNR1A/B ancestor. PMID:23712359

  1. Receptor binding properties of amperozide.

    PubMed

    Svartengren, J; Simonsson, P

    1990-01-01

    The receptor pharmacology of amperozide was investigated with in vitro radioligand binding technique. Amperozide possessed a high affinity to the 5-HT2 receptors (Ki = 16.5 +/- 2.1 nM) and a moderate affinity to alpha 1-adrenergic receptors of rat cerebral cortical membranes (Ki = 172 +/- 14 nM). The affinity of amperozide for striatal and limbic dopamine D2 receptors was low and not significantly different (Ki +/- S.E.M. = 540 +/- 59 nM vs 403 +/- 42 nM; p less than 0.11, n = 4). The affinity for striatal and limbic 5-HT2 receptors was measured as well and found to be very close to the affinity to the cerebral cortical 5-HT2 receptor. The drug affinity for D2 and 5-HT2 receptors seems thus not to be influenced by the location of the receptor moiety. The affinity for several other rat brain receptors such as 5-HT1A, alpha 2-adrenergic, dopamine D1, muscarinic M1 and M2, opiate sigma and beta 2-adrenergic was low. The pseudo-Hill coefficient of the amperozide competition binding curve was consistently higher than one indicating antagonistic and complex interactions with the 5-HT2 receptor or with alpha 1-adrenergic and dopamine D2 receptors. The antagonistic properties of amperozide were investigated by its ability to antagonize the serotonin-induced formation of inositol-1-phosphate in human blood platelets. Amperozide inhibited this 5-HT2 receptor-mediated intracellular response with similar potency as ketanserin. These results suggest that amperozide is a selective 5-HT2 receptor antagonist.

  2. Angiotensin II receptors in testes

    SciTech Connect

    Millan, M.A.; Aguilera, G.

    1988-05-01

    Receptors for angiotensin II (AII) were identified and characterized in testes of rats and several primate species. Autoradiographic analysis of the binding of 125I-labeled (Sar1,Ile8)AII to rat, rhesus monkey, cebus monkey, and human testicular slide-mounted frozen sections indicated specific binding to Leydig cells in the interstitium. In rat collagenase-dispersed interstitial cells fractionated by Percoll gradient, AII receptor content was parallel to that of hCG receptors, confirming that the AII receptors are in the Leydig cells. In rat dispersed Leydig cells, binding was specific for AII and its analogs and of high affinity (Kd, 4.8 nM), with a receptor concentration of 15 fmol/10(6) cells. Studies of AII receptors in rat testes during development reveals the presence of high receptor density in newborn rats which decreases toward the adult age (4934 +/- 309, 1460 +/- 228, 772 +/- 169, and 82 +/- 12 fmol/mg protein at 5, 15, 20, and 30 days of age, respectively) with no change in affinity. At all ages receptors were located in the interstitium, and the decrease in binding was parallel to the decrease in the interstitial to tubular ratio observed with age. AII receptor properties in membrane-rich fractions from prepuberal testes were similar in the rat and rhesus monkey. Binding was time and temperature dependent, reaching a plateau at 60 min at 37 C, and was increased by divalent cations, EGTA, and dithiothreitol up to 0.5 mM. In membranes from prepuberal monkey testes, AII receptors were specific for AII analogs and of high affinity (Kd, 4.2 nM) with a receptor concentration of 7599 +/- 1342 fmol/mg protein. The presence of AII receptors in Leydig cells in rat and primate testes in conjunction with reports of the presence of other components of the renin-angiotensin system in the testes suggests that the peptide has a physiological role in testicular function.

  3. Angiotensin II receptor signalling.

    PubMed

    Daniels, Derek; Yee, Daniel K; Fluharty, Steven J

    2007-05-01

    Angiotensin II plays a key role in the regulation of body fluid homeostasis. To correct body fluid deficits that occur during hypovolaemia, an animal needs to ingest both water and electrolytes. Thus, it is not surprising that angiotensin II, which is synthesized in response to hypovolaemia, acts centrally to increase both water and NaCl intake. Here, we review findings relating to the properties of angiotensin II receptors that give rise to changes in behaviour. Data are described to suggest that divergent signal transduction pathways are responsible for separable behavioural responses to angiotensin II, and a hypothesis is proposed to explain how this divergence may map onto neural circuits in the brain.

  4. The human olfactory receptor repertoire

    PubMed Central

    Zozulya, Sergey; Echeverri, Fernando; Nguyen, Trieu

    2001-01-01

    Background The mammalian olfactory apparatus is able to recognize and distinguish thousands of structurally diverse volatile chemicals. This chemosensory function is mediated by a very large family of seven-transmembrane olfactory (odorant) receptors encoded by approximately 1,000 genes, the majority of which are believed to be pseudogenes in humans. Results The strategy of our sequence database mining for full-length, functional candidate odorant receptor genes was based on the high overall sequence similarity and presence of a number of conserved sequence motifs in all known mammalian odorant receptors as well as the absence of introns in their coding sequences. We report here the identification and physical cloning of 347 putative human full-length odorant receptor genes. Comparative sequence analysis of the predicted gene products allowed us to identify and define a number of consensus sequence motifs and structural features of this vast family of receptors. A new nomenclature for human odorant receptors based on their chromosomal localization and phylogenetic analysis is proposed. We believe that these sequences represent the essentially complete repertoire of functional human odorant receptors. Conclusions The identification and cloning of all functional human odorant receptor genes is an important initial step in understanding receptor-ligand specificity and combinatorial encoding of odorant stimuli in human olfaction. PMID:11423007

  5. Chemokine receptors in airway disease: which receptors to target?

    PubMed

    Owen, C

    2001-01-01

    Many disease states within the airway result in the co-ordinated infiltration of key inflammatory cells. The cellular influx is choreographed through the temporal and spatially-regulated expression of chemokines, which potentiate the migration of cells along gradients of chemotactic ligands. Chemokines act as ligands for the chemokine receptors; a distinct class of G-protein-coupled receptor. Over 40 chemokine ligands and 18 chemokine receptors have been identified on human cells. Chemokine receptors are divided into several classes; the two most prominent of which are the CC- and CXC-chemokine receptors, classified through the spatial arrangement of two conserved cysteine residues. The role of chemokine receptors such as CCR2, CCR3, CCR4, CCR8 and the CXC chemokine receptors; CXCR1 and CXCR2 on cell types of relevance to respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD) and chronic bronchitis will be explored in this review. Chemokines have proven to be amenable drug targets for the development of low molecular weight antagonists by the pharmaceutical industry. So far, no chemokine receptor antagonist has entered the clinic in trials for respiratory disease, but over the next few years it is expected that many will do so, at which time the potential of these exciting new targets will be fully realised.

  6. GABAB receptors modulate NMDA receptor calcium signals in dendritic spines.

    PubMed

    Chalifoux, Jason R; Carter, Adam G

    2010-04-15

    Metabotropic GABA(B) receptors play a fundamental role in modulating the excitability of neurons and circuits throughout the brain. These receptors influence synaptic transmission by inhibiting presynaptic release or activating postsynaptic potassium channels. However, their ability to directly influence different types of postsynaptic glutamate receptors remains unresolved. Here we examine GABA(B) receptor modulation in layer 2/3 pyramidal neurons from the mouse prefrontal cortex. We use two-photon laser-scanning microscopy to study synaptic modulation at individual dendritic spines. Using two-photon optical quantal analysis, we first demonstrate robust presynaptic modulation of multivesicular release at single synapses. Using two-photon glutamate uncaging, we then reveal that GABA(B) receptors strongly inhibit NMDA receptor calcium signals. This postsynaptic modulation occurs via the PKA pathway and does not affect synaptic currents mediated by AMPA or NMDA receptors. This form of GABA(B) receptor modulation has widespread implications for the control of calcium-dependent neuronal function.

  7. Axonal GABAA receptors.

    PubMed

    Trigo, Federico F; Marty, Alain; Stell, Brandon M

    2008-09-01

    Type A GABA receptors (GABA(A)Rs) are well established as the main inhibitory receptors in the mature mammalian forebrain. In recent years, evidence has accumulated showing that GABA(A)Rs are prevalent not only in the somatodendritic compartment of CNS neurons, but also in their axonal compartment. Evidence for axonal GABA(A)Rs includes new immunohistochemical and immunogold data: direct recording from single axonal terminals; and effects of local applications of GABA(A)R modulators on action potential generation, on axonal calcium signalling, and on neurotransmitter release. Strikingly, whereas presynaptic GABA(A)Rs have long been considered inhibitory, the new studies in the mammalian brain mostly indicate an excitatory action. Depending on the neuron that is under study, axonal GABA(A)Rs can be activated by ambient GABA, by GABA spillover, or by an autocrine action, to increase either action potential firing and/or transmitter release. In certain neurons, the excitatory effects of axonal GABA(A)Rs persist into adulthood. Altogether, axonal GABA(A)Rs appear as potent neuronal modulators of the mammalian CNS.

  8. The Multifaceted Mineralocorticoid Receptor

    PubMed Central

    Gomez-Sanchez, Elise; Gomez-Sanchez, Celso E.

    2015-01-01

    The primary adrenal cortical steroid hormones, aldosterone, and the glucocorticoids cortisol and corticosterone, act through the structurally similar mineralocorticoid (MR) and glucocorticoid receptors (GRs). Aldosterone is crucial for fluid, electrolyte, and hemodynamic homeostasis and tissue repair; the significantly more abundant glucocorticoids are indispensable for energy homeostasis, appropriate responses to stress, and limiting inflammation. Steroid receptors initiate gene transcription for proteins that effect their actions as well as rapid non-genomic effects through classical cell signaling pathways. GR and MR are expressed in many tissues types, often in the same cells, where they interact at molecular and functional levels, at times in synergy, others in opposition. Thus the appropriate balance of MR and GR activation is crucial for homeostasis. MR has the same binding affinity for aldosterone, cortisol, and corticosterone. Glucocorticoids activate MR in most tissues at basal levels and GR at stress levels. Inactivation of cortisol and corticosterone by 11β-HSD2 allows aldosterone to activate MR within aldosterone target cells and limits activation of the GR. Under most conditions, 11β-HSD1 acts as a reductase and activates cortisol/corticosterone, amplifying circulating levels. 11β-HSD1 and MR antagonists mitigate inappropriate activation of MR under conditions of oxidative stress that contributes to the pathophysiology of the cardiometabolic syndrome; however, MR antagonists decrease normal MR/GR functional interactions, a particular concern for neurons mediating cognition, memory, and affect. PMID:24944027

  9. Kinins and peptide receptors.

    PubMed

    Regoli, Domenico; Gobeil, Fernand

    2016-04-01

    This paper is divided into two sections: the first contains the essential elements of the opening lecture presented by Pr. Regoli to the 2015 International Kinin Symposium in S. Paulo, Brazil on June 28th and the second is the celebration of Dr. Regoli's 60 years of research on vasoactive peptides. The cardiovascular homeostasis derives from a balance of two systems, the renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS). The biologically active effector entity of RAS is angiotensin receptor-1 (AT-1R), and that of KKS is bradykinin B2 receptor (B2R). The first mediates vasoconstriction, the second is the most potent and efficient vasodilator. Thanks to its complex and multi-functional mechanism of action, involving nitric oxide (NO), prostacyclin and endothelial hyperpolarizing factor (EDHF). B2R is instrumental for the supply of blood, oxygen and nutrition to tissues. KKS is present on the vascular endothelium and functions as an autacoid playing major roles in cardiovascular diseases (CVDs) and diabetes. KKS exerts a paramount role in the prevention of thrombosis and atherosclerosis. Such knowledge emphasizes the already prominent value of the ACE-inhibitors (ACEIs) for the treatment of CVDs and diabetes. Indeed, the ACEIs, thanks to their double action (block of the RAS and potentiation of the KKS) are the ideal agents for a rational treatment of these diseases. PMID:26408609

  10. Leptin and its receptors.

    PubMed

    Wada, Nobuhiro; Hirako, Satoshi; Takenoya, Fumiko; Kageyama, Haruaki; Okabe, Mai; Shioda, Seiji

    2014-11-01

    Leptin is mainly produced in the white adipose tissue before being secreted into the blood and transported across the blood-brain barrier. Leptin binds to a specific receptor (LepR) that has numerous subtypes (LepRa, LepRb, LepRc, LepRd, LepRe, and LepRf). LepRb, in particular, is expressed in several brain nuclei, including the arcuate nucleus, the paraventricular nucleus, and the dorsomedial, lateral and ventromedial regions of the hypothalamus. LepRb is also co-expressed with several neuropeptides, including proopiomelanocortin, neuropeptide Y, galanin, galanin-like peptide, gonadotropin-releasing hormone, tyrosine hydroxylase and neuropeptide W. Functionally, LepRb induces activation of the JAK2/ERK, /STAT3, /STAT5 and IRS/PI3 kinase signaling cascades, which are important for the regulation of energy homeostasis and appetite in mammals. In this review, we discuss the structure, genetics and distribution of the leptin receptors, and their role in cell signaling mechanisms. PMID:25218975

  11. Angiotensin II receptor heterogeneity

    SciTech Connect

    Herblin, W.F.; Chiu, A.T.; McCall, D.E.; Ardecky, R.J.; Carini, D.J.; Duncia, J.V.; Pease, L.J.; Wong, P.C.; Wexler, R.R.; Johnson, A.L. )

    1991-04-01

    The possibility of receptor heterogeneity in the angiotensin II (AII) system has been suggested previously, based on differences in Kd values or sensitivity to thiol reagents. One of the authors earliest indications was the frequent observation of incomplete inhibition of the binding of AII to adrenal cortical membranes. Autoradiographic studies demonstrated that all of the labeling of the rat adrenal was blocked by unlabeled AII or saralasin, but not by DuP 753. The predominant receptor in the rat adrenal cortex (80%) is sensitive to dithiothreitol (DTT) and DuP 753, and is designated AII-1. The residual sites in the adrenal cortex and almost all of the sites in the rat adrenal medulla are insensitive to both DTT and DuP 753, but were blocked by EXP655. These sites have been confirmed by ligand binding studies and are designated AII-2. The rabbit adrenal cortex is unique in yielding a nonuniform distribution of AII-2 sites around the outer layer of glomerulosa cells. In the rabbit kidney, the sites on the glomeruli are AII-1, but the sites on the kidney capsule are AII-2. Angiotensin III appears to have a higher affinity for AII-2 sites since it inhibits the binding to the rabbit kidney capsule but not the glomeruli. Elucidation of the distribution and function of these diverse sites should permit the development of more selective and specific therapeutic strategies.

  12. [Adrenergic receptors of blood platelets].

    PubMed

    Lanza, F; Cazenave, J P

    1987-01-01

    Blood platelets possess adrenergic receptors and are stimulated by adrenaline in the circulation. This review summarizes the state of knowledge of the pharmacology of adrenergic receptors and the biochemical mechanisms of platelet activation by adrenaline in various physiological and pathological conditions. PMID:2837727

  13. Sensory receptors in monotremes.

    PubMed

    Proske, U; Gregory, J E; Iggo, A

    1998-07-29

    This is a summary of the current knowledge of sensory receptors in skin of the bill of the platypus, Ornithorhynchus anatinus, and the snout of the echidna, Tachyglossus aculeatus. Brief mention is also made of the third living member of the monotremes, the long-nosed echidna, Zaglossus bruijnii. The monotremes are the only group of mammals known to have evolved electroreception. The structures in the skin responsible for the electric sense have been identified as sensory mucous glands with an expanded epidermal portion that is innervated by large-diameter nerve fibres. Afferent recordings have shown that in both platypuses and echidnas the receptors excited by cathodal (negative) pulses and inhibited by anodal (positive) pulses. Estimates give a total of 40,000 mucous sensory glands in the upper and lower bill of the platypus, whereas there are only about 100 in the tip of the echidna snout. Recording of electroreceptor-evoked activity from the brain of the platypus have shown that the largest area dedicated to somatosensory input from the bill, S1, shows alternating rows of mechanosensory and bimodal neurons. The bimodal neurons respond to both electrosensory and mechanical inputs. In skin of the platypus bill and echidna snout, apart from the electroreceptors, there are structures called push rods, which consist of a column of compacted cells that is able to move relatively independently of adjacent regions of skin. At the base of the column are Merkel cell complexes, known to be type I slowly adapting mechanoreceptors, and lamellated corpuscles, probably vibration receptors. It has been speculated that the platypus uses its electric sense to detect the electromyographic activity from moving prey in the water and for obstacle avoidance. Mechanoreceptors signal contact with the prey. For the echidna, a role for the electrosensory system has not yet been established during normal foraging behaviour, although it has been shown that it is able to detect the presence

  14. Allosteric Modulation of Chemoattractant Receptors

    PubMed Central

    Allegretti, Marcello; Cesta, Maria Candida; Locati, Massimo

    2016-01-01

    Chemoattractants control selective leukocyte homing via interactions with a dedicated family of related G protein-coupled receptor (GPCR). Emerging evidence indicates that the signaling activity of these receptors, as for other GPCR, is influenced by allosteric modulators, which interact with the receptor in a binding site distinct from the binding site of the agonist and modulate the receptor signaling activity in response to the orthosteric ligand. Allosteric modulators have a number of potential advantages over orthosteric agonists/antagonists as therapeutic agents and offer unprecedented opportunities to identify extremely selective drug leads. Here, we resume evidence of allosterism in the context of chemoattractant receptors, discussing in particular its functional impact on functional selectivity and probe/concentration dependence of orthosteric ligands activities. PMID:27199992

  15. Nicotinic receptors and schizophrenia.

    PubMed

    Ripoll, Nadège; Bronnec, Marie; Bourin, Michel

    2004-07-01

    The incidence of smoking is very high in non-schizophrenic subjects presenting various psychiatric disorders (35 to 54%). However, the incidence of smoking is extremely high in schizophrenic patients: 80% to 90%, versus 25% to 30% of the general population. Various studies have demonstrated that the use of tobacco transiently restores the schizophrenic patient's cognitive and sensory deficits. Smoking cessation also appears to exacerbate the symptoms of the disease. Post-mortem binding studies have revealed a disturbance of nicotinic receptor expression, affecting the alpha(7) and alpha(4)beta(2) subunits, in various cerebral areas. Genetic linkage studies have also shown that the alpha(7) subunit is involved in schizophrenia. This review assesses the involvement of the nicotinic system in schizophrenia and suggests ways in which this system may participate in the pathophysiology of this disease.

  16. Androgen receptor genomic regulation

    PubMed Central

    Jin, Hong-Jian; Kim, Jung

    2013-01-01

    The transcriptional activity of the androgen receptor (AR) is not only critical for the normal development and function of the prostate but also pivotal to the onset and progression of prostate cancer (PCa). The studies of AR transcriptional regulation were previously limited to a handful of AR-target genes. Owing to the development of various high-throughput genomic technologies, significant advances have been made in recent years. Here we discuss the discoveries of genome-wide androgen-regulated genes in PCa cell lines, animal models and tissues using expression microarray and sequencing, the mapping of genomic landscapes of AR using Combining Chromatin Immunoprecipitation (ChIP)-on-chip and ChIP-seq assays, the interplay of transcriptional cofactors in defining AR binding profiles, and the genomic regulation and AR reprogramming in advanced PCa. PMID:25237629

  17. The somatostatin receptor family.

    PubMed

    Patel, Y C; Greenwood, M T; Panetta, R; Demchyshyn, L; Niznik, H; Srikant, C B

    1995-01-01

    The diverse biological effects of somatostatin (SST) are mediated through a family of G protein coupled receptors of which 5 members have been recently identified by molecular cloning. This review focuses on the molecular biology, pharmacology, expression, and function of these receptors with particular emphasis on the human (h) homologs. hSSTRs are encoded by a family of 5 genes which map to separate chromosomes and which, with one exception, are intronless. SSTR2 gives rise to spliced variants, SSTR2A and 2B. hSSTR1-4 display weak selectivity for SST-14 binding whereas hSSTR5 is SST-28 selective. Based on structural similarity and reactivity for octapeptide and hexapeptide SST analogs, hSSTR2,3, and 5 belong to a similar SSTR subclass. hSSTR1 and 4 react poorly with these analogs and belong to a separate subclass. All 5 hSSTRs are functionally coupled to inhibition of adenylyl cyclase via pertussis toxin sensitive GTP binding proteins. Some of the subtypes are also coupled to tyrosine phosphatase (SSTR1,2), Ca2+ channels (SSTR2), Na+/H+ exchanger (SSTR1), PLA-2 (SSTR4), and MAP kinase (SSTR4). mRNA for SSTR1-5 is widely expressed in brain and peripheral organs and displays an overlapping but characteristic pattern that is subtype-selective, and tissue- and species-specific. Pituitary and islet tumors express several SSTR genes suggesting that multiple SSTR subtypes are coexpressed in the same cell. Structure-function studies indicate that the core residues in SST-14 ligand Phe6-Phe11 dock within a ligand binding pocket located in TMDs 3-7 which is lined by hydrophobic and charged amino acid residues.

  18. Estrogen-related receptor β (ERRβ) – renaissance receptor or receptor renaissance?

    PubMed Central

    Divekar, Shailaja D.; Tiek, Deanna M.; Fernandez, Aileen; Riggins, Rebecca B.

    2016-01-01

    Estrogen-related receptors (ERRs) are founding members of the orphan nuclear receptor (ONR) subgroup of the nuclear receptor superfamily. Twenty-seven years of study have yet to identify cognate ligands for the ERRs, though they have firmly placed ERRα and ERRγ at the intersection of cellular metabolism and oncogenesis. The pace of discovery for novel functions of ERRβ, however, has until recently been somewhat slower than that of its family members. ERRβ has also been largely ignored in summaries and perspectives of the ONR literature. Here, we provide an overview of established and emerging knowledge of ERRβ in mouse, man, and other species, highlighting unique aspects of ERRβ biology that set it apart from the other two estrogen-related receptors, with a focus on the impact of alternative splicing on the structure and function of this receptor. PMID:27507929

  19. Estrogen-related receptor β (ERRβ) - renaissance receptor or receptor renaissance?

    PubMed

    Divekar, Shailaja D; Tiek, Deanna M; Fernandez, Aileen; Riggins, Rebecca B

    2016-01-01

    Estrogen-related receptors (ERRs) are founding members of the orphan nuclear receptor (ONR) subgroup of the nuclear receptor superfamily. Twenty-seven years of study have yet to identify cognate ligands for the ERRs, though they have firmly placed ERRα and ERRγ at the intersection of cellular metabolism and oncogenesis. The pace of discovery for novel functions of ERRβ, however, has until recently been somewhat slower than that of its family members. ERRβ has also been largely ignored in summaries and perspectives of the ONR literature. Here, we provide an overview of established and emerging knowledge of ERRβ in mouse, man, and other species, highlighting unique aspects of ERRβ biology that set it apart from the other two estrogen-related receptors, with a focus on the impact of alternative splicing on the structure and function of this receptor.

  20. Estrogen-related receptor β (ERRβ) - renaissance receptor or receptor renaissance?

    PubMed

    Divekar, Shailaja D; Tiek, Deanna M; Fernandez, Aileen; Riggins, Rebecca B

    2016-01-01

    Estrogen-related receptors (ERRs) are founding members of the orphan nuclear receptor (ONR) subgroup of the nuclear receptor superfamily. Twenty-seven years of study have yet to identify cognate ligands for the ERRs, though they have firmly placed ERRα and ERRγ at the intersection of cellular metabolism and oncogenesis. The pace of discovery for novel functions of ERRβ, however, has until recently been somewhat slower than that of its family members. ERRβ has also been largely ignored in summaries and perspectives of the ONR literature. Here, we provide an overview of established and emerging knowledge of ERRβ in mouse, man, and other species, highlighting unique aspects of ERRβ biology that set it apart from the other two estrogen-related receptors, with a focus on the impact of alternative splicing on the structure and function of this receptor. PMID:27507929

  1. Lysophospholipid receptors in drug discovery

    PubMed Central

    Kihara, Yasuyuki; Mizuno, Hirotaka; Chun, Jerold

    2014-01-01

    Lysophospholipids (LPs), including lysophosphatidic acid (LPA), sphingosine 1-phospate (S1P), lysophosphatidylinositol (LPI), and lysophosphatidylserine (LysoPS), are bioactive lipids that transduce signals through their specific cell-surface G protein-coupled receptors, LPA1–6, S1P1–5, LPI1, and LysoPS1–3, respectively. These LPs and their receptors have been implicated in both physiological and pathophysiological processes such as autoimmune diseases, neurodegenerative diseases, fibrosis, pain, cancer, inflammation, metabolic syndrome, bone formation, fertility, organismal development, and other effects on most organ systems. Advances in the LP receptor field have enabled the development of novel small molecules targeting LP receptors for several diseases. Most notably, fingolimod (FTY720, Gilenya, Novartis), an S1P receptor modulator, became the first FDA-approved medicine as an orally bioavailable drug for treating relapsing forms of multiple sclerosis. This success is currently being followed by multiple, mechanistically related compounds targeting S1P receptor subtypes, which are in various stages of clinical development. In addition, an LPA1 antagonist, BMS-986020 (Bristol-Myers Squibb), is in Phase 2 clinical development for treating idiopathic pulmonary fibrosis, as is a distinct compound, SAR100842 (Sanofi) for the treatment of systemic sclerosis and related fibrotic diseases. This review summarizes the current state of drug discovery in the LP receptor field. PMID:25499971

  2. Hot receptors in the brain

    PubMed Central

    Steenland, Hendrik W; Ko, Shanelle W; Wu, Long-Jun; Zhuo, Min

    2006-01-01

    Two major approaches have been employed for the development of novel drugs to treat chronic pain. The most traditional approach identifies molecules involved in pain as potential therapeutic targets and has focused mainly on the periphery and spinal cord. A more recent approach identifies molecules that are involved in long-term plasticity. Drugs developed through the latter approach are predicted to treat chronic, but not physiological or acute, pain. The TRPV1 (transient receptor potential vanilloid-1) receptor is involved in nociceptive processing, and is a candidate therapeutic target for pain. While most research on TRPV1 receptors has been conducted at the level of the spinal cord and peripheral structures, considerably less research has focused on supraspinal structures. This short paper summarizes progress made on TRPV1 receptors, and reviews research on the expression and function of TRPV1 receptors in supraspinal structures. We suggest that the TRPV1 receptor may be involved in pain processing in higher brain structures, such as the anterior cingulate cortex. In addition, some regions of the brain utilize the TRPV1 receptor for functions apparently unrelated to pain. PMID:17092351

  3. The growth hormone secretagogue receptor.

    PubMed

    Cruz, Conrad Russell Young; Smith, Roy G

    2008-01-01

    The neuroendocrine hormone ghrelin, a recently discovered acylated peptide with numerous activities in various organ systems, exerts most of its known effects on the body through a highly conserved G-protein-coupled receptor, the growth hormone secretagogue receptor (GHSR) type 1a. The GHSR's wide expression in different tissues reflects activity of its ligands in the hypothalamic-pituitary, cardiovascular, immune, gastrointestinal, and reproductive systems. Its extensive cellular distribution along with its important actions on the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis and other neuroendocrine and metabolic systems suggest a pivotal role in governing the mechanisms of aging. A more comprehensive characterization of the receptor, and a more thorough identification of its various agonists and antagonists, will undoubtedly introduce important clinical applications in age-related states like anorexia, cardiovascular pathology, cancer, impaired energy balance, and immune dysfunction. Although present knowledge points to a single functional receptor and a single endogenous ligand, recent investigations suggest the existence of additional GHSR subtypes, as well as other endogenous agonists. It has been more than a decade since the landmark cloning of this ubiquitous, highly conserved receptor, and the considerable extent of its effects on normal physiology and disease states have filled the literature with incredible insights on how organisms regulate various functions through subtle signaling processes. But science has barely scratched the surface, and we can be assured that the mysteries surrounding the precise nature of ghrelin and its receptor(s) are only beginning to unravel. PMID:17983853

  4. Evolution of vertebrate opioid receptors

    PubMed Central

    Dreborg, Susanne; Sundström, Görel; Larsson, Tomas A.; Larhammar, Dan

    2008-01-01

    The opioid peptides and receptors have prominent roles in pain transmission and reward mechanisms in mammals. The evolution of the opioid receptors has so far been little studied, with only a few reports on species other than tetrapods. We have investigated species representing a broader range of vertebrates and found that the four opioid receptor types (delta, kappa, mu, and NOP) are present in most of the species. The gene relationships were deduced by using both phylogenetic analyses and chromosomal location relative to 20 neighboring gene families in databases of assembled genomes. The combined results show that the vertebrate opioid receptor gene family arose by quadruplication of a large chromosomal block containing at least 14 other gene families. The quadruplication seems to coincide with, and, therefore, probably resulted from, the two proposed genome duplications in early vertebrate evolution. We conclude that the quartet of opioid receptors was already present at the origin of jawed vertebrates ≈450 million years ago. A few additional opioid receptor gene duplications have occurred in bony fishes. Interestingly, the ancestral receptor gene duplications coincide with the origin of the four opioid peptide precursor genes. Thus, the complete vertebrate opioid system was already established in the first jawed vertebrates. PMID:18832151

  5. Lysophospholipid receptors in drug discovery.

    PubMed

    Kihara, Yasuyuki; Mizuno, Hirotaka; Chun, Jerold

    2015-05-01

    Lysophospholipids (LPs), including lysophosphatidic acid (LPA), sphingosine 1-phospate (S1P), lysophosphatidylinositol (LPI), and lysophosphatidylserine (LysoPS), are bioactive lipids that transduce signals through their specific cell-surface G protein-coupled receptors, LPA1-6, S1P1-5, LPI1, and LysoPS1-3, respectively. These LPs and their receptors have been implicated in both physiological and pathophysiological processes such as autoimmune diseases, neurodegenerative diseases, fibrosis, pain, cancer, inflammation, metabolic syndrome, bone formation, fertility, organismal development, and other effects on most organ systems. Advances in the LP receptor field have enabled the development of novel small molecules targeting LP receptors for several diseases. Most notably, fingolimod (FTY720, Gilenya, Novartis), an S1P receptor modulator, became the first FDA-approved medicine as an orally bioavailable drug for treating relapsing forms of multiple sclerosis. This success is currently being followed by multiple, mechanistically related compounds targeting S1P receptor subtypes, which are in various stages of clinical development. In addition, an LPA1 antagonist, BMS-986020 (Bristol-Myers Squibb), is in Phase 2 clinical development for treating idiopathic pulmonary fibrosis, as a distinct compound, SAR100842 (Sanofi) for the treatment of systemic sclerosis and related fibrotic diseases. This review summarizes the current state of drug discovery in the LP receptor field. PMID:25499971

  6. Sigma receptors and cocaine abuse.

    PubMed

    Narayanan, Sanju; Mesangeau, Christophe; Poupaert, Jacques H; McCurdy, Christopher R

    2011-01-01

    Sigma receptors have been well documented as a protein target for cocaine and have been shown to be involved in the toxic and stimulant actions of cocaine. Strategies to reduce the access of cocaine to sigma receptors have included antisense oligonucleotides to the sigma-1 receptor protein as well as small molecule ligand with affinity for sigma receptor sites. These results have been encouraging as novel protein targets that can attenuate the actions of cocaine are desperately needed as there are currently no medications approved for treatment of cocaine toxicity or addiction. Many years of research in this area have yet to produce an effective treatment and much focus was on dopamine systems. A flurry of research has been carried out to elucidate the role of sigma receptors in the blockade of cocaine effects but this research has yet to yield a clinical agent. This review summarizes the work to date on the linkage of sigma receptors and the actions of cocaine and the progress that has been made with regard to small molecules. Although there is still a lack of an agent in clinical trials with a sigma receptor mechanism of action, work is progressing and the ligands are becoming more selective for sigma systems and the potential remains high. PMID:21050176

  7. Nuclear hormone receptors in podocytes

    PubMed Central

    2012-01-01

    Nuclear receptors are a family of ligand-activated, DNA sequence-specific transcription factors that regulate various aspects of animal development, cell proliferation, differentiation, and homeostasis. The physiological roles of nuclear receptors and their ligands have been intensively studied in cancer and metabolic syndrome. However, their role in kidney diseases is still evolving, despite their ligands being used clinically to treat renal diseases for decades. This review will discuss the progress of our understanding of the role of nuclear receptors and their ligands in kidney physiology with emphasis on their roles in treating glomerular disorders and podocyte injury repair responses. PMID:22995171

  8. Quantitative receptor radioautography in the study of receptor-receptor interactions in the nucleus tractus solitarii.

    PubMed

    Fior-Chadi, D R; Fuxe, K

    1998-02-01

    The nucleus tractus solitarii (NTS) in the dorsomedial medulla comprises a wide range of neuropeptides and biogenic amines. Several of them are related to mechanisms of central blood pressure control. Angiotensin II (Ang II), neuropeptide Y (NPY) and noradrenaline (NA) are found in the NTS cells, as well as their receptors. Based on this observation we have evaluated the modulatory effect of these peptide receptors on alpha 2-adrenoceptors in the NTS. Using quantitative receptor radioautography, we observed that NPY and Ang II receptors decreased the affinity of alpha 2-adrenoceptors for their agonists in the NTS of the rat. Cardiovascular experiments agreed with the in vitro data. Coinjection of a threshold dose of Ang II or of the NPY agonists together with an ED50 dose of adrenergic agonists such as NA, adrenaline and clonidine counteracted the depressor effect produced by the alpha 2-agonist in the NTS. The results provide evidence for the existence of an antagonistic interaction between Ang II AT1 receptors and NPY receptor subtypes with the alpha 2-adrenoceptors in the NTS. This receptor interaction may reduce the transduction over the alpha 2-adrenoceptors which can be important in central cardiovascular regulation and in the development of hypertension.

  9. Recombinant soluble adenovirus receptor

    DOEpatents

    Freimuth, Paul I.

    2002-01-01

    Disclosed are isolated polypeptides from human CAR (coxsackievirus and adenovirus receptor) protein which bind adenovirus. Specifically disclosed are amino acid sequences which corresponds to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2. In other aspects, the disclosure relates to nucleic acid sequences encoding these domains as well as expression vectors which encode the domains and bacterial cells containing such vectors. Also disclosed is an isolated fusion protein comprised of the D1 polypeptide sequence fused to a polypeptide sequence which facilitates folding of D1 into a functional, soluble domain when expressed in bacteria. The functional D1 domain finds application for example in a therapeutic method for treating a patient infected with a virus which binds to D1, and also in a method for identifying an antiviral compound which interferes with viral attachment. Also included is a method for specifically targeting a cell for infection by a virus which binds to D1.

  10. Receptor-mediated mitophagy.

    PubMed

    Yamaguchi, Osamu; Murakawa, Tomokazu; Nishida, Kazuhiko; Otsu, Kinya

    2016-06-01

    Mitochondria are essential organelles that supply ATP through oxidative phosphorylation to maintain cellular homeostasis. Extrinsic or intrinsic agents can impair mitochondria, and these impaired mitochondria can generate reactive oxygen species (ROS) as byproducts, inducing cellular damage and cell death. The quality control of mitochondria is essential for the maintenance of normal cellular functions, particularly in cardiomyocytes, because they are terminally differentiated. Accumulation of damaged mitochondria is characteristic of various diseases, including heart failure, neurodegenerative disease, and aging-related diseases. Mitochondria are generally degraded through autophagy, an intracellular degradation system that is conserved from yeast to mammals. Autophagy is thought to be a nonselective degradation process in which cytoplasmic proteins and organelles are engulfed by isolation membrane to form autophagosomes in eukaryotic cells. However, recent studies have described the process of selective autophagy, which targets specific proteins or organelles such as mitochondria. Mitochondria-specific autophagy is called mitophagy. Dysregulation of mitophagy is implicated in the development of chronic diseases including neurodegenerative diseases, metabolic diseases, and heart failure. In this review, we discuss recent progress in research on mitophagy receptors. PMID:27021519

  11. Selective Estrogen Receptor Modulators.

    PubMed

    An, Ki-Chan

    2016-08-01

    Selective estrogen receptor modulators (SERMs) are now being used as a treatment for breast cancer, osteoporosis and postmenopausal symptoms, as these drugs have features that can act as an estrogen agonist and an antagonist, depending on the target tissue. After tamoxifen, raloxifene, lasofoxifene and bazedoxifene SERMs have been developed and used for treatment. The clinically decisive difference among these drugs (i.e., the key difference) is their endometrial safety. Compared to bisphosphonate drug formulations for osteoporosis, SERMs are to be used primarily in postmenopausal women of younger age and are particularly recommended if there is a family history of invasive breast cancer, as their use greatly reduces the incidence of this type of cancer in women. Among the above mentioned SERMs, raloxifene has been widely used in prevention and treatment of postmenopausal osteoporosis and vertebral compression fractures, and clinical studies are now underway to test the comparative advantages of raloxifene with those of bazedoxifene, a more recently developed SERM. Research on a number of adverse side effects of SERM agents is being performed to determine the long-term safety of this class of compouds for treatment of osteoporosis. PMID:27559463

  12. Purinergic nerves and receptors.

    PubMed

    Burnstock, G

    1980-01-01

    The presence of a non-cholinergic, non-adrenergic component in the vertebrate autonomic nervous system is now well established. Evidence that ATP is the transmitter released from some of these nerves (called "purinergic') includes: (a) synthesis and storage of ATP in nerves: (b) release of ATP from the nerves when they are stimulated; (c) exogenously applied ATP mimicking the action of nerve-released transmitter; (d) the presence of ectoenzymes which inactivate ATP; (e) drugs which produce similar blocking or potentiating effects on the response to exogenously applied ATP and nerve stimulation. A basis for distinguishing two types of purinergic receptors has been proposed according to four criteria: relative potencies of agonists, competitive antagonists, changes in levels of cAMP and induction of prostaglandin synthesis. Thus P1 purinoceptors are most sensitive to adenosine, are competitively blocked by methylxanthines and their occupation leads to changes in cAMP accumulation; while P2 purinoceptors are most sensitive to ATP, are blocked (although not competitively) by quinidine, 2-substituted imidazolines, 2,2'-pyridylisatogen and apamin, and their occupation leads to production of prostaglandin. P2 purinoceptors mediate responses of smooth muscle to ATP released from purinergic nerves, while P1 purinoceptors mediate the presynaptic actions of adenosine on adrenergic, cholinergic and purinergic nerve terminals. PMID:6108568

  13. NMDA receptor antibodies

    PubMed Central

    Ramberger, Melanie; Bsteh, Gabriel; Schanda, Kathrin; Höftberger, Romana; Rostásy, Kevin; Baumann, Matthias; Aboulenein-Djamshidian, Fahmy; Lutterotti, Andreas; Deisenhammer, Florian; Berger, Thomas

    2015-01-01

    Objectives: To analyze the frequency of NMDA receptor (NMDAR) antibodies in patients with various inflammatory demyelinating diseases of the CNS and to determine their clinical correlates. Methods: Retrospective case-control study from 2005 to 2014 with the detection of serum IgG antibodies to NMDAR, aquaporin-4, and myelin oligodendrocyte glycoprotein by recombinant live cell-based immunofluorescence assays. Fifty-one patients with acute disseminated encephalomyelitis, 41 with neuromyelitis optica spectrum disorders, 34 with clinically isolated syndrome, and 89 with multiple sclerosis (MS) were included. Due to a known association of NMDAR antibodies with seizures and behavioral symptoms, patients with those clinical manifestations were preferentially included and are therefore overrepresented in our cohort. Nine patients with NMDAR encephalitis, 94 patients with other neurologic diseases, and 48 healthy individuals were used as controls. Results: NMDAR antibodies were found in all 9 patients with NMDAR encephalitis but in only 1 of 215 (0.5%) patients with inflammatory demyelination and in none of the controls. This patient had relapsing-remitting MS with NMDAR antibodies present at disease onset, with an increase in NMDAR antibody titer with the onset of psychiatric symptoms and cognitive deficits. Conclusion: In demyelinating disorders, NMDAR antibodies are uncommon, even in those with symptoms seen in NMDAR encephalitis. PMID:26309901

  14. Estrogen receptors and endothelium.

    PubMed

    Arnal, Jean-François; Fontaine, Coralie; Billon-Galés, Audrey; Favre, Julie; Laurell, Henrik; Lenfant, Françoise; Gourdy, Pierre

    2010-08-01

    Estrogens, and in particular 17beta-estradiol (E2), play a pivotal role in sexual development and reproduction and are also implicated in a large number of physiological processes, including the cardiovascular system. Both acetylcholine-induced and flow-dependent vasodilation are preserved or potentiated by estrogen treatment in both animal models and humans. Indeed, E2 increases the endothelial production of nitric oxide and prostacyclin and prevents early atheroma through endothelial-mediated mechanisms. Furthermore, whereas it prevents endothelial activation, E2 potentiates the ability of several subpopulations of the circulating or resident immune cells to produce proinflammatory cytokines. The balance between these 2 actions could determine the final effect in a given pathophysiological process. E2 also promotes endothelial healing, as well as angiogenesis. Estrogen actions are essentially mediated by 2 molecular targets: estrogen receptor-alpha (ERalpha) and ERbeta. The analysis of mouse models targeted for ERalpha or ERbeta demonstrated a prominent role of ERalpha in vascular biology. ERalpha directly modulates transcription of target genes through 2 activation functions (AFs), AF-1 and AF-2. Interestingly, an AF-1-deficient ERalpha isoform can be physiologically expressed in the endothelium and appears sufficient to mediate most of the vasculoprotective actions of E2. In contrast, AF-1 is necessary for the E2 actions in reproductive targets. Thus, it appears conceivable to uncouple the vasculoprotective and sexual actions with appropriate selective ER modulators. PMID:20631350

  15. Selective Estrogen Receptor Modulators

    PubMed Central

    2016-01-01

    Selective estrogen receptor modulators (SERMs) are now being used as a treatment for breast cancer, osteoporosis and postmenopausal symptoms, as these drugs have features that can act as an estrogen agonist and an antagonist, depending on the target tissue. After tamoxifen, raloxifene, lasofoxifene and bazedoxifene SERMs have been developed and used for treatment. The clinically decisive difference among these drugs (i.e., the key difference) is their endometrial safety. Compared to bisphosphonate drug formulations for osteoporosis, SERMs are to be used primarily in postmenopausal women of younger age and are particularly recommended if there is a family history of invasive breast cancer, as their use greatly reduces the incidence of this type of cancer in women. Among the above mentioned SERMs, raloxifene has been widely used in prevention and treatment of postmenopausal osteoporosis and vertebral compression fractures, and clinical studies are now underway to test the comparative advantages of raloxifene with those of bazedoxifene, a more recently developed SERM. Research on a number of adverse side effects of SERM agents is being performed to determine the long-term safety of this class of compouds for treatment of osteoporosis. PMID:27559463

  16. Nicotinic receptors and Alzheimer's disease.

    PubMed

    Bourin, Michel; Ripoll, Nadège; Dailly, Eric

    2003-01-01

    Nicotinic receptors (NRs) belong to the group of polymeric receptors of the cell membrane and are key elements of cholinergic transmission. Numerous subtypes of NRs exist with the alpha 4 beta 2 and alpha 7 types being encountered most frequently. Deficiencies in NRs seem to play a role in Alzheimer's disease, which is characterised by accumulation of senile plaques, mainly composed of beta-amyloid peptide (beta A). Although the aetiology of this disease is unknown, different pathogenesis hypotheses implicating alpha 7 NRs have been proposed, with the receptors exerting a direct or indirect action on the mechanism of beta A toxicity. Allosteric modulators of NRs, such as the cholinesterase inhibitor galantamine, that facilitate the action of acetylcholine on these receptors may provide therapeutic benefits in the areas of cognition, attention and antineurodegenerative activity.

  17. Receptor-targeted metalloradiopharmaceuticals. Final technical report

    SciTech Connect

    Green, Mark A.

    2000-03-22

    Copper (II) and platinum (II) coordination complexes were prepared and characterized. These complexes were designed to afford structural homology with steroidal and non-steroidal estrogens for possible use as receptor-targeted radiopharmaceuticals. While weak affinity for the estrogen receptor was detectable, none would appear to have sufficient receptor-affinity for estrogen-receptor-targeted imaging or therapy.

  18. L-glutamate Receptor In Paramecium

    NASA Astrophysics Data System (ADS)

    Bernal-Martínez, Juan; Ortega-Soto, Arturo

    2004-09-01

    Behavioral, electrophysiological and biochemical experiments were performed in order to establish the presence of a glutamate receptor in the ciliate Paramecium. It was found that an AMPA/KA receptor is functionally expressed in Paramecium and that this receptor is immunologically and fillogenetically related to the AMPA/KA receptor present in vertebrates.

  19. Cellular receptors and HCV entry.

    PubMed

    Flint, Mike; Tscherne, Donna M

    2009-01-01

    After attachment to specific receptors on the surfaces of target cells, hepatitis C virus (HCV) particles are thought to be internalized to endosomes, where low pH induces fusion between the viral and cellular membranes, delivering the HCV genome into the cytoplasm. Here, we describe methods to study the early events in HCV infection; the interactions with cellular receptors and the mechanism of entry.

  20. [Pathologic manifestations of hormonal receptor mutations].

    PubMed

    Milgrom, E

    2000-01-01

    Mutations of receptor genes are involved in various aspects of thyroid and gonadal pathology. Activating mutations of TSH and LH receptors are associated with hyperthyroidism and premature puberty. These mutations are dominant and lead to the synthesis of a constitutive receptor, i.e. a receptor active even in the absence of hormone. Inactivating mutations of TSH, gonadotropin and GnRH receptors are recessive. They determine either a hypothyroidism or a hypogonadism. In the case of alterations of gonadotropin receptors the hypogonadism is hypergonadotrophic. It is hypogonadotrophic in the case of mutations of the GnRH receptor. PMID:10989556

  1. Nuclear Receptors, RXR, and the Big Bang.

    PubMed

    Evans, Ronald M; Mangelsdorf, David J

    2014-03-27

    Isolation of genes encoding the receptors for steroids, retinoids, vitamin D, and thyroid hormone and their structural and functional analysis revealed an evolutionarily conserved template for nuclear hormone receptors. This discovery sparked identification of numerous genes encoding related proteins, termed orphan receptors. Characterization of these orphan receptors and, in particular, of the retinoid X receptor (RXR) positioned nuclear receptors at the epicenter of the "Big Bang" of molecular endocrinology. This Review provides a personal perspective on nuclear receptors and explores their integrated and coordinated signaling networks that are essential for multicellular life, highlighting the RXR heterodimer and its associated ligands and transcriptional mechanism.

  2. Nuclear Receptors, RXR & the Big Bang

    PubMed Central

    Evans, Ronald M.; Mangelsdorf, David J.

    2014-01-01

    Summary Isolation of genes encoding the receptors for steroids, retinoids, vitamin D and thyroid hormone, and their structural and functional analysis revealed an evolutionarily conserved template for nuclear hormone receptors. This discovery sparked identification of numerous genes encoding related proteins, termed orphan receptors. Characterization of these orphan receptors, and in particular of the retinoid X receptor (RXR), positioned nuclear receptors at the epicenter of the “Big Bang” of molecular endocrinology. This review provides a personal perspective on nuclear receptors and explores their integrated and coordinated signaling networks that are essential for multi-cellular life, highlighting the RXR heterodimer and its associated ligands and transcriptional mechanism. PMID:24679540

  3. Nuclear Receptors, RXR, and the Big Bang.

    PubMed

    Evans, Ronald M; Mangelsdorf, David J

    2014-03-27

    Isolation of genes encoding the receptors for steroids, retinoids, vitamin D, and thyroid hormone and their structural and functional analysis revealed an evolutionarily conserved template for nuclear hormone receptors. This discovery sparked identification of numerous genes encoding related proteins, termed orphan receptors. Characterization of these orphan receptors and, in particular, of the retinoid X receptor (RXR) positioned nuclear receptors at the epicenter of the "Big Bang" of molecular endocrinology. This Review provides a personal perspective on nuclear receptors and explores their integrated and coordinated signaling networks that are essential for multicellular life, highlighting the RXR heterodimer and its associated ligands and transcriptional mechanism. PMID:24679540

  4. Nicotinic receptors and attention.

    PubMed

    Hahn, Britta

    2015-01-01

    Facilitation of different attentional functions by nicotinic acetylcholine receptor (nAChR) agonists may be of therapeutic potential in disease conditions such as Alzheimer's disease or schizophrenia. For this reason, the neuronal mechanisms underlying these effects have been the focus of research in humans and in preclinical models. Attention-enhancing effects of the nonselective nAChR agonist nicotine can be observed in human nonsmokers and in laboratory animals, suggesting that benefits go beyond a reversal of withdrawal deficits in smokers. The ultimate aim is to develop compounds acting with greater selectivity than nicotine at a subset of nAChRs, with an effects profile narrowly matching the targeted cognitive deficits and minimizing unwanted effects. To date, compounds tested clinically target the nAChR subtypes most abundant in the brain. To help pinpoint more selectively expressed subtypes critical for attention, studies have aimed at identifying the secondary neurotransmitter systems whose stimulation mediates the attention-enhancing properties of nicotine. Evidence indicates that noradrenaline and glutamate, but not dopamine release, are critical mediators. Thus, attention-enhancing nAChR agents could spare the system central to nicotine dependence. Neuroimaging studies suggest that nAChR agonists act on a variety of brain systems by enhancing activation, reducing activation, and enhancing deactivation by attention tasks. This supports the notion that effects on different attentional functions may be mediated by distinct central mechanisms, consistent with the fact that nAChRs interact with a multitude of brain sites and neurotransmitter systems. The challenge will be to achieve the optimal tone at the right subset of nAChR subtypes to modulate specific attentional functions, employing not just direct agonist properties, but also positive allosteric modulation and low-dose antagonism.

  5. Gravity receptors and responses

    NASA Technical Reports Server (NTRS)

    Brown, Allan H.

    1989-01-01

    The overall process of gravity sensing and response processes in plants may be divided conveniently into at least four components or stages: Stimulus susception (a physical event, characteristically the input to the G receptor system of environmental information about the G force magnitude, its vector direction, or both); information perception (an influence of susception on some biological structure or process that can be described as the transformation of environmental information into a biologicallly meaningful change); information transport (the export, if required, of an influence (often chemical) to cells and organs other than those at the sensor location); and biological response (almost always (in plants) a growth change of some kind). Some analysts of the process identify, between information perception and information transport, an additional stage, transduction, which would emphasize the importance of a transformation from one form of information to another, for example from mechanical statolith displacement to an electric, chemical, or other alteration that was its indirect result. These four (or five) stages are temporally sequential. Even if all that occurs at each stage can not be confidently identified, it seems evident that during transduction and transport, matters dealt with are found relatively late in the information flow rather than at the perception stage. As more and more is learned about the roles played by plant hormones which condition the G responses, the mechanism(s) of perception which should be are not necessarily better understood. However, if by asking the right questions and being lucky with experiments perhaps the discovery of how some process (such as sedimentation of protoplasmic organelles) dictates what happens down stream in the information flow sequence may be made.

  6. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor

    PubMed Central

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick

    2016-01-01

    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)–forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally. PMID:26994072

  7. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor.

    PubMed

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick; Negishi, Masahiko

    2016-05-01

    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)-forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally.

  8. Proteinase-activated receptors (PARs) – focus on receptor-receptor-interactions and their physiological and pathophysiological impact

    PubMed Central

    2013-01-01

    Proteinase-activated receptors (PARs) are a subfamily of G protein-coupled receptors (GPCRs) with four members, PAR1, PAR2, PAR3 and PAR4, playing critical functions in hemostasis, thrombosis, embryonic development, wound healing, inflammation and cancer progression. PARs are characterized by a unique activation mechanism involving receptor cleavage by different proteinases at specific sites within the extracellular amino-terminus and the exposure of amino-terminal “tethered ligand“ domains that bind to and activate the cleaved receptors. After activation, the PAR family members are able to stimulate complex intracellular signalling networks via classical G protein-mediated pathways and beta-arrestin signalling. In addition, different receptor crosstalk mechanisms critically contribute to a high diversity of PAR signal transduction and receptor-trafficking processes that result in multiple physiological effects. In this review, we summarize current information about PAR-initiated physical and functional receptor interactions and their physiological and pathological roles. We focus especially on PAR homo- and heterodimerization, transactivation of receptor tyrosine kinases (RTKs) and receptor serine/threonine kinases (RSTKs), communication with other GPCRs, toll-like receptors and NOD-like receptors, ion channel receptors, and on PAR association with cargo receptors. In addition, we discuss the suitability of these receptor interaction mechanisms as targets for modulating PAR signalling in disease. PMID:24215724

  9. Radiopharmaceuticals for somatostatin receptor imaging.

    PubMed

    Mikołajczak, Renata; Maecke, Helmut R

    2016-01-01

    The aim of this review is to summarize the developments and briefly characterize the somatostatin analogs which are currently used for somatostatin receptor imaging in clinical routine or in early phase clinical trials. Somatostatin (sst) receptor targeting with radiolabeled peptides has become an integral part in nuclear oncology during the last 20 years. This integration process has been initiated in Europe with the introduction to the market of 111In-DTPA-DPhe1-octreotide [111In-pentetreotide]. Introducing 99mTc in somatostatin receptor targeting radiopeptides resulted in much better image quality, higher sensitivity of tumor detection and lower mean effective dose for the examined patient. The next generation are 68Ga labeled somatostatin analogs. Due to the spatial resolution of PET technique and increasing number of PET scanners, the PET or PET/CT technique became very important in somatostatin receptor imaging. Until up to a couple of years ago the analogs of somatostatin were constructed aiming at their agonistic behavior, expecting that their internalization with the receptor acti-vated by the radiolabeled ligand and its retention within the tumor cell are crucial for efficient imaging and therapy. Recently it has been shown that the antagonists recognize more binding sites at the tumor cell membrane and hence offer an improved diagnostic efficacy, especially when the density of sst receptors is low. This approach may in future improve diagnostic value of somatostatin receptor imaging techniques. The developments in tracer design are followed by the improvements in imaging techniques. The new SPECT scanners offer resolution close to that of PET, which might open a new era for 99mTc and other SPECT radiotracers. PMID:27479790

  10. Scavenger receptor class B type I: a multifunctional receptor.

    PubMed

    Valacchi, Giuseppe; Sticozzi, Claudia; Lim, Yunsook; Pecorelli, Alessandra

    2011-07-01

    The scavenger receptor class B type I (SR-B1) plays an important role in meditating the uptake of HDL-derived cholesterol and cholesteryl ester in the liver and steroidogenic tissues. In addition to being ubiquitous, SR-B1 is a high-density lipoprotein (HDL) receptor in many tissues, though the mechanism by which SR-B1 does this is unclear. Other than its role as an HDL receptor, SR-B1 is also involved in pathogen recognition; its expression can be modulated by lipopolysaccharide and oxidative stress; and it plays a significant role in the uptake of lipid soluble vitamins, such as vitamin E and carotenoids. In this short review, we have summarized the biological aspects to which SR-B1 has been thus far associated.

  11. Transferrin Receptor Controls AMPA Receptor Trafficking Efficiency and Synaptic Plasticity

    PubMed Central

    Liu, Ke; Lei, Run; Li, Qiong; Wang, Xin-Xin; Wu, Qian; An, Peng; Zhang, Jianchao; Zhu, Minyan; Xu, Zhiheng; Hong, Yang; Wang, Fudi; Shen, Ying; Li, Hongchang; Li, Huashun

    2016-01-01

    Transferrin receptor (TFR) is an important iron transporter regulating iron homeostasis and has long been used as a marker for clathrin mediated endocytosis. However, little is known about its additional function other than iron transport in the development of central nervous system (CNS). Here we demonstrate that TFR functions as a regulator to control AMPA receptor trafficking efficiency and synaptic plasticity. The conditional knockout (KO) of TFR in neural progenitor cells causes mice to develop progressive epileptic seizure, and dramatically reduces basal synaptic transmission and long-term potentiation (LTP). We further demonstrate that TFR KO remarkably reduces the binding efficiency of GluR2 to AP2 and subsequently decreases AMPA receptor endocytosis and recycling. Thus, our study reveals that TFR functions as a novel regulator to control AMPA trafficking efficiency and synaptic plasticity. PMID:26880306

  12. Ionotropic Glutamate Receptors & CNS Disorders

    PubMed Central

    Bowie, Derek

    2008-01-01

    Disorders of the central nervous system (CNS) are complex disease states that represent a major challenge for modern medicine. Although etiology is often unknown, it is established that multiple factors such as defects in genetics and/or epigenetics, the environment as well as imbalance in neurotransmitter receptor systems are all at play in determining an individual’s susceptibility to disease. Gene therapy is currently not available and therefore, most conditions are treated with pharmacological agents that modify neurotransmitter receptor signaling. Here, I provide a review of ionotropic glutamate receptors (iGluRs) and the roles they fulfill in numerous CNS disorders. Specifically, I argue that our understanding of iGluRs has reached a critical turning point to permit, for the first time, a comprehensive re-evaluation of their role in the cause of disease. I illustrate this by highlighting how defects in AMPA receptor trafficking are important to Fragile X mental retardation and ectopic expression of kainate (KA) receptor synapses contributes to the pathology of temporal lobe epilepsy. Finally, I discuss how parallel advances in studies of other neurotransmitter systems may allow pharmacologists to work towards a cure for many CNS disorders rather than developing drugs to treat their symptoms. PMID:18537642

  13. Biased signaling at chemokine receptors.

    PubMed

    Corbisier, Jenny; Galès, Céline; Huszagh, Alexandre; Parmentier, Marc; Springael, Jean-Yves

    2015-04-10

    The ability of G protein-coupled receptors (GPCRs) to activate selective signaling pathways according to the conformation stabilized by bound ligands (signaling bias) is a challenging concept in the GPCR field. Signaling bias has been documented for several GPCRs, including chemokine receptors. However, most of these studies examined the global signaling bias between G protein- and arrestin-dependent pathways, leaving unaddressed the potential bias between particular G protein subtypes. Here, we investigated the coupling selectivity of chemokine receptors CCR2, CCR5, and CCR7 in response to various ligands with G protein subtypes by using bioluminescence resonance energy transfer biosensors monitoring directly the activation of G proteins. We also compared data obtained with the G protein biosensors with those obtained with other functional readouts, such as β-arrestin-2 recruitment, cAMP accumulation, and calcium mobilization assays. We showed that the binding of chemokines to CCR2, CCR5, and CCR7 activated the three Gαi subtypes (Gαi1, Gαi2, and Gαi3) and the two Gαo isoforms (Gαoa and Gαob) with potencies that generally correlate to their binding affinities. In addition, we showed that the binding of chemokines to CCR5 and CCR2 also activated Gα12, but not Gα13. For each receptor, we showed that the relative potency of various agonist chemokines was not identical in all assays, supporting the notion that signaling bias exists at chemokine receptors.

  14. Purinergic Receptors in Ocular Inflammation

    PubMed Central

    Guzman-Aranguez, Ana; Gasull, Xavier; Diebold, Yolanda; Pintor, Jesús

    2014-01-01

    Inflammation is a complex process that implies the interaction between cells and molecular mediators, which, when not properly “tuned,” can lead to disease. When inflammation affects the eye, it can produce severe disorders affecting the superficial and internal parts of the visual organ. The nucleoside adenosine and nucleotides including adenine mononucleotides like ADP and ATP and dinucleotides such as P1,P4-diadenosine tetraphosphate (Ap4A), and P1,P5-diadenosine pentaphosphate (Ap5A) are present in different ocular locations and therefore they may contribute/modulate inflammatory processes. Adenosine receptors, in particular A2A adenosine receptors, present anti-inflammatory action in acute and chronic retinal inflammation. Regarding the A3 receptor, selective agonists like N6-(3-iodobenzyl)-5′-N-methylcarboxamidoadenosine (CF101) have been used for the treatment of inflammatory ophthalmic diseases such as dry eye and uveoretinitis. Sideways, diverse stimuli (sensory stimulation, large intraocular pressure increases) can produce a release of ATP from ocular sensory innervation or after injury to ocular tissues. Then, ATP will activate purinergic P2 receptors present in sensory nerve endings, the iris, the ciliary body, or other tissues surrounding the anterior chamber of the eye to produce uveitis/endophthalmitis. In summary, adenosine and nucleotides can activate receptors in ocular structures susceptible to suffer from inflammatory processes. This involvement suggests the possible use of purinergic agonists and antagonists as therapeutic targets for ocular inflammation. PMID:25132732

  15. Identification and mechanism of ABA receptor antagonism

    SciTech Connect

    Melcher, Karsten; Xu, Yong; Ng, Ley-Moy; Zhou, X. Edward; Soon, Fen-Fen; Chinnusamy, Viswanathan; Suino-Powell, Kelly M; Kovach, Amanda; Tham, Fook S.; Cutler, Sean R.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Xu, H. Eric

    2010-11-11

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands.

  16. Chimeric, mutant orexin receptors show key interactions between orexin receptors, peptides and antagonists.

    PubMed

    Tran, Da-Thao; Bonaventure, Pascal; Hack, Michael; Mirzadegan, Taraneh; Dvorak, Curt; Letavic, Michael; Carruthers, Nicholas; Lovenberg, Timothy; Sutton, Steven W

    2011-09-30

    Orexin receptor antagonists are being investigated as therapeutic agents for insomnia and addictive disorders. In this study the interactions between the orexin receptors (orexin 1 receptor and orexin 2 receptor), orexin peptides, and small molecule orexin antagonists were explored. To study these phenomena, a variety of mutant orexin receptors was made and tested using receptor binding and functional assays. Domains of the two orexin receptors were exchanged to show the critical ligand binding domains for orexin peptides and representative selective orexin receptor antagonists. Results from domain exchanges between the orexin receptors suggest that transmembrane domain 3 is crucially important for receptor interactions with small molecule antagonists. These data also suggest that the orexin peptides occupy a larger footprint, interacting with transmembrane domain 1, the amino terminus and transmembrane domain 5 as well as transmembrane domain 3. Transmembrane domain 3 has been shown to be an important part of the small molecule binding pocket common to rhodopsin and β2-adrenergic receptors. Additional orexin receptor 2 point mutations were made based on the common arrangement of receptor transmembrane domains shown in the G-protein coupled receptor crystal structure literature and the impact of orexin 2 receptor residue threonine 135 on the ligand selectivity of the 2 orexin receptors. These data support a model of the orexin receptor binding pocket in which transmembrane domains 3 and 5 are prominent contributors to ligand binding and functional activity. The data also illustrate key contact points for ligand interactions in the consensus small molecule pocket of these receptors.

  17. 5-Hydroxytryptamine type 7 receptor neuroprotection against NMDA-induced excitotoxicity is PDGFβ receptor dependent.

    PubMed

    Vasefi, Maryam S; Kruk, Jeff S; Heikkila, John J; Beazely, Michael A

    2013-04-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the hippocampus. Long-term (2-24 h) activation of 5-HT7 receptors regulates growth factor receptor expression, including the expression of platelet-derived growth factor (PDGF) β receptors. Direct activation of PDGFβ receptors in primary hippocampal and cortical neurons inhibits NMDA receptor activity and attenuates NMDA receptor-induced neurotoxicity. Our objective was to investigate whether the 5-HT7 receptor-induced increase in PDGFβ receptor expression would be similarly neuroprotective. We demonstrate that 5-HT7 receptor agonist treatment in primary hippocampal neurons also increases the expression of phospholipase C (PLC) γ, a downstream effector of PDGFβ receptors associated with the inhibition of NMDA receptor activity. To determine if the up-regulation of PDGFβ receptors is neuroprotective, primary hippocampal neurons were incubated with the 5-HT7 receptor agonist, LP 12, for 24 h. Indeed, LP 12 treatment prevented NMDA-induced neurotoxicity and this effect was dependent on PDGFβ receptor kinase activity. Treatment of primary neurons with LP 12 also differentially altered NMDA receptor subunit expression, reducing the expression of NR1 and NR2B, but not NR2A. These findings demonstrate the potential for providing growth factor receptor-dependent neuroprotective effects using small-molecule ligands of G protein-coupled receptors.

  18. Signaling from Axon Guidance Receptors

    PubMed Central

    Bashaw, Greg J.; Klein, Rüdiger

    2010-01-01

    Determining how axon guidance receptors transmit signals to allow precise pathfinding decisions is fundamental to our understanding of nervous system development and may suggest new strategies to promote axon regeneration after injury or disease. Signaling mechanisms that act downstream of four prominent families of axon guidance cues—netrins, semaphorins, ephrins, and slits—have been extensively studied in both invertebrate and vertebrate model systems. Although details of these signaling mechanisms are still fragmentary and there appears to be considerable diversity in how different guidance receptors regulate the motility of the axonal growth cone, a number of common themes have emerged. Here, we review recent insights into how specific receptors for each of these guidance cues engage downstream regulators of the growth cone cytoskeleton to control axon guidance. PMID:20452961

  19. Monoallelic Expression of Olfactory Receptors

    PubMed Central

    Monahan, Kevin; Lomvardas, Stavros

    2016-01-01

    The sense of smell collects vital information about the environment by detecting a multitude of chemical odorants. Breadth and sensitivity are provided by a huge number of chemosensory receptor proteins, including more than 1,400 olfactory receptors (ORs). Organizing the sensory information generated by these receptors so that it can be processed and evaluated by the central nervous system is a major challenge. This challenge is overcome by monogenic and monoallelic expression of OR genes. The single OR expressed by each olfactory sensory neuron determines the neuron’s odor sensitivity and the axonal connections it will make to downstream neurons in the olfactory bulb. The expression of a single OR per neuron is accomplished by coupling a slow chromatin-mediated activation process to a fast negative-feedback signal that prevents activation of additional ORs. Singular OR activation is likely orchestrated by a network of interchromosomal enhancer interactions and large-scale changes in nuclear architecture. PMID:26359778

  20. Cannabinoids, cannabinoid receptors and tinnitus.

    PubMed

    Smith, Paul F; Zheng, Yiwen

    2016-02-01

    One hypothesis suggests that tinnitus is a form of sensory epilepsy, arising partly from neuronal hyperactivity in auditory regions of the brain such as the cochlear nucleus and inferior colliculus. Although there is currently no effective drug treatment for tinnitus, anti-epileptic drugs are used in some cases as a potential treatment option. There is increasing evidence to suggest that cannabinoid drugs, i.e. cannabinoid receptor agonists, can also have anti-epileptic effects, at least in some cases and in some parts of the brain. It has been reported that cannabinoid CB1 receptors and the endogenous cannabinoid, 2-arachidonylglycerol (2-AG), are expressed in the cochlear nucleus and that they are involved in the regulation of plasticity. This review explores the question of whether cannabinoid receptor agonists are likely to be pro- or anti-epileptic in the cochlear nucleus and therefore whether cannabinoids and Cannabis itself are likely to make tinnitus better or worse.

  1. Plant pattern-recognition receptors.

    PubMed

    Zipfel, Cyril

    2014-07-01

    Plants are constantly exposed to would-be pathogens in their immediate environment. Yet, despite relying on innate immunity only, plants are resistant to most microbes. They employ pattern-recognition receptors (PRRs) for sensitive and rapid detection of the potential danger caused by microbes and pests. Plant PRRs are either surface-localized receptor kinases (RKs) or receptor-like proteins (RLPs) containing various ligand-binding ectodomains that perceive pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs). In this review, I summarize our current knowledge of plant PRRs and their ligands, illustrating the multiple molecular strategies employed by plant PRRs to activate innate immune signaling to survive.

  2. Host receptors for bacteriophage adsorption.

    PubMed

    Bertozzi Silva, Juliano; Storms, Zachary; Sauvageau, Dominic

    2016-02-01

    The adsorption of bacteriophages (phages) onto host cells is, in all but a few rare cases, a sine qua non condition for the onset of the infection process. Understanding the mechanisms involved and the factors affecting it is, thus, crucial for the investigation of host-phage interactions. This review provides a survey of the phage host receptors involved in recognition and adsorption and their interactions during attachment. Comprehension of the whole infection process, starting with the adsorption step, can enable and accelerate our understanding of phage ecology and the development of phage-based technologies. To assist in this effort, we have established an open-access resource--the Phage Receptor Database (PhReD)--to serve as a repository for information on known and newly identified phage receptors. PMID:26755501

  3. Signaling from axon guidance receptors.

    PubMed

    Bashaw, Greg J; Klein, Rüdiger

    2010-05-01

    Determining how axon guidance receptors transmit signals to allow precise pathfinding decisions is fundamental to our understanding of nervous system development and may suggest new strategies to promote axon regeneration after injury or disease. Signaling mechanisms that act downstream of four prominent families of axon guidance cues--netrins, semaphorins, ephrins, and slits--have been extensively studied in both invertebrate and vertebrate model systems. Although details of these signaling mechanisms are still fragmentary and there appears to be considerable diversity in how different guidance receptors regulate the motility of the axonal growth cone, a number of common themes have emerged. Here, we review recent insights into how specific receptors for each of these guidance cues engage downstream regulators of the growth cone cytoskeleton to control axon guidance. PMID:20452961

  4. Receptor use by pathogenic arenaviruses.

    PubMed

    Reignier, Therese; Oldenburg, Jill; Noble, Beth; Lamb, Erika; Romanowski, Victor; Buchmeier, Michael J; Cannon, Paula M

    2006-09-15

    The arenavirus family contains several important human pathogens including Lassa fever virus (LASV), lymphocytic choriomeningitis virus (LCMV) and the New World clade B viruses Junin (JUNV) and Machupo (MACV). Previously, alpha-dystroglycan (alpha-DG) was identified as a receptor recognized by LASV and certain strains of LCMV. However, other studies have suggested that alpha-DG is probably not used by the clade B viruses, and the receptor(s) for these pathogens is currently unknown. Using pseudotyped retroviral vectors displaying arenavirus glycoproteins (GPs), we are able to explore the role played by the GP in viral entry in the absence of other viral proteins. By examining the ability of the vectors to transduce DG knockout murine embryonic stem (ES) cells, we have confirmed that LASV has an absolute requirement for alpha-DG in these cells. However, the LCMV GP can still direct substantial entry into murine ES cells in the absence of alpha-DG, even when the GP from the clone 13 variant is used that has previously been reported to be highly dependent on alpha-DG for entry. We also found that neither LASV or LCMV pseudotyped vectors were able to transduce human or murine lymphocytes, presumably due to the glycosylation state of alpha-DG in these cells. In contrast, the JUNV and MACV GPs displayed broad tropism on human, murine and avian cell types, including lymphocytes, and showed no requirement for alpha-DG in murine ES cells. These findings highlight the importance of molecules other than alpha-DG for arenavirus entry. An alternate receptor is present on murine ES cells that can be used by LCMV but not by LASV, and which is not available on human or murine lymphocytes, while a distinct and widely expressed receptor(s) is used by the clade B viruses.

  5. Nuclear receptors constitutive androstane receptor and pregnane X receptor ameliorate cholestatic liver injury

    PubMed Central

    Stedman, Catherine A. M.; Liddle, Christopher; Coulter, Sally A.; Sonoda, Junichiro; Alvarez, Jacqueline G. A.; Moore, David D.; Evans, Ronald M.; Downes, Michael

    2005-01-01

    Cholestasis is associated with accumulation of bile acids and lipids, and liver injury. The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic nuclear receptors that coordinate protective hepatic responses to potentially toxic stimuli, including bile acids. We investigated the role of these receptors in the regulation of bile acid and lipid metabolism in a bile duct ligation (BDL) model of cholestasis applied to receptor knockout mice. Hepatic damage from bile acid accumulation was increased in both CAR knockout (CARKO) and PXR knockout mice, but bile acid concentrations were lower in CARKO mice. High-density lipoprotein (HDL) cholesterol was elevated in CARKO mice, and serum total cholesterol increased less in CARKO or PXR knockout mice than WT mice after BDL. Gene expression analysis of the BDL knockout animals demonstrated that, in response to cholestasis, PXR and CAR both repressed and induced the specific hepatic membrane transporters Oatp-c (organic anion transporting polypeptide C) and Oatp2 (Na+-dependent organic anion transporter 2), respectively. Induction of the xenobiotic transporter multidrug resistance protein 1 in cholestasis was independent of either PXR or CAR, in contrast to the known pattern of induction of multidrug resistance protein 1 by xenobiotics. These results demonstrate that CAR and PXR influence cholesterol metabolism and bile acid synthesis, as well as multiple detoxification pathways, and suggest their potential role as therapeutic targets for the treatment of cholestasis and lipid disorders. PMID:15684063

  6. Beta Adrenergic Receptors in Keratinocytes

    PubMed Central

    Sivamani, Raja K.; Lam, Susanne T.; Isseroff, R. Rivkah

    2007-01-01

    Synopsis Beta2 adrenergic receptors were identified in keratinocytes more than 30 years ago, but their function in the epidermis continues to be elucidated. Abnormalities in their expression, signaling pathway, or in the generation of endogenous catecholamine agonists by keratinocytes have been implicated in the pathogenesis of cutaneous diseases such as atopic dermatitis, vitiligo and psoriasis. New studies also indicate that the beta2AR also modulates keratinocyte migration, and thus can function to regulate wound re-epithelialization. This review focuses on the function of these receptors in keratinocytes and their contribution to cutaneous physiology and disease. PMID:17903623

  7. Glutamate receptors at atomic resolution

    SciTech Connect

    Mayer, Mark L.

    2010-12-03

    At synapses throughout the brain and spinal cord, the amino-acid glutamate is the major excitatory neurotransmitter. During evolution, a family of glutamate-receptor ion channels seems to have been assembled from a kit consisting of discrete ligand-binding, ion-channel, modulatory and cytoplasmic domains. Crystallographic studies that exploit this unique architecture have greatly aided structural analysis of the ligand-binding core, but the results also pose a formidable challenge, namely that of resolving the allosteric mechanisms by which individual domains communicate and function in an intact receptor.

  8. Olfactory receptors: G protein-coupled receptors and beyond.

    PubMed

    Spehr, Marc; Munger, Steven D

    2009-06-01

    Sensing the chemical environment is critical for all organisms. Diverse animals from insects to mammals utilize highly organized olfactory system to detect, encode, and process chemostimuli that may carry important information critical for health, survival, social interactions and reproduction. Therefore, for animals to properly interpret and react to their environment it is imperative that the olfactory system recognizes chemical stimuli with appropriate selectivity and sensitivity. Because olfactory receptor proteins play such an essential role in the specific recognition of diverse stimuli, understanding how they interact with and transduce their cognate ligands is a high priority. In the nearly two decades since the discovery that the mammalian odorant receptor gene family constitutes the largest group of G protein-coupled receptor (GPCR) genes, much attention has been focused on the roles of GPCRs in vertebrate and invertebrate olfaction. However, is has become clear that the 'family' of olfactory receptors is highly diverse, with roles for enzymes and ligand-gated ion channels as well as GPCRs in the primary detection of olfactory stimuli. PMID:19383089

  9. Nuclear receptors and nonalcoholic fatty liver disease.

    PubMed

    Cave, Matthew C; Clair, Heather B; Hardesty, Josiah E; Falkner, K Cameron; Feng, Wenke; Clark, Barbara J; Sidey, Jennifer; Shi, Hongxue; Aqel, Bashar A; McClain, Craig J; Prough, Russell A

    2016-09-01

    Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic

  10. Nuclear receptors and nonalcoholic fatty liver disease.

    PubMed

    Cave, Matthew C; Clair, Heather B; Hardesty, Josiah E; Falkner, K Cameron; Feng, Wenke; Clark, Barbara J; Sidey, Jennifer; Shi, Hongxue; Aqel, Bashar A; McClain, Craig J; Prough, Russell A

    2016-09-01

    Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic

  11. [Intracellular traffic of the progesterone receptor].

    PubMed

    Guiochon-Mantel, A; Lescop, P; Christin-Maitre, S; Perrot-Applanat, M; Milgrom, E

    1992-01-01

    The nuclear localization of the progesterone receptor is mediated by two signal sequences: one is constitutive and lies in the hinge region (between the DNA and steroid binding domains), the other is hormone-dependent and is localized in the second zinc finger of the DNA binding domain. The use of various inhibitors of energy synthesis in cells expressing permanently or transiently the wild-type receptor or a receptor mutated within the nuclear localization signals, demonstrated that the nuclear residency of the receptor reflects a dynamic situation: the receptor diffusing into the cytoplasm and being constantly and actively transported back into the nucleus. The existence of this nucleo-cytoplasmic shuttle mechanism was confirmed by receptor transfer from one nucleus to the other in heterokaryons. Preliminary evidence was obtained, using oestrogen receptor, that this phenomenon may be of general significance for steroid receptors. PMID:1492716

  12. Marijuana: interaction with the estrogen receptor.

    PubMed

    Sauer, M A; Rifka, S M; Hawks, R L; Cutler, G B; Loriaux, D L

    1983-02-01

    Crude marijuana extract competed with estradiol for binding to the estrogen receptor of rat uterine cytosol. Condensed marijuana smoke also competed with estradiol for its receptor. Pure delta 9-tetrahydrocannabinol, however, did not interact with the estrogen receptor. Ten delta 9-tetrahydrocannabinol metabolites also failed to compete with estradiol for its receptor. Of several other common cannabinoids tested, only cannabidiol showed any estrogen receptor binding. This was evident only at very high concentrations of cannabidiol. Apigenin, the aglycone of a flavinoid phytoestrogen found in cannabis, displayed high affinity for the estrogen receptor. To assess the biological significance of these receptor data, estrogen activity was measured in vivo with the uterine growth bioassay, using immature rats. Cannabis extract in large doses exhibited neither estrogenic nor antiestrogenic effects. Thus, although estrogen receptor binding activity was observed in crude marijuana extract, marijuana smoke condensate and several known components of cannabis, direct estrogenic activity of cannabis extract could not be demonstrated in vivo.

  13. Assessment of receptor internalization and recycling.

    PubMed

    Koenig, Jennifer A

    2004-01-01

    Internalization of G-protein-coupled receptors (GPCRs) occurs in response to agonist activation of the receptors and causes a redistribution of receptors away from the plasma membrane toward endosomes. Internalization of lower-affinity small molecule GPCRs such as muscarinic acetylcholine and adrenergic receptors has been measured using hydrophilic antagonist radioligands that are membrane impermeant. In contrast, internalization of peptide hormone receptors is assessed by measuring the internalization of a radiolabeled- or fluorescently labeled peptide hormone. More recently, the use of epitope-tagged receptors has allowed the measurement of changes in receptor subcellular distribution by the use of immunoassay and immunofluorescence confocal microscopy. This chapter describes each of these approaches to the measurement of receptor internalization and describes the advantages and disadvantages of each method.

  14. Lectins in the investigation of receptors

    NASA Astrophysics Data System (ADS)

    Lakhtin, V. M.; Yamskov, Igor A.

    1991-08-01

    Problems of the purification and characterisation are considered for approximately 270 receptors (including cell surface and organelle enzymes), which are glycoconjugates (mainly glycoproteins) from animals, plants and microorganisms, using various lectins (mainly lectin sorbents). An analysis has been carried out of the stages of lectin affinity chromatography of receptors (choice of detergent, use of organic solvents, elution with carbohydrates, etc.). Examples are given of procedures for the purification of receptors, including the use of paired columns and combination chromatography on lectins. The possibility of separating sub-populations of receptors using lectins has been demonstrated. Examples are given of the use of lectins in the analysis of the oligosaccharide structure of receptors. Cases are recorded of the interaction of receptors with endogenous lectins and of receptor lectins with endogenous glycoconjugates. It has been shown that lectins, in combination with glycosidases and antibodies, may be useful in the investigation of receptors. The bibliography contains 406 references.

  15. Mechanism for the activation of glutamate receptors

    Cancer.gov

    Scientists at the NIH have used a technique called cryo-electron microscopy to determine a molecular mechanism for the activation and desensitization of ionotropic glutamate receptors, a prominent class of neurotransmitter receptors in the brain and spina

  16. Adenosine Receptors: Expression, Function and Regulation

    PubMed Central

    Sheth, Sandeep; Brito, Rafael; Mukherjea, Debashree; Rybak, Leonard P.; Ramkumar, Vickram

    2014-01-01

    Adenosine receptors (ARs) comprise a group of G protein-coupled receptors (GPCR) which mediate the physiological actions of adenosine. To date, four AR subtypes have been cloned and identified in different tissues. These receptors have distinct localization, signal transduction pathways and different means of regulation upon exposure to agonists. This review will describe the biochemical characteristics and signaling cascade associated with each receptor and provide insight into how these receptors are regulated in response to agonists. A key property of some of these receptors is their ability to serve as sensors of cellular oxidative stress, which is transmitted by transcription factors, such as nuclear factor (NF)-κB, to regulate the expression of ARs. Recent observations of oligomerization of these receptors into homo- and heterodimers will be discussed. In addition, the importance of these receptors in the regulation of normal and pathological processes such as sleep, the development of cancers and in protection against hearing loss will be examined. PMID:24477263

  17. Allosteric modulation of glycine receptors

    PubMed Central

    Yevenes, Gonzalo E; Zeilhofer, Hanns Ulrich

    2011-01-01

    Inhibitory (or strychnine sensitive) glycine receptors (GlyRs) are anion-selective transmitter-gated ion channels of the cys-loop superfamily, which includes among others also the inhibitory γ-aminobutyric acid receptors (GABAA receptors). While GABA mediates fast inhibitory neurotransmission throughout the CNS, the action of glycine as a fast inhibitory neurotransmitter is more restricted. This probably explains why GABAA receptors constitute a group of extremely successful drug targets in the treatment of a wide variety of CNS diseases, including anxiety, sleep disorders and epilepsy, while drugs specifically targeting GlyRs are virtually lacking. However, the spatially more restricted distribution of glycinergic inhibition may be advantageous in situations when a more localized enhancement of inhibition is sought. Inhibitory GlyRs are particularly relevant for the control of excitability in the mammalian spinal cord, brain stem and a few selected brain areas, such as the cerebellum and the retina. At these sites, GlyRs regulate important physiological functions, including respiratory rhythms, motor control, muscle tone and sensory as well as pain processing. In the hippocampus, RNA-edited high affinity extrasynaptic GlyRs may contribute to the pathology of temporal lobe epilepsy. Although specific modulators have not yet been identified, GlyRs still possess sites for allosteric modulation by a number of structurally diverse molecules, including alcohols, neurosteroids, cannabinoids, tropeines, general anaesthetics, certain neurotransmitters and cations. This review summarizes the present knowledge about this modulation and the molecular bases of the interactions involved. PMID:21557733

  18. Laminin receptors for neurite formation

    SciTech Connect

    Kleinman, H.K.; Ogle, R.C.; Cannon, F.B.; Little, C.D.; Sweeney, T.M.; Luckenbill-Edds, L.

    1988-02-01

    Laminin, a basement membrane glycoprotein promotes both cell attachment and neurite outgrowth. Separate domains on laminin elicit these responses, suggesting that distinct receptors occur on the surface of cells. NG108-15 neuroblastoma-glioma cells rapidly extend long processes in the presence of laminin. The authors report here that /sup 125/I-labeled laminin specifically binds to these cells and to three membrane proteins of 67, 110, and 180 kDa. These proteins were isolated by affinity chromatography on laminin-Sepharose. The 67-kDa protein reacted with antibody to the previously characterized receptor for cell attachment to laminin. Antibodies to the 110-kDa and 180-kDa bands demonstrated that the 110-kDa protein was found in a variety of epithelial cell lines and in brain, whereas the 180-kDa protein was neural specific. Antibodies prepared against the 110-kDa and 180-kDa proteins inhibited neurite outgrowth induced by the neurite-promoting domain of laminin, whereas antibodies to the 67-kDa laminin receptor had no effect on neurite outgrowth. They conclude that neuronal cells have multiple cell-surface laminin receptors and that the 110-kDa and 180-kDa proteins are involved in neurite formation.

  19. Histamine receptors and cancer pharmacology

    PubMed Central

    Medina, Vanina A; Rivera, Elena S

    2010-01-01

    Considerable evidence has been collected indicating that histamine can modulate proliferation of different normal and malignant cells. High histamine biosynthesis and content together with histamine receptors have been reported in different human neoplasias including melanoma, colon and breast cancer, as well as in experimental tumours in which histamine has been postulated to behave as an important paracrine and autocrine regulator of proliferation. The discovery of the human histamine H4 receptor in different tissues has contributed to our understanding of histamine role in numerous physiological and pathological conditions revealing novel functions for histamine and opening new perspectives in histamine pharmacology research. In the present review we aimed to briefly summarize current knowledge on histamine and histamine receptor involvement in cancer before focusing on some recent evidence supporting the novel role of histamine H4 receptor in cancer progression representing a promising molecular target and avenue for cancer drug development. LINKED ARTICLES BJP has previously published a Histamine themed issue (2009). To view this issue visit http://dx.doi.org/10.1111/bph.2009.157.issue-1 PMID:20636392

  20. Polypharmacology of dopamine receptor ligands.

    PubMed

    Butini, S; Nikolic, K; Kassel, S; Brückmann, H; Filipic, S; Agbaba, D; Gemma, S; Brogi, S; Brindisi, M; Campiani, G; Stark, H

    2016-07-01

    Most neurological diseases have a multifactorial nature and the number of molecular mechanisms discovered as underpinning these diseases is continuously evolving. The old concept of developing selective agents for a single target does not fit with the medical need of most neurological diseases. The development of designed multiple ligands holds great promises and appears as the next step in drug development for the treatment of these multifactorial diseases. Dopamine and its five receptor subtypes are intimately involved in numerous neurological disorders. Dopamine receptor ligands display a high degree of cross interactions with many other targets including G-protein coupled receptors, transporters, enzymes and ion channels. For brain disorders like Parkinsońs disease, schizophrenia and depression the dopaminergic system, being intertwined with many other signaling systems, plays a key role in pathogenesis and therapy. The concept of designed multiple ligands and polypharmacology, which perfectly meets the therapeutic needs for these brain disorders, is herein discussed as a general ligand-based concept while focusing on dopaminergic agents and receptor subtypes in particular. PMID:27234980

  1. Cannabinoid receptor localization in brain

    SciTech Connect

    Herkenham, M.; Lynn, A.B.; Little, M.D.; Johnson, M.R.; Melvin, L.S.; de Costa, B.R.; Rice, K.C. )

    1990-03-01

    (3H)CP 55,940, a radiolabeled synthetic cannabinoid, which is 10-100 times more potent in vivo than delta 9-tetrahydrocannabinol, was used to characterize and localize a specific cannabinoid receptor in brain sections. The potencies of a series of natural and synthetic cannabinoids as competitors of (3H)CP 55,940 binding correlated closely with their relative potencies in several biological assays, suggesting that the receptor characterized in our in vitro assay is the same receptor that mediates behavioral and pharmacological effects of cannabinoids, including human subjective experience. Autoradiography of cannabinoid receptors in brain sections from several mammalian species, including human, reveals a unique and conserved distribution; binding is most dense in outflow nuclei of the basal ganglia--the substantia nigra pars reticulata and globus pallidus--and in the hippocampus and cerebellum. Generally high densities in forebrain and cerebellum implicate roles for cannabinoids in cognition and movement. Sparse densities in lower brainstem areas controlling cardiovascular and respiratory functions may explain why high doses of delta 9-tetrahydrocannabinol are not lethal.

  2. Receptor sensitivity in bacterial chemotaxis

    NASA Astrophysics Data System (ADS)

    Sourjik, Victor; Berg, Howard C.

    2002-01-01

    Chemoreceptors in Escherichia coli are coupled to the flagella by a labile phosphorylated intermediate, CheY~P. Its activity can be inferred from the rotational bias of flagellar motors, but motor response is stochastic and limited to a narrow physiological range. Here we use fluorescence resonance energy transfer to monitor interactions of CheY~P with its phosphatase, CheZ, that reveal changes in the activity of the receptor kinase, CheA, resulting from the addition of attractants or repellents. Analyses of cheR and/or cheB mutants, defective in receptor methylation/demethylation, show that response sensitivity depends on the activity of CheB and the level of receptor modification. In cheRcheB mutants, the concentration of attractant that generates a half-maximal response is equal to the dissociation constant of the receptor. In wild-type cells, it is 35 times smaller. This amplification, together with the ultrasensitivity of the flagellar motor, explains previous observations of high chemotactic gain.

  3. Dependence receptors and colorectal cancer.

    PubMed

    Mehlen, Patrick; Tauszig-Delamasure, Servane

    2014-11-01

    The research on colorectal cancer (CRC) biology has been leading the oncology field since the early 1990s. The search for genetic alterations has allowed the identification of the main tumour suppressors or oncogenes. Recent work obtained in CRC has unexpectedly proposed the existence of novel category of tumour suppressors, the so-called 'dependence receptors'. These transmembrane receptors behave as Dr Jekyll and Mr Hyde with two opposite sides: they induce a positive signalling (survival, proliferation, differentiation) in presence of their ligand, but are not inactive in the absence of their ligand and rather trigger apoptosis when unbound. This trait confers them a conditional tumour suppressor activity: they eliminate cells that grow abnormally in an environment offering a limited quantity of ligand. This review will describe how receptors such as deleted in colorectal carcinoma (DCC), uncoordinated 5 (UNC5), rearranged during transfection (RET) or TrkC constrain CRC progression and how this dependence receptor paradigm may open up therapeutical perspectives. PMID:25163468

  4. Recombinant lymphokines and their receptors

    SciTech Connect

    Gillis, S.

    1987-01-01

    This book contains 15 selections. Some of the chapter titles are: Human Interleukin-2, Molecular Analysis of the Murine Interleukin-2 Receptor, Bovine Interleukin-2, Molecular Organization and Expression of the Prointerleukin-1..beta.. Gene, Human Erythroid-Portentiating Activity, and Tumor Necrosis Factors Alpha and Beta.

  5. Endogenous ion channel complexes: the NMDA receptor.

    PubMed

    Frank, René A W

    2011-06-01

    Ionotropic receptors, including the NMDAR (N-methyl-D-aspartate receptor) mediate fast neurotransmission, neurodevelopment, neuronal excitability and learning. In the present article, the structure and function of the NMDAR is reviewed with the aim to condense our current understanding and highlight frontiers where important questions regarding the biology of this receptor remain unanswered. In the second part of the present review, new biochemical and genetic approaches for the investigation of ion channel receptor complexes will be discussed.

  6. NMDA receptors and memory encoding.

    PubMed

    Morris, Richard G M

    2013-11-01

    It is humbling to think that 30 years have passed since the paper by Collingridge, Kehl and McLennan showing that one of Jeff Watkins most interesting compounds, R-2-amino-5-phosphonopentanoate (d-AP5), blocked the induction of long-term potentiation in vitro at synapses from area CA3 of the hippocampus to CA1 without apparent effect on baseline synaptic transmission (Collingridge et al., 1983). This dissociation was one of the key triggers for an explosion of interest in glutamate receptors, and much has been discovered since that collectively contributes to our contemporary understanding of glutamatergic synapses - their biophysics and subunit composition, of the agonists and antagonists acting on them, and their diverse functions in different networks of the brain and spinal cord. It can be fairly said that Collingridge et al.'s (1983) observation was the stimulus that has led, on the one hand, to structural biological work at the atomic scale describing the key features of NMDA receptors that enables their coincidence function to happen; and, on the other, to work with whole animals investigating the contributions that calcium signalling via this receptor can have on rhythmical activities controlled by spinal circuits, memory encoding in the hippocampus (the topic of this article), visual cortical plasticity, sensitization in pain, and other functions. In this article, I lay out how my then interest in long-term potentiation (LTP) as a model of memory enabled me to recognise the importance of Collingridge et al.'s discovery - and how I and my colleagues endeavoured to take things forward in the area of learning and memory. This is in some respects a personal story, and I tell it as such. The idea that NMDA receptor activation is essential for memory encoding, though not for storage, took time to develop and to be accepted. Along the way, there have been confusions, challenges, and surprises surrounding the idea that activation of NMDA receptors can

  7. Serotonin receptors in parasitic worms.

    PubMed

    Mansour, T E

    1984-01-01

    It is evident from the above review that during the last two decades a great deal of interest in investigating the action of serotonin in parasitic worms has been shown by parasitologists as well as by scientists from several other disciplines. What we have initially reported concerning the effect of serotonin on motility and carbohydrate metabolism of F. hepatica has been pursued on several other parasitic worms. The studies so far indicate that serotonin stimulates motility of every species tested among the phylum Platyhelminthes. The indoleamine also stimulates glycogenolysis in the few flatworm parasites that have been investigated. The information in nematodes is scanty and the role of serotonin in these parasites is still open for experimentation. Recent biochemical investigations on F. hepatica and S. mansoni demonstrated that serotonin and related compounds utilize a common class of receptors in plasma membrane particles which I designate as 'serotonin receptors'. These receptors are linked to an adenylate cyclase that catalyses the synthesis of the second messenger, cyclic 3',5'-AMP. Serotonin and its congeners increase the concentration of cyclic AMP in intact parasites whereas antagonists inhibit such an effect. Cyclic AMP stimulates glycogenolysis, glycolysis and some rate-limiting glycolytic enzymes. It activates a protein kinase that may be involved in activation of glycogen phosphorylase and phosphofructokinase. Serotonin-activated adenylate cyclase in S. mansoni is activated early in the life of the schistosomule. The possibility is discussed that the availability of cyclic AMP through serotonin activation in these parasites may be a prelude to the development processes that take place in the parasite. The different components of the serotonin-activated adenylate cyclase in the parasite are the same as those that have been previously described for the host. Binding characteristics of the receptors indicate that the receptors in F. hepatica appear to

  8. Molecular properties of muscarinic acetylcholine receptors

    PubMed Central

    HAGA, Tatsuya

    2013-01-01

    Muscarinic acetylcholine receptors, which comprise five subtypes (M1-M5 receptors), are expressed in both the CNS and PNS (particularly the target organs of parasympathetic neurons). M1-M5 receptors are integral membrane proteins with seven transmembrane segments, bind with acetylcholine (ACh) in the extracellular phase, and thereafter interact with and activate GTP-binding regulatory proteins (G proteins) in the intracellular phase: M1, M3, and M5 receptors interact with Gq-type G proteins, and M2 and M4 receptors with Gi/Go-type G proteins. Activated G proteins initiate a number of intracellular signal transduction systems. Agonist-bound muscarinic receptors are phosphorylated by G protein-coupled receptor kinases, which initiate their desensitization through uncoupling from G proteins, receptor internalization, and receptor breakdown (down regulation). Recently the crystal structures of M2 and M3 receptors were determined and are expected to contribute to the development of drugs targeted to muscarinic receptors. This paper summarizes the molecular properties of muscarinic receptors with reference to the historical background and bias to studies performed in our laboratories. PMID:23759942

  9. Cholinergic nicotinic receptors in the vestibular epithelia.

    PubMed

    Thornhill, R A

    1991-10-01

    Receptor binding studies specific for nicotinic cholinergic receptors have been carried out on isolated vestibular epithelia of the frogs Rana catesbiana and Rana temporaria. Evidence is presented for the presence of nicotinic-like cholinergic receptors specifically associated with the sensory areas. PMID:1797345

  10. Molecular pharmacology of human NMDA receptors

    PubMed Central

    Hedegaard, Maiken K.; Hansen, Kasper B.; Andersen, Karen T.; Bräuner-Osborne, Hans; Traynelis, Stephen F.

    2012-01-01

    N-methyl-D-aspartate (NMDA) receptors are ionotropic glutamate receptors that mediate excitatory neurotransmission. NMDA receptors are also important drug targets that are implicated in a number of pathophysiological conditions. To facilitate the transition from lead compounds in pre-clinical animal models to drug candidates for human use, it is important to establish whether NMDA receptor ligands have similar properties at rodent and human NMDA receptors. Here, we compare amino acid sequences for human and rat NMDA receptor subunits and discuss inter-species variation in the context of our current knowledge of the relationship between NMDA receptor structure and function. We summarize studies on the biophysical properties of human NMDA receptors and compare these properties to those of rat orthologs. Finally, we provide a comprehensive pharmacological characterization that allows side-by-side comparison of agonists, un-competitive antagonists, GluN2B-selective non-competitive antagonists, and GluN2C/D-selective modulators at recombinant human and rat NMDA receptors. The evaluation of biophysical properties and pharmacological probes acting at different sites on the receptor suggest that the binding sites and conformational changes leading to channel gating in response to agonist binding are highly conserved between human and rat NMDA receptors. In summary, the results of this study suggest that no major detectable differences exist in the pharmacological and functional properties of human and rat NMDA receptors. PMID:22197913

  11. Neurotransmitter Receptor Binding in Bovine Cerebral Microvessels

    NASA Astrophysics Data System (ADS)

    Peroutka, Stephen J.; Moskowitz, Michael A.; Reinhard, John F.; Synder, Solomon H.

    1980-05-01

    Purified preparations of microvessels from bovine cerebral cortex contain substantial levels of alpha-adrenergic, beta-adrenergic, and histamine 1 receptor binding sites but only negligible serotonin, muscarinic cholinergic, opiate, and benzodiazepine receptor binding. Norepinephrine and histamine may be endogenous regulators of the cerebral microcirculation at the observed receptors.

  12. The Physiology and Biochemistry of Receptors.

    ERIC Educational Resources Information Center

    Spitzer, Judy A., Ed.

    1983-01-01

    The syllabus for a refresher course on the physiology and biochemistry of receptors (presented at the 1983 American Physiological Society meeting) is provided. Topics considered include receptor regulation, structural/functional aspects of receptors for insulin and insulin-like growth factors, calcium channel inhibitors, and role of lipoprotein…

  13. Cell surface receptors for CCN proteins.

    PubMed

    Lau, Lester F

    2016-06-01

    The CCN family (CYR61; CTGF; NOV; CCN1-6; WISP1-3) of matricellular proteins in mammals is comprised of six homologous members that play important roles in development, inflammation, tissue repair, and a broad range of pathological processes including fibrosis and cancer. Despite considerable effort to search for a high affinity CCN-specific receptor akin to growth factor receptors, no such receptor has been found. Rather, CCNs bind several groups of multi-ligand receptors as characteristic of other matricellular proteins. The most extensively documented among CCN-binding receptors are integrins, including αvβ3, αvβ5, α5β1, α6β1, αIIbβ3, αMβ2, and αDβ2, which mediate diverse CCN functions in various cell types. CCNs also bind cell surface heparan sulfate proteoglycans (HSPGs), low density liproprotein receptor-related proteins (LRPs), and the cation-independent mannose-6-phosphate (M6P) receptor, which are endocytic receptors that may also serve as co-receptors in cooperation with other cell surface receptors. CCNs have also been reported to bind FGFR-2, Notch, RANK, and TrkA, potentially altering the affinities of these receptors for their ligands. The ability of CCNs to bind a multitude of receptors in various cell types may account for the remarkable versatility of their functions, and underscore the diverse signaling pathways that mediate their activities.

  14. General Anesthetic Actions on GABAA Receptors

    PubMed Central

    Garcia, Paul S; Kolesky, Scott E; Jenkins, Andrew

    2010-01-01

    General anesthetic drugs interact with many receptors in the nervous system, but only a handful of these interactions are critical for producing anesthesia. Over the last 20 years, neuropharmacologists have revealed that one of the most important target sites for general anesthetics is the GABAA receptor. In this review we will discuss what is known about anesthetic – GABAA receptor interactions. PMID:20808541

  15. Guest-induced organization of an optimal receptor from a dynamic receptor library: Spectroscopic screening

    PubMed Central

    Kubota, Yasuo; Sakamoto, Shigeru; Yamaguchi, Kentaro; Fujita, Makoto

    2002-01-01

    Complexation of a cis-protected palladium ion and a family of exo-bidentate and -tridentate ligands results in the formation of an equilibrium mixture of numerous metal-linked receptors that are referred to as a dynamic receptor library. We found that a guest induced the selective formation of the optimal receptor of its own. Screening of the library by using difference NMR facilitates the search for new receptors because in difference NMR only receptors interacting with the guest can be observed. An unpredictable heterotopic receptor was discovered by this screening method. Interestingly, the new receptor thus found was assembled quantitatively only in the presence of its optimal guest. PMID:11959936

  16. The Human Laminin Receptor is a Member of the Integrin Family of Cell Adhesion Receptors

    NASA Astrophysics Data System (ADS)

    Gehlsen, Kurt R.; Dillner, Lena; Engvall, Eva; Ruoslahti, Erkki

    1988-09-01

    A receptor for the adhesive basement membrane protein, laminin, was isolated from human glioblastoma cells by affinity chromatography on laminin. This receptor has a heterodimeric structure similar to that of receptors for other extracellular matrix proteins such as fibronectin and vitronectin. Incorporation of the laminin receptor into liposomal membranes makes it possible for liposomes to attach to surfaces coated with laminin. The receptor liposomes also attached to some extent to surfaces coated with fibronectin, but not with other matrix proteins. These properties identify the laminin receptor as a member of the integrin family of cell adhesion receptors.

  17. An orphan nuclear hormone receptor that lacks a DNA binding domain and heterodimerizes with other receptors.

    PubMed

    Seol, W; Choi, H S; Moore, D D

    1996-05-31

    SHP is an orphan member of the nuclear hormone receptor superfamily that contains the dimerization and ligand-binding domain found in other family members but lacks the conserved DNA binding domain. In the yeast two-hybrid system, SHP interacted with several conventional and orphan members of the receptor superfamily, including retinoid receptors, the thyroid hormone receptor, and the orphan receptor MB67. SHP also interacted directly with these receptors in vitro. In mammalian cells, SHP specifically inhibited transactivation by the superfamily members with which it interacted. These results suggest that SHP functions as a negative regulator of receptor-dependent signaling pathways. PMID:8650544

  18. Endosome acidification and receptor trafficking: bafilomycin A1 slows receptor externalization by a mechanism involving the receptor's internalization motif.

    PubMed Central

    Johnson, L S; Dunn, K W; Pytowski, B; McGraw, T E

    1993-01-01

    To examine the relationship between endosome acidification and receptor trafficking, transferrin receptor trafficking was characterized in Chinese hamster ovary cells in which endosome acidification was blocked by treatment with the specific inhibitor of the vacuolar H(+)-ATPase, bafilomycin A1. Elevating endosome pH slowed the receptor externalization rate to approximately one-half of control but did not affect receptor internalization kinetics. The slowed receptor externalization required the receptor's cytoplasmic domain and was largely eliminated by substitutions replacing either of two aromatic amino acids within the receptor's cytoplasmic YTRF internalization motif. These results confirm, using a specific inhibitor of the vacuolar proton pump, that proper endosome acidification is necessary to maintain rapid recycling of intracellular receptors back to the plasma membrane. Moreover, receptor return to the plasma membrane is slowed in the absence of proper endosome acidification by a signal-dependent mechanism involving the receptor's cytoplasmic tyrosine-containing internalization motif. These results, in conjunction with results from other studies, suggest that the mechanism for clustering receptors in plasma membrane clathrin-coated pits may be an example of a more general mechanism that determines the dynamic distribution of membrane proteins among various compartments with luminal acidification playing a crucial role in this process. Images PMID:8167408

  19. Activation of Neuropeptide FF Receptors by Kisspeptin Receptor Ligands.

    PubMed

    Oishi, Shinya; Misu, Ryosuke; Tomita, Kenji; Setsuda, Shohei; Masuda, Ryo; Ohno, Hiroaki; Naniwa, Yousuke; Ieda, Nahoko; Inoue, Naoko; Ohkura, Satoshi; Uenoyama, Yoshihisa; Tsukamura, Hiroko; Maeda, Kei-Ichiro; Hirasawa, Akira; Tsujimoto, Gozoh; Fujii, Nobutaka

    2011-01-13

    Kisspeptin is a member of the RFamide neuropeptide family that is implicated in gonadotropin secretion. Because kisspeptin-GPR54 signaling is implicated in the neuroendocrine regulation of reproduction, GPR54 ligands represent promising therapeutic agents against endocrine secretion disorders. In the present study, the selectivity profiles of GPR54 agonist peptides were investigated for several GPCRs, including RFamide receptors. Kisspeptin-10 exhibited potent binding and activation of neuropeptide FF receptors (NPFFR1 and NPFFR2). In contrast, short peptide agonists bound with much lower affinity to NPFFRs while showing relatively high selectivity toward GPR54. The possible localization of secondary kisspeptin targets was also demonstrated by variation in the levels of GnRH release from the median eminence and the type of GPR54 agonists used. Negligible affinity of the reported NPFFR ligands to GPR54 was observed and indicates the unidirectional cross-reactivity between both ligands.

  20. Pregnane X receptor is a target of farnesoid X receptor.

    PubMed

    Jung, Diana; Mangelsdorf, David J; Meyer, Urs A

    2006-07-14

    The pregnane X receptor (PXR) is an essential component of the body's detoxification system. PXR is activated by a broad spectrum of xenobiotics and endobiotics, including bile acids and their precursors. Bile acids in high concentrations are toxic; therefore, their synthesis is tightly regulated by the farnesoid X receptor, and their catabolism involves several enzymes regulated by PXR. Here we demonstrate that the expression of PXR is regulated by farnesoid X receptor. Feeding mice with cholic acid or the synthetic farnesoid X receptor (FXR) agonist GW4064 resulted in a robust PXR induction. This effect was abolished in FXR knock-out mice. Long time bile acid treatment resulted in an increase of PXR target genes in wild type mice. A region containing four FXR binding sites (IR1) was identified in the mouse Pxr gene. This region was able to trigger an 8-fold induction after GW4064 treatment in transactivation studies. Deletion or mutation of single IR1 sites caused a weakened response. The importance of each individual IR1 element was assessed by cloning a triple or a single copy and was tested in transactivation studies. Two elements were able to trigger a strong response, one a moderate response, and one no response to GW4064 treatment. Mobility shift assays demonstrated that the two stronger responding elements were able to bind FXR protein. This result was confirmed by chromatin immunoprecipitation. These results strongly suggest that PXR is regulated by FXR. Bile acids activate FXR, which blocks synthesis of bile acids and also leads to the transcriptional activation of PXR, promoting breakdown of bile acids. The combination of the two mechanisms leads to an efficient protection of the liver against bile acid induced toxicity.

  1. Novel receptors for bacterial protein toxins.

    PubMed

    Schmidt, Gudula; Papatheodorou, Panagiotis; Aktories, Klaus

    2015-02-01

    While bacterial effectors are often directly introduced into eukaryotic target cells by various types of injection machines, toxins enter the cytosol of host cells from endosomal compartments or after retrograde transport via Golgi from the ER. A first crucial step of toxin-host interaction is receptor binding. Using optimized protocols and new methods novel toxin receptors have been identified, including metalloprotease ADAM 10 for Staphylococcus aureus α-toxin, laminin receptor Lu/BCAM for Escherichia coli cytotoxic necrotizing factor CNF1, lipolysis stimulated lipoprotein receptor (LSR) for Clostridium difficile transferase CDT and low-density lipoprotein receptor-related protein (LRP) 1 for Clostridium perfringens TpeL toxin.

  2. Crustacean retinoid-X receptor isoforms: distinctive DNA binding and receptor-receptor interaction with a cognate ecdysteroid receptor.

    PubMed

    Wu, Xiaohui; Hopkins, Penny M; Palli, Subba R; Durica, David S

    2004-04-15

    We have identified cDNA clones that encode homologs of the ecdysteroid receptor (EcR) and retinoid-X receptor (RXR)/USP classes of nuclear receptors from the fiddler crab Uca pugilator (UpEcR and UpRXR). Several UpRXR cDNA splicing variants were found in coding regions that could potentially influence function. A five-amino acid (aa) insertion/deletion is located in the "T" box in the hinge region. Another 33-aa insertion/deletion is found inside the ligand-binding domain (LBD), between helix 1 and helix 3. Ribonuclease protection assays (RPA) showed that four UpRXR transcripts [UpRXR(+5+33), UpRXR(-5+33), UpRXR(+5-33) and UpRXR(-5-33)] were present in regenerating limb buds. UpRXR(-5+33) was the most abundant transcript present in regenerating limb buds in both early blastema and late premolt growth stages. Expression vectors for these UpRXR variants and UpEcR were constructed, and the proteins expressed in E. coli and in vitro expression systems. The expressed crab nuclear receptors were then characterized by electrophoretic mobility shift assay (EMSA) and glutathione S-transferase (GST) pull down experiments. EMSA results showed that UpEcR/UpRXR(-5+33) heterocomplexes bound with a series of hormone response elements (HREs) including eip28/29, IRper-1, DR-4, and IRhsp-1 with appreciable affinity. Competition EMSA also showed that the affinity decreased as sequence composition deviated from a perfect consensus element. Binding to IRper-1 HREs occurred only if the heterodimer partner UpRXR contained the 33-aa LBD insertion. UpRXR lacking both the 5-aa and 33-aa insertion bound to a DR-1G HRE in the absence of UpEcR. The results of GST-pull down experiments showed that UpEcR interacted only with UpRXR variants containing the 33-aa insertion, and not with those lacking the 33-aa insertion. These in vitro receptor protein-DNA and receptor protein-protein interactions occurred in the absence of hormone (20-hydroxyecdysone and 9-cis retinoid acid, 9-cis RA

  3. Signal transduction activated by cannabinoid receptors.

    PubMed

    Díaz-Laviada, Inés; Ruiz-Llorente, Lidia

    2005-07-01

    Since the discovery that cannabinoids exert biological actions through binding to specific receptors, signal mechanisms triggered by these receptors have been focus of extensive study. This review summarizes the current knowledge of the signalling events produced by cannabinoids from membrane receptors to downstream regulators. Two types of cannabinoid receptors have been identified to date: CB(1) and CB(2) both belonging to the heptahelichoidal receptor family but with different tissue distribution and signalling mechanisms. Coupling to inhibitory guanine nucleotide-binding protein and thus inhibition of adenylyl cyclase has been observed in both receptors but other signal transduction pathways that are regulated or not by these G proteins are differently activated upon ligand-receptor binding including ion channels, sphingomyelin hydrolysis, ceramide generation, phospholipases activation and downstream targets as MAP kinase cascade, PI3K, FAK or NOS regulation. Cannabinoids may also act independently of CB(1)or CB(2) receptors. The existence of new unidentified putative cannabinoid receptors has been claimed by many investigators. Endocannabinoids activate vanilloid TRPV1 receptors that may mediate some of the cannabinoid effects. Other actions of cannabinoids can occur through non-receptor-mediated mechanisms.

  4. Structural determinants of sigma receptor affinity

    SciTech Connect

    Largent, B.L.; Wikstroem, H.G.; Gundlach, A.L.; Snyder, S.H.

    1987-12-01

    The structural determinants of sigma receptor affinity have been evaluated by examining a wide range of compounds related to opioids, neuroleptics, and phenylpiperidine dopaminergic structures for affinity at sigma receptor-binding sites labeled with (+)-(/sup 3/H)3-PPP. Among opioid compounds, requirements for sigma receptor affinity differ strikingly from the determinants of affinity for conventional opiate receptors. Sigma sites display reverse stereoselectivity to classical opiate receptors. Multi-ringed opiate-related compounds such as morphine and naloxone have negligible affinity for sigma sites, with the highest sigma receptor affinity apparent for benzomorphans which lack the C ring of opioids. Highest affinity among opioids and other compounds occurs with more lipophilic N-substituents. This feature is particularly striking among the 3-PPP derivatives as well as the opioids. The butyrophenone haloperidol is the most potent drug at sigma receptors we have detected. Among the series of butyrophenones, receptor affinity is primarily associated with the 4-phenylpiperidine moiety. Conformational calculations for various compounds indicate a fairly wide range of tolerance for distances between the aromatic ring and the amine nitrogen, which may account for the potency at sigma receptors of structures of considerable diversity. Among the wide range of structures that bind to sigma receptor-binding sites, the common pharmacophore associated with high receptor affinity is a phenylpiperidine with a lipophilic N-substituent.

  5. Molecular mechanisms of prolactin and its receptor.

    PubMed

    Brooks, Charles L

    2012-08-01

    Prolactin and the prolactin receptors are members of a family of hormone/receptor pairs which include GH, erythropoietin, and other ligand/receptor pairs. The mechanisms of these ligand/receptor pairs have broad similarities, including general structures, ligand/receptor stoichiometries, and activation of several common signaling pathways. But significant variations in the structural and mechanistic details are present among these hormones and their type 1 receptors. The prolactin receptor is particularly interesting because it can be activated by three sequence-diverse human hormones: prolactin, GH, and placental lactogen. This system offers a unique opportunity to compare the detailed molecular mechanisms of these related hormone/receptor pairs. This review critically evaluates selected literature that informs these mechanisms, compares the mechanisms of the three lactogenic hormones, compares the mechanism with those of other class 1 ligand/receptor pairs, and identifies information that will be required to resolve mechanistic ambiguities. The literature describes distinct mechanistic differences between the three lactogenic hormones and their interaction with the prolactin receptor and describes more significant differences between the mechanisms by which other related ligands interact with and activate their receptors.

  6. Glucocorticoid receptor transformation and DNA binding

    SciTech Connect

    Tienrungroj, W.

    1986-01-01

    The overall goal is to probe the mechanism whereby glucocorticoid receptors are transformed from a non-DNA-binding form to their active DNA-binding form. The author has examined the effect of an endogenous inhibitor purified from rat liver cytosol on receptor binding to DNA. The inhibitor binds to transformed receptors in whole cytosol and prevent their binding to DNA. He also examined the role of sulfhydryl groups in determining the DNA binding activity of the transformed receptor and in determining the transformation process. Treatment of rat liver cytosol containing temperature-transformed, (/sup 3/H)dexamethasone-bound receptors at 0/sup 0/C with the sulfhydryl modifying reagent methyl methanethiosulfonate inhibits the DNA-binding activity of the receptor, and DNA-binding activity is restored after addition of dithiothreitol. In addition, he has examined the relationship between receptor phosphorylation and DNA binding. Untransformed receptor complexes purified from cytosol prepared from mouse L cells grown in medium containing (/sup 32/P)orthophosphate contain two components, a 100 k-Da and a 90-kDa subunit, both of which are phosphoproteins. On transformation, the receptor dissociates from the 90-kDa protein. Transformation of the complex under cell free conditions does not result in a dephosphorylation of the 100-kDa steroid-binding protein. Transformed receptor that has been bound to DNA and purified by monoclonal antibody is still in a phosphorylated form. These results suggest that dephosphorylation is not required for receptor binding to DNA.

  7. The evolution of vertebrate opioid receptors

    PubMed Central

    Stevens, Craig W.

    2011-01-01

    The proteins that mediate the analgesic and other effects of opioid drugs and endogenous opioid peptides are known as opioid receptors. Opioid receptors consist of a family of four closely-related proteins belonging to the large superfamily of G-protein coupled receptors. The three types of opioid receptors shown unequivocally to mediate analgesia in animal models are the mu (MOR), delta (DOR), and kappa (KOR) opioid receptor proteins. The role of the fourth member of the opioid receptor family, the nociceptin or orphanin FQ receptor (ORL), is not as clear as hyperalgesia, analgesia, and no effect was reported after administration of ORL agonists. There are now cDNA sequences for all four types of opioid receptors that are expressed in the brain of six species from three different classes of vertebrates. This review presents a comparative analysis of vertebrate opioid receptors using bioinformatics and data from recent human genome studies. Results indicate that opioid receptors arose by gene duplication, that there is a vector of opioid receptor divergence, and that MOR shows evidence of rapid evolution. PMID:19273128

  8. NMDA receptor contributions to visual contrast coding

    PubMed Central

    Manookin, Michael B.; Weick, Michael; Stafford, Benjamin K.; Demb, Jonathan B.

    2010-01-01

    Summary In the retina, it is not well understood how visual processing depends on AMPA- and NMDA-type glutamate receptors. Here, we investigated how these receptors contribute to contrast coding in identified guinea pig ganglion cell types, in vitro. NMDA-mediated responses were negligible in ON α cells but substantial in OFF α and δ cells. OFF δ cell NMDA receptors were composed of GluN2B subunits. Using a novel deconvolution method, we determined the individual contributions of AMPA, NMDA and inhibitory currents to light responses of each cell type. OFF α and δ cells used NMDA receptors for encoding either the full contrast range (α), including near-threshold responses, or only a high range (δ). However, contrast sensitivity depended substantially on NMDA receptors only in OFF α cells. NMDA receptors contribute to visual contrast coding in a cell-type specific manner. Certain cell types generate excitatory responses using primarily AMPA receptors or disinhibition. PMID:20670835

  9. Targeting Nuclear Receptors with Marine Natural Products

    PubMed Central

    Yang, Chunyan; Li, Qianrong; Li, Yong

    2014-01-01

    Nuclear receptors (NRs) are important pharmaceutical targets because they are key regulators of many metabolic and inflammatory diseases, including diabetes, dyslipidemia, cirrhosis, and fibrosis. As ligands play a pivotal role in modulating nuclear receptor activity, the discovery of novel ligands for nuclear receptors represents an interesting and promising therapeutic approach. The search for novel NR agonists and antagonists with enhanced selectivities prompted the exploration of the extraordinary chemical diversity associated with natural products. Recent studies involving nuclear receptors have disclosed a number of natural products as nuclear receptor ligands, serving to re-emphasize the translational possibilities of natural products in drug discovery. In this review, the natural ligands of nuclear receptors will be described with an emphasis on their mechanisms of action and their therapeutic potentials, as well as on strategies to determine potential marine natural products as nuclear receptor modulators. PMID:24473166

  10. Structure, function, and regulation of adrenergic receptors.

    PubMed Central

    Strosberg, A. D.

    1993-01-01

    Adrenergic receptors for adrenaline and noradrenaline belong to the large multigenic family of receptors coupled to GTP-binding proteins. Three pharmacologic types have been identified: alpha 1-, alpha 2-, and beta-adrenergic receptors. Each of these has three subtypes, characterized by both structural and functional differences. The alpha 2 and beta receptors are coupled negatively and positively, respectively, to adenylyl cyclase via Gi or Gs regulatory proteins, and the alpha 1 receptors modulate phospholipase C via the Go protein. Subtype expression is regulated at the level of the gene, the mRNA, and the protein through various transcriptional and postsynthetic mechanisms. Adrenergic receptors constitute, after rhodopsin, one of the best studied models for the other receptors coupled to G proteins that are likely to display similar structural and functional properties. PMID:8401205

  11. Olfactory receptor neuron profiling using sandalwood odorants.

    PubMed

    Bieri, Stephan; Monastyrskaia, Katherine; Schilling, Boris

    2004-07-01

    The mammalian olfactory system can discriminate between volatile molecules with subtle differences in their molecular structures. Efforts in synthetic chemistry have delivered a myriad of smelling compounds of different qualities as well as many molecules with very similar olfactive properties. One important class of molecules in the fragrance industry are sandalwood odorants. Sandalwood oil and four synthetic sandalwood molecules were selected to study the activation profile of endogenous olfactory receptors when exposed to compounds from the same odorant family. Dissociated rat olfactory receptor neurons were exposed to the sandalwood molecules and the receptor activation studied by monitoring fluxes in the internal calcium concentration. Olfactory receptor neurons were identified that were specifically stimulated by sandalwood compounds. These neurons expressed olfactory receptors that can discriminate between sandalwood odorants with slight differences in their molecular structures. This is the first study in which an important class of perfume compounds was analyzed for its ability to activate endogenous olfactory receptors in olfactory receptor neurons.

  12. Targeting nuclear receptors with marine natural products.

    PubMed

    Yang, Chunyan; Li, Qianrong; Li, Yong

    2014-01-27

    Nuclear receptors (NRs) are important pharmaceutical targets because they are key regulators of many metabolic and inflammatory diseases, including diabetes, dyslipidemia, cirrhosis, and fibrosis. As ligands play a pivotal role in modulating nuclear receptor activity, the discovery of novel ligands for nuclear receptors represents an interesting and promising therapeutic approach. The search for novel NR agonists and antagonists with enhanced selectivities prompted the exploration of the extraordinary chemical diversity associated with natural products. Recent studies involving nuclear receptors have disclosed a number of natural products as nuclear receptor ligands, serving to re-emphasize the translational possibilities of natural products in drug discovery. In this review, the natural ligands of nuclear receptors will be described with an emphasis on their mechanisms of action and their therapeutic potentials, as well as on strategies to determine potential marine natural products as nuclear receptor modulators.

  13. Solubilization and reconstitution of renal vasopressin receptors

    SciTech Connect

    Aiyar, N.; Nambi, P.; Stassen, F.; Crooke, S.T.

    1987-05-01

    Renal vasopressin receptors (V/sub 2/) mediating antidiuresis are coupled to adenylate cyclase. To determine the molecular properties of these vasopressin receptors, it is necessary to solubilize the receptors from the membranes. Solubilization of vasopressin receptors in the non-liganded state was shown to abolish hormone recognition. To preserve ligand binding capacity they have developed reconstitution procedures for the renal vasopressin receptors. The pig kidney membranes were solubilized using a zwitterionic detergent, egg lysolecithin and then reconstituted into phospholipid vesicles. Specific binding of (/sup 3/H) lysine vasopressin ((/sup 3/H)LVP) to these solubilized reconstituted fractions was fast, saturable and increased linearly with protein concentration. Scatchard analysis of (/sup 3/H)LVP binding indicated the presence of single class of binding sites with an equilibrium dissociation constant of 2.3 nM. In competition binding experiments, the solubilized receptors displayed the same pharmacological profile as was observed with membrane V/sub 2/ receptors.

  14. Binding of ATP to the progesterone receptor.

    PubMed Central

    Moudgil, V K; Toft, D O

    1975-01-01

    The possible interaction of progesterone--receptor complexes with nucleotides was tested by affinity chromatography. The cytosol progesterone receptor from hen oviduct was partially purified by ammonium sulfate precipitation before use. When progesterone was bound to the receptor, the resulting complex could be selectively adsorbed onto columns of ATP-Sepharose. This interaction was reversible and of an ionic nature since it could be disrupted by high-salt conditions. A competitive binding assay was used to test the specificity of receptor binding to several other nucleotides, including ADP, AMP, and cAMP. A clear specificity for binding ATP was evident from these studies. When ATP was added to receptor preparations, the nucleotide did not affect the sedimentation properties or hormone binding characteristics of the receptor. Although the function of ATP remains unknown, these studies indicate a role of this nucleotide in some aspect of hormone receptor activity. PMID:165493

  15. Receptor arrays optimized for natural odor statistics.

    PubMed

    Zwicker, David; Murugan, Arvind; Brenner, Michael P

    2016-05-17

    Natural odors typically consist of many molecules at different concentrations. It is unclear how the numerous odorant molecules and their possible mixtures are discriminated by relatively few olfactory receptors. Using an information theoretic model, we show that a receptor array is optimal for this task if it achieves two possibly conflicting goals: (i) Each receptor should respond to half of all odors and (ii) the response of different receptors should be uncorrelated when averaged over odors presented with natural statistics. We use these design principles to predict statistics of the affinities between receptors and odorant molecules for a broad class of odor statistics. We also show that optimal receptor arrays can be tuned to either resolve concentrations well or distinguish mixtures reliably. Finally, we use our results to predict properties of experimentally measured receptor arrays. Our work can thus be used to better understand natural olfaction, and it also suggests ways to improve artificial sensor arrays.

  16. Hunting Viral Receptors Using Haploid Cells

    PubMed Central

    Pillay, Sirika; Carette, Jan E.

    2016-01-01

    Viruses have evolved intricate mechanisms to gain entry into the host cell. Identification of critical receptors has enabled insights into virus particle internalization, host and tissue tropism, and viral pathogenesis. In this review we discuss the most commonly employed methods for virus receptor discovery, specifically highlighting the use of forward genetic screens in human haploid cells. The ability to generate true knockout alleles at high saturation provides a sensitive means to study virus-host interactions. As an example, haploid genetic screens identified the lysosomal proteins, NPC1 and LAMP1, as intracellular receptors for Ebola virus and Lassa virus, respectively. From these studies emerges the notion that receptor usage by these viruses is highly dynamic involving a programmed switch from cell surface receptor to intracellular receptor. Broad application of genetic knockout approaches will chart functional landscapes of receptors and endocytic pathways hijacked by viruses. PMID:26958914

  17. Ligands for Ionotropic Glutamate Receptors

    NASA Astrophysics Data System (ADS)

    Swanson, Geoffrey T.; Sakai, Ryuichi

    Marine-derived small molecules and peptides have played a central role in elaborating pharmacological specificities and neuronal functions of mammalian ionotropic glutamate receptors (iGluRs), the primary mediators of excitatory syn-aptic transmission in the central nervous system (CNS). As well, the pathological sequelae elicited by one class of compounds (the kainoids) constitute a widely-used animal model for human mesial temporal lobe epilepsy (mTLE). New and existing molecules could prove useful as lead compounds for the development of therapeutics for neuropathologies that have aberrant glutamatergic signaling as a central component. In this chapter we discuss natural source origins and pharmacological activities of those marine compounds that target ionotropic glutamate receptors.

  18. Ligands for Ionotropic Glutamate Receptors

    PubMed Central

    Swanson, Geoffrey T.; Sakai, Ryuichi

    2010-01-01

    Marine-derived small molecules and peptides have played a central role in elaborating pharmacological specificities and neuronal functions of mammalian ionotropic glutamate receptors (iGluRs), the primary mediators of excitatory synaptic transmission in the central nervous system (CNS). As well, the pathological sequelae elicited by one class of compounds (the kainoids) constitute a widely-used animal model for human mesial temporal lobe epilepsy (mTLE). New and existing molecules could prove useful as lead compounds for the development of therapeutics for neuropathologies that have aberrant glutamatergic signaling as a central component. In this chapter we discuss natural source origins and pharmacological activities of those marine compounds that target ionotropic glutamate receptors. PMID:19184587

  19. What are Nuclear Receptor Ligands?

    PubMed Central

    Sladek, Frances M.

    2010-01-01

    Nuclear receptors (NRs) are a family of highly conserved transcription factors that regulate transcription in response to small lipophilic compounds. They play a role in every aspect of development, physiology and disease in humans. They are also ubiquitous in and unique to the animal kingdom suggesting that they may have played an important role in their evolution. In contrast to the classical endocrine receptors that originally defined the family, recent studies suggest that the first NRs might have been sensors of their environment, binding ligands that were external to the host organism. The purpose of this review is to provide a broad perspective on NR ligands and address the issue of exactly what constitutes a NR ligand from historical, biological and evolutionary perspectives. This discussion will lay the foundation for subsequent reviews in this issue as well as pose new questions for future investigation. PMID:20615454

  20. Measurement of Receptor Signaling Bias.

    PubMed

    Kenakin, Terry

    2016-01-01

    G protein-coupled receptors (GPCRs) are often pleiotropically linked to numerous cellular signaling mechanisms in cells, and it is now known that many agonists differentially activate some signaling pathways at the expense of others. The mechanism for this effect is the stabilization of different active receptor states by different agonists, and it leads to varying qualities of efficacy for different agonists. Agonist bias is a powerful mechanism to amplify beneficial signals and diminish harmful signals, and thus improve the overall profile of agonist ligands. This unit describes a method to quantify agonist bias with a scale that enables medicinal chemists to amplify or reduce these effects in new molecules. The method is based on the Black/Leff operational model and yields a statistical estimate of the confidence for bias measurements. © 2016 by John Wiley & Sons, Inc. PMID:27636109

  1. A new family of insect tyramine receptors.

    PubMed

    Cazzamali, Giuseppe; Klaerke, Dan A; Grimmelikhuijzen, Cornelis J P

    2005-12-16

    The Drosophila Genome Project database contains a gene, CG7431, annotated to be an "unclassifiable biogenic amine receptor." We have cloned this gene and expressed it in Chinese hamster ovary cells. After testing various ligands for G protein-coupled receptors, we found that the receptor was specifically activated by tyramine (EC(50), 5x10(-7)M) and that it showed no cross-reactivity with beta-phenylethylamine, octopamine, dopa, dopamine, adrenaline, noradrenaline, tryptamine, serotonin, histamine, and a library of 20 Drosophila neuropeptides (all tested in concentrations up to 10(-5) or 10(-4)M). The receptor was also expressed in Xenopus oocytes, where it was, again, specifically activated by tyramine with an EC(50) of 3x10(-7)M. Northern blots showed that the receptor is already expressed in 8-hour-old embryos and that it continues to be expressed in all subsequent developmental stages. Adult flies express the receptor both in the head and body (thorax/abdomen) parts. In addition to the Drosophila tyramine receptor gene, CG7431, we found another closely related Drosophila gene, CG16766, that probably also codes for a tyramine receptor. Furthermore, we annotated similar tyramine-like receptor genes in the genomic databases from the malaria mosquito Anopheles gambiae and the honeybee Apis mellifera. These four tyramine or tyramine-like receptors constitute a new receptor family that is phylogenetically distinct from the previously identified insect octopamine/tyramine receptors. The Drosophila tyramine receptor is, to our knowledge, the first cloned insect G protein-coupled receptor that appears to be fully specific for tyramine.

  2. Aza compounds as anion receptors

    DOEpatents

    Lee, Hung Sui; Yang, Xiao-Qing; McBreen, James

    1998-01-06

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of Li.sup.+ ion in alkali metal batteries.

  3. Aza compounds as anion receptors

    DOEpatents

    Lee, H.S.; Yang, X.Q.; McBreen, J.

    1998-01-06

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of Li{sup +} ion in alkali metal batteries. 3 figs.

  4. Acetylcholine Receptor: An Allosteric Protein

    NASA Astrophysics Data System (ADS)

    Changeux, Jean-Pierre; Devillers-Thiery, Anne; Chemouilli, Phillippe

    1984-09-01

    The nicotine receptor for the neurotransmitter acetylcholine is an allosteric protein composed of four different subunits assembled in a transmembrane pentamer α 2β γ δ . The protein carries two acetylcholine sites at the level of the α subunits and contains the ion channel. The complete sequence of the four subunits is known. The membrane-bound protein undergoes conformational transitions that regulate the opening of the ion channel and are affected by various categories of pharmacologically active ligands.

  5. Insulin receptor in Drosophila melanogaster

    SciTech Connect

    Petruzzelli, L.; Herrera, R.; Rosen, O.

    1986-05-01

    A specific, high affinity insulin receptor is present in both adult Drosophila and in Drosophila embryos. Wheat germ lectin-enriched extracts of detergent-solubilized membranes from embryos and adults bind insulin with a K/sub d/ of 15 nM. Binding is specific for insulin; micromolar concentrations of proinsulin, IGFI, and IGFII are required to displace bound /sup 125/I-insulin. Insulin-dependent protein tyrosine kinase activity appears during embryogenesis. It is evident between 6 and 12 hours of development, peaks between 12 and 18 hours and falls in the adult. During 0-6 hours of embryogenesis, and in the adult, a specific protein band (Mr = 135,000) is crosslinked to /sup 125/I-insulin. During 6-12 and 12-18 hours of embryogenesis stages in which insulin-dependent protein tyrosine kinase is high, an additional band (Mr = 100,000) becomes crosslinked to /sup 125/I-insulin. Isolation and DNA sequence analysis of genomic clones encoding the Drosophila insulin receptor will be presented as will the characterization of insulin receptor mRNA's during development.

  6. Modes of glutamate receptor gating

    PubMed Central

    Popescu, Gabriela K

    2012-01-01

    Abstract The time course of excitatory synaptic currents, the major means of fast communication between neurons of the central nervous system, is encoded in the dynamic behaviour of post-synaptic glutamate-activated channels. First-pass attempts to explain the glutamate-elicited currents with mathematical models produced reaction mechanisms that included only the most basic functionally defined states: resting vs. liganded, closed vs. open, responsive vs. desensitized. In contrast, single-molecule observations afforded by the patch-clamp technique revealed an unanticipated kinetic multiplicity of transitions: from microseconds-lasting flickers to minutes-long modes. How these kinetically defined events impact the shape of the synaptic response, how they relate to rearrangements in receptor structure, and whether and how they are physiologically controlled represent currently active research directions. Modal gating, which refers to the slowest, least frequently observed ion-channel transitions, has been demonstrated for representatives of all ion channel families. However, reaction schemes have been largely confined to the short- and medium-range time scales. For glutamate receptors as well, modal gating has only recently come under rigorous scrutiny. This article reviews the evidence for modal gating of glutamate receptors and the still developing hypotheses about the mechanism(s) by which modal shifts occur and the ways in which they may impact the time course of synaptic transmission. PMID:22106181

  7. [Anti-NMDA-receptor encephalitis].

    PubMed

    Engen, Kristine; Agartz, Ingrid

    2016-06-01

    BACKGROUND In 2007 a clinical disease caused by autoantibodies directed against the N-methyl-D-aspartate (NMDA) receptor was described for the first time. Anti-NMDA-receptor encephalitis is a subacute, autoimmune neurological disorder with psychiatric manifestations. The disease is a form of limbic encephalitis and is often paraneoplastic. The condition is also treatable. In this review article we examine the development of the disease, clinical practice, diagnostics and treatment.MATERIAL AND METHOD The article is based on references retrieved from searches in PubMed, and a discretionary selection of articles from the authors' own literature archive.RESULTS The disease most frequently affects young women. It may initially be perceived as a psychiatric condition, as it usually presents in the form of delusions, hallucinations or mania. The diagnosis should be suspected in patients who later develop neurological symptoms such as various movement disorders, epileptic seizures and autonomic instability. Examination of serum or cerebrospinal fluid for NMDA receptor antibodies should be included in the assessment of patients with suspected encephalitis. MRI, EEG and assessment for tumours are important tools in diagnosing the condition and any underlying malignancy.INTERPRETATION If treatment is initiated early, the prognosis is good. Altogether 75 % of patients will fully recover or experience significant improvement. Apart from surgical resection of a possible tumour, the treatment consists of immunotherapy. Because of good possibilities for treatment, it is important that clinicians, particularly those in acute psychiatry, are aware of and alert to this condition. PMID:27325034

  8. Autophagy selectivity through receptor clustering

    NASA Astrophysics Data System (ADS)

    Rutenberg, Andrew; Brown, Aidan

    Substrate selectivity in autophagy requires an all-or-none cellular response. We focus on peroxisomes, for which autophagy receptor proteins NBR1 and p62 are well characterized. Using computational models, we explore the hypothesis that physical clustering of autophagy receptor proteins on the peroxisome surface provides an appropriate all-or-none response. We find that larger peroxisomes nucleate NBR1 clusters first, and lose them due to competitive coarsening last, resulting in significant size-selectivity. We then consider a secondary hypothesis that p62 inhibits NBR1 cluster formation. We find that p62 inhibition enhances size-selectivity enough that, even if there is no change of the pexophagy rate, the volume of remaining peroxisomes can significantly decrease. We find that enhanced ubiquitin levels suppress size-selectivity, and that this effect is more pronounced for individual peroxisomes. Sufficient ubiquitin allows receptor clusters to form on even the smallest peroxisomes. We conclude that NBR1 cluster formation provides a viable physical mechanism for all-or-none substrate selectivity in pexophagy. We predict that cluster formation is associated with significant size-selectivity. Now at Simon Fraser University.

  9. Human and rat TR4 orphan receptors specify a subclass of the steroid receptor superfamily.

    PubMed Central

    Chang, C; Da Silva, S L; Ideta, R; Lee, Y; Yeh, S; Burbach, J P

    1994-01-01

    We have identified a member of the steroid receptor superfamily and cloned it from human and rat hypothalamus, prostate, and testis cDNA libraries. The open reading frame between first ATG and terminator TGA can encode 615 (human) and 596 (rat) amino acids with calculated molecular mass of 67.3 (human) and 65.4 (rat) kDa. The amino acid sequence of this protein, called TR4 orphan receptor, is closely related to the previously identified TR2 orphan receptor. The high homology between TR2 and TR4 orphan receptor suggests that these two orphan receptors constitute a unique subfamily within the steroid receptor superfamily. These two orphan receptors are differentially expressed in rat tissues. Unlike TR2 orphan receptors, the TR4 orphan receptor appears to be predominantly located in granule cells of the hippocampus and the cerebellum, suggesting that it may play some role(s) in transcriptional regulation in these neurons. Images PMID:8016112

  10. The two-state dimer receptor model: a general model for receptor dimers.

    PubMed

    Franco, Rafael; Casadó, Vicent; Mallol, Josefa; Ferrada, Carla; Ferré, Sergi; Fuxe, Kjell; Cortés, Antoni; Ciruela, Francisco; Lluis, Carmen; Canela, Enric I

    2006-06-01

    Nonlinear Scatchard plots are often found for agonist binding to G-protein-coupled receptors. Because there is clear evidence of receptor dimerization, these nonlinear Scatchard plots can reflect cooperativity on agonist binding to the two binding sites in the dimer. According to this, the "two-state dimer receptor model" has been recently derived. In this article, the performance of the model has been analyzed in fitting data of agonist binding to A(1) adenosine receptors, which are an example of receptor displaying concave downward Scatchard plots. Analysis of agonist/antagonist competition data for dopamine D(1) receptors using the two-state dimer receptor model has also been performed. Although fitting to the two-state dimer receptor model was similar to the fitting to the "two-independent-site receptor model", the former is simpler, and a discrimination test selects the two-state dimer receptor model as the best. This model was also very robust in fitting data of estrogen binding to the estrogen receptor, for which Scatchard plots are concave upward. On the one hand, the model would predict the already demonstrated existence of estrogen receptor dimers. On the other hand, the model would predict that concave upward Scatchard plots reflect positive cooperativity, which can be neither predicted nor explained by assuming the existence of two different affinity states. In summary, the two-state dimer receptor model is good for fitting data of binding to dimeric receptors displaying either linear, concave upward, or concave downward Scatchard plots.

  11. Receptor response in Venus's fly-trap.

    PubMed

    Jacobson, S L

    1965-09-01

    The insect-trapping movement of the plant Dionaea muscipula (Venus's fly-trap) is mediated by the stimulation of mechanosensory hairs located on the surface of the trap. It is known that stimulation of the hairs is followed by action potentials which are propagated over the surface of the trap. It has been reported that action potentials always precede trap closure. The occurrence of non-propagated receptor potentials is reported here. Receptor potentials always precede the action potentials. The receptor potential appears to couple the mechanical stimulation step to the action potential step of the preying sequence. Receptor potentials elicited by mechanical stimulation of a sensory hair were measured by using the hair as an integral part of the current-measuring path. The tip of the hair was cut off exposing the medullary tissue; this provided a natural extension of the measuring electrode into the receptor region at the base of the hair. A measuring pipette electrode was slipped over the cut tip of the hair. Positive and negative receptor potentials were measured. Evidence is presented which supports the hypothesis that the positive and negative receptor potentials originate from independent sources. An analysis is made of (a) the relation of the parameters of mechanical stimuli to the magnitude of the receptor potential, and (b) the relation of the receptor potentials to the action potential. The hypothesis that the positive receptor potential is the generator of the action potential is consistent with these data.

  12. Estrogen Receptors, the Hippocampus, and Memory

    PubMed Central

    Bean, Linda A.; Ianov, Lara; Foster, Thomas C.

    2015-01-01

    Estradiol effects on memory depend on hormone levels and the interaction of different estrogen receptors within neural circuits. Estradiol induces gene transcription and rapid membrane signaling mediated by estrogen receptor-alpha (ERα), estrogen receptor-beta (ERβ), and a recently characterized G-protein coupled estrogen receptor, each with distinct distributions and ability to influence estradiol-dependent signaling. Investigations using receptor specific agonists suggest that all three receptors rapidly activate kinase-signaling and have complex dose-dependent influences on memory. Research employing receptor knockout mice demonstrate that ERα maintains transcription and memory as estradiol levels decline. This work indicates a regulatory role of ERβ in transcription and cognition, which depends on estradiol levels and the function of ERα. The regulatory role of ERβ is due in part to ERβ acting as a negative regulator of ERα-mediated transcription. Vector-mediated expression of estrogen receptors in the hippocampus provides an innovative research approach and suggests that memory depends on the relative expression of ERα and ERβ interacting with estradiol levels. Notably, the ability of estradiol to improve cognition declines with advanced age along with decreased expression of estrogen receptors. Thus, it will be important for future research to determine the mechanisms that regulate estrogen receptor expression during aging. PMID:24510074

  13. Estrogen receptors in the wobbler mouse.

    PubMed

    Siegel, L I; Fox, T O

    1985-12-01

    Recent research has raised the interesting possibility that the neurological mutant mouse, wobbler (wr/wr), possesses an estrogen receptor deficit analogous to the androgen receptor deficiency found in androgen-resistant mice with testicular feminization. In the present report we examined estrogen-binding activity in cytosolic extracts of kidney, liver, and brain from wobbler mice, littermate control animals, and C57BL/6J mice, using DNA-cellulose chromatography. Estrogen binding components exhibiting properties of estrogen receptors were present in all tissues examined. Estrogen receptors adhered to DNA, displayed characteristic elution profiles from DNA-cellulose, and showed high affinity and limited capacity for estradiol, in contrast to non-receptor entities which bind estradiol. The qualitative elution patterns for estrogen receptors did not differ among groups within each tissue studied, and were similar to those reported previously in mouse kidney and brain. While estrogen receptors have been shown in mouse liver by other techniques, this is the first demonstration of putative estrogen receptors in mouse liver by DNA-cellulose chromatography. No consistent deficits in estrogen receptor concentration were found in wobblers compared to littermates. Thus, the data do not support the hypothesis that the wobbler mouse is an estrogen receptor-deficient mutant.

  14. Protein Connectivity in Chemotaxis Receptor Complexes

    PubMed Central

    Eismann, Stephan; Endres, Robert G.

    2015-01-01

    The chemotaxis sensory system allows bacteria such as Escherichia coli to swim towards nutrients and away from repellents. The underlying pathway is remarkably sensitive in detecting chemical gradients over a wide range of ambient concentrations. Interactions among receptors, which are predominantly clustered at the cell poles, are crucial to this sensitivity. Although it has been suggested that the kinase CheA and the adapter protein CheW are integral for receptor connectivity, the exact coupling mechanism remains unclear. Here, we present a statistical-mechanics approach to model the receptor linkage mechanism itself, building on nanodisc and electron cryotomography experiments. Specifically, we investigate how the sensing behavior of mixed receptor clusters is affected by variations in the expression levels of CheA and CheW at a constant receptor density in the membrane. Our model compares favorably with dose-response curves from in vivo Förster resonance energy transfer (FRET) measurements, demonstrating that the receptor-methylation level has only minor effects on receptor cooperativity. Importantly, our model provides an explanation for the non-intuitive conclusion that the receptor cooperativity decreases with increasing levels of CheA, a core signaling protein associated with the receptors, whereas the receptor cooperativity increases with increasing levels of CheW, a key adapter protein. Finally, we propose an evolutionary advantage as explanation for the recently suggested CheW-only linker structures. PMID:26646441

  15. Signaling pathways engaged by NK cell receptors: double concerto for activating receptors, inhibitory receptors and NK cells.

    PubMed

    Tomasello, E; Bléry, M; Vély, F; Vivier, E

    2000-04-01

    Despite the absence of antigen-specific receptors at their surface, NK cells can selectively eliminate virus-infected cells, tumor cells and allogenic cells. A dynamic and precisely coordinated balance between activating and inhibitory receptors governs NK cell activation programs. Multiple activating and inhibitory NK cell surface molecules have been described, a group of them acting as receptors for MHC class I molecules. In spite of their heterogeneity, activating NK cell receptors present remarkable structural and functional homologies with T cell- and B cell-antigen receptors. Inhibitory NK cell receptors operate at early stages of activating cascades by recruiting protein tyrosine phosphatases via intra- cytoplasmic motifs (ITIM), a strategy which is widely conserved in hematopoietic and non-hematopoietic cells.

  16. Thermostabilisation of the neurotensin receptor NTS1

    PubMed Central

    Shibata, Yoko; White, Jim F.; Serrano-Vega, Maria J.; Magnani, Francesca; Aloia, Amanda L.; Grisshammer, Reinhard; Tate, Christopher G.

    2009-01-01

    Structural studies on G protein-coupled receptors (GPCRs) have been hampered for many years by their instability in detergent solution and by the number of potential conformations that receptors can adopt. Recently, the structures of the β1 and β2 adrenergic receptors and the adenosine A2a receptor were determined with antagonist bound, a receptor conformation that is thought to be more stable than the agonist-bound state. In contrast to these receptors, the neurotensin receptor NTS1 is much less stable in detergent solution. We have therefore used a systematic mutational approach coupled to activity assays to identify receptor mutants suitable for crystallisation, both alone and in complex with the peptide agonist, neurotensin. The best receptor mutant, NTS1-7m, contained 4 point mutations. It showed increased stability compared to the wild type receptor, in the absence of ligand, after solubilisation with a variety of detergents. In addition, NTS1-7m bound to neurotensin was more stable than unliganded NTS1-7m. Of the four thermostabilising mutations, only one residue (A86L) is predicted to be in the lipid environment. In contrast, I260A appears to be buried within the transmembrane helix bundle, F342A may form a distant part of the putative ligand binding site, whereas F358A is likely to be in a region important for receptor activation. NTS1-7m binds neurotensin with a similar affinity to the wild-type receptor. However, agonist dissociation was slower, and NTS1-7m activated G proteins poorly. The affinity of NTS1-7m for the antagonist SR48692 was also lower than that of the wild-type receptor. Thus we have successfully stabilised NTS1 in an agonist-binding conformation that does not efficiently couple to G proteins. PMID:19422831

  17. Co-receptors are dispensable for tethering receptor-mediated phagocytosis of apoptotic cells.

    PubMed

    Park, B; Lee, J; Moon, H; Lee, G; Lee, D-H; Cho, J Hoon; Park, D

    2015-01-01

    During efferocytosis, phagocytic cells recognize dying cells by receptors binding to ligands specifically exposed on apoptotic cells. Multiple phagocytic receptors and some of their signaling pathways have been identified. However, the downstream pathways of tethering receptors that secure apoptotic cells remain elusive. It is generally assumed that tethering receptors induce signaling to mediate engulfment via interacting with co-receptors or other engulfment receptors located nearby. However, it is poorly understood whether co-receptors for tethering receptors exist during efferocytosis, and, if they do, whether they are indispensable for this process. Here, we address this issue using glycophosphatidylinositol (GPI)-anchored annexin A5 (Anxa5-GPI), an artificial tethering receptor without a putative co-receptor. Phagocytes expressing Anxa5-GPI exhibited enhanced binding of apoptotic cells, resulting in promoted ingestion of apoptotic cells in a phosphatidylserine-dependent manner. Anxa5-GPI-induced phagocytosis of apoptotic cells relied on the known cytoskeletal engulfment machinery but partially depended on the Elmo-Dock-Rac module or the integrin pathway. In addition, Anxa5-GPI-mediated efferocytosis provoked anti-inflammatory responses. Taken together, our work suggests that co-receptors are dispensable for tethering receptor-induced efferocytosis and that tethering receptors mediate the engulfment of apoptotic cells through multiple engulfment signaling pathways.

  18. Modulation of Glucagon Receptor Pharmacology by Receptor Activity-modifying Protein-2 (RAMP2)*

    PubMed Central

    Weston, Cathryn; Lu, Jing; Li, Naichang; Barkan, Kerry; Richards, Gareth O.; Roberts, David J.; Skerry, Timothy M.; Poyner, David; Pardamwar, Meenakshi; Reynolds, Christopher A.; Dowell, Simon J.; Willars, Gary B.; Ladds, Graham

    2015-01-01

    The glucagon and glucagon-like peptide-1 (GLP-1) receptors play important, opposing roles in regulating blood glucose levels. Consequently, these receptors have been identified as targets for novel diabetes treatments. However, drugs acting at the GLP-1 receptor, although having clinical efficacy, have been associated with severe adverse side-effects, and targeting of the glucagon receptor has yet to be successful. Here we use a combination of yeast reporter assays and mammalian systems to provide a more complete understanding of glucagon receptor signaling, considering the effect of multiple ligands, association with the receptor-interacting protein receptor activity-modifying protein-2 (RAMP2), and the role of individual G protein α-subunits. We demonstrate that RAMP2 alters both ligand selectivity and G protein preference of the glucagon receptor. Importantly, we also uncover novel cross-reactivity of therapeutically used GLP-1 receptor ligands at the glucagon receptor that is abolished by RAMP2 interaction. This study reveals the glucagon receptor as a previously unidentified target for GLP-1 receptor agonists and highlights a role for RAMP2 in regulating its pharmacology. Such previously unrecognized functions of RAMPs highlight the need to consider all receptor-interacting proteins in future drug development. PMID:26198634

  19. Human native kappa opioid receptor functions not predicted by recombinant receptors: Implications for drug design

    PubMed Central

    Broad, John; Maurel, Damien; Kung, Victor W. S.; Hicks, Gareth A.; Schemann, Michael; Barnes, Michael R.; Kenakin, Terrence P.; Granier, Sébastien; Sanger, Gareth J.

    2016-01-01

    If activation of recombinant G protein-coupled receptors in host cells (by drugs or other ligands) has predictive value, similar data must be obtained with native receptors naturally expressed in tissues. Using mouse and human recombinant κ opioid receptors transfected into a host cell, two selectively-acting compounds (ICI204448, asimadoline) equi-effectively activated both receptors, assessed by measuring two different cell signalling pathways which were equally affected without evidence of bias. In mouse intestine, naturally expressing κ receptors within its nervous system, both compounds also equi-effectively activated the receptor, inhibiting nerve-mediated muscle contraction. However, whereas ICI204448 acted similarly in human intestine, where κ receptors are again expressed within its nervous system, asimadoline was inhibitory only at very high concentrations; instead, low concentrations of asimadoline reduced the activity of ICI204448. This demonstration of species-dependence in activation of native, not recombinant κ receptors may be explained by different mouse/human receptor structures affecting receptor expression and/or interactions with intracellular signalling pathways in native environments, to reveal differences in intrinsic efficacy between receptor agonists. These results have profound implications in drug design for κ and perhaps other receptors, in terms of recombinant-to-native receptor translation, species-dependency and possibly, a need to use human, therapeutically-relevant, not surrogate tissues. PMID:27492592

  20. Human native kappa opioid receptor functions not predicted by recombinant receptors: Implications for drug design.

    PubMed

    Broad, John; Maurel, Damien; Kung, Victor W S; Hicks, Gareth A; Schemann, Michael; Barnes, Michael R; Kenakin, Terrence P; Granier, Sébastien; Sanger, Gareth J

    2016-01-01

    If activation of recombinant G protein-coupled receptors in host cells (by drugs or other ligands) has predictive value, similar data must be obtained with native receptors naturally expressed in tissues. Using mouse and human recombinant κ opioid receptors transfected into a host cell, two selectively-acting compounds (ICI204448, asimadoline) equi-effectively activated both receptors, assessed by measuring two different cell signalling pathways which were equally affected without evidence of bias. In mouse intestine, naturally expressing κ receptors within its nervous system, both compounds also equi-effectively activated the receptor, inhibiting nerve-mediated muscle contraction. However, whereas ICI204448 acted similarly in human intestine, where κ receptors are again expressed within its nervous system, asimadoline was inhibitory only at very high concentrations; instead, low concentrations of asimadoline reduced the activity of ICI204448. This demonstration of species-dependence in activation of native, not recombinant κ receptors may be explained by different mouse/human receptor structures affecting receptor expression and/or interactions with intracellular signalling pathways in native environments, to reveal differences in intrinsic efficacy between receptor agonists. These results have profound implications in drug design for κ and perhaps other receptors, in terms of recombinant-to-native receptor translation, species-dependency and possibly, a need to use human, therapeutically-relevant, not surrogate tissues. PMID:27492592

  1. Acetylcholine receptors in the human retina

    SciTech Connect

    Hutchins, J.B.; Hollyfield, J.G.

    1985-11-01

    Evidence for a population of acetylcholine (ACh) receptors in the human retina is presented. The authors have used the irreversible ligand TH-propylbenzilylcholine mustard (TH-PrBCM) to label muscarinic receptors. TH- or SVI-alpha-bungarotoxin (alpha-BTx) was used to label putative nicotinic receptors. Muscarinic receptors are apparently present in the inner plexiform layer of the retina. Autoradiographic grain densities are reduced in the presence of saturating concentrations of atropine, quinuclidinyl benzilate or scopolamine; this indicates that TH-PrBCM binding is specific for a population of muscarinic receptors in the human retina. Binding sites for radiolabeled alpha-BTx are found predominantly in the inner plexiform layer of the retina. Grain densities are reduced in the presence of d-tubocurarine, indicating that alpha-BTx may bind to a pharmacologically relevant nicotinic ACh receptor. This study provides evidence for cholinergic neurotransmission in the human retina.

  2. Leukocyte chemoattractant receptors in human disease pathogenesis.

    PubMed

    Zabel, Brian A; Rott, Alena; Butcher, Eugene C

    2015-01-01

    Combinations of leukocyte attractant ligands and cognate heptahelical receptors specify the systemic recruitment of circulating cells by triggering integrin-dependent adhesion to endothelial cells, supporting extravasation, and directing specific intratissue localization via gradient-driven chemotaxis. Chemoattractant receptors also control leukocyte egress from lymphoid organs and peripheral tissues. In this article, we summarize the fundamental mechanics of leukocyte trafficking, from the evolution of multistep models of leukocyte recruitment and navigation to the regulation of chemoattractant availability and function by atypical heptahelical receptors. To provide a more complete picture of the migratory circuits involved in leukocyte trafficking, we integrate a number of nonchemokine chemoattractant receptors into our discussion. Leukocyte chemoattractant receptors play key roles in the pathogenesis of autoimmune diseases, allergy, inflammatory disorders, and cancer. We review recent advances in our understanding of chemoattractant receptors in disease pathogenesis, with a focus on genome-wide association studies in humans and the translational implications of mechanistic studies in animal disease models.

  3. GPR34 as a lysophosphatidylserine receptor.

    PubMed

    Makide, Kumiko; Aoki, Junken

    2013-04-01

    GPR34, a P2Y receptor family member, was identified as a candidate lysophosphatidylserine (LysoPS) receptor in 2006. However, it was controversial whether LysoPS is a real ligand for GPR34. Kitamura et al. (GPR34 is a receptor for lysophosphatidylserine with a fatty acid at the sn-2 position. J. Biochem. 2012;151:511-518), using several methods for detecting activation of G protein-coupled receptor (GPCR) and chemically synthesized LysoPS analogues, concluded that GPR34 is a cellular receptor for LysoPS, especially with a fatty acid at the sn-2 position. Furthermore, three additional GPCRs belonging to the P2Y family were recently identified as GPCRs for LysoPS, supporting the idea that GPR34 is a LysoPS receptor. PMID:23389307

  4. GABAA Receptors at Hippocampal Mossy Fibers

    PubMed Central

    Ruiz, Arnaud; Fabian-Fine, Ruth; Scott, Ricardo; Walker, Matthew C.; Rusakov, Dmitri A.; Kullmann, Dimitri M.

    2012-01-01

    Summary Presynaptic GABAA receptors modulate synaptic transmission in several areas of the CNS but are not known to have this action in the cerebral cortex. We report that GABAA receptor activation reduces hippocampal mossy fibers excitability but has the opposite effect when intracellular Cl− is experimentally elevated. Synaptically released GABA mimics the effect of exogenous agonists. GABAA receptors modulating axonal excitability are tonically active in the absence of evoked GABA release or exogenous agonist application. Presynaptic action potential-dependent Ca2+ transients in individual mossy fiber varicosities exhibit a biphasic dependence on membrane potential and are altered by GABAA receptors. Antibodies against the α2 subunit of GABAA receptors stain mossy fibers. Axonal GABAA receptors thus play a potentially important role in tonic and activity-dependent heterosynaptic modulation of information flow to the hippocampus. PMID:12971896

  5. Receptor Tyrosine Kinases in Drosophila Development

    PubMed Central

    Sopko, Richelle; Perrimon, Norbert

    2013-01-01

    Tyrosine phosphorylation plays a significant role in a wide range of cellular processes. The Drosophila genome encodes more than 20 receptor tyrosine kinases and extensive studies in the past 20 years have illustrated their diverse roles and complex signaling mechanisms. Although some receptor tyrosine kinases have highly specific functions, others strikingly are used in rather ubiquitous manners. Receptor tyrosine kinases regulate a broad expanse of processes, ranging from cell survival and proliferation to differentiation and patterning. Remarkably, different receptor tyrosine kinases share many of the same effectors and their hierarchical organization is retained in disparate biological contexts. In this comprehensive review, we summarize what is known regarding each receptor tyrosine kinase during Drosophila development. Astonishingly, very little is known for approximately half of all Drosophila receptor tyrosine kinases. PMID:23732470

  6. Evolution of the nuclear receptor gene superfamily.

    PubMed Central

    Laudet, V; Hänni, C; Coll, J; Catzeflis, F; Stéhelin, D

    1992-01-01

    Nuclear receptor genes represent a large family of genes encoding receptors for various hydrophobic ligands such as steroids, vitamin D, retinoic acid and thyroid hormones. This family also contains genes encoding putative receptors for unknown ligands. Nuclear receptor gene products are composed of several domains important for transcriptional activation, DNA binding (C domain), hormone binding and dimerization (E domain). It is not known whether these genes have evolved through gene duplication from a common ancestor or if their different domains came from different independent sources. To test these possibilities we have constructed and compared the phylogenetic trees derived from two different domains of 30 nuclear receptor genes. The tree built from the DNA binding C domain clearly shows a common progeny of all nuclear receptors, which can be grouped into three subfamilies: (i) thyroid hormone and retinoic acid receptors, (ii) orphan receptors and (iii) steroid hormone receptors. The tree constructed from the central part of the E domain which is implicated in transcriptional regulation and dimerization shows the same distribution in three subfamilies but two groups of receptors are in a different position from that in the C domain tree: (i) the Drosophila knirps family genes have acquired very different E domains during evolution, and (ii) the vitamin D and ecdysone receptors, as well as the FTZ-F1 and the NGF1B genes, seem to have DNA binding and hormone binding domains belonging to different classes. These data suggest a complex evolutionary history for nuclear receptor genes in which gene duplication events and swapping between domains of different origins took place. PMID:1312460

  7. Androgen receptors, sex behavior, and aggression.

    PubMed

    Cunningham, Rebecca L; Lumia, Augustus R; McGinnis, Marilyn Y

    2012-01-01

    Androgens are intricately involved in reproductive and aggressive behaviors, but the role of the androgen receptor in mediating these behaviors is less defined. Further, activity of the hypothalamic-pituitary-gonadal axis and hypothalamic-pituitary-adrenal axis can influence each other at the level of the androgen receptor. Knowledge of the mechanisms for androgens' effects on behaviors through the androgen receptor will guide future studies in elucidating male reproductive and aggressive behavior repertoires.

  8. Membrane guanylyl cyclase receptors: an update

    PubMed Central

    Garbers, David L.; Chrisman, Ted D.; Wiegn, Phi; Katafuchi, Takeshi; Albanesi, Joseph P.; Bielinski, Vincent; Barylko, Barbara; Redfield, Margaret M.; Burnett, John C.

    2007-01-01

    Recent studies have demonstrated key roles for several membrane guanylyl cyclase receptors in the regulation of cell hyperplasia, hypertrophy, migration and extracellular matrix production, all of which having an impact on clinically relevant diseases, including tissue remodeling after injury. Additionally, cell differentiation, and even tumor progression, can be profoundly influenced by one or more of these receptors. Some of these receptors also mediate important communication between the heart and intestine, and the kidney to regulate blood volume and Na+ balance. PMID:16815030

  9. Angiotensin II receptors in the gonads

    SciTech Connect

    Aguilera, G.; Millan, M.A.; Harwood, J.P.

    1989-05-01

    The presence of components of the renin-angiotensin system in ovaries and testes suggests that angiotensin II (AII) is involved in gonadal function, and thus we sought to characterize receptors for AII in rat and primate gonads. In the testes, autoradiographic studies showed receptors in the interstitium in all species. In rat interstitial cells fractionated by Percoll gradient, AII receptors coincided with hCG receptors indicating that AII receptors are located on the Leydig cells. In Leydig cells and membranes from rat and rhesus monkey prepuberal testes, AII receptors were specific for AII analogues and of high affinity (Kd=nM). During development, AII receptor content in rat testes decreases with age parallel to a fall in the ratio of interstitial to tubular tissue. In the ovary, the distribution of AII receptors was dependent on the stage of development, being high in the germinal epithelium and stromal tissue between five and 15 days, and becoming localized in secondary follicles in 20-and 40-day-old rats. No binding was found in primordial or primary follicles. In rhesus monkey ovary, AII receptors were higher in stromal tissue and lower in granulosa and luteal cells of the follicles. Characterization of the binding in rat and monkey ovarian membranes showed a single class of sites with a Kd in the nmol/L range and specificity similar to that of the adrenal glomerulosa and testicular AII receptors. Receptors for AII were also present in membrane fractions from PMSG/hCG primed rat ovaries. Infusion of AII (25 ng/min) or captopril (1.4 micrograms/min) during the PMSG/hCG induction period had no effect on ovarian weight or AII receptor concentration in the ovaries.

  10. Characterization of prostanoid receptors on rat neutrophils.

    PubMed Central

    Wise, H; Jones, R L

    1994-01-01

    1. The effects of various prostanoid agonists have been compared on the increase in intracellular free calcium ([Ca2+]i) and the aggregation reaction of rat peritoneal neutrophils induced by N-formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP). 2. Prostaglandin E2 (PGE2) and the specific IP-receptor agonist, cicaprost, both inhibited the FMLP-induced increase in [Ca2+]i (IC50 33 nM and 18 nM respectively) and the FMLP-induced aggregation reaction (IC50 5.6 nM and 7.9 nM respectively). PGD2, PGF2 alpha, and the TP-receptor agonist, U 46619, were inactive at the highest concentration tested (1 microM). 3. The EP1-receptor agonist, 17-phenyl-omega-trinor PGE2, and the EP3-receptor agonists, GR 63799X and sulprostone, had no inhibitory effect on FMLP-stimulated rat neutrophils. 4. PGE1 (EP/IP-receptor agonist) and iloprost (IP-receptor agonist) inhibited the FMLP-induced increase in [Ca2+]i with IC50 values of 34 nM and 38 nM respectively. The EP2-receptor agonists, butaprost and misoprostol (1 microM), inhibited both FMLP-stimulated [Ca2+]i and aggregation. However another EP2-receptor agonist, AH 13205, was inactive in both assays. 5. Prostanoid receptors present on rat neutrophils were further characterized by measuring [3H]-adenosine 3':5'-cyclic monophosphate ([3H]-cyclic AMP) accumulation. Only those agonists capable of stimulating [3H]-cyclic AMP accumulation were able to inhibit both FMLP-stimulated [Ca2+]i and aggregation. 6. These results indicate that rat neutrophils possess inhibitory IP and EP-receptors; the relative potencies of PGE2, misoprostol and butaprost are those expected for the EP2-receptor subtype. No evidence for DP, FP, TP or EP1 and EP3-receptors was obtained. PMID:7834211

  11. Androgen receptors in prostate cancer.

    PubMed

    Culig, Z; Klocker, H; Bartsch, G; Hobisch, A

    2002-09-01

    The androgen receptor (AR), a transcription factor that mediates the action of androgens in target tissues, is expressed in nearly all prostate cancers. Carcinoma of the prostate is the most frequently diagnosed neoplasm in men in industrialized countries. Palliative treatment for non-organ-confined prostate cancer aims to down-regulate the concentration of circulating androgen or to block the transcription activation function of the AR. AR function during endocrine therapy was studied in tumor cells LNCaP subjected to long-term steroid depletion; newly generated sublines could be stimulated by lower concentrations of androgen than parental cells and showed up-regulation of AR expression and activity as well as resistance to apoptosis. Androgenic hormones regulate the expression of key cell cycle regulators, cyclin-dependent kinase 2 and 4, and that of the cell cycle inhibitor p27. Inhibition of AR expression could be achieved by potential chemopreventive agents flufenamic acid, resveratrol, quercetin, polyunsaturated fatty acids and interleukin-1beta, and by the application of AR antisense oligonucleotides. In the clinical situation, AR gene amplification and point mutations were reported in patients with metastatic disease. These mutations generate receptors which could be activated by other steroid hormones and non-steroidal antiandrogens. In the absence of androgen, the AR could be activated by various growth-promoting (growth factors, epidermal growth factor receptor-related oncogene HER-2/neu) and pleiotropic (protein kinase A activators, interleukin-6) compounds as well as by inducers of differentiation (phenylbutyrate). AR function is modulated by a number of coactivators and corepressors. The three coactivators, TIF-2, SRC-1 and RAC3, are up-regulated in relapsed prostate cancer. New experimental therapies for prostate cancer are aimed to down-regulate AR expression and to overcome difficulties which occur because of the acquisition of agonistic properties

  12. Death receptor 5 and neuroproliferation.

    PubMed

    Niu, Yanli; Li, Yongqiang; Zang, Jianfeng; Huang, Hongen; Deng, Jiexin; Cui, Zhanjun; Yu, Dongming; Deng, Jinbo

    2012-03-01

    Tumor necrosis factor-related apoptosis-inducing ligand or Apo2 ligand is a member of the tumor necrosis factor superfamily of cytokines that induces apoptosis upon binding to its death domain-containing transmembrane receptors, death receptors 4 and 5 (DR4, DR5). However, DR5 is also expressed in the developing CNS where it appears to play a role unrelated to apoptosis, and instead may be involved in the regulation of neurogenesis. We report on the distribution of DR5 expression in mouse hippocampus, cerebellum, and rostral migratory stream (RMS) of olfactory bulb from embryonic (E) day 16 (E16) to postnatal (P) day (P180). At E16, DR5-positive cells were distributed widely in embryonic hippocampus with strong immunostaining in the developing dentate gyrus. In newborn hippocampus, DR5-positive cells were predominantly located in proliferative zones, such as dentate gyrus, subventricular zone, and RMS. After postnatal day 7 (P7), the number of DR5-positive cells decreased, and cells with intense fluorescence were primarily restricted to the subgranular layer (SGL), although the granular cell layer showed weak fluorescence. After P30, only few DR5-positive cells were found in SGL, and mature granule cells were negative for DR5 expression. To address whether DR5 expression is a restricted to progenitor cells and newborn neurons, we performed 5-bromo-deoxyuridine labeling. We report that proliferative cells in the SGL selectively express DR5, with lower levels of expression in cells positive for doublecortin, a marker of newborn neurons. In addition, the stem cells in intestine, cerebellum, and RMS were also demonstrated to be DR5-positive. In the meantime, in cerebellum, DR5-positive cells were also positive for glial fibrillary acidic protein, a marker of proliferative Bergmann cells. We conclude that DR5 is selectively expressed by neuroprogenitor cells and newborn neurons, suggesting that the DR5 death receptor is likely to play a key role in neuroproliferation

  13. Cannabinoid receptors in developing rats: detection of mRNA and receptor binding.

    PubMed

    McLaughlin, C R; Martin, B R; Compton, D R; Abood, M E

    1994-08-01

    Despite a large body of research directed at assessing the effects of perinatal cannabinoid exposure, little is known about the development of the cannabinoid receptor. Recent advances, including the cloning of the cannabinoid receptor, have afforded us the opportunity to plot the postnatal ontogeny of the cannabinoid receptor and its mRNA in whole brain using the methods of receptor binding and RNA blot hybridization, respectively. Our results indicate that cannabinoid receptor mRNA is present at adult levels as early as postnatal day 3. The Bmax, on the other hand, increases almost fifty percent with increasing postnatal age, while the affinity does not change. The Hill coefficients for all ages studied were approximately 1. These findings suggest the possibility of a developmental progression for cannabinoid receptor development with receptor mRNA appearing first, followed by a period of rapid proliferation of the receptors themselves. PMID:7988356

  14. EGF receptor ligands: recent advances

    PubMed Central

    Singh, Bhuminder; Carpenter, Graham; Coffey, Robert J.

    2016-01-01

    Seven ligands bind to and activate the mammalian epidermal growth factor (EGF) receptor (EGFR/ERBB1/HER1): EGF, transforming growth factor-alpha (TGFA), heparin-binding EGF-like growth factor (HBEGF), betacellulin (BTC), amphiregulin (AREG), epiregulin (EREG), and epigen (EPGN). Of these, EGF, TGFA, HBEGF, and BTC are thought to be high-affinity ligands, whereas AREG, EREG, and EPGN constitute low-affinity ligands. This focused review is meant to highlight recent studies related to actions of the individual EGFR ligands, the interesting biology that has been uncovered, and relevant advances related to ligand interactions with the EGFR.

  15. EGF receptor ligands: recent advances.

    PubMed

    Singh, Bhuminder; Carpenter, Graham; Coffey, Robert J

    2016-01-01

    Seven ligands bind to and activate the mammalian epidermal growth factor (EGF) receptor (EGFR/ERBB1/HER1): EGF, transforming growth factor-alpha (TGFA), heparin-binding EGF-like growth factor (HBEGF), betacellulin (BTC), amphiregulin (AREG), epiregulin (EREG), and epigen (EPGN). Of these, EGF, TGFA, HBEGF, and BTC are thought to be high-affinity ligands, whereas AREG, EREG, and EPGN constitute low-affinity ligands. This focused review is meant to highlight recent studies related to actions of the individual EGFR ligands, the interesting biology that has been uncovered, and relevant advances related to ligand interactions with the EGFR. PMID:27635238

  16. EGF receptor ligands: recent advances

    PubMed Central

    Singh, Bhuminder; Carpenter, Graham; Coffey, Robert J.

    2016-01-01

    Seven ligands bind to and activate the mammalian epidermal growth factor (EGF) receptor (EGFR/ERBB1/HER1): EGF, transforming growth factor-alpha (TGFA), heparin-binding EGF-like growth factor (HBEGF), betacellulin (BTC), amphiregulin (AREG), epiregulin (EREG), and epigen (EPGN). Of these, EGF, TGFA, HBEGF, and BTC are thought to be high-affinity ligands, whereas AREG, EREG, and EPGN constitute low-affinity ligands. This focused review is meant to highlight recent studies related to actions of the individual EGFR ligands, the interesting biology that has been uncovered, and relevant advances related to ligand interactions with the EGFR. PMID:27635238

  17. Somatostatin receptors in differentiated ovarian tumors.

    PubMed Central

    Reubi, J. C.; Horisberger, U.; Klijn, J. G.; Foekens, J. A.

    1991-01-01

    The presence of somatostatin receptors was investigated in 57 primary human ovarian tumors using in vitro receptor autoradiography with three different somatostatin radioligands, 125I-[Tyr11]-somatostatin-14, 125I-[Leu8, D-Trp22, Tyr25]-somatostatin-28, or 125I-[Tyr3]-SMS 201-995. Three cases, all belonging to epithelial tumors, were receptor positive; specifically 1 of 42 adenocarcinomas, 1 of 3 borderline malignancies, and 1 of 2 cystadenomas. Four other epithelial tumors (3 fibroadenomas, 1 Brenner tumor), 4 sex cord-stromal tumors (2 fibrothecomas, 2 granulosa cell tumors), and 2 germ cell tumors (1 dysgerminoma, 1 teratoma) were receptor negative. In the positive cases, the somatostatin receptors were localized on epithelial cells exclusively, were of high affinity (KD = 4.6 nmol/l [nanomolar]), and specific for somatostatin analogs. These receptors bound somatostatin-14 and somatostatin-28 radioligands with a higher affinity than the octapeptide [Tyr3]-SMS 201-995. Healthy ovarian tissue had no somatostatin receptors. A subpopulation of relatively well-differentiated ovarian tumors, therefore, was identified pathobiochemically on the basis of its somatostatin receptor content. This small group of somatostatin receptor-positive tumors may be a target for in vivo diagnostic imaging with somatostatin ligands. Images Figure 1 Figure 2 Figure 3 PMID:1850962

  18. GABA(B) receptors in neuroendocrine regulation.

    PubMed

    Lux-Lantos, Victoria A; Bianchi, María S; Catalano, Paolo N; Libertun, Carlos

    2008-09-01

    Gamma-amino butyric acid (GABA), in addition to being a metabolic intermediate and the main inhibitory neurotransmitter in the synaptic cleft, is postulated as a neurohormone, a paracrine signaling molecule, and a trophic factor. It acts through pre- and post-synaptic receptors, named GABA(A) and GABA(C) (ionotropic receptors) and GABA(B) (metabotropic receptor). Here we reviewed the participation of GABA(B) receptors in the regulation of the hypothalamic-pituitary-gonadal axis, using physiological, biochemical, and pharmacological approaches in rats, as well as in GABA(B1) knock-out mice, that lack functional GABA(B) receptors. Our general conclusion indicates that GABA(B )receptors participate in the regulation of pituitary hormone secretion acting both in the central nervous system and directly on the gland. PRL and gonadotropin axes are affected by GABA(B) receptor activation, as demonstrated in the rat and also in the GABA(B1) knock-out mouse. In addition, hypothalamic and pituitary GABA(B) receptor expression is modulated by steroid hormones. GABA participation in the brain control of pituitary secretion through GABA(B) receptors depends on physiological conditions, being age and sex critical factors.These results indicate that patients receiving GABA(B) agonists/antagonists should be monitored for possible endocrine side effects.

  19. Human dopamine receptor and its uses

    DOEpatents

    Civelli, Olivier; Van Tol, Hubert Henri-Marie

    1999-01-01

    The present invention is directed toward the isolation, characterization and pharmacological use of the human D4 dopamine receptor. The nucleotide sequence of the gene corresponding to this receptor and alleleic variant thereof are provided by the invention. The invention also includes recombinant eukaryotic expression constructs capable of expressing the human D4 dopamine receptor in cultures of transformed eukaryotic cells. The invention provides cultures of transformed eukaryotic cells which synthesize the human D4 dopamine receptor, and methods for characterizing novel psychotropic compounds using such cultures.

  20. Regulation of AMPA receptors in spinal nociception

    PubMed Central

    2010-01-01

    The functional properties of α-amino-3-hydroxy-5-methy-4-isoxazole propionate (AMPA) receptors in different brain regions, such as hippocampus and cerebellum, have been well studied in vitro and in vivo. The AMPA receptors present a unique characteristic in the mechanisms of subunit regulation during LTP (long-term potentiation) and LTD (long-term depression), which are involved in the trafficking, altered composition and phosphorylation of AMPA receptor subunits. Accumulated data have demonstrated that spinal AMPA receptors play a critical role in the mechanism of both acute and persistent pain. However, less is known about the biochemical regulation of AMPA receptor subunits in the spinal cord in response to painful stimuli. Recent studies have shown that some important regulatory processes, such as the trafficking of AMPA receptor subunit, subunit compositional changes, phosphorylation of AMPA receptor subunits, and their interaction with partner proteins may contribute to spinal nociceptive transmission. Of all these regulation processes, the phosphorylation of AMPA receptor subunits is the most important since it may trigger or affect other cellular processes. Therefore, these study results may suggest an effective strategy in developing novel analgesics targeting AMPA receptor subunit regulation that may be useful in treating persistent and chronic pain without unacceptable side effects in the clinics. PMID:20092646

  1. Somatostatin receptors in differentiated ovarian tumors

    SciTech Connect

    Reubi, J.C.; Horisberger, U.; Klijn, J.G.; Foekens, J.A. )

    1991-05-01

    The presence of somatostatin receptors was investigated in 57 primary human ovarian tumors using in vitro receptor autoradiography with three different somatostatin radioligands, {sup 125}I-(Tyr11)-somatostatin-14, {sup 125}I-(Leu8, D-Trp22, Tyr25)-somatostatin-28, or {sup 125}I-(Tyr3)-SMS 201-995. Three cases, all belonging to epithelial tumors, were receptor positive; specifically 1 of 42 adenocarcinomas, 1 of 3 borderline malignancies, and 1 of 2 cystadenomas. Four other epithelial tumors (3 fibroadenomas, 1 Brenner tumor), 4 sex cord-stromal tumors (2 fibrothecomas, 2 granulosa cell tumors), and 2 germ cell tumors (1 dysgerminoma, 1 teratoma) were receptor negative. In the positive cases, the somatostatin receptors were localized on epithelial cells exclusively, were of high affinity (KD = 4.6 nmol/l (nanomolar)), and specific for somatostatin analogs. These receptors bound somatostatin-14 and somatostatin-28 radioligands with a higher affinity than the octapeptide (Tyr3)-SMS 201-995. Healthy ovarian tissue had no somatostatin receptors. A subpopulation of relatively well-differentiated ovarian tumors, therefore, was identified pathobiochemically on the basis of its somatostatin receptor content. This small group of somatostatin receptor-positive tumors may be a target for in vivo diagnostic imaging with somatostatin ligands.

  2. The Nuclear Receptor Superfamily at Thirty.

    PubMed

    McEwan, Iain J

    2016-01-01

    The human genome codes for 48 members of the nuclear receptor superfamily, half of which have known ligands. Natural ligands for nuclear receptors are generally lipophilic in nature and include steroid hormones, bile acids, fatty acids, thyroid hormones, certain vitamins, and prostaglandins. Nuclear receptors regulate gene expression programs controlling development, differentiation, metabolic homeostasis and reproduction, in both a temporal and a tissue-selective manner. Since the original cloning of the cDNAs for the estrogen and glucocorticoid receptors, large strides have been made in our understanding of the structure and function of this family of transcription factors and their role in pathophysiology. PMID:27246330

  3. Interaction of JAK with steroid receptor function

    PubMed Central

    Gupta, Nibedita; Mayer, Doris

    2013-01-01

    The function of steroid receptors is not only regulated by steroid hormones, but also by multiple cellular signaling cascades activated by membrane-bound receptors which are stimulated by growth factors or cytokines. Cross-talk between JAK and steroid receptors plays a central role in the regulation of a multitude of physiological processes and aberrant signaling is involved in the development of numerous diseases including cancer. In this review we provide a brief summary of the knowledge of interactions between JAK and the function of steroid receptors in normal cells and tissues and in diseases. PMID:24416641

  4. ABA Receptors: Past, Present and Future

    SciTech Connect

    Guo, Jianjun; Yang, Xiaohan; Weston, David; Chen, Jay

    2011-01-01

    Abscisic acid (ABA) is the key plant stress hormone. Consistent with the earlier studies in support of the presence of both membrane- and cytoplasm-localized ABA receptors, recent studies have identified multiple ABA receptors located in various subcellular locations. These include a chloroplast envelope-localized receptor (the H subunit of Chloroplast Mg2+-chelatase/ABA Receptor), two plasma membrane-localized receptors (G-protein Coupled Receptor 2 and GPCR-type G proteins), and one cytosol/nucleus-localized Pyrabactin Resistant (PYR)/PYR-Like (PYL)/Regulatory Component of ABA Receptor 1 (RCAR). Although the downstream molecular events for most of the identified ABA receptors are currently unknown, one of them, PYR/PYL/RACR was found to directly bind and regulate the activity of a long-known central regulator of ABA signaling, the A-group protein phosphatase 2C (PP2C). Together with the Sucrose Non-fermentation Kinase Subfamily 2 (SnRK2s) protein kinases, a central signaling complex (ABA-PYR-PP2Cs-SnRK2s) that is responsible for ABA signal perception and transduction is supported by abundant genetic, physiological, biochemical and structural evidence. The identification of multiple ABA receptors has advanced our understanding of ABA signal perception and transduction while adding an extra layer of complexity.

  5. Challenges in imaging cell surface receptor clusters

    NASA Astrophysics Data System (ADS)

    Medda, Rebecca; Giske, Arnold; Cavalcanti-Adam, Elisabetta Ada

    2016-01-01

    Super-resolution microscopy offers unique tools for visualizing and resolving cellular structures at the molecular level. STED microscopy is a purely optical method where neither complex sample preparation nor mathematical post-processing is required. Here we present the use of STED microscopy for imaging receptor cluster composition. We use two-color STED to further determine the distribution of two different receptor subunits of the family of receptor serine/threonine kinases in the presence or absence of their ligands. The implications of receptor clustering on the downstream signaling are discussed, and future challenges are also presented.

  6. A second trigeminal CGRP receptor: function and expression of the AMY1 receptor

    PubMed Central

    Walker, Christopher S; Eftekhari, Sajedeh; Bower, Rebekah L; Wilderman, Andrea; Insel, Paul A; Edvinsson, Lars; Waldvogel, Henry J; Jamaluddin, Muhammad A; Russo, Andrew F; Hay, Debbie L

    2015-01-01

    Objective The trigeminovascular system plays a central role in migraine, a condition in need of new treatments. The neuropeptide, calcitonin gene-related peptide (CGRP), is proposed as causative in migraine and is the subject of intensive drug discovery efforts. This study explores the expression and functionality of two CGRP receptor candidates in the sensory trigeminal system. Methods Receptor expression was determined using Taqman G protein-coupled receptor arrays and immunohistochemistry in trigeminal ganglia (TG) and the spinal trigeminal complex of the brainstem in rat and human. Receptor pharmacology was quantified using sensitive signaling assays in primary rat TG neurons. Results mRNA and histological expression analysis in rat and human samples revealed the presence of two CGRP-responsive receptors (AMY1: calcitonin receptor/receptor activity-modifying protein 1 [RAMP1]) and the CGRP receptor (calcitonin receptor-like receptor/RAMP1). In support of this finding, quantification of agonist and antagonist potencies revealed a dual population of functional CGRP-responsive receptors in primary rat TG neurons. Interpretation The unexpected presence of a functional non-canonical CGRP receptor (AMY1) at neural sites important for craniofacial pain has important implications for targeting the CGRP axis in migraine. PMID:26125036

  7. Functional selectivity of dopamine D1 receptor agonists in regulating the fate of internalized receptors *

    PubMed Central

    Ryman-Rasmussen, Jessica P.; Griffith, Adam; Oloff, Scott; Vaidehi, Nagarajan; Brown, Justin T.; Goddard, William A.; Mailman, Richard B.

    2007-01-01

    Recently, we demonstrated that D1 agonists can cause functionally selective effects when the endpoints of receptor internalization and adenylate cyclase activation are compared. The present study was designed to probe the phenomenon of functional selectivity at the D1 receptor further by testing the hypothesis that structurally dissimilar agonists with efficacies at these endpoints that equal or exceed those of dopamine would differ in ability to influence receptor fate after internalization, a functional endpoint largely unexplored for the D1 receptor. We selected two novel agonists of therapeutic interest that meet these criteria (the isochroman A-77636, and the isoquinoline dinapsoline), and compared the fates of the D1 receptor after internalization in response to these two compounds with that of dopamine. We found that dopamine caused the receptor to be rapidly recycled to the cell surface within 1 h of removal. Conversely, A-77636 caused the receptor to be retained intracellularly up to 48 h after agonist removal. Most surprisingly, the D1 receptor recovered to the cell surface 48 h after removal of dinapsoline. Taken together, these data indicate that these agonists target the D1 receptor to different intracellular trafficking pathways, demonstrating that the phenomenon of functional selectivity at the D1 receptor is operative for cellular events that are temporally downstream of immediate receptor activation. We hypothesize that these differential effects result from interactions of the synthetic ligands with aspects of the D1 receptor that are distal from the ligand binding domain. PMID:17067639

  8. Evolution of insect olfactory receptors

    PubMed Central

    Missbach, Christine; Dweck, Hany KM; Vogel, Heiko; Vilcinskas, Andreas; Stensmyr, Marcus C; Hansson, Bill S; Grosse-Wilde, Ewald

    2014-01-01

    The olfactory sense detects a plethora of behaviorally relevant odor molecules; gene families involved in olfaction exhibit high diversity in different animal phyla. Insects detect volatile molecules using olfactory (OR) or ionotropic receptors (IR) and in some cases gustatory receptors (GRs). While IRs are expressed in olfactory organs across Protostomia, ORs have been hypothesized to be an adaptation to a terrestrial insect lifestyle. We investigated the olfactory system of the primary wingless bristletail Lepismachilis y-signata (Archaeognatha), the firebrat Thermobia domestica (Zygentoma) and the neopteran leaf insect Phyllium siccifolium (Phasmatodea). ORs and the olfactory coreceptor (Orco) are with very high probability lacking in Lepismachilis; in Thermobia we have identified three Orco candidates, and in Phyllium a fully developed OR/Orco-based system. We suggest that ORs did not arise as an adaptation to a terrestrial lifestyle, but evolved later in insect evolution, with Orco being present before the appearance of ORs. DOI: http://dx.doi.org/10.7554/eLife.02115.001 PMID:24670956

  9. The endocrinology of taste receptors.

    PubMed

    Calvo, Sara Santa-Cruz; Egan, Josephine M

    2015-04-01

    Levels of obesity have reached epidemic proportions on a global scale, which has led to considerable increases in health problems and increased risk of several diseases, including cardiovascular and pulmonary diseases, cancer and diabetes mellitus. People with obesity consume more food than is needed to maintain an ideal body weight, despite the discrimination that accompanies being overweight and the wealth of available information that overconsumption is detrimental to health. The relationship between energy expenditure and energy intake throughout an individual's lifetime is far more complicated than previously thought. An improved comprehension of the relationships between taste, palatability, taste receptors and hedonic responses to food might lead to increased understanding of the biological underpinnings of energy acquisition, as well as why humans sometimes eat more than is needed and more than we know is healthy. This Review discusses the role of taste receptors in the tongue, gut, pancreas and brain and their hormonal involvement in taste perception, as well as the relationship between taste perception, overeating and the development of obesity.

  10. Antiplatelet therapy: thrombin receptor antagonists

    PubMed Central

    Tello-Montoliu, Antonio; Tomasello, Salvatore D; Ueno, Masafumi; Angiolillo, Dominick J

    2011-01-01

    Activated platelets stimulate thrombus formation in response to rupture of an atherosclerotic plaque or endothelial cell erosion, promoting atherothrombotic disease. Multiple pathways contribute to platelet activation. Aspirin, an irreversible inhibitor of thromboxane A2 synthesis, in combination with clopidogrel, an inhibitor of P2Y12 adenosine diphosphate platelet receptors, represent the current standard-of-care of antiplatelet therapy for patients with acute coronary syndrome and for those undergoing percutaneous coronary intervention. Although these agents have demonstrated significant clinical benefit, the increased risk of bleeding and the recurrence of thrombotic events represent substantial limitations. Thrombin is one of the most important platelet activators. The inhibition of protease-activated receptor 1 showed a good safety profile in preclinical studies. In fact, phase II studies with vorapaxar (SCH530348) and atopaxar (E5555) showed no increase of bleeding events in addition to the current standard-of-care of antiplatelet therapy. Although the results of phase III trials for both drugs are awaited, this family is a promising new addition to the current clinical practice for patients with atherothrombotic disease, not only as an alternative, but also as additional therapy. PMID:21906120

  11. Nicotinic receptors in addiction pathways.

    PubMed

    Leslie, Frances M; Mojica, Celina Y; Reynaga, Daisy D

    2013-04-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that consist of pentameric combinations of α and β subunits. These receptors are widely distributed throughout the brain and are highly expressed in addiction circuitry. The role of nAChRs in regulating neuronal activity and motivated behavior is complex and varies both in and among brain regions. The rich diversity of central nAChRs has hampered the characterization of their structure and function with use of classic pharmacological techniques. However, recent molecular approaches using null mutant mice with specific regional lentiviral re-expression, in combination with neuroanatomical and electrophysiological techniques, have allowed the elucidation of the influence of different nAChR types on neuronal circuit activity and behavior. This review will address the influence of nAChRs on limbic dopamine circuitry and the medial habenula-interpeduncular nucleus complex, which are critical mediators of reinforced behavior. Characterization of the mechanisms underlying regulation of addiction pathways by endogenous cholinergic transmission and by nicotine may lead to the identification of new therapeutic targets for treating tobacco dependence and other addictions. PMID:23247824

  12. Chemistry and pharmacology of GABAB receptor ligands.

    PubMed

    Froestl, Wolfgang

    2010-01-01

    This chapter presents new clinical applications of the prototypic GABA(B) receptor agonist baclofen for the treatment of addiction by drugs of abuse, such as alcohol, cocaine, nicotine, morphine, and heroin, a novel baclofen prodrug Arbaclofen placarbil, the GABA(B) receptor agonist AZD3355 (Lesogabaran) currently in Phase 2 clinical trials for the treatment of gastroesophageal reflux disease, and four positive allosteric modulators of GABA(B) receptors (CGP7930, GS39783, NVP-BHF177, and BHFF), which have less propensity for the development of tolerance due to receptor desensitization than classical GABA(B) receptor agonists. All four compounds showed anxiolytic affects. In the presence of positive allosteric modulators the "classical" GABA(B) receptor antagonists CGP35348 and 2-hydroxy-saclofen showed properties of partial GABA(B) receptor agonists. Seven micromolar affinity GABA(B) receptor antagonists, phaclofen; 2-hydroxy-saclofen; CGP's 35348, 36742, 46381, 51176; and SCH50911, are discussed. CGP36742 (SGS742) showed statistically significant improvements of working memory and attention in a Phase 2 clinical trial in mild, but not in moderate Alzheimer patients. Eight nanomolar affinity GABA(B) receptor antagonists are presented (CGP's 52432, 54626, 55845, 56433, 56999, 61334, 62349, and 63360) that were used by pharmacologists for numerous in vitro and in vivo investigations. CGP's 36742, 51176, 55845, and 56433 showed antidepressant effects. Several compounds are also available as radioligands, such as [(3)H]CGP27492, [(3)H]CGP54626, [(3)H]CGP5699, and [(3)H]CGP62349. Three novel fluorescent and three GABA(B) receptor antagonists with very high specific radioactivity (>2,000 Ci/mmol) are presented. [(125)I]CGP64213 and the photoaffinity ligand [(125)I]CGP71872 allowed the identification of GABA(B1a) and GABA(B1b) receptors in the expression cloning work. PMID:20655477

  13. Calcium-sensing receptor 20 years later

    PubMed Central

    Alfadda, Tariq I.; Saleh, Ahmad M. A.; Houillier, Pascal

    2014-01-01

    The calcium-sensing receptor (CaSR) has played an important role as a target in the treatment of a variety of disease states over the past 20 plus years. In this review, we give an overview of the receptor at the cellular level and then provide details as to how this receptor has been targeted to modulate cellular ion transport mechanisms. As a member of the G protein-coupled receptor (GPCR) family, it has a high degree of homology with a variety of other members in this class, which could explain why this receptor has been identified in so many different tissues throughout the body. This diversity of locations sets it apart from other members of the family and may explain how the receptor interacts with so many different organ systems in the body to modulate the physiology and pathophysiology. The receptor is unique in that it has two large exofacial lobes that sit in the extracellular environment and sense changes in a wide variety of environmental cues including salinity, pH, amino acid concentration, and polyamines to name just a few. It is for this reason that there has been a great deal of research associated with normal receptor physiology over the past 20 years. With the ongoing research, in more recent years a focus on the pathophysiology has emerged and the effects of receptor mutations on cellular and organ physiology have been identified. We hope that this review will enhance and update the knowledge about the importance of this receptor and stimulate future potential investigations focused around this receptor in cellular, organ, and systemic physiology and pathophysiology. PMID:24871857

  14. Endothelin receptor alterations in equine airway hyperreactivity

    PubMed Central

    2006-01-01

    Abstract The purpose of this study was to evaluate the role of endothelin-1 (ET-1) and its receptors in the airway hyperreactivity of horses with obstructive pulmonary disease associated with summer pasture (SPAOPD). The right diaphragmatic lobe of the lung of 8 clinically healthy (unaffected) and 8 SPAOPD-affected horses was collected immediately after euthanasia. Bronchial rings (4 mm wide) were prepared and mounted in organ baths and attached to force transducers interfaced with a polygraph. Four rings were used to study each ET-1 receptor; 1 ring served as the control, and the other 3 were incubated with 10−9, 10−7, or 10−5 M of either BQ-123, an ETA-receptor antagonist, or IRL-1038, an ETB-receptor antagonist. Cumulative concentrations (10−8.5 to 10−6 M) of ET-1 were applied to all rings. Using pooled pulmonary tissue from different regions of the lung, we performed a reverse-transcription polymerase chain reaction (RT-PCR) to determine ETB-receptor gene expression. Although ET-1 caused concentration-dependent bronchial ring contraction in both groups of horses, the rings of SPAOPD-affected horses had significantly greater contraction than the rings of unaffected horses. Whereas ETA-receptor blockade significantly increased the response to ET-1 in unaffected horses, ETB-receptor blockade significantly decreased the response in affected horses. The pA2 values showed a nonsignificant decrease in ETA-receptor affinity and a significant increase in ETB-receptor affinity in affected horses compared with unaffected horses. The ETB-receptor mRNA expression of the pooled pulmonary tissue showed a nonsignificant increase in affected horses compared with unaffected horses. The airway hyperreactivity to ET-1 observed in the bronchial rings from the affected horses appears to be due in part to activation of pulmonary ETB receptors, which appear to be inactive in unaffected horses. PMID:16548332

  15. Receptor Activity-modifying Proteins 2 and 3 Generate Adrenomedullin Receptor Subtypes with Distinct Molecular Properties*

    PubMed Central

    Watkins, Harriet A.; Chakravarthy, Madhuri; Abhayawardana, Rekhati S.; Gingell, Joseph J.; Garelja, Michael; Pardamwar, Meenakshi; McElhinney, James M. W. R.; Lathbridge, Alex; Constantine, Arran; Harris, Paul W. R.; Yuen, Tsz-Ying; Brimble, Margaret A.; Barwell, James; Poyner, David R.; Woolley, Michael J.; Conner, Alex C.; Pioszak, Augen A.; Reynolds, Christopher A.

    2016-01-01

    Adrenomedullin (AM) is a peptide hormone with numerous effects in the vascular systems. AM signals through the AM1 and AM2 receptors formed by the obligate heterodimerization of a G protein-coupled receptor, the calcitonin receptor-like receptor (CLR), and receptor activity-modifying proteins 2 and 3 (RAMP2 and RAMP3), respectively. These different CLR-RAMP interactions yield discrete receptor pharmacology and physiological effects. The effective design of therapeutics that target the individual AM receptors is dependent on understanding the molecular details of the effects of RAMPs on CLR. To understand the role of RAMP2 and -3 on the activation and conformation of the CLR subunit of AM receptors, we mutated 68 individual amino acids in the juxtamembrane region of CLR, a key region for activation of AM receptors, and determined the effects on cAMP signaling. Sixteen CLR mutations had differential effects between the AM1 and AM2 receptors. Accompanying this, independent molecular modeling of the full-length AM-bound AM1 and AM2 receptors predicted differences in the binding pocket and differences in the electrostatic potential of the two AM receptors. Druggability analysis indicated unique features that could be used to develop selective small molecule ligands for each receptor. The interaction of RAMP2 or RAMP3 with CLR induces conformational variation in the juxtamembrane region, yielding distinct binding pockets, probably via an allosteric mechanism. These subtype-specific differences have implications for the design of therapeutics aimed at specific AM receptors and for understanding the mechanisms by which accessory proteins affect G protein-coupled receptor function. PMID:27013657

  16. Nuclear receptors in transgenerational epigenetic inheritance.

    PubMed

    Ozgyin, Lilla; Erdős, Edina; Bojcsuk, Dóra; Balint, Balint L

    2015-07-01

    Nuclear Receptors are ligand-activated transcription factors that translate information about the lipid environment into specific genetic programs, a property that renders them good candidates to be mediators of rapid adaptation changes of a species. Lipid-based morphogens, endocrine hormones, fatty acids and xenobiotics might act through this class of transcription factors making them regulators able to fine-tune physiological processes. Here we review the basic concepts and current knowledge on the process whereby small molecules act through nuclear receptors and contribute to transgenerational changes. Several molecules shown to cause transgenerational changes like phthalates, BPA, nicotine, tributylin bind and activate nuclear receptors like ERs, androgen receptors, glucocorticoid receptors or PPARγ. A specific subset of observations involving nuclear receptors has focused on the effects of environmental stress or maternal behaviour on the development of transgenerational traits. While these effects do not involve environmental ligands, they change the expression levels of Estrogen and glucocorticoid receptors of the second generation and consequently initiate an altered genetic program in the second generation. In this review we summarize the available literature about the role of nuclear receptors in transgenerational inheritance.

  17. Bitter taste receptors influence glucose homeostasis.

    PubMed

    Dotson, Cedrick D; Zhang, Lan; Xu, Hong; Shin, Yu-Kyong; Vigues, Stephan; Ott, Sandra H; Elson, Amanda E T; Choi, Hyun Jin; Shaw, Hillary; Egan, Josephine M; Mitchell, Braxton D; Li, Xiaodong; Steinle, Nanette I; Munger, Steven D

    2008-01-01

    TAS1R- and TAS2R-type taste receptors are expressed in the gustatory system, where they detect sweet- and bitter-tasting stimuli, respectively. These receptors are also expressed in subsets of cells within the mammalian gastrointestinal tract, where they mediate nutrient assimilation and endocrine responses. For example, sweeteners stimulate taste receptors on the surface of gut enteroendocrine L cells to elicit an increase in intracellular Ca(2+) and secretion of the incretin hormone glucagon-like peptide-1 (GLP-1), an important modulator of insulin biosynthesis and secretion. Because of the importance of taste receptors in the regulation of food intake and the alimentary responses to chemostimuli, we hypothesized that differences in taste receptor efficacy may impact glucose homeostasis. To address this issue, we initiated a candidate gene study within the Amish Family Diabetes Study and assessed the association of taste receptor variants with indicators of glucose dysregulation, including a diagnosis of type 2 diabetes mellitus and high levels of blood glucose and insulin during an oral glucose tolerance test. We report that a TAS2R haplotype is associated with altered glucose and insulin homeostasis. We also found that one SNP within this haplotype disrupts normal responses of a single receptor, TAS2R9, to its cognate ligands ofloxacin, procainamide and pirenzapine. Together, these findings suggest that a functionally compromised TAS2R receptor negatively impacts glucose homeostasis, providing an important link between alimentary chemosensation and metabolic disease. PMID:19092995

  18. In vivo studies of opiate receptors

    SciTech Connect

    Frost, J.J.; Dannals, R.F.; Duelfer, T.; Burns, H.D.; Ravert, H.T.; Langstroem, B.; Balasubramanian, V.; Wagner, H.N. Jr.

    1984-01-01

    To study opiate receptors noninvasively in vivo using positron emission tomography, techniques for preferentially labeling opiate receptors in vivo can be used. The rate at which receptor-bound ligand clears from the brain in vivo can be predicted by measuring the equilibrium dissociation constant (KD) at 37 degrees C in the presence of 100 mM sodium chloride and 100 microM guanyl-5'-imidodiphosphate, the drug distribution coefficient, and the molecular weight. A suitable ligand for labeling opiate receptors in vivo is diprenorphine, which binds to mu, delta, and kappa receptors with approximately equal affinity in vitro. However, in vivo diprenorphine may bind predominantly to one opiate receptor subtype, possibly the mu receptor. To predict the affinity for binding to the opiate receptor, a Hansch correlation was determined between the 50% inhibitory concentration for a series of halogen-substituted fentanyl analogs and electronic, lipophilic, and steric parameters. Radiochemical methods for the synthesis of carbon-11-labeled diprenorphine and lofentanil are presented.

  19. Teaching Receptor Theory to Biochemistry Undergraduates

    ERIC Educational Resources Information Center

    Benore-Parsons, Marilee; Sufka, Kenneth J.

    2003-01-01

    Receptor:ligand interactions account for numerous reactions critical to biochemistry and molecular biology. While students are typically exposed to some examples, such as hemoglobin binding of oxygen and signal transduction pathways, the topic could easily be expanded. Theory and kinetic analysis, types of receptors, and the experimental assay…

  20. Chemotactic peptide receptor modulation in polymorphonuclear leukocytes

    PubMed Central

    1980-01-01

    The binding of the chemotactic peptide N- formylnorleucylleucylphenylalanine (FNLLP) to its receptor on rabbit polymorphonuclear leukocytes (PMNs) modulates the number of available peptide receptors. Incubation with FNLLP decreases subsequent binding capacity, a phenomenon that has been termed receptor down regulation. Down regulation of the chemotactic peptide receptor is concentration dependent in both the rate and extent of receptor loss. The dose response parallels that of FNLLP binding to the recptor. The time- course is rapid; even at concentrations of FNLLP as low as 3 x 10(-9) M, the new equilibrium concentration of receptors is reached within 15 min. Down regulation is temperature dependent, but does occur even at 4 degrees C. Concomitant with down regulation, some of the peptide becomes irreversibly cell associated. At 4 degrees C, there is a small accumulation of nondissociable peptide that rapidly reaches a plateau. At higher temperatures, accumulation of nondissociable peptide continues after the rceptor number has reached equilibrium, and the amount accumulated can exceed the initial number of receptors by as much as 300%. The dose response of peptide uptake at 37 degrees C reflects that of binding, suggesting that it is receptor mediated. This uptake may occur via a pinocytosis mechanism. Although PMNs have not been considered to be pinocytic, the addition of FNLLP causes a fourfold stimulation of the rate of pinocytosis as measured by the uptake of [3H]sucrose. PMID:7391138

  1. Engineering Hybrid Chemotaxis Receptors in Bacteria.

    PubMed

    Bi, Shuangyu; Pollard, Abiola M; Yang, Yiling; Jin, Fan; Sourjik, Victor

    2016-09-16

    Most bacteria use transmembrane sensors to detect a wide range of environmental stimuli. A large class of such sensors are the chemotaxis receptors used by motile bacteria to follow environmental chemical gradients. In Escherichia coli, chemotaxis receptors are known to mediate highly sensitive responses to ligands, making them potentially useful for biosensory applications. However, with only four ligand-binding chemotaxis receptors, the natural ligand spectrum of E. coli is limited. The design of novel chemoreceptors to extend the sensing capabilities of E. coli is therefore a critical aspect of chemotaxis-based biosensor development. One path for novel sensor design is to harvest the large natural diversity of chemosensory functions found in bacteria by creating hybrids that have the signaling domain from E. coli chemotaxis receptors and sensory domains from other species. In this work, we demonstrate that the E. coli receptor Tar can be successfully combined with most typical sensory domains found in chemotaxis receptors and in evolutionary-related two-component histidine kinases. We show that such functional hybrids can be generated using several different fusion points. Our work further illustrates how hybrid receptors could be used to quantitatively characterize ligand specificity of chemotaxis receptors and histidine kinases using standardized assays in E. coli.

  2. Silent, fluorescent labeling of native neuronal receptors.

    PubMed

    Vytla, Devaiah; Combs-Bachmann, Rosamund E; Hussey, Amanda M; Hafez, Ismail; Chambers, James J

    2011-10-21

    We have developed a minimally-perturbing strategy that enables labeling and subcellular visualization of endogenous dendritic receptors on live, wild-type neurons. Specifically, calcium-permeable non-NMDA glutamate receptors expressed in hippocampal neurons can be targeted with this novel synthetic tri-functional molecule. This ligand-directed probe was targeted towards AMPA receptors and bears an electrophilic group for covalent bond formation with an amino acid side chain on the extracellular side of the ion channel. This molecule was designed in such a way that the use-dependent, polyamine-based ligand accumulates the chemically-reactive group at the extracellular side of these polyamine-sensitive receptors, thereby allowing covalent bond formation between an electrophilic moiety on the nanoprobe and a nucleophilic amino acid sidechain on the receptor. Bioconjugation of this molecule results in a stable covalent bond between the nanoprobe and the target receptor. Subsequent photolysis of a portion of the nanoprobe may then be employed to effect ligand release allowing the receptor to re-enter the non-liganded state, all the while retaining the fluorescent beacon for visualization. This technology allows for rapid fluorescent labeling of native polyamine-sensitive receptors and further advances the field of fluorescent labeling of native biological molecules.

  3. Thermogenic characterization of ghrelin receptor null mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ghrelin is the only known circulating orexigenic hormone that increases food intake and promotes adiposity, and these physiological functions of ghrelin are mediated through its receptor growth hormone secretagogue receptor (GHS-R). Ghrelin/GHS-R signaling plays a crucial role in energy homeostasis....

  4. Taste Receptors in Upper Airway Immunity.

    PubMed

    Carey, Ryan M; Lee, Robert J; Cohen, Noam A

    2016-01-01

    Taste receptors are well known for their role in communicating information from the tongue to the brain about nutritional value or potential toxicity of ingested substances. More recently, it has been shown that taste receptors are expressed in other locations throughout the body, including the airway, gastrointestinal tract, brain and pancreas. The roles of some 'extraoral' taste receptors are largely unknown, but emerging research suggests that bitter and sweet taste receptors in the airway are capable of sensing bacteria and modulating innate immunity. This chapter focuses on the role of bitter and sweet taste receptors in human airway innate immunity and their clinical relevance to rhinosinusitis. The bitter taste receptor T2R38 expressed in sinonasal cilia detects bitter bacterial quorum-sensing molecules and activates a nitric oxide-dependent innate immune response; moreover, there are polymorphisms in T2R38 that underlie susceptibility to chronic rhinosinusitis (CRS). Bitter and sweet receptors in sinonasal solitary chemosensory cells control secretion of antimicrobial peptides in the upper airway and may have a profound impact on airway infections in patients with CRS and diabetes. Future research on taste receptors in the airway has enormous potential to expand our understanding of host-pathogen immune interactions and provide novel therapeutic targets. PMID:27466851

  5. Nuclear receptors and pathogenesis of pancreatic cancer

    PubMed Central

    Polvani, Simone; Tarocchi, Mirko; Tempesti, Sara; Galli, Andrea

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a median overall survival time of 5 mo and the five years survival less than 5%, a rate essentially unchanged over the course of the years. A well defined progression model of accumulation of genetic alterations ranging from single point mutations to gross chromosomal abnormalities has been introduced to describe the origin of this disease. However, due to the its subtle nature and concurring events PDAC cure remains elusive. Nuclear receptors (NR) are members of a large superfamily of evolutionarily conserved ligand-regulated DNA-binding transcription factors functionally involved in important cellular functions ranging from regulation of metabolism, to growth and development. Given the nature of their ligands, NR are very tempting drug targets and their pharmacological modulation has been widely exploited for the treatment of metabolic and inflammatory diseases. There are now clear evidences that both classical ligand-activated and orphan NR are involved in the pathogenesis of PDAC from its very early stages; nonetheless many aspects of their role are not fully understood. The purpose of this review is to highlight the striking connections that link peroxisome proliferator activated receptors, retinoic acid receptors, retinoid X receptor, androgen receptor, estrogen receptors and the orphan NR Nur, chicken ovalbumin upstream promoter transcription factor II and the liver receptor homologue-1 receptor to PDAC development, connections that could lead to the identification of novel therapies for this disease. PMID:25232244

  6. Estrogen Receptors are Present in Neocortical Transplants

    PubMed Central

    Pedersen, Erik B.; O'Keefe, Joan A.; Handa, Robert J.; Castro, Anthony J.

    1992-01-01

    Fetal neocortical tissue was grafted into neocortical lesion cavities made in newborn rats. After two weeks survival, in vitro binding of [3H]- estradiol to cytosolic preparations provided evidence of estrogen receptors within the transplants. The observed high levels correspond to previous work demonstrating elevated estrogen receptor levels during the first postnatal week in the rat cerebral cortex. PMID:1515481

  7. Steroid Hormone Receptor Signals as Prognosticators for Urothelial Tumor

    PubMed Central

    Ide, Hiroki; Miyamoto, Hiroshi

    2015-01-01

    There is a substantial amount of preclinical or clinical evidence suggesting that steroid hormone receptor-mediated signals play a critical role in urothelial tumorigenesis and tumor progression. These receptors include androgen receptor, estrogen receptors, glucocorticoid receptor, progesterone receptor, vitamin D receptor, retinoid receptors, peroxisome proliferator-activated receptors, and others including orphan receptors. In particular, studies using urothelial cancer tissue specimens have demonstrated that elevated or reduced expression of these receptors as well as alterations of their upstream or downstream pathways correlates with patient outcomes. This review summarizes and discusses available data suggesting that steroid hormone receptors and related signals serve as biomarkers for urothelial carcinoma and are able to predict tumor recurrence or progression. PMID:26770009

  8. Correlation between erythropoietin receptor(s) and estrogen and progesterone receptor expression in different breast cancer cell lines.

    PubMed

    Trošt, Nina; Hevir, Neli; Rižner, Tea Lanišnik; Debeljak, Nataša

    2013-03-01

    Erythropoietin (EPO) receptor (EPOR) expression in breast cancer has been shown to correlate with the expression of estrogen receptor (ESR) and progesterone receptor (PGR) and to be associated with the response to tamoxifen in ESR+/PGR+ tumors but not in ESR- tumors. In addition, the correlation between EPOR and G protein-coupled estrogen receptor 1 [GPER; also known as G protein-coupled receptor 30 (GPR30)] has been reported, suggesting the prognostic potential of EPOR expression. Moreover, the involvement of colony stimulating factor 2 receptor, β, low‑affinity (CSF2RB) and ephrin type-B receptor 4 (EPHB4) as EPOR potential receptor partners in cancer has been indicated. This study analyzed the correlation between the expression of genes for EPO, EPOR, CSF2RB, EPHB4, ESR, PGR and GPER in the MCF-7, MDA-MB-361, T-47D, MDA-MB-231, Hs578Bst, SKBR3, MCF-10A and Hs578T cell lines. The cell lines were also treated with recombinant human EPO (rHuEPO) in order to determine its ability to activate the Jak/STAT5, MAPK and PI3K signaling pathways and modify cell growth characteristics. Expression analysis stratified the cell lines in 2 main clusters, hormone-dependent cell lines expressing ESR and PGR and a hormone-independent cluster. A significant correlation was observed between the expression levels of ESR and PGR and their expression was also associated with that of GPER. Furthermore, the expression of GPER was associated with that of EPOR, suggesting the connection between this orphan G protein and EPO signaling. A negative correlation between EPOR and CSF2RB expression was observed, questioning the involvement of these two receptors in the hetero-receptor formation. rHuEPO treatment only influenced the hormone-independent cell lines, since only the MDA-MB-231, SKBR3 and Hs578T cells responded to the treatment. The correlation between the expression of the analyzed receptors suggests that the receptors may interact in order to activate signaling pathways

  9. Progesterone receptor subunits are high-affinity substrates for phosphorylation by epidermal growth factor receptor.

    PubMed Central

    Ghosh-Dastidar, P; Coty, W A; Griest, R E; Woo, D D; Fox, C F

    1984-01-01

    Purified preparations of epidermal growth factor (EGF) receptor were used to test hen oviduct progesterone receptor subunits as substrates for phosphorylation catalyzed by EGF receptor. Both the 80-kilodalton (kDa) (A) and the 105-kDa (B) progesterone receptor subunits were phosphorylated in a reaction that required EGF and EGF receptor. No phosphorylation of progesterone receptor subunits was observed in the absence of EGF receptor, even when Ca2+ was substituted for Mg2+ and Mn2+. Phospho amino acid analysis revealed phosphorylation at tyrosine residues, with no phosphorylation detectable at serine or threonine residues. Two-dimensional maps of phosphopeptides generated from phosphorylated 80- or 105-kDa subunits by tryptic digestion revealed similar patterns, with resolution of two major, several minor, and a number of very minor phosphopeptides. The Km of progesterone receptor for phosphorylation by EGF-activated EGF receptor was 100 nM and the Vmax was 2.5 nmol/min per mg of EGF receptor protein at 0 degrees C. The stoichiometry of phosphorylation/hormone binding for progesterone receptor subunits was 0.31 at ice-bath temperature and approximately 1.0 at 22 degrees C. Images PMID:6200881

  10. Oestrogen receptor knockout mice: roles for oestrogen receptors alpha and beta in reproductive tissues.

    PubMed

    Hewitt, Sylvia Curtis; Korach, Kenneth S

    2003-02-01

    Oestrogen is an essential component of female reproduction, with well-characterized functions in the uterus, ovaries, mammary gland and hypothalamic-pituitary axis. The mechanism of oestrogen action involves mediation of the rate of transcription by nuclear-localized oestrogen receptor molecules. Two oestrogen receptors are present in mouse tissues, oestrogen receptors alpha and beta. Each receptor exhibits differential tissue expression patterns. Mouse models with genetically engineered disruption or 'knockout' of the oestrogen receptors have been developed. Characterization of the resulting defects in reproductive tissues as well as alterations in physiological and genomic responses has given insight into the receptor-mediated effects of oestrogen in reproduction. Oestrogen receptor alpha knockout females are infertile because they are anovulatory, have disruption in LH regulation and have uteri that are insensitive to oestrogen. In contrast, oestrogen receptor beta knockout females are sub-fertile and primarily lack efficient ovulatory function. Mice with deletion of both oestrogen receptors alpha and beta are similar to those lacking oestrogen receptor alpha only, but exhibit a unique ovarian pathology. These observed phenotypes elucidate the relative roles of the oestrogen receptors in reproductive functions of female rodents.

  11. How receptor diffusion influences gradient sensing

    PubMed Central

    Nguyen, H.; Dayan, P.; Goodhill, G. J.

    2015-01-01

    Chemotaxis, or directed motion in chemical gradients, is critical for various biological processes. Many eukaryotic cells perform spatial sensing, i.e. they detect gradients by comparing spatial differences in binding occupancy of chemosensory receptors across their membrane. In many theoretical models of spatial sensing, it is assumed, for the sake of simplicity, that the receptors concerned do not move. However, in reality, receptors undergo diverse modes of diffusion, and can traverse considerable distances in the time it takes such cells to turn in an external gradient. This sets a physical limit on the accuracy of spatial sensing, which we explore using a model in which receptors diffuse freely over the membrane. We find that the Fisher information carried in binding and unbinding events decreases monotonically with the diffusion constant of the receptors. PMID:25551145

  12. Endothelin ETA receptor antagonism in cardiovascular disease.

    PubMed

    Nasser, Suzanne A; El-Mas, Mahmoud M

    2014-08-15

    Since the discovery of the endothelin system in 1988, it has been implicated in numerous physiological and pathological phenomena. In the cardiovascular system, endothelin-1 (ET-1) acts through intracellular pathways of two endothelin receptors (ETA and ETB) located mainly on smooth muscle and endothelial cells to regulate vascular tone and provoke mitogenic and proinflammatory reactions. The endothelin ETA receptor is believed to play a pivotal role in the pathogenesis of several cardiovascular disease including systemic hypertension, pulmonary arterial hypertension (PAH), dilated cardiomyopathy, and diabetic microvascular dysfunction. Growing evidence from recent experimental and clinical studies indicates that the blockade of endothelin receptors, particularly the ETA subtype, grasps promise in the treatment of major cardiovascular pathologies. The simultaneous blockade of endothelin ETB receptors might not be advantageous, leading possibly to vasoconstriction and salt and water retentions. This review summarizes the role of ET-1 in cardiovascular modulation and the therapeutic potential of endothelin receptor antagonism.

  13. Modulation of Neuronal Migration by NMDA Receptors

    NASA Astrophysics Data System (ADS)

    Komuro, Hitoshi; Rakic, Pasko

    1993-04-01

    The N-methyl-D-aspartate (NMDA) subtype of the glutamate receptor is essential for neuronal differentiation and establishment or elimination of synapses in a developing brain. The activity of the NMDA receptor has now been shown to also regulate the migration of granule cells in slice preparations of the developing mouse cerebellum. First, blockade of NMDA receptors by specific antagonists resulted in the curtailment of cell migration. Second, enhancement of NMDA receptor activity by the removal of magnesium or by the application of glycine increased the rate of cell movement. Third, increase of endogenous extracellular glutamate by inhibition of its uptake accelerated the rate of cell migration. These results suggest that NMDA receptors may play an early role in the regulation of calcium-dependent cell migration before neurons reach their targets and form synaptic contacts.

  14. Ghrelin Receptor Mutations and Human Obesity.

    PubMed

    Wang, W; Tao, Y-X

    2016-01-01

    Growth hormone secretagogue receptor (GHSR) was originally identified as an orphan receptor in porcine and rat anterior pituitary membranes. In 1999, GHSR was deorphanized and shown to be a receptor for ghrelin, a peptide hormone secreted from the stomach. Therefore, GHSR is also called ghrelin receptor. In addition to regulating growth hormone secretion, ghrelin receptor regulates various physiological processes, including food intake and energy expenditure, glucose metabolism, cardiovascular functions, gastric acid secretion and motility, and immune function. Several human genetic studies conducted in populations originated from Europe, Africa, South America, and East Asia identified rare mutations and single nucleotide polymorphisms that might be associated with human obesity and short stature. Functional analyses of mutant GHSRs reveal multiple defects, including cell surface expression, ligand binding, and basal and stimulated signaling. With growing understanding in the functionality of naturally occurring GHSR mutations, potential therapeutic strategies including pharmacological chaperones and novel ligands could be used to correct the GHSR mutants. PMID:27288828

  15. Posttranslational Modifications of TGF-β Receptors.

    PubMed

    Yan, Xiaohua; Chen, Ye-Guang

    2016-01-01

    TGF-β is a prototype of the TGF-β cytokine superfamily and exerts multiple regulatory effects on cell activities. It signals through two types of membrane-bound serine/threonine kinase receptors. Upon TGF-β binding, the type II receptor TβRII recruits the type I receptor TβRI and form a functional heterocomplex. TβRII trans-phosphorylates the GS region of TβRI, thus triggering its kinase activity. Activated TβRI proceeds to activate downstream Smad2/3. Signal intensity and duration through the availability, activity and destiny of TGF-β receptors are finely controlled by multiple posttranslational modifications such as phosphorylation, ubiquitination, and neddylation. This chapter introduces methods for examination of these modifications of TGF-β receptors.

  16. The Transmembrane Domain C of AMPA Receptors is Critically Involved in Receptor Function and Modulation

    PubMed Central

    Terhag, Jan; Gottschling, Kevin; Hollmann, Michael

    2010-01-01

    Ionotropic glutamate receptors are major players in synaptic transmission and are critically involved in many cognitive events. Although receptors of different subfamilies serve different functions, they all show a conserved domain topology. For most of these domains, structure–function relationships have been established and are well understood. However, up to date the role of the transmembrane domain C in receptor function has been investigated only poorly. We have constructed a series of receptor chimeras and point mutants designed to shed light on the structural and/or functional importance of this domain. We here present evidence that the role of transmembrane domain C exceeds that of a mere scaffolding domain and that several amino acid residues located within the domain are crucial for receptor gating and desensitization. Furthermore, our data suggest that the domain may be involved in receptor interaction with transmembrane AMPA receptor regulatory proteins. PMID:21206529

  17. Nicotine Recruits Glutamate Receptors to Postsynaptic Sites

    PubMed Central

    Duan, Jing-jing; Lozada, Adrian F.; Gou, Chen-yu; Xu, Jing; Chen, Yuan; Berg, Darwin K.

    2015-01-01

    Cholinergic neurons project throughout the nervous system and activate nicotinic receptors to modulate synaptic function in ways that shape higher order brain function. The acute effects of nicotinic signaling on long-term synaptic plasticity have been well-characterized. Less well understood is how chronic exposure to low levels of nicotine, such as those encountered by habitual smokers, can alter neural connections to promote addiction and other lasting behavioral effects. We show here that chronic exposure of hippocampal neurons in culture to low levels of nicotine recruits AMPA and NMDA receptors to the cell surface and sequesters them at postsynaptic sites. The receptors include GluA2-containing AMPA receptors, which are responsible for most of the excitatory postsynaptic current mediated by AMPA receptors on the neurons, and include NMDA receptors containing GluN1 and GluN2B subunits. Moreover, we find that the nicotine treatment also increases expression of the presynaptic component synapsin 1 and arranges it in puncta juxtaposed to the additional AMPA and NMDA receptor puncta, suggestive of increases in synaptic contacts. Consistent with increased synaptic input, we find that the nicotine treatment leads to an increase in the excitatory postsynaptic currents mediated by AMPA and NMDA receptors. Further, the increases skew the ratio of excitatory-to-inhibitory input the cell receives, and this holds both for pyramidal neurons and inhibitory neurons in the hippocampal CA1 region. The GluN2B-containing NMDA receptor redistribution at synapses is associated with a significant increase in GluN2B phosphorylation at Tyr1472, a site known to prevent GluN2B endocytosis. These results suggest that chronic exposure to low levels of nicotine not only alters functional connections but also is likely to change excitability levels across networks. Further, it may increase the propensity for synaptic plasticity, given the increase in synaptic NMDA receptors. PMID:26365992

  18. Two dopamine receptors: biochemistry, physiology and pharmacology.

    PubMed

    Stoof, J C; Kebabian, J W

    1984-12-01

    In 1979, two categories of dopamine (DA) receptors (designated as D-1 and D-2) were identified on the basis of the ability of a limited number of agonists and antagonists to discriminate between these two entities. In the past 5 years agonists and antagonists selective for each category of receptor have been identified. Using these selective drugs it has been possible to attribute the effects of DA upon physiological and biochemical processes to the stimulation of either a D-1 or a D-2 receptor. Thus, DA-induced enhancement of both hormone release from bovine parathyroid gland and firing of neurosecretory cells in the CNS of Lymnaea stagnalis has been attributed to stimulation of a D-1 receptor. Likewise, the DA-induced inhibition of the release of prolactin and alpha-MSH from the pituitary gland, as well as of acetylcholine, DA and beta-endorphin from brain, the DA-induced inhibition of chemo-sensory discharge in rabbit carotid body and the DA-induced hyperpolarization of neurosecretory cells in the CNS of Lymnaea stagnalis have been attributed to stimulation of a D-2 receptor. Independently two categories of DA receptors (designated as DA-1 and DA-2) were identified in the cardiovascular system. Stimulation of a DA-1 receptor increases the vascular cyclic AMP content and causes a relaxation of vascular smooth muscle in renal blood vessels, whereas stimulation of a DA-2 receptor inhibits the release of norepinephrine from certain postganglionic sympathetic neurons. Recent studies with the newly developed drugs discriminating between D-1 and D-2 receptors suggest however that the independently developed schemata for classification of dopamine receptors in either the central nervous and endocrine systems or the cardiovascular system are similar although maybe not completely identical. PMID:6390056

  19. Solution assembly of cytokine receptor ectodomain complexes

    SciTech Connect

    Wu, Zining; Ciardelli, T.L.; Johnson, K.W.

    1995-09-01

    For the majority of single transmembrane-spanning cell surface receptors, signal transmission across the lipid bilayer barrier involves several discrete components of molecular recognition. The interaction between ligand and the extracellular segment of its cognate receptor (ectodomain) initiates either homomeric or heteromeric association of receptor subunits. Specific recognition among these subunits may then occur between ectodomain regions, within the membrane by interhelical contact or inside the cell between cytoplasmic domains. Any or all of these interactions may contribute to the stability of the signaling complex. It is the characteristics of ligand binding by the ectodomains of these receptors that controls the heteromeric or homomeric nature and the stoichiometry of the complex. Cytokines and their receptors belong to a growing family of macromolecular systems that exhibit these functional features and share many structural similarities as well. Interleukin-2 is a multifunctional cytokine that represents, perhaps, the most complex example to date of ligand recognition among the hematopoietin receptor family. It is the cooperative binding of IL-2 by all three proteins on the surface of activated T-lymphocytes, however, that ultimately results in crosslinking of the {beta}- and {gamma}-subunits and signaling via association of their cytoplasmic domains. Although the high-affinity IL-2R functions as a heterotrimer, heterodimers of the receptor subunits are also physiologically important. The {alpha}/{beta} heterodimer or {open_quotes}pseudo-high affinity{close_quotes} receptor captures IL-2 as a preformed cell surface complex while the {beta}/{gamma} intermediate affinity site exists, in the absence of the {alpha} subunit, on the majority of natural killer cells. We have begun to study stable complexes of cytokine receptor ectodomains of defined composition and that mimic the ligand binding characteristics of the equivalent cell surface receptor sites.

  20. Nicotine recruits glutamate receptors to postsynaptic sites.

    PubMed

    Duan, Jing-Jing; Lozada, Adrian F; Gou, Chen-Yu; Xu, Jing; Chen, Yuan; Berg, Darwin K

    2015-09-01

    Cholinergic neurons project throughout the nervous system and activate nicotinic receptors to modulate synaptic function in ways that shape higher order brain function. The acute effects of nicotinic signaling on long-term synaptic plasticity have been well-characterized. Less well understood is how chronic exposure to low levels of nicotine, such as those encountered by habitual smokers, can alter neural connections to promote addiction and other lasting behavioral effects. We show here that chronic exposure of hippocampal neurons in culture to low levels of nicotine recruits AMPA and NMDA receptors to the cell surface and sequesters them at postsynaptic sites. The receptors include GluA2-containing AMPA receptors, which are responsible for most of the excitatory postsynaptic current mediated by AMPA receptors on the neurons, and include NMDA receptors containing GluN1 and GluN2B subunits. Moreover, we find that the nicotine treatment also increases expression of the presynaptic component synapsin 1 and arranges it in puncta juxtaposed to the additional AMPA and NMDA receptor puncta, suggestive of increases in synaptic contacts. Consistent with increased synaptic input, we find that the nicotine treatment leads to an increase in the excitatory postsynaptic currents mediated by AMPA and NMDA receptors. Further, the increases skew the ratio of excitatory-to-inhibitory input that the cell receives, and this holds both for pyramidal neurons and inhibitory neurons in the hippocampal CA1 region. The GluN2B-containing NMDA receptor redistribution at synapses is associated with a significant increase in GluN2B phosphorylation at Tyr1472, a site known to prevent GluN2B endocytosis. These results suggest that chronic exposure to low levels of nicotine not only alters functional connections but also is likely to change excitability levels across networks. Further, it may increase the propensity for synaptic plasticity, given the increase in synaptic NMDA receptors.

  1. Gene silencing by nuclear orphan receptors.

    PubMed

    Zhang, Ying; Dufau, Maria L

    2004-01-01

    Nuclear orphan receptors represent a large and diverse subgroup in the nuclear receptor superfamily. Although putative ligands for these orphan members remain to be identified, some of these receptors possess intrinsic activating, inhibitory, or dual regulatory functions in development, differentiation, homeostasis, and reproduction. In particular, gene-silencing events elicited by chicken ovalbumin upstream promoter-transcription factors (COUP-TFs); dosage-sensitive sex reversal-adrenal hypoplasia congenita critical region on the X chromosome, gene 1 (DAX-1); germ cell nuclear factor (GCNF); short heterodimer partner (SHP); and testicular receptors 2 and 4 (TR2 and TR4) are among the best characterized. These orphan receptors are critical in controlling basal activities or hormonal responsiveness of numerous target genes. They employ multiple and distinct mechanisms to mediate target gene repression. Complex cross-talk exists between these orphan receptors at their cognate DNA binding elements and an array of steroid?nonsteroid hormone receptors, other transcriptional activators, coactivators and corepressors, histone modification enzyme complexes, and components of basal transcriptional components. Therefore, perturbation induced by these orphan receptors at multiple levels, including DNA binding activities, receptor homo- or heterodimerization, recruitment of cofactor proteins, communication with general transcriptional machinery, and changes at histone acetylation status and chromatin structures, may contribute to silencing of target gene expression in a specific promoter or cell-type context. Moreover, the findings derived from gene-targeting studies have demonstrated the significance of these orphan receptors' function in physiologic settings. Thus, COUP-TFs, DAX-1, GCNF, SHP, and TR2 and 4 are known to be required for multiple physiologic and biologic functions, including neurogenesis and development of the heart and vascular system steroidogenesis and sex

  2. Endocytosis of Receptor Tyrosine Kinases

    PubMed Central

    Goh, Lai Kuan

    2013-01-01

    Endocytosis is the major regulator of signaling from receptor tyrosine kinases (RTKs). The canonical model of RTK endocytosis involves rapid internalization of an RTK activated by ligand binding at the cell surface and subsequent sorting of internalized ligand-RTK complexes to lysosomes for degradation. Activation of the intrinsic tyrosine kinase activity of RTKs results in autophosphorylation, which is mechanistically coupled to the recruitment of adaptor proteins and conjugation of ubiquitin to RTKs. Ubiquitination serves to mediate interactions of RTKs with sorting machineries both at the cell surface and on endosomes. The pathways and kinetics of RTK endocytic trafficking, molecular mechanisms underlying sorting processes, and examples of deviations from the standard trafficking itinerary in the RTK family are discussed in this work. PMID:23637288

  3. Architecture of Eph receptor clusters

    SciTech Connect

    Himanen, Juha P.; Yermekbayeva, Laila; Janes, Peter W.; Walker, John R.; Xu, Kai; Atapattu, Lakmali; Rajashankar, Kanagalaghatta R.; Mensinga, Anneloes; Lackmann, Martin; Nikolov, Dimitar B.; Dhe-Paganon, Sirano

    2010-10-04

    Eph receptor tyrosine kinases and their ephrin ligands regulate cell navigation during normal and oncogenic development. Signaling of Ephs is initiated in a multistep process leading to the assembly of higher-order signaling clusters that set off bidirectional signaling in interacting cells. However, the structural and mechanistic details of this assembly remained undefined. Here we present high-resolution structures of the complete EphA2 ectodomain and complexes with ephrin-A1 and A5 as the base unit of an Eph cluster. The structures reveal an elongated architecture with novel Eph/Eph interactions, both within and outside of the Eph ligand-binding domain, that suggest the molecular mechanism underlying Eph/ephrin clustering. Structure-function analysis, by using site-directed mutagenesis and cell-based signaling assays, confirms the importance of the identified oligomerization interfaces for Eph clustering.

  4. Nicotinic acetylcholine receptors and cancer

    PubMed Central

    DANG, NINGNING; MENG, XIANGUANG; SONG, HAIYAN

    2016-01-01

    Nicotine, the primary addictive constituent of cigarettes, is believed to contribute to cancer promotion and progression through the activation of nicotinic acetylcholine receptors (nAChRs), which are membrane ligand-gated cation channels. nAChRs activation can be triggered by the neurotransmitter Ach, or certain other biological compounds, such as nicotine. In recent years, genome-wide association studies have indicated that allelic variation in the α5-α3-β4 nAChR cluster on chromosome 15q24-15q25.1 is associated with lung cancer risk. The role of nAChRs in other types of cancer has also been reported. The present review highlights the role of nAChRs in types of human cancer. PMID:27123240

  5. Fluorescent ligands for adenosine receptors.

    PubMed

    Kozma, Eszter; Jayasekara, P Suresh; Squarcialupi, Lucia; Paoletta, Silvia; Moro, Stefano; Federico, Stephanie; Spalluto, Giampiero; Jacobson, Kenneth A

    2013-01-01

    Interest is increasing in developing fluorescent ligands for characterization of adenosine receptors (ARs), which hold a promise of usefulness in the drug discovery process. The size of a strategically labeled AR ligand can be greatly increased after the attachment of a fluorophore. The choice of dye moiety (e.g. Alexa Fluor 488), attachment point and linker length can alter the selectivity and potency of the parent molecule. Fluorescent derivatives of adenosine agonists and antagonists (e.g. XAC and other heterocyclic antagonist scaffolds) have been synthesized and characterized pharmacologically. Some are useful AR probes for flow cytometry, fluorescence correlation spectroscopy, fluorescence microscopy, fluorescence polarization, fluorescence resonance energy transfer, and scanning confocal microscopy. Thus, the approach of fluorescent labeled GPCR ligands, including those for ARs, is a growing dynamic research field.

  6. Feedback, receptor clustering, and receptor restriction to single cells yield large Turing spaces for ligand-receptor-based Turing models

    NASA Astrophysics Data System (ADS)

    Kurics, Tamás; Menshykau, Denis; Iber, Dagmar

    2014-08-01

    Turing mechanisms can yield a large variety of patterns from noisy, homogenous initial conditions and have been proposed as patterning mechanism for many developmental processes. However, the molecular components that give rise to Turing patterns have remained elusive, and the small size of the parameter space that permits Turing patterns to emerge makes it difficult to explain how Turing patterns could evolve. We have recently shown that Turing patterns can be obtained with a single ligand if the ligand-receptor interaction is taken into account. Here we show that the general properties of ligand-receptor systems result in very large Turing spaces. Thus, the restriction of receptors to single cells, negative feedbacks, regulatory interactions among different ligand-receptor systems, and the clustering of receptors on the cell surface all greatly enlarge the Turing space. We further show that the feedbacks that occur in the FGF10-SHH network that controls lung branching morphogenesis are sufficient to result in large Turing spaces. We conclude that the cellular restriction of receptors provides a mechanism to sufficiently increase the size of the Turing space to make the evolution of Turing patterns likely. Additional feedbacks may then have further enlarged the Turing space. Given their robustness and flexibility, we propose that receptor-ligand-based Turing mechanisms present a general mechanism for patterning in biology.

  7. Feedback, receptor clustering, and receptor restriction to single cells yield large Turing spaces for ligand-receptor-based Turing models.

    PubMed

    Kurics, Tamás; Menshykau, Denis; Iber, Dagmar

    2014-08-01

    Turing mechanisms can yield a large variety of patterns from noisy, homogenous initial conditions and have been proposed as patterning mechanism for many developmental processes. However, the molecular components that give rise to Turing patterns have remained elusive, and the small size of the parameter space that permits Turing patterns to emerge makes it difficult to explain how Turing patterns could evolve. We have recently shown that Turing patterns can be obtained with a single ligand if the ligand-receptor interaction is taken into account. Here we show that the general properties of ligand-receptor systems result in very large Turing spaces. Thus, the restriction of receptors to single cells, negative feedbacks, regulatory interactions among different ligand-receptor systems, and the clustering of receptors on the cell surface all greatly enlarge the Turing space. We further show that the feedbacks that occur in the FGF10-SHH network that controls lung branching morphogenesis are sufficient to result in large Turing spaces. We conclude that the cellular restriction of receptors provides a mechanism to sufficiently increase the size of the Turing space to make the evolution of Turing patterns likely. Additional feedbacks may then have further enlarged the Turing space. Given their robustness and flexibility, we propose that receptor-ligand-based Turing mechanisms present a general mechanism for patterning in biology. PMID:25215767

  8. G-protein Receptor Kinase 5 Regulates the Cannabinoid Receptor 2-induced Up-regulation of Serotonin 2A Receptors*

    PubMed Central

    Franklin, Jade M.; Carrasco, Gonzalo A.

    2013-01-01

    We have recently reported that cannabinoid agonists can up-regulate and enhance the activity of serotonin 2A (5-HT2A) receptors in the prefrontal cortex (PFCx). Increased expression and activity of cortical 5-HT2A receptors has been associated with neuropsychiatric disorders, such as anxiety and schizophrenia. Here we report that repeated CP55940 exposure selectively up-regulates GRK5 proteins in rat PFCx and in a neuronal cell culture model. We sought to examine the mechanism underlying the regulation of GRK5 and to identify the role of GRK5 in the cannabinoid agonist-induced up-regulation and enhanced activity of 5-HT2A receptors. Interestingly, we found that cannabinoid agonist-induced up-regulation of GRK5 involves CB2 receptors, β-arrestin 2, and ERK1/2 signaling because treatment with CB2 shRNA lentiviral particles, β-arrestin 2 shRNA lentiviral particles, or ERK1/2 inhibitor prevented the cannabinoid agonist-induced up-regulation of GRK5. Most importantly, we found that GRK5 shRNA lentiviral particle treatment prevented the cannabinoid agonist-induced up-regulation and enhanced 5-HT2A receptor-mediated calcium release. Repeated cannabinoid exposure was also associated with enhanced phosphorylation of CB2 receptors and increased interaction between β-arrestin 2 and ERK1/2. These latter phenomena were also significantly inhibited by GRK5 shRNA lentiviral treatment. Our results suggest that sustained activation of CB2 receptors, which up-regulates 5-HT2A receptor signaling, enhances GRK5 expression; the phosphorylation of CB2 receptors; and the β-arrestin 2/ERK interactions. These data could provide a rationale for some of the adverse effects associated with repeated cannabinoid agonist exposure. PMID:23592773

  9. Pattern-recognition receptors in human eosinophils

    PubMed Central

    Kvarnhammar, Anne Månsson; Cardell, Lars Olaf

    2012-01-01

    The pattern-recognition receptor (PRR) family includes Toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD) -like receptors (NLRs), RIG-I-like receptors (RLRs), C-type lectin receptors (CLRs) and the receptor for advanced glycation end products (RAGE). They recognize various microbial signatures or host-derived danger signals and trigger an immune response. Eosinophils are multifunctional leucocytes involved in the pathogenesis of several inflammatory processes, including parasitic helminth infection, allergic diseases, tissue injury and tumour immunity. Human eosinophils express several PRRs, including TLR1–5, TLR7, TLR9, NOD1, NOD2, Dectin-1 and RAGE. Receptor stimulation induces survival, oxidative burst, activation of the adhesion system and release of cytokines (interleukin-1β, interleukin-6, tumour necrosis factor-α and granulocyte–macrophage colony-stimulating factor), chemokines (interleukin-8 and growth-related oncogene-α) and cytotoxic granule proteins (eosinophil cationic protein, eosinophil-derived neurotoxin, eosinophil peroxidase and major basic protein). It is also evident that eosinophils play an immunomodulatory role by interacting with surrounding cells. The presence of a broad range of PRRs in eosinophils indicates that they are not only involved in defence against parasitic helminths, but also against bacteria, viruses and fungi. From a clinical perspective, eosinophilic PRRs seem to be involved in both allergic and malignant diseases by causing exacerbations and affecting tumour growth, respectively. PMID:22242941

  10. Allosteric Modulators for mGlu Receptors

    PubMed Central

    Gasparini, F; Spooren, W

    2007-01-01

    The metabotropic glutamate receptor family comprises eight subtypes (mGlu1-8) of G-protein coupled receptors. mGlu receptors have a large extracellular domain which acts as recognition domain for the natural agonist glutamate. In contrast to the ionotropic glutamate receptors which mediate the fast excitatory neurotransmission, mGlu receptors have been shown to play a more modulatory role and have been proposed as alternative targets for pharmacological interventions. The potential use of mGluRs as drug targets for various nervous system pathologies such as anxiety, depression, schizophrenia, pain or Parkinson’s disease has triggered an intense search for subtype selective modulators and resulted in the identification of numerous novel pharmacological agents capable to modulate the receptor activity through an interaction at an allosteric site located in the transmembrane domain. The present review presents the most recent developments in the identification and the characterization of allosteric modulators for the mGlu receptors. PMID:19305801

  11. Purinergic Receptors in Thrombosis and Inflammation.

    PubMed

    Hechler, Béatrice; Gachet, Christian

    2015-11-01

    Under various pathological conditions, including thrombosis and inflammation, extracellular nucleotide levels may increase because of both active release and passive leakage from damaged or dying cells. Once in the extracellular compartment, nucleotides interact with plasma membrane receptors belonging to the P2 purinergic family, which are expressed by virtually all circulating blood cells and in most blood vessels. In this review, we focus on the specific role of the 3 platelet P2 receptors P2Y1, P2Y12, and P2X1 in hemostasis and arterial thrombosis. Beyond platelets, these 3 receptors, along with the P2Y2, P2Y6, and P2X7 receptors, constitute the main P2 receptors mediating the proinflammatory effects of nucleotides, which play important roles in various functions of circulating blood cells and cells of the vessel wall. Each of these P2 receptor subtypes specifically contributes to chronic or acute vascular inflammation and related diseases, such as atherosclerosis, restenosis, endotoxemia, and sepsis. The potential for therapeutic targeting of these P2 receptor subtypes is also discussed.

  12. Dopamine receptors – IUPHAR Review 13

    PubMed Central

    Beaulieu, Jean-Martin; Espinoza, Stefano; Gainetdinov, Raul R

    2015-01-01

    The variety of physiological functions controlled by dopamine in the brain and periphery is mediated by the D1, D2, D3, D4 and D5 dopamine GPCRs. Drugs acting on dopamine receptors are significant tools for the management of several neuropsychiatric disorders including schizophrenia, bipolar disorder, depression and Parkinson's disease. Recent investigations of dopamine receptor signalling have shown that dopamine receptors, apart from their canonical action on cAMP-mediated signalling, can regulate a myriad of cellular responses to fine-tune the expression of dopamine-associated behaviours and functions. Such signalling mechanisms may involve alternate G protein coupling or non-G protein mechanisms involving ion channels, receptor tyrosine kinases or proteins such as β-arrestins that are classically involved in GPCR desensitization. Another level of complexity is the growing appreciation of the physiological roles played by dopamine receptor heteromers. Applications of new in vivo techniques have significantly furthered the understanding of the physiological functions played by dopamine receptors. Here we provide an update of the current knowledge regarding the complex biology, signalling, physiology and pharmacology of dopamine receptors. PMID:25671228

  13. Cannabinoid receptor type-1: breaking the dogmas

    PubMed Central

    Busquets Garcia, Arnau; Soria-Gomez, Edgar; Bellocchio, Luigi; Marsicano, Giovanni

    2016-01-01

    The endocannabinoid system (ECS) is abundantly expressed in the brain. This system regulates a plethora of physiological functions and is composed of cannabinoid receptors, their endogenous ligands (endocannabinoids), and the enzymes involved in the metabolism of endocannabinoids. In this review, we highlight the new advances in cannabinoid signaling, focusing on a key component of the ECS, the type-1 cannabinoid receptor (CB 1). In recent years, the development of new imaging and molecular tools has demonstrated that this receptor can be distributed in many cell types (e.g., neuronal or glial cells) and intracellular compartments (e.g., mitochondria). Interestingly, cellular and molecular effects are differentially mediated by CB 1 receptors according to their specific localization (e.g., glutamatergic or GABAergic neurons). Moreover, this receptor is expressed in the periphery, where it can modulate periphery-brain connections. Finally, the better understanding of the CB 1 receptor structure led researchers to propose interesting and new allosteric modulators. Thus, the advances and the new directions of the CB 1 receptor field will provide new insights and better approaches to profit from its interesting therapeutic profile. PMID:27239293

  14. Pattern-recognition receptors in human eosinophils.

    PubMed

    Kvarnhammar, Anne Månsson; Cardell, Lars Olaf

    2012-05-01

    The pattern-recognition receptor (PRR) family includes Toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD) -like receptors (NLRs), RIG-I-like receptors (RLRs), C-type lectin receptors (CLRs) and the receptor for advanced glycation end products (RAGE). They recognize various microbial signatures or host-derived danger signals and trigger an immune response. Eosinophils are multifunctional leucocytes involved in the pathogenesis of several inflammatory processes, including parasitic helminth infection, allergic diseases, tissue injury and tumour immunity. Human eosinophils express several PRRs, including TLR1-5, TLR7, TLR9, NOD1, NOD2, Dectin-1 and RAGE. Receptor stimulation induces survival, oxidative burst, activation of the adhesion system and release of cytokines (interleukin-1β, interleukin-6, tumour necrosis factor-α and granulocyte-macrophage colony-stimulating factor), chemokines (interleukin-8 and growth-related oncogene-α) and cytotoxic granule proteins (eosinophil cationic protein, eosinophil-derived neurotoxin, eosinophil peroxidase and major basic protein). It is also evident that eosinophils play an immunomodulatory role by interacting with surrounding cells. The presence of a broad range of PRRs in eosinophils indicates that they are not only involved in defence against parasitic helminths, but also against bacteria, viruses and fungi. From a clinical perspective, eosinophilic PRRs seem to be involved in both allergic and malignant diseases by causing exacerbations and affecting tumour growth, respectively.

  15. 5-HT6 receptors and Alzheimer's disease.

    PubMed

    Ramírez, María Javier

    2013-01-01

    During the past 20 years, the 5-HT6 receptor has received increasing attention and become a promising target for improving cognition. Several studies with structurally different compounds have shown that not only antagonists but also 5-HT6 receptor agonists improve learning and memory in animal models. A large number of publications describing the development of ligands for this receptor have come to light, and it is now quite evident that 5-HT6 receptors have great pharmaceutical potential in terms of related patents. However, 5-HT6 receptor functionality is much more complex than initially defined. According to the existing data, different cellular pathways may be activated, depending on the drug being used. This article reviews preclinical and clinical evidence of the effects that 5-HT6 receptor compounds have on cognition. In addition, the biochemical and neurochemical mechanisms of action through which 5-HT6 receptor compounds can influence cognition will be described. Overall, several 5-HT6-targeted compounds can reasonably be regarded as powerful drug candidates for the treatment of Alzheimer's disease.

  16. Renal tubular vasopressin receptors downregulated by dehydration

    SciTech Connect

    Steiner, M.; Phillips, M.I. )

    1988-03-01

    Receptors for arginine vasopressin (AVP) were characterized in tubular epithelial basolateral membranes (BL membranes) prepared from the kidneys of male Spraque-Dawley rats. Association of ({sup 3}H)AVP was rapid, reversible, and specific. Saturation studies revealed a single class of saturable binding sites with a maximal binding (B{sub max}) of 184 {plus minus} 15 fmol/mg protein. The V{sub 2} receptor antagonist was more than 3,700 times as effective in displacing ({sup 3}H)AVP than was the V{sub 1} antagonist. To investigate the physiological regulation of vasopressin receptors, the effects of elevated levels of circulating AVP on receptor characteristics were studied. Seventy-two-hour water deprivation significantly elevated plasma osmolality and caused an 11.5-fold increase in plasma (AVP). Scatchard analysis revealed a 38% decreased in the number of AVP receptors on the BL membranes from dehydrated animals. The high-affinity binding sites on the BL membranes fit the pharmacological profile for adenylate cyclase-linked vasopressin receptors (V{sub 2}), which mediate the antidiuretic action of the hormone. The authors conclude that physiologically elevated levels of AVP can downregulate vasopressin receptors in the kidney.

  17. Role of Prolactin Receptors in Lymphangioleiomyomatosis

    PubMed Central

    Alkharusi, Amira; Lesma, Elena; Ancona, Silvia; Chiaramonte, Eloisa; Nyström, Thomas; Gorio, Alfredo; Norstedt, Gunnar

    2016-01-01

    Pulmonary lymphangioleiomyomatosis (LAM) is a rare lung disease caused by mutations in the tumor suppressor genes encoding Tuberous Sclerosis Complex (TSC) 1 and TSC2. The protein product of the TSC2 gene is a well-known suppressor of the mTOR pathway. Emerging evidence suggests that the pituitary hormone prolactin (Prl) has both endocrine and paracrine modes of action. Here, we have investigated components of the Prl system in models for LAM. In a TSC2 (+/-) mouse sarcoma cell line, down-regulation of TSC2 using siRNA resulted in increased levels of the Prl receptor. In human LAM cells, the Prl receptor is detectable by immunohistochemistry, and the expression of Prl in these cells stimulates STAT3 and Erk phosphorylation, as well as proliferation. A high affinity Prl receptor antagonist consisting of Prl with four amino acid substitutions reduced phosphorylation of STAT3 and Erk. Antagonist treatment further reduced the proliferative and invasive properties of LAM cells. In histological sections from LAM patients, Prl receptor immuno reactivity was observed. We conclude that the Prl receptor is expressed in LAM, and that loss of TSC2 increases Prl receptor levels. It is proposed that Prl exerts growth-stimulatory effects on LAM cells, and that antagonizing the Prl receptor can block such effects. PMID:26765535

  18. Bistability in Apoptosis by Receptor Clustering

    PubMed Central

    Ho, Kenneth L.; Harrington, Heather A.

    2010-01-01

    Apoptosis is a highly regulated cell death mechanism involved in many physiological processes. A key component of extrinsically activated apoptosis is the death receptor Fas which, on binding to its cognate ligand FasL, oligomerize to form the death-inducing signaling complex. Motivated by recent experimental data, we propose a mathematical model of death ligand-receptor dynamics where FasL acts as a clustering agent for Fas, which form locally stable signaling platforms through proximity-induced receptor interactions. Significantly, the model exhibits hysteresis, providing an upstream mechanism for bistability and robustness. At low receptor concentrations, the bistability is contingent on the trimerism of FasL. Moreover, irreversible bistability, representing a committed cell death decision, emerges at high concentrations which may be achieved through receptor pre-association or localization onto membrane lipid rafts. Thus, our model provides a novel theory for these observed biological phenomena within the unified context of bistability. Importantly, as Fas interactions initiate the extrinsic apoptotic pathway, our model also suggests a mechanism by which cells may function as bistable life/death switches independently of any such dynamics in their downstream components. Our results highlight the role of death receptors in deciding cell fate and add to the signal processing capabilities attributed to receptor clustering. PMID:20976242

  19. Androgen receptor expression in gastrointestinal stromal tumor.

    PubMed

    Lopes, Lisandro F; Bacchi, Carlos E

    2009-03-01

    The aim of this study was to evaluate the expression of estrogen, progesterone, and androgen receptors in a large series of gastrointestinal stromal tumors. Clinical and pathologic data were reviewed in 427 cases of gastrointestinal stromal tumor and the expression of such hormone receptors was investigated by immunohistochemistry using tissue microarray technique. All tumors were negative for estrogen receptor expression. Progesterone and androgen receptors expression was observed in 5.4% and 17.6% of tumors, respectively. We found the higher average age at diagnosis, the lower frequency of tumors located in the small intestine, and the higher frequency of extragastrointestinal tumors to be statistically significant in the group of tumors with androgen receptor expression in contrast to the group showing no androgen receptor expression. There was no statistic difference between such groups regarding sex, tumor size, mitotic count, cell morphology, and risk of aggressive behavior. Considering that the expression of androgen receptors in gastrointestinal stromal tumors is not negligible, further studies are encouraged to establish the role of androgen deprivation therapy for gastrointestinal stromal tumors.

  20. Effects of carbon dioxide on laryngeal receptors

    SciTech Connect

    Anderson, J.W.; Sant'Ambrogio, F.B.; Orani, G.P.; Sant'Ambrogio, G.; Mathew, O.P. )

    1990-02-26

    Carbon dioxide (CO{sub 2}) either stimulates or inhibits laryngeal receptors in the cat. The aim of this study was to correlate the CO{sub 2} response of laryngeal receptors with their response to other known stimuli (i.e. pressure, movement, cold, water and smoke). Single unit action potentials were recorded from fibers in the superior laryngeal nerve of 5 anesthetized, spontaneously breathing dogs together with CO{sub 2} concentration, esophageal and subglottic pressure. Constant streams of warm, humidified air or 10% CO{sub 2} in O{sub 2} were passed through the functionally isolated upper airway for 60 s. Eight of 13 randomly firing or silent receptors were stimulated by CO{sub 2} (from 0.4{plus minus}0.1 to 1.8{plus minus}0.4 imp.s). These non-respiratory-modulated receptors were more strongly stimulated by solutions lacking Cl{sup {minus}} and/or cigarette smoke. Six of 21 respiratory modulated receptors (responding to pressure and/or laryngeal motion) were either inhibited or stimulated by CO{sub 2}. Our results show that no laryngeal receptor responds only to CO{sub 2}. Silent or randomly active receptors were stimulated most often by CO{sub 2} consistent with the reflex effect of CO{sub 2} in the larynx.

  1. Action mechanisms of Liver X Receptors

    SciTech Connect

    Gabbi, Chiara; Warner, Margaret; Gustafsson, Jan-Åke

    2014-04-11

    Highlights: • LXRα and LXRβ are ligand-activated nuclear receptors. • They share oxysterol ligands and the same heterodimerization partner, RXR. • LXRs regulate lipid and glucose metabolism, CNS and immune functions, and water transport. - Abstract: The two Liver X Receptors, LXRα and LXRβ, are nuclear receptors belonging to the superfamily of ligand-activated transcription factors. They share more than 78% homology in amino acid sequence, a common profile of oxysterol ligands and the same heterodimerization partner, Retinoid X Receptor. LXRs play crucial roles in several metabolic pathways: lipid metabolism, in particular in preventing cellular cholesterol accumulation; glucose homeostasis; inflammation; central nervous system functions and water transport. As with all nuclear receptors, the transcriptional activity of LXR is the result of an orchestration of numerous cellular factors including ligand bioavailability, presence of corepressors and coactivators and cellular context i.e., what other pathways are activated in the cell at the time the receptor recognizes its ligand. In this mini-review we summarize the factors regulating the transcriptional activity and the mechanisms of action of these two receptors.

  2. [The cellular receptors of exogenous RNA].

    PubMed

    Reniewicz, Patryk; Zyzak, Joanna; Siednienko, Jakub

    2016-04-21

    One of the key determinants of survival for organisms is proper recognition of exogenous and endogenous nucleic acids. Therefore, high eukaryotes developed a number of receptors that allow for discrimination between friend or foe DNA and RNA. Appearance of exogenous RNA in cytoplasm provides a signal of danger and triggers cellular responses that facilitate eradication of a pathogen. Recognition of exogenous RNA is additionally complicated by fact that large amount of endogenous RNA is present in cytoplasm Thus, number of different receptors, found in eukaryotic cells, is able to recognize that nucleic acid. First group of those receptors consist endosomal Toll like receptors, namely TLR3, TLR7, TLR8 and TLR13. Those receptors recognize RNA released from pathogens that enter the cell by endocytosis. The second group includes cytoplasmic sensors like PKR and the family of RLRs comprised of RIG-I, MDA5 and LGP2. Cytoplasmic receptors recognize RNA from pathogens invading the cell by non-endocytic pathway. In both cases binding of RNA by its receptors results in activation of the signalling cascades that lead to the production of interferon and other cytokines.

  3. Effect of purification followed by solubilization of receptor material on quantitative receptor assays for anticholinergic drugs.

    PubMed

    Smisterová, J; Ensing, K; de Zeeuw, R A

    1996-08-01

    In order to optimize quantitative receptor assays for anticholinergics, the different receptor preparations resulting from the purification and the solubilization of the P2 pellet from the calf striatum were evaluated. The dissociation constants for two chemically different anticholinergics, the tertiary amine scopolamine and the quaternary amine oxyphenonium, were calculated from inhibition studies of 3H-NMS binding in buffer and plasma. The Kd values for both anticholinergics were similar for all the membrane-bound receptor preparations (unpurified and the purified P2 pellet) either in buffer or in plasma. More pronounced differences were observed between the membrane-bound and solubilized receptors. By introducing the solubilized receptor as well, differences between the individual anticholinergics appeared. On the one hand, for scopolamine, a gain in sensitivity of 1.5-2.8 in plasma was observed for the solubilized receptor. On the other hand, in the case of oxyphenonium, a dramatic loss in sensitivity (by a factor of about 24) was observed with the solubilized receptor, as compared to the membrane-bound receptor, in buffer. Very interestingly, however, when the solubilized receptor was used in plasma, a lowering of the Kd value was found for both anticholinergics, i.e. the assays became more sensitive. Such an effect (not observed for the membrane-bound receptor) could be obtained only when the percentage of digitonin present in the assay was at least 0.12% (w/v) or higher. PMID:8877848

  4. Angiotensin type 2 receptor actions contribute to angiotensin type 1 receptor blocker effects on kidney fibrosis

    PubMed Central

    Naito, Takashi; Ma, Li-Jun; Yang, Haichun; Zuo, Yiqin; Tang, Yiwei; Han, Jee Young; Kon, Valentina

    2010-01-01

    Angiotensin type 1 (AT1) receptor blocker (ARB) ameliorates progression of chronic kidney disease. Whether this protection is due solely to blockade of AT1, or whether diversion of angiotensin II from the AT1 to the available AT2 receptor, thus potentially enhancing AT2 receptor effects, is not known. We therefore investigated the role of AT2 receptor in ARB-induced treatment effects in chronic kidney disease. Adult rats underwent 5/6 nephrectomy. Glomerulosclerosis was assessed by renal biopsy 8 wk later, and rats were divided into four groups with equivalent glomerulosclerosis: no further treatment, ARB, AT2 receptor antagonist, or combination. By week 12 after nephrectomy, systolic blood pressure was decreased in all treatment groups, but proteinuria was decreased only with ARB. Glomerulosclerosis increased significantly in AT2 receptor antagonist vs. ARB. Kidney cortical collagen content was decreased in ARB, but increased in untreated 5/6 nephrectomy, AT2 receptor antagonist, and combined groups. Glomerular cell proliferation increased in both untreated 5/6 nephrectomy and AT2 receptor antagonist vs. ARB, and phospho-Erk2 was increased by AT2 receptor antagonist. Plasminogen activator inhibitor-1 mRNA and protein were increased at 12 wk by AT2 receptor antagonist in contrast to decrease with ARB. Podocyte injury is a key component of glomerulosclerosis. We therefore assessed effects of AT1 vs. AT2 blockade on podocytes and interaction with plasminogen activator inhibitor-1. Cultured wild-type podocytes, but not plasminogen activator inhibitor-1 knockout, responded to angiotensin II with increased collagen, an effect that was completely blocked by ARB with lesser effect of AT2 receptor antagonist. We conclude that the benefical effects on glomerular injury achieved with ARB are contributed to not only by blockade of the AT1 receptor, but also by increasing angiotensin effects transduced through the AT2 receptor. PMID:20042458

  5. Adenosine receptor antagonists alter the stability of human epileptic GABAA receptors

    PubMed Central

    Roseti, Cristina; Martinello, Katiuscia; Fucile, Sergio; Piccari, Vanessa; Mascia, Addolorata; Di Gennaro, Giancarlo; Quarato, Pier Paolo; Manfredi, Mario; Esposito, Vincenzo; Cantore, Gianpaolo; Arcella, Antonella; Simonato, Michele; Fredholm, Bertil B.; Limatola, Cristina; Miledi, Ricardo; Eusebi, Fabrizio

    2008-01-01

    We examined how the endogenous anticonvulsant adenosine might influence γ-aminobutyric acid type A (GABAA) receptor stability and which adenosine receptors (ARs) were involved. Upon repetitive activation (GABA 500 μM), GABAA receptors, microtransplanted into Xenopus oocytes from neurosurgically resected epileptic human nervous tissues, exhibited an obvious GABAA-current (IGABA) run-down, which was consistently and significantly reduced by treatment with the nonselective adenosine receptor antagonist CGS15943 (100 nM) or with adenosine deaminase (ADA) (1 units/ml), that inactivates adenosine. It was also found that selective antagonists of A2B (MRS1706, 10 nM) or A3 (MRS1334, 30 nM) receptors reduced IGABA run-down, whereas treatment with the specific A1 receptor antagonist DPCPX (10 nM) was ineffective. The selective A2A receptor antagonist SCH58261 (10 nM) reduced or potentiated IGABA run-down in ≈40% and ≈20% of tested oocytes, respectively. The ADA-resistant, AR agonist 2-chloroadenosine (2-CA) (10 μM) potentiated IGABA run-down but only in ≈20% of tested oocytes. CGS15943 administration again decreased IGABA run-down in patch-clamped neurons from either human or rat neocortex slices. IGABA run-down in pyramidal neurons was equivalent in A1 receptor-deficient and wt neurons but much larger in neurons from A2A receptor-deficient mice, indicating that, in mouse cortex, GABAA-receptor stability is tonically influenced by A2A but not by A1 receptors. IGABA run-down from wt mice was not affected by 2-CA, suggesting maximal ARs activity by endogenous adenosine. Our findings strongly suggest that cortical A2–A3 receptors alter the stability of GABAA receptors, which could offer therapeutic opportunities. PMID:18809912

  6. Direct imaging of lateral movements of AMPA receptors inside synapses.

    PubMed

    Tardin, Catherine; Cognet, Laurent; Bats, Cécile; Lounis, Brahim; Choquet, Daniel

    2003-09-15

    Trafficking of AMPA receptors in and out of synapses is crucial for synaptic plasticity. Previous studies have focused on the role of endo/exocytosis processes or that of lateral diffusion of extra-synaptic receptors. We have now directly imaged AMPAR movements inside and outside synapses of live neurons using single-molecule fluorescence microscopy. Inside individual synapses, we found immobile and mobile receptors, which display restricted diffusion. Extra-synaptic receptors display free diffusion. Receptors could also exchange between these membrane compartments through lateral diffusion. Glutamate application increased both receptor mobility inside synapses and the fraction of mobile receptors present in a juxtasynaptic region. Block of inhibitory transmission to favor excitatory synaptic activity induced a transient increase in the fraction of mobile receptors and a decrease in the proportion of juxtasynaptic receptors. Altogether, our data show that rapid exchange of receptors between a synaptic and extra-synaptic localization occurs through regulation of receptor diffusion inside synapses. PMID:12970178

  7. Aminergic receptors in astrogliotic plaques from patients with multiple sclerosis.

    PubMed

    Zeinstra, Esther; te Riele, Paula; Langlois, Xavier; Wilczak, Nadine; Leysen, Josée; de Keyser, Jacques

    2002-10-11

    Cultured astrocytes express a spectrum of neurotransmitter receptors. However, little is known about these receptors in situ. We previously reported the absence of beta(2) adrenergic receptors on astrocytes in multiple sclerosis (MS). Here we used [(3)H]-radioligands and receptor autoradiography to screen for a variety of other aminergic receptors in six silent chronic astrogliotic plaques in brain tissue obtained from five patients with MS. Dopamine D(1) and histamine H(1) receptors were absent. We detected specific binding for cholinergic muscarinic receptors > dopamine D(2), alpha(1-) and alpha(2)-adrenergic receptors > 5-HT(1A), 5-HT(1B/D), 5-HT(2A), 5-HT(2c), 5-HT(4), and dopamine D(3) receptors. Radiotracers for these aminergic receptors might be useful for studying astrogliosis in patients with MS, and compounds acting at some of these receptors may have potential to modulate astroglial function in MS. PMID:12361847

  8. Pharmacological and autoradiographic characterization of sigma receptors

    SciTech Connect

    Largent, B.L.

    1986-01-01

    The existence of three types of opioid receptors - ..mu.., kappa, and sigma - was postulated to explain the effects of different opioids in the chronic spinal dog. Sigma receptors, named for the prototypic agonist SKF 10,047 (N-allylnormetazocine), were suggested to mediate the psychotomimetic-like effects of SKF 10,047 in the dog. 3-(3-Hydroxyphenyl)-N-(1-propyl)piperidine (3-PPP) has been proposed as a selective dopamine autoreceptor agonist. However, the drug specificity of (+)(/sup 3/H)3-PPP binding in brain is identical to that of sigma receptor binding sites which may mediate psychotomimetic effects of some opioids. Pharmacological and autoradiographic analyses reveal that (+)(/sup 3/H)SKF 10,047, the prototypic sigma agonist, labels two sites in brain. The drug specificity of the high affinity site for (+)(/sup 3/H)SKF 10,047 resembles that of putative sigma receptors labeled with (+)(/sup 3/H)3-PPP, being potently inhibited by (+)3-PPP, haloperidol, and (+/-)pentazocine, and demonstrating stereoselectivity for the (+) isomer of SKF 10,047. Autoradiographic localizations of high affinity (+)(/sup 3/H)SKF 10,047 binding sites closely resemble those of (+)(/sup 3/H)3-PPP labeled sites with high levels of binding in the hippocampal pyramidal cell layer, hypothalamus, and pontine and cranial nerve nuclei. Thus, putative sigma receptors and PCP receptors represent distinct receptor populations in brain. This proposal is supported by the presence of sigma binding sites - and absence of PCP receptors - on NCB-20 cell membranes, a hybrid neurotumor cell line that provides a model system for the physiological and biochemical study of sigma receptors.

  9. Role of adenosine receptors in caffeine tolerance

    SciTech Connect

    Holtzman, S.G.; Mante, S.; Minneman, K.P. )

    1991-01-01

    Caffeine is a competitive antagonist at adenosine receptors. Receptor up-regulation during chronic drug treatment has been proposed to be the mechanism of tolerance to the behavioral stimulant effects of caffeine. This study reassessed the role of adenosine receptors in caffeine tolerance. Separate groups of rats were given scheduled access to drinking bottles containing plain tap water or a 0.1% solution of caffeine. Daily drug intake averaged 60-75 mg/kg and resulted in complete tolerance to caffeine-induced stimulation of locomotor activity, which could not be surmounted by increasing the dose of caffeine. 5'-N-ethylcarboxamidoadenosine (0.001-1.0 mg/kg) dose dependently decreased the locomotor activity of caffeine-tolerant rats and their water-treated controls but was 8-fold more potent in the latter group. Caffeine (1.0-10 mg/kg) injected concurrently with 5-N-ethylcarboxamidoadenosine antagonized the decreases in locomotor activity comparably in both groups. Apparent pA2 values for tolerant and control rats also were comparable: 5.05 and 5.11. Thus, the adenosine-antagonist activity of caffeine was undiminished in tolerant rats. The effects of chronic caffeine administration on parameters of adenosine receptor binding and function were measured in cerebral cortex. There were no differences between brain tissue from control and caffeine-treated rats in number and affinity of adenosine binding sites or in receptor-mediated increases (A2 adenosine receptor) and decreases (A1 adenosine receptor) in cAMP accumulation. These results are consistent with theoretical arguments that changes in receptor density should not affect the potency of a competitive antagonist. Experimental evidence and theoretical considerations indicate that up-regulation of adenosine receptors is not the mechanism of tolerance to caffeine-induced stimulation of locomotor activity.

  10. Mood disorders: regulation by metabotropic glutamate receptors.

    PubMed

    Pilc, Andrzej; Chaki, Shigeyuki; Nowak, Gabriel; Witkin, Jeffrey M

    2008-03-01

    Medicinal therapies for mood disorders neither fully serve the efficacy needs of patients nor are they free of side-effect issues. Although monoamine-based therapies are the primary current treatment approaches, both preclinical and clinical findings have implicated the excitatory neurotransmitter glutamate in the pathogenesis of major depressive disorders. The present commentary focuses on the metabotropic glutamate receptors and their relationship to mood disorders. Metabotropic glutamate (mGlu) receptors regulate glutamate transmission by altering the release of neurotransmitter and/or modulating the post-synaptic responses to glutamate. Convergent biochemical, pharmacological, behavioral, and clinical data will be reviewed that establish glutamatergic neurotransmission via mGlu receptors as a biologically relevant process in the regulation of mood and that these receptors may serve as novel targets for the discovery of small molecule modulators with unique antidepressant properties. Specifically, compounds that antagonize mGlu2, mGlu3, and/or mGlu5 receptors (e.g. LY341495, MGS0039, MPEP, MTEP) exhibit biochemical effects indicative of antidepressant effects as well as in vivo activity in animal models predictive of antidepressant efficacy. Both preclinical and clinical data have previously been presented to define NMDA and AMPA receptors as important targets for the modulation of major depression. In the present review, we present a model suggesting how the interplay of glutamate at the mGlu and at the ionotropic AMPA and NMDA receptors might account for the antidepressant-like effects of glutamatergic- and monoaminergic-based drugs affecting mood in patients. The current data lead to the hypothesis that mGlu-based compounds and conventional antidepressants impact a network of interactive effects that converge upon a down regulation of NMDA receptor function and an enhancement in AMPA receptor signaling. PMID:18164691

  11. [Progress of pattern recognition receptors of molluscs].

    PubMed

    Gao, Qian; Zhao, Qin-ping; Ma, Xiao-xue; Dong, Hui-fen

    2015-08-01

    Molluscs have established complete innate immunity to defense against pathogens. The pattern recognition receptors (PRRs) are the sensory receptors of molluscs to resist outside invaders, as the first reactor to initiate the innate immune response. Some PRRs have been identified in several molluscs, including Toll-like receptors (TLRs) , C-type lectins, galectins, lipopolysaccharide-β-1,3-glucan binding protein (LGBP), Clq domain-containing protein (ClqDC), and peptidoglycan recognition protein (PGRP). PRRs have various biological activities and play important roles in the defense system of molluscs. This paper reviews the research progress of PRRs in molluscs.

  12. Experience with hormone receptors in renal cancer.

    PubMed

    Romics, I; Rüssel, C; Bach, D

    1990-01-01

    The hormone receptor concentrations in tumour tissues from 20 renal carcinoma patients were determined before postoperative medroxyprogesterone acetate (MPA) therapy was started. Except for glucocorticoid receptors, the concentrations were either not measurable or were extremely low. The question is whether MPA therapy, solely on the strength of its character as a general roborant, is still useful in the treatment of renal tumours, even when it fails to exercise primary influence because of the absence of suitable receptors. None of the 20 patients was treated with MPA.

  13. Ghrelin Receptors in Non-Mammalian Vertebrates

    PubMed Central

    Kaiya, Hiroyuki; Kangawa, Kenji; Miyazato, Mikiya

    2012-01-01

    The growth hormone secretagogue-receptor (GHS-R) was discovered in humans and pigs in 1996. The endogenous ligand, ghrelin, was discovered 3 years later, in 1999, and our understanding of the physiological significance of the ghrelin system in vertebrates has grown steadily since then. Although the ghrelin system in non-mammalian vertebrates is a subject of great interest, protein sequence data for the receptor in non-mammalian vertebrates has been limited until recently, and related biological information has not been well organized. In this review, we summarize current information related to the ghrelin receptor in non-mammalian vertebrates. PMID:23882259

  14. Receptors useful for gas phase chemical sensing

    SciTech Connect

    Jaworski, Justyn W; Lee, Seung-Wuk; Majumdar, Arunava; Raorane, Digvijay A

    2015-02-17

    The invention provides for a receptor, capable of binding to a target molecule, linked to a hygroscopic polymer or hydrogel; and the use of this receptor in a device for detecting the target molecule in a gaseous and/or liquid phase. The invention also provides for a method for detecting the presence of a target molecule in the gas phase using the device. In particular, the receptor can be a peptide capable of binding a 2,4,6-trinitrotoluene (TNT) or 2,4,-dinitrotoluene (DNT).

  15. Functional properties of Drosophila inositol trisphosphate receptors.

    PubMed Central

    Swatton, J E; Morris, S A; Wissing, F; Taylor, C W

    2001-01-01

    The functional properties of the only inositol trisphosphate (IP(3)) receptor subtype expressed in Drosophila were examined in permeabilized S2 cells. The IP(3) receptors of S2 cells bound (1,4,5)IP(3) with high affinity (K(d)=8.5+/-1.1 nM), mediated positively co-operative Ca(2+) release from a thapsigargin-sensitive Ca(2+) store (EC(50)=75+/-4 nM, Hill coefficient=2.1+/-0.2), and they were recognized by an antiserum to a peptide conserved in all IP(3) receptor subtypes in the same way as mammalian IP(3) receptors. As with mammalian IP(3) receptors, (2,4,5)IP(3) (EC(50)=2.3+/-0.3 microM) and (4,5)IP(2) (EC(50) approx. 10 microM) were approx. 20- and 100-fold less potent than (1,4,5)IP(3). Adenophostin A, which is typically approx. 10-fold more potent than IP(3) at mammalian IP(3) receptors, was 46-fold more potent than IP(3) in S2 cells (EC(50)=1.67+/-0.07 nM). Responses to submaximal concentrations of IP(3) were quantal and IP(3)-evoked Ca(2+) release was biphasically regulated by cytosolic Ca(2+). Using rapid superfusion to examine the kinetics of IP(3)-evoked Ca(2+) release from S2 cells, we established that IP(3) (10 microM) maximally activated Drosophila IP(3) receptors within 400 ms. The activity of the receptors then slowly decayed (t(1/2)=2.03+/-0.07 s) to a stable state which had 47+/-1% of the activity of the maximally active state. We conclude that the single subtype of IP(3) receptor expressed in Drosophila has similar functional properties to mammalian IP(3) receptors and that analyses of IP(3) receptor function in this genetically tractable organism are therefore likely to contribute to understanding the roles of mammalian IP(3) receptors. PMID:11583592

  16. Absolute Ligand Discrimination by Dimeric Signaling Receptors.

    PubMed

    Fathi, Sepehr; Nayak, Chitra R; Feld, Jordan J; Zilman, Anton G

    2016-09-01

    Many signaling pathways act through shared components, where different ligand molecules bind the same receptors or activate overlapping sets of response regulators downstream. Nevertheless, different ligands acting through cross-wired pathways often lead to different outcomes in terms of the target cell behavior and function. Although a number of mechanisms have been proposed, it still largely remains unclear how cells can reliably discriminate different molecular ligands under such circumstances. Here we show that signaling via ligand-induced receptor dimerization-a very common motif in cellular signaling-naturally incorporates a mechanism for the discrimination of ligands acting through the same receptor. PMID:27602720

  17. Designing bifunctional NOP receptor-mu opioid receptor ligands from NOP-receptor selective scaffolds. Part II

    PubMed Central

    Journigan, V. Blair; Polgar, Willma; Khroyan, Taline V.; Zaveri, Nurulain T.

    2014-01-01

    The nociceptin opioid receptor (NOP) and its endogenous peptide ligand nociceptin/orphanin FQ have been shown to modulate the pharmacological effects of the classical opioid receptor system. Suppression of opioid-induced reward associated with mu-opioid receptor (MOP)-mediated analgesia, without decreasing anti-nociceptive efficacy, can potentially be achieved with NOP agonists having bifunctional agonist activity at MOP, to afford ‘non-addicting’ analgesics. In Part II of this series, we describe a continuing structure-activity relationship (SAR) study of the NOP-selective piperidin-4-yl-1,3-dihydroindol-2-one scaffold, to obtain bifunctional activity at MOP, and a suitable ratio of NOP/MOP agonist activity that produces a non-addicting analgesic profile. The SAR reported here is focused on the influence of various piperidine nitrogen aromatic substituents on the ratio of binding affinity and intrinsic activity at both the NOP and MOP receptors. PMID:24657054

  18. Model for growth hormone receptor activation based on subunit rotation within a receptor dimer

    SciTech Connect

    Brown, Richard J.; Adams, Julian J.; Pelekanos, Rebecca A.; Wan, Yu; McKinstry, William J.; Palethorpe, Kathryn; Seeber, Ruth M.; Monks, Thea A.; Eidne, Karin A.; Parker, Michael W.; Waters, Michael J.

    2010-07-13

    Growth hormone is believed to activate the growth hormone receptor (GHR) by dimerizing two identical receptor subunits, leading to activation of JAK2 kinase associated with the cytoplasmic domain. However, we have reported previously that dimerization alone is insufficient to activate full-length GHR. By comparing the crystal structure of the liganded and unliganded human GHR extracellular domain, we show here that there is no substantial change in its conformation on ligand binding. However, the receptor can be activated by rotation without ligand by inserting a defined number of alanine residues within the transmembrane domain. Fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET) and coimmunoprecipitation studies suggest that receptor subunits undergo specific transmembrane interactions independent of hormone binding. We propose an activation mechanism involving a relative rotation of subunits within a dimeric receptor as a result of asymmetric placement of the receptor-binding sites on the ligand.

  19. Dynamics of the actin cytoskeleton mediates receptor cross talk: An emerging concept in tuning receptor signaling

    PubMed Central

    Mattila, Pieta K.; Batista, Facundo D.

    2016-01-01

    Recent evidence implicates the actin cytoskeleton in the control of receptor signaling. This may be of particular importance in the context of immune receptors, such as the B cell receptor, where dysregulated signaling can result in autoimmunity and malignancy. Here, we discuss the role of the actin cytoskeleton in controlling receptor compartmentalization, dynamics, and clustering as a means to regulate receptor signaling through controlling the interactions with protein partners. We propose that the actin cytoskeleton is a point of integration for receptor cross talk through modulation of protein dynamics and clustering. We discuss the implication of this cross talk via the cytoskeleton for both ligand-induced and low-level constitutive (tonic) signaling necessary for immune cell survival. PMID:26833785

  20. Agonist induced constitutive receptor activation as a novel regulatory mechanism. Mu receptor regulation.

    PubMed

    Sadée, W; Wang, Z

    1995-01-01

    We propose the hypothesis that certain G protein coupled receptors can become constitutively activated during agonist stimulation so that the receptor remains active even after the agonist is removed. This new paradigm of receptor regulation may account for some long term effects of neurotransmitters and hormones. We have tested the hypothesis that constitutive mu receptor activation represents a crucial step driving narcotic tolerance and dependence. Our results indeed support the conversion of mu to a constitutively active state, mu*, observed in neuroblastoma SK-N-SH and SH-SY5Y tissue culture, in U293 cells transfected with the mu receptor gene, and in vivo. Constitutive mu activation may result from receptor phosphorylation to yield mu*, and further, in vivo studies indicate that formation of mu* could account for narcotic tolerance and dependence.

  1. Teleost Chemokines and Their Receptors

    PubMed Central

    Bird, Steve; Tafalla, Carolina

    2015-01-01

    Chemokines are a superfamily of cytokines that appeared about 650 million years ago, at the emergence of vertebrates, and are responsible for regulating cell migration under both inflammatory and physiological conditions. The first teleost chemokine gene was reported in rainbow trout in 1998. Since then, numerous chemokine genes have been identified in diverse fish species evidencing the great differences that exist among fish and mammalian chemokines, and within the different fish species, as a consequence of extensive intrachromosomal gene duplications and different infectious experiences. Subsequently, it has only been possible to establish clear homologies with mammalian chemokines in the case of some chemokines with well-conserved homeostatic roles, whereas the functionality of other chemokine genes will have to be independently addressed in each species. Despite this, functional studies have only been undertaken for a few of these chemokine genes. In this review, we describe the current state of knowledge of chemokine biology in teleost fish. We have mainly focused on those species for which more research efforts have been made in this subject, specifically zebrafish (Danio rerio), rainbow trout (Oncorhynchus mykiss) and catfish (Ictalurus punctatus), outlining which genes have been identified thus far, highlighting the most important aspects of their expression regulation and addressing any known aspects of their biological role in immunity. Finally, we summarise what is known about the chemokine receptors in teleosts and provide some analysis using recently available data to help characterise them more clearly. PMID:26569324

  2. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    PubMed Central

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S.; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G.; Beazely, Michael A.

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands. PMID:25426041

  3. Patient selection for personalized peptide receptor radionuclide therapy using Ga-68 somatostatin receptor PET/CT.

    PubMed

    Kulkarni, Harshad R; Baum, Richard P

    2014-01-01

    Neuroendocrine tumors are malignant solid tumors originating from neuroendocrine cells dispersed throughout the body. Differentiated neuroendocrine tumors overexpress somatostatin receptors (SSTRs), which enable the diagnosis using radiolabeled somatostatin analogues. Internalization and retention within the tumor cell are important for peptide receptor radionuclide therapy using the same peptide. The use of the same DOTA-peptide for SSTR PET/CT using (68)Ga and for peptide receptor radionuclide therapy using therapeutic radionuclides like (177)Lu and (90)Y offers a unique theranostic advantage.

  4. Insulin receptors internalize by a rapid, saturable pathway requiring receptor autophosphorylation and an intact juxtamembrane region

    PubMed Central

    1991-01-01

    The effect of receptor occupancy on insulin receptor endocytosis was examined in CHO cells expressing normal human insulin receptors (CHO/IR), autophosphorylation- and internalization-deficient receptors (CHO/IRA1018), and receptors which undergo autophosphorylation but lack a sequence required for internalization (CHO/IR delta 960). The rate of [125I]insulin internalization in CHO/IR cells at 37 degrees C was rapid at physiological concentrations, but decreased markedly in the presence of increasing unlabeled insulin (ED50 = 1-3 nM insulin, or 75,000 occupied receptors/cell). In contrast, [125I]insulin internalization by CHO/IRA1018 and CHO/IR delta 960 cells was slow and was not inhibited by unlabeled insulin. At saturating insulin concentrations, the rate of internalization by wild-type and mutant receptors was similar. Moreover, depletion of intracellular potassium, which has been shown to disrupt coated pit formation, inhibited the rapid internalization of [125I]insulin at physiological insulin concentrations by CHO/IR cells, but had little or no effect on [125I]insulin uptake by CHO/IR delta 960 and CHO/IRA1018 cells or wild-type cells at high insulin concentrations. These data suggest that the insulin-stimulated entry of the insulin receptor into a rapid, coated pit-mediated internalization pathway is saturable and requires receptor autophosphorylation and an intact juxtamembrane region. Furthermore, CHO cells also contain a constitutive nonsaturable pathway which does not require receptor autophosphorylation or an intact juxtamembrane region; this second pathway is unaffected by depletion of intracellular potassium, and therefore may be independent of coated pits. Our data suggest that the ligand-stimulated internalization of the insulin receptor may require specific saturable interactions between the receptor and components of the endocytic system. PMID:1757462

  5. Targeting a family B GPCR/RAMP receptor complex: CGRP receptor antagonists and migraine

    PubMed Central

    Moore, Eric L; Salvatore, Christopher A

    2012-01-01

    The clinical effectiveness of antagonizing the calcitonin gene-related peptide (CGRP) receptor for relief of migraine pain has been clearly demonstrated, but the road to the development of these small molecule antagonists has been daunting. The key hurdle that needed to be overcome was the CGRP receptor itself. The vast majority of the current antagonists recognize similar epitopes on the calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1). RAMP1 is a relatively small, single, transmembrane-spanning protein and along with the G-protein-coupled receptor CLR comprise a functional CGRP receptor. The tri-helical extracellular domain of RAMP1 plays a key role in the high affinity binding of CGRP receptor antagonists and drives their species-selective pharmacology. Over the years, a significant amount of mutagenesis data has been generated to identify specific amino acids or regions within CLR and RAMP1 that are critical to antagonist binding and has directed attention to the CLR/RAMP1 extracellular domain (ECD) complex. Recently, the crystal structure of the CGRP receptor ECD has been elucidated and not only reinforces the early mutagenesis data, but provides critical insight into the molecular mechanism of CGRP receptor antagonism. This review will highlight the drug design hurdles that must be overcome to meet the desired potency, selectivity and pharmacokinetic profile while retaining drug-like properties. Although the development of these antagonists has proved challenging, blocking the CGRP receptor may one day represent a new way to manage migraine and offer hope to migraine sufferers. LINKED ARTICLES This article is part of a themed section on Secretin Family (Class B) G Protein-Coupled Receptors. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.166.issue-1 PMID:21871019

  6. A taste of the Drosophila gustatory receptors.

    PubMed

    Montell, Craig

    2009-08-01

    Insects such as the fruit fly, Drosophila melanogaster, rely on contact chemosensation to detect nutrient-rich foods, to avoid consuming toxic chemicals, and to select mates and hospitable zones to deposit eggs. Flies sense tastants and nonvolatile pheromones through gustatory bristles and pegs distributed on multiple body parts including the proboscis, wing margins, legs, and ovipositor. The sensilla house gustatory receptor neurons, which express members of the family of 68 gustatory receptors (GRs). In contrast to mammalian chemosensation or Drosophila olfaction, which are initiated by receptors composed of dimers of one or two receptor types, the functional Drosophila GRs may include three or more subunits. Several GRs appear to be expressed in multiple cell types that are not associated with contact chemosensation raising the possibility that these proteins may have roles that extend beyond the detection of tastants and pheromones. PMID:19660932

  7. Structure biology of selective autophagy receptors

    PubMed Central

    Kim, Byeong-Won; Kwon, Do Hoon; Song, Hyun Kyu

    2016-01-01

    Autophagy is a process tightly regulated by various autophagy-related proteins. It is generally classified into non-selective and selective autophagy. Whereas non-selective autophagy is triggered when the cell is under starvation, selective autophagy is involved in eliminating dysfunctional organelles, misfolded and/or ubiquitylated proteins, and intracellular pathogens. These components are recognized by autophagy receptors and delivered to phagophores. Several selective autophagy receptors have been identified and characterized. They usually have some common domains, such as motif, a specific cargo interacting (ubiquitin-dependent or ubiquitin-independent) domain. Recently, structural data of these autophagy receptors has been described, which provides an insight of their function in the selective autophagic process. In this review, we summarize the most up-to-date findings about the structure-function of autophagy receptors that regulates selective autophagy. [BMB Reports 2016; 49(2): 73-80] PMID:26698872

  8. Endothelial glucocorticoid receptor suppresses atherogenesis- Brief Report

    PubMed Central

    Zhang, Xinbo; Rotllan, Noemi; Feng, Yan; Zhou, Han; Fernández-Hernando, Carlos; Yu, Jun; Sessa, William C.

    2015-01-01

    Objective The purpose of this study was to determine the role of the endothelial glucocorticoid receptor in the pathogenesis of atherosclerosis. Approach and Results Control mice and mice lacking the endothelial glucocorticoid receptor were bred onto an Apoe knockout background and subjected to high-fat diet feeding for 12 weeks. Assessment of body weight and total cholesterol and triglycerides before and after the diet revealed no differences between the two groups of mice. However, mice lacking the endothelial glucocorticoid receptor developed more severe atherosclerotic lesions in the aorta, brachiocephalic artery and aortic sinus as well as a heightened inflammatory milieu as evidence by increased macrophage recruitment in the lesions. Conclusions These data suggest the endothelial glucocorticoid receptor is important for tonic inhibition of inflammation and limitation of atherosclerosis progression in this model. PMID:25810297

  9. Measuring receptor recycling in polarized MDCK cells.

    PubMed

    Gallo, Luciana; Apodaca, Gerard

    2015-01-01

    Recycling of proteins such as channels, pumps, and receptors is critical for epithelial cell function. In this chapter we present a method to measure receptor recycling in polarized Madin-Darby canine kidney cells using an iodinated ligand. We describe a technique to iodinate transferrin (Tf), we discuss how (125)I-Tf can be used to label a cohort of endocytosed Tf receptor, and then we provide methods to measure the rate of recycling of the (125)I-Tf-receptor complex. We also show how this approach, which is easily adaptable to other proteins, can be used to simultaneously measure the normally small amount of (125)I-Tf transcytosis and degradation.

  10. Conformational NMR Study of Bistriazolyl Anion Receptors.

    PubMed

    Makuc, Damjan; Merckx, Tamara; Dehaen, Wim; Plavec, Janez

    2016-01-01

    Conformational features of pyridine- and pyrimidine-based bistriazolyl anion receptors dissolved in acetonitrile-d3 were assessed by multidimensional, heteronuclear NMR spectroscopy. NOESY correlation signals suggested preorganization of both host molecules in solution in the absence of anions. In addition, only a single set of signals was observed in the 1H NMR spectra, which suggested a symmetrical conformation of anion receptors or their conformational exchange that is fast on the NMR time-scale. Furthermore, the predominant conformations of the pyridine- and pyrimidine-based anion receptors are preserved upon addition of chloride, bromide, and acetate anions. Chemical shift changes observed upon addition of anions showed that the NH (thio)urea and triazole protons are involved in anion-receptor interactions through hydrogen bonding. PMID:27640375

  11. Gq-Coupled Receptors in Autoimmunity

    PubMed Central

    Zhang, Lu; Shi, Guixiu

    2016-01-01

    Heterotrimeric G proteins can be divided into Gi, Gs, Gq/11, and G12/13 subfamilies according to their α subunits. The main function of G proteins is transducing signals from G protein coupled receptors (GPCRs), a family of seven transmembrane receptors. In recent years, studies have demonstrated that GPCRs interact with Gq, a member of the Gq/11 subfamily of G proteins. This interaction facilitates the vital role of this family of proteins in immune regulation and autoimmunity, particularly for Gαq, which is considered the functional α subunit of Gq protein. Therefore, understanding the mechanisms through which Gq-coupled receptors control autoreactive lymphocytes is critical and may provide insights into the treatment of autoimmune disorders. In this review, we summarize recent advances in studies of the role of Gq-coupled receptors in autoimmunity, with a focus on their pathologic role and downstream signaling. PMID:26885533

  12. Presence of Laminin Receptors in Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Lopes, J. D.; Dos Reis, M.; Brentani, R. R.

    1985-07-01

    A characteristic feature of infection by Staphylococcus aureus is bloodstream invasion and widespread metastatic abscess formation. The ability to extravasate, which entails crossing the vascular basement membrane, appears to be critical for the organism's pathogenicity. Extravasation by normal and neoplastic mammalian cells has been correlated with the presence of specific cell surface receptors for the basement membrane glycoprotein laminin. Similar laminin receptors were found in Staphylococcus aureus but not in Staphylococcus epidermidis, a noninvasive pathogen. There were about 100 binding sites per cell, with an apparent binding affinity of 2.9 nanomolar. The molecular weight of the receptor was 50,000 and pI was 4.2. Eukaryotic laminin receptors were visualized by means of the binding of S. aureus in the presence of laminin. Prokaryotic and eukaryotic invasive cells might utilize similar, if not identical, mechanisms for invasion.

  13. Superactivation of AMPA receptors by auxiliary proteins

    PubMed Central

    Carbone, Anna L.; Plested, Andrew J. R.

    2016-01-01

    Glutamate receptors form complexes in the brain with auxiliary proteins, which control their activity during fast synaptic transmission through a seemingly bewildering array of effects. Here we devise a way to isolate the activation of complexes using polyamines, which enables us to show that transmembrane AMPA receptor regulatory proteins (TARPs) exert their effects principally on the channel opening reaction. A thermodynamic argument suggests that because TARPs promote channel opening, receptor activation promotes AMPAR-TARP complexes into a superactive state with high open probability. A simple model based on this idea predicts all known effects of TARPs on AMPA receptor function. This model also predicts unexpected phenomena including massive potentiation in the absence of desensitization and supramaximal recovery that we subsequently detected in electrophysiological recordings. This transient positive feedback mechanism has implications for information processing in the brain, because it should allow activity-dependent facilitation of excitatory synaptic transmission through a postsynaptic mechanism. PMID:26744192

  14. Genetics Home Reference: leptin receptor deficiency

    MedlinePlus

    ... leptin receptor gene causes obesity and pituitary dysfunction. Nature. 1998 Mar 26;392(6674):398-401. Citation ... and human weight regulation: lessons from experiments of nature. Ann Acad Med Singapore. 2009 Jan;38(1): ...

  15. Mechanisms of neurosteroid interactions with GABAA receptors

    PubMed Central

    Akk, Gustav; Covey, Douglas F.; Evers, Alex S.; Steinbach, Joe Henry; Zorumski, Charles F.; Mennerick, Steven

    2007-01-01

    Neuroactive steroids have some of their most potent actions by augmenting the function of GABAA receptors. Endogenous steroid actions on GABAA receptors may underlie important effects on mood and behavior. Exogenous neuroactive steroids have potential as anesthetics, anticonvulsants, and neuroprotectants. We have taken multiple approaches to understand more completely the interaction of neuroactive steroids with GABAA receptors. We have developed many novel steroid analogues in this effort. Recent work has resulted in synthesis of new enantiomer analogue pairs, novel ligands that probe various properties of the steroid pharmacophore, fluorescent neuroactive steroid analogues, and photoaffinity labels. Using these tools, combined with receptor binding and electrophysiological assays, we have begun to untangle the complexity of steroid actions at this important class of ligand-gated ion channel. PMID:17524487

  16. Immunochemical studies of the muscarinic acetylcholine receptor.

    PubMed

    André, C; Marullo, S; Guillet, J G; Convents, A; Lauwereys, M; Kaveri, S; Hoebeke, J; Strosberg, A D

    1987-01-01

    Muscarinic receptors have been purified from calf forebrain plasma cell membranes by affinity chromatography on a dexetimide-agarose gel. SDS-PAGE analysis showed a single 70 kDa band. Monoclonal antibodies have been prepared against these affinity purified 70 kDa protein(s). One antibody, M-35, immunoprecipitated up to 80% of digitonin-solubilized muscarinic receptors. M-35 had agonist-like effects on guinea-pig myometrium: it increased the intracellular cyclic GMP content, decreased prostaglandin-induced cyclic AMP accumulation and caused muscle contractions. The two first effects were inhibited by atropine. M-35 was used to visualize muscarinic receptors at the surface of human fibroblastic cells. In the particular cell line used, the receptors have a low affinity for pirenzepine, were negatively coupled to adenylate cyclase and mediated increase in the phosphatidyl-inositol breakdown. PMID:3040987

  17. Estrogen receptor signaling during vertebrate development

    PubMed Central

    Bondesson, Maria; Hao, Ruixin; Lin, Chin-Yo; Williams, Cecilia; Gustafsson, Jan-Åke

    2014-01-01

    Estrogen receptors are expressed and their cognate ligands produced in all vertebrates, indicative of important and conserved functions. Through evolution estrogen has been involved in controlling reproduction, affecting both the development of reproductive organs and reproductive behavior. This review broadly describes the synthesis of estrogens and the expression patterns of aromatase and the estrogen receptors, in relation to estrogen functions in the developing fetus and child. We focus on the role of estrogens for development of reproductive tissues, as well as non-reproductive effects on the developing brain. We collate data from human, rodent, bird and fish studies and highlight common and species-specific effects of estrogen signaling on fetal development. Morphological malformations originating from perturbed estrogen signaling in estrogen receptor and aromatase knockout mice are discussed, as well as the clinical manifestations of rare estrogen receptor alpha and aromatase gene mutations in humans. PMID:24954179

  18. Ecdysteroid receptors in Drosophila melanogaster adult females

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ecdysteroid receptors were identified and partially characterized from total cell extracts of whole animals and dissected tissues from Drosophila melanogaster adult females. Binding studies indicated the presence of two ecdysteroid binding components having high affinity and specificity consistent w...

  19. AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location

    PubMed Central

    Lai, Meizan; Hughes, Ethan G.; Peng, Xiaoyu; Zhou, Lei; Gleichman, Amy J.; Shu, Huidy; Matà, Sabrina; Kremens, Daniel; Vitaliani, Roberta; Geschwind, Michael D.; Bataller, Luis; Kalb, Robert G.; Davis, Rebecca; Graus, Francesc; Lynch, David R.; Balice-Gordon, Rita; Dalmau, Josep

    2009-01-01

    Background Limbic encephalitis (LE) frequently associates with antibodies to cell surface antigens. Characterization of these antigens is important because it facilitates the diagnosis of those disorders that are treatment-responsive. We report a novel antigen of LE and the effect of patients' antibodies on neuronal cultures. Methods Clinical analysis of 10 patients with LE. Immunoprecipitation and mass spectrometry were used to identify the antigens. HEK293 cells expressing the antigens were used in immunocytochemistry and ELISA. The effect of patients' antibodies on cultures of live rat hippocampal neurons was determined with confocal microscopy. Results Median age was 60 years (38-87); 9 were women. Seven had tumors of the lung, breast or thymus. Nine patients responded to immunotherapy or oncological therapy but neurologic relapses, without tumor recurrence, were frequent and influenced the long-term outcome. One untreated patient died of LE. All patients had antibodies against neuronal cell surface antigens that by immunoprecipitation were found to be the GluR1 and GluR2 subunits of the AMPA receptor (AMPAR). HEK293 cells expressing GluR1/2 reacted with all patients' sera or CSF, providing a diagnostic test for the disorder. Application of antibodies to cultures of neurons significantly decreased the number of GluR2-containing AMPAR clusters at synapses with a smaller decrease in overall AMPAR cluster density; these effects were reversed after antibody removal. Conclusions Antibodies to GluR1/2 associate with LE that is often paraneoplastic, treatment-responsive, and has a tendency to relapse. Our findings support an antibody-mediated pathogenesis in which patients' antibodies alter the synaptic localization and number of AMPAR. PMID:19338055

  20. Using Nuclear Receptor Activity to Stratify Hepatocarcinogens

    PubMed Central

    Shah, Imran; Houck, Keith; Judson, Richard S.; Kavlock, Robert J.; Martin, Matthew T.; Reif, David M.; Wambaugh, John; Dix, David J.

    2011-01-01

    Background Nuclear receptors (NR) are a superfamily of ligand-activated transcription factors that control a range of cellular processes. Persistent stimulation of some NR is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. Here we report on a systematic analysis of new in vitro human NR activity data on 309 environmental chemicals in relationship to their liver cancer-related chronic outcomes in rodents. Results The effects of 309 environmental chemicals on human constitutive androstane receptors (CAR/NR1I3), pregnane X receptor (PXR/NR1I2), aryl hydrocarbon receptor (AhR), peroxisome proliferator-activated receptors (PPAR/NR1C), liver X receptors (LXR/NR1H), retinoic X receptors (RXR/NR2B) and steroid receptors (SR/NR3) were determined using in vitro data. Hepatic histopathology, observed in rodents after two years of chronic treatment for 171 of the 309 chemicals, was summarized by a cancer lesion progression grade. Chemicals that caused proliferative liver lesions in both rat and mouse were generally more active for the human receptors, relative to the compounds that only affected one rodent species, and these changes were significant for PPAR (p0.001), PXR (p0.01) and CAR (p0.05). Though most chemicals exhibited receptor promiscuity, multivariate analysis clustered them into relatively few NR activity combinations. The human NR activity pattern of chemicals weakly associated with the severity of rodent liver cancer lesion progression (p0.05). Conclusions The rodent carcinogens had higher in vitro potency for human NR relative to non-carcinogens. Structurally diverse chemicals with similar NR promiscuity patterns weakly associated with the severity of rodent liver cancer progression. While these results do not prove the role of NR activation in human liver cancer, they do have implications for nuclear receptor chemical biology and provide insights into putative toxicity pathways. More importantly, these findings suggest the

  1. Imaging dopamine receptors in the human brain by position tomography

    SciTech Connect

    Wagner, H.N. Jr.; Burns, H.D.; Dannals, R.F.; Wong, D.F.; Langstrom, B.; Duelfer, T.; Frost, J.J.; Ravert, H.T.; Links, J.M.; Rosenbloom, S.B.

    1983-01-01

    Neurotransmitter receptors may be involved in a number of neuropsychiatric disease states. The ligand 3-N-(/sup 11/C)methylspiperone, which preferentially binds to dopamine receptors in vivo, was used to image the receptors by positron emission tomography scanning in baboons and in humans. This technique holds promise for noninvasive clinical studies of dopamine receptors in humans.

  2. CCK2 receptor-deficient mice have increased sensitivity of dopamine D2 receptors.

    PubMed

    Kõks, S; Abramov, U; Veraksits, A; Bourin, M; Matsui, T; Vasar, E

    2003-02-01

    The present study supports a role of CCK(2) receptors in the regulation of dopamine neurones. In pharmacological studies conducted on male CCK(2) receptor-deficient mice the changes in the activity of dopamine system were established. A low dose of dopamine agonist apomorphine (0.1 mg/kg), stimulating the pre-synaptic dopamine receptors, induced significantly stronger suppression of locomotor activity in mutant mice (-/-) compared to their wild-type littermates (+/+). The administration of amphetamine (3-6 mg/kg), a drug increasing dopamine release, caused a dose-dependent stimulation of locomotor activity in wild-type mice. In mice lacking CCK(2) receptors, a lower dose of amphetamine (3 mg/kg) tended to suppress the motor activity, whereas the higher dose (6 mg/kg) induced the significantly stronger motor stimulation in mutant mice. Moreover, in the CCK(2) receptor-deficient mice the affinity of dopamine D(2) receptors, but not 5-HT(2) receptors, was increased. Altogether, the targeted genetic suppression of CCK(2) receptors increased the sensitivity of pre- and post-synaptic dopamine D(2) receptors.

  3. Purification of PRL receptors from toad kidney: Comparisons with rabbit mammary PRL receptors

    SciTech Connect

    Dunand, M.; Kraehenbuhl, J.P.; Rossier, B.C.; Aubert, M.L. Univ. of Lausanne School of Medicine )

    1988-03-01

    The binding characteristics of the prolactin (PRL) receptors present in toad (Bufo marinus) kidneys were investigated and compared to those of PRL receptors present in rabbit mammary glands. The molecular characteristics of the Triton X-100 solubilized renal and mammary PRL receptors were assessed by gel filtration and by migration analysis on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) after affinity labeling of the binding sites with {sup 125}I-human growth hormone. Similar results were obtained for both receptors. Partial purification of the toad PRL receptor could be achieved by affinity chromatography. The molecular weight of this purified receptor could be determined by analysis of SDS-PAGE. With the use of a polyclonal antiserum raised against a purified preparation of rabbit mammary PRL receptor, one or several antigenic epitope(s) could be identified on the core of the toad renal PRL receptor. In conclusion, although the structure and the biological role(s) of PRL have substantially changed during evolution, the receptor for this hormone has retained many of its structural features as could be assessed between an amphibian and a mammalian species on functionally different target tissues.

  4. Structure of the human progesterone receptor gene.

    PubMed

    Misrahi, M; Venencie, P Y; Saugier-Veber, P; Sar, S; Dessen, P; Milgrom, E

    1993-11-16

    The complete organization of the human progesterone receptor (hPR) gene has been determined. It spans over 90 kbp and contains eight exons. The first exon encodes the N-terminal part of the receptor. The DNA binding domain is encoded by two exons, each exon corresponding to one zinc finger. The steroid binding domain is encoded by five exons. The nucleotide sequence of 1144 bp of the 5' flanking region has been determined. PMID:8241270

  5. External Imaging of Cerebral Muscarinic Acetylcholine Receptors

    NASA Astrophysics Data System (ADS)

    Eckelman, William C.; Reba, Richard C.; Rzeszotarski, Waclaw J.; Gibson, Raymond E.; Hill, Thomas; Holman, B. Leonard; Budinger, Thomas; Conklin, James J.; Eng, Robert; Grissom, Michael P.

    1984-01-01

    A radioiodinated ligand that binds to muscarinic acetylcholine receptors was shown to distribute in the brain by a receptor-mediated process. With single-photon-emission imaging techniques, radioactivity was detected in the cerebrum but not in the cerebellum, whereas with a flow-limited radiotracer, radioactivity was detected in cerebrum and cerebellum. Single-photon-emission computed tomography showed good definition of the caudate putamen and cortex in man.

  6. External imaging of cerebral muscarinic acetylcholine receptors

    SciTech Connect

    Eckelman, W.C.; Reba, R.C.; Rzeszotarski, W.J.; Gibson, R.E.; Hill, T.; Holman, B.L.; Budinger, T.; Conklin, J.J.; Eng, R.; Grissom, M.P.

    1984-01-20

    A radioiodinated ligand that binds to muscarinic acetylcholine receptors was shown to distribute in the brain by a receptor-mediated process. With single-photon-emission imaging techniques, radioactivity was detected in the cerebrum but not in the cerebellum, whereas with a flow-limited radiotracer, radioactivity was detected in cerebrum and cerebellum. Single-photon-emission computed tomography showed good definition of the caudate putamen and cortex in man.

  7. Desensitization and Internalization of Endothelin Receptor A

    PubMed Central

    Gärtner, Florian; Seidel, Thorsten; Schulz, Uwe; Gummert, Jan; Milting, Hendrik

    2013-01-01

    Endothelin receptor A (ETA), a G protein-coupled receptor, mediates endothelin signaling, which is regulated by GRK2. Three Ser and seven Thr residues recently proven to be phosphoacceptor sites are located in the C-terminal extremity (CTE) of the receptor following its palmitoylation site. We created various phosphorylation-deficient ETA mutants. The phospholipase C activity of mutant receptors in HEK-293 cells was analyzed during continuous endothelin stimulation to investigate the impact of phosphorylation sites on ETA desensitization. Total deletion of phosphoacceptor sites in the CTE affected proper receptor regulation. However, proximal and distal phosphoacceptor sites both turned out to be sufficient to induce WT-like desensitization. Overexpression of the Gαq coupling-deficient mutant GRK2-D110A suppressed ETA-WT signaling but failed to decrease phospholipase C activity mediated by the phosphorylation-deficient mutant ETA-6PD. In contrast, GRK2-WT acted on both receptors, whereas the kinase-inactive mutant GRK2-D110A/K220R failed to inhibit signaling of ETA-WT and ETA-6PD. This demonstrates that ETA desensitization involves at least two autonomous GRK2-mediated components: 1) a phosphorylation-independent signal decrease mediated by blocking of Gαq and 2) a mechanism involving phosphorylation of Ser and Thr residues in the CTE of the receptor in a redundant fashion, able to incorporate either proximal or distal phosphoacceptor sites. High level transfection of GRK2 variants influenced signaling of ETA-WT and ETA-6PD and hints at an additional phosphorylation-independent regulatory mechanism. Furthermore, internalization of mRuby-tagged receptors was observed with ETA-WT and the phosphorylation-deficient mutant ETA-14PD (lacking 14 phosphoacceptor sites) and turned out to be based on a phosphorylation-independent mechanism. PMID:24064210

  8. Androgen receptor in male breast cancer.

    PubMed

    Sas-Korczynska, Beata; Adamczyk, Aagnieszka; Niemiec, Joanna; Harazin-Lechowska, Agnieszka; Ambicka, Aleksandra; Jakubowicz, Jerzy

    2015-12-01

    We present the androgen receptor (AR) status in 32 breast cancers diagnosed in male patients. Androgen receptor expression was found in 62.5% tumors and it was more frequent (85% of cases) in estrogen-positive tumours. The analyses of its impact on treatment results showed that AR immmunopositivity is a prognostic factor for overall survival, and AR immunonegativity is also correlated with worse prognosis (distant metastases developed more frequently and earlier).

  9. Hormonal receptors in juvenile nasopharyngeal angiofibroma.

    PubMed

    Farag, M M; Ghanimah, S E; Ragaie, A; Saleem, T H

    1987-02-01

    Specific thermostable androgen receptors were detected in the tissues of nasopharyngeal angiofibroma. The receptors seemed to be specific with high affinity toward DHT more than testosterone. No abnormalities in serum levels of DHT, testosterone, and estradiol-17 beta could be detected in the patients studied. A concept of pathogenesis of the tumor in relation to that reported in literature recently is interpreted in the text.

  10. Biological and pharmacological roles of HCA receptors.

    PubMed

    Blad, Clara C; Ahmed, Kashan; IJzerman, Ad P; Offermanns, Stefan

    2011-01-01

    The hydroxy-carboxylic acid (HCA) receptors HCA(1), HCA(2), and HCA(3) were previously known as GPR81, GPR109A, and GPR109B, respectively, or as the nicotinic acid receptor family. They form a cluster of G protein-coupled receptors with high sequence homology. Recently, intermediates of energy metabolism, all HCAs, have been reported as endogenous ligands for each of these receptors. The HCA receptors are predominantly expressed on adipocytes and mediate the inhibition of lipolysis by coupling to G(i)-type proteins. HCA(1) is activated by lactate, HCA(2) by the ketone body 3-hydroxy-butyrate, and HCA(3) by hydroxylated β-oxidation intermediates, especially 3-hydroxy-octanoic acid. Both HCA(2) and HCA(3) are part of a negative feedback loop which keeps the release of fat stores in check under starvation conditions, whereas HCA(1) plays a role in the antilipolytic (fat-conserving) effect of insulin. HCA(2) was first discovered as the molecular target of the antidyslipidemic drug nicotinic acid (or niacin). Many synthetic agonists have since been designed for HCA(2) and HCA(3), but the development of a new, improved HCA-targeted drug has not been successful so far, despite a number of clinical studies. Recently, it has been shown that the major side effect of nicotinic acid, skin flushing, is mediated by HCA(2) receptors on keratinocytes, as well as on Langerhans cells in the skin. In this chapter, we summarize the latest developments in the field of HCA receptor research, with emphasis on (patho)physiology, receptor pharmacology, major ligand classes, and the therapeutic potential of HCA ligands.

  11. Moth Sex Pheromone Receptors and Deceitful Parapheromones

    PubMed Central

    Xu, Pingxi; Garczynski, Stephen F.; Atungulu, Elizabeth; Syed, Zainulabeuddin; Choo, Young-Moo; Vidal, Diogo M.; Zitelli, Caio H. L.; Leal, Walter S.

    2012-01-01

    The insect's olfactory system is so selective that male moths, for example, can discriminate female-produced sex pheromones from compounds with minimal structural modifications. Yet, there is an exception for this “lock-and-key” tight selectivity. Formate analogs can be used as replacement for less chemically stable, long-chain aldehyde pheromones, because male moths respond physiologically and behaviorally to these parapheromones. However, it remained hitherto unknown how formate analogs interact with aldehyde-sensitive odorant receptors (ORs). Neuronal responses to semiochemicals were investigated with single sensillum recordings. Odorant receptors (ORs) were cloned using degenerate primers, and tested with the Xenopus oocyte expression system. Quality, relative quantity, and purity of samples were evaluated by gas chromatography and gas chromatography-mass spectrometry. We identified olfactory receptor neurons (ORNs) housed in trichoid sensilla on the antennae of male navel orangeworm that responded equally to the main constituent of the sex pheromone, (11Z,13Z)-hexadecadienal (Z11Z13-16Ald), and its formate analog, (9Z,11Z)-tetradecen-1-yl formate (Z9Z11-14OFor). We cloned an odorant receptor co-receptor (Orco) and aldehyde-sensitive ORs from the navel orangeworm, one of which (AtraOR1) was expressed specifically in male antennae. AtraOR1•AtraOrco-expressing oocytes responded mainly to Z11Z13-16Ald, with moderate sensitivity to another component of the sex pheromone, (11Z,13Z)-hexadecadien-1-ol. Surprisingly, this receptor was more sensitive to the related formate than to the natural sex pheromone. A pheromone receptor from Heliothis virescens, HR13 ( = HvirOR13) showed a similar profile, with stronger responses elicited by a formate analog than to the natural sex pheromone, (11Z)-hexadecenal thus suggesting this might be a common feature of moth pheromone receptors. PMID:22911835

  12. CGRP receptor antagonism and migraine therapy.

    PubMed

    Edvinsson, Lars; Warfvinge, Karin

    2013-08-01

    Migraine is the most prevalent of the neurological disorders and can affect the patient throughout the lifetime. Calcitonin gene-related peptide (CGRP) is a neuropeptide that is expressed in the central and peripheral nervous systems. It is now 2 decades since it was proposed to be involved in migraine pathophysiology. The cranial sensory system contains C-fibers storing CGRP and trigeminal nerve activation and acute migraine attacks result in release of CGRP. The CGRP receptor consists of a complex of calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1) and receptor component protein (RCP). At the central synapses in the trigeminal nucleus caudalis, CGRP acts postjunctionally on second-order neurons to transmit pain signals centrally via brainstem and midbrain to thalamus and higher cortical pain regions. CLR and RAMPs are widely expressed throughout the brain, in the trigeminal ganglion and in intracranial arteries. CGRP does not induce neurogenic inflammation or sensitization at peripheral meningeal sites but relays nociceptive information from trigeminal primary afferent neurons to the second-order neurons in the spinal trigeminal nucleus neurons. CGRP receptor antagonists have been developed as novel antimigraine drugs and found to be effective in the treatment of acute migraine attacks. Other ways to stop CGRP activity has been introduced recently through antibodies against CGRP and the CGRP receptor. While the CGRP receptors are expressed both in the CNS and at various places related to the trigeminal system the exact site of action for their therapy effect is still unresolved but the new approaches may resolve this. PMID:23745702

  13. Opioid receptor desensitization: mechanisms and its link to tolerance

    PubMed Central

    Allouche, Stéphane; Noble, Florence; Marie, Nicolas

    2014-01-01

    Opioid receptors (OR) are part of the class A of G-protein coupled receptors and the target of the opiates, the most powerful analgesic molecules used in clinic. During a protracted use, a tolerance to analgesic effect develops resulting in a reduction of the effectiveness. So understanding mechanisms of tolerance is a great challenge and may help to find new strategies to tackle this side effect. This review will summarize receptor-related mechanisms that could underlie tolerance especially receptor desensitization. We will focus on the latest data obtained on molecular mechanisms involved in opioid receptor desensitization: phosphorylation, receptor uncoupling, internalization, and post-endocytic fate of the receptor. PMID:25566076

  14. Steroid hormone receptors in prostatic hyperplasia and prostatic carcinoma.

    PubMed

    Khalid, B A; Nurshireen, A; Rashidah, M; Zainal, B Y; Roslan, B A; Mahamooth, Z

    1990-06-01

    One hundred and six prostatic tissue samples obtained from transurethral resection were analysed for androgen and estrogen receptors. In 62 of these, progesterone and glucocorticoid receptors were also assayed. Steroid receptors were assayed using single saturation dose 3H-labelled ligand assays. Ninety percent of the 97 prostatic hyperplasia tissues and six of the nine prostatic carcinoma tissues were positive for androgen receptors. Estrogen receptors were only present in 19% and 33% respectively. Progesterone receptors were present in 70% of the tissues, but glucocorticoid receptors were present in only 16% of prostatic hyperplasia and none in prostatic carcinoma. PMID:1725553

  15. Effect of ring-constrained phenylpropyloxyethylamines on sigma receptors.

    PubMed

    Stavitskaya, Lidiya; Seminerio, Michael J; Healy, Jason R; Noorbakhsh, Bahar; Matsumoto, Rae R; Coop, Andrew

    2013-09-01

    A series of ring-constrained phenylpropyloxyethylamines, partial opioid structure analogs and derivatives of a previously studied sigma (σ) receptor ligand, was synthesized and evaluated at σ and opioid receptors for receptor selectivity. The results of this study identified several compounds with nanomolar affinity at both σ receptor subtypes. Compounds 6 and 9 had the highest selectivity for both σ receptor subtypes, compared to μ opioid receptors. In addition, compounds 6 and 9 significantly reduced the convulsive effects of cocaine in mice, which would be consistent with antagonism of σ receptors. PMID:23896610

  16. Pattern recognition receptors in antifungal immunity.

    PubMed

    Plato, Anthony; Hardison, Sarah E; Brown, Gordon D

    2015-03-01

    Receptors of the innate immune system are the first line of defence against infection, being able to recognise and initiate an inflammatory response to invading microorganisms. The Toll-like (TLR), NOD-like (NLR), RIG-I-like (RLR) and C-type lectin-like receptors (CLR) are four receptor families that contribute to the recognition of a vast range of species, including fungi. Many of these pattern recognition receptors (PRRs) are able to initiate innate immunity and polarise adaptive responses upon the recognition of fungal cell wall components and other conserved molecular patterns, including fungal nucleic acids. These receptors induce effective mechanisms of fungal clearance in normal hosts, but medical interventions, immunosuppression or genetic predisposition can lead to susceptibility to fungal infections. In this review, we highlight the importance of PRRs in fungal infection, specifically CLRs, which are the major PRR involved. We will describe specific PRRs in detail, the importance of receptor collaboration in fungal recognition and clearance, and describe how genetic aberrations in PRRs can contribute to disease pathology.

  17. Interactions of methoxyacetic acid with androgen receptor

    SciTech Connect

    Bagchi, Gargi; Hurst, Christopher H.; Waxman, David J.

    2009-07-15

    Endocrine disruptive compounds (EDC) alter hormone-stimulated, nuclear receptor-dependent physiological and developmental processes by a variety of mechanisms. One recently identified mode of endocrine disruption is through hormone sensitization, where the EDC modulates intracellular signaling pathways that control nuclear receptor function, thereby regulating receptor transcriptional activity indirectly. Methoxyacetic acid (MAA), the primary, active metabolite of the industrial solvent ethylene glycol monomethyl ether and a testicular toxicant, belongs to this EDC class. Modulation of nuclear receptor activity by MAA could contribute to the testicular toxicity associated with MAA exposure. In the present study, we evaluated the impact of MAA on the transcriptional activity of several nuclear receptors including the androgen receptor (AR), which plays a pivotal role in the development and maturation of spermatocytes. AR transcriptional activity is shown to be increased by MAA through a tyrosine kinase signaling pathway that involves PI3-kinase. In a combinatorial setting with AR antagonists, MAA potentiated the AR response without significantly altering the EC{sub 50} for androgen responsiveness, partially alleviating the antagonistic effect of the anti-androgens. Finally, MAA treatment of TM3 mouse testicular Leydig cells markedly increased the expression of Cyp17a1 and Shbg while suppressing Igfbp3 expression by {approx} 90%. Deregulation of these genes may alter androgen synthesis and action in a manner that contributes to MAA-induced testicular toxicity.

  18. Opioid receptors in the gastrointestinal tract

    PubMed Central

    Holzer, Peter

    2011-01-01

    Opium is arguably one of the oldest herbal medicines, being used as analgesic, sedative and antidiarrheal drug for thousands of years. These effects mirror the actions of the endogenous opioid system and are mediated by the principal μ-, κ- and δ-opioid receptors. In the gut, met-enkephalin, leu-enkephalin, β-endorphin and dynorphin occur in both neurons and endocrine cells. When released, opioid peptides activate opioid receptors on the enteric circuitry controlling motility and secretion. As a result, inhibition of gastric emptying, increase in sphincter tone, induction of stationary motor patterns and blockade of peristalsis ensue. Together with inhibition of ion and fluid secretion, these effects cause constipation, one of the most frequent and troublesome adverse reactions of opioid analgesic therapy. Although laxatives are most frequently used to ameliorate opioid-induced bowel dysfunction, their efficacy is unsatisfactory. Specific antagonism of peripheral opioid receptors is a more rational approach. This goal is addressed by the use of opioid receptor antagonists with limited absorption such as oral prolonged-release naloxone and opioid receptor antagonists that do not penetrate the blood-brain barrier such as methylnaltrexone and alvimopan. Preliminary evidence indicates that peripherally restricted opioid receptor antagonists may act as prokinetic drugs in their own right. PMID:19345246

  19. Crystal structures of the human adiponectin receptors.

    PubMed

    Tanabe, Hiroaki; Fujii, Yoshifumi; Okada-Iwabu, Miki; Iwabu, Masato; Nakamura, Yoshihiro; Hosaka, Toshiaki; Motoyama, Kanna; Ikeda, Mariko; Wakiyama, Motoaki; Terada, Takaho; Ohsawa, Noboru; Hato, Masakatsu; Ogasawara, Satoshi; Hino, Tomoya; Murata, Takeshi; Iwata, So; Hirata, Kunio; Kawano, Yoshiaki; Yamamoto, Masaki; Kimura-Someya, Tomomi; Shirouzu, Mikako; Yamauchi, Toshimasa; Kadowaki, Takashi; Yokoyama, Shigeyuki

    2015-04-16

    Adiponectin stimulation of its receptors, AdipoR1 and AdipoR2, increases the activities of 5' AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor (PPAR), respectively, thereby contributing to healthy longevity as key anti-diabetic molecules. AdipoR1 and AdipoR2 were predicted to contain seven transmembrane helices with the opposite topology to G-protein-coupled receptors. Here we report the crystal structures of human AdipoR1 and AdipoR2 at 2.9 and 2.4 Å resolution, respectively, which represent a novel class of receptor structure. The seven-transmembrane helices, conformationally distinct from those of G-protein-coupled receptors, enclose a large cavity where three conserved histidine residues coordinate a zinc ion. The zinc-binding structure may have a role in the adiponectin-stimulated AMPK phosphorylation and UCP2 upregulation. Adiponectin may broadly interact with the extracellular face, rather than the carboxy-terminal tail, of the receptors. The present information will facilitate the understanding of novel structure-function relationships and the development and optimization of AdipoR agonists for the treatment of obesity-related diseases, such as type 2 diabetes. PMID:25855295

  20. Engineering death receptor ligands for cancer therapy.

    PubMed

    Wajant, Harald; Gerspach, Jeannette; Pfizenmaier, Klaus

    2013-05-28

    CD95, TNFR1, TRAILR1 and TRAILR2 belong to a subgroup of TNF receptors which is characterized by a conserved cell death-inducing protein domain that connects these receptors to the apoptotic machinery of the cell. Activation of death receptors in malignant cells attracts increasing attention as a principle to fight cancer. Besides agonistic antibodies the major way to stimulate death receptors is the use of their naturally occurring "death ligands" CD95L, TNF and TRAIL. However, dependent from the concept followed to develop a death ligand-based therapy various limiting aspects have to be taken into consideration on the way to a "bedside" usable drug. Problems arise in particular from the cell associated transmembrane nature of the death ligands, the poor serum half life of the soluble fragments derived from the transmembrane ligands, the ubiquitous expression of the death receptors and the existence of additional non-death receptors of the death ligands. Here, we summarize strategies how these limitations can be overcome by genetic engineering.

  1. Modulators of androgen and estrogen receptor activity.

    PubMed

    Clarke, Bart L; Khosla, Sundeep

    2010-01-01

    This review focuses on significant recent findings regarding modulators of androgen and estrogen receptor activity. Selective androgen receptor modulators (SARMs) interact with androgen receptors (ARs), and selective estrogen receptor modulators (SERMs) interact with estrogen receptors (ERs), with variable tissue selectivity. SERMs, which interact with both ERб and ERв in a tissue-specific manner to produce diverse outcomes in multiple tissues, continue to generate significant interest for clinical application. Development of SARMs for clinical application has been slower to date because of potential adverse effects, but these diverse compounds continue to be investigated for use in disorders in which modulation of the AR is important. SARMs have been investigated mostly at the basic and preclinical level to date, with few human clinical trials published. These compounds have been evaluated mostly for application in different stages of prostate cancer to date, but they hold promise for multiple other applications. Publication of the large STAR and RUTH clinical trials demonstrated that the SERMs tamoxifen and raloxifene have interesting similarities and differences in tissues that contain ERs. Lasofoxifene, bazedoxifene, and arzoxifene are newer SERMs that have been demonstrated in clinical trials to more potently increase bone mineral density and lower serum cholesterol values than tamoxifen or raloxifene. Both SARMs and SERMs hold great promise for therapeutic use in multiple disorders in which tissue-specific effects are mediated by their respective receptors.

  2. Solubilization of human platelet vasopressin receptors

    SciTech Connect

    Thibonnier, M.

    1987-02-02

    The human platelet membrane receptor for vasopressin (AVP) has been solubilized with the cholic acid derivative detergent 3-((3-cholamidopropyl)-dimethylammonio)-1-propane sulfonate. Rapid and simple separation of free tritiated AVP ((/sup 3/H)AVP) from the solubilized receptor-hormone complex was done by filtration through polyethylenimine-treated filters. (/sup 3/H)AVP binds to this soluble receptor with an equilibrium dissociation constant of 11.03 +/- 1.86 nM and a maximal number of binding sites = 288 +/- 66 fmol/mg protein while the corresponding values of the membrane-bound receptor are 1.62 +/- 0.21 nM and 237 +/- 38 fmol/mg of protein, respectively. The Ki value for native AVP derived from competition experiments is 11.02 +/- 20.5 nM for the soluble receptor. Competition experiments with specific vascular and renal antagonists confirm that the solubilized receptor belongs to the V1-vascular subtype. 10 references, 5 figures.

  3. Melanocortin Receptors, Melanotropic Peptides and Penile Erection

    PubMed Central

    King, Stephen H.; Mayorov, Alexander V.; Balse-Srinivasan, Preeti; Hruby, Victor J.; Vanderah, Todd W.; Wessells, Hunter

    2009-01-01

    Penile erection is a complex physiologic event resulting from the interactions of the nervous system on a highly specialized vascular organ. Activation of central nervous system melanocortinergic (MC) receptors with either endogenous or synthetic melanotropic ligands may initiate and/or facilitate spontaneous penile erection. While the CNS contains principally the MC3 and MC4 receptor subtypes, there is conflicting data as to which receptor mediates erection. Although the MC4R is emerging as the principle effector of MC induced erection, the role of the MC3R is poorly understood. Manipulation of each receptor subtype with newly synthesized receptor specific agonists and antagonists, as well as knockout mice, has elucidated their individual contributions. Novel data from our laboratories suggests that antagonism of forebrain MC3R may enhance melanocortin-induced erections. Furthermore, melanocortin agents may interact with better-studied systems such as oxytocinergic pathways at the hypothalamic, brainstem or spinal level. Current therapies for erectile dysfunction target end organ vascular tissue. Manipulation of MC receptors may provide an alternative, centrally mediated therapeutic approach for erectile and other sexual dysfunctions. The non-specific “superpotent” MC agonist, PT-141, which is the carboxylate derivative of MT-II, has reached phase II human trials. Through their centrally mediated activity, melanocortin agonists have potential to treat erectile dysfunction as well as possible applications to the unmet medical needs of decreased sexual motivation and loss of libido. PMID:17584130

  4. Rapid steroid hormone actions via membrane receptors.

    PubMed

    Schwartz, Nofrat; Verma, Anjali; Bivens, Caroline B; Schwartz, Zvi; Boyan, Barbara D

    2016-09-01

    Steroid hormones regulate a wide variety of physiological and developmental functions. Traditional steroid hormone signaling acts through nuclear and cytosolic receptors, altering gene transcription and subsequently regulating cellular activity. This is particularly important in hormonally-responsive cancers, where therapies that target classical steroid hormone receptors have become clinical staples in the treatment and management of disease. Much progress has been made in the last decade in detecting novel receptors and elucidating their mechanisms, particularly their rapid signaling effects and subsequent impact on tumorigenesis. Many of these receptors are membrane-bound and lack DNA-binding sites, functionally separating them from their classical cytosolic receptor counterparts. Membrane-bound receptors have been implicated in a number of pathways that disrupt the cell cycle and impact tumorigenesis. Among these are pathways that involve phospholipase D, phospholipase C, and phosphoinositide-3 kinase. The crosstalk between these pathways has been shown to affect apoptosis and proliferation in cardiac cells, osteoblasts, and chondrocytes as well as cancer cells. This review focuses on rapid signaling by 17β-estradiol and 1α,25-dihydroxy vitamin D3 to examine the integrated actions of classical and rapid steroid signaling pathways both in contrast to each other and in concert with other rapid signaling pathways. This new approach lends insight into rapid signaling by steroid hormones and its potential for use in targeted drug therapies that maximize the benefits of traditional steroid hormone-directed therapies while mitigating their less desirable effects. PMID:27288742

  5. Targeting receptor tyrosine kinases in gastric cancer

    PubMed Central

    Morishita, Asahiro; Gong, Jian; Masaki, Tsutomu

    2014-01-01

    Molecularly targeted therapeutic agents are constantly being developed and have been shown to be effective in various clinical trials. One group of representative targeted oncogenic kinases, the receptor tyrosine kinases (RTKs), has been associated with gastric cancer development. Trastuzumab, an inhibitor of ERBB2, has been approved for the treatment of gastric cancer, although other receptor tyrosine kinases, such as epidermal growth factor receptor, vascular endothelial growth factor, platelet-derived growth factor receptor, c-Met, IGF-1R and fibroblast growth factor receptor 2, are also activated in gastric cancer. The promising results of the trastuzumab clinical trial for gastric cancer resulted in the approval of trastuzumab-based therapy as a first-line treatment for human epidermal growth factor receptor 2-positive patients. On the other hand, the trial examining bevacizumab in combination with conventional chemotherapy did not meet its primary goal of increasing the overall survival time of gastric cancer patients; however, a significantly higher response rate and a longer progression-free survival were observed in the bevacizumab arm of the trial. Other clinical trials, especially phase III trials that have tested drugs targeting RTKs, such as cetuximab, panitumumab, gefitinib, erlotinib, figitumumab, sorafenib, sunitinib and lapatinib, have shown that these drugs have modest effects against gastric cancer. This review summarizes the recent results from the clinical trials of molecularly targeted drugs and suggests that further improvements in the treatment of advanced gastric cancer can be achieved through the combination of conventional drugs with the new molecularly targeted therapies. PMID:24782606

  6. Pharmacological approaches to targeting muscarinic acetylcholine receptors.

    PubMed

    Matera, Carlo; Tata, Ada M

    2014-01-01

    The presence of cholinergic system markers and muscarinic receptor subtypes in several tissues also of nonneuronal type has been largely demonstrated. Acetylcholine, synthesized in the nervous system, can locally contribute to modulate cell proliferation, survival and apoptosis. Considering that the cholinergic system functions are impaired in a number of disorders, the identification of new drugs regulating these functions appears of great clinical relevance. The possible involvement of muscarinic acetylcholine receptors in different pathologies has been proposed in recent years and is becoming an important area of study. However, the lack of selective muscarinic receptor ligands has for long time limited the therapeutic treatment based on muscarinic receptors as targets. To date, some muscarinic ligands such as xanomeline (patent, US5980933) or cevimeline (patents US4855290, US5571918) have been developed for the treatment of several pathologies (Alzheimer's and Sjogren's diseases). The present review will be focused on the potential effects produced by muscarinic receptor activation in different pathologies, including tumors. In fact, the potential use of muscarinic ligands in therapeutic protocols in cancer therapy will be discussed, considering that several muscarinic antagonists, already used in the treatment of genitourinary diseases (e.g. darifenacin, patent, US5096890, US6106864), have also been demonstrated to arrest the tumor growth in vivo. Moreover, the contribution of muscarinic receptors to analgesia is also reviewed. Finally, some of the most significant achievements in the field of bitopic/dualsteric ligands will be discussed and the molecules patented so far will be presented.

  7. Melanocortin receptors, melanotropic peptides and penile erection.

    PubMed

    King, Stephen H; Mayorov, Alexander V; Balse-Srinivasan, Preeti; Hruby, Victor J; Vanderah, Todd W; Wessells, Hunter

    2007-01-01

    Penile erection is a complex physiologic event resulting from the interactions of the nervous system on a highly specialized vascular organ. Activation of central nervous system melanocortinergic (MC) receptors with either endogenous or synthetic melanotropic ligands may initiate and/or facilitate spontaneous penile erection. While the CNS contains principally the MC3 and MC4 receptor subtypes, there is conflicting data as to which receptor mediates erection. Although the MC4R is emerging as the principle effector of MC induced erection, the role of the MC3R is poorly understood. Manipulation of each receptor subtype with newly synthesized receptor specific agonists and antagonists, as well as knockout mice, has elucidated their individual contributions. Novel data from our laboratories suggests that antagonism of forebrain MC3R may enhance melanocortin-induced erections. Furthermore, melanocortin agents may interact with better-studied systems such as oxytocinergic pathways at the hypothalamic, brainstem or spinal level. Current therapies for erectile dysfunction target end organ vascular tissue. Manipulation of MC receptors may provide an alternative, centrally mediated therapeutic approach for erectile and other sexual dysfunctions. The non-specific "superpotent" MC agonist, PT-141, which is the carboxylate derivative of MT-II, has reached phase II human trials. Through their centrally mediated activity, melanocortin agonists have potential to treat erectile dysfunction as well as possible applications to the unmet medical needs of decreased sexual motivation and loss of libido.

  8. Assembly and Stoichiometry of the AMPA Receptor and TARP Complex

    PubMed Central

    Kim, Kwang S.; Yan, Dan; Tomita, Susumu

    2010-01-01

    Glutamate is a major excitatory neurotransmitter in the vertebrate brain. AMPA-type glutamate receptors mediate fast excitatory transmission. AMPA receptors assemble with transmembrane AMPA receptor regulatory protein (TARP) auxiliary subunits and function as native ion channels. However, the assembly and stoichiometry of AMPA receptor and TARP complexes remain unclear. Here, we developed a novel strategy to determine the assembly and stoichiometry of this protein complex and found that functional AMPA receptors indeed assembled as a tetramer in a dimer-of-dimers structure. Furthermore, we found that the AMPA receptor auxiliary subunit, TARP, had a variable stoichiometry (1–4 TARP units) on AMPA receptors and that one TARP unit was sufficient to modulate AMPA receptor activity. In neurons, TARP had fixed and minimum stoichiometry on AMPA receptors. This fundamental composition of the AMPA receptor/TARP complex is important for the elucidation of the molecular machinery that underlies synaptic transmission. PMID:20089915

  9. Coantagonism of Glutamate Receptors and Nicotinic Acetylcholinergic Receptors Disrupts Fear Conditioning and Latent Inhibition of Fear Conditioning

    ERIC Educational Resources Information Center

    Gould, Thomas J.; Lewis, Michael C.

    2005-01-01

    The present study investigated the hypothesis that both nicotinic acetylcholinergic receptors (nAChRs) and glutamate receptors ([alpha]-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPARs) and N-methyl-D-aspartate glutamate receptors (NMDARs)) are involved in fear conditioning, and may modulate similar processes. The effects of the…

  10. A "dial-a-receptor" dynamic combinatorial library.

    PubMed

    Hamieh, Saleh; Saggiomo, Vittorio; Nowak, Piotr; Mattia, Elio; Ludlow, R Frederick; Otto, Sijbren

    2013-11-18

    Making receptors to order: A small dynamic combinatorial library (DCL), formed from two dithiols in water, provides a continuous range of six receptors of different sizes. The majority of the 30 tested amines and ammonium ions amplified receptors from this library, thus spanning the complete receptor-size range and showing that this DCL provides a generic platform for the development of receptors for this important class of compounds.

  11. Ubiquitination of plant immune receptors.

    PubMed

    Zhou, Jinggeng; He, Ping; Shan, Libo

    2014-01-01

    Ubiquitin is a highly conserved regulatory protein consisting of 76 amino acids and ubiquitously expressed in all eukaryotic cells. The reversible ubiquitin conjugation to a wide variety of target proteins, a process known as ubiquitination or ubiquitylation, serves as one of the most important and prevalent posttranslational modifications to regulate the myriad actions of protein cellular functions, including protein degradation, vesicle trafficking, and subcellular localization. Protein ubiquitination is an ATP-dependent stepwise covalent attachment of one or more ubiquitin molecules to target proteins mediated by a hierarchical enzymatic cascade consisting of an E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme, and E3 ubiquitin ligase. The plant plasma membrane resident receptor-like kinase Flagellin Sensing 2 (FLS2) recognizes bacterial flagellin and initiates innate immune signaling to defend against pathogen attacks. We have recently shown that two plant U-box E3 ubiquitin ligases PUB12 and PUB13 directly ubiquitinate FLS2 and promote flagellin-induced FLS2 degradation, which in turn attenuates FLS2 signaling to prevent excessive or prolonged activation of immune responses. Here, we use FLS2 as an example to describe a protocol for detection of protein ubiquitination in plant cells in vivo and in test tubes in vitro. In addition, we elaborate the approach to identify different types of ubiquitin linkages by using various lysine mutants of ubiquitin. The various in vivo and in vitro ubiquitination assays will provide researchers with the tools to address how ubiquitination regulates diverse cellular functions of target proteins. PMID:25117287

  12. GABAA receptor target of tetramethylenedisulfotetramine

    PubMed Central

    Zhao, Chunqing; Hwang, Sung Hee; Buchholz, Bruce A.; Carpenter, Timothy S.; Lightstone, Felice C.; Yang, Jun; Hammock, Bruce D.; Casida, John E.

    2014-01-01

    Use of the highly toxic and easily prepared rodenticide tetramethylenedisulfotetramine (TETS) was banned after thousands of accidental or intentional human poisonings, but it is of continued concern as a chemical threat agent. TETS is a noncompetitive blocker of the GABA type A receptor (GABAAR), but its molecular interaction has not been directly established for lack of a suitable radioligand to localize the binding site. We synthesized [14C]TETS (14 mCi/mmol, radiochemical purity >99%) by reacting sulfamide with H14CHO and s-trioxane then completion of the sequential cyclization with excess HCHO. The outstanding radiocarbon sensitivity of accelerator mass spectrometry (AMS) allowed the use of [14C]TETS in neuroreceptor binding studies with rat brain membranes in comparison with the standard GABAAR radioligand 4′-ethynyl-4-n-[3H]propylbicycloorthobenzoate ([3H]EBOB) (46 Ci/mmol), illustrating the use of AMS for characterizing the binding sites of high-affinity 14C radioligands. Fourteen noncompetitive antagonists of widely diverse chemotypes assayed at 1 or 10 µM inhibited [14C]TETS and [3H]EBOB binding to a similar extent (r2 = 0.71). Molecular dynamics simulations of these 14 toxicants in the pore region of the α1β2γ2 GABAAR predict unique and significant polar interactions for TETS with α1T1′ and γ2S2′, which are not observed for EBOB or the GABAergic insecticides. Several GABAAR modulators similarly inhibited [14C]TETS and [3H]EBOB binding, including midazolam, flurazepam, avermectin Ba1, baclofen, isoguvacine, and propofol, at 1 or 10 μM, providing an in vitro system for recognizing candidate antidotes. PMID:24912155

  13. Hypotensive effects of ghrelin receptor agonists mediated through a novel receptor

    PubMed Central

    Callaghan, Brid; Kosari, Samin; Pustovit, Ruslan V; Sartor, Daniela M; Ferens, Dorota; Ban, Kung; Baell, Jonathan; Nguyen, Trung V; Rivera, Leni R; Brock, James A; Furness, John B

    2014-01-01

    BACKGROUND AND PURPOSE Some agonists of ghrelin receptors cause rapid decreases in BP. The mechanisms by which they cause hypotension and the pharmacology of the receptors are unknown. EXPERIMENTAL APPROACH The effects of ligands of ghrelin receptors were investigated in rats in vivo, on isolated blood vessels and on cells transfected with the only molecularly defined ghrelin receptor, growth hormone secretagogue receptor 1a (GHSR1a). KEY RESULTS Three agonists of GHSR1a receptors, ulimorelin, capromorelin and CP464709, caused a rapid decrease in BP in the anaesthetized rat. The effect was not reduced by either of two GHSR1a antagonists, JMV2959 or YIL781, at doses that blocked effects on colorectal motility, in vivo. The rapid hypotension was not mimicked by ghrelin, unacylated ghrelin or the unacylated ghrelin receptor agonist, AZP531. The early hypotension preceded a decrease in sympathetic nerve activity. Early hypotension was not reduced by hexamethonium or by baroreceptor (sino-aortic) denervation. Ulimorelin also relaxed isolated segments of rat mesenteric artery, and, less potently, relaxed aorta segments. The vascular relaxation was not reduced by JMV2959 or YIL781. Ulimorelin, capromorelin and CP464709 activated GHSR1a in transfected HEK293 cells at nanomolar concentrations. JMV2959 and YIL781 both antagonized effects in these cells, with their pA2 values at the GHSR1a receptor being 6.55 and 7.84. CONCLUSIONS AND IMPLICATIONS Our results indicate a novel vascular receptor or receptors whose activation by ulimorelin, capromorelin and CP464709 lowered BP. This receptor is activated by low MW GHSR1a agonists, but is not activated by ghrelin. PMID:24670149

  14. Receptors in the bill of the platypus.

    PubMed Central

    Gregory, J E; Iggo, A; McIntyre, A K; Proske, U

    1988-01-01

    1. Afferent responses were recorded from filaments of the trigeminal nerve in each of two platypuses (Ornithorhynchus anatinus) anaesthetized with alpha-chloralose. All receptive fields were located along the lateral border of the upper bill. Discrete receptive fields could be identified as belonging to two distinct classes of sensory receptor. 2. The most prominent response was an irregular resting discharge which could be increased or decreased by weak electric pulses. These receptors were insensitive to moderately strong mechanical stimulation, and it was concluded that they were electroreceptors. 3. Each electroreceptor had a single spot of maximum sensitivity on the bill surface. When the stimulating electrode over this spot was the cathode it excited the receptor for the duration of the stimulating pulse, using stimulus strengths as low as 20 mV. When it was the anode, it inhibited the discharge. Cathodal excitation was followed by rebound inhibition and anodal inhibition by rebound excitation. 4. Receptors responded to cathodal steps with an initial high-frequency burst of impulses, followed by a lower maintained rate of discharge. Rapidly changing pulses were similarly effective in exciting receptors, adding support to the claim that platypuses are able to detect moving prey by the electrical activity associated with muscle contraction. 5. The centres of the receptive fields of two electroreceptors were marked by the insertion of fine entomological pins. Histological examination established the presence of a large mucus-secreting gland at the marked spot. The epidermal duct of the gland contained an elaborate myelinated innervation, with morphologically distinct axon terminals that we identify as the electroreceptors. 6. As well as electroreceptors, the skin of the bill contained three kinds of mechanoreceptors: slow-adapting receptors, rapidly adapting, vibration-sensitive receptors and receptors with an intermediate adaptation rate. The slowly adapting

  15. Receptor Expression in Rat Skeletal Muscle Cell Cultures

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.

    1996-01-01

    One on the most persistent problems with long-term space flight is atrophy of skeletal muscles. Skeletal muscle is unique as a tissue in the body in that its ability to undergo atrophy or hypertrophy is controlled exclusively by cues from the extracellular environment. The mechanism of communication between muscle cells and their environment is through a group of membrane-bound and soluble receptors, each of which carries out unique, but often interrelated, functions. The primary receptors include acetyl choline receptors, beta-adrenergic receptors, glucocorticoid receptors, insulin receptors, growth hormone (i.e., somatotropin) receptors, insulin-like growth factor receptors, and steroid receptors. This project has been initiated to develop an integrated approach toward muscle atrophy and hypertrophy that takes into account information on the populations of the entire group of receptors (and their respective hormone concentrations), and it is hypothesized that this information can form the basis for a predictive computer model for muscle atrophy and hypertrophy. The conceptual basis for this project is illustrated in the figure below. The individual receptors are shown as membrane-bound, with the exception of the glucocorticoid receptor which is a soluble intracellular receptor. Each of these receptors has an extracellular signalling component (e.g., innervation, glucocorticoids, epinephrine, etc.), and following the interaction of the extracellular component with the receptor itself, an intracellular signal is generated. Each of these intracellular signals is unique in its own way; however, they are often interrelated.

  16. Atypical chemokine receptors in cancer: friends or foes?

    PubMed

    Massara, Matteo; Bonavita, Ornella; Mantovani, Alberto; Locati, Massimo; Bonecchi, Raffaella

    2016-06-01

    The chemokine system is a fundamental component of cancer-related inflammation involved in all stages of cancer development. It controls not only leukocyte infiltration in primary tumors but also angiogenesis, cancer cell proliferation, and migration to metastatic sites. Atypical chemokine receptors are a new, emerging class of regulators of the chemokine system. They control chemokine bioavailability by scavenging, transporting, or storing chemokines. They can also regulate the activity of canonical chemokine receptors with which they share the ligands by forming heterodimers or by modulating their expression levels or signaling activity. Here, we summarize recent results about the role of these receptors (atypical chemokine receptor 1/Duffy antigen receptor for chemokine, atypical chemokine receptor 2/D6, atypical chemokine receptor 3/CXC-chemokine receptor 7, and atypical chemokine receptor 4/CC-chemokine receptor-like 1) on the tumorigenesis process, indicating that their effects are strictly dependent on the cell type on which they are expressed and on their coexpression with other chemokine receptors. Indeed, atypical chemokine receptors inhibit tumor growth and progression through their activity as negative regulators of chemokine bioavailability, whereas, on the contrary, they can promote tumorigenesis when they regulate the signaling of other chemokine receptors, such as CXC-chemokine receptor 4. Thus, atypical chemokine receptors are key components of the regulatory network of inflammation and immunity in cancer and may have a major effect on anti-inflammatory and immunotherapeutic strategies. PMID:26908826

  17. Pharmacology and function of melatonin receptors

    SciTech Connect

    Dubocovich, M.L.

    1988-09-01

    The hormone melatonin is secreted primarily from the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone, through an action in the brain, appears to be involved in the regulation of various neural and endocrine processes that are cued by the daily change in photoperiod. This article reviews the pharmacological characteristics and function of melatonin receptors in the central nervous system, and the role of melatonin in mediating physiological functions in mammals. Melatonin and melatonin agonists, at picomolar concentrations, inhibit the release of dopamine from retina through activation of a site that is pharmacologically different from a serotonin receptor. These inhibitory effects are antagonized by the novel melatonin receptor antagonist luzindole (N-0774), which suggests that melatonin activates a presynaptic melatonin receptor. In chicken and rabbit retina, the pharmacological characteristics of the presynaptic melatonin receptor and the site labeled by 2-(125I)iodomelatonin are identical. It is proposed that 2-(125I)iodomelatonin binding sites (e.g., chicken brain) that possess the pharmacological characteristics of the retinal melatonin receptor site (order of affinities: 2-iodomelatonin greater than 6-chloromelatonin greater than or equal to melatonin greater than or equal to 6,7-di-chloro-2-methylmelatonin greater than 6-hydroxymelatonin greater than or equal to 6-methoxymelatonin greater than N-acetyltryptamine greater than or equal to luzindole greater than N-acetyl-5-hydroxytryptamine greater than 5-methoxytryptamine much greater than 5-hydroxytryptamine) be classified as ML-1 (melatonin 1). The 2-(125I)iodomelatonin binding site of hamster brain membranes possesses different binding and pharmacological characteristics from the retinal melatonin receptor site and should be classified as ML-2. 64 references.

  18. Characterization and pharmacology of the GHB receptor.

    PubMed

    Ticku, Maharaj K; Mehta, Ashok K

    2008-10-01

    Radioligand binding using [(3)H]NCS-382, an antagonist of the GHB receptor, revealed specific binding sites in the rat cerebrocortical and hippocampal membranes. Scatchard analysis of saturation isotherms revealed two different populations of binding sites. NCS-382 was about 10 times more potent than GHB in inhibiting [(3)H]NCS-382 binding. A variety of ligands for other receptors did not affect [(3)H]NCS-382 binding. Quantitative autoradiographic analysis of [(3)H]NCS-382 binding revealed similar characteristics. Thus [(3)H]NCS-382, being more potent and selective, offers advantage over [(3)H]GHB as a radioligand. Unlike GHB, several analogues of GHB such as UMB68 (a tertiary alcohol analogue of GHB), UMB86 (4-hydroxy-4-napthylbutanoic acid, sodium salt), UMB72 [4-(3-phenylpropyloxy)butyric acid, sodium salt], UMB73 (4-benzyloxybutyric acid, sodium salt), UMB66 (3-chloropropanoic acid), gamma-hydroxyvaleric acid (that is, GHV, a 4-methyl-substituted analogue of GHB), 3-HPA (3-hydroxyphenylacetic acid), and ethers of 3-hydroxyphenylacetic acid (UMB108, UMB109, and UMB119) displaced [(3)H]NCS-382 without affecting [(3)H]GABA binding to GABA(B) receptor. Thus these compounds offer an advantage over GHB as an experimental tool. Our study, aimed at exploring the potential involvement of the GHB receptor in the pharmacology of ethanol, indicated that ethanol does not affect [(3)H]NCS-382 binding in the rat brain, thereby suggesting that ethanol does not interact directly with the GHB receptor. Our study, aimed at exploring the involvement of the GHB receptor in the pathology of succinate semialdehyde dehydrogenase deficiency, which is known to cause elevation of GHB levels, revealed no change in the affinity, receptor density or displacement potency as determined by using [(3)H]NCS-382 as a radioligand in Aldh5a1(-/-) vs. Aldh5a1(+/+) mouse brain.

  19. Regulation and ontogeny of subtypes of muscarinic receptors and muscarinic receptor-mediated

    SciTech Connect

    Lee, W.

    1989-01-01

    The densities of total and M1 muscarinic receptors were measured using the muscarinic receptor antagonists {sup 3}H-quinuclidinyl benzilate and {sup 3}H-pirenzepine, respectively. Thus, the difference between the density of {sup 3}H-quinuclidinyl benzilate and {sup 3}H-pirenzepine binding sites represents the density of M2 sites. In addition, there is no observable change in either acetylcholine-stimulated phosphoinositide breakdown (suggested to be an M1 receptor-mediated response) or in carbachol-mediated inhibition of cyclic AMP accumulation (suggested to be an M2 receptor-mediated response) in slices of cortex+dorsal hippocampus following chronic atropine administration. In other experiments, it has been shown that the M1 and M2 receptors in rat cortex have different ontogenetic profiles. The M2 receptor is present at adult levels at birth, while the M1 receptor develops slowly from low levels at postnatal week 1 to adult levels at postnatal week 3. The expression of acetylcholine-stimulated phosphoinositide breakdown parallels the development of M1 receptors, while the development of carbachol-mediated inhibition of cyclic AMP accumulation occurs abruptly between weeks 2 and 3 postnatally.

  20. Activating Receptor Signals Drive Receptor Diversity in Developing Natural Killer Cells

    PubMed Central

    Freund, Jacquelyn; May, Rebecca M.; Li, Hongchuan; McCullen, Matthew; Zhang, Bin; Lenvik, Todd; Cichocki, Frank; Anderson, Stephen K.; Kambayashi, Taku

    2016-01-01

    It has recently been appreciated that NK cells exhibit many features reminiscent of adaptive immune cells. Considerable heterogeneity exists with respect to the ligand specificity of individual NK cells and as such, a subset of NK cells can respond, expand, and differentiate into memory-like cells in a ligand-specific manner. MHC I-binding inhibitory receptors, including those belonging to the Ly49 and KIR families, are expressed in a variegated manner, which creates ligand-specific diversity within the NK cell pool. However, how NK cells determine which inhibitory receptors to express on their cell surface during a narrow window of development is largely unknown. In this manuscript, we demonstrate that signals from activating receptors are critical for induction of Ly49 and KIR receptors during NK cell development; activating receptor-derived signals increased the probability of the Ly49 bidirectional Pro1 promoter to transcribe in the forward versus the reverse direction, leading to stable expression of Ly49 receptors in mature NK cells. Our data support a model where the balance of activating and inhibitory receptor signaling in NK cells selects for the induction of appropriate inhibitory receptors during development, which NK cells use to create a diverse pool of ligand-specific NK cells. PMID:27500644

  1. Activating Receptor Signals Drive Receptor Diversity in Developing Natural Killer Cells.

    PubMed

    Freund, Jacquelyn; May, Rebecca M; Yang, Enjun; Li, Hongchuan; McCullen, Matthew; Zhang, Bin; Lenvik, Todd; Cichocki, Frank; Anderson, Stephen K; Kambayashi, Taku

    2016-08-01

    It has recently been appreciated that NK cells exhibit many features reminiscent of adaptive immune cells. Considerable heterogeneity exists with respect to the ligand specificity of individual NK cells and as such, a subset of NK cells can respond, expand, and differentiate into memory-like cells in a ligand-specific manner. MHC I-binding inhibitory receptors, including those belonging to the Ly49 and KIR families, are expressed in a variegated manner, which creates ligand-specific diversity within the NK cell pool. However, how NK cells determine which inhibitory receptors to express on their cell surface during a narrow window of development is largely unknown. In this manuscript, we demonstrate that signals from activating receptors are critical for induction of Ly49 and KIR receptors during NK cell development; activating receptor-derived signals increased the probability of the Ly49 bidirectional Pro1 promoter to transcribe in the forward versus the reverse direction, leading to stable expression of Ly49 receptors in mature NK cells. Our data support a model where the balance of activating and inhibitory receptor signaling in NK cells selects for the induction of appropriate inhibitory receptors during development, which NK cells use to create a diverse pool of ligand-specific NK cells.

  2. G-Protein Coupled Receptor Resensitization – Appreciating the Balancing Act of Receptor Function

    PubMed Central

    Mohan, Maradumane L.; Vasudevan, Neelakantan T.; Gupta, Manveen K.; Martelli, Elizabeth E.; Prasad, Sathyamangla V. Naga

    2015-01-01

    G-protein coupled receptors (GPCRs) are seven transmembrane receptors that are pivotal regulators of cellular responses including vision, cardiac contractility, olfaction, and platelet activation. GPCRs have been a major target for drug discovery due to their role in regulating a broad range of physiological and pathological responses. GPCRs mediate these responses through a cyclical process of receptor activation (initiation of downstream signals), desensitization (inactivation that results in diminution of downstream signals), and resensitization (receptor reactivation for next wave of activation). Although these steps may be of equal importance in regulating receptor function, significant advances have been made in understanding activation and desensitization with limited effort towards resensitization. Inadequate importance has been given to resensitization due to the understanding that resensitization is a homeostasis maintaining process and is not acutely regulated. Evidence indicates that resensitization is a critical step in regulating GPCR function and may contribute towards receptor signaling and cellular responses. In light of these observations, it is imperative to discuss resensitization as a dynamic and mechanistic regulator of GPCR function. In this review we discuss components regulating GPCR function like activation, desensitization, and internalization with special emphasis on resensitization. Although we have used β-adrenergic receptor as a proto-type GPCR to discuss mechanisms regulating receptor function, other GPCRs are also described to put forth a view point on the universality of such mechanisms. PMID:22697395

  3. Virus-receptor interactions and receptor-mediated virus entry into host cells.

    PubMed

    Casasnovas, José M

    2013-01-01

    The virus particles described in previous chapters are vehicles that transmit the viral genome and the infection from cell to cell. To initiate the infective cycle, the viral genome must therefore translocate from the viral particle to the cytoplasm. Via distinct proteins or motifs in their outermost shell, the particles attach initially to specific molecules on the host cell surface. These virus receptors thus mediate penetration of the viral genome inside the cell, where the intracellular infective cycle starts. The presence of these receptors on the cell surface is a principal determinant of virus host tropism. Viruses can use diverse types of molecules to attach to and enter into cells. In addition, virus-receptor recognition can evolve over the course of an infection, and virus variants with distinct receptor-binding specificities and tropism can appear. The identification of virus receptors and the characterization of virus-receptor interactions have been major research goals in virology for the last two decades. In this chapter, we will describe, from a structural perspective, several virus-receptor interactions and the active role of receptor molecules in virus entry. PMID:23737061

  4. The Orphan Nuclear Receptor TR4 Is a Vitamin A-activated Nuclear Receptor

    SciTech Connect

    Zhou, X. Edward; Suino-Powell, Kelly M.; Xu, Yong; Chan, Cee-Wah; Tanabe, Osamu; Kruse, Schoen W.; Reynolds, Ross; Engel, James Douglas; Xu, H. Eric

    2015-11-30

    Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibits constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.

  5. Activation of G protein by opioid receptors: role of receptor number and G-protein concentration.

    PubMed

    Remmers, A E; Clark, M J; Alt, A; Medzihradsky, F; Woods, J H; Traynor, J R

    2000-05-19

    The collision-coupling model for receptor-G-protein interaction predicts that the rate of G-protein activation is dependent on receptor density, but not G-protein levels. C6 cells expressing mu- or delta-opioid receptors, or SH-SY5Y cells, were treated with beta-funaltrexamine (mu) or naltrindole-5'-isothiocyanate (delta) to decrease receptor number. The time course of full or partial agonist-stimulated ¿35SGTPgammaS binding did not vary in C6 cell membranes containing <1-25 pmol/mg mu-opioid receptor, or 1. 4-4.3 pmol/mg delta-opioid receptor, or in SHSY5Y cells containing 0. 16-0.39 pmol/mg receptor. The association of ¿35SGTPgammaS binding was faster in membranes from C6mu cells than from C6delta cells. A 10-fold reduction in functional G-protein, following pertussis toxin treatment, lowered the maximal level of ¿35SGTPgammaS binding but not the association rate. These data indicate a compartmentalization of opioid receptors and G protein at the cell membrane. PMID:10822058

  6. Identification of Gene Markers for Activation of the Nuclear Receptor Pregnane X Receptor

    EPA Science Inventory

    Many environmentally-relevant chemicals and drugs activate the nuclear receptor pregnane X receptor (PXR). Activation of PXR in the mouse liver can lead to increases in liver weight in part through increased hepatocyte replication similar to chemicals that activate other nuclear ...

  7. Constitutive Dimerization of the G-Protein Coupled Receptor, Neurotensin Receptor 1, Reconstituted into Phospholipid Bilayers

    PubMed Central

    Harding, Peter J.; Attrill, Helen; Boehringer, Jonas; Ross, Simon; Wadhams, George H.; Smith, Eleanor; Armitage, Judith P.; Watts, Anthony

    2009-01-01

    Neurotensin receptor 1 (NTS1), a Family A G-protein coupled receptor (GPCR), was expressed in Escherichia coli as a fusion with the fluorescent proteins eCFP or eYFP. A fluorophore-tagged receptor was used to study the multimerization of NTS1 in detergent solution and in brain polar lipid bilayers, using fluorescence resonance energy transfer (FRET). A detergent-solubilized receptor was unable to form FRET-competent complexes at concentrations of up to 200 nM, suggesting that the receptor is monomeric in this environment. When reconstituted into a model membrane system at low receptor density, the observed FRET was independent of agonist binding, suggesting constitutive multimer formation. In competition studies, decreased FRET in the presence of untagged NTS1 excludes the possibility of fluorescent protein-induced interactions. A simulation of the experimental data indicates that NTS1 exists predominantly as a homodimer, rather than as higher-order multimers. These observations suggest that, in common with several other Family A GPCRs, NTS1 forms a constitutive dimer in lipid bilayers, stabilized through receptor-receptor interactions in the absence of other cellular signaling components. Therefore, this work demonstrates that well-characterized model membrane systems are useful tools for the study of GPCR multimerization, allowing fine control over system composition and complexity, provided that rigorous control experiments are performed. PMID:19186134

  8. Neuropeptide Y receptor mediates activation of ERK1/2 via transactivation of the IGF receptor.

    PubMed

    Lecat, Sandra; Belemnaba, Lazare; Galzi, Jean-Luc; Bucher, Bernard

    2015-07-01

    Neuropeptide Y binds to G-protein coupled receptors whose action results in inhibition of adenylyl cyclase activity. Using HEK293 cells stably expressing the native neuropeptide Y Y1 receptors, we found that the NPY agonist elicits a transient phosphorylation of the extracellular signal-regulated kinases (ERK1/2). We first show that ERK1/2 activation following Y1 receptor stimulation is dependent on heterotrimeric Gi/o since it is completely inhibited by pre-treatment with pertussis toxin. In addition, ERK1/2 activation is internalization-independent since mutant Y1 receptors unable to recruit β-arrestins, can still activate ERK signaling to the same extent as wild-type receptors. We next show that this activation of the MAPK pathway is inhibited by the MEK inhibitor U0126, is not dependent on calcium signaling at the Y1 receptor (no effect upon inhibition of phospholipase C, protein kinase C or protein kinase D) but instead dependent on Gβ/γ and associated signaling pathways that activate PI3-kinase. Although inhibition of the epidermal-growth factor receptor tyrosine kinase did not influence NPY-induced ERK1/2 activation, we show that the inhibition of insulin growth factor receptor IGFR by AG1024 completely blocks activation of ERK1/2 by the Y1 receptor. This Gβ/γ-PI3K-AG1024-sensitive pathway does not involve activation of IGFR through the release of a soluble ligand by metalloproteinases since it is not affected by the metalloproteinase inhibitor marimastat. Finally, we found that a similar pathway, sensitive to wortmannin-AG1024 but insensitive to marimastat, is implicated in activation of ERK signaling in HEK293 cells by endogenously expressed GPCRs coupled to Gq-protein (muscarinic M3 receptors) or coupled to Gs-protein (endothelin ETB receptors). Our analysis is the first to show that β-arrestin recruitment to the NPY Y1 receptor is not necessary for MAPK activation by this receptor but that transactivation of the IGFR receptor is required.

  9. Ionotropic receptors (IRs): chemosensory ionotropic glutamate receptors in Drosophila and beyond.

    PubMed

    Rytz, Raphael; Croset, Vincent; Benton, Richard

    2013-09-01

    Ionotropic Receptors (IRs) are a recently characterized family of olfactory receptors in the fruit fly, Drosophila melanogaster. IRs are not related to insect Odorant Receptors (ORs), but rather have evolved from ionotropic glutamate receptors (iGluRs), a conserved family of synaptic ligand-gated ion channels. Here, we review the expression and function of IRs in Drosophila, highlighting similarities and differences with iGluRs. We also briefly describe the organization of the neuronal circuits in which IRs function, comparing and contrasting them with the sensory pathways expressing ORs. Finally, we summarize the bioinformatic identification and initial characterization of IRs in other species, which imply an evolutionarily conserved role for these receptors in chemosensation in insects and other protostomes. PMID:23459169

  10. Receptor activity-modifying proteins; multifunctional G protein-coupled receptor accessory proteins.

    PubMed

    Hay, Debbie L; Walker, Christopher S; Gingell, Joseph J; Ladds, Graham; Reynolds, Christopher A; Poyner, David R

    2016-04-15

    Receptor activity-modifying proteins (RAMPs) are single pass membrane proteins initially identified by their ability to determine the pharmacology of the calcitonin receptor-like receptor (CLR), a family B G protein-coupled receptor (GPCR). It is now known that RAMPs can interact with a much wider range of GPCRs. This review considers recent developments on the structure of the complexes formed between the extracellular domains (ECDs) of CLR and RAMP1 or RAMP2 as these provide insights as to how the RAMPs direct ligand binding. The range of RAMP interactions is also considered; RAMPs can interact with numerous family B GPCRs as well as examples of family A and family C GPCRs. They influence receptor expression at the cell surface, trafficking, ligand binding and G protein coupling. The GPCR-RAMP interface offers opportunities for drug targeting, illustrated by examples of drugs developed for migraine. PMID:27068971

  11. Evolutionary diversification of the trypanosome haptoglobin-haemoglobin receptor from an ancestral haemoglobin receptor

    PubMed Central

    Lane-Serff, Harriet; MacGregor, Paula; Peacock, Lori; Macleod, Olivia JS; Kay, Christopher; Gibson, Wendy; Higgins, Matthew K; Carrington, Mark

    2016-01-01

    The haptoglobin-haemoglobin receptor of the African trypanosome species, Trypanosoma brucei, is expressed when the parasite is in the bloodstream of the mammalian host, allowing it to acquire haem through the uptake of haptoglobin-haemoglobin complexes. Here we show that in Trypanosoma congolense this receptor is instead expressed in the epimastigote developmental stage that occurs in the tsetse fly, where it acts as a haemoglobin receptor. We also present the structure of the T. congolense receptor in complex with haemoglobin. This allows us to propose an evolutionary history for this receptor, charting the structural and cellular changes that took place as it adapted from a role in the insect to a new role in the mammalian host. DOI: http://dx.doi.org/10.7554/eLife.13044.001 PMID:27083048

  12. The bovine peripheral-type benzodiazepine receptor: A receptor with low affinity for benzodiazepines

    SciTech Connect

    Parola, A.L.; Laird, H.E. II )

    1991-01-01

    The density of bovine peripheral-type benzodiazepine receptors (PBR) in four tissues was highest in adrenal cortex. The adrenal cortex PBR cofractionated with a mitochondrial membrane marker enzyme and could be solubilized with intact ligand binding properties using digitonin. The membrane bound and soluble mitochondrial receptors were pharmacologically characterized and showed the rank order of potency to inhibit ({sup 3}H)PK 11195 binding was PK 11195 > protoporphyrin IX > benzodiazepines. ({sup 3}H)PK 11195 binding to bovine adrenal mitochondria was unaffected by diethylpyrocarbonate, a histidine residue modifying reagent that decreased binding to rat liver mitochondria by 70%. ({sup 3}H)PK 14105 photolabeled the bovine PBR and the Mr was estimated under nondenaturing and denaturing conditions. These results demonstrate the bovine peripheral-type benzodiazepine receptor is pharmacologically and biochemically distinct from the rat receptor, but the receptor component photolabeled by an isoquinoline ligand has a similar molecular weight.

  13. Autoantibodies interacting with purified native thyrotropin receptor.

    PubMed

    Atger, M; Misrahi, M; Young, J; Jolivet, A; Orgiazzi, J; Schaison, G; Milgrom, E

    1999-11-01

    Native thyrotropin receptor (TSHR) was purified by immunoaffinity chromatography from membrane extracts of stably transfected L cells. An ELISA test was devised to study anti-TSHR autoantibodies directly. Comparison of native TSHR with bacterially expressed, denatured TSHR showed that the latter was not recognized by the autoantibodies, suggesting that they bind to conformational epitopes only present on the native receptor. The use of deglycosylated TSHR and of purified receptor ectodomain (alpha-subunit) showed that the autoantibodies recognized only the protein backbone moiety of the receptor and that their epitopes were localized entirely in its ectodomain. Autoantibodies were detected in 45 of 48 subjects with untreated Graves' disease and in 26 of 47 healthy volunteers. The affinity for the receptor was similar in the two groups (Kd = 0.25-1 x 10-10 M) and the autoantibodies belonged to the IgG class in all cases. Although the concentration of autoantibodies was higher in Graves' disease patients (3.50 +/- 0.36 mg.L-1) than in control subjects (1.76 +/- 0.21) (mean +/- SEM), there was an overlap between the groups. Receptor-stimulating autoantibodies (TSAb) were studied by measuring cAMP synthesis in stably transfected HEK 293 cells. Their characteristics (recognition of alpha-subunit, of deglycosylated TSHR, nonrecognition of bacterially expressed denatured receptor) were similar to those of the antibodies detected by the ELISA test. TSAb were only found in individuals with Graves' disease. The ELISA test measures total anti-TSHR antibodies, whereas the test using adenylate cyclase stimulation measures antibodies that recognize specific epitopes involved in receptor activation. Our observations thus disprove the hypothesis according to which Graves' disease is related to the appearance of anti-TSHR antibodies not present in normal subjects. Actually, anti-TSHR antibodies exist in many euthyroid subjects, in some cases even at concentrations higher than those

  14. Characterization of three non-peptide endothelin receptor ligands using human cloned ETA and ETB receptors.

    PubMed Central

    Buchan, K. W.; Alldus, C.; Christodoulou, C.; Clark, K. L.; Dykes, C. W.; Sumner, M. J.; Wallace, D. M.; White, D. G.; Watts, I. S.

    1994-01-01

    1. A number of putative endothelin (ET) receptor ligands were synthesized with a view to assessing their relative affinity for human recombinant ET receptors. 2. Human (h) and endothelin ETA and ETB receptor open reading frames were cloned by reverse transcription-polymerase chain reaction into the mammalian expression vector pcDNA1 and stable cell lines were created by transfection of Chinese hamster ovary cells. 3. Scatchard analyses of saturation isotherms for the specific binding of [125I]-endothelin-1 ([125I]-ET-1) to membranes, prepared from Chinese hamster ovary cells transfected with hETA or hETB receptors, yielded values for equilibrium dissociation constants (Kd) of 20.5 +/- 1.8 pM and 25.5 +/- 5.5 pM, respectively. Hill coefficients did not differ significantly from unity, suggesting binding to homogeneous, non-interacting receptor populations. 4. Pharmacological characterization of the transfected hETA and hETB receptors was undertaken by measuring the relative abilities of ETA and ETB receptor-selective peptide ligands to inhibit binding of [125I]ET-1. For interaction with hETA receptors, the relative order of potency was ET-1 > ET-3 = FR139317 = BQ123 >[Ala1,3,11,15]-ET-1 = sarafotoxin S6c (S6c). In contrast, the relative order of potency, at hETB receptors, was ET-1 = ET-3 = [Ala1,3,11,15]-ET-1 = S6c >> FR139317 = BQ123. 5. The novel non-peptide ligands, Ro 46-2005, SB 209670 and BMS 182874, were found to inhibit [125I]-ET-1 binding to human recombinant ETA and ETB receptors.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7952888

  15. Identification and pharmacological characterization of the prostaglandin FP receptor and FP receptor variant complexes

    PubMed Central

    Liang, Y; Woodward, D F; Guzman, V M; Li, C; Scott, D F; Wang, J W; Wheeler, L A; Garst, M E; Landsverk, K; Sachs, G; Krauss, A H-P; Cornell, C; Martos, J; Pettit, S; Fliri, H

    2008-01-01

    Background and purpose: A prostamide analogue, bimatoprost, has been shown to be effective in reducing intraocular pressure, but its precise mechanism of action remains unclear. Hence, to elucidate the molecular mechanisms of this effect of bimatoprost, we focused on pharmacologically characterizing prostaglandin FP receptor (FP) and FP receptor variant (altFP) complexes. Experimental approach: FP receptor mRNA variants were identified by reverse transcription-polymerase chain reaction. The FP-altFP4 heterodimers were established in HEK293/EBNA cells co-expressing FP and altFP4 receptor variants. A fluorometric imaging plate reader was used to study Ca2+ mobilization. Upregulation of cysteine-rich angiogenic protein 61 (Cyr61) mRNA was measured by Northern blot analysis, and phosphorylation of myosin light chain (MLC) by western analysis. Key results: Six splicing variants of FP receptor mRNA were identified in human ocular tissues. Immunoprecipitation confirmed that the FP receptor is dimerized with altFP4 receptors in HEK293/EBNA cells co-expressing FP and altFP4 receptors. In the studies of the kinetic profile for Ca2+ mobilization, prostaglandin F2α (PGF2α) elicited a rapid increase in intracellular Ca2+ followed by a steady state phase. In contrast, bimatoprost elicited an immediate increase in intracellular Ca2+ followed by a second phase. The prostamide antagonist, AGN211335, selectively and dose-dependently inhibited the bimatoprost-initiated second phase of Ca2+ mobilization, Cyr61 mRNA upregulation and MLC phosphorylation, but did not block the action of PGF2α. Conclusion and implications: Bimatoprost lacks effects on the FP receptor but may interact with the FP-altFP receptor heterodimer to induce alterations in second messenger signalling. Hence, FP-altFP complexes may represent the underlying basis of bimatoprost pharmacology. PMID:18587449

  16. Aberrant expression and function of death receptor-3 and death decoy receptor-3 in human cancer

    PubMed Central

    GE, ZHICHENG; SANDERS, ANDREW J.; YE, LIN; JIANG, WEN G.

    2011-01-01

    Death receptor-3 (DR3) and death decoy receptor-3 (DcR3) are both members of the tumour necrosis factor receptor (TNFR) superfamily. The TNFR superfamily contains eight death domain-containing receptors, including TNFR1 (also called DR1), Fas (also called DR2), DR3, DR4, DR5, DR6, NGFR and EDAR. Upon the binding of these receptors with their corresponding ligands, the death domain recruits various proteins that mediate both the death and proliferation of cells. Receptor function is negatively regulated by decoy receptors (DcR1, DcR2, DcR3 and OPG). DR3/DcR3 are a pair of positive and negative players with which vascular endothelial growth inhibitor (VEGI) interacts. VEGI has been suggested to be a potential tumour suppressor. The inhibitory effects of VEGI on cancer are manifested in three main areas: a direct effect on cancer cells, an anti-angiogenic effect on endothelial cells, and the stimulation of dendritic cell maturation. A recent study indicated that DR3 may be a new receptor for E-selectin, which has been reported to be associated with cancer metastasis. DcR3 is a soluble receptor, highly expressed in various tumours, which lacks an apparent transmembrane segment, prevents cytokine response through ligand binding and neutralization, and is an inhibitor of apoptosis. DcR3 serves as a decoy receptor for FasL, LIGHT and VEGI. The cytokine LIGHT activates various anti-tumour functions and is expected to be a promising candidate for cancer therapy. Certain tumours may escape FasL-dependent immune-cytotoxic attack by expressing DcR3, which blocks FasL function. DR3/DcR3 play profound roles in regulating cell death and proliferation in cancer. The present review briefly discusses DR3/DcR3 and attempts to elucidate the role of these negative and positive players in cancer. PMID:22977485

  17. Dopamine D2 receptor signaling dynamics of dopamine D2-neurotensin 1 receptor heteromers.

    PubMed

    Borroto-Escuela, Dasiel O; Ravani, Annalisa; Tarakanov, Alexander O; Brito, Ismel; Narvaez, Manuel; Romero-Fernandez, Wilber; Corrales, Fidel; Agnati, Luigi F; Tanganelli, Sergio; Ferraro, Luca; Fuxe, Kjell

    2013-05-24

    Biochemical, histochemical and coimmunoprecipitation experiments have indicated the existence of antagonistic dopamine D2 (D2R) and neurotensin 1 (NTS1R) receptor-receptor interactions in the dorsal and ventral striatum indicating a potential role of these receptor-receptor interactions in Parkinson's disease and schizophrenia. By means of Bioluminiscence Resonance energy transfer (BRET(2)) evidence has for the first time been obtained in the current study for the existence of both D2LR/NTS1R and D2SR/NTS1R heteromers in living HEK293T cells. Through confocal laser microscopy the NTS1R(GFP2) and D2R(YFP) were also shown to be colocated in the plasma membrane of these cells. A bioinformatic analysis suggests the existence of a basic set of three homology protriplets (TVM, DLL and/or LRA) in the two participating receptors which may contribute to the formation of the D2R/NTS1R heteromers by participating in guide-clasp interactions in the receptor interface. The CREB reporter gene assay indicated that the neurotensin receptor agonist JMV 449 markedly reduced the potency of the D2R like agonist quinpirole to inhibit the forskolin induced increase of the CREB signal. In contrast, the neurotensin agonist was found to markedly increase the quinpirole potency to activate the MAPK pathway as also studied with luciferase reporter gene assay measuring the degree of SRE activity as well as with ERK1/2 phosphorylation assays. These dynamic changes in D2R signaling produced by the neurotensin receptor agonist may involve antagonistic allosteric receptor-receptor interactions in the D2LR-NTS1R heteromers at the plasma membrane level (CREB pathway) and synergistic interactions in PKC activation at the cytoplasmatic level (MAPK pathway).

  18. Cocaine Disrupts Histamine H3 Receptor Modulation of Dopamine D1 Receptor Signaling: σ1-D1-H3 Receptor Complexes as Key Targets for Reducing Cocaine's Effects

    PubMed Central

    Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Hoffmann, Hanne M.; Fuentes, Silvia; Rosell-Vilar, Santi; Gasperini, Paola; Rodríguez-Ruiz, Mar; Medrano, Mireia; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carme; Ferré, Sergi; Ortiz, Jordi; Canela, Enric

    2014-01-01

    The general effects of cocaine are not well understood at the molecular level. What is known is that the dopamine D1 receptor plays an important role. Here we show that a key mechanism may be cocaine's blockade of the histamine H3 receptor-mediated inhibition of D1 receptor function. This blockade requires the σ1 receptor and occurs upon cocaine binding to σ1-D1-H3 receptor complexes. The cocaine-mediated disruption leaves an uninhibited D1 receptor that activates Gs, freely recruits β-arrestin, increases p-ERK 1/2 levels, and induces cell death when over activated. Using in vitro assays with transfected cells and in ex vivo experiments using both rats acutely treated or self-administered with cocaine along with mice depleted of σ1 receptor, we show that blockade of σ1 receptor by an antagonist restores the protective H3 receptor-mediated brake on D1 receptor signaling and prevents the cell death from elevated D1 receptor signaling. These findings suggest that a combination therapy of σ1R antagonists with H3 receptor agonists could serve to reduce some effects of cocaine. PMID:24599455

  19. Scavenger receptor for aldehyde-modified proteins.

    PubMed

    Horiuchi, S; Murakami, M; Takata, K; Morino, Y

    1986-04-15

    This paper describes an unexpectedly broad ligand specificity of a scavenger receptor of sinusoidal liver cells that is responsible for endocytic uptake of formaldehyde-treated bovine serum albumin (f-Alb). Binding of 125I-f-Alb to the isolated cells was effectively inhibited by bovine serum albumin (BSA) modified with aliphatic aldehydes such as glycolaldehye, DL-glyceraldehyde, and propionaldehyde whereas albumin preparations modified by aromatic aldehydes such as pyridoxal, pyridoxal phosphate, salicylaldehyde, and benzaldehyde did not affect this binding process. Binding of 125I-glycolaldehyde-treated BSA to the cells exhibited a saturation kinetics with an apparent Kd = 3.3 micrograms of the ligand/ml. This binding process was inhibited by unlabeled f-Alb as well as by the antibody raised against the f-Alb receptor. Indeed, 125I-glycolaldehyde-treated BSA underwent a rapid plasma clearance (t1/2 approximately 2 min) which was markedly retarded by unlabeled f-Alb. Upon treatment by these aldehydes, other proteins such as ovalbumin, soybean trypsin inhibitor, and hemoglobin were also converted to active ligands for the f-Alb receptor, while no ligand activity was generated with gamma-globulin and RNase A. These results clearly show that the f-Alb receptor, originally described as being specific for f-Alb, exhibits a broad ligand specificity in terms of both aldehydes and proteins and, hence, should be described as a scavenger receptor for aldehyde-modified proteins.

  20. Therapeutic targeting of NOD1 receptors

    PubMed Central

    Moreno, L; Gatheral, T

    2013-01-01

    The nucleotide-binding oligomerization domain 1 (NOD1) protein is an intracellular receptor for breakdown products of peptidoglycan (PGN), an essential bacterial cell wall component. NOD1 responds to γ-D-glutamyl-meso-diaminopimelic acid, which is an epitope unique to PGN structures from all Gram-negative bacteria and certain Gram-positive bacteria. Upon ligand recognition, NOD1 undergoes conformational changes and self-oligomerization mediated by the nucleotide-binding NACHT domains, followed by the recruitment and activation of the serine threonine kinase receptor-interacting protein 2 leading to the activation of NF-κB and MAPK pathways and induction of inflammatory genes. Much of our knowledge is derived from seminal studies using mice deficient in NOD1 and confirming an essential role for NOD1 in the host immune response against gastrointestinal and respiratory pathogens. In addition, recent studies have revealed a role for intracellular NOD1 receptors in the regulation of vascular inflammation and metabolism. This review will discuss our current understanding of intracellular NOD1 receptors in host immunity and chronic inflammatory disorders with a focus on cardiovascular diseases. Although therapeutic advances may have to wait until the complex interplay with pathogens, danger signals, other pattern recognition receptors and overlapping metabolic pathways is further unravelled, the steadily growing body of knowledge suggest that NOD1 antagonism might represent attractive candidate to reduce excessive inflammation associated to intestinal, cardiovascular and metabolic diseases. PMID:23848281

  1. Astrocytes as Gatekeepers of GABAB Receptor Function

    PubMed Central

    Beenhakker, Mark P.; Huguenard, John R.

    2010-01-01

    The long-lasting actions of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) result from the activation of metabotropic GABAB receptors. Enhanced GABAB-mediated inhibitory postsynaptic currents (IPSCs) are critical for the generation of generalized thalamocortical seizures. Here, we demonstrate that GABAB-mediated inhibitory postsynaptic currents (IPSCs) recorded in the thalamus are largely defined by GABA diffusion and activation of distal extrasynaptic receptors potentially up to tens of μm from synapses. We also show that this diffusion is differentially regulated by two astrocytic GABA transporters, GAT1 and GAT3, which are localized near and far from synapses, respectively. A biologically constrained model of GABA diffusion and uptake shows how the two GATs differentially modulate amplitude and duration of GABAB IPSCs. Specifically, the perisynaptic expression of GAT1 enables it to regulate GABA levels near synapses and selectively modulate peak IPSC amplitude, which is largely dependent on perisynaptic receptor occupancy. GAT3 expression, on the other hand, is broader and includes distal extrasynaptic regions. As such, GAT3 acts as a gatekeeper to prevent diffusion of GABA away from synapses towards extrasynaptic regions that contain a potentially enormous pool of GABAB receptors. Targeting this gatekeeper function may provide new pharmacotherapeutic opportunities to prevent the excessive GABAB receptor activation that appears necessary for thalamic seizure generation. PMID:21068331

  2. Impulsivity, Stimulant Abuse, and Dopamine Receptor Signaling.

    PubMed

    London, E D

    2016-01-01

    The nonmedical use of amphetamine-type stimulants is a worldwide problem, with substantial medical and social consequences. Nonetheless, the identification of a pharmacological treatment for amphetamine use disorder remains elusive. Stimulant users exhibit neurochemical evidence of dopamine-system dysfunction as well as impulsive behaviors that may interfere with the success of treatments for their addiction. This review focuses on the potential role of dopaminergic neurotransmission in impulsivity, both in healthy individuals and chronic stimulant users who meet criteria for methamphetamine dependence. Presented are findings related to the potential contributions of signaling through dopamine D1- and D2-type receptors to self-control impulsivity in methamphetamine- dependent users. The information available points to signaling through striatal D2-type dopamine receptors as a potential therapeutic target for stimulant use disorders, but medications that target D2-type dopamine receptors have not been successful in treating stimulant-use disorders, possibly because D2-type receptors are downregulated. Other means to augment D2-type receptor signaling are therefore under consideration, and one promising approach is the addition of exercise training as an adjunct to behavioral treatment for addiction. PMID:27288074

  3. Roles of transferrin receptors in erythropoiesis.

    PubMed

    Kawabata, Hiroshi; Sakamoto, Soichiro; Masuda, Taro; Uchiyama, Tatsuki; Ohmori, Katsuyuki; Koeffler, H Phillip; Takaori-Kondo, Akifumi

    2016-07-01

    Erythropoiesis requires large amounts of iron for hemoglobin synthesis, which is mainly provided by macrophages and the intestines in a transferrin (Tf)-bound form. Bone marrow erythroblasts incorporate Tf through endocytosis, which is mediated by transferrin receptor 1 (TFR1). Recently, human TFR1, aside from its role as a Tf receptor, was also found to be a receptor for the H-subunit of ferritin (FTH). In humans, hematopoietic erythroid precursor cells express high levels of TFR1 and specifically take up the FTH homopolymer (H-ferritin). H-ferritin inhibits the formation of burst forming unit-erythroid colonies in vitro. TFR2, which is also a Tf receptor, is predominantly expressed in hepatocytes and erythroid precursor cells. In the liver, TFR2 forms a complex with HFE, a hereditary hemochromatosis-associated protein, and acts as an iron sensor. In mice, hepatocyte-specific knockout of the TFR2 gene has been shown to cause systemic iron-overload with decreased expression of hepcidin, the central regulator of iron homeostasis. In erythroid cells, TFR2 forms a complex with the erythropoietin receptor and facilitates its trafficking to the cell membrane. Moreover, hematopoietic cell-specific knockout of the TFR2 gene causes microcytic erythrocytosis in mice. This review focuses on the molecular evolution and functions of these TFRs and their ligands. PMID:27498743

  4. Binding characteristics of swine erythrocyte insulin receptors

    SciTech Connect

    Dieberg, G.; Bryan, G.S.; Sartin, J.L.; Williams, J.C.; Prince, T.J.; Kemppainen, R.J.

    1985-09-01

    Crossbred gilts had 8.8 +/- 1.1% maximum binding of ( SVI)insulin to insulin receptors on erythrocytes. The number of insulin-binding sites per cell was 137 +/- 19, with a binding affinity ranging from 7.4 X 10(7)M-1 to 11.2 X 10(7)M-1 and mean of 8.8 X 10(7)M-1. Pregnant sows had a significant increase in maximum binding due to an increase in number of receptor sites per cell. Lactating sows fed a high-fiber diet and a low-fiber diet did not develop a significant difference in maximum binding of insulin. Sows fed the low-fiber diet had a significantly higher number of binding sites and a significantly lower binding affinity than did sows fed a high-fiber diet. Receptor-binding affinity was lower in the low-fiber diet group than in cycling gilts, whereas data from sows fed the high-fiber diet did not differ from data for cycling gilts. Data from this study indicated that insulin receptors of swine erythrocytes have binding characteristics similar to those in other species. Pregnancy and diet will alter insulin receptor binding in swine.

  5. Dopamine receptor partial agonists and addiction.

    PubMed

    Moreira, Fabricio A; Dalley, Jeffrey W

    2015-04-01

    Many drugs abused by humans acutely facilitate, either directly or indirectly, dopamine neurotransmission in the mesolimbic pathway. As a consequence dopamine receptor agonists and antagonists have been widely investigated as putative pharmacological therapies for addiction. This general strategy, however, has had only limited success due in part to poor treatment adherence and efficacy and the significant adverse effects of dopaminergic medications. In this perspective, we discuss the potential therapeutic use of dopamine receptor partial agonists in addiction, developed initially as antipsychotic agents. Recent research indicates that the dopamine D2 receptor partial agonists, such as aripiprazole, also shows useful ancillary efficacy in several animal models of psychostimulant and opioid addiction. Notably, these findings suggest that unlike full dopamine receptor agonists and antagonists these compounds have low abuse liability and are generally well tolerated. Indeed, partial dopamine agonists attenuate the rewarding properties of opioids without interfering with their analgesic effects. Herein we discuss the utility and potential of dopamine receptor partial agonists as treatments for both stimulant and non-stimulant drug addiction.

  6. Plasminogen receptors: the first quarter century.

    PubMed

    Miles, Lindsey A; Parmer, Robert J

    2013-06-01

    The interaction of plasminogen with cell surfaces results in promotion of plasmin formation and retention on the cell surface. This results in arming cell surfaces with the broad-spectrum proteolytic activity of plasmin. Over the past quarter century, key functional consequences of the association of plasmin with the cell surface have been elucidated. Physiologic and pathophysiologic processes with plasmin-dependent cell migration as a central feature include inflammation, wound healing, oncogenesis, metastasis, myogenesis, and muscle regeneration. Cell surface plasmin also participates in neurite outgrowth and prohormone processing. Furthermore, plasmin-induced cell signaling also affects the functions of inflammatory cells, via production of cytokines, reactive oxygen species, and other mediators. Finally, plasminogen receptors regulate fibrinolysis. In this review, we highlight emerging data that shed light on longstanding controversies and raise new issues in the field. We focus on (1) the impact of the recent X-ray crystal structures of plasminogen and the development of antibodies that recognize cell-induced conformational changes in plasminogen on our understanding of the interaction of plasminogen with cells; (2) the relationship between apoptosis and plasminogen binding to cells; (3) the current status of our understanding of the molecular identity of plasminogen receptors and the discovery of a structurally unique novel plasminogen receptor, Plg-RKT; (4) the determinants of the interplay between distinct plasminogen receptors and cellular functions; and (5) new insights into the role of colocalization of plasminogen and plasminogen activator receptors on the cell surface. PMID:23532575

  7. Molecular modulators of benzodiazepine receptor ligand binding

    SciTech Connect

    Villar, H.O.; Loew, G.H. )

    1989-01-01

    Ten derivatives of {beta}-carbolines with known affinities to the GABA{sub A}/BDZ (benzodiazepine) receptor were studied using the Am 1 and MNDO/H Semiempirical techniques to identify and characterize molecular modulators of receptor recognition. Steric, lipophilic, and electrostatic properties of these compounds were calculated and examined for their possible role in recognition. Particular attention was paid to the regions around the two most favorable proton-accepting sites, the ON and the substituent at the C{sub 3} position, already implicated in recognition, as well as to the acidic N9H group that could be a proton donating center. To probe further the role of these three ligand sites in receptor interactions, a model of the receptor using three methanol molecules was made and optimum interactions of these three sites with them characterized. The results indicate some similarity in the shape of these ligands, which could reflect a steric requirement. The receptor affinity appears to be modulated to some extent by the ratio of lipophilic to hydrophilic surface, the negative potential at the {beta}N, provided there is also one at the C{sub 3} substituent confirming the importance of two accepting sites in recognition. The acidic N9H does not appear to be a modulator of affinity or does it form a stable H-bond with methanol as acceptor. The two proton donating molecules do form such a stable complex, and both are needed for high affinity.

  8. Phagocytosis: receptors, signal integration, and the cytoskeleton.

    PubMed

    Freeman, Spencer A; Grinstein, Sergio

    2014-11-01

    Phagocytosis is a remarkably complex and versatile process: it contributes to innate immunity through the ingestion and elimination of pathogens, while also being central to tissue homeostasis and remodeling by clearing effete cells. The ability of phagocytes to perform such diverse functions rests, in large part, on their vast repertoire of receptors. In this review, we address the various receptor types, their mobility in the plane of the membrane, and two modes of receptor crosstalk: priming and synergy. A major section is devoted to the actin cytoskeleton, which not only governs receptor mobility and clustering but also is instrumental in particle engulfment. Four stages of the actin remodeling process are identified and discussed: (i) the 'resting' stage that precedes receptor engagement, (ii) the disruption of the cortical actin prior to formation of the phagocytic cup, (iii) the actin polymerization that propels pseudopod extension, and (iv) the termination of polymerization and removal of preassembled actin that are required for focal delivery of endomembranes and phagosomal sealing. These topics are viewed in the larger context of the differentiation and polarization of the phagocytic cells.

  9. Determining ligand specificity of Ly49 receptors.

    PubMed

    Lavender, Kerry J; Kane, Kevin P

    2010-01-01

    Ly49 receptors in rodents, like KIR in humans, play an integral role in the regulation of NK cell activity. Some inhibitory Ly49 are known to interact with specific MHC I alleles to maintain tolerance to self tissues, and NK activation is triggered upon the loss of inhibitory signals due to pathological downregulation of self MHC I. Although a virally encoded ligand has been identified that can trigger NK cytotoxicity through an activating Ly49, some activating Ly49 also recognize MHC I and the role of most activating receptors in NK effector function remains poorly defined. As many Ly49 remain orphan receptors, we describe methods to unambiguously discern receptor-ligand pairs. Additionally, we describe a method for the mutagenesis of Ly49 and MHC ligands that can be used to define the motifs conferring receptor specificity for their ligands. Further elucidation of Ly49 ligands is required to continue to define the role of Ly49 in regulating NK cell effector function and may give vital clues to the role of KIR in human health and disease. PMID:20033649

  10. CLAVATA 1-type receptors in plant development.

    PubMed

    Hazak, Ora; Hardtke, Christian S

    2016-08-01

    A fundamental aspect of plant development is the coordination of growth through endogenous signals and its integration with environmental inputs. Similar to animals, plants frequently use cell surface-localized receptors to monitor such stimuli, for instance through plasma membrane-integral receptor-like kinases (RLKs). Compared to other organisms, plants possess a large number of RLKs (more than 600 in Arabidopsis thaliana), which implies that ligand-receptor-mediated molecular mechanisms regulate a wide range of processes during plant development. Here, we focus on A. thaliana RLKs of the CLAVATA 1 (CLV1) type, which orchestrate key steps during plant development, including the regulation of meristem maintenance, anther development, vascular tissue formation, and root system architecture. These receptors are regulated by small signalling peptides that belong to the family of CLE (CLV3 / EMBRYO SURROUNDING REGION) ligands. We discuss different aspects of plant development that are regulated by these receptors in light of their molecular mechanism of action. As so often, the intensive research on this group of plant RLKs has raised many intriguing questions, which remain to be answered. PMID:27340234

  11. Sex steroids and their receptors in lampreys.

    PubMed

    Bryan, Mara B; Scott, Alexander P; Li, Weiming

    2008-01-01

    The use of steroids and their receptors as ligand-gated transcription factors is thought to be an important step in vertebrate evolution. The lamprey is the earliest-evolving vertebrate to date in which sex steroids and their receptors have been demonstrated to have hormonal roles similar to those found in jawed vertebrates. Sex steroids and their receptors have been examined in several lamprey species, and the majority of studies have focused on the sea lamprey, Petromyzon marinus. While classical steroids appear to be present in lampreys, their function, concentrations, and synthesis have not been determined conclusively. The only classical steroid that is thought to act as a hormone in both males and females is estradiol. Recent research has established that lampreys produce and circulate 15alpha-hydroxylated steroids, and that these steroids respond to upstream stimulation within the hypothalamic-pituitary-gonadal axis. In particular, 15alpha-hydroxyprogesterone is highly sensitive and responds in great magnitude to stimulation, and is likely a hormone. Lampreys also appear to use androstenedione, a precursor to vertebrate androgens, as their main androgen, and a receptor for androstenedione has recently been described. Non-classical steroids are prevalent in many aquatic vertebrates, and the non-classical steroids found in the sea lamprey may represent an evolutionary artifact, or alternatively may be a way to avoid endocrine disruption when ingesting the body fluids of host fish. The lamprey will continue to be an interesting model for examining the evolution of steroid hormones, steroid receptors, and steroid function.

  12. mGlu receptors and drug addiction.

    PubMed

    Cleva, Richard M; Olive, M Foster

    2012-05-01

    Historically, brain catecholamine systems have been the primary focus of studies examining the neural substrates of drug addiction. In the past two decades, however, a wealth of evidence has accumulated indicating a pivotal role for glutamatergic neurotransmission in mediating addictive behaviors as well as long-term neuroplasticity associated with chronic drug use. As a result, there has been increased interest in developing glutamate-based therapies for the treatment of addictive disorders. Metabotropic glutamate (mGlu) receptors are classified into subcategories designated as Group I (mGlu1 and mGlu5), Group II (mGlu2 and mGlu3), and Group III (mGlu4, mGlu6, mGlu7, and mGlu8), and have received a great deal of attention due to their mediation of slower modulatory excitatory neurotransmission. Pharmacological ligands targeting these receptors have demonstrated reduced incidences of excitotoxicity or severe adverse side effects as compared to those targeting ionotropic glutamate (iGlu) receptors. Behavioral genetic and pharmacological studies have explored the role of individual mGlu receptor subtypes in regulating various addiction-related behaviours and several mGlu receptor ligands have been the subject of clinical testing for other medical conditions. PMID:22662312

  13. Action of tremorgenic mycotoxins on GABAA receptor.

    PubMed

    Gant, D B; Cole, R J; Valdes, J J; Eldefrawi, M E; Eldefrawi, A T

    1987-11-01

    The effects of four tremorgenic and one nontremorgenic mycotoxins were studied on gamma-aminobutyric acid (GABAA) receptor binding and function in rat brain and on binding of a voltage-operated Cl- channel in Torpedo electric organ. None of the mycotoxins had significant effect on [3H]muscimol or [3H]flunitrazepam binding to the GABAA receptor. However, only the four tremorgenic mycotoxins inhibited GABA-induced 36Cl- influx and [35S] t-butylbicyclophosphorothionate [( 35S]TBPS) binding in rat brain membranes, while the nontremorgenic verruculotoxin had no effect. Inhibition of [35S]TBPS binding by paspalinine was non-competitive. This suggests that tremorgenic mycotoxins inhibit GABAA receptor function by binding close to the receptor's Cl- channel. On the voltage-operated Cl- channel, only high concentrations of verruculogen and verruculotoxin caused significant inhibition of the channel's binding of [35S]TBPS. The data suggest that the tremorgenic action of these mycotoxins may be due in part to their inhibition of GABAA receptor function. PMID:2444852

  14. MOLECULAR PROBES FOR EXTRACELLULAR ADENOSINE RECEPTORS

    PubMed Central

    Jacobson, Kenneth A.; Ukena, Dieter; Padgett, William; Kirk, Kenneth L.; Daly, John W.

    2012-01-01

    Derivatives of adenosine receptor agonists (N6-phenyladenosines) and antagonists (1,3-dialkyl-8-phenylxanthines) bearing functionalized chains suitable for attachment to other molecules have been reported [Jacobson et al., J. med. Chem. 28, 1334 and 1341 (1985)]. The “functionalized congener” approach has been extended to the synthesis of spectroscopic and other probes for adenosine receptors that retain high affinity (Ki ~ 10−9 −10−8 M) in A1-receptor binding. The probes have been synthesized from an antagonist xanthine amine congener (XAC) and an adenosine amine congener (ADAC). [3H]ADAC has been synthesized and found to bind highly specifically to A1-adenosine receptors of rat and calf cerebral cortical membranes with KD values of 1.4 and 0.34 nM respectively. The higher affinity in the bovine brain, seen also with many of the probes derived from ADAC and XAC, is associated with phenyl substituents. The spectroscopic probes contain a reporter group attached at a distal site of the functionalized chain. These bifunctional ligands may contain a spin label (e.g. the nitroxyl radical TEMPO) for electron spin resonance spectroscopy, or a fluorescent dye, including fluorescein and 4-nitrobenz-2-oxa-1,3-diazole (NBD), or labels for 19F nuclear magnetic resonance spectroscopy. Potential applications of the spectroscopic probes in characterization of adenosine receptors are discussed. PMID:3036153

  15. Guidance Receptors in the Nervous and Cardiovascular Systems.

    PubMed

    Rubina, K A; Tkachuk, V A

    2015-10-01

    Blood vessels and nervous fibers grow in parallel, for they express similar receptors for chemokine substances. Recently, much attention is being given to studying guidance receptors and their ligands besides the growth factors, cytokines, and chemokines necessary to form structures in the nervous and vascular systems. Such guidance molecules determine trajectory for growing axons and vessels. Guidance molecules include Ephrins and their receptors, Neuropilins and Plexins as receptors for Semaphorins, Robos as receptors for Slit-proteins, and UNC5B receptors binding Netrins. Apart from these receptors and their ligands, urokinase and its receptor (uPAR) and T-cadherin are also classified as guidance molecules. The urokinase system mediates local proteolysis at the leading edge of cells, thereby providing directed migration. T-cadherin is a repellent molecule that regulates the direction of growing axons and blood vessels. Guidance receptors also play an important role in the diseases of the nervous and cardiovascular systems.

  16. Minireview: Conversing With Chromatin: The Language of Nuclear Receptors

    PubMed Central

    2014-01-01

    Nuclear receptors are transcription factors that are activated by physiological stimuli to bind DNA in the context of chromatin and regulate complex biological pathways. Major advances in nuclear receptor biology have been aided by genome scale examinations of receptor interactions with chromatin. In this review, we summarize the roles of the chromatin landscape in regulating nuclear receptor function. Chromatin acts as a central integrator in the nuclear receptor-signaling axis, operating in distinct temporal modalities. Chromatin effects nuclear receptor action by specifying its genomic localization and interactions with regulatory elements. On receptor binding, changes in chromatin operate as an effector of receptor signaling to modulate transcriptional events. Chromatin is therefore an integral component of the pathways that guide nuclear receptor action in cell-type-specific and cell state-dependent manners. PMID:24196351

  17. Minireview: Conversing with chromatin: the language of nuclear receptors.

    PubMed

    Biddie, Simon C; John, Sam

    2014-01-01

    Nuclear receptors are transcription factors that are activated by physiological stimuli to bind DNA in the context of chromatin and regulate complex biological pathways. Major advances in nuclear receptor biology have been aided by genome scale examinations of receptor interactions with chromatin. In this review, we summarize the roles of the chromatin landscape in regulating nuclear receptor function. Chromatin acts as a central integrator in the nuclear receptor-signaling axis, operating in distinct temporal modalities. Chromatin effects nuclear receptor action by specifying its genomic localization and interactions with regulatory elements. On receptor binding, changes in chromatin operate as an effector of receptor signaling to modulate transcriptional events. Chromatin is therefore an integral component of the pathways that guide nuclear receptor action in cell-type-specific and cell state-dependent manners. PMID:24196351

  18. Molecular Recognition of Paired Receptors in the Immune System

    PubMed Central

    Kuroki, Kimiko; Furukawa, Atsushi; Maenaka, Katsumi

    2012-01-01

    Cell surface receptors are responsible for regulating cellular function on the front line, the cell membrane. Interestingly, accumulating evidence clearly reveals that the members of cell surface receptor families have very similar extracellular ligand-binding regions but opposite signaling systems, either inhibitory or stimulatory. These receptors are designated as paired receptors. Paired receptors often recognize not only physiological ligands but also non-self ligands, such as viral and bacterial products, to fight infections. In this review, we introduce several representative examples of paired receptors, focusing on two major structural superfamilies, the immunoglobulin-like and the C-type lectin-like receptors, and explain how these receptors distinguish self and non-self ligands to maintain homeostasis in the immune system. We further discuss the evolutionary aspects of these receptors as well as the potential drug targets for regulating diseases. PMID:23293633

  19. Molecular Mechanisms of Opioid Receptor-Dependent Signaling and Behavior

    PubMed Central

    Al-Hasani, Ream; Bruchas, Michael R.

    2013-01-01

    Opioid receptors have been targeted for the treatment of pain and related disorders for thousands of years, and remain the most widely used analgesics in the clinic. Mu (μ), kappa (κ), and delta (δ) opioid receptors represent the originally classified receptor subtypes, with opioid receptor like-1 (ORL1) being the least characterized. All four receptors are G-protein coupled, and activate inhibitory G-proteins. These receptors form homo- and hetereodimeric complexes, signal to kinase cascades, and scaffold a variety of proteins. In this review, we discuss classical mechanisms and developments in understanding opioid tolerance, opioid receptor signaling, and highlight advances in opioid molecular pharmacology, behavioral pharmacology, and human genetics. We put into context how opioid receptor signaling leads to the modulation of behavior with the potential for therapeutic intervention. Finally, we conclude that there is a continued need for more translational work on opioid receptors in vivo. PMID:22020140

  20. Crystal structure of a heterotetrameric NMDA receptor ion channel.

    PubMed

    Karakas, Erkan; Furukawa, Hiro

    2014-05-30

    N-Methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors, which mediate most excitatory synaptic transmission in mammalian brains. Calcium permeation triggered by activation of NMDA receptors is the pivotal event for initiation of neuronal plasticity. Here, we show the crystal structure of the intact heterotetrameric GluN1-GluN2B NMDA receptor ion channel at 4 angstroms. The NMDA receptors are arranged as a dimer of GluN1-GluN2B heterodimers with the twofold symmetry axis running through the entire molecule composed of an amino terminal domain (ATD), a ligand-binding domain (LBD), and a transmembrane domain (TMD). The ATD and LBD are much more highly packed in the NMDA receptors than non-NMDA receptors, which may explain why ATD regulates ion channel activity in NMDA receptors but not in non-NMDA receptors.

  1. Ethylene receptors in plants - why so much complexity?

    PubMed Central

    2015-01-01

    Ethylene is a hormone involved in numerous aspects of growth, development, and responses to biotic and abiotic stresses in plants. Ethylene is perceived through its binding to endoplasmic reticulum-localized receptors that function as negative regulators of ethylene signaling in the absence of the hormone. In Arabidopsis thaliana, five structurally and functionally different ethylene receptors are present. These differ in their primary sequence, in the domains present, and in the type of kinase activity exhibited, which may suggest functional differences among the receptors. Whereas ethylene receptors functionally overlap to suppress ethylene signaling, certain other responses are controlled by specific receptors. In this review, I examine the nature of these receptor differences, how the evolution of the ethylene receptor gene family may provide insight into their differences, and how expression of receptors or their accessory proteins may underlie receptor-specific responses. PMID:26171216

  2. Endocytosis and Intracellular Trafficking of Human Natural Killer Cell Receptors

    PubMed Central

    Masilamani, Madhan; Peruzzi, Giovanna; Borrego, Francisco; Coligan, John E.

    2009-01-01

    Natural killer (NK) cells play a vital role in the defense against viral infections and tumor development. NK cell function is primarily regulated by the sum of signals from a broad array of activation and inhibitory receptors. Key to generating the input level of either activating or inhibitory signals is the maintenance of receptor expression levels on the cell surface. Although the mechanisms of endocytosis and trafficking for some cell surface receptors, such as transferrin receptor, and certain immune receptors, are very well known, that is not the situation for receptors expressed by NK cells. Recent studies have uncovered that endocytosis and trafficking routes characteristic for specific activation and inhibitory receptors can regulate the functional responses of NK cells. In this review, we summarize the current knowledge of receptor endocytosis and trafficking, and integrate this with our current understanding of NK cell receptor trafficking. PMID:19719476

  3. Distributions of transmitter receptors in the macaque cingulate cortex.

    PubMed

    Bozkurt, Ahmet; Zilles, Karl; Schleicher, Axel; Kamper, Lars; Arigita, Ernesto Sanz; Uylings, Harry B M; Kötter, Rolf

    2005-03-01

    The primate cingulate cortex is structurally and functionally complex. Although no studies have investigated the regional densities of multiple neurotransmitter receptor systems, such information would be useful for assessing its functions and disease vulnerabilities. We quantified nine different receptors in five transmitter systems by in vitro autoradiographic mapping of the cingulate cortex of macaque monkeys with the aim to link cytoarchitectonic regions and functional specialization. Receptor mapping substantiated the subdivision of the cingulate cortex into anterior versus posterior regions. In anterior cingulate cortex (ACC) AMPA glutamatergic receptors and GABA(A) inhibitory receptors were present in significantly higher concentrations than the modulatory alpha-adrenergic and muscarinic receptors. These differences were absent in the posterior cingulate cortex (PCC). By contrast, NMDA receptor densities were significantly higher than AMPA receptor densities in PCC, but not in ACC. The midcingulate area 24' shared more features with ACC than PCC. This area was characterized by the highest ratios of NMDA receptors to alpha-adrenergic, muscarinic and 5-HT2 receptors among all cingulate regions. Compared to rostrocaudal divisions, the differences between dorsoventral subdivisions a-c were small in all regions of cingulate cortex, and only muscarinic and alpha-adrenergic receptor densities followed the degree of cytoarchitectonic differentiation. We conclude that multiple receptor mapping reveals a highly differentiated classification of cingulate cortex with a characteristic predominance of fast ionotropic excitatory and inhibitory receptors in ACC, but a strong and varied complement of NMDA and metabotropic receptors in PCC.

  4. Receptor Recognition Mechanisms of Coronaviruses: a Decade of Structural Studies

    PubMed Central

    2014-01-01

    Receptor recognition by viruses is the first and essential step of viral infections of host cells. It is an important determinant of viral host range and cross-species infection and a primary target for antiviral intervention. Coronaviruses recognize a variety of host receptors, infect many hosts, and are health threats to humans and animals. The receptor-binding S1 subunit of coronavirus spike proteins contains two distinctive domains, the N-terminal domain (S1-NTD) and the C-terminal domain (S1-CTD), both of which can function as receptor-binding domains (RBDs). S1-NTDs and S1-CTDs from three major coronavirus genera recognize at least four protein receptors and three sugar receptors and demonstrate a complex receptor recognition pattern. For example, highly similar coronavirus S1-CTDs within the same genus can recognize different receptors, whereas very different coronavirus S1-CTDs from different genera can recognize the same receptor. Moreover, coronavirus S1-NTDs can recognize either protein or sugar receptors. Structural studies in the past decade have elucidated many of the puzzles associated with coronavirus-receptor interactions. This article reviews the latest knowledge on the receptor recognition mechanisms of coronaviruses and discusses how coronaviruses have evolved their complex receptor recognition pattern. It also summarizes important principles that govern receptor recognition by viruses in general. PMID:25428871

  5. Intrinsic relative activities of κ opioid agonists in activating Gα proteins and internalizing receptor: Differences between human and mouse receptors.

    PubMed

    DiMattio, Kelly M; Ehlert, Frederick J; Liu-Chen, Lee-Yuan

    2015-08-15

    Several investigators recently identified biased κ opioid receptor (KOP receptor) agonists. However, no comprehensive study of the functional selectivity of available KOP receptor agonists at the human and mouse KOP receptors (hKOP receptor and mKOP receptor, respectively) has been published. Here we examined the ability of over 20 KOP receptor agonists to activate G proteins and to internalize the receptor. Clonal neuro-2a mouse neuroblastoma (N2a) cells stably transfected with the hKOP receptor or mKOP receptor were used. We employed agonist-induced [(35)S]GTPγS binding and KOP receptor internalization as measures of activation of G protein and β-arrestin pathways, respectively. The method of Ehlert and colleagues was used to quantify intrinsic relative activities at G protein activation (RAi-G) and receptor internalization (RAi-I) and the degree of functional selectivity between the two [Log RAi-G - logRAi-I, RAi-G/RAi-I and bias factor]. The parameter, RAi, represents a relative estimate of agonist affinity for the active receptor state that elicits a given response. The endogenous ligand dynorphin A (1-17) was designated as the balanced ligand with a bias factor of 1. Interestingly, we found that there were species differences in functional selectivity. The most striking differences were for 12-epi-salvinorin A, U69,593, and ICI-199,441. 12-Epi-salvinorin A was highly internalization-biased at the mKOP receptor, but apparently G protein-biased at hKOP receptor. U69,593 was much more internalization-biased at mKOP receptor than hKOP receptor. ICI199,441 showed internalization-biased at the mKOP receptor and G protein-biased at the hKOP receptor. Possible mechanisms for the observed species differences are discussed.

  6. Intrinsic Relative Activities of Opioid Agonists in Activating Gα proteins and Internalizing Receptor: Differences between Human and Mouse Receptors

    PubMed Central

    DiMattio, Kelly M.; Ehlert, Frederick J.; Liu-Chen, Lee-Yuan

    2015-01-01

    Several investigators recently identified biased opioid receptor (KOP receptor) agonists. However, no comprehensive study of the functional selectivity of available KOP receptor agonists at the human and mouse KOP receptors (hKOP receptor and mKOP receptor, respectively) has been published. Here we examined the ability of over 20 KOP receptor agonists to activate G proteins and to internalize the receptor. Clonal neuro-2a mouse neuroblastoma (N2a) cells stably transfected with the hKOP receptor or mKOP receptor were used. We employed agonist-induced [35S]GTPγS binding and KOP receptor internalization as measures of activation of G protein and β-arrestin pathways, respectively. The method of Ehlert and colleagues was used to quantify intrinsic relative activities at G protein activation (RAi−G) and receptor internalization (RAi−I) and the degree of functional selectivity between the two [Log RAi−G − Log RAi−I, RAi−G/RAi−I and bias factor]. The parameter, RAi, represents a relative estimate of agonist affinity for the active receptor state that elicits a given response. The endogenous ligand dynorphin A (1–17) was designated as the balanced ligand with a bias factor of 1. Interestingly, we found that there were species differences in functional selectivity. The most striking differences were for 12-epi-salvinorin A, U69,593, and ICI-199,441. 12-Epi-salvinorin A was highly internalization-biased at the mKOP receptor, but apparently G protein-biased at hKOP receptor. U69,593 was much more internalization-biased at mKOP receptor than hKOP receptor. ICI199,441 showed internalization-biased at the mKOP receptor and G protein-biased at the hKOP receptor. Possible mechanisms for the observed species differences are discussed. PMID:26057692

  7. The sigma receptor: evolution of the concept in neuropsychopharmacology.

    PubMed

    Hayashi, T; Su, Tp

    2005-10-01

    Although originally proposed as a subtype of opioid receptors, the sigma receptor is now confirmed to be a non-opioid receptor that binds diverse classes of psychotropic drugs. Sigma receptors are subdivided into two subtypes, sigma-1 and sigma-2. The sigma-1 receptor is a 25-kDa protein possessing one putative transmembrane domain and an endoplasmic reticulum retention signal. Sigma-1 receptors are highly expressed in deeper laminae of the cortex, olfactory bulb, nuclei of mesencephalon, hypothalamus, and Purkinje cells in the brain. Sigma-1 receptors are predominantly localized at the endoplasmic reticulum of both neurons and oligodendrocytes. From behavioral studies, sigma-1 receptors were shown to be involved in higher-ordered brain functions including memory and drug dependence. The actions mediated by sigma-1 receptors at the cellular level can be considered either as acute or chronic. The acute actions include the modulation of ion channels (i.e., K+ channel, NMDA receptors, IP3 receptors) and the sigma-1 receptor translocation. Chronic actions of sigma-1 receptors are basically considered to be the result of an up- or down regulation of the sigma-1 receptor itself. For example, the upregulation of sigma-1 receptors per se, even without exogenous ligands, promotes cellular differentiation and reconstitution of lipid microdomains (lipid rafts) in cultured cells. These findings together suggest that sigma-1 receptors might possess a constitutive biological activity, and that sigma-1 receptor ligands might merely work as modulators of the innate activity of this protein. Recent in vitro and in vitro studies strongly point to the possibility that sigma-1 receptors participate in membrane remodeling and cellular differentiation in the nervous system.

  8. A search for presynaptic inhibitory histamine receptors in guinea-pig tissues: Further H3 receptors but no evidence for H4 receptors.

    PubMed

    Petri, Doris; Schlicker, Eberhard

    2016-07-01

    The histamine H4 receptor is coupled to Gi/o proteins and expressed on inflammatory cells and lymphoid tissues; it was suggested that this receptor also occurs in the brain or on peripheral neurones. Since many Gi/o protein-coupled receptors, including the H3 receptor, serve as presynaptic inhibitory receptors, we studied whether the sympathetic neurones supplying four peripheral tissues and the cholinergic neurones in the hippocampus from the guinea-pig are equipped with release-modulating H4 and H3 receptors. For this purpose, we preincubated tissue pieces from the aorta, atrium, renal cortex and vas deferens with (3)H-noradrenaline and hippocampal slices with (3)H-choline and determined the electrically evoked tritium overflow. The stimulation-evoked overflow in the five superfused tissues was inhibited by the muscarinic receptor agonist oxotremorine, which served as a positive control, but not affected by the H4 receptor agonist 4-methylhistamine. The H3 receptor agonist R-α-methylhistamine inhibited noradrenaline release in the peripheral tissues without affecting acetylcholine release in the hippocampal slices. Thioperamide shifted the concentration-response curve of histamine in the aorta and the renal cortex to the right, yielding apparent pA2 values of 8.0 and 8.1, respectively, which are close to its affinity at other H3 receptors but higher by one log unit than its pKi at the H4 receptor of the guinea-pig. In conclusion, histamine H4 receptors could not be identified in five experimental models of the guinea-pig that are suited for the detection of presynaptic inhibitory receptors whereas H3 receptors could be shown in the peripheral tissues but not in the hippocampus. This article is part of the Special Issue entitled 'Histamine Receptors'.

  9. Palbociclib in Combination With Tamoxifen as First Line Therapy for Metastatic Hormone Receptor Positive Breast Cancer

    ClinicalTrials.gov

    2016-10-04

    Hormone Receptor Positive Malignant Neoplasm of Breast; Human Epidermal Growth Factor 2 Negative Carcinoma of Breast; Estrogen Receptor Positive Breast Cancer; Progesterone Receptor Positive Tumor; Metastatic Breast Cancer

  10. Interaction of ethanol with opiate receptors

    SciTech Connect

    Yukhananov, R.Y.; Bujov, Y.V.; Maiskii, A.I.

    1986-04-01

    The authors study the action of ethanol on membrane-bound opiate receptors. Ethanol at 37/sup 0/C was shown to produce dose-dependent inhibition of binding of /sup 3/H-naloxone with opiate receptors. ID/sub 50/ under these conditions was 462 mM. Temperature-dependent inhibition of ligand-receptor binding suggests that ethanol does not compete for the stereospecific binding site of /sup 3/H-naloxone. Analysis of the inhibitory action of ethanol on /sup 3/H-naloxone binding in animals at different stages of experimental alcoholism revealed no differences between the control and experimental animals after 3.5 and 10 months of voluntary alcoholization.

  11. Nuclear receptors in stem cell biology.

    PubMed

    Shi, Yanhong; Sun, Guoqiang; Stewart, Richard

    2006-01-01

    Batteries of transcription factors have been proposed to control stem cell self-renewal and lineage progression by eliciting cascades of gene expression. Nuclear receptors provide an ideal model to study the transcriptional regulation of gene expression because they can activate as well as repress gene expression through ligand binding and recruitment of transcriptional coactivators or corepressors. Recent progress in defining specific roles of some nuclear receptors and their coregulators in stem cell self-renewal and differentiation provides a first glimpse of the regulatory events involved and is the beginning of a very promising area of research. This review summarizes the current state of knowledge regarding nuclear receptors and their roles in stem cell biology. These studies not only facilitate an understanding of stem cell biology but also provide a basis for the development of therapeutic drugs for the treatment of a variety of diseases.

  12. Methods for Delivering DNA to Intracellular Receptors.

    PubMed

    Stacey, Katryn J; Idris, Adi; Sagulenko, Vitaliya; Vitak, Nazarii; Sester, David P

    2016-01-01

    Cytosolic DNA can indicate infection and induces type I interferon (IFN) and AIM2 inflammasome responses. Characterization of these responses has required introduction of DNA into the cytosol of macrophages by either chemical transfection or electroporation, each of which has advantages in different applications. We describe here optimized procedures for both electroporation and chemical transfection, including the centrifugation of chemical transfection reagent onto cells, which greatly increases the speed and strength of responses. Appropriate choice of DNA and use of these methods allow study of either the cytosolic DNA responses in isolation or the simultaneous stimulation of cytosolic receptors and the CpG DNA receptor toll-like receptor 9 (TLR9) in the endosomes. PMID:26803624

  13. Coagulation, Protease Activated Receptors and Viral Myocarditis

    PubMed Central

    Antoniak, Silvio; Mackman, Nigel

    2013-01-01

    The coagulation protease cascade plays an essential role in hemostasis. In addition, a clot contributes to host defense by limiting the spread of pathogens. Coagulation proteases induce intracellular signaling by cleavage of cell surface receptors called protease-activated receptors (PARs). These receptors allow cells to sense changes in the extracellular environment, such as infection. Viruses activate the coagulation cascade by inducing tissue factor expression and by disrupting the endothelium. Virus infection of the heart can cause myocarditis, cardiac remodeling and heart failure. Recent studies using a mouse model have shown that tissue factor, thrombin and PAR-1 signaling all positively regulate the innate immune during viral myocarditis. In contrast, PAR-2 signaling was found to inhibit interferon-β expression and the innate immune response. These observations suggest that anticoagulants may impair the innate immune response to viral infection and that inhibition of PAR-2 may be a new target to reduce viral myocarditis.. PMID:24203054

  14. Semaphorins and their receptors in lung cancer

    PubMed Central

    Potiron, Vincent A.; Roche, Joëlle; Drabkin, Harry A.

    2009-01-01

    Semaphorins are a large family of secreted, transmembrane and GPI-linked proteins initially characterized in the development of the nervous system and axonal guidance. Semaphorins are expressed in many tissues where they regulate normal development, organ morphogenesis, immunity and angiogenesis. They affect the cytoskeleton, actin filament organization, microtubules and cell adhesion. Semaphorin signaling is transduced by plexins, which in the case of most class-3 semaphorins requires high affinity neuropilin receptors. The neuropilins also function as receptors for VEGF and other growth factors, and their expression is often abnormal in tumors. In cancer, semaphorins have both tumor suppressor and tumor promoting functions. We review here the current status of semaphorins and their receptors in tumor development with a focus on lung cancer. PMID:18625544

  15. Sensory receptors in the equine foot.

    PubMed

    Bowker, R M; Brewer, A M; Vex, K B; Guida, L A; Linder, K E; Sonea, I M; Stinson, A W

    1993-11-01

    Two types of sensory receptors were located in the equine foot, using anatomic techniques. Histologic examination of stained hoof sections revealed lamellated corpuscles in the hoof dermis, which had many of the morphologic characteristics of Pacinian corpuscles. These sensory receptors were restricted to the palmar (caudal) aspects of the solar dermis of the heel. A second type of receptor was detected by use of immunocytochemistry, indicating apparently naked nerve endings containing the neuropeptide calcitonin gene-related peptide-like immunoreactivity in skin, solar dermal tubules, and the digital cushion. This peptide is an example of a sensory neurotransmitter contained in dorsal root ganglion cells and is believed to exist only in unmyelinated sensory nerve fibers. These 2 morphologic structures may be used for detection of sensory stimuli, such as pressure (or vibratory senses) and pain, respectively, in horses during various locomotory gaits.

  16. Methods for Delivering DNA to Intracellular Receptors.

    PubMed

    Stacey, Katryn J; Idris, Adi; Sagulenko, Vitaliya; Vitak, Nazarii; Sester, David P

    2016-01-01

    Cytosolic DNA can indicate infection and induces type I interferon (IFN) and AIM2 inflammasome responses. Characterization of these responses has required introduction of DNA into the cytosol of macrophages by either chemical transfection or electroporation, each of which has advantages in different applications. We describe here optimized procedures for both electroporation and chemical transfection, including the centrifugation of chemical transfection reagent onto cells, which greatly increases the speed and strength of responses. Appropriate choice of DNA and use of these methods allow study of either the cytosolic DNA responses in isolation or the simultaneous stimulation of cytosolic receptors and the CpG DNA receptor toll-like receptor 9 (TLR9) in the endosomes.

  17. Cardiovascular histamine receptors in the domestic chicken.

    PubMed

    Chand, N; Eyre, P

    1975-08-01

    The effects of mepyramine (H1-antagonist) and burimamide (H2-antagonist) were studied on histamine, 2-methylhistamine (a selective H1-agonist), 4-methylhistamine (a selective H2-agonist) and acetylcholine-induced changes in systemic arterial and central venous pressure and respiration in anaesthetized chickens. The result of this study suggested a predominance of H1 and some H2 histamine receptors in the cardiovascular system of domestic fowl where both are mediating systemic hypotension. There also appears to be predominance of H1 receptors mediating venous hypertension and respiratory apnoea to large doses of histamine and 2-methylhistamine. In addition, a possible involvement of H2-receptors in the cardiovascular system of chicken is suggested by the finding that burimamide always blocked mepyramine potentiated secondary pressor response to histamine and its analogues.

  18. Glucocorticoid receptor signaling in health and disease

    PubMed Central

    Kadmiel, Mahita; Cidlowski, John A.

    2013-01-01

    Glucocorticoids are steroid hormones regulated in a circadian and stres-associated manner to maintain various metabolic and homeostatic functions that are necessary for life. Synthetic glucocorticoids are widely prescribed drugs for many conditions including asthma, chronic obstructive pulmonary disease (COPD), and inflammatory disorders of the eye. Research in the last few years has begun to unravel the profound complexity of glucocorticoid signaling and has contributed remarkably to improved therapeutic strategies. Glucocorticoids signal through the glucocorticoid receptor, a member of the superfamily of nuclear receptors, in both genomic and non-genomic ways in almost every tissue in the human body. In this review, we will provide an update on glucocorticoid receptor signaling and highlight the role of GR signaling in physiological and pathophysiological conditions in the major organ systems in the human body. PMID:23953592

  19. Gastrin receptor-avid peptide conjugates

    DOEpatents

    Hoffman, Timothy J.; Volkert, Wynn A.; Li, Ning; Sieckman, Gary; Higginbotham, Chrys-Ann

    2006-12-12

    A compound for use as a therapeutic or diagnostic radiopharmaceutical includes a group capable of complexing a medically useful metal attached to a moiety which is capable of binding to a gastrin releasing peptide receptor. A method for treating a subject having a neoplastic disease includes administering to the subject an effective amount of a radiopharmaceutical having a metal chelated with a chelating group attached to a moiety capable of binding to a gastrin releasing peptide receptor expressed on tumor cells with subsequent internalization inside of the cell. A method of forming a therapeutic or diagnostic compound includes reacting a metal synthon with a chelating group covalently linked with a moiety capable of binding a gastrin releasing peptide receptor.

  20. Gastrin Receptor-Avid Peptide Conjugates

    DOEpatents

    Hoffman, Timothy J.; Volkert, Wynn A.; Li, Ning; Sieckman, Gary; Higginbotham, Chrys-Ann

    2005-07-26

    A compound for use as a therapeutic or diagnostic radiopharmaceutical includes a group capable of complexing a medically useful metal attached to a moiety which is capable of binding to a gastrin releasing peptide receptor. A method for treating a subject having a neoplastic disease includes administering to the subject an effective amount of a radiopharmaceutical having a metal chelated with a chelating group attached to a moiety capable of binding to a gastrin releasing peptide receptor expressed on tumor cells with subsequent internalization inside of the cell. A method of forming a therapeutic or diagnostic compound includes reacting a metal synthon with a chelating group covalently linked with a moiety capable of binding a gastrin releasing peptide receptor.

  1. Gastrin receptor-avid peptide conjugates

    DOEpatents

    Hoffman, Timothy J.; Volkert, Wynn A.; Sieckman, Gary; Smith, Charles J.; Gali, Hariprasad

    2006-06-13

    A compound for use as a therapeutic or diagnostic radiopharmaceutical includes a group capable of complexing a medically useful metal attached to a moiety which is capable of binding to a gastrin releasing peptide receptor. A method for treating a subject having a neoplastic disease includes administering to the subject an effective amount of a radiopharmaceutical having a metal chelated with a chelating group attached to a-moiety capable of binding to a gastrin releasing peptide receptor expressed on tumor cells with subsequent internalization inside of the cell. A method of forming a therapeutic or diagnostic compound includes reacting a metal synthon with a chelating group covalently linked with a moiety capable of binding a gastrin releasing peptide receptor.

  2. Gastrin receptor-avid peptide conjugates

    DOEpatents

    Hoffman, Timothy J.; Volkert, Wynn A.; Li, Ning; Sieckman, Gary; Higginbotham, C. A.

    2001-01-01

    A compound for use as a therapeutic or diagnostic radiopharmaceutical includes a group capable of complexing a medically useful metal attached to a moiety which is capable of binding to a gastrin releasing peptide receptor. A method for treating a subject having a neoplastic disease includes administering to the subject an effective amount of a radiopharmaceutical having a metal chelated with a chelating group attached to a moiety capable of binding to a gastrin releasing peptide receptor expressed on tumor cells with subsequent internalization inside of the cell. A method of forming a therapeutic or diagnostic compound includes reacting a metal synthon with a chelating group covalently linked with a moiety capable of binding a gastrin releasing peptide receptor.

  3. High-affinity neuropeptide Y receptor antagonists.

    PubMed Central

    Daniels, A J; Matthews, J E; Slepetis, R J; Jansen, M; Viveros, O H; Tadepalli, A; Harrington, W; Heyer, D; Landavazo, A; Leban, J J

    1995-01-01

    Neuropeptide Y (NPY) is one of the most abundant peptide transmitters in the mammalian brain. In the periphery it is costored and coreleased with norepinephrine from sympathetic nerve terminals. However, the physiological functions of this peptide remain unclear because of the absence of specific high-affinity receptor antagonists. Three potent NPY receptor antagonists were synthesized and tested for their biological activity in in vitro, ex vivo, and in vivo functional assays. We describe here the effects of these antagonists inhibiting specific radiolabeled NPY binding at Y1 and Y2 receptors and antagonizing the effects of NPY in human erythroleukemia cell intracellular calcium mobilization perfusion pressure in the isolated rat kidney, and mean arterial blood pressure in anesthetized rats. PMID:7568074

  4. Functional Significance of Serotonin Receptor Dimerization

    PubMed Central

    Herrick-Davis, Katharine

    2013-01-01

    The original model of G protein activation by a single G-protein-coupled receptor (GPCR) is giving way to a new model wherein two protomers of a GPCR dimer interact with a single G protein. This article will review the evidence suggesting that 5-HT receptors form dimers/oligomers and will compare the findings with results obtained from studies with other biogenic amine receptors. Topics to be covered include the origin or biogenesis of dimer formation, potential dimer interface(s), and oligomer size (dimer versus tetramer or higher order). The functional significance will be discussed in terms of G-protein activation following ligand binding to one or two protomers in a dimeric structure, the formation of heterodimers and the development of bivalent ligands. PMID:23811735

  5. Allosteric modulators of the extracellular calcium receptor.

    PubMed

    Nemeth, E F

    2013-01-01

    The extracellular calcium receptor (CaR) is a Family C G protein-coupled receptor that controls systemic Ca2+ homeostasis, largely by regulating the secretion of parathyroid hormone (PTH). Ligands that activate the CaR have been termed calcimimetics and are classified as either Type I (agonists) or Type II (allosteric activators) and effectively inhibit the secretion of PTH. CaR antagonists have been termed calcilytics and all act allosterically to stimulate secretion of PTH. The calcimimetic cinacalcet has been approved for treating parathyroid cancer and secondary hyperparathyroidism in patients on renal replacement therapy. Cinacalcet was the first allosteric modulator of a G proteincoupled receptor to achieve regulatory approval. This review will focus on the technologies used to discover and develop allosterically acting calcimimetics and calcilytics as novel therapies for bone and mineral-related disorders. PMID:24050279

  6. [Estrogen receptor alpha in obesity and diabetes].

    PubMed

    Cahua-Pablo, José Ángel; Flores-Alfaro, Eugenia; Cruz, Miguel

    2016-01-01

    Estradiol (E2) is an important hormone in reproductive physiology, cardiovascular, skeletal and in the central nervous system (CNS). In human and rodents, E2 and its receptors are involved in the control of energy and glucose metabolism in health and metabolic diseases. The estrogen receptor (ER) belongs to the superfamily of nuclear receptors (NR), which are transcription factors that regulate gene expression. Three ER, ER-alpha, ER-beta and the G protein-coupled ER (GPER; also called GPR30) in tissues are involved in glucose and lipid homeostasis. Also, it may have important implications for risk factors associated with metabolic syndrome (MS), insulin resistance (IR), obesity and type 2 diabetes (T2D).

  7. Tachykinin receptors mediating airway marcomolecular secretion

    SciTech Connect

    Gentry, S.E. )

    1991-01-01

    Three tachykinin receptor types, termed NK1, NK2, and NK3, can be distinguished by the relative potency of various peptides in eliciting tissue responses. Airway macromolecular secretion is stimulated by the tachykinin substance P (SP). The purposes of this study were to determine the tachykinin receptor subtype responsible for this stimulation, and to examine the possible involvement of other neurotransmitters in mediating this effect. Ferret tracheal explants maintained in organ culture were labeled with {sup 3}H-glucosamine, a precursor of high molecular weight glycoconjugates (HMWG) which are released by airway secretory cells. Secretion of labeled HMWG then was determined in the absence and presence of the tachykinins SP, neurokinin A (NKA), neurokinin B (NKB), physalaemin (PHY), and eledoisin (ELE). To evaluate the possible contribution of other mediators, tachykinin stimulation was examined in the presence of several receptor blockers.

  8. Mechanism of FGF receptor dimerization and activation

    PubMed Central

    Sarabipour, Sarvenaz; Hristova, Kalina

    2016-01-01

    Fibroblast growth factors (fgfs) are widely believed to activate their receptors by mediating receptor dimerization. Here we show, however, that the FGF receptors form dimers in the absence of ligand, and that these unliganded dimers are phosphorylated. We further show that ligand binding triggers structural changes in the FGFR dimers, which increase FGFR phosphorylation. The observed effects due to the ligands fgf1 and fgf2 are very different. The fgf2-bound dimer structure ensures the smallest separation between the transmembrane (TM) domains and the highest possible phosphorylation, a conclusion that is supported by a strong correlation between TM helix separation in the dimer and kinase phosphorylation. The pathogenic A391E mutation in FGFR3 TM domain emulates the action of fgf2, trapping the FGFR3 dimer in its most active state. This study establishes the existence of multiple active ligand-bound states, and uncovers a novel molecular mechanism through which FGFR-linked pathologies can arise. PMID:26725515

  9. Lixivaptan: a novel vasopressin receptor antagonist.

    PubMed

    Ku, Elaine; Nobakht, Niloofar; Campese, Vito M

    2009-05-01

    Arginine vasopressin, also known as antidiuretic hormone, is a neuropeptide that functions in the maintenance of body water homeostasis. Inappropriate secretion of vasopressin has been implicated in the pathophysiology of multiple diseases, including polycystic kidney disease, syndrome of inappropriate antidiuretic hormone (SIADH) secretion, and the hyponatremia commonly associated with cirrhosis and congestive heart failure. Vasopressin receptor antagonists are novel agents that block the physiologic actions of vasopressin. Lixivaptan is a vasopressin receptor antagonist with high V2 receptor affinity and is now undergoing Phase III clinical trials. Studies so far have demonstrated that lixivaptan is efficacious in the correction of hyponatremia in SIADH, heart failure and liver cirrhosis with ascites, and few adverse effects have been noted. Thus, lixivaptan remains a promising therapeutic modality for the treatment of multiple diseases and prevention of the associated morbidity and mortality associated with hyponatremia.

  10. Therapeutic antibodies against CGRP or its receptor

    PubMed Central

    Bigal, Marcelo E; Walter, Sarah; Rapoport, Alan M

    2015-01-01

    CGRP is an extensively studied neuropeptide that has been implicated in the pathophysiology of migraine. While a number of small molecule antagonists against the CGRP receptor have demonstrated that targeting this pathway is a valid and effective way of treating migraine, off-target hepatoxicity and formulation issues have hampered the development for regulatory approval of any therapeutic in this class. The development of monoclonal antibodies to CGRP or its receptor as therapeutic agents has allowed this pathway to be re-investigated. Herein we review why CGRP is an ideal target for the prevention of migraine and describe four monoclonal antibodies against either CGRP or its receptor that are in clinical development for the treatment of both episodic and chronic migraine. We describe what has been publically disclosed about their clinical trials and future clinical development plans. PMID:25614243

  11. PDGF and PDGF receptors in glioma

    PubMed Central

    Nazarenko, Inga; Hede, Sanna-Maria; He, Xiaobing; Hedrén, Anna; Thompson, James; Lindström, Mikael S.

    2012-01-01

    The family of platelet-derived growth factors (PDGFs) plays a number of critical roles in normal embryonic development, cellular differentiation, and response to tissue damage. Not surprisingly, as it is a multi-faceted regulatory system, numerous pathological conditions are associated with aberrant activity of the PDGFs and their receptors. As we and others have shown, human gliomas, especially glioblastoma, express all PDGF ligands and both the two cell surface receptors, PDGFR-α and -β. The cellular distribution of these proteins in tumors indicates that glial tumor cells are stimulated via PDGF/PDGFR-α autocrine and paracrine loops, while tumor vessels are stimulated via the PDGFR-β. Here we summarize the initial discoveries on the role of PDGF and PDGF receptors in gliomas and provide a brief overview of what is known in this field. PMID:22509804

  12. NUREBASE: database of nuclear hormone receptors.

    PubMed

    Duarte, Jorge; Perrière, Guy; Laudet, Vincent; Robinson-Rechavi, Marc

    2002-01-01

    Nuclear hormone receptors are an abundant class of ligand activated transcriptional regulators, found in varying numbers in all animals. Based on our experience of managing the official nomenclature of nuclear receptors, we have developed NUREBASE, a database containing protein and DNA sequences, reviewed protein alignments and phylogenies, taxonomy and annotations for all nuclear receptors. The reviewed NUREBASE is completed by NUREBASE_DAILY, automatically updated every 24 h. Both databases are organized under a client/server architecture, with a client written in Java which runs on any platform. This client, named FamFetch, integrates a graphical interface allowing selection of families, and manipulation of phylogenies and alignments. NUREBASE sequence data is also accessible through a World Wide Web server, allowing complex queries. All information on accessing and installing NUREBASE may be found at http://www.ens-lyon.fr/LBMC/laudet/nurebase.html.

  13. Production of antibodies which recognize opiate receptors on murine leukocytes

    SciTech Connect

    Carr, D.J.J.; Bost, K.L.; Blalock, J.E.

    1988-01-01

    An antibody has been developed which recognizes opiate receptors on cells of the immune system. This antibody blocks specific binding of the radiolabeled opiate receptor ligand, /sup 3/H-dihydromorphine, to receptors on murine splenocytes. Additionally, the anti-receptor antibody competes with ..beta..-endorphin, meta-enkephalin, and naloxone for the same binding site on the leukocytes. Moreover, the anti-receptor antibody possesses agonist activity similar to ..beta..-endorphin in suppressing cAMP production by lymphocytes. These results suggest the development of an antibody which recognizes classical opiate receptors on cells of the immune system.

  14. Opioid receptors: Structural and mechanistic insights into pharmacology and signaling.

    PubMed

    Shang, Yi; Filizola, Marta

    2015-09-15

    Opioid receptors are important drug targets for pain management, addiction, and mood disorders. Although substantial research on these important subtypes of G protein-coupled receptors has been conducted over the past two decades to discover ligands with higher specificity and diminished side effects, currently used opioid therapeutics remain suboptimal. Luckily, recent advances in structural biology of opioid receptors provide unprecedented insights into opioid receptor pharmacology and signaling. We review here a few recent studies that have used the crystal structures of opioid receptors as a basis for revealing mechanistic details of signal transduction mediated by these receptors, and for the purpose of drug discovery.

  15. Pharmacological Profiles of Oligomerized μ-Opioid Receptors

    PubMed Central

    Lee, Cynthia Wei-Sheng; Ho, Ing-Kang

    2013-01-01

    Opioids are widely prescribed pain relievers with multiple side effects and potential complications. They produce analgesia via G-protein-protein coupled receptors: μ-, δ-, κ-opioid and opioid receptor-like 1 receptors. Bivalent ligands targeted to the oligomerized opioid receptors might be the key to developing analgesics without undesired side effects and obtaining effective treatment for opioid addicts. In this review we will update the biological effects of μ-opioids on homo- or hetero-oligomerized μ-opioid receptor and discuss potential mechanisms through which bivalent ligands exert beneficial effects, including adenylate cyclase regulation and receptor-mediated signaling pathways. PMID:24709876

  16. Cortical development of AMPA receptor trafficking proteins

    PubMed Central

    Murphy, Kathryn M.; Tcharnaia, Lilia; Beshara, Simon P.; Jones, David G.

    2012-01-01

    AMPA-receptor trafficking plays a central role in excitatory plasticity, especially during development. Changes in the number of AMPA receptors and time spent at the synaptic surface are important factors of plasticity that directly affect long-term potentiation (LTP), long-term depression (LTD), synaptic scaling, and the excitatory-inhibitory (E/I) balance in the developing cortex. Experience-dependent changes in synaptic strength in visual cortex (V1) use a molecularly distinct AMPA trafficking pathway that includes the GluA2 subunit. We studied developmental changes in AMPA receptor trafficking proteins by quantifying expression of GluA2, pGluA2 (GluA2serine880), GRIP1, and PICK1 in rat visual and frontal cortex. We used Western Blot analysis of synaptoneurosome preparations of rat visual and frontal cortex from animals ranging in age from P0 to P105. GluA2 and pGluA2 followed different developmental trajectories in visual and frontal cortex, with a brief period of over expression in frontal cortex. The over expression of GluA2 and pGluA2 in immature frontal cortex raises the possibility that there may be a period of GluA2-dependent vulnerability in frontal cortex that is not found in V1. In contrast, GRIP1 and PICK1 had the same developmental trajectories and were expressed very early in development of both cortical areas. This suggests that the AMPA-interacting proteins are available to begin trafficking receptors as soon as GluA2-containing receptors are expressed. Finally, we used all four proteins to analyze the surface-to-internalization balance and found that this balance was roughly equal across both cortical regions, and throughout development. Our finding of an exquisite surface-to-internalization balance highlights that these AMPA receptor trafficking proteins function as a tightly controlled system in the developing cortex. PMID:22623912

  17. Social regulation of cortisol receptor gene expression

    PubMed Central

    Korzan, Wayne J.; Grone, Brian P.; Fernald, Russell D.

    2014-01-01

    In many social species, individuals influence the reproductive capacity of conspecifics. In a well-studied African cichlid fish species, Astatotilapia burtoni, males are either dominant (D) and reproductively competent or non-dominant (ND) and reproductively suppressed as evidenced by reduced gonadotropin releasing hormone (GnRH1) release, regressed gonads, lower levels of androgens and elevated levels of cortisol. Here, we asked whether androgen and cortisol levels might regulate this reproductive suppression. Astatotilapia burtoni has four glucocorticoid receptors (GR1a, GR1b, GR2 and MR), encoded by three genes, and two androgen receptors (ARα and ARβ), encoded by two genes. We previously showed that ARα and ARβ are expressed in GnRH1 neurons in the preoptic area (POA), which regulates reproduction, and that the mRNA levels of these receptors are regulated by social status. Here, we show that GR1, GR2 and MR mRNAs are also expressed in GnRH1 neurons in the POA, revealing potential mechanisms for both androgens and cortisol to influence reproductive capacity. We measured AR, MR and GR mRNA expression levels in a microdissected region of the POA containing GnRH1 neurons, comparing D and ND males. Using quantitative PCR (qPCR), we found D males had higher mRNA levels of ARα, MR, total GR1a and GR2 in the POA compared with ND males. In contrast, ND males had significantly higher levels of GR1b mRNA, a receptor subtype with a reduced transcriptional response to cortisol. Through this novel regulation of receptor type, neurons in the POA of an ND male will be less affected by the higher levels of cortisol typical of low status, suggesting GR receptor type change as a potential adaptive mechanism to mediate high cortisol levels during social suppression. PMID:25013108

  18. Targeted anticancer therapy: overexpressed receptors and nanotechnology.

    PubMed

    Akhtar, Mohd Javed; Ahamed, Maqusood; Alhadlaq, Hisham A; Alrokayan, Salman A; Kumar, Sudhir

    2014-09-25

    Targeted delivery of anticancer drugs to cancer cells and tissues is a promising field due to its potential to spare unaffected cells and tissues, but it has been a major challenge to achieve success in these therapeutic approaches. Several innovative approaches to targeted drug delivery have been devised based on available knowledge in cancer biology and on technological advancements. To achieve the desired selectivity of drug delivery, nanotechnology has enabled researchers to design nanoparticles (NPs) to incorporate anticancer drugs and act as nanocarriers. Recently, many receptor molecules known to be overexpressed in cancer have been explored as docking sites for the targeting of anticancer drugs. In principle, anticancer drugs can be concentrated specifically in cancer cells and tissues by conjugating drug-containing nanocarriers with ligands against these receptors. Several mechanisms can be employed to induce triggered drug release in response to either endogenous trigger or exogenous trigger so that the anticancer drug is only released upon reaching and preferentially accumulating in the tumor tissue. This review focuses on overexpressed receptors exploited in targeting drugs to cancerous tissues and the tumor microenvironment. We briefly evaluate the structure and function of these receptor molecules, emphasizing the elegant mechanisms by which certain characteristics of cancer can be exploited in cancer treatment. After this discussion of receptors, we review their respective ligands and then the anticancer drugs delivered by nanotechnology in preclinical models of cancer. Ligand-functionalized nanocarriers have delivered significantly higher amounts of anticancer drugs in many in vitro and in vivo models of cancer compared to cancer models lacking such receptors or drug carrying nanocarriers devoid of ligand. This increased concentration of anticancer drug in the tumor site enabled by nanotechnology could have a major impact on the efficiency of cancer

  19. B1 bradykinin receptors and sensory neurones.

    PubMed Central

    Davis, C. L.; Naeem, S.; Phagoo, S. B.; Campbell, E. A.; Urban, L.; Burgess, G. M.

    1996-01-01

    1. The location of the B1 bradykinin receptors involved in inflammatory hyperalgesia was investigated. 2. No specific binding of the B1 bradykinin receptor ligand [3H]-des-Arg10-kallidin was detected in primary cultures of rat dorsal root ganglion neurones, even after treatment with interleukin-1 beta (100 iu ml-1). 3. In dorsal root ganglion neurones, activation of B2 bradykinin receptors stimulated polyphosphoinositidase C. In contrast, B1 bradykinin receptor agonists (des-Arg9-bradykinin up to 10 microM and des-Arg10-kallidin up to 1 microM) failed to activate polyphosphoinositidase C, even in neurones that had been treated with interleukin-1 beta (100 iu ml-1), prostaglandin E2 (1 microM) or prostaglandin I2 (1 microM). 4. Dorsal root ganglion neurones removed from rats (both neonatal and 14 days old) that had been pretreated with inflammatory mediators (Freund's complete adjuvant, or carrageenan) failed to respond to B1 bradykinin receptor selective agonists (des-Arg9-bradykinin up to 10 microM and des-Arg10-kallidin up to 1 microM). 5. Bradykinin (25 nM to 300 nM) evoked ventral root responses when applied to peripheral receptive fields or central terminals of primary afferents in the neonatal rat spinal cord and tail preparation. In contrast, des-Arg9-bradykinin (50 nM to 500 nM) failed to evoke ventral root depolarizations in either control rats or in animals that developed inflammation following ultraviolet irradiation of the tail skin. 6. The results of the present study imply that the B1 bradykinin receptors that contribute to hypersensitivity in models of persistent inflammatory hyperalgesia are located on cells other than sensory neurones where they may be responsible for releasing mediators that sensitize or activate the nociceptors. PMID:8832074

  20. Lysophospholipid receptor nomenclature review: IUPHAR Review 8

    PubMed Central

    Kihara, Yasuyuki; Maceyka, Michael; Spiegel, Sarah; Chun, Jerold

    2014-01-01

    Lysophospholipids encompass a diverse range of small, membrane-derived phospholipids that act as extracellular signals. The signalling properties are mediated by 7-transmembrane GPCRs, constituent members of which have continued to be identified after their initial discovery in the mid-1990s. Here we briefly review this class of receptors, with a particular emphasis on their protein and gene nomenclatures that reflect their cognate ligands. There are six lysophospholipid receptors that interact with lysophosphatidic acid (LPA): protein names LPA1 – LPA6 and italicized gene names LPAR1-LPAR6 (human) and Lpar1-Lpar6 (non-human). There are five sphingosine 1-phosphate (S1P) receptors: protein names S1P1-S1P5 and italicized gene names S1PR1-S1PR5 (human) and S1pr1-S1pr5 (non-human). Recent additions to the lysophospholipid receptor family have resulted in the proposed names for a lysophosphatidyl inositol (LPI) receptor – protein name LPI1 and gene name LPIR1 (human) and Lpir1 (non-human) – and three lysophosphatidyl serine receptors – protein names LyPS1, LyPS2, LyPS3 and gene names LYPSR1-LYPSR3 (human) and Lypsr1-Lypsr3 (non-human) along with a variant form that does not appear to exist in humans that is provisionally named LyPS2L. This nomenclature incorporates previous recommendations from the International Union of Basic and Clinical Pharmacology, the Human Genome Organization, the Gene Nomenclature Committee, and the Mouse Genome Informatix. PMID:24602016

  1. Peptide receptor radionuclide therapy: an overview.

    PubMed

    Dash, Ashutosh; Chakraborty, Sudipta; Pillai, Maroor Raghavan Ambikalmajan; Knapp, Furn F Russ

    2015-03-01

    Peptide receptor radionuclide therapy (PRRT) is a site-directed targeted therapeutic strategy that specifically uses radiolabeled peptides as biological targeting vectors designed to deliver cytotoxic levels of radiation dose to cancer cells, which overexpress specific receptors. Interest in PRRT has steadily grown because of the advantages of targeting cellular receptors in vivo with high sensitivity as well as specificity and treatment at the molecular level. Recent advances in molecular biology have not only stimulated advances in PRRT in a sustainable manner but have also pushed the field significantly forward to several unexplored possibilities. Recent decades have witnessed unprecedented endeavors for developing radiolabeled receptor-binding somatostatin analogs for the treatment of neuroendocrine tumors, which have played an important role in the evolution of PRRT and paved the way for the development of other receptor-targeting peptides. Several peptides targeting a variety of receptors have been identified, demonstrating their potential to catalyze breakthroughs in PRRT. In this review, the authors discuss several of these peptides and their analogs with regard to their applications and potential in radionuclide therapy. The advancement in the availability of combinatorial peptide libraries for peptide designing and screening provides the capability of regulating immunogenicity and chemical manipulability. Moreover, the availability of a wide range of bifunctional chelating agents opens up the scope of convenient radiolabeling. For these reasons, it would be possible to envision a future where the scope of PRRT can be tailored for patient-specific application. While PRRT lies at the interface between many disciplines, this technology is inextricably linked to the availability of the therapeutic radionuclides of required quality and activity levels and hence their production is also reviewed.

  2. Ubiquitination of CXCR7 Controls Receptor Trafficking

    PubMed Central

    de Munnik, Sabrina; Han, Mitchell K. L.; Smit, Martine J.; Leurs, Rob

    2012-01-01

    The chemokine receptor CXCR7 binds CXCL11 and CXCL12 with high affinity, chemokines that were previously thought to bind exclusively to CXCR4 and CXCR3, respectively. Expression of CXCR7 has been associated with cardiac development as well as with tumor growth and progression. Despite having all the canonical features of G protein-coupled receptors (GPCRs), the signalling pathways following CXCR7 activation remain controversial, since unlike typical chemokine receptors, CXCR7 fails to activate Gαi-proteins. CXCR7 has recently been shown to interact with β-arrestins and such interaction has been suggested to be responsible for G protein-independent signals through ERK-1/2 phosphorylation. Signal transduction by CXCR7 is controlled at the membrane by the process of GPCR trafficking. In the present study we investigated the regulatory processes triggered by CXCR7 activation as well as the molecular interactions that participate in such processes. We show that, CXCR7 internalizes and recycles back to the cell surface after agonist exposure, and that internalization is not only β-arrestin-mediated but also dependent on the Serine/Threonine residues at the C-terminus of the receptor. Furthermore we describe, for the first time, the constitutive ubiquitination of CXCR7. Such ubiquitination is a key modification responsible for the correct trafficking of CXCR7 from and to the plasma membrane. Moreover, we found that CXCR7 is reversibly de-ubiquitinated upon treatment with CXCL12. Finally, we have also identified the Lysine residues at the C-terminus of CXCR7 to be essential for receptor cell surface delivery. Together these data demonstrate the differential regulation of CXCR7 compared to the related CXCR3 and CXCR4 receptors, and highlight the importance of understanding the molecular determinants responsible for this process. PMID:22457824

  3. Propofol Restores Transient Receptor Potential Vanilloid Receptor Subtype-1 Sensitivity via Activation of Transient Receptor Potential Ankyrin Receptor Subtype-1 in Sensory Neurons

    PubMed Central

    Zhang, Hongyu; Wickley, Peter J.; Sinha, Sayantani; Bratz, Ian N.; Damron, Derek S.

    2011-01-01

    Background Crosstalk between peripheral nociceptors belonging to the transient receptor potential vanilloid receptor subtype-1 (TRPV1) and ankyrin subtype-1 (TRPA1) family has recently been demonstrated. Moreover, the intravenous anesthetic propofol has been shown to directly activate TRPA1 receptors, and indirectly restore sensitivity of TRPV1 receptors in dorsal root ganglion (DRG) sensory neurons. Our objective was to determine the extent to which TRPA1 activation is involved in mediating the propofol-induced restoration of TRPV1 sensitivity. Methods Mouse DRG neurons were isolated by enzymatic dissociation and grown for 24 h. F-11 cells were transfected with complementary DNA for both TRPV1 and TRPA1 or TRPV1 only. Intracellular Ca2+ concentration was measured in individual cells via fluorescence microscopy. Following TRPV1 de-sensitization with capsaicin (100 nM), cells were treated with propofol (1, 5 and 10 μM) alone, propofol in the presence of the TRPA1 antagonist, HC-030031 (0.5 μM) or the TRPA1 agonist, Allyl isothiocyanate (AITC, 100 μM) and capsaicin was then reapplied. Results In DRG neurons that contain both TRPV1 and TRPA1, propofol and AITC restored TRPV1 sensitivity. However, in DRG neurons containing only TRPV1 receptors, exposure to propofol or AITC following de-sensitization did not restore capsaicin-induced TRPV1 sensitivity. Similarly, in F-11 cells transfected with both TRPV1 and TRPA1, propofol and AITC restored TRPV1 sensitivity. However, in F-11 cells transfected with TRPV1 only, neither propofol nor AITC were capable of restoring TRPV1 sensitivity. Conclusions These data demonstrate that propofol restores TRPV1 sensitivity in primary DRG neurons and in cultured F-11 cells transfected with both the TRPV1 and TRPA1 receptors via a TRPA1-dependent process. Propofol’s effects on sensory neurons may be clinically important and contribute to peripheral sensitization to nociceptive stimuli in traumatized tissue. PMID:21364461

  4. Characterization of muscarinic receptors in rat kidney.

    PubMed

    Blankesteijn, W M; Siero, H L; Rodrigues de Miranda, J F; van Megen, Y J; Russel, F G

    1993-01-01

    Muscarinic receptors in mammalian kidney seem to be involved in diuresis. In this study we give a detailed characterization of receptors in rat kidney. Specific binding of [3H](-)-quinuclidinylbenzilate ([3H]QNB) to membranes of rat kidney cortex was saturable and of high affinity. A dissociation constant of 0.063 +/- 0.003 nM and a receptor density of 1.46 +/- 0.07 pmol/g wet weight were obtained. The dissociation kinetics could be best described by assuming a mono-exponential function (k-1 = (0.52 +/- 0.1) x 10(-4) s-1). The binding of [3H]QNB reached a maximum in 60 min at 0.6 nM at 37 degrees C. Competition experiments with the enantiomers of benzetimide confirmed the muscarinic nature of the [3H]QNB binding sites. The inhibition constants of pirenzepine (0.23 +/- 0.02 microM), (+-)-hexahydrosiladifenidol (0.040 +/- 0.002 microM), AF-DX 116 (1.45 +/- 0.07 microM), methoctramine (1.67 +/- 0.02 microM) and gallamine (78 +/- 3 microM) classified this receptor as an M3 receptor. Inhibition of [3H]QNB binding by the agonists methylfurtrethonium, arecoline, isoarecoline methiodide, arecaidine propargyl ester and McN-A-343 displayed monophasic inhibition curves. With (+/-)-cis-2-methyl-4-dimethylaminomethyl-1,3- dioxolane methiodide in two out of four experiments a small (11%) population of high affinity agonist sites could be detected. The potassium sparing diuretic amiloride inhibited [3H]QNB binding (36 +/- 3 microM). Although in a way related to the amiloride binding site, the muscarinic receptors in rat kidney are unlikely to be the primary target of diuretic action of this drug. PMID:8420789

  5. Ligand-directed trafficking of receptor stimulus.

    PubMed

    Chilmonczyk, Zdzisław; Bojarski, Andrzej J; Sylte, Ingebrigt

    2014-12-01

    GPCRs are seven transmembrane-spanning receptors that convey specific extracellular stimuli to intracellular signalling. They represent the largest family of cell surface proteins that are therapeutically targeted. According to the traditional two-state model of receptor theory, GPCRs were considered as operating in equilibrium between two functional conformations, an active (R*) and inactive (R) state. Thus, it was assumed that a GPCR can exist either in an "off" or "on" conformation causing either no activation or equal activation of all its signalling pathways. Over the past several years it has become evident that this model is too simple and that GPCR signalling is far more complex. Different studies have presented a multistate model of receptor activation in which ligand-specific receptor conformations are able to differentiate between distinct signalling partners. Recent data show that beside G proteins numerous other proteins, such as β-arrestins and kinases, may interact with GPCRs and activate intracellular signalling pathways. GPCR activation may therefore involve receptor desensitization, coupling to multiple G proteins, Gα or Gβγ signalling, and pathway activation that is independent of G proteins. This latter effect leads to agonist "functional selectivity" (also called ligand-directed receptor trafficking, stimulus trafficking, biased agonism, biased signalling), and agonist intervention with functional selectivity may improve the therapy. Many commercially available drugs with beneficial efficacy also show various undesirable side effects. Further studies of biased signalling might facilitate our understanding of the side effects of current drugs and take us to new avenues to efficiently design pathway-specific medications.

  6. Characterization of glomerular epithelial cell matrix receptors.

    PubMed Central

    Adler, S.

    1992-01-01

    Integrin matrix receptors on glomerular epithelial cells (GEC) may play an important role in adhesion of GEC to the glomerular basement membrane (GBM) and in the maintenance of normal glomerular permeability. Therefore, the author determined the types of matrix receptors present on cultured rat GEC and examined their interactions with several components of the extracellular matrix. Beta 1 integrin matrix receptors were detected on all three glomerular cell types in rat kidney in vivo and at areas of cell-cell contact on cultured GEC. Glomerular epithelial cell adhesion to types I and IV collagen was slightly greater than to laminin and fibronectin. Adhesion to fibronectin was significantly inhibited by a synthetic peptide containing the RGD adhesion sequence. Immunoprecipitation of lysates of surface-iodinated GEC showed the presence of alpha 3 beta 1 integrin. Chromatography of lysates on immobilized collagen showed alpha 3 beta 1 integrin and a 70- to 75-kd protein band as the collagen receptors on GEC. Chromatography on the 120-kd cell-binding fragment of fibronectin disclosed only alpha 3 beta 1 as a specific fibronectin receptor. Antibody to the beta 1 integrin chain inhibited adhesion to laminin and collagen. These studies demonstrate that in vitro, as in vivo, GEC appear to express only alpha 3 beta 1 integrin. Furthermore, this matrix receptor is capable of mediating GEC adhesion to collagen, fibronectin, and laminin, components of the GBM, and presumably plays a similar role in promoting GEC adhesion to GBM in vivo. Images Figure 1 Figure 4 Figure 5 Figure 6 Figure 7 PMID:1325740

  7. Pouncing on the chemokine receptor Chimera.

    PubMed

    Mascolini, M

    1997-08-01

    Scientists are seeking to unravel the mystery of chemokine receptors in an attempt to develop treatments for HIV infection; however, receptor experts are realizing that the picture is more complicated than they first imagined. Scientists want to know, among other things, what parts of each coreceptor are essential for viral fusion with target cells, what makes macrophage-tropic viruses switch their preference to T-lymphocytes, why HIV goes after chemokine receptors in the first place, and how fusion and entry occur. Other issues discussed include whether blocking coreceptors for HIV will actually curb this disease, virus turnover in monkey studies showing that SIV may go through the cycle as many as 100 times per day, and studies showing that the first days of infection may predict the course of disease. Final comments concern the use of ritonavir plus indinavir in treatment combinations for children with HIV and the latest progress toward vaccine development. Understanding these and other puzzles might help scientists to develop drugs to block receptors active in HIV infection and perhaps curb HIV. More than 14 biotechnology and pharmaceutical firms are working to design coreceptor blockers, despite the opinions of several leading researchers that the drugs are not terribly promising. Dr. Anthony Fauci, director of the National Institute for Allergy and Infectious Disease (NIAID), notes that a famous attempt to block HIV's primary receptor failed, and David Ho, the man who demonstrated why CD4 would not work as therapy, is similarly cautious. According to Ho, drug makers will have no trouble developing compounds that keep HIV off chemokine receptors, such as CCR5 or CXCR4, but whether those compounds will slow disease progression is another question. PMID:11364629

  8. Cell Surface Epidermal Growth Factor Receptors Increase Src and c-Cbl Activity and Receptor Ubiquitylation*

    PubMed Central

    Parks, Eileen E.; Ceresa, Brian P.

    2014-01-01

    There is an established role for the endocytic pathway in regulation of epidermal growth factor receptor (EGFR) signaling to downstream effectors. However, because ligand-mediated EGFR endocytosis utilizes multiple “moving parts,” dissecting the spatial versus temporal contributions has been challenging. Blocking all endocytic trafficking can have unintended effects on other receptors as well as give rise to compensatory mechanisms, both of which impact interpretation of EGFR signaling. To overcome these limitations, we used epidermal growth factor (EGF) conjugated to polystyrene beads (EGF beads). EGF beads simultaneously activate the EGFR while blocking its endocytosis and allow analysis of EGFR signaling from the plasma membrane. Human telomerase immortalized corneal epithelial (hTCEpi) cells were used to model normal epithelial cell biology. In hTCEpi cells, both cell surface and intracellular EGFRs exhibited dose-dependent increases in effector activity after 15 min of ligand stimulation, but only the serine phosphorylation of signal transducer and activator of transcription 3 (STAT3) was statistically significant when accounting for receptor phosphorylation. However, over time with physiological levels of receptor phosphorylation, cell surface receptors produced either enhanced or sustained mitogen-activated protein kinase kinase (MEK), Casitas B-lineage lymphoma (c-Cbl), and the pro-oncogene Src activity. These increases in effector communication by cell surface receptors resulted in an increase in EGFR ubiquitylation with sustained ligand incubation. Together, these data indicate that spatial regulation of EGFR signaling may be an important regulatory mechanism in receptor down-regulation. PMID:25074934

  9. The Sorting Receptor SorCS1 Regulates Trafficking of Neurexin and AMPA Receptors.

    PubMed

    Savas, Jeffrey N; Ribeiro, Luís F; Wierda, Keimpe D; Wright, Rebecca; DeNardo-Wilke, Laura A; Rice, Heather C; Chamma, Ingrid; Wang, Yi-Zhi; Zemla, Roland; Lavallée-Adam, Mathieu; Vennekens, Kristel M; O'Sullivan, Matthew L; Antonios, Joseph K; Hall, Elizabeth A; Thoumine, Olivier; Attie, Alan D; Yates, John R; Ghosh, Anirvan; de Wit, Joris

    2015-08-19

    The formation, function, and plasticity of synapses require dynamic changes in synaptic receptor composition. Here, we identify the sorting receptor SorCS1 as a key regulator of synaptic receptor trafficking. Four independent proteomic analyses identify the synaptic adhesion molecule neurexin and the AMPA glutamate receptor (AMPAR) as major proteins sorted by SorCS1. SorCS1 localizes to early and recycling endosomes and regulates neurexin and AMPAR surface trafficking. Surface proteome analysis of SorCS1-deficient neurons shows decreased surface levels of these, and additional, receptors. Quantitative in vivo analysis of SorCS1-knockout synaptic proteomes identifies SorCS1 as a global trafficking regulator and reveals decreased levels of receptors regulating adhesion and neurotransmission, including neurexins and AMPARs. Consequently, glutamatergic transmission at SorCS1-deficient synapses is reduced due to impaired AMPAR surface expression. SORCS1 mutations have been associated with autism and Alzheimer disease, suggesting that perturbed receptor trafficking contributes to synaptic-composition and -function defects underlying synaptopathies.

  10. Cellular approaches to the interaction between cannabinoid receptor ligands and nicotinic acetylcholine receptors.

    PubMed

    Oz, Murat; Al Kury, Lina; Keun-Hang, Susan Yang; Mahgoub, Mohamed; Galadari, Sehamuddin

    2014-05-15

    Cannabinoids are among the earliest known drugs to humanity. Cannabis plant contains various phytochemicals that bind to cannabinoid receptors. In addition, synthetic and endogenously produced cannabinoids (endocannabinoids) constitute other classes of cannabinoid receptor ligands. Although many pharmacological effects of these cannabinoids are mediated by the activation of cannabinoid receptors, recent studies indicate that cannabinoids also modulate the functions of various integral membrane proteins including ion channels, receptors, neurotransmitter transporters, and enzymes by mechanism(s) not involving the activation of known cannabinoid receptors. Currently, the mechanisms of these effects were not fully understood. However, it is likely that direct actions of cannabinoids are closely linked to their lipophilic structures. This report will focus on the actions of cannabinoids on nicotinic acetylcholine receptors and will examine the results of recent studies in this field. In addition some mechanistic approaches will be provided. The results discussed in this review indicate that, besides cannabinoid receptors, further molecular targets for cannabinoids exist and that these targets may represent important novel sites to alter neuronal excitability.

  11. Ligand regulation of retinoic acid receptor-related orphan receptors: implications for development of novel therapeutics

    PubMed Central

    Solt, Laura A.; Griffin, Patrick R.; Burris, Thomas P.

    2016-01-01

    Purpose of review In the late 1980s, the cloning of several nuclear receptors led to the intense search and isolation of new members of this superfamily. Despite their identification, many of these receptors were dubbed ‘orphan’ receptors, as their physiological ligands remained unknown. Recent reports have presented evidence for one family of orphan receptors, the retinoic acid receptor-related orphan receptors (RORs), in several pathologies, including osteoporosis, several autoimmune diseases, asthma, cancer, diabetes and obesity. The present review summarizes the studies identifying ligands for the RORs and evaluates their role as targets for potential therapeutics. Recent findings Significant progress was made in the initial identification of ligands for the RORs when X-ray crystallographic studies identified several molecules within the ligand-binding pockets of RORα and RORβ. Recently, we identified endogenous and synthetic ligands for RORα and RORγ, thereby solidifying their function as ligand-dependent transcription factors. Summary Recent studies have established roles for the RORs in physiological development and the advent of disease. Identification of ligands for the RORs, both endogenous and synthetic, has established these receptors as attractive new therapeutic targets for the treatment of ROR-related diseases. PMID:20463469

  12. Crystal structure of human interferon-γ receptor 2 reveals the structural basis for receptor specificity.

    PubMed

    Mikulecký, Pavel; Zahradník, Jirí; Kolenko, Petr; Černý, Jiří; Charnavets, Tatsiana; Kolářová, Lucie; Nečasová, Iva; Pham, Phuong Ngoc; Schneider, Bohdan

    2016-09-01

    Interferon-γ receptor 2 is a cell-surface receptor that is required for interferon-γ signalling and therefore plays a critical immunoregulatory role in innate and adaptive immunity against viral and also bacterial and protozoal infections. A crystal structure of the extracellular part of human interferon-γ receptor 2 (IFNγR2) was solved by molecular replacement at 1.8 Å resolution. Similar to other class 2 receptors, IFNγR2 has two fibronectin type III domains. The characteristic structural features of IFNγR2 are concentrated in its N-terminal domain: an extensive π-cation motif of stacked residues KWRWRH, a NAG-W-NAG sandwich (where NAG stands for N-acetyl-D-glucosamine) and finally a helix formed by residues 78-85, which is unique among class 2 receptors. Mass spectrometry and mutational analyses showed the importance of N-linked glycosylation to the stability of the protein and confirmed the presence of two disulfide bonds. Structure-based bioinformatic analysis revealed independent evolutionary behaviour of both receptor domains and, together with multiple sequence alignment, identified putative binding sites for interferon-γ and receptor 1, the ligands of IFNγR2. PMID:27599734

  13. Involvement of sigma (sigma) receptors in the acute actions of methamphetamine: receptor binding and behavioral studies.

    PubMed

    Nguyen, Emily C; McCracken, Kari A; Liu, Yun; Pouw, Buddy; Matsumoto, Rae R

    2005-10-01

    Methamphetamine interacts with sigma (sigma) receptors, suggesting that the drug produces some of its physiological and behavioral effects through these sites. Therefore, in the present report, receptor binding and pharmacological studies were performed to characterize the interaction between methamphetamine and sigma receptors. Of the two major sigma receptor subtypes, sigma1 and sigma2, competition binding studies showed that methamphetamine has a 22-fold preferential affinity for the sigma1 subtype. Saturation binding studies using the sigma1 selective radioligand [3H]+-pentazocine showed that in the presence of methamphetamine, there was a significant change in Kd, but not Bmax, suggesting competitive interactions. In behavioral studies, pretreatment of Swiss Webster mice with the sigma1 receptor antagonists, BD1063 or BD1047, significantly attenuated the locomotor stimulatory effects of methamphetamine. Mice that were administered an antisense oligodeoxynucleotide to down-regulate brain sigma1 receptors also exhibited a reduced locomotor stimulatory response to methamphetamine, as compared to control mice receiving mismatch oligonucleotides. Together, the data suggest that sigma1 receptors are involved in the acute actions of methamphetamine and that antagonism of this subtype is sufficient to prevent the locomotor stimulatory effects of methamphetamine. PMID:15939443

  14. Pyrrolic tripodal receptors for the molecular recognition of carbohydrates: ditopic receptors for dimannosides.

    PubMed

    Francesconi, Oscar; Nativi, Cristina; Gabrielli, Gabriele; Gentili, Matteo; Palchetti, Marco; Bonora, Beatrice; Roelens, Stefano

    2013-08-26

    Synthetic ditopic receptors, designed for the molecular recognition of dimannosides, have been prepared by bridging two monotopic units effectively recognizing mannosides with linkers of the appropriate size and flexibility, endowed with hydrogen-bonding groups. Affinities toward the α and β glycosides of the biologically relevant Manα(1-2)Man disaccharide were measured by NMR spectroscopy and isothermal titration calorimetry (ITC) in polar organic media (30-40 % DMF in chloroform). Significant selectivities and affinities in the micromolar range were observed in most cases, with two newly designed receptors being the most effective receptors of the set, together with a distinct preference of the dimannosides for the (S) enantiomer of the receptor in all cases. A 3D view of the recognition mode was elucidated by a combined NMR spectroscopic/molecular modeling approach, showing the dimannoside included in the cleft of the receptor. Compared to the monotopic precursors, the ditopic receptors showed markedly improved recognition properties, proving the efficacy of the modular receptor design for the recognition of disaccharides.

  15. Quantitative in vivo immunohistochemistry of epidermal growth factor receptor using a receptor concentration imaging approach

    PubMed Central

    Samkoe, Kimberley S.; Tichauer, Kenneth M.; Gunn, Jason R.; Wells, Wendy A.; Hasan, Tayyaba; Pogue, Brian W.

    2014-01-01

    As receptor-targeted therapeutics become increasingly used in clinical oncology, the ability to quantify protein expression and pharmacokinetics in vivo is imperative to ensure successful individualized treatment plans. Current standards for receptor analysis are performed on extracted tissues. These measurements are static and often physiologically irrelevant, therefore, only a partial picture of available receptors for drug targeting in vivo is provided. Until recently, in vivo measurements were limited by the inability to separate delivery, binding, and retention effects but this can be circumvented by a dual-tracer approach for referencing the detected signal. We hypothesized that in vivo receptor concentration imaging (RCI) would be superior to ex vivo immunohistochemistry. Using multiple xenograft tumor models with varying epidermal growth factor receptor (EGFR) expression, we determined the EGFR concentration in each model using a novel targeted agent (anti-EGFR affibody-IRDye800CW conjugate) along with a simultaneously delivered reference agent (control affibody-IRDye680RD conjugate). The RCI-calculated in vivo receptor concentration was strongly correlated with ex vivo pathologist-scored immunohistochemistry and computer-quantified ex vivo immunofluorescence. In contrast, no correlation was observed with ex vivo Western blot or in vitro flow cytometry assays. Overall, our results argue that in vivo RCI provides a robust measure of receptor expression equivalent to ex vivo immuno-staining, with implications for use in non-invasive monitoring of therapy or therapeutic guidance during surgery. PMID:25344226

  16. Crystal structure of human interferon-γ receptor 2 reveals the structural basis for receptor specificity

    PubMed Central

    Mikulecký, Pavel; Zahradník, Jirí; Kolenko, Petr; Černý, Jiří; Charnavets, Tatsiana; Kolářová, Lucie; Nečasová, Iva; Pham, Phuong Ngoc; Schneider, Bohdan

    2016-01-01

    Interferon-γ receptor 2 is a cell-surface receptor that is required for interferon-γ signalling and therefore plays a critical immunoregulatory role in innate and adaptive immunity against viral and also bacterial and protozoal infections. A crystal structure of the extracellular part of human interferon-γ receptor 2 (IFNγR2) was solved by molecular replacement at 1.8 Å resolution. Similar to other class 2 receptors, IFNγR2 has two fibronectin type III domains. The characteristic structural features of IFNγR2 are concentrated in its N-terminal domain: an extensive π–cation motif of stacked residues KWRWRH, a NAG–W–NAG sandwich (where NAG stands for N-acetyl-d-glucosamine) and finally a helix formed by residues 78–85, which is unique among class 2 receptors. Mass spectrometry and mutational analyses showed the importance of N-linked glycosylation to the stability of the protein and confirmed the presence of two disulfide bonds. Structure-based bioinformatic analysis revealed independent evolutionary behaviour of both receptor domains and, together with multiple sequence alignment, identified putative binding sites for interferon-γ and receptor 1, the ligands of IFNγR2. PMID:27599734

  17. The Sorting Receptor SorCS1 Regulates Trafficking of Neurexin and AMPA Receptors

    PubMed Central

    Savas, Jeffrey N.; Ribeiro, Luís F.; Wierda, Keimpe D.; Wright, Rebecca; DeNardo, Laura A.; Rice, Heather C.; Chamma, Ingrid; Wang, Yi-Zhi; Zemla, Roland; Lavallée-Adam, Mathieu; Vennekens, Kristel M.; O'Sullivan, Matthew L.; Antonios, Joseph K.; Hall, Elizabeth A.; Thoumine, Olivier; Attie, Alan D.; Ghosh, Anirvan; Yates, John R.; de Wit, Joris

    2015-01-01

    The formation, function, and plasticity of synapses require dynamic changes in synaptic receptor composition. Here we identify the sorting receptor SorCS1 as a key regulator of synaptic receptor trafficking. Four independent proteomic analyses identify the synaptic adhesion molecule neurexin and the AMPA glutamate receptor (AMPAR) as major proteins sorted by SorCS1. SorCS1 localizes to early and recycling endosomes and regulates neurexin and AMPAR surface trafficking. Surface proteome analysis of SorCS1-deficient neurons shows decreased surface levels of these, and additional, receptors. Quantitative in vivo analysis of SorCS1 knockout synaptic proteomes identifies SorCS1 as a global trafficking regulator and reveals decreased levels of receptors regulating adhesion and neurotransmission, including neurexins and AMPARs. Consequently, glutamatergic transmission at SorCS1–deficient synapses is reduced due to impaired AMPAR surface expression. SORCS1 mutations have been associated with autism and Alzheimer's disease, suggesting that perturbed receptor trafficking contributes to defects in synaptic composition and function underlying synaptopathies. PMID:26291160

  18. Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor

    SciTech Connect

    Wu, Kailang; Li, Weikai; Peng, Guiqing; Li, Fang

    2010-03-04

    NL63 coronavirus (NL63-CoV), a prevalent human respiratory virus, is the only group I coronavirus known to use angiotensin-converting enzyme 2 (ACE2) as its receptor. Incidentally, ACE2 is also used by group II SARS coronavirus (SARS-CoV). We investigated how different groups of coronaviruses recognize the same receptor, whereas homologous group I coronaviruses recognize different receptors. We determined the crystal structure of NL63-CoV spike protein receptor-binding domain (RBD) complexed with human ACE2. NL63-CoV RBD has a novel {beta}-sandwich core structure consisting of 2 layers of {beta}-sheets, presenting 3 discontinuous receptor-binding motifs (RBMs) to bind ACE2. NL63-CoV and SARS-CoV have no structural homology in RBD cores or RBMs; yet the 2 viruses recognize common ACE2 regions, largely because of a 'virus-binding hotspot' on ACE2. Among group I coronaviruses, RBD cores are conserved but RBMs are variable, explaining how these viruses recognize different receptors. These results provide a structural basis for understanding viral evolution and virus-receptor interactions.

  19. Odor Coding by a Mammalian Receptor Repertoire

    PubMed Central

    Saito, Harumi; Chi, Qiuyi; Zhuang, Hanyi; Matsunami, Hiro; Mainland, Joel D.

    2009-01-01

    Deciphering olfactory encoding requires a thorough description of the ligands that activate each odorant receptor (OR). In mammalian systems, however, ligands are known for fewer than 50 of over 1400 human and mouse ORs, greatly limiting our understanding of olfactory coding. We performed high-throughput screening of 93 odorants against 464 ORs expressed in heterologous cells and identified agonists for 52 mouse and 10 human ORs. We used the resulting interaction profiles to develop a predictive model relating physicochemical odorant properties, OR sequences, and their interactions. Our results provide a basis for translating odorants into receptor neuron responses and unraveling mammalian odor coding. PMID:19261596

  20. The androgen receptor gene mutations database.

    PubMed

    Patterson, M N; Hughes, I A; Gottlieb, B; Pinsky, L

    1994-09-01

    The androgen receptor gene mutations database is a comprehensive listing of mutations published in journals and meetings proceedings. The majority of mutations are point mutations identified in patients with androgen insensitivity syndrome. Information is included regarding the phenotype, the nature and location of the mutations, as well as the effects of the mutations on the androgen binding activity of the receptor. The current version of the database contains 149 entries, of which 114 are unique mutations. The database is available from EMBL (NetServ@EMBL-Heidelberg.DE) or as a Macintosh Filemaker file (mc33001@musica.mcgill.ca).

  1. Mammalian Gravity Receptors: Structure and Metabolism

    NASA Technical Reports Server (NTRS)

    Ross, M. D.

    1985-01-01

    Calcium metabolism in mammalian gravity receptors is examined. To accomplish this objective it is necessary to study both the mineral deposits of the receptors, the otoconia, and the sensory areas themselves, the saccular and utricular maculas. The main focus was to elucidate the natures of the organic and inorganic phases of the crystalline masses, first in rat otoconia but more recently in otoliths and otoconia of a comparative series of vertebrates. Some of the ultrastructural findings in rat maculas, however, have prompted a more thorough study of the organization of the hair cells and innervation patterns in graviceptors.

  2. Proline-Directed Androgen Receptor Phosphorylation

    PubMed Central

    Gao, Yanfei; Chen, Shaoyong

    2015-01-01

    The androgen receptor (AR) has been identified for decades and mediates essential steroid functions. Like most of biological molecules, AR functional activities are modulated by post-translational modifications. This review is focused on the reported activities and significance of AR phosphorylation, with particular emphasis on proline-directed serine/threonine phosphorylation that occurs predominantly on the receptor. The marked enrichment of AR phosphorylation in the most diverse N-terminal domain suggests that targeting AR phosphorylation can be synergistic to antagonizing the C-terminal domain by clinical antiandrogens. PMID:25866551

  3. Equivalent Activities of Repulsive Axon Guidance Receptors

    PubMed Central

    Long, Hong; Yoshikawa, Shingo

    2016-01-01

    Receptors on the growth cone at the leading edge of elongating axons play critical guidance roles by recognizing cues via their extracellular domains and transducing signals via their intracellular domains, resulting in changes in direction of growth. An important concept to have emerged in the axon guidance field is the importance of repulsion as a major guidance mechanism. Given the number and variety of different repulsive receptors, it is generally thought that there are likely to be qualitative differences in the signals they transduce. However, the nature of these possible differences is unknown. By creating chimeras using the extracellular and intracellular domains of three different Drosophila repulsive receptors, Unc5, Roundabout (Robo), and Derailed (Drl) and expressing them in defined cells within the embryonic nervous system, we examined the responses elicited by their intracellular domains systematically. Surprisingly, we found no qualitative differences in growth cone response or axon growth, suggesting that, despite their highly diverged sequences, each intracellular domain elicits repulsion via a common pathway. In terms of the signaling pathway(s) used by the repulsive receptors, mutations in the guanine nucleotide exchange factor Trio strongly enhance the repulsive activity of all three intracellular domains, suggesting that repulsion by Unc5, Robo, and Drl, and perhaps repulsion in general, involves Trio activity. SIGNIFICANCE STATEMENT A prevailing concept that has emerged in the axon guidance field is the importance of repulsion as a guidance mechanism for steering axons to their appropriate targets. Given the number and variety of different repulsive receptors, it is generally thought that there are differences in the signals that they transduce. However, this has never been tested directly. We have used the advanced genetics of Drosophila to compare directly the outputs of different repulsive receptors. Surprisingly, we found no qualitative

  4. Homeostatic plasticity and NMDA receptor trafficking.

    PubMed

    Pérez-Otaño, Isabel; Ehlers, Michael D

    2005-05-01

    Learning, memory and brain development are associated with long-lasting modifications of synapses that are guided by specific patterns of neuronal activity. Such modifications include classical Hebbian plasticities (such as long-term potentiation and long-term depression), which are rapid and synapse-specific, and others, such as synaptic scaling and metaplasticity, that work over longer timescales and are crucial for maintaining and orchestrating neuronal network function. The cellular mechanisms underlying Hebbian plasticity have been well studied and involve rapid changes in the trafficking of highly mobile AMPA receptors. An emerging concept is that activity-dependent alterations in NMDA receptor trafficking contribute to homeostatic plasticity at central glutamatergic synapses.

  5. Recent progress on nuclear receptor RORγ modulators.

    PubMed

    Cyr, Patrick; Bronner, Sarah M; Crawford, James J

    2016-09-15

    The retinoic acid receptor-related orphan receptor RORγ plays key roles in the development and differentiation of TH17 cells, and thus in IL-17 expression, thymocyte development and regulation of metabolism. With the recent progression into phase 2 clinical trials of both oral and topically administered inverse agonists, and with others close behind, there is significant interest in the discovery of RORγ modulators. This digest covers key developments around RORγ agonists, antagonists and inverse agonists; orthosteric and allosteric binders; and aims to summarize the available information concerning the potential utility of RORγ modulators. PMID:27542308

  6. Adherence and receptor relationships of Candida albicans.

    PubMed Central

    Calderone, R A; Braun, P C

    1991-01-01

    The cell surface of Candida albicans is composed of a variety of polysaccharides such as glucan, chitin, and mannan. The first two components primarily provide structure, while the mannan, often covalently linked to protein, constitutes the major antigen of the organism. Mannoproteins also have enzymatic activity (acid protease) and ligand-receptor functions. The complement receptors of C. albicans appear to be mannoproteins that are required for the adherence of the organism to endothelial cells. This is certainly true of the CR3-like protein of C. albicans. Proof that the CR3 is the Candida receptor for endothelial cells is derived from two observations. First, mutants lacking CR3 activity are less adherent in vitro and, in fact, less virulent. Second, the ligand recognized by the CR3 receptor (C3bi) as well as anti-CR3 antibodies blocks adherence of the organism to endothelial cells. The CR2 of C. albicans appears to promote the adherence of the organism to plastic substrates. Unlike the CR2 of mammalian cells, the Candida CR2 recognizes ligands containing the RGD sequence of amino acids in addition to the C3d ligand, which does not contain the RGD sequence. There is uncertainty as to whether the Candida CR2 and CR3 are, in fact, different proteins. A mannoprotein has also been described as the adhesin for epithelial cells. In this case, the receptor has a lectinlike activity and recognizes fucose- or glucosamine-containing glycoproteins of epithelial cells, depending on the strain of C. albicans. The oligosaccharide component of the receptor is probably not involved in ligand recognition and may serve to stabilize the receptor. However, the oligosaccharide factor 6 epitope of mannan may also provide adhesin activity in the recognition of epithelial cells. Mannoproteins can be extracted from cells by a number of reagents. Zymolyase, for instance, tends to remove structural mannoproteins, which contain relatively little protein and are linked to glucan. Reagents

  7. Phorbol esters promote alpha 1-adrenergic receptor phosphorylation and receptor uncoupling from inositol phospholipid metabolism.

    PubMed Central

    Leeb-Lundberg, L M; Cotecchia, S; Lomasney, J W; DeBernardis, J F; Lefkowitz, R J; Caron, M G

    1985-01-01

    DDT1 MF-2 cells, which are derived from hamster vas deferens smooth muscle, contain alpha 1-adrenergic receptors (54,800 +/- 2700 sites per cell) that are coupled to stimulation of inositol phospholipid metabolism. Incubation of these cells with tumor-promoting phorbol esters, which stimulate calcium- and phospholipid-dependent protein kinase, leads to a marked attenuation of the ability of alpha 1-receptor agonists such as norepinephrine to stimulate the turnover of inositol phospholipids. This turnover was measured by determining the 32P content of phosphatidylinositol and phosphatidic acid after prelabeling of the cellular ATP pool with 32Pi. These phorbol ester-treated cells also displayed a decrease in binding affinity of cellular alpha 1 receptors for agonists with no change in antagonist affinity. By using affinity chromatography on the affinity resin Affi-Gel-A55414, the alpha 1 receptors were purified approximately equal to 300-fold from control and phorbol ester-treated 32Pi-prelabeled cells. As assessed by NaDodSO4/polyacrylamide gel electrophoresis, the Mr 80,000 alpha 1-receptor ligand-binding subunit is a phosphopeptide containing 1.2 mol of phosphate per mol of alpha 1 receptor. After phorbol ester treatment this increased to 3.6 mol of phosphate per mol of alpha 1 receptor. The effect of phorbol esters on norepinephrine-stimulated inositol phospholipid turnover and alpha 1-receptor phosphorylation showed the same rapid time course with a t1/2 less than 2 min. These results indicate that calcium- and phospholipid-dependent protein kinase may play an important role in regulating the function of receptors that are coupled to the inositol phospholipid cycle by phosphorylating and deactivating them. Images PMID:2994039

  8. Pheromonotropic and melanotropic PK/PBAN receptors: differential ligand-receptor interactions.

    PubMed

    Shalev, Aliza Hariton; Altstein, Miriam

    2015-01-01

    The aim of the present study was to further characterize the PK/PBAN receptors and their interaction with various PK/PBAN peptides in order to get a better understanding of their ubiquitous and multifunctional nature. Two cloned receptors stably expressed in Spodoptera frugiperda (Sf9) cells were used in this study: a Heliothis peltigera pheromone gland receptor (Hep-PK/PBAN-R) (which stimulates sex pheromone biosynthesis) and Spodoptera littoralis larval receptor (Spl-PK/PBAN-R) (which mediates cuticular melanization in moth larvae) and their ability to respond to several native PK/PBAN peptides: β-subesophageal neuropeptide (β-SGNP), myotropin (MT) and Leucophaea maderae pyrokinin (LPK), as well as linear and cyclic analogs was tested by monitoring their ability to stimulate Ca(2+) release. The receptors exhibited a differential response to β-SGNP, which activated the Hep-PK/PBAN-R but not the Spl-PK/PBAN-R - a response opposite to that previously demonstrated with diapause hormone (DH). MT was somewhat more active on Spl-PK/PBAN-R than on Hep-PK/PBAN-R. LPK elicited similar positive responses in both receptors (like that with PBAN). A differential response toward both receptors was also noticed with the PBAN-derived backbone cyclic (BBC) conformationally constrained peptide BBC-5. The peptides BBC-7 and BBC-8 activated both receptors. The results correlate between two PK/PBAN mediated function (cuticular melanization and sex pheromone biosynthesis) and the peptides that activate them and thus advance our understanding of the mode of action of the PK/PBAN family, and might help in exploring novel high-affinity receptor-specific antagonists that could serve as a basis for development of new families of insect-control agents. PMID:25451335

  9. Immunohistochemical quantitation of oestrogen receptors and proliferative activity in oestrogen receptor positive breast cancer.

    PubMed Central

    Jensen, V; Ladekarl, M

    1995-01-01

    AIM--To evaluate the effect of the duration of formalin fixation and of tumour heterogeneity on quantitative estimates of oestrogen receptor content (oestrogen receptor index) and proliferative activity (MIB-1 index) in breast cancer. METHODS--Two monoclonal antibodies, MIB-1 and oestrogen receptor, were applied to formalin fixed, paraffin wax embedded tissue from 25 prospectively collected oestrogen receptor positive breast carcinomas, using a microwave antigen retrieval method. Tumour tissue was allocated systematically to different periods of fixation to ensure minimal intraspecimen variation. The percentages of MIB-1 positive and oestrogen receptor positive nuclei were estimated in fields of vision sampled systematically from the entire specimen and from the whole tumour area of one "representative" cross-section. RESULTS--No correlation was found between the oestrogen receptor and MIB-1 indices and the duration of formalin fixation. The estimated MIB-1 and oestrogen receptor indices in tissue sampled systematically from the entire tumour were closely correlated with estimates obtained in a "representative" section. The intra- and interobserver correlation of the MIB-1 index was good, although a slight systematical error at the second assessment of the intraobserver study was noted. CONCLUSION--Quantitative estimates of oestrogen receptor content and proliferative activity are not significantly influenced by the period of fixation in formalin, varying from less than four hours to more than 48 hours. The MIB-1 and the oestrogen receptor indices obtained in a "representative" section do not deviate significantly from average indices determined in tissue samples from the entire tumour. Finally, the estimation of MIB-1 index is reproducible, justifying its routine use. PMID:7629289

  10. AT(2) receptor stimulation enhances antihypertensive effect of AT(1) receptor antagonist in hypertensive rats.

    PubMed

    Barber, M N; Sampey, D B; Widdop, R E

    1999-11-01

    In the present study, we investigated the role of the angiotensin type 2 (AT(2)) receptor in the regulation of blood pressure in spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY). We tested the hypothesis that AT(2) receptor activation may contribute to the antihypertensive effects of angiotensin type 1 (AT(1)) receptor antagonists. Mean arterial pressure (MAP) and heart rate were measured over a 4-day protocol in various groups of rats that received the following drug combinations: the AT(1) receptor antagonist candesartan (0.01 or 0.1 mg/kg IV) alone, the AT(2) receptor agonist CGP42112 (1 microg/kg per minute) alone, and candesartan plus CGP42112. In both SHR and WKY, 4-hour infusions of saline and CGP42112 alone did not alter MAP. In WKY, both doses of candesartan alone caused small decreases in MAP, which were similar when combined with CGP42112. In SHR, candesartan (0.1 mg/kg) caused an immediate, marked decrease in MAP, which was unaffected when combined with CGP42112. By contrast, in separate SHR, a 10-fold lower dose of candesartan (0.01 mg/kg) caused a slower-onset depressor response, which was enhanced when combined with CGP42112. The involvement of AT(2) receptors was confirmed in another group of SHR, since this facilitation of the antihypertensive effect of candesartan by CGP42112 was abolished by the coinfusion of the AT(2) receptor antagonist PD123319 (50 microg/kg per minute) with the candesartan/CGP42112 combination. Collectively, these data suggest that in SHR, AT(2) receptor activation can facilitate the initial depressor response caused by an AT(1) receptor antagonist.

  11. Cross-linking of epidermal growth factor receptors in intact cells: detection of initial stages of receptor clustering and determination of molecular weight of high-affinity receptors

    SciTech Connect

    Fanger, B.O.; Austin, K.S.; Earp, H.S.; Cidlowski, J.A.

    1986-10-21

    A method was developed to label epidermal growth factor (EGF) receptors with /sup 125/I-EGF in whole cells using chemical cross-linking reagents. Polyacrylamide gel electrophoresis resolved an M/sub r/ approx. 180,000 EGF-receptor complex and larger M/sub r/ greater than or equal to 360,000 aggregates. The formation of the larger complexes was timed and temperature dependent and appeared to represent the initial events of EGF receptor clustering. Alteration of the ratio of /sup 125/I-EGF-labeled high- and low- affinity complexes by competition with unlabeled EGF or by induction of additional high-affinity sites with dexamethasone suggested that both sites were represented by the M/sub r/ approx. 180,000 /sup 125/I-EGF-receptor complexes. Digestion of cells before cross-linking detected a small population of trypsin-resistant M/sub r/ approx. 180,000 receptors, which could represent previously described cryptic and/or high-affinity receptors. Few of the M/sub r/ approx. 360,000 receptors were trypsin resistant. Glucocorticoid induction of high-affinity EGF receptors failed to induce detectable changes in the microclustering of EGF receptors but did result in a 50% increase in EGF-induced receptor phosphorylation in HeLa S/sub 3/ cell membranes at 4/sup 0/C. Thus, glucocorticoids increase high-affinity EGF binding sites, EGF-induced receptor phosphorylation, and cell growth.

  12. Effect of neoadjuvant chemotherapy on low-density lipoprotein (LDL) receptor and LDL receptor-related protein 1 (LRP-1) receptor in locally advanced breast cancer.

    PubMed

    Pires, L A; Hegg, R; Freitas, F R; Tavares, E R; Almeida, C P; Baracat, E C; Maranhão, R C

    2012-06-01

    Low-density lipoprotein (LDL) receptors are overexpressed in most neoplastic cell lines and provide a mechanism for the internalization and concentration of drug-laden nanoemulsions that bind to these receptors. The aim of the present study was to determine whether the administration of standard chemotherapeutic schemes can alter the expression of LDL and LDL receptor-related protein 1 (LRP-1) receptors in breast carcinoma. Fragments of tumoral and normal breast tissue from 16 consecutive volunteer women with breast cancer in stage II or III were obtained from biopsies before the beginning of neoadjuvant chemotherapy and after chemotherapy, from fragments excised during mastectomy. Tissues were analyzed by immunohistochemistry for both receptors. Because complete response to treatment was achieved in 4 patients, only the tumors from 12 were analyzed. Before chemotherapy, there was overexpression of LDL receptor in the tumoral tissue compared to normal breast tissue in 8 of these patients. LRP-1 receptor overexpression was observed in tumors of 4 patients. After chemotherapy, expression of both receptors decreased in the tumors of 6 patients, increased in 4 and was unchanged in 2. Nonetheless, even when chemotherapy reduced receptors expression, the expression was still above normal. The fact that chemotherapy does not impair LDL receptors expression supports the use of drug carrier systems that target neoplastic cells by the LDL receptor endocytic pathway in patients on conventional chemotherapy.

  13. Effect of neoadjuvant chemotherapy on low-density lipoprotein (LDL) receptor and LDL receptor-related protein 1 (LRP-1) receptor in locally advanced breast cancer

    PubMed Central

    Pires, L.A.; Hegg, R.; Freitas, F.R.; Tavares, E.R.; Almeida, C.P.; Baracat, E.C.; Maranhão, R.C.

    2012-01-01

    Low-density lipoprotein (LDL) receptors are overexpressed in most neoplastic cell lines and provide a mechanism for the internalization and concentration of drug-laden nanoemulsions that bind to these receptors. The aim of the present study was to determine whether the administration of standard chemotherapeutic schemes can alter the expression of LDL and LDL receptor-related protein 1 (LRP-1) receptors in breast carcinoma. Fragments of tumoral and normal breast tissue from 16 consecutive volunteer women with breast cancer in stage II or III were obtained from biopsies before the beginning of neoadjuvant chemotherapy and after chemotherapy, from fragments excised during mastectomy. Tissues were analyzed by immunohistochemistry for both receptors. Because complete response to treatment was achieved in 4 patients, only the tumors from 12 were analyzed. Before chemotherapy, there was overexpression of LDL receptor in the tumoral tissue compared to normal breast tissue in 8 of these patients. LRP-1 receptor overexpression was observed in tumors of 4 patients. After chemotherapy, expression of both receptors decreased in the tumors of 6 patients, increased in 4 and was unchanged in 2. Nonetheless, even when chemotherapy reduced receptors expression, the expression was still above normal. The fact that chemotherapy does not impair LDL receptors expression supports the use of drug carrier systems that target neoplastic cells by the LDL receptor endocytic pathway in patients on conventional chemotherapy. PMID:22570085

  14. Approaches to the rational design of selective melanocortin receptor antagonists

    PubMed Central

    Hruby, Victor J; Cai, Minying; Nyberg, Joel; Muthu, Dhanasekaran

    2015-01-01

    Introduction When establishing the physiological roles of specific receptors in normal and disease states, it is critical to have selective antagonist ligands for each receptor in a receptor system with several subtypes. The melanocortin receptors have five subtypes referred to as the melanocortin 1 receptor, melanocortin 2 receptor, melanocortin 3 receptor, melanocortin 4 receptor and melanocortin 5 receptor, and they are of critical importance for many aspects of human health and disease. Areas covered This article reviews the current efforts to design selective antagonistic ligands for the five human melanocortin receptors summarizing the currently published orthosteric and allosteric antagonists for each of these receptors. Expert opinion Though there has been progress, there are still few drugs available that address the many significant biological activities and diseases that are associated with these receptors, which is possibly due to the lack of receptor selectivity that these designed ligands are currently showing. The authors believe that further studies into the antagonists’ 3D conformational and topographical properties in addition to future mutagenesis studies will provide greater insight into these ligands which could play a role in the treatment of various diseases in the future. PMID:22646078

  15. Angiotensin Receptors: Structure, Function, Signaling and Clinical Applications

    PubMed Central

    Singh, Khuraijam Dhanachandra; Karnik, Sadashiva S

    2016-01-01

    Angiotensinogen – a serpin family protein predominantly produced by the liver is systematically processed by proteases of the Renin Angiotensin system (RAS) generating hormone peptides. Specific cell surface receptors for at least three distinct angiotensin peptides produce distinct cellular signals that regulate system-wide physiological response to RAS. Two well characterized receptors are angiotensin type 1 receptor (AT1 receptor) and type 2 receptor (AT2 receptor). They respond to the octapeptide hormone angiotensin II. The oncogene product MAS is a putative receptor for Ang (1–7). While these are G-protein coupled receptors (GPCRs), the in vivo angiotensin IV binding sites may be type 2 transmembrane proteins. These four receptors together regulate cardiovascular, hemodynamic, neurological, renal, and endothelial functions; as well as cell proliferation, survival, matrix-cell interactions and inflammation. Angiotensin receptors are important therapeutic targets for several diseases. Thus, researchers and pharmaceutical companies are focusing on drugs targeting AT1 receptor than AT2 receptor, MAS and AngIV binding sites. AT1 receptor blockers are the cornerstone of current treatment for hypertension, heart failure, renal failure and many types of vascular diseases including atherosclerosis, aortic aneurism and Marfan syndrome. PMID:27512731

  16. Genetically evolved receptor models: a computational approach to construction of receptor models.

    PubMed

    Walters, D E; Hinds, R M

    1994-08-01

    Given the three-dimensional structure of a receptor site, there are several methods available for designing ligands to occupy the site; frequently, the three-dimensional structure of interesting receptors is not known, however. The GERM program uses a genetic algorithm to produce atomic-level models of receptor sites, based on a small set of known structure-activity relationships. The evolved models show a high correlation between calculated intermolecular energies and bioactivities; they also give reasonable predictions of bioactivity for compounds which were not included in model generation. Such models may serve as starting points for computational or human ligand design efforts. PMID:8057298

  17. Patient selection for personalized peptide receptor radionuclide therapy using Ga-68 somatostatin receptor PET/CT.

    PubMed

    Kulkarni, Harshad R; Baum, Richard P

    2014-01-01

    Neuroendocrine tumors are malignant solid tumors originating from neuroendocrine cells dispersed throughout the body. Differentiated neuroendocrine tumors overexpress somatostatin receptors (SSTRs), which enable the diagnosis using radiolabeled somatostatin analogues. Internalization and retention within the tumor cell are important for peptide receptor radionuclide therapy using the same peptide. The use of the same DOTA-peptide for SSTR PET/CT using (68)Ga and for peptide receptor radionuclide therapy using therapeutic radionuclides like (177)Lu and (90)Y offers a unique theranostic advantage. PMID:25029937

  18. Estrogen receptor alpha and androgen receptor are commonly expressed in well-differentiated liposarcoma

    PubMed Central

    2014-01-01

    Background Liposarcoma (LS) is the second-most common type of soft-tissue sarcoma. Despite advances in knowledge and treatment of this disease, there remains a need for more effective LS therapy. Steroid hormone receptors regulate metabolism in adipocytes. Estrogen receptor alpha (ER), progesterone receptor (PR), and androgen receptor (AR) have been implicated in the pathophysiology of other cancer types. We sought to comprehensively determine temporal expression patterns of these receptors in LS. Methods We analyzed 561 histologically subtyped LS specimens from 354 patients for expression of ER, PR, and AR by immunohistochemistry (IHC) using diagnostic-grade reagents and protocols. The fractions of positively stained tumor cells were scored within each specimen. IHC scores were compared across LS subtypes using the Kruskal-Wallis test, and subtypes were compared using Dunn’s post-hoc test. Ages of patients with receptor-positive vs. -negative LS were compared by t-test. Genders and races were compared for hormone receptor positivity using Fisher’s exact test and Chi-square analysis, respectively. Recurrence-free survival was compared between receptor-positive and negative patients by log-rank test. p< 0.05 was considered significant. Results ER and AR were frequently expressed in LS, while few tumors expressed PR. Most of the ER + and AR + samples were of the well-differentiated LS subtype. A smaller fraction of de-differentiated LS expressed ER or AR, but expression was common within well-differentiated regions of tumors histologically classified as de-differentiated LS. In LS specimens from patients who underwent multiple surgeries over time, receptor expression frequently changed over time, which may be attributable in part to intratumor heterogeneity, varying degrees of de-differentiation, and biopsy bias. ER and AR were frequently co-expressed. Receptor status was not significantly associated with gender or race, but AR and PR expression were

  19. Genetically evolved receptor models: a computational approach to construction of receptor models.

    PubMed

    Walters, D E; Hinds, R M

    1994-08-01

    Given the three-dimensional structure of a receptor site, there are several methods available for designing ligands to occupy the site; frequently, the three-dimensional structure of interesting receptors is not known, however. The GERM program uses a genetic algorithm to produce atomic-level models of receptor sites, based on a small set of known structure-activity relationships. The evolved models show a high correlation between calculated intermolecular energies and bioactivities; they also give reasonable predictions of bioactivity for compounds which were not included in model generation. Such models may serve as starting points for computational or human ligand design efforts.

  20. Bile acid receptor agonist GW4064 regulates PPARγ coactivator-1α expression through estrogen receptor-related receptor α.

    PubMed

    Dwivedi, Shailendra Kumar Dhar; Singh, Nidhi; Kumari, Rashmi; Mishra, Jay Sharan; Tripathi, Sarita; Banerjee, Priyam; Shah, Priyanka; Kukshal, Vandana; Tyagi, Abdul Malik; Gaikwad, Anil Nilkanth; Chaturvedi, Rajnish Kumar; Mishra, Durga Prasad; Trivedi, Arun Kumar; Sanyal, Somali; Chattopadhyay, Naibedya; Ramachandran, Ravishankar; Siddiqi, Mohammad Imran; Bandyopadhyay, Arun; Arora, Ashish; Lundåsen, Thomas; Anakk, Sayee Priyadarshini; Moore, David D; Sanyal, Sabyasachi

    2011-06-01

    Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is induced in energy-starved conditions and is a key regulator of energy homeostasis. This makes PGC-1α an attractive therapeutic target for metabolic syndrome and diabetes. In our effort to identify new regulators of PGC-1α expression, we found that GW4064, a widely used synthetic agonist for the nuclear bile acid receptor [farnesoid X receptor (FXR)] strongly enhances PGC-1α promoter reporter activity, mRNA, and protein expression. This induction in PGC-1α concomitantly enhances mitochondrial mass and expression of several PGC-1α target genes involved in mitochondrial function. Using FXR-rich or FXR-nonexpressing cell lines and tissues, we found that this effect of GW4064 is not mediated directly by FXR but occurs via activation of estrogen receptor-related receptor α (ERRα). Cell-based, biochemical and biophysical assays indicate GW4064 as an agonist of ERR proteins. Interestingly, FXR disruption alters GW4064 induction of PGC-1α mRNA in a tissue-dependent manner. Using FXR-null [FXR knockout (FXRKO)] mice, we determined that GW4064 induction of PGC-1α expression is not affected in oxidative soleus muscles of FXRKO mice but is compromised in the FXRKO liver. Mechanistic studies to explain these differences revealed that FXR physically interacts with ERR and protects them from repression by the atypical corepressor, small heterodimer partner in liver. Together, this interplay between ERRα-FXR-PGC-1α and small heterodimer partner offers new insights into the biological functions of ERRα and FXR, thus providing a knowledge base for therapeutics in energy balance-related pathophysiology.