Science.gov

Sample records for aerothermodynamic upwind relaxation

  1. User's Manual for the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA)

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Cheatwood, F. McNeil

    1996-01-01

    This user's manual provides detailed instructions for the installation and the application of version 4.1 of the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA). Also provides simulation of flow field in thermochemical nonequilibrium around vehicles traveling at hypersonic velocities through the atmosphere. Earlier versions of LAURA were predominantly research codes, and they had minimal (or no) documentation. This manual describes UNIX-based utilities for customizing the code for special applications that also minimize system resource requirements. The algorithm is reviewed, and the various program options are related to specific equations and variables in the theoretical development.

  2. Distributed-Memory Computing With the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA)

    NASA Technical Reports Server (NTRS)

    Riley, Christopher J.; Cheatwood, F. McNeil

    1997-01-01

    The Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA), a Navier-Stokes solver, has been modified for use in a parallel, distributed-memory environment using the Message-Passing Interface (MPI) standard. A standard domain decomposition strategy is used in which the computational domain is divided into subdomains with each subdomain assigned to a processor. Performance is examined on dedicated parallel machines and a network of desktop workstations. The effect of domain decomposition and frequency of boundary updates on performance and convergence is also examined for several realistic configurations and conditions typical of large-scale computational fluid dynamic analysis.

  3. Upwind relaxation algorithms for Euler/Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Thomas, J. L.; Walters, R. W.; Rudy, D. H.; Swanson, R. C.

    1986-01-01

    A description of and results from a solution algorithm for the compressible Navier-Stokes equations are presented. The main features of the algorithm are second or third order accurate upwind discretization of the convection and pressure derivatives and a relaxation scheme for the unfactored implicit backward Euler time method, implemented in a finite-volume formulation. Upwind methods were successfully used to obtain solutions to the Euler equations for flows with strong shock waves. The particular upwind method being used is based on the flux vector splitting technique developed by Van Leer and both second and third order accurate discretizations were developed. Currently, the most widely used implicit solution technique for the Navier-Stokes equations use approximate factorization (AF) methods to treat multidimensional problems. The time integration scheme being used in the present algorithm corresponds to a line Gauss-Seidel relaxation method. This method produces good convergence rates for steady-state flows, and most of the algorithm was vectorized on the NASA Langley VPS 32 computer. The Navier-Stokes algorithm was tested for several two-dimensional flow problems. Solutions for the problems gave excellent results. The presented effort is directed toward the extension of the scheme to the full three-dimensional Navier-Stokes equations.

  4. Upwind-biased, point-implicit relaxation strategies for hypersonic flowfield simulations on supercomputers

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    1989-01-01

    An upwind-biased, point-implicit relaxation algorithm for obtaining the numerical solution to the governing equations for three-dimensional, viscous, hypersonic flows in chemical and thermal nonequilibrium is described. The algorithm is derived using a finite-volume formulation in which the inviscid components of flux across cell walls are described with Roe's averaging and Harten's entropy fix with second-order corrections based on Yee's Symmetric Total Variation Diminishing scheme. The relaxation strategy is well suited for computers employing either vector or parallel architectures, and the relation between computer architecture and algorithm is emphasized. It is also well suited to the numerical solution of the governing equations on unstructured grids. Because of the point-implicit relaxation strategy, the algorithm remains stable at large Courant numbers without the necessity of solving large. block tri-diagonal systems. A single relaxation step depends only on information from nearest neighbors. Predictions for pressure distributions, surface heating, and aerodynamic coefficients compare well with experimental data for Mach 10 flow over a blunt body. Predictions for the hypersonic flow of air in chemical and thermal nonequilibrium (velocity = 8917 m/s, altitude = 78 km.) over the Aeroassist Flight Experiment (AFE) configuration obtained on a multi-domain grid are discussed.

  5. Supercomputing of supersonic flows using upwind relaxation and MacCormack schemes

    NASA Technical Reports Server (NTRS)

    Baysal, O.

    1987-01-01

    The performance of two numerical solution schemes, (1) an implicit upwind relaxation with a finite-volume discretization (Thomas and Walters, 1985) and (2) an explicit-implicit MacCormack (1981) scheme with a finite-difference discretization, is compared in two-dimensional simulations of supersonic flow past a flat plate with leading edge, a rearward-facing step, a 10-deg compression corner, a NACA 0012 airfoil at high angle of attack, and a cavity. The algebraic turbulence model, the solution methods, and the boundary conditions and SIMD coding are explained, and the results are presented in tables and graphs and characterized with reference to published experimental data. Scheme (1) is found to converge more rapidly and to give more accurate results than (2) in a wide range of problem types.

  6. An upwind-biased, point-implicit relaxation algorithm for viscous, compressible perfect-gas flows

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    1990-01-01

    An upwind-biased, point-implicit relaxation algorithm for obtaining the numerical solution to the governing equations for three-dimensional, viscous, compressible, perfect-gas flows is described. The algorithm is derived using a finite-volume formulation in which the inviscid components of flux across cell walls are described with Roe's averaging and Harten's entropy fix with second-order corrections based on Yee's Symmetric Total Variation Diminishing scheme. Viscous terms are discretized using central differences. The relaxation strategy is well suited for computers employing either vector or parallel architectures. It is also well suited to the numerical solution of the governing equations on unstructured grids. Because of the point-implicit relaxation strategy, the algorithm remains stable at large Courant numbers without the necessity of solving large, block tri-diagonal systems. Convergence rates and grid refinement studies are conducted for Mach 5 flow through an inlet with a 10 deg compression ramp and Mach 14 flow over a 15 deg ramp. Predictions for pressure distributions, surface heating, and aerodynamics coefficients compare well with experiment data for Mach 10 flow over a blunt body.

  7. An efficient iteration strategy for upwind/relaxation solutions to the thin-layer Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Newsome, Richard W.; Walters, Robert W.; Thomas, James L.

    1987-01-01

    A previously developed upwind/relaxation algorithm for solving the unsteady, compressible, thin-layer Navier-Stokes equations is presently modified so that the downstream influence of the subsonic part of the boundary layer in an otherwise supersonic flow is suppressed by restricting the streamwise pressure gradient. A 'parabolized' solution is then efficiently obtained by marching downstream and iterating locally in each crossflow plane until achieving convergence. This parabolized solution is an excellent final one for problems without large adverse streamwise pressure gradients.

  8. Aerothermodynamic methods for a Mars environmental survey Mars entry

    NASA Technical Reports Server (NTRS)

    Mitcheltree, R. A.

    1994-01-01

    Computational fluid dynamics models for the thermodynamics and transport properties used in an equilibrium version of the Langley aerothermodynamics upwind relaxation algorithm (LAURA) for Mars atmospheric entries are described. In addition, the physical models used in a nonequilibrium version of LAURA for Mars-entry flows are described. Uncertainties exist in defining constants used in the transport properties for the equilibrium model and in many of the physical models for the nonequilibrium version. Solutions from the two codes using the best available constants are examined at the Mars-entry conditions characteristics of the Mars environmental survey mission. While the flowfields are near thermal equilibrium, chemical nonequilibrium effects are present in the entry cases examined. Convective heating at the stagnation point for these flows (assuming fully catalytic wall boundary conditions) is approximately 100 W/cm(exp 2). Radiative heating is negligible.

  9. An upwind-biased space marching algorithm for supersonic viscous flow

    NASA Technical Reports Server (NTRS)

    Greene, Francis A.

    1991-01-01

    The modifications are documented which were made to the Langley Aerothermodynamic Upwind Relaxation Algorithm which allow it to compute solutions in a space marching manner. The space marching flux is formulated to be either first- or second-order accurate, using Roe's upwind differencing or Symmetric Total Variation Diminishing differencing, respectively. The algorithm solves the thin layer Navier-Stokes equations, and is subject to the same flow restrictions as a parabolized Navier-Stokes solver. Each cross flow plane is locally iterated in time until converged, then marched in space to the next station. The algorithm is tested on a sphere-cone geometry and a geometry which models the windward side of the Space Shuttle Orbiter. Computational results for surface heating are compared to ground based experimental data. In addition, space marching predictions for surface pressure are compared against values from the original algorithm.

  10. Aerothermodynamic Data Base

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Space shuttle aerothermodynamic data, collected from a continuing series of wind tunnel tests, are permanently stored with the Data Management Services (DMS) system. Information pertaining to current baseline configuration definition is also stored. A list of documentation of DMS processed data arranged sequentially and by space shuttle configuration is presented. The listing provides an up to date record of all applicable aerothermodynamic data collected, processed, or summarized during the space shuttle program. Tables are designed to provide survey information to the various space shuttle managerial and technical levels.

  11. Aerothermodynamic Measurement and Prediction for Modified Orbiter at Mach 6 and 10

    NASA Technical Reports Server (NTRS)

    Micol, John R.

    1995-01-01

    Detailed heat-transfer rate distributions measured laterally over the windward surface of an orbiter-like configuration using thin-film resistance heat-transfer gauges and globally using the newly developed relative intensity, two-color thermographic phosphor technique are presented for Mach 6 and 10 in air. The angle of attack was varied from 0 to 40 deg, and the freestream Reynolds number based on the model length was varied from 4 x 10(exp 5) to 6 x 10(exp 6) at Mach 6, corresponding to laminar, transitional, and turbulent boundary layers; the Reynolds number at Mach 10 was 4 x 10(exp 5), corresponding to laminar flow. The primary objective of the present study was to provide detailed benchmark heat-transfer data for the calibration of computational fluid-dynamics codes. Predictions from a Navier-Stokes solver referred to as the Langley aerothermodynamic upwind relaxation algorithm and an approximate boundary-layer solving method known as the axisymmetric analog three-dimensional boundary layer code are compared with measurement. In general, predicted laminar heat-transfer rates are in good agreement with measurements.

  12. HEART Aerothermodynamic Analysis

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza

    2012-01-01

    This paper presents an assessment of the aerothermodynamic environment around an 8.3 meter High Energy Atmospheric Reentry Test (HEART) vehicle. This study generated twelve nose shape configurations and compared their responses at the peak heating trajectory point against the baseline nose shape. The heat flux sensitivity to the angle of attack variations are also discussed. The possibility of a two-piece Thermal Protection System (TPS) design at the nose is also considered, as are the surface catalytic affects of the aeroheating environment of such configuration. Based on these analyses, an optimum nose shape is proposed to minimize the surface heating. A recommendation is also made for a two-piece TPS design, for which the surface catalytic uncertainty associated with the jump in heating at the nose-IAD juncture is reduced by a minimum of 93%. In this paper, the aeroshell is assumed to be rigid and the inflatable fluid interaction effect is left for future investigations.

  13. X-38 Experimental Aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Berry, Scott A.; Merski, N. Ronald; Fitzgerald, Steve M.

    2000-01-01

    The X-38 program seeks to demonstrate an autonomously returned orbital test flight vehicle to support the development of an operational Crew Return Vehicle for the International Space Station. The test flight, anticipated in 2002, is intended to demonstrate the entire mission profile of returning Space Station crew members safely back to earth in the event of medical or mechanical emergency. Integral to the formulation of the X-38 flight data book and the design of the thermal protection system, the aerothermodynamic environment is being defined through a synergistic combination of ground based testing and computational fluid dynamics. This report provides an overview of the hypersonic aerothermodynamic wind tunnel program conducted at the NASA Langley Research Center in support of the X-38 development. Global and discrete surface heat transfer force and moment, surface streamline patterns, and shock shapes were measured on scaled models of the proposed X-38 configuration in different test gases at Mach 6, 10 and 20. The test parametrics include angle of attack from 0 to 50 degs, unit Reynolds numbers from 0.3 x 10 (exp 6) to 16 x 10 (exp 6)/ ft, rudder deflections of 0, 2, and 5 deg. and body flap deflections from 0 to 30 deg. Results from hypersonic aerodynamic screening studies that were conducted as the configuration evolved to the present shape at, presented. Heavy gas simulation tests have indicated that the primary real gas effects on X-38 aerodynamics at trim conditions are expected to favorably influence flap effectiveness. Comparisons of the experimental heating and force and moment data to prediction and the current aerodynamic data book are highlighted. The effects of discrete roughness elements on boundary layer transition were investigated at Mach 6 and the development of a transition correlation for the X-38 vehicle is described. Extrapolation of ground based heating measurements to flight radiation equilibrium wall temperatures at Mach 6 and 10 were

  14. Aerothermodynamic Flight Simulation Capabilities for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Miller, Charles G.

    1998-01-01

    Aerothermodynamics, encompassing aerodynamics, aeroheating, and fluid dynamics and physical processes, is the genesis for the design and development of advanced space transportation vehicles and provides crucial information to other disciplines such as structures, materials, propulsion, avionics, and guidance, navigation and control. Sources of aerothermodynamic information are ground-based facilities, Computational Fluid Dynamic (CFD) and engineering computer codes, and flight experiments. Utilization of this aerothermodynamic triad provides the optimum aerothermodynamic design to safely satisfy mission requirements while reducing design conservatism, risk and cost. The iterative aerothermodynamic process for initial screening/assessment of aerospace vehicle concepts, optimization of aerolines to achieve/exceed mission requirements, and benchmark studies for final design and establishment of the flight data book are reviewed. Aerothermodynamic methodology centered on synergism between ground-based testing and CFD predictions is discussed for various flow regimes encountered by a vehicle entering the Earth s atmosphere from low Earth orbit. An overview of the resources/infrastructure required to provide accurate/creditable aerothermodynamic information in a timely manner is presented. Impacts on Langley s aerothermodynamic capabilities due to recent programmatic changes such as Center reorganization, downsizing, outsourcing, industry (as opposed to NASA) led programs, and so forth are discussed. Sample applications of these capabilities to high Agency priority, fast-paced programs such as Reusable Launch Vehicle (RLV)/X-33 Phases I and 11, X-34, Hyper-X and X-38 are presented and lessons learned discussed. Lastly, enhancements in ground-based testing/CFD capabilities necessary to partially/fully satisfy future requirements are addressed.

  15. Opportunities for research in aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Graham, R. W.

    1983-01-01

    "Aerothermodynamics' involves the disciplines of chemistry, thermodynamics, fluid mechanics and heat transfer which have collaborative importance in propulsion systems. There are growing opportunities for the further application of these disciplines to improve the methodology for the design of advanced gas turbines; particularly, the combustor and turbine. Design procedures follow empirical or cut and try guidelines. The tremendous advances in computational analysis and in instrumentation techniques hold promise for research answers to complex physical processes that are currently not well understood. The transfer of basic research understanding to engineering design should result in shorter, less expensive development commitments for engines. The status and anticipated opportunities in research topics relevant to combustors and turbines is reviewed.

  16. Upwind Compact Finite Difference Schemes

    NASA Astrophysics Data System (ADS)

    Christie, I.

    1985-07-01

    It was shown by Ciment, Leventhal, and Weinberg ( J. Comput. Phys.28 (1978), 135) that the standard compact finite difference scheme may break down in convection dominated problems. An upwinding of the method, which maintains the fourth order accuracy, is suggested and favorable numerical results are found for a number of test problems.

  17. A Perspective on Computational Aerothermodynamics at NASA

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2007-01-01

    The evolving role of computational aerothermodynamics (CA) within NASA over the past 20 years is reviewed. The presentation highlights contributions to understanding the Space Shuttle pitching moment anomaly observed in the first shuttle flight, prediction of a static instability for Mars Pathfinder, and the use of CA for damage assessment in post-Columbia mission support. In the view forward, several current challenges in computational fluid dynamics and aerothermodynamics for hypersonic vehicle applications are discussed. Example simulations are presented to illustrate capabilities and limitations. Opportunities to advance the state-of-art in algorithms, grid generation and adaptation, and code validation are identified.

  18. Space Shuttle aerothermodynamic data report, phase C

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Space shuttle aerothermodynamic data, collected from a continuing series of wind tunnel tests, are permanently stored with the Data Management Services (DMS) system. Information pertaining to current baseline configuration definition is also stored. Documentation of DMS processed data arranged sequentially and by space shuttle configuration are included. An up-to-date record of all applicable aerothermodynamic data collected, processed, or summarized during the space shuttle program is provided. Tables are designed to provide suvery information to the various space shuttle managerial and technical levels.

  19. Aerothermodynamic Analyses of Towed Ballutes

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Buck, Greg; Moss, James N.; Nielsen, Eric; Berger, Karen; Jones, William T.; Rudavsky, Rena

    2006-01-01

    A ballute (balloon-parachute) is an inflatable, aerodynamic drag device for application to planetary entry vehicles. Two challenging aspects of aerothermal simulation of towed ballutes are considered. The first challenge, simulation of a complete system including inflatable tethers and a trailing toroidal ballute, is addressed using the unstructured-grid, Navier-Stokes solver FUN3D. Auxiliary simulations of a semi-infinite cylinder using the rarefied flow, Direct Simulation Monte Carlo solver, DSV2, provide additional insight into limiting behavior of the aerothermal environment around tethers directly exposed to the free stream. Simulations reveal pressures higher than stagnation and corresponding large heating rates on the tether as it emerges from the spacecraft base flow and passes through the spacecraft bow shock. The footprint of the tether shock on the toroidal ballute is also subject to heating amplification. Design options to accommodate or reduce these environments are discussed. The second challenge addresses time-accurate simulation to detect the onset of unsteady flow interactions as a function of geometry and Reynolds number. Video of unsteady interactions measured in the Langley Aerothermodynamic Laboratory 20-Inch Mach 6 Air Tunnel and CFD simulations using the structured grid, Navier-Stokes solver LAURA are compared for flow over a rigid spacecraft-sting-toroid system. The experimental data provides qualitative information on the amplitude and onset of unsteady motion which is captured in the numerical simulations. The presence of severe unsteady fluid - structure interactions is undesirable and numerical simulation must be able to predict the onset of such motion.

  20. Aerothermodynamics at NASA-Langley Research Center

    NASA Technical Reports Server (NTRS)

    Weilmuenster, K. James

    2001-01-01

    The Aerothermodynamics Branch at NASA - Langley Research Center is tasked with developing, assessing and applying aerothermodynamic technologies to enable the development of hypersonic aircraft, launch vehicles, and planetary/earth entry systems. To accomplish this mission, the Branch capitalizes on the synergism between the experimental and computational facilities/tools which reside in the branch and a staff that can draw on five decades of experience in aerothermodynamics. The Aerothermodynamics Branch is staffed by 30 scientists/engineers. The staff, of which two-thirds are less than 40 years old, is split evenly between experimentalists and computationalists. Approximately 90 percent of the staff work on space transportation systems while the remainder work on planetary missions. The Branch manages 5 hypersonic wind tunnels which are staffed by 14 technicians, numerous high end work stations and a SGI Origin 2000 system. The Branch also utilizes other test facilities located at Langley as well as other national and international test sites. Large scale computational requirements are met by access to Agency resources.

  1. Computational Aerothermodynamic Design Issues for Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Weilmuenster, K. James; Hamilton, H. Harris, II; Olynick, David R.; Venkatapathy, Ethiraj

    1997-01-01

    A brief review of the evolutionary progress in computational aerothermodynamics is presented. The current status of computational aerothermodynamics is then discussed, with emphasis on its capabilities and limitations for contributions to the design process of hypersonic vehicles. Some topics to be highlighted include: (1) aerodynamic coefficient predictions with emphasis on high temperature gas effects; (2) surface heating and temperature predictions for thermal protection system (TPS) design in a high temperature, thermochemical nonequilibrium environment; (3) methods for extracting and extending computational fluid dynamic (CFD) solutions for efficient utilization by all members of a multidisciplinary design team; (4) physical models; (5) validation process and error estimation; and (6) gridding and solution generation strategies. Recent experiences in the design of X-33 will be featured. Computational aerothermodynamic contributions to Mars Pathfinder, METEOR, and Stardust (Comet Sample return) will also provide context for this discussion. Some of the barriers that currently limit computational aerothermodynamics to a predominantly reactive mode in the design process will also be discussed, with the goal of providing focus for future research.

  2. Computational Aerothermodynamic Design Issues for Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Olynick, David R.; Venkatapathy, Ethiraj

    2004-01-01

    A brief review of the evolutionary progress in computational aerothermodynamics is presented. The current status of computational aerothermodynamics is then discussed, with emphasis on its capabilities and limitations for contributions to the design process of hypersonic vehicles. Some topics to be highlighted include: (1) aerodynamic coefficient predictions with emphasis on high temperature gas effects; (2) surface heating and temperature predictions for thermal protection system (TPS) design in a high temperature, thermochemical nonequilibrium environment; (3) methods for extracting and extending computational fluid dynamic (CFD) solutions for efficient utilization by all members of a multidisciplinary design team; (4) physical models; (5) validation process and error estimation; and (6) gridding and solution generation strategies. Recent experiences in the design of X-33 will be featured. Computational aerothermodynamic contributions to Mars Pathfinder, METEOR, and Stardust (Comet Sample return) will also provide context for this discussion. Some of the barriers that currently limit computational aerothermodynamics to a predominantly reactive mode in the design process will also be discussed, with the goal of providing focus for future research.

  3. Computational Aerothermodynamic Design Issues for Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Weilmuenster, K. James; Hamilton, H. Harris, II; Olynick, David R.; Venkatapathy, Ethiraj

    2005-01-01

    A brief review of the evolutionary progress in computational aerothermodynamics is presented. The current status of computational aerothermodynamics is then discussed, with emphasis on its capabilities and limitations for contributions to the design process of hypersonic vehicles. Some topics to be highlighted include: (1) aerodynamic coefficient predictions with emphasis on high temperature gas effects; (2) surface heating and temperature predictions for thermal protection system (TPS) design in a high temperature, thermochemical nonequilibrium environment; (3) methods for extracting and extending computational fluid dynamic (CFD) solutions for efficient utilization by all members of a multidisciplinary design team; (4) physical models; (5) validation process and error estimation; and (6) gridding and solution generation strategies. Recent experiences in the design of X-33 will be featured. Computational aerothermodynamic contributions to Mars Path finder, METEOR, and Stardust (Comet Sample return) will also provide context for this discussion. Some of the barriers that currently limit computational aerothermodynamics to a predominantly reactive mode in the design process will also be discussed, with the goal of providing focus for future research.

  4. Overview of aerothermodynamic loads definition study

    NASA Technical Reports Server (NTRS)

    Gaugler, Raymond E.

    1989-01-01

    Over the years, NASA has been conducting the Advanced Earth-to-Orbit (AETO) Propulsion Technology Program to provide the knowledge, understanding, and design methodology that will allow the development of advanced Earth-to-orbit propulsion systems with high performance, extended service life, automated operations, and diagnostics for in-flight health monitoring. The objective of the Aerothermodynamic Loads Definition Study is to develop methods to more accurately predict the operating environment in AETO propulsion systems, such as the Space Shuttle Main Engine (SSME) powerhead. The approach taken consists of 2 parts: to modify, apply, and disseminate existing computational fluid dynamics tools in response to current needs and to develop new technology that will enable more accurate computation of the time averaged and unsteady aerothermodynamic loads in the SSME powerhead. The software tools are detailed. Significant progress was made in the area of turbomachinery, where there is an overlap between the AETO efforts and research in the aeronautical gas turbine field.

  5. Analytical characterization of AOTV perigee aerothermodynamic regime. [Aeroassisted Orbital Transfer Vehicle

    NASA Technical Reports Server (NTRS)

    Desautel, D.

    1984-01-01

    In preliminary design studies of AOTV (Aeroassisted Orbital Transfer Vehicle) configurations, it is desirable to have a simple analytical method for characterizing the aerothermodynamic regime at skip trajectory perigee as a function of vehicle L/D and m/CDA (ballistic coefficient). The present study derives an approximate perigee solution from the generalized equations of motion. For a prescribed entry velocity vector, the solution determines a Zeta function (proportional to density divided by m/CDA) at perigee as a parametric function of the exit velocity vector and (constant) L/D. The perigee Zeta function then determines perigee density (or altitude) as a parametric function of m/CDA. The solution allows the following classic aerothermodynamic parameters to be determined at perigee as parametric functions of m/CDA, L/D, and the exit velocity vector: Reynolds Number (viscous effects), Mach Number (compressibility effects), Knudsen Number (rarefaction effects), sphere and disk bow shock standoff distance, Damkohler Number (relaxation effects), viscous correlation parameter (viscid-inviscid interactions), and Stanton Number (convective heat transfer). Results of the analysis are given for low L/D and mid L/D AOTV configurations on return from geosynchronous and L5 orbits. It is concluded the method successfully provides preliminary estimates of the aerothermodynamic parameters through the use of simple algebraic equations and plots.

  6. Aerothermodynamic Insight From The HIFIRE Program

    NASA Astrophysics Data System (ADS)

    Kimmel, Roger L.; Adamczak, David; Dolvin, Douglas; Borg, Matthew; Stanfield, Scott

    2011-05-01

    The HIFiRE (Hypersonic International Flight Research and Experimentation) program is a joint venture of the United States Air Force Research Laboratory and Australian Defence Science and Technology Organisation to utilize economical flight research opportunities in the exploration of flight science issues for space access systems. Flights 1 and 5 focus on collecting high-resolution experimental data on critical aerothermodynamic phenomena, including laminar-turbulent transition and shock/boundary layer interactions. Flight 1, successfully flown in March 2010, employed a test article composed of a 7-deg right angle cone, followed by a cylinder and flare. The test article remained attached to the second-stage booster throughout the ballistic trajectory. Flight 5, to be launched in a similar fashion, will feature a 2:1 elliptic cross-section cone as the test article. For both flights significant resources have been invested in pre-flight aerothermodynamic analysis and testing. This manuscript will summarize the overall strategy of the HIFiRE program, review the pre-flight aerothermodynamic analysis for Flights 1 and 5, and present a brief look at preliminary results from the post-flight analysis of Flight 1.

  7. Computing with high-resolution upwind schemes for hyperbolic equations

    NASA Technical Reports Server (NTRS)

    Chakravarthy, S. R.; Osher, S.

    1985-01-01

    Computational aspects of modern high-resolution upwind finite-difference schemes for hyperbolic systems of conservation laws are examined. An operational unification is demonstrated for constructing a wide class of flux-difference-split and flux-split schemes based on the design principles underlying total variation diminishing (TVD) schemes. Consideration is also given to TVD scheme design by preprocessing, the extension of preprocessing and postprocessing approaches to general control volumes, the removal of expansion shocks and 'glitches', relaxation methods for implicit TVD schemes, and a new family of high-accuracy TVD schemes.

  8. Computational Aerothermodynamics in Aeroassist Applications

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2001-01-01

    Aeroassisted planetary entry uses atmospheric drag to decelerate spacecraft from super-orbital to orbital or suborbital velocities. Numerical simulation of flow fields surrounding these spacecraft during hypersonic atmospheric entry is required to define aerothermal loads. The severe compression in the shock layer in front of the vehicle and subsequent, rapid expansion into the wake are characterized by high temperature, thermo-chemical nonequilibrium processes. Implicit algorithms required for efficient, stable computation of the governing equations involving disparate time scales of convection, diffusion, chemical reactions, and thermal relaxation are discussed. Robust point-implicit strategies are utilized in the initialization phase; less robust but more efficient line-implicit strategies are applied in the endgame. Applications to ballutes (balloon-like decelerators) in the atmospheres of Venus, Mars, Titan, Saturn, and Neptune and a Mars Sample Return Orbiter (MSRO) are featured. Examples are discussed where time-accurate simulation is required to achieve a steady-state solution.

  9. Development of AFE aerobrake aerothermodynamic data book

    NASA Technical Reports Server (NTRS)

    Ting, Paul C.; Rochelle, W. C.; Mueller, S. R.; Colovin, J. E.; Scott, C. D.; Curry, D. M.

    1989-01-01

    The computation method developed for the NASA Aeroassist Flight Experiment (AFE) data book generates a design reference for the AFE's aerothermodynamic environment using an optimized technology for a 4100-lb vehicle. This environment is defined by convective, radiative, and total heating rates, radiation equilibrium temperatures, and local surface pressures along the AFE pitch-plane and associated off-pitch planes. The Boundary Layer Integral Matrix Procedure is the major program code used in this analysis; a partially catalytic wall was assumed on the basis of measured recombination rates.

  10. Aerothermodynamic challenges of the Saenger space-transportation system

    NASA Astrophysics Data System (ADS)

    Hirschel, E. H.

    1991-09-01

    The two-stage-to-orbit Saenger space transportation system is the reference concept of the German hypersonics technology program. The technology development concentrates first on the needs of the lower stage. Its requirements on aerothermodynamics and propulsion integration are sketched. The aerothermodynamic design challenge is discussed and the design tools and the design methodology are reviewed. The calibration of both the computational and the experimental methods, as well as the test of vehicle components like the inlet, control surfaces etc., make the Hypersonic Technology Experimental vehicle (HYTEX) mandatory. Contents and workplan of the technology program 'aerothermodynamics and propulsion integration' are laid out. Selected results from the current work are presented.

  11. Aerothermodynamic testing requirements for future space transportation systems

    NASA Astrophysics Data System (ADS)

    Paulson, John W., Jr.; Miller, Charles G., III

    1995-03-01

    Aerothermodynamics, encompassing aerodynamics, aeroheating, and fluid dynamic and physical processes, is the genesis for the design and development of advanced space transportation vehicles. It provides crucial information to other disciplines involved in the development process such as structures, materials, propulsion, and avionics. Sources of aerothermodynamic information include ground-based facilities, computational fluid dynamic (CFD) and engineering computer codes, and flight experiments. Utilization of this triad is required to provide the optimum requirements while reducing undue design conservatism, risk, and cost. This paper discusses the role of ground-based facilities in the design of future space transportation system concepts. Testing methodology is addressed, including the iterative approach often required for the assessment and optimization of configurations from an aerothermodynamic perspective. The influence of vehicle shape and the transition from parametric studies for optimization to benchmark studies for final design and establishment of the flight data book is discussed. Future aerothermodynamic testing requirements including the need for new facilities are also presented.

  12. Aerothermodynamic data base. Data file contents report, phase C

    NASA Technical Reports Server (NTRS)

    Lutz, G. R.

    1983-01-01

    Space shuttle aerothermodynamic data, collected from a continuing series of wind tunnel tests, are permanently stored with the Data Management Services (DMS) system. Information pertaining to current baseline configuration definition is also stored. Documentation of DMS processed data arranged sequentially and by space shuttle configuration is listed to provide an up-to-date record of all applicable aerothermodynamic data collected, processed, or summarized during the space shuttle program. Tables provide survey information to the various space shuttle managerial and technical levels.

  13. Shuttle Tethered Aerothermodynamics Research Facilty (STARFAC) instrumentation requirements

    NASA Technical Reports Server (NTRS)

    Wood, G. M.; Siemers, P. M.; Carlomagno, G. M.; Hoffman, J.

    1986-01-01

    The instrumentation requirements for the Shuttle Tethered Aerothermodynamic Research Facility (STARFAC) are presented. The typical physical properties of the terrestrial atmosphere are given along with representative atmospheric daytime ion concentrations and the equilibrium and nonequilibrium gas property comparison from a point away from a wall. STARFAC science and engineering measurements are given as are the TSS free stream gas analysis. The potential nonintrusive measurement techniques for hypersonic boundary layer research are outlined along with the quantitative physical measurement methods for aerothermodynamic studies.

  14. On symmetric and upwind TVD schemes

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    1985-01-01

    A class of explicit and implicit total variation diminishing (TVD) schemes for the compressible Euler and Navier-Stokes equations was developed. They do not generate spurious oscillations across shocks and contact discontinuities. In general, shocks can be captured within 1 to 2 grid points. For the inviscid case, these schemes are divided into upwind TVD schemes and symmetric (nonupwind) TVD schemes. The upwind TVD scheme is based on the second-order TVD scheme. The symmetric TVD scheme is a generalization of Roe's and Davis' TVD Lax-Wendroff scheme. The performance of these schemes on some viscous and inviscid airfoil steady-state calculations is investigated. The symmetric and upwind TVD schemes are compared.

  15. Overview of aerothermodynamic loads definition study

    NASA Technical Reports Server (NTRS)

    Gaugler, Raymond E.

    1991-01-01

    The objective of the Aerothermodynamic Loads Definition Study is to develop methods of accurately predicting the operating environment in advanced Earth-to-Orbit (ETO) propulsion systems, such as the Space Shuttle Main Engine (SSME) powerhead. Development of time averaged and time dependent three dimensional viscous computer codes as well as experimental verification and engine diagnostic testing are considered to be essential in achieving that objective. Time-averaged, nonsteady, and transient operating loads must all be well defined in order to accurately predict powerhead life. Described here is work in unsteady heat flow analysis, improved modeling of preburner flow, turbulence modeling for turbomachinery, computation of three dimensional flow with heat transfer, and unsteady viscous multi-blade row turbine analysis.

  16. Aerothermodynamics of the Mars Global Surveyor Spacecraft

    NASA Technical Reports Server (NTRS)

    Shane, Russell W.; Tolson, Robert H.

    1998-01-01

    The aerothermodynamics characteristics of the Mars Global Surveyor spacecraft are investigated and reported. These results have been used by the Mars Global Surveyor mission planners to design the aerobraking phase of the mission. Analytical and Direct Simulation Monte Carlo computer codes were used with a detailed, three dimensional model of the spacecraft to evaluate spacecraft aerobraking characteristics for flight in free molecular and transitional flow regimes. The spacecraft is found to be aerodynamically stable in aerobraking and planned contingency configurations. Aerodynamic forces, moments, and heating are found to be highly dependent on atmospheric density. Accommodation coefficient. is seen to strongly influence drag coefficient. Transitional flow effects are found to reduce overall solar panel heating. Attitude control thruster plumes are shown to interact with the freestream, diminishing the effectiveness of the attitude control system and even leading to thrust reversal. These plume-freestream interaction effects are found to be highly dependent on freestream density.

  17. On symmetric and upwind TVD schemes

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    1986-01-01

    The performance of the upwind and symmetric total variation diminishing (TVD) schemes in viscous and inviscid airfoil steady-state calculations is considered, and the extension of the implicit second-order-accurate TVD scheme for hyperbolic systems of conservative laws in curvilinear coordinates is discussed. For two-dimensional steady-state applications, schemes are implemented in a conservative noniterative alternating direction implicit form, and results illustrate that the algorithm produces a fairly good solution for an RAE2822 airfoil calculation. The study demonstrates that the symmetric TVD scheme is as accurate as the upwind TVD scheme, while requiring less computational effort than it.

  18. Construction of weighted upwind compact scheme

    NASA Astrophysics Data System (ADS)

    Wang, Zhengjie

    Enormous endeavor has been devoted in spatial high order high resolution schemes in more than twenty five years previously, like total variation diminishing (TVD), essentially non-oscillatory scheme, weighted essentially non-oscillatory scheme for finite difference, and Discontinuous Galerkin methods for finite element and the finite volume. In this dissertation, a high order finite difference Weighted Upwind Compact Scheme has been constructed by dissipation and dispersion analysis. Secondly, a new method to construct global weights has been tested. Thirdly, a methodology to compromise dissipation and dispersion in constructing Weighted Upwind Compact Scheme has been derived. Finally, several numerical test cases have been shown.

  19. Aero-Thermo-Dynamic Mass Analysis

    NASA Astrophysics Data System (ADS)

    Shiba, Kota; Yoshikawa, Genki

    2016-07-01

    Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis.

  20. Aero-Thermo-Dynamic Mass Analysis.

    PubMed

    Shiba, Kota; Yoshikawa, Genki

    2016-07-14

    Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis.

  1. Aero-Thermo-Dynamic Mass Analysis.

    PubMed

    Shiba, Kota; Yoshikawa, Genki

    2016-01-01

    Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis. PMID:27412335

  2. Aeroassist flight experiment aerodynamics and aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Brewer, Edwin B.

    1989-01-01

    The problem is to determine the transitional flow aerodynamics and aerothermodynamics, including the base flow characteristics, of the Aeroassist Flight Experiment (AFE). The justification for the computational fluid dynamic (CFD) Application stems from MSFC's system integration responsibility for the AFE. To insure that the AFE objectives are met, MSFC must understand the limitations and uncertainties of the design data. Perhaps the only method capable of handling the complex physics of the rarefied high energy AFE trajectory is Bird's Direct Simulation Monte Carlo (DSMC) technique. The 3-D code used in this analysis is applicable only to the AFE geometry. It uses the Variable Hard Sphere (VHS) collision model and five specie chemistry model available from Langley Research Center. The code is benchmarked against the AFE flight data and used as an Aeroassisted Space Transfer Vehicle (ASTV) design tool. The code is being used to understand the AFE flow field and verify or modify existing design data. Continued application to lower altitudes is testing the capability of the Numerical Aerodynamic Simulation Facility (NASF) to handle 3-D DSMC and its practicality as an ASTV/AFE design tool.

  3. Aero-Thermo-Dynamic Mass Analysis

    PubMed Central

    Shiba, Kota; Yoshikawa, Genki

    2016-01-01

    Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis. PMID:27412335

  4. Uncertainty Assessment of Hypersonic Aerothermodynamics Prediction Capability

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; Brown, James L.; Prabhu, Dinesh K.; Gnoffo, Peter; Johnston, Christopher O.; Hollis, Brian

    2011-01-01

    The present paper provides the background of a focused effort to assess uncertainties in predictions of heat flux and pressure in hypersonic flight (airbreathing or atmospheric entry) using state-of-the-art aerothermodynamics codes. The assessment is performed for four mission relevant problems: (1) shock turbulent boundary layer interaction on a compression corner, (2) shock turbulent boundary layer interaction due a impinging shock, (3) high-mass Mars entry and aerocapture, and (4) high speed return to Earth. A validation based uncertainty assessment approach with reliance on subject matter expertise is used. A code verification exercise with code-to-code comparisons and comparisons against well established correlations is also included in this effort. A thorough review of the literature in search of validation experiments is performed, which identified a scarcity of ground based validation experiments at hypersonic conditions. In particular, a shortage of useable experimental data at flight like enthalpies and Reynolds numbers is found. The uncertainty was quantified using metrics that measured discrepancy between model predictions and experimental data. The discrepancy data is statistically analyzed and investigated for physics based trends in order to define a meaningful quantified uncertainty. The detailed uncertainty assessment of each mission relevant problem is found in the four companion papers.

  5. An Overview of the Space Shuttle Aerothermodynamic Design

    NASA Technical Reports Server (NTRS)

    Martin, Fred

    2011-01-01

    The Space Shuttle Thermal Protection System was one of the three areas that required the development of new technology. The talk discusses the pre-flight development of the aerothermodynamic environment which was based on Mach 8 wind tunnel data. A high level overview of the pre-flight heating rate predictions and comparison to the Orbiter Flight Test (OFT) data is presented, along with a discussion of the dramatic improvement in the state-of-the-art in aerothermodynamic capability that has been used to support the Shuttle Program. A high level review of the Orbiter aerothermodynamic design is discussed, along with improvements in Computational Fluid Dynamics and wind tunnel testing that was required for flight support during the last 30 years. The units have been removed from the plots, and the discussion is kept at a high level.

  6. Towards an "All Speed" Unstructured Upwind Scheme

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.; Jorgenson, Philip C.E.

    2009-01-01

    In the authors previous studies [1], a time-accurate, upwind finite volume method (ETAU scheme) for computing compressible flows on unstructured grids was proposed. The scheme is second order accurate in space and time and yields high resolution in the presence of discontinuities. The scheme features a multidimensional limiter and multidimensional numerical dissipation. These help to stabilize the numerical process and to overcome the annoying pathological behaviors of upwind schemes. In the present paper, it will be further shown that such multidimensional treatments also lead to a nearly all-speed or Mach number insensitive upwind scheme. For flows at very high Mach number, e.g., 10, local numerical instabilities or the pathological behaviors are suppressed, while for flows at very low Mach number, e.g., 0.02, computation can be directly carried out without invoking preconditioning. For flows in different Mach number regimes, i.e., low, medium, and high Mach numbers, one only needs to adjust one or two parameters in the scheme. Several examples with low and high Mach numbers are demonstrated in this paper. Thus, the ETAU scheme is applicable to a broad spectrum of flow regimes ranging from high supersonic to low subsonic, appropriate for both CFD (computational fluid dynamics) and CAA (computational aeroacoustics).

  7. NASA's hypersonic fluid and thermal physics program (Aerothermodynamics)

    NASA Technical Reports Server (NTRS)

    Graves, R. A.; Hunt, J. L.

    1985-01-01

    This survey paper gives an overview of NASA's hypersonic fluid and thermal physics program (recently renamed aerothermodynamics). The purpose is to present the elements of, example results from, and rationale and projection for this program. The program is based on improving the fundamental understanding of aerodynamic and aerothermodynamic flow phenomena over hypersonic vehicles in the continuum, transitional, and rarefied flow regimes. Vehicle design capabilities, computational fluid dynamics, computational chemistry, turbulence modeling, aerothermal loads, orbiter flight data analysis, orbiter experiments, laser photodiagnostics, and facilities are discussed.

  8. Accurate upwind methods for the Euler equations

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1993-01-01

    A new class of piecewise linear methods for the numerical solution of the one-dimensional Euler equations of gas dynamics is presented. These methods are uniformly second-order accurate, and can be considered as extensions of Godunov's scheme. With an appropriate definition of monotonicity preservation for the case of linear convection, it can be shown that they preserve monotonicity. Similar to Van Leer's MUSCL scheme, they consist of two key steps: a reconstruction step followed by an upwind step. For the reconstruction step, a monotonicity constraint that preserves uniform second-order accuracy is introduced. Computational efficiency is enhanced by devising a criterion that detects the 'smooth' part of the data where the constraint is redundant. The concept and coding of the constraint are simplified by the use of the median function. A slope steepening technique, which has no effect at smooth regions and can resolve a contact discontinuity in four cells, is described. As for the upwind step, existing and new methods are applied in a manner slightly different from those in the literature. These methods are derived by approximating the Euler equations via linearization and diagonalization. At a 'smooth' interface, Harten, Lax, and Van Leer's one intermediate state model is employed. A modification for this model that can resolve contact discontinuities is presented. Near a discontinuity, either this modified model or a more accurate one, namely, Roe's flux-difference splitting. is used. The current presentation of Roe's method, via the conceptually simple flux-vector splitting, not only establishes a connection between the two splittings, but also leads to an admissibility correction with no conditional statement, and an efficient approximation to Osher's approximate Riemann solver. These reconstruction and upwind steps result in schemes that are uniformly second-order accurate and economical at smooth regions, and yield high resolution at discontinuities.

  9. Streamwise Upwind, Moving-Grid Flow Algorithm

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Guruswamy, Guru P.; Obayashi, Shigeru

    1992-01-01

    Extension to moving grids enables computation of transonic flows about moving bodies. Algorithm computes unsteady transonic flow on basis of nondimensionalized thin-layer Navier-Stokes equations in conservation-law form. Solves equations by use of computational grid based on curvilinear coordinates conforming to, and moving with, surface(s) of solid body or bodies in flow field. Simulates such complicated phenomena as transonic flow (including shock waves) about oscillating wing. Algorithm developed by extending prior streamwise upwind algorithm solving equations on fixed curvilinear grid described in "Streamwise Algorithm for Simulation of Flow" (ARC-12718).

  10. On central-difference and upwind schemes

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Turkel, Eli

    1990-01-01

    A class of numerical dissipation models for central-difference schemes constructed with second- and fourth-difference terms is considered. The notion of matrix dissipation associated with upwind schemes is used to establish improved shock capturing capability for these models. In addition, conditions are given that guarantee that such dissipation models produce a Total Variation Diminishing (TVD) scheme. Appropriate switches for this type of model to ensure satisfaction of the TVD property are presented. Significant improvements in the accuracy of a central-difference scheme are demonstrated by computing both inviscid and viscous transonic airfoil flows.

  11. Iterated upwind schemes for gas dynamics

    SciTech Connect

    Smolarkiewicz, Piotr K. Szmelter, Joanna

    2009-01-10

    A class of high-resolution schemes established in integration of anelastic equations is extended to fully compressible flows, and documented for unsteady (and steady) problems through a span of Mach numbers from zero to supersonic. The schemes stem from iterated upwind technology of the multidimensional positive definite advection transport algorithm (MPDATA). The derived algorithms employ standard and modified forms of the equations of gas dynamics for conservation of mass, momentum and either total or internal energy as well as potential temperature. Numerical examples from elementary wave propagation, through computational aerodynamics benchmarks, to atmospheric small- and large-amplitude acoustics with intricate wave-flow interactions verify the approach for both structured and unstructured meshes, and demonstrate its flexibility and robustness.

  12. The tethered satellite system for low density aerothermodynamics studies

    NASA Technical Reports Server (NTRS)

    Carlomagno, Giovanni M.; De Luca, Luigi; Siemers, P. M., III; Wood, George M., Jr.

    1986-01-01

    The feasibility of the operation of the Tethered Satellite System (TSS) as a continuous open wind tunnel for low-density aerothermodynamic studies (applicable to the design of hypersonic space vehicles including STARFAC, AOTV, and ERV) is considered. The Shuttle Continuous Open Wind Tunnel (SCOWT) program, for the study of the energy and momentum transfer between the tethered satellite and its environmental medium during the TSS/2 mission, is described. Instrumentation and TSS design requirements to meet SCOWT objectives are also considered. SCOWT will provide information on the gasdynamic processes occurring downstream of the bow wave standing in front of the TS, the chemistry and physics of the upper atmosphere related to satellite aerothermodynamics, and TSS's overall experimental envelope of operation.

  13. The definition of the Shuttle Tethered Aerothermodynamic Research Facility

    NASA Technical Reports Server (NTRS)

    Siemers, P. M., III; Wood, G. M., Jr.; Wolf, H.; Flanagan, P. F.; Henry, M. W.

    1985-01-01

    Studies have been conducted to define the feasibility and practical limitations of the Shuttle Orbiter Tethered 'wind-tunnel' concept. This concept, referred to as the Shuttle Tethered Aerothermodynamic Research Facility (STARFAC), is proposed to provide researchers access to altitudes above 90 km to accomplish aerothermodynamic research in the rarefied upper atmosphere. Determining the feasibility and limitations of the concept has required the enhancement and/or development of mission simulation analytical techniques and control laws; the accomplishment of candidate mission simulations; the definition of instrumentation requirements, both for science and engineering; and the establishment of tether and satellite design requirements to meet STARFAC objectives. The results of the study, to date, indicate that such a concept is both feasible and practical. Representative results are presented, as are recommendations for continued studies which would result in program implementation.

  14. Saenger: The reference concept and its technological requirements - aerothermodynamics

    NASA Astrophysics Data System (ADS)

    Hirschel, E. H.

    1991-08-01

    The objectives of the technology program 'aerothermodynamics and propulsion integration' are defined. An overview of the special aerothermodynamic phenomena which must be regarded in the design of the Saenger lower stage which presently stands in the center of the technology program is given. The design tools, which must be provided; the components like the inlet, the afterbody, etc., which must be designed and tested; and the special problems like forebody optimization, heat load determination, upper stage integration, etc., which must be treated, are discussed. The general work plan is presented, showing the major activities up to start of the development of the Saenger space transportation system. It includes the development and manufacturing of the experimental vehicle (HYTEXT) as a means for the validation of the design tools and methods which are achieved in the technology program, and for the creation of a freeflight data base.

  15. Preconditioned upwind methods to solve 3-D incompressible Navier-Stokes equations for viscous flows

    NASA Technical Reports Server (NTRS)

    Hsu, C.-H.; Chen, Y.-M.; Liu, C. H.

    1990-01-01

    A computational method for calculating low-speed viscous flowfields is developed. The method uses the implicit upwind-relaxation finite-difference algorithm with a nonsingular eigensystem to solve the preconditioned, three-dimensional, incompressible Navier-Stokes equations in curvilinear coordinates. The technique of local time stepping is incorporated to accelerate the rate of convergence to a steady-state solution. An extensive study of optimizing the preconditioned system is carried out for two viscous flow problems. Computed results are compared with analytical solutions and experimental data.

  16. Downward-deployed tethered platforms for high enthalpy aerothermodynamic research

    NASA Technical Reports Server (NTRS)

    Wood, George M.; Siemers, Paul M.; Squires, R. Kenneth; Wolf, Henry; Carlomagno, Giovanni M.

    1988-01-01

    The data on aerothermodynamic and aerodynamic interactions at altitudes above 50 km is extremely limited because of the relative inaccessibility of the region to research vehicles of any sort. This paper addresses the practicability of using downward deployed satellites tethered to an orbiting host vehicle in order to obtain steady-state data in the upper reaches of the region above 80 or 90 km.

  17. Phase C aerothermodynamic data base. [for space shuttle program

    NASA Technical Reports Server (NTRS)

    Moser, M., Jr.

    1974-01-01

    Summary listings of published documentation of SADSAC processed data arranged chronologically and by shuttle configuration are presented to provide an up-to-date record of all applicable aerothermodynamic data collected, processed, or summarized in the course of the space shuttle program. The various tables or listings are designed to provide survey information to the various space shuttle managerial and technical levels. The various listings of the shuttle test data information, the list contents, and the purpose are described.

  18. Numerical analysis and design of upwind sails

    NASA Astrophysics Data System (ADS)

    Shankaran, Sriram

    The use of computational techniques that solve the Euler or the Navier-Stokes equations are increasingly being used by competing syndicates in races like the Americas Cup. For sail configurations, this desire stems from a need to understand the influence of the mast on the boundary layer and pressure distribution on the main sail, the effect of camber and planform variations of the sails on the driving and heeling force produced by them and the interaction of the boundary layer profile of the air over the surface of the water and the gap between the boom and the deck on the performance of the sail. Traditionally, experimental methods along with potential flow solvers have been widely used to quantify these effects. While these approaches are invaluable either for validation purposes or during the early stages of design, the potential advantages of high fidelity computational methods makes them attractive candidates during the later stages of the design process. The aim of this study is to develop and validate numerical methods that solve the inviscid field equations (Euler) to simulate and design upwind sails. The three dimensional compressible Euler equations are modified using the idea of artificial compressibility and discretized on unstructured tetrahedral grids to provide estimates of lift and drag for upwind sail configurations. Convergence acceleration techniques like multigrid and residual averaging are used along with parallel computing platforms to enable these simulations to be performed in a few minutes. To account for the elastic nature of the sail cloth, this flow solver was coupled to NASTRAN to provide estimates of the deflections caused by the pressure loading. The results of this aeroclastic simulation, showed that the major effect of the sail elasticity; was in altering the pressure distribution around the leading edge of the head and the main sail. Adjoint based design methods were developed next and were used to induce changes to the camber

  19. Kinetic theory based new upwind methods for inviscid compressible flows

    NASA Technical Reports Server (NTRS)

    Deshpande, S. M.

    1986-01-01

    Two new upwind methods called the Kinetic Numerical Method (KNM) and the Kinetic Flux Vector Splitting (KFVS) method for the solution of the Euler equations have been presented. Both of these methods can be regarded as some suitable moments of an upwind scheme for the solution of the Boltzmann equation provided the distribution function is Maxwellian. This moment-method strategy leads to a unification of the Riemann approach and the pseudo-particle approach used earlier in the development of upwind methods for the Euler equations. A very important aspect of the moment-method strategy is that the new upwind methods satisfy the entropy condition because of the Boltzmann H-Theorem and suggest a possible way of extending the Total Variation Diminishing (TVD) principle within the framework of the H-Theorem. The ability of these methods in obtaining accurate wiggle-free solution is demonstrated by applying them to two test problems.

  20. The standard upwind compact difference schemes for incompressible flow simulations

    NASA Astrophysics Data System (ADS)

    Fan, Ping

    2016-10-01

    Compact difference schemes have been used extensively for solving the incompressible Navier-Stokes equations. However, the earlier formulations of the schemes are of central type (called central compact schemes, CCS), which are dispersive and susceptible to numerical instability. To enhance stability of CCS, the optimal upwind compact schemes (OUCS) are developed recently by adding high order dissipative terms to CCS. In this paper, it is found that OUCS are essentially not of the upwind type because they do not use upwind-biased but central type of stencils. Furthermore, OUCS are not the most optimal since orders of accuracy of OUCS are at least one order lower than the maximum achievable orders. New upwind compact schemes (called standard upwind compact schemes, SUCS) are developed in this paper. In contrast to OUCS, SUCS are constructed based completely on upwind-biased stencils and hence can gain adequate numerical dissipation with no need for introducing optimization calculations. Furthermore, SUCS can achieve the maximum achievable orders of accuracy and hence be more compact than OUCS. More importantly, SUCS have prominent advantages on combining the stable and high resolution properties which are demonstrated from the global spectral analyses and typical numerical experiments.

  1. Aerothermodynamics of Blunt Body Entry Vehicles. Chapter 3

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Borrelli, Salvatore

    2011-01-01

    In this chapter, the aerothermodynamic phenomena of blunt body entry vehicles are discussed. Four topics will be considered that present challenges to current computational modeling techniques for blunt body environments: turbulent flow, non-equilibrium flow, rarefied flow, and radiation transport. Examples of comparisons between computational tools to ground and flight-test data will be presented in order to illustrate the challenges existing in the numerical modeling of each of these phenomena and to provide test cases for evaluation of Computational Fluid Dynamics (CFD) code predictions.

  2. Aerothermodynamics and propulsion integration in the Saenger technology programme

    NASA Astrophysics Data System (ADS)

    Hirschel, E. H.

    1991-12-01

    An overview of the special aerothermodynamic phenomena that must be considered in the design of the German Saenger Space Transportation System lower stage is presented. The design tools required, components that must be designed and tested, and certain problem areas (forebody optimization, heat load determination, and upper-stage separation), are discussed. Attention is given to the development and manufacturing of an experimental vehicle, Hytex, as a means for validating the design tools and methods realized in the technology program and for the creation of a free-flight data base.

  3. SUPG Finite Element Simulations of Compressible Flows for Aerothermodynamic Applications

    NASA Technical Reports Server (NTRS)

    Kirk, Benjamin S.

    2007-01-01

    This viewgraph presentation reviews the Streamline-Upwind Petrov-Galerkin (SUPG) Finite Element Simulation. It covers the background, governing equations, weak formulation, shock capturing, inviscid flux discretization, time discretization, linearization, and implicit solution strategies. It also reviews some applications such as Type IV Shock Interaction, Forward-Facing Cavity and AEDC Sharp Double Cone.

  4. Development and application of computational aerothermodynamics flowfield computer codes

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj

    1994-01-01

    Research was performed in the area of computational modeling and application of hypersonic, high-enthalpy, thermo-chemical nonequilibrium flow (Aerothermodynamics) problems. A number of computational fluid dynamic (CFD) codes were developed and applied to simulate high altitude rocket-plume, the Aeroassist Flight Experiment (AFE), hypersonic base flow for planetary probes, the single expansion ramp model (SERN) connected with the National Aerospace Plane, hypersonic drag devices, hypersonic ramp flows, ballistic range models, shock tunnel facility nozzles, transient and steady flows in the shock tunnel facility, arc-jet flows, thermochemical nonequilibrium flows around simple and complex bodies, axisymmetric ionized flows of interest to re-entry, unsteady shock induced combustion phenomena, high enthalpy pulsed facility simulations, and unsteady shock boundary layer interactions in shock tunnels. Computational modeling involved developing appropriate numerical schemes for the flows on interest and developing, applying, and validating appropriate thermochemical processes. As part of improving the accuracy of the numerical predictions, adaptive grid algorithms were explored, and a user-friendly, self-adaptive code (SAGE) was developed. Aerothermodynamic flows of interest included energy transfer due to strong radiation, and a significant level of effort was spent in developing computational codes for calculating radiation and radiation modeling. In addition, computational tools were developed and applied to predict the radiative heat flux and spectra that reach the model surface.

  5. Aerothermodynamic Design of the Mars Science Laboratory Heatshield

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Dyakonov, Artem A.; Wright, Michael J.; Tang, Chun Y.

    2009-01-01

    Aerothermodynamic design environments are presented for the Mars Science Laboratory entry capsule heatshield. The design conditions are based on Navier-Stokes flowfield simulations on shallow (maximum total heat load) and steep (maximum heat flux, shear stress, and pressure) entry trajectories from a 2009 launch. Boundary layer transition is expected prior to peak heat flux, a first for Mars entry, and the heatshield environments were defined for a fully-turbulent heat pulse. The effects of distributed surface roughness on turbulent heat flux and shear stress peaks are included using empirical correlations. Additional biases and uncertainties are based on computational model comparisons with experimental data and sensitivity studies. The peak design conditions are 197 W/sq cm for heat flux, 471 Pa for shear stress, 0.371 Earth atm for pressure, and 5477 J/sq cm for total heat load. Time-varying conditions at fixed heatshield locations were generated for thermal protection system analysis and flight instrumentation development. Finally, the aerothermodynamic effects of delaying launch until 2011 are previewed.

  6. Experimental Stage Separation Tool Development in NASA Langley's Aerothermodynamics Laboratory

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Scallion, William I.

    2005-01-01

    As part of the research effort at NASA in support of the stage separation and ascent aerothermodynamics research program, proximity testing of a generic bimese wing-body configuration was conducted in NASA Langley's Aerothermodynamics Laboratory in the 20-Inch Mach 6 Air Tunnel. The objective of this work is the development of experimental tools and testing methodologies to apply to hypersonic stage separation problems for future multi-stage launch vehicle systems. Aerodynamic force and moment proximity data were generated at a nominal Mach number of 6 over a small range of angles of attack. The generic bimese configuration was tested in a belly-to-belly and back-to-belly orientation at 86 relative proximity locations. Over 800 aerodynamic proximity data points were taken to serve as a database for code validation. Longitudinal aerodynamic data generated in this test program show very good agreement with viscous computational predictions. Thus a framework has been established to study separation problems in the hypersonic regime using coordinated experimental and computational tools.

  7. ESA Intermediate Experimental Vehicle. Independent Aerothermodynamic Characterization And Aerodatabase Development

    NASA Astrophysics Data System (ADS)

    Rufolo, Giuseppe C.; Di Benedetto, Sara; Walpot, Louis; Roncioni, Pietro; Marini, Marco

    2011-05-01

    In the frame of the Intermediate eXperimental Vehicle (IXV) project, the European Space Agency (ESA) is coordinating a series of technical assistance activities aimed at verifying and supporting the IXV industrial design and development process. The technical assistance is operated with the support of the Italian Space Agency (ASI), by means of the Italian Aerospace Research Center (CIRA), and the European Space Research and Technology Centre (ESTEC) under the super visioning and coordination of ESA IXV team. One of the purposes of the activity is to develop an independent capability for the assessment and verification of the industrial results with respect to the aerothermodynamic characterization of the IXV vehicle. To this aim CIRA is developing and independent AeroThermodynamics DataBase (ATDB), intended as a tool generating in output the time histories of local quantities (heat flux, pressure, skin friction) for each point of the IXV vehicle and for each trajectory (in a pre-defined envelope), together with an uncertainties model. The reference Computational Fluid Dynamics (CFD) solutions needed for the development of the tool have been provided by ESA-ESTEC (with the CFD code LORE) and CIRA (with the CFD code H3NS).

  8. Aerothermodynamic Environments Definition for the Mars Science Laboratory Entry Capsule

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Dyakonov, Artem A.; Wright, Michael J.; Tang, Chun Y.

    2007-01-01

    An overview of the aerothermodynamic environments definition status is presented for the Mars Science Laboratory entry vehicle. The environments are based on Navier-Stokes flowfield simulations on a candidate aeroshell geometry and worst-case entry heating trajectories. Uncertainties for the flowfield predictions are based primarily on available ground data since Mars flight data are scarce. The forebody aerothermodynamics analysis focuses on boundary layer transition and turbulent heating augmentation. Turbulent transition is expected prior to peak heating, a first for Mars entry, resulting in augmented heat flux and shear stress at the same heatshield location. Afterbody computations are also shown with and without interference effects of reaction control system thruster plumes. Including uncertainties, analysis predicts that the heatshield may experience peaks of 225 W/sq cm for turbulent heat flux, 0.32 atm for stagnation pressure, and 400 Pa for turbulent shear stress. The afterbody heat flux without thruster plume interference is predicted to be 7 W/sq cm on the backshell and 10 W/sq cm on the parachute cover. If the reaction control jets are fired near peak dynamic pressure, the heat flux at localized areas could reach as high as 76 W/sq cm on the backshell and 38 W/sq cm on the parachute cover, including uncertainties. The final flight environments used for hardware design will be updated for any changes in the aeroshell configuration, heating design trajectories, or uncertainties.

  9. Solving Upwind-Biased Discretizations. 2; Multigrid Solver Using Semicoarsening

    NASA Technical Reports Server (NTRS)

    Diskin, Boris

    1999-01-01

    This paper studies a novel multigrid approach to the solution for a second order upwind biased discretization of the convection equation in two dimensions. This approach is based on semi-coarsening and well balanced explicit correction terms added to coarse-grid operators to maintain on coarse-grid the same cross-characteristic interaction as on the target (fine) grid. Colored relaxation schemes are used on all the levels allowing a very efficient parallel implementation. The results of the numerical tests can be summarized as follows: 1) The residual asymptotic convergence rate of the proposed V(0, 2) multigrid cycle is about 3 per cycle. This convergence rate far surpasses the theoretical limit (4/3) predicted for standard multigrid algorithms using full coarsening. The reported efficiency does not deteriorate with increasing the cycle, depth (number of levels) and/or refining the target-grid mesh spacing. 2) The full multi-grid algorithm (FMG) with two V(0, 2) cycles on the target grid and just one V(0, 2) cycle on all the coarse grids always provides an approximate solution with the algebraic error less than the discretization error. Estimates of the total work in the FMG algorithm are ranged between 18 and 30 minimal work units (depending on the target (discretizatioin). Thus, the overall efficiency of the FMG solver closely approaches (if does not achieve) the goal of the textbook multigrid efficiency. 3) A novel approach to deriving a discrete solution approximating the true continuous solution with a relative accuracy given in advance is developed. An adaptive multigrid algorithm (AMA) using comparison of the solutions on two successive target grids to estimate the accuracy of the current target-grid solution is defined. A desired relative accuracy is accepted as an input parameter. The final target grid on which this accuracy can be achieved is chosen automatically in the solution process. the actual relative accuracy of the discrete solution approximation

  10. Computational Aerodynamic Analysis of Offshore Upwind and Downwind Turbines

    DOE PAGES

    Zhao, Qiuying; Sheng, Chunhua; Afjeh, Abdollah

    2014-01-01

    Aerodynamic interactions of the model NREL 5 MW offshore horizontal axis wind turbines (HAWT) are investigated using a high-fidelity computational fluid dynamics (CFD) analysis. Four wind turbine configurations are considered; three-bladed upwind and downwind and two-bladed upwind and downwind configurations, which operate at two different rotor speeds of 12.1 and 16 RPM. In the present study, both steady and unsteady aerodynamic loads, such as the rotor torque, blade hub bending moment, and base the tower bending moment of the tower, are evaluated in detail to provide overall assessment of different wind turbine configurations. Aerodynamic interactions between the rotor and tower are analyzed,more » including the rotor wake development downstream. The computational analysis provides insight into aerodynamic performance of the upwind and downwind, two- and three-bladed horizontal axis wind turbines.« less

  11. Accurate upwind-monotone (nonoscillatory) methods for conservation laws

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1992-01-01

    The well known MUSCL scheme of Van Leer is constructed using a piecewise linear approximation. The MUSCL scheme is second order accurate at the smooth part of the solution except at extrema where the accuracy degenerates to first order due to the monotonicity constraint. To construct accurate schemes which are free from oscillations, the author introduces the concept of upwind monotonicity. Several classes of schemes, which are upwind monotone and of uniform second or third order accuracy are then presented. Results for advection with constant speed are shown. It is also shown that the new scheme compares favorably with state of the art methods.

  12. High-Energy Atmospheric Reentry Test Aerothermodynamic Analysis

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza

    2013-01-01

    This paper presents an assessment of the aerothermodynamic environment around an 8.3 meter High Energy Atmospheric Reentry Test (HEART) vehicle. This study generated twelve nose shape configurations and compared their responses at the peak heating trajectory point against the baseline nose shape. The heat flux sensitivity to the angle of attack variations are also discussed. The possibility of a two-piece Thermal Protection System (TPS) design at the nose is also considered, as are the surface catalytic affects of the aeroheating environment of such configuration. Based on these analyses, an optimum nose shape is proposed to minimize the surface heating. A recommendation is also made for a two-piece TPS design, for which the surface catalytic uncertainty associated with the jump in heating at the nose-IAD juncture is reduced by a minimum of 93%. In this paper, the aeroshell is assumed to be rigid and the inflatable fluid interaction effect is left for future investigations

  13. Aerodynamic and Aerothermodynamic Layout of the Hypersonic Flight Experiment Shefex

    NASA Astrophysics Data System (ADS)

    Eggers, Th.

    2005-02-01

    The purpose of the SHarp Edge Flight EXperiment SHEFEX is the investigation of possible new shapes for future launcher or reentry vehicles [1]. The main focus is the improvement of common space vehicle shapes by application of facetted surfaces and sharp edges. The experiment will enable the time accurate investigation of the flow effects and their structural answer during the hypersonic flight from 90 km down to an altitude of 20 km. The project, being performed under responsibility of the German Aerospace Center (DLR) is scheduled to fly on top of a two-stage solid propellant sounding rocket for the first half of 2005. The paper contains a survey of the aerodynamic and aerothermodynamic layout of the experimental vehicle. The results are inputs for the definition of the structural layout, the TPS and the flight instrumentation as well as for the preparation of the flight test performed by the Mobile Rocket Base of DLR.

  14. Numerical methods for aerothermodynamic design of hypersonic space transport vehicles

    NASA Astrophysics Data System (ADS)

    Wanie, K. M.; Brenneis, A.; Eberle, A.; Heiss, S.

    1993-04-01

    The requirement of the design process of hypersonic vehicles to predict flow past entire configurations with wings, fins, flaps, and propulsion system represents one of the major challenges for aerothermodynamics. In this context computational fluid dynamics has come up as a powerful tool to support the experimental work. A couple of numerical methods developed at MBB designed to fulfill the needs of the design process are described. The governing equations and fundamental details of the solution methods are shortly reviewed. Results are given for both geometrically simple test cases and realistic hypersonic configurations. Since there is still a considerable lack of experience for hypersonic flow calculations an extensive testing and verification is essential. This verification is done by comparison of results with experimental data and other numerical methods. The results presented prove that the methods used are robust, flexible, and accurate enough to fulfill the strong needs of the design process.

  15. Aerothermodynamic Facilities And Measurement: Flow Characterization in Shock Tunnels

    NASA Technical Reports Server (NTRS)

    Cavolowsky, John A.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    This presentation will examine the key performance aspects of shock tunnels as they relate to their use as aerothermodynamic flow simulation facilities. Assessment of shock tube reservoir conditions and flow contaminants generated in the shock tube will be presented along with their limiting impact on viable test envelopes, Facility nozzle performance as it pertains to test time assessment and nozzle exit flow quality (survey of pressure, temperature, and species) will be addressed. Also included will be a discussion of free stream flow diagnostics, both intrusive and nonintrusive, for measurement of critical flow properties not directly inferred from surface mounted transducers. The use of computational fluid dynamics for purposes of validating experimental measurements as well as predicting performance in regimes where measurements are not feasible or possible will be discussed. The use of CFD for facility research and design will also be presented.

  16. Team Software Development for Aerothermodynamic and Aerodynamic Analysis and Design

    NASA Technical Reports Server (NTRS)

    Alexandrov, N.; Atkins, H. L.; Bibb, K. L.; Biedron, R. T.; Carpenter, M. H.; Gnoffo, P. A.; Hammond, D. P.; Jones, W. T.; Kleb, W. L.; Lee-Rausch, E. M.

    2003-01-01

    A collaborative approach to software development is described. The approach employs the agile development techniques: project retrospectives, Scrum status meetings, and elements of Extreme Programming to efficiently develop a cohesive and extensible software suite. The software product under development is a fluid dynamics simulator for performing aerodynamic and aerothermodynamic analysis and design. The functionality of the software product is achieved both through the merging, with substantial rewrite, of separate legacy codes and the authorship of new routines. Examples of rapid implementation of new functionality demonstrate the benefits obtained with this agile software development process. The appendix contains a discussion of coding issues encountered while porting legacy Fortran 77 code to Fortran 95, software design principles, and a Fortran 95 coding standard.

  17. Aerothermodynamic design feasibility of a Mars aerocapture/aeromaneuver vehicle

    NASA Technical Reports Server (NTRS)

    Florence, D. E.

    1981-01-01

    Lifting aerodynamic configurations have been screened and selected for the Mars aerocapture mission that (1) meet the geometric packaging requirements of the various payloads and the Space Shuttle cargo bay and (2) provide the aerodynamic performance characteristics required to obtain the atmospheric exit steering accuracy and the parachute deployment conditions desired. Hypersonic heat transfer and aerodynamic loads to the vehicle in the CO2 atmosphere are evaluated. Contemporary low density ablative thermal protection materials were selected that meet all the atmospheric entry requirements and provide a minimum mass solution. Results are presented of the aerodynamic configuration and thermal protection materials screening and selection. It is concluded that the aerothermodynamic design of this concept is feasible using state-of-the-art technology.

  18. Applications of the ram accelerator to hypervelocity aerothermodynamic testing

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Knowlen, C.; Hertzberg, A.

    1992-01-01

    A ram accelerator used as a hypervelocity launcher for large-scale aeroballistic range applications in hypersonics and aerodynamics research is presented. It is an in-bore ramjet device in which a projectile shaped like the centerbody of a supersonic ramjet is propelled down a stationary tube filled with a tailored combustible gas mixture. Ram accelerator operation has been demonstrated at 39 mm and 90 mm bores, supporting the proposition that this launcher concept can be scaled up to very large bore diameters of the order of 30-60 cm. It is concluded that high quality data obtained from the tube wall and projectile during the aceleration process itself are very useful for understanding aerothermodynamics of hypersonic flow in general, and for providing important CFD validation benchmarks.

  19. Aerothermodynamic Heating Analysis of Aerobraking and Aeromaneuvering Orbital Transfer Vehicles

    NASA Technical Reports Server (NTRS)

    Menees, Gene P.; Davies, Carol B.; Wilson, John F.; Brown, Kevin G.

    1985-01-01

    The thermal-protection requirements of two aeroassisted orbital transfer vehicles (AOTVS) are analyzed for return missions between the geosynchronous and Shuttle orbits. One of the designs is a specialized version of a previously proposed generic aerobraking vehicle that Is capable of only delivery-type operations. The other Is a high-lift aeromaneuvering vehicle that is optimized for low Earth orbit sortie missions involving large, multiple plane-inclination changes. The aerothermal environment of the aerobraking vehicle is analyzed using state-of-the-art methods for nonequilibrium-radiative and convective heating that incorporate refinements unique to the configuration. The heating analysis of the aeromaneuvering vehicle required the development of a flowfield model for rarefied-hypersonic flow over a lifting surface at incidence. The predicted aerothermodynamic heating characteristics for both vehicles are correlated with thermal-control

  20. Experimental and Computational Aerothermodynamics of a Mars Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    1996-01-01

    An aerothermodynamic database has been generated through both experimental testing and computational fluid dynamics simulations for a 70 deg sphere-cone configuration based on the NASA Mars Pathfinder entry vehicle. The aerothermodynamics of several related parametric configurations were also investigated. Experimental heat-transfer data were obtained at hypersonic test conditions in both a perfect gas air wind tunnel and in a hypervelocity, high-enthalpy expansion tube in which both air and carbon dioxide were employed as test gases. In these facilities, measurements were made with thin-film temperature-resistance gages on both the entry vehicle models and on the support stings of the models. Computational results for freestream conditions equivalent to those of the test facilities were generated using an axisymmetric/2D laminar Navier-Stokes solver with both perfect-gas and nonequilibrium thermochemical models. Forebody computational and experimental heating distributions agreed to within the experimental uncertainty for both the perfect-gas and high-enthalpy test conditions. In the wake, quantitative differences between experimental and computational heating distributions for the perfect-gas conditions indicated transition of the free shear layer near the reattachment point on the sting. For the high enthalpy cases, agreement to within, or slightly greater than, the experimental uncertainty was achieved in the wake except within the recirculation region, where further grid resolution appeared to be required. Comparisons between the perfect-gas and high-enthalpy results indicated that the wake remained laminar at the high-enthalpy test conditions, for which the Reynolds number was significantly lower than that of the perfect-gas conditions.

  1. The design and application of upwind schemes on unstructured meshes

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Jespersen, Dennis C.

    1989-01-01

    Solution and mesh generation algorithms for solving the Euler equations on unstructured meshes consisting of triangle and quadrilateral control volumes are presented. Cell-centered and mesh-vertex upwind finite-volume schemes are developed which utilize multi-dimensional monotone linear reconstruction procedures. These algorithms differ from existing algorithms (even on structured meshes). Numerical results in two dimensions are presented.

  2. Experimental Aerothermodynamics In Support Of The Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.

    2004-01-01

    The technical foundation for the most probable damage scenario reported in the Columbia Accident Investigation Board's final report was largely derived from synergistic aerodynamic/aerothermodynamic wind tunnel measurements and inviscid predictions made at NASA Langley Research Center and later corroborated with engineering analysis, high fidelity numerical viscous simulations, and foam impact testing near the close of the investigation. This report provides an overview of the hypersonic aerothermodynamic wind tunnel program conducted at NASA Langley and illustrates how the ground-based heating measurements provided early insight that guided the direction and utilization of agency resources in support of the investigation. Global surface heat transfer mappings, surface streamline patterns, and shock shapes were measured on 0.0075 scale models of the Orbiter configuration with and without postulated damage to the thermal protection system. Test parametrics include angle of attack from 38 to 42 degs, sideslip angles of 38 to 42 degs, sideslip angles of plus or minus 1 deg, Reynolds numbers based upon model length from 0.05 x 10(exp 6) to 6.5 x 10(exp 6), and normal shock density ratios of 5 (Mach 6 Air) and 12 (Mach 6 CF4). The primary objective of the testing was to provide surface heating characteristics on scaled Orbiter models with outer mold line perturbations to simulate various forms of localized surface damage to the thermal protection system. Initial experimental testing conducted within two weeks of the accident simulated a broad spectrum of thermal protection system damage to the Orbiter windward surface and was used to refute several hypothesized forms of thermal protection system damage, which included gouges in the windward thermal protection system tiles, breaches through the wing new the main landing gear door, and protuberances along the wing leading edge that produced asymmetric boundary layer transition. As the forensic phase of the investigation

  3. Survey of Aerothermodynamics Facilities Useful for the Design of Hypersonic Vehicles Using Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Deiwert, G. S.

    1997-01-01

    The dream of producing an air-breathing, hydrogen fueled, hypervelocity aircraft has been before the aerospace community for decades. However, such a craft has not yet been realized, even in an experimental form. Despite the simplicity and beauty of the concept, many formidable problems must be overcome to make this dream a reality. This paper summarizes the aero/aerothermodynamic issues that must be addressed to make the dream a reality and discusses how aerothermodynamics facilities and their modem companion, real-gas computational fluid dynamics (CFD), can help solve the problems blocking the way to realizing the dream. The approach of the paper is first to outline the concept of an air-breathing hypersonic vehicle and then discuss the nose-to-tail aerothermodynamics issues and special aerodynamic problems that arise with such a craft. Then the utility of aerothermodynamic facilities and companion CFD analysis is illustrated by reviewing results from recent United States publications wherein these problems have been addressed. Papers selected for the discussion have k e n chosen such that the review will serve to survey important U.S. aero/aerothermodynamic real gas and conventional wind tunnel facilities that are useful in the study of hypersonic, hydrogen propelled hypervelocity vehicles.

  4. Second order upwind Lagrangian particle method for Euler equations

    DOE PAGES

    Samulyak, Roman; Chen, Hsin -Chiang; Yu, Kwangmin

    2016-06-01

    A new second order upwind Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) an upwind second-order particle-based algorithm with limiter, providing accuracy and longmore » term stability, and (c) accurate resolution of states at free interfaces. In conclusion, numerical verification tests demonstrating the convergence order for fixed domain and free surface problems are presented.« less

  5. Are upwind techniques in multi-phase flow models necessary?

    SciTech Connect

    Park, C.-H.; Boettcher, N.; Wang, W.; Kolditz, O.

    2011-09-10

    Two alternatives of primary variables are compared for two-phase flow in heterogeneous media by solving fully established benchmarks. The first combination utilizes pressure of the wetting fluid and saturation of the non-wetting fluid as primary variables, while the second employs capillary pressure of the wetting fluid and pressure of the non-wetting fluid. While the standard Galerkin finite element method (SGFEM) is known to fail in the physical reproduction of two-phase flow in heterogeneous media (unless employing a fully upwind correction), the second scheme with capillary pressure as a primary variable without applying an upwind technique produces correct physical fluid behaviour in heterogeneous media, as observed from experiments.

  6. Upwind finite-volume method for natural and forced convection

    SciTech Connect

    Pan, D.; Chang, C.H. . Inst. of Aeronautics and Astronautics)

    1994-03-01

    A third-order upwind finite-volume method was applied to solve the incompressible Navier-Stokes equations via the use of artificial compressibility. The energy equation and the source terms representing thermal buoyancy are included in the system. The inviscid fluxes are evaluated by a MUSCL-type flux difference upwind scheme based on the inviscid eigensystem. An implicit approximate factorization (AF) scheme was used for time integration, and subiterations at each time step can be applied to obtain time accuracy. Various steady and unsteady tests are performed to validate the present method, including problems in natural convection and forced convection, and in particular the complex flow field over two circular cylinders displaced normally to free stream.

  7. In-flight measurement of upwind dynamic soaring in albatrosses

    NASA Astrophysics Data System (ADS)

    Sachs, Gottfried

    2016-03-01

    In-flight measurement results on upwind flight of albatrosses using dynamic soaring are presented. It is shown how the birds manage to make progress against the wind on the basis of small-scale dynamic soaring maneuvers. For this purpose, trajectory features, motion quantities and mechanical energy relationships as well as force characteristics are analyzed. The movement on a large-scale basis consists of a tacking type flight technique which is composed of dynamic soaring cycle sequences with alternating orientation to the left and right. It is shown how this is performed by the birds so that they can achieve a net upwind flight without a transversal large-scale movement and how this compares with downwind or across wind flight. Results on upwind dynamic soaring are presented for low and high wind speed cases. It is quantified how much the tacking trajectory length is increased when compared with the beeline distance. The presented results which are based on in-flight measurements of free flying albatrosses were achieved with an in-house developed GPS-signal tracking method yielding the required high precision for the small-scale dynamic soaring flight maneuvers.

  8. Mars Science Laboratory Entry Capsule Aerothermodynamics and Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Hollis, Brian R.; Dyakonov, Artem A.; Laub, Bernard; Wright, Michael J.; Rivellini, Tomasso P.; Slimko, Eric M.; Willcockson, William H.

    2007-01-01

    The Mars Science Laboratory (MSL) spacecraft is being designed to carry a large rover (greater than 800 kg) to the surface of Mars using a blunt-body entry capsule as the primary decelerator. The spacecraft is being designed for launch in 2009 and arrival at Mars in 2010. The combination of large mass and diameter with non-zero angle-of-attack for MSL will result in unprecedented convective heating environments caused by turbulence prior to peak heating. Navier-Stokes computations predict a large turbulent heating augmentation for which there are no supporting flight data1 and little ground data for validation. Consequently, an extensive experimental program has been established specifically for MSL to understand the level of turbulent augmentation expected in flight. The experimental data support the prediction of turbulent transition and have also uncovered phenomena that cannot be replicated with available computational methods. The result is that the flight aeroheating environments predictions must include larger uncertainties than are typically used for a Mars entry capsule. Finally, the thermal protection system (TPS) being used for MSL has not been flown at the heat flux, pressure, and shear stress combinations expected in flight, so a test program has been established to obtain conditions relevant to flight. This paper summarizes the aerothermodynamic definition analysis and TPS development, focusing on the challenges that are unique to MSL.

  9. Nonequilibrium effects on the aerothermodynamics of transatmospheric and aerobraking vehicles

    NASA Technical Reports Server (NTRS)

    Hassan, Basil; Candler, Graham V.

    1993-01-01

    A 3D CFD algorithm is used to study the effect of thermal and chemical nonequilibrium on slender and blunt body aerothermodynamics. Both perfect gas and reacting gas air models are used to compute the flow over a generic transatmospheric vehicle and a proposed lunar transfer vehicle. The reacting air is characterized by a translational-rotational temperature and a vibrational-electron-electronic temperature and includes eight chemical species. The effects of chemical reaction, vibrational excitation, and ionization on lift-to-drag ratio and trim angle are investigated. Results for the NASA Ames All-body Configuration show a significant difference in center of gravity location for a reacting gas flight case when compared to a perfect gas wind tunnel case at the same Mach number, Reynolds number, and angle of attack. For the same center of gravity location, the wind tunnel model trims at lower angle of attack than the full-scale flight case. Nonionized and ionized results for a proposed lunar transfer vehicle compare well to computational results obtained from a previously validated reacting gas algorithm. Under the conditions investigated, effects of weak ionization on the heat transfer and aerodynamic coefficients were minimal.

  10. Aerothermodynamic Analysis of the Project FIRE II Afterbody Flow

    NASA Technical Reports Server (NTRS)

    Wright, Micheal J.; Loomis, Mark; Arnold, Jim (Technical Monitor)

    2000-01-01

    35 years later, the Project FIRE II ballistic reentry to Earth at a nominal velocity of 11.4 km/s remains one of the best sources of heating data for the design of sample return capsules. The data from this flight experiment encompass both the thermochemical non-equilibrium and equilibrium flow regimes and include measurements of both radiative and total heating on the forebody and afterbody. Because of this, a number of researchers have performed computational fluid dynamics (CFD) simulations of the forebody of the FIRE II entry vehicle, with generally good results. In particular, Olynick et. al. coupled a Navier-Stokes solver (GIANTS) with a radiation code (NOVAR) and showed excellent agreement in surface heat transfer over the FIRE II trajectory between 1634 and 1651 seconds (77 km to 37 km). However, in most cases the primary motivation of the previous work was to understand and model the coupling between shock layer radiation and aerothermodynamics, and thus the simulations concentrated on the forebody flow only. To our knowledge there have been no prior published attempts to reproduce the afterbody heating data. However, an understanding of this data is critical to our efforts to design the next generation of Earth and planetary entry vehicles and to assess our need for additional flight data.

  11. Aerothermodynamic Environment Definition for the Genesis Sample Return Capsule

    NASA Technical Reports Server (NTRS)

    Cheatwood, F. McNeil; Merski, N. Ronald, Jr.; Riley, Christopher J.; Mitcheltree, Robert A.

    2001-01-01

    NASA's Genesis sample return mission will be the first to return material from beyond the Earth-Moon system. NASA Langley Research Center supported this mission with aerothermodynamic analyses of the sample return capsule. This paper provides an overview of that effort. The capsule is attached through its forebody to the spacecraft bus. When the attachment is severed prior to Earth entry, forebody cavities remain. The presence of these cavities could dramatically increase the heating environment in their vicinity and downstream. A combination of computational fluid dynamics calculations and wind tunnel phosphor thermography tests were employed to address this issue. These results quantify the heating environment in and around the cavities, and were a factor in the decision to switch forebody heat shield materials. A transition map is developed which predicts that the flow aft of the penetrations will still be laminar at the peak heating point of the trajectory. As the vehicle continues along the trajectory to the peak dynamic pressure point, fully turbulent flow aft of the penetrations could occur. The integrated heat load calculations show that a heat shield sized to the stagnation point levels will be adequate for the predicted environment aft of the penetrations.

  12. Survey of aerodynamics and aerothermodynamics efforts carried out in the frame of Mars exploration projects

    NASA Astrophysics Data System (ADS)

    Reynier, Philippe

    2014-10-01

    This contribution is a survey of aerodynamic and aerothermodynamics data related to Mars entry. The survey includes the studies carried out in the frame of projects aiming at preparing exploration missions involving entry probes into Mars atmosphere and the efforts have been concentrated on the aerothermodynamics developments. Russian (including former Soviet Union), European and NASA aerothermodynamics developments for preparing such missions have been accounted for. If a focus has been dedicated to the flight data gathered during Viking and Mars Pathfinder entries, the experimental and numerical activities carried out for the different projects have been also considered. The emphasis has been put on the post-flight analysis of flight experiments. The objective of the activity has been to develop a database of the developments performed for Mars entry that will be of interest for the preparation of future missions and for testing new models related to radiative transfer, and chemical kinetics schemes based on a state-to-state approach.

  13. The use of the tethered satellite system to perform low density aerothermodynamics studies

    NASA Technical Reports Server (NTRS)

    Carlomagno, Giovanni M.; Deluca, Luigi; Siemers, Paul M.; Wood, George M., Jr.

    1988-01-01

    The Tethered Satellite System (TSS) is a cooperative space system development activity of the U.S.A. and Italy. It is comprised of the Tether Satellite (TS) and the deployer. Within TSS, the Shuttle Tethered Aerothermodynamic Research Facility (STARFAC) concept has the potential to provide access to vast portions of the upper atmosphere for atmospheric and aerothermodynamic research. The feasibility and capability of the TSS to operate as a continuous open wind tunnel and to perform low density aerothermodynamic studies are investigated. This is accomplished through a modified version of the TS simulation program (SKYHOOK). The results indicate that STARFAC concept is both feasible and practical. The TS can go below 100 km but, if thrust is used, large velocity variation (delta V) maneuvers and an attitude control are required; if a satellite lift is considered, large tether tension is produced and an attitude control is required.

  14. Langley Aerothermodynamic Facilities Complex: Enhancements and Testing Capabilities

    NASA Technical Reports Server (NTRS)

    Micol, J. R.

    1998-01-01

    Description, capabilities, recent upgrades, and utilization of the NASA Langley Research Center (LaRC) Aerothermodynamic Facilities Complex (AFC) are presented. The AFC consists of five hypersonic, blow-down-to-vacuum wind tunnels that collectively provide a range of Mach number from 6 to 20, unit Reynolds number from 0.04 to 22 million per foot and, most importantly for blunt configurations, normal shock density ratio from 4 to 12. These wide ranges of hypersonic simulation parameters are due, in part, to the use of three different test gases (air, helium, and tetrafluoromethane), thereby making several of the facilities unique. The Complex represents nearly three-fourths of the conventional (as opposed to impulse)-type hypersonic wind tunnels operational in this country. AFC facilities are used to assess and optimize the hypersonic aerodynamic performance and aeroheating characteristics of aerospace vehicle concepts and to provide benchmark aerodynamic/aeroheating data fr generating the flight aerodynamic databook and final design of the thermal protection system (TPS) (e.g., establishment of flight limitations not to exceed TPS design limits). Modifications and enhancements of AFC hardware components and instrumentation have been pursued to increase capability, reliability, and productivity in support of programmatic goals. Examples illustrating facility utilization in recent years to generate essentially all of the experimental hypersonic aerodynamic and aeroheating information for high-priority, fast-paced Agency programs are presented. These programs include Phase I of the Reusable Launch Vehicle (RLV) Advanced Technology Demonstrator, X-33 program, PHase II of the X-33 program, X-34 program, the Hyper-X program ( a Mach 5,7, and 10 airbreathing propulsion flight experiment), and the X-38 program (Experimental Crew Return Vehicle, X-CRV). Current upgrades/enchancements and future plans for the AFC are discussed.

  15. A rotationally biased upwind difference scheme for the Euler equations

    NASA Technical Reports Server (NTRS)

    Davis, S. F.

    1983-01-01

    The upwind difference schemes of Godunov, Osher, Roe and van Leer are able to resolve one dimensional steady shocks for the Euler equations within one or two mesh intervals. Unfortunately, this resolution is lost in two dimensions when the shock crosses the computing grid at an oblique angle. To correct this problem, a numerical scheme was developed which automatically locates the angle at which a shock might be expected to cross the computing grid and then constructs separate finite difference formulas for the flux components normal and tangential to this direction. Numerical results which illustrate the ability of this method to resolve steady oblique shocks are presented.

  16. A rotationally biased upwind difference scheme for the Euler equations

    NASA Technical Reports Server (NTRS)

    Davis, S. F.

    1984-01-01

    The upwind difference schemes of Godunov, Osher, Roe and van Leer are able to resolve one dimensional steady shocks for the Euler equations within one or two mesh intervals. Unfortunately, this resolution is lost in two dimensions when the shock crosses the computing grid at an oblique angle. To correct this problem, a numerical scheme was developed which automatically locates the angle at which a shock might be expected to cross the computing grid and then constructs separate finite difference formulas for the flux components normal and tangential to this direction. Numerical results which illustrate the ability of this method to resolve steady oblique shocks are presented.

  17. Diffusion Characteristics of Upwind Schemes on Unstructured Triangulations

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Kleb, William L.

    1998-01-01

    The diffusive characteristics of two upwind schemes, multi-dimensional fluctuation splitting and dimensionally-split finite volume, are compared for scalar advection-diffusion problems. Algorithms for the two schemes are developed for node-based data representation on median-dual meshes associated with unstructured triangulations in two spatial dimensions. Four model equations are considered: linear advection, non-linear advection, diffusion, and advection-diffusion. Modular coding is employed to isolate the effects of the two approaches for upwind flux evaluation, allowing for head-to-head accuracy and efficiency comparisons. Both the stability of compressive limiters and the amount of artificial diffusion generated by the schemes is found to be grid-orientation dependent, with the fluctuation splitting scheme producing less artificial diffusion than the dimensionally-split finite volume scheme. Convergence rates are compared for the combined advection-diffusion problem, with a speedup of 2-3 seen for fluctuation splitting versus finite volume when solved on the same mesh. However, accurate solutions to problems with small diffusion coefficients can be achieved on coarser meshes using fluctuation splitting rather than finite volume, so that when comparing convergence rates to reach a given accuracy, fluctuation splitting shows a 20-25 speedup over finite volume.

  18. Upwind schemes and bifurcating solutions in real gas computations

    NASA Technical Reports Server (NTRS)

    Suresh, Ambady; Liou, Meng-Sing

    1992-01-01

    The area of high speed flow is seeing a renewed interest due to advanced propulsion concepts such as the National Aerospace Plane (NASP), Space Shuttle, and future civil transport concepts. Upwind schemes to solve such flows have become increasingly popular in the last decade due to their excellent shock capturing properties. In the first part of this paper the authors present the extension of the Osher scheme to equilibrium and non-equilibrium gases. For simplicity, the source terms are treated explicitly. Computations based on the above scheme are presented to demonstrate the feasibility, accuracy and efficiency of the proposed scheme. One of the test problems is a Chapman-Jouguet detonation problem for which numerical solutions have been known to bifurcate into spurious weak detonation solutions on coarse grids. Results indicate that the numerical solution obtained depends both on the upwinding scheme used and the limiter employed to obtain second order accuracy. For example, the Osher scheme gives the correct CJ solution when the super-bee limiter is used, but gives the spurious solution when the Van Leer limiter is used. With the Roe scheme the spurious solution is obtained for all limiters.

  19. An upwind nodal integral method for incompressible fluid flow

    SciTech Connect

    Esser, P.D. ); Witt, R.J. )

    1993-05-01

    An upwind nodal solution method is developed for the steady, two-dimensional flow of an incompressible fluid. The formulation is based on the nodal integral method, which uses transverse integrations, analytical solutions of the one-dimensional averaged equations, and node-averaged uniqueness constraints to derive the discretized nodal equations. The derivation introduces an exponential upwind bias by retaining the streamwise convection term in the homogeneous part of the transverse-integrated convection-diffusion equation. The method is adapted to the stream function-vorticity form of the Navier-Stokes equations, which are solved over a nonstaggered nodal mesh. A special nodal scheme is used for the Poisson stream function equation to properly account for the exponentially varying vorticity source. Rigorous expressions for the velocity components and the no-slip vorticity boundary condition are derived from the stream function formulation. The method is validated with several benchmark problems. An idealized purely convective flow of a scalar step function indicates that the nodal approximation errors are primarily dispersive, not dissipative, in nature. Results for idealized and actual recirculating driven-cavity flows reveal a significant reduction in false diffusion compared with conventional finite difference techniques.

  20. An Implicit Upwind Algorithm for Computing Turbulent Flows on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Anerson, W. Kyle; Bonhaus, Daryl L.

    1994-01-01

    An implicit, Navier-Stokes solution algorithm is presented for the computation of turbulent flow on unstructured grids. The inviscid fluxes are computed using an upwind algorithm and the solution is advanced in time using a backward-Euler time-stepping scheme. At each time step, the linear system of equations is approximately solved with a point-implicit relaxation scheme. This methodology provides a viable and robust algorithm for computing turbulent flows on unstructured meshes. Results are shown for subsonic flow over a NACA 0012 airfoil and for transonic flow over a RAE 2822 airfoil exhibiting a strong upper-surface shock. In addition, results are shown for 3 element and 4 element airfoil configurations. For the calculations, two one equation turbulence models are utilized. For the NACA 0012 airfoil, a pressure distribution and force data are compared with other computational results as well as with experiment. Comparisons of computed pressure distributions and velocity profiles with experimental data are shown for the RAE airfoil and for the 3 element configuration. For the 4 element case, comparisons of surface pressure distributions with experiment are made. In general, the agreement between the computations and the experiment is good.

  1. Development and application of computational aerothermodynamics flowfield computer codes

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj

    1992-01-01

    Presented is a collection of papers on research activities carried out during the funding period of October 1991 to March 1992. Topics covered include: blunt body flows in thermochemical equilibrium; thermochemical relaxation in high enthalpy nozzle flow; single expansion ramp nozzle simulations; lunar return aerobraking; line boundary problem for three dimensional grids; and unsteady shock induced combustion.

  2. Analysis of implicit second-order upwind-biased stencils

    NASA Technical Reports Server (NTRS)

    Roberts, Thomas W.; Warren, Gary P.

    1993-01-01

    Truncation error and stability properties of several implicit upwind schemes for the two-dimensional Euler equations are examined. The schemes use linear data reconstruction methods to achieve second-order flux integrations where the implicit Jacobian operators are first order. The stability properties of the schemes are examined by a Von Neumann analysis of the linearized, constant-coefficient Euler equations. The choice of the data reconstruction method used to evaluate the flux integral has a dramatic effect on the convergence properties of the implicit solution method. In particular, the typical one-dimensional data reconstruction methods used with structured grids exhibit poor convergence properties compared to the unstructured grid method considered. Of the schemes examined, the one with the superior convergence properties is well-suited for both unstructured and structured grids, which has important implications for the design of implicit methods.

  3. Factorizable Upwind Schemes: The Triangular Unstructured Grid Formulation

    NASA Technical Reports Server (NTRS)

    Sidilkover, David; Nielsen, Eric J.

    2001-01-01

    The upwind factorizable schemes for the equations of fluid were introduced recently. They facilitate achieving the Textbook Multigrid Efficiency (TME) and are expected also to result in the solvers of unparalleled robustness. The approach itself is very general. Therefore, it may well become a general framework for the large-scale, Computational Fluid Dynamics. In this paper we outline the triangular grid formulation of the factorizable schemes. The derivation is based on the fact that the factorizable schemes can be expressed entirely using vector notation. without explicitly mentioning a particular coordinate frame. We, describe the resulting discrete scheme in detail and present some computational results verifying the basic properties of the scheme/solver.

  4. An Upwind Solver for the National Combustion Code

    NASA Technical Reports Server (NTRS)

    Sockol, Peter M.

    2011-01-01

    An upwind solver is presented for the unstructured grid National Combustion Code (NCC). The compressible Navier-Stokes equations with time-derivative preconditioning and preconditioned flux-difference splitting of the inviscid terms are used. First order derivatives are computed on cell faces and used to evaluate the shear stresses and heat fluxes. A new flux limiter uses these same first order derivatives in the evaluation of left and right states used in the flux-difference splitting. The k-epsilon turbulence equations are solved with the same second-order method. The new solver has been installed in a recent version of NCC and the resulting code has been tested successfully in 2D on two laminar cases with known solutions and one turbulent case with experimental data.

  5. High upwind concentrations observed during an upslope tracer event

    SciTech Connect

    Ciolek, J.T. Jr.

    1993-10-01

    In February of 1991 the Rocky Flats Plant conducted twelve tracer experiments to validate an emergency response dispersion model known as the Terrain-Responsive Atmospheric Code (TRAC) (Hodgin 1985). Experimenters released 140 to 260 kilograms of inert tracer gas (sulfur hexafloride) from the plant over an 11 hour period. During each release, one hundred and sixty-five samples, most of which formed concentric rings of 8 and 16 km radius from the plant, recorded cumulative hourly concentrations of the tracer at one meter above ground level (AGL). Figure 1 contains a depiction of the sampler location, the terrain, and the meteorological stations available within the tracer study area. Brown (1991) describes the experimental setup in more detail. The subject of this paper is an event that occurred early in the fifth experiment, on February 9, 1991. In this experiment, tracer material released from 13:00 to 17:00 LST appeared both downwind and upwind of the source, with the highest concentrations upwind. During the fifth experiment, high pressure in Utah produced mostly sunny skis around Rocky Flats. For most of the day, one could find moderate (5 to 10 ms{sup {minus}1}) northerly (from the North) flow within the 700 to 500 mb level of the atmosphere (approximately 3000 to 5500 meters above Mean Sea Level (MSL)). Synoptic scale motions were isolated enough from the surface layer and heating was great enough to produce a 1 km deep upslope flow (flow from the East to the West) by late afternoon. The winds reversed and became downslope at approximately 17:30 LST.

  6. Development of X-33/X-34 Aerothermodynamic Data Bases: Lessons Learned and Future Enhancements

    NASA Technical Reports Server (NTRS)

    Miller, C. G.

    2000-01-01

    A synoptic of programmatic and technical lessons learned in the development of aerothermodynamic data bases for the X-33 and X-34 programs is presented in general terms and from the perspective of the NASA Langley Research Center Aerothermodynamics Branch. The format used is that of the "aerothermodynamic chain," the links of which are personnel, facilities, models/test articles, instrumentation, test techniques, and computational fluid dynamics (CFD). Because the aerodynamic data bases upon which the X-33 and X-34 vehicles will fly are almost exclusively from wind tunnel testing, as opposed to CFD, the primary focus of the lessons learned is on ground-based testing. The period corresponding to the development of X-33 and X-34 aerothermodynamic data bases was challenging, since a number of other such programs (e.g., X-38, X-43) competed for resources at a time of downsizing of personnel, facilities, etc., outsourcing, and role changes as NASA Centers served as subcontractors to industry. The impact of this changing environment is embedded in the lessons learned. From a technical perspective, the relatively long times to design and fabricate metallic force and moment models, delays in delivery of models, and a lack of quality assurance to determine the fidelity of model outer mold lines (OML) prior to wind tunnel testing had a major negative impact on the programs. On the positive side, the application of phosphor thermography to obtain global, quantitative heating distributions on rapidly fabricated ceramic models revolutionized the aerothermodynamic optimization of vehicle OMLs, control surfaces, etc. Vehicle designers were provided with aeroheating information prior to, or in conjunction with, aerodynamic information early in the program, thereby allowing trades to be made with both sets of input; in the past only aerodynamic data were available as input. Programmatically, failure to include transonic aerodynamic wind tunnel tests early in the assessment phase

  7. The artificially blunted leading edge concept for aerothermodynamic performance enhancement

    NASA Astrophysics Data System (ADS)

    Gupta, Anurag

    An innovative aerothermodynamic performance enhancement concept for blunted geometries in hypervelocity flight is described. An Artificially Blunted Leading Edge (ABLE) is sought to be created by the use of a flow-through channel sized to choke at supersonic (in the normal direction) conditions. As a result, a normal shock stands off the channel but the high post-shock pressures have no wall to act on, leading to a reduction in wave drag. The effective blunt body flow structure can be effective at preventing the rise in heat transfer rates at channel entrance lips. In lifting flight, the flow in the channel creates suction at the lip, significantly enhancing lift for non-slender shapes. CFD studies using Reynolds Averaged Navier-Stokes simulations provide proof-of- concept for drag reduction for blunted slender geometries and L/D enhancements for sphere-cones. The ABLE flow mechanism's robustness and its effectiveness at off- design conditions is demonstrated. The computed sphere- cone L/D enhancements are also validated with experimental results from Aeroballistic Range tests. As opposed to straight channels, ABLE variants with curved channels that provide for better volumetric efficiency, reduced viscous drag penalties and better performance were designed and investigated. The channels curve outward and exhaust the flow close to the leading edge. Even while exhausting tangentially, the exhaust-mean flow interactions were shown to enhance or create lift. The force amplification due to such interactions can also be leveraged with the channel flow exhausting nearly normal to the surface. The potential of such thrust vectoring to reduce trim drag and augment directional control in the high-speed regime was demonstrated numerically. To evaluate the concept's effectiveness at improving cd or L/D values without paying any penalties in lift, enclosed volume and peak heating rates, Multidisciplinary Design Optimization techniques are used to characterize the design space

  8. Comparative study of upwind schemes for transonic and supersonic internal flows

    NASA Astrophysics Data System (ADS)

    Niculescu, M. L.; Dǎnǎilǎ, S.

    2013-10-01

    A study of some popular upwind schemes applied to transonic internal flows using some well-known test cases is done in this paper. We focused on upwind schemes because the central space discretizations have symmetry with respect to a change in sign; therefore, the physical propagation of perturbations along characteristics, typical of hyperbolic equations is not considered in the definition of numerical model. In contrast to the central space discretizations, the upwind schemes whose origin may be due to Courant et al. [1] are directed towards the introduction of the physical properties of the flow equations into the discretized formulation that has leads to upwinding techniques such as flux vector splitting and flux difference splitting. In order to test the accuracy, robustness and efficiency of some popular upwind methods (van Leer scheme, Roe scheme and Liou's AUSM+ scheme); we used some well-known test cases.

  9. The use of the Tethered Satellite System to perform low density aerothermodynamics studies

    NASA Technical Reports Server (NTRS)

    Carlomagno, Giovanni M.; De Luca, Luigi; Siemers, Paul M.; Wood, George M., Jr.

    1988-01-01

    The Tethered Satellite System (TSS) is a cooperative space system development activity being carried out by USA and Italy. Within TSS, the Shuttle Tethered Aerothermodynamic Research Facility (STARFAC) concept has the potential to provide access to vast portions of the upper atmosphere for the purpose of atmospheric and aerothermodynamic research. The implementation of this capability will push Tether System (TS) state of the art to its limits; the primary problems being tether/satellite drag, heating, tension control, deployment/retrieval control. In this paper parametric studies are accomplished to assess some of these problems and to delineate the tradeoffs available to missions design to meet the engineering constraints. The utilization of aerodynamic rather than spherical shapes - (TSS) - as well as elementary satellite thrusting and lift are included in the present study.

  10. Numerical Simulations Of High-Altitude Aerothermodynamics Of A Prospective Spacecraft Model

    NASA Astrophysics Data System (ADS)

    Vashchenkov, P. V.; Kaskovsky, A. V.; Krylov, A. N.; Ivanov, M. S.

    2011-05-01

    The paper describes the computations of aerothermodynamic characteristics of a promising spacecraft (Prospective Piloted Transport System) along its de- scent trajectory at altitudes from 120 to 60 km. The computations are performed by the DSMC method with the use of the SMILE software system and by the engineering technique (local bridging method) with the use of the RuSat software system. The influence of real gas effects (excitation of rotational and vibrational energy modes and chemical reactions) on aerothermodynamic characteristics of the vehicle is studied. A comparison of results obtained by the approximate engineering method and the DSMC method allow the accuracy of prediction of aerodynamic characteristics by the local bridging method to be estimated.

  11. Real-Gas Flow Properties for NASA Langley Research Center Aerothermodynamic Facilities Complex Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    1996-01-01

    A computational algorithm has been developed which can be employed to determine the flow properties of an arbitrary real (virial) gas in a wind tunnel. A multiple-coefficient virial gas equation of state and the assumption of isentropic flow are used to model the gas and to compute flow properties throughout the wind tunnel. This algorithm has been used to calculate flow properties for the wind tunnels of the Aerothermodynamics Facilities Complex at the NASA Langley Research Center, in which air, CF4. He, and N2 are employed as test gases. The algorithm is detailed in this paper and sample results are presented for each of the Aerothermodynamic Facilities Complex wind tunnels.

  12. Wind-tunnel based definition of the AFE aerothermodynamic environment. [Aeroassist Flight Experiment

    NASA Technical Reports Server (NTRS)

    Miller, Charles G.; Wells, W. L.

    1992-01-01

    The Aeroassist Flight Experiment (AFE), scheduled to be performed in 1994, will serve as a precursor for aeroassisted space transfer vehicles (ASTV's) and is representative of entry concepts being considered for missions to Mars. Rationale for the AFE is reviewed briefly as are the various experiments carried aboard the vehicle. The approach used to determine hypersonic aerodynamic and aerothermodynamic characteristics over a wide range of simulation parameters in ground-based facilities is presented. Facilities, instrumentation and test procedures employed in the establishment of the data base are discussed. Measurements illustrating the effects of hypersonic simulation parameters, particularly normal-shock density ratio (an important parameter for hypersonic blunt bodies), and attitude on aerodynamic and aerothermodynamic characteristics are presented, and predictions from computational fluid dynamic (CFD) computer codes are compared with measurement.

  13. Overview of X-38 Hypersonic Aerothermodynamic Wind Tunnel Data and Comparison with Numerical Results

    NASA Technical Reports Server (NTRS)

    Campbell, C.; Caram, J.; Berry, S.; Horvath, T.; Merski, N.; Loomis, M.; Venkatapathy, E.

    2004-01-01

    A NASA team of engineers has been organized to design a crew return vehicle for returning International Space Station crew members from orbit. The hypersonic aerothermodynamic characteristics of the X-23/X-24A derived X-38 crew return vehicle are being evaluated in various wind tunnels in support of this effort. Aerothermodynamic data from two NASA hypersonic tunnels at Mach 6 and Mach 10 has been obtained with cast ceramic models and a thermographic phosphorus digital imaging system. General windward surface heating features are described based on experimental surface heating images and surface oil flow patterns for the nominal hypersonic aerodynamic orientation. Body flap reattachment heating levels are examined. Computational Fluid Dynamics tools have been applied at the appropriate wind tunnel conditions to make comparisons with this data.

  14. Hypersonic research engine/aerothermodynamic integration model, experimental results. Volume 1: Mach 6 component integration

    NASA Technical Reports Server (NTRS)

    Andrews, E. H., Jr.; Mackley, E. A.

    1976-01-01

    The NASA Hypersonic Research Engine (HRE) Project was initiated for the purpose of advancing the technology of airbreathing propulsion for hypersonic flight. A large component (inlet, combustor, and nozzle) and structures development program was encompassed by the project. The tests of a full-scale (18 in. diameter cowl and 87 in. long) HRE concept, designated the Aerothermodynamic Integration Model (AIM), at Mach numbers of 5, 6, and 7. Computer program results for Mach 6 component integration tests are presented.

  15. Hypersonic research engine project. Phase 2: Aerothermodynamic Integration Model (AIM) test report

    NASA Technical Reports Server (NTRS)

    Andersen, W. L.; Kado, L.

    1975-01-01

    The Hypersonic Research Engine-Aerothermodynamic Integration Model (HRE-AIM) was designed, fabricated, and tested in the Hypersonic Tunnel Facility. The HRE-AIM is described along with its installation in the wind tunnel facility. Test conditions to which the HRE-AIM was subjected and observations made during the tests are discussed. The overall engine performance, component interaction, and ignition limits for the design are evaluated.

  16. Aerothermodynamic flow phenomena of the airframe-integrated supersonic combustion ramjet

    NASA Technical Reports Server (NTRS)

    Walton, James T.

    1992-01-01

    The unique component flow phenomena is discussed of the airframe-integrated supersonic combustion ramjet (scramjet) in a format geared towards new players in the arena of hypersonic propulsion. After giving an overview of the scramjet aerothermodynamic cycle, the characteristics are then covered individually of the vehicle forebody, inlet, combustor, and vehicle afterbody/nozzle. Attention is given to phenomena such as inlet speeding, inlet starting, inlet spillage, fuel injection, thermal choking, and combustor-inlet interaction.

  17. Impact of ETO propellants on the aerothermodynamic analyses of propulsion components

    NASA Technical Reports Server (NTRS)

    Civinskas, K. C.; Boyle, R. J.; Mcconnaughey, H. V.

    1988-01-01

    The operating conditions and the propellant transport properties used in Earth-to-Orbit (ETO) applications affect the aerothermodynamic design of ETO turbomachinery in a number of ways. Some aerodynamic and heat transfer implications of the low molecular weight fluids and high Reynolds number operating conditions on future ETO turbomachinery are discussed. Using the current SSME high pressure fuel turbine as a baseline, the aerothermodynamic comparisons are made for two alternate fuel turbine geometries. The first is a revised first stage rotor blade designed to reduce peak heat transfer. This alternate design resulted in a 23 percent reduction in peak heat transfer. The second design concept was a single stage rotor to yield the same power output as the baseline two stage rotor. Since the rotor tip speed was held constant, the turbine work factor doubled. In this alternate design, the peak heat transfer remained the same as the baseline. While the efficiency of the single stage design was 3.1 points less than the baseline two stage turbine, the design was aerothermodynamically feasible, and may be structurally desirable.

  18. PRE_X Programme: Aerothermodynamic Objectives and Aeroshape Definition for in Flight Experiments

    NASA Astrophysics Data System (ADS)

    Lambert, O.; Tribot, J.-P.; Saint-Cloud, F.

    2002-01-01

    As the expendable launch vehicles (ELV) are limited in their trend to lower costs, the reusability (Reusable Launch Vehicle, RLV) could be the way to make drastic step. By the year 2001, CNES proposed through the ANGEL phase 1 programme to preprare the required technical maturity before that RLV's become alternatives to ELV's. In such way, system ,propulsion, ground based demonstrations, aero-thermo-dynamics as well as in flight experimentation are planned. This paper is focused on the aero-thermo-dynamics (ATD) and in flight demonstration activities with emphasis on the better understanding of ATD problems emerging from past programmes among them shock wave transitionnal boundary layer interaction on surface control, boundary layer transition, local aerothermodynamic effects, gas- surface interaction, catalycity, base flow prediction,...In order to minimize as small as possible the management risk a first generation of vehicle dubbed Pre_X is designed to validate technological choices and to have as soon as possible re-entry data to calibrate the various tools involved in the future RLV definition. In addition, the main requirement for PRE_X aeroshape definition and the two different design approaches considered by Dassault Aviation and EADS-LV are discussed. Then, the more promising concept for the PRE_X application is presented. Finally, the current status of the ATD activities is given as well as the perspectives.

  19. Intermediate Experimental Vehicle, ESA Program Aerothermodynamics- Transition And Steps And Gaps Assessment

    NASA Astrophysics Data System (ADS)

    Verand, Jean-Luc; Pelissier, Christian; Sourgen, Frederic; Fontaine, Joelle; Garcon, Francois; Spel, Martin; van Hauwaert, Pierre; Charbonnier, Dominique; Vos, Jan; Vallee, Jean-Jacques; Pibarot, Julien; Tribot, Jean-Pierre; Mareschi, Vincenzo; Ferrarella, Daniella; Rufolo, Giuseppe

    2011-05-01

    The Intermediate eXperimental Vehicle (IXV) project objectives are the design, development, manufacture and ground and flight verification of an autonomous European lifting and aerodynamically controlled re-entry system, which is highly flexible and manoeuvrable. The IXV vehicle is a flying test bed for securing the next step of operational space vehicle development by supporting technology demonstration and system concept through the following objectives: a) Aerothermodynamics b) Advanced In Flight Experiments c) Thermal Protection System d) Guidance Navigation and Control e) System design The assessment of the general aerothermodynamic environment of IXV vehicle is mainly performed considering a smooth simplified geometry. However, the thermal protection system of IXV includes a mono-block ceramic matrix composite nose and an assembly of shingles between which steps and gaps are generated. From an aerothermodynamic point of view, such a distributed roughness layout cannot be ignored in terms of modification of the interaction between the flow and the body. To assess this effect, dedicated Mach number 5.5 wind tunnel tests (ONERA, S3MA facility) and numerical simulations (RTECH and CFS Engineering) have been performed during the phase C2 of the project. The paper presents the general logic of the work, with emphasis on the wind tunnel model design, tests involving infrared thermal measurements as well as the CFD rebuilding of the flow in the wind tunnel and the extrapolation from ground-to-flight.

  20. A generalized procedure for constructing an upwind based TVD scheme

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing

    1987-01-01

    A generalized formulation for constructing second- and higher-order accurate TVD (total variation diminishing) schemes is presented. A given scheme is made TVD by limiting antidiffusive flux differences with some linear functions, so-called limiters. The general idea of the formulation and its mathematical proof of Harten's TVD conditions is shown by applying the Lax-Wendroff method to scalar nonlinear equations and a constant-coefficient system of conservation laws. For the system of equations, several definitions are derived for the argument used in the limiter function and present their performance in numerical experiments. The formulation is extended to the nonlinear system. It is demonstrated that the present procedure can easily convert existing central or upwind, and second- or higher-order differencing schemes to preserve monotonicity and yield physically admissible solutions. The formulation is simple mathematically as well as numerically; both matrix-vector multiplication and Riemann solver are avoided. Although the notion of TVD is based on the initial value problem, application to the steady Euler equations of the formulation is also made.

  1. Impact of Upwind Land Cover Change on Mount Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Fairman, J. G.; Nair, U. S.; Christopher, S. A.; Mark, B. G.; Plummer, M. A.

    2008-12-01

    Studies show local climate in mountain regions are impacted by deforestation at upwind locations. Low land deforestation alters surface energy budget, especially during dry season, altering orographic cloud formation and also surface meteorology at montane locations. While the prior investigations have focused on the effect of low land deforestation on Tropical Montane Cloud Forests, low land deforestation also has the potential to impact alpine glaciers. Retreat of alpine glaciers around the globe has be attributed to global climate change, but at sites such as Kilimanjaro impact of low land deforestation also need to considered. The focus of this study is to address this issue through the use of Regional Atmospheric Modeling System (RAMS) utilizing satellite data to specify realistic land use change scenarios. The atmospheric fields from the RAMS modeling system will be linked to glacier mass energy balance and ice flow model to study the impact of low land deforestation on glacier retreat. The presentation will include details of model development and initial results from the use of the modeling system.

  2. Numerical solution of 3D Navier-Stokes equations with upwind implicit schemes

    NASA Technical Reports Server (NTRS)

    Marx, Yves P.

    1990-01-01

    An upwind MUSCL type implicit scheme for the three-dimensional Navier-Stokes equations is presented. Comparison between different approximate Riemann solvers (Roe and Osher) are performed and the influence of the reconstructions schemes on the accuracy of the solution as well as on the convergence of the method is studied. A new limiter is introduced in order to remove the problems usually associated with non-linear upwind schemes. The implementation of a diagonal upwind implicit operator for the three-dimensional Navier-Stokes equations is also discussed. Finally the turbulence modeling is assessed. Good prediction of separated flows are demonstrated if a non-equilibrium turbulence model is used.

  3. Development and application of computational aerothermodynamics flowfield computer codes

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj

    1993-01-01

    Computations are presented for one-dimensional, strong shock waves that are typical of those that form in front of a reentering spacecraft. The fluid mechanics and thermochemistry are modeled using two different approaches. The first employs traditional continuum techniques in solving the Navier-Stokes equations. The second-approach employs a particle simulation technique (the direct simulation Monte Carlo method, DSMC). The thermochemical models employed in these two techniques are quite different. The present investigation presents an evaluation of thermochemical models for nitrogen under hypersonic flow conditions. Four separate cases are considered. The cases are governed, respectively, by the following: vibrational relaxation; weak dissociation; strong dissociation; and weak ionization. In near-continuum, hypersonic flow, the nonequilibrium thermochemical models employed in continuum and particle simulations produce nearly identical solutions. Further, the two approaches are evaluated successfully against available experimental data for weakly and strongly dissociating flows.

  4. Modeling, Measurements, and Fundamental Database Development for Nonequilibrium Hypersonic Aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Bose, Deepak

    2012-01-01

    The design of entry vehicles requires predictions of aerothermal environment during the hypersonic phase of their flight trajectories. These predictions are made using computational fluid dynamics (CFD) codes that often rely on physics and chemistry models of nonequilibrium processes. The primary processes of interest are gas phase chemistry, internal energy relaxation, electronic excitation, nonequilibrium emission and absorption of radiation, and gas-surface interaction leading to surface recession and catalytic recombination. NASAs Hypersonics Project is advancing the state-of-the-art in modeling of nonequilibrium phenomena by making detailed spectroscopic measurements in shock tube and arcjets, using ab-initio quantum mechanical techniques develop fundamental chemistry and spectroscopic databases, making fundamental measurements of finite-rate gas surface interactions, implementing of detailed mechanisms in the state-of-the-art CFD codes, The development of new models is based on validation with relevant experiments. We will present the latest developments and a roadmap for the technical areas mentioned above

  5. Extension of a streamwise upwind algorithm to a moving grid system

    NASA Technical Reports Server (NTRS)

    Obayashi, Shigeru; Goorjian, Peter M.; Guruswamy, Guru P.

    1990-01-01

    A new streamwise upwind algorithm was derived to compute unsteady flow fields with the use of a moving-grid system. The temporally nonconservative LU-ADI (lower-upper-factored, alternating-direction-implicit) method was applied for time marching computations. A comparison of the temporally nonconservative method with a time-conservative implicit upwind method indicates that the solutions are insensitive to the conservative properties of the implicit solvers when practical time steps are used. Using this new method, computations were made for an oscillating wing at a transonic Mach number. The computed results confirm that the present upwind scheme captures the shock motion better than the central-difference scheme based on the beam-warming algorithm. The new upwind option of the code allows larger time-steps and thus is more efficient, even though it requires slightly more computational time per time step than the central-difference option.

  6. Relaxation System

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Environ Corporation's relaxation system is built around a body lounge, a kind of super easy chair that incorporates sensory devices. Computer controlled enclosure provides filtered ionized air to create a feeling of invigoration, enhanced by mood changing aromas. Occupant is also surrounded by multidimensional audio and the lighting is programmed to change colors, patterns, and intensity periodically. These and other sensory stimulators are designed to provide an environment in which the learning process is stimulated, because research has proven that while an individual is in a deep state of relaxation, the mind is more receptive to new information.

  7. Effect of surface catalycity on high-altitude aerothermodynamics of reentry vehicles

    NASA Astrophysics Data System (ADS)

    Molchanova, A. N.; Kashkovsky, A. V.; Bondar, Ye. A.

    2016-10-01

    This work is aimed at the development of surface chemistry models for the Direct Simulation Monte Carlo (DSMC) method applicable to non-equilibrium high-temperature flows about reentry vehicles. Probabilities of the surface processes dependent on individual properties of each particular molecule are determined from the macroscopic reaction rate data. Two different macroscopic finite rate sets are used for construction of DSMC surface recombination models. The models are implemented in the SMILE++ software system for DSMC computations. A comparison with available experimental data is performed. Effects of surface recombination on the aerothermodynamics of a blunt body at high-altitude reentry conditions are numerically studied with the DSMC method.

  8. Integrated Design Engineering Analysis (IDEA) Environment - Aerodynamics, Aerothermodynamics, and Thermal Protection System Integration Module

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hilmi N.

    2011-01-01

    This report documents the work performed during from March 2010 October 2011. The Integrated Design and Engineering Analysis (IDEA) environment is a collaborative environment based on an object-oriented, multidisciplinary, distributed environment using the Adaptive Modeling Language (AML) as the underlying framework. This report will focus on describing the work done in the area of extending the aerodynamics, and aerothermodynamics module using S/HABP, CBAERO, PREMIN and LANMIN. It will also detail the work done integrating EXITS as the TPS sizing tool.

  9. A Review of Hypersonics Aerodynamics, Aerothermodynamics and Plasmadynamics Activities within NASA's Fundamental Aeronautics Program

    NASA Technical Reports Server (NTRS)

    Salas, Manuel D.

    2007-01-01

    The research program of the aerodynamics, aerothermodynamics and plasmadynamics discipline of NASA's Hypersonic Project is reviewed. Details are provided for each of its three components: 1) development of physics-based models of non-equilibrium chemistry, surface catalytic effects, turbulence, transition and radiation; 2) development of advanced simulation tools to enable increased spatial and time accuracy, increased geometrical complexity, grid adaptation, increased physical-processes complexity, uncertainty quantification and error control; and 3) establishment of experimental databases from ground and flight experiments to develop better understanding of high-speed flows and to provide data to validate and guide the development of simulation tools.

  10. Numerical investigations on the aerodynamic performance of wind turbine: Downwind versus upwind configuration

    NASA Astrophysics Data System (ADS)

    Zhou, Hu; Wan, Decheng

    2015-03-01

    Although the upwind configuration is more popular in the field of wind energy, the downwind one is a promising type for the offshore wind energy due to its special advantages. Different configurations have different aerodynamic performance and it is important to predict the performance of both downwind and upwind configurations accurately for designing and developing more reliable wind turbines. In this paper, a numerical investigation on the aerodynamic performance of National Renewable Energy Laboratory (NREL) phase VI wind turbine in downwind and upwind configurations is presented. The open source toolbox OpenFOAM coupled with arbitrary mesh interface (AMI) method is applied to tackle rotating problems of wind turbines. Two 3D numerical models of NREL phase VI wind turbine with downwind and upwind configurations under four typical working conditions of incoming wind velocities are set up for the study of different unsteady characteristics of the downwind and upwind configurations, respectively. Numerical results of wake vortex structure, time histories of thrust, pressure distribution on the blade and limiting streamlines which can be used to identify points of separation in a 3D flow are presented. It can be concluded that thrust reduction due to blade-tower interaction is small for upwind wind turbines but relatively large for downwind wind turbines and attention should be paid to the vibration at a certain frequency induced by the cyclic reduction for both configurations. The results and conclusions are helpful to analyze the different aerodynamic performance of wind turbines between downwind and upwind configurations, providing useful references for practical design of wind turbine.

  11. Survey of Aerothermodynamics Facilities Useful for the Design of Hypersonic Vehicles Using Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Deiwert, George S.

    1997-01-01

    This paper surveys the use of aerothermodynamic facilities which have been useful in the study of external flows and propulsion aspects of hypersonic, air-breathing vehicles. While the paper is not a survey of all facilities, it covers the utility of shock tunnels and conventional hypersonic blow-down facilities which have been used for hypersonic air-breather studies. The problems confronting researchers in the field of aerothermodynamics are outlined. Results from the T5 GALCIT tunnel for the shock-on lip problem are outlined. Experiments on combustors and short expansion nozzles using the semi-free jet method have been conducted in large shock tunnels. An example which employed the NASA Ames 16-Inch shock tunnel is outlined, and the philosophy of the test technique is described. Conventional blow-down hypersonic wind tunnels are quite useful in hypersonic air-breathing studies. Results from an expansion ramp experiment, simulating the nozzle on a hypersonic air-breather from the NASA Ames 3.5 Foot Hypersonic wind tunnel are summarized. Similar work on expansion nozzles conducted in the NASA Langley hypersonic wind tunnel complex is cited. Free-jet air-frame propulsion integration and configuration stability experiments conducted at Langley in the hypersonic wind tunnel complex on a small generic model are also summarized.

  12. Assessment of upwind dinghy sailing performance using a Virtual Reality Dinghy Sailing Simulator.

    PubMed

    Walls, J; Bertrand, L; Gale, T; Saunders, N

    1998-06-01

    The ability of fourteen competitive helmsmen of different skill levels to sail a standard course towards the wind (upwind) was assessed using a virtual reality sailing simulator. The simulator consisted of a Laser dinghy deck which pivoted between two supports and was dynamically controlled by a computer driven pneumatic ram. Computer generated graphics realistically reproduced helming, sheeting, tacking and boat trim. After familiarisation with the simulator, subjects performed a standard 1 km upwind test and were ranked according to their completion time. The subjects were then asked to fill out a questionnaire to obtain an estimate of how effectively the simulator reproduced the conditions of actual sailing. Mean scores showed the sailors considered overall feel and simulation of physical movement as "good" (5 on a scale of 1 to 6). Rankings for the upwind test were compared with independent competition rankings for each subject. Overall time to complete the upwind test correlated well with a subject's external ranking (Spearman's rank order r=0.99). The results indicate that the test used can differentiate between variations in upwind sailing performance over a wide range of ability. The simulator thus provides for the first time a method of measuring and analysing a sailor's performance in a controlled laboratory setting.

  13. Isometric quadriceps strength determines sailing performance and neuromuscular fatigue during an upwind sailing emulation.

    PubMed

    Bourgois, Jan G; Callewaert, Margot; Celie, Bert; De Clercq, Dirk; Boone, Jan

    2016-01-01

    This study investigates the physiological responses to upwind sailing on a laser emulation ergometer and analyses the components of the physical profile that determine the physiological responses related to sailing level. Ten male high-level laser sailors performed an upwind sailing test, incremental cycling test and quadriceps strength test. During the upwind sailing test, heart rate (HR), oxygen uptake, ventilation, respiratory exchange ratio, rating of perceived exertion (RPE) and lactate concentration were measured, combined with near-infrared spectroscopy (NIRS) and electromyography (EMG) registration of the M. Vastus lateralis. Repeated measures ANOVA showed for the cardio-respiratory, metabolic and muscles responses (mean power frequency [MPF], root mean square [RMS], deoxy[Hb+Mb]) during the upwind sailing test an initial significant increase followed by a stabilisation, despite a constant increase in RPE. Stepwise regression analysis showed that better sailing level was for 46.5% predicted by lower MPF decrease. Lower MPF decrease was for 57.8% predicted by a higher maximal isometric quadriceps strength. In conclusion, this study indicates that higher sailing level was mainly determined by a lower rate of neuromuscular fatigue during the upwind sailing test (as indicated by MPF decrease). Additionally, the level of neuromuscular fatigue was mainly determined by higher maximal isometric quadriceps strength stressing the importance of resistance training in the planning of training.

  14. Isometric quadriceps strength determines sailing performance and neuromuscular fatigue during an upwind sailing emulation.

    PubMed

    Bourgois, Jan G; Callewaert, Margot; Celie, Bert; De Clercq, Dirk; Boone, Jan

    2016-01-01

    This study investigates the physiological responses to upwind sailing on a laser emulation ergometer and analyses the components of the physical profile that determine the physiological responses related to sailing level. Ten male high-level laser sailors performed an upwind sailing test, incremental cycling test and quadriceps strength test. During the upwind sailing test, heart rate (HR), oxygen uptake, ventilation, respiratory exchange ratio, rating of perceived exertion (RPE) and lactate concentration were measured, combined with near-infrared spectroscopy (NIRS) and electromyography (EMG) registration of the M. Vastus lateralis. Repeated measures ANOVA showed for the cardio-respiratory, metabolic and muscles responses (mean power frequency [MPF], root mean square [RMS], deoxy[Hb+Mb]) during the upwind sailing test an initial significant increase followed by a stabilisation, despite a constant increase in RPE. Stepwise regression analysis showed that better sailing level was for 46.5% predicted by lower MPF decrease. Lower MPF decrease was for 57.8% predicted by a higher maximal isometric quadriceps strength. In conclusion, this study indicates that higher sailing level was mainly determined by a lower rate of neuromuscular fatigue during the upwind sailing test (as indicated by MPF decrease). Additionally, the level of neuromuscular fatigue was mainly determined by higher maximal isometric quadriceps strength stressing the importance of resistance training in the planning of training. PMID:26323461

  15. Analysis and Improvement of Upwind and Centered Schemes on Quadrilateral and Triangular Meshes

    NASA Technical Reports Server (NTRS)

    Huynh, H. T.

    2003-01-01

    Second-order accurate upwind and centered schemes are presented in a framework that facilitates their analysis and comparison. The upwind scheme employed consists of a reconstruction step (MUSCL approach) followed by an upwind step (Roe's flux-difference splitting). The two centered schemes are of Lax-Friedrichs (L-F) type. They are the nonstaggered versions of the Nessyahu-Tadmor (N-T) scheme and the CE/SE method with epilson = 1/2. The upwind scheme is extended to the case of two spatial dimensions (2D) in a straightforward manner. The N-T and CE/SE schemes are extended in a manner similar to the 2D extensions of the CE/SE scheme by Wang and Chang for a triangular mesh and by Zhang, Yu, and Chang for a quadrilateral mesh. The slope estimates, however, are simplified. Fourier stability and accuracy analyses are carried out for these schemes for the standard 1D and the 2D quadrilateral mesh cases. In the nonstandard case of a triangular mesh, the triangles must be paired up when analyzing the upwind and N-T schemes. An observation resulting in an extended N-T scheme which is faster and uses only one-third of the storage for flow data compared with the CE/SE method is presented. Numerical results are shown. Other improvements to the schemes are discussed.

  16. Thermal response of integral multicomponent composites to a high-energy aerothermodynamic heating environment with surface temperature to 1800 K

    NASA Technical Reports Server (NTRS)

    Stewart, David A.; Leiser, Daniel B.

    1987-01-01

    Laminated composite insulations developed for potential use on advanced spacecraft operating between GEO and LEO were tested in an aerothermodynamic environment simulating an AOTV aerobraking maneuver (altitude 82.3 km and velocity = 9.0 km/s). Comparisons are discussed between these data and predictions of in-depth temperature response using dynamical thermal conductivity values to 2000 K.

  17. Thermal response of integral multicomponent composites to a high-energy aerothermodynamic heating environment with surface temperature to 1800 K

    SciTech Connect

    Stewart, D.A.; Leiser, D.B.

    1987-08-01

    Laminated composite insulations developed for potential use on advanced spacecraft operating between GEO and LEO were tested in an aerothermodynamic environment simulating an AOTV aerobraking maneuver (altitude 82.3 km and velocity = 9.0 km/s). Comparisons are discussed between these data and predictions of in-depth temperature response using dynamical thermal conductivity values to 2000 K. 8 references.

  18. An Explicit Upwind Algorithm for Solving the Parabolized Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Korte, John J.

    1991-01-01

    An explicit, upwind algorithm was developed for the direct (noniterative) integration of the 3-D Parabolized Navier-Stokes (PNS) equations in a generalized coordinate system. The new algorithm uses upwind approximations of the numerical fluxes for the pressure and convection terms obtained by combining flux difference splittings (FDS) formed from the solution of an approximate Riemann (RP). The approximate RP is solved using an extension of the method developed by Roe for steady supersonic flow of an ideal gas. Roe's method is extended for use with the 3-D PNS equations expressed in generalized coordinates and to include Vigneron's technique of splitting the streamwise pressure gradient. The difficulty associated with applying Roe's scheme in the subsonic region is overcome. The second-order upwind differencing of the flux derivatives are obtained by adding FDS to either an original forward or backward differencing of the flux derivative. This approach is used to modify an explicit MacCormack differencing scheme into an upwind differencing scheme. The second order upwind flux approximations, applied with flux limiters, provide a method for numerically capturing shocks without the need for additional artificial damping terms which require adjustment by the user. In addition, a cubic equation is derived for determining Vegneron's pressure splitting coefficient using the updated streamwise flux vector. Decoding the streamwise flux vector with the updated value of Vigneron's pressure splitting improves the stability of the scheme. The new algorithm is applied to 2-D and 3-D supersonic and hypersonic laminar flow test cases. Results are presented for the experimental studies of Holden and of Tracy. In addition, a flow field solution is presented for a generic hypersonic aircraft at a Mach number of 24.5 and angle of attack of 1 degree. The computed results compare well to both experimental data and numerical results from other algorithms. Computational times required

  19. Horizontal variability of the marine boundary layer structure upwind of San Nicolas Island during FIRE, 1987

    NASA Technical Reports Server (NTRS)

    Jensen, Douglas R.

    1990-01-01

    During the months of June and July 1987, the Marine Stratocumulus Intensive Field Observation Experiment of First ISCCP Regional Experiment (FIRE) was conducted in the Southern California offshore area in the vicinity of San Nicolas Island (SNI). The Naval Ocean Systems Center (NOSC) airborne platform was utilized during FIRE to investigate the upwind low level horizontal variability of the marine boundary layer structure to determine the representativeness of SNI-based measurements to upwind open ocean conditions. The NOSC airborne meteorological platform made three flights during FIRE, two during clear sky conditions (19 and 23 July), and one during two stratus conditions (15 July). The boundary layer structure variations associated with the stratus clouds of 15 July 1987 are discussed. Profiles of air temperature (AT) and relative humidity (RH) taken 'at' and 'upwind' of SNI do show differences between the so-called open ocean conditions and those taken near the island. However, the observed difference cannot be uniquely identified to island effects, especially since the upwind fluctuations of AT and RH bound the SNI measurements. Total optical depths measures at SNI do not appear to be greatly affected by any surface based aerosol effects created by the island and could therefore realistically represent open ocean conditions. However, if one were to use the SNI aerosol measurements to predict ship to ship EO propagation conditions, significant errors could be introduced due to the increased number of surface aerosols observed near SNI which may not be, and were not, characteristic of open ocean conditions. Sea surface temperature measurements taken at the island will not, in general, represent those upwind open ocean conditions. Also, since CTT's varied appreciably along the upwind radials, measurements of CTT over the island may not be representative of actual open ocean CTT's.

  20. An upwind, kinetic flux-vector splitting method for flows in chemical and thermal non-equilibrium

    NASA Technical Reports Server (NTRS)

    Eppard, W. M.; Grossman, B.

    1993-01-01

    We have developed new upwind kinetic difference schemes for flows with non-equilibrium thermodynamics and chemistry. These schemes are derived from the Boltzmann equation with the resulting Euler schemes developed as moments of the discretized Boltzmann scheme with a locally Maxwellian velocity distribution. Splitting the velocity distribution at the Boltzmann level is seen to result in a flux-split Euler scheme and is called Kinetic Flux Vector Splitting (KFVS). Extensions to flows with finite-rate chemistry and vibrational relaxation is accomplished utilizing nonequilibrium kinetic theory. Computational examples are presented comparing KFVS with the schemes of Van Leer and Roe for a quasi-one-dimensional flow through a supersonic diffuser, inviscid flow through two-dimensional inlet, and viscous flow over a cone at zero angle-of-attack. Calculations are also shown for the transonic flow over a bump in a channel and the transonic flow over an NACA 0012 airfoil. The results show that even though the KFVS scheme is a Riemann solver at the kinetic level, its behavior at the Euler level is more similar to the existing flux-vector splitting algorithms than to the flux-difference splitting scheme of Roe.

  1. 2-D/Axisymmetric Formulation of Multi-dimensional Upwind Scheme

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Kleb, William L.

    2001-01-01

    A multi-dimensional upwind discretization of the two-dimensional/axisymmetric Navier-Stokes equations is detailed for unstructured meshes. The algorithm is an extension of the fluctuation splitting scheme of Sidilkover. Boundary conditions are implemented weakly so that all nodes are updated using the base scheme, and eigen-value limiting is incorporated to suppress expansion shocks. Test cases for Mach numbers ranging from 0.1-17 are considered, with results compared against an unstructured upwind finite volume scheme. The fluctuation splitting inviscid distribution requires fewer operations than the finite volume routine, and is seen to produce less artificial dissipation, leading to generally improved solution accuracy.

  2. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 8: Aerothermodynamics Automation and Robotics (A/R) systems sensors, high-temperature superconductivity

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity.

  3. Aerodynamic and aerothermodynamic trade-off analysis of a small hypersonic flying test bed

    NASA Astrophysics Data System (ADS)

    Pezzella, Giuseppe

    2011-08-01

    This paper deals with the aerodynamic and aerothermodynamic trade-off analysis aiming to design a small hypersonic flying test bed with a relatively simple vehicle architecture. Such vehicle will have to be launched with a sounding rocket and shall re-enter the Earth atmosphere allowing to perform several experiments on critical re-entry technologies such as boundary-layer transition and shock-shock interaction phenomena. The flight shall be conducted at hypersonic Mach number, in the range 6-8 at moderate angles of attack. In the paper some design analyses are shown as, for example, the longitudinal and lateral-directional stability analysis. A preliminary optimization of the configuration has been also done to improve the aerodynamic performance and stability of the vehicle. Several design results, based both on engineering approach and computational fluid dynamics, are reported and discussed in the paper. The aerodynamic model of vehicle is also provided.

  4. Intermediate experimental vehicle, ESA program aerodynamics-aerothermodynamics key technologies for spacecraft design and successful flight

    NASA Astrophysics Data System (ADS)

    Dutheil, Sylvain; Pibarot, Julien; Tran, Dac; Vallee, Jean-Jacques; Tribot, Jean-Pierre

    2016-07-01

    With the aim of placing Europe among the world's space players in the strategic area of atmospheric re-entry, several studies on experimental vehicle concepts and improvements of critical re-entry technologies have paved the way for the flight of an experimental space craft. The successful flight of the Intermediate eXperimental Vehicle (IXV), under ESA's Future Launchers Preparatory Programme (FLPP), is definitively a significant step forward from the Atmospheric Reentry Demonstrator flight (1998), establishing Europe as a key player in this field. The IXV project objectives were the design, development, manufacture and ground and flight verification of an autonomous European lifting and aerodynamically controlled reentry system, which is highly flexible and maneuverable. The paper presents, the role of aerodynamics aerothermodynamics as part of the key technologies for designing an atmospheric re-entry spacecraft and securing a successful flight.

  5. Aerothermodynamic and stability analyses of a deployable re-entry capsule

    NASA Astrophysics Data System (ADS)

    Carandente, Valerio; Zuppardi, Gennaro; Savino, Raffaele

    2014-01-01

    Recent research projects, in the field of atmospheric re-entry technology, are focused on the design of deployable, umbrella-like Thermal Protection Systems (TPSs). These TPSs are made of flexible high temperature resistant fabrics, folded at launch and deployed in space for de-orbit and re-entry operations. In the present paper two possible sphere-cone configurations for the TPS have been investigated from an aerodynamic point of view. The analyzed configurations are characterized by the same reentry mass and maximum diameter, but have different half-cone angles (45° and 60°). The analyses involve both the evaluation of thermal and aerodynamic loads and the assessment of the capsule longitudinal stability. The aerothermodynamic analysis has been performed for the completely deployed heat shield in transitional and continuum regimes, while the longitudinal stability has been analyzed in free molecular, transitional and continuum regimes, also taking into consideration the heat shield deployment sequence at high altitudes.

  6. New Hypersonic Shock Tunnel at the Laboratory of Aerothermodynamics and Hypersonics Prof. Henry T. Nagamatsu

    SciTech Connect

    Toro, P. G. P.; Minucci, M. A. S.; Chanes, J. B. Jr; Oliveira, A. C.; Gomes, F. A. A.; Myrabo, L. N.; Nagamatsu, Henry T.

    2008-04-28

    The new 0.60-m. nozzle exit diameter hypersonic shock tunnel was designed to study advanced air-breathing propulsion system such as supersonic combustion and/or laser technologies. In addition, it may be used for hypersonic flow studies and investigations of the electromagnetic (laser) energy addition for flow control. This new hypersonic shock tunnel was designed and installed at the Laboratory for of Aerothermodynamics and Hypersonics Prof. Henry T. Nagamatsu, IEAv-CTA, Brazil. The design of the tunnel enables relatively long test times, 2-10 milliseconds, suitable for the experiments performed at the laboratory. Free stream Mach numbers ranging from 6 to 25 can be produced and stagnation pressures and temperatures up to 360 atm. and up to 9,000 K, respectively, can be generated. Shadowgraph and schlieren optical techniques will be used for flow visualization.

  7. Space Shuttle hypersonic aerodynamic and aerothermodynamic flight research and the comparison to ground test results

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Shafer, Mary F.

    1993-01-01

    Aerodynamic and aerothermodynamic comparisons between flight and ground test for the Space Shuttle at hypersonic speeds are discussed. All of the comparisons are taken from papers published by researchers active in the Space Shuttle program. The aerodynamic comparisons include stability and control derivatives, center-of-pressure location, and reaction control jet interaction. Comparisons are also discussed for various forms of heating, including catalytic, boundary layer, top centerline, side fuselage, OMS pod, wing leading edge, and shock interaction. The jet interaction and center-of-pressure location flight values exceeded not only the predictions but also the uncertainties of the predictions. Predictions were significantly exceeded for the heating caused by the vortex impingement on the OMS pods and for heating caused by the wing leading-edge shock interaction.

  8. Massively parallel computational fluid dynamics calculations for aerodynamics and aerothermodynamics applications

    SciTech Connect

    Payne, J.L.; Hassan, B.

    1998-09-01

    Massively parallel computers have enabled the analyst to solve complicated flow fields (turbulent, chemically reacting) that were previously intractable. Calculations are presented using a massively parallel CFD code called SACCARA (Sandia Advanced Code for Compressible Aerothermodynamics Research and Analysis) currently under development at Sandia National Laboratories as part of the Department of Energy (DOE) Accelerated Strategic Computing Initiative (ASCI). Computations were made on a generic reentry vehicle in a hypersonic flowfield utilizing three different distributed parallel computers to assess the parallel efficiency of the code with increasing numbers of processors. The parallel efficiencies for the SACCARA code will be presented for cases using 1, 150, 100 and 500 processors. Computations were also made on a subsonic/transonic vehicle using both 236 and 521 processors on a grid containing approximately 14.7 million grid points. Ongoing and future plans to implement a parallel overset grid capability and couple SACCARA with other mechanics codes in a massively parallel environment are discussed.

  9. Legacy of the Space Shuttle from an Aerodynamic and Aerothermodynamic Perspective

    NASA Technical Reports Server (NTRS)

    Martin, Fred W.

    2011-01-01

    The development of the Space Shuttle Orbiter thermal protection system heating environment is described from a design stand point that began in the early 1970s. The desire for a light weight, reusable heat shield required the development of new technology, relative to previous manned spacecraft, and a systems approach to the design of the vehicle, entry guidance, and thermal protection system. Several unanticipated issues had to be resolved in both the entry and ascent phases of flight, which are discussed at a high level. During the life of the Program, significant improvements in computing power and numerical methods have been applied to Space Shuttle aerodynamic and aerothermodynamic issues, with the Shuttle Program often being the motivation, and or sponsor of the analysis development.

  10. Upwind-biased FORCE schemes with applications to free-surface shallow flows

    NASA Astrophysics Data System (ADS)

    Stecca, Guglielmo; Siviglia, Annunziato; Toro, Eleuterio F.

    2010-09-01

    In this paper we develop numerical fluxes of the centred type for one-step schemes in conservative form for solving general systems of conservation laws in multiple-space dimensions on structured meshes. The proposed method is an extension of the multidimensional FORCE flux developed by Toro et al. (2009) [14]. Here we introduce upwind bias by modifying the shape of the staggered mesh of the original FORCE method. The upwind bias is evaluated using an estimate of the largest eigenvalue, which in any case is needed for selecting a time step. The resulting basic flux is first-order accurate and monotone. For the linear advection equation, the proposed UFORCE method reproduces exactly the upwind Godunov method. Extension to non-linear systems has been done empirically via the two-dimensional inviscid shallow water equations. Second order of accuracy in space and time on structured meshes is obtained in the framework of finite volume methods. The proposed method improves the accuracy of the solution for small Courant numbers and intermediate waves associated with linearly degenerate fields (contact discontinuities, shear waves and material interfaces). It achieves comparable accuracy to that of upwind methods with approximate Riemann solvers, though retaining the simplicity and efficiency of centred methods. The performance of the schemes is assessed on a suite of test problems for the two-dimensional shallow water equations.

  11. Introduction: Assessment of aerothermodynamic flight prediction tools through ground and flight experimentation

    NASA Astrophysics Data System (ADS)

    Schmisseur, John D.; Erbland, Peter

    2012-01-01

    This article provides an introduction and overview to the efforts of NATO Research and Technology Organization Task Group AVT-136, Assessment of Aerothermodynamic Flight Prediction Tools through Ground and Flight Experimentation. During the period of 2006-2010, AVT-136 coordinated international contributions to assess the state-of-the-art and research challenges for the prediction of critical aerothermodynamic flight phenomena based on the extrapolation of ground test and numerical simulation. To achieve this goal, efforts were organized around six scientific topic areas: (1) Noses and leading edges, (2) Shock Interactions and Control Surfaces, (3) Shock Layers and Radiation, (4) Boundary Layer Transition, (5) Gas-Surface Interactions, and (6) Base and Afterbody Flows. A key component of the AVT-136 strategy was comparison of state-of-the-art numerical simulations with data to be acquired from planned flight research programs. Although it was recognized from the onset of AVT-136 activities that reliance on flight research data yet to be collected posed a significant risk, the group concluded the substantial benefit to be derived from comparison of computational simulations with flight data warranted pursuit of such a program of work. Unfortunately, program delays and failures in the flight programs contributing to the AVT-136 effort prevented timely access to flight research data. Despite this setback, most of the scientific topic areas developed by the Task Group made significant progress in the assessment of current capabilities. Additionally, the activities of AVT-136 generated substantial interest within the international scientific research community and the work of the Task Group was prominently featured in a total of six invited sessions in European and American technical conferences. In addition to this overview, reviews of the state-of-the-art and research challenges identified by the six research thrusts of AVT-136 are also included in this special

  12. Breathing and Relaxation

    MedlinePlus

    ... Top Doctors in the Nation Departments & Divisions Home Health Insights Stress & Relaxation Breathing and Relaxation Breathing and Relaxation Make ... Management Assess Your Stress Coping Strategies Identifying ... & Programs Health Insights Doctors & Departments Research & Science Education & Training Make ...

  13. Relaxation Assessment with Varied Structured Milieu (RELAX).

    ERIC Educational Resources Information Center

    Cassel, Russell N.; Cassel, Susie L.

    1983-01-01

    Describes Relaxation Assessment with Varied Structured Milieu (RELAX), a clinical program designed to assess the degree to which an individual is able to demonstrate self-control for overall general relaxation. The program is designed for use with the Cassel Biosensors biofeedback equipment. (JAC)

  14. Assessment Of The Aerodynamic And Aerothermodynamic Performance Of The USV-3 High-Lift Re-Entry Vehicle

    NASA Astrophysics Data System (ADS)

    Pezzella, Giuseppe; Richiello, Camillo; Russo, Gennaro

    2011-05-01

    This paper deals with the aerodynamic and aerothermodynamic trade-off analysis carried out with the aim to design a hypersonic flying test bed (FTB), namely USV3. Such vehicle will have to be launched with a small expendable launcher and shall re-enter the Earth atmosphere allowing to perform several experiments on critical re-entry phenomena. The demonstrator under study is a re-entry space glider characterized by a relatively simple vehicle architecture able to validate hypersonic aerothermodynamic design database and passenger experiments, including thermal shield and hot structures. Then, a summary review of the aerodynamic characteristics of two FTB concepts, compliant with a phase-A design level, has been provided hereinafter. Indeed, several design results, based both on engineering approach and computational fluid dynamics, are reported and discussed in the paper.

  15. Hybrid upwind discretization of nonlinear two-phase flow with gravity

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Efendiev, Y.; Tchelepi, H. A.

    2015-08-01

    Multiphase flow in porous media is described by coupled nonlinear mass conservation laws. For immiscible Darcy flow of multiple fluid phases, whereby capillary effects are negligible, the transport equations in the presence of viscous and buoyancy forces are highly nonlinear and hyperbolic. Numerical simulation of multiphase flow processes in heterogeneous formations requires the development of discretization and solution schemes that are able to handle the complex nonlinear dynamics, especially of the saturation evolution, in a reliable and computationally efficient manner. In reservoir simulation practice, single-point upwinding of the flux across an interface between two control volumes (cells) is performed for each fluid phase, whereby the upstream direction is based on the gradient of the phase-potential (pressure plus gravity head). This upwinding scheme, which we refer to as Phase-Potential Upwinding (PPU), is combined with implicit (backward-Euler) time discretization to obtain a Fully Implicit Method (FIM). Even though FIM suffers from numerical dispersion effects, it is widely used in practice. This is because of its unconditional stability and because it yields conservative, monotone numerical solutions. However, FIM is not unconditionally convergent. The convergence difficulties are particularly pronounced when the different immiscible fluid phases switch between co-current and counter-current states as a function of time, or (Newton) iteration. Whether the multiphase flow across an interface (between two control-volumes) is co-current, or counter-current, depends on the local balance between the viscous and buoyancy forces, and how the balance evolves in time. The sensitivity of PPU to small changes in the (local) pressure distribution exacerbates the problem. The common strategy to deal with these difficulties is to cut the timestep and try again. Here, we propose a Hybrid-Upwinding (HU) scheme for the phase fluxes, then HU is combined with implicit

  16. Hypersonic research engine project. Phase 2: Aerothermodynamic integration model development, data item no. 55-4-21

    NASA Technical Reports Server (NTRS)

    Jilly, L. F. (Editor)

    1975-01-01

    The design and development of the Aerothermodynamic Integration Model (AIM) of the Hypersonic Research Engine (HRE) is described. The feasibility of integrating the various analytical and experimental data available for the design of the hypersonic ramjet engine was verified and the operational characteristic and the overall performance of the selected design was determined. The HRE-AIM was designed for operation at speeds of Mach 3 through Mach 8.

  17. Numerical methods for TVD transport and coupled relaxing processes in gases and plasmas

    NASA Technical Reports Server (NTRS)

    Cambier, Jean-Luc

    1990-01-01

    The construction of second-order upwind schemes for nonequilibrium plasmas, for both one- and two-fluid formulations is demonstrated. Coupled relaxation processes, including ionization kinetics and radiative processes and their algorithms for nonequilibrium, multiple temperature conditions are described as well. The paper applies the numerical techniques on some simple test cases, points out critical problems and their solutions, and makes qualitative comparisons with known results, whenever possible.

  18. An iterative implicit DDADI algorithm for solving the Navier-Stokes equation. [upwind split flux technique

    NASA Technical Reports Server (NTRS)

    Chen, S. C.; Liu, N. S.; Kim, H. D.

    1992-01-01

    An algorithm utilizing a first order upwind split flux technique and the diagonally dominant treatment is proposed to be the temporal operator for solving the Navier-Stokes equations. Given the limit of a five point stencil, the right hand side flux derivatives are formulated by several commonly used central and upwind schemes. Their performances are studied through a test case of free vortex convection in a uniform stream. From these results, a superior treatment for evaluating the flux term is proposed and compared with the rest. The application of the proposed algorithm to the full Navier-Stokes equations is demonstrated through a calculation of flow over a backward facing step. Results are compared against the calculation done by using the fourth order central differencing scheme with artificial damping.

  19. Second- and third-order upwind difference schemes for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Yang, J. Y.

    1984-01-01

    Second- and third-order two time-level five-point explicit upwind-difference schemes are described for the numerical solution of hyperbolic systems of conservation laws and applied to the Euler equations of inviscid gas dynamics. Nonliner smoothing techniques are used to make the schemes total variation diminishing. In the method both hyperbolicity and conservation properties of the hyperbolic conservation laws are combined in a very natural way by introducing a normalized Jacobian matrix of the hyperbolic system. Entropy satisfying shock transition operators which are consistent with the upwind differencing are locally introduced when transonic shock transition is detected. Schemes thus constructed are suitable for shockcapturing calculations. The stability and the global order of accuracy of the proposed schemes are examined. Numerical experiments for the inviscid Burgers equation and the compressible Euler equations in one and two space dimensions involving various situations of aerodynamic interest are included and compared.

  20. Use of high-resolution upwind scheme for vortical flow simulations

    NASA Technical Reports Server (NTRS)

    Fujii, Kozo; Obayashi, Shigeru

    1988-01-01

    For vortical flow simulations at high Reynolds numbers, it is important to keep the artificial dissipation as small as possible since it induces unphysical decay of the vortex strength. One way to accomplish this is to decrease the grid spacing. Another way is to use computational schemes having little dissipation. Here, one of the high-resolution upwind schemes called MUSCL with Roe's average is applied to vortical flow fields. Two examples are considered. One is the leading-edge separation-vortex flow over a strake-delta wing. The other is a high-angle of attack supersonic flow over a spaceplane-like geometry. Comparison with the central difference solutions indicates that the present upwind scheme is less dissipative and thus has better resolution for the vortical flows.

  1. Navier-Stokes simulations of blade-vortex interaction using high-order accurate upwind schemes

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    1987-01-01

    Conventional, spatially second-order-accurate, finite-difference schemes are much too dissipative for calculations involving vortices that travel large distances (relative to some measure of the size of the vortex). This study presents a fifth-order-accurate upwind-biased scheme that preserves vortex structure for much longer times than existing second-order-accurate central and upwind difference schemes. Vortex calculations demonstrating this aspect of the fifth-order scheme are also presented. The method is then applied to the blade-vortex interaction problem. Results for strong interactions wherein the vortex impinges directly on the airfoil or a shock associated with the airfoil are presented. None of these calculations required any modeling of the shape, size, and trajectory of the interacting vortex.

  2. Numerical simulation of flow over a hypersonic aircraft using an explicit upwind PNS solver

    NASA Technical Reports Server (NTRS)

    Korte, John J.; Mcrae, D. Scott

    1989-01-01

    A hypersonic flow field over a generic airplane configuration is simulated by solving the Parabolized Navier-Stokes (PNS) equations. The finite difference solution of the PNS equations is calculated using a noniterative space marching, explicit, upwind scheme recently developed by the authors. Special gridding techniques are used which allowed the sharp changes in surface geometry of the airplane configuration to be modelled without smoothing of corners. Comparisons of the PNS results to a solution of the Navier-Stokes equations demonstrates a good agreement of the numerical results in approximately 1/6 of the cpu time. This paper demonstrates that the explicit upwind algorithm for solving the PNS equations is an efficient method for simulating hypersonic flow fields about complete airplane configurations and should be considered as an alternative to solving the Navier-Stokes equations for flow fields where the PNS equations are valid.

  3. Compressed Semi-Discrete Central-Upwind Schemes for Hamilton-Jacobi Equations

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Kurganov, Alexander; Levy, Doron; Petrova, Guergana

    2003-01-01

    We introduce a new family of Godunov-type semi-discrete central schemes for multidimensional Hamilton-Jacobi equations. These schemes are a less dissipative generalization of the central-upwind schemes that have been recently proposed in series of works. We provide the details of the new family of methods in one, two, and three space dimensions, and then verify their expected low-dissipative property in a variety of examples.

  4. Hybrid Upwind Splitting (HUS) by a Field-by-Field Decomposition

    NASA Technical Reports Server (NTRS)

    Coquel, Frederic; Liou, Meng-Sing

    1995-01-01

    We introduce and develop a new approach for upwind biasing: the hybrid upwind splitting (HUS) method. This original procedure is based on a suitable hybridization of current prominent flux vector splitting (FVS) and flux difference splitting (FDS) methods. The HUS method is designed to naturally combine the respective strengths of the above methods while excluding their main deficiencies. Specifically, the HUS strategy yields a family of upwind methods that exhibit the robustness of FVS schemes in the capture of nonlinear waves and the accuracy of some FDS schemes in the resolution of linear waves. We give a detailed construction of the HUS methods following a general and systematic procedure directly performed at the basic level of the field by field (i.e. waves) decomposition involved in FDS methods. For such a given decomposition, each field is endowed either with FVS or FDS numerical fluxes, depending on the nonlinear nature of the field under consideration. Such a design principle is made possible thanks to the introduction of a convenient formalism that provides us with a unified framework for upwind methods. The HUS methods we propose bring significant improvements over current methods in terms of accuracy and robustness. They yield entropy-satisfying approximate solutions as they are strongly supported in numerical experiments. Field by field hybrid numerical fluxes also achieve fairly simple and explicit expressions and hence require a computational effort between that of the FVS and FDS. Several numerical experiments ranging from stiff 1D shock-tube to high speed viscous flows problems are displayed, intending to illustrate the benefits of the present approach. We assess in particular the relevance of our HUS schemes to viscous flow calculations.

  5. A three-dimensional upwind PNS code for chemically reacting scramjet flowfields. [Parabolized Navier Stokes

    SciTech Connect

    Wadawadigi, G.; Tannehill, J.C.; Buelow, P.E.; Lawrence, S.L. NASA, Ames Research Center, Moffett Field, CA )

    1992-07-01

    A new upwind, parabolized Navier-Stokes (PNS) code has been developed to compute the three-dimensional (3D) chemically reacting flow in scramjet (supersonic combustion ramjet) engines. The code is a modification of the 3D upwind PNS (UPS) airflow code which has been extended in the present study to permit internal flow calculations with hydrogen-air chemistry. With these additions, the new code has the capability of computing aerodynamic and propulsive flowfields simultaneously. The algorithm solves the PNS equations using a finite-volume, upwind TVD method based on Roe's approximate Riemann solver that has been modified to account for 'real gas' effects. The fluid medium is assumed to be a chemically reacting mixture of thermally perfect (but calorically imperfect) gases in thermal equilibrium. The new code has been applied to two test cases. These include the Burrows-Kurkov supersonic combustion experiment and a generic 3D scramjet flowfield. The computed results compare favorably with the available experimental data. 38 refs.

  6. Central Upwind Scheme for a Compressible Two-Phase Flow Model

    PubMed Central

    Ahmed, Munshoor; Saleem, M. Rehan; Zia, Saqib; Qamar, Shamsul

    2015-01-01

    In this article, a compressible two-phase reduced five-equation flow model is numerically investigated. The model is non-conservative and the governing equations consist of two equations describing the conservation of mass, one for overall momentum and one for total energy. The fifth equation is the energy equation for one of the two phases and it includes source term on the right-hand side which represents the energy exchange between two fluids in the form of mechanical and thermodynamical work. For the numerical approximation of the model a high resolution central upwind scheme is implemented. This is a non-oscillatory upwind biased finite volume scheme which does not require a Riemann solver at each time step. Few numerical case studies of two-phase flows are presented. For validation and comparison, the same model is also solved by using kinetic flux-vector splitting (KFVS) and staggered central schemes. It was found that central upwind scheme produces comparable results to the KFVS scheme. PMID:26039242

  7. Determination of upwind and downwind areas of Seoul, Korea using trajectory analysis.

    SciTech Connect

    Oh, H. S.; Ghim, Y. S.; Kim, J. Y.; Chang, Y. S.

    2010-09-01

    To identify the domains that have the greatest impacts on air quality at the surface, both the upwind and downwind areas of Seoul were determined by season using refined wind fields. Four consecutive days were selected as the study period typical of each season. The mesoscale meteorology of the study period was reproduced by using the MM5 prognostic meteorological model (PSU/NCAR Mesoscale Model) with horizontally nested grids. The gridded meteorological field, which was used on the study area of 242 km x 226 km with grid spacing of 2 km, was generated by using the CALMET diagnostic meteorological model. Upwind and downwind areas of Seoul were determined by calculating 24-hour backward and forward air parcel trajectories, respectively, with u, v, and w velocity vectors. The results showed that the upwind and downwind areas were extended far to the northwest and the southeast as a result of high wind speeds in the spring and winter, while they were restricted on the fringe of Seoul in the summer and fall.

  8. Control volume finite element method with multidimensional edge element Scharfetter-Gummel upwinding. Part 1, formulation.

    SciTech Connect

    Bochev, Pavel Blagoveston

    2011-06-01

    We develop a new formulation of the Control Volume Finite Element Method (CVFEM) with a multidimensional Scharfetter-Gummel (SG) upwinding for the drift-diffusion equations. The formulation uses standard nodal elements for the concentrations and expands the flux in terms of the lowest-order Nedelec H(curl; {Omega})-compatible finite element basis. The SG formula is applied to the edges of the elements to express the Nedelec element degree of freedom on this edge in terms of the nodal degrees of freedom associated with the endpoints of the edge. The resulting upwind flux incorporates the upwind effects from all edges and is defined at the interior of the element. This allows for accurate evaluation of integrals on the boundaries of the control volumes for arbitrary quadrilateral elements. The new formulation admits efficient implementation through a standard loop over the elements in the mesh followed by loops over the element nodes (associated with control volume fractions in the element) and element edges (associated with flux degrees of freedom). The quantities required for the SG formula can be precomputed and stored for each edge in the mesh for additional efficiency gains. For clarity the details are presented for two-dimensional quadrilateral grids. Extension to other element shapes and three dimensions is straightforward.

  9. Challenges to Computational Aerothermodynamic Simulation and Validation for Planetary Entry Vehicle Analysis

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Johnston, Christopher O.; Kleb, Bil

    2010-01-01

    Challenges to computational aerothermodynamic (CA) simulation and validation of hypersonic flow over planetary entry vehicles are discussed. Entry, descent, and landing (EDL) of high mass to Mars is a significant driver of new simulation requirements. These requirements include simulation of large deployable, flexible structures and interactions with reaction control system (RCS) and retro-thruster jets. Simulation of radiation and ablation coupled to the flow solver continues to be a high priority for planetary entry analyses, especially for return to Earth and outer planet missions. Three research areas addressing these challenges are emphasized. The first addresses the need to obtain accurate heating on unstructured tetrahedral grid systems to take advantage of flexibility in grid generation and grid adaptation. A multi-dimensional inviscid flux reconstruction algorithm is defined that is oriented with local flow topology as opposed to grid. The second addresses coupling of radiation and ablation to the hypersonic flow solver--flight- and ground-based data are used to provide limited validation of these multi-physics simulations. The third addresses the challenges of retro-propulsion simulation and the criticality of grid adaptation in this application. The evolution of CA to become a tool for innovation of EDL systems requires a successful resolution of these challenges.

  10. Challenges to Computational Aerothermodynamic Simulation and Validation for Planetary Entry Vehicle Analysis

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Johnston, Christopher O.; Kleb, Bil

    2010-01-01

    Challenges to computational aerothermodynamic (CA) simulation and validation of hypersonic flow over planetary entry vehicles are discussed. Entry, descent, and landing (EDL) of high mass to Mars is a significant driver of new simulation requirements. These requirements include simulation of large deployable, flexible structures and interactions with reaction control system (RCS) and retro-thruster jets. Simulation of radiation and ablation coupled to the flow solver continues to be a high priority for planetary entry analyses, especially for return to Earth and outer planet missions. Three research areas addressing these challenges are emphasized. The first addresses the need to obtain accurate heating on unstructured tetrahedral grid systems to take advantage of flexibility in grid generation and grid adaptation. A multi-dimensional inviscid flux reconstruction algorithm is defined that is oriented with local flow topology as opposed to grid. The second addresses coupling of radiation and ablation to the hypersonic flow solver - flight- and ground-based data are used to provide limited validation of these multi-physics simulations. The third addresses the challenges of retro-propulsion simulation and the criticality of grid adaptation in this application. The evolution of CA to become a tool for innovation of EDL systems requires a successful resolution of these challenges.

  11. Aerothermodynamic Design of the Mars Science Laboratory Backshell and Parachute Cone

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Dyakonov, Artem A.; Wright, Michael J.; Tang, Chun Y.

    2009-01-01

    Aerothermodynamic design environments are presented for the Mars Science Laboratory entry capsule backshell and parachute cone. The design conditions are based on Navier-Stokes flowfield simulations on shallow (maximum total heat load) and steep (maximum heat flux) design entry trajectories from a 2009 launch. Transient interference effects from reaction control system thruster plumes were included in the design environments when necessary. The limiting backshell design heating conditions of 6.3 W/sq cm for heat flux and 377 J/sq cm for total heat load are not influenced by thruster firings. Similarly, the thrusters do not affect the parachute cover lid design environments (13 W/sq cm and 499 J/sq cm). If thruster jet firings occur near peak dynamic pressure, they will augment the design environments at the interface between the backshell and parachute cone (7 W/sq cm and 174 J/sq cm). Localized heat fluxes are higher near the thruster fairing during jet firings, but these areas did not require additional thermal protection material. Finally, heating bump factors were developed for antenna radomes on the parachute cone

  12. Hypersonic Airbreathing Propulsion: An Aerodynamics, Aerothermodynamics, and Acoustics Competency White Paper

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip; Cockrell, Charles E., Jr.; Pellett, Gerald L.; Diskin, Glenn S.; Auslender, Aaron H.; Exton, Reginald J.; Guy, R. Wayne; Hoppe, John C.; Puster, Richard L.; Rogers, R. Clayton

    2002-01-01

    This White Paper examines the current state of Hypersonic Airbreathing Propulsion at the NASA Langley Research Center and the factors influencing this area of work and its personnel. Using this knowledge, the paper explores beyond the present day and suggests future directions and strategies for the field. Broad views are first taken regarding potential missions and applications of hypersonic propulsion. Then, candidate propulsion systems that may be applicable to these missions are suggested and discussed. Design tools and experimental techniques for developing these propulsion systems are then described, and approaches for applying them in the design process are considered. In each case, current strategies are reviewed and future approaches that may improve the techniques are considered. Finally, the paper concentrates on the needs to be addressed in each of these areas to take advantage of the opportunities that lay ahead for both the NASA Langley Research Center and the Aerodynamic Aerothermodynamic, and Aeroacoustics Competency. Recommendations are then provided so that the goals set forth in the paper may be achieved.

  13. Overview of the Aerothermodynamics Analysis Conducted in Support of the STS-107 Accident Investigation

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.

    2004-01-01

    A graphic presentation of the aerothermodynamics analysis conducted in support of the STS-107 accident investigation. Investigation efforts were conducted as part of an integrated AATS team (Aero, Aerothermal, Thermal, Stress) directed by OVEWG. Graphics presented are: STS-107 Entry trajectory and timeline (1st off-nominal event to Post-LOS); Indications from OI telemetry data; Aero/aerothermo/thermal analysis process; Selected STS-107 side fuselage/OMS pod off-nominal temperatures; Leading edge structural subsystem; Relevant forensics evidence; External aerothermal environments; STS-107 Pre-entry EOM3 heating profile; Surface heating and temperatures; Orbiter wing leading edge damage survey; Internal aerothermal environments; Orbiter wing CAD model; Aerodynamic flight reconstruction; Chronology of aerodynamic/aerothermoydynamic contributions; Acreage TPS tile damage; Larger OML perturbations; Missing RCC panel(s); Localized damage to RCC panel/missing T-seal; RCC breach with flow ingestion; and Aero-aerothermal closure. NAIT served as the interface between the CAIB and NASA investigation teams; and CAIB requests for study were addressed.

  14. Aerothermodynamic Analysis of Stardust Sample Return Capsule with Coupled Radiation and Ablation. Revised

    NASA Technical Reports Server (NTRS)

    Gupta, Roop N.

    2000-01-01

    An aerothermodynamic analysis of the forebody aeroshell of the Stardust Sample Return Capsule is carried out by using the axisymmetric viscous shock-layer equations with and without fully coupled radiation and ablation. Formulation of the viscous shock-layer equations with shoulder radius as the length scale and implementation of the Vigneron pressure condition allow resolution of the flowfield over the shoulder. With a predominantly supersonic outflow over the shoulder, a globally iterated solution or viscous shock-layer equations can be obtained. The stagnation-point results are obtained along a specified trajectory, whereas detailed calculations along the body are provided at the peak-heating point. The equilibrium calculations with ablation injection are the focus of the present study because of the lack of a general chemical nonequilibrium analysis that accounts for both surface and flowfield effect. The equilibrium calculations also provide a simple way to conserve surface (and flowfield) elemental composition for the current small ablation injection rates, where the surface elemental composition is a mixture of freestream and ablator elements. Therefore, the coupled laminar and turbulent flow solutions with radiation and ablation are obtained by using the equilibrium flow chemistry, whereas a nonequilibrium chemistry model is used for solutions without ablation and turbulence. Various computed results are compared with those obtained by the other researchers.

  15. DSMC aero-thermo-dynamic analysis of a sample-return capsule

    NASA Astrophysics Data System (ADS)

    Zuppardi, Gennaro; Savino, Raffaele; Boffa, Chiara; Carandente, Valerio

    2012-11-01

    A rarefied aero-thermo-dynamic analysis of a sample Earth Return Capsule during the high energy, high altitude re-entry path from an exploration mission is presented. The altitude interval 70-120 km is considered, where the capsule experiences different flow fields. In fact, the flow regime ranges from continuum low density to near free molecular flow and, even though the free stream velocity is almost constant (13 km/s) in the whole altitude interval, the Mach number changes from 44 to 32 and the Reynolds number, based on the capsule diameter, ranges from 4.92×104 to 9. The computations have been carried out using two direct simulation Monte Carlo codes: DS2V to compute local quantities such as heat flux, thermal and aerodynamic loads at zero angle of attack and DS3V to compute global aerodynamic coefficients in the range of the angle of attack 0-60 deg; The results verified that in this altitude interval the heat flux and the thermal load reasonably satisfy specific requirements for the thermal protection system and that the capsule is longitudinally stable up to an angle of attack of about 40 deg..

  16. Adding-Point Strategy for Reduced-Order Hypersonic Aerothermodynamics Modeling Based on Fuzzy Clustering

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Liu, Li; Zhou, Sida; Yue, Zhenjiang

    2016-04-01

    Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow configurations. To improve the efficiency and precision of the ROMs, it is indispensable to add extra sampling points to the initial snapshots, since the number of sampling points to achieve an adequately accurate ROM is generally unknown in prior, but a large number of initial sampling points reduces the parsimony of the ROMs. A fuzzy-clustering-based adding-point strategy is proposed and the fuzzy clustering acts an indicator of the region in which the precision of ROMs is relatively low. The proposed method is applied to construct the ROMs for the benchmark mathematical examples and a numerical example of hypersonic aerothermodynamics prediction for a typical control surface. The proposed method can achieve a 34.5% improvement on the efficiency than the estimated mean squared error prediction algorithm and shows same-level prediction accuracy.

  17. Aerothermodynamics of compressible flow past a flat plate in the slip-flow regime

    NASA Astrophysics Data System (ADS)

    Cheng, Chi-Yang; Dai, Yi; Li, Genong; Hu, Yitao; Lai, Ming-Chia

    2015-11-01

    Compressible flow past a flat plate in the slip-flow regime features a very simple geometry and flow field, but it retains the most relevant and interesting physics in high-speed rarefied gas dynamics. In the slip-flow regime, the aerothermodynamic issues, especially the recovery factors and the convection heat transfer correlation, are the focus of this presentation. We first present the detailed similarity equations, especially the transformed Maxwell's slip and jump boundary conditions, and the equations for the Chapman-Rubesin parameter as well as how we incorporate the variable gas properties and the constitutive scaling model for the Knudsen layer in the similarity equations. The similarity solutions are compared with results published by E. R. van Driest [NACA Technical Note 2597, 1952]. We point out that van Driest's solutions were computed by using no-slip and no-jump boundary conditions. The recovery factor and Nusselt number of the plate are shown as functions of the Reynolds number and the Mach number. Finally, the similarity solutions are also compared with simulations of a two-dimensional computational fluid dynamics model solving the full Navier-Stokes-Fourier equations with slip and jump boundary conditions.

  18. Aerothermodynamic heating analysis of aerobraking and aeromaneuvering orbital-transfer vehicles

    NASA Technical Reports Server (NTRS)

    Davies, C. B.; Wilson, J. F.; Brown, K. G.; Menees, G. P.

    1984-01-01

    The thermal-protection requirements of two aeroassisted orbital-transfer vehicles (AOTVs) are analyzed for return missions between the geosynchronous and Shuttle orbits. One of the designs is a specialized version of a previously proposed generic aerobraking vehicle that is capable of only delivery-type operations. The other is a high-lift aeromaneuvering vehicle that is optimized for low-earth orbit sortie missions involving large, multiple plane-inclination changes. The aerothermal environment of the aerobraking vehicle is analyzed using state-of-the-art methods for nonequilibrium-radiative and convective heating that incorporate refinements unique to the configuration. The heating analysis of the aeromaneuvering vehicle required the development of a flow-field model for rarefied-hypersonic flow over a lifting surface at incidence. The predicted aerothermodynamic heating characteristics for both vehicles are correlated with thermal-control requirements and flight performance capabilities for the specified mission guidelines. The results help identify technical issues related to the development of future operational systems.

  19. Blunt-Body Entry Vehicle Aerothermodynamics: Transition and Turbulence on the CEV and MSL Configurations

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    2010-01-01

    Recent, current, and planned NASA missions that employ blunt-body entry vehicles pose aerothermodynamic problems that challenge the state-of-the art of experimental and computational methods. The issues of boundary-layer transition and turbulent heating on the heat shield have become important in the designs of both the Mars Science Laboratory and Crew Exploration Vehicle. While considerable experience in these general areas exists, that experience is mainly derived from simple geometries; e.g. sharp-cones and flat-plates, or from lifting bodies such as the Space Shuttle Orbiter. For blunt-body vehicles, application of existing data, correlations, and comparisons is questionable because an all, or mostly, subsonic flow field is produced behind the bow shock, as compared to the supersonic (or even hypersonic) flow of other configurations. Because of the need for design and validation data for projects such as MSL and CEV, many new experimental studies have been conducted in the last decade to obtain detailed boundary-layer transition and turbulent heating data on this class of vehicle. In this paper, details of several of the test programs are reviewed. The laminar and turbulent data from these various test are shown to correlate in terms of edge-based Stanton and Reynolds number functions. Correlations are developed from the data for transition onset and turbulent heating augmentation as functions of momentum thickness Reynolds number. These correlation can be employed as engineering-level design and analysis tools.

  20. C1-Continuous relative permeability and hybrid upwind discretization of three phase flow in porous media

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Efendiev, Y.

    2016-10-01

    Three-phase flow in a reservoir model has been a major challenge in simulation studies due to slowly convergent iterations in Newton solution of nonlinear transport equations. In this paper, we examine the numerical characteristics of three-phase flow and propose a consistent, "C1-continuous discretization" (to be clarified later) of transport equations that ensures a convergent solution in finite difference approximation. First, we examine three-phase relative permeabilities that are critical in solving nonlinear transport equations. Three-phase relative permeabilities are difficult to measure in the laboratory, and they are often correlated with two-phase relative permeabilities (e.g., oil-gas and water-oil systems). Numerical convergence of non-linear transport equations entails that three-phase relative permeability correlations are a monotonically increasing function of the phase saturation and the consistency conditions of phase transitions are satisfied. The Modified Stone's Method II and the Linear Interpolation Method for three-phase relative permeability are closely examined for their mathematical properties. We show that the Linear Interpolation Method yields C1-continuous three-phase relative permeabilities for smooth solutions if the two phase relative permeabilities are monotonic and continuously differentiable. In the second part of the paper, we extend a Hybrid-Upwinding (HU) method of two-phase flow (Lee, Efendiev and Tchelepi, ADWR 82 (2015) 27-38) to three phase flow. In the HU method, the phase flux is divided into two parts based on the driving forces (in general, it can be divided into several parts): viscous and buoyancy. The viscous-driven and buoyancy-driven fluxes are upwinded differently. Specifically, the viscous flux, which is always co-current, is upwinded based on the direction of the total velocity. The pure buoyancy-induced flux is shown to be only dependent on saturation distributions and counter-current. In three-phase flow, the

  1. Wavenumber-extended high-order upwind-biased finite-difference schemes for convective scalar transport

    SciTech Connect

    Li, Y.

    1997-05-15

    This paper proposes some new wavenumber-extended high-order upwind-biased schemes. The dispersion and dissipation errors of upwind-biased finite-difference schemes are assessed and compared by means of a Fourier analysis of the difference schemes. Up to 11th-order upwind-biased schemes are analyzed. It is shown that both the upwind-biased scheme of order 2N - 1 and the corresponding centered differencing scheme of order 2N have the same dispersion characteristics; thus the former can be considered to be the latter plus a correction that reduces the numerical dissipation. The new second-order wavenumber-extended scheme is tested and compared with some well-known schemes. The range of wavenumbers that are accurately treated by the upwind-biased schemes is improved by using additional constraints from the Fourier analysis to construct the new schemes. The anisotropic behavior of the dispersion and dissipation errors is also analyzed for both the conventional and the new wavenumber-extended upwind-biased finite-difference schemes.

  2. OAST Space Theme Workshop. Volume 3: Working group summary. 9: Aerothermodynamics (M-3). A: Statement. B: Technology needs (form 1). C. Priority assessment (form 2). D. Additional assessments

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Twelve aerothermodynamic space technology needs were identified to reduce the design uncertainties in aerodynamic heating and forces experienced by heavy lift launch vehicles, orbit transfer vehicles, and advanced single stage to orbit vehicles for the space transportation system, and for probes, planetary surface landers, and sample return vehicles for solar system exploration vehicles. Research and technology needs identified include: (1) increasing the fluid dynamics capability by at least two orders of magnitude by developing an advanced computer processor for the solution of fluid dynamic problems with improved software; (2) predicting multi-engine base flow fields for launch vehicles; and (3) developing methods to conserve energy in aerothermodynamic ground test facilities.

  3. Turbulence Intensity at Inlet of 80- by 120-Foot Wind Tunnel Caused by Upwind Blockage

    NASA Technical Reports Server (NTRS)

    Salazar, Denise; Yuricich, Jillian

    2014-01-01

    In order to estimate the magnitude of turbulence in the National Full-Scale Aerodynamics Complex (NFAC) 80- by 120-Foot Wind Tunnel (80 x 120) caused by buildings located upwind from the 80 x 120 inlet, a 150th-scale study was performed that utilized a nominal two-dimensional blockage placed ahead of the inlet. The distance of the blockage ahead of the inlet was varied. This report describes velocity measurements made in the plane of the 80 x 120 model inlet for the case of zero ambient (atmospheric) wind.

  4. Upwind differencing and LU factorization for chemical non-equilibrium Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Shuen, Jian-Shun

    1992-01-01

    By means of either the Roe or the Van Leer flux-splittings for inviscid terms, in conjunction with central differencing for viscous terms in the explicit operator and the Steger-Warming splitting and lower-upper approximate factorization for the implicit operator, the present, robust upwind method for solving the chemical nonequilibrium Navier-Stokes equations yields formulas for finite-volume discretization in general coordinates. Numerical tests in the illustrative cases of a hypersonic blunt body, a ramped duct, divergent nozzle flows, and shock wave/boundary layer interactions, establish the method's efficiency.

  5. Computation of turbulent pipe and duct flow using third order upwind scheme

    NASA Technical Reports Server (NTRS)

    Kawamura, T.

    1986-01-01

    The fully developed turbulence in a circular pipe and in a square duct is simulated directly without using turbulence models in the Navier-Stokes equations. The utilized method employs a third-order upwind scheme for the approximation to the nonlinear term and the second-order Adams-Bashforth method for the time derivative in the Navier-Stokes equation. The computational results appear to capture the large-scale turbulent structures at least qualitatively. The significance of the artificial viscosity inherent in the present scheme is discussed.

  6. Two-dimensional Euler computations on a triangular mesh using an upwind, finite-volume scheme

    NASA Technical Reports Server (NTRS)

    Whitaker, D. L.; Grossman, B.; Lohner, R.

    1989-01-01

    A numerical procedure was developed for the finite-volume solution of the Euler equations on unstructured triangular meshes based on a flux-difference split upwind method. Techniques for implementing Roe's (1985) approximate Reimann solver together with the preprocessing MUSCL differencing on unstructured grids are presented. Applications and comparisons with structured grid problems are carried out for a supersonic shock reflection problem, the supersonic flow over a blunt body, the transonic flow over NACA 0012 and RAE 2822 airfoils, and the flow about a double element Karman-Trefftz airfoil.

  7. Parallel adaptive Cartesian upwind methods for shock-driven multiphysics simulation

    SciTech Connect

    Deiterding, Ralf

    2011-01-01

    The multiphysics fluid-structure interaction simulation of shock-loaded thin-walled structures requires the dynamic coupling of a shock-capturing flow solver to a solid mechanics solver for large deformations. By combining a Cartesian embedded boundary approach with dynamic mesh adaptation a generic software framework for such flow solvers has been constructed that allows easy exchange of the specific hydrodynamic finite volume upwind scheme and coupling to various explicit finite element solid dynamics solvers. The paper gives an overview of the computational approach and presents first simulations that couple the software to the general purpose solid dynamics code DYNA3D.

  8. On the implementation of a class of upwind schemes for system of hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    1985-01-01

    The relative computational effort among the spatially five point numerical flux functions of Harten, van Leer, and Osher and Chakravarthy is explored. These three methods typify the design principles most often used in constructing higher than first order upwind total variation diminishing (TVD) schemes. For the scalar case the difference in operation count between any two algorithms may be very small and yet the operation count for their system counterparts might be vastly different. The situation occurs even though one starts with two different yet equivalent representations for the scalar case.

  9. Computational Aerothermodynamic Assessment of Space Shuttle Orbiter Tile Damage: Open Cavities

    NASA Technical Reports Server (NTRS)

    Pulsonetti, Maria; Wood, William

    2005-01-01

    Computational aerothermodynamic simulations of Orbiter windside tile damage in flight were performed in support of the Space Shuttle Return-to-Flight effort. The simulations were performed for both hypervelocity flight and low-enthalpy wind tunnel conditions and contributed to the Return-to-Flight program by providing information to support a variety of damage scenario analyses. Computations at flight conditions were performed at or very near the peak heating trajectory point for multiple damage scenarios involving damage windside acreage reaction cured glass (RCG) coated silica tile(s). The cavities formed by the missing tile examined in this study were relatively short leading to flow features which indicated open cavity behavior. Results of the computations indicated elevated heating bump factor levels predicted for flight over the predictions for wind tunnel conditions. The peak heating bump factors, defined as the local heating to a reference value upstream of the cavity, on the cavity floor for flight simulation were 67% larger than the peak wind tunnel simulation value. On the downstream face of the cavity the flight simulation values were 60% larger than the wind tunnel simulation values. On the outer mold line (OML) downstream of the cavity, the flight values are about 20% larger than the wind tunnel simulation values. The higher heating bump factors observed in the flight simulations were due to the larger driving potential in terms of energy entering the cavity for the flight simulations. This is evidenced by the larger rate of increase in the total enthalpy through the boundary layer prior to the cavity for the flight simulation.

  10. High resolution upwind schemes for the three-dimensional incompressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Hartwich, PETER-M.; Hsu, Chung-Hao

    1987-01-01

    Based on flux-difference splitting, implicit high resolution schemes are constructed for efficient computations of steady-state solutions to the three-dimensional, incompressible Navier-Stokes equations in curvilinear coordinates. These schemes use first-order accurate Euler backward-time differencing and second-order central differencing for the viscous shear fluxes. Up to third-order accurate upwind differencing is achieved through a reconstruction of the solution from its cell averages. The reconstruction is accomplished by linear interpolation, where the node stencils are selected such that in regions of smooth solution the flow is highly resolved while spurious oscillations in regions of rapid changes in gradient are still suppressed. Fairly rapid convergence to steady-state solutions is attained with a completely vectorizable hybrid time-marching method. Flows around a sharp-edged delta wing are computed with the maximum accuracy of the upwind-differencing restricted to first-, second-, and third-order, to illustrate the effect of accuracy on the global and on the local vortical flow fields. The results are validated with experimental data.

  11. Velocity-space resolution, entropy production, and upwind dissipation in Eulerian gyrokinetic simulations

    SciTech Connect

    Candy, J.; Waltz, R.E.

    2006-03-15

    Equations which describe the evolution of volume-averaged gyrokinetic entropy are derived and added to GYRO [J. Candy and R.E. Waltz, J. Comput. Phys. 186, 545 (2003)], a Eulerian gyrokinetic turbulence simulation code. In particular, the creation of entropy through spatial upwind dissipation (there is zero velocity-space dissipation in GYRO) and the reduction of entropy via the production of fluctuations are monitored in detail. This new diagnostic has yielded several key confirmations of the validity of the GYRO simulations. First, fluctuations balance dissipation in the ensemble-averaged sense, thus demonstrating that turbulent GYRO simulations achieve a true statistical steady state. Second, at the standard spatial grid size, neither entropy nor energy flux is significantly changed by a 16-fold increase (from 32 to 512 grid points per cell) in the number of grid points in the two-dimensional velocity space. Third, the measured flux is invariant to an eightfold increase in the upwind dissipation coefficients. A notable conclusion is that the lack of change in entropy with grid refinement refutes the familiar but incorrect notion that Eulerian gyrokinetic codes miss important velocity-space structure. The issues of density and energy conservation and their relation to negligible second-order effects such as the parallel nonlinearity are also discussed.

  12. Numerical Solutions and Structures of Double Quantum Jet Solving by an Upwind Scheme

    NASA Astrophysics Data System (ADS)

    Lin, San-Yih

    2005-11-01

    The solutions of a double quantum jet are analyzed by solving the quantum fluid dynamical formulation (QFD) of the Schr"odinger equation. The QFD equations are obtained by expressing the Schr"odinger wave function as =ρ^1/2(iS/)and u=(u,v). In QFD, Q=-ρ-1/2δρ^1/2 is called as quantum potential. An upwind method is developed to solve the QFD equations. The method use a third-order upwind method to discrete convection terms and the central finite difference method to discrete the quantum potential. A fourth-order Runge-Kutta method is used for time marching. Two cases, one-dimensional free particle with external potential and two-dimensional free particle with external potential, are presented to illustrate the accuracy of the QFD solver. The computational results are compared well with the results obtained by solving the Schr"odinger equation. Finally, the QFD solver is applied to solve the solutions of a double quantum jet and to investigate its structures. First, a mathematical formulation is derived to describe the double quantum jet. The jet has the probability density equals 2 and the velocity equals 2 at the inlet of the jet. Then, the solutions are computed by the QFD solver. The structures of the solutions are affected by the strength of the quantum potential. The interesting phenomena of quantum clustering are found.

  13. Cardiorespiratory and muscular responses to simulated upwind sailing exercise in Optimist sailors.

    PubMed

    Callewaert, Margot; Boone, Jan; Celie, Bert; De Clercq, Dirk; Bourgois, Jan G

    2014-02-01

    The aim of this work was to gain more insight into the cardiorespiratory and muscular (m. vastus lateralis) responses to simulated upwind sailing exercise in 10 high-level male and female Optimist sailors (10.8-14.4 years old). Hiking strap load (HSL) and cardiorespiratory variables were measured while exercising on a specially developed Optimist sailing ergometer. Electromyography (EMG) was used to determine mean power frequency (MPF) and root mean square (RMS). Near-infrared spectroscopy was used to measure deoxygenated Hemoglobin and Myoglobin concentration (deoxy[Hb+Mb]) and re-oxygenation. Results indicated that HSL and integrated EMG of the vastus lateralis muscle changed in accordance with the hiking intensity. Cardiorespiratory response demonstrated an initial significant increase and subsequently steady state in oxygen uptake (VO₂), ventilation (VE), and heart rate (HR) up to circa 40% VO₂peak, 30% VEpeak and 70% HRpeak respectively. At muscle level, results showed that highly trained Optimist sailors manage to stabilize the muscular demand and fatigue development during upwind sailing (after an initial increase). However, approaching the end of the hiking exercise, the MPF decrease, RMS increase, and deoxy[Hb+Mb] increase possibly indicate the onset of muscle fatigue.

  14. Cardiorespiratory and muscular responses to simulated upwind sailing exercise in Optimist sailors.

    PubMed

    Callewaert, Margot; Boone, Jan; Celie, Bert; De Clercq, Dirk; Bourgois, Jan G

    2014-02-01

    The aim of this work was to gain more insight into the cardiorespiratory and muscular (m. vastus lateralis) responses to simulated upwind sailing exercise in 10 high-level male and female Optimist sailors (10.8-14.4 years old). Hiking strap load (HSL) and cardiorespiratory variables were measured while exercising on a specially developed Optimist sailing ergometer. Electromyography (EMG) was used to determine mean power frequency (MPF) and root mean square (RMS). Near-infrared spectroscopy was used to measure deoxygenated Hemoglobin and Myoglobin concentration (deoxy[Hb+Mb]) and re-oxygenation. Results indicated that HSL and integrated EMG of the vastus lateralis muscle changed in accordance with the hiking intensity. Cardiorespiratory response demonstrated an initial significant increase and subsequently steady state in oxygen uptake (VO₂), ventilation (VE), and heart rate (HR) up to circa 40% VO₂peak, 30% VEpeak and 70% HRpeak respectively. At muscle level, results showed that highly trained Optimist sailors manage to stabilize the muscular demand and fatigue development during upwind sailing (after an initial increase). However, approaching the end of the hiking exercise, the MPF decrease, RMS increase, and deoxy[Hb+Mb] increase possibly indicate the onset of muscle fatigue. PMID:24018866

  15. Adaptation of antennal neurons in moths is associated with cessation of pheromone-mediated upwind flight.

    PubMed Central

    Baker, T C; Hansson, B S; Löfstedt, C; Löfqvist, J

    1988-01-01

    A wind-borne plume of sex pheromone from a female moth or a synthetic source has a fine, filamentous structure that creates steep and rapid fluctuations in concentration for a male moth flying up the plume's axis. The firing rates from single antennal neurons on Agrotis segetum antennae decreased to nearly zero within seconds after the antennae were placed in a pheromone plume 70 cm downwind of a high-concentration source known from previous studies to cause in-flight arrestment of upwind progress. In a separate experiment, the fluctuating output from chilled neurons on Grapholita molesta antennae became attenuated in response to repetitive, experimentally delivered pheromone pulses. The attenuation was correlated with a previously reported higher percentage of in-flight arrestment exhibited by moths flying at cooler compared to warmer temperatures. These results indicate that two peripheral processes related to excessive concentration, complete adaptation of antennal neurons, or merely the attenuation of fluctuations in burst frequency, are important determinants of when upwind progress by a moth flying in a pheromone plume stops and changes to station keeping. Also, adaptation and attenuation may affect the sensation of blend quality by preferentially affecting cells sensitive to the most abundant components in airborne pheromone blends. PMID:3200859

  16. Experimental study of unsteady aerothermodynamic phenomena on shock-tube wall using fast-response temperature-sensitive paints

    NASA Astrophysics Data System (ADS)

    Ozawa, Hiroshi

    2016-04-01

    This paper describes an experimental study that used a fast-response temperature-sensitive paint (TSP) to investigate the unsteady aerothermodynamic phenomena occurring on a shock-tube wall. To understand these phenomena in detail, a fast-response TSP with high temperature sensitivity developed for transient temperature measurement was applied to the wall. The shock-tube experiment was carried out under the over-tailored condition, with a pressure ratio of 110 for test gases of air in driver/driven tubes. The following aspects were clarified using the TSP: (a) the TSP could be used to visualize the unsteady aerothermodynamic phenomena and estimate the quantitative heat flux on the shock-tube wall; (b) an x-t diagram based on the TSP response showed shock-tube wall characteristics that included the incident/reflected shocks, laminar-to-turbulent boundary-layer transition, streaks in the turbulent boundary layer, reflected shock/turbulent boundary layer interaction, and waves reflected from a contact surface; (c) the TSP graphically showed that a transition front from the plate's leading edge and turbulent spots moved with 80% of the free-stream velocity behind the incident shock. In addition, the TSP could track the growth of the turbulent spots on the wall.

  17. A multi-dimensional kinetic-based upwind solver for the Euler equations

    NASA Technical Reports Server (NTRS)

    Eppard, W. M.; Grossman, B.

    1993-01-01

    A multidimensional kinetic fluctuation-splitting scheme has been developed for the Euler equations. The scheme is based on an N-scheme discretization of the Boltzmann equation at the kinetic level for triangulated Cartesian meshes with a diagonal-adaptive strategy. The resulting Euler scheme is a cell-vertex fluctuation-splitting scheme where fluctuations in the conserved-variable vector Q are obtained as moments of the fluctuation in the Maxwellian velocity distribution function at the kinetic level. Encouraging preliminary results have been obtained for perfect gases on Cartesian meshes with first-order spatial accuracy. The present approach represents an improvement to the well-established dimensionally-split upwind schemes.

  18. Multi-dimensional upwind fluctuation splitting scheme with mesh adaption for hypersonic viscous flow

    NASA Astrophysics Data System (ADS)

    Wood, William Alfred, III

    A multi-dimensional upwind fluctuation splitting scheme is developed and implemented for two dimensional and axisymmetric formulations of the Navier-Stokes equations on unstructured meshes. Key features of the scheme are the compact stencil, full upwinding, and non-linear discretization which allow for second-order accuracy with enforced positivity. Throughout, the fluctuation splitting scheme is compared to a current state-of-the-art finite volume approach, a second-order, dual mesh upwind flux difference splitting scheme (DMFDSFV), and is shown to produce more accurate results using fewer computer resources for a wide range of test cases. The scalar test cases include advected shear, circular advection, non-linear advection with coalescing shock and expansion fans, and advection-diffusion. For all scalar cases the fluctuation splitting scheme is more accurate, and the primary mechanism for the improved fluctuation splitting performance is shown to be the reduced production of artificial dissipation relative to DMFDSFV. The most significant scalar result is for combined advection-diffusion, where the present fluctuation splitting scheme is able to resolve the physical dissipation from the artificial dissipation on a much coarser mesh than DMFDSFV is able to, allowing order-of-magnitude reductions in solution time. Among the inviscid test cases the converging supersonic streams problem is notable in that the fluctuation splitting scheme exhibits superconvergent third-order spatial accuracy. For the inviscid cases of a supersonic diamond airfoil, supersonic slender cone, and incompressible circular bump the fluctuation splitting drag coefficient errors are typically half the DMFDSFV drag errors. However, for the incompressible inviscid sphere the fluctuation splitting drag error is larger than for DMFDSFV. A Blasius flat plate viscous validation case reveals a more accurate v-velocity profile for fluctuation splitting, and the reduced artificial dissipation

  19. Computation of viscous blast wave solutions with an upwind finite volume method

    NASA Technical Reports Server (NTRS)

    Molvik, Gregory A.

    1987-01-01

    A fully conservative, viscous, implicit, upwind, finite-volume scheme for the thin-layer Navier-Stokes equations is described with application to blast wave flow fields. In this scheme, shocks are captured without the oscillations typical of central differencing techniques and wave speeds are accurately predicted. The finite volume philosophy ensures conservation and since boundary conditions are also treated conservatively, accurate reflections of waves from surfaces are assured. Viscous terms in the governing equations are treated in a manner consistent with the finite volume philosophy, resulting in very accurate prediction of boundary layer quantities. Numerical results are presented for four viscous problems: a steady boundary layer, a shock-induced boundary layer, a blast wave/cylinder interaction and a blast wave/supersonic missile interaction. Comparisons of the results with an established boundary layer code, similarity solution, and experimental data show excellent agreement.

  20. Domain-decomposable preconditioners for second-order upwind discretizations of multicomponent systems

    SciTech Connect

    Keyes, D.E. . Dept. of Mechanical Engineering); Gropp, W.D. )

    1990-01-01

    Discrete systems arising in computational fluid dynamics applications often require wide stencils adapted to the local convective direction in order to accommodate higher-order upwind differencing, and involve multiple components perhaps coupling strongly at each point. Conventional exactly or approximately factored inverses of such operators are burdensome to apply globally, especially in problems complicated by non-tensor-product domain geometry or adaptive refinement, though their forward'' action is not. Such problems can be solved by iterative methods by using either point-block preconditioners or combination space-decoupled/component-decoupled preconditioners that are based on lower-order discretizations. Except for a global implicit solve on a coarse grid, each phase in the application of such preconditioners has simple locally exploitable structure. 16 refs., 2 figs., 3 tabs.

  1. Set up an Arc Welding Code with Enthalpy Method in Upwind Scheme

    SciTech Connect

    Ho, J.-E.

    2010-05-21

    In this study, a numerical code with enthalpy method in upwind scheme is proposed to estimate the distribution of thermal stress in the molten pool, which is primarily determined by the type of the input power and travel speed of heating source. To predict the cracker deficit inside the workpiece, a simulated program satisfying the diagonal domination and Scarborough criterion provides a stable iteration. Meantime, an experimental performance, operated by robot arm 'DR-400' to provide a steady and continuous arc welding, was also conducted to verify the simulated result. By surveying the consistence of molten pool bounded by contrast shade and simulated melting contour on the surface of workpiece, the validity of model proposed to predict the thermal cracker has been successfully identified.

  2. Upwind MacCormack Euler solver with non-equilibrium chemistry

    NASA Technical Reports Server (NTRS)

    Sherer, Scott E.; Scott, James N.

    1993-01-01

    A computer code, designated UMPIRE, is currently under development to solve the Euler equations in two dimensions with non-equilibrium chemistry. UMPIRE employs an explicit MacCormack algorithm with dissipation introduced via Roe's flux-difference split upwind method. The code also has the capability to employ a point-implicit methodology for flows where stiffness is introduced through the chemical source term. A technique consisting of diagonal sweeps across the computational domain from each corner is presented, which is used to reduce storage and execution requirements. Results depicting one dimensional shock tube flow for both calorically perfect gas and thermally perfect, dissociating nitrogen are presented to verify current capabilities of the program. Also, computational results from a chemical reactor vessel with no fluid dynamic effects are presented to check the chemistry capability and to verify the point implicit strategy.

  3. Development of an upwind, finite-volume code with finite-rate chemistry

    NASA Technical Reports Server (NTRS)

    Molvik, Gregory A.

    1994-01-01

    Under this grant, two numerical algorithms were developed to predict the flow of viscous, hypersonic, chemically reacting gases over three-dimensional bodies. Both algorithms take advantage of the benefits of upwind differencing, total variation diminishing techniques, and a finite-volume framework, but obtain their solution in two separate manners. The first algorithm is a zonal, time-marching scheme, and is generally used to obtain solutions in the subsonic portions of the flow field. The second algorithm is a much less expensive, space-marching scheme and can be used for the computation of the larger, supersonic portion of the flow field. Both codes compute their interface fluxes with a temporal Riemann solver and the resulting schemes are made fully implicit including the chemical source terms and boundary conditions. Strong coupling is used between the fluid dynamic, chemical, and turbulence equations. These codes have been validated on numerous hypersonic test cases and have provided excellent comparison with existing data.

  4. Streamline upwind scheme for the segregated formulation of the Navier-Stokes equation

    SciTech Connect

    Choi, H.G.; Yoo, J.Y. . Dept. of Mechanical Engineering)

    1994-03-01

    A finite-element method has been developed that combines the segregated velocity-pressure equal-order formulation of the Navier-Stokes equation originated from the SIMPLE algorithm and the streamline upwind Petrov-Galerkin weighted residual method. To verify the proposed finite-element, driven cavity flow and backward-facing step flow have been considered. The present results are compared with existing experimental results using laser Doppler velocimetry and numerical results using the finite-difference method and the velocity-pressure integrated, mixed-order interpolation method. It has been shown that the present method gives accurate results with less memory and execution time than the conventional finite-element method.

  5. High resolution applications of the Osher upwind scheme for the Euler equations

    NASA Technical Reports Server (NTRS)

    Chakravarthy, S. R.; Osher, S.

    1983-01-01

    The 'Osher' scheme was introduced by Osher (1981). It represents an upwind finite-difference method for hyperbolic systems of conservation laws, including the Euler equations. In studies conducted by Osher (1981) and Osher and Solomon (1982), the method was applied to the nonisentropic form of the Euler equations in one dimension and the isentropically restricted form in two spatial dimensions, both in Cartesian coordinates. Chakravarthy and Osher (1982) have shown an approach for extending the Osher scheme to the Euler equations written for general geometries, taking into account the use of mappings to arbitrary curvilinear coordinate systems. The present investigation is concerned with the high resolution extension of the Osher scheme to second-order accuracy. Results are presented for several example problems, giving attention to quasi-one-dimensional Laval nozzle flow, a one-dimensional shock tube problem, and supersonic flow over a cylinder.

  6. Relaxation selective pulses in fast relaxing systems.

    PubMed

    Lopez, Christopher J; Lu, Wei; Walls, Jamie D

    2014-05-01

    In this work, the selectivity or sharpness of the saturation profiles for relaxation selective pulses (R^rsps) that suppress magnetization possessing relaxation times of T2=T2(rsp) and T1=αT2 for α∈12,∞ was optimized. Along with sharpening the selectivity of the R^rsps, the selective saturation of these pulses was also optimized to be robust to both B0 and B1 inhomogeneities. Frequency-swept hyperbolic secant and adiabatic time-optimal saturation pulse inputs were found to work best in the optimizations, and the pulse lengths required to selectivity saturate the magnetization were always found to be less than the inversion recovery delay, T1ln(2). The selectivity of the optimized relaxation selective pulses was experimentally demonstrated in aqueous solutions with varying concentrations of the paramagnetic species, [Mn(+2)], and for use in solvent suppression. Finally, the "rotational" properties of spin relaxation were explored along with an analytical derivation of adiabatic time-optimal saturation pulses. PMID:24631803

  7. A Time-Accurate Upwind Unstructured Finite Volume Method for Compressible Flow with Cure of Pathological Behaviors

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.; Jorgenson, Philip C. E.

    2007-01-01

    A time-accurate, upwind, finite volume method for computing compressible flows on unstructured grids is presented. The method is second order accurate in space and time and yields high resolution in the presence of discontinuities. For efficiency, the Roe approximate Riemann solver with an entropy correction is employed. In the basic Euler/Navier-Stokes scheme, many concepts of high order upwind schemes are adopted: the surface flux integrals are carefully treated, a Cauchy-Kowalewski time-stepping scheme is used in the time-marching stage, and a multidimensional limiter is applied in the reconstruction stage. However even with these up-to-date improvements, the basic upwind scheme is still plagued by the so-called "pathological behaviors," e.g., the carbuncle phenomenon, the expansion shock, etc. A solution to these limitations is presented which uses a very simple dissipation model while still preserving second order accuracy. This scheme is referred to as the enhanced time-accurate upwind (ETAU) scheme in this paper. The unstructured grid capability renders flexibility for use in complex geometry; and the present ETAU Euler/Navier-Stokes scheme is capable of handling a broad spectrum of flow regimes from high supersonic to subsonic at very low Mach number, appropriate for both CFD (computational fluid dynamics) and CAA (computational aeroacoustics). Numerous examples are included to demonstrate the robustness of the methods.

  8. Hypersonic research engine project. Phase 2: Aerothermodynamic Integration Model (AIM) data reduction computer program, data item no. 54.16

    NASA Technical Reports Server (NTRS)

    Gaede, A. E.; Platte, W. (Editor)

    1975-01-01

    The data reduction program used to analyze the performance of the Aerothermodynamic Integration Model is described. Routines to acquire, calibrate, and interpolate the test data, to calculate the axial components of the pressure area integrals and the skin function coefficients, and to report the raw data in engineering units are included along with routines to calculate flow conditions in the wind tunnel, inlet, combustor, and nozzle, and the overall engine performance. Various subroutines were modified and used to obtain species concentrations and transport properties in chemical equilibrium at each of the internal and external engine stations. It is recommended that future test plans include the configuration, calibration, and channel assignment data on a magnetic tape generated at the test site immediately before or after a test, and that the data reduction program be designed to operate in a batch environment.

  9. A code calibration program in support of the Aeroassist Flight Experiment

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    1989-01-01

    The code calibration program for the Langley Aerothermodynamic Upwind Relaxation Algorithm to be used as support for the Aeroassist Flight Experiment (AFE) is discussed. Comparisons between experimental data and numerical simulations are made which focus on perfect-gas tests involving a scale model of the AFE. Aspects of the thermochemical nonequilibrium model are called into question by the results of ground tests performed in a ballistic range and in a shock tunnel.

  10. [Main relaxation techniques].

    PubMed

    Mateos Rodilla, Juana

    2002-11-01

    After having provided a detailed explanation on what relaxation consists of (see Rev. Rol Enf 2002; 25(9):582-586), the author presents a recap of the major known relaxation techniques including progressive muscular therapy, yoga stretching exercises, breathing techniques, therapeutic massages, meditation,... emphasizing the theoretical basis and practical experience as a function of each technique; each person ought to adopt those techniques which are most appropriate.

  11. A generalized procedure for constructing an upwind-based TVD scheme

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing

    1987-01-01

    A generalized formulation for constructing second- and higher-order accurate TVD (total variation diminishing) schemes is presented. A given scheme is made TVD by limiting antidiffusive flux differences with some nonlinear functions, so-called limiters. The general idea of the formulation and its mathematical proof of Harten's TVD conditions is shown by applying the Lax-Wendroff method to a scalar nonlinear equation and constant-coefficient system of conservation laws. For the system of equations, several definitions are derived for the argument used in the limiter function and present their performance to numerical experiments. Then the formulation is formally extended to the nonlinear system of equations. It is demonstrated that use of the present procedure allows easy conversion of existing central or upwind, and second- or higher-order differencing schemes so as to preserve monotonicity and to yield physically admissible solutions. The formulation is simple mathematically as well as numerically; neither matrix-vector multiplication nor Riemann solver is required. Roughly twice as much computational effort is needed as compared to conventional scheme. Although the notion of TVD is based on the initial value problem, application to the steady Euler equations of the formulation is also made. Numerical examples including various ranges of problems show both time- and spatial-accuracy in comparison with exact solutions.

  12. A upwind PPM with limiter for tokamak edge plasmas simulation under BOUT++ framework

    NASA Astrophysics Data System (ADS)

    Ma, Chenhao; Xu, Xueqiao

    2012-10-01

    To study the propagation of blobs driven by edge plasma instability, the PPM should be applied to improve numerical accuracy. The upwind Piecewise Parabolic Method(PPM) with limiter preserves accuracy at smooth extrema. The interpolated values only at extrema is restricted by non-linear combinations of various different approximations of the second order derivatives. This method has the same accuracy for smooth initial data as PPM without limiter and preserves shape of initial data exactly during its propagation. BOUT++ is a C++ framework for 3D plasma fluid simulation in real geometry, including both open and closed field lines, and was developed in part from the original fluid edge code BOUT. Our goal is to implement the PPM with limiter as one of numerical differencing methods in BOUT++'s library. Because the spatial scale of blobs driven by edge plasma instability are typically ten times smaller than the simulation region, the PPM with limiter will preserve the shape of blobs exactly at smooth extrema and provide better long time simulation result.

  13. Application of Central Upwind Scheme for Solving Special Relativistic Hydrodynamic Equations.

    PubMed

    Yousaf, Muhammad; Ghaffar, Tayabia; Qamar, Shamsul

    2015-01-01

    The accurate modeling of various features in high energy astrophysical scenarios requires the solution of the Einstein equations together with those of special relativistic hydrodynamics (SRHD). Such models are more complicated than the non-relativistic ones due to the nonlinear relations between the conserved and state variables. A high-resolution shock-capturing central upwind scheme is implemented to solve the given set of equations. The proposed technique uses the precise information of local propagation speeds to avoid the excessive numerical diffusion. The second order accuracy of the scheme is obtained with the use of MUSCL-type initial reconstruction and Runge-Kutta time stepping method. After a discussion of the equations solved and of the techniques employed, a series of one and two-dimensional test problems are carried out. To validate the method and assess its accuracy, the staggered central and the kinetic flux-vector splitting schemes are also applied to the same model. The scheme is robust and efficient. Its results are comparable to those obtained from the sophisticated algorithms, even in the case of highly relativistic two-dimensional test problems.

  14. A central-upwind scheme with artificial viscosity for shallow-water flows in channels

    NASA Astrophysics Data System (ADS)

    Hernandez-Duenas, Gerardo; Beljadid, Abdelaziz

    2016-10-01

    We develop a new high-resolution, non-oscillatory semi-discrete central-upwind scheme with artificial viscosity for shallow-water flows in channels with arbitrary geometry and variable topography. The artificial viscosity, proposed as an alternative to nonlinear limiters, allows us to use high-resolution reconstructions at a low computational cost. The scheme recognizes steady states at rest when a delicate balance between the source terms and flux gradients occurs. This balance in irregular geometries is more complex than that taking place in channels with vertical walls. A suitable technique is applied by properly taking into account the effects induced by the geometry. Incorporating the contributions of the artificial viscosity and an appropriate time step restriction, the scheme preserves the positivity of the water's depth. A description of the proposed scheme, its main properties as well as the proofs of well-balance and the positivity of the scheme are provided. Our numerical experiments confirm stability, well-balance, positivity-preserving properties and high resolution of the proposed method. Comparisons of numerical solutions obtained with the proposed scheme and experimental data are conducted, showing a good agreement. This scheme can be applied to shallow-water flows in channels with complex geometry and variable bed topography.

  15. Application of Central Upwind Scheme for Solving Special Relativistic Hydrodynamic Equations

    PubMed Central

    Yousaf, Muhammad; Ghaffar, Tayabia; Qamar, Shamsul

    2015-01-01

    The accurate modeling of various features in high energy astrophysical scenarios requires the solution of the Einstein equations together with those of special relativistic hydrodynamics (SRHD). Such models are more complicated than the non-relativistic ones due to the nonlinear relations between the conserved and state variables. A high-resolution shock-capturing central upwind scheme is implemented to solve the given set of equations. The proposed technique uses the precise information of local propagation speeds to avoid the excessive numerical diffusion. The second order accuracy of the scheme is obtained with the use of MUSCL-type initial reconstruction and Runge-Kutta time stepping method. After a discussion of the equations solved and of the techniques employed, a series of one and two-dimensional test problems are carried out. To validate the method and assess its accuracy, the staggered central and the kinetic flux-vector splitting schemes are also applied to the same model. The scheme is robust and efficient. Its results are comparable to those obtained from the sophisticated algorithms, even in the case of highly relativistic two-dimensional test problems. PMID:26070067

  16. Development of an upwind, finite-volume code with finite-rate chemistry

    NASA Technical Reports Server (NTRS)

    Molvik, Gregory A.

    1995-01-01

    Under this grant, two numerical algorithms were developed to predict the flow of viscous, hypersonic, chemically reacting gases over three-dimensional bodies. Both algorithms take advantage of the benefits of upwind differencing, total variation diminishing techniques and of a finite-volume framework, but obtain their solution in two separate manners. The first algorithm is a zonal, time-marching scheme, and is generally used to obtain solutions in the subsonic portions of the flow field. The second algorithm is a much less expensive, space-marching scheme and can be used for the computation of the larger, supersonic portion of the flow field. Both codes compute their interface fluxes with a temporal Riemann solver and the resulting schemes are made fully implicit including the chemical source terms and boundary conditions. Strong coupling is used between the fluid dynamic, chemical and turbulence equations. These codes have been validated on numerous hypersonic test cases and have provided excellent comparison with existing data. This report summarizes the research that took place from August 1,1994 to January 1, 1995.

  17. Robust and efficient upwind finite-difference traveltime calculations in three dimensions

    SciTech Connect

    Schneider, W.A. Jr.

    1995-07-01

    First-arrival traveltimes in complicated 3-D geologic media may be computed robustly and efficiently using an upwind finite-difference solution of the 3-D eikonal equation. An important application of this technique is computing traveltimes for imaging seismic data with 3-D prestack Kirchhoff depth migration. The method performs radial extrapolation of the three components of the slowness vector in spherical coordinates. Traveltimes are computed by numerically integrating the radial component of the slowness vector. The original finite-difference equations are recast into unitless forms that are more stable to numerical errors. A stability condition adaptively determines the radial steps that are used to extrapolate. Computations are done in a rotated spherical coordinate system that places the small arc-length regions of the spherical grid at the earth`s surface (z = 0 plane). This improves efficiency by placing large grid cells in the central regions of the grid where wavefields are complicated, thereby maximizing the radial steps. Adaptive gridding allows the angular grid spacings to vary with radius. The computation grid is also adaptively truncated so that it does not extend beyond the predefined Cartesian traveltime grid. This grid handling improves efficiency. The method cannot compute traveltimes corresponding to wavefronts that have ``turned`` so that they propagate in the negative radial direction. Such wavefronts usually represent headwaves and are not needed to image seismic data. An adaptive angular normalization prevent this turning, while allowing lower-angle wavefront components to accurately propagate.

  18. A Five-Parameter Wind Field Estimation Method Based on Spherical Upwind Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Kapp, S.; Kühn, M.

    2014-12-01

    Turbine mounted scanning lidar systems of focussed continuous-wave type are taken into consideration to sense approaching wind fields. The quality of wind information depends on the lidar technology itself but also substantially on the scanning technique and reconstruction algorithm. In this paper a five-parameter wind field model comprising mean wind speed, vertical and horizontal linear shear and homogeneous direction angles is introduced. A corresponding parameter estimation method is developed based on the assumption of upwind lidar measurements scanned over spherical segments. As a main advantage of this method all relevant parameters, in terms of wind turbine control, can be provided. Moreover, the ability to distinguish between shear and skew potentially increases the quality of the resulting feedforward pitch angles when compared to three-parameter methods. It is shown that minimal three measurements, each in turn from two independent directions are necessary for the application of the algorithm, whereas simpler measurements, each taken from only one direction, are not sufficient.

  19. An upwind vertex centred Finite Volume solver for Lagrangian solid dynamics

    NASA Astrophysics Data System (ADS)

    Aguirre, Miquel; Gil, Antonio J.; Bonet, Javier; Lee, Chun Hean

    2015-11-01

    A vertex centred Jameson-Schmidt-Turkel (JST) finite volume algorithm was recently introduced by the authors (Aguirre et al., 2014 [1]) in the context of fast solid isothermal dynamics. The spatial discretisation scheme was constructed upon a Lagrangian two-field mixed (linear momentum and the deformation gradient) formulation presented as a system of conservation laws [2-4]. In this paper, the formulation is further enhanced by introducing a novel upwind vertex centred finite volume algorithm with three key novelties. First, a conservation law for the volume map is incorporated into the existing two-field system to extend the range of applications towards the incompressibility limit (Gil et al., 2014 [5]). Second, the use of a linearised Riemann solver and reconstruction limiters is derived for the stabilisation of the scheme together with an efficient edge-based implementation. Third, the treatment of thermo-mechanical processes through a Mie-Grüneisen equation of state is incorporated in the proposed formulation. For completeness, the study of the eigenvalue structure of the resulting system of conservation laws is carried out to demonstrate hyperbolicity and obtain the correct time step bounds for non-isothermal processes. A series of numerical examples are presented in order to assess the robustness of the proposed methodology. The overall scheme shows excellent behaviour in shock and bending dominated nearly incompressible scenarios without spurious pressure oscillations, yielding second order of convergence for both velocities and stresses.

  20. High-Order Semi-Discrete Central-Upwind Schemes for Multi-Dimensional Hamilton-Jacobi Equations

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levy, Doron; Biegel, Bran R. (Technical Monitor)

    2002-01-01

    We present high-order semi-discrete central-upwind numerical schemes for approximating solutions of multi-dimensional Hamilton-Jacobi (HJ) equations. This scheme is based on the use of fifth-order central interpolants like those developed in [1], in fluxes presented in [3]. These interpolants use the weighted essentially nonoscillatory (WENO) approach to avoid spurious oscillations near singularities, and become "central-upwind" in the semi-discrete limit. This scheme provides numerical approximations whose error is as much as an order of magnitude smaller than those in previous WENO-based fifth-order methods [2, 1]. Thee results are discussed via examples in one, two and three dimensions. We also pregnant explicit N-dimensional formulas for the fluxes, discuss their monotonicity and tl!e connection between this method and that in [2].

  1. High-Order Semi-Discrete Central-Upwind Schemes for Multi-Dimensional Hamilton-Jacobi Equations

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levy, Doron; Biegel, Bryan (Technical Monitor)

    2002-01-01

    We present the first fifth order, semi-discrete central upwind method for approximating solutions of multi-dimensional Hamilton-Jacobi equations. Unlike most of the commonly used high order upwind schemes, our scheme is formulated as a Godunov-type scheme. The scheme is based on the fluxes of Kurganov-Tadmor and Kurganov-Tadmor-Petrova, and is derived for an arbitrary number of space dimensions. A theorem establishing the monotonicity of these fluxes is provided. The spacial discretization is based on a weighted essentially non-oscillatory reconstruction of the derivative. The accuracy and stability properties of our scheme are demonstrated in a variety of examples. A comparison between our method and other fifth-order schemes for Hamilton-Jacobi equations shows that our method exhibits smaller errors without any increase in the complexity of the computations.

  2. A multi-scale model for geared transmission aero-thermodynamics

    NASA Astrophysics Data System (ADS)

    McIntyre, Sean M.

    A multi-scale, multi-physics computational tool for the simulation of high-per- formance gearbox aero-thermodynamics was developed and applied to equilibrium and pathological loss-of-lubrication performance simulation. The physical processes at play in these systems include multiphase compressible ow of the air and lubricant within the gearbox, meshing kinematics and tribology, as well as heat transfer by conduction, and free and forced convection. These physics are coupled across their representative space and time scales in the computational framework developed in this dissertation. These scales span eight orders of magnitude, from the thermal response of the full gearbox O(100 m; 10 2 s), through effects at the tooth passage time scale O(10-2 m; 10-4 s), down to tribological effects on the meshing gear teeth O(10-6 m; 10-6 s). Direct numerical simulation of these coupled physics and scales is intractable. Accordingly, a scale-segregated simulation strategy was developed by partitioning and treating the contributing physical mechanisms as sub-problems, each with associated space and time scales, and appropriate coupling mechanisms. These are: (1) the long time scale thermal response of the system, (2) the multiphase (air, droplets, and film) aerodynamic flow and convective heat transfer within the gearbox, (3) the high-frequency, time-periodic thermal effects of gear tooth heating while in mesh and its subsequent cooling through the rest of rotation, (4) meshing effects including tribology and contact mechanics. The overarching goal of this dissertation was to develop software and analysis procedures for gearbox loss-of-lubrication performance. To accommodate these four physical effects and their coupling, each is treated in the CFD code as a sub problem. These physics modules are coupled algorithmically. Specifically, the high- frequency conduction analysis derives its local heat transfer coefficient and near-wall air temperature boundary conditions from a quasi

  3. Time-accurate analysis of nonequilibrium gas-particle mixtures using upwind/implicit finite-volume methodology

    SciTech Connect

    Hosangadi, A.; Sinha, N.; Dash, S.M. )

    1992-01-01

    A new Eulerian particulate solver whose numerical formulation is compatible with the numerics in state-of-the-art finite-volume upwind/implicit gas dynamic computer codes is presented. The heat transfer, drag, thermodynamic, and phase-change procedures in this code are derived from earlier, well established data fits and procedures. Performance for numerous flow problems with one- and two-way coupling is quite good. The solutions are nonoscillatory and robust and conserve flux balances very well. 18 refs.

  4. A comparison of the effect of the first and second upwind schemes on the predictions of the modified RELAP5/MOD3

    SciTech Connect

    Analytis, G.Th.

    1995-09-01

    As is well-known, both TRAC-BF1 and TRAC-PF are using the first upwind scheme when finite-differencing the phasic momentum equations. In contrast, RELAP5 uses the second upwind which is less diffusive. In this work, we shall assess the differences between the two schemes with our modified version of RELAP5/MOD3 by analyzing some transients of interest. These will include the LOFT LP-LB-1 and LOBI small break LOCA (SB-LOCA) BL34 tests, and a commercial PWR 200% hypothetical large break LOCA (LB-LOCA). In particular, we shall show that for some of these transients, the employment of the first upwind scheme results in significantly different code predictions than the ones obtained when the second upwind scheme is used.

  5. Volume 2: Explicit, multistage upwind schemes for Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Elmiligui, Alaa; Ash, Robert L.

    1992-01-01

    The objective of this study was to develop a high-resolution-explicit-multi-block numerical algorithm, suitable for efficient computation of the three-dimensional, time-dependent Euler and Navier-Stokes equations. The resulting algorithm has employed a finite volume approach, using monotonic upstream schemes for conservation laws (MUSCL)-type differencing to obtain state variables at cell interface. Variable interpolations were written in the k-scheme formulation. Inviscid fluxes were calculated via Roe's flux-difference splitting, and van Leer's flux-vector splitting techniques, which are considered state of the art. The viscous terms were discretized using a second-order, central-difference operator. Two classes of explicit time integration has been investigated for solving the compressible inviscid/viscous flow problems--two-state predictor-corrector schemes, and multistage time-stepping schemes. The coefficients of the multistage time-stepping schemes have been modified successfully to achieve better performance with upwind differencing. A technique was developed to optimize the coefficients for good high-frequency damping at relatively high CFL numbers. Local time-stepping, implicit residual smoothing, and multigrid procedure were added to the explicit time stepping scheme to accelerate convergence to steady-state. The developed algorithm was implemented successfully in a multi-block code, which provides complete topological and geometric flexibility. The only requirement is C degree continuity of the grid across the block interface. The algorithm has been validated on a diverse set of three-dimensional test cases of increasing complexity. The cases studied were: (1) supersonic corner flow; (2) supersonic plume flow; (3) laminar and turbulent flow over a flat plate; (4) transonic flow over an ONERA M6 wing; and (5) unsteady flow of a compressible jet impinging on a ground plane (with and without cross flow). The emphasis of the test cases was validation of

  6. Development of a 3-D upwind PNS code for chemically reacting hypersonic flowfields

    NASA Technical Reports Server (NTRS)

    Tannehill, J. C.; Wadawadigi, G.

    1992-01-01

    Two new parabolized Navier-Stokes (PNS) codes were developed to compute the three-dimensional, viscous, chemically reacting flow of air around hypersonic vehicles such as the National Aero-Space Plane (NASP). The first code (TONIC) solves the gas dynamic and species conservation equations in a fully coupled manner using an implicit, approximately-factored, central-difference algorithm. This code was upgraded to include shock fitting and the capability of computing the flow around complex body shapes. The revised TONIC code was validated by computing the chemically-reacting (M(sub infinity) = 25.3) flow around a 10 deg half-angle cone at various angles of attack and the Ames All-Body model at 0 deg angle of attack. The results of these calculations were in good agreement with the results from the UPS code. One of the major drawbacks of the TONIC code is that the central-differencing of fluxes across interior flowfield discontinuities tends to introduce errors into the solution in the form of local flow property oscillations. The second code (UPS), originally developed for a perfect gas, has been extended to permit either perfect gas, equilibrium air, or nonequilibrium air computations. The code solves the PNS equations using a finite-volume, upwind TVD method based on Roe's approximate Riemann solver that was modified to account for real gas effects. The dissipation term associated with this algorithm is sufficiently adaptive to flow conditions that, even when attempting to capture very strong shock waves, no additional smoothing is required. For nonequilibrium calculations, the code solves the fluid dynamic and species continuity equations in a loosely-coupled manner. This code was used to calculate the hypersonic, laminar flow of chemically reacting air over cones at various angles of attack. In addition, the flow around the McDonnel Douglas generic option blended-wing-body was computed and comparisons were made between the perfect gas, equilibrium air, and the

  7. Aerothermodynamic performance and thermal protection design for blunt re-entry bodies at L/D = 0.3

    NASA Technical Reports Server (NTRS)

    Caram, Jose M.; Kowal, T. J.

    1993-01-01

    Aerodynamic heating and thermal protection design analyses were performed for three blunt re-entry bodies at an L/D = 0.3 returning from low earth orbit. These configurations consisted of a scaled up Apollo command module, a Viking re-entry vehicle, and an Aeroassist Flight Experiment (AFE) aerobrake, each with a maximum diameter of 4.42 m. The aerothermodynamic analysis determined the equilibrium stagnation point heating rate and heat load for nominal and 3-sigma re-entry trajectories and the distribution of heating along the pitch and yaw planes for each of the vehicles at the time of highest heat flux. Using the predicted heating rates and heating distributions, a Thermal Protection System (TPS) design with flight certified materials was tailored for each of the configurations. Results indicated that the heating to the corner of the Viking aeroshell would exceed current limits of reusable tile material. Also, the maximum heating for the AFE would be 15 percent greater than the maximum heating for the Apollo flying the same trajectory. TPS designs showed no significant advantage in TPS weight between the different vehicles; however, heat-shield areal density comparisons showed the Apollo configuration to be the most efficient in terms of TPS weight.

  8. Application of program LAURA to perfect gas shock tube flows: A parametric study

    NASA Technical Reports Server (NTRS)

    Mitterer, K. F.; Mitcheltree, R. A.; Gnoffo, P. A.

    1992-01-01

    The Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) was originally developed to solve steady-flow problems. The desire to validate the algorithm with shock tube experimental data motivated the development of a time-accurate version of the LAURA code. The current work presents a test of the Algorithm. Computational results are compared with the exact solution for a simple shock tube case. The parameters examined are Courant number, relaxation sweeps, grid spacing, and the inviscid relaxation factor. The results of the study indicate that LAURA is capable of producing accurate solutions when appropriate values are used for each parameter.

  9. Relaxation: mapping an uncharted world.

    PubMed

    Smith, J C; Amutio, A; Anderson, J P; Aria, L A

    1996-03-01

    Nine hundred and forty practitioners of massage, abbreviated progressive muscle relaxation (PMR), yoga stretching, breathing, imagery meditation, and various combination treatments described their technique experiences on an 82-item wordlist. Factor analysis yielded 10 interpretable relaxation categories: Joyful Affects and Appraisals (Joyful), Distant, Calm, Aware, Prayerful, Accepted, Untroubled, Limp, Silent, and Mystery The relaxation response and cognitive/somatic specificity models predict Calm and Limp, which account for only 5.5% of the variance of relaxation experience. Unlike much of previous relaxation research, we found important technique differences. PMR and massage are associated with Distant and Limp; yoga stretching, breathing, and meditation with Aware; meditation with Prayerful and all techniques except PMR with Joyful. Results are consistent with cognitive-behavioral relaxation theory and have implications for relaxation theory, treatment, training, assessment, and research. We close with a revised model of relaxation that posits three global dimensions; tension-relief, passive disengagement, and passive engagement.

  10. Hair Dye and Hair Relaxers

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

  11. Relaxation phenomena in disordered systems

    NASA Astrophysics Data System (ADS)

    Sciortino, F.; Tartaglia, P.

    1997-02-01

    In this article we discuss how the assumptions of self-similarity imposed on the distribution of independently relaxing modes, as well as on their amplitude and characteristic times, manifest in the global relaxation phenomena. We also review recent applications of such approach to the description of relaxation phenomena in microemulsions and molecular glasses.

  12. A Comparison of Relaxation Strategies.

    ERIC Educational Resources Information Center

    Matthews, Doris B.

    Some researchers argue that all relaxation techniques produce a single relaxation response while others support a specific-effects hypothesis which suggests that progressive relaxation affects the musculoskeletal system and that guided imagery affects cognitive changes. Autogenics is considered a technique which is both somatic and cognitive. This…

  13. Critical wind velocity for arresting upwind gas and smoke dispersion induced by near-wall fire in a road tunnel.

    PubMed

    Hu, L H; Peng, W; Huo, R

    2008-01-15

    In case of a tunnel fire, toxic gas and smoke particles released are the most fatal contaminations. It is important to supply fresh air from the upwind side to provide a clean and safe environment upstream from the fire source for people evacuation. Thus, the critical longitudinal wind velocity for arresting fire induced upwind gas and smoke dispersion is a key criteria for tunnel safety design. Former studies and thus, the models built for estimating the critical wind velocity are all arbitrarily assuming that the fire takes place at the centre of the tunnel. However, in many real cases in road tunnels, the fire originates near the sidewall. The critical velocity of a near-wall fire should be different with that of a free-standing central fire due to their different plume entrainment process. Theoretical analysis and CFD simulation were performed in this paper to estimate the critical velocity for the fire near the sidewall. Results showed that when fire originates near the sidewall, it needs larger critical velocity to arrest the upwind gas and smoke dispersion than when fire at the centre. The ratio of critical velocity of a near-wall fire to that of a central fire was ideally estimated to be 1.26 by theoretical analysis. Results by CFD modelling showed that the ratio decreased with the increase of the fire size till near to unity. The ratio by CFD modelling was about 1.18 for a 500kW small fire, being near to and a bit lower than the theoretically estimated value of 1.26. However, the former models, including those of Thomas (1958, 1968), Dangizer and Kenndey (1982), Oka and Atkinson (1995), Wu and Barker (2000) and Kunsch (1999, 2002), underestimated the critical velocity needed for a fire near the tunnel sidewall.

  14. Numerical simulation of the debris flow dynamics with an upwind scheme and specific friction treatment

    NASA Astrophysics Data System (ADS)

    Sánchez Burillo, Guillermo; Beguería, Santiago; Latorre, Borja; Burguete, Javier

    2014-05-01

    Debris flows, snow and rock avalanches, mud and earth flows are often modeled by means of a particular realization of the so called shallow water equations (SWE). Indeed, a number of simulation models have been already developed [1], [2], [3], [4], [5], [6], [7]. Debris flow equations differ from shallow water equations in two main aspects. These are (a) strong bed gradient and (b) rheology friction terms that differ from the traditional SWE. A systematic analysis of the numerical solution of the hyperbolic system of equations rising from the shallow water equations with different rheological laws has not been done. Despite great efforts have been done to deal with friction expressions common in hydraulics (such as Manning friction), landslide rheologies are characterized by more complicated expressions that may deal to unphysical solutions if not treated carefully. In this work, a software that solves the time evolution of sliding masses over complex bed configurations is presented. The set of non- linear equations is treated by means of a first order upwind explicit scheme, and the friction contribution to the dynamics is treated with a suited numerical scheme [8]. In addition, the software incorporates various rheological models to accommodate for different flow types, such as the Voellmy frictional model [9] for rock and debris avalanches, or the Herschley-Bulkley model for debris and mud flows. The aim of this contribution is to release this code as a free, open source tool for the simulation of mass movements, and to encourage the scientific community to make use of it. The code uses as input data the friction coefficients and two input files: the topography of the bed and the initial (pre-failure) position of the sliding mass. In addition, another file with the final (post-event) position of the sliding mass, if desired, can be introduced to be compared with the simulation obtained result. If the deposited mass is given, an error estimation is computed by

  15. Numerical simulation of the debris flow dynamics with an upwind scheme and specific friction treatment

    NASA Astrophysics Data System (ADS)

    Sánchez Burillo, Guillermo; Beguería, Santiago; Latorre, Borja; Burguete, Javier

    2014-05-01

    Debris flows, snow and rock avalanches, mud and earth flows are often modeled by means of a particular realization of the so called shallow water equations (SWE). Indeed, a number of simulation models have been already developed [1], [2], [3], [4], [5], [6], [7]. Debris flow equations differ from shallow water equations in two main aspects. These are (a) strong bed gradient and (b) rheology friction terms that differ from the traditional SWE. A systematic analysis of the numerical solution of the hyperbolic system of equations rising from the shallow water equations with different rheological laws has not been done. Despite great efforts have been done to deal with friction expressions common in hydraulics (such as Manning friction), landslide rheologies are characterized by more complicated expressions that may deal to unphysical solutions if not treated carefully. In this work, a software that solves the time evolution of sliding masses over complex bed configurations is presented. The set of non- linear equations is treated by means of a first order upwind explicit scheme, and the friction contribution to the dynamics is treated with a suited numerical scheme [8]. In addition, the software incorporates various rheological models to accommodate for different flow types, such as the Voellmy frictional model [9] for rock and debris avalanches, or the Herschley-Bulkley model for debris and mud flows. The aim of this contribution is to release this code as a free, open source tool for the simulation of mass movements, and to encourage the scientific community to make use of it. The code uses as input data the friction coefficients and two input files: the topography of the bed and the initial (pre-failure) position of the sliding mass. In addition, another file with the final (post-event) position of the sliding mass, if desired, can be introduced to be compared with the simulation obtained result. If the deposited mass is given, an error estimation is computed by

  16. Quality assessment of two- and three-dimensional unstructured meshes and validation of an upwind Euler flow solver

    NASA Technical Reports Server (NTRS)

    Woodard, Paul R.; Yang, Henry T. Y.; Batina, John T.

    1992-01-01

    Quality assessment procedures are described for two-dimensional and three-dimensional unstructured meshes. The procedures include measurement of minimum angles, element aspect ratios, stretching, and element skewness. Meshes about the ONERA M6 wing and the Boeing 747 transport configuration are generated using an advancing front method grid generation package of programs. Solutions of Euler's equations for these meshes are obtained at low angle-of-attack, transonic conditions. Results for these cases, obtained as part of a validation study demonstrate the accuracy of an implicit upwind Euler solution algorithm.

  17. On the divergence-free condition in Godunov-type schemes for ideal magnetohydrodynamics: the upwind constrained transport method

    NASA Astrophysics Data System (ADS)

    Londrillo, P.; del Zanna, L.

    2004-03-01

    We present a general framework to design Godunov-type schemes for multidimensional ideal magnetohydrodynamic (MHD) systems, having the divergence-free relation and the related properties of the magnetic field B as built-in conditions. Our approach mostly relies on the constrained transport (CT) discretization technique for the magnetic field components, originally developed for the linear induction equation, which assures [∇.B]num=0 and its preservation in time to within machine accuracy in a finite-volume setting. We show that the CT formalism, when fully exploited, can be used as a general guideline to design the reconstruction procedures of the B vector field, to adapt standard upwind procedures for the momentum and energy equations, avoiding the onset of numerical monopoles of O(1) size, and to formulate approximate Riemann solvers for the induction equation. This general framework will be named here upwind constrained transport (UCT). To demonstrate the versatility of our method, we apply it to a variety of schemes, which are finally validated numerically and compared: a novel implementation for the MHD case of the second-order Roe-type positive scheme by Liu and Lax [J. Comput. Fluid Dyn. 5 (1996) 133], and both the second- and third-order versions of a central-type MHD scheme presented by Londrillo and Del Zanna [Astrophys. J. 530 (2000) 508], where the basic UCT strategies have been first outlined.

  18. Hybrid Upwind Discretization for the Implicit Simulation of Three-Phase Coupled Flow and Transport with Gravity

    NASA Astrophysics Data System (ADS)

    Hamon, F. P.; Mallison, B.; Tchelepi, H.

    2015-12-01

    The systems of algebraic equations arising from implicit (backward-Euler) finite-volume discretization of the conservation laws governing multiphase flow in porous media are quite challenging for nonlinear solvers. In the presence of counter-current flow due to buoyancy, the coupling between flow (pressure) and transport (saturations) is often the cause of nonlinear problems when single-point Phase-Potential Upwinding (PPU) is used. To overcome such convergence problems in practice, the time step is reduced and Newton's method is restarted from the solution at the previous converged time step. Here, we generalize the work of Lee, Efendiev and Tchelepi [Advances in Water Resources, 2015] to propose an Implicit Hybrid Upwinding (IHU) scheme for coupled flow and transport. In the pure transport problem, we show that the numerical flux obtained with IHU is differentiable, monotone and consistent for two and three-phase flow. For coupled flow and transport, we prove saturation physical bounds as well as the existence of a solution to our scheme. Challenging two- and three-phase heterogeneous multi-dimensional numerical tests confirm that the new scheme is non-oscillatory and convergent, and illustrate the superior convergence rate of our IHU-based Newton solver for large time steps.

  19. Particle transport and adjustments of the boundary layer over rough surfaces with an unrestricted, upwind supply of sediment

    NASA Astrophysics Data System (ADS)

    McKenna Neuman, Cheryl

    1998-10-01

    Most natural surfaces containing non-erodible roughness elements are considerably more complex than those studied in modelling exercises and wind tunnel simulations. Unlike idealized roughness elements, which are uniform in size, shape (i.e., spheres or cylinders) and spacing, natural elements are challenging to measure in 3-dimensional space. Similarly, most deflation lag surfaces, such those as found on sandar and beaches, are spatially heterogeneous open systems in which sediment transport from an external supply is very likely. The development of irregular deflation lag surfaces, and the transport of sediment over these surfaces from an upwind source of sediment, was studied in a series of wind tunnel simulations. Surfaces prepared with crushed gravel and natural beach shingle respond conservatively in terms of the adjustment to the deflation and deposition of sediment. Deflation lag surfaces, prepared with no spacing between the roughness elements (i.e., close packed), demonstrate little to no change in coverage with the introduction of particles from an upwind source. Neither the element type nor the friction velocity affect this outcome. As the center-to-center element spacing increases to 60 mm, infilling of the lag surface eventually is observed, with the element coverage reduced by a factor between 2 and 4. For a given threshold ratio ( Rt), the roughness density ( λ) is smaller than observed in previous simulation studies based on idealized roughness elements.

  20. Progressive muscle relaxation, yoga stretching, and ABC relaxation theory.

    PubMed

    Ghoncheh, Shahyad; Smith, Jonathan C

    2004-01-01

    This study compared the psychological effects of progressive muscle relaxation (PMR) and yoga stretching (hatha) exercises. Forty participants were randomly divided into two groups and taught PMR or yoga stretching exercises. Both groups practiced once a week for five weeks and were given the Smith Relaxation States Inventory before and after each session. As hypothesized, practitioners of PMR displayed higher levels of relaxation states (R-States) Physical Relaxation and Disengagement at Week 4 and higher levels of Mental Quiet and Joy as a posttraining aftereffect at Week 5. Contrary to what was hypothesized, groups did not display different levels of R-States Energized or Aware. Results suggest the value of supplementing traditional somatic conceptualizations of relaxation with the psychological approach embodied in ABC relaxation theory. Clinical and research implications are discussed.

  1. Choice of implicit and explicit operators for the upwind differencing method

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Vanleer, Bram

    1988-01-01

    The flux-vector and flux-difference splittings of Steger-Warming, van Leer and Roe are tested in all possible combinations on the implicit and explicit operators that can be distinguished in implicit relaxation methods for the steady Euler and Navier-Stokes equations. The tests include one-dimensional inviscid nozzle flow, and two-dimensional inviscid and viscous shock reflection. Roe's splitting, as anticipated, is found to uniformly yield the most accurate results. On the other hand, an approximate Roe splitting of the implicit operator (the complete Roe splitting is too complicated for practical use) proves to be the least robust with regard to convergence to the steady state. In this respect, the Steger-Warming splitting is the most robust; it leads to convergence when combined with any of the splittings in the explicit operator, although not necessarily in the most efficient way.

  2. A survey of upwind methods for flows with equilibrium and non-equilibrium chemistry and thermodynamics

    NASA Technical Reports Server (NTRS)

    Grossman, B.; Garrett, J.; Cinnella, P.

    1989-01-01

    Several versions of flux-vector split and flux-difference split algorithms were compared with regard to general applicability and complexity. Test computations were performed using curve-fit equilibrium air chemistry for an M = 5 high-temperature inviscid flow over a wedge, and an M = 24.5 inviscid flow over a blunt cylinder for test computations; for these cases, little difference in accuracy was found among the versions of the same flux-split algorithm. For flows with nonequilibrium chemistry, the effects of the thermodynamic model on the development of flux-vector split and flux-difference split algorithms were investigated using an equilibrium model, a general nonequilibrium model, and a simplified model based on vibrational relaxation. Several numerical examples are presented, including nonequilibrium air chemistry in a high-temperature shock tube and nonequilibrium hydrogen-air chemistry in a supersonic diffuser.

  3. [Death in a relaxation tank].

    PubMed

    Rupp, Wolf; Simon, Karl-Heinz; Bohnert, Michael

    2009-01-01

    Complete relaxation can be achieved by floating in a darkened, sound-proof relaxation tank filled with salinated water kept at body temperature. Under these conditions, meditation exercises up to self-hypnosis may lead to deep relaxation with physical and mental revitalization. A user manipulated his tank, presumably to completely cut off all optical and acoustic stimuli and accidentally also covered the ventilation hole. The man was found dead in his relaxation tank. The findings suggested lack of oxygen as the cause of death.

  4. Topological constraints on magnetic relaxation.

    PubMed

    Yeates, A R; Hornig, G; Wilmot-Smith, A L

    2010-08-20

    The final state of turbulent magnetic relaxation in a reversed field pinch is well explained by Taylor's hypothesis. However, recent resistive-magnetohydrodynamic simulations of the relaxation of braided solar coronal loops have led to relaxed fields far from the Taylor state, despite the conservation of helicity. We point out the existence of an additional topological invariant in any flux tube with a nonzero field: the topological degree of the field line mapping. We conjecture that this constrains the relaxation, explaining why only one of three example simulations reaches the Taylor state. PMID:20868104

  5. Relaxation Techniques for Trauma.

    PubMed

    Scotland-Coogan, Diane; Davis, Erin

    2016-01-01

    Physiological symptoms of posttraumatic stress disorder (PTSD) manifest as increased arousal and reactivity seen as anger outburst, irritability, reckless behavior with no concern for consequences, hypervigilance, sleep disturbance, and problems with focus (American Psychiatric Association, 2013 ). In seeking the most beneficial treatment for PTSD, consideration must be given to the anxiety response. Relaxation techniques are shown to help address the physiological manifestations of prolonged stress. The techniques addressed by the authors in this article include mindfulness, deep breathing, yoga, and meditation. By utilizing these techniques traditional therapies can be complemented. In addition, those who are averse to the traditional evidence-based practices or for those who have tried traditional therapies without success; these alternative interventions may assist in lessening physiological manifestations of PTSD. Future research studies assessing the benefits of these treatment modalities are warranted to provide empirical evidence to support the efficacy of these treatments. PMID:27119722

  6. Comet Bursting Through Relaxation

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.; Scheeres, D. J.

    2012-10-01

    Comets may be excited and occupy non-principal axis (complex) rotation states for a large fraction of their lifetimes. Many comet nuclei have been identified or are suspected to occupy non-principal axis (complex) rotation [Belton 2005, etc.] as well as have evolving rotation rates [Belton 2011, etc.]. Comet orbits drive these rotation states through cycles of excitation due to surface jets and relaxation due to time variable internal stresses that dissipate energy in the anelastic comet interior. Furthermore, relaxation from complex rotation can increase the loads along the symmetry axis of prolate comets. These loads stretch the body along the symmetry axis and may be the cause of the characteristic ``bowling pin’’ shape and eventually may lead to failure. This is an alternative model for comet bursting. Each cycle deposits only a small amount of energy and stress along the axis, but this process is repeated every orbit during which jets are activated. Our model for the evolution of comet nuclei includes torques due to a number of discrete jets located on the surface based on Neishtadt et al. [2002]. The model also includes internal dissipation using an approach developed by Sharma et al. [2005] and Vokrouhlicky et al. [2009]. These equations are averaged over the instantaneous spin state and the heliocentric orbit so the long-term evolution of the comet can be determined. We determine that even after the inclusion of internal dissipation there still exist non-principal axis equilibrium states for certain jet geometries. For ranges of dissipation factors and jet geometries, prolate comets are found to occupy states that have time variable internal loads over long time periods. These periodic loadings along the symmetry axis may lead to ``necking’’ as the body extends along the axis to release the stress and eventually disruption.

  7. Measuring the Longitudinal NMR Relaxation Rates of Fast Relaxing Nuclei Using a Signal Eliminating Relaxation Filter

    NASA Astrophysics Data System (ADS)

    Hansen, D. Flemming; Led, Jens J.

    2001-08-01

    A new experiment for selective determination of the relaxation rates of fast relaxing NMR signals is presented. The experiment is derived from the conventional inversion recovery experiment by substituting the 180° inversion pulse of this experiment with a signal eliminating relaxation filter (SERF) consisting of three 180° pulses separated by two variable delays, Δ1 and Δ2. The SERF experiment allows a selective suppression of signals with relaxation rates below a given limit while monitoring the relaxation of faster relaxing signals. The experiment was tested on a sample of 20% oxidized plastocyanin from Anabaena variabilis, where the fast exchange of an electron between the reduced (diamagnetic) and the oxidized (paramagnetic) form results in a series of average signals with widely different relaxation rates. To ensure an optimum extraction of information from the experimental data, the relaxation rates were obtained from the SERF experiment by a simultaneous analysis of all the FIDs of the experiment using a fast linear prediction model method developed previously. The reliability of the relaxation rates obtained from the SERF experiment was confirmed by a comparison of the rates with the corresponding rates obtained from a conventional inversion recovery experiment.

  8. Measuring the longitudinal NMR relaxation rates of fast relaxing nuclei using a signal eliminating relaxation filter.

    PubMed

    Hansen, D F; Led, J J

    2001-08-01

    A new experiment for selective determination of the relaxation rates of fast relaxing NMR signals is presented. The experiment is derived from the conventional inversion recovery experiment by substituting the 180 degrees inversion pulse of this experiment with a signal eliminating relaxation filter (SERF) consisting of three 180 degrees pulses separated by two variable delays, Delta1 and Delta2. The SERF experiment allows a selective suppression of signals with relaxation rates below a given limit while monitoring the relaxation of faster relaxing signals. The experiment was tested on a sample of 20% oxidized plastocyanin from Anabaena variabilis, where the fast exchange of an electron between the reduced (diamagnetic) and the oxidized (paramagnetic) form results in a series of average signals with widely different relaxation rates. To ensure an optimum extraction of information from the experimental data, the relaxation rates were obtained from the SERF experiment by a simultaneous analysis of all the FIDs of the experiment using a fast linear prediction model method developed previously. The reliability of the relaxation rates obtained from the SERF experiment was confirmed by a comparison of the rates with the corresponding rates obtained from a conventional inversion recovery experiment.

  9. Comparison between upwind FEM and new algorithm based on the indirect BIEM for 3D moving conductor problems

    SciTech Connect

    Kim, D.H. . Living System Research Lab.); Jeon, D.Y.; Hahn, S.Y. . Dept. of Electrical Engineering)

    1999-05-01

    In general, an electromagnetic apparatus such as linear induction motors, MAGLEV vehicles or electromagnetic launchers, involves conducting parts in motion. This paper presents a new algorithm based on the indirect boundary integral equation method to analyze the electromagnetic system with a moving conductor. The proposed algorithm yields relatively stable and accurate solutions because a fundamental Green's function of diffusion type is used which is valid for any value of the Peclet number. In addition, computer memory and computing time for 3D computation can be saved considerably by using the boundary integral equations of minimum order and the singular property of the Green's function. In order to prove these, numerical results obtained by the proposed algorithm and the upwind finite element method are compared with their analytic solutions.

  10. Multi-dimensional Upwind Fluctuation Splitting Scheme with Mesh Adaption for Hypersonic Viscous Flow. Degree awarded by Virginia Polytechnic Inst. and State Univ., 9 Nov. 2001

    NASA Technical Reports Server (NTRS)

    Wood, William A., III

    2002-01-01

    A multi-dimensional upwind fluctuation splitting scheme is developed and implemented for two-dimensional and axisymmetric formulations of the Navier-Stokes equations on unstructured meshes. Key features of the scheme are the compact stencil, full upwinding, and non-linear discretization which allow for second-order accuracy with enforced positivity. Throughout, the fluctuation splitting scheme is compared to a current state-of-the-art finite volume approach, a second-order, dual mesh upwind flux difference splitting scheme (DMFDSFV), and is shown to produce more accurate results using fewer computer resources for a wide range of test cases. A Blasius flat plate viscous validation case reveals a more accurate upsilon-velocity profile for fluctuation splitting, and the reduced artificial dissipation production is shown relative to DMFDSFV. Remarkably, the fluctuation splitting scheme shows grid converged skin friction coefficients with only five points in the boundary layer for this case. The second half of the report develops a local, compact, anisotropic unstructured mesh adaptation scheme in conjunction with the multi-dimensional upwind solver, exhibiting a characteristic alignment behavior for scalar problems. The adaptation strategy is extended to the two-dimensional and axisymmetric Navier-Stokes equations of motion through the concept of fluctuation minimization.

  11. [Indications for relaxation in geriatrics].

    PubMed

    Richard, J; Picot, A; de Bus, P; Andreoli, A; Dalakaki, X

    1975-11-01

    On a three years base experience in the geriatiic department of Geneva's University Psychiatric Clinic the paper studies the problem of selecting aged patients to be treated by relaxation according to the method of J. De Ajuriaguerra et M. Cahen. Observations are presented in an attempt to define three main points: a) the role played by relaxation when there is an objective [corrected] impairment of the body's integrity; b) relaxation effect on aged persons neurotic states evolution; c) the reality of considering dementia as a counter-indication of relaxation therapy. These remarks complete those presented previously about the training of therapists in relaxation, the type of control to be organized for them and their patients, the technical management of the cure, the place of relaxation in the post graduate psychiatric training, the effects of the therapy on the patients human environnement behavior in and out of the hospital, the way body is perceived through relaxation by the aged patients and it's consequences on the adjustment of an aging person.

  12. Progressive muscle relaxation, breathing exercises, and ABC relaxation theory.

    PubMed

    Matsumoto, M; Smith, J C

    2001-12-01

    This study compared the psychological effects of Progressive Muscle Relaxation (PMR) and breathing exercises. Forty-two students were divided randomly into two groups and taught PMR or breathing exercises. Both groups practiced for five weeks and were given the Smith Relaxation States Inventory before and after each session. As hypothesized, PMR practitioners displayed greater increments in relaxation states (R-States) Physical Relaxation and Disengagement, while breathing practitioners displayed higher levels of R-State Strength and Awareness. Slight differences emerged at Weeks 1 and 2; major differences emerged at Weeks 4 and 5. A delayed and potentially reinforcing aftereffect emerged for PMR only after five weeks of training--increased levels of Mental Quiet and Joy. Clinical and theoretical implications are discussed.

  13. Can Black Hole Relax Unitarily?

    NASA Astrophysics Data System (ADS)

    Solodukhin, S. N.

    2005-03-01

    We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.

  14. Simulation of DNA Supercoil Relaxation.

    PubMed

    Ivenso, Ikenna D; Lillian, Todd D

    2016-05-24

    Several recent single-molecule experiments observe the response of supercoiled DNA to nicking endonucleases and topoisomerases. Typically in these experiments, indirect measurements of supercoil relaxation are obtained by observing the motion of a large micron-sized bead. The bead, which also serves to manipulate DNA, experiences significant drag and thereby obscures supercoil dynamics. Here we employ our discrete wormlike chain model to bypass experimental limitations and simulate the dynamic response of supercoiled DNA to a single strand nick. From our simulations, we make three major observations. First, extension is a poor dynamic measure of supercoil relaxation; in fact, the linking number relaxes so fast that it cannot have much impact on extension. Second, the rate of linking number relaxation depends upon its initial partitioning into twist and writhe as determined by tension. Third, the extensional response strongly depends upon the initial position of plectonemes.

  15. Aerothermodynamic radiation studies

    NASA Technical Reports Server (NTRS)

    Donohue, K.; Reinecke, W. G.; Rossi, D.; Marinelli, W. J.; Krech, R. H.; Caledonia, G. E.

    1991-01-01

    We have built and made operational a 6 in. electric arc driven shock tube which alloys us to study the non-equilibrium radiation and kinetics of low pressure (0.1 to 1 torr) gases processed by 6 to 12 km/s shock waves. The diagnostic system allows simultaneous monitoring of shock radiation temporal histories by a bank of up to six radiometers, and spectral histories with two optical multi-channel analyzers. A data set of eight shots was assembled, comprising shocks in N2 and air at pressures between 0.1 and 1 torr and velocities of 6 to 12 km/s. Spectrally resolved data was taken in both the non-equilibrium and equilibrium shock regions on all shots. The present data appear to be the first spectrally resolved shock radiation measurements in N2 performed at 12 km/s. The data base was partially analyzed with salient features identified.

  16. Application of an Upwind High Resolution Finite-Differencing Scheme and Multigrid Method in Steady-State Incompressible Flow Simulations

    NASA Technical Reports Server (NTRS)

    Yang, Cheng I.; Guo, Yan-Hu; Liu, C.- H.

    1996-01-01

    The analysis and design of a submarine propulsor requires the ability to predict the characteristics of both laminar and turbulent flows to a higher degree of accuracy. This report presents results of certain benchmark computations based on an upwind, high-resolution, finite-differencing Navier-Stokes solver. The purpose of the computations is to evaluate the ability, the accuracy and the performance of the solver in the simulation of detailed features of viscous flows. Features of interest include flow separation and reattachment, surface pressure and skin friction distributions. Those features are particularly relevant to the propulsor analysis. Test cases with a wide range of Reynolds numbers are selected; therefore, the effects of the convective and the diffusive terms of the solver can be evaluated separately. Test cases include flows over bluff bodies, such as circular cylinders and spheres, at various low Reynolds numbers, flows over a flat plate with and without turbulence effects, and turbulent flows over axisymmetric bodies with and without propulsor effects. Finally, to enhance the iterative solution procedure, a full approximation scheme V-cycle multigrid method is implemented. Preliminary results indicate that the method significantly reduces the computational effort.

  17. Ultrafine particle concentrations in the surroundings of an urban area: comparing downwind to upwind conditions using Generalized Additive Models (GAMs).

    PubMed

    Sartini, Claudio; Zauli Sajani, Stefano; Ricciardelli, Isabella; Delgado-Saborit, Juana Mari; Scotto, Fabiana; Trentini, Arianna; Ferrari, Silvia; Poluzzi, Vanes

    2013-10-01

    The aim of this study was to investigate the influence of an urban area on ultrafine particle (UFP) concentration in nearby surrounding areas. We assessed how downwind and upwind conditions affect the UFP concentration at a site placed a few kilometres from the city border. Secondarily, we investigated the relationship among other meteorological factors, temporal variables and UFP. Data were collected for 44 days during 2008 and 2009 at a rural site placed about 3 kilometres from Bologna, in northern Italy. Measurements were performed using a spectrometer (FMPS TSI 3091). The average UFP number concentration was 11 776 (±7836) particles per cm(3). We analysed the effect of wind direction in a multivariate Generalized Additive Model (GAM) adjusted for the principal meteorological parameters and temporal trends. An increase of about 25% in UFP levels was observed when the site was downwind of the urban area, compared with the levels observed when wind blew from rural areas. The size distribution of particles was also affected by the wind direction, showing higher concentration of small size particles when the wind blew from the urban area. The GAM showed a good fit to the data (R(2) = 0.81). Model choice was via Akaike Information Criteria (AIC). The analysis also revealed that an approach based on meteorological data plus temporal trends improved the goodness of the fit of the model. In addition, the findings contribute to evidence on effects of exposure to ultrafine particles on a population living in city surroundings. PMID:24077061

  18. Relaxation schemes for Chebyshev spectral multigrid methods

    NASA Technical Reports Server (NTRS)

    Kang, Yimin; Fulton, Scott R.

    1993-01-01

    Two relaxation schemes for Chebyshev spectral multigrid methods are presented for elliptic equations with Dirichlet boundary conditions. The first scheme is a pointwise-preconditioned Richardson relaxation scheme and the second is a line relaxation scheme. The line relaxation scheme provides an efficient and relatively simple approach for solving two-dimensional spectral equations. Numerical examples and comparisons with other methods are given.

  19. Comparison of upwind and downwind rotor operations of the DOE/NASA 100-kW Mod-O wind turbine

    NASA Astrophysics Data System (ADS)

    Glasgow, J. C.; Miller, D. R.; Corrigan, R. D.

    Three aspects of the test results are compared: rotor blade bending loads, rotor teeter response, and nacelle yaw moments. As a result of the tests, it is shown that while mean flatwise bending moments were unaffected by the placement of the rotor, cyclic flatwise bending tended to increase with wind speed for the downwind rotor while remaining somewhat uniform with wind speed for the upwind rotor, reflecting the effects of increased flow disturbance for a downwind rotor. Rotor teeter response was not significantly affected by the rotor location relative to the tower, but appears to reflect reduced teeter stability near rated wind speed for both configurations. Teeter stability appears to return above wind speed, however. Nacelle yaw moments are higher for the upwind rotor but do not indicate significant design problems for either configuration.

  20. Phase transitions in semidefinite relaxations

    PubMed Central

    Javanmard, Adel; Montanari, Andrea; Ricci-Tersenghi, Federico

    2016-01-01

    Statistical inference problems arising within signal processing, data mining, and machine learning naturally give rise to hard combinatorial optimization problems. These problems become intractable when the dimensionality of the data is large, as is often the case for modern datasets. A popular idea is to construct convex relaxations of these combinatorial problems, which can be solved efficiently for large-scale datasets. Semidefinite programming (SDP) relaxations are among the most powerful methods in this family and are surprisingly well suited for a broad range of problems where data take the form of matrices or graphs. It has been observed several times that when the statistical noise is small enough, SDP relaxations correctly detect the underlying combinatorial structures. In this paper we develop asymptotic predictions for several detection thresholds, as well as for the estimation error above these thresholds. We study some classical SDP relaxations for statistical problems motivated by graph synchronization and community detection in networks. We map these optimization problems to statistical mechanics models with vector spins and use nonrigorous techniques from statistical mechanics to characterize the corresponding phase transitions. Our results clarify the effectiveness of SDP relaxations in solving high-dimensional statistical problems. PMID:27001856

  1. Phase transitions in semidefinite relaxations.

    PubMed

    Javanmard, Adel; Montanari, Andrea; Ricci-Tersenghi, Federico

    2016-04-19

    Statistical inference problems arising within signal processing, data mining, and machine learning naturally give rise to hard combinatorial optimization problems. These problems become intractable when the dimensionality of the data is large, as is often the case for modern datasets. A popular idea is to construct convex relaxations of these combinatorial problems, which can be solved efficiently for large-scale datasets. Semidefinite programming (SDP) relaxations are among the most powerful methods in this family and are surprisingly well suited for a broad range of problems where data take the form of matrices or graphs. It has been observed several times that when the statistical noise is small enough, SDP relaxations correctly detect the underlying combinatorial structures. In this paper we develop asymptotic predictions for several detection thresholds, as well as for the estimation error above these thresholds. We study some classical SDP relaxations for statistical problems motivated by graph synchronization and community detection in networks. We map these optimization problems to statistical mechanics models with vector spins and use nonrigorous techniques from statistical mechanics to characterize the corresponding phase transitions. Our results clarify the effectiveness of SDP relaxations in solving high-dimensional statistical problems. PMID:27001856

  2. Anisotropic spin relaxation in graphene.

    PubMed

    Tombros, N; Tanabe, S; Veligura, A; Jozsa, C; Popinciuc, M; Jonkman, H T; van Wees, B J

    2008-07-25

    Spin relaxation in graphene is investigated in electrical graphene spin valve devices in the nonlocal geometry. Ferromagnetic electrodes with in-plane magnetizations inject spins parallel to the graphene layer. They are subject to Hanle spin precession under a magnetic field B applied perpendicular to the graphene layer. Fields above 1.5 T force the magnetization direction of the ferromagnetic contacts to align to the field, allowing injection of spins perpendicular to the graphene plane. A comparison of the spin signals at B=0 and B=2 T shows a 20% decrease in spin relaxation time for spins perpendicular to the graphene layer compared to spins parallel to the layer. We analyze the results in terms of the different strengths of the spin-orbit effective fields in the in-plane and out-of-plane directions and discuss the role of the Elliott-Yafet and Dyakonov-Perel mechanisms for spin relaxation. PMID:18764351

  3. Ellipsoidal Relaxation of Deformed Vesicles

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Lira, Rafael B.; Riske, Karin A.; Dimova, Rumiana; Lin, Hao

    2015-09-01

    Theoretical analysis and experimental quantification on the ellipsoidal relaxation of vesicles are presented. The current work reveals the simplicity and universal aspects of this process. The Helfrich formula is shown to apply to the dynamic relaxation of moderate-to-high tension membranes, and a closed-form solution is derived which predicts the vesicle aspect ratio as a function of time. Scattered data are unified by a time scale, which leads to a similarity behavior, governed by a distinctive solution for each vesicle type. Two separate regimes in the relaxation are identified, namely, the "entropic" and the "constant-tension" regimes. The bending rigidity and the initial membrane tension can be simultaneously extracted from the data analysis, posing the current approach as an effective means for the mechanical analysis of biomembranes.

  4. A mixed relaxed clock model.

    PubMed

    Lartillot, Nicolas; Phillips, Matthew J; Ronquist, Fredrik

    2016-07-19

    Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed model with approximately equal contributions for its uncorrelated and autocorrelated components. The tip-dating analysis is particularly sensitive to the choice of the relaxed clock model. In this context, the classical pure Brownian relaxed clock appears to be overly rigid, leading to biases in divergence time estimation. By contrast, the use of a mixed clock leads to more recent and more reasonable estimates for the crown ages of placental orders and superorders. Altogether, the mixed clock introduced here represents a first step towards empirically more adequate models of the patterns of rate variation across phylogenetic trees.This article is part of the themed issue 'Dating species divergences using rocks and clocks'.

  5. A mixed relaxed clock model

    PubMed Central

    2016-01-01

    Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed model with approximately equal contributions for its uncorrelated and autocorrelated components. The tip-dating analysis is particularly sensitive to the choice of the relaxed clock model. In this context, the classical pure Brownian relaxed clock appears to be overly rigid, leading to biases in divergence time estimation. By contrast, the use of a mixed clock leads to more recent and more reasonable estimates for the crown ages of placental orders and superorders. Altogether, the mixed clock introduced here represents a first step towards empirically more adequate models of the patterns of rate variation across phylogenetic trees. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325829

  6. Molecular relaxations in amorphous phenylbutazone

    NASA Astrophysics Data System (ADS)

    Sahra, M.; Thayyil, M. Shahin; Capaccioli, S.

    2016-05-01

    Molecular dynamics of phenylbutazone in the supercooled liquid and glassy state is studied using broadband dielectric spectroscopy for test frequencies 1 kHz, 10 kHz and 100 kHz over a wide temperature range. Above the glass transition temperature Tg, the presence of the structural α-relaxation peak was observed which shifts towards lower frequencies as the temperature decreases and kinetically freezes at Tg. Besides the structural α-relaxation peak, a β-process which arises due to the localized molecular fluctuations is observed at lower temperature.

  7. Composite scheme using localized relaxation with non-standard finite difference method for hyperbolic conservation laws

    NASA Astrophysics Data System (ADS)

    Kumar, Vivek; Raghurama Rao, S. V.

    2008-04-01

    on the three point stencil of grid which makes the proposed method more efficient. This composite scheme overcomes the problem of unphysical expansion shocks and captures the shock waves with an accuracy better than the upwind relaxation scheme, as demonstrated by the test cases, together with comparisons with popular numerical methods like Roe scheme and ENO schemes.

  8. Foundations for the generalization of the Godunov method to hyperbolic systems with stiff relaxation source terms

    NASA Astrophysics Data System (ADS)

    Hittinger, Jeffrey Alan

    2000-10-01

    Hyperbolic systems of partial differential equations with relaxation source terms arise in the modeling of many physical problems where internal processes return non-equilibrium disturbances to equilibrium. A challenge in numerically approximating such systems is that the relaxation may take place on time scales much shorter than the time scales of the flow evolution. In such cases, it is desirable for numerical methods to accurately approximate the solution even if the relaxation scales are underresolved. High-resolution Godunov methods are very successful shock-capturing algorithms for the solution of hyperbolic systems of conservation laws. It is desirable to extend this methodology to properly preserve the asymptotic behavior of hyperbolic-relaxation systems such that underresolved solutions can be accurately approximated. Godunov schemes solve or approximate Riemann problems at cell interfaces to estimate numerical fluxes that respect the physics, but, due to coupling between relaxation and wave propagation in hyperbolic-relaxation systems, the Riemann problem becomes much more complicated and its exact solution is no longer feasible. Evidence presented here suggests that to obtain robust, non-oscillatory, upwind discretizations that accurately compute underresolved solutions, aspects of this physical coupling must be included in the numerical flux calculations. A simple model system is extensively analyzed using Fourier and asymptotic analysis on both the system and its integral solution for both smooth and discontinuous initial conditions. Specifically, the early- and late-time asymptotic behaviors of the Riemann problem are determined, and the results are generalized to m x m constant-coefficient systems. A nonlinear physical example, a set of eleven macroscopic transport equations for a diatomic gas, is constructed from the Boltzmann equation and is investigated to verify the applicability of the linear analysis. Current numerical methods are reviewed, and

  9. Impacts of upwind wildfire emissions on CO, CO2, and PM2.5 concentrations in Salt Lake City, Utah

    NASA Astrophysics Data System (ADS)

    Mallia, D. V.; Lin, J. C.; Urbanski, S.; Ehleringer, J.; Nehrkorn, T.

    2015-01-01

    burning is known to contribute large quantities of CO2, CO, and PM2.5 to the atmosphere. Biomass burning not only affects the area in the vicinity of fire but may also impact the air quality far downwind from the fire. The 2007 and 2012 western U.S. wildfire seasons were characterized by significant wildfire activity across much of the Intermountain West and California. In this study, we determined the locations of wildfire-derived emissions and their aggregate impacts on Salt Lake City, a major urban center downwind of the fires. To determine the influences of biomass burning emissions, we initiated an ensemble of stochastic back trajectories at the Salt Lake City receptor within the Stochastic Time-Inverted Lagrangian Transport (STILT) model, driven by wind fields from the Weather Research and Forecasting (WRF) model. The trajectories were combined with a new, high-resolution biomass burning emissions inventory—the Wildfire Emissions Inventory. Initial results showed that the WRF-STILT model was able to replicate many periods of enhanced wildfire activity observed in the measurements. Most of the contributions for the 2007 and 2012 wildfire seasons originated from fires located in Utah and central Idaho. The model results suggested that during intense episodes of upwind wildfires in 2007 and 2012, fires contributed as much as 250 ppb of CO during a 3 h period and 15 µg/m3 of PM2.5 averaged over 24 h at Salt Lake City. Wildfires had a much smaller impact on CO2 concentrations in Salt Lake City, with contributions rarely exceeding 2 ppm enhancements.

  10. Aerosols upwind of Mexico City during the MILAGRO campaign: regional scale biomass burning, dust and volcanic ash from aircraft measurements

    NASA Astrophysics Data System (ADS)

    Junkermann, W.; Steinbrecher, R.

    2009-04-01

    During the MILAGRO Campaign March/April 2006 a series of aircraft flights with the FZK microlight D-MIFU were performed in the area southeast of Mexico City starting from Puebla airport, circling the national park area of Ixtachiuatl and Popocatepetl and scanning the Chalco valley down to Cuautla in the Cuernavaca province. All flights were combined with vertical profiles up to 4500 m a.s.l. in several locations, typically north of volcano Ixtachiuatl on the Puebla side, above Chalco or Tenago del Aire and south of volcano Popocatepetl, either at Cuautla or Atlixco. In Tenango del Aire a ceilometer was additionally operated continuously for characterization of the planetary boundary layer. The aircraft carried a set of aerosol instrumentation, fine and coarse particles and size distributions as well as a 7 wavelength aethalometer. Additionally meteorological parameters, temperature and dewpoint, global radiation and actinic radiation balance, respectively photolysis rates, and ozone concentrations were measured. The instrumentation allowed to characterize the aerosol according to their sources and also their impact on radiation transfer. Biomass burning aerosol, windblown dust and volcanic ash were identified within the upwind area of Mexico City with large differences between the dry season in the first weeks of the campaign and the by far cleaner situation after beginning thunderstorm activity towards the end of the campaign. Also the aerosol characteristics inside and outside the Mexico City basin were often completely different. With wind speeds of ~ 5 m/sec from southerly directions in the Chalco valley the aerosol mixture can reach the City within ~ 2 h. Rural aerosol mixtures from the Cuernavaca plain were mixed during the transport with dust from the MC basin. Very high intensity biomass burning plumes normally reached higher altitudes and produced pyrocumulus clouds. These aerosols were injected mainly into the free troposphere. Within the MC basin a large

  11. "Stressing" Relaxation in the Classroom.

    ERIC Educational Resources Information Center

    Prager-Decker, Iris

    A rationale is offered for incorporating relaxation training in elementary school classroom activities. Cited are research studies which focus on the reaction of children to stressful life changes and resulting behavioral and physical disorders. A list is given of significant life events which may be factors in causing diseases or misbehavior in…

  12. Theory of nuclear magnetic relaxation

    NASA Technical Reports Server (NTRS)

    Mcconnell, J.

    1983-01-01

    A theory of nuclear magnetic interaction is based on the study of the stochastic rotation operator. The theory is applied explicitly to relaxation by anisotropic chemical shift and to spin-rotational interactions. It is applicable also to dipole-dipole and quadrupole interactions.

  13. Relaxation times estimation in MRI

    NASA Astrophysics Data System (ADS)

    Baselice, Fabio; Caivano, Rocchina; Cammarota, Aldo; Ferraioli, Giampaolo; Pascazio, Vito

    2014-03-01

    Magnetic Resonance Imaging is a very powerful techniques for soft tissue diagnosis. At the present, the clinical evaluation is mainly conducted exploiting the amplitude of the recorded MR image which, in some specific cases, is modified by using contrast enhancements. Nevertheless, spin-lattice (T1) and spin-spin (T2) relaxation times can play an important role in many pathology diagnosis, such as cancer, Alzheimer or Parkinson diseases. Different algorithms for relaxation time estimation have been proposed in literature. In particular, the two most adopted approaches are based on Least Squares (LS) and on Maximum Likelihood (ML) techniques. As the amplitude noise is not zero mean, the first one produces a biased estimator, while the ML is unbiased but at the cost of high computational effort. Recently the attention has been focused on the estimation in the complex, instead of the amplitude, domain. The advantage of working with real and imaginary decomposition of the available data is mainly the possibility of achieving higher quality estimations. Moreover, the zero mean complex noise makes the Least Square estimation unbiased, achieving low computational times. First results of complex domain relaxation times estimation on real datasets are presented. In particular, a patient with an occipital lesion has been imaged on a 3.0T scanner. Globally, the evaluation of relaxation times allow us to establish a more precise topography of biologically active foci, also with respect to contrast enhanced images.

  14. Distributed Relaxation for Conservative Discretizations

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2001-01-01

    A multigrid method is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work that is a small (less than 10) multiple of the operation count in one target-grid residual evaluation. The way to achieve this efficiency is the distributed relaxation approach. TME solvers employing distributed relaxation have already been demonstrated for nonconservative formulations of high-Reynolds-number viscous incompressible and subsonic compressible flow regimes. The purpose of this paper is to provide foundations for applications of distributed relaxation to conservative discretizations. A direct correspondence between the primitive variable interpolations for calculating fluxes in conservative finite-volume discretizations and stencils of the discretized derivatives in the nonconservative formulation has been established. Based on this correspondence, one can arrive at a conservative discretization which is very efficiently solved with a nonconservative relaxation scheme and this is demonstrated for conservative discretization of the quasi one-dimensional Euler equations. Formulations for both staggered and collocated grid arrangements are considered and extensions of the general procedure to multiple dimensions are discussed.

  15. Ellipsoidal relaxation of electrodeformed vesicles

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Lin, Hao; Lira, Rafael; Dimova, Rumiana; Riske, Karin

    2015-11-01

    Electrodeformation has been extensively applied to investigate the mechanical behavior of vesicles and cells. While the deformation process often exhibits complex behavior and reveals interesting physics, the relaxation process post-pulsation is equally intriguing yet less frequently studied. In this work theoretical analysis and experimental quantification on the ellipsoidal relaxation of vesicles are presented, which reveal the simplicity and universal aspects of this process. The Helfrich formula, which is derived only for equilibrated shapes, is shown to be applicable to dynamic situations such as in relaxation. A closed-form solution is derived which predicts the vesicle aspect ratio as a function of time. Scattered data are unified by a timescale, which leads to a similarity behavior, governed by a distinctive solution for each vesicle type. Two separate regimes in the relaxation are identified, namely, the ``entropic'' and the ``constant-tension'' regime. The bending rigidity and the initial membrane tension can be simultaneously extracted from the data/model analysis, posing the current approach as an effective means for the mechanical analysis of biomembranes.

  16. Relaxation properties in classical diamagnetism.

    PubMed

    Carati, A; Benfenati, F; Galgani, L

    2011-06-01

    It is an old result of Bohr that, according to classical statistical mechanics, at equilibrium a system of electrons in a static magnetic field presents no magnetization. Thus a magnetization can occur only in an out of equilibrium state, such as that produced through the Foucault currents when a magnetic field is switched on. It was suggested by Bohr that, after the establishment of such a nonequilibrium state, the system of electrons would quickly relax back to equilibrium. In the present paper, we study numerically the relaxation to equilibrium in a modified Bohr model, which is mathematically equivalent to a billiard with obstacles, immersed in a magnetic field that is adiabatically switched on. We show that it is not guaranteed that equilibrium is attained within the typical time scales of microscopic dynamics. Depending on the values of the parameters, one has a relaxation either to equilibrium or to a diamagnetic (presumably metastable) state. The analogy with the relaxation properties in the Fermi Pasta Ulam problem is also pointed out.

  17. Spin relaxation in disordered media

    NASA Astrophysics Data System (ADS)

    Dzheparov, F. S.

    2011-10-01

    A review is given on theoretical grounds and typical experimental appearances of spin dynamics and relaxation in solids containing randomly distributed nuclear and/or electronic spins. Brief content is as follows. Disordered and magnetically diluted systems. General outlines of the spin transport theory. Random walks in disordered systems (RWDS). Observable values in phase spin relaxation, free induction decay (FID). Interrelation of longitudinal and transversal relaxation related to dynamics of occupancies and phases. Occupation number representation for equations of motion. Continuum media approximation and inapplicability of moment expansions. Long-range transitions vs percolation theory. Concentration expansion as a general constructive basis for analytical methods. Scaling properties of propagators. Singular point. Dynamical and kinematical memory in RWDS. Ways of regrouping of concentration expansions. CTRW and semi-phenomenology. Coherent medium approximation for nuclear relaxation via paramagnetic impurities. Combining of memory functions and cumulant expansions for calculation of FID. Path integral representations for RWDS. Numerical simulations of RWDS. Spin dynamics in magnetically diluted systems with low Zeeman and medium low dipole temperatures. Cluster expansions, regularization of dipole interactions and spectral dynamics.

  18. Relaxation properties in classical diamagnetism

    NASA Astrophysics Data System (ADS)

    Carati, A.; Benfenati, F.; Galgani, L.

    2011-06-01

    It is an old result of Bohr that, according to classical statistical mechanics, at equilibrium a system of electrons in a static magnetic field presents no magnetization. Thus a magnetization can occur only in an out of equilibrium state, such as that produced through the Foucault currents when a magnetic field is switched on. It was suggested by Bohr that, after the establishment of such a nonequilibrium state, the system of electrons would quickly relax back to equilibrium. In the present paper, we study numerically the relaxation to equilibrium in a modified Bohr model, which is mathematically equivalent to a billiard with obstacles, immersed in a magnetic field that is adiabatically switched on. We show that it is not guaranteed that equilibrium is attained within the typical time scales of microscopic dynamics. Depending on the values of the parameters, one has a relaxation either to equilibrium or to a diamagnetic (presumably metastable) state. The analogy with the relaxation properties in the Fermi Pasta Ulam problem is also pointed out.

  19. Solution strategies and heat transfer calculations for three-dimensional configurations at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Weilmuenster, K. J.; Gnoffo, Peter A.

    1992-01-01

    A procedure which reduces the memory requirements for computing the viscous flow over a modified Orbiter geometry at a hypersonic flight condition is presented. The Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) code which incorporates a thermochemical nonequilibrium chemistry model, a finite rate catalytic wall boundary condition and wall temperature distribution based on radiation equilibrium is used in this study. In addition, the effect of choice of 'min mod' function, eigenvalue limiter and grid density on surface heating is investigated. The surface heating from a flowfield calculation at Mach number 22, altitude of 230,000 ft and 40 deg angle of attack is compared with flight data from three Orbiter flights.

  20. Characteristics of the Shuttle Orbiter Leeside Flow During A Reentry Condition

    NASA Technical Reports Server (NTRS)

    Kleb, William L.; Weilmuenster, K. James

    1992-01-01

    A study of the leeside flow characteristics of the Shuttle Orbiter is presented for a reentry flight condition. The flow is computed using a point-implicit, finite-volume scheme known as the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA). LAURA is a second-order accurate, laminar Navier-Stokes solver, incorporating finite-rate chemistry with a radiative equilibrium wall temperature distribution and finite-rate wall catalysis. The resulting computational solution is analyzed in terms of salient flow features and the surface quantities are compared with flight data.

  1. A high angle of attack inviscid shuttle orbiter computation

    NASA Technical Reports Server (NTRS)

    Kleb, William L.; Weilmuenster, K. James

    1992-01-01

    As a preliminary step toward predicting the leeside thermal environment for winged reentry vehicles at flight conditions, a computational solution for the flow about the Shuttle Orbiter at wind tunnel conditions was made using a point-implicit, finite volume scheme known as the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA). The surface pressures resulting from the computational solution are compared with wind tunnel data. The results indicate that the dominant inviscid flow features are being accurately predicted on the leeside of the Shuttle Orbiter at a moderately high angle of attack.

  2. Application of the multigrid solution technique to hypersonic entry vehicles

    NASA Technical Reports Server (NTRS)

    Greene, Francis A.

    1993-01-01

    A multigrid solution procedure has been incorporated in a version of the Langley Aerothermodynamic Upwind Relaxation Algorithm. The multigrid scheme is based on the Full Approximation Storage approach and uses Full Multigrid to obtain a well defined fine mesh starting solution. Predictions were obtained using standard transfer operators and a 'V-cycle' was used to control grid sequencing. Computed hypersonic flow solutions compared with experimental data for a 15 degree sphere cone, blended-wing body, and shuttle-like geometries are presented. It is shown that the algorithm accurately predicts heating rates, and when compared with the single grid algorithm computes solutions in one-third the computational time.

  3. Functional Equivalence Acceptance Testing of FUN3D for Entry Descent and Landing Applications

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Wood, William A.; Kleb, William L.; Alter, Stephen J.; Glass, Christopher E.; Padilla, Jose F.; Hammond, Dana P.; White, Jeffery A.

    2013-01-01

    The functional equivalence of the unstructured grid code FUN3D to the the structured grid code LAURA (Langley Aerothermodynamic Upwind Relaxation Algorithm) is documented for applications of interest to the Entry, Descent, and Landing (EDL) community. Examples from an existing suite of regression tests are used to demonstrate the functional equivalence, encompassing various thermochemical models and vehicle configurations. Algorithm modifications required for the node-based unstructured grid code (FUN3D) to reproduce functionality of the cell-centered structured code (LAURA) are also documented. Challenges associated with computation on tetrahedral grids versus computation on structured-grid derived hexahedral systems are discussed.

  4. Computational Aeroheating Predictions for X-34

    NASA Technical Reports Server (NTRS)

    Kleb,William H.; Wood, William A.; Gnoffo, Peter A.

    1998-01-01

    Radiative equilibrium surface temperatures, heating rates, streamlines, surface pressures, and flow-field features as predicted by the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) are presented for the X-34 Technology Demonstrator. Results for two trajectory points corresponding to entry peak heating and two control surface deflections are discussed. This data is also discussed in the context of Thermal Protection System (TPS) design issues. The work presented in this report is part of a larger effort to define the X-34 aerothermal environment, including the application of engineering codes and wind-tunnel studies.

  5. Computational Aeroheating Predictions for X-34

    NASA Technical Reports Server (NTRS)

    Kelb, William L.; Wood, William A.; Gnoffo, Peter A.; Alter, Stephen J.

    1998-01-01

    Radiative equilibrium surface temperatures, heating rates, streamlines, surface pressures, and flow-field features as predicted by the Langley Aerothermodynamic Upwind Relaxation Algorithm (Laura) are presented for the X-34 Technology Demonstrator. Results for two trajectory points corresponding to entry peak heating and two control surface deflections are discussed. This data is also discussed in context of Thermal Protection System (TPS) design issues. The work presented in this report is part of a larger effort to define the X-34 aerothermal environment, including the application of engineering codes and wind-tunnel studies.

  6. A Pseudo-Temporal Multi-Grid Relaxation Scheme for Solving the Parabolized Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    White, J. A.; Morrison, J. H.

    1999-01-01

    A multi-grid, flux-difference-split, finite-volume code, VULCAN, is presented for solving the elliptic and parabolized form of the equations governing three-dimensional, turbulent, calorically perfect and non-equilibrium chemically reacting flows. The space marching algorithms developed to improve convergence rate and or reduce computational cost are emphasized. The algorithms presented are extensions to the class of implicit pseudo-time iterative, upwind space-marching schemes. A full approximate storage, full multi-grid scheme is also described which is used to accelerate the convergence of a Gauss-Seidel relaxation method. The multi-grid algorithm is shown to significantly improve convergence on high aspect ratio grids.

  7. A Pseubo-Temporal Multi-Grid Relaxation Scheme for Solving the Parabolized Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Morrison, J. H.; White, J. A.

    1999-01-01

    A multi-grid, flux-difference-split, finite-volume code, VULCAN, is presented for solving the elliptic and parabolized form of the equations governing three-dimensional, turbulent, calorically perfect and non-equilibrium chemically reacting flows. The space marching algorithms developed to improve convergence rate and or reduce computational cost are emphasized. The algorithms presented are extensions to the class of implicit pseudo-time iterative, upwind space-marching schemes. A full approximate storage, full multi-grid scheme is also described which is used to accelerate the convergence of a Gauss-Seidel relaxation method. The multi-grid algorithm is shown to significantly improve convergence on high aspect ratio grids.

  8. Equivalent Relaxations of Optimal Power Flow

    SciTech Connect

    Bose, S; Low, SH; Teeraratkul, T; Hassibi, B

    2015-03-01

    Several convex relaxations of the optimal power flow (OPF) problem have recently been developed using both bus injection models and branch flow models. In this paper, we prove relations among three convex relaxations: a semidefinite relaxation that computes a full matrix, a chordal relaxation based on a chordal extension of the network graph, and a second-order cone relaxation that computes the smallest partial matrix. We prove a bijection between the feasible sets of the OPF in the bus injection model and the branch flow model, establishing the equivalence of these two models and their second-order cone relaxations. Our results imply that, for radial networks, all these relaxations are equivalent and one should always solve the second-order cone relaxation. For mesh networks, the semidefinite relaxation and the chordal relaxation are equally tight and both are strictly tighter than the second-order cone relaxation. Therefore, for mesh networks, one should either solve the chordal relaxation or the SOCP relaxation, trading off tightness and the required computational effort. Simulations are used to illustrate these results.

  9. Aerothermodynamic Testing of Protuberances and Penetrations on the NASA Crew Exploration Vehicle Heat Shield in the NASA Langley 20-Inch Mach 6 Air Tunnel

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.

    2008-01-01

    An experimental wind tunnel program is being conducted in support of an Agency wide effort to develop a replacement for the Space Shuttle and to support the NASA s long-term objective of returning to the moon and then on to Mars. This paper documents experimental measurements made on several scaled ceramic heat transfer models of the proposed Crew Exploration Vehicle. Global heat transfer images and heat transfer distributions obtained using phosphor thermography were used to infer interference heating on the Crew Exploration Vehicle Cycle 1 heat shield from local protuberances and penetrations for both laminar and turbulent heating conditions. Test parametrics included free stream Reynolds numbers of 1.0x10(exp 6)/ft to 7.25x10(exp 6)/ft in Mach 6 air at a fixed angle-of-attack. Single arrays of discrete boundary layer trips were used to trip the boundary layer approaching the protuberances/penetrations to a turbulent state. Also, the effects of three compression pad diameters, two radial locations of compression pad/tension tie location, compression pad geometry, and rotational position of compression pad/tension tie were examined. The experimental data highlighted in this paper are to be used to validate CFD tools that will be used to generate the flight aerothermodynamic database. Heat transfer measurements will also assist in the determination of the most appropriate engineering methods that will be used to assess local flight environments associated with protuberances/penetrations of the CEV thermal protection system.

  10. Aerothermodynamic Testing of the Crew Exploration Vehicle in the LaRC 20-Inch Mach 6 and 31-Inch Mach 10 Tunnels

    NASA Technical Reports Server (NTRS)

    Berger, Karen T.

    2009-01-01

    An experimental wind tunnel program is being conducted in support of a NASA wide effort to develop a Space Shuttle replacement and to support the Agency s long term objective of returning to the Moon and Mars. This article documents experimental measurements made on several scaled ceramic heat transfer models of the proposed Crew Exploration Vehicle Crew Module. The experimental data highlighted in this article are to be used to assess numerical tools that will be used to generate the flight aerothermodynamic database. Global heat transfer images and heat transfer distributions were obtained over a range of freestream Reynolds numbers and angles of attack with the phosphor thermography technique. Heat transfer data were measured on the forebody and afterbody and were used to infer the heating on the vehicle as well as the boundary layer state on the forebody surface. Several model support configurations were assessed to minimize potential support interference. In addition, the ability of the global phosphor thermography method to provide quantitative heating measurements in the low temperature environment of the capsule base region was assessed. While naturally fully developed turbulent levels were not obtained on the forebody, the use of boundary layer trips generated fully developed turbulent flow. Laminar and turbulent computational results were shown to be in good agreement with the data. Backshell testing demonstrated the ability to obtain data in the low temperature region as well as demonstrating the lack of significant model support hardware influence on heating.

  11. Aerothermodynamic Testing of the Crew Exploration Vehicle in the LaRC 20-Inch Mach 6 and 31-Inch Mach 10 Tunnels

    NASA Technical Reports Server (NTRS)

    Berger, Karen T.

    2008-01-01

    An experimental wind tunnel program is being conducted in support of a NASA wide effort to develop a Space Shuttle replacement and to support the Agency s long term objective of returning to the Moon and Mars. This report documents experimental measurements made on several scaled ceramic heat transfer models of the proposed Crew Exploration Vehicle Crew Module. The experimental data highlighted in this test report are to be used to assess numerical tools that will be used to generate the flight aerothermodynamic database. Global heat transfer images and heat transfer distributions were obtained over a range of freestream Reynolds numbers and angles of attack with the phosphor thermography technique. Heat transfer data were measured on the forebody and afterbody and were used to infer the heating on the vehicle as well as the boundary layer state on the forebody surface. Several model support configurations were assessed to minimize potential support interference. In addition, the ability of the global phosphor thermography method to provide quantitative heating measurements in the low temperature environment of the capsule base region was assessed. While naturally fully developed turbulent levels were not obtained on the forebody, the use of boundary layer trips generated fully developed turbulent flow. Laminar and turbulent computational results were shown to be in good agreement with the data. Backshell testing demonstrated the ability to obtain data in the low temperature region as well as demonstrating the lack of significant model support hardware influence on heating.

  12. Analysis of experimental results of the inlet for the NASA hypersonic research engine aerothermodynamic integration model. [wind tunnel tests of ramjet engine hypersonic inlets

    NASA Technical Reports Server (NTRS)

    Andrews, E. H., Jr.; Mackley, E. A.

    1976-01-01

    An aerodynamic engine inlet analysis was performed on the experimental results obtained at nominal Mach numbers of 5, 6, and 7 from the NASA Hypersonic Research Engine (HRE) Aerothermodynamic Integration Model (AIM). Incorporation on the AIM of the mixed-compression inlet design represented the final phase of an inlet development program of the HRE Project. The purpose of this analysis was to compare the AIM inlet experimental results with theoretical results. Experimental performance was based on measured surface pressures used in a one-dimensional force-momentum theorem. Results of the analysis indicate that surface static-pressure measurements agree reasonably well with theoretical predictions except in the regions where the theory predicts large pressure discontinuities. Experimental and theoretical results both based on the one-dimensional force-momentum theorem yielded inlet performance parameters as functions of Mach number that exhibited reasonable agreement. Previous predictions of inlet unstart that resulted from pressure disturbances created by fuel injection and combustion appeared to be pessimistic.

  13. Relaxation Models for Glassy Systems

    NASA Astrophysics Data System (ADS)

    Ajay

    In this thesis we explore some models based on constrained dynamics to understand the origin and ubiquity of the stretched exponential relaxation q(t) = exp(-(t/tau)^{ beta}). The first chapter has a pedagogical introduction to this field. Then we explore two models based primarily on constraints to see whether they would exhibit a stretched exponential relaxation. The first is a sliding block type of model based on a child's puzzle which has blocks and vacancies. The blocks can move only when they are nearest neighbor to a vacancy. We simulate random walk of the blocks and explore the relaxation behavior to equilibrium. We obtain three regimes of relaxation. In the short time regime (where the constraints are strong) we see a stretched exponential behavior. The intermediate time regime is best described as a simple random walk and we obtain a power law (with exponent 1/2). The long time behavior is a simple exponential, as expected. We do a Monte Carlo simulation of random walk on a bond-diluted hypercube. The site-diluted version of this model was suggested by Campbell as an explanation of the relaxation behavior seen in spin glasses. We come to it from the perspective of a system which exemplifies only constraints and nothing else (we have hard constraints with {cal H} = 0). We see that the relaxation to equilibrium is exponential for all p >=q 1/2 and below that it is a stretched exponential. In fact, the beta decreases as p decreases and attains a value of 1/4 at the percolation threshold of p = 1/n, where n is the dimensionality of the hypercube. We also do a calculation for determining the probability of connectivity for finite graphs. This demonstrates that the usual numerical results provided in graph theory, which are in the limit of infinite graphs, are not accurate for finite graphs. The final chapter has a conclusion. We also propose a model based on random graphs and percolation for studying sliding block kind of models.

  14. Restricting query relaxation through user constraints

    SciTech Connect

    Gaasterland, T.

    1993-07-01

    This paper describes techniques to restrict and to heuristically control relaxation of deductive database queries. The process of query relaxation provides a user with a means to automatically identify new queries that are related to the user`s original query. However, for large databases, many relaxations may be possible. The methods to control and restrict the relaxation process introduced in this paper focus the relaxation process and make it more efficient. User restrictions over the data base domain may be expressed as user constraints. This paper describes how user constraints can restrict relaxed queries. Also, a set of heuristics based on cooperative answering techniques are presented for controlling the relaxation process. Finally, the interaction of the methods for relaxing queries, processing user constraints, and applying the heuristic rules is described.

  15. Plasmon-mediated energy relaxation in graphene

    NASA Astrophysics Data System (ADS)

    Ferry, D. K.; Somphonsane, R.; Ramamoorthy, H.; Bird, J. P.

    2015-12-01

    Energy relaxation of hot carriers in graphene is studied at low temperatures, where the loss rate may differ significantly from that predicted for electron-phonon interactions. We show here that plasmons, important in the relaxation of energetic carriers in bulk semiconductors, can also provide a pathway for energy relaxation in transport experiments in graphene. We obtain a total loss rate to plasmons that results in energy relaxation times whose dependence on temperature and density closely matches that found experimentally.

  16. Plasmon-mediated energy relaxation in graphene

    SciTech Connect

    Ferry, D. K.; Somphonsane, R.; Ramamoorthy, H.; Bird, J. P.

    2015-12-28

    Energy relaxation of hot carriers in graphene is studied at low temperatures, where the loss rate may differ significantly from that predicted for electron-phonon interactions. We show here that plasmons, important in the relaxation of energetic carriers in bulk semiconductors, can also provide a pathway for energy relaxation in transport experiments in graphene. We obtain a total loss rate to plasmons that results in energy relaxation times whose dependence on temperature and density closely matches that found experimentally.

  17. Viscoelastic Relaxation of Lunar Basins

    NASA Astrophysics Data System (ADS)

    Mohit, P. S.; Phillips, R. J.

    2004-12-01

    The large lunar impact basins provide a unique glimpse into early lunar history. Here we investigate the possibility that the relief of the oldest lunar basins (with the exception of South-Pole Aitken) has decayed through viscous relaxation. We identify nine ancient multi-ring basins with very low relief and low-amplitude Bouguer and free-air gravity anomalies. The characteristics of these basins are consistent with either 1) relaxation of topographic relief by ductile flow (e.g. Solomon et al., 1982) or 2) obliteration of basin topography during crater collapse immediately following impact. Both scenarios require that the basins formed early in lunar history, when the Moon was hot. The latter possibility appears to be unlikely due to the great topographic relief of South Pole-Aitken basin (SPA), the largest and oldest impact basin on the Moon (with the possible exception of the putative Procellarum basin; Wilhelms, 1987). On the other hand, the thin crust beneath SPA may not have allowed ductile flow in its lower portions, even for a hot Moon, implying that a thicker crust is required beneath other ancient basins for the hypothesis of viscous relaxation to be tenable. Using a semi-analytic, self-gravitating viscoelastic model, we investigate the conditions necessary to produce viscous relaxation of lunar basins. We model topographic relaxation for a crustal thickness of 30 km, using a dry diabase flow law for the crust and dry olivine for the mantle. We find that the minimum temperature at the base of the crust (Tb) permitting nearly complete relaxation of topography by ductile flow on a timescale < 108 yrs is 1400 K, corresponding to a heat flow of 55mW/m2, into the crust. Ductile flow in the lower crust becomes increasingly difficult as the crustal thickness decreases. The crust beneath SPA, thinned by the impact, is only 15-20 km thick and would require Tb ≥ 1550 K for relaxation to occur. The fact that SPA has maintained high-amplitude relief suggests that

  18. Kinetic activation-relaxation technique.

    PubMed

    Béland, Laurent Karim; Brommer, Peter; El-Mellouhi, Fedwa; Joly, Jean-François; Mousseau, Normand

    2011-10-01

    We present a detailed description of the kinetic activation-relaxation technique (k-ART), an off-lattice, self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search. Combining a topological classification for local environments and event generation with ART nouveau, an efficient unbiased sampling method for finding transition states, k-ART can be applied to complex materials with atoms in off-lattice positions or with elastic deformations that cannot be handled with standard KMC approaches. In addition to presenting the various elements of the algorithm, we demonstrate the general character of k-ART by applying the algorithm to three challenging systems: self-defect annihilation in c-Si (crystalline silicon), self-interstitial diffusion in Fe, and structural relaxation in a-Si (amorphous silicon).

  19. Models of violently relaxed galaxies

    NASA Astrophysics Data System (ADS)

    Merritt, David; Tremaine, Scott; Johnstone, Doug

    1989-02-01

    The properties of spherical self-gravitating models derived from two distribution functions that incorporate, in a crude way, the physics of violent relaxation are investigated. The first distribution function is identical to the one discussed by Stiavelli and Bertin (1985) except for a change in the sign of the 'temperature', i.e., e exp(-aE) to e exp(+aE). It is shown that these 'negative temperature' models provide a much better description of the end-state of violent relaxation than 'positive temperature' models. The second distribution function is similar to the first except for a different dependence on angular momentum. Both distribution functions yield single-parameter families of models with surface density profiles very similar to the R exp 1/4 law. Furthermore, the central concentration of models in both families increases monotonically with the velocity anisotropy, as expected in systems that formed through cold collapse.

  20. Localized relaxation in stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Ohta, M.; Kirimoto, K.; Nobugai, K.; Wigmore, J. K.; Miyasato, T.

    2002-05-01

    Stabilized zirconia is well known for long-range transport of oxygen ions which is caused by diffusion relaxation of oxygen vacancies. We used torsional vibrations to measure the temperature dependence of internal friction in yttria-stabilized zirconia (YSZ) doped with 9.5 mol% Y 2O 3 and calcia-stabilized zirconia (CSZ) doped with 12 mol% CaO. In the temperature range 300- 700 K, the internal friction peak exhibits anisotropy, different in YSZ from CSZ, which we attribute to localized relaxation of oxygen vacancies. The results imply that some oxygen vacancies are bound within the local structure, a greater number in CSZ than in YSZ, and suggest that the defect symmetry of local structure depends on the type of dopant ion.

  1. Relaxation: A Fourth "R" for Education.

    ERIC Educational Resources Information Center

    Frederick, A. B.

    Relaxation training helps the individual handle tension through concentrating upon efficient use of muscles. A program of progressive relaxation can be easily incorporated into elementary and secondary schools. Objectives of such a program include the following: (a) to learn to relax technically for purposes of complete rest (deep muscle…

  2. Dynamic Relaxation of Financial Indices

    NASA Astrophysics Data System (ADS)

    Shen, J.; Zheng, B.; Lin, H.; Qiu, T.

    The dynamic relaxation of the German DAX both before and after a large price-change is investigated. The dynamic behavior is characterized by a power law. At the minutely time scale, the exponent p governing the power-law behavior takes a same value before and after the large price change, while at the daily time scale, it is different. Numerical simulations of an interacting EZ herding model are performed for comparison.

  3. Shear Relaxations of Confined Liquids.

    NASA Astrophysics Data System (ADS)

    Carson, George Amos, Jr.

    Ultrathin (<40 A) films of octamethylcyclotetrasiloxane (OMCTS), hexadecane, and dodecane were subjected to linear and non-linear oscillatory shear between flat plates. Shearing frequencies of 0.1 to 800 s^{-1} were applied at pressures from zero to 0.8 MPa using a surface rheometer only recently developed. In most cases the plates were atomically smooth mica surfaces; the role of surface interactions was examined by replacing these with alkyl chain monolayers. OMCTS and hexadecane were examined at a temperature about 5 Celsius degrees above their melting points and tended to solidify. Newtonian plateaus having enormous viscosities were observed at low shear rates. The onset of shear thinning implied relaxation times of about 0.1 s in the linear structure of the confined liquids. Large activation volumes (~80 nm ^3) suggested that shear involved large-scale collective motion. Dodecane was studied at a much higher temperature relative to its melting point and showed no signs of impending solidification though it exhibited well-defined regions of Newtonian response and power law shear thinning. When treated with molecular sieves before use, dodecane had relaxation times which were short (0.02 s) compared to hexadecane, but still exhibited large-scale collective motion. When treated with silica gel, an unexplained long -time relaxation (10 s) was seen in the Newtonian viscosity of dodecane. The relaxation time of the linear structure, 0.005 s was very small, and the storage modulus was unresolvable. The small activation volume (7nm^3) indicated a much lower level of collective motion. The activation volume remained small when dodecane was confined between tightly bound, low energy, alkyl monolayers. At low strains the storage and loss moduli became very large (>10^4 Pa), probably due to interactions with flaws in the monolayers. Dramatic signs of wall slip were observed at large strains even at low pressures.

  4. Spin relaxation in metallic ferromagnets

    NASA Astrophysics Data System (ADS)

    Berger, L.

    2011-02-01

    The Elliott theory of spin relaxation in metals and semiconductors is extended to metallic ferromagnets. Our treatment is based on the two-current model of Fert, Campbell, and Jaoul. The d→s electron-scattering process involved in spin relaxation is the inverse of the s→d process responsible for the anisotropic magnetoresistance (AMR). As a result, spin-relaxation rate 1/τsr and AMR Δρ are given by similar formulas, and are in a constant ratio if scattering is by solute atoms. Our treatment applies to nickel- and cobalt-based alloys which do not have spin-up 3d states at the Fermi level. This category includes many of the technologically important magnetic materials. And we show how to modify the theory to apply it to bcc iron-based alloys. We also treat the case of Permalloy Ni80Fe20 at finite temperature or in thin-film form, where several kinds of scatterers exist. Predicted values of 1/τsr and Δρ are plotted versus resistivity of the sample. These predictions are compared to values of 1/τsr and Δρ derived from ferromagnetic-resonance and AMR experiments in Permalloy.

  5. Arresting relaxation in Pickering Emulsions

    NASA Astrophysics Data System (ADS)

    Atherton, Tim; Burke, Chris

    2015-03-01

    Pickering emulsions consist of droplets of one fluid dispersed in a host fluid and stabilized by colloidal particles absorbed at the fluid-fluid interface. Everyday materials such as crude oil and food products like salad dressing are examples of these materials. Particles can stabilize non spherical droplet shapes in these emulsions through the following sequence: first, an isolated droplet is deformed, e.g. by an electric field, increasing the surface area above the equilibrium value; additional particles are then adsorbed to the interface reducing the surface tension. The droplet is then allowed to relax toward a sphere. If more particles were adsorbed than can be accommodated by the surface area of the spherical ground state, relaxation of the droplet is arrested at some non-spherical shape. Because the energetic cost of removing adsorbed colloids exceeds the interfacial driving force, these configurations can remain stable over long timescales. In this presentation, we present a computational study of the ordering present in anisotropic droplets produced through the mechanism of arrested relaxation and discuss the interplay between the geometry of the droplet, the dynamical process that produced it, and the structure of the defects observed.

  6. Effects of Various Forms of Relaxation Training on Physiological and Self-Report Measures of Relaxation

    ERIC Educational Resources Information Center

    Reinking, Richard H.; Kohl, Marilyn L.

    1975-01-01

    Examines relative effectiveness of four types of relaxation training including Jacobson-Wolpe and electromyograph (EMG) feedback. Dependent measures are EMG recordings and self-report measures of relaxation. All groups reported increased relaxation, but EMG groups were superior in EMG measures of speed of learning and depth of relaxation.…

  7. Relation between Direct Observation of Relaxation and Self-Reported Mindfulness and Relaxation States

    ERIC Educational Resources Information Center

    Hites, Lacey S.; Lundervold, Duane A.

    2013-01-01

    Forty-four individuals, 18-47 (MN 21.8, SD 5.63) years of age, took part in a study examining the magnitude and direction of the relationship between self-report and direct observation measures of relaxation and mindfulness. The Behavioral Relaxation Scale (BRS), a valid direct observation measure of relaxation, was used to assess relaxed behavior…

  8. A computational study of the discretization error in the solution of the Spencer-Lewis equation by doubling applied to the upwind finite-difference approximation

    SciTech Connect

    Nelson, P. ); Seth, D.L. ); Ray, A.K. )

    1992-12-01

    A detailed and systematic study of the nature of the discretization error associated with the upwind finite-difference method is presented. A basic model problem has been identified and based upon the results for this problem, a basic hypothesis regarding the accuracy of the computational solution of the Spencer-Lewis equation is formulated. The basic hypothesis is then tested under various systematic single complexifications of the basic model problem. The results of these tests provide the framework of the refined hypothesis presented in the concluding comments. 27 refs., 3 figs., 14 tabs.

  9. Dynamics of Glass Relaxation at Room Temperature

    NASA Astrophysics Data System (ADS)

    Welch, Roger C.; Smith, John R.; Potuzak, Marcel; Guo, Xiaoju; Bowden, Bradley F.; Kiczenski, T. J.; Allan, Douglas C.; King, Ellyn A.; Ellison, Adam J.; Mauro, John C.

    2013-06-01

    The problem of glass relaxation under ambient conditions has intrigued scientists and the general public for centuries, most notably in the legend of flowing cathedral glass windows. Here we report quantitative measurement of glass relaxation at room temperature. We find that Corning® Gorilla® Glass shows measurable and reproducible relaxation at room temperature. Remarkably, this relaxation follows a stretched exponential decay rather than simple exponential relaxation, and the value of the stretching exponent (β=3/7) follows a theoretical prediction made by Phillips for homogeneous glasses.

  10. Distinguishing spin relaxation mechanisms in organic semiconductors.

    PubMed

    Harmon, N J; Flatté, M E

    2013-04-26

    A theory is introduced for spin relaxation and spin diffusion of hopping carriers in a disordered system. For disorder described by a distribution of waiting times between hops (e.g., from multiple traps, site-energy disorder, and/or positional disorder) the dominant spin relaxation mechanisms in organic semiconductors (hyperfine, hopping-induced spin-orbit, and intrasite spin relaxation) each produce different characteristic spin relaxation and spin diffusion dependences on temperature. The resulting unique experimental signatures predicted by the theory for each mechanism in organic semiconductors provide a prescription for determining the dominant spin relaxation mechanism. PMID:23679752

  11. Unusual fast secondary relaxation in metallic glass

    PubMed Central

    Wang, Q.; Zhang, S.T.; Yang, Y.; Dong, Y.D.; Liu, C.T.; Lu, J.

    2015-01-01

    The relaxation spectrum of glassy solids has long been used to probe their dynamic structural features and the fundamental deformation mechanisms. Structurally complicated glasses, such as molecular glasses, often exhibit multiple relaxation processes. By comparison, metallic glasses have a simple atomic structure with dense atomic packing, and their relaxation spectra were commonly found to be simpler than those of molecular glasses. Here we show the compelling evidence obtained across a wide range of temperatures and frequencies from a La-based metallic glass, which clearly shows two peaks of secondary relaxations (fast versus slow) in addition to the primary relaxation peak. The discovery of the unusual fast secondary relaxation unveils the complicated relaxation dynamics in metallic glasses and, more importantly, provides us the clues which help decode the structural features serving as the ‘trigger' of inelasticity on mechanical agitations. PMID:26204999

  12. Biaxial stress relaxation in glassy polymers - Polymethylmethacrylate.

    NASA Technical Reports Server (NTRS)

    Sternstein, S. S.; Ho, T. C.

    1972-01-01

    Biaxial stress relaxation studies were performed on glassy polymethylmethacrylate in combined torsion-tension strain fields using a specially designed apparatus with exceptionally high stiffness and low cross talk between the torsional and tensile load measuring transducers. It was found that at low strain levels uniaxial tension relaxation is slower than pure torsion relaxation; tensile-component relaxation rates are unaffected by the level of torsional strain; torsional-component relaxation rates decrease as tensile strain is increased; uniaxial tension relaxation rates approach the pure torsion rates at higher strains (about 2%). A phenomenological treatment is presented which shows that relaxation rates can be coupled to the strain fields in which they are observed and yet be consistent with the concepts of linear viscoelasticity and the Boltzmann superposition integral.

  13. Impact of clocking on the aero-thermodynamics of a second stator tested in a one and a half stage HP turbine

    NASA Astrophysics Data System (ADS)

    Billiard, N.; Paniagua, Guillermo; Dénos, R.

    2008-06-01

    This paper focuses on the experimental investigation of the time-averaged and time-accurate aero-thermodynamics of a second stator tested in a 1.5 stage high-pressure turbine. The effect of clocking on aerodynamic and heat transfer are investigated. Tests are performed under engine representative conditions in the VKI compression tube CT3. The test program includes four different clocking positions, i.e. relative pitch-wise positions between the first and the second stator. Probes located upstream and downstream of the second stator provide the thermodynamic conditions of the flow field. On the second stator airfoil, measurements are taken around the blade profile at 15, 50 and 85% span with pressure sensors and thin-film gauges. Both time-averaged and time-resolved aspects of the flow field are addressed. Regarding the time-averaged results, clocking effects are mainly observed within the leading edge region of the second stator, the largest effects being observed at 15% span. The surface static pressure distribution is changed locally, hence affecting the overall airfoil performance. For one clocking position, the thermal load of the airfoil is noticeably reduced. Pressure fluctuations are attributed to the passage of the upstream transonic rotor and its associated pressure gradients. The pattern of these fluctuations changes noticeably as a function of clocking. The time-resolved variations of heat flux and static pressure are analyzed together showing that the major effect is due to a potential interaction. The time-resolved pressure distribution integrated along the second stator surface yields the unsteady forces on the vane. The magnitude of the unsteady force is very dependent on the clocking position.

  14. Analysis and design of numerical schemes for gas dynamics 1: Artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence

    NASA Technical Reports Server (NTRS)

    Jameson, Antony

    1994-01-01

    The theory of non-oscillatory scalar schemes is developed in this paper in terms of the local extremum diminishing (LED) principle that maxima should not increase and minima should not decrease. This principle can be used for multi-dimensional problems on both structured and unstructured meshes, while it is equivalent to the total variation diminishing (TVD) principle for one-dimensional problems. A new formulation of symmetric limited positive (SLIP) schemes is presented, which can be generalized to produce schemes with arbitrary high order of accuracy in regions where the solution contains no extrema, and which can also be implemented on multi-dimensional unstructured meshes. Systems of equations lead to waves traveling with distinct speeds and possibly in opposite directions. Alternative treatments using characteristic splitting and scalar diffusive fluxes are examined, together with modification of the scalar diffusion through the addition of pressure differences to the momentum equations to produce full upwinding in supersonic flow. This convective upwind and split pressure (CUSP) scheme exhibits very rapid convergence in multigrid calculations of transonic flow, and provides excellent shock resolution at very high Mach numbers.

  15. Relaxation damping in oscillating contacts.

    PubMed

    Popov, M; Popov, V L; Pohrt, R

    2015-01-01

    If a contact of two purely elastic bodies with no sliding (infinite coefficient of friction) is subjected to superimposed oscillations in the normal and tangential directions, then a specific damping appears, that is not dependent on friction or dissipation in the material. We call this effect "relaxation damping". The rate of energy dissipation due to relaxation damping is calculated in a closed analytic form for arbitrary axially-symmetric contacts. In the case of equal frequency of normal and tangential oscillations, the dissipated energy per cycle is proportional to the square of the amplitude of tangential oscillation and to the absolute value of the amplitude of normal oscillation, and is dependent on the phase shift between both oscillations. In the case of low frequency tangential oscillations with superimposed high frequency normal oscillations, the dissipation is proportional to the ratio of the frequencies. Generalization of the results for macroscopically planar, randomly rough surfaces as well as for the case of finite friction is discussed. PMID:26549011

  16. Violent relaxation of ellipsoidal clouds

    NASA Astrophysics Data System (ADS)

    Benhaiem, David; Sylos Labini, Francesco

    2015-04-01

    An isolated, initially cold and ellipsoidal cloud of self-gravitating particles represents a relatively simple system in which to study the effects of deviations from spherical symmetry in the mechanism of violent relaxation. Initial deviations from spherical symmetry are shown to play a dynamical role that is equivalent to that of density fluctuations in the case of an initially spherical cloud. Indeed, these deviations control the amount of particle-energy change and thus determine the properties of the final energy distribution, particularly the appearance of two species of particles: bound and free. Ejection of mass and energy from the system, together with the formation of a density profile decaying as ρ(r) ˜ r-4 and a Keplerian radial velocity dispersion profile, are prominent features similar to those observed after the violent relaxation of spherical clouds. In addition, we find that ejected particles are characterized by highly non-spherical shapes, the features of which can be traced in the initial deviations from spherical symmetry that are amplified during the dynamical evolution: particles can indeed form anisotropic configurations, like bars and/or discs, even though the initial cloud was very close to spherical.

  17. Relaxation damping in oscillating contacts

    PubMed Central

    Popov, M.; Popov, V.L.; Pohrt, R.

    2015-01-01

    If a contact of two purely elastic bodies with no sliding (infinite coefficient of friction) is subjected to superimposed oscillations in the normal and tangential directions, then a specific damping appears, that is not dependent on friction or dissipation in the material. We call this effect “relaxation damping”. The rate of energy dissipation due to relaxation damping is calculated in a closed analytic form for arbitrary axially-symmetric contacts. In the case of equal frequency of normal and tangential oscillations, the dissipated energy per cycle is proportional to the square of the amplitude of tangential oscillation and to the absolute value of the amplitude of normal oscillation, and is dependent on the phase shift between both oscillations. In the case of low frequency tangential oscillations with superimposed high frequency normal oscillations, the dissipation is proportional to the ratio of the frequencies. Generalization of the results for macroscopically planar, randomly rough surfaces as well as for the case of finite friction is discussed. PMID:26549011

  18. A numerical study of vector resonant relaxation

    NASA Astrophysics Data System (ADS)

    Kocsis, Bence; Tremaine, Scott

    2015-04-01

    Stars bound to a supermassive black hole interact gravitationally. Persistent torques acting between stellar orbits lead to a rapid resonant relaxation of the orbital orientation vectors (`vector' resonant relaxation) and slower relaxation of the eccentricities (`scalar' resonant relaxation), both at rates much faster than two-body or non-resonant relaxation. We describe a new parallel symplectic integrator, N-RING, which follows the dynamical evolution of a cluster of N stars through vector resonant relaxation, by averaging the pairwise interactions over the orbital period and periapsis precession time-scale. We use N-RING to follow the evolution of clusters containing over 104 stars for tens of relaxation times. Among other results, we find that the evolution is dominated by torques among stars with radially overlapping orbits, and that resonant relaxation can be modelled as a random walk of the orbit normals on the sphere, with angular step size ranging from ˜0.5-1 rad. The relaxation rate in a cluster with a fixed number of stars is proportional to the root mean square (rms) mass of the stars. The rms torque generated by the cluster stars is reduced below the torque between Kepler orbits due to apsidal precession and declines weakly with the eccentricity of the perturbed orbit. However, since the angular momentum of an orbit also decreases with eccentricity, the relaxation rate is approximately eccentricity-independent for e ≲ 0.7 and grows rapidly with eccentricity for e ≳ 0.8. We quantify the relaxation using the autocorrelation function of the spherical multipole moments; this decays exponentially and the e-folding time may be identified with the vector resonant relaxation time-scale.

  19. Dielectric relaxation in a protein matrix

    SciTech Connect

    Pierce, D.W.; Boxer, S.G.

    1992-06-25

    The dielectric relaxation of a sperm whale ApoMb-DANCA complex is measured by the fluorescence dynamic Stokes shift method. Emission energy increases with decreasing temperature, suggesting that the relaxation activation energies of the rate-limiting motions either depend on the conformational substrate or different types of protein motions with different frequencies participate in the reaction. Experimental data suggest that there may be relaxations on a scale of <100 ps. 61 refs., 7 figs., 2 tabs.

  20. Temperature relaxation in dense plasma mixtures

    NASA Astrophysics Data System (ADS)

    Faussurier, Gérald; Blancard, Christophe

    2016-09-01

    We present a model to calculate temperature-relaxation rates in dense plasma mixtures. The electron-ion relaxation rates are calculated using an average-atom model and the ion-ion relaxation rates by the Landau-Spitzer approach. This method allows the study of the temperature relaxation in many-temperature electron-ion and ion-ion systems such as those encountered in inertial confinement fusion simulations. It is of interest for general nonequilibrium thermodynamics dealing with energy flows between various systems and should find broad use in present high energy density experiments.

  1. Delayed Over-Relaxation for iterative methods

    NASA Astrophysics Data System (ADS)

    Antuono, M.; Colicchio, G.

    2016-09-01

    We propose a variant of the relaxation step used in the most widespread iterative methods (e.g. Jacobi Over-Relaxation, Successive Over-Relaxation) which combines the iteration at the predicted step, namely (n + 1), with the iteration at step (n - 1). We provide a theoretical analysis of the proposed algorithm by applying such a delayed relaxation step to a generic (convergent) iterative scheme. We prove that, under proper assumptions, this significantly improves the convergence rate of the initial iterative method. As a relevant example, we apply the proposed algorithm to the solution of the Poisson equation, highlighting the advantages in comparison with classical iterative models.

  2. Lavender fragrance cleansing gel effects on relaxation.

    PubMed

    Field, Tiffany; Diego, Miguel; Hernandez-Reif, Maria; Cisneros, Wendy; Feijo, Larissa; Vera, Yanexy; Gil, Karla; Grina, Diana; Claire He, Qing

    2005-02-01

    Alertness, mood, and math computations were assessed in 11 healthy adults who sniffed a cosmetic cleansing gel with lavender floral blend aroma, developed to be relaxing using Mood Mapping. EEG patterns and heart rate were also recorded before, during, and after the aroma session. The lavender fragrance blend had a significant transient effect of improving mood, making people feel more relaxed, and performing the math computation faster. The self-report and physiological data are consistent with relaxation profiles during other sensory stimuli such as massage and music, as reported in the literature. The data suggest that a specific cosmetic fragrance can have a significant role in enhancing relaxation.

  3. Isometric squeeze relaxation (progressive relaxation) vs meditation: absorption and focusing as predictors of state effects.

    PubMed

    Weinstein, M; Smith, J C

    1992-12-01

    We taught isometric squeeze relaxation (a variant of progressive relaxation) or meditation to 52 anxious subjects (16 men, 36 women). For meditation, pretreatment high absorption correlated with reductions in state cognitive and somatic anxiety as well as increments in state focusing. For isometric squeeze relaxation, pretreatment low state focusing correlated with reductions in somatic anxiety and increments in focusing. Results suggest that isometric squeeze relaxation (and progressive relaxation) may be more appropriate for individuals who have difficulty focusing, and meditation for those who already possess well-developed relaxation skills at a trait level. The results appear more consistent with Smith's cognitive-behavioral model of relaxation than with Benson's relaxation response or Davidson and Schwartz's specific effects models.

  4. Zen meditation and ABC relaxation theory: an exploration of relaxation states, beliefs, dispositions, and motivations.

    PubMed

    Gillani, N B; Smith, J C

    2001-06-01

    This study is an attempt to rigorously map the psychological effects of Zen meditation among experienced practitioners. Fifty-nine Zen meditators with at least six years of experience practiced an hour of traditional Zazen seated meditation. A control group of 24 college students spent 60 min silently reading popular magazines. Before relaxation, all participants took the Smith Relaxation States Inventory (SRSI), the Smith Relaxation Dispositions/Motivations Inventory (SRD/MI), and the Smith Relaxation Beliefs Inventory (SRBI). After practice, participants again took the SRSI. Analyses revealed that meditators are less likely to believe in God, more likely to believe in Inner Wisdom, and more likely to display the relaxation dispositions Mental Quiet, Mental Relaxation, and Timeless/Boundless/Infinite. Pre- and postsession analyses revealed that meditators showed greater increments in the relaxation states Mental Quiet, Love and Thankfulness, and Prayerfulness, as well as reduced Worry. Results support Smith's ABC Relaxation Theory.

  5. Addition of equilibrium air to an upwind Navier-Stokes code and other first steps toward a more generalized flow solver

    NASA Technical Reports Server (NTRS)

    Rosen, Bruce S.

    1991-01-01

    An upwind three-dimensional volume Navier-Stokes code is modified to facilitate modeling of complex geometries and flow fields represented by proposed National Aerospace Plane concepts. Code enhancements include an equilibrium air model, a generalized equilibrium gas model and several schemes to simplify treatment of complex geometric configurations. The code is also restructured for inclusion of an arbitrary number of independent and dependent variables. This latter capability is intended for eventual use to incorporate nonequilibrium/chemistry gas models, more sophisticated turbulence and transition models, or other physical phenomena which will require inclusion of additional variables and/or governing equations. Comparisons of computed results with experimental data and results obtained using other methods are presented for code validation purposes. Good correlation is obtained for all of the test cases considered, indicating the success of the current effort.

  6. Numerical Simulation of the Slider Air Bearing Problem of Hard Disk Drives by Two Multidimensional Upwind Residual Distribution Schemes over Unstructured Triangular Meshes

    NASA Astrophysics Data System (ADS)

    Wu, Lin; Bogy, D. B.

    2001-09-01

    In this paper we present two multigrid numerical schemes over unstructured triangular meshes that solve the slider air bearing problem of hard disk drives. For each fixed slider attitude, the air bearing pressure is obtained by solving the generalized Reynolds equation. The convection part of the equation is modeled in one scheme by the PSI multidimensional upwind residual distribution approach and in the other scheme by the SUPG finite element approach cast in residual distribution form. In both schemes, a linear Galerkin method is used to discretize the diffusion terms. In addition, a non-nested multigrid iteration technique is used to speed up the convergence rate. Finally, the balanced steady state flying attitude of the slider subject to pre-applied suspension force and torques is obtained by a Quasi-Newton iteration method (Broyden's method), and the results of the numerical solutions are compared to each other and to experimental data.

  7. Analysis of sawtooth relaxation oscillations in tokamaks

    SciTech Connect

    Yamazaki, K.; McGuire, K.; Okabayashi, M.

    1982-07-01

    Sawtooth relaxation oscillations are analyzed using the Kadomtsev's disruption model and a thermal relaxation model. The sawtooth period is found to be very sensitive to the thermal conduction loss. Qualitative agreement between these calculations and the sawtooth period observed in several tokamaks is demonstrated.

  8. Magnetization Transfer Induced Biexponential Longitudinal Relaxation

    PubMed Central

    Prantner, Andrew M.; Bretthorst, G. Larry; Neil, Jeffrey J.; Garbow, Joel R.; Ackerman, Joseph J.H.

    2009-01-01

    Longitudinal relaxation of brain water 1H magnetization in mammalian brain in vivo is typically analyzed on a per voxel basis using a monoexponential model, thereby assigning a single relaxation time constant to all 1H magnetization within a given voxel. This approach was tested by obtaining inversion recovery data from grey matter of rats at 64 exponentially-spaced recovery times. Using Bayesian probability for model selection, brain water data were best represented by a biexponential function characterized by fast and slow relaxation components. At 4.7 T, the amplitude fraction of the rapidly relaxing component is 3.4 ± 0.7 % with a rate constant of 44 ± 12 s-1 (mean ± SD; 174 voxels from 4 rats). The rate constant of the slow relaxing component is 0.66 ± 0.04 s-1. At 11.7 T, the corresponding values are 6.9 ± 0.9 %, 19 ± 5 s-1, and 0.48 ± 0.02 s-1 (151 voxels from 4 rats). Several putative mechanisms for biexponential relaxation behavior were evaluated, and magnetization transfer between bulk water protons and non-aqueous protons was determined to be the source of biexponential longitudinal relaxation. MR methods requiring accurate quantification of longitudinal relaxation may need to take this effect explicitly into account. PMID:18759367

  9. Influence of trap design on upwind flight behavior and capture of female grape berry moth (Lepidoptera: Tortricidae) with a kairomone lure.

    PubMed

    Cha, Dong H; Hesler, Stephen P; Linn, Charles E; Zhang, Aijun; Teal, Peter E A; Knight, Alan L; Roelofs, Wendell L; Loeb, Gregory M

    2013-02-01

    Oil-coated clear panel traps baited with a host plant-based kairomone lure have successfully been used for monitoring female grape berry moth, Paralobesia viteana (Clemens) (Lepidoptera: Tortricidae), but low capture rates as well as difficulty in servicing these traps makes them unsuitable for commercial use. We compared the performance of different trap designs in a flight tunnel and in a vineyard by using a 7-component synthetic kairomone blend, with a focus on trap visual cues. In flight tunnel experiments, a clear delta trap performed better than other traps. When we tested clear delta, green delta, or clear wing traps baited with a cut grape shoot, >50% of female grape berry moths made complete upwind flights. However, the clear delta trap was the only design that resulted in female moths entering the trap. Similar results were observed when females were tested with different traps (clear delta, green delta, white delta, clear wing, or green wing traps) baited with the kairomone lure. Adding a visual pattern that mimicked grape shoots to the outside surface of the clear delta trap resulted in 66% of the females that made upwind flights entering the trap. However, the positive effect of adding a visual pattern to the trap was not observed in a vineyard setting, where clear delta traps with or without a visual pattern caught similar numbers of females. Still, the number of male and female grape berry moths captured in clear delta traps with or without a visual pattern was not significantly different from the number of male and female grape berry moths captured in panel traps, suggesting that the use of these delta traps could be a less cumbersome alternative to oil-coated panel traps for monitoring female grape berry moth.

  10. Enthalpy relaxation and annealing effect in polystyrene.

    PubMed

    Sakatsuji, Waki; Konishi, Takashi; Miyamoto, Yoshihisa

    2013-07-01

    The effects of thermal history on the enthalpy relaxation in polystyrene are studied by differential scanning calorimetry. The temperature dependence of the specific heat in the liquid and the glassy states, that of relaxation time, and the exponent of the Kohlrausch-Williams-Watts function are determined by measurements of the thermal response against sinusoidal temperature variation. A phenomenological model equation previously proposed to interpret the memory effect in the frozen state is applied to the enthalpy relaxation and the evolution of entropy under a given thermal history is calculated. The annealing below the glass transition temperature produces two effects on enthalpy relaxation: the decay of excess entropy with annealing time in the early stage of annealing and the increase in relaxation time due to physical aging in the later stage. The crossover of these effects is reflected in the variation of temperature of the maximum specific heat observed in the heating process after annealing and cooling.

  11. Postseismic relaxation and transient creep

    USGS Publications Warehouse

    Savage, J.C.; Svarc, J.L.; Yu, S.-B.

    2005-01-01

    Postseismic deformation has been observed in the epicentral area following the 1992 Landers (M = 7.3), 1999 Chi-Chi (M = 7.6), 1999 Hector Mine (M = 7.1), 2002 Denali (M = 7.9), 2003 San Simeon (M = 6.5), and 2004 Parkfield (M = 6.0) earthquakes. The observations consist of repeated GPS measurements of the position of one monument relative to another (separation ???100 km). The early observations (t < 0.1 year) are well fit by the function a' + c'log(t), where t is the time after the earthquake and a' and c' are constants chosen to fit the data. Because a log(t) time dependence is characteristic of transient (primary) creep, the early postseismic response may be governed by transient creep as Benioff proposed in 1951. That inference is provisional as the stress conditions prevailing in postseismic relaxation are not identical to the constant stress condition in creep experiments. The observed logarithmic time dependence includes no characteristic time that might aid in identifying the micromechanical cause.

  12. Measurement of Young's relaxation modulus using nanoindentation

    NASA Astrophysics Data System (ADS)

    Huang, Gang; Lu, Hongbing

    2006-09-01

    In a previous paper (Lu et al., Mechanics of Time-Dependent Materials, 7, 2003, 189 207), we described methods to measure the creep compliance of polymers using Berkovich and spherical indenters by nanoindentation. However, the relaxation modulus is often needed in stress and deformation analysis. It has been well known that the interconversion between creep compliance and relaxation function presents an ill-posed problem, so that converting the creep compliance function to the relaxation function cannot always give accurate results, especially considering that the creep data at short times in nanoindentation are often not reliable, and the overall nanoindentation time is short, typically a few hundred seconds. In this paper, we present methods to measure Young’s relaxation functions directly using nanoindentation. A constant-rate displacement loading history is usually used in nanoindentations. Using viscoelastic contact mechanics, Young’s relaxation modulus is extracted using nanoindentation load-displacement data. Three bulk polymers, Polymethyl Methacrylate (PMMA), Polycarbonate (PC) and Polyurethane (PU), are used in this study. The Young’s relaxation functions measured from the nanoindentation are compared with data measured from conventional tensile and shear tests to evaluate the precision of the methods. A reasonably good agreement has been reached for all these materials for indentation depth higher than a certain value, providing reassurance for these methods for measuring relaxation functions.

  13. A physiological and subjective evaluation of meditation, hypnosis, and relaxation.

    PubMed

    Morse, D R; Martin, J S; Furst, M L; Dubin, L L

    1977-01-01

    Ss were monitored for respiratory rate, pulse rate, blood pressure, skin resistance, EEG activity, and muscle activity. They were monitored during the alert state, meditation (TM or simple word type), hypnosis (relaxation and task types), and relaxation. Ss gave a verbal comparative evaluation of each state. The results showed significantly better relaxation responses for the relaxation states (relaxation, relaxation-hypnosis, meditation) than for the alert state. There were no significant differences between the relaxation states except for the measure "muscle activity" in which meditation was significantly better than the other relaxation states. Overall, there were significant differences between task-hypnosis and relaxation-hypnosis. No significant differences were found between TM and simple word meditation. For the subjective measures, relaxation-hypnosis and meditation were significantly better than relaxation, but no significant differences were found between meditation and relaxation-hypnosis.

  14. Spin-Lattice Relaxation Times in 1H NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Wink, Donald J.

    1989-01-01

    Discussed are the mechanisms of nuclear magnetic relaxation, and applications of relaxation times. The measurement of spin-lattice relaxations is reviewed. It is stressed that sophisticated techniques such as these are becoming more important to the working chemist. (CW)

  15. Relaxation of vibrational degrees of freedom

    NASA Astrophysics Data System (ADS)

    Frohn, A.

    Shock tubes were used to measure relaxation times of the degrees of freedom in inelastic collisions of gas molecules. Design and construction of the experimental setup are described. For relaxation time measurements of vibrational degrees of freedom an initial pressure between 0.1 and 1 mbar is found to be optimal, and for dissociation between 1 and 10 mbar. The density gradients in the shock tube flow are measured with four differential laser interferometers and plotted with a transient recorder. A FORTRAN program was developed to determine the relaxation times. This measurement technique does not in general allow the degrees of freedom to be investigated separately.

  16. Relaxation time in disordered molecular systems

    SciTech Connect

    Rocha, Rodrigo P.; Freire, José A.

    2015-05-28

    Relaxation time is the typical time it takes for a closed physical system to attain thermal equilibrium. The equilibrium is brought about by the action of a thermal reservoir inducing changes in the system micro-states. The relaxation time is intuitively expected to increase with system disorder. We derive a simple analytical expression for this dependence in the context of electronic equilibration in an amorphous molecular system model. We find that the disorder dramatically enhances the relaxation time but does not affect its independence of the nature of the initial state.

  17. Collisionless Relaxation in Non-Neutral Plasmas

    SciTech Connect

    Levin, Yan; Pakter, Renato; Teles, Tarcisio N.

    2008-02-01

    A theoretical framework is presented which allows us to quantitatively predict the final stationary state achieved by a non-neutral plasma during a process of collisionless relaxation. As a specific application, the theory is used to study relaxation of charged-particle beams. It is shown that a fully matched beam relaxes to the Lynden-Bell distribution. However, when a mismatch is present and the beam oscillates, parametric resonances lead to a core-halo phase separation. The approach developed accounts for both the density and the velocity distributions in the final stationary state.

  18. Le Chatelier's principle with multiple relaxation channels

    NASA Astrophysics Data System (ADS)

    Gilmore, R.; Levine, R. D.

    1986-05-01

    Le Chatelier's principle is discussed within the constrained variational approach to thermodynamics. The formulation is general enough to encompass systems not in thermal (or chemical) equilibrium. Particular attention is given to systems with multiple constraints which can be relaxed. The moderation of the initial perturbation increases as additional constraints are removed. This result is studied in particular when the (coupled) relaxation channels have widely different time scales. A series of inequalities is derived which describes the successive moderation as each successive relaxation channel opens up. These inequalities are interpreted within the metric-geometry representation of thermodynamics.

  19. Requirements for muscle relaxation in Friedreich's ataxia.

    PubMed

    Mouloudi, H; Katsanoulas, C; Frantzeskos, G

    1998-02-01

    Friedreich's ataxia is an inherited disorder of the nervous system, requiring special care during anaesthesia, because of increased sensitivity to muscle relaxants. We report a case of Friedreich's ataxia in a 31-year-old woman, anaesthetised on two occasions, for tendinoplasty and pes cavus repair. Atracurium was used for neuromuscular blockade and monitored by a train-of-four twitch technique. The patient's response was normal. She returned to adequate spontaneous breathing within 20 min of the last dose of the muscle relaxant without need for anticholinesterase administration. When neuromuscular function is monitored, normal doses of muscle relaxant can safely be used in these patients.

  20. Protein dynamics from nuclear magnetic relaxation.

    PubMed

    Charlier, Cyril; Cousin, Samuel F; Ferrage, Fabien

    2016-05-01

    Nuclear magnetic resonance is a ubiquitous spectroscopic tool to explore molecules with atomic resolution. Nuclear magnetic relaxation is intimately connected to molecular motions. Many methods and models have been developed to measure and interpret the characteristic rates of nuclear magnetic relaxation in proteins. These approaches shed light on a rich and diverse range of motions covering timescales from picoseconds to seconds. Here, we introduce some of the basic concepts upon which these approaches are built and provide a series of illustrations.

  1. Relaxation techniques for children and young people.

    PubMed

    Hobbie, C

    1989-01-01

    The relaxation response, relaxation with mental imagery/self-hypnosis, and centering are techniques that can be used by the nurse practitioner in a variety of clinical situations to help children and young people manage stress. These approaches also can be used to treat certain common pediatric problems, such as headaches, enuresis, acute and chronic pain, and habit disorders. The techniques and their appropriate use are described. PMID:2647960

  2. METHOD OF HYPERBOLIC SYSTEMS WITH STIFF RELAXATION

    SciTech Connect

    R. B. LOWRIE; J. E. MOREL

    2001-03-01

    Three methods are analyzed for solving a linear hyperbolic system that contains stiff relaxation. We show that the semi-discrete discontinuous Galerkin method, with a linear basis, is accurate when the relaxation time is unresolved (asymptotically preserving--AP). A recently developed central method is shown to be non-AP. To discriminate between AP and non-AP methods, we argue that one must study problems that are diffusion dominated.

  3. Relaxation techniques for children and young people.

    PubMed

    Hobbie, C

    1989-01-01

    The relaxation response, relaxation with mental imagery/self-hypnosis, and centering are techniques that can be used by the nurse practitioner in a variety of clinical situations to help children and young people manage stress. These approaches also can be used to treat certain common pediatric problems, such as headaches, enuresis, acute and chronic pain, and habit disorders. The techniques and their appropriate use are described.

  4. Rounded stretched exponential for time relaxation functions.

    PubMed

    Powles, J G; Heyes, D M; Rickayzen, G; Evans, W A B

    2009-12-01

    A rounded stretched exponential function is introduced, C(t)=exp{(tau(0)/tau(E))(beta)[1-(1+(t/tau(0))(2))(beta/2)]}, where t is time, and tau(0) and tau(E) are two relaxation times. This expression can be used to represent the relaxation function of many real dynamical processes, as at long times, t>tau(0), the function converges to a stretched exponential with normalizing relaxation time, tau(E), yet its expansion is even or symmetric in time, which is a statistical mechanical requirement. This expression fits well the shear stress relaxation function for model soft soft-sphere fluids near coexistence, with tau(E)relaxation (both the modulus and viscosity forms). It is shown that both the dielectric spectra and dynamic shear modulus imaginary parts approach the real axis with a slope equal to 0 at high frequency, whereas the dynamic viscosity has an infinite slope in the same limit. This indicates that inertial effects at high frequency are best discerned in the modulus rather than the viscosity Cole-Cole plot. As a consequence of the even expansion in time of the shear stress relaxation function, the value of the storage modulus derived from it at very high frequency exceeds that in the infinite frequency limit (i.e., G(infinity)).

  5. Dielectric relaxation of gamma irradiated muscovite mica

    SciTech Connect

    Kaur, Navjeet; Singh, Mohan; Singh, Lakhwant; Awasthi, A.M.; Lochab, S.P.

    2015-03-15

    Highlights: • The present article reports the effect of gamma irradiation on the dielectric relaxation characteristics of muscovite mica. • Dielectric and electrical relaxations have been analyzed in the framework of dielectric permittivity, electric modulus and Cole–Cole formalisms. • The frequency dependent electrical conductivity has been rationalized using Johnsher’s universal power law. • The experimentally measured electric modulus and conductivity data have been fitted using Havriliak–Negami dielectric relaxation function. - Abstract: In the present research, the dielectric relaxation of gamma irradiated muscovite mica was studied in the frequency range of 0.1 Hz–10 MHz and temperature range of 653–853 K, using the dielectric permittivity, electric modulus and conductivity formalisms. The dielectric constants (ϵ′ and ϵ′′) are found to be high for gamma irradiated muscovite mica as compared to the pristine sample. The frequency dependence of the imaginary part of complex electric modulus (M′′) and dc conductivity data conforms Arrhenius law with single value of activation energy for pristine sample and two values of activation energy for gamma irradiated mica sample. The experimentally assessed electric modulus and conductivity information have been interpreted by the Havriliak–Negami dielectric relaxation explanation. Using the Cole–Cole framework, an analysis of real and imaginary characters of the electric modulus for pristine and gamma irradiated sample was executed which reflects the non-Debye relaxation mechanism.

  6. A direct comparison between volume and surface tracking methods with a boundary-fitted coordinate transformation and third-order upwinding

    NASA Astrophysics Data System (ADS)

    Zacharioudaki, Maria; Kouris, Charalampos; Dimakopoulos, Yannis; Tsamopoulos, John

    2007-12-01

    A Volume Tracking (VT) and a Front Tracking (FT) algorithm are implemented and compared for locating the interface between two immiscible, incompressible, Newtonian fluids in a tube with a periodically varying, circular cross-section. Initially, the fluids are stationary and stratified in an axisymmetric arrangement so that one is around the axis of the tube (core fluid) and the other one surrounds it (annular fluid). A constant pressure gradient sets them in motion. With both VT and FT, a boundary-fitted coordinate transformation is applied and appropriate modifications are made to adopt either method in this geometry. The surface tension force is approximated using the continuous surface force method. All terms appearing in the continuity and momentum equations are approximated using centered finite differences in space and one-sided forward finite differences in time. In each time step, the incompressibility condition is enforced by a transformed Poisson equation, which is linear in pressure. This equation is solved by either direct LU decomposition or a Multigrid iterative solver. When the two fluids have the same density, the former method is about 3.5 times faster, but when they do not, the Multigrid solver is as much as 10 times faster than the LU decomposition. When the interface does not break and the Reynolds number remains small, the accuracy and rates of convergence of VT and FT are comparable. The well-known failure of centered finite differences arises as the Reynolds number increases and leads to non-physical oscillations in the interface and failure of both methods to converge with mesh refinement. These problems are resolved and computations with Reynolds as large as 500 converged by approximating the convective terms in the momentum equations by third-order upwind differences using Lagrangian Polynomials. When the volume of the core fluid or the Weber number decrease, increasing the importance of interfacial tension and leading to breakup of the

  7. Computational fluid dynamics and aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1989-01-01

    The primary objective was the development of nonequilibrium radiation and chemistry models suitable for engineering applications associated with the flow fields about aeroassisted orbital transfer vehicles (AOTVs), the aero-assisted flight experiment vehicle (AFE), and other vehicles operating at superorbital velocities and very high attitudes.

  8. Aerothermodynamic test instrumentation and measurement

    NASA Astrophysics Data System (ADS)

    1990-02-01

    A reference source is presented which includes procedures and equations relating to the measurement of pressure, temperature, fluid flow, and other fundamental quantities relating to thermodynamics, aerodynamics, fluid dynamics, heat transfer, and properties of materials. Emphasis is given to aerospace applications.

  9. CFD Analysis of Tile-Repair Augers for the Shuttle Orbiter Re-Entry Aeroheating

    NASA Technical Reports Server (NTRS)

    Mazaheri, Ali R.

    2007-01-01

    A three-dimensional aerothermodynamic model of the shuttle orbiter's tile overlay repair (TOR) sub-assembly is presented. This sub-assembly, which is an overlay that covers the damaged tiles, is modeled as a protuberance with a constant thickness. The washers and augers that serve as the overlay fasteners are modeled as cylindrical protuberances with constant thicknesses. Entry aerothermodynamic cases are studied to provide necessary inputs for future thermal analyses and to support the space-shuttle return-to-flight effort. The NASA Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) is used to calculate heat transfer rate on the surfaces of the tile overlay repair and augers. Gas flow is modeled as non-equilibrium, five species air in thermal equilibrium. Heat transfer rate and surface temperatures are analyzed and studied for a shuttle orbiter trajectory point at Mach 17.85. Computational results show that the average heat transfer rate normalized with respect to its value at body point 1800 is about BF=1.9 for the auger head. It is also shown that the average BF for the auger and washer heads is about BF=2.0.

  10. Re-Entry Aeroheating Analysis of Tile-Repair Augers for the Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Mazaheri, Ali R.; Wood, William A.

    2007-01-01

    Computational re-entry aerothermodynamic analysis of the Space Shuttle Orbiter s tile overlay repair (TOR) sub-assembly is presented. Entry aeroheating analyses are conducted to characterize the aerothermodynamic environment of the TOR and to provide necessary inputs for future TOR thermal and structural analyses. The TOR sub-assembly consists of a thin plate and several augers and spacers that serve as the TOR fasteners. For the computational analysis, the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) is used. A 5-species non-equilibrium chemistry model with a finite rate catalytic recombination model and a radiation equilibrium wall condition are used. It is assumed that wall properties are the same as reaction cured glass (RCG) properties with a surface emissivity of epsilon = 0.89. Surface heat transfer rates for the TOR and tile repair augers (TRA) are computed at a STS-107 trajectory point corresponding to Mach 18 free stream conditions. Computational results show that the average heating bump factor (BF), which is a ratio of local heat transfer rate to a design reference point located at the damage site, for the auger head alone is about 1.9. It is also shown that the average BF for the combined auger and washer heads is about 2.0.

  11. Multifluid Block-Adaptive-Tree Solar Wind Roe-Type Upwind Scheme: Magnetospheric Composition and Dynamics During Geomagnetic Storms-Initial Results

    NASA Technical Reports Server (NTRS)

    Glocer, A.; Toth, G.; Ma, Y.; Gombosi, T.; Zhang, J.-C.; Kistler, L. M.

    2009-01-01

    The magnetosphere contains a significant amount of ionospheric O+, particularly during geomagnetically active times. The presence of ionospheric plasma in the magnetosphere has a notable impact on magnetospheric composition and processes. We present a new multifluid MHD version of the Block-Adaptive-Tree Solar wind Roe-type Upwind Scheme model of the magnetosphere to track the fate and consequences of ionospheric outflow. The multifluid MHD equations are presented as are the novel techniques for overcoming the formidable challenges associated with solving them. Our new model is then applied to the May 4, 1998 and March 31, 2001 geomagnetic storms. The results are juxtaposed with traditional single-fluid MHD and multispecies MHD simulations from a previous study, thereby allowing us to assess the benefits of using a more complex model with additional physics. We find that our multifluid MHD model (with outflow) gives comparable results to the multispecies MHD model (with outflow), including a more strongly negative Dst, reduced CPCP, and a drastically improved magnetic field at geosynchronous orbit, as compared to single-fluid MHD with no outflow. Significant differences in composition and magnetic field are found between the multispecies and multifluid approach further away from the Earth. We further demonstrate the ability to explore pressure and bulk velocity differences between H+ and O+, which is not possible when utilizing the other techniques considered

  12. Applied Relaxation as Training in Self-Control

    ERIC Educational Resources Information Center

    Chang-Liang, Rosa; Denney, Douglas R.

    1976-01-01

    Text-anxious students who were high or low in general anxiety were treated with applied relaxation, systematic desensitization, relaxation only, or no treatment (control). The results indicated that applied relaxation was more effective in reducing anxiety than relaxation only and no treatment on measures of general anxiety and measures of test…

  13. Carrier relaxation dynamics in heavy fermion compounds

    SciTech Connect

    Demsar, J.; Tracy, L. A.; Averitt, R. D.; Trugman, S. A.; Sarrao, John L.,; Taylor, Antoinette J.,

    2002-01-01

    The first femtosecond carrier relaxation dynamics studies in heavy fermion compounds are presented. The carrier relaxation time shows a dramatic hundred-fold increase below the Kondo temperature revealing a dramatic sensitivity to the electronic density of states near the Fermi level. Femtosecond time-resolved optical spectroscopy is an excellent experimental alternative to conventional spectroscopic methods that probe the low energy electronic structure in strongly correlated electron systems. In particular, it has been shown that carrier relaxation dynamics are very sensitive to changes in the low energy density of states (e.g. associated with the formation of a low energy gap or pseudogap) providing new insights into the low energy electronic structure in these materials. In this report we present the first studies of carrier relaxation dynamics in heavy fermion (HF) systems by means of femtosecond time-resolved optical spectroscopy. Our results show that the carrier relaxation dynamics, below the Kondo temperature (T{sub K}), are extremely sensitive to the low energy density of states (DOS) near the Ferini level to which localized f-moments contribute. Specifically, we have performed measurements of the photoinduced reflectivity {Delta}R/R dynamics as a function of temperature and excitation intensity on the series of HF compounds YbXCu{sub 4} (X = Ag, Cd, In) in comparison to their non-magnetic counterparts LuXCu{sub 4}.

  14. Doppler effect induced spin relaxation boom

    PubMed Central

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2016-01-01

    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures. PMID:26996253

  15. Doppler effect induced spin relaxation boom.

    PubMed

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2016-03-21

    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures.

  16. Doppler effect induced spin relaxation boom

    NASA Astrophysics Data System (ADS)

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2016-03-01

    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures.

  17. Doppler effect induced spin relaxation boom.

    PubMed

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2016-01-01

    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures. PMID:26996253

  18. Convex relaxations for gas expansion planning

    SciTech Connect

    Borraz-Sanchez, Conrado; Bent, Russell Whitford; Backhaus, Scott N.; Hijazi, Hassan; Van Hentenryck, Pascal

    2016-01-01

    Expansion of natural gas networks is a critical process involving substantial capital expenditures with complex decision-support requirements. Here, given the non-convex nature of gas transmission constraints, global optimality and infeasibility guarantees can only be offered by global optimisation approaches. Unfortunately, state-of-the-art global optimisation solvers are unable to scale up to real-world size instances. In this study, we present a convex mixed-integer second-order cone relaxation for the gas expansion planning problem under steady-state conditions. The underlying model offers tight lower bounds with high computational efficiency. In addition, the optimal solution of the relaxation can often be used to derive high-quality solutions to the original problem, leading to provably tight optimality gaps and, in some cases, global optimal solutions. The convex relaxation is based on a few key ideas, including the introduction of flux direction variables, exact McCormick relaxations, on/off constraints, and integer cuts. Numerical experiments are conducted on the traditional Belgian gas network, as well as other real larger networks. The results demonstrate both the accuracy and computational speed of the relaxation and its ability to produce high-quality solution

  19. Convex relaxations for gas expansion planning

    DOE PAGES

    Borraz-Sanchez, Conrado; Bent, Russell Whitford; Backhaus, Scott N.; Hijazi, Hassan; Van Hentenryck, Pascal

    2016-01-01

    Expansion of natural gas networks is a critical process involving substantial capital expenditures with complex decision-support requirements. Here, given the non-convex nature of gas transmission constraints, global optimality and infeasibility guarantees can only be offered by global optimisation approaches. Unfortunately, state-of-the-art global optimisation solvers are unable to scale up to real-world size instances. In this study, we present a convex mixed-integer second-order cone relaxation for the gas expansion planning problem under steady-state conditions. The underlying model offers tight lower bounds with high computational efficiency. In addition, the optimal solution of the relaxation can often be used to derive high-quality solutionsmore » to the original problem, leading to provably tight optimality gaps and, in some cases, global optimal solutions. The convex relaxation is based on a few key ideas, including the introduction of flux direction variables, exact McCormick relaxations, on/off constraints, and integer cuts. Numerical experiments are conducted on the traditional Belgian gas network, as well as other real larger networks. The results demonstrate both the accuracy and computational speed of the relaxation and its ability to produce high-quality solution« less

  20. Mozart versus new age music: relaxation states, stress, and ABC relaxation theory.

    PubMed

    Smith, Jonathan C; Joyce, Carol A

    2004-01-01

    Smith's (2001) Attentional Behavioral Cognitive (ABC) relaxation theory proposes that all approaches to relaxation (including music) have the potential for evoking one or more of 15 factor-analytically derived relaxation states, or "R-States" (Sleepiness, Disengagement, Rested / Refreshed, Energized, Physical Relaxation, At Ease/Peace, Joy, Mental Quiet, Childlike Innocence, Thankfulness and Love, Mystery, Awe and Wonder, Prayerfulness, Timeless/Boundless/Infinite, and Aware). The present study investigated R-States and stress symptom-patterns associated with listening to Mozart versus New Age music. Students (N = 63) were divided into three relaxation groups based on previously determined preferences. Fourteen listened to a 28-minute tape recording of Mozart's Eine Kleine Nachtmusik and 14 listened to a 28-minute tape of Steven Halpern's New Age Serenity Suite. Others (n = 35) did not want music and instead chose a set of popular recreational magazines. Participants engaged in their relaxation activity at home for three consecutive days for 28 minutes a session. Before and after each session, each person completed the Smith Relaxation States Inventory (Smith, 2001), a comprehensive questionnaire tapping 15 R-States as well as the stress states of somatic stress, worry, and negative emotion. Results revealed no differences at Session 1. At Session 2, those who listened to Mozart reported higher levels of At Ease/Peace and lower levels of Negative Emotion. Pronounced differences emerged at Session 3. Mozart listeners uniquely reported substantially higher levels of Mental Quiet, Awe and Wonder, and Mystery. Mozart listeners reported higher levels, and New Age listeners slightly elevated levels, of At Ease/Peace and Rested/Refreshed. Both Mozart and New Age listeners reported higher levels of Thankfulness and Love. In summary, those who listened to Mozart's Eine Kleine Nachtmusik reported more psychological relaxation and less stress than either those who listened to

  1. Mozart versus new age music: relaxation states, stress, and ABC relaxation theory.

    PubMed

    Smith, Jonathan C; Joyce, Carol A

    2004-01-01

    Smith's (2001) Attentional Behavioral Cognitive (ABC) relaxation theory proposes that all approaches to relaxation (including music) have the potential for evoking one or more of 15 factor-analytically derived relaxation states, or "R-States" (Sleepiness, Disengagement, Rested / Refreshed, Energized, Physical Relaxation, At Ease/Peace, Joy, Mental Quiet, Childlike Innocence, Thankfulness and Love, Mystery, Awe and Wonder, Prayerfulness, Timeless/Boundless/Infinite, and Aware). The present study investigated R-States and stress symptom-patterns associated with listening to Mozart versus New Age music. Students (N = 63) were divided into three relaxation groups based on previously determined preferences. Fourteen listened to a 28-minute tape recording of Mozart's Eine Kleine Nachtmusik and 14 listened to a 28-minute tape of Steven Halpern's New Age Serenity Suite. Others (n = 35) did not want music and instead chose a set of popular recreational magazines. Participants engaged in their relaxation activity at home for three consecutive days for 28 minutes a session. Before and after each session, each person completed the Smith Relaxation States Inventory (Smith, 2001), a comprehensive questionnaire tapping 15 R-States as well as the stress states of somatic stress, worry, and negative emotion. Results revealed no differences at Session 1. At Session 2, those who listened to Mozart reported higher levels of At Ease/Peace and lower levels of Negative Emotion. Pronounced differences emerged at Session 3. Mozart listeners uniquely reported substantially higher levels of Mental Quiet, Awe and Wonder, and Mystery. Mozart listeners reported higher levels, and New Age listeners slightly elevated levels, of At Ease/Peace and Rested/Refreshed. Both Mozart and New Age listeners reported higher levels of Thankfulness and Love. In summary, those who listened to Mozart's Eine Kleine Nachtmusik reported more psychological relaxation and less stress than either those who listened to

  2. A general relaxation theory of simple liquids

    NASA Technical Reports Server (NTRS)

    Merilo, M.; Morgan, E. J.

    1973-01-01

    A relatively simple relaxation theory to account for the behavior of liquids under dynamic conditions was proposed. The general dynamical equations are similar in form to the phenomenological relaxation equations used in theories of viscoelasticity, however, they differ in that all the coefficients of the present equations are expressed in terms of thermodynamic and molecular quantities. The theory is based on the concept that flow in a liquid distorts both the radial and the velocity distribution functions, and that relaxation equations describing the return of these functions to their isotropic distributions, characterizing a stationary liquid, can be written. The theory was applied to the problems of steady and oscillatory shear flows and to the propagation of longitudinal waves. In all cases classical results are predicted for strain rates, and an expression for the viscosity of a liquid, simular to the Macedo-Litovitz equation, is obtained.

  3. Stratospheric Relaxation in IMPACT's Radiation Code

    SciTech Connect

    Edis, T; Grant, K; Cameron-Smith, P

    2006-11-13

    While Impact incorporates diagnostic radiation routines from our work in previous years, it has not previously included the stratospheric relaxation required for forcing calculations. We have now implemented the necessary changes for stratospheric relaxation, tested its stability, and compared the results with stratosphere temperatures obtained from CAM3 met data. The relaxation results in stable temperature profiles in the stratosphere, which is encouraging for use in forcing calculations. It does, however, produce a cooling bias when compared to CAM3, which appears to be due to differences in radiation calculations rather than the interactive treatment of ozone. The cause of this bias is unclear as yet, but seems to be systematic and hence cancels out when differences are taken relative to a control simulation.

  4. Substrate stress relaxation regulates cell spreading

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Ovijit; Gu, Luo; Darnell, Max; Klumpers, Darinka; Bencherif, Sidi A.; Weaver, James C.; Huebsch, Nathaniel; Mooney, David J.

    2015-02-01

    Studies of cellular mechanotransduction have converged upon the idea that cells sense extracellular matrix (ECM) elasticity by gauging resistance to the traction forces they exert on the ECM. However, these studies typically utilize purely elastic materials as substrates, whereas physiological ECMs are viscoelastic, and exhibit stress relaxation, so that cellular traction forces exerted by cells remodel the ECM. Here we investigate the influence of ECM stress relaxation on cell behaviour through computational modelling and cellular experiments. Surprisingly, both our computational model and experiments find that spreading for cells cultured on soft substrates that exhibit stress relaxation is greater than cells spreading on elastic substrates of the same modulus, but similar to that of cells spreading on stiffer elastic substrates. These findings challenge the current view of how cells sense and respond to the ECM.

  5. Swelling and Stress Relaxation in Portland Brownstone

    NASA Astrophysics Data System (ADS)

    Jimenez, I.; Scherer, G.

    2003-04-01

    Portland Brownstone (PB) is an arkose sandstone extensively used in the northeast-ern USA during the nineteenth century. This reddish-brown stone contains a fraction of swelling clays that are thought to contribute to its degradation upon cycles of wet-ting and drying. During drying events, contraction of the drying surface leads to stresses approaching the tensile strength of the stone. However, we have found that the magnitude of these stresses is limited by the ability of the stone to undergo stress relaxation. In this paper we describe novel methods to determine the magnitude of the stresses and the rate at which they develop and relax. We also discuss the influ-ence of surfactants on the magnitude of swelling and the rate of the stress relaxation of PB. The implications of our findings for the understanding of damage due to swelling of clays are discussed.

  6. Substrate stress relaxation regulates cell spreading

    PubMed Central

    Chaudhuri, Ovijit; Gu, Luo; Darnell, Max; Klumpers, Darinka; Bencherif, Sidi A.; Weaver, James C.; Huebsch, Nathaniel; Mooney, David J

    2015-01-01

    Studies of cellular mechanotransduction have converged upon the idea that cells sense extracellular matrix (ECM) elasticity by gauging resistance to the traction forces they exert on the ECM. However, these studies typically utilize purely elastic materials as substrates, whereas physiological ECM are viscoelastic, and exhibit stress relaxation, so that cellular traction forces exerted by cells remodel the ECM. Here we investigate the influence of ECM stress relaxation on cell behavior through computational modeling and cellular experiments. Surprisingly, both our computational model and experiments find that spreading for cells cultured on soft substrates that exhibit stress relaxation is greater than cells spreading on elastic substrates of the same modulus, but similar to that of cells spreading on stiffer elastic substrates. These findings challenge the current view of how cells sense and respond to the ECM. PMID:25695512

  7. RELAXATION PROCESSES IN SOLAR WIND TURBULENCE

    SciTech Connect

    Servidio, S.; Carbone, V.; Gurgiolo, C.; Goldstein, M. L.

    2014-07-10

    Based on global conservation principles, magnetohydrodynamic (MHD) relaxation theory predicts the existence of several equilibria, such as the Taylor state or global dynamic alignment. These states are generally viewed as very long-time and large-scale equilibria, which emerge only after the termination of the turbulent cascade. As suggested by hydrodynamics and by recent MHD numerical simulations, relaxation processes can occur during the turbulent cascade that will manifest themselves as local patches of equilibrium-like configurations. Using multi-spacecraft analysis techniques in conjunction with Cluster data, we compute the current density and flow vorticity and for the first time demonstrate that these localized relaxation events are observed in the solar wind. Such events have important consequences for the statistics of plasma turbulence.

  8. Structural relaxation of vacancies in amorphous silicon

    SciTech Connect

    Kim, E.; Lee, Y.H.; Chen, C.; Pang, T.

    1997-07-01

    The authors have studied the structural relaxation of vacancies in amorphous silicon (a-Si) using a tight-binding molecular-dynamics method. The most significant difference between vacancies in a-Si and those in crystalline silicon (c-Si) is that the deep gap states do not show up in a-Si. This difference is explained through the unusual behavior of the structural relaxation near the vacancies in a-Si, which enhances the sp{sup 2} + p bonding near the band edges. They have also observed that the vacancies do not migrate below 450 K although some of them can still be annihilated, particularly at high defect density due to large structural relaxation.

  9. Dielectric relaxation of high-k oxides

    PubMed Central

    2013-01-01

    Frequency dispersion of high-k dielectrics was observed and classified into two parts: extrinsic cause and intrinsic cause. Frequency dependence of dielectric constant (dielectric relaxation), that is the intrinsic frequency dispersion, could not be characterized before considering the effects of extrinsic frequency dispersion. Several mathematical models were discussed to describe the dielectric relaxation of high-k dielectrics. For the physical mechanism, dielectric relaxation was found to be related to the degree of polarization, which depended on the structure of the high-k material. It was attributed to the enhancement of the correlations among polar nanodomain. The effect of grain size for the high-k materials' structure mainly originated from higher surface stress in smaller grain due to its higher concentration of grain boundary. PMID:24180696

  10. Magnetic Relaxation in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth; Fornberg, Bengt; Flyer, Natasha; Low, B. C.

    2009-01-01

    This is a mathematical study of the long-lived hydromagnetic structures produced in the tenuous solar corona by the turbulent, resistive relaxation of a magnetic field under the condition of extremely high electrical conductivity. The relaxation theory of Taylor, originally developed for a laboratory device, is extended to treat the open atmosphere where the relaxing field must interact with its surrounding fields. A boundary-value problem is posed for a two-dimensional model that idealizes the corona as the half Cartesian plane filled with a potential field (1) that is anchored to a rigid, perfectly conducting base and (2) that embeds a force-free magnetic field in the form of a flux-rope oriented horizontally and perpendicular to the Cartesian plane. The flux-rope has a free boundary, which is an unknown in the construction of a solution for this atmosphere. Pairs of magnetostatic solutions are constructed to represent the initial and final states of a flux-rope relaxation that conserve both the total magnetic helicity and total axial magnetic flux, using a numerical iterative method specially developed for this study. The collection of numerical solutions found provides an insight into the interplay among several hydromagnetic properties in the formation of long-lived coronal structures. In particular, the study shows (1) that the outward spread of reconnection between a relaxing flux-rope and its external field may be arrested at some outer magnetic flux surface within which a constant-α force-free field emerges as the minimum-energy state and (2) that this outward spread is complicated by an inward, partial collapse of the relaxing flux-rope produced by a loss of internal magnetic pressure.

  11. Molecular Relaxations in Constrained Nanoscale Systems

    NASA Astrophysics Data System (ADS)

    Knorr, Daniel B., Jr.

    Current engineering challenges in the areas of energy, gas separation and photonics demand novel materials that are cognitively engineered at the molecular level, with a view toward replacing the conventional trial and error approach to materials development. Cognitive molecular engineering of organic materials demands the incorporation of internal constraints (inherent to molecular architecture) and external constraints (stemming from interactions with system boundaries) to obtain desired material properties. Both types of constraints affect intrinsic relaxation behavior in a material, which dictates thermal and viscoelastic material properties. The challenge, then, is to quantify the influence of constraints on relaxation behavior with a view toward producing a 'toolbox' for molecular engineering. In this work, local atomic force microscopy based thermomechanical measurements, paired with dielectric spectroscopy, kinetic models and molecular dynamic simulation are used to explore the effect of constraints on the relaxation behavior of model lubricants, amorphous polymers, and organic non-linear optical (NLO) materials. The impact of interfacial constraints on the inter- and intramolecular relaxation processes were investigated in lubricating model systems from fast relaxing simple monolayers to sluggishly unwinding complex polymer systems. At the free surface of amorphous polystyrene, apparent Arrhenius-type surface and subsurface activation energies were found where dissipation is a discrete function of loading, indicating sensitivity to surface and subsurface mobilities. Finally, in organic NLO systems, constraints in the form of self assembling dendritic groups are introduced to provide both sufficient mobility for alignment of their constituent chromophores and limited mobility for long-term alignment stability. Relaxation activation energies for NLO materials were deduced for these self assembling glassy chromophores, resulting in a first toolbox to guide

  12. Spin Relaxation and Spin Transport in Graphene

    NASA Astrophysics Data System (ADS)

    Wu, M. W.

    2012-02-01

    In this talk we are going to present our theoretical investigations on spin dynamics of graphene under various conditions based on a fully microscopic kinetic-spin-Bloch-equation approach [1]. We manage to nail down the solo spin relaxation mechanism of graphene in measurements from two leading groups, one in US and one in the Netherland. Many novel effects of the electron-electron Coulomb interaction on spin relaxation in graphene are addressed. Our theory can have nice agreement with experimental data.[4pt] [1] M. W. Wu, J. H. Jiang, and M. Q. Weng, ``Spin dynamics in semiconductors,'' Phys. Rep. 493, 61 (2010).

  13. Vibrational relaxation in hypersonic flow fields

    NASA Technical Reports Server (NTRS)

    Meador, Willard E.; Miner, Gilda A.; Heinbockel, John H.

    1993-01-01

    Mathematical formulations of vibrational relaxation are derived from first principles for application to fluid dynamic computations of hypersonic flow fields. Relaxation within and immediately behind shock waves is shown to be substantially faster than that described in current numerical codes. The result should be a significant reduction in nonequilibrium radiation overshoot in shock layers and in radiative heating of hypersonic vehicles; these results are precisely the trends needed to bring theoretical predictions more in line with flight data. Errors in existing formulations are identified and qualitative comparisons are made.

  14. Magnetic Relaxation Detector for Microbead Labels

    PubMed Central

    Liu, Paul Peng; Skucha, Karl; Duan, Yida; Megens, Mischa; Kim, Jungkyu; Izyumin, Igor I.; Gambini, Simone; Boser, Bernhard

    2014-01-01

    A compact and robust magnetic label detector for biomedical assays is implemented in 0.18-μm CMOS. Detection relies on the magnetic relaxation signature of a microbead label for improved tolerance to environmental variations and relaxed dynamic range requirement, eliminating the need for baseline calibration and reference sensors. The device includes embedded electromagnets to eliminate external magnets and reduce power dissipation. Correlated double sampling combined with offset servo loops and magnetic field modulation, suppresses the detector offset to sub-μT. Single 4.5-μm magnetic beads are detected in 16 ms with a probability of error <0.1%. PMID:25308988

  15. Nonlocal and collective relaxation in stellar systems

    NASA Technical Reports Server (NTRS)

    Weinberg, Martin D.

    1993-01-01

    The modal response of stellar systems to fluctuations at large scales is presently investigated by means of analytic theory and n-body simulation; the stochastic excitation of these modes is shown to increase the relaxation rate even for a system which is moderately far from instability. The n-body simulations, when designed to suppress relaxation at small scales, clearly show the effects of large-scale fluctuations. It is predicted that large-scale fluctuations will be largest for such marginally bound systems as forming star clusters and associations.

  16. Centrally acting muscle relaxants in tetanus

    PubMed Central

    Webster, R. A.

    1961-01-01

    The anti-tetanus activity of a number of phenothiazine derivatives and other centrally acting muscle relaxants, such as mephenesin, dicyclopropyl ketoxime, 2-amino-6-methylbenzothiazole and meprobamate, has been determined in rabbits with experimental local tetanus. Structure-activity relationships were obtained for the phenothiazine derivatives and their anti-tetanus activity correlated with other central and peripheral properties. Both dicyclopropyl ketoxime and 2-amino-6-methyl-benzothiazole were twice as active as mephenesin. Meprobamate does not appear to be primarily a muscle relaxant of the mephenesin type. PMID:14005498

  17. Synthetic aperture radar autofocus via semidefinite relaxation.

    PubMed

    Liu, Kuang-Hung; Wiesel, Ami; Munson, David C

    2013-06-01

    The autofocus problem in synthetic aperture radar imaging amounts to estimating unknown phase errors caused by unknown platform or target motion. At the heart of three state-of-the-art autofocus algorithms, namely, phase gradient autofocus, multichannel autofocus (MCA), and Fourier-domain multichannel autofocus (FMCA), is the solution of a constant modulus quadratic program (CMQP). Currently, these algorithms solve a CMQP by using an eigenvalue relaxation approach. We propose an alternative relaxation approach based on semidefinite programming, which has recently attracted considerable attention in other signal processing problems. Experimental results show that our proposed methods provide promising performance improvements for MCA and FMCA through an increase in computational complexity.

  18. Numerical Simulations of the Boundary Layer Transition Flight Experiment

    NASA Technical Reports Server (NTRS)

    Tang, Chun Y.; Trumble, Kerry A.; Campbell, Charles H.; Lessard, Victor R.; Wood, William A.

    2010-01-01

    Computational Fluid Dynamics (CFD) simulations were used to study the possible effects that the Boundary Layer Transition (BLT) Flight Experiments may have on the heating environment of the Space Shuttle during its entry to Earth. To investigate this issue, hypersonic calculations using the Data-Parallel Line Relaxation (DPLR) and Langley Aerothermodynamic Upwind Relaxation (LAURA) CFD codes were computed for a 0.75 tall protuberance at flight conditions of Mach 15 and 18. These initial results showed high surface heating on the BLT trip and the areas surrounding the protuberance. Since the predicted peak heating rates would exceed the thermal limits of the materials selected to construct the BLT trip, many changes to the geometry were attempted in order to reduce the surface heat flux. The following paper describes the various geometry revisions and the resulting heating environments predicted by the CFD codes.

  19. Multiblock analysis for Shuttle Orbiter reentry heating from Mach 24 to Mach 12

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Weilmuenster, K. James; Alter, Stephen J.

    1994-01-01

    A multiblock, laminar heating analysis for the shuttle orbiter at three trajectory points ranging from Mach 24.3 to Mach 12.86 on reentry is described. The analysis is performed using the Langley Aerothermodynamic Upwind Relaxation Algorithm with a seven species chemical nonequilibrium model. A finite-catalytic-wall model appropriate for shuttle tiles at a radiative equilibrium wall temperature is applied. Computed heating levels are generally in good agreement with the flight data, although a few rather large discrepancies remain unexplained. The multiblock relaxation strategy partitions the flowfield into manageable blocks requiring a fraction of the computational resources (time and memory) required by a full domain approach. In fact, the computational cost for a solution at even a single trajectory point would be prohibitively expensive at the given resolution without the multiblock approach. Converged blocks are reassembled to enable a fully coupled converged solution over the entire vehicle, starting from a nearly converged initial condition.

  20. Aeroheating Predictions for X-34 Using an Inviscid-Boundary Layer Method

    NASA Technical Reports Server (NTRS)

    Riley, Christropher J.; Kleb, William L.

    1998-01-01

    Radiative equilibrium surface temperatures and surface heating rates from a combined inviscid-boundary layer method are presented for the X-34 Reusable Launch Vehicle for several points along the hypersonic descent portion of its trajectory. Inviscid, perfect-gas solutions are generated with the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and the Data-Parallel Lower-Upper Relaxation (DPLUR) code. Surface temperatures and heating rates are then computed using the Langley Approximate Three-Dimensional Convective Heating (LATCH) engineering code employing both laminar and turbulent flow models. The combined inviscid-boundary layer method provides accurate predictions of surface temperatures over most of the vehicle and requires much less computational effort than a Navier-Stokes code. This enables the generation of a more thorough aerothermal database which is necessary to design the thermal protection system and specify the vehicle's flight limits.

  1. Mechanics of myocardial relaxation: application of a model to isometric and isotonic relaxation of rat myocardium.

    PubMed

    Wiegner, A W; Bing, O H

    1982-01-01

    Using a simple model for cardiac muscle relaxation which takes into account muscle length, activation, elasticity and a rate constant for the decay of activation, we are able to use easily measured mechanical parameters to assess the state of the cardiac relaxing system. In isolated trabeculae carneae from the left ventricle of the rat, performing physiologically sequenced contractions, observations have been made (1) at varying preloads and afterloads, (2) with changes in temperature from 23 degrees to 33 degrees C, (3) with changes in bath Ca2+ concentration and (4) with the addition of isoproterenol. During isometric relaxation, the slope (SIM) of the curve relating maximum rate of decline of force (-dF/dtmax) to end-systolic muscle length is load-independent and sensitive to interventions which directly affect the cardiac relaxing system (e.g., temperature, isoproterenol); it is only slightly sensitive to bath calcium concentration. During isotonic relaxation, the maximum velocity of lengthening (+dL/dtmax) is in negative linear proportion to muscle shortening at a given preload, the slope (SIT) of the curve relating +dL/dtmax to end-systolic length is sensitive to the interventions which directly affect the cardiac relaxing system but insensitive to calcium-mediated inotropic interventions. The model provides a theoretical basis for the use of SIM and SIT as measures of the relaxation process. PMID:7161285

  2. A comparison of somatic relaxation and EEG activity in classical progressive relaxation and transcendental meditation.

    PubMed

    Warrenburg, S; Pagano, R R; Woods, M; Hlastala, M

    1980-03-01

    Oxygen consumption, electroencephalogram (EEG), and four other measures of somatic relaxation were monitored in groups of long-term practitioners of classical Jacobson's progressive relaxation (PR) and Transcendental Meditation (TM) and also in a group of novice PR trainees. All subjects (1) practiced relaxation or meditation (treatment), (2) sat with eyes closed (EC control), and (3) read from a travel book during two identical sessions on different days. EEG findings indicated that all three groups remained primarily awake during treatment and EC control and that several subjects in each group displayed rare theta (5-7 Hz) waveforms. All three groups demonstrated similar decrements in somatic activity during treatment and EC control which were generally of small magnitude (e. g., 2-5% in oxygen consumption). These results supported the "relaxation response" model for state changes in somatic relaxation for techniques practiced under low levels of stress but not the claim that the relaxation response produced a hypometabolic state. Despite similar state effects, the long-term PR group manifested lower levels of somatic activity across all conditions compared to both novice PR and long-term TM groups. We concluded that PR causes a generalized trait of somatic relaxation which is manifested in a variety of settings and situations. Two likely explanations for this trait were discussed: (1) PR practitioners are taught to generalize relaxation to daily activities, and/or (2) according to a "multiprocess model," PR is a "somatic technique," which should produce greater somatic relaxation than does TM, a "cognitive technique." Further research is required to elucidate these possibilities.

  3. Aircraft trace gas measurements during the London 2012 Olympics: Air quality and emission fluxes derived from sampling upwind and downwind of a megacity

    NASA Astrophysics Data System (ADS)

    Allen, G.; O'Shea, S.; Muller, J.; Jones, B.; O'Sullivan, D.; Lee, J. D.; Bauguitte, S.; Gallagher, M. W.; Percival, C.; Barratt, B.; McQuaid, J. B.; Illingworth, S.

    2013-12-01

    This study presents airborne in situ and remote sensing measurements recorded during July and August 2012, across the period of the London 2012 Summer Olympics and simultaneous with the Clear air for London (ClearfLo) ground-based measurement and modelling campaign. Through long-term (2-year) and intensive observation periods (Winter 2011 and Summer 2012), the ClearfLo programme aims to better understand emissions, as well as the chemical, dynamical and micro-meteorological processes which modulate air quality in the London urban environment - an important risk factor for both acute and chronic health effects. The work presented here focuses on two contrasting case studies within the summer ClearfLo period: 30 July 2012 and 9 August 2012, representing relatively clean background and polluted background cases, respectively, and characterised by well-mixed Atlantic westerly maritime inflow in the former and stagnant air (high pressure) in the latter. Measurements of CO, CO2, CH4, N2O, O3, HCN, and other gases measured on board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 aircraft will be presented and interpreted, with emphasis on observed concentration gradients and tracer-tracer correlations as well as airmass vertical structure and airmass history upwind and downwind of central London in each case. By applying a simple advective model and making use of vertically resolved thermodynamic and composition data, we are able to derive emission strengths for these gases that are representative of the total enclosed surface area. Example emissions for these two cases range between 6x105 kg(C)/hr and 9x105 kg(C)/hr for CO2, and ~0.6x105 kg(C)/hr for CH4. This airborne sampling methodology highlights the unique utility of aircraft measurements to routinely and climatologically characterise emissions from area sources such as cities, and points to future missions to target localised hotspots and distributed point sources.

  4. Relaxation dynamics of multilayer triangular Husimi cacti.

    PubMed

    Galiceanu, Mircea; Jurjiu, Aurel

    2016-09-14

    We focus on the relaxation dynamics of multilayer polymer structures having, as underlying topology, the Husimi cactus. The relaxation dynamics of the multilayer structures is investigated in the framework of generalized Gaussian structures model using both Rouse and Zimm approaches. In the Rouse type-approach, we determine analytically the complete eigenvalues spectrum and based on it we calculate the mechanical relaxation moduli (storage and loss modulus) and the average monomer displacement. First, we monitor these physical quantities for structures with a fixed generation number and we increase the number of layers, such that the linear topology will smoothly come into play. Second, we keep constant the size of the structures, varying simultaneously two parameters: the generation number of the main layer, G, and the number of layers, c. This fact allows us to study in detail the crossover from a pure Husimi cactus behavior to a predominately linear chain behavior. The most interesting situation is found when the two limiting topologies cancel each other. For this case, we encounter in the intermediate frequency/time domain regions of constant slope for different values of the parameter set (G, c) and we show that the number of layers follows an exponential-law of G. In the Zimm-type approach, which includes the hydrodynamic interactions, the quantities that describe the mechanical relaxation dynamics do not show scaling behavior as in the Rouse model, except the limiting case, namely, a very high number of layers and low generation number. PMID:27634273

  5. Charge Relaxation Dynamics of an Electrolytic Nanocapacitor

    PubMed Central

    2015-01-01

    Understanding ion relaxation dynamics in overlapping electric double layers (EDLs) is critical for the development of efficient nanotechnology-based electrochemical energy storage, electrochemomechanical energy conversion, and bioelectrochemical sensing devices as well as the controlled synthesis of nanostructured materials. Here, a lattice Boltzmann (LB) method is employed to simulate an electrolytic nanocapacitor subjected to a step potential at t = 0 for various degrees of EDL overlap, solvent viscosities, ratios of cation-to-anion diffusivity, and electrode separations. The use of a novel continuously varying and Galilean-invariant molecular-speed-dependent relaxation time (MSDRT) with the LB equation recovers a correct microscopic description of the molecular-collision phenomena and enhances the stability of the LB algorithm. Results for large EDL overlaps indicated oscillatory behavior for the ionic current density, in contrast to monotonic relaxation to equilibrium for low EDL overlaps. Further, at low solvent viscosities and large EDL overlaps, anomalous plasmalike spatial oscillations of the electric field were observed that appeared to be purely an effect of nanoscale confinement. Employing MSDRT in our simulations enabled modeling of the fundamental physics of the transient charge relaxation dynamics in electrochemical systems operating away from equilibrium wherein Nernst–Einstein relation is known to be violated. PMID:25678941

  6. Stretched Exponential relaxation in pure Se glass

    NASA Astrophysics Data System (ADS)

    Dash, S.; Ravindren, S.; Boolchand, P.

    A universal feature of glasses is the stretched exponential relaxation, f (t) = exp[ - t / τ ] β . The model of diffusion of excitations to randomly distributed traps in a glass by Phillips1 yields the stretched exponent β = d[d +2] where d, the effective dimensionality. We have measured the enthalpy of relaxation ΔHnr (tw) at Tg of Se glass in modulated DSC experiments as glasses age at 300K and find β = 0.43(2) for tw in the 0 relaxation is a narrowing of the glass transition width from 7.1°C to 1.4°C, and the ΔHnr term increasing from 0.21 cal/gm to 0.92 cal/gm. In bulk GexSe100-x glasses as x increases to 20%, the length of the polymeric Sen chains between the Ge-crosslinks decreases to n = 2. and the striking relaxation effects nearly vanish. J.C. Phillips, Rep.Prog.Phys. 59 , 1133 (1996). Supported by NSF Grant DMR 08-53957.

  7. Relaxation for Children. (Revised and Expanded Edition.)

    ERIC Educational Resources Information Center

    Rickard, Jenny

    Intended as a guide to reduce negative stress in children, this book suggests relaxation and meditation techniques to help children cope with stressful events. Part 1 provides an introduction to the format of the book. Part 2 contains summaries of the 10 sessions that make up the program. Each session has six sequential stages in which students…

  8. Relaxation processes in administered-rate pricing

    NASA Astrophysics Data System (ADS)

    Hawkins, Raymond J.; Arnold, Michael R.

    2000-10-01

    We show how the theory of anelasticity unifies the observed dynamics and proposed models of administered-rate products. This theory yields a straightforward approach to rate model construction that we illustrate by simulating the observed relaxation dynamics of two administered rate products. We also demonstrate how the use of this formalism leads to a natural definition of market friction.

  9. Magnetic relaxation in dipolar magnetic nanoparticle clusters

    NASA Astrophysics Data System (ADS)

    Hovorka, Ondrej; Barker, Joe; Chantrell, Roy; Friedman, Gary; York-Drexel Collaboration

    2013-03-01

    Understanding the role of dipolar interactions on thermal relaxation in magnetic nanoparticle (MNP) systems is of fundamental importance in magnetic recording, for optimizing the hysteresis heating contribution in the hyperthermia cancer treatment in biomedicine, or for biological and chemical sensing, for example. In this talk, we discuss our related efforts to quantify the influence of dipolar interactions on thermal relaxation in small clusters of MNPs. Setting up the master equation and solving the associated eigenvalue problem, we identify the observable relaxation time scale spectra for various types of MNP clusters, and demonstrate qualitatively different spectral characteristics depending on the point group of symmetries of the particle arrangement within the cluster - being solely a dipolar interaction effect. Our findings provide insight into open questions related to magnetic relaxation in bulk MNP systems, and may prove to be also of practical relevance, e.g., for improving robustness of methodologies in biological and chemical sensing. OH gratefully acknowledges support from a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme under grant agreement PIEF-GA-2010-273014

  10. Relaxation Mechanisms in Hyperpolarized Polycrystalline ^129Xe

    NASA Astrophysics Data System (ADS)

    Samuelson, G.; Su, T.; Saam, B.

    2002-10-01

    Through spin exchange with optically polarized Rb vapor, it is possible to achieve upwards of 30% nuclear spin polarization in ^129Xe and a corresponding NMR signal some 5 orders of magnitude stronger than typical thermally polarized ^129Xe. Due to such a strong signal, hyperpolarized ^129Xe is being used for several leading-edge technologies (eg. biochemical spectroscopy, MRI, and polarization transfer). We have measured the nuclear spin relaxation rate of polycrystalline hyperpolarized ^129Xe at 77K (well below the freezing point of 160K) in a magnetic field of only a few Gauss and have observed that the hyperpolarization completely survives the freezing process. Furthermore, in this regime we have observed non-exponential spin relaxation that depends strongly on magnetic field, isotopic concentration (between ^129Xe and ^131Xe) and differences in crystallite formation. We present a simple spin-diffusion model that fits and explains the features of the data. Our results agree with the hypothesis that at low fields and temperatures the dominant spin relaxation mechanism is cross-relaxation with ^131Xe on the surface of the crystallites (Gatzke, et al., PRL b70, 690 (1993)).

  11. Collection Development: Relaxation & Meditation, September 1, 2010

    ERIC Educational Resources Information Center

    Lettus, Dodi

    2010-01-01

    One of the first books to document the relationship between stress and physical and emotional health was "The Relaxation Response" by Herbert Benson, M.D., with Miriam Z. Klipper. Originally published in 1975, the book grew out of Benson's observations as a cardiologist and his research as a fellow at Harvard Medical School. Benson's study of…

  12. Relaxation Treatment for Insomnia: A Component Analysis.

    ERIC Educational Resources Information Center

    Woolfolk, Robert L.; McNulty, Terrence F.

    1983-01-01

    Compared four relaxation treatments for sleep onset insomnia with a waiting-list control. Treatments varied in presence or absence of muscular tension-release instructions and in foci of attention. Results showed all treatment conditions reduced latency of sleep onset and fatigue; visual focusing best reduced the number of nocturnal awakenings.…

  13. Relaxation dynamics of multilayer triangular Husimi cacti

    NASA Astrophysics Data System (ADS)

    Galiceanu, Mircea; Jurjiu, Aurel

    2016-09-01

    We focus on the relaxation dynamics of multilayer polymer structures having, as underlying topology, the Husimi cactus. The relaxation dynamics of the multilayer structures is investigated in the framework of generalized Gaussian structures model using both Rouse and Zimm approaches. In the Rouse type-approach, we determine analytically the complete eigenvalues spectrum and based on it we calculate the mechanical relaxation moduli (storage and loss modulus) and the average monomer displacement. First, we monitor these physical quantities for structures with a fixed generation number and we increase the number of layers, such that the linear topology will smoothly come into play. Second, we keep constant the size of the structures, varying simultaneously two parameters: the generation number of the main layer, G, and the number of layers, c. This fact allows us to study in detail the crossover from a pure Husimi cactus behavior to a predominately linear chain behavior. The most interesting situation is found when the two limiting topologies cancel each other. For this case, we encounter in the intermediate frequency/time domain regions of constant slope for different values of the parameter set (G, c) and we show that the number of layers follows an exponential-law of G. In the Zimm-type approach, which includes the hydrodynamic interactions, the quantities that describe the mechanical relaxation dynamics do not show scaling behavior as in the Rouse model, except the limiting case, namely, a very high number of layers and low generation number.

  14. Dipole Relaxation in an Electric Field.

    ERIC Educational Resources Information Center

    Neumann, Richard M.

    1980-01-01

    Derives an expression for the orientational entropy of a rigid rod (electric dipole) from Boltzmann's equation. Subsequent application of Newton's second law of motion produces Debye's classical expression for the relaxation of an electric dipole in a viscous medium. (Author/GS)

  15. BOOK REVIEW: Magnetohydrodynamics of Plasma Relaxation

    NASA Astrophysics Data System (ADS)

    Connor, J. W.

    1998-06-01

    This monograph on magnetohydrodynamic (MHD) relaxation in plasmas by Ortolani and Schnack occupies a fascinating niche in the plasma physics literature. It is rare in the complex and often technically sophisticated subject of plasma physics to be able to isolate a topic and deal with it comprehensively in a mere 180 pages. Furthermore, it brings a refreshingly original and personal approach to the treatment of plasma relaxation, synthesizing the experiences of the two authors to produce a very readable account of phenomena appearing in such diverse situations as laboratory reversed field pinches (RFPs) and the solar corona. Its novelty lies in that, while it does acknowledge the seminal Taylor theory of relaxation as a general guide, it emphasizes the role of large scale numerical MHD simulations in developing a picture for the relaxation phenomena observed in experiment and nature. Nevertheless, the volume has some minor shortcomings: a tendency to repetitiveness and some omissions that prevent it being entirely self-contained. The monograph is divided into nine chapters, with the first a readable, `chatty', introduction to the physics and phenomena of relaxation discussed in the later chapters. Chapter 2 develops the tools for describing relaxation processes, namely the resistive MHD model, leading to a discussion of resistive instabilities and the stability properties of RFPs. This chapter demonstrates the authors' confessed desire to avoid mathematical detail with a rather simplified discussion of Δ' and magnetic islands; it also sets the stage for their own belief, or thesis, that numerical simulation of the non-linear consequences of the MHD model is the best approach to explaining the physics of relaxation. Nevertheless, in Chapter 3 they provide a reasonably good account and critique of one analytic approach that is available, and which is the commonly accepted picture for relaxation in pinches - the Taylor relaxation theory based on the conservation of

  16. Dielectric Relaxation of Water in Complex Systems

    NASA Astrophysics Data System (ADS)

    Feldman, Yuri; Puzenko, Alexander A.; Ishai, Paul Ben; Levy, Evgenya

    Whenever water interacts with another dipolar or charged entity, a broadening of the dielectric relaxation peak occurs. This broadening can often be described by the phenomenological Cole-Cole (CC) spectral function. A new approach (Puzenko AA, Ben Ishai P, and Feldman Y, Phys Rev Lett 105:037601, 2010) based on the fractal nature of the time set of the interaction of the relaxing water dipoles with its encompassing matrix has been recently presented showing a fundamental connection between the relaxation time, τ, the broadening parameter, α, and the Kirkwood-Fröhlich correlation function B. Parameters B, τ and α where chosen as the coordinates of a new 3D space. The evolution of the relaxation process due to the variation of external macroscopic parameters (temperature, pressure etc.) represents the trajectory in 3D space. This trajectory demonstrates the connection between the kinetic and structural properties of the water in complex system. It is also shown how the model describes the state of water in two porous silica glasses and in two different types of aqueous solutions: ionic, and non-ionic. The complex dielectric spectra of a series of solutions of sodium chloride and potassium chloride in water have been measured and have been carefully analyzed along with previously measured spectra for aqueous solutions of D-glucose and D-fructose.

  17. Prominent β-relaxations in yttrium based metallic glasses

    SciTech Connect

    Luo, P.; Lu, Z.; Zhu, Z. G.; Li, Y. Z.; Bai, H. Y.; Wang, W. H.

    2015-01-19

    Most metallic glasses (MGs) exhibit weak slow β-relaxation. We report the prominent β-relaxation in YNiAl metallic glass with a wide composition range. Compared with other MGs, the MGs show a pronounced β-relaxation peak and high β-relaxation peak temperature, and the β-relaxation behavior varies significantly with the changes of the constituent elements, which is attributed to the fluctuations of chemical interactions between the components. We demonstrate the correlation between the β-relaxation and the activation of flow units for mechanical behaviors of the MG and show that the MG is model system for studying some controversial issues in glasses.

  18. The effect of music relaxation versus progressive muscular relaxation on insomnia in older people and their relationship to personality traits.

    PubMed

    Ziv, Naomi; Rotem, Tomer; Arnon, Zahi; Haimov, Iris

    2008-01-01

    A large percentage of older people suffer from chronic insomnia, affecting many aspects of life quality and well-being. Although insomnia is most often treated with medication, a growing number of studies demonstrate the efficiency of various relaxation techniques. The present study had three aims: first, to compare two relaxation techniques--music relaxation and progressive muscular relaxation--on various objective and subjective measures of sleep quality; second, to examine the effect of these techniques on anxiety and depression; and finally, to explore possible relationships between the efficiency of both techniques and personality variables. Fifteen older adults took part in the study. Following one week of base-line measurements of sleep quality, participants followed one week of music relaxation and one week of progressive muscular relaxation before going to sleep. Order of relaxation techniques was controlled. Results show music relaxation was more efficient in improving sleep. Sleep efficiency was higher after music relaxation than after progressive muscular relaxation. Moreover, anxiety was lower after music relaxation. Progressive muscular relaxation was related to deterioration of sleep quality on subjective measures. Beyond differences between the relaxation techniques, extraverts seemed to benefit more from both music and progressive muscular relaxation. The advantage of non-pharmacological means to treat insomnia, and the importance of taking individual differences into account are discussed.

  19. Audio-visual relaxation training for anxiety, sleep, and relaxation among Chinese adults with cardiac disease.

    PubMed

    Tsai, Sing-Ling

    2004-12-01

    The long-term effect of an audio-visual relaxation training (RT) treatment involving deep breathing, exercise, muscle relaxation, guided imagery, and meditation was compared with routine nursing care for reducing anxiety, improving sleep, and promoting relaxation in Chinese adults with cardiac disease. This research was a quasi-experimental, two-group, pretest-posttest study. A convenience sample of 100 cardiology patients (41 treatment, 59 control) admitted to one large medical center hospital in the Republic of China (ROC) was studied for 1 year. The hypothesized relationships were supported. RT significantly (p <.05) improved anxiety, sleep, and relaxation in the treatment group as compared to the control group. It appears audio-visual RT might be a beneficial adjunctive therapy for adult cardiac patients. However, considerable further work using stronger research designs is needed to determine the most appropriate instructional methods and the factors that contribute to long-term consistent practice of RT with Chinese populations.

  20. High relaxivity Gd(III)-DNA gold nanostars: investigation of shape effects on proton relaxation.

    PubMed

    Rotz, Matthew W; Culver, Kayla S B; Parigi, Giacomo; MacRenaris, Keith W; Luchinat, Claudio; Odom, Teri W; Meade, Thomas J

    2015-03-24

    Gadolinium(III) nanoconjugate contrast agents (CAs) have distinct advantages over their small-molecule counterparts in magnetic resonance imaging. In addition to increased Gd(III) payload, a significant improvement in proton relaxation efficiency, or relaxivity (r1), is often observed. In this work, we describe the synthesis and characterization of a nanoconjugate CA created by covalent attachment of Gd(III) to thiolated DNA (Gd(III)-DNA), followed by surface conjugation onto gold nanostars (DNA-Gd@stars). These conjugates exhibit remarkable r1 with values up to 98 mM(-1) s(-1). Additionally, DNA-Gd@stars show efficient Gd(III) delivery and biocompatibility in vitro and generate significant contrast enhancement when imaged at 7 T. Using nuclear magnetic relaxation dispersion analysis, we attribute the high performance of the DNA-Gd@stars to an increased contribution of second-sphere relaxivity compared to that of spherical CA equivalents (DNA-Gd@spheres). Importantly, the surface of the gold nanostar contains Gd(III)-DNA in regions of positive, negative, and neutral curvature. We hypothesize that the proton relaxation enhancement observed results from the presence of a unique hydrophilic environment produced by Gd(III)-DNA in these regions, which allows second-sphere water molecules to remain adjacent to Gd(III) ions for up to 10 times longer than diffusion. These results establish that particle shape and second-sphere relaxivity are important considerations in the design of Gd(III) nanoconjugate CAs.

  1. Conservation equations and physical models for hypersonic air flows over the aeroassist flight experiment vehicle

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    1989-01-01

    The code development and application program for the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA), with emphasis directed toward support of the Aeroassist Flight Experiment (AFE) in the near term and Aeroassisted Space Transfer Vehicle (ASTV) design in the long term is reviewed. LAURA is an upwind-biased, point-implicit relaxation algorithm for obtaining the numerical solution to the governing equations for 3-D, viscous, hypersonic flows in chemical and thermal nonequilibrium. The algorithm is derived using a finite volume formulation in which the inviscid components of flux across cell walls are described with Roe's averaging and Harten's entropy fix with second-order corrections based on Yee's Symmetric Total Variation Diminishing scheme. Because of the point-implicit relaxation strategy, the algorithm remains stable at large Courant numbers without the necessity of solving large, block tri-diagonal systems. A single relaxation step depends only on information from nearest neighbors. Predictions for pressure distributions, surface heating, and aerodynamic coefficients compare well with experimental data for Mach 10 flow over an AFE wind tunnel model. Predictions for the hypersonic flow of air in chemical and thermal nonequilibrium over the full scale AFE configuration obtained on a multi-domain grid are discussed.

  2. Nonlinear visco-elastic relaxation of non-lithostatic pressure

    NASA Astrophysics Data System (ADS)

    Podladchikov, Yury; Dabrowski, Marcin

    2014-05-01

    We investigate the rate of viscoelastic relaxation of non-lithostatic pressure as a function of a number of model parameters. Nonlinearity and anisotropy of viscosity are under investigation. We also study to what limit the pressure is relaxing.

  3. Modeling aftershocks as a stretched exponential relaxation

    NASA Astrophysics Data System (ADS)

    Mignan, A.

    2015-11-01

    The decay rate of aftershocks has been modeled as a power law since the pioneering work of Omori in the late nineteenth century. Although other expressions have been proposed in recent decades to describe the temporal behavior of aftershocks, the number of model comparisons remains limited. After reviewing the aftershock models published from the late nineteenth century until today, I solely compare the power law, pure exponential and stretched exponential expressions defined in their simplest forms. By applying statistical methods recommended recently in applied mathematics, I show that all aftershock sequences tested in three regional earthquake catalogs (Southern and Northern California, Taiwan) and with three declustering techniques (nearest-neighbor, second-order moment, window methods) follow a stretched exponential instead of a power law. These results infer that aftershocks are due to a simple relaxation process, in accordance with most other relaxation processes observed in Nature.

  4. Two-temperature reaction and relaxation rates

    NASA Astrophysics Data System (ADS)

    Kolesnichenko, E.; Gorbachev, Yu.

    2016-09-01

    Within the method of solving the kinetic equations for gas mixtures with internal degrees of freedom developed by the authors and based on the approximate summational invariants (ASI) concept, gas-dynamic equations for a multi-temperature model for the spatially inhomogeneous case are derived. For the two-temperature case, the expressions for the non-equilibrium reaction and relaxation rates are obtained. Special attention is drawn to corresponding thermodynamic equations. Different possibilities of introducing the gas-dynamic variables related to the internal degrees of freedom are considered. One is based on the choice of quantum numbers as the ASI, while the other is based on the choice of internal (vibrational) energy as the ASI. Limits to a one-temperature situation are considered in all the cases. For the cutoff harmonic oscillator model, explicit expressions for the reaction and relaxation rates are derived.

  5. The relief of anxiety through relaxing meditation.

    PubMed

    Meares, A

    1976-08-01

    Our sensory input derives from sources in the environment, in our body and in the mind itself. When the sensory input reaches a critical level it is incompletely integrated, and anxiety results. A logical understanding of the cause of anxiety has no therapeutic effect. But the mind itself has the ability to reduce anxiety if suitable circumstances are provided. This can be quite easily achieved in the stillness of mind induced in a simple meditative experience known as Mental Ataraxis. The patient is first shown complete physical relaxation in global fashion. He is then brought to experience the relaxation as part of his whole being so that his mind fully participates in the process. He practises this, starting in a position of slight discomfort which eases as the meditative experience develops. The approach does not involve the patient in doing less work. The lessening of anxiety reduces nervous tension, psychosomatic disorders and defensive distortions of the personality.

  6. Relaxation times and charge conductivity of silicene

    NASA Astrophysics Data System (ADS)

    Mazloom, Azadeh; Parhizgar, Fariborz; Abedinpour, Saeed H.; Asgari, Reza

    2016-07-01

    We investigate the transport and single particle relaxation times of silicene in the presence of neutral and charged impurities. The static charge conductivity is studied using the semiclassical Boltzmann formalism when the spin-orbit interaction is taken into account. The screening is modeled within Thomas-Fermi and random-phase approximations. We show that the transport relaxation time is always longer than the single particle one. Easy electrical controllability of both carrier density and band gap in this buckled two-dimensional structure makes it a suitable candidate for several electronic and optoelectronic applications. In particular, we observe that the dc charge conductivity could be easily controlled through an external electric field, a very promising feature for applications as electrical switches and transistors. Our findings would be qualitatively valid for other buckled honeycomb lattices of the same family, such as germanine and stanine.

  7. Relaxation schemes for spectral multigrid methods

    NASA Technical Reports Server (NTRS)

    Phillips, Timothy N.

    1987-01-01

    The effectiveness of relaxation schemes for solving the systems of algebraic equations which arise from spectral discretizations of elliptic equations is examined. Iterative methods are an attractive alternative to direct methods because Fourier transform techniques enable the discrete matrix-vector products to be computed almost as efficiently as for corresponding but sparse finite difference discretizations. Preconditioning is found to be essential for acceptable rates of convergence. Preconditioners based on second-order finite difference methods are used. A comparison is made of the performance of different relaxation methods on model problems with a variety of conditions specified around the boundary. The investigations show that iterations based on incomplete LU decompositions provide the most efficient methods for solving these algebraic systems.

  8. Creep and relaxation behavior of Inconel-617

    SciTech Connect

    Osthoff, W.; Ennis, P.J.; Nickel, H.; Schuster, H.

    1984-08-01

    The static and dynamic creep behavior of Inconel alloy 617 has been determined in constant load creep tests, relaxation tests, and stress reduction tests in the temperature range 1023 to 1273 K. The results have been interpreted using the internal stress concept: The dependence of the internal stress on the applied stress and test temperature was determined. In a few experiments, the influence of cold deformation prior to the creep test on the magnitude of the internal stress was also investigated. It was found that the experimentally observed relaxation behavior could be more satisfactorily described using the Norton creep equation modified by incorporation of the internal stress than by the conventional Norton creep equation.

  9. Electrochemical relaxation at electrically conducting polymers

    NASA Astrophysics Data System (ADS)

    Nateghi, M. R.; zarandi, M. B.

    2008-08-01

    In this study, slow relaxation (SR) associated with the electroreduction of polyaniline (PAn) films during polarization to high cathodic potentials was investigated by cyclic voltammetry technique. Anodic voltammetric currents were used as experimental variable to indicate the relaxation occurring in PAn films deposited electrochemically on the Pt electrode surface. The dependence of SR on polymer film thickness, waiting potential, and mobility of the doped anion was investigated. Percolation threshold potential for heteropolyanion doped PAn was estimated to be between 150 and 200 mV depending on polymer thickness on the electrode surface. A new model of the conducting to insulating conversion is described by the percolation theory and mobility gap changes during the process.

  10. Energy relaxation of a dissipative quantum oscillator

    SciTech Connect

    Kumar, Pradeep; Pollak, Eli

    2014-12-21

    The dissipative harmonic oscillator is studied as a model for vibrational relaxation in a liquid environment. Continuum limit expressions are derived for the time-dependent average energy, average width of the population, and the vibrational population itself. The effect of the magnitude of the solute-solvent interaction, expressed in terms of a friction coefficient, solvent temperature, and initial energy of the oscillator on the relaxation has been studied. These results shed light on the recent femtosecond stimulated Raman scattering probe of the 1570 cm{sup −1} −C=C− stretching mode of trans-Stilbene in the first (S{sub 1}) excited electronic state. When the oscillator is initially cold with respect to the bath temperature, its average energy and width increase in time. When it is initially hot, the average energy and width decrease with time in qualitative agreement with the experimental observations.

  11. Braided magnetic fields: equilibria, relaxation and heating

    NASA Astrophysics Data System (ADS)

    Pontin, D. I.; Candelaresi, S.; Russell, A. J. B.; Hornig, G.

    2016-05-01

    We examine the dynamics of magnetic flux tubes containing non-trivial field line braiding (or linkage), using mathematical and computational modelling, in the context of testable predictions for the laboratory and their significance for solar coronal heating. We investigate the existence of braided force-free equilibria, and demonstrate that for a field anchored at perfectly-conducting plates, these equilibria exist and contain current sheets whose thickness scales inversely with the braid complexity—as measured for example by the topological entropy. By contrast, for a periodic domain braided exact equilibria typically do not exist, while approximate equilibria contain thin current sheets. In the presence of resistivity, reconnection is triggered at the current sheets and a turbulent relaxation ensues. We finish by discussing the properties of the turbulent relaxation and the existence of constraints that may mean that the final state is not the linear force-free field predicted by Taylor’s hypothesis.

  12. Robust solid 129Xe longitudinal relaxation times

    NASA Astrophysics Data System (ADS)

    Limes, M. E.; Ma, Z. L.; Sorte, E. G.; Saam, B.

    2016-09-01

    We find that if solid xenon is formed from liquid xenon, denoted "ice," there is a 10% increase in 129Xe longitudinal relaxation T1 time (taken at 77 K and 2 T) over a trickle-freeze formation, denoted "snow." Forming xenon ice also gives an unprecedented reproducibility of 129Xe T1 measurements across a range of 77-150 K. This temperature dependence roughly follows the theory of spin rotation mediated by Raman scattering of harmonic phonons, though it results in a smaller-than-predicted spin-rotation coupling strength cK 0/h . Enriched ice 129Xe T1 experiments show no isotopic dependence of bulk relaxation mechanisms at 77 K and at kilogauss fields.

  13. The Efficacy of Relaxation Training in Treating Anxiety

    ERIC Educational Resources Information Center

    Francesco, Pagnini; Mauro, Manzoni Gian; Gianluca, Castelnuovo; Enrico, Molinari

    2009-01-01

    This paper provides a review of scientific literature about relaxation training and its effects on anxiety. Research investigating progressive relaxation, meditation, applied relaxation and autogenic training were considered. All these methods proved to be effective in reducing anxiety in all kind of samples, affected or not by physical or…

  14. Is Relaxation Training Effective in the Treatment of Clinical Depression?

    ERIC Educational Resources Information Center

    Beaty, Lee A.

    The process of relaxation is a complex triarchic phenomenon that incorporates behavioral, cognitive, and physiological components. Existing literature is surveyed in order to determine the efficacy of treating various forms of depression with cognitive-behavioral relaxation strategies. Relaxation training has been shown to be effective in treating…

  15. Alternate Forms Reliability of the Behavioral Relaxation Scale: Preliminary Results

    ERIC Educational Resources Information Center

    Lundervold, Duane A.; Dunlap, Angel L.

    2006-01-01

    Alternate forms reliability of the Behavioral Relaxation Scale (BRS; Poppen,1998), a direct observation measure of relaxed behavior, was examined. A single BRS score, based on long duration observation (5-minute), has been found to be a valid measure of relaxation and is correlated with self-report and some physiological measures. Recently,…

  16. Relaxation time measurements by an electronic method.

    NASA Technical Reports Server (NTRS)

    Brousseau, R.; Vanier, J.

    1973-01-01

    Description of a simple electronic system that permits the direct measurement of time constants of decaying signals. The system was used in connection with relaxation experiments on hydrogen and rubidium masers and was found to operate well. The use of a computing counter in the systems gives the possibility of making averages on several experiments and obtaining the standard deviation of the results from the mean. The program for the computing counter is given.

  17. Controlling spin relaxation with a cavity.

    PubMed

    Bienfait, A; Pla, J J; Kubo, Y; Zhou, X; Stern, M; Lo, C C; Weis, C D; Schenkel, T; Vion, D; Esteve, D; Morton, J J L; Bertet, P

    2016-03-01

    Spontaneous emission of radiation is one of the fundamental mechanisms by which an excited quantum system returns to equilibrium. For spins, however, spontaneous emission is generally negligible compared to other non-radiative relaxation processes because of the weak coupling between the magnetic dipole and the electromagnetic field. In 1946, Purcell realized that the rate of spontaneous emission can be greatly enhanced by placing the quantum system in a resonant cavity. This effect has since been used extensively to control the lifetime of atoms and semiconducting heterostructures coupled to microwave or optical cavities, and is essential for the realization of high-efficiency single-photon sources. Here we report the application of this idea to spins in solids. By coupling donor spins in silicon to a superconducting microwave cavity with a high quality factor and a small mode volume, we reach the regime in which spontaneous emission constitutes the dominant mechanism of spin relaxation. The relaxation rate is increased by three orders of magnitude as the spins are tuned to the cavity resonance, demonstrating that energy relaxation can be controlled on demand. Our results provide a general way to initialize spin systems into their ground state and therefore have applications in magnetic resonance and quantum information processing. They also demonstrate that the coupling between the magnetic dipole of a spin and the electromagnetic field can be enhanced up to the point at which quantum fluctuations have a marked effect on the spin dynamics; as such, they represent an important step towards the coherent magnetic coupling of individual spins to microwave photons. PMID:26878235

  18. Current relaxation time scales in toroidal plasmas

    SciTech Connect

    Mikkelsen, D.R.

    1987-02-01

    An approximate normal mode analysis of plasma current diffusion in tokamaks is presented. The work is based on numerical solutions of the current diffusion equation in cylindrical geometry. Eigenvalues and eigenfunctions are shown for a broad range of plasma conductivity profile shapes. Three classes of solutions are considered which correspond to three types of tokamak operation. Convenient approximations to the three lowest eigenvalues in each class are presented and simple formulae for the current relaxation time scales are given.

  19. On real statistics of relaxation in gases

    NASA Astrophysics Data System (ADS)

    Kuzovlev, Yu. E.

    2016-02-01

    By example of a particle interacting with ideal gas, it is shown that the statistics of collisions in statistical mechanics at any value of the gas rarefaction parameter qualitatively differ from that conjugated with Boltzmann's hypothetical molecular chaos and kinetic equation. In reality, the probability of collisions of the particle in itself is random. Because of that, the relaxation of particle velocity acquires a power-law asymptotic behavior. An estimate of its exponent is suggested on the basis of simple kinematic reasons.

  20. Cortex phellodendri Extract Relaxes Airway Smooth Muscle

    PubMed Central

    Jiang, Qiu-Ju; Chen, Weiwei; Dan, Hong; Tan, Li; Zhu, He; Yang, Guangzhong; Shen, Jinhua; Peng, Yong-Bo; Zhao, Ping; Xue, Lu; Yu, Meng-Fei; Ma, Liqun; Si, Xiao-Tang; Wang, Zhuo; Dai, Jiapei; Qin, Gangjian; Zou, Chunbin; Liu, Qing-Hua

    2016-01-01

    Cortex phellodendri is used to reduce fever and remove dampness and toxin. Berberine is an active ingredient of C. phellodendri. Berberine from Argemone ochroleuca can relax airway smooth muscle (ASM); however, whether the nonberberine component of C. phellodendri has similar relaxant action was unclear. An n-butyl alcohol extract of C. phellodendri (NBAECP, nonberberine component) was prepared, which completely inhibits high K+- and acetylcholine- (ACH-) induced precontraction of airway smooth muscle in tracheal rings and lung slices from control and asthmatic mice, respectively. The contraction induced by high K+ was also blocked by nifedipine, a selective blocker of L-type Ca2+ channels. The ACH-induced contraction was partially inhibited by nifedipine and pyrazole 3, an inhibitor of TRPC3 and STIM/Orai channels. Taken together, our data demonstrate that NBAECP can relax ASM by inhibiting L-type Ca2+ channels and TRPC3 and/or STIM/Orai channels, suggesting that NBAECP could be developed to a new drug for relieving bronchospasm. PMID:27239213

  1. Graph Matching: Relax at Your Own Risk.

    PubMed

    Lyzinski, Vince; Fishkind, Donniell E; Fiori, Marcelo; Vogelstein, Joshua T; Priebe, Carey E; Sapiro, Guillermo

    2016-01-01

    Graph matching-aligning a pair of graphs to minimize their edge disagreements-has received wide-spread attention from both theoretical and applied communities over the past several decades, including combinatorics, computer vision, and connectomics. Its attention can be partially attributed to its computational difficulty. Although many heuristics have previously been proposed in the literature to approximately solve graph matching, very few have any theoretical support for their performance. A common technique is to relax the discrete problem to a continuous problem, therefore enabling practitioners to bring gradient-descent-type algorithms to bear. We prove that an indefinite relaxation (when solved exactly) almost always discovers the optimal permutation, while a common convex relaxation almost always fails to discover the optimal permutation. These theoretical results suggest that initializing the indefinite algorithm with the convex optimum might yield improved practical performance. Indeed, experimental results illuminate and corroborate these theoretical findings, demonstrating that excellent results are achieved in both benchmark and real data problems by amalgamating the two approaches.

  2. Relaxation strategies for patients during dermatologic surgery.

    PubMed

    Shenefelt, Philip D

    2010-07-01

    Patient stress and anxiety are common preoperatively and during dermatologic procedures and surgeries. Stress and anxiety can occasionally interfere with performance of procedures or surgery and can induce hemodynamic instability, such as elevated blood pressure or syncope, as well as producing considerable discomfort for some patients. Detection of excess stress and anxiety in patients can allow the opportunity for corrective or palliative measures. Slower breathing, biofeedback, progressive muscular relaxation, guided imagery, hypnosis, meditation and music can help calm and rebalance the patient's autonomic nervous system and immune functioning. Handheld miniaturized heart rate variability biofeedback devices are now available. The relaxation response can easily be taught. Guided imagery can be recorded or live. Live rapid induction hypnosis followed by deepening and then self-guided imagery requires no experience on the part of the patient but does require training and experience on the part of a provider. Recorded hypnosis inductions may also be used. Meditation generally requires more prior experience and training, but is useful when the patient already is skilled in it. Live, guided meditation or meditation recordings may be used. Relaxing recorded music from speakers or headphones or live performance music may also be employed to ease discomfort and improve the patient's attitude for dermatologic procedures and surgeries.

  3. Tension and relaxation in the individual.

    PubMed

    Newbury, C R

    1979-06-01

    Increasing materialism in society is resulting in more wide spread nervous tension in all age groups. While some degree of nervous tension is necessary in everyday living, its adverse effects require that we must learn to bring it under control. Total tension is shown to have two components: a controllable element arising from factors in the environment and the inbuilt uncontrollable residue which is basic in the individual temperament. The effects of excessive or uncontrolled stress can be classified as 1) emotional reactions such as neurotic behaviour (anxiety hypochondria, hysteria, phobia, depression obsessions and compulsions) or psychotic behaviour and 2) psychosomatic reactions (nervous asthma, headache, insomnia, heart attack). Nervous energy can be wastefully expended by such factors as loss of temper, wrong attitudes to work, job frustration and marital strains. Relaxation is the only positive way to control undesirable nervous tension and its techniques require to be learned. A number of techniques (progressive relaxation, differential relaxation, hypnosis, the use of biofeedback, Yoga and Transcendental Meditation) are described and their application to dental practice is discussed.

  4. Relaxed Phylogenetics and Dating with Confidence

    PubMed Central

    Ho, Simon Y. W; Phillips, Matthew J

    2006-01-01

    In phylogenetics, the unrooted model of phylogeny and the strict molecular clock model are two extremes of a continuum. Despite their dominance in phylogenetic inference, it is evident that both are biologically unrealistic and that the real evolutionary process lies between these two extremes. Fortunately, intermediate models employing relaxed molecular clocks have been described. These models open the gate to a new field of “relaxed phylogenetics.” Here we introduce a new approach to performing relaxed phylogenetic analysis. We describe how it can be used to estimate phylogenies and divergence times in the face of uncertainty in evolutionary rates and calibration times. Our approach also provides a means for measuring the clocklikeness of datasets and comparing this measure between different genes and phylogenies. We find no significant rate autocorrelation among branches in three large datasets, suggesting that autocorrelated models are not necessarily suitable for these data. In addition, we place these datasets on the continuum of clocklikeness between a strict molecular clock and the alternative unrooted extreme. Finally, we present analyses of 102 bacterial, 106 yeast, 61 plant, 99 metazoan, and 500 primate alignments. From these we conclude that our method is phylogenetically more accurate and precise than the traditional unrooted model while adding the ability to infer a timescale to evolution. PMID:16683862

  5. Cortex phellodendri Extract Relaxes Airway Smooth Muscle.

    PubMed

    Jiang, Qiu-Ju; Chen, Weiwei; Dan, Hong; Tan, Li; Zhu, He; Yang, Guangzhong; Shen, Jinhua; Peng, Yong-Bo; Zhao, Ping; Xue, Lu; Yu, Meng-Fei; Ma, Liqun; Si, Xiao-Tang; Wang, Zhuo; Dai, Jiapei; Qin, Gangjian; Zou, Chunbin; Liu, Qing-Hua

    2016-01-01

    Cortex phellodendri is used to reduce fever and remove dampness and toxin. Berberine is an active ingredient of C. phellodendri. Berberine from Argemone ochroleuca can relax airway smooth muscle (ASM); however, whether the nonberberine component of C. phellodendri has similar relaxant action was unclear. An n-butyl alcohol extract of C. phellodendri (NBAECP, nonberberine component) was prepared, which completely inhibits high K(+)- and acetylcholine- (ACH-) induced precontraction of airway smooth muscle in tracheal rings and lung slices from control and asthmatic mice, respectively. The contraction induced by high K(+) was also blocked by nifedipine, a selective blocker of L-type Ca(2+) channels. The ACH-induced contraction was partially inhibited by nifedipine and pyrazole 3, an inhibitor of TRPC3 and STIM/Orai channels. Taken together, our data demonstrate that NBAECP can relax ASM by inhibiting L-type Ca(2+) channels and TRPC3 and/or STIM/Orai channels, suggesting that NBAECP could be developed to a new drug for relieving bronchospasm.

  6. Vibrational-translational relaxation in liquid chloroform

    NASA Astrophysics Data System (ADS)

    Takagi, K.; Choi, P.-K.; Negishi, K.

    1981-01-01

    Ultrasonic measurements were made in liquid chloroform over the frequency range from 3 MHz to 5 GHz by means of three experimental techniques, pulse-echo overlap, high-resolution Bragg reflection, and Brillouin scattering. The observed velocity dispersion revealed two relaxation processes, one at 650 MHz and the other at 5.1 GHz at 20 °C. They are interpreted in terms of vibrational-translational relaxation. Quantitative analysis of specific heat shows the lowest (261 cm-1) and the second lowest (366 cm-1) fundamental vibrational modes should have a common relaxation time at 50 ps and the group of all above the third mode (667 cm-1) at 290 ps. The present results are combined with recent data obtained by Laubereau et al. with the picosecond spectroscopy technique; a diagram illustrating V-T and V-V energy transfer is presented. A brief comment is given also on V-T and V-V processes in dichloromethane.

  7. Ultrafast electronic relaxation in superheated bismuth

    NASA Astrophysics Data System (ADS)

    Gamaly, E. G.; Rode, A. V.

    2013-01-01

    Interaction of moving electrons with vibrating ions in the lattice forms the basis for many physical properties from electrical resistivity and electronic heat capacity to superconductivity. In ultrafast laser interaction with matter the electrons are heated much faster than the electron-ion energy equilibration, leading to a two-temperature state with electron temperature far above that of the lattice. The rate of temperature equilibration is governed by the strength of electron-phonon energy coupling, which is conventionally described by a coupling constant, neglecting the dependence on the electron and lattice temperature. The application of this constant to the observations of fast relaxation rate led to a controversial notion of ‘ultra-fast non-thermal melting’ under extreme electronic excitation. Here we provide theoretical grounds for a strong dependence of the electron-phonon relaxation time on the lattice temperature. We show, by taking proper account of temperature dependence, that the heating and restructuring of the lattice occurs much faster than were predicted on the assumption of a constant, temperature independent energy coupling. We applied the temperature-dependent momentum and energy transfer time to experiments on fs-laser excited bismuth to demonstrate that all the observed ultra-fast transformations of the transient state of bismuth are purely thermal in nature. The developed theory, when applied to ultrafast experiments on bismuth, provides interpretation of the whole variety of transient phase relaxation without the non-thermal melting conjecture.

  8. Use of nitroglycerin for uterine relaxation.

    PubMed

    Smith, G N; Brien, J F

    1998-09-01

    Data from human and experimental animal research indicate that nitric oxide (NO), a novel messenger, formed during the nitric oxide synthase-catalyzed oxidation of L-arginine to L-citrulline, is involved in maintaining normal uterine tone during gestation. There are demonstrated and potential benefits of manipulating the L-arginine-NO system during pregnancy. Several recent case reports and case series have described the effective use of nitroglycerin (GTN), a NO donor compound, antenatally, intrapartum, and postpartum for acute uterine relaxation. Therapeutic indications for GTN range from facilitating external cephalic version, difficult vaginal or cesarean section delivery, and manual exploration of the uterus, to its use as a tocolytic. The intravenous regimen of GTN required to obtain the desired degree of uterine relaxation is extremely variable; intravenous bolus doses of 50 micrograms to 500 micrograms GTN with up to three repeated injections of 50 micrograms to 250 micrograms have been reported. Other methods of GTN administration include transdermal patches and sublingual spray. GTN, when used in low doses, may provide safe and effective uterine relaxation with no clinically apparent fetal or maternal adverse effects. However, clinical trials with use of objective methods of evaluating uterine tone and comparing GTN to other tocolytic agents are required before widespread use in advocated.

  9. Graph Matching: Relax at Your Own Risk.

    PubMed

    Lyzinski, Vince; Fishkind, Donniell E; Fiori, Marcelo; Vogelstein, Joshua T; Priebe, Carey E; Sapiro, Guillermo

    2016-01-01

    Graph matching-aligning a pair of graphs to minimize their edge disagreements-has received wide-spread attention from both theoretical and applied communities over the past several decades, including combinatorics, computer vision, and connectomics. Its attention can be partially attributed to its computational difficulty. Although many heuristics have previously been proposed in the literature to approximately solve graph matching, very few have any theoretical support for their performance. A common technique is to relax the discrete problem to a continuous problem, therefore enabling practitioners to bring gradient-descent-type algorithms to bear. We prove that an indefinite relaxation (when solved exactly) almost always discovers the optimal permutation, while a common convex relaxation almost always fails to discover the optimal permutation. These theoretical results suggest that initializing the indefinite algorithm with the convex optimum might yield improved practical performance. Indeed, experimental results illuminate and corroborate these theoretical findings, demonstrating that excellent results are achieved in both benchmark and real data problems by amalgamating the two approaches. PMID:26656578

  10. Cortex phellodendri Extract Relaxes Airway Smooth Muscle.

    PubMed

    Jiang, Qiu-Ju; Chen, Weiwei; Dan, Hong; Tan, Li; Zhu, He; Yang, Guangzhong; Shen, Jinhua; Peng, Yong-Bo; Zhao, Ping; Xue, Lu; Yu, Meng-Fei; Ma, Liqun; Si, Xiao-Tang; Wang, Zhuo; Dai, Jiapei; Qin, Gangjian; Zou, Chunbin; Liu, Qing-Hua

    2016-01-01

    Cortex phellodendri is used to reduce fever and remove dampness and toxin. Berberine is an active ingredient of C. phellodendri. Berberine from Argemone ochroleuca can relax airway smooth muscle (ASM); however, whether the nonberberine component of C. phellodendri has similar relaxant action was unclear. An n-butyl alcohol extract of C. phellodendri (NBAECP, nonberberine component) was prepared, which completely inhibits high K(+)- and acetylcholine- (ACH-) induced precontraction of airway smooth muscle in tracheal rings and lung slices from control and asthmatic mice, respectively. The contraction induced by high K(+) was also blocked by nifedipine, a selective blocker of L-type Ca(2+) channels. The ACH-induced contraction was partially inhibited by nifedipine and pyrazole 3, an inhibitor of TRPC3 and STIM/Orai channels. Taken together, our data demonstrate that NBAECP can relax ASM by inhibiting L-type Ca(2+) channels and TRPC3 and/or STIM/Orai channels, suggesting that NBAECP could be developed to a new drug for relieving bronchospasm. PMID:27239213

  11. Relaxation strategies for patients during dermatologic surgery.

    PubMed

    Shenefelt, Philip D

    2010-07-01

    Patient stress and anxiety are common preoperatively and during dermatologic procedures and surgeries. Stress and anxiety can occasionally interfere with performance of procedures or surgery and can induce hemodynamic instability, such as elevated blood pressure or syncope, as well as producing considerable discomfort for some patients. Detection of excess stress and anxiety in patients can allow the opportunity for corrective or palliative measures. Slower breathing, biofeedback, progressive muscular relaxation, guided imagery, hypnosis, meditation and music can help calm and rebalance the patient's autonomic nervous system and immune functioning. Handheld miniaturized heart rate variability biofeedback devices are now available. The relaxation response can easily be taught. Guided imagery can be recorded or live. Live rapid induction hypnosis followed by deepening and then self-guided imagery requires no experience on the part of the patient but does require training and experience on the part of a provider. Recorded hypnosis inductions may also be used. Meditation generally requires more prior experience and training, but is useful when the patient already is skilled in it. Live, guided meditation or meditation recordings may be used. Relaxing recorded music from speakers or headphones or live performance music may also be employed to ease discomfort and improve the patient's attitude for dermatologic procedures and surgeries. PMID:20677535

  12. OCT-based approach to local relaxations discrimination from translational relaxation motions

    NASA Astrophysics Data System (ADS)

    Matveev, Lev A.; Matveyev, Alexandr L.; Gubarkova, Ekaterina V.; Gelikonov, Grigory V.; Sirotkina, Marina A.; Kiseleva, Elena B.; Gelikonov, Valentin M.; Gladkova, Natalia D.; Vitkin, Alex; Zaitsev, Vladimir Y.

    2016-04-01

    Multimodal optical coherence tomography (OCT) is an emerging tool for tissue state characterization. Optical coherence elastography (OCE) is an approach to mapping mechanical properties of tissue based on OCT. One of challenging problems in OCE is elimination of the influence of residual local tissue relaxation that complicates obtaining information on elastic properties of the tissue. Alternatively, parameters of local relaxation itself can be used as an additional informative characteristic for distinguishing the tissue in normal and pathological states over the OCT image area. Here we briefly present an OCT-based approach to evaluation of local relaxation processes in the tissue bulk after sudden unloading of its initial pre-compression. For extracting the local relaxation rate we evaluate temporal dependence of local strains that are mapped using our recently developed hybrid phase resolved/displacement-tracking (HPRDT) approach. This approach allows one to subtract the contribution of global displacements of scatterers in OCT scans and separate the temporal evolution of local strains. Using a sample excised from of a coronary arteria, we demonstrate that the observed relaxation of local strains can be reasonably fitted by an exponential law, which opens the possibility to characterize the tissue by a single relaxation time. The estimated local relaxation times are assumed to be related to local biologically-relevant processes inside the tissue, such as diffusion, leaking/draining of the fluids, local folding/unfolding of the fibers, etc. In general, studies of evolution of such features can provide new metrics for biologically-relevant changes in tissue, e.g., in the problems of treatment monitoring.

  13. Psychophysiological Effects of Progressive Relaxation in Anxiety Neurotic Patients and of Progressive Relaxation and Alpha Feedback in Nonpatients.

    ERIC Educational Resources Information Center

    Lehrer, Paul M.

    1978-01-01

    Compared physiological effects of progressive relaxation, alpha feedback, and a no-treatment condition. Nonpatients showed more psychophysiological habituation than patients in response to hearing very loud tones and to reaction time tasks. Patients showed greater physiological response to relaxation than nonpatients. After relaxation, autonomic…

  14. Stretched Exponential Relaxation of Glasses at Low Temperature

    NASA Astrophysics Data System (ADS)

    Yu, Yingtian; Wang, Mengyi; Zhang, Dawei; Wang, Bu; Sant, Gaurav; Bauchy, Mathieu

    2015-10-01

    The question of whether glass continues to relax at low temperature is of fundamental and practical interest. Here, we report a novel atomistic simulation method allowing us to directly access the long-term dynamics of glass relaxation at room temperature. We find that the potential energy relaxation follows a stretched exponential decay, with a stretching exponent β =3 /5 , as predicted by Phillips's diffusion-trap model. Interestingly, volume relaxation is also found. However, it is not correlated to the energy relaxation, but it is rather a manifestation of the mixed alkali effect.

  15. Stretched Exponential Relaxation of Glasses at Low Temperature.

    PubMed

    Yu, Yingtian; Wang, Mengyi; Zhang, Dawei; Wang, Bu; Sant, Gaurav; Bauchy, Mathieu

    2015-10-16

    The question of whether glass continues to relax at low temperature is of fundamental and practical interest. Here, we report a novel atomistic simulation method allowing us to directly access the long-term dynamics of glass relaxation at room temperature. We find that the potential energy relaxation follows a stretched exponential decay, with a stretching exponent β=3/5, as predicted by Phillips's diffusion-trap model. Interestingly, volume relaxation is also found. However, it is not correlated to the energy relaxation, but it is rather a manifestation of the mixed alkali effect.

  16. Dielectric relaxation in dimethyl sulfoxide/water mixtures studied by microwave dielectric relaxation spectroscopy.

    PubMed

    Lu, Zijie; Manias, Evangelos; Macdonald, Digby D; Lanagan, Michael

    2009-11-01

    Dielectric spectra of dimethyl sulfoxide (DMSO)/water mixtures, over the entire concentration range, have been measured using the transmission line method at frequencies from 45 MHz to 26 GHz and at temperatures of 298-318 K. The relaxation times of the mixtures show a maximum at an intermediate molar fraction of DMSO. The specific structure of mixtures in different concentration regions was determined by the dielectric relaxation dynamics, obtained from the effect of temperature on the relaxation time. A water structure "breaking effect" is observed in dilute aqueous solutions. The average number of hydrogen bonds per water molecule in these mixtures is found to be reduced compared to pure water. The increase in the dielectric relaxation time in DMSO/water mixtures is attributed to the spatial (steric) constraints of DMSO molecules on the hydrogen-bond network, rather than being due to hydrophobic hydration of the methyl groups. The interaction between water and DMSO by hydrogen bonding reaches a maximum at a DMSO molar fraction of 0.33, reflected by the maximum activation enthalpy for dielectric relaxation in this concentration, suggesting the formation of a stoichiometric compound, H2O-DMSO-H2O. In highly concentrated solutions, negative activation entropies are observed, indicating the presence of aggregates of DMSO molecules. A distinct antiparallel arrangement of dipoles is obtained for neat DMSO in the liquid state according to the Kirkwood correlation factor (g(K) = 0.5), calculated from the static permittivity. The similarity of the dielectric behavior of pure DMSO and DMSO-rich mixtures suggests that dipole-dipole interactions contribute significantly to the rotational relaxation process in these solutions.

  17. Idiosyncratic reality claims, relaxation dispositions, and ABC relaxation theory: happiness, literal christianity, miraculous powers, metaphysics, and the paranormal.

    PubMed

    Smith, Jonathan C; Karmin, Aaron D

    2002-12-01

    This study examined idiosyncratic reality claims, that is, irrational or paranormal beliefs often claimed to enhance relaxation and happiness and reduce stress. The Smith Idiosyncratic Reality Claims Inventory and the Smith Relaxation Dispositions Inventory (which measures relaxation and stress dispositions, or enduring states of mind frequently associated with relaxation or stress) were given to 310 junior college student volunteers. Principal components factor analysis with varimax rotation identified five idiosyncratic reality claim factors: belief in Literal Christianity; Magic; Space Aliens: After Death experiences; and Miraculous Powers of Meditation, Prayer, and Belief. No factor correlated with increased relaxation dispositions Peace, Energy, or Joy, or reduced dispositional somatic stress, worry, or negative emotion on the Smith Relaxation Dispositions Inventory. It was concluded that idiosyncratic reality claims may not be associated with reported relaxation, happiness, or stress. In contrast, previous research strongly supported self-affirming beliefs with few paranormal assumptions display such an association.

  18. Stress relaxation in pulsed DC electromigration measurements

    NASA Astrophysics Data System (ADS)

    Ringler, I. J.; Lloyd, J. R.

    2016-09-01

    When a high current density is applied to a conductor, it activates several driving forces for mass transport that can lead to device failure, the most prominent of which is electromigration. However, there are other driving forces operating as well that can counteract or add to the effects of electromigration. A major driving force is a stress gradient that is developed as a response to electromigration in the presence of a blocking boundary condition. When the electrical stress is interrupted by pulsing DC measurements at low frequency, relaxation of the stress is observed through longer lifetime.

  19. Compatible Relaxation and Coarsening in Algebraic Multigrid

    SciTech Connect

    Brannick, J J; Falgout, R D

    2009-09-22

    We introduce a coarsening algorithm for algebraic multigrid (AMG) based on the concept of compatible relaxation (CR). The algorithm is significantly different from standard methods, most notably because it does not rely on any notion of strength of connection. We study its behavior on a number of model problems, and evaluate the performance of an AMG algorithm that incorporates the coarsening approach. Lastly, we introduce a variant of CR that provides a sharper metric of coarse-grid quality and demonstrate its potential with two simple examples.

  20. Dipole relaxation in an electric field

    NASA Astrophysics Data System (ADS)

    Neumann, Richard M.

    1980-07-01

    From Boltzmann's equation, S=k lnΩ, an expression for the orientational entropy, S of a rigid rod (electric dipole) is derived. The free energy of the dipole in an electric field is then calculated as a function of both the dipole's average orientation and the field strength. Application of the equilibrium criterion to the free energy yields the field dependence of the entropy of the dipole. Irreversible thermodynamics is used to derive the general form of the equation of motion of the dipole's average orientation. Subsequent application of Newton's second law of motion produces Debye's classical expression for the relaxation of an electric dipole in a viscous medium.

  1. Slow relaxation in structure-forming ferrofluids.

    PubMed

    Sreekumari, Aparna; Ilg, Patrick

    2013-10-01

    We study the behavior of colloidal magnetic fluids at low density for various dipolar interaction strengths by performing extensive Langevin dynamics simulations with model parameters that mimic cobalt-based ferrofluids used in experiments. Our study mainly focuses on the structural and dynamical properties of dipolar fluids and the influence of structural changes on their dynamics. Drastic changes from chainlike to networklike structures in the absence of an external magnetic field are observed. This crossover plays an important role in the slowing down of dynamics that is reflected in various dynamical properties including the tracer diffusion and the viscosity and also in the structural relaxation. PMID:24229180

  2. Relaxation dynamics in correlated quantum dots

    SciTech Connect

    Andergassen, S.; Schuricht, D.; Pletyukhov, M.; Schoeller, H.

    2014-12-04

    We study quantum many-body effects on the real-time evolution of the current through quantum dots. By using a non-equilibrium renormalization group approach, we provide analytic results for the relaxation dynamics into the stationary state and identify the microscopic cutoff scales that determine the transport rates. We find rich non-equilibrium physics induced by the interplay of the different energy scales. While the short-time limit is governed by universal dynamics, the long-time behavior features characteristic oscillations as well as an interplay of exponential and power-law decay.

  3. Oxygen-induced relaxation of Ni(111)

    NASA Astrophysics Data System (ADS)

    Caputi, L. S.; Jiang, S. L.; Tucci, R.; Amoddeo, A.; Papagno, L.

    1989-04-01

    The electron energy loss fine structures technique has been used to study the local coordination around surface nickel atoms on the Ni(111) face. clean and in the presence of a p(2×2) oxygen overlayer. The surface sensitivity of the technique has been enhanced by using a glancing primary electron beam. Comparison of the radial distribution functions obtained on the clean and oxygen-covered surface shows evidence of an oxygen-induced relaxation, in agreement with the results obtained by Narusawa et al. using high energy He + ion scattering.

  4. Stress Relaxation of Entangled Polymer Networks

    SciTech Connect

    EVERAERS,RALF; GREST,GARY S.; KREMER,KURT; PUTZ,MATHIAS

    1999-10-22

    The non-linear stress-strain relation for crosslinked polymer networks is studied using molecular dynamics simulations. Previously we demonstrated the importance of trapped entanglements in determining the elastic and relaxational properties of networks. Here we present new results for the stress versus strain for both dry and swollen networks. Models which limit the fluctuations of the network strands like the tube model are shown to describe the stress for both elongation and compression. For swollen networks, the total modulus is found to decrease like (V{sub o}/V){sup 2/3} and goes to the phantom model result only for short strand networks.

  5. Dielectric relaxations investigation of a synthesized epoxy resin polymer

    NASA Astrophysics Data System (ADS)

    Jilani, Wissal; Mzabi, Nissaf; Gallot-Lavallée, Olivier; Fourati, Najla; Zerrouki, Chouki; Zerrouki, Rachida; Guermazi, Hajer

    2015-04-01

    A diglycidylether of bisphenol A (DGEBA) epoxy resin was synthesized, and cured with 3,3'-diaminodiphenyl sulfone (DDS) at a curing temperature of 120 °C. The relaxation properties of the realized polymers were studied by two complementary techniques: dielectric relaxation spectroscopy (DRS), in the temperature range 173-393K and in the frequency interval 10-1-106 Hz, and thermally stimulated depolarization current (TSDC) with a windowing polarization process. Current-voltage (I-V) measurements were also carried out to study interfacial relaxations. Dielectric data were analyzed in terms of permittivity and electric modulus variations. Three relaxation processes ( γ, β and α) have been identified. They were found to be frequency and temperature dependent and were interpreted in terms of the Havriliak-Negami approach. Relaxation parameters were determined by fitting the experimental data. The temperature dependence of the relaxation time was well fitted by the Arrhenius law for secondary relaxations, while the Vogel-Fulcher-Tamann model was found to better fit the τ( T) variations for α relaxation. We found τ 0 = 4.9 10-12 s, 9.6 10-13 s and 1.98 10-7 s for γ, β and α relaxations, respectively. The obtained results were found to be consistent with those reported in the literature. Due to the calculation of the low-frequency data of dielectric loss by the Hamon approximation, the Maxwell-Wagner-Sillars (MWS) relaxation was highlighted.

  6. Dielectric relaxation of CdO nanoparticles

    NASA Astrophysics Data System (ADS)

    Tripathi, Ramna; Dutta, Alo; Das, Sayantani; Kumar, Akhilesh; Sinha, T. P.

    2016-02-01

    Nanoparticles of cadmium oxide have been synthesized by soft chemical route using thioglycerol as the capping agent. The crystallite size is determined by X-ray diffraction technique and the particle size is obtained by transmission electron microscope. The band gap of the material is obtained using Tauc relation to UV-visible absorption spectrum. The photoluminescence emission spectra of the sample are measured at various excitation wavelengths. The molecular components in the material have been analyzed by FT-IR spectroscopy. The dielectric dispersion of the material is investigated in the temperature range from 313 to 393 K and in the frequency range from 100 Hz to 1 MHz by impedance spectroscopy. The Cole-Cole model is used to describe the dielectric relaxation of the system. The scaling behavior of imaginary part of impedance shows that the relaxation describes the same mechanism at various temperatures. The frequency-dependent electrical data are also analyzed in the framework of conductivity and electrical modulus formalisms. The frequency-dependent conductivity spectra are found to obey the power law.

  7. Transverse relaxation of scalar-coupled protons.

    PubMed

    Segawa, Takuya F; Baishya, Bikash; Bodenhausen, Geoffrey

    2010-10-25

    In a preliminary communication (B. Baishya, T. F. Segawa, G. Bodenhausen, J. Am. Chem. Soc. 2009, 131, 17538-17539), we recently demonstrated that it is possible to obtain clean echo decays of protons in biomolecules despite the presence of homonuclear scalar couplings. These unmodulated decays allow one to determine apparent transverse relaxation rates R(2) (app) of individual protons. Herein, we report the observation of R(2) (app) for three methyl protons, four amide H(N) protons, and all 11 backbone H(α) protons in cyclosporin A. If the proton resonances overlap, their R(2) (app) rates can be measured by transferring their magnetization to neighboring (13)C nuclei, which are less prone to overlap. The R(2) (app) rates of protons attached to (13)C are faster than those attached to (12)C because of (13)C-(1)H dipolar interactions. The differences of these rates allow the determination of local correlation functions. Backbone H(N) and H(α) protons that have fast decay rates R(2) (app) also feature fast longitudinal relaxation rates R(1) and intense NOESY cross peaks that are typical of crowded environments. Variations of R(2) (app) rates of backbone H(α) protons in similar amino acids reflect differences in local environments.

  8. Relaxation behavior of oxygen deficient strontium manganite

    SciTech Connect

    Pandey, Namita Thakur, Awalendra Kumar

    2014-04-24

    Conduction behavior of nanocrystalline oxygen deficient ceramic-SrMnO{sub 3–δ}(δ∼0.14) has been studied. The structural analysis of nano-SrMnO{sub 2.86} follows hexagonal unit cell structure with P6{sub 3}/mmc (194) space group belonging to 6/mmm point group with 4H – layered type hexagonal-cubic layers. The system have lattice parameters; a = 5.437(92) Å, c = 9.072(92) Å, c/a∼1.66 (85) with α =90° γ= 120° and cell volume, V= 232.35(18). The relaxation times estimated from complex impedance and modulus relaxation spectrum, show the thermally activated system with corresponding activation energies as 0.66 eV and 0.51 eV The stretching factor ‘β’ from the scaled modulus spectrum shows the poly-dispersive non-Debye nature of the system. The hopping number ‘n’ shows the influence of ionic charge carriers which controls the conduction mechanism of nano-SrMnO{sub 2.86}.

  9. Facioscapulohumeral muscular dystrophy: consequences of chromatin relaxation

    PubMed Central

    van der Maarel, Silvère M.; Miller, Daniel G.; Tawil, Rabi; Filippova, Galina N.; Tapscott, Stephen J.

    2013-01-01

    Purpose of review In recent years we have seen remarkable progress in our understanding of the disease mechanism underlying facioscapulohumeral muscular dystrophy (FSHD). The purpose of this review is to provide a comprehensive overview of our current understanding of the disease mechanism and to discuss the observations supporting the possibility of a developmental defect in this disorder. Recent findings In the majority of cases FSHD is caused by contraction of the D4Z4 repeat array (FSHD1). This results in local chromatin relaxation and stable expression of the DUX4 retrogene in skeletal muscle, but only when a polymorphic DUX4 polyadenylation signal is present. In some cases (FSHD2), D4Z4 chromatin relaxation and stable DUX4 expression occurs in the absence of D4Z4 array contraction. DUX4 is a germline transcription factor and its expression in skeletal muscle leads to activation of early stem cell and germline programs and transcriptional activation of retroelements. Summary Recent studies have provided a plausible disease mechanism for FSHD where FSHD results from inappropriate expression of the germline transcription factor DUX4. The genes regulated by DUX4 suggest several mechanisms of muscle damage, and provide potential biomarkers and therapeutic targets that should be investigated in future studies. PMID:22892954

  10. The dipolar origin of protein relaxation

    PubMed Central

    Hendrickx, H.; Verbruggen, R.; Rosseneu-Motreff, M. Y.; Blaton, V.; Peeters, H.

    1968-01-01

    1. A set of parameters is proposed to check the interpretation of the dielectric behaviour of protein solutions as a rigid-dipole relaxation of prolate ellipsoids of revolution in the frequency range between 20 kHz and 10 MHz. Besides the δb-function of Scheraga, another analogous function (δa) is presented to establish size and shape of globular proteins. A study of the influence of solvent viscosity on the dielectric dispersion also gives strong evidence in favour of rigid-dipole relaxation. 2. Measurements of the dielectric dispersion of monomer solutions of bovine serum albumin and transferrin are reported. Monomers of bovine serum albumin were obtained by fractionation on Sephadex G-150. Low-conductivity solutions of both proteins are obtained by passage through an ion-exchange resin. 3. Computer analysis of the experimental dispersion curves by use of a two-term Debye dispersion gives valuable information about transferrin and leads to an axial ratio 4·5 for a prolate ellipsoid of revolution. The dielectric increment of bovine serum albumin is very low and no conclusive results have yet been obtained. PMID:5701669

  11. Continuum elastic theory of adsorbate vibrational relaxation

    NASA Astrophysics Data System (ADS)

    Lewis, Steven P.; Pykhtin, M. V.; Mele, E. J.; Rappe, Andrew M.

    1998-01-01

    An analytical theory is presented for the damping of low-frequency adsorbate vibrations via resonant coupling to the substrate phonons. The system is treated classically, with the substrate modeled as a semi-infinite elastic continuum and the adsorbate overlayer modeled as an array of point masses connected to the surface by harmonic springs. The theory provides a simple expression for the relaxation rate in terms of fundamental parameters of the system: γ=mω¯02/AcρcT, where m is the adsorbate mass, ω¯0 is the measured frequency, Ac is the overlayer unit-cell area, and ρ and cT are the substrate mass density and transverse speed of sound, respectively. This expression is strongly coverage dependent, and predicts relaxation rates in excellent quantitative agreement with available experiments. For a half-monolayer of carbon monoxide on the copper (100) surface, the predicted damping rate of in-plane frustrated translations is 0.50×1012s-1, as compared to the experimental value of (0.43±0.07)×1012s-1. Furthermore it is shown that, for all coverages presently accessible to experiment, adsorbate motions exhibit collective effects which cannot be treated as stemming from isolated oscillators.

  12. The in vivo relaxivity of MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Shuter, Borys

    1999-11-01

    Post-contrast clinical 1H Magnetic Resonance Images have to date been interpreted with little regard for possible variations in the in-vivo properties of injected magnetic pharmaceuticals (contrast agents), particularly in their relaxivity or ability to alter tissue relaxation rates, T2-1 and T 2-1, per unit concentration. The relaxivities of contrast agents have only rarely been measured in-vivo, measurements usually being performed on excised tissues and at magnetic field strengths lower than used in clinical practice. Some researchers have simply assumed that relaxivities determined in homogeneous tissue phantoms were applicable in-vivo. In this thesis, the relaxivities of two contrast agents, Gd-DTPA and Gd-EOB-DTPA, were measured in simple tissue phantoms and in the kidney and liver of intact, but sacrificed, Wistar rats using a clinical MR scanner with a magnetic field of 1.5 Tesla. T1 and T2 were determined from sets of images acquired using a standard clinical spin-echo pulse sequence. The contrast agent concentration in tissue was assessed by radioassay of 153Gd-DTPA or 153Gd-EOB-DTPA, mixed with the normal compound prior to injection. Relaxivity was taken as the slope of a linear regression fit of relaxation rate against Gd concentration. The relaxivities of Gd-EOB-DTPA were similarly determined in normal and biliary- obstructed guinea pigs. Relaxivities in tissue differed significantly from values obtained in simple phantoms. Kidney T1 relaxivity was reduced for both compounds in normal animals. Three days or more of biliary obstruction produced further reductions in kidney T1 relaxivity of Gd-EOB-DTPA, providing strong evidence that disease affects contrast agent relaxivity. Kidney T2 relaxivity was much greater than T1 relaxivity and was also depressed by biliary obstruction. Liver T1 and T 2 relaxivites were increased above phantom values, but were not affected by the biliary obstruction. Water compartmentalisation, macromolecular binding, proton

  13. Temporal evolution of relaxation in rubbed polystyrene thin films

    SciTech Connect

    Tsang, O. C.; Tsui, O. K. C.; Yang, Z.

    2001-06-01

    Temporal relaxation of rubbed polystyrene (PS) thin films (50 nm thick) was studied by probing the decay of the optical anisotropy in the sample. Our results show that the relaxation process is characterized by two single-exponential decays plus a temperature-dependent constant. Both relaxations are orders of magnitude faster than the main chain ({alpha}) relaxation at temperatures well below ({gt}10{degree}C)T{sub g}, with activation energies 3.0 kcal/mol and 5.1 kcal/mol, respectively, either of which are much smaller than that of the {alpha} relaxation ({similar_to}50 kcal/mol). The decay time constants are found to be independent of the sample molecular weights M{sub w} (=13.7 K to 550 K Daltons, M{sub w}/M{sub n}{le}1.1) at these temperatures. This shows the local nature of the relaxation modes of rubbed PS.

  14. Dielectric Relaxation and Rheological Behavior of Supramolecular Polymeric Liquid

    SciTech Connect

    Lou, Nan; Wang, Yangyang; Li, Xiaopeng; Li, Haixia; Wang, Ping

    2013-01-01

    A model self-complementary supramolecular polymer based on thymine and diamidopyridine triple hydrogen-bonding motifs has been synthesized, and its dielectric and rheological behavior has been investigated. The formation of supramolecular polymers has been unequivocally demonstrated by nuclear magnetic resonance, electrospray ionization mass spectrometry with traveling wave ion mobility separation, dielectric spectroscopy, and rheology. The dynamical behaviors of this associating polymer generally conform to those of type-A polymers, with a low-frequency chain relaxation and a high-frequency relaxation visible in both rheological and dielectric measurements. The dielectric chain relaxation shows the ideal symmetric Debye-like shape, resembling the peculiar features of hydrogen-bonding monoalcohols. Detailed analysis shows that there exists a weak decoupling between the mechanical terminal relaxation and dielectric Debye-like relaxation. The origin of the Debye-like dielectric relaxation is further discussed in the light of monoalcohols.

  15. Structural relaxation dynamics and annealing effects of sodium silicate glass.

    PubMed

    Naji, Mohamed; Piazza, Francesco; Guimbretière, Guillaume; Canizarès, Aurélien; Vaills, Yann

    2013-05-01

    Here we report high-precision measurements of structural relaxation dynamics in the glass transition range at the intermediate and short length scale for a strong sodium silicate glass during long annealing times. We evidence for the first time the heterogeneous dynamics at the intermediate range order by probing the acoustic longitudinal frequency in the GHz region by Brillouin light scattering spectroscopy. Or, from in-situ Raman measurements, we show that relaxation is indeed homogeneous at the interatomic length scale. Our results show that the dynamics at the intermediate range order contains two distinct relaxation time scales, a fast and a slow component, differing by about a 10-fold factor below Tg and approaching to one another past the glass transition. The slow relaxation time agrees with the shear relaxation time, proving that Si-O bond breaking constitutes the primary control of structural relaxation at the intermediate range order.

  16. Hyperfine relaxation of an optically pumped cesium vapor

    SciTech Connect

    Tornos, J.; Amare, J.C.

    1986-07-01

    The relaxation of hyperfine orientation indirectly induced by optical pumping with a sigma-polarized D/sub 1/-light in a cesium vapor in the presence of Ar is experimentally studied. The detection technique ensures the absence of quadrupole relaxation contributions in the relaxation signals. The results from the dependences of the hyperfine relaxation rate on the temperature and argon pressure are: diffusion coefficient of Cs in Ar, D/sub 0/ = 0.101 +- 0.010 cm/sup 2/s/sup -1/ at 0/sup 0/C and 760 Torr; relaxation cross section by Cs-Ar collisions, sigma/sub c/ = (104 +- 5) x 10/sup -23/ cm/sup 2/; relaxation cross section by Cs-Cs (spin exchange) collisions, sigma/sub e//sub x/ = (1.63 +- 0.13) x 10/sup -14/ cm/sup 2/.

  17. The addition of algebraic turbulence modeling to program LAURA

    NASA Astrophysics Data System (ADS)

    Cheatwood, F. Mcneil; Thompson, R. A.

    1993-04-01

    The Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) is modified to allow the calculation of turbulent flows. This is accomplished using the Cebeci-Smith and Baldwin-Lomax eddy-viscosity models in conjunction with the thin-layer Navier-Stokes options of the program. Turbulent calculations can be performed for both perfect-gas and equilibrium flows. However, a requirement of the models is that the flow be attached. It is seen that for slender bodies, adequate resolution of the boundary-layer gradients may require more cells in the normal direction than a laminar solution, even when grid stretching is employed. Results for axisymmetric and three-dimensional flows are presented. Comparison with experimental data and other numerical results reveal generally good agreement, except in the regions of detached flow.

  18. Multilayer Relaxation and Surface Energies of Metallic Surfaces

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Rodriguez, Agustin M.; Ferrante, John

    1994-01-01

    The perpendicular and parallel multilayer relaxations of fcc (210) surfaces are studied using equivalent crystal theory (ECT). A comparison with experimental and theoretical results is made for AI(210). The effect of uncertainties in the input parameters on the magnitudes and ordering of surface relaxations for this semiempirical method is estimated. A new measure of surface roughness is proposed. Predictions for the multilayer relaxations and surface energies of the (210) face of Cu and Ni are also included.

  19. Stress relaxation in irradiated INCONEL X750 springs

    SciTech Connect

    Allen, T.R.; Cole, J.I.

    1999-09-01

    Because INCONEL X750 is used as a spring and bolting material in light water reactors, it is important to understand its stress relaxation behavior as a function of irradiation dose and aging temperature. This work reports the stress relaxation characteristics of INCONEL X750 irradiated at 375 to 415C to doses up to 20 dpa and thermally aged at 371 C for 6525 days. These measurements are an extension of stress relaxation measurements reported in Refs. 1 and 2.

  20. Effect of vibrational relaxation on DIET: a density matrix treatment

    NASA Astrophysics Data System (ADS)

    Guo, H.; Ma, G.

    2000-04-01

    The influence of substrate-induced vibrational relaxation on desorption induced by electronic transitions (DIET) is studied using a density matrix formulation. The one-dimensional model describing the DIET dynamics of NO consists of two electronic states. Relaxation in both electronic and vibrational modes is simulated with dissipative Liouvillians of the Lindblad form. As expected, vibrational relaxation results in a smaller desorption yield and lower product translational temperature.

  1. Dielectric relaxation of β-butylbenzyl alcohol

    NASA Astrophysics Data System (ADS)

    Papaioannou, John C.; Papadimitropoulos, Nikos D.; Mavridis, Irene M.

    The frequency and temperature dependence of the real (ɛ') and imaginary (ɛ'') parts of the dielectric constant of polycrystalline complex β-cyclodextrin-4-t-butylbenzyl alcohol [β-CD TERB 11.2H2O] and β-cyclodextrin [β-CD 9.8H2O] and of the corresponding dried forms (β-CD TERB 3.8H2O and β-CD 2.4H2O, respectively) has been investigated, in the frequency range 0-100kHz and temperature range 130-350K. The dielectric behaviour is described well by Debye-type relaxation (α dispersion). All systems except for the βCD TERB 3.8H2O, exhibit an additional Ω dispersion at low frequencies, which usually is attributed to proton transport. In the non-dried samples the temperature dependence of eɛ' and ɛ''max exhibits two steps, whereas in the dried samples it exhibits only the low temperature step. The low temperature step is due to the tightly bound water molecules, whereas that at higher temperatures is due to easily removable water. The temperature dependence of ɛ'' shows a peak which has been attributed to a transition between ordered and disordered hydroxyl β-CD groups, and water molecules. The relaxation time varies exponentially with temperature (in the range 8-12musec), in a reverse V like curve, with maximum values located at the corresponding order-disorder transition temperatures. Activation energies of the order of ˜2.5kJmol-1 are calculated for the transition in every sample. The disorder in the hydrogen bonding is equivalent to a system of two dipoles with opposite directions, and the model of Fröhlich can be applied to explain the order-disorder transition and the temperature dependence of the relaxation time. An apparent negative activation energy before the transition temperature can be attributed to reorientation of the hydrogen bonding around the cyclodextrin molecules, and it is related to endothermic drifts observed by calorimetric studies of β-CD. The order-disorder transition can be probed also from the phase shift component of the

  2. Carbon relaxation analysis in proton coupled spin systems

    NASA Astrophysics Data System (ADS)

    Rossi, Claudio; Marchettini, Nadia; Bastianoni, Simone; Dongti, Alessandro

    1995-07-01

    Selective, non-selective and biselective carbon spin-lattice relaxation measurements were determined in methyl-salicylate DMSO-d 6 solution. The frequency dependence of biselective relaxation measurements of protonated aromatic carbons showed the effects of J-scalar modulation. The dipolar contribution induced by asymmetric selective proton inversion of the spin population of a single satellite peak could be useful for investigating of the Shimizu-Fujiwara-Mackor-Maclean relaxation rate. Analysis of the ratios is also proposed for the calculation of dipolar relaxation mechanism efficiency.

  3. Ultra-Slow Dielectric Relaxation Process in Polyols

    NASA Astrophysics Data System (ADS)

    Yomogida, Yoshiki; Minoguchi, Ayumi; Nozaki, Ryusuke

    2004-04-01

    Dielectric relaxation processes with relaxation times larger than that for the structural α process are reported for glycerol, xylitol, sorbitol and their mixtures for the first time. Appearance of this ultra-slow process depends on cooling rate. More rapid cooling gives larger dielectric relaxation strength. However, relaxation time is not affected by cooling rate and shows non-Arrhenius temperature dependence with correlation to the α process. It can be considered that non-equilibrium dynamic structure causes the ultra-slow process. Scale of such structure would be much larger than that of the region for the cooperative molecular orientations for the α process.

  4. Theory of the spin relaxation of conduction electrons in silicon.

    PubMed

    Cheng, J L; Wu, M W; Fabian, J

    2010-01-01

    A realistic pseudopotential model is introduced to investigate the phonon-induced spin relaxation of conduction electrons in bulk silicon. We find a surprisingly subtle interference of the Elliott and Yafet processes affecting the spin relaxation over a wide temperature range, suppressing the significance of the intravalley spin-flip scattering, previously considered dominant, above roughly 120 K. The calculated spin relaxation times T1 agree with the spin resonance and spin injection data, following a T(-3) temperature dependence. The valley anisotropy of T1 and the spin relaxation rates for hot electrons are predicted.

  5. Relaxation and resonances in fluctuating dielectric systems

    NASA Astrophysics Data System (ADS)

    Garcia-Colin, L. S.; del Castillo, L. F.

    1989-09-01

    In this paper we show how the ideas behind extended irreversible thermodynamics are used to generate a systematic treatment of the relaxation and resonance phenomena in the propagation and absorption of electromagnetic energy in dielectric materials in a nonequilibrium state. Two cases are discussed: the first, in which the forced oscillations arising from the correlation between the fluctuations of the polarization vector and the electric field are neglected, and the second, in which this term is taken into account. In both cases we show how the main equations serve to make a connection between the macroscopic approach followed here and a number of results obtained for both, gases and polar liquids using molecular models. The results obtained here are compared with previous work on this problem, and new effects arising from the second case are pointed out.

  6. Universal stretched exponential relaxation in nanoconfined water

    NASA Astrophysics Data System (ADS)

    Shekhar, Adarsh; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Alm, Camilla K.; Malthe-Sørenssen, Anders

    2014-10-01

    Understanding the behavior of water confined at the nanometer scale is a fundamental problem not only in physics but also in life sciences, geosciences, and atmospheric sciences. Here, we examine spatial and dynamic heterogeneities in water confined in nanoporous silica using molecular dynamics (MD) simulations. The simulations reveal intermixed low-density water and high-density water with distinct local structures in nanopores of silica. The MD simulations also show dynamic heterogeneities in nanoconfined water. The temporal decay of cage correlation functions for room temperature and supercooled, nanoconfined water is very well described by stretched exponential relaxation, exp(-(t/τ)β). The exponent β has a unique value, d/(d + 2), which agrees with an exact result for diffusion in systems with static, random traps in d = 3 dimensions.

  7. Low frequency dielectric relaxation in boracites

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Somoano, R.

    1983-01-01

    In order to elucidate the nature of the imperfections which adversely affect pyroelectric processes in boracites, the thermal and dispersive characteristics of the low frequency dielectric response in iron-iodide boracite (Fe3B7O13I) and copper-chloride boracite (Cu3B7O13Cl) have been investigated. These characteristics were measured as a function of crystallographic orientation and applied field in both the ferroelectric and paraelectric states. The low frequency dielectric relaxation of 100 line oriented multi-domain copper-chloride boracite clearly indicates the dipole nature of the lattice imperfections. The activation energies calculated from a noninteracting Debye model, are 0.53 eV in the ferroelectric phase and 0.10 eV in the paraelectric phase.

  8. Occupational stress, relaxation therapies, exercise and biofeedback.

    PubMed

    Stein, Franklin

    2001-01-01

    Occupational stress is a widespread occurrence in the United States. It is a contributing factor to absenteeism, disease, injury and lowered productivity. In general stress management programs in the work place that include relaxation therapies, exercise, and biofeedback have been shown to reduce the physiological symptoms such as hypertension, and increase job satisfaction and job performance. Strategies to implement a successful stress management program include incorporating the coping activities into one's daily schedule, monitoring one's symptoms and stressors, and being realistic in setting up a schedule that is relevant and attainable. A short form of meditation, daily exercise program and the use of heart rate or thermal biofeedback can be helpful to a worker experiencing occupational stress.

  9. Kinetic Relaxation Models for Energy Transport

    NASA Astrophysics Data System (ADS)

    Aoki, Kazuo; Markowich, Peter; Takata, Shigeru

    2007-04-01

    Kinetic equations with relaxation collision kernels are considered under the basic assumption of two collision invariants, namely mass and energy. The collision kernels are of BGK-type with a general local Gibbs state, which may be quite different from the Gaussian. By the use of the diffusive length/time scales, energy transport systems consisting of two parabolic equations with the position density and the energy density as unknowns are derived on a formal level. The H theorem for the kinetic model is presented, and the entropy for the energy transport systems, which is inherited from the kinetic model, is derived. The energy transport systems for specific examples of the global Gibbs state, such as a power law with negative exponent, a cut-off power law with positive exponent, the Maxwellian, Bose-Einstein, and Fermi-Dirac distributions, arepresented.

  10. Stress relaxation of vitreous silica on irradiation

    SciTech Connect

    Primak, W.

    1982-11-01

    The radiation-induced stress relaxation which is observed on ion bombardment of vitreous silica is described as a viscoelastic behavior in which the apparent viscosity is reduced to approx.10/sup 14/ Poise during irradiation and then increases rapidly by 4 or 5 orders of magnitude on cessation or interruption of irradiation. The bombarded layer appears to possess a viscosity approx.10/sup 19/ Poise, lower than would be expected for normal vitreous silica. On electron bombardment the viscosity is also reduced, but not as greatly as an ion bombardment, yet sufficiently to result in the whole radiation-induced volume contraction being realized perpendicularly to the surface, as has been found for ion bombardment. The maximum elastic stored energy which can be realized is but a fraction of a calorie per gram, hence the reported values of 200 cal/g would seem to be associated with the fragmentation of the network responsible for the reduced viscosity.

  11. Mirror cosmological relaxation of the electroweak scale

    NASA Astrophysics Data System (ADS)

    Matsedonskyi, Oleksii

    2016-01-01

    The cosmological relaxation mechanism proposed in [1] allows for a dynamically generated large separation between the weak scale and a theory cutoff, using a sharp change of theory behaviour upon crossing the limit between unbroken and broken symmetry phases. In this note we present a variation of this scenario, in which stabilization of the electroweak scale in the right place is ensured by the Z 2 symmetry exchanging the Standard Model (SM) with its mirror copy. We sketch the possible ways to produce viable thermal evolution of the Universe and discuss experimental accessibility of the new physics effects. We show that in this scenario the mirror SM can either have sizeable couplings with the ordinary one, or, conversely, can interact with it with a negligible strength. The overall cutoff allowed by such a construction can reach 109 GeV.

  12. Integrating Biosystem Models Using Waveform Relaxation

    PubMed Central

    2008-01-01

    Modelling in systems biology often involves the integration of component models into larger composite models. How to do this systematically and efficiently is a significant challenge: coupling of components can be unidirectional or bidirectional, and of variable strengths. We adapt the waveform relaxation (WR) method for parallel computation of ODEs as a general methodology for computing systems of linked submodels. Four test cases are presented: (i) a cascade of unidirectionally and bidirectionally coupled harmonic oscillators, (ii) deterministic and stochastic simulations of calcium oscillations, (iii) single cell calcium oscillations showing complex behaviour such as periodic and chaotic bursting, and (iv) a multicellular calcium model for a cell plate of hepatocytes. We conclude that WR provides a flexible means to deal with multitime-scale computation and model heterogeneity. Global solutions over time can be captured independently of the solution techniques for the individual components, which may be distributed in different computing environments. PMID:19125183

  13. Theory of spin relaxation at metallic interfaces

    NASA Astrophysics Data System (ADS)

    Belashchenko, K. D.; Kovalev, Alexey A.; van Schilfgaarde, Mark

    Spin-flip scattering at metallic interfaces affects transport phenomena in nanostructures, such as magnetoresistance, spin injection, spin pumping, and spin torques. It has been characterized for many material combinations by an empirical parameter δ, which is obtained by matching magnetoresistance data for multilayers to the Valet-Fert model [J. Bass and W. P. Pratt, J. Phys.: Condens. Matter 19, 183201 (2007)]. However, the relation of the parameter δ to the scattering properties of the interface remains unclear. Here we establish this relation using the scattering theory approach and confirm it using a generalization of the magnetoelectronic circuit theory, which includes interfacial spin relaxation. The results of first-principles calculations of spin-flip scattering at the Cu/Pd and Cu/Pt interfaces are found to be in reasonable agreement with experimental data. Supported by NSF Grant DMR-1308751.

  14. Nonlinear nonequilibrium quasiparticle relaxation in Josephson junctions.

    PubMed

    Krasnov, V M

    2009-11-27

    I solve numerically a full set of nonlinear kinetic balance equations for stacked Josephson junctions, which allows analysis of strongly nonequilibrium phenomena. It is shown that nonlinearity becomes significant already at very small disequilibrium. The following new, nonlinear effects are obtained: (i) At even-gap voltages V = 2nDelta/e (n = 2, 3, ...) nonequilibrium bosonic bands overlap. This leads to enhanced emission of Omega = 2Delta bosons and to the appearance of dips in tunnel conductance. (ii) A new type of radiative solution is found at strong disequilibrium. It is characterized by the fast stimulated relaxation of quasiparticles. A stack in this state behaves as a light emitting diode and directly converts electric power to boson emission, without utilization of the ac-Josephson effect. The phenomenon can be used for realization of a new type of superconducting cascade laser in the THz frequency range.

  15. Grueneisen relaxation photoacoustic microscopy in vivo

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Shi, Junhui; Hai, Pengfei; Zhou, Yong; Wang, Lihong V.

    2016-06-01

    Grueneisen relaxation photoacoustic microscopy (GR-PAM) can achieve optically defined axial resolution, but it has been limited to ex vivo demonstrations so far. Here, we present the first in vivo image of a mouse brain acquired with GR-PAM. To induce the GR effect, an intensity-modulated continuous-wave laser was employed to heat absorbing objects. In phantom experiments, an axial resolution of 12.5 μm was achieved, which is sixfold better than the value achieved by conventional optical-resolution PAM. This axial-resolution improvement was further demonstrated by imaging a mouse brain in vivo, where significantly narrower axial profiles of blood vessels were observed. The in vivo demonstration of GR-PAM shows the potential of this modality for label-free and high-resolution anatomical and functional imaging of biological tissues.

  16. Various time-scales of relaxation

    NASA Astrophysics Data System (ADS)

    Ali-Akbari, M.; Charmchi, F.; Ebrahim, H.; Shahkarami, L.

    2016-08-01

    Via gauge-gravity duality, relaxation of far-from-equilibrium initial states in a strongly coupled gauge theory has been investigated. In the system we consider in this paper there are two ways where the state under study can deviate from its equilibrium: anisotropic pressure and time-dependent expectation value of a scalar operator with Δ =3 . In the gravity theory, this system corresponds to Einstein's general relativity with a nontrivial metric, including the anisotropy function, coupled to a massive scalar matter field. We study the effect of different initial configurations for the scalar field and anisotropy function on physical processes such as thermalization, i.e., time evolution of an event horizon; equilibration of the expectation value of a scalar operator; and isotropization. We also discuss time ordering of these time-scales.

  17. Using relaxational dynamics to reduce network congestion

    NASA Astrophysics Data System (ADS)

    Piontti, Ana L. Pastore y.; La Rocca, Cristian E.; Toroczkai, Zoltán; Braunstein, Lidia A.; Macri, Pablo A.; López, Eduardo

    2008-09-01

    We study the effects of relaxational dynamics on congestion pressure in scale-free (SF) networks by analyzing the properties of the corresponding gradient networks (Toroczkai and Bassler 2004 Nature 428 716). Using the Family model (Family and Bassler 1986 J. Phys. A: Math. Gen. 19 L441) from surface-growth physics as single-step load-balancing dynamics, we show that the congestion pressure considerably drops on SF networks when compared with the same dynamics on random graphs. This is due to a structural transition of the corresponding gradient network clusters, which self-organize so as to reduce the congestion pressure. This reduction is enhanced when lowering the value of the connectivity exponent λ towards 2.

  18. Efficient early global relaxation of asteroid Vesta

    NASA Astrophysics Data System (ADS)

    Fu, Roger R.; Hager, Bradford H.; Ermakov, Anton I.; Zuber, Maria T.

    2014-09-01

    The asteroid Vesta is a differentiated planetesimal from the accretion phase of Solar System formation. Although its present-day shape is dominated by a non-hydrostatic fossil equatorial bulge and two large, mostly unrelaxed impact basins, Vesta may have been able to approach hydrostatic equilibrium during a brief early period of intense interior heating. We use a finite element viscoplastic flow model coupled to a 1D conductive cooling model to calculate the expected rate of relaxation throughout Vesta’s early history. We find that, given sufficient non-hydrostaticity, the early elastic lithosphere of Vesta experienced extensive brittle failure due to self-gravity, thereby allowing relaxation to a more hydrostatic figure. Soon after its accretion, Vesta reached a closely hydrostatic figure with <2 km non-hydrostatic topography at degree-2, which, once scaled, is similar to the maximum disequilibrium of the hydrostatic asteroid Ceres. Vesta was able to support the modern observed amplitude of non-hydrostatic topography only >40-200 My after formation, depending on the assumed depth of megaregolith. The Veneneia and Rheasilvia giant impacts, which generated most non-hydrostatic topography, must have therefore occurred >40-200 My after formation. Based on crater retention ages, topography, and relation to known impact generated features, we identify a large region in the northern hemisphere that likely represents relic hydrostatic terrain from early Vesta. The long-wavelength figure of this terrain suggests that, before the two late giant impacts, Vesta had a rotation period of 5.02 h (6.3% faster than present) while its spin axis was offset by 3.0 ° from that of the present. The evolution of Vesta’s figure shows that the hydrostaticity of small bodies depends strongly on its age and specific impact history and that a single body may embody both hydrostatic and non-hydrostatic terrains and epochs.

  19. A fast determination method for transverse relaxation of spin-exchange-relaxation-free magnetometer

    SciTech Connect

    Lu, Jixi Qian, Zheng; Fang, Jiancheng

    2015-04-15

    We propose a fast and accurate determination method for transverse relaxation of the spin-exchange-relaxation-free (SERF) magnetometer. This method is based on the measurement of magnetic resonance linewidth via a chirped magnetic field excitation and the amplitude spectrum analysis. Compared with the frequency sweeping via separate sinusoidal excitation, our method can realize linewidth determination within only few seconds and meanwhile obtain good frequency resolution. Therefore, it can avoid the drift error in long term measurement and improve the accuracy of the determination. As the magnetic resonance frequency of the SERF magnetometer is very low, we include the effect of the negative resonance frequency caused by the chirp and achieve the coefficient of determination of the fitting results better than 0.998 with 95% confidence bounds to the theoretical equation. The experimental results are in good agreement with our theoretical analysis.

  20. A fast determination method for transverse relaxation of spin-exchange-relaxation-free magnetometer.

    PubMed

    Lu, Jixi; Qian, Zheng; Fang, Jiancheng

    2015-04-01

    We propose a fast and accurate determination method for transverse relaxation of the spin-exchange-relaxation-free (SERF) magnetometer. This method is based on the measurement of magnetic resonance linewidth via a chirped magnetic field excitation and the amplitude spectrum analysis. Compared with the frequency sweeping via separate sinusoidal excitation, our method can realize linewidth determination within only few seconds and meanwhile obtain good frequency resolution. Therefore, it can avoid the drift error in long term measurement and improve the accuracy of the determination. As the magnetic resonance frequency of the SERF magnetometer is very low, we include the effect of the negative resonance frequency caused by the chirp and achieve the coefficient of determination of the fitting results better than 0.998 with 95% confidence bounds to the theoretical equation. The experimental results are in good agreement with our theoretical analysis.

  1. On conservation laws, relaxation and pre-relaxation after a quantum quench

    NASA Astrophysics Data System (ADS)

    Fagotti, Maurizio

    2014-03-01

    We consider the time evolution following a quantum quench in spin-1/2 chains. It is well known that local conservation laws constrain the dynamics and, eventually, the stationary behavior of local observables. We show that some widely studied models, such as the quantum XY model, possess extra families of local conservation laws in addition to the translation invariant ones. As a consequence, the additional charges must be included in the generalized Gibbs ensemble that describes the stationary properties. The effects go well beyond a simple redefinition of the stationary state. The time evolution of a non-translation-invariant state under a (translation-invariant) Hamiltonian with a perturbation that weakly breaks the hidden symmetries underlying the extra conservation laws exhibits pre-relaxation. In addition, in the limit of small perturbation, the time evolution following pre-relaxation can be described by means of a time-dependent generalized Gibbs ensemble.

  2. Relaxation Training: A Promising Approach for Helping Exceptional Learners.

    ERIC Educational Resources Information Center

    Margolis, Howard

    1990-01-01

    This article describes common forms of relaxation training that can be used with at-risk or exceptional students in remedial, special education, or regular settings. In addition to reviewing salient research assessing the effects of relaxation training on reading achievement, attention, hyperactivity, impulsivity, self-concept, stress, and…

  3. Thermoacoustic method for relaxation of residual stresses in welded joints

    SciTech Connect

    Koshovyi, V.V.; Pakhn`o, M.I.; Tsykhan, O.I.

    1995-01-01

    We propose a thermoacoustic method for the relaxation of residual stresses in welded joints, present a block diagram of a generator of local thermoacoustic pulses designed for implementation of this method, and describe our experiment aimed at relaxation of residual tensile stresses.

  4. Relaxation in x-space magnetic particle imaging.

    PubMed

    Croft, Laura R; Goodwill, Patrick W; Conolly, Steven M

    2012-12-01

    Magnetic particle imaging (MPI) is a new imaging modality that noninvasively images the spatial distribution of superparamagnetic iron oxide nanoparticles (SPIOs). MPI has demonstrated high contrast and zero attenuation with depth, and MPI promises superior safety compared to current angiography methods, X-ray, computed tomography, and magnetic resonance imaging angiography. Nanoparticle relaxation can delay the SPIO magnetization, and in this work we investigate the open problem of the role relaxation plays in MPI scanning and its effect on the image. We begin by amending the x-space theory of MPI to include nanoparticle relaxation effects. We then validate the amended theory with experiments from a Berkeley x-space relaxometer and a Berkeley x-space projection MPI scanner. Our theory and experimental data indicate that relaxation reduces SNR and asymmetrically blurs the image in the scanning direction. While relaxation effects can have deleterious effects on the MPI scan, we show theoretically and experimentally that x-space reconstruction remains robust in the presence of relaxation. Furthermore, the role of relaxation in x-space theory provides guidance as we develop methods to minimize relaxation-induced blurring. This will be an important future area of research for the MPI community.

  5. Long-Term Psychosomatic Effects of Biofeedback vs. Relaxation Training.

    ERIC Educational Resources Information Center

    Nowlis, David P.; Borzone, Ximena C.

    Differences were compared in the short-term and long-term responses of subjects with headache, insomnia, or hypertension to biofeedback training, relaxation, or a combination of both. Headache sufferers, insomniacs, and hypertensives were randomly assigned in equal numbers to biofeedback, relaxation training or a record-keeping control. Over 2…

  6. Relaxation Training and Expectation in the Treatment of Postpartum Distress.

    ERIC Educational Resources Information Center

    Halonen, Jane S.; Passman, Richard H.

    1985-01-01

    Examined the effectiveness of relaxation training in reducing postpartum distress for 48 first-time mothers-to-be via a treatment-component strategy. Compared with nonrelaxation conditions, relaxation treatments reduced reported postpartal distress. Expectations about treatment effectiveness were not significant factors in treatment outcome.…

  7. Relaxation Theory for Rural Youth. Research Bulletin No. 46.

    ERIC Educational Resources Information Center

    Matthews, Doris B.

    This document synthesizes research findings to formulate a theory to guide relaxation training in educational settings, particularly rural schools. Young people experience many intense life events that require coping skills or relaxation. Family-related stress factors include instability in the home, lack of a support system, conflicting values,…

  8. Use of Biofeedback/Relaxation Procedures with Learning Disabled Children.

    ERIC Educational Resources Information Center

    Carter, John L.; Russell, Harold L.

    The report covers a series of investigations on the effects of biofeedback/muscle relaxation training on the academic achievement of learning disabled (LD) students. In the first study, 32 LD elementary school students made gains in all measures except arithmetic following electromyograph biofeedback/relaxation treatment. Implementation of the…

  9. Mental imagery, relaxation, and accuracy of basketball foul shooting.

    PubMed

    Lamirand, M; Rainey, D

    1994-06-01

    18 female college basketball players were pretested on foul shooting, alternately assigned to relaxation or mental imagery training, and posttested after 4 training sessions over 3 weeks. Analysis of covariance indicated that the predicted improvement of the imagery group did not occur. The relaxation group was marginally superior at posttest.

  10. Effect of Hydrogen Bonds on the Vibrational Relaxation and Orientational Relaxation Dynamics of HN3 and N3(-) in Solutions.

    PubMed

    Lee, Chiho; Son, Hyewon; Park, Sungnam

    2016-09-15

    Hydrogen bonds (H-bonds) play an important role in determining the structures and dynamics of molecular systems. In this work, we investigated the effect of H-bonds on the vibrational population relaxation and orientational relaxation dynamics of HN3 and N3(-) in methanol (CH3OH) and N,N-dimethyl sulfoxide (DMSO) using polarization-controlled infrared pump-probe spectroscopy and quantum chemical calculations. Our detailed analysis of experimental and computational results reveals that both vibrational population relaxation and orientational relaxation dynamics of HN3 and N3(-) in CH3OH and DMSO are substantially dependent on the strength of the H-bonds between the probing solute and its surrounding solvent. Especially in the case of N3(-) in CH3OH, the vibrational population relaxation of N3(-) is found to occur by a direct intermolecular vibrational energy transfer to CH3OH due to large vibrational coupling strength. The orientational relaxation dynamics of HN3 and N3(-), which are well fit by a biexponential function, are analyzed by the wobbling-in-a-cone model and extended Debye-Stokes-Einstein equation. Depending on the intermolecular interactions, the slow overall orientational relaxation occurs under slip, stick, and superstick boundary conditions. For HN3 and N3(-) in CH3OH and DMSO, the vibrational population relaxation becomes faster but the orientational relaxation becomes slower as the H-bond strength is increased. Our current results imply that H-bonds have significant effects on the vibrational population relaxation and orientational relaxation dynamics of a small solute whose size is comparable to the size of the solvent.

  11. Effect of Hydrogen Bonds on the Vibrational Relaxation and Orientational Relaxation Dynamics of HN3 and N3(-) in Solutions.

    PubMed

    Lee, Chiho; Son, Hyewon; Park, Sungnam

    2016-09-15

    Hydrogen bonds (H-bonds) play an important role in determining the structures and dynamics of molecular systems. In this work, we investigated the effect of H-bonds on the vibrational population relaxation and orientational relaxation dynamics of HN3 and N3(-) in methanol (CH3OH) and N,N-dimethyl sulfoxide (DMSO) using polarization-controlled infrared pump-probe spectroscopy and quantum chemical calculations. Our detailed analysis of experimental and computational results reveals that both vibrational population relaxation and orientational relaxation dynamics of HN3 and N3(-) in CH3OH and DMSO are substantially dependent on the strength of the H-bonds between the probing solute and its surrounding solvent. Especially in the case of N3(-) in CH3OH, the vibrational population relaxation of N3(-) is found to occur by a direct intermolecular vibrational energy transfer to CH3OH due to large vibrational coupling strength. The orientational relaxation dynamics of HN3 and N3(-), which are well fit by a biexponential function, are analyzed by the wobbling-in-a-cone model and extended Debye-Stokes-Einstein equation. Depending on the intermolecular interactions, the slow overall orientational relaxation occurs under slip, stick, and superstick boundary conditions. For HN3 and N3(-) in CH3OH and DMSO, the vibrational population relaxation becomes faster but the orientational relaxation becomes slower as the H-bond strength is increased. Our current results imply that H-bonds have significant effects on the vibrational population relaxation and orientational relaxation dynamics of a small solute whose size is comparable to the size of the solvent. PMID:27537433

  12. Viscoelastic Relaxation of Topographic Highs on Venus to Produce Coronae

    NASA Technical Reports Server (NTRS)

    Janes, Daniel M.; Squyres, Steven W.

    1995-01-01

    Coronae on Venus are believed to result from the gravitationally driven relaxation of topography that was originally raised by mantle diapirs. We examine this relaxation using a viscoelastic finite element code, and show that an initially plateau shaped load will evolve to the characteristic corona topography of central raised bowl, annular rim, and surrounding moat. Stresses induced by the relaxation are consistent with the development of concentric extensional fracturing common on the outer margins of corona moats. However, relaxation is not expected to produce the concentric faulting often observed on the annular rim. The relaxation timescale is shorter than the diapir cooling timescale, so loss of thermal support controls the rate at which topography is reduced. The final corona shape is supported by buoyancy and flexural stresses and will persist through geologic time. Development of lower, flatter central bowls and narrower and more pronounced annular rims and moats enhanced by thicker crusts, higher thermal gradients, and crustal thinning over the diapir.

  13. A rationale for a multilevel model of relaxation.

    PubMed

    Kokoszka, A

    1994-01-01

    A Three dimensional evolutionary leveled model of the main states of consciousness is offered as a rationale for relaxation. "Relaxing states" and "relaxation response states--Differentiated Waking States of Consciousness" are distinguish on the horizontal plane according to the integrated model of the main states of consciousness. It is proposed that states of consciousness in relaxation could be considered also on vertical evolutionary dimension described according to neo-Jacksonian theory in terms of the metabolism of information. The model opens perspectives for the description of dynamic fluctuations of states of consciousness during relaxation in terms of the main states of consciousness, i.e., REM-sleep, NREM-sleep, Ordinary Waking States of Consciousness, Differentiated Waking States of Consciousness, as well as in terms of dissolution (regression) and evolution on the vertical developmental dimension. It is illustrated by the discussion on meditation and hyponosis.

  14. Correlation of transverse relaxation time with structure of biological tissue

    NASA Astrophysics Data System (ADS)

    Furman, Gregory B.; Meerovich, Victor M.; Sokolovsky, Vladimir L.

    2016-09-01

    Transverse spin-spin relaxation of liquids entrapped in nanocavities with different orientational order is theoretically investigated. Based on the bivariate normal distribution of nanocavities directions, we have calculated the anisotropy of the transverse relaxation time for biological systems, such as collagenous tissues, articular cartilage, and tendon. In the framework of the considered model, the dipole-dipole interaction is determined by a single coupling constant. The calculation results for the transverse relaxation time explain the angular dependence observed in MRI experiments with biological objects. The good agreement with the experimental data is obtained by adjustment of only one parameter which characterizes the disorder in fiber orientations. The relaxation time is correlated with the degree of ordering in biological tissues. Thus, microstructure of the tissues can be revealed from the measurement of relaxation time anisotropy. The clinical significance of the correlation, especially in the detection of damage must be evaluated in a large prospective clinical trials.

  15. Ultraslow dielectric relaxation process in supercooled polyhydric alcohols

    NASA Astrophysics Data System (ADS)

    Yomogida, Yoshiki; Minoguchi, Ayumi; Nozaki, Ryusuke

    2006-04-01

    Complex permittivity was obtained on glycerol, xylitol, sorbitol and sorbitol-xylitol mixtures in the supercooled liquid state in the frequency range between 10μHz and 500MHz at temperatures near and above the glass transition temperature. For all the materials, a dielectric relaxation process was observed in addition to the well-known structural α and Johari-Goldstein β relaxation process [G. P. Johari and M. Goldstein, J. Chem. Phys. 53, 2372 (1970)]. The relaxation time for the new process is always larger than that for the α process. The relaxation time shows non-Arrhenius temperature dependence with correlation to the behavior of the α process and it depends on the molecular size systematically. The dielectric relaxation strength for the new process shows the effect of thermal history and decreases exponentially with time at a constant temperature. It can be considered that a nonequilibrium dynamics causes the new process.

  16. Solvent relaxation of oxazine-4 in 2-methyltetrahydrofuran

    NASA Astrophysics Data System (ADS)

    Görlach, Ekkehard; Gygax, Hansruedi; Lubini, Paolo; Wild, Urs P.

    1995-05-01

    Time resolved and stationary fluorescence spectra of oxazine-4 perchlorate in 2-methyltetrahydrofuran (2-MTHF) were measured from 80 to 250 K. In the time resolved experiments the relaxation of the polar solvent around the chromophore was observed. Assuming a simple Debye relaxation behavior, relaxation times were extracted and from an Arrhenius analysis an activation energy of E A = 1320 cm -1 was estimated. The temperature dependent steady state fluorescence spectrum could be simulated using the obtained Arrhenius parameters. It was observed that exciting vibrational degrees of freedom in the chromophore leads to an acceleration of the solvent relaxation. As a probable reason a locally heating, caused by vibrational relaxation prior to the reorganization of the solvent shell is discussed.

  17. Times of metastable droplet relaxation to equilibrium states

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.; Komarov, V. N.; Zaitseva, E. S.

    2016-10-01

    Times of metastable droplet relaxation to their equilibrium state are calculated at saturated vapor pressures, depending on the droplet size. It is shown that for small droplets with radius R = 6 molecular diameters (or ~2 nm) the relaxation times are ~1 ns (which is comparable to the characteristic flight times of rarefied gas molecules). For large droplets with radius R ~ 800 molecular diameters, the relaxation times are as long as 10 μs. At a fixed droplet radius (6 ≤ R ≤ 800), the range of variation in relaxation time from the melting point to the critical temperature does not exceed one order of magnitude: the lower the temperature, the slower the relaxation process.

  18. Analysis of pomegranate juice components in rat corpora cavernosal relaxation.

    PubMed

    Oztekin, C V; Gur, S; Abdulkadir, N A; Kartal, M; Karabakan, M; Akdemir, A O; Gökkaya, C S; Cetinkaya, M

    2014-01-01

    This study evaluated the action of pomegranate juice (PJ) and its five principal phenolic constituents on rat corpus cavernosum smooth muscle (CCSM). Isometric tension studies were performed after precontraction with phenylephrine in CCSM from rats. Relaxant responses to PJ and its constituents ellagic acid (EA), chlorogenic acid, caffeic acid, cumaric acid and rutin were investigated. PJ and EA caused CCSM relaxations (94.1 ± 3.7 and 51.3 ± 9.9%), while others induced limited relaxant responses. EA response was not inhibited by L-N(G)-nitroarginine methyl ester (100 μM) and 1H-[1,2,4]-oxadiazolo[4,3-a]quinoxalin-1-one (1 μM). Tetraethylammonium (100 μM) and apamin (10 μM) and nifedipine (10 μM) inhibited EA-induced relaxations at 10(-3) M by 84%, 82% and 78%, respectively. Glibenclamide (10 μM) inhibited EA response (97%, 100 μM). PJ-induced relaxation was not altered by several inhibitors. EA was estimated to be responsible for 13.3% of relaxation caused by PJ. Our study demonstrated that PJ and EA-induced marked relaxations in CCSM. The opening of Ca(2+)-activated K+ channels and the inhibition of Ca(2+)-channels regulate the relaxation by EA, but not PJ. EA has a minor contribution to the marked relaxation obtained by PJ, suggesting the presence of other PJ constituents, which induce nitric oxide-independent corporal relaxation. Further studies are needed to examine the potential of PJ in combination with a PDE5 inhibitor in ED.

  19. Enceladus' extreme heat flux as revealed by its relaxed craters

    NASA Astrophysics Data System (ADS)

    Bland, Michael T.; Singer, Kelsi N.; McKinnon, William B.; Schenk, Paul M.

    2012-09-01

    Enceladus' cratered terrains contain large numbers of unusually shallow craters consistent with deformation by viscous relaxation of water ice under conditions of elevated heat flow. Here we use high-resolution topography to measure the relaxation fraction of craters on Enceladus far from the active South Pole. We find that many craters are shallower than expected, with craters as small as 2 km in diameter having relaxation fractions in excess of 90%. These measurements are compared with numerical simulations of crater relaxation to constrain the minimum heat flux required to reproduce these observations. We find that Enceladus' nominal cold surface temperature (70 K) and low surface gravity strongly inhibit viscous relaxation. Under such conditions less than 3% relaxation occurs over 2 Ga even for relatively large craters (diameter 24 km) and high, constant heat fluxes (150 mW m-2). Greater viscous relaxation occurs if the effective temperature at the top of the lithosphere is greater than the surface temperature due to insulating regolith and/or plume material. Even for an effective temperature of 120 K, however, heat fluxes in excess of 150 mW m-2 are required to produce the degree of relaxation observed. Simulations of viscous relaxation of Enceladus' largest craters suggest that relaxation is best explained by a relatively short-lived period of intense heating that decayed quickly. We show that infilling of craters by plume material cannot explain the extremely shallow craters at equatorial and higher northern latitudes. Thus, like Enceladus' tectonic terrains, the cratered regions of Enceladus have experienced periods of extreme heat flux.

  20. A Psychophysiological Comparison of the Effects of Three Relaxation Techniques: Respiratory Manipulation Training, Progressive Muscle Relaxation, and Pleasant Imagery.

    ERIC Educational Resources Information Center

    Longo, David J.

    A within-subjects, three condition design was employed to examine the effects of three relaxation techniques on blood pressures, pulse rates, and self-report measures of relaxation for 12 college students. Respiratory Manipulation Training incorporated instructions to exhale and not to inhale for as long as possible. When breathing could no longer…