Science.gov

Sample records for aerothermodynamic simulation code

  1. Aerothermodynamic Flight Simulation Capabilities for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Miller, Charles G.

    1998-01-01

    Aerothermodynamics, encompassing aerodynamics, aeroheating, and fluid dynamics and physical processes, is the genesis for the design and development of advanced space transportation vehicles and provides crucial information to other disciplines such as structures, materials, propulsion, avionics, and guidance, navigation and control. Sources of aerothermodynamic information are ground-based facilities, Computational Fluid Dynamic (CFD) and engineering computer codes, and flight experiments. Utilization of this aerothermodynamic triad provides the optimum aerothermodynamic design to safely satisfy mission requirements while reducing design conservatism, risk and cost. The iterative aerothermodynamic process for initial screening/assessment of aerospace vehicle concepts, optimization of aerolines to achieve/exceed mission requirements, and benchmark studies for final design and establishment of the flight data book are reviewed. Aerothermodynamic methodology centered on synergism between ground-based testing and CFD predictions is discussed for various flow regimes encountered by a vehicle entering the Earth s atmosphere from low Earth orbit. An overview of the resources/infrastructure required to provide accurate/creditable aerothermodynamic information in a timely manner is presented. Impacts on Langley s aerothermodynamic capabilities due to recent programmatic changes such as Center reorganization, downsizing, outsourcing, industry (as opposed to NASA) led programs, and so forth are discussed. Sample applications of these capabilities to high Agency priority, fast-paced programs such as Reusable Launch Vehicle (RLV)/X-33 Phases I and 11, X-34, Hyper-X and X-38 are presented and lessons learned discussed. Lastly, enhancements in ground-based testing/CFD capabilities necessary to partially/fully satisfy future requirements are addressed.

  2. Development and application of computational aerothermodynamics flowfield computer codes

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj

    1994-01-01

    Research was performed in the area of computational modeling and application of hypersonic, high-enthalpy, thermo-chemical nonequilibrium flow (Aerothermodynamics) problems. A number of computational fluid dynamic (CFD) codes were developed and applied to simulate high altitude rocket-plume, the Aeroassist Flight Experiment (AFE), hypersonic base flow for planetary probes, the single expansion ramp model (SERN) connected with the National Aerospace Plane, hypersonic drag devices, hypersonic ramp flows, ballistic range models, shock tunnel facility nozzles, transient and steady flows in the shock tunnel facility, arc-jet flows, thermochemical nonequilibrium flows around simple and complex bodies, axisymmetric ionized flows of interest to re-entry, unsteady shock induced combustion phenomena, high enthalpy pulsed facility simulations, and unsteady shock boundary layer interactions in shock tunnels. Computational modeling involved developing appropriate numerical schemes for the flows on interest and developing, applying, and validating appropriate thermochemical processes. As part of improving the accuracy of the numerical predictions, adaptive grid algorithms were explored, and a user-friendly, self-adaptive code (SAGE) was developed. Aerothermodynamic flows of interest included energy transfer due to strong radiation, and a significant level of effort was spent in developing computational codes for calculating radiation and radiation modeling. In addition, computational tools were developed and applied to predict the radiative heat flux and spectra that reach the model surface.

  3. Computational Aerothermodynamic Simulation Issues on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; White, Jeffery A.

    2004-01-01

    The synthesis of physical models for gas chemistry and turbulence from the structured grid codes LAURA and VULCAN into the unstructured grid code FUN3D is described. A directionally Symmetric, Total Variation Diminishing (STVD) algorithm and an entropy fix (eigenvalue limiter) keyed to local cell Reynolds number are introduced to improve solution quality for hypersonic aeroheating applications. A simple grid-adaptation procedure is incorporated within the flow solver. Simulations of flow over an ellipsoid (perfect gas, inviscid), Shuttle Orbiter (viscous, chemical nonequilibrium) and comparisons to the structured grid solvers LAURA (cylinder, Shuttle Orbiter) and VULCAN (flat plate) are presented to show current capabilities. The quality of heating in 3D stagnation regions is very sensitive to algorithm options in general, high aspect ratio tetrahedral elements complicate the simulation of high Reynolds number, viscous flow as compared to locally structured meshes aligned with the flow.

  4. Development and application of computational aerothermodynamics flowfield computer codes

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj

    1993-01-01

    Computations are presented for one-dimensional, strong shock waves that are typical of those that form in front of a reentering spacecraft. The fluid mechanics and thermochemistry are modeled using two different approaches. The first employs traditional continuum techniques in solving the Navier-Stokes equations. The second-approach employs a particle simulation technique (the direct simulation Monte Carlo method, DSMC). The thermochemical models employed in these two techniques are quite different. The present investigation presents an evaluation of thermochemical models for nitrogen under hypersonic flow conditions. Four separate cases are considered. The cases are governed, respectively, by the following: vibrational relaxation; weak dissociation; strong dissociation; and weak ionization. In near-continuum, hypersonic flow, the nonequilibrium thermochemical models employed in continuum and particle simulations produce nearly identical solutions. Further, the two approaches are evaluated successfully against available experimental data for weakly and strongly dissociating flows.

  5. Development and application of computational aerothermodynamics flowfield computer codes

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj

    1992-01-01

    Presented is a collection of papers on research activities carried out during the funding period of October 1991 to March 1992. Topics covered include: blunt body flows in thermochemical equilibrium; thermochemical relaxation in high enthalpy nozzle flow; single expansion ramp nozzle simulations; lunar return aerobraking; line boundary problem for three dimensional grids; and unsteady shock induced combustion.

  6. A Perspective on Computational Aerothermodynamics at NASA

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2007-01-01

    The evolving role of computational aerothermodynamics (CA) within NASA over the past 20 years is reviewed. The presentation highlights contributions to understanding the Space Shuttle pitching moment anomaly observed in the first shuttle flight, prediction of a static instability for Mars Pathfinder, and the use of CA for damage assessment in post-Columbia mission support. In the view forward, several current challenges in computational fluid dynamics and aerothermodynamics for hypersonic vehicle applications are discussed. Example simulations are presented to illustrate capabilities and limitations. Opportunities to advance the state-of-art in algorithms, grid generation and adaptation, and code validation are identified.

  7. SUPG Finite Element Simulations of Compressible Flows for Aerothermodynamic Applications

    NASA Technical Reports Server (NTRS)

    Kirk, Benjamin S.

    2007-01-01

    This viewgraph presentation reviews the Streamline-Upwind Petrov-Galerkin (SUPG) Finite Element Simulation. It covers the background, governing equations, weak formulation, shock capturing, inviscid flux discretization, time discretization, linearization, and implicit solution strategies. It also reviews some applications such as Type IV Shock Interaction, Forward-Facing Cavity and AEDC Sharp Double Cone.

  8. NASA and ESA Ground Facility Simulations of Shuttle Orbiter Aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Muylaert, J.; Rostand, P.; Rapuc, M.; Paulson, J.; Brauckmann, G.; Trockmorton, D.; Steijl, R.

    1997-01-01

    The paper reviews a combined numerical and experimental activity on the Shuttle Orbiter, first performed at NASA Langley within the OEX workshop and subsequently at ESA, as part of the AGARD FDP WG 18 activities. The study at Langley was undertaken to resolve the pitch up anomaly observed during the entry of the first flight of the Shuttle Orbiter. The facilities used at NASA Langley were the 15-in. Mach 6, the 20-in, Mach 6, the 31-in. Mach 10 and the 20-in. Mach 6 CF4 facility. The paper focuses on the high Mach, high altitude portion of the first entry of the Shuttle where the vehicle exhibited a nose-up pitching moment relative to pre-flight prediction of (Delta C(sub m)) = 0 03. In order to study the relative contribution of compressibility, viscous interaction and real gas effects on basic body pitching moment and flap efficiency, an experimental study was undertaken to examine the effects of Mach, Reynolds and ratio of specific heats at NASA. At high Mach, a decrease of gamma occurs in the shock layer due to high temperature effects. The primary effect of this lower specific heat ratio is a decrease of the pressure on the aft windward expansion surface of the Orbiter causing the nose-up pitching moment. Testing in the heavy gas, Mach 6 CF4 tunnel, gave a good simulation of high temperature effects.

  9. Challenges to Computational Aerothermodynamic Simulation and Validation for Planetary Entry Vehicle Analysis

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Johnston, Christopher O.; Kleb, Bil

    2010-01-01

    Challenges to computational aerothermodynamic (CA) simulation and validation of hypersonic flow over planetary entry vehicles are discussed. Entry, descent, and landing (EDL) of high mass to Mars is a significant driver of new simulation requirements. These requirements include simulation of large deployable, flexible structures and interactions with reaction control system (RCS) and retro-thruster jets. Simulation of radiation and ablation coupled to the flow solver continues to be a high priority for planetary entry analyses, especially for return to Earth and outer planet missions. Three research areas addressing these challenges are emphasized. The first addresses the need to obtain accurate heating on unstructured tetrahedral grid systems to take advantage of flexibility in grid generation and grid adaptation. A multi-dimensional inviscid flux reconstruction algorithm is defined that is oriented with local flow topology as opposed to grid. The second addresses coupling of radiation and ablation to the hypersonic flow solver--flight- and ground-based data are used to provide limited validation of these multi-physics simulations. The third addresses the challenges of retro-propulsion simulation and the criticality of grid adaptation in this application. The evolution of CA to become a tool for innovation of EDL systems requires a successful resolution of these challenges.

  10. Challenges to Computational Aerothermodynamic Simulation and Validation for Planetary Entry Vehicle Analysis

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Johnston, Christopher O.; Kleb, Bil

    2010-01-01

    Challenges to computational aerothermodynamic (CA) simulation and validation of hypersonic flow over planetary entry vehicles are discussed. Entry, descent, and landing (EDL) of high mass to Mars is a significant driver of new simulation requirements. These requirements include simulation of large deployable, flexible structures and interactions with reaction control system (RCS) and retro-thruster jets. Simulation of radiation and ablation coupled to the flow solver continues to be a high priority for planetary entry analyses, especially for return to Earth and outer planet missions. Three research areas addressing these challenges are emphasized. The first addresses the need to obtain accurate heating on unstructured tetrahedral grid systems to take advantage of flexibility in grid generation and grid adaptation. A multi-dimensional inviscid flux reconstruction algorithm is defined that is oriented with local flow topology as opposed to grid. The second addresses coupling of radiation and ablation to the hypersonic flow solver - flight- and ground-based data are used to provide limited validation of these multi-physics simulations. The third addresses the challenges of retro-propulsion simulation and the criticality of grid adaptation in this application. The evolution of CA to become a tool for innovation of EDL systems requires a successful resolution of these challenges.

  11. Numerical Simulations Of High-Altitude Aerothermodynamics Of A Prospective Spacecraft Model

    NASA Astrophysics Data System (ADS)

    Vashchenkov, P. V.; Kaskovsky, A. V.; Krylov, A. N.; Ivanov, M. S.

    2011-05-01

    The paper describes the computations of aerothermodynamic characteristics of a promising spacecraft (Prospective Piloted Transport System) along its de- scent trajectory at altitudes from 120 to 60 km. The computations are performed by the DSMC method with the use of the SMILE software system and by the engineering technique (local bridging method) with the use of the RuSat software system. The influence of real gas effects (excitation of rotational and vibrational energy modes and chemical reactions) on aerothermodynamic characteristics of the vehicle is studied. A comparison of results obtained by the approximate engineering method and the DSMC method allow the accuracy of prediction of aerodynamic characteristics by the local bridging method to be estimated.

  12. Electrical Circuit Simulation Code

    SciTech Connect

    Wix, Steven D.; Waters, Arlon J.; Shirley, David

    2001-08-09

    Massively-Parallel Electrical Circuit Simulation Code. CHILESPICE is a massively-arallel distributed-memory electrical circuit simulation tool that contains many enhanced radiation, time-based, and thermal features and models. Large scale electronic circuit simulation. Shared memory, parallel processing, enhance convergence. Sandia specific device models.

  13. Compressible Astrophysics Simulation Code

    SciTech Connect

    Howell, L.; Singer, M.

    2007-07-18

    This is an astrophysics simulation code involving a radiation diffusion module developed at LLNL coupled to compressible hydrodynamics and adaptive mesh infrastructure developed at LBNL. One intended application is to neutrino diffusion in core collapse supernovae.

  14. User's Manual for the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA)

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Cheatwood, F. McNeil

    1996-01-01

    This user's manual provides detailed instructions for the installation and the application of version 4.1 of the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA). Also provides simulation of flow field in thermochemical nonequilibrium around vehicles traveling at hypersonic velocities through the atmosphere. Earlier versions of LAURA were predominantly research codes, and they had minimal (or no) documentation. This manual describes UNIX-based utilities for customizing the code for special applications that also minimize system resource requirements. The algorithm is reviewed, and the various program options are related to specific equations and variables in the theoretical development.

  15. X-38 Experimental Aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Berry, Scott A.; Merski, N. Ronald; Fitzgerald, Steve M.

    2000-01-01

    The X-38 program seeks to demonstrate an autonomously returned orbital test flight vehicle to support the development of an operational Crew Return Vehicle for the International Space Station. The test flight, anticipated in 2002, is intended to demonstrate the entire mission profile of returning Space Station crew members safely back to earth in the event of medical or mechanical emergency. Integral to the formulation of the X-38 flight data book and the design of the thermal protection system, the aerothermodynamic environment is being defined through a synergistic combination of ground based testing and computational fluid dynamics. This report provides an overview of the hypersonic aerothermodynamic wind tunnel program conducted at the NASA Langley Research Center in support of the X-38 development. Global and discrete surface heat transfer force and moment, surface streamline patterns, and shock shapes were measured on scaled models of the proposed X-38 configuration in different test gases at Mach 6, 10 and 20. The test parametrics include angle of attack from 0 to 50 degs, unit Reynolds numbers from 0.3 x 10 (exp 6) to 16 x 10 (exp 6)/ ft, rudder deflections of 0, 2, and 5 deg. and body flap deflections from 0 to 30 deg. Results from hypersonic aerodynamic screening studies that were conducted as the configuration evolved to the present shape at, presented. Heavy gas simulation tests have indicated that the primary real gas effects on X-38 aerodynamics at trim conditions are expected to favorably influence flap effectiveness. Comparisons of the experimental heating and force and moment data to prediction and the current aerodynamic data book are highlighted. The effects of discrete roughness elements on boundary layer transition were investigated at Mach 6 and the development of a transition correlation for the X-38 vehicle is described. Extrapolation of ground based heating measurements to flight radiation equilibrium wall temperatures at Mach 6 and 10 were

  16. Aerothermodynamics of the Mars Global Surveyor Spacecraft

    NASA Technical Reports Server (NTRS)

    Shane, Russell W.; Tolson, Robert H.

    1998-01-01

    The aerothermodynamics characteristics of the Mars Global Surveyor spacecraft are investigated and reported. These results have been used by the Mars Global Surveyor mission planners to design the aerobraking phase of the mission. Analytical and Direct Simulation Monte Carlo computer codes were used with a detailed, three dimensional model of the spacecraft to evaluate spacecraft aerobraking characteristics for flight in free molecular and transitional flow regimes. The spacecraft is found to be aerodynamically stable in aerobraking and planned contingency configurations. Aerodynamic forces, moments, and heating are found to be highly dependent on atmospheric density. Accommodation coefficient. is seen to strongly influence drag coefficient. Transitional flow effects are found to reduce overall solar panel heating. Attitude control thruster plumes are shown to interact with the freestream, diminishing the effectiveness of the attitude control system and even leading to thrust reversal. These plume-freestream interaction effects are found to be highly dependent on freestream density.

  17. Aeroassist flight experiment aerodynamics and aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Brewer, Edwin B.

    1989-01-01

    The problem is to determine the transitional flow aerodynamics and aerothermodynamics, including the base flow characteristics, of the Aeroassist Flight Experiment (AFE). The justification for the computational fluid dynamic (CFD) Application stems from MSFC's system integration responsibility for the AFE. To insure that the AFE objectives are met, MSFC must understand the limitations and uncertainties of the design data. Perhaps the only method capable of handling the complex physics of the rarefied high energy AFE trajectory is Bird's Direct Simulation Monte Carlo (DSMC) technique. The 3-D code used in this analysis is applicable only to the AFE geometry. It uses the Variable Hard Sphere (VHS) collision model and five specie chemistry model available from Langley Research Center. The code is benchmarked against the AFE flight data and used as an Aeroassisted Space Transfer Vehicle (ASTV) design tool. The code is being used to understand the AFE flow field and verify or modify existing design data. Continued application to lower altitudes is testing the capability of the Numerical Aerodynamic Simulation Facility (NASF) to handle 3-D DSMC and its practicality as an ASTV/AFE design tool.

  18. Team Software Development for Aerothermodynamic and Aerodynamic Analysis and Design

    NASA Technical Reports Server (NTRS)

    Alexandrov, N.; Atkins, H. L.; Bibb, K. L.; Biedron, R. T.; Carpenter, M. H.; Gnoffo, P. A.; Hammond, D. P.; Jones, W. T.; Kleb, W. L.; Lee-Rausch, E. M.

    2003-01-01

    A collaborative approach to software development is described. The approach employs the agile development techniques: project retrospectives, Scrum status meetings, and elements of Extreme Programming to efficiently develop a cohesive and extensible software suite. The software product under development is a fluid dynamics simulator for performing aerodynamic and aerothermodynamic analysis and design. The functionality of the software product is achieved both through the merging, with substantial rewrite, of separate legacy codes and the authorship of new routines. Examples of rapid implementation of new functionality demonstrate the benefits obtained with this agile software development process. The appendix contains a discussion of coding issues encountered while porting legacy Fortran 77 code to Fortran 95, software design principles, and a Fortran 95 coding standard.

  19. Electromagnetic particle simulation codes

    NASA Technical Reports Server (NTRS)

    Pritchett, P. L.

    1985-01-01

    Electromagnetic particle simulations solve the full set of Maxwell's equations. They thus include the effects of self-consistent electric and magnetic fields, magnetic induction, and electromagnetic radiation. The algorithms for an electromagnetic code which works directly with the electric and magnetic fields are described. The fields and current are separated into transverse and longitudinal components. The transverse E and B fields are integrated in time using a leapfrog scheme applied to the Fourier components. The particle pushing is performed via the relativistic Lorentz force equation for the particle momentum. As an example, simulation results are presented for the electron cyclotron maser instability which illustrate the importance of relativistic effects on the wave-particle resonance condition and on wave dispersion.

  20. Aerothermodynamic Data Base

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Space shuttle aerothermodynamic data, collected from a continuing series of wind tunnel tests, are permanently stored with the Data Management Services (DMS) system. Information pertaining to current baseline configuration definition is also stored. A list of documentation of DMS processed data arranged sequentially and by space shuttle configuration is presented. The listing provides an up to date record of all applicable aerothermodynamic data collected, processed, or summarized during the space shuttle program. Tables are designed to provide survey information to the various space shuttle managerial and technical levels.

  1. User's manual for the one-dimensional hypersonic experimental aero-thermodynamic (1DHEAT) data reduction code

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    1995-01-01

    A FORTRAN computer code for the reduction and analysis of experimental heat transfer data has been developed. This code can be utilized to determine heat transfer rates from surface temperature measurements made using either thin-film resistance gages or coaxial surface thermocouples. Both an analytical and a numerical finite-volume heat transfer model are implemented in this code. The analytical solution is based on a one-dimensional, semi-infinite wall thickness model with the approximation of constant substrate thermal properties, which is empirically corrected for the effects of variable thermal properties. The finite-volume solution is based on a one-dimensional, implicit discretization. The finite-volume model directly incorporates the effects of variable substrate thermal properties and does not require the semi-finite wall thickness approximation used in the analytical model. This model also includes the option of a multiple-layer substrate. Fast, accurate results can be obtained using either method. This code has been used to reduce several sets of aerodynamic heating data, of which samples are included in this report.

  2. Wind-tunnel based definition of the AFE aerothermodynamic environment. [Aeroassist Flight Experiment

    NASA Technical Reports Server (NTRS)

    Miller, Charles G.; Wells, W. L.

    1992-01-01

    The Aeroassist Flight Experiment (AFE), scheduled to be performed in 1994, will serve as a precursor for aeroassisted space transfer vehicles (ASTV's) and is representative of entry concepts being considered for missions to Mars. Rationale for the AFE is reviewed briefly as are the various experiments carried aboard the vehicle. The approach used to determine hypersonic aerodynamic and aerothermodynamic characteristics over a wide range of simulation parameters in ground-based facilities is presented. Facilities, instrumentation and test procedures employed in the establishment of the data base are discussed. Measurements illustrating the effects of hypersonic simulation parameters, particularly normal-shock density ratio (an important parameter for hypersonic blunt bodies), and attitude on aerodynamic and aerothermodynamic characteristics are presented, and predictions from computational fluid dynamic (CFD) computer codes are compared with measurement.

  3. Aerothermodynamic testing requirements for future space transportation systems

    NASA Astrophysics Data System (ADS)

    Paulson, John W., Jr.; Miller, Charles G., III

    1995-03-01

    Aerothermodynamics, encompassing aerodynamics, aeroheating, and fluid dynamic and physical processes, is the genesis for the design and development of advanced space transportation vehicles. It provides crucial information to other disciplines involved in the development process such as structures, materials, propulsion, and avionics. Sources of aerothermodynamic information include ground-based facilities, computational fluid dynamic (CFD) and engineering computer codes, and flight experiments. Utilization of this triad is required to provide the optimum requirements while reducing undue design conservatism, risk, and cost. This paper discusses the role of ground-based facilities in the design of future space transportation system concepts. Testing methodology is addressed, including the iterative approach often required for the assessment and optimization of configurations from an aerothermodynamic perspective. The influence of vehicle shape and the transition from parametric studies for optimization to benchmark studies for final design and establishment of the flight data book is discussed. Future aerothermodynamic testing requirements including the need for new facilities are also presented.

  4. DELightcurveSimulation: Light curve simulation code

    NASA Astrophysics Data System (ADS)

    Connolly, Samuel D.

    2016-02-01

    DELightcurveSimulation simulates light curves with any given power spectral density and any probability density function, following the algorithm described in Emmanoulopoulos et al. (2013). The simulated products have exactly the same variability and statistical properties as the observed light curves. The code is a Python implementation of the Mathematica code provided by Emmanoulopoulos et al.

  5. Error coding simulations in C

    NASA Technical Reports Server (NTRS)

    Noble, Viveca K.

    1994-01-01

    When data is transmitted through a noisy channel, errors are produced within the data rendering it indecipherable. Through the use of error control coding techniques, the bit error rate can be reduced to any desired level without sacrificing the transmission data rate. The Astrionics Laboratory at Marshall Space Flight Center has decided to use a modular, end-to-end telemetry data simulator to simulate the transmission of data from flight to ground and various methods of error control. The simulator includes modules for random data generation, data compression, Consultative Committee for Space Data Systems (CCSDS) transfer frame formation, error correction/detection, error generation and error statistics. The simulator utilizes a concatenated coding scheme which includes CCSDS standard (255,223) Reed-Solomon (RS) code over GF(2(exp 8)) with interleave depth of 5 as the outermost code, (7, 1/2) convolutional code as an inner code and CCSDS recommended (n, n-16) cyclic redundancy check (CRC) code as the innermost code, where n is the number of information bits plus 16 parity bits. The received signal-to-noise for a desired bit error rate is greatly reduced through the use of forward error correction techniques. Even greater coding gain is provided through the use of a concatenated coding scheme. Interleaving/deinterleaving is necessary to randomize burst errors which may appear at the input of the RS decoder. The burst correction capability length is increased in proportion to the interleave depth. The modular nature of the simulator allows for inclusion or exclusion of modules as needed. This paper describes the development and operation of the simulator, the verification of a C-language Reed-Solomon code, and the possibility of using Comdisco SPW(tm) as a tool for determining optimal error control schemes.

  6. Error coding simulations in C

    NASA Astrophysics Data System (ADS)

    Noble, Viveca K.

    1994-10-01

    When data is transmitted through a noisy channel, errors are produced within the data rendering it indecipherable. Through the use of error control coding techniques, the bit error rate can be reduced to any desired level without sacrificing the transmission data rate. The Astrionics Laboratory at Marshall Space Flight Center has decided to use a modular, end-to-end telemetry data simulator to simulate the transmission of data from flight to ground and various methods of error control. The simulator includes modules for random data generation, data compression, Consultative Committee for Space Data Systems (CCSDS) transfer frame formation, error correction/detection, error generation and error statistics. The simulator utilizes a concatenated coding scheme which includes CCSDS standard (255,223) Reed-Solomon (RS) code over GF(2(exp 8)) with interleave depth of 5 as the outermost code, (7, 1/2) convolutional code as an inner code and CCSDS recommended (n, n-16) cyclic redundancy check (CRC) code as the innermost code, where n is the number of information bits plus 16 parity bits. The received signal-to-noise for a desired bit error rate is greatly reduced through the use of forward error correction techniques. Even greater coding gain is provided through the use of a concatenated coding scheme. Interleaving/deinterleaving is necessary to randomize burst errors which may appear at the input of the RS decoder. The burst correction capability length is increased in proportion to the interleave depth. The modular nature of the simulator allows for inclusion or exclusion of modules as needed. This paper describes the development and operation of the simulator, the verification of a C-language Reed-Solomon code, and the possibility of using Comdisco SPW(tm) as a tool for determining optimal error control schemes.

  7. LFSC - Linac Feedback Simulation Code

    SciTech Connect

    Ivanov, Valentin; /Fermilab

    2008-05-01

    The computer program LFSC (Simulation Code>) is a numerical tool for simulation beam based feedback in high performance linacs. The code LFSC is based on the earlier version developed by a collective of authors at SLAC (L.Hendrickson, R. McEwen, T. Himel, H. Shoaee, S. Shah, P. Emma, P. Schultz) during 1990-2005. That code was successively used in simulation of SLC, TESLA, CLIC and NLC projects. It can simulate as pulse-to-pulse feedback on timescale corresponding to 5-100 Hz, as slower feedbacks, operating in the 0.1-1 Hz range in the Main Linac and Beam Delivery System. The code LFSC is running under Matlab for MS Windows operating system. It contains about 30,000 lines of source code in more than 260 subroutines. The code uses the LIAR ('Linear Accelerator Research code') for particle tracking under ground motion and technical noise perturbations. It uses the Guinea Pig code to simulate the luminosity performance. A set of input files includes the lattice description (XSIF format), and plane text files with numerical parameters, wake fields, ground motion data etc. The Matlab environment provides a flexible system for graphical output.

  8. Flight code validation simulator

    SciTech Connect

    Sims, B.A.

    1995-08-01

    An End-To-End Simulation capability for software development and validation of missile flight software on the actual embedded computer has been developed utilizing a 486 PC, i860 DSP coprocessor, embedded flight computer and custom dual port memory interface hardware. This system allows real-time interrupt driven embedded flight software development and checkout. The flight software runs in a Sandia Digital Airborne Computer (SANDAC) and reads and writes actual hardware sensor locations in which IMU (Inertial Measurements Unit) data resides. The simulator provides six degree of freedom real-time dynamic simulation, accurate real-time discrete sensor data and acts on commands and discretes from the flight computer. This system was utilized in the development and validation of the successful premier flight of the Digital Miniature Attitude Reference System (DMARS) in January 1995 at the White Sands Missile Range on a two stage attitude controlled sounding rocket.

  9. HADES, A Radiographic Simulation Code

    SciTech Connect

    Aufderheide, M.B.; Slone, D.M.; Schach von Wittenau, A.E.

    2000-08-18

    We describe features of the HADES radiographic simulation code. We begin with a discussion of why it is useful to simulate transmission radiography. The capabilities of HADES are described, followed by an application of HADES to a dynamic experiment recently performed at the Los Alamos Neutron Science Center. We describe quantitative comparisons between experimental data and HADES simulations using a copper step wedge. We conclude with a short discussion of future work planned for HADES.

  10. Aerothermodynamic Analyses of Towed Ballutes

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Buck, Greg; Moss, James N.; Nielsen, Eric; Berger, Karen; Jones, William T.; Rudavsky, Rena

    2006-01-01

    A ballute (balloon-parachute) is an inflatable, aerodynamic drag device for application to planetary entry vehicles. Two challenging aspects of aerothermal simulation of towed ballutes are considered. The first challenge, simulation of a complete system including inflatable tethers and a trailing toroidal ballute, is addressed using the unstructured-grid, Navier-Stokes solver FUN3D. Auxiliary simulations of a semi-infinite cylinder using the rarefied flow, Direct Simulation Monte Carlo solver, DSV2, provide additional insight into limiting behavior of the aerothermal environment around tethers directly exposed to the free stream. Simulations reveal pressures higher than stagnation and corresponding large heating rates on the tether as it emerges from the spacecraft base flow and passes through the spacecraft bow shock. The footprint of the tether shock on the toroidal ballute is also subject to heating amplification. Design options to accommodate or reduce these environments are discussed. The second challenge addresses time-accurate simulation to detect the onset of unsteady flow interactions as a function of geometry and Reynolds number. Video of unsteady interactions measured in the Langley Aerothermodynamic Laboratory 20-Inch Mach 6 Air Tunnel and CFD simulations using the structured grid, Navier-Stokes solver LAURA are compared for flow over a rigid spacecraft-sting-toroid system. The experimental data provides qualitative information on the amplitude and onset of unsteady motion which is captured in the numerical simulations. The presence of severe unsteady fluid - structure interactions is undesirable and numerical simulation must be able to predict the onset of such motion.

  11. HEART Aerothermodynamic Analysis

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza

    2012-01-01

    This paper presents an assessment of the aerothermodynamic environment around an 8.3 meter High Energy Atmospheric Reentry Test (HEART) vehicle. This study generated twelve nose shape configurations and compared their responses at the peak heating trajectory point against the baseline nose shape. The heat flux sensitivity to the angle of attack variations are also discussed. The possibility of a two-piece Thermal Protection System (TPS) design at the nose is also considered, as are the surface catalytic affects of the aeroheating environment of such configuration. Based on these analyses, an optimum nose shape is proposed to minimize the surface heating. A recommendation is also made for a two-piece TPS design, for which the surface catalytic uncertainty associated with the jump in heating at the nose-IAD juncture is reduced by a minimum of 93%. In this paper, the aeroshell is assumed to be rigid and the inflatable fluid interaction effect is left for future investigations.

  12. Development of AFE aerobrake aerothermodynamic data book

    NASA Technical Reports Server (NTRS)

    Ting, Paul C.; Rochelle, W. C.; Mueller, S. R.; Colovin, J. E.; Scott, C. D.; Curry, D. M.

    1989-01-01

    The computation method developed for the NASA Aeroassist Flight Experiment (AFE) data book generates a design reference for the AFE's aerothermodynamic environment using an optimized technology for a 4100-lb vehicle. This environment is defined by convective, radiative, and total heating rates, radiation equilibrium temperatures, and local surface pressures along the AFE pitch-plane and associated off-pitch planes. The Boundary Layer Integral Matrix Procedure is the major program code used in this analysis; a partially catalytic wall was assumed on the basis of measured recombination rates.

  13. Computer Code for Nanostructure Simulation

    NASA Technical Reports Server (NTRS)

    Filikhin, Igor; Vlahovic, Branislav

    2009-01-01

    Due to their small size, nanostructures can have stress and thermal gradients that are larger than any macroscopic analogue. These gradients can lead to specific regions that are susceptible to failure via processes such as plastic deformation by dislocation emission, chemical debonding, and interfacial alloying. A program has been developed that rigorously simulates and predicts optoelectronic properties of nanostructures of virtually any geometrical complexity and material composition. It can be used in simulations of energy level structure, wave functions, density of states of spatially configured phonon-coupled electrons, excitons in quantum dots, quantum rings, quantum ring complexes, and more. The code can be used to calculate stress distributions and thermal transport properties for a variety of nanostructures and interfaces, transport and scattering at nanoscale interfaces and surfaces under various stress states, and alloy compositional gradients. The code allows users to perform modeling of charge transport processes through quantum-dot (QD) arrays as functions of inter-dot distance, array order versus disorder, QD orientation, shape, size, and chemical composition for applications in photovoltaics and physical properties of QD-based biochemical sensors. The code can be used to study the hot exciton formation/relation dynamics in arrays of QDs of different shapes and sizes at different temperatures. It also can be used to understand the relation among the deposition parameters and inherent stresses, strain deformation, heat flow, and failure of nanostructures.

  14. Overview of aerothermodynamic loads definition study

    NASA Technical Reports Server (NTRS)

    Gaugler, Raymond E.

    1991-01-01

    The objective of the Aerothermodynamic Loads Definition Study is to develop methods of accurately predicting the operating environment in advanced Earth-to-Orbit (ETO) propulsion systems, such as the Space Shuttle Main Engine (SSME) powerhead. Development of time averaged and time dependent three dimensional viscous computer codes as well as experimental verification and engine diagnostic testing are considered to be essential in achieving that objective. Time-averaged, nonsteady, and transient operating loads must all be well defined in order to accurately predict powerhead life. Described here is work in unsteady heat flow analysis, improved modeling of preburner flow, turbulence modeling for turbomachinery, computation of three dimensional flow with heat transfer, and unsteady viscous multi-blade row turbine analysis.

  15. Aerothermodynamic Analysis of the Project FIRE II Afterbody Flow

    NASA Technical Reports Server (NTRS)

    Wright, Micheal J.; Loomis, Mark; Arnold, Jim (Technical Monitor)

    2000-01-01

    35 years later, the Project FIRE II ballistic reentry to Earth at a nominal velocity of 11.4 km/s remains one of the best sources of heating data for the design of sample return capsules. The data from this flight experiment encompass both the thermochemical non-equilibrium and equilibrium flow regimes and include measurements of both radiative and total heating on the forebody and afterbody. Because of this, a number of researchers have performed computational fluid dynamics (CFD) simulations of the forebody of the FIRE II entry vehicle, with generally good results. In particular, Olynick et. al. coupled a Navier-Stokes solver (GIANTS) with a radiation code (NOVAR) and showed excellent agreement in surface heat transfer over the FIRE II trajectory between 1634 and 1651 seconds (77 km to 37 km). However, in most cases the primary motivation of the previous work was to understand and model the coupling between shock layer radiation and aerothermodynamics, and thus the simulations concentrated on the forebody flow only. To our knowledge there have been no prior published attempts to reproduce the afterbody heating data. However, an understanding of this data is critical to our efforts to design the next generation of Earth and planetary entry vehicles and to assess our need for additional flight data.

  16. Variable Coded Modulation software simulation

    NASA Astrophysics Data System (ADS)

    Sielicki, Thomas A.; Hamkins, Jon; Thorsen, Denise

    This paper reports on the design and performance of a new Variable Coded Modulation (VCM) system. This VCM system comprises eight of NASA's recommended codes from the Consultative Committee for Space Data Systems (CCSDS) standards, including four turbo and four AR4JA/C2 low-density parity-check codes, together with six modulations types (BPSK, QPSK, 8-PSK, 16-APSK, 32-APSK, 64-APSK). The signaling protocol for the transmission mode is based on a CCSDS recommendation. The coded modulation may be dynamically chosen, block to block, to optimize throughput.

  17. Uncertainty Assessment of Hypersonic Aerothermodynamics Prediction Capability

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; Brown, James L.; Prabhu, Dinesh K.; Gnoffo, Peter; Johnston, Christopher O.; Hollis, Brian

    2011-01-01

    The present paper provides the background of a focused effort to assess uncertainties in predictions of heat flux and pressure in hypersonic flight (airbreathing or atmospheric entry) using state-of-the-art aerothermodynamics codes. The assessment is performed for four mission relevant problems: (1) shock turbulent boundary layer interaction on a compression corner, (2) shock turbulent boundary layer interaction due a impinging shock, (3) high-mass Mars entry and aerocapture, and (4) high speed return to Earth. A validation based uncertainty assessment approach with reliance on subject matter expertise is used. A code verification exercise with code-to-code comparisons and comparisons against well established correlations is also included in this effort. A thorough review of the literature in search of validation experiments is performed, which identified a scarcity of ground based validation experiments at hypersonic conditions. In particular, a shortage of useable experimental data at flight like enthalpies and Reynolds numbers is found. The uncertainty was quantified using metrics that measured discrepancy between model predictions and experimental data. The discrepancy data is statistically analyzed and investigated for physics based trends in order to define a meaningful quantified uncertainty. The detailed uncertainty assessment of each mission relevant problem is found in the four companion papers.

  18. The definition of the Shuttle Tethered Aerothermodynamic Research Facility

    NASA Technical Reports Server (NTRS)

    Siemers, P. M., III; Wood, G. M., Jr.; Wolf, H.; Flanagan, P. F.; Henry, M. W.

    1985-01-01

    Studies have been conducted to define the feasibility and practical limitations of the Shuttle Orbiter Tethered 'wind-tunnel' concept. This concept, referred to as the Shuttle Tethered Aerothermodynamic Research Facility (STARFAC), is proposed to provide researchers access to altitudes above 90 km to accomplish aerothermodynamic research in the rarefied upper atmosphere. Determining the feasibility and limitations of the concept has required the enhancement and/or development of mission simulation analytical techniques and control laws; the accomplishment of candidate mission simulations; the definition of instrumentation requirements, both for science and engineering; and the establishment of tether and satellite design requirements to meet STARFAC objectives. The results of the study, to date, indicate that such a concept is both feasible and practical. Representative results are presented, as are recommendations for continued studies which would result in program implementation.

  19. Opportunities for research in aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Graham, R. W.

    1983-01-01

    "Aerothermodynamics' involves the disciplines of chemistry, thermodynamics, fluid mechanics and heat transfer which have collaborative importance in propulsion systems. There are growing opportunities for the further application of these disciplines to improve the methodology for the design of advanced gas turbines; particularly, the combustor and turbine. Design procedures follow empirical or cut and try guidelines. The tremendous advances in computational analysis and in instrumentation techniques hold promise for research answers to complex physical processes that are currently not well understood. The transfer of basic research understanding to engineering design should result in shorter, less expensive development commitments for engines. The status and anticipated opportunities in research topics relevant to combustors and turbines is reviewed.

  20. Aerothermodynamics of Blunt Body Entry Vehicles. Chapter 3

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Borrelli, Salvatore

    2011-01-01

    In this chapter, the aerothermodynamic phenomena of blunt body entry vehicles are discussed. Four topics will be considered that present challenges to current computational modeling techniques for blunt body environments: turbulent flow, non-equilibrium flow, rarefied flow, and radiation transport. Examples of comparisons between computational tools to ground and flight-test data will be presented in order to illustrate the challenges existing in the numerical modeling of each of these phenomena and to provide test cases for evaluation of Computational Fluid Dynamics (CFD) code predictions.

  1. A distributed particle simulation code in C++

    SciTech Connect

    Forslund, D.W.; Wingate, C.A.; Ford, P.S.; Junkins, J.S.; Pope, S.C.

    1992-03-01

    Although C++ has been successfully used in a variety of computer science applications, it has just recently begun to be used in scientific applications. We have found that the object-oriented properties of C++ lend themselves well to scientific computations by making maintenance of the code easier, by making the code easier to understand, and by providing a better paradigm for distributed memory parallel codes. We describe here aspects of developing a particle plasma simulation code using object-oriented techniques for use in a distributed computing environment. We initially designed and implemented the code for serial computation and then used the distributed programming toolkit ISIS to run it in parallel. In this connection we describe some of the difficulties presented by using C++ for doing parallel and scientific computation.

  2. The virtual beamline (VBL) laser simulation code

    NASA Astrophysics Data System (ADS)

    Sacks, R. A.; McCandless, K. P.; Feigenbaum, E.; Di Nicola, J. M. G.; Luke, K. J.; Riedel, W.; Learn, R. J.; Kraines, B. J.

    2015-02-01

    Design, activation, and operation of large laser systems rely on accurate, efficient, user-friendly simulation of laser performance. At the Lawrence Livermore National Laboratory, the principle tool for this simulation over the past ten years has been the VBL, an outgrowth of the Prop code that uses the same text-file input grammar and is closely integrated with the Laser Performance Operations Model (LPOM). Here, we describe the physics capabilities of this code, its user interface, and our plans for near-term future developments.

  3. The use of the tethered satellite system to perform low density aerothermodynamics studies

    NASA Technical Reports Server (NTRS)

    Carlomagno, Giovanni M.; Deluca, Luigi; Siemers, Paul M.; Wood, George M., Jr.

    1988-01-01

    The Tethered Satellite System (TSS) is a cooperative space system development activity of the U.S.A. and Italy. It is comprised of the Tether Satellite (TS) and the deployer. Within TSS, the Shuttle Tethered Aerothermodynamic Research Facility (STARFAC) concept has the potential to provide access to vast portions of the upper atmosphere for atmospheric and aerothermodynamic research. The feasibility and capability of the TSS to operate as a continuous open wind tunnel and to perform low density aerothermodynamic studies are investigated. This is accomplished through a modified version of the TS simulation program (SKYHOOK). The results indicate that STARFAC concept is both feasible and practical. The TS can go below 100 km but, if thrust is used, large velocity variation (delta V) maneuvers and an attitude control are required; if a satellite lift is considered, large tether tension is produced and an attitude control is required.

  4. Aero-Thermo-Dynamic Mass Analysis

    NASA Astrophysics Data System (ADS)

    Shiba, Kota; Yoshikawa, Genki

    2016-07-01

    Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis.

  5. Aero-Thermo-Dynamic Mass Analysis.

    PubMed

    Shiba, Kota; Yoshikawa, Genki

    2016-07-14

    Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis.

  6. Aero-Thermo-Dynamic Mass Analysis.

    PubMed

    Shiba, Kota; Yoshikawa, Genki

    2016-01-01

    Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis. PMID:27412335

  7. Aero-Thermo-Dynamic Mass Analysis

    PubMed Central

    Shiba, Kota; Yoshikawa, Genki

    2016-01-01

    Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis. PMID:27412335

  8. Unsteady Full Annulus Simulations of a Transonic Axial Compressor Stage

    NASA Technical Reports Server (NTRS)

    Herrick, Gregory P.; Hathaway, Michael D.; Chen, Jen-Ping

    2009-01-01

    Two recent research endeavors in turbomachinery at NASA Glenn Research Center have focused on compression system stall inception and compression system aerothermodynamic performance. Physical experiment and computational research are ongoing in support of these research objectives. TURBO, an unsteady, three-dimensional, Navier-Stokes computational fluid dynamics code commissioned and developed by NASA, has been utilized, enhanced, and validated in support of these endeavors. In the research which follows, TURBO is shown to accurately capture compression system flow range-from choke to stall inception-and also to accurately calculate fundamental aerothermodynamic performance parameters. Rigorous full-annulus calculations are performed to validate TURBO s ability to simulate the unstable, unsteady, chaotic stall inception process; as part of these efforts, full-annulus calculations are also performed at a condition approaching choke to further document TURBO s capabilities to compute aerothermodynamic performance data and support a NASA code assessment effort.

  9. ESA Intermediate Experimental Vehicle. Independent Aerothermodynamic Characterization And Aerodatabase Development

    NASA Astrophysics Data System (ADS)

    Rufolo, Giuseppe C.; Di Benedetto, Sara; Walpot, Louis; Roncioni, Pietro; Marini, Marco

    2011-05-01

    In the frame of the Intermediate eXperimental Vehicle (IXV) project, the European Space Agency (ESA) is coordinating a series of technical assistance activities aimed at verifying and supporting the IXV industrial design and development process. The technical assistance is operated with the support of the Italian Space Agency (ASI), by means of the Italian Aerospace Research Center (CIRA), and the European Space Research and Technology Centre (ESTEC) under the super visioning and coordination of ESA IXV team. One of the purposes of the activity is to develop an independent capability for the assessment and verification of the industrial results with respect to the aerothermodynamic characterization of the IXV vehicle. To this aim CIRA is developing and independent AeroThermodynamics DataBase (ATDB), intended as a tool generating in output the time histories of local quantities (heat flux, pressure, skin friction) for each point of the IXV vehicle and for each trajectory (in a pre-defined envelope), together with an uncertainties model. The reference Computational Fluid Dynamics (CFD) solutions needed for the development of the tool have been provided by ESA-ESTEC (with the CFD code LORE) and CIRA (with the CFD code H3NS).

  10. A MULTIPURPOSE COHERENT INSTABILITY SIMULATION CODE

    SciTech Connect

    BLASKIEWICZ,M.

    2007-06-25

    A multipurpose coherent instability simulation code has been written, documented, and released for use. TRANFT (tran-eff-tee) uses fast Fourier transforms to model transverse wakefields, transverse detuning wakes and longitudinal wakefields in a computationally efficient way. Dual harmonic RF allows for the study of enhanced synchrotron frequency spread. When coupled with chromaticity, the theoretically challenging but highly practical post head-tail regime is open to study. Detuning wakes allow for transverse space charge forces in low energy hadron beams, and a switch allowing for radiation damping makes the code useful for electrons.

  11. Simulation of EAST vertical displacement events by tokamak simulation code

    NASA Astrophysics Data System (ADS)

    Qiu, Qinglai; Xiao, Bingjia; Guo, Yong; Liu, Lei; Xing, Zhe; Humphreys, D. A.

    2016-10-01

    Vertical instability is a potentially serious hazard for elongated plasma. In this paper, the tokamak simulation code (TSC) is used to simulate vertical displacement events (VDE) on the experimental advanced superconducting tokamak (EAST). Key parameters from simulations, including plasma current, plasma shape and position, flux contours and magnetic measurements match experimental data well. The growth rates simulated by TSC are in good agreement with TokSys results. In addition to modeling the free drift, an EAST fast vertical control model enables TSC to simulate the course of VDE recovery. The trajectories of the plasma current center and control currents on internal coils (IC) fit experimental data well.

  12. Space Shuttle aerothermodynamic data report, phase C

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Space shuttle aerothermodynamic data, collected from a continuing series of wind tunnel tests, are permanently stored with the Data Management Services (DMS) system. Information pertaining to current baseline configuration definition is also stored. Documentation of DMS processed data arranged sequentially and by space shuttle configuration are included. An up-to-date record of all applicable aerothermodynamic data collected, processed, or summarized during the space shuttle program is provided. Tables are designed to provide suvery information to the various space shuttle managerial and technical levels.

  13. Transferring ecosystem simulation codes to supercomputers

    NASA Technical Reports Server (NTRS)

    Skiles, J. W.; Schulbach, C. H.

    1995-01-01

    Many ecosystem simulation computer codes have been developed in the last twenty-five years. This development took place initially on main-frame computers, then mini-computers, and more recently, on micro-computers and workstations. Supercomputing platforms (both parallel and distributed systems) have been largely unused, however, because of the perceived difficulty in accessing and using the machines. Also, significant differences in the system architectures of sequential, scalar computers and parallel and/or vector supercomputers must be considered. We have transferred a grassland simulation model (developed on a VAX) to a Cray Y-MP/C90. We describe porting the model to the Cray and the changes we made to exploit the parallelism in the application and improve code execution. The Cray executed the model 30 times faster than the VAX and 10 times faster than a Unix workstation. We achieved an additional speedup of 30 percent by using the compiler's vectoring and 'in-line' capabilities. The code runs at only about 5 percent of the Cray's peak speed because it ineffectively uses the vector and parallel processing capabilities of the Cray. We expect that by restructuring the code, it could execute an additional six to ten times faster.

  14. Experimental Stage Separation Tool Development in NASA Langley's Aerothermodynamics Laboratory

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Scallion, William I.

    2005-01-01

    As part of the research effort at NASA in support of the stage separation and ascent aerothermodynamics research program, proximity testing of a generic bimese wing-body configuration was conducted in NASA Langley's Aerothermodynamics Laboratory in the 20-Inch Mach 6 Air Tunnel. The objective of this work is the development of experimental tools and testing methodologies to apply to hypersonic stage separation problems for future multi-stage launch vehicle systems. Aerodynamic force and moment proximity data were generated at a nominal Mach number of 6 over a small range of angles of attack. The generic bimese configuration was tested in a belly-to-belly and back-to-belly orientation at 86 relative proximity locations. Over 800 aerodynamic proximity data points were taken to serve as a database for code validation. Longitudinal aerodynamic data generated in this test program show very good agreement with viscous computational predictions. Thus a framework has been established to study separation problems in the hypersonic regime using coordinated experimental and computational tools.

  15. Simulation studies using multibody dynamics code DART

    NASA Technical Reports Server (NTRS)

    Keat, James E.

    1989-01-01

    DART is a multibody dynamics code developed by Photon Research Associates for the Air Force Astronautics Laboratory (AFAL). The code is intended primarily to simulate the dynamics of large space structures, particularly during the deployment phase of their missions. DART integrates nonlinear equations of motion numerically. The number of bodies in the system being simulated is arbitrary. The bodies' interconnection joints can have an arbitrary number of degrees of freedom between 0 and 6. Motions across the joints can be large. Provision for simulating on-board control systems is provided. Conservation of energy and momentum, when applicable, are used to evaluate DART's performance. After a brief description of DART, studies made to test the program prior to its delivery to AFAL are described. The first is a large angle reorientating of a flexible spacecraft consisting of a rigid central hub and four flexible booms. Reorientation was accomplished by a single-cycle sine wave shape torque input. In the second study, an appendage, mounted on a spacecraft, was slewed through a large angle. Four closed-loop control systems provided control of this appendage and of the spacecraft's attitude. The third study simulated the deployment of the rim of a bicycle wheel configuration large space structure. This system contained 18 bodies. An interesting and unexpected feature of the dynamics was a pulsing phenomena experienced by the stays whole playout was used to control the deployment. A short description of the current status of DART is given.

  16. Aerothermodynamics at NASA-Langley Research Center

    NASA Technical Reports Server (NTRS)

    Weilmuenster, K. James

    2001-01-01

    The Aerothermodynamics Branch at NASA - Langley Research Center is tasked with developing, assessing and applying aerothermodynamic technologies to enable the development of hypersonic aircraft, launch vehicles, and planetary/earth entry systems. To accomplish this mission, the Branch capitalizes on the synergism between the experimental and computational facilities/tools which reside in the branch and a staff that can draw on five decades of experience in aerothermodynamics. The Aerothermodynamics Branch is staffed by 30 scientists/engineers. The staff, of which two-thirds are less than 40 years old, is split evenly between experimentalists and computationalists. Approximately 90 percent of the staff work on space transportation systems while the remainder work on planetary missions. The Branch manages 5 hypersonic wind tunnels which are staffed by 14 technicians, numerous high end work stations and a SGI Origin 2000 system. The Branch also utilizes other test facilities located at Langley as well as other national and international test sites. Large scale computational requirements are met by access to Agency resources.

  17. Computational Aerothermodynamic Design Issues for Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Weilmuenster, K. James; Hamilton, H. Harris, II; Olynick, David R.; Venkatapathy, Ethiraj

    1997-01-01

    A brief review of the evolutionary progress in computational aerothermodynamics is presented. The current status of computational aerothermodynamics is then discussed, with emphasis on its capabilities and limitations for contributions to the design process of hypersonic vehicles. Some topics to be highlighted include: (1) aerodynamic coefficient predictions with emphasis on high temperature gas effects; (2) surface heating and temperature predictions for thermal protection system (TPS) design in a high temperature, thermochemical nonequilibrium environment; (3) methods for extracting and extending computational fluid dynamic (CFD) solutions for efficient utilization by all members of a multidisciplinary design team; (4) physical models; (5) validation process and error estimation; and (6) gridding and solution generation strategies. Recent experiences in the design of X-33 will be featured. Computational aerothermodynamic contributions to Mars Pathfinder, METEOR, and Stardust (Comet Sample return) will also provide context for this discussion. Some of the barriers that currently limit computational aerothermodynamics to a predominantly reactive mode in the design process will also be discussed, with the goal of providing focus for future research.

  18. Computational Aerothermodynamic Design Issues for Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Olynick, David R.; Venkatapathy, Ethiraj

    2004-01-01

    A brief review of the evolutionary progress in computational aerothermodynamics is presented. The current status of computational aerothermodynamics is then discussed, with emphasis on its capabilities and limitations for contributions to the design process of hypersonic vehicles. Some topics to be highlighted include: (1) aerodynamic coefficient predictions with emphasis on high temperature gas effects; (2) surface heating and temperature predictions for thermal protection system (TPS) design in a high temperature, thermochemical nonequilibrium environment; (3) methods for extracting and extending computational fluid dynamic (CFD) solutions for efficient utilization by all members of a multidisciplinary design team; (4) physical models; (5) validation process and error estimation; and (6) gridding and solution generation strategies. Recent experiences in the design of X-33 will be featured. Computational aerothermodynamic contributions to Mars Pathfinder, METEOR, and Stardust (Comet Sample return) will also provide context for this discussion. Some of the barriers that currently limit computational aerothermodynamics to a predominantly reactive mode in the design process will also be discussed, with the goal of providing focus for future research.

  19. Computational Aerothermodynamic Design Issues for Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Weilmuenster, K. James; Hamilton, H. Harris, II; Olynick, David R.; Venkatapathy, Ethiraj

    2005-01-01

    A brief review of the evolutionary progress in computational aerothermodynamics is presented. The current status of computational aerothermodynamics is then discussed, with emphasis on its capabilities and limitations for contributions to the design process of hypersonic vehicles. Some topics to be highlighted include: (1) aerodynamic coefficient predictions with emphasis on high temperature gas effects; (2) surface heating and temperature predictions for thermal protection system (TPS) design in a high temperature, thermochemical nonequilibrium environment; (3) methods for extracting and extending computational fluid dynamic (CFD) solutions for efficient utilization by all members of a multidisciplinary design team; (4) physical models; (5) validation process and error estimation; and (6) gridding and solution generation strategies. Recent experiences in the design of X-33 will be featured. Computational aerothermodynamic contributions to Mars Path finder, METEOR, and Stardust (Comet Sample return) will also provide context for this discussion. Some of the barriers that currently limit computational aerothermodynamics to a predominantly reactive mode in the design process will also be discussed, with the goal of providing focus for future research.

  20. Simulation Code Development and Its Applications

    NASA Astrophysics Data System (ADS)

    Li, Zenghai

    2015-10-01

    Under the support of the U.S. DOE SciDAC program, SLAC has been developing a suite of 3D parallel finite-element codes aimed at high-accuracy, high-fidelity electromagnetic and beam physics simulations for the design and optimization of next-generation particle accelerators. Running on the latest supercomputers, these codes have made great strides in advancing the state of the art in applied math and computer science at the petascale that enable the integrated modeling of electromagnetics, self-consistent Particle-In-Cell (PIC) particle dynamics as well as thermal, mechanical, and multi-physics effects. This paper will present the latest development and application of ACE3P to a wide range of accelerator projects.

  1. Containment Fire Simulation by a CFD Code

    SciTech Connect

    Heitsch, Matthias

    2002-07-01

    In the frame of an international collaborative project to evaluate fire models a code benchmark was initiated to better quantify the strengths and weaknesses of the codes involved. CFX has been applied to simulate selected cases of both parts of the benchmark. These simulations are presented and discussed in this paper. In the first part of the benchmark a pool fire just represented by a heat release table is considered. Consequently, the physical fire model within CFX is simple. Radiative heat exchange together with turbulent mixing are involved. Two cases with and without venting of the fire room are compared. The second part of the benchmark requires a more detailed fire model in order to inspect the availability of oxygen locally and to control the fire intensity. Under unvented conditions oxygen starvation is encountered and the fire oscillates. Mechanical ventilation changes this behavior and provides enough oxygen all over the simulation time. The predefined damage criteria to characterize, if a target cable in the fire room would be damaged, are not met. However, surface temperatures predicted are well above the assumed threshold temperatures. A continuation of the work presented is foreseen and will address a more complex physical modeling of relevant fire scenarios. (author)

  2. Aerothermodynamic Design of the Mars Science Laboratory Heatshield

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Dyakonov, Artem A.; Wright, Michael J.; Tang, Chun Y.

    2009-01-01

    Aerothermodynamic design environments are presented for the Mars Science Laboratory entry capsule heatshield. The design conditions are based on Navier-Stokes flowfield simulations on shallow (maximum total heat load) and steep (maximum heat flux, shear stress, and pressure) entry trajectories from a 2009 launch. Boundary layer transition is expected prior to peak heat flux, a first for Mars entry, and the heatshield environments were defined for a fully-turbulent heat pulse. The effects of distributed surface roughness on turbulent heat flux and shear stress peaks are included using empirical correlations. Additional biases and uncertainties are based on computational model comparisons with experimental data and sensitivity studies. The peak design conditions are 197 W/sq cm for heat flux, 471 Pa for shear stress, 0.371 Earth atm for pressure, and 5477 J/sq cm for total heat load. Time-varying conditions at fixed heatshield locations were generated for thermal protection system analysis and flight instrumentation development. Finally, the aerothermodynamic effects of delaying launch until 2011 are previewed.

  3. Aerothermodynamic Environments Definition for the Mars Science Laboratory Entry Capsule

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Dyakonov, Artem A.; Wright, Michael J.; Tang, Chun Y.

    2007-01-01

    An overview of the aerothermodynamic environments definition status is presented for the Mars Science Laboratory entry vehicle. The environments are based on Navier-Stokes flowfield simulations on a candidate aeroshell geometry and worst-case entry heating trajectories. Uncertainties for the flowfield predictions are based primarily on available ground data since Mars flight data are scarce. The forebody aerothermodynamics analysis focuses on boundary layer transition and turbulent heating augmentation. Turbulent transition is expected prior to peak heating, a first for Mars entry, resulting in augmented heat flux and shear stress at the same heatshield location. Afterbody computations are also shown with and without interference effects of reaction control system thruster plumes. Including uncertainties, analysis predicts that the heatshield may experience peaks of 225 W/sq cm for turbulent heat flux, 0.32 atm for stagnation pressure, and 400 Pa for turbulent shear stress. The afterbody heat flux without thruster plume interference is predicted to be 7 W/sq cm on the backshell and 10 W/sq cm on the parachute cover. If the reaction control jets are fired near peak dynamic pressure, the heat flux at localized areas could reach as high as 76 W/sq cm on the backshell and 38 W/sq cm on the parachute cover, including uncertainties. The final flight environments used for hardware design will be updated for any changes in the aeroshell configuration, heating design trajectories, or uncertainties.

  4. Aerothermodynamic methods for a Mars environmental survey Mars entry

    NASA Technical Reports Server (NTRS)

    Mitcheltree, R. A.

    1994-01-01

    Computational fluid dynamics models for the thermodynamics and transport properties used in an equilibrium version of the Langley aerothermodynamics upwind relaxation algorithm (LAURA) for Mars atmospheric entries are described. In addition, the physical models used in a nonequilibrium version of LAURA for Mars-entry flows are described. Uncertainties exist in defining constants used in the transport properties for the equilibrium model and in many of the physical models for the nonequilibrium version. Solutions from the two codes using the best available constants are examined at the Mars-entry conditions characteristics of the Mars environmental survey mission. While the flowfields are near thermal equilibrium, chemical nonequilibrium effects are present in the entry cases examined. Convective heating at the stagnation point for these flows (assuming fully catalytic wall boundary conditions) is approximately 100 W/cm(exp 2). Radiative heating is negligible.

  5. Spiking network simulation code for petascale computers

    PubMed Central

    Kunkel, Susanne; Schmidt, Maximilian; Eppler, Jochen M.; Plesser, Hans E.; Masumoto, Gen; Igarashi, Jun; Ishii, Shin; Fukai, Tomoki; Morrison, Abigail; Diesmann, Markus; Helias, Moritz

    2014-01-01

    Brain-scale networks exhibit a breathtaking heterogeneity in the dynamical properties and parameters of their constituents. At cellular resolution, the entities of theory are neurons and synapses and over the past decade researchers have learned to manage the heterogeneity of neurons and synapses with efficient data structures. Already early parallel simulation codes stored synapses in a distributed fashion such that a synapse solely consumes memory on the compute node harboring the target neuron. As petaflop computers with some 100,000 nodes become increasingly available for neuroscience, new challenges arise for neuronal network simulation software: Each neuron contacts on the order of 10,000 other neurons and thus has targets only on a fraction of all compute nodes; furthermore, for any given source neuron, at most a single synapse is typically created on any compute node. From the viewpoint of an individual compute node, the heterogeneity in the synaptic target lists thus collapses along two dimensions: the dimension of the types of synapses and the dimension of the number of synapses of a given type. Here we present a data structure taking advantage of this double collapse using metaprogramming techniques. After introducing the relevant scaling scenario for brain-scale simulations, we quantitatively discuss the performance on two supercomputers. We show that the novel architecture scales to the largest petascale supercomputers available today. PMID:25346682

  6. Spiking network simulation code for petascale computers.

    PubMed

    Kunkel, Susanne; Schmidt, Maximilian; Eppler, Jochen M; Plesser, Hans E; Masumoto, Gen; Igarashi, Jun; Ishii, Shin; Fukai, Tomoki; Morrison, Abigail; Diesmann, Markus; Helias, Moritz

    2014-01-01

    Brain-scale networks exhibit a breathtaking heterogeneity in the dynamical properties and parameters of their constituents. At cellular resolution, the entities of theory are neurons and synapses and over the past decade researchers have learned to manage the heterogeneity of neurons and synapses with efficient data structures. Already early parallel simulation codes stored synapses in a distributed fashion such that a synapse solely consumes memory on the compute node harboring the target neuron. As petaflop computers with some 100,000 nodes become increasingly available for neuroscience, new challenges arise for neuronal network simulation software: Each neuron contacts on the order of 10,000 other neurons and thus has targets only on a fraction of all compute nodes; furthermore, for any given source neuron, at most a single synapse is typically created on any compute node. From the viewpoint of an individual compute node, the heterogeneity in the synaptic target lists thus collapses along two dimensions: the dimension of the types of synapses and the dimension of the number of synapses of a given type. Here we present a data structure taking advantage of this double collapse using metaprogramming techniques. After introducing the relevant scaling scenario for brain-scale simulations, we quantitatively discuss the performance on two supercomputers. We show that the novel architecture scales to the largest petascale supercomputers available today. PMID:25346682

  7. Spiking network simulation code for petascale computers.

    PubMed

    Kunkel, Susanne; Schmidt, Maximilian; Eppler, Jochen M; Plesser, Hans E; Masumoto, Gen; Igarashi, Jun; Ishii, Shin; Fukai, Tomoki; Morrison, Abigail; Diesmann, Markus; Helias, Moritz

    2014-01-01

    Brain-scale networks exhibit a breathtaking heterogeneity in the dynamical properties and parameters of their constituents. At cellular resolution, the entities of theory are neurons and synapses and over the past decade researchers have learned to manage the heterogeneity of neurons and synapses with efficient data structures. Already early parallel simulation codes stored synapses in a distributed fashion such that a synapse solely consumes memory on the compute node harboring the target neuron. As petaflop computers with some 100,000 nodes become increasingly available for neuroscience, new challenges arise for neuronal network simulation software: Each neuron contacts on the order of 10,000 other neurons and thus has targets only on a fraction of all compute nodes; furthermore, for any given source neuron, at most a single synapse is typically created on any compute node. From the viewpoint of an individual compute node, the heterogeneity in the synaptic target lists thus collapses along two dimensions: the dimension of the types of synapses and the dimension of the number of synapses of a given type. Here we present a data structure taking advantage of this double collapse using metaprogramming techniques. After introducing the relevant scaling scenario for brain-scale simulations, we quantitatively discuss the performance on two supercomputers. We show that the novel architecture scales to the largest petascale supercomputers available today.

  8. Overview of aerothermodynamic loads definition study

    NASA Technical Reports Server (NTRS)

    Gaugler, Raymond E.

    1989-01-01

    Over the years, NASA has been conducting the Advanced Earth-to-Orbit (AETO) Propulsion Technology Program to provide the knowledge, understanding, and design methodology that will allow the development of advanced Earth-to-orbit propulsion systems with high performance, extended service life, automated operations, and diagnostics for in-flight health monitoring. The objective of the Aerothermodynamic Loads Definition Study is to develop methods to more accurately predict the operating environment in AETO propulsion systems, such as the Space Shuttle Main Engine (SSME) powerhead. The approach taken consists of 2 parts: to modify, apply, and disseminate existing computational fluid dynamics tools in response to current needs and to develop new technology that will enable more accurate computation of the time averaged and unsteady aerothermodynamic loads in the SSME powerhead. The software tools are detailed. Significant progress was made in the area of turbomachinery, where there is an overlap between the AETO efforts and research in the aeronautical gas turbine field.

  9. Export Controls on Astrophysical Simulation Codes

    NASA Astrophysics Data System (ADS)

    Whalen, Daniel

    2015-01-01

    Amidst concerns about nuclear proliferation, the US government has established guidelines on what types of astrophysical simulation codes can be run and disseminated on open systems. I will review the basic export controls that have been enacted by the federal government to slow the pace of software acquisition by potential adversaries who seek to develop weapons of mass destruction. The good news is that it is relatively simple to avoid ITAR issues with the Department of Energy if one remembers a few simple rules. I will discuss in particular what types of algorithm development can get researchers into trouble if they are not aware of the regulations and how to avoid these pitfalls while doing world class science.

  10. Aerothermodynamic Insight From The HIFIRE Program

    NASA Astrophysics Data System (ADS)

    Kimmel, Roger L.; Adamczak, David; Dolvin, Douglas; Borg, Matthew; Stanfield, Scott

    2011-05-01

    The HIFiRE (Hypersonic International Flight Research and Experimentation) program is a joint venture of the United States Air Force Research Laboratory and Australian Defence Science and Technology Organisation to utilize economical flight research opportunities in the exploration of flight science issues for space access systems. Flights 1 and 5 focus on collecting high-resolution experimental data on critical aerothermodynamic phenomena, including laminar-turbulent transition and shock/boundary layer interactions. Flight 1, successfully flown in March 2010, employed a test article composed of a 7-deg right angle cone, followed by a cylinder and flare. The test article remained attached to the second-stage booster throughout the ballistic trajectory. Flight 5, to be launched in a similar fashion, will feature a 2:1 elliptic cross-section cone as the test article. For both flights significant resources have been invested in pre-flight aerothermodynamic analysis and testing. This manuscript will summarize the overall strategy of the HIFiRE program, review the pre-flight aerothermodynamic analysis for Flights 1 and 5, and present a brief look at preliminary results from the post-flight analysis of Flight 1.

  11. DSMC aero-thermo-dynamic analysis of a sample-return capsule

    NASA Astrophysics Data System (ADS)

    Zuppardi, Gennaro; Savino, Raffaele; Boffa, Chiara; Carandente, Valerio

    2012-11-01

    A rarefied aero-thermo-dynamic analysis of a sample Earth Return Capsule during the high energy, high altitude re-entry path from an exploration mission is presented. The altitude interval 70-120 km is considered, where the capsule experiences different flow fields. In fact, the flow regime ranges from continuum low density to near free molecular flow and, even though the free stream velocity is almost constant (13 km/s) in the whole altitude interval, the Mach number changes from 44 to 32 and the Reynolds number, based on the capsule diameter, ranges from 4.92×104 to 9. The computations have been carried out using two direct simulation Monte Carlo codes: DS2V to compute local quantities such as heat flux, thermal and aerodynamic loads at zero angle of attack and DS3V to compute global aerodynamic coefficients in the range of the angle of attack 0-60 deg; The results verified that in this altitude interval the heat flux and the thermal load reasonably satisfy specific requirements for the thermal protection system and that the capsule is longitudinally stable up to an angle of attack of about 40 deg..

  12. Aerothermodynamic Facilities And Measurement: Flow Characterization in Shock Tunnels

    NASA Technical Reports Server (NTRS)

    Cavolowsky, John A.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    This presentation will examine the key performance aspects of shock tunnels as they relate to their use as aerothermodynamic flow simulation facilities. Assessment of shock tube reservoir conditions and flow contaminants generated in the shock tube will be presented along with their limiting impact on viable test envelopes, Facility nozzle performance as it pertains to test time assessment and nozzle exit flow quality (survey of pressure, temperature, and species) will be addressed. Also included will be a discussion of free stream flow diagnostics, both intrusive and nonintrusive, for measurement of critical flow properties not directly inferred from surface mounted transducers. The use of computational fluid dynamics for purposes of validating experimental measurements as well as predicting performance in regimes where measurements are not feasible or possible will be discussed. The use of CFD for facility research and design will also be presented.

  13. Thermal response of integral multicomponent composites to a high-energy aerothermodynamic heating environment with surface temperature to 1800 K

    NASA Technical Reports Server (NTRS)

    Stewart, David A.; Leiser, Daniel B.

    1987-01-01

    Laminated composite insulations developed for potential use on advanced spacecraft operating between GEO and LEO were tested in an aerothermodynamic environment simulating an AOTV aerobraking maneuver (altitude 82.3 km and velocity = 9.0 km/s). Comparisons are discussed between these data and predictions of in-depth temperature response using dynamical thermal conductivity values to 2000 K.

  14. Thermal response of integral multicomponent composites to a high-energy aerothermodynamic heating environment with surface temperature to 1800 K

    SciTech Connect

    Stewart, D.A.; Leiser, D.B.

    1987-08-01

    Laminated composite insulations developed for potential use on advanced spacecraft operating between GEO and LEO were tested in an aerothermodynamic environment simulating an AOTV aerobraking maneuver (altitude 82.3 km and velocity = 9.0 km/s). Comparisons are discussed between these data and predictions of in-depth temperature response using dynamical thermal conductivity values to 2000 K. 8 references.

  15. Communication Systems Simulator with Error Correcting Codes Using MATLAB

    ERIC Educational Resources Information Center

    Gomez, C.; Gonzalez, J. E.; Pardo, J. M.

    2003-01-01

    In this work, the characteristics of a simulator for channel coding techniques used in communication systems, are described. This software has been designed for engineering students in order to facilitate the understanding of how the error correcting codes work. To help students understand easily the concepts related to these kinds of codes, a…

  16. A code calibration program in support of the Aeroassist Flight Experiment

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    1989-01-01

    The code calibration program for the Langley Aerothermodynamic Upwind Relaxation Algorithm to be used as support for the Aeroassist Flight Experiment (AFE) is discussed. Comparisons between experimental data and numerical simulations are made which focus on perfect-gas tests involving a scale model of the AFE. Aspects of the thermochemical nonequilibrium model are called into question by the results of ground tests performed in a ballistic range and in a shock tunnel.

  17. Experimental and Computational Aerothermodynamics of a Mars Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    1996-01-01

    An aerothermodynamic database has been generated through both experimental testing and computational fluid dynamics simulations for a 70 deg sphere-cone configuration based on the NASA Mars Pathfinder entry vehicle. The aerothermodynamics of several related parametric configurations were also investigated. Experimental heat-transfer data were obtained at hypersonic test conditions in both a perfect gas air wind tunnel and in a hypervelocity, high-enthalpy expansion tube in which both air and carbon dioxide were employed as test gases. In these facilities, measurements were made with thin-film temperature-resistance gages on both the entry vehicle models and on the support stings of the models. Computational results for freestream conditions equivalent to those of the test facilities were generated using an axisymmetric/2D laminar Navier-Stokes solver with both perfect-gas and nonequilibrium thermochemical models. Forebody computational and experimental heating distributions agreed to within the experimental uncertainty for both the perfect-gas and high-enthalpy test conditions. In the wake, quantitative differences between experimental and computational heating distributions for the perfect-gas conditions indicated transition of the free shear layer near the reattachment point on the sting. For the high enthalpy cases, agreement to within, or slightly greater than, the experimental uncertainty was achieved in the wake except within the recirculation region, where further grid resolution appeared to be required. Comparisons between the perfect-gas and high-enthalpy results indicated that the wake remained laminar at the high-enthalpy test conditions, for which the Reynolds number was significantly lower than that of the perfect-gas conditions.

  18. Software quality and process improvement in scientific simulation codes

    SciTech Connect

    Ambrosiano, J.; Webster, R.

    1997-11-01

    This report contains viewgraphs on the quest to develope better simulation code quality through process modeling and improvement. This study is based on the experience of the authors and interviews with ten subjects chosen from simulation code development teams at LANL. This study is descriptive rather than scientific.

  19. Computational Aerothermodynamics in Aeroassist Applications

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2001-01-01

    Aeroassisted planetary entry uses atmospheric drag to decelerate spacecraft from super-orbital to orbital or suborbital velocities. Numerical simulation of flow fields surrounding these spacecraft during hypersonic atmospheric entry is required to define aerothermal loads. The severe compression in the shock layer in front of the vehicle and subsequent, rapid expansion into the wake are characterized by high temperature, thermo-chemical nonequilibrium processes. Implicit algorithms required for efficient, stable computation of the governing equations involving disparate time scales of convection, diffusion, chemical reactions, and thermal relaxation are discussed. Robust point-implicit strategies are utilized in the initialization phase; less robust but more efficient line-implicit strategies are applied in the endgame. Applications to ballutes (balloon-like decelerators) in the atmospheres of Venus, Mars, Titan, Saturn, and Neptune and a Mars Sample Return Orbiter (MSRO) are featured. Examples are discussed where time-accurate simulation is required to achieve a steady-state solution.

  20. The Particle Accelerator Simulation Code PyORBIT

    SciTech Connect

    Gorlov, Timofey V; Holmes, Jeffrey A; Cousineau, Sarah M; Shishlo, Andrei P

    2015-01-01

    The particle accelerator simulation code PyORBIT is presented. The structure, implementation, history, parallel and simulation capabilities, and future development of the code are discussed. The PyORBIT code is a new implementation and extension of algorithms of the original ORBIT code that was developed for the Spallation Neutron Source accelerator at the Oak Ridge National Laboratory. The PyORBIT code has a two level structure. The upper level uses the Python programming language to control the flow of intensive calculations performed by the lower level code implemented in the C++ language. The parallel capabilities are based on MPI communications. The PyORBIT is an open source code accessible to the public through the Google Open Source Projects Hosting service.

  1. Aerothermodynamic challenges of the Saenger space-transportation system

    NASA Astrophysics Data System (ADS)

    Hirschel, E. H.

    1991-09-01

    The two-stage-to-orbit Saenger space transportation system is the reference concept of the German hypersonics technology program. The technology development concentrates first on the needs of the lower stage. Its requirements on aerothermodynamics and propulsion integration are sketched. The aerothermodynamic design challenge is discussed and the design tools and the design methodology are reviewed. The calibration of both the computational and the experimental methods, as well as the test of vehicle components like the inlet, control surfaces etc., make the Hypersonic Technology Experimental vehicle (HYTEX) mandatory. Contents and workplan of the technology program 'aerothermodynamics and propulsion integration' are laid out. Selected results from the current work are presented.

  2. Beam-Beam Simulations with the Gaussian Code TRS

    SciTech Connect

    Matter, Regina S.

    2000-06-26

    The authors have summarized the main features of the beam-beam simulation code TRS and presented two sample applications to the PEP-II collider. The code has been successfully tested against analytic results and against other simulation codes whenever such comparisons are meaningful. The soft-gaussian approximation is believed to represent reliably incoherent beam-beam effects. The code has been used to perform studies for the PEP-II collider. For example, simulated tune scans reveal undesirable operating points due to beam blowup from synchrotron sidebands. The dynamical beta effect, clearly seen in these simulations, also influences the choice of a working point. The code has been used to establish the adequate beam separation at the parasitic collision points [24], and has been applied to the proposed muon collider [25], including the effects from the instability of the muon.

  3. Code generation: a strategy for neural network simulators.

    PubMed

    Goodman, Dan F M

    2010-10-01

    We demonstrate a technique for the design of neural network simulation software, runtime code generation. This technique can be used to give the user complete flexibility in specifying the mathematical model for their simulation in a high level way, along with the speed of code written in a low level language such as C+ +. It can also be used to write code only once but target different hardware platforms, including inexpensive high performance graphics processing units (GPUs). Code generation can be naturally combined with computer algebra systems to provide further simplification and optimisation of the generated code. The technique is quite general and could be applied to any simulation package. We demonstrate it with the 'Brian' simulator ( http://www.briansimulator.org ).

  4. Aerosol kinetic code "AERFORM": Model, validation and simulation results

    NASA Astrophysics Data System (ADS)

    Gainullin, K. G.; Golubev, A. I.; Petrov, A. M.; Piskunov, V. N.

    2016-06-01

    The aerosol kinetic code "AERFORM" is modified to simulate droplet and ice particle formation in mixed clouds. The splitting method is used to calculate condensation and coagulation simultaneously. The method is calibrated with analytic solutions of kinetic equations. Condensation kinetic model is based on cloud particle growth equation, mass and heat balance equations. The coagulation kinetic model includes Brownian, turbulent and precipitation effects. The real values are used for condensation and coagulation growth of water droplets and ice particles. The model and the simulation results for two full-scale cloud experiments are presented. The simulation model and code may be used autonomously or as an element of another code.

  5. Intermediate Experimental Vehicle, ESA Program Aerothermodynamics- Transition And Steps And Gaps Assessment

    NASA Astrophysics Data System (ADS)

    Verand, Jean-Luc; Pelissier, Christian; Sourgen, Frederic; Fontaine, Joelle; Garcon, Francois; Spel, Martin; van Hauwaert, Pierre; Charbonnier, Dominique; Vos, Jan; Vallee, Jean-Jacques; Pibarot, Julien; Tribot, Jean-Pierre; Mareschi, Vincenzo; Ferrarella, Daniella; Rufolo, Giuseppe

    2011-05-01

    The Intermediate eXperimental Vehicle (IXV) project objectives are the design, development, manufacture and ground and flight verification of an autonomous European lifting and aerodynamically controlled re-entry system, which is highly flexible and manoeuvrable. The IXV vehicle is a flying test bed for securing the next step of operational space vehicle development by supporting technology demonstration and system concept through the following objectives: a) Aerothermodynamics b) Advanced In Flight Experiments c) Thermal Protection System d) Guidance Navigation and Control e) System design The assessment of the general aerothermodynamic environment of IXV vehicle is mainly performed considering a smooth simplified geometry. However, the thermal protection system of IXV includes a mono-block ceramic matrix composite nose and an assembly of shingles between which steps and gaps are generated. From an aerothermodynamic point of view, such a distributed roughness layout cannot be ignored in terms of modification of the interaction between the flow and the body. To assess this effect, dedicated Mach number 5.5 wind tunnel tests (ONERA, S3MA facility) and numerical simulations (RTECH and CFS Engineering) have been performed during the phase C2 of the project. The paper presents the general logic of the work, with emphasis on the wind tunnel model design, tests involving infrared thermal measurements as well as the CFD rebuilding of the flow in the wind tunnel and the extrapolation from ground-to-flight.

  6. ParaDiS-FEM dislocation dynamics simulation code primer

    SciTech Connect

    Tang, M; Hommes, G; Aubry, S; Arsenlis, A

    2011-09-27

    The ParaDiS code is developed to study bulk systems with periodic boundary conditions. When we try to perform discrete dislocation dynamics simulations for finite systems such as thin films or cylinders, the ParaDiS code must be extended. First, dislocations need to be contained inside the finite simulation box; Second, dislocations inside the finite box experience image stresses due to the free surfaces. We have developed in-house FEM subroutines to couple with the ParaDiS code to deal with free surface related issues in the dislocation dynamics simulations. This primer explains how the coupled code was developed, the main changes from the ParaDiS code, and the functions of the new FEM subroutines.

  7. Type I X-ray burst simulation code

    SciTech Connect

    Fisker, J. L.; Hix, W. R.; Liebendoerfer, M.

    2007-07-01

    dAGILE is an astrophysical code that simulates accretion of matter onto a neutron star and the subsequent x-ray burst. It is a one-dimensional time-dependent spherically symmetric code with generalized nuclear reaction networks, diffusive radiation/conduction, realistic boundary conditions, and general relativistic hydrodynamics. The code is described in more detail in Astrophysical Journal 650(2006)332 and Astrophysical Journal Supplements 174(2008)261.

  8. Para: a computer simulation code for plasma driven electromagnetic launchers

    SciTech Connect

    Thio, Y.-C.

    1983-03-01

    A computer code for simulation of rail-type accelerators utilizing a plasma armature has been developed and is described in detail. Some time varying properties of the plasma are taken into account in this code thus allowing the development of a dynamical model of the behavior of a plasma in a rail-type electromagnetic launcher. The code is being successfully used to predict and analyse experiments on small calibre rail-gun launchers.

  9. Massively parallel computational fluid dynamics calculations for aerodynamics and aerothermodynamics applications

    SciTech Connect

    Payne, J.L.; Hassan, B.

    1998-09-01

    Massively parallel computers have enabled the analyst to solve complicated flow fields (turbulent, chemically reacting) that were previously intractable. Calculations are presented using a massively parallel CFD code called SACCARA (Sandia Advanced Code for Compressible Aerothermodynamics Research and Analysis) currently under development at Sandia National Laboratories as part of the Department of Energy (DOE) Accelerated Strategic Computing Initiative (ASCI). Computations were made on a generic reentry vehicle in a hypersonic flowfield utilizing three different distributed parallel computers to assess the parallel efficiency of the code with increasing numbers of processors. The parallel efficiencies for the SACCARA code will be presented for cases using 1, 150, 100 and 500 processors. Computations were also made on a subsonic/transonic vehicle using both 236 and 521 processors on a grid containing approximately 14.7 million grid points. Ongoing and future plans to implement a parallel overset grid capability and couple SACCARA with other mechanics codes in a massively parallel environment are discussed.

  10. Aerothermodynamic data base. Data file contents report, phase C

    NASA Technical Reports Server (NTRS)

    Lutz, G. R.

    1983-01-01

    Space shuttle aerothermodynamic data, collected from a continuing series of wind tunnel tests, are permanently stored with the Data Management Services (DMS) system. Information pertaining to current baseline configuration definition is also stored. Documentation of DMS processed data arranged sequentially and by space shuttle configuration is listed to provide an up-to-date record of all applicable aerothermodynamic data collected, processed, or summarized during the space shuttle program. Tables provide survey information to the various space shuttle managerial and technical levels.

  11. Shuttle Tethered Aerothermodynamics Research Facilty (STARFAC) instrumentation requirements

    NASA Technical Reports Server (NTRS)

    Wood, G. M.; Siemers, P. M.; Carlomagno, G. M.; Hoffman, J.

    1986-01-01

    The instrumentation requirements for the Shuttle Tethered Aerothermodynamic Research Facility (STARFAC) are presented. The typical physical properties of the terrestrial atmosphere are given along with representative atmospheric daytime ion concentrations and the equilibrium and nonequilibrium gas property comparison from a point away from a wall. STARFAC science and engineering measurements are given as are the TSS free stream gas analysis. The potential nonintrusive measurement techniques for hypersonic boundary layer research are outlined along with the quantitative physical measurement methods for aerothermodynamic studies.

  12. Experimental Aerothermodynamics In Support Of The Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.

    2004-01-01

    The technical foundation for the most probable damage scenario reported in the Columbia Accident Investigation Board's final report was largely derived from synergistic aerodynamic/aerothermodynamic wind tunnel measurements and inviscid predictions made at NASA Langley Research Center and later corroborated with engineering analysis, high fidelity numerical viscous simulations, and foam impact testing near the close of the investigation. This report provides an overview of the hypersonic aerothermodynamic wind tunnel program conducted at NASA Langley and illustrates how the ground-based heating measurements provided early insight that guided the direction and utilization of agency resources in support of the investigation. Global surface heat transfer mappings, surface streamline patterns, and shock shapes were measured on 0.0075 scale models of the Orbiter configuration with and without postulated damage to the thermal protection system. Test parametrics include angle of attack from 38 to 42 degs, sideslip angles of 38 to 42 degs, sideslip angles of plus or minus 1 deg, Reynolds numbers based upon model length from 0.05 x 10(exp 6) to 6.5 x 10(exp 6), and normal shock density ratios of 5 (Mach 6 Air) and 12 (Mach 6 CF4). The primary objective of the testing was to provide surface heating characteristics on scaled Orbiter models with outer mold line perturbations to simulate various forms of localized surface damage to the thermal protection system. Initial experimental testing conducted within two weeks of the accident simulated a broad spectrum of thermal protection system damage to the Orbiter windward surface and was used to refute several hypothesized forms of thermal protection system damage, which included gouges in the windward thermal protection system tiles, breaches through the wing new the main landing gear door, and protuberances along the wing leading edge that produced asymmetric boundary layer transition. As the forensic phase of the investigation

  13. Hybrid simulation codes with application to shocks and upstream waves

    NASA Technical Reports Server (NTRS)

    Winske, D.

    1985-01-01

    Hybrid codes in which part of the plasma is represented as particles and the rest as a fluid are discussed. In the past few years such codes with particle ions and massless, fluid electrons have been applied to space plasmas, especially to collisionless shocks. All of these simulation codes are one-dimensional and similar in structure, except for how the field equations are solved. The various approaches that are used (resistive Ohm's law, predictor-corrector, Hamiltonian) are described in detail and results from the various codes are compared with examples taken from collisionless shocks and low frequency wave phenomena upstream of shocks.

  14. A Review of Hypersonics Aerodynamics, Aerothermodynamics and Plasmadynamics Activities within NASA's Fundamental Aeronautics Program

    NASA Technical Reports Server (NTRS)

    Salas, Manuel D.

    2007-01-01

    The research program of the aerodynamics, aerothermodynamics and plasmadynamics discipline of NASA's Hypersonic Project is reviewed. Details are provided for each of its three components: 1) development of physics-based models of non-equilibrium chemistry, surface catalytic effects, turbulence, transition and radiation; 2) development of advanced simulation tools to enable increased spatial and time accuracy, increased geometrical complexity, grid adaptation, increased physical-processes complexity, uncertainty quantification and error control; and 3) establishment of experimental databases from ground and flight experiments to develop better understanding of high-speed flows and to provide data to validate and guide the development of simulation tools.

  15. Muon simulation codes MUSIC and MUSUN for underground physics

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, V. A.

    2009-03-01

    The paper describes two Monte Carlo codes dedicated to muon simulations: MUSIC (MUon SImulation Code) and MUSUN (MUon Simulations UNderground). MUSIC is a package for muon transport through matter. It is particularly useful for propagating muons through large thickness of rock or water, for instance from the surface down to underground/underwater laboratory. MUSUN is designed to use the results of muon transport through rock/water to generate muons in or around underground laboratory taking into account their energy spectrum and angular distribution.

  16. LOOPREF: A Fluid Code for the Simulation of Coronal Loops

    NASA Technical Reports Server (NTRS)

    deFainchtein, Rosalinda; Antiochos, Spiro; Spicer, Daniel

    1998-01-01

    This report documents the code LOOPREF. LOOPREF is a semi-one dimensional finite element code that is especially well suited to simulate coronal-loop phenomena. It has a full implementation of adaptive mesh refinement (AMR), which is crucial for this type of simulation. The AMR routines are an improved version of AMR1D. LOOPREF's versatility makes is suitable to simulate a wide variety of problems. In addition to efficiently providing very high resolution in rapidly changing regions of the domain, it is equipped to treat loops of variable cross section, any non-linear form of heat conduction, shocks, gravitational effects, and radiative loss.

  17. Fact Checking LIGO's Radiometer Code with Simulated LIGO Data.

    NASA Astrophysics Data System (ADS)

    Thrush, Samantha Elaine

    2015-01-01

    Gravitational waves are predicted by various models, ranging from cosmological sources to astrophysical objects. One example of an astrophysical source is a neutron star in a binary system. The strongest example of this is from Scorpios X-1. A key set of instruments that are used to search for gravitational waves are the LIGO detectors. As the signal strength is expected to be small relative to the background noise from a single LIGO detector, data from two detectors are cross-correlated to increase sensitivity to any potential gravitational waves. In order to test the effectiveness of the cross-correlation 'radiometer' code in detecting point sources similar to Scorpius X-1, the code was modified to have the capability to add multiple simulated pulsar signals. To validate the changes to the radiometer code, two trials were run. The first trial compared results from simulated data read in through previously existing means with simulated data read in through the modified code. The second trial read in realistic LIGO data through the traditional means and explored the effects of adding simulated data via the modified code. Once the modified code has completed its vetting, it will be used to ascertain how well injected signals can be recovered when they fall on the border between frequency bins. After running multiple trials with different frequency shifts, the amount of attenuation found for each bin shift agrees with theory, and it was found that the bin shifting does have the ability to completely attenuate signals at higher frequencies.

  18. HADES, A Code for Simulating a Variety of Radiographic Techniques

    SciTech Connect

    Aufderheide, M B; Henderson, G; von Wittenau, A; Slone, D M; Barty, A; Martz, Jr., H E

    2004-10-28

    It is often useful to simulate radiographic images in order to optimize imaging trade-offs and to test tomographic techniques. HADES is a code that simulates radiography using ray tracing techniques. Although originally developed to simulate X-Ray transmission radiography, HADES has grown to simulate neutron radiography over a wide range of energy, proton radiography in the 1 MeV to 100 GeV range, and recently phase contrast radiography using X-Rays in the keV energy range. HADES can simulate parallel-ray or cone-beam radiography through a variety of mesh types, as well as through collections of geometric objects. HADES was originally developed for nondestructive evaluation (NDE) applications, but could be a useful tool for simulation of portal imaging, proton therapy imaging, and synchrotron studies of tissue. In this paper we describe HADES' current capabilities and discuss plans for a major revision of the code.

  19. Simulating Marvel with the Stun Code

    SciTech Connect

    Glenn, L A

    2001-05-23

    MARVEL, a nuclear-driven shock-tube experiment, consisted of a 2.2 kiloton nuclear explosive detonated 176 meters underground at one end of a 122-meter long, 1-meter diameter horizontal tunnel. Vaporization of material in the immediate vicinity of the explosive provided the source of high-energy driver gas. The driven gas was the ambient atmospheric air in the tunnel. The event was staged as an experimental and calculational study of the time dependent .ow of energy in the tunnel and surrounding alluvium. In this report we describe the derivation and implementation of a ''1-3/4D'' hydrocode to simulate the experiment. Calculations were performed to study the influence of energy transport to, and mass ablation from, the walls of the tunnel on the shock velocity.

  20. ALPAL: A tool to generate simulation codes from natural descriptions

    SciTech Connect

    Cook, G.O. Jr.; Painter, J.F.

    1991-01-01

    ALPAL is a tool that automatically generates code to solve nonlinear integro-differential equations, given a very high-level specification of the equations to be solved and the numerical methods to be used. ALPAL is designed to handle the sort of complicated mathematical models used in very large scientific simulation codes. Other features of ALPAL include an interactive graphical front end, the ability to symbolically compute exact Jacobians for implicit methods, and a high degree of code optimization. 14 refs., 9 figs.

  1. Nexus: a modular workflow management system for quantum simulation codes

    DOE PAGES

    Krogel, Jaron T.

    2015-08-24

    The management of simulation workflows is a significant task for the individual computational researcher. Automation of the required tasks involved in simulation work can decrease the overall time to solution and reduce sources of human error. A new simulation workflow management system, Nexus, is presented to address these issues. Nexus is capable of automated job management on workstations and resources at several major supercomputing centers. Its modular design allows many quantum simulation codes to be supported within the same framework. Current support includes quantum Monte Carlo calculations with QMCPACK, density functional theory calculations with Quantum Espresso or VASP, and quantummore » chemical calculations with GAMESS. Users can compose workflows through a transparent, text-based interface, resembling the input file of a typical simulation code. A usage example is provided to illustrate the process.« less

  2. Nexus: a modular workflow management system for quantum simulation codes

    SciTech Connect

    Krogel, Jaron T.

    2015-08-24

    The management of simulation workflows is a significant task for the individual computational researcher. Automation of the required tasks involved in simulation work can decrease the overall time to solution and reduce sources of human error. A new simulation workflow management system, Nexus, is presented to address these issues. Nexus is capable of automated job management on workstations and resources at several major supercomputing centers. Its modular design allows many quantum simulation codes to be supported within the same framework. Current support includes quantum Monte Carlo calculations with QMCPACK, density functional theory calculations with Quantum Espresso or VASP, and quantum chemical calculations with GAMESS. Users can compose workflows through a transparent, text-based interface, resembling the input file of a typical simulation code. A usage example is provided to illustrate the process.

  3. Nexus: A modular workflow management system for quantum simulation codes

    NASA Astrophysics Data System (ADS)

    Krogel, Jaron T.

    2016-01-01

    The management of simulation workflows represents a significant task for the individual computational researcher. Automation of the required tasks involved in simulation work can decrease the overall time to solution and reduce sources of human error. A new simulation workflow management system, Nexus, is presented to address these issues. Nexus is capable of automated job management on workstations and resources at several major supercomputing centers. Its modular design allows many quantum simulation codes to be supported within the same framework. Current support includes quantum Monte Carlo calculations with QMCPACK, density functional theory calculations with Quantum Espresso or VASP, and quantum chemical calculations with GAMESS. Users can compose workflows through a transparent, text-based interface, resembling the input file of a typical simulation code. A usage example is provided to illustrate the process.

  4. Effect of surface catalycity on high-altitude aerothermodynamics of reentry vehicles

    NASA Astrophysics Data System (ADS)

    Molchanova, A. N.; Kashkovsky, A. V.; Bondar, Ye. A.

    2016-10-01

    This work is aimed at the development of surface chemistry models for the Direct Simulation Monte Carlo (DSMC) method applicable to non-equilibrium high-temperature flows about reentry vehicles. Probabilities of the surface processes dependent on individual properties of each particular molecule are determined from the macroscopic reaction rate data. Two different macroscopic finite rate sets are used for construction of DSMC surface recombination models. The models are implemented in the SMILE++ software system for DSMC computations. A comparison with available experimental data is performed. Effects of surface recombination on the aerothermodynamics of a blunt body at high-altitude reentry conditions are numerically studied with the DSMC method.

  5. An Overview of the Space Shuttle Aerothermodynamic Design

    NASA Technical Reports Server (NTRS)

    Martin, Fred

    2011-01-01

    The Space Shuttle Thermal Protection System was one of the three areas that required the development of new technology. The talk discusses the pre-flight development of the aerothermodynamic environment which was based on Mach 8 wind tunnel data. A high level overview of the pre-flight heating rate predictions and comparison to the Orbiter Flight Test (OFT) data is presented, along with a discussion of the dramatic improvement in the state-of-the-art in aerothermodynamic capability that has been used to support the Shuttle Program. A high level review of the Orbiter aerothermodynamic design is discussed, along with improvements in Computational Fluid Dynamics and wind tunnel testing that was required for flight support during the last 30 years. The units have been removed from the plots, and the discussion is kept at a high level.

  6. Simulation of neoclassical transport with the continuum gyrokinetic code COGENT

    DOE PAGES

    Dorf, M. A.; Cohen, R. H.; Dorr, M.; Rognlien, T.; Hittinger, J.; Compton, J.; Colella, P.; Martin, D.; McCorquodale, P.

    2013-01-25

    The development of the continuum gyrokinetic code COGENT for edge plasma simulations is reported. The present version of the code models a nonlinear axisymmetric 4D (R, v∥, μ) gyrokinetic equation coupled to the long-wavelength limit of the gyro-Poisson equation. Here, R is the particle gyrocenter coordinate in the poloidal plane, and v∥ and μ are the guiding center velocity parallel to the magnetic field and the magnetic moment, respectively. The COGENT code utilizes a fourth-order finite-volume (conservative) discretization combined with arbitrary mapped multiblock grid technology (nearly field-aligned on blocks) to handle the complexity of tokamak divertor geometry with high accuracy.more » Furthermore, topics presented are the implementation of increasingly detailed model collision operators, and the results of neoclassical transport simulations including the effects of a strong radial electric field characteristic of a tokamak pedestal under H-mode conditions.« less

  7. Simulation of neoclassical transport with the continuum gyrokinetic code COGENT

    SciTech Connect

    Dorf, M. A.; Cohen, R. H.; Dorr, M.; Rognlien, T.; Hittinger, J.; Compton, J.; Colella, P.; Martin, D.; McCorquodale, P.

    2013-01-25

    The development of the continuum gyrokinetic code COGENT for edge plasma simulations is reported. The present version of the code models a nonlinear axisymmetric 4D (R, v∥, μ) gyrokinetic equation coupled to the long-wavelength limit of the gyro-Poisson equation. Here, R is the particle gyrocenter coordinate in the poloidal plane, and v∥ and μ are the guiding center velocity parallel to the magnetic field and the magnetic moment, respectively. The COGENT code utilizes a fourth-order finite-volume (conservative) discretization combined with arbitrary mapped multiblock grid technology (nearly field-aligned on blocks) to handle the complexity of tokamak divertor geometry with high accuracy. Furthermore, topics presented are the implementation of increasingly detailed model collision operators, and the results of neoclassical transport simulations including the effects of a strong radial electric field characteristic of a tokamak pedestal under H-mode conditions.

  8. NASA's hypersonic fluid and thermal physics program (Aerothermodynamics)

    NASA Technical Reports Server (NTRS)

    Graves, R. A.; Hunt, J. L.

    1985-01-01

    This survey paper gives an overview of NASA's hypersonic fluid and thermal physics program (recently renamed aerothermodynamics). The purpose is to present the elements of, example results from, and rationale and projection for this program. The program is based on improving the fundamental understanding of aerodynamic and aerothermodynamic flow phenomena over hypersonic vehicles in the continuum, transitional, and rarefied flow regimes. Vehicle design capabilities, computational fluid dynamics, computational chemistry, turbulence modeling, aerothermal loads, orbiter flight data analysis, orbiter experiments, laser photodiagnostics, and facilities are discussed.

  9. Large eddy simulation and its implementation in the COMMIX code.

    SciTech Connect

    Sun, J.; Yu, D.-H.

    1999-02-15

    Large eddy simulation (LES) is a numerical simulation method for turbulent flows and is derived by spatial averaging of the Navier-Stokes equations. In contrast with the Reynolds-averaged Navier-Stokes equations (RANS) method, LES is capable of calculating transient turbulent flows with greater accuracy. Application of LES to differing flows has given very encouraging results, as reported in the literature. In recent years, a dynamic LES model that presented even better results was proposed and applied to several flows. This report reviews the LES method and its implementation in the COMMIX code, which was developed at Argonne National Laboratory. As an example of the application of LES, the flow around a square prism is simulated, and some numerical results are presented. These results include a three-dimensional simulation that uses a code developed by one of the authors at the University of Notre Dame, and a two-dimensional simulation that uses the COMMIX code. The numerical results are compared with experimental data from the literature and are found to be in very good agreement.

  10. Enhanced Verification Test Suite for Physics Simulation Codes

    SciTech Connect

    Kamm, J R; Brock, J S; Brandon, S T; Cotrell, D L; Johnson, B; Knupp, P; Rider, W; Trucano, T; Weirs, V G

    2008-10-10

    This document discusses problems with which to augment, in quantity and in quality, the existing tri-laboratory suite of verification problems used by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL). The purpose of verification analysis is demonstrate whether the numerical results of the discretization algorithms in physics and engineering simulation codes provide correct solutions of the corresponding continuum equations. The key points of this document are: (1) Verification deals with mathematical correctness of the numerical algorithms in a code, while validation deals with physical correctness of a simulation in a regime of interest. This document is about verification. (2) The current seven-problem Tri-Laboratory Verification Test Suite, which has been used for approximately five years at the DOE WP laboratories, is limited. (3) Both the methodology for and technology used in verification analysis have evolved and been improved since the original test suite was proposed. (4) The proposed test problems are in three basic areas: (a) Hydrodynamics; (b) Transport processes; and (c) Dynamic strength-of-materials. (5) For several of the proposed problems we provide a 'strong sense verification benchmark', consisting of (i) a clear mathematical statement of the problem with sufficient information to run a computer simulation, (ii) an explanation of how the code result and benchmark solution are to be evaluated, and (iii) a description of the acceptance criterion for simulation code results. (6) It is proposed that the set of verification test problems with which any particular code be evaluated include some of the problems described in this document. Analysis of the proposed verification test problems constitutes part of a necessary--but not sufficient--step that builds confidence in physics and engineering simulation codes. More complicated test cases, including physics models of greater

  11. UNIPIC code for simulations of high power microwave devices

    SciTech Connect

    Wang Jianguo; Zhang Dianhui; Wang Yue; Qiao Hailiang; Li Xiaoze; Liu Chunliang; Li Yongdong; Wang Hongguang

    2009-03-15

    In this paper, UNIPIC code, a new member in the family of fully electromagnetic particle-in-cell (PIC) codes for simulations of high power microwave (HPM) generation, is introduced. In the UNIPIC code, the electromagnetic fields are updated using the second-order, finite-difference time-domain (FDTD) method, and the particles are moved using the relativistic Newton-Lorentz force equation. The convolutional perfectly matched layer method is used to truncate the open boundaries of HPM devices. To model curved surfaces and avoid the time step reduction in the conformal-path FDTD method, CP weakly conditional-stable FDTD (WCS FDTD) method which combines the WCS FDTD and CP-FDTD methods, is implemented. UNIPIC is two-and-a-half dimensional, is written in the object-oriented C++ language, and can be run on a variety of platforms including WINDOWS, LINUX, and UNIX. Users can use the graphical user's interface to create the geometric structures of the simulated HPM devices, or input the old structures created before. Numerical experiments on some typical HPM devices by using the UNIPIC code are given. The results are compared to those obtained from some well-known PIC codes, which agree well with each other.

  12. FLY: MPI-2 High Resolution code for LSS Cosmological Simulations

    NASA Astrophysics Data System (ADS)

    Becciani, U.; Antonuccio, V.; Comparato, M.

    2010-11-01

    Cosmological simulations of structures and galaxies formations have played a fundamental role in the study of the origin, formation and evolution of the Universe. These studies improved enormously with the use of supercomputers and parallel systems and, recently, grid based systems and Linux clusters. Now we present the new version of the tree N-body parallel code FLY that runs on a PC Linux Cluster using the one side communication paradigm MPI-2 and we show the performances obtained. FLY is included in the Computer Physics Communication Program Library. This new version was developed using the Linux Cluster of CINECA, an IBM Cluster with 1024 Intel Xeon Pentium IV 3.0 Ghz. The results show that it is possible to run a 64 Million particle simulation in less than 15 minutes for each timestep, and the code scalability with the number of processors is achieved. This lead us to propose FLY as a code to run very large N-Body simulations with more than 10(9) particles with the higher resolution of a pure tree code.

  13. FLY: MPI-2 high resolution code for LSS cosmological simulations

    NASA Astrophysics Data System (ADS)

    Becciani, U.; Antonuccio-Delogu, V.; Comparato, M.

    2007-02-01

    Cosmological simulations of structures and galaxies formations have played a fundamental role in the study of the origin, formation and evolution of the Universe. These studies improved enormously with the use of supercomputers and parallel systems and, recently, grid based systems and Linux clusters. Now we present the new version of the tree N-body parallel code FLY that runs on a PC Linux Cluster using the one side communication paradigm MPI-2 and we show the performances obtained. FLY is included in the Computer Physics Communication Program Library. This new version was developed using the Linux Cluster of CINECA, an IBM Cluster with 1024 Intel Xeon Pentium IV 3.0 GHz. The results show that it is possible to run a 64 million particle simulation in less than 15 minutes for each time-step, and the code scalability with the number of processors is achieved. This leads us to propose FLY as a code to run very large N-body simulations with more than 109 particles with the higher resolution of a pure tree code. The FLY new version is available at the CPC Program Library, http://cpc.cs.qub.ac.uk/summaries/ADSC_v2_0.html [U. Becciani, M. Comparato, V. Antonuccio-Delogu, Comput Phys. Comm. 174 (2006) 605].

  14. Development of a CFD code for casting simulation

    NASA Technical Reports Server (NTRS)

    Murph, Jesse E.

    1993-01-01

    Because of high rejection rates for large structural castings (e.g., the Space Shuttle Main Engine Alternate Turbopump Design Program), a reliable casting simulation computer code is very desirable. This code would reduce both the development time and life cycle costs by allowing accurate modeling of the entire casting process. While this code could be used for other types of castings, the most significant reductions of time and cost would probably be realized in complex investment castings, where any reduction in the number of development castings would be of significant benefit. The casting process is conveniently divided into three distinct phases: (1) mold filling, where the melt is poured or forced into the mold cavity; (2) solidification, where the melt undergoes a phase change to the solid state; and (3) cool down, where the solidified part continues to cool to ambient conditions. While these phases may appear to be separate and distinct, temporal overlaps do exist between phases (e.g., local solidification occurring during mold filling), and some phenomenological events are affected by others (e.g., residual stresses depend on solidification and cooling rates). Therefore, a reliable code must accurately model all three phases and the interactions between each. While many codes have been developed (to various stages of complexity) to model the solidification and cool down phases, only a few codes have been developed to model mold filling.

  15. Unsteady Cascade Aerodynamic Response Using a Multiphysics Simulation Code

    NASA Technical Reports Server (NTRS)

    Lawrence, C.; Reddy, T. S. R.; Spyropoulos, E.

    2000-01-01

    The multiphysics code Spectrum(TM) is applied to calculate the unsteady aerodynamic pressures of oscillating cascade of airfoils representing a blade row of a turbomachinery component. Multiphysics simulation is based on a single computational framework for the modeling of multiple interacting physical phenomena, in the present case being between fluids and structures. Interaction constraints are enforced in a fully coupled manner using the augmented-Lagrangian method. The arbitrary Lagrangian-Eulerian method is utilized to account for deformable fluid domains resulting from blade motions. Unsteady pressures are calculated for a cascade designated as the tenth standard, and undergoing plunging and pitching oscillations. The predicted unsteady pressures are compared with those obtained from an unsteady Euler co-de refer-red in the literature. The Spectrum(TM) code predictions showed good correlation for the cases considered.

  16. Simulations of Laboratory Astrophysics Experiments using the CRASH code

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Kuranz, Carolyn; Fein, Jeff; Wan, Willow; Young, Rachel; Keiter, Paul; Drake, R. Paul

    2015-11-01

    Computer simulations can assist in the design and analysis of laboratory astrophysics experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport, electron heat conduction and laser ray tracing. This poster will demonstrate some of the experiments the CRASH code has helped design or analyze including: Kelvin-Helmholtz, Rayleigh-Taylor, magnetized flows, jets, and laser-produced plasmas. This work is funded by the following grants: DEFC52-08NA28616, DE-NA0001840, and DE-NA0002032.

  17. Langley Aerothermodynamic Facilities Complex: Enhancements and Testing Capabilities

    NASA Technical Reports Server (NTRS)

    Micol, J. R.

    1998-01-01

    Description, capabilities, recent upgrades, and utilization of the NASA Langley Research Center (LaRC) Aerothermodynamic Facilities Complex (AFC) are presented. The AFC consists of five hypersonic, blow-down-to-vacuum wind tunnels that collectively provide a range of Mach number from 6 to 20, unit Reynolds number from 0.04 to 22 million per foot and, most importantly for blunt configurations, normal shock density ratio from 4 to 12. These wide ranges of hypersonic simulation parameters are due, in part, to the use of three different test gases (air, helium, and tetrafluoromethane), thereby making several of the facilities unique. The Complex represents nearly three-fourths of the conventional (as opposed to impulse)-type hypersonic wind tunnels operational in this country. AFC facilities are used to assess and optimize the hypersonic aerodynamic performance and aeroheating characteristics of aerospace vehicle concepts and to provide benchmark aerodynamic/aeroheating data fr generating the flight aerodynamic databook and final design of the thermal protection system (TPS) (e.g., establishment of flight limitations not to exceed TPS design limits). Modifications and enhancements of AFC hardware components and instrumentation have been pursued to increase capability, reliability, and productivity in support of programmatic goals. Examples illustrating facility utilization in recent years to generate essentially all of the experimental hypersonic aerodynamic and aeroheating information for high-priority, fast-paced Agency programs are presented. These programs include Phase I of the Reusable Launch Vehicle (RLV) Advanced Technology Demonstrator, X-33 program, PHase II of the X-33 program, X-34 program, the Hyper-X program ( a Mach 5,7, and 10 airbreathing propulsion flight experiment), and the X-38 program (Experimental Crew Return Vehicle, X-CRV). Current upgrades/enchancements and future plans for the AFC are discussed.

  18. RAMSES-CH: a new chemodynamical code for cosmological simulations

    NASA Astrophysics Data System (ADS)

    Few, C. G.; Courty, S.; Gibson, B. K.; Kawata, D.; Calura, F.; Teyssier, R.

    2012-07-01

    We present a new chemodynamical code -RAMSES-CH- for use in simulating the self-consistent evolution of chemical and hydrodynamical properties of galaxies within a fully cosmological framework. We build upon the adaptive mesh refinement code RAMSES, which includes a treatment of self-gravity, hydrodynamics, star formation, radiative cooling and supernova feedback, to trace the dominant isotopes of C, N, O, Ne, Mg, Si and Fe. We include the contribution of Type Ia and Type II supernovae, in addition to low- and intermediate-mass asymptotic giant branch stars, relaxing the instantaneous recycling approximation. The new chemical evolution modules are highly flexible and portable, lending themselves to ready exploration of variations in the underpinning stellar and nuclear physics. We apply RAMSES-CH to the cosmological simulation of a typical L★ galaxy, demonstrating the successful recovery of the basic empirical constraints regarding [α/Fe]-[Fe/H] and Type Ia/II supernova rates.

  19. Parallel Monte Carlo Electron and Photon Transport Simulation Code (PMCEPT code)

    NASA Astrophysics Data System (ADS)

    Kum, Oyeon

    2004-11-01

    Simulations for customized cancer radiation treatment planning for each patient are very useful for both patient and doctor. These simulations can be used to find the most effective treatment with the least possible dose to the patient. This typical system, so called ``Doctor by Information Technology", will be useful to provide high quality medical services everywhere. However, the large amount of computing time required by the well-known general purpose Monte Carlo(MC) codes has prevented their use for routine dose distribution calculations for a customized radiation treatment planning. The optimal solution to provide ``accurate" dose distribution within an ``acceptable" time limit is to develop a parallel simulation algorithm on a beowulf PC cluster because it is the most accurate, efficient, and economic. I developed parallel MC electron and photon transport simulation code based on the standard MPI message passing interface. This algorithm solved the main difficulty of the parallel MC simulation (overlapped random number series in the different processors) using multiple random number seeds. The parallel results agreed well with the serial ones. The parallel efficiency approached 100% as was expected.

  20. Simulation of dynamic material response with the PAGOSA code

    SciTech Connect

    Holian, K.S.; Adams, T.F.

    1993-08-01

    The 3D Eulerian PAGOSA hydrocode is being run on the massively parallel Connection Machine (CM) to simulate the response of materials to dynamic loading, such as by high explosives or high velocity impact. The code has a variety of equation of state forms, plastic yield models, and fracture and fragmentation models. The numerical algorithms in PAGOSA and the implementation of material models are discussed briefly.

  1. Systematic effects in CALOR simulation code to model experimental configurations

    SciTech Connect

    Job, P.K.; Proudfoot, J. ); Handler, T. . Dept. of Physics and Astronomy); Gabriel, T.A. )

    1991-03-27

    CALOR89 code system is being used to simulate test beam results and the design parameters of several calorimeter configurations. It has been bench-marked against the ZEUS, D{theta} and HELIOS data. This study identifies the systematic effects in CALOR simulation to model the experimental configurations. Five major systematic effects are identified. These are the choice of high energy nuclear collision model, material composition, scintillator saturation, shower integration time, and the shower containment. Quantitative estimates of these systematic effects are presented. 23 refs., 6 figs., 7 tabs.

  2. KULL: LLNL's ASCI Inertial Confinement Fusion Simulation Code

    SciTech Connect

    Rathkopf, J. A.; Miller, D. S.; Owen, J. M.; Zike, M. R.; Eltgroth, P. G.; Madsen, N. K.; McCandless, K. P.; Nowak, P. F.; Nemanic, M. K.; Gentile, N. A.; Stuart, L. M.; Keen, N. D.; Palmer, T. S.

    2000-01-10

    KULL is a three dimensional, time dependent radiation hydrodynamics simulation code under development at Lawrence Livermore National Laboratory. A part of the U.S. Department of Energy's Accelerated Strategic Computing Initiative (ASCI), KULL's purpose is to simulate the physical processes in Inertial Confinement Fusion (ICF) targets. The National Ignition Facility, where ICF experiments will be conducted, and ASCI are part of the experimental and computational components of DOE's Stockpile Stewardship Program. This paper provides an overview of ASCI and describes KULL, its hydrodynamic simulation capability and its three methods of simulating radiative transfer. Particular emphasis is given to the parallelization techniques essential to obtain the performance required of the Stockpile Stewardship Program and to exploit the massively parallel processor machines that ASCI is procuring.

  3. Monte Carlo code for high spatial resolution ocean color simulations.

    PubMed

    D'Alimonte, Davide; Zibordi, Giuseppe; Kajiyama, Tamito; Cunha, José C

    2010-09-10

    A Monte Carlo code for ocean color simulations has been developed to model in-water radiometric fields of downward and upward irradiance (E(d) and E(u)), and upwelling radiance (L(u)) in a two-dimensional domain with a high spatial resolution. The efficiency of the code has been optimized by applying state-of-the-art computing solutions, while the accuracy of simulation results has been quantified through benchmark with the widely used Hydrolight code for various values of seawater inherent optical properties and different illumination conditions. Considering a seawater single scattering albedo of 0.9, as well as surface waves of 5 m width and 0.5 m height, the study has shown that the number of photons required to quantify uncertainties induced by wave focusing effects on E(d), E(u), and L(u) data products is of the order of 10(6), 10(9), and 10(10), respectively. On this basis, the effects of sea-surface geometries on radiometric quantities have been investigated for different surface gravity waves. Data products from simulated radiometric profiles have finally been analyzed as a function of the deployment speed and sampling frequency of current free-fall systems in view of providing recommendations to improve measurement protocols.

  4. Monte Carlo code for high spatial resolution ocean color simulations.

    PubMed

    D'Alimonte, Davide; Zibordi, Giuseppe; Kajiyama, Tamito; Cunha, José C

    2010-09-10

    A Monte Carlo code for ocean color simulations has been developed to model in-water radiometric fields of downward and upward irradiance (E(d) and E(u)), and upwelling radiance (L(u)) in a two-dimensional domain with a high spatial resolution. The efficiency of the code has been optimized by applying state-of-the-art computing solutions, while the accuracy of simulation results has been quantified through benchmark with the widely used Hydrolight code for various values of seawater inherent optical properties and different illumination conditions. Considering a seawater single scattering albedo of 0.9, as well as surface waves of 5 m width and 0.5 m height, the study has shown that the number of photons required to quantify uncertainties induced by wave focusing effects on E(d), E(u), and L(u) data products is of the order of 10(6), 10(9), and 10(10), respectively. On this basis, the effects of sea-surface geometries on radiometric quantities have been investigated for different surface gravity waves. Data products from simulated radiometric profiles have finally been analyzed as a function of the deployment speed and sampling frequency of current free-fall systems in view of providing recommendations to improve measurement protocols. PMID:20830183

  5. CHOLLA: A NEW MASSIVELY PARALLEL HYDRODYNAMICS CODE FOR ASTROPHYSICAL SIMULATION

    SciTech Connect

    Schneider, Evan E.; Robertson, Brant E.

    2015-04-15

    We present Computational Hydrodynamics On ParaLLel Architectures (Cholla ), a new three-dimensional hydrodynamics code that harnesses the power of graphics processing units (GPUs) to accelerate astrophysical simulations. Cholla models the Euler equations on a static mesh using state-of-the-art techniques, including the unsplit Corner Transport Upwind algorithm, a variety of exact and approximate Riemann solvers, and multiple spatial reconstruction techniques including the piecewise parabolic method (PPM). Using GPUs, Cholla evolves the fluid properties of thousands of cells simultaneously and can update over 10 million cells per GPU-second while using an exact Riemann solver and PPM reconstruction. Owing to the massively parallel architecture of GPUs and the design of the Cholla code, astrophysical simulations with physically interesting grid resolutions (≳256{sup 3}) can easily be computed on a single device. We use the Message Passing Interface library to extend calculations onto multiple devices and demonstrate nearly ideal scaling beyond 64 GPUs. A suite of test problems highlights the physical accuracy of our modeling and provides a useful comparison to other codes. We then use Cholla to simulate the interaction of a shock wave with a gas cloud in the interstellar medium, showing that the evolution of the cloud is highly dependent on its density structure. We reconcile the computed mixing time of a turbulent cloud with a realistic density distribution destroyed by a strong shock with the existing analytic theory for spherical cloud destruction by describing the system in terms of its median gas density.

  6. Generating performance portable geoscientific simulation code with Firedrake (Invited)

    NASA Astrophysics Data System (ADS)

    Ham, D. A.; Bercea, G.; Cotter, C. J.; Kelly, P. H.; Loriant, N.; Luporini, F.; McRae, A. T.; Mitchell, L.; Rathgeber, F.

    2013-12-01

    This presentation will demonstrate how a change in simulation programming paradigm can be exploited to deliver sophisticated simulation capability which is far easier to programme than are conventional models, is capable of exploiting different emerging parallel hardware, and is tailored to the specific needs of geoscientific simulation. Geoscientific simulation represents a grand challenge computational task: many of the largest computers in the world are tasked with this field, and the requirements of resolution and complexity of scientists in this field are far from being sated. However, single thread performance has stalled, even sometimes decreased, over the last decade, and has been replaced by ever more parallel systems: both as conventional multicore CPUs and in the emerging world of accelerators. At the same time, the needs of scientists to couple ever-more complex dynamics and parametrisations into their models makes the model development task vastly more complex. The conventional approach of writing code in low level languages such as Fortran or C/C++ and then hand-coding parallelism for different platforms by adding library calls and directives forces the intermingling of the numerical code with its implementation. This results in an almost impossible set of skill requirements for developers, who must simultaneously be domain science experts, numericists, software engineers and parallelisation specialists. Even more critically, it requires code to be essentially rewritten for each emerging hardware platform. Since new platforms are emerging constantly, and since code owners do not usually control the procurement of the supercomputers on which they must run, this represents an unsustainable development load. The Firedrake system, conversely, offers the developer the opportunity to write PDE discretisations in the high-level mathematical language UFL from the FEniCS project (http://fenicsproject.org). Non-PDE model components, such as parametrisations

  7. Survey of Aerothermodynamics Facilities Useful for the Design of Hypersonic Vehicles Using Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Deiwert, George S.

    1997-01-01

    This paper surveys the use of aerothermodynamic facilities which have been useful in the study of external flows and propulsion aspects of hypersonic, air-breathing vehicles. While the paper is not a survey of all facilities, it covers the utility of shock tunnels and conventional hypersonic blow-down facilities which have been used for hypersonic air-breather studies. The problems confronting researchers in the field of aerothermodynamics are outlined. Results from the T5 GALCIT tunnel for the shock-on lip problem are outlined. Experiments on combustors and short expansion nozzles using the semi-free jet method have been conducted in large shock tunnels. An example which employed the NASA Ames 16-Inch shock tunnel is outlined, and the philosophy of the test technique is described. Conventional blow-down hypersonic wind tunnels are quite useful in hypersonic air-breathing studies. Results from an expansion ramp experiment, simulating the nozzle on a hypersonic air-breather from the NASA Ames 3.5 Foot Hypersonic wind tunnel are summarized. Similar work on expansion nozzles conducted in the NASA Langley hypersonic wind tunnel complex is cited. Free-jet air-frame propulsion integration and configuration stability experiments conducted at Langley in the hypersonic wind tunnel complex on a small generic model are also summarized.

  8. Magnetohydrodynamic MACH Code Used to Simulate Magnetoplasmadynamic Thrusters

    NASA Technical Reports Server (NTRS)

    Mikellides, Pavlos G.; LaPointe, Michael R.

    2002-01-01

    The On-Board Propulsion program at the NASA Glenn Research Center is utilizing a state of-the-art numerical simulation to model the performance of high-power electromagnetic plasma thrusters. Such thrusters are envisioned for use in lunar and Mars cargo transport, piloted interplanetary expeditions, and deep-space robotic exploration of the solar system. The experimental portion of this program is described in reference 1. This article describes the numerical modeling program used to guide the experimental research. The synergistic use of numerical simulations and experimental research has spurred the rapid advancement of high-power thruster technologies for a variety of bold new NASA missions. From its inception as a U.S. Department of Defense code in the mid-1980's, the Multiblock Arbitrary Coordinate Hydromagnetic (MACH) simulation tool has been used by the plasma physics community to model a diverse range of plasma problems--including plasma opening switches, inertial confinement fusion concepts, compact toroid formation and acceleration, z-pinch implosion physics, laser-target interactions, and a variety of plasma thrusters. The MACH2 code used at Glenn is a time-dependent, two-dimensional, axisymmetric, multimaterial code with a multiblock structure. MACH3, a more recent three-dimensional version of the code, is currently undergoing beta tests. The MACH computational mesh moves in an arbitrary Lagrangian-Eulerian (ALE) fashion that allows the simulation of diffusive-dominated and dispersive-dominated problems, and the mesh can be refined via a variety of adaptive schemes to capture regions of varying characteristic scale. The mass continuity and momentum equations model a compressible viscous fluid, and three energy equations are used to simulate nonthermal equilibrium between electrons, ions, and the radiation field. Magnetic fields are modeled by an induction equation that includes resistive diffusion, the Hall effect, and a thermal source for magnetic

  9. Code System for Reactor Physics and Fuel Cycle Simulation.

    1999-04-21

    Version 00 VSOP94 (Very Superior Old Programs) is a system of codes linked together for the simulation of reactor life histories. It comprises neutron cross section libraries and processing routines, repeated neutron spectrum evaluation, 2-D diffusion calculation based on neutron flux synthesis with depletion and shut-down features, in-core and out-of-pile fuel management, fuel cycle cost analysis, and thermal hydraulics (at present restricted to Pebble Bed HTRs). Various techniques have been employed to accelerate the iterativemore » processes and to optimize the internal data transfer. The code system has been used extensively for comparison studies of reactors, their fuel cycles, and related detailed features. In addition to its use in research and development work for the High Temperature Reactor, the system has been applied successfully to Light Water and Heavy Water Reactors.« less

  10. Upgrades to the NESS (Nuclear Engine System Simulation) Code

    NASA Technical Reports Server (NTRS)

    Fittje, James E.

    2007-01-01

    In support of the President's Vision for Space Exploration, the Nuclear Thermal Rocket (NTR) concept is being evaluated as a potential propulsion technology for human expeditions to the moon and Mars. The need for exceptional propulsion system performance in these missions has been documented in numerous studies, and was the primary focus of a considerable effort undertaken during the 1960's and 1970's. The NASA Glenn Research Center is leveraging this past NTR investment in their vehicle concepts and mission analysis studies with the aid of the Nuclear Engine System Simulation (NESS) code. This paper presents the additional capabilities and upgrades made to this code in order to perform higher fidelity NTR propulsion system analysis and design.

  11. Code System for Reactor Physics and Fuel Cycle Simulation.

    SciTech Connect

    TEUCHERT, E.

    1999-04-21

    Version 00 VSOP94 (Very Superior Old Programs) is a system of codes linked together for the simulation of reactor life histories. It comprises neutron cross section libraries and processing routines, repeated neutron spectrum evaluation, 2-D diffusion calculation based on neutron flux synthesis with depletion and shut-down features, in-core and out-of-pile fuel management, fuel cycle cost analysis, and thermal hydraulics (at present restricted to Pebble Bed HTRs). Various techniques have been employed to accelerate the iterative processes and to optimize the internal data transfer. The code system has been used extensively for comparison studies of reactors, their fuel cycles, and related detailed features. In addition to its use in research and development work for the High Temperature Reactor, the system has been applied successfully to Light Water and Heavy Water Reactors.

  12. Simulating oblique incident irradiation using the BEAMnrc Monte Carlo code.

    PubMed

    Downes, P; Spezi, E

    2009-04-01

    A new source for the simulation of oblique incident irradiation has been developed for the BEAMnrc Monte Carlo code. In this work, we describe a method for the simulation of any component that is rotated at some angle relative to the central axis of the modelled radiation unit. The performance of the new BEAMnrc source was validated against experimental measurements. The comparison with ion chamber data showed very good agreement between experiments and calculation for a number of oblique irradiation angles ranging from 0 degrees to 30 degrees . The routine was also cross-validated, in geometrically equivalent conditions, against a different radiation source available in the DOSXYZnrc code. The test showed excellent consistency between the two routines. The new radiation source can be particularly useful for the Monte Carlo simulation of radiation units in which the radiation beam is tilted with respect to the unit's central axis. To highlight this, a modern cone-beam CT unit is modelled using this new source and validated against measurement.

  13. Heart simulation with surface equations for using on MCNP code

    NASA Astrophysics Data System (ADS)

    Rezaei-Ochbelagh, D.; Salman-Nezhad, S.; Asadi, A.; Rahimi, A.

    2011-12-01

    External photon beam radiotherapy is carried out in a way to achieve an "as low as possible" a dose in healthy tissues surrounding the target. One of these surroundings can be heart as a vital organ of body. As it is impossible to directly determine the absorbed dose by heart, using phantoms is one way to acquire information around it. The other way is Monte Carlo method. In this work we have presented a simulation of heart geometry by introducing of different surfaces in MCNP code. We used 14 surface equations in order to determine human heart modeling. Those surfaces are borders of heart walls and contents.

  14. Heart simulation with surface equations for using on MCNP code

    SciTech Connect

    Rezaei-Ochbelagh, D.; Salman-Nezhad, S.; Asadi, A.; Rahimi, A.

    2011-12-26

    External photon beam radiotherapy is carried out in a way to achieve an 'as low as possible' a dose in healthy tissues surrounding the target. One of these surroundings can be heart as a vital organ of body. As it is impossible to directly determine the absorbed dose by heart, using phantoms is one way to acquire information around it. The other way is Monte Carlo method. In this work we have presented a simulation of heart geometry by introducing of different surfaces in MCNP code. We used 14 surface equations in order to determine human heart modeling. Those surfaces are borders of heart walls and contents.

  15. The tethered satellite system for low density aerothermodynamics studies

    NASA Technical Reports Server (NTRS)

    Carlomagno, Giovanni M.; De Luca, Luigi; Siemers, P. M., III; Wood, George M., Jr.

    1986-01-01

    The feasibility of the operation of the Tethered Satellite System (TSS) as a continuous open wind tunnel for low-density aerothermodynamic studies (applicable to the design of hypersonic space vehicles including STARFAC, AOTV, and ERV) is considered. The Shuttle Continuous Open Wind Tunnel (SCOWT) program, for the study of the energy and momentum transfer between the tethered satellite and its environmental medium during the TSS/2 mission, is described. Instrumentation and TSS design requirements to meet SCOWT objectives are also considered. SCOWT will provide information on the gasdynamic processes occurring downstream of the bow wave standing in front of the TS, the chemistry and physics of the upper atmosphere related to satellite aerothermodynamics, and TSS's overall experimental envelope of operation.

  16. Saenger: The reference concept and its technological requirements - aerothermodynamics

    NASA Astrophysics Data System (ADS)

    Hirschel, E. H.

    1991-08-01

    The objectives of the technology program 'aerothermodynamics and propulsion integration' are defined. An overview of the special aerothermodynamic phenomena which must be regarded in the design of the Saenger lower stage which presently stands in the center of the technology program is given. The design tools, which must be provided; the components like the inlet, the afterbody, etc., which must be designed and tested; and the special problems like forebody optimization, heat load determination, upper stage integration, etc., which must be treated, are discussed. The general work plan is presented, showing the major activities up to start of the development of the Saenger space transportation system. It includes the development and manufacturing of the experimental vehicle (HYTEXT) as a means for the validation of the design tools and methods which are achieved in the technology program, and for the creation of a freeflight data base.

  17. Computer code for the atomistic simulation of lattice defects and dynamics. [COMENT code

    SciTech Connect

    Schiffgens, J.O.; Graves, N.J.; Oster, C.A.

    1980-04-01

    This document has been prepared to satisfy the need for a detailed, up-to-date description of a computer code that can be used to simulate phenomena on an atomistic level. COMENT was written in FORTRAN IV and COMPASS (CDC assembly language) to solve the classical equations of motion for a large number of atoms interacting according to a given force law, and to perform the desired ancillary analysis of the resulting data. COMENT is a dual-purpose intended to describe static defect configurations as well as the detailed motion of atoms in a crystal lattice. It can be used to simulate the effect of temperature, impurities, and pre-existing defects on radiation-induced defect production mechanisms, defect migration, and defect stability.

  18. Simulation of Code Spectrum and Code Flow of Cultured Neuronal Networks.

    PubMed

    Tamura, Shinichi; Nishitani, Yoshi; Hosokawa, Chie; Miyoshi, Tomomitsu; Sawai, Hajime

    2016-01-01

    It has been shown that, in cultured neuronal networks on a multielectrode, pseudorandom-like sequences (codes) are detected, and they flow with some spatial decay constant. Each cultured neuronal network is characterized by a specific spectrum curve. That is, we may consider the spectrum curve as a "signature" of its associated neuronal network that is dependent on the characteristics of neurons and network configuration, including the weight distribution. In the present study, we used an integrate-and-fire model of neurons with intrinsic and instantaneous fluctuations of characteristics for performing a simulation of a code spectrum from multielectrodes on a 2D mesh neural network. We showed that it is possible to estimate the characteristics of neurons such as the distribution of number of neurons around each electrode and their refractory periods. Although this process is a reverse problem and theoretically the solutions are not sufficiently guaranteed, the parameters seem to be consistent with those of neurons. That is, the proposed neural network model may adequately reflect the behavior of a cultured neuronal network. Furthermore, such prospect is discussed that code analysis will provide a base of communication within a neural network that will also create a base of natural intelligence. PMID:27239189

  19. Simulation of Code Spectrum and Code Flow of Cultured Neuronal Networks.

    PubMed

    Tamura, Shinichi; Nishitani, Yoshi; Hosokawa, Chie; Miyoshi, Tomomitsu; Sawai, Hajime

    2016-01-01

    It has been shown that, in cultured neuronal networks on a multielectrode, pseudorandom-like sequences (codes) are detected, and they flow with some spatial decay constant. Each cultured neuronal network is characterized by a specific spectrum curve. That is, we may consider the spectrum curve as a "signature" of its associated neuronal network that is dependent on the characteristics of neurons and network configuration, including the weight distribution. In the present study, we used an integrate-and-fire model of neurons with intrinsic and instantaneous fluctuations of characteristics for performing a simulation of a code spectrum from multielectrodes on a 2D mesh neural network. We showed that it is possible to estimate the characteristics of neurons such as the distribution of number of neurons around each electrode and their refractory periods. Although this process is a reverse problem and theoretically the solutions are not sufficiently guaranteed, the parameters seem to be consistent with those of neurons. That is, the proposed neural network model may adequately reflect the behavior of a cultured neuronal network. Furthermore, such prospect is discussed that code analysis will provide a base of communication within a neural network that will also create a base of natural intelligence.

  20. Downward-deployed tethered platforms for high enthalpy aerothermodynamic research

    NASA Technical Reports Server (NTRS)

    Wood, George M.; Siemers, Paul M.; Squires, R. Kenneth; Wolf, Henry; Carlomagno, Giovanni M.

    1988-01-01

    The data on aerothermodynamic and aerodynamic interactions at altitudes above 50 km is extremely limited because of the relative inaccessibility of the region to research vehicles of any sort. This paper addresses the practicability of using downward deployed satellites tethered to an orbiting host vehicle in order to obtain steady-state data in the upper reaches of the region above 80 or 90 km.

  1. Phase C aerothermodynamic data base. [for space shuttle program

    NASA Technical Reports Server (NTRS)

    Moser, M., Jr.

    1974-01-01

    Summary listings of published documentation of SADSAC processed data arranged chronologically and by shuttle configuration are presented to provide an up-to-date record of all applicable aerothermodynamic data collected, processed, or summarized in the course of the space shuttle program. The various tables or listings are designed to provide survey information to the various space shuttle managerial and technical levels. The various listings of the shuttle test data information, the list contents, and the purpose are described.

  2. ATES/heat pump simulations performed with ATESSS code

    NASA Astrophysics Data System (ADS)

    Vail, L. W.

    1989-01-01

    Modifications to the Aquifer Thermal Energy Storage System Simulator (ATESSS) allow simulation of aquifer thermal energy storage (ATES)/heat pump systems. The heat pump algorithm requires a coefficient of performance (COP) relationship of the form: COP = COP sub base + alpha (T sub ref minus T sub base). Initial applications of the modified ATES code to synthetic building load data for two sizes of buildings in two U.S. cities showed insignificant performance advantage of a series ATES heat pump system over a conventional groundwater heat pump system. The addition of algorithms for a cooling tower and solar array improved performance slightly. Small values of alpha in the COP relationship are the principal reason for the limited improvement in system performance. Future studies at Pacific Northwest Laboratory (PNL) are planned to investigate methods to increase system performance using alternative system configurations and operations scenarios.

  3. Hybrid Particle Code Simulations of Mars: The Energy Budget.

    NASA Astrophysics Data System (ADS)

    Brecht, S. H.; Ledvina, S. A.

    2015-12-01

    The results of our latest hybrid particle simulations using the HALFSHEL code are discussed. The presentation will address the energy budget of the solar wind interaction with Mars. The simulations produce loss rates that are very consistent with measured data, Brecht and Ledvina [2014], therefore inspection of the details of the interaction is now warranted. This paper will address the relationship between the energy flowing into the planet and the energy flowing away from the planet. The partition of the energy between fields, and individual ion species will be addressed as well as the amount of energy deposited in the neutral atmosphere by incoming solar wind plasma and during the process of ion loss caused by acceleration via electric fields. Brecht, S.H. and S.A. Ledvina (2014), "The role of the Martian crustal magnetic fields in controlling ionospheric loss," Geophys. Res. Lett., 41, 5340-5346, doi:10.1002/2014GL060841.

  4. Code System to Simulate 3D Tracer Dispersion in Atmosphere.

    2002-01-25

    Version 00 SHREDI is a shielding code system which executes removal-diffusion computations for bi-dimensional shields in r-z or x-y geometries. It may also deal with monodimensional problems (infinitely high cylinders or slabs). MESYST can simulate 3D tracer dispersion in the atmosphere. Three programs are part of this system: CRE_TOPO prepares the terrain data for MESYST. NOABL calculates three-dimensional free divergence windfields over complex terrain. PAS computes tracer concentrations and depositions on a given domain. Themore » purpose of this work is to develop a reliable simulation tool for pollutant atmospheric dispersion, which gives a realistic approach and allows one to compute the pollutant concentrations over complex terrains with good accuracy. The factional brownian model, which furnishes more accurate concentration values, is introduced to calculate pollutant atmospheric dispersion. The model was validated on SIESTA international experiments.« less

  5. Laser-driven Implosion Simulations with the Kull Code

    NASA Astrophysics Data System (ADS)

    Kaiser, Thomas B.; Owen, J. Michael; Madsen, Niel K.

    1999-11-01

    We present results of two- and three-dimensional simulations of implosion of a gamma-law gas driven by absorption of energy from an external laser source. Laser light propagation and power deposition were modeled with a recently-developed package(T. B. Kaiser, J. L. Milovich, A. I. Shestakov, M. K. Prasad, Bulletin of the A.P.S. 43), paper R8Q 26 (1998). that uses geometrical optics and inverse-bremsstrahlung to model the relevant physical processes, while the hydrodynamics calculations used a finite-volume, staggered-grid ALE scheme, and electron heat transport was treated diffusively. The simulations were performed with Kull, an ASCI code currently being developed at LLNL to model ICF experiments and astrophysical phenomena.

  6. ROAR: A 3-D tethered rocket simulation code

    SciTech Connect

    York, A.R. II; Ludwigsen, J.S.

    1992-04-01

    A high-velocity impact testing technique, utilizing a tethered rocket, is being developed at Sandia National Laboratories. The technique involves tethering a rocket assembly to a pivot location and flying it in a semicircular trajectory to deliver the rocket and payload to an impact target location. Integral to developing this testing technique is the parallel development of accurate simulation models. An operational computer code, called ROAR (Rocket-on-a-Rope), has been developed to simulate the three-dimensional transient dynamic behavior of the tether and motor/payload assembly. This report presents a discussion of the parameters modeled, the governing set of equations, the through-time integration scheme, and the input required to set up a model. Also included is a sample problem and a comparison with experimental results.

  7. The GBS code for tokamak scrape-off layer simulations

    NASA Astrophysics Data System (ADS)

    Halpern, F. D.; Ricci, P.; Jolliet, S.; Loizu, J.; Morales, J.; Mosetto, A.; Musil, F.; Riva, F.; Tran, T. M.; Wersal, C.

    2016-06-01

    We describe a new version of GBS, a 3D global, flux-driven plasma turbulence code to simulate the turbulent dynamics in the tokamak scrape-off layer (SOL), superseding the code presented by Ricci et al. (2012) [14]. The present work is driven by the objective of studying SOL turbulent dynamics in medium size tokamaks and beyond with a high-fidelity physics model. We emphasize an intertwining framework of improved physics models and the computational improvements that allow them. The model extensions include neutral atom physics, finite ion temperature, the addition of a closed field line region, and a non-Boussinesq treatment of the polarization drift. GBS has been completely refactored with the introduction of a 3-D Cartesian communicator and a scalable parallel multigrid solver. We report dramatically enhanced parallel scalability, with the possibility of treating electromagnetic fluctuations very efficiently. The method of manufactured solutions as a verification process has been carried out for this new code version, demonstrating the correct implementation of the physical model.

  8. A framework for control simulations using the TRANSP code

    NASA Astrophysics Data System (ADS)

    Boyer, Mark D.; Andre, Rob; Gates, David; Gerhardt, Stefan; Goumiri, Imene; Menard, Jon

    2014-10-01

    The high-performance operational goals of present-day and future tokamaks will require development of advanced feedback control algorithms. Though reduced models are often used for initial designs, it is important to study the performance of control schemes with integrated models prior to experimental implementation. To this end, a flexible framework for closed loop simulations within the TRANSP code is being developed. The framework exploits many of the predictive capabilities of TRANSP and provides a means for performing control calculations based on user-supplied data (controller matrices, target waveforms, etc.). These calculations, along with the acquisition of ``real-time'' measurements and manipulation of TRANSP internal variables based on actuator requests, are implemented through a hook that allows custom run-specific code to be inserted into the standard TRANSP source code. As part of the framework, a module has been created to constrain the thermal stored energy in TRANSP using a confinement scaling expression. Progress towards feedback control of the current profile on NSTX-U will be presented to demonstrate the framework. Supported in part by an appointment to the U.S. Department of Energy Fusion Energy Postdoctoral Research Program administered by the Oak Ridge Institute for Science and Education.

  9. First Transport Code Simulations using the TGLF Model

    NASA Astrophysics Data System (ADS)

    Kinsey, J. E.

    2007-11-01

    The first transport code simulations using the newly developed TGLF theory-based transport model [1,2] are presented. TGLF has comprehensive physics to approximate the turbulent transport due to drift-ballooning modes in tokamaks. The TGLF model is a next generation gyro-Landau-fluid model that includes several recent advances that remove the limitations of its predecessor, GLF23. The model solves for the linear eigenmodes of trapped ion and electron modes (TIM, TEM), ion and electron temperature gradient (ITG, ETG) modes and finite beta kinetic ballooning (KB) modes in either shifted circle or shaped geometry [1]. A database of over 400 nonlinear GYRO gyrokinetic simulations has been created [3]. A subset of 140 simulations including Miller shaped geometry has been used to find a model for the saturation levels. Using a simple quasilinear (QL) saturation rule, we find remarkable agreement with the energy and particle fluxes from a wide variety of GYRO simulations for both shaped or circular geometry and also for low aspect ratio. Using this new QL saturation rule along with a new ExB shear quench rule for shaped geometry, we predict the density, temperature, and toroidal rotation profiles in a transport code and compare the results against experimental data in the ITPA Profile Database. We examine the impact of the improved electron physics in the model and the role of elongation and triangularity on the predicted profiles and compare to the results previously obtained using the GLF23 model. [1] G.M. Staebler, J.E. Kinsey, and R.E. Waltz, Phys. Plasmas 12, 102508 (2005). [2] G.M. Staebler, J.E. Kinsey, and R.E. Waltz, to appear in Phys. Plasmas, May(2007). [3] The GYRO database is documented at fusion.gat.com/theory/gyro.

  10. Assessment of the IVA3 code for multifield flow simulation

    NASA Astrophysics Data System (ADS)

    Stewart, H. B.

    1995-07-01

    This report presents an assessment of the IVA3 computer code for multifield flow simulation, as applied to the premixing phase of a hypothetical steam explosion in a water-cooled power reactor. The first section of this report reviews the derivation of the basic partial differential equations of multifield modeling, with reference to standard practices in the multiphase flow literature. Basic underlying assumptions and approximations are highlighted, and comparison is made between IVA3 and other codes in current use. Although Kolev's derivation of these equations is outside the mainstream of the multiphase literature, the basic partial differential equations are in fact nearly equivalent to those in other codes. In the second section, the assumptions and approximations required to pass from generic differential equations to a specific working form are detailed. Some modest improvements to the IVA3 model are suggested. In Section 3, the finite difference approximations to the differential equations are described. The discretization strategy is discussed with reference to numerical stability, accuracy, and the role of various physical phenomena - material convection, sonic propagation, viscous stress, and interfacial exchanges - in the choice of discrete approximations. There is also cause for concern about the approximations of time evolution in some heat transfer terms, which might be adversely affecting numerical accuracy. The fourth section documents the numerical solution method used in IVA3. An explanation for erratic behavior sometimes observed in the first outer iteration is suggested, along with possible remedies. Finally, six recommendations for future assessment and improvement of the IVA3 model and code are made.

  11. Introduction: Assessment of aerothermodynamic flight prediction tools through ground and flight experimentation

    NASA Astrophysics Data System (ADS)

    Schmisseur, John D.; Erbland, Peter

    2012-01-01

    This article provides an introduction and overview to the efforts of NATO Research and Technology Organization Task Group AVT-136, Assessment of Aerothermodynamic Flight Prediction Tools through Ground and Flight Experimentation. During the period of 2006-2010, AVT-136 coordinated international contributions to assess the state-of-the-art and research challenges for the prediction of critical aerothermodynamic flight phenomena based on the extrapolation of ground test and numerical simulation. To achieve this goal, efforts were organized around six scientific topic areas: (1) Noses and leading edges, (2) Shock Interactions and Control Surfaces, (3) Shock Layers and Radiation, (4) Boundary Layer Transition, (5) Gas-Surface Interactions, and (6) Base and Afterbody Flows. A key component of the AVT-136 strategy was comparison of state-of-the-art numerical simulations with data to be acquired from planned flight research programs. Although it was recognized from the onset of AVT-136 activities that reliance on flight research data yet to be collected posed a significant risk, the group concluded the substantial benefit to be derived from comparison of computational simulations with flight data warranted pursuit of such a program of work. Unfortunately, program delays and failures in the flight programs contributing to the AVT-136 effort prevented timely access to flight research data. Despite this setback, most of the scientific topic areas developed by the Task Group made significant progress in the assessment of current capabilities. Additionally, the activities of AVT-136 generated substantial interest within the international scientific research community and the work of the Task Group was prominently featured in a total of six invited sessions in European and American technical conferences. In addition to this overview, reviews of the state-of-the-art and research challenges identified by the six research thrusts of AVT-136 are also included in this special

  12. Neoclassical Simulation of Tokamak Plasmas using Continuum Gyrokinetc Code TEMPEST

    SciTech Connect

    Xu, X Q

    2007-11-09

    We present gyrokinetic neoclassical simulations of tokamak plasmas with self-consistent electric field for the first time using a fully nonlinear (full-f) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five dimensional computational grid in phase space. The present implementation is a Method of Lines approach where the phase-space derivatives are discretized with finite differences and implicit backwards differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving gyrokinetic Poisson equation with self-consistent poloidal variation. With our 4D ({psi}, {theta}, {epsilon}, {mu}) version of the TEMPEST code we compute radial particle and heat flux, the Geodesic-Acoustic Mode (GAM), and the development of neoclassical electric field, which we compare with neoclassical theory with a Lorentz collision model. The present work provides a numerical scheme and a new capability for self-consistently studying important aspects of neoclassical transport and rotations in toroidal magnetic fusion devices.

  13. VISRAD, 3-D Target Design and Radiation Simulation Code

    NASA Astrophysics Data System (ADS)

    Golovkina, Viktoriya; Macfarlane, Joseph; Golovkin, Igor; Kulkarni, Subodh

    2014-10-01

    The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, LMJ, Z, and PLX. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e.g., that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. We will discuss recent improvements to the software package and plans for future developments.

  14. VISRAD, 3-D Target Design and Radiation Simulation Code

    NASA Astrophysics Data System (ADS)

    Li, Yingjie; Macfarlane, Joseph; Golovkin, Igor

    2015-11-01

    The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, LMJ, Z, and PLX. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e.g., that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. We will discuss recent improvements to the software package and plans for future developments.

  15. The Plasma Simulation Code: A modern particle-in-cell code with patch-based load-balancing

    NASA Astrophysics Data System (ADS)

    Germaschewski, Kai; Fox, William; Abbott, Stephen; Ahmadi, Narges; Maynard, Kristofor; Wang, Liang; Ruhl, Hartmut; Bhattacharjee, Amitava

    2016-08-01

    This work describes the Plasma Simulation Code (PSC), an explicit, electromagnetic particle-in-cell code with support for different order particle shape functions. We review the basic components of the particle-in-cell method as well as the computational architecture of the PSC code that allows support for modular algorithms and data structure in the code. We then describe and analyze in detail a distinguishing feature of PSC: patch-based load balancing using space-filling curves which is shown to lead to major efficiency gains over unbalanced methods and a previously used simpler balancing method.

  16. COMPARISON OF SIMULATION CODES FOR MICROWAVE INSTABILITY IN BUNCHED BEAMS

    SciTech Connect

    Bane, K.L.F.; Cai, Y.; Stupakov, G.; /SLAC

    2010-08-25

    In accelerator design, there is often a need to evaluate the threshold to the (longitudinal) microwave instability for a bunched beam in an electron storage ring. Several computational tools are available that allow them, once given the wakefield representing a ring, to numerically find the threshold current and to simulate the development of the instability. In this work, they present results of coputer simulations using two codes recently developed at the SLAC National Accelerator Laboratory: a Vlasov-Fokker-Planck (VFP) solver based on an algorithm by Warnock and Ellison, and a program that find the threshold from the linearized Vlasov equation. They apply the programs to find the instability threshold for three models of ring impedances: that of a Q = 1 resonator, of shielded coherent synchrotron radiation (CSR), and of a resistive wall. The first example is wel-bheaved, but the other two are singular wakes that need special care. Note that similar numerical studies of the threshold of a Q = 1 resonantor wake have been performed by Oide and Yokova, and others. They compare the results of the two programs and discuss their respective capabilities and limitations. In this report they assume the slippage factor {eta} is always positive. They work in Gaussian units.

  17. GRMHD Simulations of Jet Formation with a New Code

    NASA Technical Reports Server (NTRS)

    Mizuno, Y.; Nishikawa, K.-I.; Koide, S.; Hardee, P.; Fishman, G. J.

    2006-01-01

    We have developed a new three-dimensional general relativistic magnetohydrodynamic (GRMHD) code by using a conservative, high-resolution shock-capturing scheme. The numerical fluxes are calculated using the HLL approximate Riemann solver scheme. The flux-interpolated, constrained transport scheme is used to maintain a divergence-free magnetic field. Various one-dimensional test problems in both special and general relativity show significant improvements over our previous model. We have performed simulations of jet formations from a geometrically thin accretion disk near both nonrotating and rotating black holes. The new simulation results show that the jet is formed in the same manner as in previous work and propagates outward. In the rotating black hole cases, jets form much closer to the black hole's ergosphere and the magnetic field is strongly twisted due the frame-dragging effect. As the magnetic field strength becomes weaker, a larger amount of matter is launched with the jet. On the other hand, when the magnetic field strength becomes stronger, the jet has less matter and becomes poynting-flux dominated. We will also discuss how the jet properties depend on the rotation of a black hole.

  18. Aerothermodynamics and propulsion integration in the Saenger technology programme

    NASA Astrophysics Data System (ADS)

    Hirschel, E. H.

    1991-12-01

    An overview of the special aerothermodynamic phenomena that must be considered in the design of the German Saenger Space Transportation System lower stage is presented. The design tools required, components that must be designed and tested, and certain problem areas (forebody optimization, heat load determination, and upper-stage separation), are discussed. Attention is given to the development and manufacturing of an experimental vehicle, Hytex, as a means for validating the design tools and methods realized in the technology program and for the creation of a free-flight data base.

  19. Development of a CFD code for casting simulation

    NASA Technical Reports Server (NTRS)

    Murph, Jesse E.

    1992-01-01

    The task of developing a computational fluid dynamics (CFD) code to accurately model the mold filling phase of a casting operation was accomplished in a systematic manner. First the state-of-the-art was determined through a literature search, a code search, and participation with casting industry personnel involved in consortium startups. From this material and inputs from industry personnel, an evaluation of the currently available codes was made. It was determined that a few of the codes already contained sophisticated CFD algorithms and further validation of one of these codes could preclude the development of a new CFD code for this purpose. With industry concurrence, ProCAST was chosen for further evaluation. Two benchmark cases were used to evaluate the code's performance using a Silicon Graphics Personal Iris system. The results of these limited evaluations (because of machine and time constraints) are presented along with discussions of possible improvements and recommendations for further evaluation.

  20. DSC -- Disruption Simulation Code for Tokamaks and ITER applications

    NASA Astrophysics Data System (ADS)

    Galkin, S. A.; Grubert, J. E.; Zakharov, L. E.

    2010-11-01

    Arguably the most important issue facing the further development of magnetic fusion via advanced tokamaks is to predict, avoid, or mitigate disruptions. This recently became the hottest challenging topic in fusion research because of several potentially damaging effects, which could impact the ITER device. To address this issue, two versions of a new 3D adaptive Disruption Simulation Code (DSC) will be developed. The first version will solve the ideal reduced 3D MHD model in the real geometry with a thin conducting wall structure, utilizing the adaptive meshless technique. The second version will solve the resistive reduced 3D MHD model in the real geometry of the conducting structure of the tokamak vessel and will finally be parallelized. The DSC will be calibrated against the JET disruption data and will be capable of predicting the disruption effects in ITER, as well as contributing to the development of the disruption mitigation scheme and suppression of the RE generation. The progress on the first version of the 3D DSC development will be presented.

  1. A multi-scale model for geared transmission aero-thermodynamics

    NASA Astrophysics Data System (ADS)

    McIntyre, Sean M.

    A multi-scale, multi-physics computational tool for the simulation of high-per- formance gearbox aero-thermodynamics was developed and applied to equilibrium and pathological loss-of-lubrication performance simulation. The physical processes at play in these systems include multiphase compressible ow of the air and lubricant within the gearbox, meshing kinematics and tribology, as well as heat transfer by conduction, and free and forced convection. These physics are coupled across their representative space and time scales in the computational framework developed in this dissertation. These scales span eight orders of magnitude, from the thermal response of the full gearbox O(100 m; 10 2 s), through effects at the tooth passage time scale O(10-2 m; 10-4 s), down to tribological effects on the meshing gear teeth O(10-6 m; 10-6 s). Direct numerical simulation of these coupled physics and scales is intractable. Accordingly, a scale-segregated simulation strategy was developed by partitioning and treating the contributing physical mechanisms as sub-problems, each with associated space and time scales, and appropriate coupling mechanisms. These are: (1) the long time scale thermal response of the system, (2) the multiphase (air, droplets, and film) aerodynamic flow and convective heat transfer within the gearbox, (3) the high-frequency, time-periodic thermal effects of gear tooth heating while in mesh and its subsequent cooling through the rest of rotation, (4) meshing effects including tribology and contact mechanics. The overarching goal of this dissertation was to develop software and analysis procedures for gearbox loss-of-lubrication performance. To accommodate these four physical effects and their coupling, each is treated in the CFD code as a sub problem. These physics modules are coupled algorithmically. Specifically, the high- frequency conduction analysis derives its local heat transfer coefficient and near-wall air temperature boundary conditions from a quasi

  2. The artificially blunted leading edge concept for aerothermodynamic performance enhancement

    NASA Astrophysics Data System (ADS)

    Gupta, Anurag

    An innovative aerothermodynamic performance enhancement concept for blunted geometries in hypervelocity flight is described. An Artificially Blunted Leading Edge (ABLE) is sought to be created by the use of a flow-through channel sized to choke at supersonic (in the normal direction) conditions. As a result, a normal shock stands off the channel but the high post-shock pressures have no wall to act on, leading to a reduction in wave drag. The effective blunt body flow structure can be effective at preventing the rise in heat transfer rates at channel entrance lips. In lifting flight, the flow in the channel creates suction at the lip, significantly enhancing lift for non-slender shapes. CFD studies using Reynolds Averaged Navier-Stokes simulations provide proof-of- concept for drag reduction for blunted slender geometries and L/D enhancements for sphere-cones. The ABLE flow mechanism's robustness and its effectiveness at off- design conditions is demonstrated. The computed sphere- cone L/D enhancements are also validated with experimental results from Aeroballistic Range tests. As opposed to straight channels, ABLE variants with curved channels that provide for better volumetric efficiency, reduced viscous drag penalties and better performance were designed and investigated. The channels curve outward and exhaust the flow close to the leading edge. Even while exhausting tangentially, the exhaust-mean flow interactions were shown to enhance or create lift. The force amplification due to such interactions can also be leveraged with the channel flow exhausting nearly normal to the surface. The potential of such thrust vectoring to reduce trim drag and augment directional control in the high-speed regime was demonstrated numerically. To evaluate the concept's effectiveness at improving cd or L/D values without paying any penalties in lift, enclosed volume and peak heating rates, Multidisciplinary Design Optimization techniques are used to characterize the design space

  3. DNA strand breaks induced by electrons simulated with Nanodosimetry Monte Carlo Simulation Code: NASIC.

    PubMed

    Li, Junli; Li, Chunyan; Qiu, Rui; Yan, Congchong; Xie, Wenzhang; Wu, Zhen; Zeng, Zhi; Tung, Chuanjong

    2015-09-01

    The method of Monte Carlo simulation is a powerful tool to investigate the details of radiation biological damage at the molecular level. In this paper, a Monte Carlo code called NASIC (Nanodosimetry Monte Carlo Simulation Code) was developed. It includes physical module, pre-chemical module, chemical module, geometric module and DNA damage module. The physical module can simulate physical tracks of low-energy electrons in the liquid water event-by-event. More than one set of inelastic cross sections were calculated by applying the dielectric function method of Emfietzoglou's optical-data treatments, with different optical data sets and dispersion models. In the pre-chemical module, the ionised and excited water molecules undergo dissociation processes. In the chemical module, the produced radiolytic chemical species diffuse and react. In the geometric module, an atomic model of 46 chromatin fibres in a spherical nucleus of human lymphocyte was established. In the DNA damage module, the direct damages induced by the energy depositions of the electrons and the indirect damages induced by the radiolytic chemical species were calculated. The parameters should be adjusted to make the simulation results be agreed with the experimental results. In this paper, the influence study of the inelastic cross sections and vibrational excitation reaction on the parameters and the DNA strand break yields were studied. Further work of NASIC is underway.

  4. ANNarchy: a code generation approach to neural simulations on parallel hardware.

    PubMed

    Vitay, Julien; Dinkelbach, Helge Ü; Hamker, Fred H

    2015-01-01

    Many modern neural simulators focus on the simulation of networks of spiking neurons on parallel hardware. Another important framework in computational neuroscience, rate-coded neural networks, is mostly difficult or impossible to implement using these simulators. We present here the ANNarchy (Artificial Neural Networks architect) neural simulator, which allows to easily define and simulate rate-coded and spiking networks, as well as combinations of both. The interface in Python has been designed to be close to the PyNN interface, while the definition of neuron and synapse models can be specified using an equation-oriented mathematical description similar to the Brian neural simulator. This information is used to generate C++ code that will efficiently perform the simulation on the chosen parallel hardware (multi-core system or graphical processing unit). Several numerical methods are available to transform ordinary differential equations into an efficient C++code. We compare the parallel performance of the simulator to existing solutions.

  5. ANNarchy: a code generation approach to neural simulations on parallel hardware

    PubMed Central

    Vitay, Julien; Dinkelbach, Helge Ü.; Hamker, Fred H.

    2015-01-01

    Many modern neural simulators focus on the simulation of networks of spiking neurons on parallel hardware. Another important framework in computational neuroscience, rate-coded neural networks, is mostly difficult or impossible to implement using these simulators. We present here the ANNarchy (Artificial Neural Networks architect) neural simulator, which allows to easily define and simulate rate-coded and spiking networks, as well as combinations of both. The interface in Python has been designed to be close to the PyNN interface, while the definition of neuron and synapse models can be specified using an equation-oriented mathematical description similar to the Brian neural simulator. This information is used to generate C++ code that will efficiently perform the simulation on the chosen parallel hardware (multi-core system or graphical processing unit). Several numerical methods are available to transform ordinary differential equations into an efficient C++code. We compare the parallel performance of the simulator to existing solutions. PMID:26283957

  6. ANNarchy: a code generation approach to neural simulations on parallel hardware.

    PubMed

    Vitay, Julien; Dinkelbach, Helge Ü; Hamker, Fred H

    2015-01-01

    Many modern neural simulators focus on the simulation of networks of spiking neurons on parallel hardware. Another important framework in computational neuroscience, rate-coded neural networks, is mostly difficult or impossible to implement using these simulators. We present here the ANNarchy (Artificial Neural Networks architect) neural simulator, which allows to easily define and simulate rate-coded and spiking networks, as well as combinations of both. The interface in Python has been designed to be close to the PyNN interface, while the definition of neuron and synapse models can be specified using an equation-oriented mathematical description similar to the Brian neural simulator. This information is used to generate C++ code that will efficiently perform the simulation on the chosen parallel hardware (multi-core system or graphical processing unit). Several numerical methods are available to transform ordinary differential equations into an efficient C++code. We compare the parallel performance of the simulator to existing solutions. PMID:26283957

  7. Aerothermodynamic Measurement and Prediction for Modified Orbiter at Mach 6 and 10

    NASA Technical Reports Server (NTRS)

    Micol, John R.

    1995-01-01

    Detailed heat-transfer rate distributions measured laterally over the windward surface of an orbiter-like configuration using thin-film resistance heat-transfer gauges and globally using the newly developed relative intensity, two-color thermographic phosphor technique are presented for Mach 6 and 10 in air. The angle of attack was varied from 0 to 40 deg, and the freestream Reynolds number based on the model length was varied from 4 x 10(exp 5) to 6 x 10(exp 6) at Mach 6, corresponding to laminar, transitional, and turbulent boundary layers; the Reynolds number at Mach 10 was 4 x 10(exp 5), corresponding to laminar flow. The primary objective of the present study was to provide detailed benchmark heat-transfer data for the calibration of computational fluid-dynamics codes. Predictions from a Navier-Stokes solver referred to as the Langley aerothermodynamic upwind relaxation algorithm and an approximate boundary-layer solving method known as the axisymmetric analog three-dimensional boundary layer code are compared with measurement. In general, predicted laminar heat-transfer rates are in good agreement with measurements.

  8. 3D Direct Simulation Monte Carlo Code Which Solves for Geometrics

    1998-01-13

    Pegasus is a 3D Direct Simulation Monte Carlo Code which solves for geometries which can be represented by bodies of revolution. Included are all the surface chemistry enhancements in the 2D code Icarus as well as a real vacuum pump model. The code includes multiple species transport.

  9. Adaptive mesh simulations of astrophysical detonations using the ASCI flash code

    NASA Astrophysics Data System (ADS)

    Fryxell, B.; Calder, A. C.; Dursi, L. J.; Lamb, D. Q.; MacNeice, P.; Olson, K.; Ricker, P.; Rosner, R.; Timmes, F. X.; Truran, J. W.; Tufo, H. M.; Zingale, M.

    2001-08-01

    The Flash code was developed at the University of Chicago as part of the Department of Energy's Accelerated Strategic Computing Initiative (ASCI). The code was designed specifically to simulate thermonuclear flashes in compact stars (white dwarfs and neutron stars). This paper will give a brief introduction to the astrophysics problems we wish to address, followed by a description of the current version of the Flash code. Finally, we discuss two simulations of astrophysical detonations that we have carried out with the code. The first is of a helium detonation in an X-ray burst. The other simulation models a carbon detonation in a Type Ia supernova explosion. .

  10. VINE: A numerical code for simulating astrophysical systems using particles I

    NASA Astrophysics Data System (ADS)

    Wetzstein, M.; Nelson, Andrew F.; Naab, T.; Burkert, A.

    2010-10-01

    VINE is a particle based astrophysical simulation code. It uses a tree structure to efficiently solve the gravitational N-body problem and Smoothed Particle Hydrodynamics (SPH) to simulate gas dynamical effects. The code has been successfully used for a number of studies on galaxy interactions, galactic dynamics, star formation and planet formation and given the implemented physics, other applications are possible as well.

  11. Study and simulation of low rate video coding schemes

    NASA Technical Reports Server (NTRS)

    Sayood, Khalid; Chen, Yun-Chung; Kipp, G.

    1992-01-01

    The semiannual report is included. Topics covered include communication, information science, data compression, remote sensing, color mapped images, robust coding scheme for packet video, recursively indexed differential pulse code modulation, image compression technique for use on token ring networks, and joint source/channel coder design.

  12. DgSMC-B code: A robust and autonomous direct simulation Monte Carlo code for arbitrary geometries

    NASA Astrophysics Data System (ADS)

    Kargaran, H.; Minuchehr, A.; Zolfaghari, A.

    2016-07-01

    In this paper, we describe the structure of a new Direct Simulation Monte Carlo (DSMC) code that takes advantage of combinatorial geometry (CG) to simulate any rarefied gas flows Medias. The developed code, called DgSMC-B, has been written in FORTRAN90 language with capability of parallel processing using OpenMP framework. The DgSMC-B is capable of handling 3-dimensional (3D) geometries, which is created with first-and second-order surfaces. It performs independent particle tracking for the complex geometry without the intervention of mesh. In addition, it resolves the computational domain boundary and volume computing in border grids using hexahedral mesh. The developed code is robust and self-governing code, which does not use any separate code such as mesh generators. The results of six test cases have been presented to indicate its ability to deal with wide range of benchmark problems with sophisticated geometries such as airfoil NACA 0012. The DgSMC-B code demonstrates its performance and accuracy in a variety of problems. The results are found to be in good agreement with references and experimental data.

  13. Computational Aerothermodynamic Assessment of Space Shuttle Orbiter Tile Damage: Open Cavities

    NASA Technical Reports Server (NTRS)

    Pulsonetti, Maria; Wood, William

    2005-01-01

    Computational aerothermodynamic simulations of Orbiter windside tile damage in flight were performed in support of the Space Shuttle Return-to-Flight effort. The simulations were performed for both hypervelocity flight and low-enthalpy wind tunnel conditions and contributed to the Return-to-Flight program by providing information to support a variety of damage scenario analyses. Computations at flight conditions were performed at or very near the peak heating trajectory point for multiple damage scenarios involving damage windside acreage reaction cured glass (RCG) coated silica tile(s). The cavities formed by the missing tile examined in this study were relatively short leading to flow features which indicated open cavity behavior. Results of the computations indicated elevated heating bump factor levels predicted for flight over the predictions for wind tunnel conditions. The peak heating bump factors, defined as the local heating to a reference value upstream of the cavity, on the cavity floor for flight simulation were 67% larger than the peak wind tunnel simulation value. On the downstream face of the cavity the flight simulation values were 60% larger than the wind tunnel simulation values. On the outer mold line (OML) downstream of the cavity, the flight values are about 20% larger than the wind tunnel simulation values. The higher heating bump factors observed in the flight simulations were due to the larger driving potential in terms of energy entering the cavity for the flight simulations. This is evidenced by the larger rate of increase in the total enthalpy through the boundary layer prior to the cavity for the flight simulation.

  14. Comparison of DAC and MONACO DSMC Codes with Flat Plate Simulation

    NASA Technical Reports Server (NTRS)

    Padilla, Jose F.

    2010-01-01

    Various implementations of the direct simulation Monte Carlo (DSMC) method exist in academia, government and industry. By comparing implementations, deficiencies and merits of each can be discovered. This document reports comparisons between DSMC Analysis Code (DAC) and MONACO. DAC is NASA's standard DSMC production code and MONACO is a research DSMC code developed in academia. These codes have various differences; in particular, they employ distinct computational grid definitions. In this study, DAC and MONACO are compared by having each simulate a blunted flat plate wind tunnel test, using an identical volume mesh. Simulation expense and DSMC metrics are compared. In addition, flow results are compared with available laboratory data. Overall, this study revealed that both codes, excluding grid adaptation, performed similarly. For parallel processing, DAC was generally more efficient. As expected, code accuracy was mainly dependent on physical models employed.

  15. High-Energy Atmospheric Reentry Test Aerothermodynamic Analysis

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza

    2013-01-01

    This paper presents an assessment of the aerothermodynamic environment around an 8.3 meter High Energy Atmospheric Reentry Test (HEART) vehicle. This study generated twelve nose shape configurations and compared their responses at the peak heating trajectory point against the baseline nose shape. The heat flux sensitivity to the angle of attack variations are also discussed. The possibility of a two-piece Thermal Protection System (TPS) design at the nose is also considered, as are the surface catalytic affects of the aeroheating environment of such configuration. Based on these analyses, an optimum nose shape is proposed to minimize the surface heating. A recommendation is also made for a two-piece TPS design, for which the surface catalytic uncertainty associated with the jump in heating at the nose-IAD juncture is reduced by a minimum of 93%. In this paper, the aeroshell is assumed to be rigid and the inflatable fluid interaction effect is left for future investigations

  16. Aerodynamic and Aerothermodynamic Layout of the Hypersonic Flight Experiment Shefex

    NASA Astrophysics Data System (ADS)

    Eggers, Th.

    2005-02-01

    The purpose of the SHarp Edge Flight EXperiment SHEFEX is the investigation of possible new shapes for future launcher or reentry vehicles [1]. The main focus is the improvement of common space vehicle shapes by application of facetted surfaces and sharp edges. The experiment will enable the time accurate investigation of the flow effects and their structural answer during the hypersonic flight from 90 km down to an altitude of 20 km. The project, being performed under responsibility of the German Aerospace Center (DLR) is scheduled to fly on top of a two-stage solid propellant sounding rocket for the first half of 2005. The paper contains a survey of the aerodynamic and aerothermodynamic layout of the experimental vehicle. The results are inputs for the definition of the structural layout, the TPS and the flight instrumentation as well as for the preparation of the flight test performed by the Mobile Rocket Base of DLR.

  17. Numerical methods for aerothermodynamic design of hypersonic space transport vehicles

    NASA Astrophysics Data System (ADS)

    Wanie, K. M.; Brenneis, A.; Eberle, A.; Heiss, S.

    1993-04-01

    The requirement of the design process of hypersonic vehicles to predict flow past entire configurations with wings, fins, flaps, and propulsion system represents one of the major challenges for aerothermodynamics. In this context computational fluid dynamics has come up as a powerful tool to support the experimental work. A couple of numerical methods developed at MBB designed to fulfill the needs of the design process are described. The governing equations and fundamental details of the solution methods are shortly reviewed. Results are given for both geometrically simple test cases and realistic hypersonic configurations. Since there is still a considerable lack of experience for hypersonic flow calculations an extensive testing and verification is essential. This verification is done by comparison of results with experimental data and other numerical methods. The results presented prove that the methods used are robust, flexible, and accurate enough to fulfill the strong needs of the design process.

  18. Aerothermodynamic design feasibility of a Mars aerocapture/aeromaneuver vehicle

    NASA Technical Reports Server (NTRS)

    Florence, D. E.

    1981-01-01

    Lifting aerodynamic configurations have been screened and selected for the Mars aerocapture mission that (1) meet the geometric packaging requirements of the various payloads and the Space Shuttle cargo bay and (2) provide the aerodynamic performance characteristics required to obtain the atmospheric exit steering accuracy and the parachute deployment conditions desired. Hypersonic heat transfer and aerodynamic loads to the vehicle in the CO2 atmosphere are evaluated. Contemporary low density ablative thermal protection materials were selected that meet all the atmospheric entry requirements and provide a minimum mass solution. Results are presented of the aerodynamic configuration and thermal protection materials screening and selection. It is concluded that the aerothermodynamic design of this concept is feasible using state-of-the-art technology.

  19. Applications of the ram accelerator to hypervelocity aerothermodynamic testing

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Knowlen, C.; Hertzberg, A.

    1992-01-01

    A ram accelerator used as a hypervelocity launcher for large-scale aeroballistic range applications in hypersonics and aerodynamics research is presented. It is an in-bore ramjet device in which a projectile shaped like the centerbody of a supersonic ramjet is propelled down a stationary tube filled with a tailored combustible gas mixture. Ram accelerator operation has been demonstrated at 39 mm and 90 mm bores, supporting the proposition that this launcher concept can be scaled up to very large bore diameters of the order of 30-60 cm. It is concluded that high quality data obtained from the tube wall and projectile during the aceleration process itself are very useful for understanding aerothermodynamics of hypersonic flow in general, and for providing important CFD validation benchmarks.

  20. Aerothermodynamic Heating Analysis of Aerobraking and Aeromaneuvering Orbital Transfer Vehicles

    NASA Technical Reports Server (NTRS)

    Menees, Gene P.; Davies, Carol B.; Wilson, John F.; Brown, Kevin G.

    1985-01-01

    The thermal-protection requirements of two aeroassisted orbital transfer vehicles (AOTVS) are analyzed for return missions between the geosynchronous and Shuttle orbits. One of the designs is a specialized version of a previously proposed generic aerobraking vehicle that Is capable of only delivery-type operations. The other Is a high-lift aeromaneuvering vehicle that is optimized for low Earth orbit sortie missions involving large, multiple plane-inclination changes. The aerothermal environment of the aerobraking vehicle is analyzed using state-of-the-art methods for nonequilibrium-radiative and convective heating that incorporate refinements unique to the configuration. The heating analysis of the aeromaneuvering vehicle required the development of a flowfield model for rarefied-hypersonic flow over a lifting surface at incidence. The predicted aerothermodynamic heating characteristics for both vehicles are correlated with thermal-control

  1. EvoL: the new Padova Tree-SPH parallel code for cosmological simulations. I. Basic code: gravity and hydrodynamics

    NASA Astrophysics Data System (ADS)

    Merlin, E.; Buonomo, U.; Grassi, T.; Piovan, L.; Chiosi, C.

    2010-04-01

    Context. We present the new release of the Padova N-body code for cosmological simulations of galaxy formation and evolution, EvoL. The basic Tree + SPH code is presented and analysed, together with an overview of the software architectures. Aims: EvoL is a flexible parallel Fortran95 code, specifically designed for simulations of cosmological structure formations on cluster, galactic and sub-galactic scales. Methods: EvoL is a fully Lagrangian self-adaptive code, based on the classical oct-tree by Barnes & Hut (1986, Nature, 324, 446) and on the smoothed particle hydrodynamics algorithm (SPH, Lucy 1977, AJ, 82, 1013). It includes special features like adaptive softening lengths with correcting extra-terms, and modern formulations of SPH and artificial viscosity. It is designed to be run in parallel on multiple CPUs to optimise the performance and save computational time. Results: We describe the code in detail, and present the results of a number of standard hydrodynamical tests.

  2. Integration of the low-energy particle track simulation code in Geant4

    NASA Astrophysics Data System (ADS)

    Arce, Pedro; Muñoz, Antonio; Moraleda, Montserrat; Gomez Ros, José María; Blanco, Fernando; Perez, José Manuel; García, Gustavo

    2015-08-01

    The Low-Energy Particle Track Simulation code (LEPTS) is a Monte Carlo code developed to simulate the damage caused by radiation at molecular level. The code is based on experimental data of scattering cross sections, both differential and integral, and energy loss data, complemented with theoretical calculations. It covers the interactions of electrons and positrons from energies of 10 keV down to 0.1 eV in different biologically relevant materials. In this article we briefly mention the main characteristics of this code and we present its integration within the Geant4 Monte Carlo toolkit.

  3. Neutral Particle Transport in Cylindrical Plasma Simulated by a Monte Carlo Code

    NASA Astrophysics Data System (ADS)

    Yu, Deliang; Yan, Longwen; Zhong, Guangwu; Lu, Jie; Yi, Ping

    2007-04-01

    A Monte Carlo code (MCHGAS) has been developed to investigate the neutral particle transport. The code can calculate the radial profile and energy spectrum of neutral particles in cylindrical plasmas. The calculation time of the code is dramatically reduced when the Splitting and Roulette schemes are applied. The plasma model of an infinite cylinder is assumed in the code, which is very convenient in simulating neutral particle transports in small and middle-sized tokamaks. The design of the multi-channel neutral particle analyser (NPA) on HL-2A can be optimized by using this code.

  4. Program Code Generator for Cardiac Electrophysiology Simulation with Automatic PDE Boundary Condition Handling

    PubMed Central

    Punzalan, Florencio Rusty; Kunieda, Yoshitoshi; Amano, Akira

    2015-01-01

    Clinical and experimental studies involving human hearts can have certain limitations. Methods such as computer simulations can be an important alternative or supplemental tool. Physiological simulation at the tissue or organ level typically involves the handling of partial differential equations (PDEs). Boundary conditions and distributed parameters, such as those used in pharmacokinetics simulation, add to the complexity of the PDE solution. These factors can tailor PDE solutions and their corresponding program code to specific problems. Boundary condition and parameter changes in the customized code are usually prone to errors and time-consuming. We propose a general approach for handling PDEs and boundary conditions in computational models using a replacement scheme for discretization. This study is an extension of a program generator that we introduced in a previous publication. The program generator can generate code for multi-cell simulations of cardiac electrophysiology. Improvements to the system allow it to handle simultaneous equations in the biological function model as well as implicit PDE numerical schemes. The replacement scheme involves substituting all partial differential terms with numerical solution equations. Once the model and boundary equations are discretized with the numerical solution scheme, instances of the equations are generated to undergo dependency analysis. The result of the dependency analysis is then used to generate the program code. The resulting program code are in Java or C programming language. To validate the automatic handling of boundary conditions in the program code generator, we generated simulation code using the FHN, Luo-Rudy 1, and Hund-Rudy cell models and run cell-to-cell coupling and action potential propagation simulations. One of the simulations is based on a published experiment and simulation results are compared with the experimental data. We conclude that the proposed program code generator can be used to

  5. Program Code Generator for Cardiac Electrophysiology Simulation with Automatic PDE Boundary Condition Handling.

    PubMed

    Punzalan, Florencio Rusty; Kunieda, Yoshitoshi; Amano, Akira

    2015-01-01

    Clinical and experimental studies involving human hearts can have certain limitations. Methods such as computer simulations can be an important alternative or supplemental tool. Physiological simulation at the tissue or organ level typically involves the handling of partial differential equations (PDEs). Boundary conditions and distributed parameters, such as those used in pharmacokinetics simulation, add to the complexity of the PDE solution. These factors can tailor PDE solutions and their corresponding program code to specific problems. Boundary condition and parameter changes in the customized code are usually prone to errors and time-consuming. We propose a general approach for handling PDEs and boundary conditions in computational models using a replacement scheme for discretization. This study is an extension of a program generator that we introduced in a previous publication. The program generator can generate code for multi-cell simulations of cardiac electrophysiology. Improvements to the system allow it to handle simultaneous equations in the biological function model as well as implicit PDE numerical schemes. The replacement scheme involves substituting all partial differential terms with numerical solution equations. Once the model and boundary equations are discretized with the numerical solution scheme, instances of the equations are generated to undergo dependency analysis. The result of the dependency analysis is then used to generate the program code. The resulting program code are in Java or C programming language. To validate the automatic handling of boundary conditions in the program code generator, we generated simulation code using the FHN, Luo-Rudy 1, and Hund-Rudy cell models and run cell-to-cell coupling and action potential propagation simulations. One of the simulations is based on a published experiment and simulation results are compared with the experimental data. We conclude that the proposed program code generator can be used to

  6. GYSELA, a full-f global gyrokinetic Semi-Lagrangian code for ITG turbulence simulations

    SciTech Connect

    Grandgirard, V.; Sarazin, Y.; Garbet, X.; Dif-Pradalier, G.; Ghendrih, Ph.; Besse, N.; Bertrand, P.

    2006-11-30

    This work addresses non-linear global gyrokinetic simulations of ion temperature gradient (ITG) driven turbulence with the GYSELA code. The particularity of GYSELA code is to use a fixed grid with a Semi-Lagrangian (SL) scheme and this for the entire distribution function. The 4D non-linear drift-kinetic version of the code already showns the interest of such a SL method which exhibits good properties of energy conservation in non-linear regime as well as an accurate description of fine spatial scales. The code has been upgrated to run 5D simulations of toroidal ITG turbulence. Linear benchmarks and non-linear first results prove that semi-lagrangian codes can be a credible alternative for gyrokinetic simulations.

  7. A code to simulate nuclear reactor inventories and associated gamma-ray spectra.

    PubMed

    Cresswell, A J; Allyson, J D; Sanderson, D C

    2001-01-01

    A computer code has been developed to simulate the gamma-ray spectra that would be measured by airborne gamma spectrometry (AGS) systems from sources containing short-lived fission products. The code uses simple numerical methods to simulate the production and decay of fission products and generates spectra for sodium iodide (NaI) detectors using Monte Carlo codes. A new Monte Carlo code using a virtual array of detectors to reduce simulation times for airborne geometries is described. Spectra generated for a short irradiation and laboratory geometry have been compared with an experimental data set. The agreement is good. Spectra have also been generated for airborne geometries and longer irradiation periods. The application of this code to generate AGS spectra for accident scenarios and their uses in the development and evaluation of spectral analysis methods for such situations are discussed.

  8. Multi-level adaptive particle mesh (MLAPM): a c code for cosmological simulations

    NASA Astrophysics Data System (ADS)

    Knebe, Alexander; Green, Andrew; Binney, James

    2001-08-01

    We present a computer code written in c that is designed to simulate structure formation from collisionless matter. The code is purely grid-based and uses a recursively refined Cartesian grid to solve Poisson's equation for the potential, rather than obtaining the potential from a Green's function. Refinements can have arbitrary shapes and in practice closely follow the complex morphology of the density field that evolves. The time-step shortens by a factor of 2 with each successive refinement. Competing approaches to N-body simulation are discussed from the point of view of the basic theory of N-body simulation. It is argued that an appropriate choice of softening length ɛ is of great importance and that ɛ should be at all points an appropriate multiple of the local interparticle separation. Unlike tree and P3M codes, multigrid codes automatically satisfy this requirement. We show that at early times and low densities in cosmological simulations, ɛ needs to be significantly smaller relative to the interparticle separation than in virialized regions. Tests of the ability of the code's Poisson solver to recover the gravitational fields of both virialized haloes and Zel'dovich waves are presented, as are tests of the code's ability to reproduce analytic solutions for plane-wave evolution. The times required to conduct a ΛCDM cosmological simulation for various configurations are compared with the times required to complete the same simulation with the ART, AP3M and GADGET codes. The power spectra, halo mass functions and halo-halo correlation functions of simulations conducted with different codes are compared. The code is available from http://www-thphys.physics.ox.ac.uk/users/MLAPM.

  9. Relativistic modeling capabilities in PERSEUS extended MHD simulation code for HED plasmas

    NASA Astrophysics Data System (ADS)

    Hamlin, Nathaniel D.; Seyler, Charles E.

    2014-12-01

    We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest hybrid X-pinch simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as X-pinches and laser-plasma interactions. By suitable formulation of the relativistic generalized Ohm's law as an evolution equation, we have reduced the recovery of primitive variables, a major technical challenge in relativistic codes, to a straightforward algebraic computation. Our code recovers expected results in the non-relativistic limit, and reveals new physics in the modeling of electron beam acceleration following an X-pinch. Through the use of a relaxation scheme, relativistic PERSEUS is able to handle nine orders of magnitude in density variation, making it the first fluid code, to our knowledge, that can simulate relativistic HED plasmas.

  10. Relativistic modeling capabilities in PERSEUS extended MHD simulation code for HED plasmas

    SciTech Connect

    Hamlin, Nathaniel D.; Seyler, Charles E.

    2014-12-15

    We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest hybrid X-pinch simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as X-pinches and laser-plasma interactions. By suitable formulation of the relativistic generalized Ohm’s law as an evolution equation, we have reduced the recovery of primitive variables, a major technical challenge in relativistic codes, to a straightforward algebraic computation. Our code recovers expected results in the non-relativistic limit, and reveals new physics in the modeling of electron beam acceleration following an X-pinch. Through the use of a relaxation scheme, relativistic PERSEUS is able to handle nine orders of magnitude in density variation, making it the first fluid code, to our knowledge, that can simulate relativistic HED plasmas.

  11. GPUPEGAS: A NEW GPU-ACCELERATED HYDRODYNAMIC CODE FOR NUMERICAL SIMULATIONS OF INTERACTING GALAXIES

    SciTech Connect

    Kulikov, Igor

    2014-09-01

    In this paper, a new scalable hydrodynamic code, GPUPEGAS (GPU-accelerated Performance Gas Astrophysical Simulation), for the simulation of interacting galaxies is proposed. The details of a parallel numerical method co-design are described. A speed-up of 55 times was obtained within a single GPU accelerator. The use of 60 GPU accelerators resulted in 96% parallel efficiency. A collisionless hydrodynamic approach has been used for modeling of stars and dark matter. The scalability of the GPUPEGAS code is shown.

  12. An approach for coupled-code multiphysics core simulations from a common input

    SciTech Connect

    Schmidt, Rodney; Belcourt, Kenneth; Hooper, Russell; Pawlowski, Roger P.; Clarno, Kevin T.; Simunovic, Srdjan; Slattery, Stuart R.; Turner, John A.; Palmtag, Scott

    2014-12-10

    This study describes an approach for coupled-code multiphysics reactor core simulations that is being developed by the Virtual Environment for Reactor Applications (VERA) project in the Consortium for Advanced Simulation of Light-Water Reactors (CASL). In this approach a user creates a single problem description, called the “VERAIn” common input file, to define and setup the desired coupled-code reactor core simulation. A preprocessing step accepts the VERAIn file and generates a set of fully consistent input files for the different physics codes being coupled. The problem is then solved using a single-executable coupled-code simulation tool applicable to the problem, which is built using VERA infrastructure software tools and the set of physics codes required for the problem of interest. The approach is demonstrated by performing an eigenvalue and power distribution calculation of a typical three-dimensional 17 × 17 assembly with thermal–hydraulic and fuel temperature feedback. All neutronics aspects of the problem (cross-section calculation, neutron transport, power release) are solved using the Insilico code suite and are fully coupled to a thermal–hydraulic analysis calculated by the Cobra-TF (CTF) code. The single-executable coupled-code (Insilico-CTF) simulation tool is created using several VERA tools, including LIME (Lightweight Integrating Multiphysics Environment for coupling codes), DTK (Data Transfer Kit), Trilinos, and TriBITS. Parallel calculations are performed on the Titan supercomputer at Oak Ridge National Laboratory using 1156 cores, and a synopsis of the solution results and code performance is presented. Finally, ongoing development of this approach is also briefly described.

  13. An approach for coupled-code multiphysics core simulations from a common input

    DOE PAGES

    Schmidt, Rodney; Belcourt, Kenneth; Hooper, Russell; Pawlowski, Roger P.; Clarno, Kevin T.; Simunovic, Srdjan; Slattery, Stuart R.; Turner, John A.; Palmtag, Scott

    2014-12-10

    This study describes an approach for coupled-code multiphysics reactor core simulations that is being developed by the Virtual Environment for Reactor Applications (VERA) project in the Consortium for Advanced Simulation of Light-Water Reactors (CASL). In this approach a user creates a single problem description, called the “VERAIn” common input file, to define and setup the desired coupled-code reactor core simulation. A preprocessing step accepts the VERAIn file and generates a set of fully consistent input files for the different physics codes being coupled. The problem is then solved using a single-executable coupled-code simulation tool applicable to the problem, which ismore » built using VERA infrastructure software tools and the set of physics codes required for the problem of interest. The approach is demonstrated by performing an eigenvalue and power distribution calculation of a typical three-dimensional 17 × 17 assembly with thermal–hydraulic and fuel temperature feedback. All neutronics aspects of the problem (cross-section calculation, neutron transport, power release) are solved using the Insilico code suite and are fully coupled to a thermal–hydraulic analysis calculated by the Cobra-TF (CTF) code. The single-executable coupled-code (Insilico-CTF) simulation tool is created using several VERA tools, including LIME (Lightweight Integrating Multiphysics Environment for coupling codes), DTK (Data Transfer Kit), Trilinos, and TriBITS. Parallel calculations are performed on the Titan supercomputer at Oak Ridge National Laboratory using 1156 cores, and a synopsis of the solution results and code performance is presented. Finally, ongoing development of this approach is also briefly described.« less

  14. Aerothermodynamic Design of the Mars Science Laboratory Backshell and Parachute Cone

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Dyakonov, Artem A.; Wright, Michael J.; Tang, Chun Y.

    2009-01-01

    Aerothermodynamic design environments are presented for the Mars Science Laboratory entry capsule backshell and parachute cone. The design conditions are based on Navier-Stokes flowfield simulations on shallow (maximum total heat load) and steep (maximum heat flux) design entry trajectories from a 2009 launch. Transient interference effects from reaction control system thruster plumes were included in the design environments when necessary. The limiting backshell design heating conditions of 6.3 W/sq cm for heat flux and 377 J/sq cm for total heat load are not influenced by thruster firings. Similarly, the thrusters do not affect the parachute cover lid design environments (13 W/sq cm and 499 J/sq cm). If thruster jet firings occur near peak dynamic pressure, they will augment the design environments at the interface between the backshell and parachute cone (7 W/sq cm and 174 J/sq cm). Localized heat fluxes are higher near the thruster fairing during jet firings, but these areas did not require additional thermal protection material. Finally, heating bump factors were developed for antenna radomes on the parachute cone

  15. Adding-Point Strategy for Reduced-Order Hypersonic Aerothermodynamics Modeling Based on Fuzzy Clustering

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Liu, Li; Zhou, Sida; Yue, Zhenjiang

    2016-04-01

    Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow configurations. To improve the efficiency and precision of the ROMs, it is indispensable to add extra sampling points to the initial snapshots, since the number of sampling points to achieve an adequately accurate ROM is generally unknown in prior, but a large number of initial sampling points reduces the parsimony of the ROMs. A fuzzy-clustering-based adding-point strategy is proposed and the fuzzy clustering acts an indicator of the region in which the precision of ROMs is relatively low. The proposed method is applied to construct the ROMs for the benchmark mathematical examples and a numerical example of hypersonic aerothermodynamics prediction for a typical control surface. The proposed method can achieve a 34.5% improvement on the efficiency than the estimated mean squared error prediction algorithm and shows same-level prediction accuracy.

  16. Aerothermodynamics of compressible flow past a flat plate in the slip-flow regime

    NASA Astrophysics Data System (ADS)

    Cheng, Chi-Yang; Dai, Yi; Li, Genong; Hu, Yitao; Lai, Ming-Chia

    2015-11-01

    Compressible flow past a flat plate in the slip-flow regime features a very simple geometry and flow field, but it retains the most relevant and interesting physics in high-speed rarefied gas dynamics. In the slip-flow regime, the aerothermodynamic issues, especially the recovery factors and the convection heat transfer correlation, are the focus of this presentation. We first present the detailed similarity equations, especially the transformed Maxwell's slip and jump boundary conditions, and the equations for the Chapman-Rubesin parameter as well as how we incorporate the variable gas properties and the constitutive scaling model for the Knudsen layer in the similarity equations. The similarity solutions are compared with results published by E. R. van Driest [NACA Technical Note 2597, 1952]. We point out that van Driest's solutions were computed by using no-slip and no-jump boundary conditions. The recovery factor and Nusselt number of the plate are shown as functions of the Reynolds number and the Mach number. Finally, the similarity solutions are also compared with simulations of a two-dimensional computational fluid dynamics model solving the full Navier-Stokes-Fourier equations with slip and jump boundary conditions.

  17. The FLUKA Code: An Accurate Simulation Tool for Particle Therapy

    PubMed Central

    Battistoni, Giuseppe; Bauer, Julia; Boehlen, Till T.; Cerutti, Francesco; Chin, Mary P. W.; Dos Santos Augusto, Ricardo; Ferrari, Alfredo; Ortega, Pablo G.; Kozłowska, Wioletta; Magro, Giuseppe; Mairani, Andrea; Parodi, Katia; Sala, Paola R.; Schoofs, Philippe; Tessonnier, Thomas; Vlachoudis, Vasilis

    2016-01-01

    Monte Carlo (MC) codes are increasingly spreading in the hadrontherapy community due to their detailed description of radiation transport and interaction with matter. The suitability of a MC code for application to hadrontherapy demands accurate and reliable physical models capable of handling all components of the expected radiation field. This becomes extremely important for correctly performing not only physical but also biologically based dose calculations, especially in cases where ions heavier than protons are involved. In addition, accurate prediction of emerging secondary radiation is of utmost importance in innovative areas of research aiming at in vivo treatment verification. This contribution will address the recent developments of the FLUKA MC code and its practical applications in this field. Refinements of the FLUKA nuclear models in the therapeutic energy interval lead to an improved description of the mixed radiation field as shown in the presented benchmarks against experimental data with both 4He and 12C ion beams. Accurate description of ionization energy losses and of particle scattering and interactions lead to the excellent agreement of calculated depth–dose profiles with those measured at leading European hadron therapy centers, both with proton and ion beams. In order to support the application of FLUKA in hospital-based environments, Flair, the FLUKA graphical interface, has been enhanced with the capability of translating CT DICOM images into voxel-based computational phantoms in a fast and well-structured way. The interface is capable of importing also radiotherapy treatment data described in DICOM RT standard. In addition, the interface is equipped with an intuitive PET scanner geometry generator and automatic recording of coincidence events. Clinically, similar cases will be presented both in terms of absorbed dose and biological dose calculations describing the various available features. PMID:27242956

  18. The FLUKA Code: An Accurate Simulation Tool for Particle Therapy.

    PubMed

    Battistoni, Giuseppe; Bauer, Julia; Boehlen, Till T; Cerutti, Francesco; Chin, Mary P W; Dos Santos Augusto, Ricardo; Ferrari, Alfredo; Ortega, Pablo G; Kozłowska, Wioletta; Magro, Giuseppe; Mairani, Andrea; Parodi, Katia; Sala, Paola R; Schoofs, Philippe; Tessonnier, Thomas; Vlachoudis, Vasilis

    2016-01-01

    Monte Carlo (MC) codes are increasingly spreading in the hadrontherapy community due to their detailed description of radiation transport and interaction with matter. The suitability of a MC code for application to hadrontherapy demands accurate and reliable physical models capable of handling all components of the expected radiation field. This becomes extremely important for correctly performing not only physical but also biologically based dose calculations, especially in cases where ions heavier than protons are involved. In addition, accurate prediction of emerging secondary radiation is of utmost importance in innovative areas of research aiming at in vivo treatment verification. This contribution will address the recent developments of the FLUKA MC code and its practical applications in this field. Refinements of the FLUKA nuclear models in the therapeutic energy interval lead to an improved description of the mixed radiation field as shown in the presented benchmarks against experimental data with both (4)He and (12)C ion beams. Accurate description of ionization energy losses and of particle scattering and interactions lead to the excellent agreement of calculated depth-dose profiles with those measured at leading European hadron therapy centers, both with proton and ion beams. In order to support the application of FLUKA in hospital-based environments, Flair, the FLUKA graphical interface, has been enhanced with the capability of translating CT DICOM images into voxel-based computational phantoms in a fast and well-structured way. The interface is capable of importing also radiotherapy treatment data described in DICOM RT standard. In addition, the interface is equipped with an intuitive PET scanner geometry generator and automatic recording of coincidence events. Clinically, similar cases will be presented both in terms of absorbed dose and biological dose calculations describing the various available features. PMID:27242956

  19. Large Eddy Simulation of Flow in Turbine Cascades Using LEST and UNCLE Codes

    NASA Technical Reports Server (NTRS)

    Ashpis, David (Technical Monitor); Huang, P. G.

    2004-01-01

    During the period December 23, 1997 and December August 31, 2004, we accomplished the development of 2 CFD codes for DNS/LES/RANS simulation of turbine cascade flows, namely LESTool and UNCLE. LESTool is a structured code making use of 5th order upwind differencing scheme and UNCLE is a second-order-accuracy unstructured code. LESTool has both Dynamic SGS and Sparlart's DES models and UNCLE makes use of URANS and DES models. The current report provides a description of methodologies used in the codes.

  20. Large Eddy Simulation of Flow in Turbine Cascades Using LESTool and UNCLE Codes

    NASA Technical Reports Server (NTRS)

    Huang, P. G.

    2004-01-01

    During the period December 23,1997 and December August 31,2004, we accomplished the development of 2 CFD codes for DNS/LES/RANS simulation of turbine cascade flows, namely LESTool and UNCLE. LESTool is a structured code making use of 5th order upwind differencing scheme and UNCLE is a second-order-accuracy unstructured code. LESTool has both Dynamic SGS and Spalart's DES models and UNCLE makes use of URANS and DES models. The current report provides a description of methodologies used in the codes.

  1. The TOUGH codes - a family of simulation tools for multiphase flowand transport processes in permeable media

    SciTech Connect

    Pruess, Karsten

    2003-08-08

    Numerical simulation has become a widely practiced andaccepted technique for studying flow and transport processes in thevadose zone and other subsurface flow systems. This article discusses asuite of codes, developed primarily at Lawrence Berkeley NationalLaboratory (LBNL), with the capability to model multiphase flows withphase change. We summarize history and goals in the development of theTOUGH codes, and present the governing equations for multiphase,multicomponent flow. Special emphasis is given to space discretization bymeans of integral finite differences (IFD). Issues of code implementationand architecture are addressed, as well as code applications,maintenance, and future developments.

  2. A Linac Simulation Code for Macro-Particles Tracking and Steering Algorithm Implementation

    SciTech Connect

    sun, yipeng

    2012-05-03

    In this paper, a linac simulation code written in Fortran90 is presented and several simulation examples are given. This code is optimized to implement linac alignment and steering algorithms, and evaluate the accelerator errors such as RF phase and acceleration gradient, quadrupole and BPM misalignment. It can track a single particle or a bunch of particles through normal linear accelerator elements such as quadrupole, RF cavity, dipole corrector and drift space. One-to-one steering algorithm and a global alignment (steering) algorithm are implemented in this code.

  3. GPU-optimized Code for Long-term Simulations of Beam-beam Effects in Colliders

    SciTech Connect

    Roblin, Yves; Morozov, Vasiliy; Terzic, Balsa; Aturban, Mohamed A.; Ranjan, D.; Zubair, Mohammed

    2013-06-01

    We report on the development of the new code for long-term simulation of beam-beam effects in particle colliders. The underlying physical model relies on a matrix-based arbitrary-order symplectic particle tracking for beam transport and the Bassetti-Erskine approximation for beam-beam interaction. The computations are accelerated through a parallel implementation on a hybrid GPU/CPU platform. With the new code, a previously computationally prohibitive long-term simulations become tractable. We use the new code to model the proposed medium-energy electron-ion collider (MEIC) at Jefferson Lab.

  4. PEGAS: Hydrodynamical code for numerical simulation of the gas components of interacting galaxies

    NASA Astrophysics Data System (ADS)

    Kulikov, Igor

    A new hydrodynamical code for numerical simulation of the gravitational gas dynamics is described in the paper. The code is based on the Fluid-in-Cell method with a Godunov-type scheme at the Eulerian stage. The numerical method was adapted for GPU-based supercomputers. The performance of the code is shown by the simulation of the collision of the gas components of two similar disc galaxies in the course of the central collision of the galaxies in the polar direction.

  5. Three-dimensional parallel UNIPIC-3D code for simulations of high-power microwave devices

    SciTech Connect

    Wang Jianguo; Chen Zaigao; Wang Yue; Zhang Dianhui; Qiao Hailiang; Fu Meiyan; Yuan Yuan; Liu Chunliang; Li Yongdong; Wang Hongguang

    2010-07-15

    This paper introduces a self-developed, three-dimensional parallel fully electromagnetic particle simulation code UNIPIC-3D. In this code, the electromagnetic fields are updated using the second-order, finite-difference time-domain method, and the particles are moved using the relativistic Newton-Lorentz force equation. The electromagnetic field and particles are coupled through the current term in Maxwell's equations. Two numerical examples are used to verify the algorithms adopted in this code, numerical results agree well with theoretical ones. This code can be used to simulate the high-power microwave (HPM) devices, such as the relativistic backward wave oscillator, coaxial vircator, and magnetically insulated line oscillator, etc. UNIPIC-3D is written in the object-oriented C++ language and can be run on a variety of platforms including WINDOWS, LINUX, and UNIX. Users can use the graphical user's interface to create the complex geometric structures of the simulated HPM devices, which can be automatically meshed by UNIPIC-3D code. This code has a powerful postprocessor which can display the electric field, magnetic field, current, voltage, power, spectrum, momentum of particles, etc. For the sake of comparison, the results computed by using the two-and-a-half-dimensional UNIPIC code are also provided for the same parameters of HPM devices, the numerical results computed from these two codes agree well with each other.

  6. Applications of the LAHET simulation code to relativistic heavy ion detectors

    SciTech Connect

    Waters, L.S.; Gavron, A.

    1991-12-31

    The Los Alamos High Energy Transport (LAHET) simulation code has been applied to test beam data from the lead/scintillator Participant Calorimeter of BNL AGS experiment E814. The LAHET code treats hadronic interactions with the LANL version of the Oak Ridge code HETC. LAHET has now been expanded to handle hadrons with kinetic energies greater than 5 GeV with the FLUKA code, while HETC is used exclusively below 2.0 GeV. FLUKA is phased in linearly between 2.0 and 5.0 GeV. Transport of electrons and photons is done with EGS4, and an interface to the Los Alamos HMCNP3B library based code is provided to analyze neutrons with kinetic energies less than 20 MeV. Excellent agreement is found between the test data and simulation, and results for 2.46 GeV/c protons and pions are illustrated in this article.

  7. Applications of the LAHET simulation code to relativistic heavy ion detectors

    SciTech Connect

    Waters, L.S.; Gavron, A.

    1991-01-01

    The Los Alamos High Energy Transport (LAHET) simulation code has been applied to test beam data from the lead/scintillator Participant Calorimeter of BNL AGS experiment E814. The LAHET code treats hadronic interactions with the LANL version of the Oak Ridge code HETC. LAHET has now been expanded to handle hadrons with kinetic energies greater than 5 GeV with the FLUKA code, while HETC is used exclusively below 2.0 GeV. FLUKA is phased in linearly between 2.0 and 5.0 GeV. Transport of electrons and photons is done with EGS4, and an interface to the Los Alamos HMCNP3B library based code is provided to analyze neutrons with kinetic energies less than 20 MeV. Excellent agreement is found between the test data and simulation, and results for 2.46 GeV/c protons and pions are illustrated in this article.

  8. Applications of the lahet simulation code to relativistic heavy ion detectors

    SciTech Connect

    Waters, L.; Gavron, A.

    1991-12-31

    The Los Alamos High Energy Transport (LAHET) simulation code has been applied to test beam data from the lead/scintillator Participant Calorimeter of BNL AGS experiment E814. The LAHET code treats hadronic interactions with the LANL version of the Oak Ridge code HETC. LAHET has now been expanded to handle hadrons with kinetic energies greater than 5 GeV with the FLUKA code, while HETC is used exclusively below 2.0 GeV. FLUKA is phased in linearly between 2.0 and 5.0 GeV. Transport of electrons and photons is done with EGS4, and an interface to the Los Alamos HMCNP3B library based code is provided to analyze neutrons with kinetic energies less than 20 MeV. Excellent agreement is found between the test data and simulation, and results for 2.46 GeV/c protons and pions are illustrated in this article.

  9. Survey of Aerothermodynamics Facilities Useful for the Design of Hypersonic Vehicles Using Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Deiwert, G. S.

    1997-01-01

    The dream of producing an air-breathing, hydrogen fueled, hypervelocity aircraft has been before the aerospace community for decades. However, such a craft has not yet been realized, even in an experimental form. Despite the simplicity and beauty of the concept, many formidable problems must be overcome to make this dream a reality. This paper summarizes the aero/aerothermodynamic issues that must be addressed to make the dream a reality and discusses how aerothermodynamics facilities and their modem companion, real-gas computational fluid dynamics (CFD), can help solve the problems blocking the way to realizing the dream. The approach of the paper is first to outline the concept of an air-breathing hypersonic vehicle and then discuss the nose-to-tail aerothermodynamics issues and special aerodynamic problems that arise with such a craft. Then the utility of aerothermodynamic facilities and companion CFD analysis is illustrated by reviewing results from recent United States publications wherein these problems have been addressed. Papers selected for the discussion have k e n chosen such that the review will serve to survey important U.S. aero/aerothermodynamic real gas and conventional wind tunnel facilities that are useful in the study of hypersonic, hydrogen propelled hypervelocity vehicles.

  10. On the Development of a Gridless Inflation Code for Parachute Simulations

    SciTech Connect

    STRICKLAND,JAMES H.; HOMICZ,GREGORY F.; GOSSLER,ALBERT A.; WOLFE,WALTER P.; PORTER,VICKI L.

    2000-08-29

    In this paper the authors present the current status of an unsteady 3D parachute simulation code which is being developed at Sandia National Laboratories under the Department of Energy's Accelerated Strategic Computing Initiative (ASCI). The Vortex Inflation PARachute code (VIPAR) which embodies this effort will eventually be able to perform complete numerical simulations of ribbon parachute deployment, inflation, and steady descent. At the present time they have a working serial version of the uncoupled fluids code which can simulate unsteady 3D incompressible flows around bluff bodies made up of triangular membrane elements. A parallel version of the code has just been completed which will allow one to compute flows over complex geometries utilizing several thousand processors on one of the new DOE teraFLOP computers.

  11. An Advanced simulation Code for Modeling Inductive Output Tubes

    SciTech Connect

    Thuc Bui; R. Lawrence Ives

    2012-04-27

    During the Phase I program, CCR completed several major building blocks for a 3D large signal, inductive output tube (IOT) code using modern computer language and programming techniques. These included a 3D, Helmholtz, time-harmonic, field solver with a fully functional graphical user interface (GUI), automeshing and adaptivity. Other building blocks included the improved electrostatic Poisson solver with temporal boundary conditions to provide temporal fields for the time-stepping particle pusher as well as the self electric field caused by time-varying space charge. The magnetostatic field solver was also updated to solve for the self magnetic field caused by time changing current density in the output cavity gap. The goal function to optimize an IOT cavity was also formulated, and the optimization methodologies were investigated.

  12. Simulation of Laser Wake Field Acceleration using a 2.5D PIC Code

    NASA Astrophysics Data System (ADS)

    An, W. M.; Hua, J. F.; Huang, W. H.; Tang, Ch. X.; Lin, Y. Z.

    2006-11-01

    A 2.5D PIC simulation code is developed to study the LWFA( Laser WakeField Acceleration ). The electron self-injection and the generation of mono-energetic electron beam in LWFA is briefly discussed through the simulation. And the experiment of this year at SILEX-I laser facility is also introduced.

  13. Code modernization and modularization of APEX and SWAT watershed simulation models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    SWAT (Soil and Water Assessment Tool) and APEX (Agricultural Policy / Environmental eXtender) are respectively large and small watershed simulation models derived from EPIC Environmental Policy Integrated Climate), a field-scale agroecology simulation model. All three models are coded in FORTRAN an...

  14. Mars Science Laboratory Entry Capsule Aerothermodynamics and Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Hollis, Brian R.; Dyakonov, Artem A.; Laub, Bernard; Wright, Michael J.; Rivellini, Tomasso P.; Slimko, Eric M.; Willcockson, William H.

    2007-01-01

    The Mars Science Laboratory (MSL) spacecraft is being designed to carry a large rover (greater than 800 kg) to the surface of Mars using a blunt-body entry capsule as the primary decelerator. The spacecraft is being designed for launch in 2009 and arrival at Mars in 2010. The combination of large mass and diameter with non-zero angle-of-attack for MSL will result in unprecedented convective heating environments caused by turbulence prior to peak heating. Navier-Stokes computations predict a large turbulent heating augmentation for which there are no supporting flight data1 and little ground data for validation. Consequently, an extensive experimental program has been established specifically for MSL to understand the level of turbulent augmentation expected in flight. The experimental data support the prediction of turbulent transition and have also uncovered phenomena that cannot be replicated with available computational methods. The result is that the flight aeroheating environments predictions must include larger uncertainties than are typically used for a Mars entry capsule. Finally, the thermal protection system (TPS) being used for MSL has not been flown at the heat flux, pressure, and shear stress combinations expected in flight, so a test program has been established to obtain conditions relevant to flight. This paper summarizes the aerothermodynamic definition analysis and TPS development, focusing on the challenges that are unique to MSL.

  15. Nonequilibrium effects on the aerothermodynamics of transatmospheric and aerobraking vehicles

    NASA Technical Reports Server (NTRS)

    Hassan, Basil; Candler, Graham V.

    1993-01-01

    A 3D CFD algorithm is used to study the effect of thermal and chemical nonequilibrium on slender and blunt body aerothermodynamics. Both perfect gas and reacting gas air models are used to compute the flow over a generic transatmospheric vehicle and a proposed lunar transfer vehicle. The reacting air is characterized by a translational-rotational temperature and a vibrational-electron-electronic temperature and includes eight chemical species. The effects of chemical reaction, vibrational excitation, and ionization on lift-to-drag ratio and trim angle are investigated. Results for the NASA Ames All-body Configuration show a significant difference in center of gravity location for a reacting gas flight case when compared to a perfect gas wind tunnel case at the same Mach number, Reynolds number, and angle of attack. For the same center of gravity location, the wind tunnel model trims at lower angle of attack than the full-scale flight case. Nonionized and ionized results for a proposed lunar transfer vehicle compare well to computational results obtained from a previously validated reacting gas algorithm. Under the conditions investigated, effects of weak ionization on the heat transfer and aerodynamic coefficients were minimal.

  16. Aerothermodynamic Environment Definition for the Genesis Sample Return Capsule

    NASA Technical Reports Server (NTRS)

    Cheatwood, F. McNeil; Merski, N. Ronald, Jr.; Riley, Christopher J.; Mitcheltree, Robert A.

    2001-01-01

    NASA's Genesis sample return mission will be the first to return material from beyond the Earth-Moon system. NASA Langley Research Center supported this mission with aerothermodynamic analyses of the sample return capsule. This paper provides an overview of that effort. The capsule is attached through its forebody to the spacecraft bus. When the attachment is severed prior to Earth entry, forebody cavities remain. The presence of these cavities could dramatically increase the heating environment in their vicinity and downstream. A combination of computational fluid dynamics calculations and wind tunnel phosphor thermography tests were employed to address this issue. These results quantify the heating environment in and around the cavities, and were a factor in the decision to switch forebody heat shield materials. A transition map is developed which predicts that the flow aft of the penetrations will still be laminar at the peak heating point of the trajectory. As the vehicle continues along the trajectory to the peak dynamic pressure point, fully turbulent flow aft of the penetrations could occur. The integrated heat load calculations show that a heat shield sized to the stagnation point levels will be adequate for the predicted environment aft of the penetrations.

  17. The development of CACTUS : a wind and marine turbine performance simulation code.

    SciTech Connect

    Barone, Matthew Franklin; Murray, Jonathan

    2010-12-01

    CACTUS (Code for Axial and Cross-flow TUrbine Simulation) is a turbine performance simulation code, based on a free wake vortex method, under development at Sandia National Laboratories (SNL) as part of a Department of Energy program to study marine hydrokinetic (MHK) devices. The current effort builds upon work previously done at SNL in the area of vertical axis wind turbine simulation, and aims to add models to handle generic device geometry and physical models specific to the marine environment. An overview of the current state of the project and validation effort is provided.

  18. Gamma irradiator dose mapping simulation using the MCNP code and benchmarking with dosimetry.

    PubMed

    Sohrabpour, M; Hassanzadeh, M; Shahriari, M; Sharifzadeh, M

    2002-10-01

    The Monte Carlo transport code, MCNP, has been applied in simulating dose rate distribution in the IR-136 gamma irradiator system. Isodose curves, cumulative dose values, and system design data such as throughputs, over-dose-ratios, and efficiencies have been simulated as functions of product density. Simulated isodose curves, and cumulative dose values were compared with dosimetry values obtained using polymethyle-methacrylate, Fricke, ethanol-chlorobenzene, and potassium dichromate dosimeters. The produced system design data were also found to agree quite favorably with those of the system manufacturer's data. MCNP has thus been found to be an effective transport code for handling of various dose mapping excercises for gamma irradiators.

  19. A Novel Technique for Running the NASA Legacy Code LAPIN Synchronously With Simulations Developed Using Simulink

    NASA Technical Reports Server (NTRS)

    Vrnak, Daniel R.; Stueber, Thomas J.; Le, Dzu K.

    2012-01-01

    This report presents a method for running a dynamic legacy inlet simulation in concert with another dynamic simulation that uses a graphical interface. The legacy code, NASA's LArge Perturbation INlet (LAPIN) model, was coded using the FORTRAN 77 (The Portland Group, Lake Oswego, OR) programming language to run in a command shell similar to other applications that used the Microsoft Disk Operating System (MS-DOS) (Microsoft Corporation, Redmond, WA). Simulink (MathWorks, Natick, MA) is a dynamic simulation that runs on a modern graphical operating system. The product of this work has both simulations, LAPIN and Simulink, running synchronously on the same computer with periodic data exchanges. Implementing the method described in this paper avoided extensive changes to the legacy code and preserved its basic operating procedure. This paper presents a novel method that promotes inter-task data communication between the synchronously running processes.

  20. SPACE CHARGE SIMULATION METHODS INCORPORATED IN SOME MULTI - PARTICLE TRACKING CODES AND THEIR RESULTS COMPARISON.

    SciTech Connect

    BEEBE - WANG,J.; LUCCIO,A.U.; D IMPERIO,N.; MACHIDA,S.

    2002-06-03

    Space charge in high intensity beams is an important issue in accelerator physics. Due to the complicity of the problems, the most effective way of investigating its effect is by computer simulations. In the resent years, many space charge simulation methods have been developed and incorporated in various 2D or 3D multi-particle-tracking codes. It has becoming necessary to benchmark these methods against each other, and against experimental results. As a part of global effort, we present our initial comparison of the space charge methods incorporated in simulation codes ORBIT++, ORBIT and SIMPSONS. In this paper, the methods included in these codes are overviewed. The simulation results are presented and compared. Finally, from this study, the advantages and disadvantages of each method are discussed.

  1. Simulation and experimental research on the Alamouti code for ultraviolet communication

    NASA Astrophysics Data System (ADS)

    Guo, Li; Liu, Kunlun; Meng, Dedan; Mu, Xidong; Han, Dahai

    2016-01-01

    The Alamouti code can obtain the diversity gain utilizing the transmitting signal orthogonally without the use of a complicated decoding scheme. The modified Alamouti code for the ultraviolet (UV) communication system is studied in theoretical analysis, MATLAB® simulation, and offline experiment. The theoretical analysis and simulation results indicate that the usage of the Alamouti code in the UV communication system can achieve a higher diversity gain and reduce the system bit error rate more effectively than the single-input single-output and single-input multiple-output technologies. The experiments were performed to verify the simulation results. Next, we analyzed the discrepancy between the simulation results and the experimental results. These studies are helpful for UV multiple-input multiple-output communication system design and implementation.

  2. MOCCA code for star cluster simulation: comparison with optical observations using COCOA

    NASA Astrophysics Data System (ADS)

    Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Olech, Arkadiusz; Hypki, Arkadiusz

    2016-02-01

    We introduce and present preliminary results from COCOA (Cluster simulatiOn Comparison with ObservAtions) code for a star cluster after 12 Gyr of evolution simulated using the MOCCA code. The COCOA code is being developed to quickly compare results of numerical simulations of star clusters with observational data. We use COCOA to obtain parameters of the projected cluster model. For comparison, a FITS file of the projected cluster was provided to observers so that they could use their observational methods and techniques to obtain cluster parameters. The results show that the similarity of cluster parameters obtained through numerical simulations and observations depends significantly on the quality of observational data and photometric accuracy.

  3. 3D Convection-pulsation Simulations with the HERACLES Code

    NASA Astrophysics Data System (ADS)

    Felix, S.; Audit, E.; Dintrans, B.

    2015-10-01

    We present 3D simulations of the coupling between surface convection and pulsations due to the κ-mechanism in classical Cepheids of the red edge of Hertzsprung-Russell diagram's instability strip. We show that 3D convection is less powerful than 2D convection and does not quench the radiative pulsations, leading to an efficient 3D κ-mechanism. Thus, the 3D instability strip is closer to the observed one than the 1D or 2D were.

  4. Simulation of plasma turbulence in scrape-off layer conditions: the GBS code, simulation results and code validation

    NASA Astrophysics Data System (ADS)

    Ricci, P.; Halpern, F. D.; Jolliet, S.; Loizu, J.; Mosetto, A.; Fasoli, A.; Furno, I.; Theiler, C.

    2012-12-01

    Based on the drift-reduced Braginskii equations, the Global Braginskii Solver, GBS, is able to model the scrape-off layer (SOL) plasma turbulence in terms of the interplay between the plasma outflow from the tokamak core, the turbulent transport, and the losses at the vessel. Model equations, the GBS numerical algorithm, and GBS simulation results are described. GBS has been first developed to model turbulence in basic plasma physics devices, such as linear and simple magnetized toroidal devices, which contain some of the main elements of SOL turbulence in a simplified setting. In this paper we summarize the findings obtained from the simulation carried out in these configurations and we report the first simulations of SOL turbulence. We also discuss the validation project that has been carried out together with the GBS development.

  5. Aerothermodynamics of Pyrolizing Surfaces in Hypersonic Rarefied Flows

    NASA Technical Reports Server (NTRS)

    Haas, Brian L.; Milos, Frank S.; Arnold, James O. (Technical Monitor)

    1994-01-01

    Direct simulation Monte Carlo (DSMC) calculations of rarefied flows about entry bodies typically employ a fixed surface temperature or a radiative-equilibrium energy balance to compute that temperature. Such boundary conditions neglect any effects of heat capacitance and heat conduction in the spacecraft heat shield and, therefore, provide an upper bound for the surface temperature. Such calculations also neglect pyrolysis from the heat shield which can be significant for a high-energy incident flow at very low densities. Accurate prediction of both heating and aerodynamic forces requires including pyrolysis and surface heat transfer in the models for gas-surface interaction employed in DSMC methods. Although these physical models have long appeared in various continuum flow calculation codes, they have only recently appeared in DSMC codes which are required to simulate rarefied flows during entry at high altitudes. In the current implementation, routines from the widely distributed Charring Material Thermal Response and Ablation (CMA) program are coupled into a DSMC code to calculate the one-dimensional heat transfer into the carbon phenolic heat shield at each point on a vehicle surface. Temperature-dependent material properties, surface re-radiation, and in-depth pyrolysis were included in the calculation, but surface ablation was neglected. Sample calculations for entry of the Galileo probe into the atmosphere of Jupiter demonstrate that including pyrolysis in the model leads to significant differences in predicted aerodynamics. Granted, the drag coefficient does not depend strongly on the surface temperature which can itself be significantly below the radiative equilibrium value during entry. However, the surface mass flux due to pyrolysis of the material is significant once the probe drops to altitudes characterized by transition flow. This leads to a noticeable increase in drag and a decrease in heating compared to a body without pyrolysis.

  6. Survey of aerodynamics and aerothermodynamics efforts carried out in the frame of Mars exploration projects

    NASA Astrophysics Data System (ADS)

    Reynier, Philippe

    2014-10-01

    This contribution is a survey of aerodynamic and aerothermodynamics data related to Mars entry. The survey includes the studies carried out in the frame of projects aiming at preparing exploration missions involving entry probes into Mars atmosphere and the efforts have been concentrated on the aerothermodynamics developments. Russian (including former Soviet Union), European and NASA aerothermodynamics developments for preparing such missions have been accounted for. If a focus has been dedicated to the flight data gathered during Viking and Mars Pathfinder entries, the experimental and numerical activities carried out for the different projects have been also considered. The emphasis has been put on the post-flight analysis of flight experiments. The objective of the activity has been to develop a database of the developments performed for Mars entry that will be of interest for the preparation of future missions and for testing new models related to radiative transfer, and chemical kinetics schemes based on a state-to-state approach.

  7. Simulations of Edge Current Driven Kink Modes with BOUT + + code

    NASA Astrophysics Data System (ADS)

    Li, G. Q.; Xu, X. Q.; Snyder, P. B.; Turnbull, A. D.; Xia, T. Y.; Ma, C. H.; Xi, P. W.

    2013-10-01

    Edge kink modes (or peeling modes) play a key role in the ELMs. The edge kink modes are driven by peak edge current, which comes from the bootstrap current. We calculated sequences of equilibria with different edge current using CORSICA by keeping total current and pressure profile fixed. Based on these equilibria, with the 3-field BOUT + + code, we calculated the MHD instabilities driven by edge current. For linear low-n ideal MHD modes, BOUT + + results agree with GATO results. With the edge current increasing, the dominant modes are changed from high-n ballooning modes to low-n kink modes. The edge current provides also stabilizing effects on high-n ballooning modes. Furthermore, for edge current scan without keeping total current fixed, the increasing edge current can stabilize the high-n ballooning modes and cannot drive kink modes. The diamagnetic effect can stabilize the high-n ballooning modes, but has no effect on the low-n kink modes. Also, the nonlinear behavior of kink modes is analyzed. Work supported by China MOST grant 2013GB111000 and by China NSF grant 10975161. Also performed for USDOE by LLNL under DE-AC52-07NA27344.

  8. Two-dimensional full-wave code for reflectometry simulations in TJ-II

    SciTech Connect

    Blanco, E.; Heuraux, S.; Estrada, T.; Sanchez, J.; Cupido, L.

    2004-10-01

    A two-dimensional full-wave code in the extraordinary mode has been developed to simulate reflectometry in TJ-II. The code allows us to study the measurement capabilities of the future correlation reflectometer that is being installed in TJ-II. The code uses the finite-difference-time-domain technique to solve Maxwell's equations in the presence of density fluctuations. Boundary conditions are implemented by a perfectly matched layer to simulate free propagation. To assure the stability of the code, the current equations are solved by a fourth-order Runge-Kutta method. Density fluctuation parameters such as fluctuation level, wave numbers, and correlation lengths are extrapolated from those measured at the plasma edge using Langmuir probes. In addition, realistic plasma shape, density profile, magnetic configuration, and experimental setup of TJ-II are included to determine the plasma regimes in which accurate information may be obtained.

  9. Performance Simulation for Unit-memory Convolutional Codes with Byte-oriented Viterbi Decoding Algorithm

    NASA Technical Reports Server (NTRS)

    Vo, Q. D.

    1984-01-01

    A software package developed to simulate the performance of the byte-oriented Viterbi decoding algorithm for unit-memory (UM) codes on both 3-bit and 4-bit quantized AWGN channels is described. The simulation is shown to require negligible memory and less time than that for the RTMBEP algorith, although they both provide similar performance in terms of symbol-error probability. This makes it possible to compute the symbol-error probability of large codes and to determine the signal-to-noise ratio required to achieve a bit error rate (BER) of 0.000001 for corresponding concatenated systems. A (7, 10/48) UM code, 10-bit Reed-Solomon code combination achieves the required BER at 1.08 dB for a 3-bit quantized channel and at 0.91 dB for a 4-bit quantized channel.

  10. SpectralPlasmaSolver: a Spectral Code for Multiscale Simulations of Collisionless, Magnetized Plasmas

    NASA Astrophysics Data System (ADS)

    Vencels, Juris; Delzanno, Gian Luca; Manzini, Gianmarco; Markidis, Stefano; Peng, Ivy Bo; Roytershteyn, Vadim

    2016-05-01

    We present the design and implementation of a spectral code, called SpectralPlasmaSolver (SPS), for the solution of the multi-dimensional Vlasov-Maxwell equations. The method is based on a Hermite-Fourier decomposition of the particle distribution function. The code is written in Fortran and uses the PETSc library for solving the non-linear equations and preconditioning and the FFTW library for the convolutions. SPS is parallelized for shared- memory machines using OpenMP. As a verification example, we discuss simulations of the two-dimensional Orszag-Tang vortex problem and successfully compare them against a fully kinetic Particle-In-Cell simulation. An assessment of the performance of the code is presented, showing a significant improvement in the code running-time achieved by preconditioning, while strong scaling tests show a factor of 10 speed-up using 16 threads.

  11. TEMPEST code simulations of hydrogen distribution in reactor containment structures. Final report

    SciTech Connect

    Trent, D.S.; Eyler, L.L.

    1985-03-01

    The mass transport version of the TEMPEST computer code was used to simulate hydrogen distribution in geometric configurations relevant to reactor containment structures. Predicted results of Battelle-Frankfurt hydrogen distribution tests 1 to 6, and 12 are presented. Agreement between predictions and experimental data is good. Best agreement is obtained using the k-epsilon turbulence model in TEMPEST in flow cases where turbulent diffusion and stable stratification are dominant mechanisms affecting transport. The code's general analysis capabilities are summarized.

  12. The SPHINX code for simulation of processes in X-ray emulsion chambers

    NASA Astrophysics Data System (ADS)

    Mukhamedshin, R. A.

    A three-dimensional Monte Carlo program is elaborated for simulations of processes in X-ray emulsion chambers and measurement procedures used in experiments both aboard stratospheric balloons and at mountain altitudes. The code is applicable from ˜ 1 GeV to extremely high energies (˜ 10 PeV) for arbitrary type of chamber design including lead, carbon, rubber, air, e.g. The code is easy in use and of access for all the persons via Internet.

  13. SUPREM-DSMC: A New Scalable, Parallel, Reacting, Multidimensional Direct Simulation Monte Carlo Flow Code

    NASA Technical Reports Server (NTRS)

    Campbell, David; Wysong, Ingrid; Kaplan, Carolyn; Mott, David; Wadsworth, Dean; VanGilder, Douglas

    2000-01-01

    An AFRL/NRL team has recently been selected to develop a scalable, parallel, reacting, multidimensional (SUPREM) Direct Simulation Monte Carlo (DSMC) code for the DoD user community under the High Performance Computing Modernization Office (HPCMO) Common High Performance Computing Software Support Initiative (CHSSI). This paper will introduce the JANNAF Exhaust Plume community to this three-year development effort and present the overall goals, schedule, and current status of this new code.

  14. Quantitative V&V of CFD simulations and certification of CFD codes

    NASA Astrophysics Data System (ADS)

    Stern, Fred; Wilson, Robert; Shao, Jun

    2006-04-01

    Definitions and equations are provided for the quantitative assessment of numerical (verification) and modelling (validation) errors and uncertainties for CFD simulations and of intervals of certification for CFD codes. Verification, validation, and certification methodology and procedures are described. Examples of application of quantitative certification of RANS codes are presented for ship hydrodynamics. Opportunities and challenges for achieving consensus and standard V&V and certification methodology and procedures are discussed.

  15. Understanding Performance of Parallel Scientific Simulation Codes using Open|SpeedShop

    SciTech Connect

    Ghosh, K K

    2011-11-07

    Conclusions of this presentation are: (1) Open SpeedShop's (OSS) is convenient to use for large, parallel, scientific simulation codes; (2) Large codes benefit from uninstrumented execution; (3) Many experiments can be run in a short time - might need multiple shots e.g. usertime for caller-callee, hwcsamp for HW counters; (4) Decent idea of code's performance is easily obtained; (5) Statistical sampling calls for decent number of samples; and (6) HWC data is very useful for micro-analysis but can be tricky to analyze.

  16. A general concurrent algorithm for plasma particle-in-cell simulation codes

    NASA Technical Reports Server (NTRS)

    Liewer, Paulett C.; Decyk, Viktor K.

    1989-01-01

    The general concurrent particle-in-cell (GCPIC) algorithm has been used to implement an electrostatic particle-in-cell code on a 32-node hypercube parallel computer. The GCPIC algorithm decomposes the PIC code by dividing the particle simulation physical domain into subdomains that are equal in number to the number of processors; all subdomains will accordingly possess approximately equal numbers of particles. The portion of the code which updates particle positions and velocities is nearly 100 percent efficient when the number of particles increases linearly with that of hypercube processors.

  17. Parallel Grand Canonical Monte Carlo (ParaGrandMC) Simulation Code

    NASA Technical Reports Server (NTRS)

    Yamakov, Vesselin I.

    2016-01-01

    This report provides an overview of the Parallel Grand Canonical Monte Carlo (ParaGrandMC) simulation code. This is a highly scalable parallel FORTRAN code for simulating the thermodynamic evolution of metal alloy systems at the atomic level, and predicting the thermodynamic state, phase diagram, chemical composition and mechanical properties. The code is designed to simulate multi-component alloy systems, predict solid-state phase transformations such as austenite-martensite transformations, precipitate formation, recrystallization, capillary effects at interfaces, surface absorption, etc., which can aid the design of novel metallic alloys. While the software is mainly tailored for modeling metal alloys, it can also be used for other types of solid-state systems, and to some degree for liquid or gaseous systems, including multiphase systems forming solid-liquid-gas interfaces.

  18. Simulation of a ceramic impact experiment using the SPHINX smooth particle hydrodynamics code

    SciTech Connect

    Mandell, D.A.; Wingate, C.A.; Schwalbe, L.A.

    1996-08-01

    We are developing statistically based, brittle-fracture models and are implementing them into hydrocodes that can be used for designing systems with components of ceramics, glass, and/or other brittle materials. Because of the advantages it has simulating fracture, we are working primarily with the smooth particle hydrodynamics code SPHINX. We describe a new brittle fracture model that we have implemented into SPHINX, and we discuss how the model differs from others. To illustrate the code`s current capability, we simulate an experiment in which a tungsten rod strikes a target of heavily confined ceramic. Simulations in 3D at relatively coarse resolution yield poor results. However, 2D plane-strain approximations to the test produce crack patterns that are strikingly similar to the data, although the fracture model needs further refinement to match some of the finer details. We conclude with an outline of plans for continuing research and development.

  19. Development and Test of 2.5-Dimensional Electromagnetic PIC Simulation Code

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Yun; Lee, Ensang; Kim, Khan-Hyuk; Seon, Jongho; Lee, Dong-Hun; Ryu, Kwang-Sun

    2015-03-01

    We have developed a 2.5-dimensional electromagnetic particle simulation code using the particle-in-cell (PIC) method to investigate electromagnetic phenomena that occur in space plasmas. Our code is based on the leap-frog method and the centered difference method for integration and differentiation of the governing equations. We adopted the relativistic Buneman-Boris method to solve the Lorentz force equation and the Esirkepov method to calculate the current density while maintaining charge conservation. Using the developed code, we performed test simulations for electron two-stream instability and electron temperature anisotropy induced instability with the same initial parameters as used in previously reported studies. The test simulation results are almost identical with those of the previous papers.

  20. Electron Microburst Energy Dispersion Derived by Test Particle Simulation Code

    NASA Astrophysics Data System (ADS)

    Lee, J.; Parks, G. K.; Park, Y.; Tsurutani, B.

    2011-12-01

    Electron microbursts, energetic electron precipitation having duration less than 1 sec, have been thought to be generated by chorus wave and electron interactions. While the coincidence of chorus and microburst occurrence supports the wave-particle interaction theory, more crucial evidences have not been observed to explain the origin of microbursts. We think one of the observational evidences could be energy dispersion of microbursts. During chorus waves propagate along magnetic field, the resonance condition should be satisfied at different magnetic latitude for different energy electrons because chorus waves are coherent waves having narrow frequency band and electron microbursts have wide energy range, at least several hundreds KeV. If we observed electron microbursts at low altitude, the arrival time of different energy electrons should make unique energy dispersion structures. In order to observe the energy dispersion, we need a detector having fast time resolution and wide energy range. Our study is focused on defining the time resolution and energy range required to measure microburst energy dispersion. We performed test particles simulation interacting with simple coherent waves like chorus waves. By the wave-particle interaction, energetic electrons (test particles) changed pitch angles and some electrons were detected with energy dispersion at 600 km. We assumed a detector measuring microbursts at the altitude of 600 km. These results provide useful information in designing electron detectors for the future mission.

  1. Scalability study of parallel spatial direct numerical simulation code on IBM SP1 parallel supercomputer

    NASA Technical Reports Server (NTRS)

    Hanebutte, Ulf R.; Joslin, Ronald D.; Zubair, Mohammad

    1994-01-01

    The implementation and the performance of a parallel spatial direct numerical simulation (PSDNS) code are reported for the IBM SP1 supercomputer. The spatially evolving disturbances that are associated with laminar-to-turbulent in three-dimensional boundary-layer flows are computed with the PS-DNS code. By remapping the distributed data structure during the course of the calculation, optimized serial library routines can be utilized that substantially increase the computational performance. Although the remapping incurs a high communication penalty, the parallel efficiency of the code remains above 40% for all performed calculations. By using appropriate compile options and optimized library routines, the serial code achieves 52-56 Mflops on a single node of the SP1 (45% of theoretical peak performance). The actual performance of the PSDNS code on the SP1 is evaluated with a 'real world' simulation that consists of 1.7 million grid points. One time step of this simulation is calculated on eight nodes of the SP1 in the same time as required by a Cray Y/MP for the same simulation. The scalability information provides estimated computational costs that match the actual costs relative to changes in the number of grid points.

  2. RAY-RAMSES: a code for ray tracing on the fly in N-body simulations

    NASA Astrophysics Data System (ADS)

    Barreira, Alexandre; Llinares, Claudio; Bose, Sownak; Li, Baojiu

    2016-05-01

    We present a ray tracing code to compute integrated cosmological observables on the fly in AMR N-body simulations. Unlike conventional ray tracing techniques, our code takes full advantage of the time and spatial resolution attained by the N-body simulation by computing the integrals along the line of sight on a cell-by-cell basis through the AMR simulation grid. Moroever, since it runs on the fly in the N-body run, our code can produce maps of the desired observables without storing large (or any) amounts of data for post-processing. We implemented our routines in the RAMSES N-body code and tested the implementation using an example of weak lensing simulation. We analyse basic statistics of lensing convergence maps and find good agreement with semi-analytical methods. The ray tracing methodology presented here can be used in several cosmological analysis such as Sunyaev-Zel'dovich and integrated Sachs-Wolfe effect studies as well as modified gravity. Our code can also be used in cross-checks of the more conventional methods, which can be important in tests of theory systematics in preparation for upcoming large scale structure surveys.

  3. Three dimensional nonlinear simulations of edge localized modes on the EAST tokamak using BOUT++ code

    SciTech Connect

    Liu, Z. X. Xia, T. Y.; Liu, S. C.; Ding, S. Y.; Xu, X. Q.; Joseph, I.; Meyer, W. H.; Gao, X.; Xu, G. S.; Shao, L. M.; Li, G. Q.; Li, J. G.

    2014-09-15

    Experimental measurements of edge localized modes (ELMs) observed on the EAST experiment are compared to linear and nonlinear theoretical simulations of peeling-ballooning modes using the BOUT++ code. Simulations predict that the dominant toroidal mode number of the ELM instability becomes larger for lower current, which is consistent with the mode structure captured with visible light using an optical CCD camera. The poloidal mode number of the simulated pressure perturbation shows good agreement with the filamentary structure observed by the camera. The nonlinear simulation is also consistent with the experimentally measured energy loss during an ELM crash and with the radial speed of ELM effluxes measured using a gas puffing imaging diagnostic.

  4. Applications of the COG multiparticle Monte Carlo transport code to simulated imaging of complex objects

    SciTech Connect

    Buck, R M; Hall, J M

    1999-06-01

    COG is a major multiparticle simulation code in the LLNL Monte Carlo radiation transport toolkit. It was designed to solve deep-penetration radiation shielding problems in arbitrarily complex 3D geometries, involving coupled transport of photons, neutrons, and electrons. COG was written to provide as much accuracy as the underlying cross-sections will allow, and has a number of variance-reduction features to speed computations. Recently COG has been applied to the simulation of high- resolution radiographs of complex objects and the evaluation of contraband detection schemes. In this paper we will give a brief description of the capabilities of the COG transport code and show several examples of neutron and gamma-ray imaging simulations. Keywords: Monte Carlo, radiation transport, simulated radiography, nonintrusive inspection, neutron imaging.

  5. A program code generator for multiphysics biological simulation using markup languages.

    PubMed

    Amano, Akira; Kawabata, Masanari; Yamashita, Yoshiharu; Rusty Punzalan, Florencio; Shimayoshi, Takao; Kuwabara, Hiroaki; Kunieda, Yoshitoshi

    2012-01-01

    To cope with the complexity of the biological function simulation models, model representation with description language is becoming popular. However, simulation software itself becomes complex in these environment, thus, it is difficult to modify the simulation conditions, target computation resources or calculation methods. In the complex biological function simulation software, there are 1) model equations, 2) boundary conditions and 3) calculation schemes. Use of description model file is useful for first point and partly second point, however, third point is difficult to handle for various calculation schemes which is required for simulation models constructed from two or more elementary models. We introduce a simulation software generation system which use description language based description of coupling calculation scheme together with cell model description file. By using this software, we can easily generate biological simulation code with variety of coupling calculation schemes. To show the efficiency of our system, example of coupling calculation scheme with three elementary models are shown.

  6. An introduction to LIME 1.0 and its use in coupling codes for multiphysics simulations.

    SciTech Connect

    Belcourt, Noel; Pawlowski, Roger Patrick; Schmidt, Rodney Cannon; Hooper, Russell Warren

    2011-11-01

    LIME is a small software package for creating multiphysics simulation codes. The name was formed as an acronym denoting 'Lightweight Integrating Multiphysics Environment for coupling codes.' LIME is intended to be especially useful when separate computer codes (which may be written in any standard computer language) already exist to solve different parts of a multiphysics problem. LIME provides the key high-level software (written in C++), a well defined approach (with example templates), and interface requirements to enable the assembly of multiple physics codes into a single coupled-multiphysics simulation code. In this report we introduce important software design characteristics of LIME, describe key components of a typical multiphysics application that might be created using LIME, and provide basic examples of its use - including the customized software that must be written by a user. We also describe the types of modifications that may be needed to individual physics codes in order for them to be incorporated into a LIME-based multiphysics application.

  7. MULTIDIMENSIONAL COUPLED PHOTON-ELECTRON TRANSPORT SIMULATIONS USING NEUTRAL PARTICLE SN CODES

    SciTech Connect

    Ilas, Dan; Williams, Mark L; Peplow, Douglas E.; Kirk, Bernadette Lugue

    2008-01-01

    During the past two years a study was underway at ORNL to assess the suitability of the popular SN neutral particle codes ANISN, DORT and TORT for coupled photon-electron calculations specific to external beam therapy of medical physics applications. The CEPXS-BFP code was used to generate the cross sections. The computational tests were performed on phantoms typical of those used in medical physics for external beam therapy, with materials simulated by water at different densities and the comparisons were made against Monte Carlo simulations that served as benchmarks. Although the results for one-dimensional calculations were encouraging, it appeared that the higher dimensional transport codes had fundamental difficulties in handling the electron transport. The results of two-dimensional simulations using the code DORT with an S16 fully symmetric quadrature set agree fairly with the reference Monte Carlo results but not well enough for clinical applications. While the photon fluxes are in better agreement (generally, within less than 5% from the reference), the discrepancy increases, sometimes very significantly, for the electron fluxes. The paper, however, focuses on the results obtained with the three-dimensional code TORT which had convergence difficulties for the electron groups. Numerical instabilities occurred in these groups. These instabilities were more pronounced with the degree of anisotropy of the problem.

  8. Modified-Gravity-GADGET: a new code for cosmological hydrodynamical simulations of modified gravity models

    NASA Astrophysics Data System (ADS)

    Puchwein, Ewald; Baldi, Marco; Springel, Volker

    2013-11-01

    We present a new massively parallel code for N-body and cosmological hydrodynamical simulations of modified gravity models. The code employs a multigrid-accelerated Newton-Gauss-Seidel relaxation solver on an adaptive mesh to efficiently solve for perturbations in the scalar degree of freedom of the modified gravity model. As this new algorithm is implemented as a module for the P-GADGET3 code, it can at the same time follow the baryonic physics included in P-GADGET3, such as hydrodynamics, radiative cooling and star formation. We demonstrate that the code works reliably by applying it to simple test problems that can be solved analytically, as well as by comparing cosmological simulations to results from the literature. Using the new code, we perform the first non-radiative and radiative cosmological hydrodynamical simulations of an f (R)-gravity model. We also discuss the impact of active galactic nucleus feedback on the matter power spectrum, as well as degeneracies between the influence of baryonic processes and modifications of gravity.

  9. Application of the TEMPEST computer code for simulating hydrogen distribution in model containment structures. [PWR; BWR

    SciTech Connect

    Trent, D.S.; Eyler, L.L.

    1982-09-01

    In this study several aspects of simulating hydrogen distribution in geometric configurations relevant to reactor containment structures were investigated using the TEMPEST computer code. Of particular interest was the performance of the TEMPEST turbulence model in a density-stratified environment. Computed results illustrated that the TEMPEST numerical procedures predicted the measured phenomena with good accuracy under a variety of conditions and that the turbulence model used is a viable approach in complex turbulent flow simulation.

  10. FLY: a code for LSS cosmological simulations for a PC Linux Cluster

    NASA Astrophysics Data System (ADS)

    Comparato, M.; Becciani, U.; Antonuccio-Delogu, V.; Costa, A.

    2006-07-01

    We developed FLY with the main goal of maximizing the number of particles that can be simulated in an MPP system without data replication. FLY builds a tree that is shared among all the processes that execute a simulation, each process having the same number of bodies which evolve during each time-step. Now we present the new version of the code that runs on a PC Linux Cluster using the one side communication paradigm MPI-2 and the performance results obtained.

  11. SimProp: a simulation code for ultra high energy cosmic ray propagation

    SciTech Connect

    Aloisio, R.; Grillo, A.F.; Boncioli, D.; Petrera, S.; Salamida, F. E-mail: denise.boncioli@roma2.infn.it E-mail: petrera@aquila.infn.it

    2012-10-01

    A new Monte Carlo simulation code for the propagation of Ultra High Energy Cosmic Rays is presented. The results of this simulation scheme are tested by comparison with results of another Monte Carlo computation as well as with the results obtained by directly solving the kinetic equation for the propagation of Ultra High Energy Cosmic Rays. A short comparison with the latest flux published by the Pierre Auger collaboration is also presented.

  12. A New Code SORD for Simulation of Polarized Light Scattering in the Earth Atmosphere

    NASA Technical Reports Server (NTRS)

    Korkin, Sergey; Lyapustin, Alexei; Sinyuk, Aliaksandr; Holben, Brent

    2016-01-01

    We report a new publicly available radiative transfer (RT) code for numerical simulation of polarized light scattering in plane-parallel atmosphere of the Earth. Using 44 benchmark tests, we prove high accuracy of the new RT code, SORD (Successive ORDers of scattering). We describe capabilities of SORD and show run time for each test on two different machines. At present, SORD is supposed to work as part of the Aerosol Robotic NETwork (AERONET) inversion algorithm. For natural integration with the AERONET software, SORD is coded in Fortran 90/95. The code is available by email request from the corresponding (first) author or from ftp://climate1.gsfc.nasa.gov/skorkin/SORD/.

  13. A new code SORD for simulation of polarized light scattering in the Earth atmosphere

    NASA Astrophysics Data System (ADS)

    Korkin, Sergey; Lyapustin, Alexei; Sinyuk, Aliaksandr; Holben, Brent

    2016-05-01

    We report a new publicly available radiative transfer (RT) code for numerical simulation of polarized light scattering in plane-parallel Earth atmosphere. Using 44 benchmark tests, we prove high accuracy of the new RT code, SORD (Successive ORDers of scattering1, 2). We describe capabilities of SORD and show run time for each test on two different machines. At present, SORD is supposed to work as part of the Aerosol Robotic NETwork3 (AERONET) inversion algorithm. For natural integration with the AERONET software, SORD is coded in Fortran 90/95. The code is available by email request from the corresponding (first) author or from ftp://climate1.gsfc.nasa.gov/skorkin/SORD/ or ftp://maiac.gsfc.nasa.gov/pub/SORD.zip

  14. Two Dimensional Particle-In-Cell Code for Simulation of Quantum Plasmas

    NASA Astrophysics Data System (ADS)

    Decyk, V. K.; Tonge, J.; Dauger, D. E.

    2002-11-01

    We have developed a two dimensional code for simulating quantum plasmas (1). This unique code propagates many quantum particles forward in time self-consistently using the semi-classical approximation. Because of this it can model the statistical properties of interacting quantum particles. We are currently testing this code using small numbers of particles with model problems which we can use to verify the accuracy of the code. The goal is to model from first principles the statistical properties of plasmas where quantum mechanics plays a role such as hot high density plasmas found in stellar interiors (2). (1) D. Dauger, Semiclassical Modeling of Quantum-Mechanical Multiparticle Systems using Parallel Particle-In-Cell Methods, PHD Thesis (2) M. Opher et. al. , Nuclear reaction rates and energy in stellar plasmas: The effect of highly damped modes, Physics of Plasma, 8, No. 5, p. 2454 Sponsored by NSF

  15. Solar wind-magnetosphere interaction as simulated by a 3D, EM particle code

    NASA Technical Reports Server (NTRS)

    Buneman, O.; Nishikawa, Ken-Ichi; Neubert, T.

    1993-01-01

    The results of simulating the solar wind-magnetosphere interaction with a three dimensional, electromagnetic (EM) particle code are presented. Hitherto such global simulations were done with magnetohydrodynamic (MHD) codes while lower dimensional particle or hybrid codes served to account for microscopic processes and such transport parameters as have to be introduced ad hoc in MHD. The kinetic model combines macroscopic and microscopic tasks. It relies only on the Maxwell curl equations and the Lorentz equation for particles. The preliminary results are for an unmagnetized solar wind plasma streaming past a dipolar magnetic field. The results show the formation of a bow shock and a magnetotail, the penetration of energetic particles into cusp and radiation belt regions, and dawn to dusk asymmetries.

  16. Solar wind-magnetosphere interaction as simulated by a 3-D EM particle code

    NASA Technical Reports Server (NTRS)

    Buneman, Oscar; Neubert, Torsten; Nishikawa, Ken-Ichi

    1992-01-01

    We present here our first results of simulating the solar wind-magnetosphere interaction with a new three-dimensional electromagnetic particle code. Hitherto such global simulations were done with MHD codes while lower-dimensional particle or hybrid codes served to account for microscopic processes and such transport parameters as have to be introduced ad hoc in MHD. Our kinetic model attempts to combine the macroscopic and microscopic tasks. It relies only on the Maxwell curl equation and the Lorentz equation for particles, which are ideally suited for computers. The preliminary results shown here are for an unmagnetized solar wind plasma streaming past a dipolar magnetic field. The results show the formation of a bow shock and a magnetotail, the penetration of energetic particles into cusp and radiation belt regions, and dawn-dusk asymmetries.

  17. An efficient simulation method of a cyclotron sector-focusing magnet using 2D Poisson code

    NASA Astrophysics Data System (ADS)

    Gad Elmowla, Khaled Mohamed M.; Chai, Jong Seo; Yeon, Yeong H.; Kim, Sangbum; Ghergherehchi, Mitra

    2016-10-01

    In this paper we discuss design simulations of a spiral magnet using 2D Poisson code. The Independent Layers Method (ILM) is a new technique that was developed to enable the use of two-dimensional simulation code to calculate a non-symmetric 3-dimensional magnetic field. In ILM, the magnet pole is divided into successive independent layers, and the hill and valley shape around the azimuthal direction is implemented using a reference magnet. The normalization of the magnetic field in the reference magnet produces a profile that can be multiplied by the maximum magnetic field in the hill magnet, which is a dipole magnet made of the hills at the same radius. Both magnets are then calculated using the 2D Poisson SUPERFISH code. Then a fully three-dimensional magnetic field is produced using TOSCA for the original spiral magnet, and the comparison of the 2D and 3D results shows a good agreement between both.

  18. Multi-dimensional free-electron laser simulation codes: a comparison study

    NASA Astrophysics Data System (ADS)

    Biedron, S. G.; Chae, Y. C.; Dejus, R. J.; Faatz, B.; Freund, H. P.; Milton, S. V.; Nuhn, H.-D.; Reiche, S.

    2000-05-01

    A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL.

  19. Multi-Dimensional Free-Electron Laser Simulation Codes: A Comparison Study

    SciTech Connect

    Nuhn, Heinz-Dieter

    2003-04-28

    A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL.

  20. Multi-dimensional free-electron laser simulation codes : a comparison study.

    SciTech Connect

    Biedron, S. G.; Chae, Y. C.; Dejus, R. J.; Faatz, B.; Freund, H. P.; Milton, S. V.; Nuhn, H.-D.; Reiche, S.

    1999-08-23

    A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL.

  1. Some Problems and Solutions in Transferring Ecosystem Simulation Codes to Supercomputers

    NASA Technical Reports Server (NTRS)

    Skiles, J. W.; Schulbach, C. H.

    1994-01-01

    Many computer codes for the simulation of ecological systems have been developed in the last twenty-five years. This development took place initially on main-frame computers, then mini-computers, and more recently, on micro-computers and workstations. Recent recognition of ecosystem science as a High Performance Computing and Communications Program Grand Challenge area emphasizes supercomputers (both parallel and distributed systems) as the next set of tools for ecological simulation. Transferring ecosystem simulation codes to such systems is not a matter of simply compiling and executing existing code on the supercomputer since there are significant differences in the system architectures of sequential, scalar computers and parallel and/or vector supercomputers. To more appropriately match the application to the architecture (necessary to achieve reasonable performance), the parallelism (if it exists) of the original application must be exploited. We discuss our work in transferring a general grassland simulation model (developed on a VAX in the FORTRAN computer programming language) to a Cray Y-MP. We show the Cray shared-memory vector-architecture, and discuss our rationale for selecting the Cray. We describe porting the model to the Cray and executing and verifying a baseline version, and we discuss the changes we made to exploit the parallelism in the application and to improve code execution. As a result, the Cray executed the model 30 times faster than the VAX 11/785 and 10 times faster than a Sun 4 workstation. We achieved an additional speed-up of approximately 30 percent over the original Cray run by using the compiler's vectorizing capabilities and the machine's ability to put subroutines and functions "in-line" in the code. With the modifications, the code still runs at only about 5% of the Cray's peak speed because it makes ineffective use of the vector processing capabilities of the Cray. We conclude with a discussion and future plans.

  2. A new parallel P3M code for very large-scale cosmological simulations

    NASA Astrophysics Data System (ADS)

    MacFarland, Tom; Couchman, H. M. P.; Pearce, F. R.; Pichlmeier, Jakob

    1998-12-01

    We have developed a parallel Particle-Particle, Particle-Mesh (P3M) simulation code for the Cray T3E parallel supercomputer that is well suited to studying the time evolution of systems of particles interacting via gravity and gas forces in cosmological contexts. The parallel code is based upon the public-domain serial Adaptive P3M-SPH (http://coho.astro.uwo.ca/pub/hydra/hydra.html) code of Couchman et al. (1995)[ApJ, 452, 797]. The algorithm resolves gravitational forces into a long-range component computed by discretizing the mass distribution and solving Poisson's equation on a grid using an FFT convolution method, and a short-range component computed by direct force summation for sufficiently close particle pairs. The code consists primarily of a particle-particle computation parallelized by domain decomposition over blocks of neighbour-cells, a more regular mesh calculation distributed in planes along one dimension, and several transformations between the two distributions. The load balancing of the P3M code is static, since this greatly aids the ongoing implementation of parallel adaptive refinements of the particle and mesh systems. Great care was taken throughout to make optimal use of the available memory, so that a version of the current implementation has been used to simulate systems of up to 109 particles with a 10243 mesh for the long-range force computation. These are the largest Cosmological N-body simulations of which we are aware. We discuss these memory optimizations as well as those motivated by computational performance. Performance results are very encouraging, and, even without refinements, the code has been used effectively for simulations in which the particle distribution becomes highly clustered as well as for other non-uniform systems of astrophysical interest.

  3. A Modular Computer Code for Simulating Reactive Multi-Species Transport in 3-Dimensional Groundwater Systems

    SciTech Connect

    TP Clement

    1999-06-24

    RT3DV1 (Reactive Transport in 3-Dimensions) is computer code that solves the coupled partial differential equations that describe reactive-flow and transport of multiple mobile and/or immobile species in three-dimensional saturated groundwater systems. RT3D is a generalized multi-species version of the US Environmental Protection Agency (EPA) transport code, MT3D (Zheng, 1990). The current version of RT3D uses the advection and dispersion solvers from the DOD-1.5 (1997) version of MT3D. As with MT3D, RT3D also requires the groundwater flow code MODFLOW for computing spatial and temporal variations in groundwater head distribution. The RT3D code was originally developed to support the contaminant transport modeling efforts at natural attenuation demonstration sites. As a research tool, RT3D has also been used to model several laboratory and pilot-scale active bioremediation experiments. The performance of RT3D has been validated by comparing the code results against various numerical and analytical solutions. The code is currently being used to model field-scale natural attenuation at multiple sites. The RT3D code is unique in that it includes an implicit reaction solver that makes the code sufficiently flexible for simulating various types of chemical and microbial reaction kinetics. RT3D V1.0 supports seven pre-programmed reaction modules that can be used to simulate different types of reactive contaminants including benzene-toluene-xylene mixtures (BTEX), and chlorinated solvents such as tetrachloroethene (PCE) and trichloroethene (TCE). In addition, RT3D has a user-defined reaction option that can be used to simulate any other types of user-specified reactive transport systems. This report describes the mathematical details of the RT3D computer code and its input/output data structure. It is assumed that the user is familiar with the basics of groundwater flow and contaminant transport mechanics. In addition, RT3D users are expected to have some experience in

  4. Code OK2—A simulation code of ion-beam illumination on an arbitrary shape and structure target

    NASA Astrophysics Data System (ADS)

    Ogoyski, A. I.; Kawata, S.; Someya, T.

    2004-08-01

    For computer simulations on heavy ion beam (HIB) irradiation on a spherical fuel pellet in heavy ion fusion (HIF) the code OK1 was developed and presented in [Comput. Phys. Commun. 157 (2004) 160-172]. The new code OK2 is a modified upgraded computer program for more common purposes in research fields of medical treatment, material processing as well as HIF. OK2 provides computational capabilities of a three-dimensional ion beam energy deposition on a target with an arbitrary shape and structure. Program summaryTitle of program: OK2 Catalogue identifier: ADTZ Other versions of this program [1] : Title of the program: OK1 Catalogue identifier: ADST Program summary URL:http://cpc.cs.qub.as.uk/summaries/ADTZ Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer: PC (Pentium 4, ˜1 GHz or more recommended) Operating system: Windows or UNIX Program language used: C++ Memory required to execute with typical data: 2048 MB No. of bits in a word: 32 No. of processors used: 1CPU Has the code been vectorized or parallelized: No No. of bytes in distributed program, including test data: 17 334 No of lines in distributed program, including test date: 1487 Distribution format: tar gzip file Nature of physical problem: In research areas of HIF (Heavy Ion Beam Inertial Fusion) energy [1-4] and medical material sciences [5], ion energy deposition profiles need to be evaluated and calculated precisely. Due to a favorable energy deposition behavior of ions in matter [1-4] it is expected that ion beams would be one of preferable candidates in various fields including HIF and material processing. Especially in HIF for a successful fuel ignition and a sufficient fusion energy release, a stringent requirement is imposed on the HIB irradiation non-uniformity, which should be less than a few percent [4,6,7]. In order to meet this requirement we need to evaluate the uniformity of a realistic HIB irradiation and energy deposition pattern. The HIB

  5. Phase 1 Validation Testing and Simulation for the WEC-Sim Open Source Code

    NASA Astrophysics Data System (ADS)

    Ruehl, K.; Michelen, C.; Gunawan, B.; Bosma, B.; Simmons, A.; Lomonaco, P.

    2015-12-01

    WEC-Sim is an open source code to model wave energy converters performance in operational waves, developed by Sandia and NREL and funded by the US DOE. The code is a time-domain modeling tool developed in MATLAB/SIMULINK using the multibody dynamics solver SimMechanics, and solves the WEC's governing equations of motion using the Cummins time-domain impulse response formulation in 6 degrees of freedom. The WEC-Sim code has undergone verification through code-to-code comparisons; however validation of the code has been limited to publicly available experimental data sets. While these data sets provide preliminary code validation, the experimental tests were not explicitly designed for code validation, and as a result are limited in their ability to validate the full functionality of the WEC-Sim code. Therefore, dedicated physical model tests for WEC-Sim validation have been performed. This presentation provides an overview of the WEC-Sim validation experimental wave tank tests performed at the Oregon State University's Directional Wave Basin at Hinsdale Wave Research Laboratory. Phase 1 of experimental testing was focused on device characterization and completed in Fall 2015. Phase 2 is focused on WEC performance and scheduled for Winter 2015/2016. These experimental tests were designed explicitly to validate the performance of WEC-Sim code, and its new feature additions. Upon completion, the WEC-Sim validation data set will be made publicly available to the wave energy community. For the physical model test, a controllable model of a floating wave energy converter has been designed and constructed. The instrumentation includes state-of-the-art devices to measure pressure fields, motions in 6 DOF, multi-axial load cells, torque transducers, position transducers, and encoders. The model also incorporates a fully programmable Power-Take-Off system which can be used to generate or absorb wave energy. Numerical simulations of the experiments using WEC-Sim will be

  6. Relativistic Modeling Capabilities in PERSEUS Extended-MHD Simulation Code for HED Plasmas

    NASA Astrophysics Data System (ADS)

    Hamlin, Nathaniel; Seyler, Charles

    2015-11-01

    We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as hybrid X-pinches and laser-plasma interactions. We have overcome a major challenge of a relativistic fluid implementation, namely the recovery of primitive variables (density, velocity, pressure) from conserved quantities at each time step of a simulation. Our code recovers non-relativistic results along with important features of published Particle-In-Cell simulation results for a laser penetrating a super-critical hydrogen gas with Fast Ignition applications. In particular, we recover the penetration of magnetized relativistic electron jets ahead of the laser. Our code also reveals new physics in the modeling of a laser incident on a thin foil. This work is supported by the National Nuclear Security Administration stewardship sciences academic program under Department of Energy cooperative agreements DE-FOA-0001153 and DE-NA0001836.

  7. L-PICOLA: A parallel code for fast dark matter simulation

    NASA Astrophysics Data System (ADS)

    Howlett, C.; Manera, M.; Percival, W. J.

    2015-09-01

    Robust measurements based on current large-scale structure surveys require precise knowledge of statistical and systematic errors. This can be obtained from large numbers of realistic mock galaxy catalogues that mimic the observed distribution of galaxies within the survey volume. To this end we present a fast, distributed-memory, planar-parallel code, L-PICOLA, which can be used to generate and evolve a set of initial conditions into a dark matter field much faster than a full non-linear N-Body simulation. Additionally, L-PICOLA has the ability to include primordial non-Gaussianity in the simulation and simulate the past lightcone at run-time, with optional replication of the simulation volume. Through comparisons to fully non-linear N-Body simulations we find that our code can reproduce the z = 0 power spectrum and reduced bispectrum of dark matter to within 2% and 5% respectively on all scales of interest to measurements of Baryon Acoustic Oscillations and Redshift Space Distortions, but 3 orders of magnitude faster. The accuracy, speed and scalability of this code, alongside the additional features we have implemented, make it extremely useful for both current and next generation large-scale structure surveys. L-PICOLA is publicly available at https://cullanhowlett.github.io/l-picola.

  8. Simulation of Aircraft Landing Gears with a Nonlinear Dynamic Finite Element Code

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Jackson, Karen E.; Fasanella, Edwin L.

    2000-01-01

    Recent advances in computational speed have made aircraft and spacecraft crash simulations using an explicit, nonlinear, transient-dynamic, finite element analysis code more feasible. This paper describes the development of a simple landing gear model, which accurately simulates the energy absorbed by the gear without adding substantial complexity to the model. For a crash model, the landing gear response is approximated with a spring where the force applied to the fuselage is computed in a user-written subroutine. Helicopter crash simulations using this approach are compared with previously acquired experimental data from a full-scale crash test of a composite helicopter.

  9. A Compact Code for Simulations of Quantum Error Correction in Classical Computers

    SciTech Connect

    Nyman, Peter

    2009-03-10

    This study considers implementations of error correction in a simulation language on a classical computer. Error correction will be necessarily in quantum computing and quantum information. We will give some examples of the implementations of some error correction codes. These implementations will be made in a more general quantum simulation language on a classical computer in the language Mathematica. The intention of this research is to develop a programming language that is able to make simulations of all quantum algorithms and error corrections in the same framework. The program code implemented on a classical computer will provide a connection between the mathematical formulation of quantum mechanics and computational methods. This gives us a clear uncomplicated language for the implementations of algorithms.

  10. Simulations of 4D edge transport and dynamics using the TEMPEST gyro-kinetic code

    NASA Astrophysics Data System (ADS)

    Rognlien, T. D.; Cohen, B. I.; Cohen, R. H.; Dorr, M. R.; Hittinger, J. A. F.; Kerbel, G. D.; Nevins, W. M.; Xiong, Z.; Xu, X. Q.

    2006-10-01

    Simulation results are presented for tokamak edge plasmas with a focus on the 4D (2r,2v) option of the TEMPEST continuum gyro-kinetic code. A detailed description of a variety of kinetic simulations is reported, including neoclassical radial transport from Coulomb collisions, electric field generation, dynamic response to perturbations by geodesic acoustic modes, and parallel transport on open magnetic-field lines. Comparison is made between the characteristics of the plasma solutions on closed and open magnetic-field line regions separated by a magnetic separatrix, and simple physical models are used to qualitatively explain the differences observed in mean flow and electric-field generation. The status of extending the simulations to 5D turbulence will be summarized. The code structure used in this ongoing project is also briefly described, together with future plans.

  11. Simulating magnetospheres with numerical relativity: The GiRaFFE code

    NASA Astrophysics Data System (ADS)

    Babiuc-Hamilton, Maria; Etienne, Zach

    2016-01-01

    Numerical Relativity has shown success over the past several years, especially in the simulation of black holes and gravitational waves. In recent years, teams have tackled the problem of the interaction of gravitational and electromagnetic waves. But where there are plasmas, the simulations often have trouble reproducing nature. Neutron stars, black hole accretion disks, astrophysical jets—all of these represent extreme environments both gravitationally and electromagnetically. We are creating the first open-source, dynamical spacetime general relativity force-free electrodynamics code: GiRaFFE.We present here the performance of GiRaFFE in testing. With this code, we will simulate neutron star magnetospheres, collisions between neutron stars and black holes, and particular attention will be paid to the production of jets through the Blandford-Znajek mechanism.GiRaFFE will be made available to the community.

  12. Intercomparison of numerical simulation codes for geologic disposal of CO2

    SciTech Connect

    Pruess, Karsten; Garcia, Julio; Kovscek, Tony; Oldenburg, Curt; Rutqvist, Jonny; Steefel, Carl; Xu, Tianfu

    2002-11-27

    Numerical simulation codes were exercised on a suite of eight test problems that address CO2 disposal into geologic storage reservoirs, including depleted oil and gas reservoirs, and brine aquifers. Processes investigated include single- and multi-phase flow, gas diffusion, partitioning of CO2 into aqueous and oil phases, chemical interactions of CO2 with aqueous fluids and rock minerals, and mechanical changes due to changes in fluid pressures. Representation of fluid properties was also examined. In most cases results obtained from different simulation codes were in satisfactory agreement, providing confidence in the ability of current numerical simulation approaches to handle the physical and chemical processes that would be induced by CO2 disposal in geologic reservoirs. Some discrepancies were also identified and can be traced to differences in fluid property correlations, and space and time discretization.

  13. Four-Dimensional Continuum Gyrokinetic Code: Neoclassical Simulation of Fusion Edge Plasmas

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.

    2005-10-01

    We are developing a continuum gyrokinetic code, TEMPEST, to simulate edge plasmas. Our code represents velocity space via a grid in equilibrium energy and magnetic moment variables, and configuration space via poloidal magnetic flux and poloidal angle. The geometry is that of a fully diverted tokamak (single or double null) and so includes boundary conditions for both closed magnetic flux surfaces and open field lines. The 4-dimensional code includes kinetic electrons and ions, and electrostatic field-solver options, and simulates neoclassical transport. The present implementation is a Method of Lines approach where spatial finite-differences (higher order upwinding) and implicit time advancement are used. We present results of initial verification and validation studies: transition from collisional to collisionless limits of parallel end-loss in the scrape-off layer, self-consistent electric field, and the effect of the real X-point geometry and edge plasma conditions on the standard neoclassical theory, including a comparison of our 4D code with other kinetic neoclassical codes and experiments.

  14. Code Comparison Study Fosters Confidence in the Numerical Simulation of Enhanced Geothermal Systems

    SciTech Connect

    White, Mark D.; Phillips, Benjamin R.

    2015-01-26

    Numerical simulation has become a standard analytical tool for scientists and engineers to evaluate the potential and performance of enhanced geothermal systems. A variety of numerical simulators developed by industry, universities, and national laboratories are currently available and being applied to better understand enhanced geothermal systems at the field scale. To yield credible predictions and be of value to site operators, numerical simulators must be able to accurately represent the complex coupled processes induced by producing geothermal systems, such as fracture aperture changes due to thermal stimulation, fracture shear displacement with fluid injection, rate of thermal depletion of reservoir rocks, and permeability alteration with mineral precipitation or dissolution. A suite of numerical simulators was exercised on a series of test problems that considered coupled thermal, hydraulic, geomechanical, and geochemical (THMC) processes. Problems were selected and designed to isolate selected coupled processes, to be executed on workstation class computers, and have simple but illustrative metrics for result comparisons. This paper summarizes the initial suite of seven benchmark problems, describes the code comparison activities, provides example results for problems and documents the capabilities of currently available numerical simulation codes to represent coupled processes that occur during the production of geothermal resources. Code comparisons described in this paper use the ISO (International Organization for Standardization) standard ISO-13538 for proficiency testing of numerical simulators. This approach was adopted for a recent code comparison study within the radiation transfer-modeling field of atmospheric sciences, which was focused on canopy reflectance models. This standard specifies statistical methods for analyzing laboratory data from proficiency testing schemes to demonstrate that the measurement results do not exhibit evidence of an

  15. Numerical Simulations of the Boundary Layer Transition Flight Experiment

    NASA Technical Reports Server (NTRS)

    Tang, Chun Y.; Trumble, Kerry A.; Campbell, Charles H.; Lessard, Victor R.; Wood, William A.

    2010-01-01

    Computational Fluid Dynamics (CFD) simulations were used to study the possible effects that the Boundary Layer Transition (BLT) Flight Experiments may have on the heating environment of the Space Shuttle during its entry to Earth. To investigate this issue, hypersonic calculations using the Data-Parallel Line Relaxation (DPLR) and Langley Aerothermodynamic Upwind Relaxation (LAURA) CFD codes were computed for a 0.75 tall protuberance at flight conditions of Mach 15 and 18. These initial results showed high surface heating on the BLT trip and the areas surrounding the protuberance. Since the predicted peak heating rates would exceed the thermal limits of the materials selected to construct the BLT trip, many changes to the geometry were attempted in order to reduce the surface heat flux. The following paper describes the various geometry revisions and the resulting heating environments predicted by the CFD codes.

  16. Algorithm for loading shot noise microbunching in multi-dimensional, free-electron laser simulation codes

    SciTech Connect

    Fawley, William M.

    2002-03-25

    We discuss the underlying reasoning behind and the details of the numerical algorithm used in the GINGER free-electron laser(FEL) simulation code to load the initial shot noise microbunching on the electron beam. In particular, we point out that there are some additional subtleties which must be followed for multi-dimensional codes which are not necessary for one-dimensional formulations. Moreover, requiring that the higher harmonics of the microbunching also be properly initialized with the correct statistics leads to additional complexities. We present some numerical results including the predicted incoherent, spontaneous emission as tests of the shot noise algorithm's correctness.

  17. Algorithm for loading shot noise microbunching in multidimensional, free-electron laser simulation codes

    NASA Astrophysics Data System (ADS)

    Fawley, William M.

    2002-07-01

    We discuss the underlying reasoning behind and the details of the numerical algorithm used in the GINGER free-electron laser simulation code to load the initial shot noise microbunching on the electron beam. In particular, we point out that there are some additional subtleties which must be followed for multidimensional codes which are not necessary for one-dimensional formulations. Moreover, requiring that the higher harmonics of the microbunching also be properly initialized with the correct statistics leads to additional complexities. We present some numerical results including the predicted incoherent, spontaneous emission as tests of the shot noise algorithm's correctness.

  18. Simulations of implosions with a 3D, parallel, unstructured-grid, radiation-hydrodynamics code

    SciTech Connect

    Kaiser, T B; Milovich, J L; Prasad, M K; Rathkopf, J; Shestakov, A I

    1998-12-28

    An unstructured-grid, radiation-hydrodynamics code is used to simulate implosions. Although most of the problems are spherically symmetric, they are run on 3D, unstructured grids in order to test the code's ability to maintain spherical symmetry of the converging waves. Three problems, of increasing complexity, are presented. In the first, a cold, spherical, ideal gas bubble is imploded by an enclosing high pressure source. For the second, we add non-linear heat conduction and drive the implosion with twelve laser beams centered on the vertices of an icosahedron. In the third problem, a NIF capsule is driven with a Planckian radiation source.

  19. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).

    SciTech Connect

    Schultz, Peter Andrew

    2011-12-01

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.

  20. PUQ: A code for non-intrusive uncertainty propagation in computer simulations

    NASA Astrophysics Data System (ADS)

    Hunt, Martin; Haley, Benjamin; McLennan, Michael; Koslowski, Marisol; Murthy, Jayathi; Strachan, Alejandro

    2015-09-01

    We present a software package for the non-intrusive propagation of uncertainties in input parameters through computer simulation codes or mathematical models and associated analysis; we demonstrate its use to drive micromechanical simulations using a phase field approach to dislocation dynamics. The PRISM uncertainty quantification framework (PUQ) offers several methods to sample the distribution of input variables and to obtain surrogate models (or response functions) that relate the uncertain inputs with the quantities of interest (QoIs); the surrogate models are ultimately used to propagate uncertainties. PUQ requires minimal changes in the simulation code, just those required to annotate the QoI(s) for its analysis. Collocation methods include Monte Carlo, Latin Hypercube and Smolyak sparse grids and surrogate models can be obtained in terms of radial basis functions and via generalized polynomial chaos. PUQ uses the method of elementary effects for sensitivity analysis in Smolyak runs. The code is available for download and also available for cloud computing in nanoHUB. PUQ orchestrates runs of the nanoPLASTICITY tool at nanoHUB where users can propagate uncertainties in dislocation dynamics simulations using simply a web browser, without downloading or installing any software.

  1. Pelegant : a parallel accelerator simulation code for electron generation and tracking.

    SciTech Connect

    Wang, Y.; Borland, M. D.; Accelerator Systems Division

    2006-01-01

    elegant is a general-purpose code for electron accelerator simulation that has a worldwide user base. Recently, many of the time-intensive elements were parallelized using MPI. Development has used modest Linux clusters and the BlueGene/L supercomputer at Argonne National Laboratory. This has provided very good performance for some practical simulations, such as multiparticle tracking with synchrotron radiation and emittance blow-up in the vertical rf kick scheme. The effort began with development of a concept that allowed for gradual parallelization of the code, using the existing beamline-element classification table in elegant. This was crucial as it allowed parallelization without major changes in code structure and without major conflicts with the ongoing evolution of elegant. Because of rounding error and finite machine precision, validating a parallel program against a uniprocessor program with the requirement of bitwise identical results is notoriously difficult. We will report validating simulation results of parallel elegant against those of serial elegant by applying Kahan's algorithm to improve accuracy dramatically for both versions. The quality of random numbers in a parallel implementation is very important for some simulations. Some practical experience with generating parallel random numbers by offsetting the seed of each random sequence according to the processor ID will be reported.

  2. SIM_ADJUST -- A computer code that adjusts simulated equivalents for observations or predictions

    USGS Publications Warehouse

    Poeter, Eileen P.; Hill, Mary C.

    2008-01-01

    This report documents the SIM_ADJUST computer code. SIM_ADJUST surmounts an obstacle that is sometimes encountered when using universal model analysis computer codes such as UCODE_2005 (Poeter and others, 2005), PEST (Doherty, 2004), and OSTRICH (Matott, 2005; Fredrick and others (2007). These codes often read simulated equivalents from a list in a file produced by a process model such as MODFLOW that represents a system of interest. At times values needed by the universal code are missing or assigned default values because the process model could not produce a useful solution. SIM_ADJUST can be used to (1) read a file that lists expected observation or prediction names and possible alternatives for the simulated values; (2) read a file produced by a process model that contains space or tab delimited columns, including a column of simulated values and a column of related observation or prediction names; (3) identify observations or predictions that have been omitted or assigned a default value by the process model; and (4) produce an adjusted file that contains a column of simulated values and a column of associated observation or prediction names. The user may provide alternatives that are constant values or that are alternative simulated values. The user may also provide a sequence of alternatives. For example, the heads from a series of cells may be specified to ensure that a meaningful value is available to compare with an observation located in a cell that may become dry. SIM_ADJUST is constructed using modules from the JUPITER API, and is intended for use on any computer operating system. SIM_ADJUST consists of algorithms programmed in Fortran90, which efficiently performs numerical calculations.

  3. Half-Cell RF Gun Simulations with the Electromagnetic Particle-in-Cell Code VORPAL

    SciTech Connect

    Paul, K.; Dimitrov, D. A.; Busby, R.; Bruhwiler, D. L.; Smithe, D.; Cary, J. R.; Kewisch, J.; Kayran, D.; Calaga, R.; Ben-Zvi, I.

    2009-01-22

    We have simulated Brookhaven National Laboratory's half-cell superconducting RF gun design for a proposed high-current ERL using the three-dimensional, electromagnetic particle-in-cell code VORPAL. VORPAL computes the fully self-consistent electromagnetic fields produced by the electron bunches, meaning that it accurately models space-charge effects as well as bunch-to-bunch beam loading effects and the effects of higher-order cavity modes, though these are beyond the scope of this paper. We compare results from VORPAL to the well-established space-charge code PARMELA, using RF fields produced by SUPERFISH, as a benchmarking exercise in which the two codes should agree well.

  4. 3-D kinetics simulations of the NRU reactor using the DONJON code

    SciTech Connect

    Leung, T. C.; Atfield, M. D.; Koclas, J.

    2006-07-01

    The NRU reactor is highly heterogeneous, heavy-water cooled and moderated, with online refuelling capability. It is licensed to operate at a maximum power of 135 MW, with a peak thermal flux of approximately 4.0 x 10{sup 18} n.m{sup -2} . s{sup -1}. In support of the safe operation of NRU, three-dimensional kinetics calculations for reactor transients have been performed using the DONJON code. The code was initially designed to perform space-time kinetics calculations for the CANDU{sup R} power reactors. This paper describes how the DONJON code can be applied to perform neutronic simulations for the analysis of reactor transients in NRU, and presents calculation results for some transients. (authors)

  5. New Particle-in-Cell Code for Numerical Simulation of Coherent Synchrotron Radiation

    SciTech Connect

    Balsa Terzic, Rui Li

    2010-05-01

    We present a first look at the new code for self-consistent, 2D simulations of beam dynamics affected by the coherent synchrotron radiation. The code is of the particle-in-cell variety: the beam bunch is sampled by point-charge particles, which are deposited on the grid; the corresponding forces on the grid are then computed using retarded potentials according to causality, and interpolated so as to advance the particles in time. The retarded potentials are evaluated by integrating over the 2D path history of the bunch, with the charge and current density at the retarded time obtained from interpolation of the particle distributions recorded at discrete timesteps. The code is benchmarked against analytical results obtained for a rigid-line bunch. We also outline the features and applications which are currently being developed.

  6. Extension of the CENTAR system simulation code to thermionic space nuclear reactors

    NASA Astrophysics Data System (ADS)

    Nassersharif, Bahram; Gaeta, Michael J.; Berge, Francoise; Guffee, Laura; Williams, Ken

    The Code for Extended Nonlinear Transient Analysis of Extraterrestial Reactors (CENTAR) is a general-purpose reactor system simulation code capable of modeling coupled heat transfer, fluid flow, neutronic, and control in an arbitrary reactor system (or subsystem) configuration. CENTAR 4.0 has been enhanced to support thermionic solid-core systems as well as liquid-metal systems. Several new models have been added. The fuel model has been enhanced to support two-dimensional heat transfer with multiple material gap interfaces. Gaps may contain thermionic converters. A quasi-steady-state heat-pipe component model has been added to predict operating limits. The thermoelectric/electromagnetic (TEM) pump model in CENTAR has been extended to also model electromagnetic pumps. A thermionic energy conversion model has been added. Numerous other enhancements to code architecture, user interface, and I/O have also been added in version 4.0.

  7. METHES: A Monte Carlo collision code for the simulation of electron transport in low temperature plasmas

    NASA Astrophysics Data System (ADS)

    Rabie, M.; Franck, C. M.

    2016-06-01

    We present a freely available MATLAB code for the simulation of electron transport in arbitrary gas mixtures in the presence of uniform electric fields. For steady-state electron transport, the program provides the transport coefficients, reaction rates and the electron energy distribution function. The program uses established Monte Carlo techniques and is compatible with the electron scattering cross section files from the open-access Plasma Data Exchange Project LXCat. The code is written in object-oriented design, allowing the tracing and visualization of the spatiotemporal evolution of electron swarms and the temporal development of the mean energy and the electron number due to attachment and/or ionization processes. We benchmark our code with well-known model gases as well as the real gases argon, N2, O2, CF4, SF6 and mixtures of N2 and O2.

  8. Coding and non-coding DNA thermal stability differences in eukaryotes studied by melting simulation, base shuffling and DNA nearest neighbor frequency analysis.

    PubMed

    Long, Dang D; Grosse, Ivo; Marx, Kenneth A

    2004-07-01

    The melting of the coding and non-coding classes of natural DNA sequences was investigated using a program, MELTSIM, which simulates DNA melting based upon an empirically parameterized nearest neighbor thermodynamic model. We calculated T(m) results of 8144 natural sequences from 28 eukaryotic organisms of varying F(GC) (mole fraction of G and C) and of 3775 coding and 3297 non-coding sequences derived from those natural sequences. These data demonstrated that the T(m) vs. F(GC) relationships in coding and non-coding DNAs are both linear but have a statistically significant difference (6.6%) in their slopes. These relationships are significantly different from the T(m) vs. F(GC) relationship embodied in the classical Marmur-Schildkraut-Doty (MSD) equation for the intact long natural sequences. By analyzing the simulation results from various base shufflings of the original DNAs and the average nearest neighbor frequencies of those natural sequences across the F(GC) range, we showed that these differences in the T(m) vs. F(GC) relationships are largely a direct result of systematic F(GC)-dependent biases in nearest neighbor frequencies for those two different DNA classes. Those differences in the T(m) vs. F(GC) relationships and biases in nearest neighbor frequencies also appear between the sequences from multicellular and unicellular organisms in the same coding or non-coding classes, albeit of smaller but significant magnitudes.

  9. Coding and non-coding DNA thermal stability differences in eukaryotes studied by melting simulation, base shuffling and DNA nearest neighbor frequency analysis.

    PubMed

    Long, Dang D; Grosse, Ivo; Marx, Kenneth A

    2004-07-01

    The melting of the coding and non-coding classes of natural DNA sequences was investigated using a program, MELTSIM, which simulates DNA melting based upon an empirically parameterized nearest neighbor thermodynamic model. We calculated T(m) results of 8144 natural sequences from 28 eukaryotic organisms of varying F(GC) (mole fraction of G and C) and of 3775 coding and 3297 non-coding sequences derived from those natural sequences. These data demonstrated that the T(m) vs. F(GC) relationships in coding and non-coding DNAs are both linear but have a statistically significant difference (6.6%) in their slopes. These relationships are significantly different from the T(m) vs. F(GC) relationship embodied in the classical Marmur-Schildkraut-Doty (MSD) equation for the intact long natural sequences. By analyzing the simulation results from various base shufflings of the original DNAs and the average nearest neighbor frequencies of those natural sequences across the F(GC) range, we showed that these differences in the T(m) vs. F(GC) relationships are largely a direct result of systematic F(GC)-dependent biases in nearest neighbor frequencies for those two different DNA classes. Those differences in the T(m) vs. F(GC) relationships and biases in nearest neighbor frequencies also appear between the sequences from multicellular and unicellular organisms in the same coding or non-coding classes, albeit of smaller but significant magnitudes. PMID:15223141

  10. Code validation for the simulation of supersonic viscous flow about the F-16XL

    NASA Technical Reports Server (NTRS)

    Flores, Jolen; Tu, Eugene; King, Lyndell

    1992-01-01

    The viewgraphs and discussion on code validation for the simulation of supersonic viscous flow about the F-16XL are provided. Because of the large potential gains related to laminar flow on the swept wings of supersonic aircraft, interest in the applications of laminar flow control (LFC) techniques in the supersonic regime has increased. A supersonic laminar flow control (SLFC) technology program is currently underway within NASA. The objective of this program is to develop the data base and design methods that are critical to the development of laminar flow control technology for application to supersonic transport aircraft design. Towards this end, the program integrates computational investigations underway at NASA Ames-Moffett and NASA Langley with flight-test investigations being conducted on the F-16XL at the NASA Ames-Dryden Research Facility in cooperation with Rockwell International. The computational goal at NASA Ames-Moffett is to integrate a thin-layer Reynolds averaged Navier-Stokes flow solver with a stability analysis code. The flow solver would provide boundary layer profiles to the stability analysis code which in turn would predict transition on the F-16XL wing. To utilize the stability analysis codes, reliable boundary layer data is necessary at off-design cases. Previously, much of the prediction of boundary layer transition has been accomplished through the coupling of boundary layer codes with stability theory. However, boundary layer codes may have difficulties at high Reynolds numbers, of the order of 100 million, and with the current complex geometry in question. Therefore, a reliable code which solves the thin-layer Reynolds averaged Navier-Stokes equations is needed. Two objectives are discussed, the first in greater depth. The first objective is method verification, via comparisons of computations with experiment, of the reliability and robustness of the code. To successfully implement LFC techniques to the F-16XL wing, the flow about

  11. Development of X-33/X-34 Aerothermodynamic Data Bases: Lessons Learned and Future Enhancements

    NASA Technical Reports Server (NTRS)

    Miller, C. G.

    2000-01-01

    A synoptic of programmatic and technical lessons learned in the development of aerothermodynamic data bases for the X-33 and X-34 programs is presented in general terms and from the perspective of the NASA Langley Research Center Aerothermodynamics Branch. The format used is that of the "aerothermodynamic chain," the links of which are personnel, facilities, models/test articles, instrumentation, test techniques, and computational fluid dynamics (CFD). Because the aerodynamic data bases upon which the X-33 and X-34 vehicles will fly are almost exclusively from wind tunnel testing, as opposed to CFD, the primary focus of the lessons learned is on ground-based testing. The period corresponding to the development of X-33 and X-34 aerothermodynamic data bases was challenging, since a number of other such programs (e.g., X-38, X-43) competed for resources at a time of downsizing of personnel, facilities, etc., outsourcing, and role changes as NASA Centers served as subcontractors to industry. The impact of this changing environment is embedded in the lessons learned. From a technical perspective, the relatively long times to design and fabricate metallic force and moment models, delays in delivery of models, and a lack of quality assurance to determine the fidelity of model outer mold lines (OML) prior to wind tunnel testing had a major negative impact on the programs. On the positive side, the application of phosphor thermography to obtain global, quantitative heating distributions on rapidly fabricated ceramic models revolutionized the aerothermodynamic optimization of vehicle OMLs, control surfaces, etc. Vehicle designers were provided with aeroheating information prior to, or in conjunction with, aerodynamic information early in the program, thereby allowing trades to be made with both sets of input; in the past only aerodynamic data were available as input. Programmatically, failure to include transonic aerodynamic wind tunnel tests early in the assessment phase

  12. Development of a numerical computer code and circuit element models for simulation of firing systems

    SciTech Connect

    Carpenter, K.H. . Dept. of Electrical and Computer Engineering)

    1990-07-02

    Numerical simulation of firing systems requires both the appropriate circuit analysis framework and the special element models required by the application. We have modified the SPICE circuit analysis code (version 2G.6), developed originally at the Electronic Research Laboratory of the University of California, Berkeley, to allow it to be used on MSDOS-based, personal computers and to give it two additional circuit elements needed by firing systems--fuses and saturating inductances. An interactive editor and a batch driver have been written to ease the use of the SPICE program by system designers, and the interactive graphical post processor, NUTMEG, supplied by U. C. Berkeley with SPICE version 3B1, has been interfaced to the output from the modified SPICE. Documentation and installation aids have been provided to make the total software system accessible to PC users. Sample problems show that the resulting code is in agreement with the FIRESET code on which the fuse model was based (with some modifications to the dynamics of scaling fuse parameters). In order to allow for more complex simulations of firing systems, studies have been made of additional special circuit elements--switches and ferrite cored inductances. A simple switch model has been investigated which promises to give at least a first approximation to the physical effects of a non ideal switch, and which can be added to the existing SPICE circuits without changing the SPICE code itself. The effect of fast rise time pulses on ferrites has been studied experimentally in order to provide a base for future modeling and incorporation of the dynamic effects of changes in core magnetization into the SPICE code. This report contains detailed accounts of the work on these topics performed during the period it covers, and has appendices listing all source code written documentation produced.

  13. Simulating hypervelocity impact effects on structures using the smoothed particle hydrodynamics code MAGI

    NASA Technical Reports Server (NTRS)

    Libersky, Larry; Allahdadi, Firooz A.; Carney, Theodore C.

    1992-01-01

    Analysis of interaction occurring between space debris and orbiting structures is of great interest to the planning and survivability of space assets. Computer simulation of the impact events using hydrodynamic codes can provide some understanding of the processes but the problems involved with this fundamental approach are formidable. First, any realistic simulation is necessarily three-dimensional, e.g., the impact and breakup of a satellite. Second, the thickness of important components such as satellite skins or bumper shields are small with respect to the dimension of the structure as a whole, presenting severe zoning problems for codes. Thirdly, the debris cloud produced by the primary impact will yield many secondary impacts which will contribute to the damage and possible breakup of the structure. The problem was approached by choosing a relatively new computational technique that has virtues peculiar to space impacts. The method is called Smoothed Particle Hydrodynamics.

  14. Simulated performance of coded PCM/FM modem on Rician fading channel

    NASA Technical Reports Server (NTRS)

    Modestino, J. W.; Sher, J. S.

    1976-01-01

    This paper describes a simulation approach to characterizing the performance of a coded PCM/FM modem operating on the classical Rician fading channel. In particular, we consider the performance of short constraint length convolutional codes in conjunction with Viterbi maximum likelihood decoding. The receiver consists of a narrowband filter followed by an ideal limiter/discriminator. Primary interest is in the bit error probability performance parameterized by both the fading channel and receiver parameters. Particular attention is given to simulating the impulse noise appearing at the discriminator output. This is the 'click' noise caused by encirclements of the origin by the instantaneous signal-plus-noise phasor. Results include the effects of channel memory and narrowband receiver filtering effects on overall bit error probability.

  15. GRMHD Simulations of Jet Formation with a Newly-Developed GRMHD Code

    NASA Technical Reports Server (NTRS)

    Mizuno, Y.; Nishikawa, K.-I.; Koide, S.; Hardee, P.; Fishman, G. J.

    2006-01-01

    We have developed a new three-dimensional general relativistic magnetohydrodynamic code by using a conservative, high-resolution shock-capturing scheme. The numerical fluxes are calculated using the HLL approximate Riemann solver scheme. The flux-CT scheme is used to maintain a divergence-free magnetic field. Various 1-dimensional test problems show significant improvements over our previous GRMHD code. We have performed simulations of jet formations from a geometrically thin accretion disk near a non-rotating and a rotating black hole. The new simulation results show that the jet is formed by the same manner as in previous works and propagates outward. As the magnetic field strength becomes weaker, larger amount of matter launches with the jet. On the other hand when the magnetic field strength becomes stronger, the jet has less-matter and becomes poynting flux dominated. We will also discuss how the jet properties depend on the rotation of a black hole.

  16. A Java-Enabled Interactive Graphical Gas Turbine Propulsion System Simulator

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Afjeh, Abdollah A.

    1997-01-01

    This paper describes a gas turbine simulation system which utilizes the newly developed Java language environment software system. The system provides an interactive graphical environment which allows the quick and efficient construction and analysis of arbitrary gas turbine propulsion systems. The simulation system couples a graphical user interface, developed using the Java Abstract Window Toolkit, and a transient, space- averaged, aero-thermodynamic gas turbine analysis method, both entirely coded in the Java language. The combined package provides analytical, graphical and data management tools which allow the user to construct and control engine simulations by manipulating graphical objects on the computer display screen. Distributed simulations, including parallel processing and distributed database access across the Internet and World-Wide Web (WWW), are made possible through services provided by the Java environment.

  17. TERRA: a computer code for simulating the transport of environmentally released radionuclides through agriculture

    SciTech Connect

    Baes, C.F. III; Sharp, R.D.; Sjoreen, A.L.; Hermann, O.W.

    1984-11-01

    TERRA is a computer code which calculates concentrations of radionuclides and ingrowing daughters in surface and root-zone soil, produce and feed, beef, and milk from a given deposition rate at any location in the conterminous United States. The code is fully integrated with seven other computer codes which together comprise a Computerized Radiological Risk Investigation System, CRRIS. Output from either the long range (> 100 km) atmospheric dispersion code RETADD-II or the short range (<80 km) atmospheric dispersion code ANEMOS, in the form of radionuclide air concentrations and ground deposition rates by downwind location, serves as input to TERRA. User-defined deposition rates and air concentrations may also be provided as input to TERRA through use of the PRIMUS computer code. The environmental concentrations of radionuclides predicted by TERRA serve as input to the ANDROS computer code which calculates population and individual intakes, exposures, doses, and risks. TERRA incorporates models to calculate uptake from soil and atmospheric deposition on four groups of produce for human consumption and four groups of livestock feeds. During the environmental transport simulation, intermediate calculations of interception fraction for leafy vegetables, produce directly exposed to atmospherically depositing material, pasture, hay, and silage are made based on location-specific estimates of standing crop biomass. Pasture productivity is estimated by a model which considers the number and types of cattle and sheep, pasture area, and annual production of other forages (hay and silage) at a given location. Calculations are made of the fraction of grain imported from outside the assessment area. TERRA output includes the above calculations and estimated radionuclide concentrations in plant produce, milk, and a beef composite by location.

  18. Simulation of nonlinear propagation of biomedical ultrasound using PZFlex and the KZK Texas code

    NASA Astrophysics Data System (ADS)

    Qiao, Shan; Jackson, Edward; Coussios, Constantin-C.; Cleveland, Robin

    2015-10-01

    In biomedical ultrasound nonlinear acoustics can be important in both diagnostic and therapeutic applications and robust simulations tools are needed in the design process but also for day-to-day use such as treatment planning. For most biomedical application the ultrasound sources generate focused sound beams of finite amplitude. The KZK equation is a common model as it accounts for nonlinearity, absorption and paraxial diffraction and there are a number of solvers available, primarily developed by research groups. We compare the predictions of the KZK Texas code (a finite-difference time-domain algorithm) to an FEM-based commercial software, PZFlex. PZFlex solves the continuity equation and momentum conservation equation with a correction for nonlinearity in the equation of state incorporated using an incrementally linear, 2nd order accurate, explicit algorithm in time domain. Nonlinear ultrasound beams from two transducers driven at 1 MHz and 3.3 MHz respectively were simulated by both the KZK Texas code and PZFlex, and the pressure field was also measured by a fibre-optic hydrophone to validate the models. Further simulations were carried out a wide range of frequencies. The comparisons showed good agreement for the fundamental frequency for PZFlex, the KZK Texas code and the experiments. For the harmonic components, the KZK Texas code was in good agreement with measurements but PZFlex underestimated the amplitude: 32% for the 2nd harmonic and 66% for the 3rd harmonic. The underestimation of harmonics by PZFlex was more significant when the fundamental frequency increased. Furthermore non-physical oscillations in the axial profile of harmonics occurred in the PZFlex results when the amplitudes were relatively low. These results suggest that careful benchmarking of nonlinear simulations is important.

  19. Simulation of nonlinear propagation of biomedical ultrasound using PZFlex and the KZK Texas code

    SciTech Connect

    Qiao, Shan Jackson, Edward; Coussios, Constantin-C; Cleveland, Robin

    2015-10-28

    In biomedical ultrasound nonlinear acoustics can be important in both diagnostic and therapeutic applications and robust simulations tools are needed in the design process but also for day-to-day use such as treatment planning. For most biomedical application the ultrasound sources generate focused sound beams of finite amplitude. The KZK equation is a common model as it accounts for nonlinearity, absorption and paraxial diffraction and there are a number of solvers available, primarily developed by research groups. We compare the predictions of the KZK Texas code (a finite-difference time-domain algorithm) to an FEM-based commercial software, PZFlex. PZFlex solves the continuity equation and momentum conservation equation with a correction for nonlinearity in the equation of state incorporated using an incrementally linear, 2nd order accurate, explicit algorithm in time domain. Nonlinear ultrasound beams from two transducers driven at 1 MHz and 3.3 MHz respectively were simulated by both the KZK Texas code and PZFlex, and the pressure field was also measured by a fibre-optic hydrophone to validate the models. Further simulations were carried out a wide range of frequencies. The comparisons showed good agreement for the fundamental frequency for PZFlex, the KZK Texas code and the experiments. For the harmonic components, the KZK Texas code was in good agreement with measurements but PZFlex underestimated the amplitude: 32% for the 2nd harmonic and 66% for the 3rd harmonic. The underestimation of harmonics by PZFlex was more significant when the fundamental frequency increased. Furthermore non-physical oscillations in the axial profile of harmonics occurred in the PZFlex results when the amplitudes were relatively low. These results suggest that careful benchmarking of nonlinear simulations is important.

  20. Experimental and code simulation of a station blackout scenario for APR1400 with test facility ATLAS and MARS code

    SciTech Connect

    Yu, X. G.; Kim, Y. S.; Choi, K. Y.; Park, H. S.; Cho, S.; Kang, K. H.; Choi, N. H.

    2012-07-01

    A SBO (station blackout) experiment named SBO-01 was performed at full-pressure IET (Integral Effect Test) facility ATLAS (Advanced Test Loop for Accident Simulation) which is scaled down from the APR1400 (Advanced Power Reactor 1400 MWe). In this study, the transient of SBO-01 is discussed and is subdivided into three phases: the SG fluid loss phase, the RCS fluid loss phase, and the core coolant depletion and core heatup phase. In addition, the typical phenomena in SBO-01 test - SG dryout, natural circulation, core coolant boiling, the PRZ full, core heat-up - are identified. Furthermore, the SBO-01 test is reproduced by the MARS code calculation with the ATLAS model which represents the ATLAS test facility. The experimental and calculated transients are then compared and discussed. The comparison reveals there was malfunction of equipments: the SG leakage through SG MSSV and the measurement error of loop flow meter. As the ATLAS model is validated against the experimental results, it can be further employed to investigate the other possible SBO scenarios and to study the scaling distortions in the ATLAS. (authors)

  1. Numerical simulation of a short RFQ resonator using the MAFIA codes

    SciTech Connect

    Wang, H.; Ben-Zvi, I.; Jain, A.; Paul, P. . Dept. of Physics); Lombardi, A. . Lab. Nazionale di Legnaro)

    1991-01-01

    The electrical characteristics of a short (2{beta}{lambda}=0.4 m) resonator with large modulation (m=4) have been studied using the three dimensional codes, MAFIA. The complete resonator, including the modulated electrodes and a complex support structure, has been simulated using {approximately} 350,000 mesh points. Important characteristics studied include the resonant frequency, electric and magnetic fields distributions, quality factor and stored energy. The results of the numerical simulations are compared with the measurements of an actual resonator and analytical approximations. 7 refs., 3 figs., 1 tab.

  2. Benchmarking the codes VORPAL, OSIRIS, and QuickPIC with Laser Wakefield Acceleration Simulations

    SciTech Connect

    Paul, Kevin; Huang, C.; Bruhwiler, D.L.; Mori, W.B.; Tsung, F.S.; Cormier-Michel, E.; Geddes, C.G.R.; Cowan, B.; Cary, J.R.; Esarey, E.; Fonseca, R.A.; Martins, S.F.; Silva, L.O.

    2008-09-08

    Three-dimensional laser wakefield acceleration (LWFA) simulations have recently been performed to benchmark the commonly used particle-in-cell (PIC) codes VORPAL, OSIRIS, and QuickPIC. The simulations were run in parallel on over 100 processors, using parameters relevant to LWFA with ultra-short Ti-Sapphire laser pulses propagating in hydrogen gas. Both first-order and second-order particle shapes were employed. We present the results of this benchmarking exercise, and show that accelerating gradients from full PIC agree for all values of a0 and that full and reduced PIC agree well for values of a0 approaching 4.

  3. Benchmarking the codes VORPAL, OSIRIS, and QuickPIC with Laser Wakefield Acceleration Simulations

    SciTech Connect

    Paul, K.; Bruhwiler, D. L.; Cowan, B.; Cary, J. R.; Huang, C.; Mori, W. B.; Tsung, F. S.; Cormier-Michel, E.; Geddes, C. G. R.; Esarey, E.; Fonseca, R. A.; Martins, S. F.; Silva, L. O.

    2009-01-22

    Three-dimensional laser wakefield acceleration (LWFA) simulations have recently been performed to benchmark the commonly used particle-in-cell (PIC) codes VORPAL, OSIRIS, and QuickPIC. The simulations were run in parallel on over 100 processors, using parameters relevant to LWFA with ultra-short Ti-Sapphire laser pulses propagating in hydrogen gas. Both first-order and second-order particle shapes were employed. We present the results of this benchmarking exercise, and show that accelerating gradients from full PIC agree for all values of a{sub 0} and that full and reduced PIC agree well for values of a{sub 0} approaching 4.

  4. Pedestal Fueling Simulations with a Coupled Kinetic-kinetic Plasma-neutral Transport Code

    SciTech Connect

    D.P. Stotler, C.S. Chang, S.H. Ku, J. Lang and G.Y. Park

    2012-08-29

    A Monte Carlo neutral transport routine, based on DEGAS2, has been coupled to the guiding center ion-electron-neutral neoclassical PIC code XGC0 to provide a realistic treatment of neutral atoms and molecules in the tokamak edge plasma. The DEGAS2 routine allows detailed atomic physics and plasma-material interaction processes to be incorporated into these simulations. The spatial pro le of the neutral particle source used in the DEGAS2 routine is determined from the uxes of XGC0 ions to the material surfaces. The kinetic-kinetic plasma-neutral transport capability is demonstrated with example pedestal fueling simulations.

  5. Generator of neutrino-nucleon interactions for the FLUKA based simulation code

    SciTech Connect

    Battistoni, G.; Sala, P. R.; Ferrari, A.; Lantz, M.; Smirnov, G. I.

    2009-11-25

    An event generator of neutrino-nucleon and neutrino-nucleus interactions has been developed for the general purpose Monte Carlo code FLUKA. The generator includes options for simulating quasi-elastic interactions, the neutrino-induced resonance production and deep inelastic scattering. Moreover, it shares the hadronization routines developed earlier in the framework of the FLUKA package for simulating hadron-nucleon interactions. The simulation of neutrino-nuclear interactions makes use of the well developed PEANUT event generator implemented in FLUKA for modeling of the interactions between hadrons and nuclei. The generator has been tested in the neutrino energy range from 0 to 10 TeV and it is available in the standard FLUKA distribution. Limitations related to some particular kinematical conditions are discussed. A number of upgrades is foreseen for the generator which will optimize its applications for simulating experiments in the CNGS beam.

  6. yt: A MULTI-CODE ANALYSIS TOOLKIT FOR ASTROPHYSICAL SIMULATION DATA

    SciTech Connect

    Turk, Matthew J.; Norman, Michael L.; Smith, Britton D.; Oishi, Jeffrey S.; Abel, Tom; Skory, Stephen; Skillman, Samuel W.

    2011-01-15

    The analysis of complex multiphysics astrophysical simulations presents a unique and rapidly growing set of challenges: reproducibility, parallelization, and vast increases in data size and complexity chief among them. In order to meet these challenges, and in order to open up new avenues for collaboration between users of multiple simulation platforms, we present yt (available at http://yt.enzotools.org/) an open source, community-developed astrophysical analysis and visualization toolkit. Analysis and visualization with yt are oriented around physically relevant quantities rather than quantities native to astrophysical simulation codes. While originally designed for handling Enzo's structure adaptive mesh refinement data, yt has been extended to work with several different simulation methods and simulation codes including Orion, RAMSES, and FLASH. We report on its methods for reading, handling, and visualizing data, including projections, multivariate volume rendering, multi-dimensional histograms, halo finding, light cone generation, and topologically connected isocontour identification. Furthermore, we discuss the underlying algorithms yt uses for processing and visualizing data, and its mechanisms for parallelization of analysis tasks.

  7. YT: A Multi-Code Analysis Toolkit for Astrophysical Simulation Data

    SciTech Connect

    Turk, Matthew J.; Smith, Britton D.; Oishi, Jeffrey S.; Skory, Stephen; Skillman, Samuel W.; Abel, Tom; Norman, Michael L.; /aff San Diego, CASS

    2011-06-23

    The analysis of complex multiphysics astrophysical simulations presents a unique and rapidly growing set of challenges: reproducibility, parallelization, and vast increases in data size and complexity chief among them. In order to meet these challenges, and in order to open up new avenues for collaboration between users of multiple simulation platforms, we present yt (available at http://yt.enzotools.org/) an open source, community-developed astrophysical analysis and visualization toolkit. Analysis and visualization with yt are oriented around physically relevant quantities rather than quantities native to astrophysical simulation codes. While originally designed for handling Enzo's structure adaptive mesh refinement data, yt has been extended to work with several different simulation methods and simulation codes including Orion, RAMSES, and FLASH. We report on its methods for reading, handling, and visualizing data, including projections, multivariate volume rendering, multi-dimensional histograms, halo finding, light cone generation, and topologically connected isocontour identification. Furthermore, we discuss the underlying algorithms yt uses for processing and visualizing data, and its mechanisms for parallelization of analysis tasks.

  8. TEMPEST code modifications and testing for erosion-resisting sludge simulations

    SciTech Connect

    Onishi, Y.; Trent, D.S.

    1998-01-01

    The TEMPEST computer code has been used to address many waste retrieval operational and safety questions regarding waste mobilization, mixing, and gas retention. Because the amount of sludge retrieved from the tank is directly related to the sludge yield strength and the shear stress acting upon it, it is important to incorporate the sludge yield strength into simulations of erosion-resisting tank waste retrieval operations. This report describes current efforts to modify the TEMPEST code to simulate pump jet mixing of erosion-resisting tank wastes and the models used to test for erosion of waste sludge with yield strength. Test results for solid deposition and diluent/slurry jet injection into sludge layers in simplified tank conditions show that the modified TEMPEST code has a basic ability to simulate both the mobility and immobility of the sludges with yield strength. Further testing, modification, calibration, and verification of the sludge mobilization/immobilization model are planned using erosion data as they apply to waste tank sludges.

  9. Simulations of inspiraling and merging double neutron stars using the Spectral Einstein Code

    NASA Astrophysics Data System (ADS)

    Haas, Roland; Ott, Christian D.; Szilagyi, Bela; Kaplan, Jeffrey D.; Lippuner, Jonas; Scheel, Mark A.; Barkett, Kevin; Muhlberger, Curran D.; Dietrich, Tim; Duez, Matthew D.; Foucart, Francois; Pfeiffer, Harald P.; Kidder, Lawrence E.; Teukolsky, Saul A.

    2016-06-01

    We present results on the inspiral, merger, and postmerger evolution of a neutron star-neutron star (NSNS) system. Our results are obtained using the hybrid pseudospectral-finite volume Spectral Einstein Code (SpEC). To test our numerical methods, we evolve an equal-mass system for ≈22 orbits before merger. This waveform is the longest waveform obtained from fully general-relativistic simulations for NSNSs to date. Such long (and accurate) numerical waveforms are required to further improve semianalytical models used in gravitational wave data analysis, for example, the effective one body models. We discuss in detail the improvements to SpEC's ability to simulate NSNS mergers, in particular mesh refined grids to better resolve the merger and postmerger phases. We provide a set of consistency checks and compare our results to NSNS merger simulations with the independent bam code. We find agreement between them, which increases confidence in results obtained with either code. This work paves the way for future studies using long waveforms and more complex microphysical descriptions of neutron star matter in SpEC.

  10. Development Of Sputtering Models For Fluids-Based Plasma Simulation Codes

    NASA Astrophysics Data System (ADS)

    Veitzer, Seth; Beckwith, Kristian; Stoltz, Peter

    2015-09-01

    Rf-driven plasma devices such as ion sources and plasma processing devices for many industrial and research applications benefit from detailed numerical modeling. Simulation of these devices using explicit PIC codes is difficult due to inherent separations of time and spatial scales. One alternative type of model is fluid-based codes coupled with electromagnetics, that are applicable to modeling higher-density plasmas in the time domain, but can relax time step requirements. To accurately model plasma-surface processes, such as physical sputtering and secondary electron emission, kinetic particle models have been developed, where particles are emitted from a material surface due to plasma ion bombardment. In fluid models plasma properties are defined on a cell-by-cell basis, and distributions for individual particle properties are assumed. This adds a complexity to surface process modeling, which we describe here. We describe the implementation of sputtering models into the hydrodynamic plasma simulation code USim, as well as methods to improve the accuracy of fluids-based simulation of plasmas-surface interactions by better modeling of heat fluxes. This work was performed under the auspices of the Department of Energy, Office of Basic Energy Sciences Award #DE-SC0009585.

  11. Epp: A C++ EGSnrc user code for x-ray imaging and scattering simulations

    SciTech Connect

    Lippuner, Jonas; Elbakri, Idris A.; Cui Congwu; Ingleby, Harry R.

    2011-03-15

    Purpose: Easy particle propagation (Epp) is a user code for the EGSnrc code package based on the C++ class library egspp. A main feature of egspp (and Epp) is the ability to use analytical objects to construct simulation geometries. The authors developed Epp to facilitate the simulation of x-ray imaging geometries, especially in the case of scatter studies. While direct use of egspp requires knowledge of C++, Epp requires no programming experience. Methods: Epp's features include calculation of dose deposited in a voxelized phantom and photon propagation to a user-defined imaging plane. Projection images of primary, single Rayleigh scattered, single Compton scattered, and multiple scattered photons may be generated. Epp input files can be nested, allowing for the construction of complex simulation geometries from more basic components. To demonstrate the imaging features of Epp, the authors simulate 38 keV x rays from a point source propagating through a water cylinder 12 cm in diameter, using both analytical and voxelized representations of the cylinder. The simulation generates projection images of primary and scattered photons at a user-defined imaging plane. The authors also simulate dose scoring in the voxelized version of the phantom in both Epp and DOSXYZnrc and examine the accuracy of Epp using the Kawrakow-Fippel test. Results: The results of the imaging simulations with Epp using voxelized and analytical descriptions of the water cylinder agree within 1%. The results of the Kawrakow-Fippel test suggest good agreement between Epp and DOSXYZnrc. Conclusions: Epp provides the user with useful features, including the ability to build complex geometries from simpler ones and the ability to generate images of scattered and primary photons. There is no inherent computational time saving arising from Epp, except for those arising from egspp's ability to use analytical representations of simulation geometries. Epp agrees with DOSXYZnrc in dose calculation, since

  12. A PIC-MCC code for simulation of streamer propagation in air

    SciTech Connect

    Chanrion, O. Neubert, T.

    2008-07-20

    A particle code has been developed to study the distribution and acceleration of electrons in electric discharges in air. The code can follow the evolution of a discharge from the initial stage of a single free electron in a background electric field to the formation of an electron avalanche and its transition into a streamer. The code is in 2D axi-symmetric coordinates, allowing quasi 3D simulations during the initial stages of streamer formation. This is important for realistic simulations of problems where space charge fields are essential such as in streamer formation. The charged particles are followed in a Cartesian mesh and the electric field is updated with Poisson's equation from the charged particle densities. Collisional processes between electrons and air molecules are simulated with a Monte Carlo technique, according to cross section probabilities. The code also includes photoionisation processes of air molecules by photons emitted by excited constituents. The paper describes the code and presents some results of streamer development at 70 km altitude in the mesosphere where electrical discharges (sprites) are generated above severe thunderstorms and at {approx}10 km relevant for lightning and thundercloud electrification. The code is used to study acceleration of thermal seed electrons in streamers and to understand the conditions under which electrons may reach energies in the runaway regime. This is the first study in air, with a particle model with realistic spatial dependencies of the electrostatic field. It is shown that at 1 atm pressure the electric field must exceed {approx}7.5 times the breakdown field to observe runaway electrons in a constant electric field. This value is close to the field where the electric force on an electron equals the maximum frictional force on an electron - found at {approx}100 eV. It is also found that this value is reached in a negative streamer tip at 10 km altitude when the background electric field equals

  13. The use of the Tethered Satellite System to perform low density aerothermodynamics studies

    NASA Technical Reports Server (NTRS)

    Carlomagno, Giovanni M.; De Luca, Luigi; Siemers, Paul M.; Wood, George M., Jr.

    1988-01-01

    The Tethered Satellite System (TSS) is a cooperative space system development activity being carried out by USA and Italy. Within TSS, the Shuttle Tethered Aerothermodynamic Research Facility (STARFAC) concept has the potential to provide access to vast portions of the upper atmosphere for the purpose of atmospheric and aerothermodynamic research. The implementation of this capability will push Tether System (TS) state of the art to its limits; the primary problems being tether/satellite drag, heating, tension control, deployment/retrieval control. In this paper parametric studies are accomplished to assess some of these problems and to delineate the tradeoffs available to missions design to meet the engineering constraints. The utilization of aerodynamic rather than spherical shapes - (TSS) - as well as elementary satellite thrusting and lift are included in the present study.

  14. Real-Gas Flow Properties for NASA Langley Research Center Aerothermodynamic Facilities Complex Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    1996-01-01

    A computational algorithm has been developed which can be employed to determine the flow properties of an arbitrary real (virial) gas in a wind tunnel. A multiple-coefficient virial gas equation of state and the assumption of isentropic flow are used to model the gas and to compute flow properties throughout the wind tunnel. This algorithm has been used to calculate flow properties for the wind tunnels of the Aerothermodynamics Facilities Complex at the NASA Langley Research Center, in which air, CF4. He, and N2 are employed as test gases. The algorithm is detailed in this paper and sample results are presented for each of the Aerothermodynamic Facilities Complex wind tunnels.

  15. Overview of X-38 Hypersonic Aerothermodynamic Wind Tunnel Data and Comparison with Numerical Results

    NASA Technical Reports Server (NTRS)

    Campbell, C.; Caram, J.; Berry, S.; Horvath, T.; Merski, N.; Loomis, M.; Venkatapathy, E.

    2004-01-01

    A NASA team of engineers has been organized to design a crew return vehicle for returning International Space Station crew members from orbit. The hypersonic aerothermodynamic characteristics of the X-23/X-24A derived X-38 crew return vehicle are being evaluated in various wind tunnels in support of this effort. Aerothermodynamic data from two NASA hypersonic tunnels at Mach 6 and Mach 10 has been obtained with cast ceramic models and a thermographic phosphorus digital imaging system. General windward surface heating features are described based on experimental surface heating images and surface oil flow patterns for the nominal hypersonic aerodynamic orientation. Body flap reattachment heating levels are examined. Computational Fluid Dynamics tools have been applied at the appropriate wind tunnel conditions to make comparisons with this data.

  16. Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC) : gap analysis for high fidelity and performance assessment code development.

    SciTech Connect

    Lee, Joon H.; Siegel, Malcolm Dean; Arguello, Jose Guadalupe, Jr.; Webb, Stephen Walter; Dewers, Thomas A.; Mariner, Paul E.; Edwards, Harold Carter; Fuller, Timothy J.; Freeze, Geoffrey A.; Jove-Colon, Carlos F.; Wang, Yifeng

    2011-03-01

    This report describes a gap analysis performed in the process of developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with rigorous verification, validation, and software quality requirements. The gap analyses documented in this report were are performed during an initial gap analysis to identify candidate codes and tools to support the development and integration of the Waste IPSC, and during follow-on activities that delved into more detailed assessments of the various codes that were acquired, studied, and tested. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. The gap analysis indicates that significant capabilities may already exist in the existing THC codes although there is no single code able to fully account for all physical and chemical processes involved in a waste disposal system. Large gaps exist in modeling chemical processes and their couplings with other processes. The coupling of chemical processes with flow transport and mechanical deformation remains challenging. The data for extreme environments (e.g., for elevated temperature and high ionic strength media) that are

  17. Hypersonic research engine/aerothermodynamic integration model, experimental results. Volume 1: Mach 6 component integration

    NASA Technical Reports Server (NTRS)

    Andrews, E. H., Jr.; Mackley, E. A.

    1976-01-01

    The NASA Hypersonic Research Engine (HRE) Project was initiated for the purpose of advancing the technology of airbreathing propulsion for hypersonic flight. A large component (inlet, combustor, and nozzle) and structures development program was encompassed by the project. The tests of a full-scale (18 in. diameter cowl and 87 in. long) HRE concept, designated the Aerothermodynamic Integration Model (AIM), at Mach numbers of 5, 6, and 7. Computer program results for Mach 6 component integration tests are presented.

  18. Hypersonic research engine project. Phase 2: Aerothermodynamic Integration Model (AIM) test report

    NASA Technical Reports Server (NTRS)

    Andersen, W. L.; Kado, L.

    1975-01-01

    The Hypersonic Research Engine-Aerothermodynamic Integration Model (HRE-AIM) was designed, fabricated, and tested in the Hypersonic Tunnel Facility. The HRE-AIM is described along with its installation in the wind tunnel facility. Test conditions to which the HRE-AIM was subjected and observations made during the tests are discussed. The overall engine performance, component interaction, and ignition limits for the design are evaluated.

  19. Aerothermodynamic flow phenomena of the airframe-integrated supersonic combustion ramjet

    NASA Technical Reports Server (NTRS)

    Walton, James T.

    1992-01-01

    The unique component flow phenomena is discussed of the airframe-integrated supersonic combustion ramjet (scramjet) in a format geared towards new players in the arena of hypersonic propulsion. After giving an overview of the scramjet aerothermodynamic cycle, the characteristics are then covered individually of the vehicle forebody, inlet, combustor, and vehicle afterbody/nozzle. Attention is given to phenomena such as inlet speeding, inlet starting, inlet spillage, fuel injection, thermal choking, and combustor-inlet interaction.

  20. Simulation of chaotic electrokinetic transport: performance of commercial software versus custom-built direct numerical simulation codes.

    PubMed

    Karatay, Elif; Druzgalski, Clara L; Mani, Ali

    2015-05-15

    Many microfluidic and electrochemical applications involve chaotic transport phenomena that arise due to instabilities stemming from coupling of hydrodynamics with ion transport and electrostatic forces. Recent investigations have revealed the contribution of a wide range of spatio-temporal scales in such electro-chaotic systems similar to those observed in turbulent flows. Given that these scales can span several orders of magnitude, significant numerical resolution is needed for accurate prediction of these phenomena. The objective of this work is to assess accuracy and efficiency of commercial software for prediction of such phenomena. We have considered the electroconvective flow induced by concentration polarization near an ion selective surface as a model problem representing chaotic elecrokinetic phenomena. We present detailed comparison of the performance of a general-purpose commercial computational fluid dynamics (CFD) and transport solver against a custom-built direct numerical simulation code that has been tailored to the specific physics of unsteady electrokinetic flows. We present detailed statistics including velocity and ion concentration spectra over a wide range of frequencies as well as time-averaged statistics and computational time required for each simulation. Our results indicate that while accuracy can be guaranteed with proper mesh resolution and avoiding numerical dissipation, commercial solvers are generally at least an order of magnitude slower than custom-built direct numerical simulation codes.

  1. A unified radiative magnetohydrodynamics code for lightning-like discharge simulations

    SciTech Connect

    Chen, Qiang Chen, Bin Xiong, Run; Cai, Zhaoyang; Chen, P. F.

    2014-03-15

    A two-dimensional Eulerian finite difference code is developed for solving the non-ideal magnetohydrodynamic (MHD) equations including the effects of self-consistent magnetic field, thermal conduction, resistivity, gravity, and radiation transfer, which when combined with specified pulse current models and plasma equations of state, can be used as a unified lightning return stroke solver. The differential equations are written in the covariant form in the cylindrical geometry and kept in the conservative form which enables some high-accuracy shock capturing schemes to be equipped in the lightning channel configuration naturally. In this code, the 5-order weighted essentially non-oscillatory scheme combined with Lax-Friedrichs flux splitting method is introduced for computing the convection terms of the MHD equations. The 3-order total variation diminishing Runge-Kutta integral operator is also equipped to keep the time-space accuracy of consistency. The numerical algorithms for non-ideal terms, e.g., artificial viscosity, resistivity, and thermal conduction, are introduced in the code via operator splitting method. This code assumes the radiation is in local thermodynamic equilibrium with plasma components and the flux limited diffusion algorithm with grey opacities is implemented for computing the radiation transfer. The transport coefficients and equation of state in this code are obtained from detailed particle population distribution calculation, which makes the numerical model is self-consistent. This code is systematically validated via the Sedov blast solutions and then used for lightning return stroke simulations with the peak current being 20 kA, 30 kA, and 40 kA, respectively. The results show that this numerical model consistent with observations and previous numerical results. The population distribution evolution and energy conservation problems are also discussed.

  2. Analytical characterization of AOTV perigee aerothermodynamic regime. [Aeroassisted Orbital Transfer Vehicle

    NASA Technical Reports Server (NTRS)

    Desautel, D.

    1984-01-01

    In preliminary design studies of AOTV (Aeroassisted Orbital Transfer Vehicle) configurations, it is desirable to have a simple analytical method for characterizing the aerothermodynamic regime at skip trajectory perigee as a function of vehicle L/D and m/CDA (ballistic coefficient). The present study derives an approximate perigee solution from the generalized equations of motion. For a prescribed entry velocity vector, the solution determines a Zeta function (proportional to density divided by m/CDA) at perigee as a parametric function of the exit velocity vector and (constant) L/D. The perigee Zeta function then determines perigee density (or altitude) as a parametric function of m/CDA. The solution allows the following classic aerothermodynamic parameters to be determined at perigee as parametric functions of m/CDA, L/D, and the exit velocity vector: Reynolds Number (viscous effects), Mach Number (compressibility effects), Knudsen Number (rarefaction effects), sphere and disk bow shock standoff distance, Damkohler Number (relaxation effects), viscous correlation parameter (viscid-inviscid interactions), and Stanton Number (convective heat transfer). Results of the analysis are given for low L/D and mid L/D AOTV configurations on return from geosynchronous and L5 orbits. It is concluded the method successfully provides preliminary estimates of the aerothermodynamic parameters through the use of simple algebraic equations and plots.

  3. Impact of ETO propellants on the aerothermodynamic analyses of propulsion components

    NASA Technical Reports Server (NTRS)

    Civinskas, K. C.; Boyle, R. J.; Mcconnaughey, H. V.

    1988-01-01

    The operating conditions and the propellant transport properties used in Earth-to-Orbit (ETO) applications affect the aerothermodynamic design of ETO turbomachinery in a number of ways. Some aerodynamic and heat transfer implications of the low molecular weight fluids and high Reynolds number operating conditions on future ETO turbomachinery are discussed. Using the current SSME high pressure fuel turbine as a baseline, the aerothermodynamic comparisons are made for two alternate fuel turbine geometries. The first is a revised first stage rotor blade designed to reduce peak heat transfer. This alternate design resulted in a 23 percent reduction in peak heat transfer. The second design concept was a single stage rotor to yield the same power output as the baseline two stage rotor. Since the rotor tip speed was held constant, the turbine work factor doubled. In this alternate design, the peak heat transfer remained the same as the baseline. While the efficiency of the single stage design was 3.1 points less than the baseline two stage turbine, the design was aerothermodynamically feasible, and may be structurally desirable.

  4. PRE_X Programme: Aerothermodynamic Objectives and Aeroshape Definition for in Flight Experiments

    NASA Astrophysics Data System (ADS)

    Lambert, O.; Tribot, J.-P.; Saint-Cloud, F.

    2002-01-01

    As the expendable launch vehicles (ELV) are limited in their trend to lower costs, the reusability (Reusable Launch Vehicle, RLV) could be the way to make drastic step. By the year 2001, CNES proposed through the ANGEL phase 1 programme to preprare the required technical maturity before that RLV's become alternatives to ELV's. In such way, system ,propulsion, ground based demonstrations, aero-thermo-dynamics as well as in flight experimentation are planned. This paper is focused on the aero-thermo-dynamics (ATD) and in flight demonstration activities with emphasis on the better understanding of ATD problems emerging from past programmes among them shock wave transitionnal boundary layer interaction on surface control, boundary layer transition, local aerothermodynamic effects, gas- surface interaction, catalycity, base flow prediction,...In order to minimize as small as possible the management risk a first generation of vehicle dubbed Pre_X is designed to validate technological choices and to have as soon as possible re-entry data to calibrate the various tools involved in the future RLV definition. In addition, the main requirement for PRE_X aeroshape definition and the two different design approaches considered by Dassault Aviation and EADS-LV are discussed. Then, the more promising concept for the PRE_X application is presented. Finally, the current status of the ATD activities is given as well as the perspectives.

  5. Simulation of positron backscattering and implantation profiles using Geant4 code

    NASA Astrophysics Data System (ADS)

    Huang, Shi-Juan; Pan, Zi-Wen; Liu, Jian-Dang; Han, Rong-Dian; Ye, Bang-Jiao

    2015-10-01

    For the proper interpretation of the experimental data produced in slow positron beam technique, the positron implantation properties are studied carefully using the latest Geant4 code. The simulated backscattering coefficients, the implantation profiles, and the median implantation depths for mono-energetic positrons with energy range from 1 keV to 50 keV normally incident on different crystals are reported. Compared with the previous experimental results, our simulation backscattering coefficients are in reasonable agreement, and we think that the accuracy may be related to the structures of the host materials in the Geant4 code. Based on the reasonable simulated backscattering coefficients, the adjustable parameters of the implantation profiles which are dependent on materials and implantation energies are obtained. The most important point is that we calculate the positron backscattering coefficients and median implantation depths in amorphous polymers for the first time and our simulations are in fairly good agreement with the previous experimental results. Project supported by the National Natural Science Foundation of China (Grant Nos. 11175171 and 11105139).

  6. Radioactive Sediment Transport on Ogaki Dam Reservoir in Fukushima Evacuated Zone: Numerical Simulation Studies by 2-D River Simulation Code

    NASA Astrophysics Data System (ADS)

    Yamada, Susumu; Kitamura, Akihiro; Kurikami, Hiroshi; Machida, Masahiko

    2015-04-01

    Fukushima Daiichi Nuclear Power Plant (FDNPP) accident on March 2011 released significant quantities of radionuclides to atmosphere. The most significant nuclide is radioactive cesium isotopes. Therefore, the movement of the cesium is one of the critical issues for the environmental assessment. Since the cesium is strongly sorbed by soil particles, the cesium transport can be regarded as the sediment transport which is mainly brought about by the aquatic system such as a river and a lake. In this research, our target is the sediment transport on Ogaki dam reservoir which is located in about 16 km northwest from FDNPP. The reservoir is one of the principal irrigation dam reservoirs in Fukushima Prefecture and its upstream river basin was heavily contaminated by radioactivity. We simulate the sediment transport on the reservoir using 2-D river simulation code named Nays2D originally developed by Shimizu et al. (The latest version of Nays2D is available as a code included in iRIC (http://i-ric.org/en/), which is a river flow and riverbed variation analysis software package). In general, a 2-D simulation code requires a huge amount of calculation time. Therefore, we parallelize the code and execute it on a parallel computer. We examine the relationship between the behavior of the sediment transport and the height of the reservoir exit. The simulation result shows that almost all the sand that enter into the reservoir deposit close to the entrance of the reservoir for any height of the exit. The amounts of silt depositing within the reservoir slightly increase by raising the height of the exit. However, that of the clay dramatically increases. Especially, more than half of the clay deposits, if the exit is sufficiently high. These results demonstrate that the water level of the reservoir has a strong influence on the amount of the clay discharged from the reservoir. As a result, we conclude that the tuning of the water level has a possibility for controlling the

  7. Simulation of a Synthetic Jet in Quiescent Air Using TLNS3D Flow Code

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Turkel, Eli

    2007-01-01

    Although the actuator geometry is highly three-dimensional, the outer flowfield is nominally two-dimensional because of the high aspect ratio of the rectangular slot. For the present study, this configuration is modeled as a two-dimensional problem. A multi-block structured grid available at the CFDVAL2004 website is used as a baseline grid. The periodic motion of the diaphragm is simulated by specifying a sinusoidal velocity at the diaphragm surface with a frequency of 450 Hz, corresponding to the experimental setup. The amplitude is chosen so that the maximum Mach number at the jet exit is approximately 0.1, to replicate the experimental conditions. At the solid walls zero slip, zero injection, adiabatic temperature and zero pressure gradient conditions are imposed. In the external region, symmetry conditions are imposed on the side (vertical) boundaries and far-field conditions are imposed on the top boundary. A nominal free-stream Mach number of 0.001 is imposed in the free stream to simulate incompressible flow conditions in the TLNS3D code, which solves compressible flow equations. The code was run in unsteady (URANS) mode until the periodicity was established. The time-mean quantities were obtained by running the code for at least another 15 periods and averaging the flow quantities over these periods. The phase-locked average of flow quantities were assumed to be coincident with their values during the last full time period.

  8. Simulation for the Production of Technetium-99m Using Monte Carlo N-Particle Transport Code

    NASA Astrophysics Data System (ADS)

    Kaita, Courtney; Gentile, Charles; Zelenty, Jennifer

    2010-11-01

    The Monte Carlo N-Particle Transport Code (MCNP) is employed to simulate the radioisotope production process that leads to the creation of Technetium-99m (Tc-99m). Tc-99m is a common metastable nuclear isomer used in nuclear medicine tests and is produced from the gamma decay of Molybdenum-99 (Mo-99). Mo-99 is commonly produced from the fission of Uranium-235, a complicated process which is only performed at a limited number of facilities. Due to the age of these facilities, coupled with the critical importance of a steady flow of Mo-99, new methods of generating Mo-99 are being investigated. Current experiments demonstrate promising alternatives, one of which consists of the neutron activation of Molybdenum-98 (Mo-98), a naturally occurring element found in nature. Mo-98 has a small cross section (.13 barns), so investigations are also aimed at overcoming this natural obstacle for producing Tc-99m. The neutron activated Mo-98 becomes Mo-99 and subsequently decays into radioactive Tc-99m. The MCNP code is being used to examine the interactions between the particles in each of these situations, thus determining a theoretical threshold to maximize the reaction's efficiency. The simulation results will be applied to ongoing experiments at the PPPL, where the empirical data will be compared to predictions from the MCNP code.

  9. Development of a space radiation Monte Carlo computer simulation based on the FLUKA and ROOT codes.

    PubMed

    Pinsky, L S; Wilson, T L; Ferrari, A; Sala, P; Carminati, F; Brun, R

    2001-01-01

    This NASA funded project is proceeding to develop a Monte Carlo-based computer simulation of the radiation environment in space. With actual funding only initially in place at the end of May 2000, the study is still in the early stage of development. The general tasks have been identified and personnel have been selected. The code to be assembled will be based upon two major existing software packages. The radiation transport simulation will be accomplished by updating the FLUKA Monte Carlo program, and the user interface will employ the ROOT software being developed at CERN. The end-product will be a Monte Carlo-based code which will complement the existing analytic codes such as BRYNTRN/HZETRN presently used by NASA to evaluate the effects of radiation shielding in space. The planned code will possess the ability to evaluate the radiation environment for spacecraft and habitats in Earth orbit, in interplanetary space, on the lunar surface, or on a planetary surface such as Mars. Furthermore, it will be useful in the design and analysis of experiments such as ACCESS (Advanced Cosmic-ray Composition Experiment for Space Station), which is an Office of Space Science payload currently under evaluation for deployment on the International Space Station (ISS). FLUKA will be significantly improved and tailored for use in simulating space radiation in four ways. First, the additional physics not presently within the code that is necessary to simulate the problems of interest, namely the heavy ion inelastic processes, will be incorporated. Second, the internal geometry package will be replaced with one that will substantially increase the calculation speed as well as simplify the data input task. Third, default incident flux packages that include all of the different space radiation sources of interest will be included. Finally, the user interface and internal data structure will be melded together with ROOT, the object-oriented data analysis infrastructure system. Beyond

  10. Development of a space radiation Monte Carlo computer simulation based on the FLUKA and ROOT codes.

    PubMed

    Pinsky, L S; Wilson, T L; Ferrari, A; Sala, P; Carminati, F; Brun, R

    2001-01-01

    This NASA funded project is proceeding to develop a Monte Carlo-based computer simulation of the radiation environment in space. With actual funding only initially in place at the end of May 2000, the study is still in the early stage of development. The general tasks have been identified and personnel have been selected. The code to be assembled will be based upon two major existing software packages. The radiation transport simulation will be accomplished by updating the FLUKA Monte Carlo program, and the user interface will employ the ROOT software being developed at CERN. The end-product will be a Monte Carlo-based code which will complement the existing analytic codes such as BRYNTRN/HZETRN presently used by NASA to evaluate the effects of radiation shielding in space. The planned code will possess the ability to evaluate the radiation environment for spacecraft and habitats in Earth orbit, in interplanetary space, on the lunar surface, or on a planetary surface such as Mars. Furthermore, it will be useful in the design and analysis of experiments such as ACCESS (Advanced Cosmic-ray Composition Experiment for Space Station), which is an Office of Space Science payload currently under evaluation for deployment on the International Space Station (ISS). FLUKA will be significantly improved and tailored for use in simulating space radiation in four ways. First, the additional physics not presently within the code that is necessary to simulate the problems of interest, namely the heavy ion inelastic processes, will be incorporated. Second, the internal geometry package will be replaced with one that will substantially increase the calculation speed as well as simplify the data input task. Third, default incident flux packages that include all of the different space radiation sources of interest will be included. Finally, the user interface and internal data structure will be melded together with ROOT, the object-oriented data analysis infrastructure system. Beyond

  11. Simulation of Enhanced Geothermal Systems: A Benchmarking and Code Intercomparison Study

    SciTech Connect

    Scheibe, Timothy D.; White, Mark D.; White, Signe K.; Sivaramakrishnan, Chandrika; Purohit, Sumit; Black, Gary D.; Podgorney, Robert; Boyd, Lauren W.; Phillips, Benjamin R.

    2013-06-30

    Numerical simulation codes have become critical tools for understanding complex geologic processes, as applied to technology assessment, system design, monitoring, and operational guidance. Recently the need for quantitatively evaluating coupled Thermodynamic, Hydrologic, geoMechanical, and geoChemical (THMC) processes has grown, driven by new applications such as geologic sequestration of greenhouse gases and development of unconventional energy sources. Here we focus on Enhanced Geothermal Systems (EGS), which are man-made geothermal reservoirs created where hot rock exists but there is insufficient natural permeability and/or pore fluids to allow efficient energy extraction. In an EGS, carefully controlled subsurface fluid injection is performed to enhance the permeability of pre-existing fractures, which facilitates fluid circulation and heat transport. EGS technologies are relatively new, and pose significant simulation challenges. To become a trusted analytical tool for EGS, numerical simulation codes must be tested to demonstrate that they adequately represent the coupled THMC processes of concern. This presentation describes the approach and status of a benchmarking and code intercomparison effort currently underway, supported by the U. S. Department of Energy’s Geothermal Technologies Program. This study is being closely coordinated with a parallel international effort sponsored by the International Partnership for Geothermal Technology (IPGT). We have defined an extensive suite of benchmark problems, test cases, and challenge problems, ranging in complexity and difficulty, and a number of modeling teams are applying various simulation tools to these problems. The descriptions of the problems and modeling results are being compiled using the Velo framework, a scientific workflow and data management environment accessible through a simple web-based interface.

  12. Nonlinear kinetic description of Raman growth using an envelope code, and comparisons with Vlasov simulations

    SciTech Connect

    Benisti, Didier; Morice, Olivier; Gremillet, Laurent; Siminos, Evangelos; Strozzi, David J.

    2010-10-15

    In this paper, we present our nonlinear kinetic modeling of stimulated Raman scattering in a uniform and collisionless plasma using envelope equations. We recall the derivation of these equations, as well as our theoretical predictions for each of the nonlinear kinetic terms, the precision of which having been carefully checked against Vlasov simulations. We particularly focus here on the numerical resolution of these equations, which requires the additional concept of ''self-optimization'' that we explain, and we describe the envelope code BRAMA that we used. As an application of our modeling, we present one-dimensional BRAMA simulations of stimulated Raman scattering which predict threshold intensities, as well as time scales for Raman growth above threshold, in very good agreement with those inferred from Vlasov simulations. Finally, we discuss the differences between our modeling and other published ones.

  13. Simulations of the Dynamics of the Coupled Energetic and Relativistic Electrons Using VERB Code

    NASA Astrophysics Data System (ADS)

    Shprits, Y.; Kellerman, A. C.; Drozdov, A.

    2015-12-01

    Modeling and understanding of ring current and radiation belt coupled system has been a grand challenge since the beginning of the space age. In this study we show long term simulations with a 3D VERB code of modeling the radiation belts with boundary conditions derived from observations around geosynchronous orbit. We also present 4D VERB simulations that include convective transport, radial diffusion, pitch angle scattering and local acceleration. VERB simulations show that the lower energy inward transport is dominated by the convection and higher energy transport is dominated by the diffusive radial transport. We also show that at energies of 100s of keV a number of processes work simultaneously including convective transport, radial diffusion, local acceleration, loss to the loss cone and loss to the magnetopause. The results of the simulaiton of March 2013 storm are compared with Van Allen Probes observations.

  14. Simulation of the SRI International test Gun-27 using the PAGOSA code

    SciTech Connect

    Jacoby, J.J.

    1997-06-23

    SRI International conducted a set of impact tests with flat disks hitting water-filled chemical submunitions. One of these tests, called Gun-27, involved a 595 gram disk hitting the side of a submunition at 200 m/s. This test was simulated using the PAGOSA code with a materials model that was a good overall match to the data, and with a sequence of five mesh sizes. It was found that when a mesh was used which had at least five cells across the wall of the submunition, PAGOSA was able to provide reasonably satisfactory agreement with the test results, except for the partial fracture of a welded joint. One feature of the test that was reproduced very well by the simulation that used the finest mesh was the fracture of the diaphragm around its edge. Results are compared for all five simulations so that trends can be seen.

  15. Nonlinear kinetic description of Raman growth using an envelope code, and comparisons with Vlasov simulations

    NASA Astrophysics Data System (ADS)

    Bénisti, Didier; Morice, Olivier; Gremillet, Laurent; Siminos, Evangelos; Strozzi, David J.

    2010-10-01

    In this paper, we present our nonlinear kinetic modeling of stimulated Raman scattering in a uniform and collisionless plasma using envelope equations. We recall the derivation of these equations, as well as our theoretical predictions for each of the nonlinear kinetic terms, the precision of which having been carefully checked against Vlasov simulations. We particularly focus here on the numerical resolution of these equations, which requires the additional concept of "self-optimization" that we explain, and we describe the envelope code BRAMA that we used. As an application of our modeling, we present one-dimensional BRAMA simulations of stimulated Raman scattering which predict threshold intensities, as well as time scales for Raman growth above threshold, in very good agreement with those inferred from Vlasov simulations. Finally, we discuss the differences between our modeling and other published ones.

  16. Simulation of charge breeding of rubidium using Monte Carlo charge breeding code and generalized ECRIS model

    SciTech Connect

    Zhao, L.; Cluggish, B.; Kim, J. S.; Pardo, R.; Vondrasek, R.

    2010-02-15

    A Monte Carlo charge breeding code (MCBC) is being developed by FAR-TECH, Inc. to model the capture and charge breeding of 1+ ion beam in an electron cyclotron resonance ion source (ECRIS) device. The ECRIS plasma is simulated using the generalized ECRIS model which has two choices of boundary settings, free boundary condition and Bohm condition. The charge state distribution of the extracted beam ions is calculated by solving the steady state ion continuity equations where the profiles of the captured ions are used as source terms. MCBC simulations of the charge breeding of Rb+ showed good agreement with recent charge breeding experiments at Argonne National Laboratory (ANL). MCBC correctly predicted the peak of highly charged ion state outputs under free boundary condition and similar charge state distribution width but a lower peak charge state under the Bohm condition. The comparisons between the simulation results and ANL experimental measurements are presented and discussed.

  17. Supercomputing with TOUGH2 family codes for coupled multi-physics simulations of geologic carbon sequestration

    NASA Astrophysics Data System (ADS)

    Yamamoto, H.; Nakajima, K.; Zhang, K.; Nanai, S.

    2015-12-01

    Powerful numerical codes that are capable of modeling complex coupled processes of physics and chemistry have been developed for predicting the fate of CO2 in reservoirs as well as its potential impacts on groundwater and subsurface environments. However, they are often computationally demanding for solving highly non-linear models in sufficient spatial and temporal resolutions. Geological heterogeneity and uncertainties further increase the challenges in modeling works. Two-phase flow simulations in heterogeneous media usually require much longer computational time than that in homogeneous media. Uncertainties in reservoir properties may necessitate stochastic simulations with multiple realizations. Recently, massively parallel supercomputers with more than thousands of processors become available in scientific and engineering communities. Such supercomputers may attract attentions from geoscientist and reservoir engineers for solving the large and non-linear models in higher resolutions within a reasonable time. However, for making it a useful tool, it is essential to tackle several practical obstacles to utilize large number of processors effectively for general-purpose reservoir simulators. We have implemented massively-parallel versions of two TOUGH2 family codes (a multi-phase flow simulator TOUGH2 and a chemically reactive transport simulator TOUGHREACT) on two different types (vector- and scalar-type) of supercomputers with a thousand to tens of thousands of processors. After completing implementation and extensive tune-up on the supercomputers, the computational performance was measured for three simulations with multi-million grid models, including a simulation of the dissolution-diffusion-convection process that requires high spatial and temporal resolutions to simulate the growth of small convective fingers of CO2-dissolved water to larger ones in a reservoir scale. The performance measurement confirmed that the both simulators exhibit excellent

  18. Thermomechanical simulation of the DIAMINO irradiation experiment using the LICOS fuel design code

    SciTech Connect

    Bejaoui, S.; Helfer, T.; Brunon, E.; Lambert, T.; Bendotti, S.; Neyroud, C.

    2013-07-01

    Two separate-effect experiments in the HFR and OSIRIS Material Test Reactors (MTRs) are currently under Post- Irradiation Examinations (MARIOS) and under preparation (DIAMINO) respectively. The main goal of these experiments is to investigate gaseous release and swelling of Am-bearing UO2-x fuels as a function of temperature, fuel microstructure and gas production rate. First, a brief description of the MARIOS and DIAMINO irradiations is provided. Then, the innovative experimental in-pile device specifically developed for the DIAMINO experiment is described. Eventually, the thermo-mechanical computations performed using the LICOS code are presented. These simulations support the DIAMINO experimental design and highlight some of the capabilities of the code. (authors)

  19. Determining mode excitations of vacuum electronics devices via three-dimensional simulations using the SOS code

    NASA Technical Reports Server (NTRS)

    Warren, Gary

    1988-01-01

    The SOS code is used to compute the resonance modes (frequency-domain information) of sample devices and separately to compute the transient behavior of the same devices. A code, DOT, is created to compute appropriate dot products of the time-domain and frequency-domain results. The transient behavior of individual modes in the device is then plotted. Modes in a coupled-cavity traveling-wave tube (CCTWT) section excited beam in separate simulations are analyzed. Mode energy vs. time and mode phase vs. time are computed and it is determined whether the transient waves are forward or backward waves for each case. Finally, the hot-test mode frequencies of the CCTWT section are computed.

  20. Evaluation of Recent Upgrades to the NESS (Nuclear Engine System Simulation) Code

    NASA Technical Reports Server (NTRS)

    Fittje, James E.; Schnitzler, Bruce G.

    2008-01-01

    The Nuclear Thermal Rocket (NTR) concept is being evaluated as a potential propulsion technology for exploratory expeditions to the moon, Mars, and beyond. The need for exceptional propulsion system performance in these missions has been documented in numerous studies, and was the primary focus of a considerable effort undertaken during the Rover/NERVA program from 1955 to 1973. The NASA Glenn Research Center is leveraging this past NTR investment in their vehicle concepts and mission analysis studies with the aid of the Nuclear Engine System Simulation (NESS) code. This paper presents the additional capabilities and upgrades made to this code in order to perform higher fidelity NTR propulsion system analysis and design, and a comparison of its results to the Small Nuclear Rocket Engine (SNRE) design.

  1. An overview of the ENEA activities in the field of coupled codes NPP simulation

    SciTech Connect

    Parisi, C.; Negrenti, E.; Sepielli, M.; Del Nevo, A.

    2012-07-01

    In the framework of the nuclear research activities in the fields of safety, training and education, ENEA (the Italian National Agency for New Technologies, Energy and the Sustainable Development) is in charge of defining and pursuing all the necessary steps for the development of a NPP engineering simulator at the 'Casaccia' Research Center near Rome. A summary of the activities in the field of the nuclear power plants simulation by coupled codes is here presented with the long term strategy for the engineering simulator development. Specifically, results from the participation in international benchmarking activities like the OECD/NEA 'Kalinin-3' benchmark and the 'AER-DYN-002' benchmark, together with simulations of relevant events like the Fukushima accident, are here reported. The ultimate goal of such activities performed using state-of-the-art technology is the re-establishment of top level competencies in the NPP simulation field in order to facilitate the development of Enhanced Engineering Simulators and to upgrade competencies for supporting national energy strategy decisions, the nuclear national safety authority, and the R and D activities on NPP designs. (authors)

  2. NBODY Codes: Numerical Simulations of Many-body (N-body) Gravitational Interactions

    NASA Astrophysics Data System (ADS)

    Aarseth, Sverre J.

    2011-02-01

    I review the development of direct N-body codes at Cambridge over nearly 40 years, highlighting the main stepping stones. The first code (NBODY1) was based on the simple concepts of a force polynomial combined with individual time steps, where numerical problems due to close encounters were avoided by a softened potential. Fortuitously, the elegant Kustaanheimo-Stiefel two-body regularization soon permitted small star clusters to be studied (NBODY3). Subsequent extensions to unperturbed three-body and four-body regularization proved beneficial in dealing with multiple interactions. Investigations of larger systems became possible with the Ahmad-Cohen neighbor scheme which was used more than 20 years ago for expanding universe models of 4000 galaxies (NBODY2). Combining the neighbor scheme with the regularization procedures enabled more realistic star clusters to be considered (NBODY5). After a period of simulations with no apparent technical progress, chain regularization replaced the treatment of compact subsystems (NBODY3, NBODY5). More recently, the Hermite integration method provided a major advance and has been implemented on the special-purpose HARP computers (NBODY4) together with an alternative version for workstations and supercomputers (NBODY6). These codes also include a variety of algorithms for stellar evolution based on fast lookup functions. The treatment of primordial binaries contains efficient procedures for chaotic two-body motion as well as tidal circularization, and special attention is paid to hierarchical systems and their stability. This family of N-body codes constitutes a powerful tool for dynamical simulations which is freely available to the astronomical community, and the massive effort owes much to collaborators.

  3. Simulation of image formation in x-ray coded aperture microscopy with polycapillary optics.

    PubMed

    Korecki, P; Roszczynialski, T P; Sowa, K M

    2015-04-01

    In x-ray coded aperture microscopy with polycapillary optics (XCAMPO), the microstructure of focusing polycapillary optics is used as a coded aperture and enables depth-resolved x-ray imaging at a resolution better than the focal spot dimensions. Improvements in the resolution and development of 3D encoding procedures require a simulation model that can predict the outcome of XCAMPO experiments. In this work we introduce a model of image formation in XCAMPO which enables calculation of XCAMPO datasets for arbitrary positions of the object relative to the focal plane as well as to incorporate optics imperfections. In the model, the exit surface of the optics is treated as a micro-structured x-ray source that illuminates a periodic object. This makes it possible to express the intensity of XCAMPO images as a convolution series and to perform simulations by means of fast Fourier transforms. For non-periodic objects, the model can be applied by enforcing artificial periodicity and setting the spatial period larger then the field-of-view. Simulations are verified by comparison with experimental data.

  4. GeNN: a code generation framework for accelerated brain simulations.

    PubMed

    Yavuz, Esin; Turner, James; Nowotny, Thomas

    2016-01-01

    Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. We present performance benchmarks showing that 200-fold speedup compared to a single core of a CPU can be achieved for a network of one million conductance based Hodgkin-Huxley neurons but that for other models the speedup can differ. GeNN is available for Linux, Mac OS X and Windows platforms. The source code, user manual, tutorials, Wiki, in-depth example projects and all other related information can be found on the project website http://genn-team.github.io/genn/. PMID:26740369

  5. GeNN: a code generation framework for accelerated brain simulations

    PubMed Central

    Yavuz, Esin; Turner, James; Nowotny, Thomas

    2016-01-01

    Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. We present performance benchmarks showing that 200-fold speedup compared to a single core of a CPU can be achieved for a network of one million conductance based Hodgkin-Huxley neurons but that for other models the speedup can differ. GeNN is available for Linux, Mac OS X and Windows platforms. The source code, user manual, tutorials, Wiki, in-depth example projects and all other related information can be found on the project website http://genn-team.github.io/genn/. PMID:26740369

  6. Vine—A Numerical Code for Simulating Astrophysical Systems Using Particles. II. Implementation and Performance Characteristics

    NASA Astrophysics Data System (ADS)

    Nelson, Andrew F.; Wetzstein, M.; Naab, T.

    2009-10-01

    We continue our presentation of VINE. In this paper, we begin with a description of relevant architectural properties of the serial and shared memory parallel computers on which VINE is intended to run, and describe their influences on the design of the code itself. We continue with a detailed description of a number of optimizations made to the layout of the particle data in memory and to our implementation of a binary tree used to access that data for use in gravitational force calculations and searches for smoothed particle hydrodynamics (SPH) neighbor particles. We describe the modifications to the code necessary to obtain forces efficiently from special purpose "GRAPE" hardware, the interfaces required to allow transparent substitution of those forces in the code instead of those obtained from the tree, and the modifications necessary to use both tree and GRAPE together as a fused GRAPE/tree combination. We conclude with an extensive series of performance tests, which demonstrate that the code can be run efficiently and without modification in serial on small workstations or in parallel using the OpenMP compiler directives on large-scale, shared memory parallel machines. We analyze the effects of the code optimizations and estimate that they improve its overall performance by more than an order of magnitude over that obtained by many other tree codes. Scaled parallel performance of the gravity and SPH calculations, together the most costly components of most simulations, is nearly linear up to at least 120 processors on moderate sized test problems using the Origin 3000 architecture, and to the maximum machine sizes available to us on several other architectures. At similar accuracy, performance of VINE, used in GRAPE-tree mode, is approximately a factor 2 slower than that of VINE, used in host-only mode. Further optimizations of the GRAPE/host communications could improve the speed by as much as a factor of 3, but have not yet been implemented in VINE

  7. VINE-A NUMERICAL CODE FOR SIMULATING ASTROPHYSICAL SYSTEMS USING PARTICLES. II. IMPLEMENTATION AND PERFORMANCE CHARACTERISTICS

    SciTech Connect

    Nelson, Andrew F.; Wetzstein, M.; Naab, T.

    2009-10-01

    We continue our presentation of VINE. In this paper, we begin with a description of relevant architectural properties of the serial and shared memory parallel computers on which VINE is intended to run, and describe their influences on the design of the code itself. We continue with a detailed description of a number of optimizations made to the layout of the particle data in memory and to our implementation of a binary tree used to access that data for use in gravitational force calculations and searches for smoothed particle hydrodynamics (SPH) neighbor particles. We describe the modifications to the code necessary to obtain forces efficiently from special purpose 'GRAPE' hardware, the interfaces required to allow transparent substitution of those forces in the code instead of those obtained from the tree, and the modifications necessary to use both tree and GRAPE together as a fused GRAPE/tree combination. We conclude with an extensive series of performance tests, which demonstrate that the code can be run efficiently and without modification in serial on small workstations or in parallel using the OpenMP compiler directives on large-scale, shared memory parallel machines. We analyze the effects of the code optimizations and estimate that they improve its overall performance by more than an order of magnitude over that obtained by many other tree codes. Scaled parallel performance of the gravity and SPH calculations, together the most costly components of most simulations, is nearly linear up to at least 120 processors on moderate sized test problems using the Origin 3000 architecture, and to the maximum machine sizes available to us on several other architectures. At similar accuracy, performance of VINE, used in GRAPE-tree mode, is approximately a factor 2 slower than that of VINE, used in host-only mode. Further optimizations of the GRAPE/host communications could improve the speed by as much as a factor of 3, but have not yet been implemented in VINE

  8. Development of a multi-grid FDTD code for three-dimensional simulation of large microwave sintering experiments

    SciTech Connect

    White, M.J.; Iskander, M.F.; Kimrey, H.D.

    1996-12-31

    The Finite-Difference Time-Domain (FDTD) code available at the University of Utah has been used to simulate sintering of ceramics in single and multimode cavities, and many useful results have been reported in literature. More detailed and accurate results, specifically around and including the ceramic sample, are often desired to help evaluate the adequacy of the heating procedure. In electrically large multimode cavities, however, computer memory requirements limit the number of the mathematical cells, and the desired resolution is impractical to achieve due to limited computer resources. Therefore, an FDTD algorithm which incorporates multiple-grid regions with variable-grid sizes is required to adequately perform the desired simulations. In this paper the authors describe the development of a three-dimensional multi-grid FDTD code to help focus a large number of cells around the desired region. Test geometries were solved using a uniform-grid and the developed multi-grid code to help validate the results from the developed code. Results from these comparisons, as well as the results of comparisons between the developed FDTD code and other available variable-grid codes are presented. In addition, results from the simulation of realistic microwave sintering experiments showed improved resolution in critical sites inside the three-dimensional sintering cavity. With the validation of the FDTD code, simulations were performed for electrically large, multimode, microwave sintering cavities to fully demonstrate the advantages of the developed multi-grid FDTD code.

  9. Nonlinear ELM simulations based on a nonideal peeling–ballooning model using the BOUT++ code

    SciTech Connect

    Xu, X. Q.; Dudson, B. D.; Snyder, P. B.; Umansky, M. V.; Wilson, H. R.; Casper, T.

    2011-09-23

    A minimum set of equations based on the peeling–ballooning (P–B) model with nonideal physics effects (diamagnetic drift, E × B drift, resistivity and anomalous electron viscosity) is found to simulate pedestal collapse when using the BOUT++ simulation code, developed in part from the original fluid edge code BOUT. Linear simulations of P–B modes find good agreement in growth rate and mode structure with ELITE calculations. The influence of the E × B drift, diamagnetic drift, resistivity, anomalous electron viscosity, ion viscosity and parallel thermal diffusivity on P–B modes is being studied; we find that (1) the diamagnetic drift and E × B drift stabilize the P–B mode in a manner consistent with theoretical expectations; (2) resistivity destabilizes the P–B mode, leading to resistive P–B mode; (3) anomalous electron and parallel ion viscosities destabilize the P–B mode, leading to a viscous P–B mode; (4) perpendicular ion viscosity and parallel thermal diffusivity stabilize the P–B mode. With addition of the anomalous electron viscosity under the assumption that the anomalous kinematic electron viscosity is comparable to the anomalous electron perpendicular thermal diffusivity, or the Prandtl number is close to unity, it is found from nonlinear simulations using a realistic high Lundquist number that the pedestal collapse is limited to the edge region and the ELM size is about 5–10% of the pedestal stored energy. Furthermore, this is consistent with many observations of large ELMs. The estimated island size is consistent with the size of fast pedestal pressure collapse. In the stable α-zones of ideal P–B modes, nonlinear simulations of viscous ballooning modes or current-diffusive ballooning mode (CDBM) for ITER H-mode scenarios are presented.

  10. Nonlinear ELM simulations based on a nonideal peeling–ballooning model using the BOUT++ code

    DOE PAGES

    Xu, X. Q.; Dudson, B. D.; Snyder, P. B.; Umansky, M. V.; Wilson, H. R.; Casper, T.

    2011-09-23

    A minimum set of equations based on the peeling–ballooning (P–B) model with nonideal physics effects (diamagnetic drift, E × B drift, resistivity and anomalous electron viscosity) is found to simulate pedestal collapse when using the BOUT++ simulation code, developed in part from the original fluid edge code BOUT. Linear simulations of P–B modes find good agreement in growth rate and mode structure with ELITE calculations. The influence of the E × B drift, diamagnetic drift, resistivity, anomalous electron viscosity, ion viscosity and parallel thermal diffusivity on P–B modes is being studied; we find that (1) the diamagnetic drift and Emore » × B drift stabilize the P–B mode in a manner consistent with theoretical expectations; (2) resistivity destabilizes the P–B mode, leading to resistive P–B mode; (3) anomalous electron and parallel ion viscosities destabilize the P–B mode, leading to a viscous P–B mode; (4) perpendicular ion viscosity and parallel thermal diffusivity stabilize the P–B mode. With addition of the anomalous electron viscosity under the assumption that the anomalous kinematic electron viscosity is comparable to the anomalous electron perpendicular thermal diffusivity, or the Prandtl number is close to unity, it is found from nonlinear simulations using a realistic high Lundquist number that the pedestal collapse is limited to the edge region and the ELM size is about 5–10% of the pedestal stored energy. Furthermore, this is consistent with many observations of large ELMs. The estimated island size is consistent with the size of fast pedestal pressure collapse. In the stable α-zones of ideal P–B modes, nonlinear simulations of viscous ballooning modes or current-diffusive ballooning mode (CDBM) for ITER H-mode scenarios are presented.« less

  11. Description of FEL3D: A three dimensional simulation code for TOK and FEL

    SciTech Connect

    Dutt, S.; Friedman, A.; Gover, A.

    1988-10-20

    FEL3D is a three dimensional simulation code, written for the purpose of calculating the parameters of coherent radiation emitted by electrons in an undulator. The program was written predominantly for simulating the coherent super-radiant harmonic frequency emission of electrons which are being bunched by an external laser beam while propagating in an undulator magnet. This super-radiant emission is to be studied in the TOK (transverse optical klystron) experiment, which is under construction in the NSLS department at Brookhaven National Laboratory. The program can also calculate the stimulated emission radiometric properties of a free electron laser (FEL) taking into account three dimensional effects. While this application is presently limited to the small gain operation regime of FEL's, extension to the high gain regime is expected to be relatively easy. The code is based on a semi-analytical concept. Instead of a full numerical solution of the Maxwell-Lorentz equations, the trajectories of the electron in the wiggler field are calculated analytically, and the radiation fields are expanded in terms of free space eigen-modes. This approach permits efficient computation, with a computation time of about 0.1 sec/electron on the BNL IBM 3090. The code reflects the important three dimensional features of the electron beam, the modulating laser beam, and the emitted radiation field. The statistical approach is based on averaging over the electron initial conditions according to a given distribution function in phase space, rather than via Monte-Carlo simulation. The present version of the program is written for uniform periodic wiggler field, but extension to nonuniform fields is straightforward. 4 figs., 5 tabs.

  12. GRMHD Simulations of Jet Formation with a Newly-Developed GRMHD Code

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke; Nishikawa, K.-I.; Koide, S.; Hardee, P.; Fishman, G. J.

    We have developed a new three dimensional general relativistic magnetohydrodynamic (GRMHD) code, RAISHIN, using a conservative, high-resolution shock capturing scheme. Numerical fluxes are calculated using the Harten, Lax, & van Leer (HLL) approximate Rie- mann solver scheme. The flux-interpolated, constrained transport scheme is used to maintain a divergence-free magnetic field. We describe the code performance on some test problems in both special and general relativity. Our new GRMHD code has proven to be accurate to the second order and has successfully passed several numerical test problems including highly rel- ativistic and magnetized tests in both special and general relativity. We have performed several simulations of black hole systems (non-rotating, black hole spin parameter a = 0.0 and rapidly rotating, a = 0.95) with a geometrically thin Keplerian disk. The simulation results show the formation of jets driven by the Lorentz force and the gas pressure gradient. The jets have mildly relativistic speed ( 0.4 c). The matter is continuously supplied from the accretion disk and the jet propagates outward until each applicable terminal simulation time (non-rotating: t/τS = 275 and rotating: t/τS = 200, τS ≡ rS /c). It appears that a rotating black hole creates an additional, faster, and more collimated matter-dominated inner outflow ( 0.5 c) formed and accelerated by the twisted magnetic field resulting from frame-dragging in the black hole ergosphere. This result indicates that jet kinematic structure depends on black hole rotation and on the initial magnetic field configuration and strength.

  13. Simulations of the Broad Line Region of NGC 5548 with Cloudy Code: Temperature Determination

    NASA Astrophysics Data System (ADS)

    Ilic, D.

    2007-12-01

    In this paper an analysis of the physical properties of the Broad Line Region (BLR) of the active galaxy NGC 5548 is presented. Using the photoionization code CLOUDY and the measurements of Peterson et al. (2002), the physical conditions of the BLR are simulated and the BLR temperature is obtained. This temperature was compared to the temperature estimated with the Boltzmann-Plot (BP) method (Popović et al. 2007). It was shown that the measured variability in the BLR temperature could be due to the change in the hydrogen density.

  14. Multipacting Simulation Study for 56 MHz Quarter Wave Resonator using 2D Code

    SciTech Connect

    Naik,D.; Ben-Zvi, I.

    2009-01-02

    A beam excited 56 MHz Radio Frequency (RF) Niobium Quarter Wave Resonator (QWR) has been proposed to enhance RHIC beam luminosity and bunching. Being a RF cavity, multipacting is expected; therefore an extensive study was carried out with the Multipac 2.1 2D simulation code. The study revealed that multipacting occurs in various bands up to peak surface electric field 50 kV/m and is concentrated mostly above the beam gap and on the outer conductor. To suppress multipacting, a ripple structure was introduced to the outer conductor and the phenomenon was successfully eliminated from the cavity.

  15. Development of a dynamic simulation mode in Serpent 2 Monte Carlo code

    SciTech Connect

    Leppaenen, J.

    2013-07-01

    This paper presents a dynamic neutron transport mode, currently being implemented in the Serpent 2 Monte Carlo code for the purpose of simulating short reactivity transients with temperature feedback. The transport routine is introduced and validated by comparison to MCNP5 calculations. The method is also tested in combination with an internal temperature feedback module, which forms the inner part of a multi-physics coupling scheme in Serpent 2. The demo case for the coupled calculation is a reactivity-initiated accident (RIA) in PWR fuel. (authors)

  16. Three-dimensional simulations of solar granulation and blast wave using ZEUS-MP code

    NASA Astrophysics Data System (ADS)

    Nurzaman, M. Z.; Herdiwijaya, D.

    2015-09-01

    Sun is nearest and the only star that can be observed in full disk mode. Meanwhile other stars simply can be observed as dot and cannot be seen in full disk like the Sun. Due to this condition, detail events in the Sun can possibly observable. For example, flare, prominence, granulation and other features can be seen easily compared to other stars. In other word the observational data can be obtained easily. And for better understanding, computational simulation is needed too. In this paper we use ZEUS-MP, a numerical code for the simulation of fluid dynamical flows in astrophysics, to study granulation and blast wave in the Sun. ZEUS-MP allows users to use hydrodynamic (HD) or magneto hydrodynamic (MHD) simulations singly or in concert, in one, two, or three space dimensions. For granulation case, we assume that there is no influence from magnetic field. So, it's enough to just use HD simulations. Physical parameters were analyzed for this case is velocity and density. The result shows that velocity as time function indicated more complex pattern than density. For blast wave case, we use it to study one of the Sun energetic event namely Coronal Mass Ejections (CMEs). In this case, we cannot ignore influence from magnetic field. So we use MHD simulations. Physical parameters were analyzed for this case is velocity and energy. The result shows more complex pattern for both parameters. It is shown too as if they have opposite pattern. When energy is high, velocity is not too fast, conversely.

  17. The SCEC-USGS Dynamic Earthquake Rupture Code Comparison Exercise - Simulations of Large Earthquakes and Strong Ground Motions

    NASA Astrophysics Data System (ADS)

    Harris, R.

    2015-12-01

    I summarize the progress by the Southern California Earthquake Center (SCEC) and U.S. Geological Survey (USGS) Dynamic Rupture Code Comparison Group, that examines if the results produced by multiple researchers' earthquake simulation codes agree with each other when computing benchmark scenarios of dynamically propagating earthquake ruptures. These types of computer simulations have no analytical solutions with which to compare, so we use qualitative and quantitative inter-code comparisons to check if they are operating satisfactorily. To date we have tested the codes against benchmark exercises that incorporate a range of features, including single and multiple planar faults, single rough faults, slip-weakening, rate-state, and thermal pressurization friction, elastic and visco-plastic off-fault behavior, complete stress drops that lead to extreme ground motion, heterogeneous initial stresses, and heterogeneous material (rock) structure. Our goal is reproducibility, and we focus on the types of earthquake-simulation assumptions that have been or will be used in basic studies of earthquake physics, or in direct applications to specific earthquake hazard problems. Our group's goals are to make sure that when our earthquake-simulation codes simulate these types of earthquake scenarios along with the resulting simulated strong ground shaking, that the codes are operating as expected. For more introductory information about our group and our work, please see our group's overview papers, Harris et al., Seismological Research Letters, 2009, and Harris et al., Seismological Research Letters, 2011, along with our website, scecdata.usc.edu/cvws.

  18. GATOR: A 3-D time-dependent simulation code for helix TWTs

    SciTech Connect

    Zaidman, E.G.; Freund, H.P.

    1996-12-31

    A 3D nonlinear analysis of helix TWTs is presented. The analysis and simulation code is based upon a spectral decomposition using the vacuum sheath helix modes. The field equations are integrated on a grid and advanced in time using a MacCormack predictor-corrector scheme, and the electron orbit equations are integrated using a fourth order Runge-Kutta algorithm. Charge is accumulated on the grid and the field is interpolated to the particle location by a linear map. The effect of dielectric liners on the vacuum sheath helix dispersion is included in the analysis. Several numerical cases are considered. Simulation of the injection of a DC beam and a signal at a single frequency is compared with a linear field theory of the helix TWT interaction, and good agreement is found.

  19. Hybrid Particle Code Simulations of Mars: The Role Ionospheric Escape in Explaining Water Loss from Mars

    NASA Astrophysics Data System (ADS)

    Brecht, Stephen; Ledvina, Stephen

    2015-11-01

    The results of our latest hybrid particle simulations using the HALFSHEL code are discussed. The presentation will address assorted processes that produce differing ion escape rates from Mars. The simulations investigate the role of the neutral atmosphere (Univ. of Michigan's MTGCM) in its dynamic form (neutral winds and co-rotation) in the calculation of the ionospheric loss from Mars. In addition, the effect of crustal magnetic field orientation in ion escape from Mars will be discussed. Further, the presentation addresses reasons for these differences and details of the interaction around the crustal magnetic fields. Finally, these results and others will be compared to fits to data. The estimated loss rates from a variety of missions and times were fit to the solar EUV flux. Our results will be compared to this fit.

  20. Simulation of high-energy radiation belt electron fluxes using NARMAX-VERB coupled codes

    PubMed Central

    Pakhotin, I P; Drozdov, A Y; Shprits, Y Y; Boynton, R J; Subbotin, D A; Balikhin, M A

    2014-01-01

    This study presents a fusion of data-driven and physics-driven methodologies of energetic electron flux forecasting in the outer radiation belt. Data-driven NARMAX (Nonlinear AutoRegressive Moving Averages with eXogenous inputs) model predictions for geosynchronous orbit fluxes have been used as an outer boundary condition to drive the physics-based Versatile Electron Radiation Belt (VERB) code, to simulate energetic electron fluxes in the outer radiation belt environment. The coupled system has been tested for three extended time periods totalling several weeks of observations. The time periods involved periods of quiet, moderate, and strong geomagnetic activity and captured a range of dynamics typical of the radiation belts. The model has successfully simulated energetic electron fluxes for various magnetospheric conditions. Physical mechanisms that may be responsible for the discrepancies between the model results and observations are discussed. PMID:26167432

  1. Modelling and Simulation of National Electronic Product Code Network Demonstrator Project

    NASA Astrophysics Data System (ADS)

    Mo, John P. T.

    The National Electronic Product Code (EPC) Network Demonstrator Project (NDP) was the first large scale consumer goods track and trace investigation in the world using full EPC protocol system for applying RFID technology in supply chains. The NDP demonstrated the methods of sharing information securely using EPC Network, providing authentication to interacting parties, and enhancing the ability to track and trace movement of goods within the entire supply chain involving transactions among multiple enterprise. Due to project constraints, the actual run of the NDP was 3 months only and was unable to consolidate with quantitative results. This paper discusses the modelling and simulation of activities in the NDP in a discrete event simulation environment and provides an estimation of the potential benefits that can be derived from the NDP if it was continued for one whole year.

  2. Assessment of PCMI Simulation Using the Multidimensional Multiphysics BISON Fuel Performance Code

    SciTech Connect

    Stephen R. Novascone; Jason D. Hales; Benjamin W. Spencer; Richard L. Williamson

    2012-09-01

    Since 2008, the Idaho National Laboratory (INL) has been developing a next-generation nuclear fuel performance code called BISON. BISON is built using INL’s Multiphysics Object-Oriented Simulation Environment, or MOOSE. MOOSE is a massively parallel, finite element-based framework to solve systems of coupled non-linear partial differential equations using the Jacobian-FreeNewton Krylov (JFNK) method. MOOSE supports the use of complex two- and three-dimensional meshes and uses implicit time integration, which is important for the widely varied time scales in nuclear fuel simulation. MOOSE’s object-oriented architecture minimizes the programming required to add new physics models. BISON has been applied to various nuclear fuel problems to assess the accuracy of its 2D and 3D capabilities. The benchmark results used in this assessment range from simulation results from other fuel performance codes to measurements from well-known and documented reactor experiments. An example of a well-documented experiment used in this assessment is the Third Risø Fission Gas Project, referred to as “Bump Test GE7”, which was performed on rod ZX115. This experiment was chosen because it allows for an evaluation of several aspects of the code, including fully coupled thermo-mechanics, contact, and several nonlinear material models. Bump Test GE7 consists of a base-irradiation period of a full-length rod in the Quad-Cities-1 BWR for nearly 7 years to a burnup of 4.17% FIMA. The base irradiation test is followed by a “bump test” of a sub-section of the original rod. The bump test takes place in the test reactor DR3 at Risø in a water-cooled HP1 rig under BWR conditions where the power level is increased by about 50% over base irradiation levels in the span of several hours. During base irradiation, the axial power profile is flat. During the bump test, the axial power profile changes so that the bottom half of the rod is at approximately 50% higher power than at the base

  3. A Mathematical Model and MATLAB Code for Muscle-Fluid-Structure Simulations.

    PubMed

    Battista, Nicholas A; Baird, Austin J; Miller, Laura A

    2015-11-01

    This article provides models and code for numerically simulating muscle-fluid-structure interactions (FSIs). This work was presented as part of the symposium on Leading Students and Faculty to Quantitative Biology through Active Learning at the society-wide meeting of the Society for Integrative and Comparative Biology in 2015. Muscle mechanics and simple mathematical models to describe the forces generated by muscular contractions are introduced in most biomechanics and physiology courses. Often, however, the models are derived for simplifying cases such as isometric or isotonic contractions. In this article, we present a simple model of the force generated through active contraction of muscles. The muscles' forces are then used to drive the motion of flexible structures immersed in a viscous fluid. An example of an elastic band immersed in a fluid is first presented to illustrate a fully-coupled FSI in the absence of any external driving forces. In the second example, we present a valveless tube with model muscles that drive the contraction of the tube. We provide a brief overview of the numerical method used to generate these results. We also include as Supplementary Material a MATLAB code to generate these results. The code was written for flexibility so as to be easily modified to many other biological applications for educational purposes.

  4. A Mathematical Model and MATLAB Code for Muscle-Fluid-Structure Simulations.

    PubMed

    Battista, Nicholas A; Baird, Austin J; Miller, Laura A

    2015-11-01

    This article provides models and code for numerically simulating muscle-fluid-structure interactions (FSIs). This work was presented as part of the symposium on Leading Students and Faculty to Quantitative Biology through Active Learning at the society-wide meeting of the Society for Integrative and Comparative Biology in 2015. Muscle mechanics and simple mathematical models to describe the forces generated by muscular contractions are introduced in most biomechanics and physiology courses. Often, however, the models are derived for simplifying cases such as isometric or isotonic contractions. In this article, we present a simple model of the force generated through active contraction of muscles. The muscles' forces are then used to drive the motion of flexible structures immersed in a viscous fluid. An example of an elastic band immersed in a fluid is first presented to illustrate a fully-coupled FSI in the absence of any external driving forces. In the second example, we present a valveless tube with model muscles that drive the contraction of the tube. We provide a brief overview of the numerical method used to generate these results. We also include as Supplementary Material a MATLAB code to generate these results. The code was written for flexibility so as to be easily modified to many other biological applications for educational purposes. PMID:26337187

  5. Traveling-wave-tube simulation: The IBC (Interactive Beam-Circuit) code

    SciTech Connect

    Morey, I.J.; Birdsall, C.K.

    1989-09-26

    Interactive Beam-Circuit (IBC) is a one-dimensional many particle simulation code which has been developed to run interactively on a PC or Workstation, and displaying most of the important physics of a traveling-wave-tube. The code is a substantial departure from previous efforts, since it follows all of the particles in the tube, rather than just those in one wavelength, as commonly done. This step allows for nonperiodic inputs in time, a nonuniform line and a large set of spatial diagnostics. The primary aim is to complement a microwave tube lecture course, although past experience has shown that such codes readily become research tools. Simple finite difference methods are used to model the fields of the coupled slow-wave transmission line. The coupling between the beam and the transmission line is based upon the finite difference equations of Brillouin. The space-charge effects are included, in a manner similar to that used by Hess; the original part is use of particle-in-cell techniques to model the space-charge fields. 11 refs., 11 figs.

  6. Status and Plans for the TRANSP Interpretive and Predictive Simulation Code

    NASA Astrophysics Data System (ADS)

    Kaye, Stanley; Andre, Robert; Marina, Gorelenkova; Yuan, Xingqui; Hawryluk, Richard; Jardin, Steven; Poli, Francesca

    2015-11-01

    TRANSP is an integrated interpretive and predictive transport analysis tool that incorporates state of the art heating/current drive sources and transport models. The treatments and transport solvers are becoming increasingly sophisticated and comprehensive. For instance, the ISOLVER component provides a free boundary equilibrium solution, while the PT_SOLVER transport solver is especially suited for stiff transport models such as TGLF. TRANSP also incorporates such source models as NUBEAM for neutral beam injection, GENRAY, TORAY, TORBEAM, TORIC and CQL3D for ICRH, LHCD, ECH and HHFW. The implementation of selected components makes efficient use of MPI for speed up of code calculations. TRANSP has a wide international user-base, and it is run on the FusionGrid to allow for timely support and quick turnaround by the PPPL Computational Plasma Physics Group. It is being used as a basis for both analysis and development of control algorithms and discharge operational scenarios, including simulation of ITER plasmas. This poster will describe present uses of the code worldwide, as well as plans for upgrading the physics modules and code framework. Progress on implementing TRANSP as a component in the ITER IMAS will also be described. This research was supported by the U.S. Department of Energy under contracts DE-AC02-09CH11466.

  7. X-ray FEL Simulation with the MPP version of the GINGER Code

    NASA Astrophysics Data System (ADS)

    Fawley, William

    2001-06-01

    GINGER is a polychromatic, 2D (r-z) PIC code originally developed in the 1980's to examine sideband growth in FEL amplifiers. In the last decade, GINGER simulations have examined various aspects of x-ray and XUV FEL's based upon initiation by self-amplified spontaneous emission (SASE). Recently, GINGER's source code has been substantially updated to exploit many modern features of the Fortran90 language and extended to exploit multiprocessor hardware with the result that the code now runs effectively on platforms ranging from single processor workstations in serial mode to MPP hardware at NERSC such as the Cray-T3E and IBM-SP in full parallel mode. This poster discusses some of the numerical algorithms and structural details of GINGER which permitted relatively painless porting to parallel architectures. Examples of some recent SASE FEL modeling with GINGER will be given including both existing experiments such as the LEUTL UV FEL at Argonne and proposed projects such as the LCLS x-ray FEL at SLAC.

  8. Multibunch and multiparticle simulation code with an alternative approach to wakefield effects

    NASA Astrophysics Data System (ADS)

    Migliorati, M.; Palumbo, L.

    2015-03-01

    The simulation of beam dynamics in the presence of collective effects requires a strong computational effort to take into account, in a self-consistent way, the wakefield acting on a given charge and produced by all the others. Generally this is done by means of a convolution integral or sum. Moreover, if the electromagnetic fields consist of resonant modes with high quality factors, responsible, for example, for coupled bunch instabilities, a charge is also affected by itself in previous turns, and a very long record of wakefield must be properly taken into account. In this paper we present a new simulation code for the longitudinal beam dynamics in a circular accelerator, which exploits an alternative approach to the currently used convolution sum, reducing the computing time and avoiding the issues related to the length of wakefield for coupled bunch instabilities. With this approach it is possible to simulate, without the need for large computing power, simultaneously, the single and multibunch beam dynamics including intrabunch motion. Moreover, for a given machine, generally both the coupling impedance and the wake potential of a short Gaussian bunch are known. However, a classical simulation code needs in input the so-called "Green" function, that is the wakefield produced by a point charge, making necessary some manipulations to use the wake potential instead of the Green function. The method that we propose does not need the wakefield as input, but a particular fitting of the coupling impedance requiring the use of the resonator impedance model, thus avoiding issues related to the knowledge of the Green function. The same approach can also be applied to the transverse case and to linear accelerators as well.

  9. IMPLEMENTING SCIENTIFIC SIMULATION CODES HIGHLY TAILORED FOR VECTOR ARCHITECTURES USING CUSTOM CONFIGURABLE COMPUTING MACHINES

    NASA Technical Reports Server (NTRS)

    Rutishauser, David K.

    2006-01-01

    The motivation for this work comes from an observation that amidst the push for Massively Parallel (MP) solutions to high-end computing problems such as numerical physical simulations, large amounts of legacy code exist that are highly optimized for vector supercomputers. Because re-hosting legacy code often requires a complete re-write of the original code, which can be a very long and expensive effort, this work examines the potential to exploit reconfigurable computing machines in place of a vector supercomputer to implement an essentially unmodified legacy source code. Custom and reconfigurable computing resources could be used to emulate an original application's target platform to the extent required to achieve high performance. To arrive at an architecture that delivers the desired performance subject to limited resources involves solving a multi-variable optimization problem with constraints. Prior research in the area of reconfigurable computing has demonstrated that designing an optimum hardware implementation of a given application under hardware resource constraints is an NP-complete problem. The premise of the approach is that the general issue of applying reconfigurable computing resources to the implementation of an application, maximizing the performance of the computation subject to physical resource constraints, can be made a tractable problem by assuming a computational paradigm, such as vector processing. This research contributes a formulation of the problem and a methodology to design a reconfigurable vector processing implementation of a given application that satisfies a performance metric. A generic, parametric, architectural framework for vector processing implemented in reconfigurable logic is developed as a target for a scheduling/mapping algorithm that maps an input computation to a given instance of the architecture. This algorithm is integrated with an optimization framework to arrive at a specification of the architecture parameters

  10. A 5D gyrokinetic full- f global semi-Lagrangian code for flux-driven ion turbulence simulations

    NASA Astrophysics Data System (ADS)

    Grandgirard, V.; Abiteboul, J.; Bigot, J.; Cartier-Michaud, T.; Crouseilles, N.; Dif-Pradalier, G.; Ehrlacher, Ch.; Esteve, D.; Garbet, X.; Ghendrih, Ph.; Latu, G.; Mehrenberger, M.; Norscini, C.; Passeron, Ch.; Rozar, F.; Sarazin, Y.; Sonnendrücker, E.; Strugarek, A.; Zarzoso, D.

    2016-10-01

    This paper addresses non-linear gyrokinetic simulations of ion temperature gradient (ITG) turbulence in tokamak plasmas. The electrostatic GYSELA code is one of the few international 5D gyrokinetic codes able to perform global, full- f and flux-driven simulations. Its has also the numerical originality of being based on a semi-Lagrangian (SL) method. This reference paper for the GYSELA code presents a complete description of its multi-ion species version including: (i) numerical scheme, (ii) high level of parallelism up to 500k cores and (iii) conservation law properties.

  11. The EPQ Code System for Simulating the Thermal Response of Plasma-Facing Components to High-Energy Electron Impact

    SciTech Connect

    Ward, Robert Cameron; Steiner, Don

    2004-06-15

    The generation of runaway electrons during a thermal plasma disruption is a concern for the safe and economical operation of a tokamak power system. Runaway electrons have high energy, 10 to 300 MeV, and may potentially cause extensive damage to plasma-facing components (PFCs) through large temperature increases, melting of metallic components, surface erosion, and possible burnout of coolant tubes. The EPQ code system was developed to simulate the thermal response of PFCs to a runaway electron impact. The EPQ code system consists of several parts: UNIX scripts that control the operation of an electron-photon Monte Carlo code to calculate the interaction of the runaway electrons with the plasma-facing materials; a finite difference code to calculate the thermal response, melting, and surface erosion of the materials; a code to process, scale, transform, and convert the electron Monte Carlo data to volumetric heating rates for use in the thermal code; and several minor and auxiliary codes for the manipulation and postprocessing of the data. The electron-photon Monte Carlo code used was Electron-Gamma-Shower (EGS), developed and maintained by the National Research Center of Canada. The Quick-Therm-Two-Dimensional-Nonlinear (QTTN) thermal code solves the two-dimensional cylindrical modified heat conduction equation using the Quickest third-order accurate and stable explicit finite difference method and is capable of tracking melting or surface erosion. The EPQ code system is validated using a series of analytical solutions and simulations of experiments. The verification of the QTTN thermal code with analytical solutions shows that the code with the Quickest method is better than 99.9% accurate. The benchmarking of the EPQ code system and QTTN versus experiments showed that QTTN's erosion tracking method is accurate within 30% and that EPQ is able to predict the occurrence of melting within the proper time constraints. QTTN and EPQ are verified and validated as able

  12. Additions and Improvements to the FLASH Code for Simulating High Energy Density Physics Experiments

    NASA Astrophysics Data System (ADS)

    Lamb, D. Q.; Daley, C.; Dubey, A.; Fatenejad, M.; Flocke, N.; Graziani, C.; Lee, D.; Tzeferacos, P.; Weide, K.

    2015-11-01

    FLASH is an open source, finite-volume Eulerian, spatially adaptive radiation hydrodynamics and magnetohydrodynamics code that incorporates capabilities for a broad range of physical processes, performs well on a wide range of computer architectures, and has a broad user base. Extensive capabilities have been added to FLASH to make it an open toolset for the academic high energy density physics (HEDP) community. We summarize these capabilities, with particular emphasis on recent additions and improvements. These include advancements in the optical ray tracing laser package, with methods such as bi-cubic 2D and tri-cubic 3D interpolation of electron number density, adaptive stepping and 2nd-, 3rd-, and 4th-order Runge-Kutta integration methods. Moreover, we showcase the simulated magnetic field diagnostic capabilities of the code, including induction coils, Faraday rotation, and proton radiography. We also describe several collaborations with the National Laboratories and the academic community in which FLASH has been used to simulate HEDP experiments. This work was supported in part at the University of Chicago by the DOE NNSA ASC through the Argonne Institute for Computing in Science under field work proposal 57789; and the NSF under grant PHY-0903997.

  13. Validation of a Three-Dimensional Ablation and Thermal Response Simulation Code

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq; Milos, Frank S.; Gokcen, Tahir

    2010-01-01

    The 3dFIAT code simulates pyrolysis, ablation, and shape change of thermal protection materials and systems in three dimensions. The governing equations, which include energy conservation, a three-component decomposition model, and a surface energy balance, are solved with a moving grid system to simulate the shape change due to surface recession. This work is the first part of a code validation study for new capabilities that were added to 3dFIAT. These expanded capabilities include a multi-block moving grid system and an orthotropic thermal conductivity model. This paper focuses on conditions with minimal shape change in which the fluid/solid coupling is not necessary. Two groups of test cases of 3dFIAT analyses of Phenolic Impregnated Carbon Ablator in an arc-jet are presented. In the first group, axisymmetric iso-q shaped models are studied to check the accuracy of three-dimensional multi-block grid system. In the second group, similar models with various through-the-thickness conductivity directions are examined. In this group, the material thermal response is three-dimensional, because of the carbon fiber orientation. Predictions from 3dFIAT are presented and compared with arcjet test data. The 3dFIAT predictions agree very well with thermocouple data for both groups of test cases.

  14. Developments of Electromagnetic Particle Simulation Code for Magnetic Reconnection Researches in Open System PASMO and Visualization Library VISMO

    NASA Astrophysics Data System (ADS)

    Ohtani, H.; Horiuchi, R.; Nunami, M.; Usami, S.; Ohno, N.

    2014-10-01

    As the capabilities of computers are improved, the sizes of simulations become greater and greater. In this situation, we have some big issues. One of them is how to develop an efficient simulation code, and another is how to visualize the large data by the simulation. In order to investigate magnetic reconnection from the microscopic viewpoint, we develop a three-dimensional electromagnetic PIC code in an open system (PASMO). For performing the code on a distributed memory and multi-processor computer system with a distributed parallel algorithm, we decompose three-dimensionally the simulation domain, and introduce the charge conservation scheme to exclude the global calculation, such as Poisson solver with FFT. In the visualization of the simulation data, we develop an in-situ visualization library VISMO for the PIC simulation to carry out the visualization in tandem with the simulation on the same computers. The simulation code with VISMO generates image files instead of raw data. We will discuss the performance of the new PASMO and the simulation results visualized by VISMO on the magnetic reconnection. Supported by a Grant-in-Aid for Scientific Research from JSPS (Grant No. 23340182) and General Coordinated Research at NIFS (NIFS14KNSS046, NIFS13KNXN260 and NIFS13KNTS024).

  15. Modeling, Measurements, and Fundamental Database Development for Nonequilibrium Hypersonic Aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Bose, Deepak

    2012-01-01

    The design of entry vehicles requires predictions of aerothermal environment during the hypersonic phase of their flight trajectories. These predictions are made using computational fluid dynamics (CFD) codes that often rely on physics and chemistry models of nonequilibrium processes. The primary processes of interest are gas phase chemistry, internal energy relaxation, electronic excitation, nonequilibrium emission and absorption of radiation, and gas-surface interaction leading to surface recession and catalytic recombination. NASAs Hypersonics Project is advancing the state-of-the-art in modeling of nonequilibrium phenomena by making detailed spectroscopic measurements in shock tube and arcjets, using ab-initio quantum mechanical techniques develop fundamental chemistry and spectroscopic databases, making fundamental measurements of finite-rate gas surface interactions, implementing of detailed mechanisms in the state-of-the-art CFD codes, The development of new models is based on validation with relevant experiments. We will present the latest developments and a roadmap for the technical areas mentioned above

  16. Code System for Monte Carlo Simulation of Electron and Photon Transport.

    2015-07-01

    Version 01 PENELOPE performs Monte Carlo simulation of coupled electron-photon transport in arbitrary materials and complex quadric geometries. A mixed procedure is used for the simulation of electron and positron interactions (elastic scattering, inelastic scattering and bremsstrahlung emission), in which ‘hard’ events (i.e. those with deflection angle and/or energy loss larger than pre-selected cutoffs) are simulated in a detailed way, while ‘soft’ interactions are calculated from multiple scattering approaches. Photon interactions (Rayleigh scattering, Compton scattering,more » photoelectric effect and electron-positron pair production) and positron annihilation are simulated in a detailed way. PENELOPE reads the required physical information about each material (which includes tables of physical properties, interaction cross sections, relaxation data, etc.) from the input material data file. The material data file is created by means of the auxiliary program MATERIAL, which extracts atomic interaction data from the database of ASCII files. PENELOPE mailing list archives and additional information about the code can be found at http://www.nea.fr/lists/penelope.html. See Abstract for additional features.« less

  17. Code System for Monte Carlo Simulation of Electron and Photon Transport.

    SciTech Connect

    2015-07-01

    Version 01 PENELOPE performs Monte Carlo simulation of coupled electron-photon transport in arbitrary materials and complex quadric geometries. A mixed procedure is used for the simulation of electron and positron interactions (elastic scattering, inelastic scattering and bremsstrahlung emission), in which ‘hard’ events (i.e. those with deflection angle and/or energy loss larger than pre-selected cutoffs) are simulated in a detailed way, while ‘soft’ interactions are calculated from multiple scattering approaches. Photon interactions (Rayleigh scattering, Compton scattering, photoelectric effect and electron-positron pair production) and positron annihilation are simulated in a detailed way. PENELOPE reads the required physical information about each material (which includes tables of physical properties, interaction cross sections, relaxation data, etc.) from the input material data file. The material data file is created by means of the auxiliary program MATERIAL, which extracts atomic interaction data from the database of ASCII files. PENELOPE mailing list archives and additional information about the code can be found at http://www.nea.fr/lists/penelope.html. See Abstract for additional features.

  18. Real simulation tools in introductory courses: packaging and repurposing our research code.

    NASA Astrophysics Data System (ADS)

    Heagy, L. J.; Cockett, R.; Kang, S.; Oldenburg, D.

    2015-12-01

    Numerical simulations are an important tool for scientific research and applications in industry. They provide a means to experiment with physics in a tangible, visual way, often providing insights into the problem. Over the last two years, we have been developing course and laboratory materials for an undergraduate geophysics course primarily taken by non-geophysics majors, including engineers and geologists. Our aim is to provide the students with resources to build intuition about geophysical techniques, promote curiosity driven exploration, and help them develop the skills necessary to communicate across disciplines. Using open-source resources and our existing research code, we have built modules around simulations, with supporting content to give student interactive tools for exploration into the impacts of input parameters and visualization of the resulting fields, fluxes and data for a variety of problems in applied geophysics, including magnetics, seismic, electromagnetics, and direct current resistivity. The content provides context for the problems, along with exercises that are aimed at getting students to experiment and ask 'what if...?' questions. In this presentation, we will discuss our approach for designing the structure of the simulation-based modules, the resources we have used, challenges we have encountered, general feedback from students and instructors, as well as our goals and roadmap for future improvement. We hope that our experiences and approach will be beneficial to other instructors who aim to put simulation tools in the hands of students.

  19. Full modelling of the MOSAIC animal PET system based on the GATE Monte Carlo simulation code

    NASA Astrophysics Data System (ADS)

    Merheb, C.; Petegnief, Y.; Talbot, J. N.

    2007-02-01

    Positron emission tomography (PET) systems dedicated to animal imaging are now widely used for biological studies. The scanner performance strongly depends on the design and the characteristics of the system. Many parameters must be optimized like the dimensions and type of crystals, geometry and field-of-view (FOV), sampling, electronics, lightguide, shielding, etc. Monte Carlo modelling is a powerful tool to study the effect of each of these parameters on the basis of realistic simulated data. Performance assessment in terms of spatial resolution, count rates, scatter fraction and sensitivity is an important prerequisite before the model can be used instead of real data for a reliable description of the system response function or for optimization of reconstruction algorithms. The aim of this study is to model the performance of the Philips Mosaic™ animal PET system using a comprehensive PET simulation code in order to understand and describe the origin of important factors that influence image quality. We use GATE, a Monte Carlo simulation toolkit for a realistic description of the ring PET model, the detectors, shielding, cap, electronic processing and dead times. We incorporate new features to adjust signal processing to the Anger logic underlying the Mosaic™ system. Special attention was paid to dead time and energy spectra descriptions. Sorting of simulated events in a list mode format similar to the system outputs was developed to compare experimental and simulated sensitivity and scatter fractions for different energy thresholds using various models of phantoms describing rat and mouse geometries. Count rates were compared for both cylindrical homogeneous phantoms. Simulated spatial resolution was fitted to experimental data for 18F point sources at different locations within the FOV with an analytical blurring function for electronic processing effects. Simulated and measured sensitivities differed by less than 3%, while scatter fractions agreed

  20. Tornado missile simulation and design methodology. Volume 1: simulation methodology, design applications, and TORMIS computer code. Final report

    SciTech Connect

    Twisdale, L.A.; Dunn, W.L.

    1981-08-01

    A probabilistic methodology has been developed to predict the probabilities of tornado-propelled missiles impacting and damaging nuclear power plant structures. Mathematical models of each event in the tornado missile hazard have been developed and sequenced to form an integrated, time-history simulation methodology. The models are data based where feasible. The data include documented records of tornado occurrence, field observations of missile transport, results of wind tunnel experiments, and missile impact tests. Probabilistic Monte Carlo techniques are used to estimate the risk probabilities. The methodology has been encoded in the TORMIS computer code to facilitate numerical analysis and plant-specific tornado missile probability assessments. Sensitivity analyses have been performed on both the individual models and the integrated methodology, and risk has been assessed for a hypothetical nuclear power plant design case study.

  1. Look at nuclear artillery yield options using JANUS, a wargame simulation code

    SciTech Connect

    Andre, C.G.

    1982-06-15

    JANUS, a two-sided, interactive wargame simulation code, was used to explore how using each of several different yield options in a nuclear artillery shell might affect a tactical battlefield simulation. In a general sense, the results or outcomes of these simulations support the results or outcomes of previous studies. In these simulations the Red player knew of the anticipated nuclear capability of the Blue player. Neither side experienced a decisive win over the other, and both continued fighting and experienced losses that, under most historical circumstances, would have been termed unacceptable - that is, something else would have happened (the attack would have been called off). During play, each side had only fragmentary knowledge of the remaining resources on the other side - thus each side desired to continue fighting on the basis of known information. We found that the anticipated use of nuclear weapons by either side affects the character of a game significantly and that, if the employment of nuclear weapons is to have a decided effect on the progress and outcome of a battle, each side will have to have an adequate number of nuclear weapons. In almost all the simulations we ran using JANUS, enhanced radiation (ER) weapons were more effective than 1-kt fission weapons in imposing overall losses on Red. The typical visibility in the JANUS simulation limited each side's ability to acquire units deep into enemy territory and so the 10-kt fission weapon was not useful against enemy tanks that were not engaged in battle. (Troop safety constraints limited its use on tanks that were engaged in direct fire with the enemy).

  2. COOL: A code for Dynamic Monte Carlo Simulation of molecular dynamics

    NASA Astrophysics Data System (ADS)

    Barletta, Paolo

    2012-02-01

    Cool is a program to simulate evaporative and sympathetic cooling for a mixture of two gases co-trapped in an harmonic potential. The collisions involved are assumed to be exclusively elastic, and losses are due to evaporation from the trap. Each particle is followed individually in its trajectory, consequently properties such as spatial densities or energy distributions can be readily evaluated. The code can be used sequentially, by employing one output as input for another run. The code can be easily generalised to describe more complicated processes, such as the inclusion of inelastic collisions, or the possible presence of more than two species in the trap. New version program summaryProgram title: COOL Catalogue identifier: AEHJ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHJ_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1 097 733 No. of bytes in distributed program, including test data, etc.: 18 425 722 Distribution format: tar.gz Programming language: C++ Computer: Desktop Operating system: Linux RAM: 500 Mbytes Classification: 16.7, 23 Catalogue identifier of previous version: AEHJ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 182 (2011) 388 Does the new version supersede the previous version?: Yes Nature of problem: Simulation of the sympathetic process occurring for two molecular gases co-trapped in a deep optical trap. Solution method: The Direct Simulation Monte Carlo method exploits the decoupling, over a short time period, of the inter-particle interaction from the trapping potential. The particle dynamics is thus exclusively driven by the external optical field. The rare inter-particle collisions are considered with an acceptance/rejection mechanism, that is, by comparing a random number to the collisional probability

  3. Wavelet subband coding of computer simulation output using the A++ array class library

    SciTech Connect

    Bradley, J.N.; Brislawn, C.M.; Quinlan, D.J.; Zhang, H.D.; Nuri, V.

    1995-07-01

    The goal of the project is to produce utility software for off-line compression of existing data and library code that can be called from a simulation program for on-line compression of data dumps as the simulation proceeds. Naturally, we would like the amount of CPU time required by the compression algorithm to be small in comparison to the requirements of typical simulation codes. We also want the algorithm to accomodate a wide variety of smooth, multidimensional data types. For these reasons, the subband vector quantization (VQ) approach employed in has been replaced by a scalar quantization (SQ) strategy using a bank of almost-uniform scalar subband quantizers in a scheme similar to that used in the FBI fingerprint image compression standard. This eliminates the considerable computational burdens of training VQ codebooks for each new type of data and performing nearest-vector searches to encode the data. The comparison of subband VQ and SQ algorithms in indicated that, in practice, there is relatively little additional gain from using vector as opposed to scalar quantization on DWT subbands, even when the source imagery is from a very homogeneous population, and our subjective experience with synthetic computer-generated data supports this stance. It appears that a careful study is needed of the tradeoffs involved in selecting scalar vs. vector subband quantization, but such an analysis is beyond the scope of this paper. Our present work is focused on the problem of generating wavelet transform/scalar quantization (WSQ) implementations that can be ported easily between different hardware environments. This is an extremely important consideration given the great profusion of different high-performance computing architectures available, the high cost associated with learning how to map algorithms effectively onto a new architecture, and the rapid rate of evolution in the world of high-performance computing.

  4. Subgrid Scale Modeling in Solar Convection Simulations using the ASH Code

    NASA Technical Reports Server (NTRS)

    Young, Y.-N.; Miesch, M.; Mansour, N. N.

    2003-01-01

    The turbulent solar convection zone has remained one of the most challenging and important subjects in physics. Understanding the complex dynamics in the solar con- vection zone is crucial for gaining insight into the solar dynamo problem. Many solar observatories have generated revealing data with great details of large scale motions in the solar convection zone. For example, a strong di erential rotation is observed: the angular rotation is observed to be faster at the equator than near the poles not only near the solar surface, but also deep in the convection zone. On the other hand, due to the wide range of dynamical scales of turbulence in the solar convection zone, both theory and simulation have limited success. Thus, cutting edge solar models and numerical simulations of the solar convection zone have focused more narrowly on a few key features of the solar convection zone, such as the time-averaged di erential rotation. For example, Brun & Toomre (2002) report computational finding of differential rotation in an anelastic model for solar convection. A critical shortcoming in this model is that the viscous dissipation is based on application of mixing length theory to stellar dynamics with some ad hoc parameter tuning. The goal of our work is to implement the subgrid scale model developed at CTR into the solar simulation code and examine how the differential rotation will be a affected as a result. Specifically, we implement a Smagorinsky-Lilly subgrid scale model into the ASH (anelastic spherical harmonic) code developed over the years by various authors. This paper is organized as follows. In x2 we briefly formulate the anelastic system that describes the solar convection. In x3 we formulate the Smagorinsky-Lilly subgrid scale model for unstably stratifed convection. We then present some preliminary results in x4, where we also provide some conclusions and future directions.

  5. FLY. A parallel tree N-body code for cosmological simulations

    NASA Astrophysics Data System (ADS)

    Antonuccio-Delogu, V.; Becciani, U.; Ferro, D.

    2003-10-01

    FLY is a parallel treecode which makes heavy use of the one-sided communication paradigm to handle the management of the tree structure. In its public version the code implements the equations for cosmological evolution, and can be run for different cosmological models. This reference guide describes the actual implementation of the algorithms of the public version of FLY, and suggests how to modify them to implement other types of equations (for instance, the Newtonian ones). Program summary Title of program: FLY Catalogue identifier: ADSC Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADSC Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: Cray T3E, Sgi Origin 3000, IBM SP Operating systems or monitors under which the program has been tested: Unicos 2.0.5.40, Irix 6.5.14, Aix 4.3.3 Programming language used: Fortran 90, C Memory required to execute with typical data: about 100 Mwords with 2 million-particles Number of bits in a word: 32 Number of processors used: parallel program. The user can select the number of processors >=1 Has the code been vectorized or parallelized?: parallelized Number of bytes in distributed program, including test data, etc.: 4615604 Distribution format: tar gzip file Keywords: Parallel tree N-body code for cosmological simulations Nature of physical problem: FLY is a parallel collisionless N-body code for the calculation of the gravitational force. Method of solution: It is based on the hierarchical oct-tree domain decomposition introduced by Barnes and Hut (1986). Restrictions on the complexity of the program: The program uses the leapfrog integrator schema, but could be changed by the user. Typical running time: 50 seconds for each time-step, running a 2-million-particles simulation on an Sgi Origin 3800 system with 8 processors having 512 Mbytes RAM for each processor. Unusual features of the program: FLY

  6. Integrated Design Engineering Analysis (IDEA) Environment - Aerodynamics, Aerothermodynamics, and Thermal Protection System Integration Module

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hilmi N.

    2011-01-01

    This report documents the work performed during from March 2010 October 2011. The Integrated Design and Engineering Analysis (IDEA) environment is a collaborative environment based on an object-oriented, multidisciplinary, distributed environment using the Adaptive Modeling Language (AML) as the underlying framework. This report will focus on describing the work done in the area of extending the aerodynamics, and aerothermodynamics module using S/HABP, CBAERO, PREMIN and LANMIN. It will also detail the work done integrating EXITS as the TPS sizing tool.

  7. Distributed-Memory Computing With the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA)

    NASA Technical Reports Server (NTRS)

    Riley, Christopher J.; Cheatwood, F. McNeil

    1997-01-01

    The Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA), a Navier-Stokes solver, has been modified for use in a parallel, distributed-memory environment using the Message-Passing Interface (MPI) standard. A standard domain decomposition strategy is used in which the computational domain is divided into subdomains with each subdomain assigned to a processor. Performance is examined on dedicated parallel machines and a network of desktop workstations. The effect of domain decomposition and frequency of boundary updates on performance and convergence is also examined for several realistic configurations and conditions typical of large-scale computational fluid dynamic analysis.

  8. Numerical simulation code for self-gravitating Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Madarassy, Enikő J. M.; Toth, Viktor T.

    2013-04-01

    We completed the development of simulation code that is designed to study the behavior of a conjectured dark matter galactic halo that is in the form of a Bose-Einstein Condensate (BEC). The BEC is described by the Gross-Pitaevskii equation, which can be solved numerically using the Crank-Nicholson method. The gravitational potential, in turn, is described by Poisson’s equation, that can be solved using the relaxation method. Our code combines these two methods to study the time evolution of a self-gravitating BEC. The inefficiency of the relaxation method is balanced by the fact that in subsequent time iterations, previously computed values of the gravitational field serve as very good initial estimates. The code is robust (as evidenced by its stability on coarse grids) and efficient enough to simulate the evolution of a system over the course of 109 years using a finer (100×100×100) spatial grid, in less than a day of processor time on a contemporary desktop computer. Catalogue identifier: AEOR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOR_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5248 No. of bytes in distributed program, including test data, etc.: 715402 Distribution format: tar.gz Programming language: C++ or FORTRAN. Computer: PCs or workstations. Operating system: Linux or Windows. Classification: 1.5. Nature of problem: Simulation of a self-gravitating Bose-Einstein condensate by simultaneous solution of the Gross-Pitaevskii and Poisson equations in three dimensions. Solution method: The Gross-Pitaevskii equation is solved numerically using the Crank-Nicholson method; Poisson’s equation is solved using the relaxation method. The time evolution of the system is governed by the Gross-Pitaevskii equation; the solution of Poisson

  9. Long-term radiation belt simulation with the VERB 3-D code: Comparison with CRRES observations

    NASA Astrophysics Data System (ADS)

    Subbotin, D. A.; Shprits, Y. Y.; Ni, B.

    2011-12-01

    Highly energetic electrons in the Earth’s radiation belts are hazardous for satellite equipment. Fluxes of relativistic electrons can vary by orders of magnitude during geomagnetic storms. The evolution of relativistic electron fluxes in the radiation belts is described by the 3-D Fokker-Planck equation in terms of the radial distance, energy, and equatorial pitch angle. To better understand the mechanisms that control radiation belt acceleration and loss and particle flux dynamics, we present a long-term radiation belt simulation for 100 days from 29 July to 6 November 1990 with the 3-D Versatile Electron Radiation Belt (VERB) code and compare the results with the electron fluxes observed by the Combined Release and Radiation Effects Satellite (CRRES). We also perform a comparison of Phase Space Density with a multisatellite reanalysis obtained by using Kalman filtering of observations from CRRES, Geosynchronous (GEO), GPS, and Akebono satellites. VERB 3-D simulations include radial, energy, and pitch angle diffusion and mixed energy and pitch angle diffusion driven by electromagnetic waves inside the magnetosphere with losses to the atmosphere. Boundary conditions account for the convective source of electrons and loss to the magnetopause. The results of the simulation that include all of the above processes show a good agreement with the data. The agreement implies that these processes are important for the radiation belt electron dynamics and therefore should be accounted for in outer radiation belt simulations. We also show that the results are very sensitive to the assumed wave model. Our simulations are driven only by the variation of the Kp index and variations of the seed electron population around geosynchronous orbit, which allows the model to be used for forecasting and nowcasting.

  10. Monte Carlo N-Particle Transport Code System To Simulate Time-Analysis Quantities.

    2012-04-15

    Version: 00 US DOE 10CFR810 Jurisdiction. The Monte Carlo simulation of correlation measurements that rely on the detection of fast neutrons and photons from fission requires that particle emissions and interactions following a fission event be described as close to reality as possible. The -PoliMi extension to MCNP and to MCNPX was developed to simulate correlated-particle and the subsequent interactions as close as possible to the physical behavior. Initially, MCNP-PoliMi, a modification of MCNP4C, wasmore » developed. The first version was developed in 2001-2002 and released in early 2004 to the Radiation Safety Information Computational Center (RSICC). It was developed for research purposes, to simulate correlated counts in organic scintillation detectors, sensitive to fast neutrons and gamma rays. Originally, the field of application was nuclear safeguards; however subsequent improvements have enhanced the ability to model measurements in other research fields as well. During 2010-2011 the -PoliMi modification was ported into MCNPX-2.7.0, leading to the development of MCNPX-PoliMi. Now the -PoliMi v2.0 modifications are distributed as a patch to MCNPX-2.7.0 which currently is distributed in the RSICC PACKAGE BCC-004 MCNP6_BETA2/MCNP5/MCNPX. Also included in the package is MPPost, a versatile code that provides simulated detector response. By taking advantage of the modifications in MCNPX-PoliMi, MPPost can provide an accurate simulation of the detector response for a variety of detection scenarios.« less

  11. VADER: A flexible, robust, open-source code for simulating viscous thin accretion disks

    NASA Astrophysics Data System (ADS)

    Krumholz, M. R.; Forbes, J. C.

    2015-06-01

    The evolution of thin axisymmetric viscous accretion disks is a classic problem in astrophysics. While models based on this simplified geometry provide only approximations to the true processes of instability-driven mass and angular momentum transport, their simplicity makes them invaluable tools for both semi-analytic modeling and simulations of long-term evolution where two- or three-dimensional calculations are too computationally costly. Despite the utility of these models, the only publicly-available frameworks for simulating them are rather specialized and non-general. Here we describe a highly flexible, general numerical method for simulating viscous thin disks with arbitrary rotation curves, viscosities, boundary conditions, grid spacings, equations of state, and rates of gain or loss of mass (e.g., through winds) and energy (e.g., through radiation). Our method is based on a conservative, finite-volume, second-order accurate discretization of the equations, which we solve using an unconditionally-stable implicit scheme. We implement Anderson acceleration to speed convergence of the scheme, and show that this leads to factor of ∼5 speed gains over non-accelerated methods in realistic problems, though the amount of speedup is highly problem-dependent. We have implemented our method in the new code Viscous Accretion Disk Evolution Resource (VADER), which is freely available for download from

  12. Monte Carlo simulation using the PENELOPE code with an ant colony algorithm to study MOSFET detectors

    NASA Astrophysics Data System (ADS)

    Carvajal, M. A.; García-Pareja, S.; Guirado, D.; Vilches, M.; Anguiano, M.; Palma, A. J.; Lallena, A. M.

    2009-10-01

    In this work we have developed a simulation tool, based on the PENELOPE code, to study the response of MOSFET devices to irradiation with high-energy photons. The energy deposited in the extremely thin silicon dioxide layer has been calculated. To reduce the statistical uncertainties, an ant colony algorithm has been implemented to drive the application of splitting and Russian roulette as variance reduction techniques. In this way, the uncertainty has been reduced by a factor of ~5, while the efficiency is increased by a factor of above 20. As an application, we have studied the dependence of the response of the pMOS transistor 3N163, used as a dosimeter, with the incidence angle of the radiation for three common photons sources used in radiotherapy: a 60Co Theratron-780 and the 6 and 18 MV beams produced by a Mevatron KDS LINAC. Experimental and simulated results have been obtained for gantry angles of 0o, 15o, 30o, 45o, 60o and 75o. The agreement obtained has permitted validation of the simulation tool. We have studied how to reduce the angular dependence of the MOSFET response by using an additional encapsulation made of brass in the case of the two LINAC qualities considered.

  13. Monte Carlo simulation using the PENELOPE code with an ant colony algorithm to study MOSFET detectors.

    PubMed

    Carvajal, M A; García-Pareja, S; Guirado, D; Vilches, M; Anguiano, M; Palma, A J; Lallena, A M

    2009-10-21

    In this work we have developed a simulation tool, based on the PENELOPE code, to study the response of MOSFET devices to irradiation with high-energy photons. The energy deposited in the extremely thin silicon dioxide layer has been calculated. To reduce the statistical uncertainties, an ant colony algorithm has been implemented to drive the application of splitting and Russian roulette as variance reduction techniques. In this way, the uncertainty has been reduced by a factor of approximately 5, while the efficiency is increased by a factor of above 20. As an application, we have studied the dependence of the response of the pMOS transistor 3N163, used as a dosimeter, with the incidence angle of the radiation for three common photons sources used in radiotherapy: a (60)Co Theratron-780 and the 6 and 18 MV beams produced by a Mevatron KDS LINAC. Experimental and simulated results have been obtained for gantry angles of 0 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees and 75 degrees. The agreement obtained has permitted validation of the simulation tool. We have studied how to reduce the angular dependence of the MOSFET response by using an additional encapsulation made of brass in the case of the two LINAC qualities considered. PMID:19794247

  14. Simulation of Turbulent Combustion Fields of Shock-Dispersed Aluminum Using the AMR Code

    SciTech Connect

    Kuhl, A L; Bell, J B; Beckner, V E; Khasainov, B

    2006-11-02

    We present a Model for simulating experiments of combustion in Shock-Dispersed-Fuel (SDF) explosions. The SDF charge consisted of a 0.5-g spherical PETN booster, surrounded by 1-g of fuel powder (flake Aluminum). Detonation of the booster charge creates a high-temperature, high-pressure source (PETN detonation products gases) that both disperses the fuel and heats it. Combustion ensues when the fuel mixes with air. The gas phase is governed by the gas-dynamic conservation laws, while the particle phase obeys the continuum mechanics laws for heterogeneous media. The two phases exchange mass, momentum and energy according to inter-phase interaction terms. The kinetics model used an empirical particle burn relation. The thermodynamic model considers the air, fuel and booster products to be of frozen composition, while the Al combustion products are assumed to be in equilibrium. The thermodynamic states were calculated by the Cheetah code; resulting state points were fit with analytic functions suitable for numerical simulations. Numerical simulations of combustion of an Aluminum SDF charge in a 6.4-liter chamber were performed. Computed pressure histories agree with measurements.

  15. Neoclassical simulation of tokamak plasmas using the continuum gyrokinetic code TEMPEST

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.

    2008-07-01

    We present gyrokinetic neoclassical simulations of tokamak plasmas with a self-consistent electric field using a fully nonlinear (full- f ) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five-dimensional computational grid in phase space. The present implementation is a method of lines approach where the phase-space derivatives are discretized with finite differences, and implicit backward differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving the gyrokinetic Poisson equation with self-consistent poloidal variation. With a four-dimensional (ψ,θ,γ,μ) version of the TEMPEST code, we compute the radial particle and heat fluxes, the geodesic-acoustic mode, and the development of the neoclassical electric field, which we compare with neoclassical theory using a Lorentz collision model. The present work provides a numerical scheme for self-consistently studying important dynamical aspects of neoclassical transport and electric field in toroidal magnetic fusion devices.

  16. Referential coding of steering-wheel button presses in a simulated driving cockpit.

    PubMed

    Xiong, Aiping; Proctor, Robert W

    2015-12-01

    The present study investigated whether left and right pushbuttons on a steering wheel are coded relative to an "infotainment display" in a simulated driving cockpit. Participants performed a go/no-go Simon task in which they responded on trials for which a tone, presented from a left or right speaker, was 1 of 2 pitches (low or high) with a single button press (left in 1 trial block; right in another). Without the infotainment display in Experiment 1, both left and right responses showed Simon effects of similar size. In both Experiments 2 and 3, the infotainment display was located to the right or left, and the Simon effect was smaller for the response that was on the side of the infotainment display than for the response that was on the opposite side. The results indicate that in a driving cockpit environment, the pushbutton responses are coded as left and right with respect not only to the wheel-based frame but also to a salient object like the infotainment display. The general point for application is that the driver's spatial representation of responses, and consequently performance, can be influenced by multiple frames of reference.

  17. Referential coding of steering-wheel button presses in a simulated driving cockpit.

    PubMed

    Xiong, Aiping; Proctor, Robert W

    2015-12-01

    The present study investigated whether left and right pushbuttons on a steering wheel are coded relative to an "infotainment display" in a simulated driving cockpit. Participants performed a go/no-go Simon task in which they responded on trials for which a tone, presented from a left or right speaker, was 1 of 2 pitches (low or high) with a single button press (left in 1 trial block; right in another). Without the infotainment display in Experiment 1, both left and right responses showed Simon effects of similar size. In both Experiments 2 and 3, the infotainment display was located to the right or left, and the Simon effect was smaller for the response that was on the side of the infotainment display than for the response that was on the opposite side. The results indicate that in a driving cockpit environment, the pushbutton responses are coded as left and right with respect not only to the wheel-based frame but also to a salient object like the infotainment display. The general point for application is that the driver's spatial representation of responses, and consequently performance, can be influenced by multiple frames of reference. PMID:26460675

  18. The GENGA Code: Gravitational Encounters in N-body simulations with GPU Acceleration.

    NASA Astrophysics Data System (ADS)

    Grimm, Simon; Stadel, Joachim

    2013-07-01

    We present a GPU (Graphics Processing Unit) implementation of a hybrid symplectic N-body integrator based on the Mercury Code (Chambers 1999), which handles close encounters with a very good energy conservation. It uses a combination of a mixed variable integration (Wisdom & Holman 1991) and a direct N-body Bulirsch-Stoer method. GENGA is written in CUDA C and runs on NVidia GPU's. The GENGA code supports three simulation modes: Integration of up to 2048 massive bodies, integration with up to a million test particles, or parallel integration of a large number of individual planetary systems. To achieve the best performance, GENGA runs completely on the GPU, where it can take advantage of the very fast, but limited, memory that exists there. All operations are performed in parallel, including the close encounter detection and grouping independent close encounter pairs. Compared to Mercury, GENGA runs up to 30 times faster. Two applications of GENGA are presented: First, the dynamics of planetesimals and the late stage of rocky planet formation due to planetesimal collisions. Second, a dynamical stability analysis of an exoplanetary system with an additional hypothetical super earth, which shows that in some multiple planetary systems, additional super earths could exist without perturbing the dynamical stability of the other planets (Elser et al. 2013).

  19. A Model of Cataclysmic Variable Systems with the Particle Simulation Code VINE

    NASA Astrophysics Data System (ADS)

    Kreidberg, Laura; Wood, M.; Wetzstein, M.

    2010-01-01

    In this poster we present a preliminary model of cataclysmic variables, close binary systems consisting of a white dwarf primary and a lower mass main-sequence secondary star. Mass transfer from the secondary results in the formation of an accretion disk surrounding the primary. We modeled the accretion disk with the method of smoothed particle hydrodynamics (SPH), as implemented in the public domain code VINE, which we modified for this project. We incorporated VINE's dynamic smoothing lengths and time-varying viscosity to create a more physical model as compared to pre-existing simulations. This project was funded by a partnership between the National Science Foundation (NSF AST-0552798), Research Experiences for Undergraduates (REU), and the Department of Defense (DoD) ASSURE (Awards to Stimulate and Support Undergraduate Research Experiences) programs.

  20. Code Blue: methodology for a qualitative study of teamwork during simulated cardiac arrest

    PubMed Central

    Clarke, Samuel; Carolina Apesoa-Varano, Ester; Barton, Joseph

    2016-01-01

    Introduction In-hospital cardiac arrest (IHCA) is a particularly vexing entity from the perspective of preparedness, as it is neither common nor truly rare. Survival from IHCA requires the coordinated efforts of multiple providers with different skill sets who may have little prior experience working together. Survival rates have remained low despite advances in therapy, suggesting that human factors may be at play. Methods and analysis This qualitative study uses a quasiethnographic data collection approach combining focus group interviews with providers involved in IHCA resuscitation as well as analysis of video recordings from in situ-simulated cardiac arrest events. Using grounded theory-based analysis, we intend to understand the organisational, interpersonal, cognitive and behavioural dimensions of IHCA resuscitation, and to build a descriptive model of code team functioning. Ethics and dissemination This ongoing study has been approved by the IRB at UC Davis Medical Center. Results The results will be disseminated in a subsequent manuscript. PMID:26758258

  1. Particle-in-cell/accelerator code for space-charge dominated beam simulation

    2012-05-08

    Warp is a multidimensional discrete-particle beam simulation program designed to be applicable where the beam space-charge is non-negligible or dominant. It is being developed in a collaboration among LLNL, LBNL and the University of Maryland. It was originally designed and optimized for heave ion fusion accelerator physics studies, but has received use in a broader range of applications, including for example laser wakefield accelerators, e-cloud studies in high enery accelerators, particle traps and other areas.more » At present it incorporates 3-D, axisymmetric (r,z) planar (x-z) and transverse slice (x,y) descriptions, with both electrostatic and electro-magnetic fields, and a beam envelope model. The code is guilt atop the Python interpreter language.« less

  2. Finite Element Simulation Code for Computing Thermal Radiation from a Plasma

    NASA Astrophysics Data System (ADS)

    Nguyen, C. N.; Rappaport, H. L.

    2004-11-01

    A finite element code, ``THERMRAD,'' for computing thermal radiation from a plasma is under development. Radiation from plasma test particles is found in cylindrical geometry. Although the plasma equilibrium is assumed axisymmetric individual test particle excitation produces a non-axisymmetric electromagnetic response. Specially designed Whitney class basis functions are to be used to allow the solution to be solved on a two-dimensional grid. The basis functions enforce both a vanishing of the divergence of the electric field within grid elements where the complex index of refraction is assumed constant and continuity of tangential electric field across grid elements while allowing the normal component of the electric field to be discontinuous. An appropriate variational principle which incorporates the Sommerfeld radiation condition on the simulation boundary, as well as its discretization by the Rayleigh-Ritz technique is given. 1. ``Finte Element Method for Electromagnetics Problems,'' Volakis et al., Wiley, 1998.

  3. Particle-in-cell/accelerator code for space-charge dominated beam simulation

    SciTech Connect

    2012-05-08

    Warp is a multidimensional discrete-particle beam simulation program designed to be applicable where the beam space-charge is non-negligible or dominant. It is being developed in a collaboration among LLNL, LBNL and the University of Maryland. It was originally designed and optimized for heave ion fusion accelerator physics studies, but has received use in a broader range of applications, including for example laser wakefield accelerators, e-cloud studies in high enery accelerators, particle traps and other areas. At present it incorporates 3-D, axisymmetric (r,z) planar (x-z) and transverse slice (x,y) descriptions, with both electrostatic and electro-magnetic fields, and a beam envelope model. The code is guilt atop the Python interpreter language.

  4. Multi-Dimensional Simulation of LWR Fuel Behavior in the BISON Fuel Performance Code

    NASA Astrophysics Data System (ADS)

    Williamson, R. L.; Capps, N. A.; Liu, W.; Rashid, Y. R.; Wirth, B. D.

    2016-09-01

    Nuclear fuel operates in an extreme environment that induces complex multiphysics phenomena occurring over distances ranging from inter-atomic spacing to meters, and times scales ranging from microseconds to years. To simulate this behavior requires a wide variety of material models that are often complex and nonlinear. The recently developed BISON code represents a powerful fuel performance simulation tool based on its material and physical behavior capabilities, finite-element versatility of spatial representation, and use of parallel computing. The code can operate in full three dimensional (3D) mode, as well as in reduced two dimensional (2D) modes, e.g., axisymmetric radial-axial (R-Z) or plane radial-circumferential (R-θ), to suit the application and to allow treatment of global and local effects. A BISON case study was used to illustrate analysis of Pellet Clad Mechanical Interaction failures from manufacturing defects using combined 2D and 3D analyses. The analysis involved commercial fuel rods and demonstrated successful computation of metrics of interest to fuel failures, including cladding peak hoop stress and strain energy density. In comparison with a failure threshold derived from power ramp tests, results corroborate industry analyses of the root cause of the pellet-clad interaction failures and illustrate the importance of modeling 3D local effects around fuel pellet defects, which can produce complex effects including cold spots in the cladding, stress concentrations, and hot spots in the fuel that can lead to enhanced cladding degradation such as hydriding, oxidation, CRUD formation, and stress corrosion cracking.

  5. Icarus: A 2-D Direct Simulation Monte Carlo (DSMC) Code for Multi-Processor Computers

    SciTech Connect

    BARTEL, TIMOTHY J.; PLIMPTON, STEVEN J.; GALLIS, MICHAIL A.

    2001-10-01

    Icarus is a 2D Direct Simulation Monte Carlo (DSMC) code which has been optimized for the parallel computing environment. The code is based on the DSMC method of Bird[11.1] and models from free-molecular to continuum flowfields in either cartesian (x, y) or axisymmetric (z, r) coordinates. Computational particles, representing a given number of molecules or atoms, are tracked as they have collisions with other particles or surfaces. Multiple species, internal energy modes (rotation and vibration), chemistry, and ion transport are modeled. A new trace species methodology for collisions and chemistry is used to obtain statistics for small species concentrations. Gas phase chemistry is modeled using steric factors derived from Arrhenius reaction rates or in a manner similar to continuum modeling. Surface chemistry is modeled with surface reaction probabilities; an optional site density, energy dependent, coverage model is included. Electrons are modeled by either a local charge neutrality assumption or as discrete simulational particles. Ion chemistry is modeled with electron impact chemistry rates and charge exchange reactions. Coulomb collision cross-sections are used instead of Variable Hard Sphere values for ion-ion interactions. The electro-static fields can either be: externally input, a Langmuir-Tonks model or from a Green's Function (Boundary Element) based Poison Solver. Icarus has been used for subsonic to hypersonic, chemically reacting, and plasma flows. The Icarus software package includes the grid generation, parallel processor decomposition, post-processing, and restart software. The commercial graphics package, Tecplot, is used for graphics display. All of the software packages are written in standard Fortran.

  6. CMAD: A Self-consistent Parallel Code to Simulate the Electron Cloud Build-up and Instabilities

    SciTech Connect

    Pivi, M.T.F.; /SLAC

    2007-11-07

    We present the features of CMAD, a newly developed self-consistent code which simulates both the electron cloud build-up and related beam instabilities. By means of parallel (Message Passing Interface - MPI) computation, the code tracks the beam in an existing (MAD-type) lattice and continuously resolves the interaction between the beam and the cloud at each element location, with different cloud distributions at each magnet location. The goal of CMAD is to simulate single- and coupled-bunch instability, allowing tune shift, dynamic aperture and frequency map analysis and the determination of the secondary electron yield instability threshold. The code is in its phase of development and benchmarking with existing codes. Preliminary results on benchmarking are presented in this paper.

  7. LPIC++ a parallel one-dimensional relativistic electromagnetic Particle-In-Cell code for simulating laser-plasma-interaction

    NASA Astrophysics Data System (ADS)

    Pfund, R. E. W.; Lichters, R.; Meyer-ter-Vehn, J.

    1998-02-01

    We report on a recently developed electromagnetic relativistic 1D3V (one spatial, three velocity dimensions) Particle-In-Cell code for simulating laser-plasma interaction at normal and oblique incidence. The code is written in C++ and easy to extend. The data structure is characterized by the use of chained lists for the grid cells as well as particles belonging to one cell. The parallel version of the code is based on PVM. It splits the grid into several spatial domains each belonging to one processor. Since particles can cross boundaries of cells as well as domains, the processor loads will generally change in time. This is counteracted by adjusting the domain sizes dynamically, for which the use of chained lists has proven to be very convenient. Moreover, an option for restarting the simulation from intermediate stages of the time evolution has been implemented even in the parallel version. The code will be published and distributed freely.

  8. Monte Carlo simulation of MOSFET detectors for high-energy photon beams using the PENELOPE code

    NASA Astrophysics Data System (ADS)

    Panettieri, Vanessa; Amor Duch, Maria; Jornet, Núria; Ginjaume, Mercè; Carrasco, Pablo; Badal, Andreu; Ortega, Xavier; Ribas, Montserrat

    2007-01-01

    The aim of this work was the Monte Carlo (MC) simulation of the response of commercially available dosimeters based on metal oxide semiconductor field effect transistors (MOSFETs) for radiotherapeutic photon beams using the PENELOPE code. The studied Thomson&Nielsen TN-502-RD MOSFETs have a very small sensitive area of 0.04 mm2 and a thickness of 0.5 µm which is placed on a flat kapton base and covered by a rounded layer of black epoxy resin. The influence of different metallic and Plastic water™ build-up caps, together with the orientation of the detector have been investigated for the specific application of MOSFET detectors for entrance in vivo dosimetry. Additionally, the energy dependence of MOSFET detectors for different high-energy photon beams (with energy >1.25 MeV) has been calculated. Calculations were carried out for simulated 6 MV and 18 MV x-ray beams generated by a Varian Clinac 1800 linear accelerator, a Co-60 photon beam from a Theratron 780 unit, and monoenergetic photon beams ranging from 2 MeV to 10 MeV. The results of the validation of the simulated photon beams show that the average difference between MC results and reference data is negligible, within 0.3%. MC simulated results of the effect of the build-up caps on the MOSFET response are in good agreement with experimental measurements, within the uncertainties. In particular, for the 18 MV photon beam the response of the detectors under a tungsten cap is 48% higher than for a 2 cm Plastic water™ cap and approximately 26% higher when a brass cap is used. This effect is demonstrated to be caused by positron production in the build-up caps of higher atomic number. This work also shows that the MOSFET detectors produce a higher signal when their rounded side is facing the beam (up to 6%) and that there is a significant variation (up to 50%) in the response of the MOSFET for photon energies in the studied energy range. All the results have shown that the PENELOPE code system can

  9. Coronal extension of the MURaM radiative MHD code: From quiet sun to flare simulations

    NASA Astrophysics Data System (ADS)

    Rempel, Matthias D.; Cheung, Mark

    2016-05-01

    We present a new version of the MURaM radiative MHD code, which includes a treatment of the solar corona in terms of MHD, optically thin radiative loss and field-aligned heat conduction. In order to relax the severe time-step constraints imposed by large Alfven velocities and heat conduction we use a combination of semi-relativistic MHD with reduced speed of light ("Boris correction") and a hyperbolic formulation of heat conduction. We apply the numerical setup to 4 different setups including a mixed polarity quiet sun, an open flux region, an arcade solution and an active region setup and find all cases an amount of coronal heating sufficient to maintain a corona with temperatures from 1 MK (quiet sun) to 2 MK (active region, arcade). In all our setups the Poynting flux is self-consistently created by photospheric and sub-photospheric magneto-convection in the lower part of our simulation domain. Varying the maximum allowed Alfven velocity ("reduced speed of light") leads to only minor changes in the coronal structure as long as the limited Alfven velocity remains larger than the speed of sound and about 1.5-3 times larger than the peak advection velocity. We also found that varying details of the numerical diffusivities that govern the resistive and viscous energy dissipation do not strongly affect the overall coronal heating, but the ratio of resistive and viscous energy dependence is strongly dependent on the effective numerical magnetic Prandtl number. We use our active region setup in order to simulate a flare triggered by the emergence of a twisted flux rope into a pre-existing bipolar active region. Our simulation yields a series of flares, with the strongest one reaching GOES M1 class. The simulation reproduces many observed properties of eruptions such as flare ribbons, post flare loops and a sunquake.

  10. A Comparison Between GATE and MCNPX Monte Carlo Codes in Simulation of Medical Linear Accelerator.

    PubMed

    Sadoughi, Hamid-Reza; Nasseri, Shahrokh; Momennezhad, Mahdi; Sadeghi, Hamid-Reza; Bahreyni-Toosi, Mohammad-Hossein

    2014-01-01

    Radiotherapy dose calculations can be evaluated by Monte Carlo (MC) simulations with acceptable accuracy for dose prediction in complicated treatment plans. In this work, Standard, Livermore and Penelope electromagnetic (EM) physics packages of GEANT4 application for tomographic emission (GATE) 6.1 were compared versus Monte Carlo N-Particle eXtended (MCNPX) 2.6 in simulation of 6 MV photon Linac. To do this, similar geometry was used for the two codes. The reference values of percentage depth dose (PDD) and beam profiles were obtained using a 6 MV Elekta Compact linear accelerator, Scanditronix water phantom and diode detectors. No significant deviations were found in PDD, dose profile, energy spectrum, radial mean energy and photon radial distribution, which were calculated by Standard and Livermore EM models and MCNPX, respectively. Nevertheless, the Penelope model showed an extreme difference. Statistical uncertainty in all the simulations was <1%, namely 0.51%, 0.27%, 0.27% and 0.29% for PDDs of 10 cm(2)× 10 cm(2) filed size, for MCNPX, Standard, Livermore and Penelope models, respectively. Differences between spectra in various regions, in radial mean energy and in photon radial distribution were due to different cross section and stopping power data and not the same simulation of physics processes of MCNPX and three EM models. For example, in the Standard model, the photoelectron direction was sampled from the Gavrila-Sauter distribution, but the photoelectron moved in the same direction of the incident photons in the photoelectric process of Livermore and Penelope models. Using the same primary electron beam, the Standard and Livermore EM models of GATE and MCNPX showed similar output, but re-tuning of primary electron beam is needed for the Penelope model.

  11. Aerothermodynamic environment predictions in support of the Aeroassist Flight Experiment

    NASA Technical Reports Server (NTRS)

    Fay, John F.; Kumar, Ganesh N.; Seaford, C. M.

    1991-01-01

    A computational fluid dynamic (CFD) simulation has been made of the flow past an Aeroassist Flight Experiment (AFE) aerobrake model with a payload and sting. The simulation involves solving the complete Navier-Stokes equations in three dimensions. Comparisons with data taken in a Mach 10 wind tunnel test are made and agreement is shown to be very good. Points of comparison include the aerobrake surface pressure and heat transfer rate, the sting surface streamlines, and the sting heat transfer rate. The dependence of the solution on the grid is also explored. Finally, predictions are made for conditions which correspond to a hypersonic shock tunnel force and moment test to be carried out later this year.

  12. An object oriented code for simulating supersymmetric Yang-Mills theories

    NASA Astrophysics Data System (ADS)

    Catterall, Simon; Joseph, Anosh

    2012-06-01

    We present SUSY_LATTICE - a C++ program that can be used to simulate certain classes of supersymmetric Yang-Mills (SYM) theories, including the well known N=4 SYM in four dimensions, on a flat Euclidean space-time lattice. Discretization of SYM theories is an old problem in lattice field theory. It has resisted solution until recently when new ideas drawn from orbifold constructions and topological field theories have been brought to bear on the question. The result has been the creation of a new class of lattice gauge theories in which the lattice action is invariant under one or more supersymmetries. The resultant theories are local, free of doublers and also possess exact gauge-invariance. In principle they form the basis for a truly non-perturbative definition of the continuum SYM theories. In the continuum limit they reproduce versions of the SYM theories formulated in terms of twisted fields, which on a flat space-time is just a change of the field variables. In this paper, we briefly review these ideas and then go on to provide the details of the C++ code. We sketch the design of the code, with particular emphasis being placed on SYM theories with N=(2,2) in two dimensions and N=4 in three and four dimensions, making one-to-one comparisons between the essential components of the SYM theories and their corresponding counterparts appearing in the simulation code. The code may be used to compute several quantities associated with the SYM theories such as the Polyakov loop, mean energy, and the width of the scalar eigenvalue distributions. Program summaryProgram title: SUSY_LATTICE Catalogue identifier: AELS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 9315 No. of bytes in distributed program

  13. Particle-In-Cell (PIC) code simulation results and comparison with theory scaling laws for photoelectron-generated radiation

    SciTech Connect

    Dipp, T.M. |

    1993-12-01

    The generation of radiation via photoelectrons induced off of a conducting surface was explored using Particle-In-Cell (PIC) code computer simulations. Using the MAGIC PIC code, the simulations were performed in one dimension to handle the diverse scale lengths of the particles and fields in the problem. The simulations involved monoenergetic, nonrelativistic photoelectrons emitted normal to the illuminated conducting surface. A sinusoidal, 100% modulated, 6.3263 ns pulse train, as well as unmodulated emission, were used to explore the behavior of the particles, fields, and generated radiation. A special postprocessor was written to convert the PIC code simulated electron sheath into far-field radiation parameters by means of rigorous retarded time calculations. The results of the small-spot PIC simulations were used to generate various graphs showing resonance and nonresonance radiation quantities such as radiated lobe patterns, frequency, and power. A database of PIC simulation results was created and, using a nonlinear curve-fitting program, compared with theoretical scaling laws. Overall, the small-spot behavior predicted by the theoretical scaling laws was generally observed in the PIC simulation data, providing confidence in both the theoretical scaling laws and the PIC simulations.

  14. An Approach to Assess Delamination Propagation Simulation Capabilities in Commercial Finite Element Codes

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2008-01-01

    An approach for assessing the delamination propagation simulation capabilities in commercial finite element codes is presented and demonstrated. For this investigation, the Double Cantilever Beam (DCB) specimen and the Single Leg Bending (SLB) specimen were chosen for full three-dimensional finite element simulations. First, benchmark results were created for both specimens. Second, starting from an initially straight front, the delamination was allowed to propagate. The load-displacement relationship and the total strain energy obtained from the propagation analysis results and the benchmark results were compared and good agreements could be achieved by selecting the appropriate input parameters. Selecting the appropriate input parameters, however, was not straightforward and often required an iterative procedure. Qualitatively, the delamination front computed for the DCB specimen did not take the shape of a curved front as expected. However, the analysis of the SLB specimen yielded a curved front as was expected from the distribution of the energy release rate and the failure index across the width of the specimen. Overall, the results are encouraging but further assessment on a structural level is required.

  15. MOCRA: a Monte Carlo code for the simulation of radiative transfer in the atmosphere.

    PubMed

    Premuda, Margherita; Palazzi, Elisa; Ravegnani, Fabrizio; Bortoli, Daniele; Masieri, Samuele; Giovanelli, Giorgio

    2012-03-26

    This paper describes the radiative transfer model (RTM) MOCRA (MOnte Carlo Radiance Analysis), developed in the frame of DOAS (Differential Optical Absorption Spectroscopy) to correctly interpret remote sensing measurements of trace gas amounts in the atmosphere through the calculation of the Air Mass Factor. Besides the DOAS-related quantities, the MOCRA code yields: 1- the atmospheric transmittance in the vertical and sun directions, 2- the direct and global irradiance, 3- the single- and multiple- scattered radiance for a detector with assigned position, line of sight and field of view. Sample calculations of the main radiometric quantities calculated with MOCRA are presented and compared with the output of another RTM (MODTRAN4). A further comparison is presented between the NO2 slant column densities (SCDs) measured with DOAS at Evora (Portugal) and the ones simulated with MOCRA. Both comparisons (MOCRA-MODTRAN4 and MOCRA-observations) gave more than satisfactory results, and overall make MOCRA a versatile tool for atmospheric radiative transfer simulations and interpretation of remote sensing measurements.

  16. Flash Galaxy Cluster Merger, Simulated using the Flash Code, Mass Ratio 1:1

    ScienceCinema

    None

    2016-07-12

    Since structure in the universe forms in a bottom-up fashion, with smaller structures merging to form larger ones, modeling the merging process in detail is crucial to our understanding of cosmology. At the current epoch, we observe clusters of galaxies undergoing mergers. It is seen that the two major components of galaxy clusters, the hot intracluster gas and the dark matter, behave very differently during the course of a merger. Using the N-body and hydrodynamics capabilities in the FLASH code, we have simulated a suite of representative galaxy cluster mergers, including the dynamics of both the dark matter, which is collisionless, and the gas, which has the properties of a fluid. 3-D visualizations such as these demonstrate clearly the different behavior of these two components over time. Credits: Science: John Zuhone (Harvard-Smithsonian Center for Astrophysics Visualization: Jonathan Gallagher (Flash Center, University of Chicago)

 This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Dept. of Energy (DOE) under contract DE-AC02-06CH11357. This research was supported by the National Nuclear Security Administration's (NNSA) Advanced Simulation and Computing (ASC) Academic Strategic Alliance Program (ASAP).

  17. Hybrid Particle Code Simulations of Mars: The Role of Assorted Processes in Ionospheric Escape.

    NASA Astrophysics Data System (ADS)

    Brecht, S. H.; Ledvina, S. A.

    2014-12-01

    The results of our latest hybrid particle simulations using the HALFSHEL code are discussed. The presentation will address assorted processes that produce differing ion escape rates from Mars. The simulations investigate the role of the neutral atmosphere (Univ. of Michigan's MTGCM) in its dynamic form (neutral winds and co-rotation) in the calculation of the ionospheric loss from Mars. In addition, the effect of crustal magnetic field orientation in ion escape from Mars will be discussed. Further, the presentation addresses reasons for these differences and details of the interaction around the crustal magnetic fields. Finally, these results and others will be compared to fits to data produced by Lundin et al. [2013]. In the Lundin paper the estimated loss rates from a variety of missions and times were fit to the solar EUV flux. Our results will be compared to this fit. Lundin, R, S. Barabash, M. Holström, H. Nilsson, Y. Futaana, R. Ramstad, M. Ymauchi, E. Dubinin, and M. Fraenz (2013), "Solar cycle effects on the ion escape from Mars," Geophy. Res. Lett., 40, 6028-6032, doi:10.1002/2013GL058154.

  18. Giant impacts during planet formation: Parallel tree code simulations using smooth particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Cohen, Randi L.

    There is both theoretical and observational evidence that giant planets collided with objects ≥ Mearth during their evolution. These impacts may play a key role in giant planet formation. This paper describes impacts of a ˜ Earth-mass object onto a suite of proto-giant-planets, as simulated using an SPH parallel tree code. We run 6 simulations, varying the impact angle and evolutionary stage of the proto-Jupiter. We find that it is possible for an impactor to free some mass from the core of the proto-planet it impacts through direct collision, as well as to make physical contact with the core yet escape partially, or even completely, intact. None of the 6 cases we consider produced a solid disk or resulted in a net decrease in the core mass of the pinto-planet (since the mass decrease due to disruption was outweighed by the increase due to the addition of the impactor's mass to the core). However, we suggest parameters which may have these effects, and thus decrease core mass and formation time in protoplanetary models and/or create satellite systems. We find that giant impacts can remove significant envelope mass from forming giant planets, leaving only 2 MEarth of gas, similar to Uranus and Neptune. They can also create compositional inhomogeneities in planetary cores, which creates differences in planetary thermal emission characteristics.

  19. Giant Impacts During Planet Formation: Parallel Tree Code Simulations Using Smooth Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Cohen, R.; Bodenheimer, P.; Asphaug, E.

    2000-12-01

    There is both theoretical and observational evidence that giant planets collided with objects with mass >= Mearth during their evolution. These impacts may help shorten planetary formation timescales by changing the opacity of the planetary atmosphere to allow quicker cooling. They may also redistribute heavy metals within giant planets, affect the core/envelope mass ratio, and help determine the ratio of emitted to absorbed energy within giant planets. Thus, the researchers propose to simulate the impact of a ~ Earth-mass object onto a proto-giant-planet with SPH. Results of the SPH collision models will be input into a steady-state planetary evolution code and the effect of impacts on formation timescales, core/envelope mass ratios, density profiles, and thermal emissions of giant planets will be quantified. The collision will be modelled using a modified version of an SPH routine which simulates the collision of two polytropes. The Saumon-Chabrier and Tillotson equations of state will replace the polytropic equation of state. The parallel tree algorithm of Olson & Packer will be used for the domain decomposition and neighbor search necessary to calculate pressure and self-gravity efficiently. This work is funded by the NASA Graduate Student Researchers Program.

  20. MOCRA: a Monte Carlo code for the simulation of radiative transfer in the atmosphere.

    PubMed

    Premuda, Margherita; Palazzi, Elisa; Ravegnani, Fabrizio; Bortoli, Daniele; Masieri, Samuele; Giovanelli, Giorgio

    2012-03-26

    This paper describes the radiative transfer model (RTM) MOCRA (MOnte Carlo Radiance Analysis), developed in the frame of DOAS (Differential Optical Absorption Spectroscopy) to correctly interpret remote sensing measurements of trace gas amounts in the atmosphere through the calculation of the Air Mass Factor. Besides the DOAS-related quantities, the MOCRA code yields: 1- the atmospheric transmittance in the vertical and sun directions, 2- the direct and global irradiance, 3- the single- and multiple- scattered radiance for a detector with assigned position, line of sight and field of view. Sample calculations of the main radiometric quantities calculated with MOCRA are presented and compared with the output of another RTM (MODTRAN4). A further comparison is presented between the NO2 slant column densities (SCDs) measured with DOAS at Evora (Portugal) and the ones simulated with MOCRA. Both comparisons (MOCRA-MODTRAN4 and MOCRA-observations) gave more than satisfactory results, and overall make MOCRA a versatile tool for atmospheric radiative transfer simulations and interpretation of remote sensing measurements. PMID:22453470

  1. RatLab: an easy to use tool for place code simulations

    PubMed Central

    Schönfeld, Fabian; Wiskott, Laurenz

    2013-01-01

    In this paper we present the RatLab toolkit, a software framework designed to set up and simulate a wide range of studies targeting the encoding of space in rats. It provides open access to our modeling approach to establish place and head direction cells within unknown environments and it offers a set of parameters to allow for the easy construction of a variety of enclosures for a virtual rat as well as controlling its movement pattern over the course of experiments. Once a spatial code is formed RatLab can be used to modify aspects of the enclosure or movement pattern and plot the effect of such modifications on the spatial representation, i.e., place and head direction cell activity. The simulation is based on a hierarchical Slow Feature Analysis (SFA) network that has been shown before to establish a spatial encoding of new environments using visual input data only. RatLab encapsulates such a network, generates the visual training data, and performs all sampling automatically—with each of these stages being further configurable by the user. RatLab was written with the intention to make our SFA model more accessible to the community and to that end features a range of elements to allow for experimentation with the model without the need for specific programming skills. PMID:23908627

  2. Monte Carlo Simulations of the Degradation of the Engineered Barriers System in the Yucca Mountain Repository Using the EBSPA Code

    SciTech Connect

    Qin, Z.; Shoesmith, D.W.

    2007-07-01

    Based on a probabilistic model previously proposed, a Monte Carlo simulation code (EBSPA) has been developed to predict the lifetime of the engineered barriers system within the Yucca Mountain nuclear waste repository. The degradation modes considered in the EBSPA are general passive corrosion and hydrogen-induced cracking for the drip shield; and general passive corrosion, crevice corrosion and stress corrosion cracking for the waste package. Two scenarios have been simulated using the EBSPA code: (a) a conservative scenario for the conditions thought likely to prevail in the repository, and (b) an aggressive scenario in which the impact of the degradation processes is overstated. (authors)

  3. SU-E-T-254: Optimization of GATE and PHITS Monte Carlo Code Parameters for Uniform Scanning Proton Beam Based On Simulation with FLUKA General-Purpose Code

    SciTech Connect

    Kurosu, K; Takashina, M; Koizumi, M; Das, I; Moskvin, V

    2014-06-01

    Purpose: Monte Carlo codes are becoming important tools for proton beam dosimetry. However, the relationships between the customizing parameters and percentage depth dose (PDD) of GATE and PHITS codes have not been reported which are studied for PDD and proton range compared to the FLUKA code and the experimental data. Methods: The beam delivery system of the Indiana University Health Proton Therapy Center was modeled for the uniform scanning beam in FLUKA and transferred identically into GATE and PHITS. This computational model was built from the blue print and validated with the commissioning data. Three parameters evaluated are the maximum step size, cut off energy and physical and transport model. The dependence of the PDDs on the customizing parameters was compared with the published results of previous studies. Results: The optimal parameters for the simulation of the whole beam delivery system were defined by referring to the calculation results obtained with each parameter. Although the PDDs from FLUKA and the experimental data show a good agreement, those of GATE and PHITS obtained with our optimal parameters show a minor discrepancy. The measured proton range R90 was 269.37 mm, compared to the calculated range of 269.63 mm, 268.96 mm, and 270.85 mm with FLUKA, GATE and PHITS, respectively. Conclusion: We evaluated the dependence of the results for PDDs obtained with GATE and PHITS Monte Carlo generalpurpose codes on the customizing parameters by using the whole computational model of the treatment nozzle. The optimal parameters for the simulation were then defined by referring to the calculation results. The physical model, particle transport mechanics and the different geometrybased descriptions need accurate customization in three simulation codes to agree with experimental data for artifact-free Monte Carlo simulation. This study was supported by Grants-in Aid for Cancer Research (H22-3rd Term Cancer Control-General-043) from the Ministry of Health

  4. Surface 3D nanostructuring by tightly focused laser pulse: simulations by Lagrangian code and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Inogamov, Nail A.; Zhakhovsky, Vasily V.

    2016-02-01

    There are many important applications in which the ultrashort diffraction-limited and therefore tightly focused laser pulses irradiates metal films mounted on dielectric substrate. Here we present the detailed picture of laser peeling and 3D structure formation of the thin (relative to a depth of a heat affected zone in the bulk targets) gold films on glass substrate. The underlying physics of such diffraction-limited laser peeling was not well understood previously. Our approach is based on a physical model which takes into consideration the new calculations of the two-temperature (2T) equation of state (2T EoS) and the two-temperature transport coefficients together with the coupling parameter between electron and ion subsystems. The usage of the 2T EoS and the kinetic coefficients is required because absorption of an ultrashort pulse with duration of 10-1000 fs excites electron subsystem of metal and transfers substance into the 2T state with hot electrons (typical electron temperatures 1-3 eV) and much colder ions. It is shown that formation of submicrometer-sized 3D structures is a result of the electron-ion energy transfer, melting, and delamination of film from substrate under combined action of electron and ion pressures, capillary deceleration of the delaminated liquid metal or semiconductor, and ultrafast freezing of molten material. We found that the freezing is going in non-equilibrium regime with strongly overcooled liquid phase. In this case the Stefan approximation is non-applicable because the solidification front speed is limited by the diffusion rate of atoms in the molten material. To solve the problem we have developed the 2T Lagrangian code including all this reach physics in. We also used the high-performance combined Monte- Carlo and molecular dynamics code for simulation of surface 3D nanostructuring at later times after completion of electron-ion relaxation.

  5. Evaluation of a Second-Order Accurate Navier-Stokes Code for Detached Eddy Simulation Past a Circular Cylinder

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Singer, Bart A.

    2003-01-01

    We evaluate the applicability of a production computational fluid dynamics code for conducting detached eddy simulation for unsteady flows. A second-order accurate Navier-Stokes code developed at NASA Langley Research Center, known as TLNS3D, is used for these simulations. We focus our attention on high Reynolds number flow (Re = 5 x 10(sup 4) - 1.4 x 10(sup 5)) past a circular cylinder to simulate flows with large-scale separations. We consider two types of flow situations: one in which the flow at the separation point is laminar, and the other in which the flow is already turbulent when it detaches from the surface of the cylinder. Solutions are presented for two- and three-dimensional calculations using both the unsteady Reynolds-averaged Navier-Stokes paradigm and the detached eddy simulation treatment. All calculations use the standard Spalart-Allmaras turbulence model as the base model.

  6. An efficient code for the simulation of nonhydrostatic stratified flow over obstacles

    NASA Technical Reports Server (NTRS)

    Pihos, G. G.; Wurtele, M. G.

    1981-01-01

    The physical model and computational procedure of the code is described in detail. The code is validated in tests against a variety of known analytical solutions from the literature and is also compared against actual mountain wave observations. The code will receive as initial input either mathematically idealized or discrete observational data. The form of the obstacle or mountain is arbitrary.

  7. SPILADY: A parallel CPU and GPU code for spin-lattice magnetic molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ma, Pui-Wai; Dudarev, S. L.; Woo, C. H.

    2016-10-01

    Spin-lattice dynamics generalizes molecular dynamics to magnetic materials, where dynamic variables describing an evolving atomic system include not only coordinates and velocities of atoms but also directions and magnitudes of atomic magnetic moments (spins). Spin-lattice dynamics simulates the collective time evolution of spins and atoms, taking into account the effect of non-collinear magnetism on interatomic forces. Applications of the method include atomistic models for defects, dislocations and surfaces in magnetic materials, thermally activated diffusion of defects, magnetic phase transitions, and various magnetic and lattice relaxation phenomena. Spin-lattice dynamics retains all the capabilities of molecular dynamics, adding to them the treatment of non-collinear magnetic degrees of freedom. The spin-lattice dynamics time integration algorithm uses symplectic Suzuki-Trotter decomposition of atomic coordinate, velocity and spin evolution operators, and delivers highly accurate numerical solutions of dynamic evolution equations over extended intervals of time. The code is parallelized in coordinate and spin spaces, and is written in OpenMP C/C++ for CPU and in CUDA C/C++ for Nvidia GPU implementations. Temperatures of atoms and spins are controlled by Langevin thermostats. Conduction electrons are treated by coupling the discrete spin-lattice dynamics equations for atoms and spins to the heat transfer equation for the electrons. Worked examples include simulations of thermalization of ferromagnetic bcc iron, the dynamics of laser pulse demagnetization, and collision cascades. Catalogue identifier: AFAN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFAN_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Apache License, Version 2.0 No. of lines in distributed program, including test data, etc.: 1611165 No. of bytes in distributed program, including test data, etc.: 367246683

  8. Documentation of a numerical code for the simulation of variable density ground-water flow in three dimensions

    USGS Publications Warehouse

    Kuiper, L.K.

    1985-01-01

    A numerical code is documented for the simulation of variable density time dependent groundwater flow in three dimensions. The groundwater density, although variable with distance, is assumed to be constant in time. The Integrated Finite Difference grid elements in the code follow the geologic strata in the modeled area. If appropriate, the determination of hydraulic head in confining beds can be deleted to decrease computation time. The strongly implicit procedure (SIP), successive over-relaxation (SOR), and eight different preconditioned conjugate gradient (PCG) methods are used to solve the approximating equations. The use of the computer program that performs the calculations in the numerical code is emphasized. Detailed instructions are given for using the computer program, including input data formats. An example simulation and the Fortran listing of the program are included. (USGS)

  9. SPACE code simulation of cold leg small break LOCA in the ATLAS integral test

    SciTech Connect

    Kim, B. J.; Kim, H. T.; Kim, J.; Kim, K. D.

    2012-07-01

    SPACE code is a system analysis code for pressurized water reactors. This code uses a two-fluid and three-field model. For a few years, intensive validations have been performed to secure the prediction accuracy of models and correlations for two-phase flow and heat transfer. Recently, the code version 1.0 was released. This study is to see how well SPACE code predicts thermal hydraulic phenomena of an integral effect test. The target experiment is a cold leg small break LOCA in the ATLAS facility, which has the same two-loop features as APR1400. Predicted parameters were compared with experimental observations. (authors)

  10. Numerical simulation of VAWT stochastic aerodynamic loads produced by atmospheric turbauence: VAWT-SAL code

    SciTech Connect

    Homicz, G.F.

    1991-09-01

    Blade fatigue life is an important element in determining the economic viability of the Vertical-Axis Wind Turbine (VAWT). A principal source of blade fatigue is thought to be the stochastic (i.e., random) aerodynamic loads created by atmospheric turbulence. This report describes the theoretical background of the VAWT Stochastic Aerodynamic Loads (VAWT-SAL) computer code, whose purpose is to numerically simulate these random loads, given the rotor geometry, operating conditions, and assumed turbulence properties. A Double-Multiple-Stream Tube (DMST) analysis is employed to model the rotor's aerodynamic response. The analysis includes the effects of Reynolds number variations, different airfoil sections and chord lengths along the blade span, and an empirical model for dynamic stall effects. The mean ambient wind is assumed to have a shear profile which is described by either a power law or a logarithmic variation with height above ground. Superimposed on this is a full 3-D field of turbulence: i.e., in addition to random fluctuations in time, the turbulence is allowed to vary randomly in planes perpendicular to the mean wind. The influence of flow retardation on the convection of turbulence through the turbine is also modeled. Calculations are presented for the VAWT 34-m Test Bed currently in operation at Bushland, Texas. Predicted time histories of the loads, as well as their Fourier spectra, are presented and discussed. Particular emphasis is placed on the differences between so-called steady-state'' (mean wind only) predictions, and those produced with turbulence present. Somewhat surprisingly, turbulence is found to be capable of either increasing or decreasing the average output power, depending on the turbine's tip-speed ratio. A heuristic explanation for such behavior is postulated, and a simple formula is derived for predicting the magnitude of this effect without the need for a full stochastic simulation. 41 refs., 32 figs., 1 tab.

  11. Testing and Modeling of a 3-MW Wind Turbine Using Fully Coupled Simulation Codes (Poster)

    SciTech Connect

    LaCava, W.; Guo, Y.; Van Dam, J.; Bergua, R.; Casanovas, C.; Cugat, C.

    2012-06-01

    This poster describes the NREL/Alstom Wind testing and model verification of the Alstom 3-MW wind turbine located at NREL's National Wind Technology Center. NREL,in collaboration with ALSTOM Wind, is studying a 3-MW wind turbine installed at the National Wind Technology Center(NWTC). The project analyzes the turbine design using a state-of-the-art simulation code validated with detailed test data. This poster describes the testing and the model validation effort, and provides conclusions about the performance of the unique drive train configuration used in this wind turbine. The 3-MW machine has been operating at the NWTC since March 2011, and drive train measurements will be collected through the spring of 2012. The NWTC testing site has particularly turbulent wind patterns that allow for the measurement of large transient loads and the resulting turbine response. This poster describes the 3-MW turbine test project, the instrumentation installed, and the load cases captured. The design of a reliable wind turbine drive train increasingly relies on the use of advanced simulation to predict structural responses in a varying wind field. This poster presents a fully coupled, aero-elastic and dynamic model of the wind turbine. It also shows the methodology used to validate the model, including the use of measured tower modes, model-to-model comparisons of the power curve, and mainshaft bending predictions for various load cases. The drivetrain is designed to only transmit torque to the gearbox, eliminating non-torque moments that are known to cause gear misalignment. Preliminary results show that the drivetrain is able to divert bending loads in extreme loading cases, and that a significantly smaller bending moment is induced on the mainshaft compared to a three-point mounting design.

  12. JSPAM: A restricted three-body code for simulating interacting galaxies

    NASA Astrophysics Data System (ADS)

    Wallin, J. F.; Holincheck, A. J.; Harvey, A.

    2016-07-01

    Restricted three-body codes have a proven ability to recreate much of the disturbed morphology of actual interacting galaxies. As more sophisticated n-body models were developed and computer speed increased, restricted three-body codes fell out of favor. However, their supporting role for performing wide searches of parameter space when fitting orbits to real systems demonstrates a continuing need for their use. Here we present the model and algorithm used in the JSPAM code. A precursor of this code was originally described in 1990, and was called SPAM. We have recently updated the software with an alternate potential and a treatment of dynamical friction to more closely mimic the results from n-body tree codes. The code is released publicly for use under the terms of the Academic Free License ("AFL") v. 3.0 and has been added to the Astrophysics Source Code Library.

  13. The GENGA code: gravitational encounters in N-body simulations with GPU acceleration

    SciTech Connect

    Grimm, Simon L.; Stadel, Joachim G.

    2014-11-20

    We describe an open source GPU implementation of a hybrid symplectic N-body integrator, GENGA (Gravitational ENcounters with Gpu Acceleration), designed to integrate planet and planetesimal dynamics in the late stage of planet formation and stability analyses of planetary systems. GENGA uses a hybrid symplectic integrator to handle close encounters with very good energy conservation, which is essential in long-term planetary system integration. We extended the second-order hybrid integration scheme to higher orders. The GENGA code supports three simulation modes: integration of up to 2048 massive bodies, integration with up to a million test particles, or parallel integration of a large number of individual planetary systems. We compare the results of GENGA to Mercury and pkdgrav2 in terms of energy conservation and performance and find that the energy conservation of GENGA is comparable to Mercury and around two orders of magnitude better than pkdgrav2. GENGA runs up to 30 times faster than Mercury and up to 8 times faster than pkdgrav2. GENGA is written in CUDA C and runs on all NVIDIA GPUs with a computing capability of at least 2.0.

  14. PIC EM Relativistic code is used to simulate the Earth bow shock

    NASA Astrophysics Data System (ADS)

    Baraka, S. M.; Ben-Jaffel, L.

    2011-12-01

    The Earth bow shock is created by the supersonic solar wind flowing onto the geomagnetic field. The front of this shock is curved, standing around the Earth from the dayside. The bow shock is of great interest in space plasma investigation as it contains important physics ranging from kinetic to global scales. Interaction of the supersonic solar wind with Earth magnetosphere (magnetopause) creates fast mode magnetosonic waves that travel back upstream, combine and steepen to form the bow shock wave. The distance to the bow shock is then the sum of the magnetopause distance and the magnetosheath thickness. [Merka and Szabo and references therein] It has been established been well established that the bow shock (and the magnetopause) scales with the solar wind ram pressure Psw[Binsack and Vasyliunas, 1968; Formisano, 1979] . We are trying though to simulate the position of the bow shock by using a modified Tristan PIC EM Relativistic Code. By doing so, we will help the science community to use our model to better understand the shock physics in our geospace.

  15. a New Method for Neutron Capture Therapy (nct) and Related Simulation by MCNP4C Code

    NASA Astrophysics Data System (ADS)

    Shirazi, Mousavi; Alireza, Seyed; Ali, Taheri

    2010-01-01

    Neutron capture therapy (NCT) is enumerated as one of the most important methods for treatment of some strong maladies among cancers in medical science thus is unavoidable controlling and protecting instances in use of this science. Among of treatment instances of this maladies with use of nuclear medical science is use of neutron therapy that is one of the most important and effective methods in treatment of cancers. But whereas fast neutrons have too destroyer effects and also sake of protection against additional absorbed energy (absorbed dose) by tissue during neutron therapy and also naught damaging to rest of healthy tissues, should be measured absorbed energy by tissue accurately, because destroyer effects of fast neutrons is almost quintuple more than gamma photons. In this article for neutron therapy act of male's liver has been simulated a system by the Monte Carlo method (MCNP4C code) and also with use of analytical method, thus absorbed dose by this tissue has been obtained for sources with different energies accurately and has been compared results of this two methods together.

  16. Nonlinear simulations of combustion instabilities with a quasi-1D Navier-Stokes code

    NASA Astrophysics Data System (ADS)

    Haugen, Nils Erland L.; Langørgen, Øyvind; Sannan, Sigurd

    2011-11-01

    As lean premixed combustion systems are more susceptible to combustion instabilities than non-premixed systems, there is an increasing demand for improved numerical design tools that can predict the occurrence of combustion instabilities with high accuracy. The inherent nonlinearities in combustion instabilities can be of crucial importance, and we here propose an approach in which the one-dimensional (1D) Navier-Stokes and scalar transport equations are solved for geometries of variable cross-section. The focus is on attached flames, and for this purpose a new phenomenological model for the unsteady heat release from a flame front is introduced. In the attached flame method (AFM) the heat release occurs over the full length of the flame. The nonlinear code with the use of the AFM approach is validated against analytical results and against an experimental study of thermoacoustic instabilities in oxy-fuel flames by Ditaranto and Hals [Combustion and Flame 146 (2006) 493-512]. The numerical simulations are in accordance with the experimental measurements and the analytical results and both the frequencies and the amplitudes of the resonant acoustic pressure modes are reproduced with good accuracy.

  17. Microsaccades enable efficient synchrony-based coding in the retina: a simulation study

    PubMed Central

    Masquelier, Timothée; Portelli, Geoffrey; Kornprobst, Pierre

    2016-01-01

    It is now reasonably well established that microsaccades (MS) enhance visual perception, although the underlying neuronal mechanisms are unclear. Here, using numerical simulations, we show that MSs enable efficient synchrony-based coding among the primate retinal ganglion cells (RGC). First, using a jerking contrast edge as stimulus, we demonstrate a qualitative change in the RGC responses: synchronous firing, with a precision in the 10 ms range, only occurs at high speed and high contrast. MSs appear to be sufficiently fast to be able reach the synchronous regime. Conversely, the other kinds of fixational eye movements known as tremor and drift both hardly synchronize RGCs because of a too weak amplitude and a too slow speed respectively. Then, under natural image stimulation, we find that each MS causes certain RGCs to fire synchronously, namely those whose receptive fields contain contrast edges after the MS. The emitted synchronous spike volley thus rapidly transmits the most salient edges of the stimulus, which often constitute the most crucial information. We demonstrate that the readout could be done rapidly by simple coincidence-detector neurons without knowledge of the MS landing time, and that the required connectivity could emerge spontaneously with spike timing-dependent plasticity. PMID:27063867

  18. Verification of software codes for simulation of unsteady flows in a gas centrifuge

    NASA Astrophysics Data System (ADS)

    Abramov, V. A.; Bogovalov, S. V.; Borisevich, V. D.; Borman, V. D.; Kislov, V. A.; Tronin, I. V.; Tronin, V. N.; Yupatov, S. V.

    2013-06-01

    A simple semi-analytical solution is proposed for the problem of an unsteady gas flow in a gas centrifuge. The circulation in the centrifuge is driven by a source/sink of energy and by an external force (deceleration/acceleration of the gas rotation) acting on the gas at a given frequency. In the semi-analytical solution, the rotor is infinite, while the given forces vary harmonically with a given wave-length along the axial coordinate. As a result, the unsteady flow problem is reduced to a system of ordinary differential equations, which can be quickly solved to any prescribed accuracy. This problem is proposed for verifying numerical codes designed for the simulation of unsteady processes in gas centrifuges. A similar unsteady problem is solved numerically, in which case the cylinder is finite with the rotor length equal to the wavelength of the external force along the axis of rotation. The periodicity of the solution is set at end faces of the cylinder. As an example, the semi-analytical solution is compared with the numerical one obtained with these boundary conditions. The comparison confirms that the problem formulations are equivalent in both cases.

  19. Theoretical models and simulation codes to investigate bystander effects and cellular communication at low doses

    NASA Astrophysics Data System (ADS)

    Ballarini, F.; Alloni, D.; Facoetti, A.; Mairani, A.; Nano, R.; Ottolenghi, A.

    Astronauts in space are continuously exposed to low doses of ionizing radiation from Galactic Cosmic Rays During the last ten years the effects of low radiation doses have been widely re-discussed following a large number of observations on the so-called non targeted effects in particular bystander effects The latter consist of induction of cytogenetic damage in cells not directly traversed by radiation most likely as a response to molecular messengers released by directly irradiated cells Bystander effects which are observed both for lethal endpoints e g clonogenic inactivation and apoptosis and for non-lethal ones e g mutations and neoplastic transformation tend to show non-linear dose responses This might have significant consequences in terms of low-dose risk which is generally calculated on the basis of the Linear No Threshold hypothesis Although the mechanisms underlying bystander effects are still largely unknown it is now clear that two types of cellular communication i e via gap junctions and or release of molecular messengers into the extracellular environment play a fundamental role Theoretical models and simulation codes can be of help in elucidating such mechanisms In the present paper we will review different available modelling approaches including one that is being developed at the University of Pavia The focus will be on the different assumptions adopted by the various authors and on the implications of such assumptions in terms of non-targeted radiobiological damage and more generally low-dose

  20. Development and application of a multi-fluid simulation code for modeling interpenetrating plasmas

    NASA Astrophysics Data System (ADS)

    Khodak, M.; Berger, R. L.; Chapman, T.; Hittinger, J. A. F.

    2015-11-01

    A multi-fluid model, with independent velocities for all species, is developed and implemented for the numerical simulation of the interpenetration of colliding plasmas. The Euler equations for fluid flow, coupled through electron-ion and ion-ion collisional drag terms, thermal equilibration terms, and the electric field, are solved for each ion species with the electrons treated under a quasineutrality assumption. Fourth-order spatial convergence in smooth regions is achieved using flux-conservative iterative time integration and a Weighted Essentially Non-Oscillatory (WENO) finite volume scheme employing an approximate Riemann solver. Analytic solutions of well-known shock tube tests and spectral solutions of the linearized coupled system are used to test the implementation, and the model is further numerically compared to interpenetration experiments such as those of J.S. Ross et al. [Phys. Rev. Lett. 110 145005 (2013)]. This work has applications to laser-plasma interactions, specifically to hohlraum physics, as well as to modeling laboratory experiments of collisionless shocks important in astrophysical plasmas. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project code 15-ERD-038.

  1. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 8: Aerothermodynamics Automation and Robotics (A/R) systems sensors, high-temperature superconductivity

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity.

  2. Simulation of the DIII-D Beam Ion Heating Experiment Using A Monte-Carlo Particle Code Combined With a Full Wave Code

    SciTech Connect

    Choi, M.; Chan, V. S.; Green, D.; Jaeger, E. F.; Berry, L. A.; Heidbrink, W. W.

    2009-11-26

    To fully account for finite drift orbit effect of fast ions on wave-particle interaction in ion-cyclotron radio frequency (ICRF) heating experiments in tokamaks, the 5-D finite orbit Monte-Carlo plasma distribution solver ORBIT-RF is coupled with the 2-D full wave code AORSA in a self-consistent way. Comparison results of ORBIT-RF/AORSA simulation against fast-ion D{sub {alpha}}(FIDA) measurement of fast-ion distribution as well as CQL3D/ray-tracing simulation with zero-orbit approximation in the DIII-D ICRF wave beam-ion acceleration experiment are presented. Preliminary ORBIT-RF/AORSA results suggest that finite orbit width effects may explain the outward radial shift of the spatial profile measured by FIDA.

  3. 2012 Annual Report: Simulate and Evaluate the Cesium Transport and Accumulation in Fukushima-Area Rivers by the TODAM Code

    SciTech Connect

    Onishi, Yasuo; Yokuda, Satoru T.

    2013-03-28

    Pacific Northwest National Laboratory initiated the application of the time-varying, one-dimensional sediment-contaminant transport code, TODAM (Time-dependent, One-dimensional, Degradation, And Migration) to simulate the cesium migration and accumulation in the Ukedo River in Fukushima. This report describes the preliminary TODAM simulation results of the Ukedo River model from the location below the Ougaki Dam to the river mouth at the Pacific Ocean. The major findings of the 100-hour TODAM simulation of the preliminary Ukedo River modeling are summarized as follows:

  4. Aerodynamic and aerothermodynamic trade-off analysis of a small hypersonic flying test bed

    NASA Astrophysics Data System (ADS)

    Pezzella, Giuseppe

    2011-08-01

    This paper deals with the aerodynamic and aerothermodynamic trade-off analysis aiming to design a small hypersonic flying test bed with a relatively simple vehicle architecture. Such vehicle will have to be launched with a sounding rocket and shall re-enter the Earth atmosphere allowing to perform several experiments on critical re-entry technologies such as boundary-layer transition and shock-shock interaction phenomena. The flight shall be conducted at hypersonic Mach number, in the range 6-8 at moderate angles of attack. In the paper some design analyses are shown as, for example, the longitudinal and lateral-directional stability analysis. A preliminary optimization of the configuration has been also done to improve the aerodynamic performance and stability of the vehicle. Several design results, based both on engineering approach and computational fluid dynamics, are reported and discussed in the paper. The aerodynamic model of vehicle is also provided.

  5. Intermediate experimental vehicle, ESA program aerodynamics-aerothermodynamics key technologies for spacecraft design and successful flight

    NASA Astrophysics Data System (ADS)

    Dutheil, Sylvain; Pibarot, Julien; Tran, Dac; Vallee, Jean-Jacques; Tribot, Jean-Pierre

    2016-07-01

    With the aim of placing Europe among the world's space players in the strategic area of atmospheric re-entry, several studies on experimental vehicle concepts and improvements of critical re-entry technologies have paved the way for the flight of an experimental space craft. The successful flight of the Intermediate eXperimental Vehicle (IXV), under ESA's Future Launchers Preparatory Programme (FLPP), is definitively a significant step forward from the Atmospheric Reentry Demonstrator flight (1998), establishing Europe as a key player in this field. The IXV project objectives were the design, development, manufacture and ground and flight verification of an autonomous European lifting and aerodynamically controlled reentry system, which is highly flexible and maneuverable. The paper presents, the role of aerodynamics aerothermodynamics as part of the key technologies for designing an atmospheric re-entry spacecraft and securing a successful flight.

  6. Aerothermodynamic and stability analyses of a deployable re-entry capsule

    NASA Astrophysics Data System (ADS)

    Carandente, Valerio; Zuppardi, Gennaro; Savino, Raffaele

    2014-01-01

    Recent research projects, in the field of atmospheric re-entry technology, are focused on the design of deployable, umbrella-like Thermal Protection Systems (TPSs). These TPSs are made of flexible high temperature resistant fabrics, folded at launch and deployed in space for de-orbit and re-entry operations. In the present paper two possible sphere-cone configurations for the TPS have been investigated from an aerodynamic point of view. The analyzed configurations are characterized by the same reentry mass and maximum diameter, but have different half-cone angles (45° and 60°). The analyses involve both the evaluation of thermal and aerodynamic loads and the assessment of the capsule longitudinal stability. The aerothermodynamic analysis has been performed for the completely deployed heat shield in transitional and continuum regimes, while the longitudinal stability has been analyzed in free molecular, transitional and continuum regimes, also taking into consideration the heat shield deployment sequence at high altitudes.

  7. New Hypersonic Shock Tunnel at the Laboratory of Aerothermodynamics and Hypersonics Prof. Henry T. Nagamatsu

    SciTech Connect

    Toro, P. G. P.; Minucci, M. A. S.; Chanes, J. B. Jr; Oliveira, A. C.; Gomes, F. A. A.; Myrabo, L. N.; Nagamatsu, Henry T.

    2008-04-28

    The new 0.60-m. nozzle exit diameter hypersonic shock tunnel was designed to study advanced air-breathing propulsion system such as supersonic combustion and/or laser technologies. In addition, it may be used for hypersonic flow studies and investigations of the electromagnetic (laser) energy addition for flow control. This new hypersonic shock tunnel was designed and installed at the Laboratory for of Aerothermodynamics and Hypersonics Prof. Henry T. Nagamatsu, IEAv-CTA, Brazil. The design of the tunnel enables relatively long test times, 2-10 milliseconds, suitable for the experiments performed at the laboratory. Free stream Mach numbers ranging from 6 to 25 can be produced and stagnation pressures and temperatures up to 360 atm. and up to 9,000 K, respectively, can be generated. Shadowgraph and schlieren optical techniques will be used for flow visualization.

  8. Space Shuttle hypersonic aerodynamic and aerothermodynamic flight research and the comparison to ground test results

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Shafer, Mary F.

    1993-01-01

    Aerodynamic and aerothermodynamic comparisons between flight and ground test for the Space Shuttle at hypersonic speeds are discussed. All of the comparisons are taken from papers published by researchers active in the Space Shuttle program. The aerodynamic comparisons include stability and control derivatives, center-of-pressure location, and reaction control jet interaction. Comparisons are also discussed for various forms of heating, including catalytic, boundary layer, top centerline, side fuselage, OMS pod, wing leading edge, and shock interaction. The jet interaction and center-of-pressure location flight values exceeded not only the predictions but also the uncertainties of the predictions. Predictions were significantly exceeded for the heating caused by the vortex impingement on the OMS pods and for heating caused by the wing leading-edge shock interaction.

  9. Legacy of the Space Shuttle from an Aerodynamic and Aerothermodynamic Perspective

    NASA Technical Reports Server (NTRS)

    Martin, Fred W.

    2011-01-01

    The development of the Space Shuttle Orbiter thermal protection system heating environment is described from a design stand point that began in the early 1970s. The desire for a light weight, reusable heat shield required the development of new technology, relative to previous manned spacecraft, and a systems approach to the design of the vehicle, entry guidance, and thermal protection system. Several unanticipated issues had to be resolved in both the entry and ascent phases of flight, which are discussed at a high level. During the life of the Program, significant improvements in computing power and numerical methods have been applied to Space Shuttle aerodynamic and aerothermodynamic issues, with the Shuttle Program often being the motivation, and or sponsor of the analysis development.

  10. Long-term VERB Code Simulations of Ultra-relativistic Electrons and Comparison with Van Allen Probes Measurements

    NASA Astrophysics Data System (ADS)

    Drozdov, A.; Shprits, Y.; Orlova, K.; Kellerman, A. C.; Subbotin, D.; Baker, D. N.; Spence, H. E.; Reeves, G. D.

    2015-12-01

    In this study, we compare long-term simulations performed by the Versatile Electron Radiation Belt (VERB) code with the Van Allen Probes observations. The model takes into account radial, energy, pitch-angle and mixed diffusion, losses into the atmosphere, and magnetopause shadowing. We include scattering by hiss and chorus based on a recently developed statistical models of VLF/ELF waves obtained from EMFISIS instrument. We consider the energetic (>100 KeV), relativistic (~0.5-1 MeV) and ultra-relativistic (>2 MeV) electrons. One year of relativistic electron measurements are well reproduced by the simulation during a period of the various geomagnetic activity. However, for ultra-relativistic energies, the VERB code simulation significantly overestimates electron phase space density. Since the additional loss is required only at very high energies we conclude that EMIC waves is the most likely additional source of scattering that could explain observed decay rates.

  11. Long-term VERB code simulations of ultra-relativistic electrons and comparison with Van Allen Probes measurements

    NASA Astrophysics Data System (ADS)

    Drozdov, Alexander; Shprits, Yuri; Kellerman, Adam; Usanova, Maria; Aseev, Nikita; Baker, Daniel; Spence, Harlan; Reeves, Geoff

    2016-04-01

    In this study, we compare long-term simulations performed by the Versatile Electron Radiation Belt (VERB) code with the Van Allen Probes observations. The model takes into account radial, energy, pitch-angle and mixed diffusion, losses into the atmosphere, and magnetopause shadowing. We include scattering by hiss and chorus based on a recently developed statistical models of VLF/ELF waves obtained from EMFISIS instrument. We consider the energetic (>100 KeV), relativistic (~0.5-1 MeV) and ultra-relativistic (>2 MeV) electrons. One year of relativistic electron measurements are well reproduced by the simulation during a period of the various geomagnetic activity. However, for ultra-relativistic energies, the VERB code simulation significantly overestimates electron phase space density. Since the additional loss is required only at very high energies we conclude that EMIC waves is the most likely additional source of scattering that could explain observed decay rates.

  12. Development of a 3D FEL code for the simulation of a high-gain harmonic generation experiment.

    SciTech Connect

    Biedron, S. G.

    1999-02-26

    Over the last few years, there has been a growing interest in self-amplified spontaneous emission (SASE) free-electron lasers (FELs) as a means for achieving a fourth-generation light source. In order to correctly and easily simulate the many configurations that have been suggested, such as multi-segmented wigglers and the method of high-gain harmonic generation, we have developed a robust three-dimensional code. The specifics of the code, the comparison to the linear theory as well as future plans will be presented.

  13. Benchmark of the IMPACT Code for High Intensity Beam DynamicsSimulation

    SciTech Connect

    Qiang, J.; Ryne, R.D.

    2006-11-16

    The IMPACT (Integrated Map and Particle Accelerator Tracking) code was first developed under Computational Grand Challenge project in the mid 1990s [1]. It started as a three-dimensional (3D) data parallel particle-in-cell (PIC) code written in High Performance Fortran. The code used a split-operator based method to solve the Hamiltonian equations of motion. It contained linear transfer maps for drifts, quadrupole magnets and rf cavities. The space-charge forces were calculated using an FFT-based method with 3D open boundary conditions and longitudinal periodic boundary conditions. This code was completely rewritten in the late 1990s based on a message passing parallel programming paradigm using Fortran 90 and MPI following an object-oriented software design. This improved the code's scalability on large parallel computer systems and also gave the code better software maintainability and extensibility [2]. In the following years, under the SciDAC-1 accelerator project, the code was extended to include more accelerating and focusing elements such as DTL, CCL, superconducting linac, solenoid, dipole, multipoles, and others. Besides the original split-operator based integrator, a direct integration of Lorentz equations of motion using a leap-frog algorithm was also added to the IMPACT code to handle arbitrary external nonlinear fields. This integrator can read in 3D electromagnetic fields in a Cartesian grid or in a cylindrical coordinate system. Using the Lorentz integrator, we also extended the original code to handle multiple charge-state beams. The space-charge solvers were also extended to include conducting wall effects for round and rectangular pipes with longitudinal open and periodic boundary conditions. Recently, it has also been extended to handle short-range wake fields (longitudinal monopole and transverse dipole) and longitudinal coherent synchrotron radiation wake fields. Besides the parallel macroparticle tracking code, an rf linac lattice design code

  14. Assessment of the production of medical isotopes using the Monte Carlo code FLUKA: Simulations against experimental measurements

    NASA Astrophysics Data System (ADS)

    Infantino, Angelo; Oehlke, Elisabeth; Mostacci, Domiziano; Schaffer, Paul; Trinczek, Michael; Hoehr, Cornelia

    2016-01-01

    The Monte Carlo code FLUKA is used to simulate the production of a number of positron emitting radionuclides, 18F, 13N, 94Tc, 44Sc, 68Ga, 86Y, 89Zr, 52Mn, 61Cu and 55Co, on a small medical cyclotron with a proton beam energy of 13 MeV. Experimental data collected at the TR13 cyclotron at TRIUMF agree within a factor of 0.6 ± 0.4 with the directly simulated data, except for the production of 55Co, where the simulation underestimates the experiment by a factor of 3.4 ± 0.4. The experimental data also agree within a factor of 0.8 ± 0.6 with the convolution of simulated proton fluence and cross sections from literature. Overall, this confirms the applicability of FLUKA to simulate radionuclide production at 13 MeV proton beam energy.

  15. Review of a code development and calibration program in support of the aeroassist flight experiment

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    1989-01-01

    The code development and calibration program for the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) is reviewed, with emphasis directed toward support of the Aeroassist Flight Experiment (AFE). The flight project is designed to obtain data which will be used in the validation of computational fluid dynamic approximation methods. Comparisons between experimental data and numerical simulation focus on perfect-gas tests over a scale model of the AFE and on flight and ground tests which challenge some aspect of the thermochemical nonequilibrium model. In the first case, the gas model is simple, but the grid-related problems of defining the real vehicle are present. In the second case, the vehicle geometries are simple, but thermochemical processes must be modeled correctly in order to compare with the experimental data. These comparisons are described as calibration runs because they test elements of the numerical simulation, but no single data set adequately simulates the full-scale AFE flight conditions. Comparisons between computation and experiment over a broad range of data sets show generally good agreement, though some aspects of the numerical model require further development.

  16. Large Eddy Simulation of Wind Turbine Wakes. Detailed Comparisons of Two Codes Focusing on Effects of Numerics and Subgrid Modeling

    SciTech Connect

    Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles

    2015-06-18

    In this work we report on results from a detailed comparative numerical study from two Large Eddy Simulation (LES) codes using the Actuator Line Model (ALM). The study focuses on prediction of wind turbine wakes and their breakdown when subject to uniform inflow. Previous studies have shown relative insensitivity to subgrid modeling in the context of a finite-volume code. The present study uses the low dissipation pseudo-spectral LES code from Johns Hopkins University (LESGO) and the second-order, finite-volume OpenFOAMcode (SOWFA) from the National Renewable Energy Laboratory. When subject to uniform inflow, the loads on the blades are found to be unaffected by subgrid models or numerics, as expected. The turbulence in the wake and the location of transition to a turbulent state are affected by the subgrid-scale model and the numerics.

  17. Large Eddy Simulation of wind turbine wakes: detailed comparisons of two codes focusing on effects of numerics and subgrid modeling

    NASA Astrophysics Data System (ADS)

    Martínez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles

    2015-06-01

    In this work we report on results from a detailed comparative numerical study from two Large Eddy Simulation (LES) codes using the Actuator Line Model (ALM). The study focuses on prediction of wind turbine wakes and their breakdown when subject to uniform inflow. Previous studies have shown relative insensitivity to subgrid modeling in the context of a finite-volume code. The present study uses the low dissipation pseudo-spectral LES code from Johns Hopkins University (LESGO) and the second-order, finite-volume OpenFOAMcode (SOWFA) from the National Renewable Energy Laboratory. When subject to uniform inflow, the loads on the blades are found to be unaffected by subgrid models or numerics, as expected. The turbulence in the wake and the location of transition to a turbulent state are affected by the subgrid-scale model and the numerics.

  18. Large Eddy Simulation of Wind Turbine Wakes. Detailed Comparisons of Two Codes Focusing on Effects of Numerics and Subgrid Modeling

    DOE PAGES

    Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles

    2015-06-18

    In this work we report on results from a detailed comparative numerical study from two Large Eddy Simulation (LES) codes using the Actuator Line Model (ALM). The study focuses on prediction of wind turbine wakes and their breakdown when subject to uniform inflow. Previous studies have shown relative insensitivity to subgrid modeling in the context of a finite-volume code. The present study uses the low dissipation pseudo-spectral LES code from Johns Hopkins University (LESGO) and the second-order, finite-volume OpenFOAMcode (SOWFA) from the National Renewable Energy Laboratory. When subject to uniform inflow, the loads on the blades are found to bemore » unaffected by subgrid models or numerics, as expected. The turbulence in the wake and the location of transition to a turbulent state are affected by the subgrid-scale model and the numerics.« less

  19. Assessment Of The Aerodynamic And Aerothermodynamic Performance Of The USV-3 High-Lift Re-Entry Vehicle

    NASA Astrophysics Data System (ADS)

    Pezzella, Giuseppe; Richiello, Camillo; Russo, Gennaro

    2011-05-01

    This paper deals with the aerodynamic and aerothermodynamic trade-off analysis carried out with the aim to design a hypersonic flying test bed (FTB), namely USV3. Such vehicle will have to be launched with a small expendable launcher and shall re-enter the Earth atmosphere allowing to perform several experiments on critical re-entry phenomena. The demonstrator under study is a re-entry space glider characterized by a relatively simple vehicle architecture able to validate hypersonic aerothermodynamic design database and passenger experiments, including thermal shield and hot structures. Then, a summary review of the aerodynamic characteristics of two FTB concepts, compliant with a phase-A design level, has been provided hereinafter. Indeed, several design results, based both on engineering approach and computational fluid dynamics, are reported and discussed in the paper.

  20. Hypersonic research engine project. Phase 2: Aerothermodynamic integration model development, data item no. 55-4-21

    NASA Technical Reports Server (NTRS)

    Jilly, L. F. (Editor)

    1975-01-01

    The design and development of the Aerothermodynamic Integration Model (AIM) of the Hypersonic Research Engine (HRE) is described. The feasibility of integrating the various analytical and experimental data available for the design of the hypersonic ramjet engine was verified and the operational characteristic and the overall performance of the selected design was determined. The HRE-AIM was designed for operation at speeds of Mach 3 through Mach 8.

  1. The Composite Analytic and Simulation Package or RFI (CASPR) on a coded channel

    NASA Technical Reports Server (NTRS)

    Freedman, Jeff; Berman, Ted

    1993-01-01

    CASPR is an analysis package which determines the performance of a coded signal in the presence of Radio Frequency Interference (RFI) and Additive White Gaussian Noise (AWGN). It can analyze a system with convolutional coding, Reed-Solomon (RS) coding, or a concatenation of the two. The signals can either be interleaved or non-interleaved. The model measures the system performance in terms of either the E(sub b)/N(sub 0) required to achieve a given Bit Error Rate (BER) or the BER needed for a constant E(sub b)/N(sub 0).

  2. A parallel implementation of an MHD code for the simulation of mechanically driven, turbulent dynamos in spherical geometry

    NASA Astrophysics Data System (ADS)

    Reuter, K.; Jenko, F.; Forest, C. B.; Bayliss, R. A.

    2008-08-01

    A parallel implementation of a nonlinear pseudo-spectral MHD code for the simulation of turbulent dynamos in spherical geometry is reported. It employs a dual domain decomposition technique in both real and spectral space. It is shown that this method shows nearly ideal scaling going up to 128 CPUs on Beowulf-type clusters with fast interconnect. Furthermore, the potential of exploiting single precision arithmetic on standard x86 processors is examined. It is pointed out that the MHD code thereby achieves a maximum speedup of 1.7, whereas the validity of the computations is still granted. The combination of both measures will allow for the direct numerical simulation of highly turbulent cases ( 1500

  3. Initial Self-Consistent 3D Electron-Cloud Simulations of the LHC Beam with the Code WARP+POSINST

    SciTech Connect

    Vay, J; Furman, M A; Cohen, R H; Friedman, A; Grote, D P

    2005-10-11

    We present initial results for the self-consistent beam-cloud dynamics simulations for a sample LHC beam, using a newly developed set of modeling capability based on a merge [1] of the three-dimensional parallel Particle-In-Cell (PIC) accelerator code WARP [2] and the electron-cloud code POSINST [3]. Although the storage ring model we use as a test bed to contain the beam is much simpler and shorter than the LHC, its lattice elements are realistically modeled, as is the beam and the electron cloud dynamics. The simulated mechanisms for generation and absorption of the electrons at the walls are based on previously validated models available in POSINST [3, 4].

  4. An Introduction to Thermodynamic Performance Analysis of Aircraft Gas Turbine Engine Cycles Using the Numerical Propulsion System Simulation Code

    NASA Technical Reports Server (NTRS)

    Jones, Scott M.

    2007-01-01

    This document is intended as an introduction to the analysis of gas turbine engine cycles using the Numerical Propulsion System Simulation (NPSS) code. It is assumed that the analyst has a firm understanding of fluid flow, gas dynamics, thermodynamics, and turbomachinery theory. The purpose of this paper is to provide for the novice the information necessary to begin cycle analysis using NPSS. This paper and the annotated example serve as a starting point and by no means cover the entire range of information and experience necessary for engine performance simulation. NPSS syntax is presented but for a more detailed explanation of the code the user is referred to the NPSS User Guide and Reference document (ref. 1).

  5. Dynamics and control of flexible multibody systems - Part II: simulation code and parametric studies with nonlinear control

    NASA Astrophysics Data System (ADS)

    Nagata, Takashi; Modi, Vinod J.; Matsuo, Hiroki

    2001-12-01

    This paper describes a rather general numerical simulation code newly developed for studying dynamics and control of flexible multibody systems. It accounts for an arbitrary level of topological branching, character of the structural members, slewing, deployment, orbital perturbations, etc. The program is based on a recursive order n formulation whose details are given in Part I. Versatility and validity of the code are illustrated through parametric studies of several distinctively different systems. The dynamical analysis indicates that critical situations can lead to an undesirable system response. To establish specified performance, feasibility of a nonlinear control strategy based on the feedback linearization technique (FLT) in conjunction with the order n algorithm is explored. The FLT can control both the rigid and flexible degrees of freedom. The effectiveness of the control is assessed through numerical simulation.

  6. Recent updates in the "Synchrotron Radiation Workshop" code, on-going developments, simulation activities, and plans for the future

    NASA Astrophysics Data System (ADS)

    Chubar, Oleg

    2014-09-01

    Recent updates in the "Synchrotron Radiation Workshop" physical optics computer code, including the transition to the Open Source development format, the results of the on-going collaborative development efforts in the area of X-ray optics, in particular grazing incidence mirrors, gratings and crystal monochromators, and in other areas, as well as some simulation activities for storage ring and X-ray free-electron laser sources are reported. Future development plans are discussed.

  7. Simulated performance of the NASA 30/20 GHz test transponder using multi-H phase coded modulation

    NASA Technical Reports Server (NTRS)

    Meader, C. B.; Kwatra, S. C.; Stevens, G. H.

    1986-01-01

    The performance of a proposed NASA 30/20 GHz satellite communications system is studied for multi-h phase coded modulation (MHPM) schemes. The techniques used to model and simulate a satellite communications channel including transmitter, receiver, filters, nonlinearities, and interferers are presented. The performance of various MHPM schemes is compared for several different channel configurations. As a measure of performance, the probability of bit error vs Eb/NO is computed using a Monte Carlo simulation technique. It is found that, regardless of the channel configuration, MHPM schemes can provide power efficiency over serial minimum shift keying modulation.

  8. Vine—A Numerical Code for Simulating Astrophysical Systems Using Particles. I. Description of the Physics and the Numerical Methods

    NASA Astrophysics Data System (ADS)

    Wetzstein, M.; Nelson, Andrew F.; Naab, T.; Burkert, A.

    2009-10-01

    We present a numerical code for simulating the evolution of astrophysical systems using particles to represent the underlying fluid flow. The code is written in Fortran 95 and is designed to be versatile, flexible, and extensible, with modular options that can be selected either at the time the code is compiled or at run time through a text input file. We include a number of general purpose modules describing a variety of physical processes commonly required in the astrophysical community and we expect that the effort required to integrate additional or alternate modules into the code will be small. In its simplest form the code can evolve the dynamical trajectories of a set of particles in two or three dimensions using a module which implements either a Leapfrog or Runge-Kutta-Fehlberg integrator, selected by the user at compile time. The user may choose to allow the integrator to evolve the system using individual time steps for each particle or with a single, global time step for all. Particles may interact gravitationally as N-body particles, and all or any subset may also interact hydrodynamically, using the smoothed particle hydrodynamic (SPH) method by selecting the SPH module. A third particle species can be included with a module to model massive point particles which may accrete nearby SPH or N-body particles. Such particles may be used to model, e.g., stars in a molecular cloud. Free boundary conditions are implemented by default, and a module may be selected to include periodic boundary conditions. We use a binary "Press" tree to organize particles for rapid access in gravity and SPH calculations. Modules implementing an interface with special purpose "GRAPE" hardware may also be selected to accelerate the gravity calculations. If available, forces obtained from the GRAPE coprocessors may be transparently substituted for those obtained from the tree, or both tree and GRAPE may be used as a combination GRAPE/tree code. The code may be run without

  9. VINE-A NUMERICAL CODE FOR SIMULATING ASTROPHYSICAL SYSTEMS USING PARTICLES. I. DESCRIPTION OF THE PHYSICS AND THE NUMERICAL METHODS

    SciTech Connect

    Wetzstein, M.; Nelson, Andrew F.; Naab, T.; Burkert, A.

    2009-10-01

    We present a numerical code for simulating the evolution of astrophysical systems using particles to represent the underlying fluid flow. The code is written in Fortran 95 and is designed to be versatile, flexible, and extensible, with modular options that can be selected either at the time the code is compiled or at run time through a text input file. We include a number of general purpose modules describing a variety of physical processes commonly required in the astrophysical community and we expect that the effort required to integrate additional or alternate modules into the code will be small. In its simplest form the code can evolve the dynamical trajectories of a set of particles in two or three dimensions using a module which implements either a Leapfrog or Runge-Kutta-Fehlberg integrator, selected by the user at compile time. The user may choose to allow the integrator to evolve the system using individual time steps for each particle or with a single, global time step for all. Particles may interact gravitationally as N-body particles, and all or any subset may also interact hydrodynamically, using the smoothed particle hydrodynamic (SPH) method by selecting the SPH module. A third particle species can be included with a module to model massive point particles which may accrete nearby SPH or N-body particles. Such particles may be used to model, e.g., stars in a molecular cloud. Free boundary conditions are implemented by default, and a module may be selected to include periodic boundary conditions. We use a binary 'Press' tree to organize particles for rapid access in gravity and SPH calculations. Modules implementing an interface with special purpose 'GRAPE' hardware may also be selected to accelerate the gravity calculations. If available, forces obtained from the GRAPE coprocessors may be transparently substituted for those obtained from the tree, or both tree and GRAPE may be used as a combination GRAPE/tree code. The code may be run without

  10. Hybrid Particle Code Simulations of Mars: The Role of Crustal Magnetic Fields in Ionospheric Escape

    NASA Astrophysics Data System (ADS)

    Brecht, S. H.; Ledvina, S. A.

    2014-07-01

    Using the three dimensional hybrid particle code, the role of neutral winds in the escape of ionospheric ions is investigated. The results in terms of loss rates and interaction around the crustal magnetic fields will be presented.

  11. Numerical Simulation of Supersonic Compression Corners and Hypersonic Inlet Flows Using the RPLUS2D Code

    NASA Technical Reports Server (NTRS)

    Kapoor, Kamlesh; Anderson, Bernhard H.; Shaw, Robert J.

    1994-01-01

    A two-dimensional computational code, PRLUS2D, which was developed for the reactive propulsive flows of ramjets and scramjets, was validated for two-dimensional shock-wave/turbulent-boundary-layer interactions. The problem of compression corners at supersonic speeds was solved using the RPLUS2D code. To validate the RPLUS2D code for hypersonic speeds, it was applied to a realistic hypersonic inlet geometry. Both the Baldwin-Lomax and the Chien two-equation turbulence models were used. Computational results showed that the RPLUS2D code compared very well with experimentally obtained data for supersonic compression corner flows, except in the case of large separated flows resulting from the interactions between the shock wave and turbulent boundary layer. The computational results compared well with the experiment results in a hypersonic NASA P8 inlet case, with the Chien two-equation turbulence model performing better than the Baldwin-Lomax model.

  12. Optimization of GATE and PHITS Monte Carlo code parameters for spot scanning proton beam based on simulation with FLUKA general-purpose code

    NASA Astrophysics Data System (ADS)

    Kurosu, Keita; Das, Indra J.; Moskvin, Vadim P.

    2016-01-01

    Spot scanning, owing to its superior dose-shaping capability, provides unsurpassed dose conformity, in particular for complex targets. However, the robustness of the delivered dose distribution and prescription has to be verified. Monte Carlo (MC) simulation has the potential to generate significant advantages for high-precise particle therapy, especially for medium containing inhomogeneities. However, the inherent choice of computational parameters in MC simulation codes of GATE, PHITS and FLUKA that is observed for uniform scanning proton beam needs to be evaluated. This means that the relationship between the effect of input parameters and the calculation results should be carefully scrutinized. The objective of this study was, therefore, to determine the optimal parameters for the spot scanning proton beam for both GATE and PHITS codes by using data from FLUKA simulation as a reference. The proton beam scanning system of the Indiana University Health Proton Therapy Center was modeled in FLUKA, and the geometry was subsequently and identically transferred to GATE and PHITS. Although the beam transport is managed by spot scanning system, the spot location is always set at the center of a water phantom of 600 × 600 × 300 mm3, which is placed after the treatment nozzle. The percentage depth dose (PDD) is computed along the central axis using 0.5 × 0.5 × 0.5 mm3 voxels in the water phantom. The PDDs and the proton ranges obtained with several computational parameters are then compared to those of FLUKA, and optimal parameters are determined from the accuracy of the proton range, suppressed dose deviation, and computational time minimization. Our results indicate that the optimized parameters are different from those for uniform scanning, suggesting that the gold standard for setting computational parameters for any proton therapy application cannot be determined consistently since the impact of setting parameters depends on the proton irradiation technique. We

  13. Simulations for Full Unit-memory and Partial Unit-memory Convolutional Codes with Real-time Minimal-byte-error Probability Decoding Algorithm

    NASA Technical Reports Server (NTRS)

    Vo, Q. D.

    1984-01-01

    A program which was written to simulate Real Time Minimal-Byte-Error Probability (RTMBEP) decoding of full unit-memory (FUM) convolutional codes on a 3-bit quantized AWGN channel is described. This program was used to compute the symbol-error probability of FUM codes and to determine the signal to noise (SNR) required to achieve a bit error rate (BER) of 10 to the minus 6th power for corresponding concatenated systems. A (6,6/30) FUM code, 6-bit Reed-Solomon code combination was found to achieve the required BER at a SNR of 1.886 dB. The RTMBEP algorithm was then modified for decoding partial unit-memory (PUM) convolutional codes. A simulation program was also written to simulate the symbol-error probability of these codes.

  14. MOCCA code for star cluster simulations - IV. A new scenario for intermediate mass black hole formation in globular clusters

    NASA Astrophysics Data System (ADS)

    Giersz, Mirek; Leigh, Nathan; Hypki, Arkadiusz; Lützgendorf, Nora; Askar, Abbas

    2015-12-01

    We discuss a new scenario for the formation of intermediate mass black holes (IMBHs) in dense star clusters. In this scenario, IMBHs are formed as a result of dynamical interactions of hard binaries containing a stellar-mass black hole (BH), with other stars and binaries. We discuss the necessary conditions to initiate the process of intermediate mass BH formation and the influence of an IMBH on the host global globular cluster (GC) properties. We discuss two scenarios for IMBH formation. The SLOW and FAST scenarios. They occur later or earlier in the cluster evolution and require smaller or extremely large central densities, respectively. In our simulations, the formation of IMBHs is highly stochastic. In general, higher formation probabilities follow from larger cluster concentrations (i.e. central densities). We further discuss possible observational signatures of the presence of IMBHs in GCs that follow from our simulations. These include the spatial and kinematic structure of the host cluster, possible radio, X-ray and gravitational wave emissions due to dynamical collisions or mass transfer and the creation of hypervelocity main-sequence escapers during strong dynamical interactions between binaries and an IMBH. All simulations discussed in this paper were performed with the MOCCA (MOnte Carlo Cluster simulAtor) Monte Carlo code. MOCCA accurately follows most of the important physical processes that occur during the dynamical evolution of star clusters but, as with other dynamical codes, it approximates the dissipative processes connected with stellar collisions and binary mergers.

  15. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Waste Integrated Performance and Safety Codes (IPSC) : FY10 development and integration.

    SciTech Connect

    Criscenti, Louise Jacqueline; Sassani, David Carl; Arguello, Jose Guadalupe, Jr.; Dewers, Thomas A.; Bouchard, Julie F.; Edwards, Harold Carter; Freeze, Geoffrey A.; Wang, Yifeng; Schultz, Peter Andrew

    2011-02-01

    This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.

  16. Simulation of the ALTEA experiment with Monte Carlo (PHITS) and deterministic (GNAC, SihverCC and Tripathi97) codes

    NASA Astrophysics Data System (ADS)

    La Tessa, Chiara; Mancusi, Davide; Rinaldi, Adele; di Fino, Luca; Zaconte, Veronica; Larosa, Marianna; Narici, Livio; Gustafsson, Katarina; Sihver, Lembit

    ALTEA-Space is the principal in-space experiment of an international and multidisciplinary project called ALTEA (Anomalus Long Term Effects on Astronauts). The measurements were performed on the International Space Station between August 2006 and July 2007 and aimed at characterising the space radiation environment inside the station. The analysis of the collected data provided the abundances of elements with charge 5 ≤ Z ≤ 26 and energy above 100 MeV/nucleon. The same results have been obtained by simulating the experiment with the three-dimensional Monte Carlo code PHITS (Particle and Heavy Ion Transport System). The simulation reproduces accurately the composition of the space radiation environment as well as the geometry of the experimental apparatus; moreover the presence of several materials, e.g. the spacecraft hull and the shielding, that surround the device has been taken into account. An estimate of the abundances has also been calculated with the help of experimental fragmentation cross sections taken from literature and predictions of the deterministic codes GNAC, SihverCC and Tripathi97. The comparison between the experimental and simulated data has two important aspects: it validates the codes giving possible hints how to benchmark them; it helps to interpret the measurements and therefore have a better understanding of the results.

  17. Version 3.0 of code Java for 3D simulation of the CCA model

    NASA Astrophysics Data System (ADS)

    Zhang, Kebo; Zuo, Junsen; Dou, Yifeng; Li, Chao; Xiong, Hailing

    2016-10-01

    In this paper we provide a new version of program for replacing the previous version. The frequency of traversing the clusters-list was reduced, and some code blocks were optimized properly; in addition, we appended and revised the comments of the source code for some methods or attributes. The compared experimental results show that new version has better time efficiency than the previous version.

  18. Simulation of ultrasonic inspection of curved composites using a hybrid semi-analytical/numerical code

    NASA Astrophysics Data System (ADS)

    Reverdy, Frédéric; Mahaut, Steve; Dominguez, Nicolas; Dubois, Philippe

    2015-03-01

    Carbon Fiber reinforced composites are increasingly used in structural parts in the aeronautics industry, as they allow to reduce the weight of aircrafts while maintaining high mechanical performances. However, such structures can be complicated to inspect due to their complex geometries and complex composite properties, leading to highly heterogeneous and anisotropic materials. Different potential damages and manufacturing flaws related to these parts are to be detected: porosities, ply waviness, delaminations after impact. Ultrasonic inspection, which is commonly used to test the full volume of composite panels, thus has to cope with both complex wave propagation (within anisotropic parts whose crystallographic orientation varies according to the layers structure) and flaw interaction (local distortion of plies such as ply waviness, small pores, structural noise due to periodicity patterns…). Developing NDT procedures for those parts therefore requires simulation tools to help for understanding those phenomena, and to optimize probes and techniques. Within the CIVA multi-techniques platform, CEA-LIST has developed semi-analytical tools for ultrasonic techniques, which have the advantages of high computational efficiency (fast calculations), but with limited range of application due to some hypothesis (for instance, homogenization approaches which don't allow to take account of structural noise). On the other hand, numerical methods such as finite element (FEM) or finite difference in time domain (FDTD) are more suitable to compute ultrasonic wave propagation and defect scattering in complex materials such as composite but require more computational efforts. Hybrid methods couple semi-analytical solutions and numerical computations in limited spatial domains to handle complex cases with high computation performances. In CIVA we have integrated a hybrid model that combines the semi-analytical methods developed at CEA to FDTD codes developed at Airbus Group

  19. Development of a Space Radiation Monte-Carlo Computer Simulation Based on the FLUKE and Root Codes

    NASA Technical Reports Server (NTRS)

    Pinsky, L. S.; Wilson, T. L.; Ferrari, A.; Sala, Paola; Carminati, F.; Brun, R.

    2001-01-01

    The radiation environment in space is a complex problem to model. Trying to extrapolate the projections of that environment into all areas of the internal spacecraft geometry is even more daunting. With the support of our CERN colleagues, our research group in Houston is embarking on a project to develop a radiation transport tool that is tailored to the problem of taking the external radiation flux incident on any particular spacecraft and simulating the evolution of that flux through a geometrically accurate model of the spacecraft material. The output will be a prediction of the detailed nature of the resulting internal radiation environment within the spacecraft as well as its secondary albedo. Beyond doing the physics transport of the incident flux, the software tool we are developing will provide a self-contained stand-alone object-oriented analysis and visualization infrastructure. It will also include a graphical user interface and a set of input tools to facilitate the simulation of space missions in terms of nominal radiation models and mission trajectory profiles. The goal of this project is to produce a code that is considerably more accurate and user-friendly than existing Monte-Carlo-based tools for the evaluation of the space radiation environment. Furthermore, the code will be an essential complement to the currently existing analytic codes in the BRYNTRN/HZETRN family for the evaluation of radiation shielding. The code will be directly applicable to the simulation of environments in low earth orbit, on the lunar surface, on planetary surfaces (including the Earth) and in the interplanetary medium such as on a transit to Mars (and even in the interstellar medium). The software will include modules whose underlying physics base can continue to be enhanced and updated for physics content, as future data become available beyond the timeframe of the initial development now foreseen. This future maintenance will be available from the authors of FLUKA as

  20. A Fast Parallel Simulation Code for Interaction between Proto-Planetary Disk and Embedded Proto-Planets: Implementation for 3D Code

    SciTech Connect

    Li, Shengtai; Li, Hui

    2012-06-14

    We develop a 3D simulation code for interaction between the proto-planetary disk and embedded proto-planets. The protoplanetary disk is treated as a three-dimensional (3D), self-gravitating gas whose motion is described by the locally isothermal Navier-Stokes equations in a spherical coordinate centered on the star. The differential equations for the disk are similar to those given in Kley et al. (2009) with a different gravitational potential that is defined in Nelson et al. (2000). The equations are solved by directional split Godunov method for the inviscid Euler equations plus operator-split method for the viscous source terms. We use a sub-cycling technique for the azimuthal sweep to alleviate the time step restriction. We also extend the FARGO scheme of Masset (2000) and modified in Li et al. (2001) to our 3D code to accelerate the transport in the azimuthal direction. Furthermore, we have implemented a reduced 2D (r, {theta}) and a fully 3D self-gravity solver on our uniform disk grid, which extends our 2D method (Li, Buoni, & Li 2008) to 3D. This solver uses a mode cut-off strategy and combines FFT in the azimuthal direction and direct summation in the radial and meridional direction. An initial axis-symmetric equilibrium disk is generated via iteration between the disk density profile and the 2D disk-self-gravity. We do not need any softening in the disk self-gravity calculation as we have used a shifted grid method (Li et al. 2008) to calculate the potential. The motion of the planet is limited on the mid-plane and the equations are the same as given in D'Angelo et al. (2005), which we adapted to the polar coordinates with a fourth-order Runge-Kutta solver. The disk gravitational force on the planet is assumed to evolve linearly with time between two hydrodynamics time steps. The Planetary potential acting on the disk is calculated accurately with a small softening given by a cubic-spline form (Kley et al. 2009). Since the torque is extremely sensitive to

  1. Large Scale Earth's Bow Shock with Northern IMF as Simulated by PIC Code in Parallel with MHD Model

    NASA Astrophysics Data System (ADS)

    Baraka, Suleiman

    2016-06-01

    In this paper, we propose a 3D kinetic model (particle-in-cell, PIC) for the description of the large scale Earth's bow shock. The proposed version is stable and does not require huge or extensive computer resources. Because PIC simulations work with scaled plasma and field parameters, we also propose to validate our code by comparing its results with the available MHD simulations under same scaled solar wind (SW) and (IMF) conditions. We report new results from the two models. In both codes the Earth's bow shock position is found to be ≈14.8 R E along the Sun-Earth line, and ≈29 R E on the dusk side. Those findings are consistent with past in situ observations. Both simulations reproduce the theoretical jump conditions at the shock. However, the PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to the MHD results. Kinetic electron motions and reflected ions upstream may cause this sunward shift. Species distributions in the foreshock region are depicted within the transition of the shock (measured ≈2 c/ ω pi for Θ Bn = 90° and M MS = 4.7) and in the downstream. The size of the foot jump in the magnetic field at the shock is measured to be (1.7 c/ ω pi ). In the foreshocked region, the thermal velocity is found equal to 213 km s-1 at 15 R E and is equal to 63 km s -1 at 12 R E (magnetosheath region). Despite the large cell size of the current version of the PIC code, it is powerful to retain macrostructure of planets magnetospheres in very short time, thus it can be used for pedagogical test purposes. It is also likely complementary with MHD to deepen our understanding of the large scale magnetosphere.

  2. Oscillation and coding in a formal neural network considered as a guide for plausible simulations of the insect olfactory system.

    PubMed

    Horcholle-Bossavit, Ginette; Quenet, Brigitte; Foucart, Olivier

    2007-01-01

    For the analysis of coding mechanisms in the insect olfactory system, a fully connected network of synchronously updated McCulloch and Pitts neurons (MC-P type) was developed [Quenet, B., Horn, D., 2003. The dynamic neural filter: a binary model of spatio-temporal coding. Neural Comput. 15 (2), 309-329]. Considering the update time as an intrinsic clock, this "Dynamic Neural Filter" (DNF), which maps regions of input space into spatio-temporal sequences of neuronal activity, is able to produce exact binary codes extracted from the synchronized activities recorded at the level of projection neurons (PN) in the locust antennal lobe (AL) in response to different odors [Wehr, M., Laurent, G., 1996. Odor encoding by temporal sequences of firing in oscillating neural assemblies. Nature 384, 162-166]. Here, in a first step, we separate the populations of PN and local inhibitory neurons (LN) and use the DNF as a guide for simulations based on biological plausible neurons (Hodgkin-Huxley: H-H type). We show that a parsimonious network of 10 H-H neurons generates action potentials whose timing represents the required codes. In a second step, we construct a new type of DNF in order to study the population dynamics when different delays are taken into account. We find synaptic matrices which lead to both the emergence of robust oscillations and spatio-temporal patterns, using a formal criterion, based on a Normalized Euclidian Distance (NED), in order to measure the use of the temporal dimension as a coding dimension by the DNF. Similarly to biological PN, the activity of excitatory neurons in the model can be both phase-locked to different cycles of oscillations which remind local field potential (LFP), and nevertheless exhibit dynamic behavior complex enough to be the basis of spatio-temporal codes.

  3. Simulations of the C-2/C-2U Field Reversed Configurations with the Q2D code

    NASA Astrophysics Data System (ADS)

    Onofri, Marco; Dettrick, Sean; Barnes, Daniel; Tajima, Toshiki; TAE Team

    2015-11-01

    C-2U was built to sustain advanced beam-driven FRCs for 5 + ms. The Q2D transport code is used to simulate the evolution of C-2U discharges and to study sustainment via fast ion current and pressure, with the latter comparable to the thermal plasma pressure. The code solves the MHD equations together with source terms due to neutral beams, which are calculated by a Monte Carlo method. We compare simulations with experimental results obtained in the HPF14 regime of C-2 (6 neutral beams with energy of 20 keV and total power of 4.2 MW). All simulations start from an initial equilibrium and transport coefficients are chosen to match experimental data. The best agreement is obtained when utilizing an enhanced energy transfer between fast ions and the plasma, which may be an indication of anomalous heating due to beneficial beam-plasma instabilities. Similar simulations of C-2U (neutral beam power increased to 10 + MW and angled beam injection) are compared with experimental results, where a steady state has been obtained for 5 + ms, correlated with the neutral beam pulse and limited by engineering constraints.

  4. Computer code simulations of the formation of Meteor Crater, Arizona - Calculations MC-1 and MC-2

    NASA Technical Reports Server (NTRS)

    Roddy, D. J.; Schuster, S. H.; Kreyenhagen, K. N.; Orphal, D. L.

    1980-01-01

    It has been widely accepted that hypervelocity impact processes play a major role in the evolution of the terrestrial planets and satellites. In connection with the development of quantitative methods for the description of impact cratering, it was found that the results provided by two-dimensional finite difference, computer codes is greatly improved when initial impact conditions can be defined and when the numerical results can be tested against field and laboratory data. In order to address this problem, a numerical code study of the formation of Meteor (Barringer) Crater, Arizona, has been undertaken. A description is presented of the major results from the first two code calculations, MC-1 and MC-2, that have been completed for Meteor Crater. Both calculations used an iron meteorite with a kinetic energy of 3.8 Megatons. Calculation MC-1 had an impact velocity of 25 km/sec and MC-2 had an impact velocity of 15 km/sec.

  5. Pre-engineering Spaceflight Validation of Environmental Models and the 2005 HZETRN Simulation Code

    NASA Technical Reports Server (NTRS)

    Nealy, John E.; Cucinotta, Francis A.; Wilson, John W.; Badavi, Francis F.; Dachev, Ts. P.; Tomov, B. T.; Walker, Steven A.; DeAngelis, Giovanni; Blattnig, Steve R.; Atwell, William

    2006-01-01

    The HZETRN code has been identified by NASA for engineering design in the next phase of space exploration highlighting a return to the Moon in preparation for a Mars mission. In response, a new series of algorithms beginning with 2005 HZETRN, will be issued by correcting some prior limitations and improving control of propagated errors along with established code verification processes. Code validation processes will use new/improved low Earth orbit (LEO) environmental models with a recently improved International Space Station (ISS) shield model to validate computational models and procedures using measured data aboard ISS. These validated models will provide a basis for flight-testing the designs of future space vehicles and systems of the Constellation program in the LEO environment.

  6. MULTI-IFE-A one-dimensional computer code for Inertial Fusion Energy (IFE) target simulations

    NASA Astrophysics Data System (ADS)

    Ramis, R.; Meyer-ter-Vehn, J.

    2016-06-01

    The code MULTI-IFE is a numerical tool devoted to the study of Inertial Fusion Energy (IFE) microcapsules. It includes the relevant physics for the implosion and thermonuclear ignition and burning: hydrodynamics of two component plasmas (ions and electrons), three-dimensional laser light ray-tracing, thermal diffusion, multigroup radiation transport, deuterium-tritium burning, and alpha particle diffusion. The corresponding differential equations are discretized in spherical one-dimensional Lagrangian coordinates. Two typical application examples, a high gain laser driven capsule and a low gain radiation driven marginally igniting capsule are discussed. In addition to phenomena relevant for IFE, the code includes also components (planar and cylindrical geometries, transport coefficients at low temperature, explicit treatment of Maxwell's equations) that extend its range of applicability to laser-matter interaction at moderate intensities (<1016 W cm-2). The source code design has been kept simple and structured with the aim to encourage user's modifications for specialized purposes.

  7. Numerical Simulations of High-Altitude Aerothermodynamics of a Promising Spacecraft Model

    NASA Astrophysics Data System (ADS)

    Vashchenkov, P.; Ivanov, M.; Krylov, A.

    2011-05-01

    The paper describes a numerical study of aerodynamic characteristics of a re-entry vehicle in the range of altitudes from 120 to 60 km. The computations are performed by the DSMC method with the use of the SMILE software system and by the local bridging method with the use of the RuSat software system. Some computations are performed in an axisymmetric formulation, which makes it possible to estimate the real gas effects (nonequilibrium of internal energy, dissociation of the gas, etc.) on the efficiency of control surfaces. A comparison of results obtained by the local bridging method and the DSMC method allow estimation of the errors of aerodynamic characteristics obtained by the local bridging method.

  8. Recent Progress in a Beam-Beam Simulation Code for Circular Hadron Machines

    SciTech Connect

    Kabel, Andreas; Fischer, Wolfram; Sen, Tanaji; /Fermilab

    2007-09-10

    While conventional tracking codes can readily provide higher-order optical quantities and give an estimate of dynamic apertures, they are unable to provide directly measurable quantities such as lifetimes and loss rates. The particle tracking framework Plibb aims at modeling a storage ring with sufficient accuracy and a sufficiently high number of turns and in the presence of beam-beam interactions to allow for an estimate of these quantities. We provide a description of new features of the codes; we also describe a novel method of treating chromaticity in ring sections in a symplectic fashion.

  9. Development of a finite element code to solve thermo-hydro-mechanical coupling and simulate induced seismicity.

    NASA Astrophysics Data System (ADS)

    María Gómez Castro, Berta; De Simone, Silvia; Rossi, Riccardo; Larese De Tetto, Antonia; Carrera Ramírez, Jesús

    2015-04-01

    Coupled thermo-hydro-mechanical modeling is essential for CO2 storage because of (1) large amounts of CO2 will be injected, which will cause large pressure buildups and might compromise the mechanical stability of the caprock seal, (2) the most efficient technique to inject CO2 is the cold injection, which induces thermal stress changes in the reservoir and seal. These stress variations can cause mechanical failure in the caprock and can also trigger induced earthquakes. To properly assess these effects, numerical models that take into account the short and long-term thermo-hydro-mechanical coupling are an important tool. For this purpose, there is a growing need of codes that couple these processes efficiently and accurately. This work involves the development of an open-source, finite element code written in C ++ for correctly modeling the effects of thermo-hydro-mechanical coupling in the field of CO2 storage and in others fields related to these processes (geothermal energy systems, fracking, nuclear waste disposal, etc.), and capable to simulate induced seismicity. In order to be able to simulate earthquakes, a new lower dimensional interface element will be implemented in the code to represent preexisting fractures, where pressure continuity will be imposed across the fractures.

  10. Use of a Viscous Flow Simulation Code for Static Aeroelastic Analysis of a Wing at High-Lift Conditions

    NASA Technical Reports Server (NTRS)

    Akaydin, H. Dogus; Moini-Yekta, Shayan; Housman, Jeffrey A.; Nguyen, Nhan

    2015-01-01

    In this paper, we present a static aeroelastic analysis of a wind tunnel test model of a wing in high-lift configuration using a viscous flow simulation code. The model wing was tailored to deform during the tests by amounts similar to a composite airliner wing in highlift conditions. This required use of a viscous flow analysis to predict the lift coefficient of the deformed wing accurately. We thus utilized an existing static aeroelastic analysis framework that involves an inviscid flow code (Cart3d) to predict the deformed shape of the wing, then utilized a viscous flow code (Overflow) to compute the aerodynamic loads on the deformed wing. This way, we reduced the cost of flow simulations needed for this analysis while still being able to predict the aerodynamic forces with reasonable accuracy. Our results suggest that the lift of the deformed wing may be higher or lower than that of the non-deformed wing, and the washout deformation of the wing is the key factor that changes the lift of the deformed wing in two distinct ways: while it decreases the lift at low to moderate angles of attack simply by lowering local angles of attack along the span, it increases the lift at high angles of attack by alleviating separation.

  11. Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems.

    PubMed

    Andrade, Xavier; Strubbe, David; De Giovannini, Umberto; Larsen, Ask Hjorth; Oliveira, Micael J T; Alberdi-Rodriguez, Joseba; Varas, Alejandro; Theophilou, Iris; Helbig, Nicole; Verstraete, Matthieu J; Stella, Lorenzo; Nogueira, Fernando; Aspuru-Guzik, Alán; Castro, Alberto; Marques, Miguel A L; Rubio, Angel

    2015-12-21

    Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schrödinger equation for low-dimensionality systems.

  12. Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems

    NASA Astrophysics Data System (ADS)

    Andrade, Xavier; Strubbe, David; De Giovannini, Umberto; Larsen, Ask Hjorth; Oliveira, Micael J. T.; Alberdi-Rodriguez, Joseba; Varas, Alejandro; Theophilou, Iris; Helbig, Nicole; Verstraete, Matthieu J.; Stella, Lorenzo; Nogueira, Fernando; Aspuru-Guzik, Alán; Castro, Alberto; Marques, Miguel A. L.; Rubio, Angel

    Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schr\\"odinger equation for low-dimensionality systems.

  13. Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems.

    PubMed

    Andrade, Xavier; Strubbe, David; De Giovannini, Umberto; Larsen, Ask Hjorth; Oliveira, Micael J T; Alberdi-Rodriguez, Joseba; Varas, Alejandro; Theophilou, Iris; Helbig, Nicole; Verstraete, Matthieu J; Stella, Lorenzo; Nogueira, Fernando; Aspuru-Guzik, Alán; Castro, Alberto; Marques, Miguel A L; Rubio, Angel

    2015-12-21

    Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schrödinger equation for low-dimensionality systems. PMID:25721500

  14. Coded throughput performance simulations for the time-varying satellite channel. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Han, LI

    1995-01-01

    The design of a reliable satellite communication link involving the data transfer from a small, low-orbit satellite to a ground station, but through a geostationary satellite, was examined. In such a scenario, the received signal power to noise density ratio increases as the transmitting low-orbit satellite comes into view, and then decreases as it then departs, resulting in a short-duration, time-varying communication link. The optimal values of the small satellite antenna beamwidth, signaling rate, modulation scheme and the theoretical link throughput (in bits per day) have been determined. The goal of this thesis is to choose a practical coding scheme which maximizes the daily link throughput while satisfying a prescribed probability of error requirement. We examine the throughput of both fixed rate and variable rate concatenated forward error correction (FEC) coding schemes for the additive white Gaussian noise (AWGN) channel, and then examine the effect of radio frequency interference (RFI) on the best coding scheme among them. Interleaving is used to mitigate degradation due to RFI. It was found that the variable rate concatenated coding scheme could achieve 74 percent of the theoretical throughput, equivalent to 1.11 Gbits/day based on the cutoff rate R(sub 0). For comparison, 87 percent is achievable for AWGN-only case.

  15. Development of a GPU-Accelerated 3-D Full-Wave Code for Reflectometry Simulations

    NASA Astrophysics Data System (ADS)

    Reuther, K. S.; Kubota, S.; Feibush, E.; Johnson, I.

    2013-10-01

    1-D and 2-D full-wave codes used as synthetic diagnostics in microwave reflectometry are standard tools for understanding electron density fluctuations in fusion plasmas. The accuracy of the code depends on how well the wave properties along the ignored dimensions can be pre-specified or neglected. In a toroidal magnetic geometry, such assumptions are never strictly correct and ray tracing has shown that beam propagation is inherently a 3-D problem. Previously, we reported on the application of GPGPU's (General-Purpose computing on Graphics Processing Units) to a 2-D FDTD (Finite-Difference Time-Domain) code ported to utilize the parallel processing capabilities of the NVIDIA C870 and C1060. Here, we report on the development of a FDTD code for 3-D problems. Initial tests will use NVIDIA's M2070 GPU and concentrate on the launching and propagation of Gaussian beams in free space. If available, results using a plasma target will also be presented. Performance will be compared with previous generations of GPGPU cards as well as with NVIDIA's newest K20C GPU. Finally, the possibility of utilizing multiple GPGPU cards in a cluster environment or in a single node will also be discussed. Supported by U.S. DoE Grants DE-FG02-99-ER54527 and DE-AC02-09CH11466 and the DoE National Undergraduate Fusion Fellowship.

  16. Event-by-event fission simulation code, generates complete fission events

    2013-04-01

    FREYA is a computer code that generates complete fission events. The output includes the energy and momentum of these final state particles: fission products, prompt neutrons and prompt photons. The version of FREYA that is to be released is a module for MCNP6.

  17. BIGFLOW: A numerical code for simulating flow in variably saturated, heterogeneous geologic media. Theory and user`s manaual, Version 1.1

    SciTech Connect

    Ababou, R.; Bagtzoglou, A.C.

    1993-06-01

    This report documents BIGFLOW 1.1, a numerical code for simulating flow in variably saturated heterogeneous geologic media. It contains the underlying mathematical and numerical models, test problems, benchmarks, and applications of the BIGFLOW code. The BIGFLOW software package is composed of a simulation and an interactive data processing code (DATAFLOW). The simulation code solves linear and nonlinear porous media flow equations based on Darcy`s law, appropriately generalized to account for 3D, deterministic, or random heterogeneity. A modified Picard Scheme is used for linearizing unsaturated flow equations, and preconditioned iterative methods are used for solving the resulting matrix systems. The data processor (DATAFLOW) allows interactive data entry, manipulation, and analysis of 3D datasets. The report contains analyses of computational performance carried out using Cray-2 and Cray-Y/MP8 supercomputers. Benchmark tests include comparisons with other independently developed codes, such as PORFLOW and CMVSFS, and with analytical or semi-analytical solutions.

  18. Enhancement and Extension of Porosity Model in the FDNS-500 Code to Provide Enhanced Simulations of Rocket Engine Components

    NASA Technical Reports Server (NTRS)

    Cheng, Gary

    2003-01-01

    In the past, the design of rocket engines has primarily relied on the cold flow/hot fire test, and the empirical correlations developed based on the database from previous designs. However, it is very costly to fabricate and test various hardware designs during the design cycle, whereas the empirical model becomes unreliable in designing the advanced rocket engine where its operating conditions exceed the range of the database. The main goal of the 2nd Generation Reusable Launching Vehicle (GEN-II RLV) is to reduce the cost per payload and to extend the life of the hardware, which poses a great challenge to the rocket engine design. Hence, understanding the flow characteristics in each engine components is thus critical to the engine design. In the last few decades, the methodology of computational fluid dynamics (CFD) has been advanced to be a mature tool of analyzing various engine components. Therefore, it is important for the CFD design tool to be able to properly simulate the hot flow environment near the liquid injector, and thus to accurately predict the heat load to the injector faceplate. However, to date it is still not feasible to conduct CFD simulations of the detailed flowfield with very complicated geometries such as fluid flow and heat transfer in an injector assembly and through a porous plate, which requires gigantic computer memories and power to resolve the detailed geometry. The rigimesh (a sintered metal material), utilized to reduce the heat load to the faceplate, is one of the design concepts for the injector faceplate of the GEN-II RLV. In addition, the injector assembly is designed to distribute propellants into the combustion chamber of the liquid rocket engine. A porosity mode thus becomes a necessity for the CFD code in order to efficiently simulate the flow and heat transfer in these porous media, and maintain good accuracy in describing the flow fields. Currently, the FDNS (Finite Difference Navier-Stakes) code is one of the CFD codes

  19. Projection on Proper elements for code control: Verification, numerical convergence, and reduced models. Application to plasma turbulence simulations

    NASA Astrophysics Data System (ADS)

    Cartier-Michaud, T.; Ghendrih, P.; Sarazin, Y.; Abiteboul, J.; Bufferand, H.; Dif-Pradalier, G.; Garbet, X.; Grandgirard, V.; Latu, G.; Norscini, C.; Passeron, C.; Tamain, P.

    2016-02-01

    The Projection on Proper elements (PoPe) is a novel method of code control dedicated to (1) checking the correct implementation of models, (2) determining the convergence of numerical methods, and (3) characterizing the residual errors of any given solution at very low cost. The basic idea is to establish a bijection between a simulation and a set of equations that generate it. Recovering equations is direct and relies on a statistical measure of the weight of the various operators. This method can be used in any number of dimensions and any regime, including chaotic ones. This method also provides a procedure to design reduced models and quantify its ratio of cost to benefit. PoPe is applied to a kinetic and a fluid code of plasma turbulence.

  20. Accuracy and convergence of coupled finite-volume/Monte Carlo codes for plasma edge simulations of nuclear fusion reactors

    NASA Astrophysics Data System (ADS)

    Ghoos, K.; Dekeyser, W.; Samaey, G.; Börner, P.; Baelmans, M.

    2016-10-01

    The plasma and neutral transport in the plasma edge of a nuclear fusion reactor is usually simulated using coupled finite volume (FV)/Monte Carlo (MC) codes. However, under conditions of future reactors like ITER and DEMO, convergence issues become apparent. This paper examines the convergence behaviour and the numerical error contributions with a simplified FV/MC model for three coupling techniques: Correlated Sampling, Random Noise and Robbins Monro. Also, practical procedures to estimate the errors in complex codes are proposed. Moreover, first results with more complex models show that an order of magnitude speedup can be achieved without any loss in accuracy by making use of averaging in the Random Noise coupling technique.