Science.gov

Sample records for aeruginosa bacillus cereus

  1. Inhibition of quorum sensing-mediated biofilm formation in Pseudomonas aeruginosa by a locally isolated Bacillus cereus.

    PubMed

    Wahman, Shaimaa; Emara, Mohamed; Shawky, Riham M; El-Domany, Ramadan A; Aboulwafa, Mohammad Mabrouk

    2015-12-01

    Quorum sensing has been shown to play a crucial role in Pseudomonas aeruginosa pathogenesis where it activates expression of myriad genes that regulate the production of important virulence factors such as biofilm formation. Antagonism of quorum sensing is an excellent target for antimicrobial therapy and represents a novel approach to combat drug resistance. In this study, Chromobacterium violaceum biosensor strain was employed as a fast, sensitive, reliable, and easy to use tool for rapid screening of soil samples for Quorum Sensing Inhibitors (QSI) and the optimal conditions for maximal QSI production were scrutinized. Screening of 127 soil isolates showed that 43 isolates were able to breakdown the HHL signal. Out of the 43 isolates, 38 isolates were able to inhibit the violet color of the biosensor and to form easily detectable zones of color inhibition around their growth. A confirmatory bioassay was carried out after concentrating the putative positive cell-free lysates. Three different isolates that belonged to Bacillus cereus group were shown to have QSI activities and their QSI activities were optimized by changing their culture conditions. Further experiments revealed that the cell-free lysates of these isolates were able to inhibit biofilm formation by P. aeruginosa clinical isolates.

  2. Bacillus cereus and related species.

    PubMed

    Drobniewski, F A

    1993-10-01

    Bacillus cereus is a gram-positive aerobic or facultatively anaerobic spore-forming rod. It is a cause of food poisoning, which is frequently associated with the consumption of rice-based dishes. The organism produces an emetic or diarrheal syndrome induced by an emetic toxin and enterotoxin, respectively. Other toxins are produced during growth, including phospholipases, proteases, and hemolysins, one of which, cereolysin, is a thiol-activated hemolysin. These toxins may contribute to the pathogenicity of B. cereus in nongastrointestinal disease. B. cereus isolated from clinical material other than feces or vomitus was commonly dismissed as a contaminant, but increasingly it is being recognized as a species with pathogenic potential. It is now recognized as an infrequent cause of serious nongastrointestinal infection, particularly in drug addicts, the immunosuppressed, neonates, and postsurgical patients, especially when prosthetic implants such as ventricular shunts are inserted. Ocular infections are the commonest types of severe infection, including endophthalmitis, panophthalmitis, and keratitis, usually with the characteristic formation of corneal ring abscesses. Even with prompt surgical and antimicrobial agent treatment, enucleation of the eye and blindness are common sequelae. Septicemia, meningitis, endocarditis, osteomyelitis, and surgical and traumatic wound infections are other manifestations of severe disease. B. cereus produces beta-lactamases, unlike Bacillus anthracis, and so is resistant to beta-lactam antibiotics; it is usually susceptible to treatment with clindamycin, vancomycin, gentamicin, chloramphenicol, and erythromycin. Simultaneous therapy via multiple routes may be required.

  3. Bacillus cereus and related species.

    PubMed Central

    Drobniewski, F A

    1993-01-01

    Bacillus cereus is a gram-positive aerobic or facultatively anaerobic spore-forming rod. It is a cause of food poisoning, which is frequently associated with the consumption of rice-based dishes. The organism produces an emetic or diarrheal syndrome induced by an emetic toxin and enterotoxin, respectively. Other toxins are produced during growth, including phospholipases, proteases, and hemolysins, one of which, cereolysin, is a thiol-activated hemolysin. These toxins may contribute to the pathogenicity of B. cereus in nongastrointestinal disease. B. cereus isolated from clinical material other than feces or vomitus was commonly dismissed as a contaminant, but increasingly it is being recognized as a species with pathogenic potential. It is now recognized as an infrequent cause of serious nongastrointestinal infection, particularly in drug addicts, the immunosuppressed, neonates, and postsurgical patients, especially when prosthetic implants such as ventricular shunts are inserted. Ocular infections are the commonest types of severe infection, including endophthalmitis, panophthalmitis, and keratitis, usually with the characteristic formation of corneal ring abscesses. Even with prompt surgical and antimicrobial agent treatment, enucleation of the eye and blindness are common sequelae. Septicemia, meningitis, endocarditis, osteomyelitis, and surgical and traumatic wound infections are other manifestations of severe disease. B. cereus produces beta-lactamases, unlike Bacillus anthracis, and so is resistant to beta-lactam antibiotics; it is usually susceptible to treatment with clindamycin, vancomycin, gentamicin, chloramphenicol, and erythromycin. Simultaneous therapy via multiple routes may be required. PMID:8269390

  4. Bacillus cereus endocarditis in native aortic valve.

    PubMed

    Ngow, H A; Wan Khairina, W M N

    2013-02-01

    Bacillus cereus endocarditis is rare. It has been implicated in immunocompromised individuals, especially in intravenous drug users as well as in those with a cardiac prosthesis. The patient was a 31-year-old ex-intravenous drug addict with a past history of staphylococcal pulmonary valve endocarditis, who presented with symptoms of decompensated cardiac failure. Echocardiography showed severe aortic regurgitation with an oscillating vegetation seen on the right coronary cusp of the aortic valve. The blood cultures grew Bacillus cereus. We report this as a rare case of Bacillus cereus endocarditis affecting a native aortic valve.

  5. Bacillus cereus in free-stall bedding.

    PubMed

    Magnusson, M; Svensson, B; Kolstrup, C; Christiansson, A

    2007-12-01

    To increase the understanding of how different factors affect the bacterial growth in deep sawdust beds for dairy cattle, the microbiological status of Bacillus cereus and coliforms in deep sawdust-bedded free stalls was investigated over two 14-d periods on one farm. High counts of B. cereus and coliforms were found in the entire beds. On average, 4.1 log(10) B. cereus spores, 5.5 log(10) B. cereus, and 6.7 log(10) coliforms per gram of bedding could be found in the upper layers of the sawdust likely to be in contact with the cows' udders. The highest counts of B. cereus spores, B. cereus, and coliforms were found in the bedding before fresh bedding was added, and the lowest immediately afterwards. Different factors of importance for the growth of B. cereus in the bedding material were explored in laboratory tests. These were found to be the type of bedding, pH, and the type and availability of nutrients. Alternative bedding material such as peat and mixtures of peat and sawdust inhibited the bacterial growth of B. cereus. The extent of growth of B. cereus in the sawdust was increased in a dose-dependent manner by the availability of feces. Urine added to different bedding material raised the pH and also led to bacterial growth of B. cereus in the peat. In sawdust, a dry matter content greater than 70% was needed to lower the water activity to 0.95, which is needed to inhibit the growth of B. cereus. In an attempt to reduce the bacterial growth of B. cereus and coliforms in deep sawdust beds on the farm, the effect of giving bedding daily or a full replacement of the beds was studied. The spore count of B. cereus in the back part of the free stalls before fresh bedding was added was 0.9 log units lower in stalls given daily bedding than in stalls given bedding twice weekly. No effect on coliform counts was found. Replacement of the entire sawdust bedding had an effect for a short period, but by 1 to 2 mo after replacement, the counts of B. cereus spores in the

  6. Bacillus cereus Biofilms-Same, Only Different.

    PubMed

    Majed, Racha; Faille, Christine; Kallassy, Mireille; Gohar, Michel

    2016-01-01

    Bacillus cereus displays a high diversity of lifestyles and ecological niches and include beneficial as well as pathogenic strains. These strains are widespread in the environment, are found on inert as well as on living surfaces and contaminate persistently the production lines of the food industry. Biofilms are suspected to play a key role in this ubiquitous distribution and in this persistency. Indeed, B. cereus produces a variety of biofilms which differ in their architecture and mechanism of formation, possibly reflecting an adaptation to various environments. Depending on the strain, B. cereus has the ability to grow as immersed or floating biofilms, and to secrete within the biofilm a vast array of metabolites, surfactants, bacteriocins, enzymes, and toxins, all compounds susceptible to act on the biofilm itself and/or on its environment. Within the biofilm, B. cereus exists in different physiological states and is able to generate highly resistant and adhesive spores, which themselves will increase the resistance of the bacterium to antimicrobials or to cleaning procedures. Current researches show that, despite similarities with the regulation processes and effector molecules involved in the initiation and maturation of the extensively studied Bacillus subtilis biofilm, important differences exists between the two species. The present review summarizes the up to date knowledge on biofilms produced by B. cereus and by two closely related pathogens, Bacillus thuringiensis and Bacillus anthracis. Economic issues caused by B. cereus biofilms and management strategies implemented to control these biofilms are included in this review, which also discuss the ecological and functional roles of biofilms in the lifecycle of these bacterial species and explore future developments in this important research area. PMID:27458448

  7. Bacillus cereus Biofilms—Same, Only Different

    PubMed Central

    Majed, Racha; Faille, Christine; Kallassy, Mireille; Gohar, Michel

    2016-01-01

    Bacillus cereus displays a high diversity of lifestyles and ecological niches and include beneficial as well as pathogenic strains. These strains are widespread in the environment, are found on inert as well as on living surfaces and contaminate persistently the production lines of the food industry. Biofilms are suspected to play a key role in this ubiquitous distribution and in this persistency. Indeed, B. cereus produces a variety of biofilms which differ in their architecture and mechanism of formation, possibly reflecting an adaptation to various environments. Depending on the strain, B. cereus has the ability to grow as immersed or floating biofilms, and to secrete within the biofilm a vast array of metabolites, surfactants, bacteriocins, enzymes, and toxins, all compounds susceptible to act on the biofilm itself and/or on its environment. Within the biofilm, B. cereus exists in different physiological states and is able to generate highly resistant and adhesive spores, which themselves will increase the resistance of the bacterium to antimicrobials or to cleaning procedures. Current researches show that, despite similarities with the regulation processes and effector molecules involved in the initiation and maturation of the extensively studied Bacillus subtilis biofilm, important differences exists between the two species. The present review summarizes the up to date knowledge on biofilms produced by B. cereus and by two closely related pathogens, Bacillus thuringiensis and Bacillus anthracis. Economic issues caused by B. cereus biofilms and management strategies implemented to control these biofilms are included in this review, which also discuss the ecological and functional roles of biofilms in the lifecycle of these bacterial species and explore future developments in this important research area. PMID:27458448

  8. The Phylogeny of Bacillus cereus sensu lato.

    PubMed

    Okinaka, Richard T; Keim, Paul

    2016-02-01

    The three main species of the Bacillus cereus sensu lato, B. cereus, B. thuringiensis, and B. anthracis, were recognized and established by the early 1900 s because they each exhibited distinct phenotypic traits. B. thuringiensis isolates and their parasporal crystal proteins have long been established as a natural pesticide and insect pathogen. B. anthracis, the etiological agent for anthrax, was used by Robert Koch in the 19th century as a model to develop the germ theory of disease, and B. cereus, a common soil organism, is also an occasional opportunistic pathogen of humans. In addition to these three historical species designations, are three less-recognized and -understood species: B. mycoides, B. weihenstephanensis, and B. pseudomycoides. All of these "species" combined comprise the Bacillus cereus sensu lato group. Despite these apparently clear phenotypic definitions, early molecular approaches to separate the first three by various DNA hybridization and 16S/23S ribosomal sequence analyses led to some "confusion" because there were limited differences to differentiate between these species. These and other results have led to frequent suggestions that a taxonomic change was warranted to reclassify this group to a single species. But the pathogenic properties of B. anthracis and the biopesticide applications of B. thuringiensis appear to "have outweighed pure taxonomic considerations" and the separate species categories are still being maintained. B. cereus sensu lato represents a classic example of a now common bacterial species taxonomic quandary. PMID:26999390

  9. Bacillus cereus, a Volatile Human Pathogen

    PubMed Central

    Bottone, Edward J.

    2010-01-01

    Summary: Bacillus cereus is a Gram-positive aerobic or facultatively anaerobic, motile, spore-forming, rod-shaped bacterium that is widely distributed environmentally. While B. cereus is associated mainly with food poisoning, it is being increasingly reported to be a cause of serious and potentially fatal non-gastrointestinal-tract infections. The pathogenicity of B. cereus, whether intestinal or nonintestinal, is intimately associated with the production of tissue-destructive exoenzymes. Among these secreted toxins are four hemolysins, three distinct phospholipases, an emesis-inducing toxin, and proteases. The major hurdle in evaluating B. cereus when isolated from a clinical specimen is overcoming its stigma as an insignificant contaminant. Outside its notoriety in association with food poisoning and severe eye infections, this bacterium has been incriminated in a multitude of other clinical conditions such as anthrax-like progressive pneumonia, fulminant sepsis, and devastating central nervous system infections, particularly in immunosuppressed individuals, intravenous drug abusers, and neonates. Its role in nosocomial acquired bacteremia and wound infections in postsurgical patients has also been well defined, especially when intravascular devices such as catheters are inserted. Primary cutaneous infections mimicking clostridial gas gangrene induced subsequent to trauma have also been well documented. B. cereus produces a potent β-lactamase conferring marked resistance to β-lactam antibiotics. Antimicrobials noted to be effective in the empirical management of a B. cereus infection while awaiting antimicrobial susceptibility results for the isolate include ciprofloxacin and vancomycin. PMID:20375358

  10. Enumeration of Bacillus cereus in Foods

    PubMed Central

    Mossel, D. A. A.; Koopman, M. J.; Jongerius, E.

    1967-01-01

    For the enumeration of vegetative cells and spores of Bacillus cereus in foods, a mannitol-egg yolk-phenol red-agar has been developed which exploits the failure of B. cereus to dissimilate mannitol, and the ability of most strains to produce phospholipase C. When a high degree of selectivity was required, polymyxin B sulfate in a concentration of 10 ppm appeared to be the most effective selective additive. Useful characteristics for the identification of presumptive isolates of B. cereus were found to be: morphology, dissimilation of glucose mostly to acetyl methyl carbinol under anaerobic conditions, hydrolysis of starch and gelatin, reduction of nitrate, and growth on 0.25% chloral hydrate agar. PMID:4291956

  11. Bacillus cereus infection outbreak in captive psittacines.

    PubMed

    Godoy, S N; Matushima, E R; Chaves, J Q; Cavados, C F G; Rabinovitch, L; Teixeira, R H F; Nunes, A L V; Melville, P; Gattamorta, M A; Vivoni, A M

    2012-12-28

    This study reports an uncommon epizootic outbreak of Bacillus cereus that caused the sudden death of 12 psittacines belonging to the species Anodorhynchus hyacinthinus (1 individual), Diopsittaca nobilis (1 individual), Ara severa (1 individual) and Ara ararauna (9 individuals) in a Brazilian zoo. Post-mortem examination of the animals reveled extensive areas of lung hemorrhage, hepatic congestion, hemorrhagic enteritis and cardiac congestion. Histopathological examination of the organs showed the presence of multiple foci of vegetative cells of Gram-positive bacilli associated with discrete and moderate mononuclear inflammatory cell infiltrate. Seventeen B. cereus strains isolated from blood and sterile organs of nine A. ararauna were analyzed in order to investigate the genetic diversity (assessed by Rep-PCR) and toxigenic profiles (presence of hblA, hblC and hblD; nheA, nheB and nheC as well as cytK, ces and entFM genes) of such strains. Amplification of genomic DNA by Rep-PCR of B. cereus strains generated two closely related profiles (Rep-PCR types A and B) with three bands of difference. All strains were classified as belonging to the toxigenic profile I which contained HBL and NHE gene complexes, entFM and cytK genes. Altogether, microbiological and histopathological findings and the evidence provided by the success of the antibiotic prophylaxis, corroborate that B. cereus was the causative agent of the infection that killed the birds.

  12. Susceptibilities of Bacillus subtilis, Bacillus cereus, and avirulent Bacillus anthracis spores to liquid biocides.

    PubMed

    Hilgren, J; Swanson, K M J; Diez-Gonzalez, F; Cords, B

    2009-02-01

    The susceptibility of spores of Bacillus subtilis, Bacillus cereus, and avirulent Bacillus anthracis to treatment with hydrogen peroxide, peroxyacetic acid, a peroxy-fatty acid mixture, sodium hypochlorite, and acidified sodium chlorite was investigated. Results indicated that B. cereus spores may be reasonable predictors of B. anthracis spore inactivation by peroxyacetic acid-based biocides. However, B. cereus was not a reliable predictor of B. anthracis inactivation by the other biocides. In studies comparing B. cereus and B. subtilis, B. cereus spores were more resistant (by 1.5 to 2.5 log CFU) than B. subtilis spores to peroxyacetic acid, the peroxy-fatty acid mixture, and acidified sodium chlorite. Conversely, B. subtilis spores were more resistant than B. cereus spores to hydrogen peroxide. These findings indicated the relevance of side-by-side testing of target organisms and potential surrogates against categories of biocides to determine whether both have similar properties and to validate the use of the surrogate microorganisms.

  13. Draft Genome Sequence of Biocontrol Agent Bacillus cereus UW85

    PubMed Central

    Lozano, Gabriel L.; Holt, Jonathan; Rasko, David A.; Thomas, Michael G.

    2016-01-01

    Bacillus cereus UW85 was isolated from a root of a field-grown alfalfa plant from Arlington, WI, and identified for its ability to suppress damping off, a disease caused by Phytophthora megasperma f. sp. medicaginis on alfalfa. Here, we report the draft genome sequence of B. cereus UW85, obtained by a combination of Sanger and Illumina sequencing. PMID:27587823

  14. Draft Genome Sequence of Biocontrol Agent Bacillus cereus UW85.

    PubMed

    Lozano, Gabriel L; Holt, Jonathan; Ravel, Jacques; Rasko, David A; Thomas, Michael G; Handelsman, Jo

    2016-01-01

    Bacillus cereus UW85 was isolated from a root of a field-grown alfalfa plant from Arlington, WI, and identified for its ability to suppress damping off, a disease caused by Phytophthora megasperma f. sp. medicaginis on alfalfa. Here, we report the draft genome sequence of B. cereus UW85, obtained by a combination of Sanger and Illumina sequencing. PMID:27587823

  15. Draft Genome Sequence of Biocontrol Agent Bacillus cereus UW85.

    PubMed

    Lozano, Gabriel L; Holt, Jonathan; Ravel, Jacques; Rasko, David A; Thomas, Michael G; Handelsman, Jo

    2016-09-01

    Bacillus cereus UW85 was isolated from a root of a field-grown alfalfa plant from Arlington, WI, and identified for its ability to suppress damping off, a disease caused by Phytophthora megasperma f. sp. medicaginis on alfalfa. Here, we report the draft genome sequence of B. cereus UW85, obtained by a combination of Sanger and Illumina sequencing.

  16. Bacillus cereus bacteremia outbreak due to contaminated hospital linens.

    PubMed

    Sasahara, T; Hayashi, S; Morisawa, Y; Sakihama, T; Yoshimura, A; Hirai, Y

    2011-02-01

    We describe an outbreak of Bacillus cereus bacteremia that occurred at Jichi Medical University Hospital in 2006. This study aimed to identify the source of this outbreak and to implement appropriate control measures. We reviewed the charts of patients with blood cultures positive for B. cereus, and investigated B. cereus contamination within the hospital environment. Genetic relationships among B. cereus isolates were analyzed. Eleven patients developed B. cereus bacteremia between January and August 2006. The hospital linens and the washing machine were highly contaminated with B. cereus, which was also isolated from the intravenous fluid. All of the contaminated linens were autoclaved, the washing machine was cleaned with a detergent, and hand hygiene was promoted among the hospital staff. The number of patients per month that developed new B. cereus bacteremia rapidly decreased after implementing these measures. The source of this outbreak was B. cereus contamination of hospital linens, and B. cereus was transmitted from the linens to patients via catheter infection. Our findings demonstrated that bacterial contamination of hospital linens can cause nosocomial bacteremia. Thus, blood cultures that are positive for B. cereus should not be regarded as false positives in the clinical setting.

  17. Phages preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: past, present and future.

    PubMed

    Gillis, Annika; Mahillon, Jacques

    2014-07-01

    Many bacteriophages (phages) have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here.

  18. Phages preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: past, present and future.

    PubMed

    Gillis, Annika; Mahillon, Jacques

    2014-07-01

    Many bacteriophages (phages) have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here. PMID:25010767

  19. Phages Preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: Past, Present and Future

    PubMed Central

    Gillis, Annika; Mahillon, Jacques

    2014-01-01

    Many bacteriophages (phages) have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here. PMID:25010767

  20. An Optical Biosensor for Bacillus Cereus Spore Detection

    NASA Astrophysics Data System (ADS)

    Li, Chengquan; Tom, Harry W. K.

    2005-03-01

    We demonstrate a new transduction scheme for optical biosensing. Bacillus cereus is a pathogen that may be found in food and dairy products and is able to produce toxins and cause food poisoning. It is related to Bacillus anthracis (anthrax). A CCD array covered with micro-structured glass coverslip is used to detect the optical resonant shift due to the binding of the antigen (bacillus cereus spore) to the antibody (polyclonal antibody). This novel optical biosensor scheme has the potential for detecting 10˜100 bioagents in a single device as well as the potential to test for antigens with multiple antibody tests to avoid ``false positives.''

  1. Characteristics of some psychrotrophic Bacillus cereus isolates.

    PubMed

    Dufrenne, J; Bijwaard, M; te Giffel, M; Beumer, R; Notermans, S

    1995-10-01

    Twelve strains of Bacillus cereus isolated from different food products and foodborne disease outbreaks, and able to grow at temperatures < 7 degrees C, were characterised. Generation times at 7 degrees C varied from 9.4 h up to 75 h. Lag phase of the vegetative cells at 7 degrees C was strongly influenced by the previous temperature history of the cells. Preincubation at 37 degrees C increased the duration of the lag phase drastically. The heat resistance at 90 degrees C (D90 degrees C-values in min) for spores produced at 30 degrees C varied from 2.2 to 9.2 min for 11 strains. One strain, however, showed a D90 degrees C-value of > 100 min. Germination of spores in milk was delayed compared to those grown in brain heart infusion broth (BHI). All strains showed production of the diarrheal type enterotoxin in BHI. Addition of 50 IU of nisin to skim milk resulted in a decrease of numbers for 9 of the 12 strains tested. At a nisin concentration of 250 IU, a decrease in bacterial numbers was observed for all strains tested. PMID:8579988

  2. Complete genome sequence of Bacillus cereus bacteriophage PBC1.

    PubMed

    Kong, Minsuk; Kim, Minsik; Ryu, Sangryeol

    2012-06-01

    Bacillus cereus is a ubiquitous, spore-forming bacterium associated with food poisoning cases. To develop an efficient biocontrol agent against B. cereus, we isolated lytic phage PBC1 and sequenced its genome. PBC1 showed a very low degree of homology to previously reported phages, implying that it is novel. Here we report the complete genome sequence of PBC1 and describe major findings from our analysis.

  3. Emetic toxin-producing strains of Bacillus cereus show distinct characteristics within the Bacillus cereus group.

    PubMed

    Carlin, Frédéric; Fricker, Martina; Pielaat, Annemarie; Heisterkamp, Simon; Shaheen, Ranad; Salonen, Mirja Salkinoja; Svensson, Birgitta; Nguyen-the, Christophe; Ehling-Schulz, Monika

    2006-05-25

    One hundred representative strains of Bacillus cereus were selected from a total collection of 372 B. cereus strains using two typing methods (RAPD and FT-IR) to investigate if emetic toxin-producing hazardous B. cereus strains possess characteristic growth and heat resistance profiles. The strains were classified into three groups: emetic toxin (cereulide)-producing strains (n=17), strains connected to diarrheal foodborne outbreaks (n=40) and food-environment strains (n=43), these latter not producing the emetic toxin. Our study revealed a shift in growth limits towards higher temperatures for the emetic strains, regardless of their origin. None of the emetic toxin-producing strains were able to grow below 10 degrees Celsius. In contrast, 11% (9 food-environment strains) out of the 83 non-emetic toxin-producing strains were able to grow at 4 degrees Celsius and 49% at 7 degrees Celsius (28 diarrheal and 13 food-environment strains). non-emetic toxin-producing strains. All emetic toxin-producing strains were able to grow at 48 degrees Celsius, but only 39% (16 diarrheal and 16 food-environment strains) of the non-emetic toxin-producing strains grew at this temperature. Spores from the emetic toxin-producing strains showed, on average, a higher heat resistance at 90 degrees Celsius and a lower germination, particularly at 7 degrees Celsius, than spores from the other strains. No difference between the three groups in their growth kinetics at 24 degrees Celsius, 37 degrees Celsius, and pH 5.0, 7.0, and 8.0 was observed. Our survey shows that emetic toxin-producing strains of B. cereus have distinct characteristics, which could have important implication for the risk assessment of the emetic type of B. cereus caused food poisoning. For instance, emetic strains still represent a special risk in heat-processed foods or preheated foods that are kept warm (in restaurants and cafeterias), but should not pose a risk in refrigerated foods. PMID:16503068

  4. A selective chromogenic agar that distinguishes Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis.

    PubMed

    Juergensmeyer, Margaret A; Gingras, Bruce A; Restaino, Lawrence; Frampton, Elon W

    2006-08-01

    A selective and differential plating medium, R & F anthracis chromogenic agar (ACA), has been developed for isolating and identifying presumptive colonies of Bacillus anthracis. ACA contains the chromogenic substrate 5-bromo-4-chloro-3-indoxyl-choline phosphate that upon hydrolysis yields teal (blue green) colonies indicating the presence of phosphatidylcholine-specific phospholipase C (PC-PLC) activity. Among seven Bacillus species tested on ACA, only members of the Bacillus cereus group (B. anthracis, B. cereus, and B. thuringiensis) produced teal colonies (PC-PLC positive) having cream rings. Examination of colony morphology in 18 pure culture strains of B. anthracis (15 ATCC strains plus AMES-1-RIID, ANR-1, and AMED-RIID), with one exception, required 48 h at 35 to 37 degrees C for significant color production, whereas only 24 h was required for B. cereus and B. thuringiensis. This differential rate of PC-PLC synthesis in B. anthracis (due to the truncated plcR gene and PlcR regulator in B. anthracis) allowed for the rapid differentiation on ACA of presumptive colonies of B. anthracis from B. cereus and B. thuringiensis in both pure and mixed cultures. Effective recovery of B. anthracis from a variety of matrices having both high (soil and sewage) and low microbial backgrounds (cloth, paper, and blood) spiked with B. anthracis ANR-1 spores suggests the probable utility of ACA plating for B. anthracis recovery in a diversity of applications.

  5. Prevalence of Bacillus cereus in the faeces of healthy adults.

    PubMed

    Ghosh, A C

    1978-04-01

    In a survey designed to determine the prevalence of Bacillus cereus in the faeces of healthy persons, the organism was found in low numbers in 100 (14%) of single faecal specimens from 711 adults in the general population. In addition, in an attempt at assessing the changes in the B. cereus distribution within the faecal flora of the individual, weekly faecal specimens were submitted over a seven-week period by 18 members of staff of two laboratories. The total isolation rate was again 14%, with 15 serotypes represented. In four individuals B. cereus was isolated in two consecutive weeks and in all cases the isolates were of different serotypes. Excretion was never recorded for more than two consecutive weeks. These findings probably reflect the intake of B. cereus in the individual's diet.

  6. Adaptation in Bacillus cereus: From Stress to Disease

    PubMed Central

    Duport, Catherine; Jobin, Michel; Schmitt, Philippe

    2016-01-01

    Bacillus cereus is a food-borne pathogen that causes diarrheal disease in humans. After ingestion, B. cereus experiences in the human gastro-intestinal tract abiotic physical variables encountered in food, such as acidic pH in the stomach and changing oxygen conditions in the human intestine. B. cereus responds to environmental changing conditions (stress) by reversibly adjusting its physiology to maximize resource utilization while maintaining structural and genetic integrity by repairing and minimizing damage to cellular infrastructure. As reviewed in this article, B. cereus adapts to acidic pH and changing oxygen conditions through diverse regulatory mechanisms and then exploits its metabolic flexibility to grow and produce enterotoxins. We then focus on the intricate link between metabolism, redox homeostasis, and enterotoxins, which are recognized as important contributors of food-borne disease. PMID:27757102

  7. Complete Genome Sequences of Nine Bacillus cereus Group Phages.

    PubMed

    Foltz, Samantha; Johnson, Allison A

    2016-01-01

    We report the sequences of nine novel Bacillus cereus group bacteriophages: DIGNKC, Juglone, Nemo, Nigalana, NotTheCreek, Phrodo, SageFayge, Vinny, and Zuko. These bacteriophages are double-stranded DNA-containing Myoviridae isolated from soil samples using B. thuringiensis subsp. kurstaki as the host bacterium.

  8. Genome Sequence of Bacillus cereus Group Phage SalinJah.

    PubMed

    Erill, Ivan; Caruso, Steven M

    2016-01-01

    The double-stranded DNA (dsDNA) Myoviridae Bacillus cereus group bacteriophage SalinJah was isolated from soil collected in Gyeonggi-do, South Korea. SalinJah, a cluster C phage with a broad host range, suggests the need to create a new subcluster with SalinJah and Helga as founding members.

  9. Complete Genome Sequences of Nine Bacillus cereus Group Phages

    PubMed Central

    Foltz, Samantha

    2016-01-01

    We report the sequences of nine novel Bacillus cereus group bacteriophages: DIGNKC, Juglone, Nemo, Nigalana, NotTheCreek, Phrodo, SageFayge, Vinny, and Zuko. These bacteriophages are double-stranded DNA-containing Myoviridae isolated from soil samples using B. thuringiensis subsp. kurstaki as the host bacterium. PMID:27417827

  10. Genome Sequence of Bacillus cereus Group Phage SalinJah

    PubMed Central

    2016-01-01

    The double-stranded DNA (dsDNA) Myoviridae Bacillus cereus group bacteriophage SalinJah was isolated from soil collected in Gyeonggi-do, South Korea. SalinJah, a cluster C phage with a broad host range, suggests the need to create a new subcluster with SalinJah and Helga as founding members. PMID:27688335

  11. Complete Genome Sequences of Nine Bacillus cereus Group Phages.

    PubMed

    Foltz, Samantha; Johnson, Allison A

    2016-01-01

    We report the sequences of nine novel Bacillus cereus group bacteriophages: DIGNKC, Juglone, Nemo, Nigalana, NotTheCreek, Phrodo, SageFayge, Vinny, and Zuko. These bacteriophages are double-stranded DNA-containing Myoviridae isolated from soil samples using B. thuringiensis subsp. kurstaki as the host bacterium. PMID:27417827

  12. Genome Sequence of Bacillus cereus Group Phage SalinJah.

    PubMed

    Erill, Ivan; Caruso, Steven M

    2016-01-01

    The double-stranded DNA (dsDNA) Myoviridae Bacillus cereus group bacteriophage SalinJah was isolated from soil collected in Gyeonggi-do, South Korea. SalinJah, a cluster C phage with a broad host range, suggests the need to create a new subcluster with SalinJah and Helga as founding members. PMID:27688335

  13. Bacillus cereus and Bacillus thuringiensis isolated in a gastroenteritis outbreak investigation.

    PubMed

    Jackson, S G; Goodbrand, R B; Ahmed, R; Kasatiya, S

    1995-08-01

    During investigation of a gastroenteritis outbreak in a chronic care institution, Norwalk virus was found in stool specimens from two individuals and bacterial isolates presumptively identified as Bacillus cereus were isolated from four individuals (including one with Norwalk virus) and spice. Phage typing confirmed all Bacillus clinical isolates were phage type 2. All clinical isolates were subsequently identified as B. thuringiensis when tested as a result of a related study (L. Leroux, personal communication). Eight of 10 spice isolates were phage type 4. All B. cereus and B. thuringiensis isolates showed cytotoxic effects characteristic of enterotoxin-producing B. cereus. An additional 20 isolates each of B. cereus and B. thuringiensis from other sources were tested for cytotoxicity. With the exception of one B. cereus, all showed characteristic cytotoxic patterns.

  14. Bacillus cereus food poisoning: international and Indian perspective.

    PubMed

    Tewari, Anita; Abdullah, Swaid

    2015-05-01

    Food borne illnesses result from eating food or drinking beverages that are contaminated with chemical matter, heavy metals, parasites, fungi, viruses and Bacteria. Bacillus cereus is one of the food-borne disease causing Bacteria. Species of Bacillus and related genera have long been troublesome to food producers on account of their resistant endospores. Their spores may be present on various types of raw and cooked foods, and their ability to survive high cooking temperatures requires that cooked foods be served hot or cooled rapidly to prevent the growth of this bacteria. Bacillus cereus is well known as a cause of food poisoning, and much more is now known about the toxins produced by various strains of this species, so that its significance in such episodes are clearer. However, it is still unclear why such cases are so rarely reported worldwide.

  15. Linking Bacillus cereus Genotypes and Carbohydrate Utilization Capacity.

    PubMed

    Warda, Alicja K; Siezen, Roland J; Boekhorst, Jos; Wells-Bennik, Marjon H J; de Jong, Anne; Kuipers, Oscar P; Nierop Groot, Masja N; Abee, Tjakko

    2016-01-01

    We characterised carbohydrate utilisation of 20 newly sequenced Bacillus cereus strains isolated from food products and food processing environments and two laboratory strains, B. cereus ATCC 10987 and B. cereus ATCC 14579. Subsequently, genome sequences of these strains were analysed together with 11 additional B. cereus reference genomes to provide an overview of the different types of carbohydrate transporters and utilization systems found in B. cereus strains. The combined application of API tests, defined growth media experiments and comparative genomics enabled us to link the carbohydrate utilisation capacity of 22 B. cereus strains with their genome content and in some cases to the panC phylogenetic grouping. A core set of carbohydrates including glucose, fructose, maltose, trehalose, N-acetyl-glucosamine, and ribose could be used by all strains, whereas utilisation of other carbohydrates like xylose, galactose, and lactose, and typical host-derived carbohydrates such as fucose, mannose, N-acetyl-galactosamine and inositol is limited to a subset of strains. Finally, the roles of selected carbohydrate transporters and utilisation systems in specific niches such as soil, foods and the human host are discussed.

  16. Linking Bacillus cereus Genotypes and Carbohydrate Utilization Capacity.

    PubMed

    Warda, Alicja K; Siezen, Roland J; Boekhorst, Jos; Wells-Bennik, Marjon H J; de Jong, Anne; Kuipers, Oscar P; Nierop Groot, Masja N; Abee, Tjakko

    2016-01-01

    We characterised carbohydrate utilisation of 20 newly sequenced Bacillus cereus strains isolated from food products and food processing environments and two laboratory strains, B. cereus ATCC 10987 and B. cereus ATCC 14579. Subsequently, genome sequences of these strains were analysed together with 11 additional B. cereus reference genomes to provide an overview of the different types of carbohydrate transporters and utilization systems found in B. cereus strains. The combined application of API tests, defined growth media experiments and comparative genomics enabled us to link the carbohydrate utilisation capacity of 22 B. cereus strains with their genome content and in some cases to the panC phylogenetic grouping. A core set of carbohydrates including glucose, fructose, maltose, trehalose, N-acetyl-glucosamine, and ribose could be used by all strains, whereas utilisation of other carbohydrates like xylose, galactose, and lactose, and typical host-derived carbohydrates such as fucose, mannose, N-acetyl-galactosamine and inositol is limited to a subset of strains. Finally, the roles of selected carbohydrate transporters and utilisation systems in specific niches such as soil, foods and the human host are discussed. PMID:27272929

  17. Linking Bacillus cereus Genotypes and Carbohydrate Utilization Capacity

    PubMed Central

    Warda, Alicja K.; Siezen, Roland J.; Boekhorst, Jos; Wells-Bennik, Marjon H. J.; de Jong, Anne; Kuipers, Oscar P.; Nierop Groot, Masja N.; Abee, Tjakko

    2016-01-01

    We characterised carbohydrate utilisation of 20 newly sequenced Bacillus cereus strains isolated from food products and food processing environments and two laboratory strains, B. cereus ATCC 10987 and B. cereus ATCC 14579. Subsequently, genome sequences of these strains were analysed together with 11 additional B. cereus reference genomes to provide an overview of the different types of carbohydrate transporters and utilization systems found in B. cereus strains. The combined application of API tests, defined growth media experiments and comparative genomics enabled us to link the carbohydrate utilisation capacity of 22 B. cereus strains with their genome content and in some cases to the panC phylogenetic grouping. A core set of carbohydrates including glucose, fructose, maltose, trehalose, N-acetyl-glucosamine, and ribose could be used by all strains, whereas utilisation of other carbohydrates like xylose, galactose, and lactose, and typical host-derived carbohydrates such as fucose, mannose, N-acetyl-galactosamine and inositol is limited to a subset of strains. Finally, the roles of selected carbohydrate transporters and utilisation systems in specific niches such as soil, foods and the human host are discussed. PMID:27272929

  18. Comparison of hand hygiene procedures for removing Bacillus cereus spores.

    PubMed

    Sasahara, Teppei; Hayashi, Shunji; Hosoda, Kouichi; Morisawa, Yuji; Hirai, Yoshikazu

    2014-01-01

    Bacillus cereus is a spore-forming bacterium. B. cereus occasionally causes nosocomial infections, in which hand contamination with the spores plays an important role. Therefore, hand hygiene is the most important practice for controlling nosocomial B. cereus infections. This study aimed to determine the appropriate hand hygiene procedure for removing B. cereus spores. Thirty volunteers' hands were experimentally contaminated with B. cereus spores, after which they performed 6 different hand hygiene procedures. We compared the efficacy of the procedures in removing the spores from hands. The alcohol-based hand-rubbing procedures scarcely removed them. The soap washing procedures reduced the number of spores by more than 2 log10. Extending the washing time increased the spore-removing efficacy of the washing procedures. There was no significant difference in efficacy between the use of plain soap and antiseptic soap. Handwashing with soap is appropriate for removing B. cereus spores from hands. Alcohol-based hand-rubbing is not effective. PMID:25252644

  19. [Food poisoning caused by Bacillus cereus].

    PubMed

    Doğanay, M; Bakici, M Z

    1985-10-01

    An outbreak of food poisoning was observed in Sivas on March 27, 1985 involving 25 patients who work at the same place. Clinical picture was characterized with nausea, abdominal pain and watery diarrhea. B. cereus was isolated from the stool of 4 patients. No other enteropathogens were found.

  20. Bacillus cereus bacteremia in an adult with acute leukemia.

    PubMed

    Funada, H; Uotani, C; Machi, T; Matsuda, T; Nonomura, A

    1988-03-01

    Bacillus cereus, which used to be considered non-pathogenic, was isolated from the blood of a patient with acute leukemia who was receiving intensive chemotherapy. Fatal bacteremia developed with a clinical syndrome of acute gastroenteritis, followed by both meningoencephalitis with subarachnoid hemorrhage and multiple liver abscesses probably caused by infective vasculitis. Surveillance stool cultures revealed colonization with the organism prior to the onset of diarrhea, and repetitive blood cultures were found to be positive. Thus, this case suggested some new important clinicopathologic features of true B. cereus bacteremia complicating acute leukemia.

  1. Comparative genome analysis of Bacillus cereus group genomes withBacillus subtilis

    SciTech Connect

    Anderson, Iain; Sorokin, Alexei; Kapatral, Vinayak; Reznik, Gary; Bhattacharya, Anamitra; Mikhailova, Natalia; Burd, Henry; Joukov, Victor; Kaznadzey, Denis; Walunas, Theresa; D'Souza, Mark; Larsen, Niels; Pusch,Gordon; Liolios, Konstantinos; Grechkin, Yuri; Lapidus, Alla; Goltsman,Eugene; Chu, Lien; Fonstein, Michael; Ehrlich, S. Dusko; Overbeek, Ross; Kyrpides, Nikos; Ivanova, Natalia

    2005-09-14

    Genome features of the Bacillus cereus group genomes (representative strains of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis sub spp israelensis) were analyzed and compared with the Bacillus subtilis genome. A core set of 1,381 protein families among the four Bacillus genomes, with an additional set of 933 families common to the B. cereus group, was identified. Differences in signal transduction pathways, membrane transporters, cell surface structures, cell wall, and S-layer proteins suggesting differences in their phenotype were identified. The B. cereus group has signal transduction systems including a tyrosine kinase related to two-component system histidine kinases from B. subtilis. A model for regulation of the stress responsive sigma factor sigmaB in the B. cereus group different from the well studied regulation in B. subtilis has been proposed. Despite a high degree of chromosomal synteny among these genomes, significant differences in cell wall and spore coat proteins that contribute to the survival and adaptation in specific hosts has been identified.

  2. Bacillus cereus from the environment is genetically related to the highly pathogenic B. cereus in Zambia.

    PubMed

    Ogawa, Hirohito; Ohnuma, Miyuki; Squarre, David; Mweene, Aaron Simanyengwe; Ezaki, Takayuki; Fujikura, Daisuke; Ohnishi, Naomi; Thomas, Yuka; Hang'ombe, Bernard Mudenda; Higashi, Hideaki

    2015-08-01

    To follow-up anthrax in Zambia since the outbreak in 2011, we have collected samples from the environment and the carcasses of anthrax-suspected animals, and have tried to isolate Bacillus anthracis. In the process of identification of B. anthracis, we collected two isolates, of which colonies were similar to B. anthracis; however, from the results of identification using the molecular-based methods, two isolates were genetically related to the highly pathogenic B. cereus, of which clinical manifestation is severe and fatal (e.g., pneumonia). In this study, we showed the existence of bacteria suspected to be highly pathogenic B. cereus in Zambia, indicating the possibility of an outbreak caused by highly pathogenic B. cereus.

  3. Cyclic diguanylate regulation of Bacillus cereus group biofilm formation.

    PubMed

    Fagerlund, Annette; Smith, Veronika; Røhr, Åsmund K; Lindbäck, Toril; Parmer, Marthe P; Andersson, K Kristoffer; Reubsaet, Leon; Økstad, Ole Andreas

    2016-08-01

    Biofilm formation can be considered a bacterial virulence mechanism. In a range of Gram-negatives, increased levels of the second messenger cyclic diguanylate (c-di-GMP) promotes biofilm formation and reduces motility. Other bacterial processes known to be regulated by c-di-GMP include cell division, differentiation and virulence. Among Gram-positive bacteria, where the function of c-di-GMP signalling is less well characterized, c-di-GMP was reported to regulate swarming motility in Bacillus subtilis while having very limited or no effect on biofilm formation. In contrast, we show that in the Bacillus cereus group c-di-GMP signalling is linked to biofilm formation, and to several other phenotypes important to the lifestyle of these bacteria. The Bacillus thuringiensis 407 genome encodes eleven predicted proteins containing domains (GGDEF/EAL) related to c-di-GMP synthesis or breakdown, ten of which are conserved through the majority of clades of the B. cereus group, including Bacillus anthracis. Several of the genes were shown to affect biofilm formation, motility, enterotoxin synthesis and/or sporulation. Among these, cdgF appeared to encode a master diguanylate cyclase essential for biofilm formation in an oxygenated environment. Only two cdg genes (cdgA, cdgJ) had orthologs in B. subtilis, highlighting differences in c-di-GMP signalling between B. subtilis and B. cereus group bacteria.

  4. Weathering of phlogopite by Bacillus cereus and Acidithiobacillus ferrooxidans.

    PubMed

    Styriaková, Iveta; Bhatti, Tariq M; Bigham, Jerry M; Styriak, Igor; Vuorinen, Antti; Tuovinen, Olli H

    2004-03-01

    The purpose of this study was to assess the weathering of finely ground phlogopite, a trioctahedral mica, by placing it in contact with heterotrophic (Bacillus cereus) and acidophilic (Acidithiobacillus ferrooxidans) cultures. X-ray diffraction analyses of the phlogopite sample before and after 24 weeks of contact in B. cereus cultures revealed a decrease in the characteristic peak intensities of phlogopite, indicating destruction of individual structural planes of the mica. No new solid phase products or interlayer structures were detected in B. cereus cultures. Acidithiobacillus ferrooxidans cultures enhanced the chemical dissolution of the mineral and formed partially weathered interlayer structures, where interlayer K was expelled and coupled with the precipitation of K-jarosite [KFe3(SO4)2(OH)6]. PMID:15105888

  5. Complete Genome Sequence of Bacillus cereus Group Phage TsarBomba.

    PubMed

    Erill, Ivan; Caruso, Steven M

    2015-01-01

    The Bacillus cereus group bacteriophage TsarBomba, a double-stranded DNA Myoviridae, was isolated from soil collected in Saratov, Russia. TsarBomba was found to be similar to Bacillus phages BCP78 and BCU4, and to have a wide host range among Bacillus cereus group species.

  6. Bacillus cereus in personal care products: risk to consumers.

    PubMed

    Pitt, T L; McClure, J; Parker, M D; Amézquita, A; McClure, P J

    2015-04-01

    Bacillus cereus is ubiquitous in nature and thus occurs naturally in a wide range of raw materials and foodstuffs. B. cereus spores are resistant to desiccation and heat and able to survive dry storage and cooking. Vegetative cells produce several toxins which on ingestion in sufficient numbers can cause vomiting and/or diarrhoea depending on the toxins produced. Gastrointestinal disease is commonly associated with reheated or inadequately cooked foods. In addition to being a rare cause of several acute infections (e.g. pneumonia and septicaemia), B. cereus can also cause localized infection of post-surgical or trauma wounds and is a rare but significant pathogen of the eye where it may result in severe endophthalmitis often leading to loss of vision. Key risk factors in such cases are trauma to the eye and retained contaminated intraocular foreign bodies. In addition, rare cases of B. cereus-associated keratitis (inflammation of the cornea) have been linked to contact lens use. Bacillus cereus is therefore a microbial contaminant that could adversely affect product safety of cosmetic and facial toiletries and pose a threat to the user if other key risk factors are also present. The infective dose in the human eye is unknown, but as few as 100 cfu has been reported to initiate infection in a susceptible animal model. However, we are not aware of any reports in the literature of B. cereus infections in any body site linked with use of personal care products. Low levels of B. cereus spores may on occasion be present in near-eye cosmetics, and these products have been used by consumers for many years. In addition, exposure to B. cereus is more likely to occur through other routes (e.g. dustborne contamination) due to its ubiquity and resistance properties of spores. The organism has been recovered from the eyes of healthy individuals. Therefore, although there may be a perceived hazard, the risk of severe eye infections as a consequence of exposure through

  7. Bacillus cereus in personal care products: risk to consumers.

    PubMed

    Pitt, T L; McClure, J; Parker, M D; Amézquita, A; McClure, P J

    2015-04-01

    Bacillus cereus is ubiquitous in nature and thus occurs naturally in a wide range of raw materials and foodstuffs. B. cereus spores are resistant to desiccation and heat and able to survive dry storage and cooking. Vegetative cells produce several toxins which on ingestion in sufficient numbers can cause vomiting and/or diarrhoea depending on the toxins produced. Gastrointestinal disease is commonly associated with reheated or inadequately cooked foods. In addition to being a rare cause of several acute infections (e.g. pneumonia and septicaemia), B. cereus can also cause localized infection of post-surgical or trauma wounds and is a rare but significant pathogen of the eye where it may result in severe endophthalmitis often leading to loss of vision. Key risk factors in such cases are trauma to the eye and retained contaminated intraocular foreign bodies. In addition, rare cases of B. cereus-associated keratitis (inflammation of the cornea) have been linked to contact lens use. Bacillus cereus is therefore a microbial contaminant that could adversely affect product safety of cosmetic and facial toiletries and pose a threat to the user if other key risk factors are also present. The infective dose in the human eye is unknown, but as few as 100 cfu has been reported to initiate infection in a susceptible animal model. However, we are not aware of any reports in the literature of B. cereus infections in any body site linked with use of personal care products. Low levels of B. cereus spores may on occasion be present in near-eye cosmetics, and these products have been used by consumers for many years. In addition, exposure to B. cereus is more likely to occur through other routes (e.g. dustborne contamination) due to its ubiquity and resistance properties of spores. The organism has been recovered from the eyes of healthy individuals. Therefore, although there may be a perceived hazard, the risk of severe eye infections as a consequence of exposure through

  8. Proteomic profiling and identification of immunodominant spore antigens of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis.

    PubMed

    Delvecchio, Vito G; Connolly, Joseph P; Alefantis, Timothy G; Walz, Alexander; Quan, Marian A; Patra, Guy; Ashton, John M; Whittington, Jessica T; Chafin, Ryan D; Liang, Xudong; Grewal, Paul; Khan, Akbar S; Mujer, Cesar V

    2006-09-01

    Differentially expressed and immunogenic spore proteins of the Bacillus cereus group of bacteria, which includes Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis, were identified. Comparative proteomic profiling of their spore proteins distinguished the three species from each other as well as the virulent from the avirulent strains. A total of 458 proteins encoded by 232 open reading frames were identified by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis for all the species. A number of highly expressed proteins, including elongation factor Tu (EF-Tu), elongation factor G, 60-kDa chaperonin, enolase, pyruvate dehydrogenase complex, and others exist as charge variants on two-dimensional gels. These charge variants have similar masses but different isoelectric points. The majority of identified proteins have cellular roles associated with energy production, carbohydrate transport and metabolism, amino acid transport and metabolism, posttranslational modifications, and translation. Novel vaccine candidate proteins were identified using B. anthracis polyclonal antisera from humans postinfected with cutaneous anthrax. Fifteen immunoreactive proteins were identified in B. anthracis spores, whereas 7, 14, and 7 immunoreactive proteins were identified for B. cereus and in the virulent and avirulent strains of B. thuringiensis spores, respectively. Some of the immunodominant antigens include charge variants of EF-Tu, glyceraldehyde-3-phosphate dehydrogenase, dihydrolipoamide acetyltransferase, Delta-1-pyrroline-5-carboxylate dehydrogenase, and a dihydrolipoamide dehydrogenase. Alanine racemase and neutral protease were uniquely immunogenic to B. anthracis. Comparative analysis of the spore immunome will be of significance for further nucleic acid- and immuno-based detection systems as well as next-generation vaccine development.

  9. Genome Sequences of Three Novel Bacillus cereus Bacteriophages.

    PubMed

    Grose, Julianne H; Jensen, Jordan D; Merrill, Bryan D; Fisher, Joshua N B; Burnett, Sandra H; Breakwell, Donald P

    2014-01-01

    The Bacillus cereus group is an assemblage of highly related firmicute bacteria that cause a variety of diseases in animals, including insects and humans. We announce three high-quality, complete genome sequences of bacteriophages we isolated from soil samples taken at the bases of fruit trees in Utah County, Utah. While two of the phages (Shanette and JL) are highly related myoviruses, the bacteriophage Basilisk is a siphovirus.

  10. Specific electrochemical phage sensing for Bacillus cereus and Mycobacterium smegmatis.

    PubMed

    Yemini, Miri; Levi, Yaron; Yagil, Ezra; Rishpon, Judith

    2007-01-01

    The rapid and reliable detection of pathogenic microorganisms is an important issue for the safety and security of our society. Here we describe the use of a sensitive, inexpensive, amperometric, phage-based biosensor for the detection of extremely low concentrations of Bacillus cereus and Mycobacterium smegmatis as models for Bacillus anthracis (the causative agent of anthrax) and for Mycobacterium tuberculosis (the causative agent of tuberculosis), respectively. The detection procedure developed here enabled the determination of bacteria at a low concentration of 10 viable cells/mL within 8 h. This experimental setup allows the simultaneous analysis of up to eight independent samples, using disposable screen-printed electrodes.

  11. Occurrence of Toxigenic Bacillus cereus and Bacillus thuringiensis in Doenjang, a Korean Fermented Soybean Paste.

    PubMed

    Park, Kyung Min; Kim, Hyun Jung; Jeong, Moon Cheol; Koo, Minseon

    2016-04-01

    This study determined the prevalence and toxin profile of Bacillus cereus and Bacillus thuringiensis in doenjang, a fermented soybean food, made using both traditional and commercial methods. The 51 doenjang samples tested were broadly contaminated with B. cereus; in contrast, only one sample was positive for B. thuringiensis. All B. cereus isolates from doenjang were positive for diarrheal toxin genes. The frequencies of nheABC and hblACD in traditional samples were 22.7 and 0%, respectively, whereas 5.1 and 5.1% of B. cereus isolates from commercial samples possessed nheABC and hblACD, respectively. The detection rate of ces gene was 10.8%. The predominant toxin profile among isolates from enterotoxigenic B. cereus in doenjang was profile 4 (entFM-bceT-cytK). The major enterotoxin genes in emetic B. cereus were cytK, entFM, and nheA genes. The B. thuringiensis isolate was of the diarrheagenic type. These results provide a better understanding of the epidemiology of the enterotoxigenic and emetic B. cereus groups in Korean fermented soybean products.

  12. Food–bacteria interplay: pathometabolism of emetic Bacillus cereus

    PubMed Central

    Ehling-Schulz, Monika; Frenzel, Elrike; Gohar, Michel

    2015-01-01

    Bacillus cereus is a Gram-positive endospore forming bacterium known for its wide spectrum of phenotypic traits, enabling it to occupy diverse ecological niches. Although the population structure of B. cereus is highly dynamic and rather panmictic, production of the emetic B. cereus toxin cereulide is restricted to strains with specific genotypic traits, associated with distinct environmental habitats. Cereulide is an ionophoric dodecadepsipeptide that is produced non-ribosomally by an enzyme complex with an unusual modular structure, named cereulide synthetase (Ces non-ribosomal peptide synthetase). The ces gene locus is encoded on a mega virulence plasmid related to the B. anthracis toxin plasmid pXO1. Cereulide, a highly thermo- and pH- resistant molecule, is preformed in food, evokes vomiting a few hours after ingestion, and was shown to be the direct cause of gastroenteritis symptoms; occasionally it is implicated in severe clinical manifestations including acute liver failures. Control of toxin gene expression in emetic B. cereus involves central transcriptional regulators, such as CodY and AbrB, thereby inextricably linking toxin gene expression to life cycle phases and specific conditions, such as the nutrient supply encountered in food matrices. While in recent years considerable progress has been made in the molecular and biochemical characterization of cereulide toxin synthesis, far less is known about the embedment of toxin synthesis in the life cycle of B. cereus. Information about signals acting on toxin production in the food environment is lacking. We summarize the data available on the complex regulatory network controlling cereulide toxin synthesis, discuss the role of intrinsic and extrinsic factors acting on toxin biosynthesis in emetic B. cereus and stress how unraveling these processes can lead to the development of novel effective strategies to prevent toxin synthesis in the food production and processing chain. PMID:26236290

  13. Food-bacteria interplay: pathometabolism of emetic Bacillus cereus.

    PubMed

    Ehling-Schulz, Monika; Frenzel, Elrike; Gohar, Michel

    2015-01-01

    Bacillus cereus is a Gram-positive endospore forming bacterium known for its wide spectrum of phenotypic traits, enabling it to occupy diverse ecological niches. Although the population structure of B. cereus is highly dynamic and rather panmictic, production of the emetic B. cereus toxin cereulide is restricted to strains with specific genotypic traits, associated with distinct environmental habitats. Cereulide is an ionophoric dodecadepsipeptide that is produced non-ribosomally by an enzyme complex with an unusual modular structure, named cereulide synthetase (Ces non-ribosomal peptide synthetase). The ces gene locus is encoded on a mega virulence plasmid related to the B. anthracis toxin plasmid pXO1. Cereulide, a highly thermo- and pH- resistant molecule, is preformed in food, evokes vomiting a few hours after ingestion, and was shown to be the direct cause of gastroenteritis symptoms; occasionally it is implicated in severe clinical manifestations including acute liver failures. Control of toxin gene expression in emetic B. cereus involves central transcriptional regulators, such as CodY and AbrB, thereby inextricably linking toxin gene expression to life cycle phases and specific conditions, such as the nutrient supply encountered in food matrices. While in recent years considerable progress has been made in the molecular and biochemical characterization of cereulide toxin synthesis, far less is known about the embedment of toxin synthesis in the life cycle of B. cereus. Information about signals acting on toxin production in the food environment is lacking. We summarize the data available on the complex regulatory network controlling cereulide toxin synthesis, discuss the role of intrinsic and extrinsic factors acting on toxin biosynthesis in emetic B. cereus and stress how unraveling these processes can lead to the development of novel effective strategies to prevent toxin synthesis in the food production and processing chain.

  14. Draft Genome Sequence of Bacillus cereus LCT-BC25, Isolated from Space Flight.

    PubMed

    Zhang, Xuelin; Wang, Tong; Su, Longxiang; Zhou, Lisha; Li, Tianzhi; Wang, Junfeng; Liu, Yan; Jiang, Xuege; Wu, Chunyan; Liu, Changting

    2014-01-02

    Bacillus cereus strain LCT-BC25, which was carried by the Shenzhou VIII spacecraft, traveled in space for about 398 h. To investigate the response of B. cereus to space environments, we determined the genome sequence of B. cereus strain LCT-BC25, which was isolated after space flight.

  15. Genome Sequence of Bacillus cereus Phage vB_BceS-MY192

    PubMed Central

    Yang, Yong; Zhan, Li; Chen, Jiancai; Zhang, Yunyi; Sun, Yi; Yang, Zhangnv; Jiang, Liping; Zhu, Hanping; Zhang, Yanjun; Lu, Yiyu

    2016-01-01

    Bacillus cereus is an opportunistic foodborne pathogen. The phage vB_BceS-MY192 was isolated from B. cereus 192 in a cooked rice sample. The temperate phage belongs to the Siphoviridae family, Caudovirales order. Here we announce the phage genome sequence and its annotation, which may expand the understanding of B. cereus siphophages. PMID:27103733

  16. Evaluation of Bacillus cereus and Bacillus pumilus metabolites for anthelmintic activity

    PubMed Central

    Kumar, M. L. Vijaya; Thippeswamy, B.; Kuppust, I. L.; Naveenkumar, K. J.; Shivakumar, C. K.

    2015-01-01

    Objective: To assess the anthelmintic acivity of Bacillus cereus and Bacillus pumilus metabolites. Materials and Methods: The successive solvent extractions with petroleum ether, ethyl acetate and methanol. The solvent extracts were tested for anthelmintic activity against Pheretima posthuma at 20 mg/ml concentration. The time of paralysis and time of death of the worms was determined for all the extracts. Albendazole was taken as a standard reference and sterile water as a control. Results: All the sample extracts showed significant anthelmintic activity in paralyzing the worms comparable with that of the standard drug. The time of death exhibited by BP metabolites was close to the time exhibited by standard. Conclusion: The study indicates both bacteria Bacillus cereus and Bacillus pumilus have anthelmintic activity indicating potential metabolites in them. PMID:25598639

  17. Draft Genome Sequence of Bacillus cereus Strain F, Isolated from Ancient Permafrost.

    PubMed

    Brenner, Evgeniy V; Brouchkov, Anatoli V; Kurilshikov, Alexander M; Griva, Gennady I; Kashuba, Elena; Kashuba, Vladimir I; Melefors, O; Repin, Vladimir E; Melnikov, Vladimir P; Vlassov, Valentin V

    2013-01-01

    Bacillus cereus strain F was isolated and cultured from a sample of permafrost, aged presumably about 3 million years, on the Mammoth Mountain (62°56'N, 133°59'E). These genome data provide the basis to investigate Bacillus cereus F, identified as a long-term survivor of the extremely cold and close environment.

  18. Bacillus subtilis HJ18-4 from traditional fermented soybean food inhibits Bacillus cereus growth and toxin-related genes.

    PubMed

    Eom, Jeong Seon; Lee, Sun Young; Choi, Hye Sun

    2014-11-01

    Bacillus subtilis HJ18-4 isolated from buckwheat sokseongjang, a traditional Korean fermented soybean food, exhibits broad-spectrum antimicrobial activity against foodborne pathogens, including Bacillus cereus. In this study, we investigated the antibacterial efficacy and regulation of toxin gene expression in B. cereus by B. subtilis HJ18-4. Expression of B. cereus toxin-related genes (groEL, nheA, nheC, and entFM) was downregulated by B. subtilis HJ18-4, which also exhibited strong antibacterial activity against B. cereus. We also found that water extracts of soy product fermented with B. subtilis HJ18-4 significantly inhibited the growth of B. cereus and toxin expression. These results indicate that B. subtilis HJ18-4 could be used as an antimicrobial agent to control B. cereus in the fermented soybean food industry. Our findings also provide an opportunity to develop an efficient biological control agent against B. cereus.

  19. A Randomly Amplified Polymorphic DNA Marker Specific for the Bacillus cereus Group Is Diagnostic for Bacillus anthracis

    PubMed Central

    Daffonchio, Daniele; Borin, Sara; Frova, Giuseppe; Gallo, Romina; Mori, Elena; Fani, Renato; Sorlini, Claudia

    1999-01-01

    Aiming to develop a DNA marker specific for Bacillus anthracis and able to discriminate this species from Bacillus cereus, Bacillus thuringiensis, and Bacillus mycoides, we applied the randomly amplified polymorphic DNA (RAPD) fingerprinting technique to a collection of 101 strains of the genus Bacillus, including 61 strains of the B. cereus group. An 838-bp RAPD marker (SG-850) specific for B. cereus, B. thuringiensis, B. anthracis, and B. mycoides was identified. This fragment included a putative (366-nucleotide) open reading frame highly homologous to the ypuA gene of Bacillus subtilis. The restriction analysis of the SG-850 fragment with AluI distinguished B. anthracis from the other species of the B. cereus group. PMID:10049896

  20. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus

    PubMed Central

    Sunkar, Swetha; Nachiyar, C Valli

    2012-01-01

    Objective To synthesize the ecofriendly nanoparticles, which is viewed as an alternative to the chemical method which initiated the use of microbes like bacteria and fungi in their synthesis. Methods The current study uses the endophytic bacterium Bacillus cereus isolated from the Garcinia xanthochymus to synthesize the silver nanoparticles (AgNPs). The AgNPs were synthesized by reduction of silver nitrate solution by the endophytic bacterium after incubation for 3-5 d at room temperature. The synthesis was initially observed by colour change from pale white to brown which was confirmed by UV-Vis spectroscopy. The AgNPs were further characterized using FTIR, SEM-EDX and TEM analyses. Results The synthesized nanoparticles were found to be spherical with the size in the range of 20-40 nm which showed a slight aggregation. The energy-dispersive spectra of the nanoparticle dispersion confirmed the presence of elemental silver. The AgNPs were found to have antibacterial activity against a few pathogenic bacteria like Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhi and Klebsiella pneumoniae. Conclusions The endophytic bacteria identified as Bacillus cereus was able to synthesize silver nanoparticles with potential antibacterial activity. PMID:23593575

  1. Identification of a novel enterotoxigenic activity associated with Bacillus cereus.

    PubMed

    Melling, J; Capel, B J; Turnbull, P C; Gilbert, R J

    1976-10-01

    A strain of Bacillus cereus isolated from a food poisoning outbreak characterized by vomiting has been shown to be capable of causing vomiting when cultures grown on rice, but not other media, were fed to Rhesus monkeys. In contrast, a strain isolated from a diarrhoeal outbreak produced diarrhoea, but not vomiting, when grown on various media in similar feeding trials. Furthermore, culture filtrates from the diarrhoeal strain caused fluid accumulation in ligated rabbit ileal loops whereas those from the vomiting strain did not. It is proposed that at least two enterotoxins are involved, one responsible for the vomiting and one for the diarrhoeal symptoms.

  2. Architecture and High-Resolution Structure of Bacillus thuringiensis and Bacillus cereus Spore Coat Surfaces

    SciTech Connect

    Plomp, M; Leighton, T; Wheeler, K; Malkin, A

    2005-02-18

    We have utilized atomic force microscopy (AFM) to visualize the native surface topology and ultrastructure of Bacillus thuringiensis and Bacillus cereus spores in water and in air. AFM was able to resolve the nanostructure of the exosporium and three distinctive classes of appendages. Removal of the exosporium exposed either a hexagonal honeycomb layer (B. thuringiensis) or a rodlet outer spore coat layer (B. cereus). Removal of the rodlet structure from B. cereus spores revealed an underlying honeycomb layer similar to that observed with B. thuringiensis spores. The periodicity of the rodlet structure on the outer spore coat of B. cereus was {approx}8 nm, and the length of the rodlets was limited to the cross-patched domain structure of this layer to {approx}200 nm. The lattice constant of the honeycomb structures was {approx}9 nm for both B. cereus and B. thuringiensis spores. Both honeycomb structures were composed of multiple, disoriented domains with distinct boundaries. Our results demonstrate that variations in storage and preparation procedures result in architectural changes in individual spore surfaces, which establish AFM as a useful tool for evaluation of preparation and processing ''fingerprints'' of bacterial spores. These results establish that high-resolution AFM has the capacity to reveal species-specific assembly and nanometer scale structure of spore surfaces. These species-specific spore surface structural variations are correlated with sequence divergences in a spore core structural protein SspE.

  3. Various Enterotoxin and Other Virulence Factor Genes Widespread Among Bacillus cereus and Bacillus thuringiensis Strains.

    PubMed

    Kim, Min-Ju; Han, Jae-Kwang; Park, Jong-Su; Lee, Jin-Sung; Lee, Soon-Ho; Cho, Joon-Il; Kim, Keun-Sung

    2015-06-01

    Many strains of Bacillus cereus cause gastrointestinal diseases, and the closely related insect pathogen Bacillus thuringiensis has also been involved in outbreaks of diarrhea. The diarrheal diseases are attributed to enterotoxins. Sixteen reference strains of B. cereus and nine commercial and 12 reference strains of B. thuringiensis were screened by PCR for the presence of 10 enterotoxigenic genes (hblA, hblC, hblD, nheA, nheB, nheC, cytK, bceT, entFM, and entS), one emetogenic gene (ces), seven hemolytic genes (hlyA, hlyII, hlyIII, plcA, cerA, cerB, and cerO), and a pleiotropic transcriptional activator gene (plcR). These genes encode various enterotoxins and other virulence factors thought to play a role in infections of mammals. Amplicons were successfully generated from the strains of B. cereus and B. thuringiensis for each of these sequences, except the ces gene. Intriguingly, the majority of these B. cereus enterotoxin genes and other virulence factor genes appeared to be widespread among B. thuringiensis strains as well as B. cereus strains.

  4. Clostridium welchii and Bacillus cereus infection and intoxication

    PubMed Central

    Hobbs, Betty C.

    1974-01-01

    Clostridium welchii type A is a common agent of food poisoning when allowed to proliferate to large numbers in cooked foods, usually meat and poultry. The main factors of importance are survival of the spores, frequently found on raw products, through the cooking process, and possible contamination of cooked meats transferred to unclean containers; subsequent germination of spores and rapid multiplication of the vegetative cells during long slow cooling and non-refrigerated storage lead to heavy contamination. The toxin responsible is different from the soluble antigens, and its formation in the intestine is associated with sporulation. Large numbers of Cl. welchii of the same serological types in food and faeces is the main diagnostic factor. Important preventive measures are rapid cooling and cold storage to prevent growth. Bacillus cereus is an aerobic sporulating organism commonly found in cereals. Outbreaks described from Europe have a different aetiology with regard to food vehicles, incubation period and symptoms from those that have been reported recently in the U.K. from fried and boiled rice. The spores survive through cooking procedures and grow out to cells which sporulate readily in the cooked food and which are assumed to produce toxin in the food. Large numbers of B. cereus are found in foods causing illness and, as with Cl. welchii, the main preventive measure is inhibition of growth by quick cooling and cold storage of foods cooked ahead of requirements. A comparative table of the characteristics and clinical symptoms of Cl. welchii and B. cereus is given. PMID:4377580

  5. Laundry detergent compatibility of the alkaline protease from Bacillus cereus.

    PubMed

    Banik, Rathindra Mohan; Prakash, Monika

    2004-01-01

    The endogenous protease activity in various commercially available laundry detergents of international companies was studied. The maximum protease activity was found at 50 degrees C in pH range 10.5-11.0 in all the tested laundry detergents. The endogenous protease activity in the tested detergents retained up to 70% on incubation at 40 degrees C for 1 h, whereas less than 30% activity was only found on incubation at 50 degrees C for 1 h. The alkaline protease from an alkalophilic strain of Bacillus cereus was studied for its compatibility in commercial detergents. The cell free fermented broth from shake flask culture of the organism showed maximum activity at pH 10.5 and 50 degrees C. The protease from B. cereus showed much higher residual activity (more than 80%) on incubation with laundry detergents at 50 degrees C for 1 h or longer. The protease enzyme from B. cereus was found to be superior over the endogenous proteases present in the tested commercial laundry detergents in comparison to the enzyme stability during the washing at higher temperature, e.g., 40-50 degrees C.

  6. Chemodiversity of cereulide, the emetic toxin of Bacillus cereus.

    PubMed

    Marxen, Sandra; Stark, Timo D; Frenzel, Elrike; Rütschle, Andrea; Lücking, Genia; Pürstinger, Gabriel; Pohl, Elena E; Scherer, Siegfried; Ehling-Schulz, Monika; Hofmann, Thomas

    2015-03-01

    Food-borne intoxications are increasingly caused by the dodecadepsipeptide cereulide, the emetic toxin produced by Bacillus cereus. As such intoxications pose a health risk to humans, a more detailed understanding on the chemodiversity of this toxin is mandatory for the reliable risk assessment of B. cereus toxins in foods. Mass spectrometric screening now shows a series of at least 18 cereulide variants, among which the previously unknown isocereulides A-G were determined for the first time by means of UPLC-TOF MS and ion-trap MS(n) sequencing, (13)C-labeling experiments, and post-hydrolytic dipeptide and enantioselective amino acid analysis. The data demonstrate a high microheterogeneity in cereulide and show evidence for a relaxed proof reading function of the non-ribosomal cereulide peptide synthetase complex giving rise to an enhanced cereulide chemodiversity. Most intriguingly, the isocereulides were found to differ widely in their cell toxicity correlating with their ionophoric properties (e.g., purified isocereulide A showed about 8-fold higher cytotoxicity than purified cereulide in the HEp-2 assay and induced an immediate breakdown of bilayer membranes). These findings provide a substantial contribution to the knowledge-based risk assessment of B. cereus toxins in foods, representing a still unsolved challenge in the field of food intoxications.

  7. The Arthromitus stage of Bacillus cereus: intestinal symbionts of animals

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Jorgensen, J. Z.; Dolan, S.; Kolchinsky, R.; Rainey, F. A.; Lo, S. C.

    1998-01-01

    In the guts of more than 25 species of arthropods we observed filaments containing refractile inclusions previously discovered and named "Arthromitus" in 1849 by Joseph Leidy [Leidy, J. (1849) Proc. Acad. Nat. Sci. Philadelphia 4, 225-233]. We cultivated these microbes from boiled intestines of 10 different species of surface-cleaned soil insects and isopod crustaceans. Literature review and these observations lead us to conclude that Arthromitus are spore-forming, variably motile, cultivable bacilli. As long rod-shaped bacteria, they lose their flagella, attach by fibers or fuzz to the intestinal epithelium, grow filamentously, and sporulate from their distal ends. When these organisms are incubated in culture, their life history stages are accelerated by light and inhibited by anoxia. Characterization of new Arthromitus isolates from digestive tracts of common sow bugs (Porcellio scaber), roaches (Gromphodorhina portentosa, Blaberus giganteus) and termites (Cryptotermes brevis, Kalotermes flavicollis) identifies these flagellated, spore-forming symbionts as a Bacillus sp. Complete sequencing of the 16S rRNA gene from four isolates (two sow bug, one hissing roach, one death's head roach) confirms these as the low-G+C Gram-positive eubacterium Bacillus cereus. We suggest that B. cereus and its close relatives, easily isolated from soil and grown on nutrient agar, enjoy filamentous growth in moist nutrient-rich intestines of healthy arthropods and similar habitats.

  8. The Arthromitus stage of Bacillus cereus: intestinal symbionts of animals.

    PubMed

    Margulis, L; Jorgensen, J Z; Dolan, S; Kolchinsky, R; Rainey, F A; Lo, S C

    1998-02-01

    In the guts of more than 25 species of arthropods we observed filaments containing refractile inclusions previously discovered and named "Arthromitus" in 1849 by Joseph Leidy [Leidy, J. (1849) Proc. Acad. Nat. Sci. Philadelphia 4, 225-233]. We cultivated these microbes from boiled intestines of 10 different species of surface-cleaned soil insects and isopod crustaceans. Literature review and these observations lead us to conclude that Arthromitus are spore-forming, variably motile, cultivable bacilli. As long rod-shaped bacteria, they lose their flagella, attach by fibers or fuzz to the intestinal epithelium, grow filamentously, and sporulate from their distal ends. When these organisms are incubated in culture, their life history stages are accelerated by light and inhibited by anoxia. Characterization of new Arthromitus isolates from digestive tracts of common sow bugs (Porcellio scaber), roaches (Gromphodorhina portentosa, Blaberus giganteus) and termites (Cryptotermes brevis, Kalotermes flavicollis) identifies these flagellated, spore-forming symbionts as a Bacillus sp. Complete sequencing of the 16S rRNA gene from four isolates (two sow bug, one hissing roach, one death's head roach) confirms these as the low-G+C Gram-positive eubacterium Bacillus cereus. We suggest that B. cereus and its close relatives, easily isolated from soil and grown on nutrient agar, enjoy filamentous growth in moist nutrient-rich intestines of healthy arthropods and similar habitats. PMID:9448315

  9. Is Cytotoxin K from Bacillus cereus a bona fide enterotoxin?

    PubMed

    Castiaux, Virginie; Liu, Xiaojin; Delbrassinne, Laurence; Mahillon, Jacques

    2015-10-15

    Cytotoxin K (CytK) produced by Bacillus cereus s.l. has generally been considered to be associated with the foodborne diarrhoeal syndrome. Two distinct variants of CytK have been reported: CytK-1 from Bacillus cytotoxicus and CytK-2 from B. cereus. In order to determine whether CytK plays a significant role in the diarrhoeal disease, the occurrence of cytK genes was assessed among 390 B. cereus isolates with different origins including clinical and food poisoning samples and was found to be 46%. Interestingly, the cytK occurrence was slightly lower in food poisoning and clinical isolates than in environmental samples. Seventy cytK-2 positive strains (including 28 isolates from foodborne outbreaks) were then selected in order to assess their genetic diversity. A genetic dendrogram based on the cytK-2 sequences of these 70 strains and on two cytK-1 sequences from strains NVH 391-98 and 883-00 showed an important diversity. However, no strain clustering according to the origin or source of isolation was observed. These observations were confirmed by Multi-Locus Sequences Typing (MLST) based on five different loci of housekeeping genes (ccpA, recF, sucC, purF and gdpD) for which no grouping of foodborne outbreak strains could be identified. Therefore, the choice of cytK as virulence factor for the diarrhoeal pathotype does not seem to be relevant per se, even though the involvement of CytK in the diarrhoeal syndrome cannot be fully excluded. Potential synergistic effects between CytK and other virulence factors, together with their potential variable expression levels should be further investigated.

  10. Purification and characterization of two polyhydroxyalcanoates from Bacillus cereus.

    PubMed

    Zribi-Maaloul, Emna; Trabelsi, Imen; Elleuch, Lobna; Chouayekh, Hichem; Ben Salah, Riadh

    2013-10-01

    This work aimed to study the potential of 155 strains of Bacillus sp., isolated from a collection of Tunisian microorganisms, for polyhydroxyalcanoates production. The strains were submitted to a battery of standard tests commonly used for determining bioplastic properties. The findings revealed that two of the isolates, namely Bacillus US 163 and US 177, provided red excitations at a wavelength of approximately 543 nm. The polyhydroxyalcanoates produced by the two strains were purified. Gas chromatography-mass spectroscopy (GC-MS), Fourier transformed infrared spectroscopy (FTIR), and gel permeation chromatography (GPC) were used to characterize the two biopolymers. Bacillus US 163 was noted to produce a poly methyl-3-hydroxy tetradecanoic acid (P-3HTD) with an average molecular weight of 455 kDa, a completely amorphous homopolymer without crystallinity. The US 177 strain produced a homopolymer of methyl-3-hydroxy octadecanoic acid (P3-HOD) with an average molecular weight of 555 kDa. Exhibiting the highest performance, US 163 and US 177 were submitted to 16S rRNA gene sequencing, and the results revealed that they belonged to the Bacillus cereus species. Overall, the findings indicated that the Bacilli from petroleum soil have a number of promising properties that make them promising candidates for bioplastic production.

  11. Purification and characterization of two polyhydroxyalcanoates from Bacillus cereus.

    PubMed

    Zribi-Maaloul, Emna; Trabelsi, Imen; Elleuch, Lobna; Chouayekh, Hichem; Ben Salah, Riadh

    2013-10-01

    This work aimed to study the potential of 155 strains of Bacillus sp., isolated from a collection of Tunisian microorganisms, for polyhydroxyalcanoates production. The strains were submitted to a battery of standard tests commonly used for determining bioplastic properties. The findings revealed that two of the isolates, namely Bacillus US 163 and US 177, provided red excitations at a wavelength of approximately 543 nm. The polyhydroxyalcanoates produced by the two strains were purified. Gas chromatography-mass spectroscopy (GC-MS), Fourier transformed infrared spectroscopy (FTIR), and gel permeation chromatography (GPC) were used to characterize the two biopolymers. Bacillus US 163 was noted to produce a poly methyl-3-hydroxy tetradecanoic acid (P-3HTD) with an average molecular weight of 455 kDa, a completely amorphous homopolymer without crystallinity. The US 177 strain produced a homopolymer of methyl-3-hydroxy octadecanoic acid (P3-HOD) with an average molecular weight of 555 kDa. Exhibiting the highest performance, US 163 and US 177 were submitted to 16S rRNA gene sequencing, and the results revealed that they belonged to the Bacillus cereus species. Overall, the findings indicated that the Bacilli from petroleum soil have a number of promising properties that make them promising candidates for bioplastic production. PMID:23850680

  12. Acute encephalopathy of Bacillus cereus mimicking Reye syndrome.

    PubMed

    Ichikawa, Kazushi; Gakumazawa, Masayasu; Inaba, Aya; Shiga, Kentaro; Takeshita, Saoko; Mori, Masaaki; Kikuchi, Nobuyuki

    2010-09-01

    We present an 11-year-old boy diagnosed as having acute encephalopathy and liver failure with the underlying condition of a metabolic dysfunction. He developed convulsions and severe consciousness disturbance following gastroenteritis after the ingestion of some fried rice. He showed excessive elevation of transaminases, non-ketotic hypoglycemia and hyperammonemia, which were presumed to reflect a metabolic dysfunction of the mitochondrial beta-oxidation, and he exhibited severe brain edema throughout the 5th hospital day. He was subjected to mild hypothermia therapy for encephalopathy, and treated with high-dose methylprednisolone, cyclosporine and continuous hemodiafiltration for liver failure, systemic organ damage and hyperammonemia. The patient recovered with the sequela of just mild intelligence impairment. In this case, Bacillus cereus, producing emetic toxin cereulide, was detected in a gastric fluid specimen, a stool specimen and the fried rice. It was suggested that the cereulide had toxicity to mitochondria and induced a dysfunction of the beta-oxidation process. The patient was considered as having an acute encephalopathy mimicking Reye syndrome due to food poisoning caused by cereulide produced by B. cereus.

  13. [Analyze and compare metabolic pathways of Bacillus cereus group].

    PubMed

    Yu, Chan; Wang, Yan; Xu, Cheng-Chen; He, Jin; Zhang, Qing-Ye; Yu, Zi-Niu

    2011-10-01

    A large number of data and information was obtained from genome sequencing and high-throughput genomic studies, use of the information to study metabolic networks become a new hotspot in biological research. This article compared different methods to reconstruct metabolic networks and analyzed the advantages and disadvantages of each methods, and then introduced some researches about carbohydrate metabolism pathways, amino acid metabolic pathways, and energy metabolism pathways of 9 strains of Bacillus cereus, 6 strains of B. anthracis,,6 strain of B. thuringiensis, and finds out their similarities and characteristics. These three strains have some necessary metabolic pathways, such as glycolysis, tri-carboxylic acid cycle, alanine metabolism, histidine metabolism, and energy metabolism, but they may have some specific pathways. B cereus has higher efficiency in utilizing monosaccharide, B. anthracis is rich in degradation and transport pathways of amino acids. A glutamate metabolic bypass way exists in B. thuringiensis. Analysis of metabolic pathways provides a new way to study and use food toxin, anthrax toxin, and insecticidal toxin of these strains in future.

  14. Recent research progress with phospholipase C from Bacillus cereus.

    PubMed

    Lyu, Yan; Ye, Lidan; Xu, Jun; Yang, Xiaohong; Chen, Weiwei; Yu, Hongwei

    2016-01-01

    Phospholipase C (PLC) catalyzes the hydrolysis of phospholipids to produce phosphate monoesters and diacylglycerol. It has many applications in the enzymatic degumming of plant oils. PLC Bc , a bacterial PLC from Bacillus cereus, is an optimal choice for this activity in terms of its wide substrate spectrum, high activity, and approved safety. Unfortunately, its large-scale production and reliable high-throughput screening of PLC Bc remain challenging. Herein, we summarize the research progress regarding PLC Bc with emphasis on the screening methods, expression systems, catalytic mechanisms and inhibitor of PLC Bc . This review hopefully will inspire new achievements in related areas, to promote the sustainable development of PLC Bc and its application. PMID:26437973

  15. [Effect of Bacillus cereus hemolysin II on hepatocyte cells].

    PubMed

    Kholodkov, O A; Budarina, Zh; Kovalevskaya, J I; Si'unov, A V; Solonin, A

    2015-01-01

    We investigated the efficiency of increasing the permeability (permeabilization) of cell membranes in primary liver cells by Bacillus cereus hemolysin II. An assessment of the degree of permeabilization was car ried out by measuring the fluorescence intensity of various low molecular weight dyes, which enter through pores into hepatocyte cells cultivated with hemolysin. We uncovered a high efficacy of hemolysin HlyII action on hepatocyte cell walls, which exceeded the effect of nonionic detergent, digitonin, which is commonly employed for pore formation in various cell membranes. Our results also point to the reversibility of membrane permeabilization in primary hepatocytes. The data obtained in this study can be utilized for assessments of pore-forming activity, in studies of hepatic mechanisms of action, and also the determination of the liver toxicity for different low molecular weight drugs. PMID:26027363

  16. [Effect of Bacillus cereus hemolysin II on hepatocyte cells].

    PubMed

    Kholodkov, O A; Budarina, Zh; Kovalevskaya, J I; Si'unov, A V; Solonin, A

    2015-01-01

    We investigated the efficiency of increasing the permeability (permeabilization) of cell membranes in primary liver cells by Bacillus cereus hemolysin II. An assessment of the degree of permeabilization was car ried out by measuring the fluorescence intensity of various low molecular weight dyes, which enter through pores into hepatocyte cells cultivated with hemolysin. We uncovered a high efficacy of hemolysin HlyII action on hepatocyte cell walls, which exceeded the effect of nonionic detergent, digitonin, which is commonly employed for pore formation in various cell membranes. Our results also point to the reversibility of membrane permeabilization in primary hepatocytes. The data obtained in this study can be utilized for assessments of pore-forming activity, in studies of hepatic mechanisms of action, and also the determination of the liver toxicity for different low molecular weight drugs.

  17. Sudden death of a young adult associated with Bacillus cereus food poisoning.

    PubMed

    Naranjo, María; Denayer, Sarah; Botteldoorn, Nadine; Delbrassinne, Laurence; Veys, Jean; Waegenaere, Jacques; Sirtaine, Nicolas; Driesen, Ronald B; Sipido, Karin R; Mahillon, Jacques; Dierick, Katelijne

    2011-12-01

    A lethal intoxication case, which occurred in Brussels, Belgium, is described. A 20-year-old man died following the ingestion of pasta contaminated with Bacillus cereus. Emetic strains of B. cereus were isolated, and high levels of cereulide (14.8 μg/g) were found in the spaghetti meal.

  18. Complete Genome Sequence of Bacteriophage Deep-Blue Infecting Emetic Bacillus cereus.

    PubMed

    Hock, Louise; Gillis, Annika; Mahillon, Jacques

    2016-01-01

    The Bacillus cereus emetic pathotype is responsible for important food-borne intoxications. Here, we describe the complete genome sequence of bacteriophage Deep-Blue, which is able to infect emetic strains of B. cereus Deep-Blue is a 159-kb myophage of the Bastille-like group within the Spounavirinae.

  19. Complete Genome Sequence of Bacillus cereus Sensu Lato Bacteriophage Bcp1.

    PubMed

    Schuch, Raymond; Pelzek, Adam J; Fazzini, Monica M; Nelson, Daniel C; Fischetti, Vincent A

    2014-01-01

    Bacillus cereus sensu lato organisms are an ecologically diverse group that includes etiologic agents of food poisoning, periodontal disease, and anthrax. The recently identified Bcp1 bacteriophage infects B. cereus sensu lato and is being developed as a therapeutic decontamination agent and diagnostic countermeasure. We announce the complete genome sequence of Bcp1.

  20. Persistent Bacillus cereus Bacteremia in 3 Persons Who Inject Drugs, San Diego, California, USA

    PubMed Central

    Schaefer, Gabrielle; Campbell, Wesley; Jenks, Jeffrey; Beesley, Cari; Katsivas, Theodoros; Hoffmaster, Alex; Mehta, Sanjay R.

    2016-01-01

    Bacillus cereus is typically considered a blood culture contaminant; however, its presence in blood cultures can indicate true bacteremia. We report 4 episodes of B. cereus bacteremia in 3 persons who inject drugs. Multilocus sequence typing showed that the temporally associated infections were caused by unrelated clones. PMID:27533890

  1. Persistent Bacillus cereus Bacteremia in 3 Persons Who Inject Drugs, San Diego, California, USA.

    PubMed

    Schaefer, Gabrielle; Campbell, Wesley; Jenks, Jeffrey; Beesley, Cari; Katsivas, Theodoros; Hoffmaster, Alex; Mehta, Sanjay R; Reed, Sharon

    2016-09-01

    Bacillus cereus is typically considered a blood culture contaminant; however, its presence in blood cultures can indicate true bacteremia. We report 4 episodes of B. cereus bacteremia in 3 persons who inject drugs. Multilocus sequence typing showed that the temporally associated infections were caused by unrelated clones. PMID:27533890

  2. Plant compounds enhance assay sensitivity for detection of active bacillus cereus toxin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacillus cereus is an important food pathogen, producing emetic and diarrheal syndromes, the latter mediated by enterotoxins. It has been estimated that there are 84,000 cases of B. cereus food poisoning in the US each year, with an annual cost of USD 36 million. The ability to sensitively trace and...

  3. Cerecidins, novel lantibiotics from Bacillus cereus with potent antimicrobial activity.

    PubMed

    Wang, Jian; Zhang, Li; Teng, Kunling; Sun, Shutao; Sun, Zhizeng; Zhong, Jin

    2014-04-01

    Lantibiotics are ribosomally synthesized and posttranslationally modified antimicrobial peptides that are widely produced by Gram-positive bacteria, including many species of the Bacillus group. In the present study, one novel gene cluster coding lantibiotic cerecidins was unveiled in Bacillus cereus strain As 1.1846 through genomic mining and PCR screening. The designated cer locus is different from that of conventional class II lantibiotics in that it included seven tandem precursor cerA genes, one modification gene (cerM), two processing genes (cerT and cerP), one orphan regulator gene (cerR), and two immunity genes (cerF and cerE). In addition, one unprecedented quorum sensing component, comQXPA, was inserted between cerM and cerR. The expression of cerecidins was not detected in this strain of B. cereus, which might be due to repressed transcription of cerM. We constitutively coexpressed cerA genes and cerM in Escherichia coli, and purified precerecidins were proteolytically processed with the endoproteinase GluC and a truncated version of putative serine protease CerP. Thus, two natural variants of cerecidins A1 and A7 were obtained which contained two terminal nonoverlapping thioether rings rarely found in lantibiotics. Both cerecidins A1 and A7 were active against a broad spectrum of Gram-positive bacteria. Cerecidin A7, especially its mutant Dhb13A, showed remarkable efficacy against multidrug-resistant Staphylococcus aureus (MDRSA), vancomycin-resistant Enterococcus faecalis (VRE), and even Streptomyces.

  4. Cerecidins, Novel Lantibiotics from Bacillus cereus with Potent Antimicrobial Activity

    PubMed Central

    Wang, Jian; Zhang, Li; Teng, Kunling; Sun, Shutao; Sun, Zhizeng

    2014-01-01

    Lantibiotics are ribosomally synthesized and posttranslationally modified antimicrobial peptides that are widely produced by Gram-positive bacteria, including many species of the Bacillus group. In the present study, one novel gene cluster coding lantibiotic cerecidins was unveiled in Bacillus cereus strain As 1.1846 through genomic mining and PCR screening. The designated cer locus is different from that of conventional class II lantibiotics in that it included seven tandem precursor cerA genes, one modification gene (cerM), two processing genes (cerT and cerP), one orphan regulator gene (cerR), and two immunity genes (cerF and cerE). In addition, one unprecedented quorum sensing component, comQXPA, was inserted between cerM and cerR. The expression of cerecidins was not detected in this strain of B. cereus, which might be due to repressed transcription of cerM. We constitutively coexpressed cerA genes and cerM in Escherichia coli, and purified precerecidins were proteolytically processed with the endoproteinase GluC and a truncated version of putative serine protease CerP. Thus, two natural variants of cerecidins A1 and A7 were obtained which contained two terminal nonoverlapping thioether rings rarely found in lantibiotics. Both cerecidins A1 and A7 were active against a broad spectrum of Gram-positive bacteria. Cerecidin A7, especially its mutant Dhb13A, showed remarkable efficacy against multidrug-resistant Staphylococcus aureus (MDRSA), vancomycin-resistant Enterococcus faecalis (VRE), and even Streptomyces. PMID:24532070

  5. Whole-Genome Sequences of 94 Environmental Isolates of Bacillus cereus Sensu Lato.

    PubMed

    Van der Auwera, Géraldine A; Feldgarden, Michael; Kolter, Roberto; Mahillon, Jacques

    2013-01-01

    Bacillus cereus sensu lato is a species complex that includes the anthrax pathogen Bacillus anthracis and other bacterial species of medical, industrial, and ecological importance. Their phenotypes of interest are typically linked to large plasmids that are closely related to the anthrax plasmids pXO1 and pXO2. Here, we present the draft genome sequences of 94 isolates of B. cereus sensu lato, which were chosen for their plasmid content and environmental origins.

  6. Differentiation of strains from the Bacillus cereus group by RFLP-PFGE genomic fingerprinting.

    PubMed

    Otlewska, Anna; Oltuszak-Walczak, Elzbieta; Walczak, Piotr

    2013-11-01

    Bacillus mycoides, Bacillus pseudomycoides, Bacillus weihenstephanensis, Bacillus anthracis, Bacillus thuringiensis, and Bacillus cereus belong to the B. cereus group. The last three species are characterized by different phenotype features and pathogenicity spectrum, but it has been shown that these species are genetically closely related. The macrorestriction analysis of the genomic DNA with the NotI enzyme was used to generate polymorphism of restriction profiles for 39 food-borne isolates (B. cereus, B. mycoides) and seven reference strains (B. mycoides, B. thuringiensis, B. weihenstephanensis, and B. cereus). The PFGE method was applied to differentiate the examined strains of the B. cereus group. On the basis of the unweighted pair group method with the arithmetic mean method and Dice coefficient, the strains were divided into five clusters (types A-E), and the most numerous group was group A (25 strains). A total of 21 distinct pulsotypes were observed. The RFLP-PFGE analysis was successfully used for the differentiation and characterization of B. cereus and B. mycoides strains isolated from different food products.

  7. 40 CFR 180.1181 - Bacillus cereus strain BPO1; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus cereus strain BPO1; exemption... FOOD Exemptions From Tolerances § 180.1181 Bacillus cereus strain BPO1; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance for residues of the Bacillus...

  8. 40 CFR 180.1181 - Bacillus cereus strain BPO1; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Bacillus cereus strain BPO1; exemption... FOOD Exemptions From Tolerances § 180.1181 Bacillus cereus strain BPO1; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance for residues of the Bacillus...

  9. Seasonal trend and clinical presentation of Bacillus cereus bloodstream infection: association with summer and indwelling catheter.

    PubMed

    Kato, K; Matsumura, Y; Yamamoto, M; Nagao, M; Ito, Y; Takakura, S; Ichiyama, S

    2014-08-01

    Bacillus cereus, an opportunistic pathogen, can cause fatal infection. However, B. cereus bloodstream infections (BSIs) have not been well characterised. From 2008 to 2013, B. cereus isolates from all of the specimens and patients with B. cereus BSIs were identified. Environmental samples were collected to detect B. cereus contamination. We also characterised the clinical presentation of B. cereus BSI through analyses of risk factors for BSI and mortality. A total of 217 clinical B. cereus isolates was detected. Fifty-one patients with nosocomial infections were diagnosed as B. cereus BSI, and 37 had contaminated blood cultures. The number of B. cereus isolates and BSI patients was significantly greater from June to September than from January to April (4.9 vs. 1.5 per month and 1.2 vs. 0.2, respectively). All BSIs were nosocomial and related to central or peripheral vascular catheter. Urinary catheter [odds ratio (OR) 6.93, 95% confidence interval (CI) 2.40-20.0] was the independent risk factor associated with BSI patients when compared to patients regarded as contaminated. In-hospital mortality among BSI patients was 20% and was associated with urinary catheter (OR 34.7, 95 % CI 1.89-63.6) and higher Charlson index (OR 1.99, 95 % CI 1.26-3.12). The number of B. cereus isolates and BSI increased during summer. Inpatients with indwelling vascular or urinary catheters should be carefully monitored for potential B. cereus BSIs.

  10. Genomic characterization of the Bacillus cereus sensu lato species: backdrop to the evolution of Bacillus anthracis.

    PubMed

    Zwick, Michael E; Joseph, Sandeep J; Didelot, Xavier; Chen, Peter E; Bishop-Lilly, Kimberly A; Stewart, Andrew C; Willner, Kristin; Nolan, Nichole; Lentz, Shannon; Thomason, Maureen K; Sozhamannan, Shanmuga; Mateczun, Alfred J; Du, Lei; Read, Timothy D

    2012-08-01

    The key genes required for Bacillus anthracis to cause anthrax have been acquired recently by horizontal gene transfer. To understand the genetic background for the evolution of B. anthracis virulence, we obtained high-redundancy genome sequences of 45 strains of the Bacillus cereus sensu lato (s.l.) species that were chosen for their genetic diversity within the species based on the existing multilocus sequence typing scheme. From the resulting data, we called more than 324,000 new genes representing more than 12,333 new gene families for this group. The core genome size for the B. cereus s.l. group was ∼1750 genes, with another 2150 genes found in almost every genome constituting the extended core. There was a paucity of genes specific and conserved in any clade. We found no evidence of recent large-scale gene loss in B. anthracis or for unusual accumulation of nonsynonymous DNA substitutions in the chromosome; however, several B. cereus genomes isolated from soil and not previously associated with human disease were degraded to various degrees. Although B. anthracis has undergone an ecological shift within the species, its chromosome does not appear to be exceptional on a macroscopic scale compared with close relatives.

  11. Extended genetic analysis of Brazilian isolates of Bacillus cereus and Bacillus thuringiensis

    PubMed Central

    Zahner, Viviane; Silva, Ana Carolina Telles de Carvalho e; de Moraes, Gabriela Pinhel; McIntosh, Douglas; de Filippis, Ivano

    2013-01-01

    Multiple locus sequence typing (MLST) was undertaken to extend the genetic characterization of 29 isolates of Bacillus cereus and Bacillus thuringiensis previously characterized in terms of presence/absence of sequences encoding virulence factors and via variable number tandem repeat (VNTR). Additional analysis involved polymerase chain reaction for the presence of sequences (be, cytK, inA, pag, lef, cya and cap), encoding putative virulence factors, not investigated in the earlier study. MLST analysis ascribed novel and unique sequence types to each of the isolates. A phylogenetic tree was constructed from a single sequence of 2,838 bp of concatenated loci sequences. The strains were not monophyletic by analysis of any specific housekeeping gene or virulence characteristic. No clear association in relation to source of isolation or to genotypic profile based on the presence or absence of putative virulence genes could be identified. Comparison of VNTR profiling with MLST data suggested a correlation between these two methods of genetic analysis. In common with the majority of previous studies, MLST was unable to provide clarification of the basis for pathogenicity among members of the B. cereus complex. Nevertheless, our application of MLST served to reinforce the notion that B. cereus and B. thuringiensis should be considered as the same species. PMID:23440117

  12. Comparison of 3 selective media for enumeration of Bacillus cereus in several food matrixes.

    PubMed

    Chon, Jung-Whan; Song, Kwang-Young; Kim, Hyunsook; Seo, Kun-Ho

    2014-12-01

    In this study, we compared the inclusivity, exclusivity, recoverability, and selectivity of the 3 selective agars (mannitol yolk polymyxin B agar [MYPA], polymyxin pyruvate egg yolk mannitol bromothymol blue agar [PEMBA], and Brillance Bacillus cereus agar [BBC agar]) for Bacillus cereus (B. cereus) from pure culture and several food samples. BBC agar showed greater exclusivity and selectivity in pure culture and in foods with high background flora, respectively; however, all the tested media showed similar recoverability (P > 0.05) of B. cereus in pure culture and in most foods. Our results suggest that BBC agar could be useful to enumerate B. cereus from, in particular, food matrixes with high background competing micro flora.

  13. Comparison of 3 selective media for enumeration of Bacillus cereus in several food matrixes.

    PubMed

    Chon, Jung-Whan; Song, Kwang-Young; Kim, Hyunsook; Seo, Kun-Ho

    2014-12-01

    In this study, we compared the inclusivity, exclusivity, recoverability, and selectivity of the 3 selective agars (mannitol yolk polymyxin B agar [MYPA], polymyxin pyruvate egg yolk mannitol bromothymol blue agar [PEMBA], and Brillance Bacillus cereus agar [BBC agar]) for Bacillus cereus (B. cereus) from pure culture and several food samples. BBC agar showed greater exclusivity and selectivity in pure culture and in foods with high background flora, respectively; however, all the tested media showed similar recoverability (P > 0.05) of B. cereus in pure culture and in most foods. Our results suggest that BBC agar could be useful to enumerate B. cereus from, in particular, food matrixes with high background competing micro flora. PMID:25399752

  14. The Pathogenomic Sequence Analysis of B. cereus and B. Thuringiensis isolates closely related to Bacillus anthracis

    SciTech Connect

    Han, C S; Xie, G; Challacombe, J F; Altherr, M R; Bhotika, S S; Bruce, D; Campbell, C S; Campbell, M L; Chen, J; Chertkov, O; Cleland, C; Dimitrijevic-Bussod, M; Doggett, N A; Fawcett, J J; Glavina, T; Goodwin, L A; Hill, K K; Hitchcock, P; Jackson, P J; Keim, P; Kewalramani, A R; Longmire, J; Lucas, S; Malfatti, S; McMurry, K; Meincke, L J; Misra, M; Moseman, B L; Mundt, M; Munk, A C; Okinaka, R T; Parson-Quintana, B; Reilly, L P; Richardson, P; Robinson, D L; Rubin, E; Saunders, E; Tapia, R; Tesmer, J G; Thayer, N; Thompson, L S; Tice, H; Ticknor, L O; Wills, P L; Gilna, P; Brettin, T S

    2005-10-12

    The sequencing and analysis of two close relatives of Bacillus anthracis are reported. AFLP analysis of over 300 isolates of B. cereus, B. thuringiensis and B. anthracis identified two isolates as being very closely related to B. anthracis. One, a B. cereus, BcE33L, was isolated from a zebra carcass in Nambia; the second, a B. thuringiensis, 97-27, was isolated from a necrotic human wound. The B. cereus appears to be the closest anthracis relative sequenced to date. A core genome of over 3,900 genes was compiled for the Bacillus cereus group, including B anthracis. Comparative analysis of these two genomes with other members of the B. cereus group provides insight into the evolutionary relationships among these organisms. Evidence is presented that differential regulation modulates virulence, rather than simple acquisition of virulence factors. These genome sequences provide insight into the molecular mechanisms contributing to the host range and virulence of this group of organisms.

  15. Draft Genome Sequences of Supercritical CO2-Tolerant Bacteria Bacillus subterraneus MITOT1 and Bacillus cereus MIT0214.

    PubMed

    Peet, Kyle C; Thompson, Janelle R

    2015-01-01

    We report draft genome sequences of Bacillus subterraneus MITOT1 and Bacillus cereus MIT0214 isolated through enrichment of samples from geologic sequestration sites in pressurized bioreactors containing a supercritical (sc) CO2 headspace. Their genome sequences expand the phylogenetic range of sequenced bacilli and allow characterization of molecular mechanisms of scCO2 tolerance.

  16. [Influence of Bacillus cereus on microbiocenosis of gastrointestinal tract in rats].

    PubMed

    Nesvizhskiĭ, Iu V; Bogdanova, E A; Zverev, V V

    2007-01-01

    The modifying effect of Bacillus cereus on intestinal microbiocenosis was investigated in eubiotic and disbiotic female rats. Qualitative and quantitative characteristics of gut and mucosal microflora from different parts of rats' intestine were studied before and after intragastral application of B. cereus suspension. The single application of B. cereus suspension resulted in appearance of this bacterium in feces and in parietal mucin from all parts of the intestine. In eubiotic rats compared with disbiotic, B. cereus adhere to parietal mucin much more efficiently and supplanted indigenous microflora. During disbiosis B. cereus sometimes had stimulating effect on the intestinal microbiocenosis. Gut microbiocenosis appeared to be more resistant to B. cereus invasion than mucosal. This fact was considered to be the evidence of higher sensitivity of mucosal microbiocenosis to short-term influence of exogenous microbial factor.

  17. Bacteriophage PBC1 and Its Endolysin as an Antimicrobial Agent against Bacillus cereus

    PubMed Central

    Kong, Minsuk

    2015-01-01

    Bacillus cereus is an opportunistic human pathogen responsible for food poisoning and other, nongastrointestinal infections. Due to the emergence of multidrug-resistant B. cereus strains, the demand for alternative therapeutic options is increasing. To address these problems, we isolated and characterized a Siphoviridae virulent phage, PBC1, and its lytic enzymes. PBC1 showed a very narrow host range, infecting only 1 of 22 B. cereus strains. Phylogenetic analysis based on the major capsid protein revealed that PBC1 is more closely related to the Bacillus clarkii phage BCJA1c and phages of lactic acid bacteria than to the phages infecting B. cereus. Whole-genome comparison showed that the late-gene region, including the terminase gene, structural genes, and holin gene of PBC1, is similar to that from B. cereus temperate phage 250, whereas their endolysins are different. Compared to the extreme host specificity of PBC1, its endolysin, LysPBC1, showed a much broader lytic spectrum, albeit limited to the genus Bacillus. The catalytic domain of LysPBC1 when expressed alone also showed Bacillus-specific lytic activity, which was lower against the B. cereus group but higher against the Bacillus subtilis group than the full-length protein. Taken together, these results suggest that the virulent phage PBC1 is a useful component of a phage cocktail to control B. cereus, even with its exceptionally narrow host range, as it can kill a strain of B. cereus that is not killed by other phages, and that LysPBC1 is an alternative biocontrol agent against B. cereus. PMID:25595773

  18. Bacteriophage PBC1 and its endolysin as an antimicrobial agent against Bacillus cereus.

    PubMed

    Kong, Minsuk; Ryu, Sangryeol

    2015-04-01

    Bacillus cereus is an opportunistic human pathogen responsible for food poisoning and other, nongastrointestinal infections. Due to the emergence of multidrug-resistant B. cereus strains, the demand for alternative therapeutic options is increasing. To address these problems, we isolated and characterized a Siphoviridae virulent phage, PBC1, and its lytic enzymes. PBC1 showed a very narrow host range, infecting only 1 of 22 B. cereus strains. Phylogenetic analysis based on the major capsid protein revealed that PBC1 is more closely related to the Bacillus clarkii phage BCJA1c and phages of lactic acid bacteria than to the phages infecting B. cereus. Whole-genome comparison showed that the late-gene region, including the terminase gene, structural genes, and holin gene of PBC1, is similar to that from B. cereus temperate phage 250, whereas their endolysins are different. Compared to the extreme host specificity of PBC1, its endolysin, LysPBC1, showed a much broader lytic spectrum, albeit limited to the genus Bacillus. The catalytic domain of LysPBC1 when expressed alone also showed Bacillus-specific lytic activity, which was lower against the B. cereus group but higher against the Bacillus subtilis group than the full-length protein. Taken together, these results suggest that the virulent phage PBC1 is a useful component of a phage cocktail to control B. cereus, even with its exceptionally narrow host range, as it can kill a strain of B. cereus that is not killed by other phages, and that LysPBC1 is an alternative biocontrol agent against B. cereus.

  19. Diversity of commensal Bacillus cereus sensu lato isolated from the common sow bug (Porcellio scaber, Isopoda).

    PubMed

    Swiecicka, Izabela; Mahillon, Jacques

    2006-04-01

    Although Bacillus cereus sensu lato are important both from an ecological and an economical point of view, little is known about their population structure, ecology, and relationships with other organisms. In the present work, the genotypic similarity of arthropod-borne B. cereus s.l. isolates, and their symbiotic relationship with the host are assessed. Bacilli of this group were recovered from the digestive tracts of sow bugs (Porcellio scaber) collected in three closely located sites. Their genotypic diversity was investigated using pulse-field gel electrophoresis (PFGE) following the whole-genome DNA digestions with NotI and AscI, and PCR amplification of virulence genes. The majority of the sow-bug Bacillus cereus sensu stricto isolates originating from the same but also from different sites displayed identical PFGE patterns, virulence gene content and enterotoxicity, indicating strong genetic and genomic relationships. The sow-bug Bacillus mycoides/Bacillus pseudomycoides strains displayed a higher diversity. The isopod-B. cereus s.l. relationship was also evaluated using antibiotic-resistant derivatives of B. cereus s.s., B. mycoides/B. pseudomycoides and Bacillus thuringiensis reintroduced into sow bugs. Both spores and vegetative cells of B. cereus s.l. were recovered from sow bugs over a 30-day period, strongly suggesting that these bacteria are natural residents of terrestrial isopods.

  20. Diversity of commensal Bacillus cereus sensu lato isolated from the common sow bug (Porcellio scaber, Isopoda).

    PubMed

    Swiecicka, Izabela; Mahillon, Jacques

    2006-04-01

    Although Bacillus cereus sensu lato are important both from an ecological and an economical point of view, little is known about their population structure, ecology, and relationships with other organisms. In the present work, the genotypic similarity of arthropod-borne B. cereus s.l. isolates, and their symbiotic relationship with the host are assessed. Bacilli of this group were recovered from the digestive tracts of sow bugs (Porcellio scaber) collected in three closely located sites. Their genotypic diversity was investigated using pulse-field gel electrophoresis (PFGE) following the whole-genome DNA digestions with NotI and AscI, and PCR amplification of virulence genes. The majority of the sow-bug Bacillus cereus sensu stricto isolates originating from the same but also from different sites displayed identical PFGE patterns, virulence gene content and enterotoxicity, indicating strong genetic and genomic relationships. The sow-bug Bacillus mycoides/Bacillus pseudomycoides strains displayed a higher diversity. The isopod-B. cereus s.l. relationship was also evaluated using antibiotic-resistant derivatives of B. cereus s.s., B. mycoides/B. pseudomycoides and Bacillus thuringiensis reintroduced into sow bugs. Both spores and vegetative cells of B. cereus s.l. were recovered from sow bugs over a 30-day period, strongly suggesting that these bacteria are natural residents of terrestrial isopods. PMID:16542411

  1. The worldwide distribution of genetically and phylogenetically diverse Bacillus cereus isolates harbouring Bacillus anthracis-like plasmids.

    PubMed

    Kaminska, Paulina Sylwia; Yernazarova, Aliya; Drewnowska, Justyna Malgorzata; Zambrowski, Grzegorz; Swiecicka, Izabela

    2015-10-01

    Bacillus cereus is a close relative of B. anthracis, the causative agent of anthrax whose pathogenic determinants are located on pXO1 and pXO2 plasmids. Bacillus anthracis-like plasmids have been also noted among B. cereus, however, genetic features of B. cereus harbouring these elements remain largely undescribed, especially from the global perspective. Herein, we present the genetic polymorphism, population structure and phylogeny of B. cereus with pXO1-/pXO2-like plasmids originating from Argentina, Kazakhstan, Kenya and Poland. The plasmids were found in about 17% of the isolates, but their frequencies and expression of replicons differed within and between populations. In the multi-locus sequence typing, the bacteria exhibited high genetic polymorphism reflected by 116 sequencing types, including 84 singletons and 10 clonal complexes, which mainly consisted of isolates of the same origin. The phylogenetic analysis of pXO1-/pXO2-like positive B. cereus isolates revealed six independent clades; in certain clades individual populations predominated. Generally, B. cereus with pXO1-/pXO2-like plasmids did not indicate the genetic relationship with B. anthracis, and cannot be classified into an evolutionary independent anthrax line within the B. cereus group. Our report is of a crucial importance for discovering the genetic specificity and evolution of B. cereus bacilli.

  2. A novel and highly specific phage endolysin cell wall binding domain for detection of Bacillus cereus.

    PubMed

    Kong, Minsuk; Sim, Jieun; Kang, Taejoon; Nguyen, Hoang Hiep; Park, Hyun Kyu; Chung, Bong Hyun; Ryu, Sangryeol

    2015-09-01

    Rapid, specific and sensitive detection of pathogenic bacteria is crucial for public health and safety. Bacillus cereus is harmful as it causes foodborne illness and a number of systemic and local infections. We report a novel phage endolysin cell wall-binding domain (CBD) for B. cereus and the development of a highly specific and sensitive surface plasmon resonance (SPR)-based B. cereus detection method using the CBD. The newly discovered CBD from endolysin of PBC1, a B. cereus-specific bacteriophage, provides high specificity and binding capacity to B. cereus. By using the CBD-modified SPR chips, B. cereus can be detected at the range of 10(5)-10(8) CFU/ml. More importantly, the detection limit can be improved to 10(2) CFU/ml by using a subtractive inhibition assay based on the pre-incubation of B. cereus and CBDs, removal of CBD-bound B. cereus, and SPR detection of the unbound CBDs. The present study suggests that the small and genetically engineered CBDs can be promising biological probes for B. cereus. We anticipate that the CBD-based SPR-sensing methods will be useful for the sensitive, selective, and rapid detection of B. cereus.

  3. A novel and highly specific phage endolysin cell wall binding domain for detection of Bacillus cereus.

    PubMed

    Kong, Minsuk; Sim, Jieun; Kang, Taejoon; Nguyen, Hoang Hiep; Park, Hyun Kyu; Chung, Bong Hyun; Ryu, Sangryeol

    2015-09-01

    Rapid, specific and sensitive detection of pathogenic bacteria is crucial for public health and safety. Bacillus cereus is harmful as it causes foodborne illness and a number of systemic and local infections. We report a novel phage endolysin cell wall-binding domain (CBD) for B. cereus and the development of a highly specific and sensitive surface plasmon resonance (SPR)-based B. cereus detection method using the CBD. The newly discovered CBD from endolysin of PBC1, a B. cereus-specific bacteriophage, provides high specificity and binding capacity to B. cereus. By using the CBD-modified SPR chips, B. cereus can be detected at the range of 10(5)-10(8) CFU/ml. More importantly, the detection limit can be improved to 10(2) CFU/ml by using a subtractive inhibition assay based on the pre-incubation of B. cereus and CBDs, removal of CBD-bound B. cereus, and SPR detection of the unbound CBDs. The present study suggests that the small and genetically engineered CBDs can be promising biological probes for B. cereus. We anticipate that the CBD-based SPR-sensing methods will be useful for the sensitive, selective, and rapid detection of B. cereus. PMID:26043681

  4. PCR detection of cytK gene in Bacillus cereus group strains isolated from food samples.

    PubMed

    Oltuszak-Walczak, Elzbieta; Walczak, Piotr

    2013-11-01

    A method for detection of the cytotoxin K cytK structural gene and its active promoter preceded by the PlcR-binding box, controlling the expression level of this enterotoxin, was developed. The method was applied for the purpose of the analysis of 47 bacterial strains belonging to the Bacillus cereus group isolated from different food products. It was found that the majority of the analyzed strains carried the fully functional cytK gene with its PlcR regulated promoter. The cytK gene was not detected in four emetic strains of Bacillus cereus carrying the cesB gene and potentially producing an emetic toxin - cereulide. The cytotoxin K gene was detected in 4 isolates classified as Bacillus mycoides and one reference strain B. mycoides PCM 2024. The promoter region and the N-terminal part of the cytK gene from two strains of B. mycoides (5D and 19E) showed similarities to the corresponding sequences of Bacillus cereus W23 and Bacillus thuringiensis HD-789, respectively. It was shown for the first time that the cytK gene promoter region from strains 5D and 19E of Bacillus mycoides had a similar arrangement to the corresponding sequence of Bacillus cereus ATCC 14579. The presence of the cytK gene in Bacillus mycoides shows that this species, widely recognized as nonpathogenic, may pose potential biohazard to human beings.

  5. Probiotic Bacillus cereus Strains, a Potential Risk for Public Health in China

    PubMed Central

    Zhu, Kui; Hölzel, Christina S.; Cui, Yifang; Mayer, Ricarda; Wang, Yang; Dietrich, Richard; Didier, Andrea; Bassitta, Rupert; Märtlbauer, Erwin; Ding, Shuangyang

    2016-01-01

    Bacillus cereus is an important cause of foodborne infectious disease and food poisoning. However, B. cereus has also been used as a probiotic in human medicine and livestock production, with low standards of safety assessment. In this study, we evaluated the safety of 15 commercial probiotic B. cereus preparations from China in terms of mislabeling, toxin production, and transferable antimicrobial resistance. Most preparations were incorrectly labeled, as they contained additional bacterial species; one product did not contain viable B. cereus at all. In total, 18 B. cereus group strains—specifically B. cereus and Bacillus thuringiensis—were isolated. Enterotoxin genes nhe, hbl, and cytK1, as well as the ces-gene were assessed by PCR. Enterotoxin production and cytotoxicity were confirmed by ELISA and cell culture assays, respectively. All isolated B. cereus group strains produced the enterotoxin Nhe; 15 strains additionally produced Hbl. Antimicrobial resistance was assessed by microdilution; resistance genes were detected by PCR and further characterized by sequencing, transformation and conjugation assays. Nearly half of the strains harbored the antimicrobial resistance gene tet(45). In one strain, tet(45) was situated on a mobile genetic element—encoding a site-specific recombination mechanism—and was transferable to Staphylococcus aureus and Bacillus subtilis by electro-transformation. In view of the wide and uncontrolled use of these products, stricter regulations for safety assessment, including determination of virulence factors and transferable antimicrobial resistance genes, are urgently needed. PMID:27242738

  6. Probiotic Bacillus cereus Strains, a Potential Risk for Public Health in China.

    PubMed

    Zhu, Kui; Hölzel, Christina S; Cui, Yifang; Mayer, Ricarda; Wang, Yang; Dietrich, Richard; Didier, Andrea; Bassitta, Rupert; Märtlbauer, Erwin; Ding, Shuangyang

    2016-01-01

    Bacillus cereus is an important cause of foodborne infectious disease and food poisoning. However, B. cereus has also been used as a probiotic in human medicine and livestock production, with low standards of safety assessment. In this study, we evaluated the safety of 15 commercial probiotic B. cereus preparations from China in terms of mislabeling, toxin production, and transferable antimicrobial resistance. Most preparations were incorrectly labeled, as they contained additional bacterial species; one product did not contain viable B. cereus at all. In total, 18 B. cereus group strains-specifically B. cereus and Bacillus thuringiensis-were isolated. Enterotoxin genes nhe, hbl, and cytK1, as well as the ces-gene were assessed by PCR. Enterotoxin production and cytotoxicity were confirmed by ELISA and cell culture assays, respectively. All isolated B. cereus group strains produced the enterotoxin Nhe; 15 strains additionally produced Hbl. Antimicrobial resistance was assessed by microdilution; resistance genes were detected by PCR and further characterized by sequencing, transformation and conjugation assays. Nearly half of the strains harbored the antimicrobial resistance gene tet(45). In one strain, tet(45) was situated on a mobile genetic element-encoding a site-specific recombination mechanism-and was transferable to Staphylococcus aureus and Bacillus subtilis by electro-transformation. In view of the wide and uncontrolled use of these products, stricter regulations for safety assessment, including determination of virulence factors and transferable antimicrobial resistance genes, are urgently needed.

  7. Toxin genes profiles and toxin production ability of Bacillus cereus isolated from clinical and food samples.

    PubMed

    Kim, Jung-Beom; Kim, Jai-Moung; Cho, Seung-Hak; Oh, Hyuk-Soo; Choi, Na Jung; Oh, Deog-Hwan

    2011-01-01

    Bacillus cereus can cause diarrheal and emetic type of food poisoning but little study has been done on the main toxins of food poisoning caused by B. cereus in Korea. The objective of this study is to characterize the toxin gene profiles and toxin-producing ability of 120 B. cereus isolates from clinical and food samples in Korea. The detection rate of nheABC, hblCDA, entFM, and cytK enterotoxin gene among all B. cereus strains was 94.2, 90.0, 65.8, and 52.5%, respectively. The ces gene encoding emetic toxin was not detected in all strains. Bacillus cereus strains carried at least 1 of the 8 enterotoxin genes were classified into 12 groups according to the presence or absence of 8 virulence genes. The 3 major patterns, I (nheABC, hblCDA, entFM, and cytK gene), II (nheABC, hblCDA and entFM gene), and VI (nheABC and hblCDA gene), accounted for 79.2% of all strains (95 out of 120 B. cereus isolates). Non-hemolytic enterotoxin (NHE) and hemolysin BL (HBL) enterotoxins were produced by 107 and 100 strains, respectively. Our finding revealed that NHE and HBL enterotoxins encoded by nhe and hbl genes were the major toxins among B. cereus tested in this study and enterotoxic type of B. cereus was predominant in Korea.

  8. A biochemically active MCM-like helicase in Bacillus cereus

    PubMed Central

    Samuels, Martin; Gulati, Gaurav; Shin, Jae-Ho; Opara, Rejoice; McSweeney, Elizabeth; Sekedat, Matt; Long, Stephen; Kelman, Zvi; Jeruzalmi, David

    2009-01-01

    The mini-chromosome maintenance (MCM) proteins serve as the replicative helicases in archaea and eukaryotes. Interestingly, an MCM homolog was identified, by BLAST analysis, within a phage integrated in the bacterium Bacillus cereus (Bc). BcMCM is only related to the AAA region of MCM-helicases; the typical amino-terminus is missing and is replaced by a segment with weak homology to primases. We show that BcMCM displays 3′→5′ helicase and ssDNA-stimulated ATPase activity, properties that arise from its conserved AAA domain. Isolated BcMCM is a monomer in solution but likely forms the functional oligomer in vivo. We found that the BcMCM amino-terminus can bind ssDNA and harbors a zinc atom, both hallmarks of the typical MCM amino-terminus. No BcMCM-catalyzed primase activity could be detected. We propose that the divergent amino-terminus of BcMCM is a paralog of the corresponding region of MCM-helicases. A divergent amino terminus makes BcMCM a useful model for typical MCM-helicases since it accomplishes the same function using an apparently unrelated structure. PMID:19474351

  9. Heat-induced temperature sensitivity of outgrowing Bacillus cereus spores.

    PubMed Central

    Johnson, K M; Busta, F F

    1984-01-01

    Inactivation of Bacillus cereus spores during cooling (10 degrees C/h) from 90 degrees C occurred in two phases. One phase occurred during cooling from 90 to 80 degrees C; the second occurred during cooling from 46 to 38 degrees C. In contrast, no inactivation occurred when spores were cooled from a maximum temperature of 80 degrees C. Inactivation of spores at a constant temperature of 45 degrees C was induced by initial heat treatments from 80 to 90 degrees C. The higher temperatures accelerated the rate of inactivation. Germination of spores was required for 45 degrees C inactivation to occur; however, faster germination was not the cause of accelerated inactivation of spores receiving higher initial heat treatments. Repair of possible injury was not observed in Trypticase soy broth (BBL Microbiology Systems), peptone, beef extract, starch, or L-alanine at 30 or 35 degrees C. Microscopic evaluation of spores outgrowing at 45 degrees C revealed that when inactivation occurred, outgrowth halted at the swelling stage. Inhibition of protein synthesis by chloramphenicol at the optimum temperature also stopped outgrowth at swelling; thus protein synthesis may play a role in the 45 degree C inactivation mechanism. PMID:6426390

  10. Vacuum distillation residue upgrading by an indigenous bacillus cereus

    PubMed Central

    2013-01-01

    Background Biological processing of heavy fractions of crude oils offers less severe process conditions and higher selectivity for refining. Biochemical Processes are expected to be low demand energy processes and certainly ecofriendly. Results A strain of biosurfactant producing bacterium was isolated from an oil contaminated soil at Tehran refinery distillation unit. Based on selected phenotypic and genotypic characteristic including morphology, biochemical proprety, and 16 SrRNA sequencing identified as a novel strain of Bacillus cereus (JQ178332). This bacterium endures a wide range of pH, salinity and temperature. This specific strain utilizes both paraffin and anthracene as samples of aliphatic and polycyclic aromatic hydrocarbons. The ability of this bacterium to acquire all its energy and chemical requirements from Vacuum Distillation Residue (VR), as a net sample of problematic hydrocarbons in refineries, was studied. SARA test ASTM D4124-01 revealed 65.5% decrease in asphaltenic, 22.1% in aliphatics and 30.3% in Aromatics content of the VR in MSM medium. Further results with 0.9% saline showed 55% decrease in asphaltene content and 2.1% Aromatics respectively. Conclusion Remarkable abilities of this microorganism propose its application in an ecofriendly technology to upgrade heavy crude oils. PMID:24499629

  11. The Water Cycle, a Potential Source of the Bacterial Pathogen Bacillus cereus

    PubMed Central

    Brillard, Julien; Dupont, Christian M. S.; Berge, Odile; Dargaignaratz, Claire; Oriol-Gagnier, Stéphanie; Doussan, Claude; Broussolle, Véronique; Gillon, Marina; Clavel, Thierry; Bérard, Annette

    2015-01-01

    The behaviour of the sporulating soil-dwelling Bacillus cereus sensu lato (B. cereus sl) which includes foodborne pathogenic strains has been extensively studied in relation to its various animal hosts. The aim of this environmental study was to investigate the water compartments (rain and soil water, as well as groundwater) closely linked to the primary B. cereus sl reservoir, for which available data are limited. B. cereus sl was present, primarily as spores, in all of the tested compartments of an agricultural site, including water from rain to groundwater through soil. During rain events, leachates collected after transfer through the soil eventually reached the groundwater and were loaded with B. cereus sl. In groundwater samples, newly introduced spores of a B. cereus model strain were able to germinate, and vegetative cells arising from this event were detected for up to 50 days. This first B. cereus sl investigation in the various types of interrelated environments suggests that the consideration of the aquatic compartment linked to soil and to climatic events should provide a better understanding of B. cereus sl ecology and thus be relevant for a more accurate risk assessment of food poisoning caused by B. cereus sl pathogenic strains. PMID:25918712

  12. Antimicrobial Effect of Nisin against Bacillus cereus in Beef Jerky during Storage

    PubMed Central

    Lee, Na-Kyoung; Kim, Hyoun Wook; Lee, Joo Yeon; Ahn, Dong Uk; Kim, Cheon-Jei; Paik, Hyun-Dong

    2015-01-01

    The microbial distribution of raw materials and beef jerky, and the effect of nisin on the growth of Bacillus cereus inoculated in beef jerky during storage, were studied. Five strains of pathogenic B. cereus were detected in beef jerky, and identified with 99.8% agreement using API CHB 50 kit. To evaluate the effect of nisin, beef jerky was inoculated with approximately 3 Log CFU/g of B. cereus mixed culture and nisin (100 IU/g and 500 IU/g). During the storage of beef jerky without nisin, the number of mesophilic bacteria and B. cereus increased unlikely for beef jerky with nisin. B. cereus started to grow after 3 d in 100 IU nisin/g treatment, and after 21 d in 500 IU nisin/g treatment. The results suggest that nisin could be an effective approach to extend the shelf-life, and improve the microbial safety of beef jerky, during storage. PMID:26761838

  13. Inhibition of Bacillus cereus Growth and Toxin Production by Bacillus amyloliquefaciens RD7-7 in Fermented Soybean Products.

    PubMed

    Eom, Jeong Seon; Choi, Hye Sun

    2016-01-01

    Bacillus cereus is a gram-positive, rod-shaped, spore-forming bacterium that has been isolated from contaminated fermented soybean food products and from the environment. B. cereus produces diarrheal and emetic toxins and has caused many outbreaks of foodborne diseases. In this study, we investigated whether B. amyloliquefaciens RD7-7, isolated from rice doenjang (Korean fermented soybean paste), a traditional Korean fermented soybean food, shows antimicrobial activity against B. cereus and regulates its toxin gene expression. B. amyloliquefaciens RD7-7 exhibited strong antibacterial activity against B. cereus and inhibited the expression of B. cereus toxin-related genes (groEL, nheA, nheC, and entFM). We also found that addition of water extracts of soybean and buckwheat soksungjang (Korean fermented soybean paste made in a short time) fermented with B. amyloliquefaciens RD7-7 significantly reduced the growth and toxin expression of B. cereus. These results indicate that B. amyloliquefaciens RD7-7 could be used to control B. cereus growth and toxin production in the fermented soybean food industry. Our findings also provide a basis for the development of candidate biological control agents against B. cereus to improve the safety of fermented soybean food products.

  14. Isolation of Bacillus cereus in the feces of healthy adults in Taipei City.

    PubMed

    Yea, C L; Lee, C L; Pan, T M; Horng, C B

    1994-08-01

    Fecal specimens from 100 healthy adults were collected and examined for the presence of Bacillus cereus which has been associated with 28% of the outbreaks of food poisoning on Taiwan within the last 3 years. Total isolate rate from these specimens was 8%. Variations in isolation rates were found not only in sexes, but also in different age-groups. Therefore, presence of B. cereus in the feces of healthy adults may be unpredictable and relate to foods consumed or to other factors. Obviously, an isolation rate of B. cereus as high as 30% during the outbreak investigation is still not a strong evidence to implicate this organism as an etiological agent.

  15. Disinfection of Preexisting Contamination of BACILLUS CEREUS on Stainless Steel when Using Glycoconjugate Solution

    NASA Astrophysics Data System (ADS)

    Pavan, Casey; Tarasenko, Olga

    2011-06-01

    Stainless steel is ubiquitous in our modern world, however it can become contaminated. This can endanger our health. The aim of our study is to disinfect stainless steel using Bacillus cereus as a model organism. Bacillus cereus is a microbe that is ubiquitous in nature, specifically soil. B. cereus is known to cause illness in humans. To prevent this, we propose to use a glycoconjugate solution (GS) for disinfection of stainless steel after it is contamination by B. cereus spores. In this study, two GS (9, 10) were tested for disinfection effectiveness on B. cereus spores on the surface of stainless steel foil (AISI-Series 200/300/400, THERMA-FOIL, Dayville, CT 0241). The disinfection rate of each GS was assessed by exposing the steel surface to B. cereus spores first and allowing them to settle for 24 hours. GS was used to treat the contaminated surface. The steel is washed and the resulting solution is plated on tryptic soy agar (TSA) plates. The GS with the fewest colony forming unit (CFU) formed on TSA is determined to be the most efficient during disinfection. Results show that both GS demonstrate a strong ability to disinfect B. cereus spores. Between the two, GS 9 shows the highest disinfection efficacy by killing approximately 99.5% of spores. This is a drastic improvement over the 0-20% disinfection of the control. Based on this we find that studied GS do have the capacity to act as a disinfectant on stainless steel.

  16. Disinfection of preexisting contamination of bacillus cereus on stainless steel when using glycoconjugate solution

    SciTech Connect

    Pavan, Casey; Tarasenko, Olga

    2011-06-10

    Stainless steel is ubiquitous in our modern world, however it can become contaminated. This can endanger our health. The aim of our study is to disinfect stainless steel using Bacillus cereus as a model organism. Bacillus cereus is a microbe that is ubiquitous in nature, specifically soil. B. cereus is known to cause illness in humans. To prevent this, we propose to use a glycoconjugate solution (GS) for disinfection of stainless steel after it is contamination by B. cereus spores. In this study, two GS (9, 10) were tested for disinfection effectiveness on B. cereus spores on the surface of stainless steel foil (AISI-Series 200/300/400, THERMA-FOIL, Dayville, CT 0241). The disinfection rate of each GS was assessed by exposing the steel surface to B. cereus spores first and allowing them to settle for 24 hours. GS was used to treat the contaminated surface. The steel is washed and the resulting solution is plated on tryptic soy agar (TSA) plates. The GS with the fewest colony forming unit (CFU) formed on TSA is determined to be the most efficient during disinfection. Results show that both GS demonstrate a strong ability to disinfect B. cereus spores. Between the two, GS 9 shows the highest disinfection efficacy by killing approximately 99.5% of spores. This is a drastic improvement over the 0-20% disinfection of the control. Based on this we find that studied GS do have the capacity to act as a disinfectant on stainless steel.

  17. Assessment of a new selective chromogenic Bacillus cereus group plating medium and use of enterobacterial autoinducer of growth for cultural identification of Bacillus species.

    PubMed

    Reissbrodt, R; Rassbach, A; Burghardt, B; Rienäcker, I; Mietke, H; Schleif, J; Tschäpe, H; Lyte, M; Williams, P H

    2004-08-01

    A new chromogenic Bacillus cereus group plating medium permits differentiation of pathogenic Bacillus species by colony morphology and color. Probiotic B. cereus mutants were distinguished from wild-type strains by their susceptibilities to penicillin G or cefazolin. The enterobacterial autoinducer increased the sensitivity and the speed of enrichment of B. cereus and B. anthracis spores in serum-supplemented minimal salts medium (based on the standard American Petroleum Institute medium) and buffered peptone water. PMID:15297532

  18. Cloning, Purification and Characterization of the Collagenase ColA Expressed by Bacillus cereus ATCC 14579

    PubMed Central

    Abfalter, Carmen M.; Schönauer, Esther; Ponnuraj, Karthe; Huemer, Markus; Gadermaier, Gabriele; Regl, Christof; Briza, Peter; Ferreira, Fatima; Huber, Christian G.; Brandstetter, Hans; Posselt, Gernot; Wessler, Silja

    2016-01-01

    Bacterial collagenases differ considerably in their structure and functions. The collagenases ColH and ColG from Clostridium histolyticum and ColA expressed by Clostridium perfringens are well-characterized collagenases that cleave triple-helical collagen, which were therefore termed as ´true´ collagenases. ColA from Bacillus cereus (B. cereus) has been added to the collection of true collagenases. However, the molecular characteristics of B. cereus ColA are less understood. In this study, we identified ColA as a secreted true collagenase from B. cereus ATCC 14579, which is transcriptionally controlled by the regulon phospholipase C regulator (PlcR). B. cereus ATCC 14579 ColA was cloned to express recombinant wildtype ColA (ColAwt) and mutated to a proteolytically inactive (ColAE501A) version. Recombinant ColAwt was tested for gelatinolytic and collagenolytic activities and ColAE501A was used for the production of a polyclonal anti-ColA antibody. Comparison of ColAwt activity with homologous proteases in additional strains of B. cereus sensu lato (B. cereus s.l.) and related clostridial collagenases revealed that B. cereus ATCC 14579 ColA is a highly active peptidolytic and collagenolytic protease. These findings could lead to a deeper insight into the function and mechanism of bacterial collagenases which are used in medical and biotechnological applications. PMID:27588686

  19. Prevalence and genetic diversity of Bacillus cereus in dried red pepper in Korea.

    PubMed

    Choo, Euiyoung; Jang, Sung Sik; Kim, Kyumson; Lee, Kwang-Geun; Heu, Sunggi; Ryu, Sangryeol

    2007-04-01

    Bacillus cereus is a foodborne spore-forming bacterial pathogen that is ubiquitous in the natural environment. Infections with this pathogen manifest as diarrheal or emetic types of food poisoning. In this study, 140 samples of dried red pepper purchased in Korea were assayed for the presence of B. cereus according to the U.S. Food and Drug Administration standard culture method. A multiplex PCR assay was developed for the rapid confirmation of B. cereus as an alternative to conventional biochemical confirmation tests. The genetic diversity of B. cereus isolates was investigated using a random amplified polymorphic DNA (RAPD) assay. B. cereus was found in 84.3% of the dried red pepper samples, with an average concentration of 1.9 x 10(4) CFU/g. B. cereus could be detected and distinguished from B. thuringiensis in the multiplex PCR assay by using the BCFW1 plus BCrevnew and the K3 plus K5 primer sets designed to detect the gyrB gene of B. cereus and B. thuringiensis and the cry gene of B. thuringiensis. A RAPD assay using the OPG 16 and MUP 3 primers was used to successfully distinguish among isolates, thus elucidating the genetic diversity of B. cereus isolates. The discriminating ability of the OPG 16 primer (142 types) was about threefold higher than that of MUP 3 (52 types) in the RAPD assay. PMID:17477261

  20. Cloning, Purification and Characterization of the Collagenase ColA Expressed by Bacillus cereus ATCC 14579.

    PubMed

    Abfalter, Carmen M; Schönauer, Esther; Ponnuraj, Karthe; Huemer, Markus; Gadermaier, Gabriele; Regl, Christof; Briza, Peter; Ferreira, Fatima; Huber, Christian G; Brandstetter, Hans; Posselt, Gernot; Wessler, Silja

    2016-01-01

    Bacterial collagenases differ considerably in their structure and functions. The collagenases ColH and ColG from Clostridium histolyticum and ColA expressed by Clostridium perfringens are well-characterized collagenases that cleave triple-helical collagen, which were therefore termed as ´true´ collagenases. ColA from Bacillus cereus (B. cereus) has been added to the collection of true collagenases. However, the molecular characteristics of B. cereus ColA are less understood. In this study, we identified ColA as a secreted true collagenase from B. cereus ATCC 14579, which is transcriptionally controlled by the regulon phospholipase C regulator (PlcR). B. cereus ATCC 14579 ColA was cloned to express recombinant wildtype ColA (ColAwt) and mutated to a proteolytically inactive (ColAE501A) version. Recombinant ColAwt was tested for gelatinolytic and collagenolytic activities and ColAE501A was used for the production of a polyclonal anti-ColA antibody. Comparison of ColAwt activity with homologous proteases in additional strains of B. cereus sensu lato (B. cereus s.l.) and related clostridial collagenases revealed that B. cereus ATCC 14579 ColA is a highly active peptidolytic and collagenolytic protease. These findings could lead to a deeper insight into the function and mechanism of bacterial collagenases which are used in medical and biotechnological applications. PMID:27588686

  1. Prevalence, genetic diversity, and antibiotic resistance of Bacillus cereus isolated from Korean fermented soybean products.

    PubMed

    Kim, Cheol-Woo; Cho, Seung-Hak; Kang, Suk-Ho; Park, Yong-Bae; Yoon, Mi-Hye; Lee, Jong-Bok; No, Wan-Seob; Kim, Jung-Beom

    2015-01-01

    Bacillus cereus contamination is a major food safety problem for Korean fermented soybean products, but few studies have assessed its potential to cause foodborne illness. The objectives of this study were to investigate the prevalence and characteristics of B. cereus isolated from Korean fermented soybean products. B. cereus was detected in 110 of 162 (67.9%) samples. The highest B. cereus frequency was observed in deonjang (68 of 93 samples, 73.1%) and cheonggukjang (18 of 25, 72.0%); however, nonhemolytic enterotoxin was detected only in 22 of 162 samples (13.6%). Although the tested B. cereus isolates showed diverse pulsotypes according to repetitive sequence-PCR banding patterns, they displayed similar antibiotic sensitivity spectra. The low frequency of enterotoxin detection suggests that the potential risk of B. cereus foodborne illness associated with Korean fermented soybean products is lower than generally presumed. However, considering the prevalence of B. cereus and the high content of fermented soybean products in the Korean diet, it is necessary to constantly monitor the level of contamination with B. cereus and its toxins in such Korean food products.

  2. Successful Treatment of Bacillus cereus Bacteremia in a Patient with Propionic Acidemia

    PubMed Central

    Aygun, Fatih; Cam, Halit

    2016-01-01

    Bacillus cereus can cause serious, life-threatening, systemic infections in immunocompromised patients. The ability of microorganism to form biofilm on biomedical devices can be responsible for catheter-related bloodstream infections. Other manifestations of severe disease are meningitis, endocarditis, osteomyelitis, and surgical and traumatic wound infections. The most common feature in true bacteremia caused by Bacillus is the presence of an intravascular catheter. Herein, we report a case of catheter-related bacteremia caused by B. cereus in a patient with propionic acidemia. PMID:27195164

  3. Successful Treatment of Bacillus cereus Bacteremia in a Patient with Propionic Acidemia.

    PubMed

    Aygun, Fatma Deniz; Aygun, Fatih; Cam, Halit

    2016-01-01

    Bacillus cereus can cause serious, life-threatening, systemic infections in immunocompromised patients. The ability of microorganism to form biofilm on biomedical devices can be responsible for catheter-related bloodstream infections. Other manifestations of severe disease are meningitis, endocarditis, osteomyelitis, and surgical and traumatic wound infections. The most common feature in true bacteremia caused by Bacillus is the presence of an intravascular catheter. Herein, we report a case of catheter-related bacteremia caused by B. cereus in a patient with propionic acidemia.

  4. Spore prevalence and toxigenicity of Bacillus cereus and Bacillus thuringiensis isolates from U.S. retail spices.

    PubMed

    Hariram, Upasana; Labbé, Ronald

    2015-03-01

    Recent incidents of foodborne illness associated with spices as the vehicle of transmission prompted this examination of U.S. retail spices with regard to Bacillus cereus. This study focused on the levels of aerobic-mesophilic spore-forming bacteria and B cereus spores associated with 247 retail spices purchased from five states in the United States. Samples contained a wide range of aerobic-mesophilic bacterial spore counts (< 200 to 8.3 × 10(7) CFU/g), with 19.1% of samples at levels above 10(5) CFU/g. For examples, paprika, allspice, peppercorns, and mixed spices had high levels of aerobic spores (> 10(7) CFU/g). Using a novel chromogenic agar, B. cereus and B. thuringiensis spores were isolated from 77 (31%) and 11 (4%) samples, respectively. Levels of B. cereus were <3 to 1,600 MPN/g. Eighty-eight percent of B. cereus isolates and 91% of B. thuringiensis isolates possessed at least one type of enterotoxin gene: HBL (hemolysin BL) or nonhemolytic enterotoxin (NHE). None of the 88 isolates obtained in this study possessed the emetic toxin gene (ces). Using commercially available immunological toxin detection kits, the toxigenicity of the isolates was confirmed. The NHE enterotoxin was expressed in 98% of B. cereus and 91% of B. thuringiensis isolates that possessed the responsible gene. HBL enterotoxin was detected in 87% of B. cereus and 100% of B. thuringiensis PCR-positive isolates. Fifty-two percent of B. cereus and 54% of B. thuringiensis isolates produced both enterotoxins. Ninety-seven percent of B. cereus isolates grew at 12°C, although only two isolates grew well at 9°C. The ability of these spice isolates to form spores, produce diarrheal toxins, and grow at moderately abusive temperatures makes retail spices an important potential vehicle for foodborne illness caused by B. cereus strains, in particular those that produce diarrheal toxins.

  5. Exoproteome analysis of a novel strain of Bacillus cereus implicated in disease resembling cutaneous anthrax.

    PubMed

    Ghosh, Neha; Goel, Ajay Kumar; Alam, Syed Imteyaz

    2014-03-01

    Bacillus cereus belongs to B. cereus sensu lato group, shared by six other related species including Bacillus anthracis. B. anthracis is the causative agent for serious illness affecting a wide range of animals as well as humans and is a category A Biological and Toxin Warfare (BTW) agent. Recent studies indicate that a Bacillus species other than B. anthracis can cause anthrax-like disease and role of anthrax virulence plasmids (pXO1 and pXO2) on the pathogenicity of B. cereus has been documented. B. cereus strain TF5 was isolated from the tissue fluid of cutaneous anthrax-like skin lesions of a human patient from an anthrax endemic area in India. The strain harboured a PA gene, however, presence of pXO1 or pXO2-like plasmids could not be ascertained using reported primers. Abundant exoproteome of the strain in the early stationary phase was elucidated using a 2-DE MS approach and compared with that from a reference B. cereus strain. Analysis of proteins showing qualitative and quantitative differences between the two strains indicated an altered regulatory mechanism and putative role of S-layer protein and sphingomyelinase in the pathogenesis of strain TF5. Phylogenetic analysis of the S-layer protein indicated close affiliation of the strain with anthracis-like B. cereus strains such as B. cereus var. anthracis strain CI; whereas sphingomyelinase exhibited specific relationship with all the strains of B. anthracis apart from that with anthracis-like B. cereus strains.

  6. Proteomic evidences for rex regulation of metabolism in toxin-producing Bacillus cereus ATCC 14579.

    PubMed

    Laouami, Sabrina; Clair, Géremy; Armengaud, Jean; Duport, Catherine

    2014-01-01

    The facultative anaerobe, Bacillus cereus, causes diarrheal diseases in humans. Its ability to deal with oxygen availability is recognized to be critical for pathogenesis. The B. cereus genome comprises a gene encoding a protein with high similarities to the redox regulator, Rex, which is a central regulator of anaerobic metabolism in Bacillus subtilis and other Gram-positive bacteria. Here, we showed that B. cereus rex is monocistronic and down-regulated in the absence of oxygen. The protein encoded by rex is an authentic Rex transcriptional factor since its DNA binding activity depends on the NADH/NAD+ ratio. Rex deletion compromised the ability of B. cereus to cope with external oxidative stress under anaerobiosis while increasing B. cereus resistance against such stress under aerobiosis. The deletion of rex affects anaerobic fermentative and aerobic respiratory metabolism of B. cereus by decreasing and increasing, respectively, the carbon flux through the NADH-recycling lactate pathway. We compared both the cellular proteome and exoproteome of the wild-type and Δrex cells using a high throughput shotgun label-free quantitation approach and identified proteins that are under control of Rex-mediated regulation. Proteomics data have been deposited to the ProteomeXchange with identifier PXD000886. The data suggest that Rex regulates both the cross-talk between metabolic pathways that produce NADH and NADPH and toxinogenesis, especially in oxic conditions.

  7. Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus Group occasionally associated with food poisoning.

    PubMed

    Guinebretière, Marie-Hélène; Auger, Sandrine; Galleron, Nathalie; Contzen, Matthias; De Sarrau, Benoit; De Buyser, Marie-Laure; Lamberet, Gilles; Fagerlund, Annette; Granum, Per Einar; Lereclus, Didier; De Vos, Paul; Nguyen-The, Christophe; Sorokin, Alexei

    2013-01-01

    An aerobic endospore-forming bacillus (NVH 391-98(T)) was isolated during a severe food poisoning outbreak in France in 1998, and four other similar strains have since been isolated, also mostly from food poisoning cases. Based on 16S rRNA gene sequence similarity, these strains were shown to belong to the Bacillus cereus Group (over 97% similarity with the current Group species) and phylogenetic distance from other validly described species of the genus Bacillus was less than 95%. Based on 16S rRNA gene sequence similarity and MLST data, these novel strains were shown to form a robust and well-separated cluster in the B. cereus Group, and constituted the most distant cluster from species of this Group. Major fatty acids (iso-C(15:0), C(16:0), iso-C(17:0), anteiso-C(15 : 0), iso-C(16:0), iso-C(13:0)) supported the affiliation of these strains to the genus Bacillus, and more specifically to the B. cereus Group. NVH 391-98(T) taxon was more specifically characterized by an abundance of iso-C(15:0) and low amounts of iso-C(13:0) compared with other members of the B. cereus Group. Genome similarity together with DNA-DNA hybridization values and physiological and biochemical tests made it possible to genotypically and phenotypically differentiate NVH 391-98(T) taxon from the six current B. cereus Group species. NVH 391-98(T) therefore represents a novel species, for which the name Bacillus cytotoxicus sp. nov. is proposed, with the type strain NVH 391-98(T) (= DSM 22905(T) = CIP 110041(T)).

  8. A case of intoxication due to a highly cytotoxic Bacillus cereus strain isolated from cooked chicken.

    PubMed

    López, Ana C; Minnaard, Jessica; Pérez, Pablo F; Alippi, Adriana M

    2015-04-01

    Outbreaks of Bacillus cereus infection/intoxication are not commonly reported because symptoms are often mild, and the disease is self-limiting. However, hypervirulent strains increase health risks. We report a case, which occurred in Argentina, of severe food poisoning illness on a healthy adult woman associated to B. cereus strain MVL2011. The studied strain was highly cytotoxic, showed high ability to detach Caco-2 cells and was positive for the hblA, hblB, and hblC genes of the hbl complex, bceT, entS and ces. As it is considered that B. cereus emetic cluster evolved from a panmictic population of diarrheal strains, B. cereus MVL2011 could constitute an intermediate strain between diarrheal and emetic strains.

  9. Involvement of alanine racemase in germination of Bacillus cereus spores lacking an intact exosporium.

    PubMed

    Venir, Elena; Del Torre, Manuela; Cunsolo, Vincenzo; Saletti, Rosaria; Musetti, Rita; Stecchini, Mara Lucia

    2014-02-01

    The L-alanine mediated germination of food isolated Bacillus cereus DSA 1 spores, which lacked an intact exosporium, increased in the presence of D-cycloserine (DCS), which is an alanine racemase (Alr) inhibitor, reflecting the activity of the Alr enzyme, capable of converting L-alanine to the germination inhibitor D-alanine. Proteomic analysis of the alkaline extracts of the spore proteins, which include exosporium and coat proteins, confirmed that Alr was present in the B. cereus DSA 1 spores and matched to that encoded by B. cereus ATCC 14579, whose spore germination was strongly affected by the block of conversion of L- to D-alanine. Unlike ATCC 14579 spores, L-alanine germination of B. cereus DSA 1 spores was not affected by the preincubation with DCS, suggesting a lack of restriction in the reactant accessibility.

  10. Incidence and characterization of Bacillus cereus isolated from traditional fermented meals in Nigeria.

    PubMed

    Oguntoyinbo, Folarin Anthony; Oni, Oluwajenyo Mathew

    2004-12-01

    The aim of this study was to examine the presence of Bacillus cereus in fermented meals used in food seasoning in Nigeria. The microbial profiles of iru and ogiri, two Nigerian fermented vegetable proteins, were examined for presence of B. cereus. In the 50 samples tested, B. cereus was detected in all the samples, with the level of detection ranging from log 6.3 to log 8.3 g(-1) sample. Phenotypic characteristics of the B. cereus isolates showed that all of them could not ferment many sugars, most especially mannitol, but they utilized propionate citrate as a source of carbon and grew anaerobically. The isolates do not produce gas from glucose but hydrolyzed starch, casein, and gelatin. API-50CHB combined with API-20E identified the isolates as B. cereus. The diarrheal enterotoxin was detected by a reversed passive latex agglutination test kit. Results showed no significant difference in toxin production between ogiri and iru B. cereus isolated from different sources; all the isolates also demonstrated positive hemolytic activity. The API-ZYM enzyme profile showed that the strains have poor hydrolytic enzyme potential; hence, their possible contributions to the fermentation of vegetable protein is doubtful. This study established the proliferation of B. cereus in fermented protein meal and determined the diarrheal toxin production potential of the organism.

  11. Genome Sequence of a Chromium-Reducing Strain, Bacillus cereus S612.

    PubMed

    Wang, Dongping; Boukhalfa, Hakim; Ware, Doug S; Reimus, Paul W; Daligault, Hajnalka E; Gleasner, Cheryl D; Johnson, Shannon L; Li, Po-E

    2015-01-01

    We report here the genome sequence of an effective chromium-reducing bacterium, Bacillus cereus strain S612. The size of the draft genome sequence is approximately 5.4 Mb, with a G+C content of 35%, and it is predicted to contain 5,450 protein-coding genes.

  12. Genome Sequence of Bacillus cereus Strain A1, an Efficient Starch-Utilizing Producer of Hydrogen.

    PubMed

    Zhang, Ting; Bao, Meidan; Wang, Yu; Su, Haijia; Tan, Tianwei

    2014-01-01

    Bacillus cereus strain A1 is a newly isolated hydrogen producer capable of utilizing bioresources and biowaste, such as starch and starch wastewater. Here, we present a 5.67-Mb assembly of the genome sequence of strain A1, which may provide insights into the molecular mechanism of hydrogen production from bioresources and biowaste.

  13. Genome Sequence of Bacillus cereus Phage vB_BceS-MY192.

    PubMed

    Yang, Yong; Zhan, Li; Chen, Jiancai; Zhang, Yunyi; Sun, Yi; Yang, Zhangnv; Jiang, Liping; Zhu, Hanping; Zhang, Yanjun; Lu, Yiyu; Mei, Lingling

    2016-01-01

    ITALIC! Bacillus cereusis an opportunistic foodborne pathogen. The phage vB_BceS-MY192 was isolated from ITALIC! B. cereus192 in a cooked rice sample. The temperate phage belongs to the ITALIC! Siphoviridaefamily, ITALIC! Caudoviralesorder. Here we announce the phage genome sequence and its annotation, which may expand the understanding of ITALIC! B. cereussiphophages.

  14. X-ray Crystal Structure of the B Component of Hemolysin BL from Bacillus cereus

    SciTech Connect

    Madegowda,M.; Eswaramoorthy, S.; Burley, S.; Swaminathan, S.

    2008-01-01

    Bacillus cereus Hemolysin BL enterotoxin, a ternary complex of three proteins, is the causative agent of food poisoning and requires all three components for virulence. The X-ray structure of the binding domain of HBL suggests that it may form a pore similar to other soluble channel forming proteins. A putative pathway of pore formation is discussed.

  15. Genome Sequence of a Chromium-Reducing Strain, Bacillus cereus S612

    PubMed Central

    Boukhalfa, Hakim; Ware, Doug S.; Reimus, Paul W.; Daligault, Hajnalka E.; Gleasner, Cheryl D.; Johnson, Shannon L.; Li, Po-E

    2015-01-01

    We report here the genome sequence of an effective chromium-reducing bacterium, Bacillus cereus strain S612. The size of the draft genome sequence is approximately 5.4 Mb, with a G+C content of 35%, and it is predicted to contain 5,450 protein-coding genes. PMID:26659672

  16. Characterization and comparative genomic analysis of bacteriophages infecting members of the Bacillus cereus group.

    PubMed

    Lee, Ju-Hoon; Shin, Hakdong; Ryu, Sangryeol

    2014-05-01

    The Bacillus cereus group phages infecting B. cereus, B. anthracis, and B. thuringiensis (Bt) have been studied at the molecular level and, recently, at the genomic level to control the pathogens B. cereus and B. anthracis and to prevent phage contamination of the natural insect pesticide Bt. A comparative phylogenetic analysis has revealed three different major phage groups with different morphologies (Myoviridae for group I, Siphoviridae for group II, and Tectiviridae for group III), genome size (group I > group II > group III), and lifestyle (virulent for group I and temperate for group II and III). A subsequent phage genome comparison using a dot plot analysis showed that phages in each group are highly homologous, substantiating the grouping of B. cereus phages. Endolysin is a host lysis protein that contains two conserved domains: a cell-wall-binding domain (CBD) and an enzymatic activity domain (EAD). In B. cereus sensu lato phage group I, four different endolysin groups have been detected, according to combinations of two types of CBD and four types of EAD. Group I phages have two copies of tail lysins and one copy of endolysin, but the functions of the tail lysins are still unknown. In the B. cereus sensu lato phage group II, the B. anthracis phages have been studied and applied for typing and rapid detection of pathogenic host strains. In the B. cereus sensu lato phage group III, the B. thuringiensis phages Bam35 and GIL01 have been studied to understand phage entry and lytic switch regulation mechanisms. In this review, we suggest that further study of the B. cereus group phages would be useful for various phage applications, such as biocontrol, typing, and rapid detection of the pathogens B. cereus and B. anthracis and for the prevention of phage contamination of the natural insect pesticide Bt.

  17. The effect of selected factors on the survival of Bacillus cereus in the human gastrointestinal tract.

    PubMed

    Berthold-Pluta, Anna; Pluta, Antoni; Garbowska, Monika

    2015-05-01

    Bacillus cereus is a Gram-positive bacterium widely distributed in soil and vegetation. This bacterial species can also contaminate raw or processed foods. Pathogenic B. cereus strains can cause a range of infections in humans, as well as food poisoning of an emetic (intoxication) or diarrheal type (toxico-infection). Toxico-infections are due to the action of the Hbl toxin, Nhe toxin, and cytotoxin K produced by the microorganism in the gastrointestinal tract. This occurs once the spores or vegetative B. cereus cells survive the pH barrier of the stomach and reach the small intestine where they produce toxins in sufficient amounts. This article discusses the effect of various factors on the survival of B. cereus in the gastrointestinal tract, including low pH and the presence of digestive enzymes in the stomach, bile salts in the small intestine, and indigenous microflora in the lower parts of the gastrointestinal tract. Additional aspects also reported to affect B. cereus survival and virulence in the gastrointestinal tract include the interaction of the spores and vegetative cells with enterocytes. In vitro studies revealed that both vegetative B. cereus and spores can survive in the gastrointestinal tract suggesting that the biological form of the microorganism may have less influence on the occurrence of the symptoms of infection than was once believed. It is most likely the interaction between the pathogen and enterocytes that is necessary for the diarrheal form of B. cereus food poisoning to develop. The adhesion of B. cereus to the intestinal epithelium allows the bacterium to grow and produce enterotoxins in the proximity of the epithelium. Recent studies suggest that the human intestinal microbiota inhibits the growth of vegetative B. cereus cells considerably. PMID:25794697

  18. The effect of selected factors on the survival of Bacillus cereus in the human gastrointestinal tract.

    PubMed

    Berthold-Pluta, Anna; Pluta, Antoni; Garbowska, Monika

    2015-05-01

    Bacillus cereus is a Gram-positive bacterium widely distributed in soil and vegetation. This bacterial species can also contaminate raw or processed foods. Pathogenic B. cereus strains can cause a range of infections in humans, as well as food poisoning of an emetic (intoxication) or diarrheal type (toxico-infection). Toxico-infections are due to the action of the Hbl toxin, Nhe toxin, and cytotoxin K produced by the microorganism in the gastrointestinal tract. This occurs once the spores or vegetative B. cereus cells survive the pH barrier of the stomach and reach the small intestine where they produce toxins in sufficient amounts. This article discusses the effect of various factors on the survival of B. cereus in the gastrointestinal tract, including low pH and the presence of digestive enzymes in the stomach, bile salts in the small intestine, and indigenous microflora in the lower parts of the gastrointestinal tract. Additional aspects also reported to affect B. cereus survival and virulence in the gastrointestinal tract include the interaction of the spores and vegetative cells with enterocytes. In vitro studies revealed that both vegetative B. cereus and spores can survive in the gastrointestinal tract suggesting that the biological form of the microorganism may have less influence on the occurrence of the symptoms of infection than was once believed. It is most likely the interaction between the pathogen and enterocytes that is necessary for the diarrheal form of B. cereus food poisoning to develop. The adhesion of B. cereus to the intestinal epithelium allows the bacterium to grow and produce enterotoxins in the proximity of the epithelium. Recent studies suggest that the human intestinal microbiota inhibits the growth of vegetative B. cereus cells considerably.

  19. MALDI-TOF MS portrait of emetic and non-emetic Bacillus cereus group members.

    PubMed

    Fiedoruk, Krzysztof; Daniluk, Tamara; Fiodor, Angelika; Drewicka, Ewa; Buczynska, Katarzyna; Leszczynska, Katarzyna; Bideshi, Dennis Ken; Swiecicka, Izabela

    2016-08-01

    The number of foodborne intoxications caused by emetic Bacillus cereus isolates has increased significantly. As such, rapid and reliable methods to identify emetic strains appear to be clinically relevant. In this study, intact cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to differentiate emetic and non-emetic bacilli. The phyloproteomic clustering of 34 B. cereus emetic and 88 non-emetic isolates classified as B. cereus, Bacillus thuringiensis, Bacillus weihenstephanensis, and Bacillus mycoides, showed (i) a clear separation of both groups at a similarity level of 43%, and (ii) a high relatedness among the emetic isolates (similarity of 78%). Specifically, 83 mass peak classes were recognized in the spectral window range between m/z 4000 and 12 000 that were tentatively assigned to 41 protein variants based on a bioinformatic approach. Mass variation between the emetic and the non-emetic subsets was recorded for 27 of them, including ten ribosomal subunit proteins, for which inter-strain polymorphism was confirmed by gene sequencing. Additional peaks were assigned to other proteins such as small acid soluble proteins, cold shock proteins and hypothetical proteins, e.g., carbohydrate kinase. Moreover, the results were supported by in silico analysis of the biomarkers in 259 members of B. cereus group, including Bacillus anthracis, based on their whole-genome sequences. In conclusion, the proteomic profiling by MALDI-TOF MS is a promising and rapid method for pre-screening B. cereus to identify medically relevant isolates and for epidemiologic purposes.

  20. Bacillus cereus phage typing as an epidemiological tool in outbreaks of food poisoning.

    PubMed

    Ahmed, R; Sankar-Mistry, P; Jackson, S; Ackermann, H W; Kasatiya, S S

    1995-03-01

    Bacillus cereus is responsible for an increasing number of food poisoning cases. By using 12 bacteriophages isolated from sewage, a typing scheme for B. cereus isolates from outbreaks or sporadic cases of food poisoning was developed. The phages belonged to three morphotypes. Ten phages with contractile tails and icosahedral heads were members of the Myoviridae family, and two phages with noncontractile tails belonged to the Siphoviridae family. Phage 11 represented a new species. It had an isometric head and a very long contractile tail with long wavy tail fibers and was one of the largest viruses known. The vast majority of 166 B. cereus strains (161, or 97%) isolated from food poisoning cases were typeable. Of 146 strains isolated from 18 outbreaks, 142 (97%) could be divided into 17 phage types. A good correlation, on the order of 80 to 100%, between phage types of strains isolated from suspected foods and those of strains isolated from stools of symptomatic patients was observed. Most Bacillus thuringiensis strains were also typeable, providing further evidence of the close relatedness of B. cereus and B. thuringiensis. This phage typing scheme can be a valuable epidemiological tool in tracing the origins of food poisoning caused by B. cereus.

  1. Development of a double-antibody sandwich ELISA for rapid detection of Bacillus Cereus in food.

    PubMed

    Zhu, Longjiao; He, Jing; Cao, Xiaohan; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2016-01-01

    Bacillus cereus is increasingly recognized as one of the major causes of food poisoning in the industrialized world. In this paper, we describe a sensitive double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) that was developed for rapid detection of B. cereus in food to minimize the risk of contamination. The polyclonal antibody (pAb) and monoclonal antibodies (mAbs) specific to B. cereus were generated from rabbit antiserum and mouse ascites, respectively, using the octanoic acid/saturated ammonium sulfate precipitation method and protein A-sepharose columns. IgG-isotype mAbs were specially developed to undergo a novel peripheral multiple sites immunization for rapid gain of hybridomas and a subtractive screen was used to eliminate cross reactivity with closely related species such as Bacillus thuringiensis, B. subtilis, B. licheniformis and B. perfringens. The linear detection range of the method was approximately 1 × 10(4)-2.8 × 10(6) cells/mL with a detection limit (LOD) of 0.9 × 10(3) cells/mL. The assay was able to detect B. cereus when the samples were prepared in meat with various pathogens. The newly developed analytical method provides a rapid method to sensitively detect B. cereus in food specimens. PMID:26976753

  2. Development of a double-antibody sandwich ELISA for rapid detection of Bacillus Cereus in food.

    PubMed

    Zhu, Longjiao; He, Jing; Cao, Xiaohan; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2016-01-01

    Bacillus cereus is increasingly recognized as one of the major causes of food poisoning in the industrialized world. In this paper, we describe a sensitive double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) that was developed for rapid detection of B. cereus in food to minimize the risk of contamination. The polyclonal antibody (pAb) and monoclonal antibodies (mAbs) specific to B. cereus were generated from rabbit antiserum and mouse ascites, respectively, using the octanoic acid/saturated ammonium sulfate precipitation method and protein A-sepharose columns. IgG-isotype mAbs were specially developed to undergo a novel peripheral multiple sites immunization for rapid gain of hybridomas and a subtractive screen was used to eliminate cross reactivity with closely related species such as Bacillus thuringiensis, B. subtilis, B. licheniformis and B. perfringens. The linear detection range of the method was approximately 1 × 10(4)-2.8 × 10(6) cells/mL with a detection limit (LOD) of 0.9 × 10(3) cells/mL. The assay was able to detect B. cereus when the samples were prepared in meat with various pathogens. The newly developed analytical method provides a rapid method to sensitively detect B. cereus in food specimens.

  3. Structure-Activity Relationships of Bacillus cereus and Bacillus anthracis Dihydrofolate Reductase: toward the Identification of New Potent Drug Leads

    PubMed Central

    Joska, Tammy M.; Anderson, Amy C.

    2006-01-01

    New and improved therapeutics are needed for Bacillus anthracis, the etiological agent of anthrax. To date, antimicrobial agents have not been developed against the well-validated target dihydrofolate reductase (DHFR). In order to address whether DHFR inhibitors could have potential use as clinical agents against Bacillus, 27 compounds were screened against this enzyme from Bacillus cereus, which is identical to the enzyme from B. anthracis at the active site. Several 2,4-diamino-5-deazapteridine compounds exhibit submicromolar 50% inhibitory concentrations (IC50s). Four of the inhibitors displaying potency in vitro were tested in vivo and showed a marked growth inhibition of B. cereus; the most potent of these has MIC50 and minimum bactericidal concentrations at which 50% are killed of 1.6 μg/ml and 0.09 μg/ml, respectively. In order to illustrate structure-activity relationships for the classes of inhibitors tested, each of the 27 inhibitors was docked into homology models of the B. cereus and B. anthracis DHFR proteins, allowing the development of a rationale for the inhibition profiles. A combination of favorable interactions with the diaminopyrimidine and substituted phenyl rings explains the low IC50 values of potent inhibitors; steric interactions explain higher IC50 values. These experiments show that DHFR is a reasonable antimicrobial target for Bacillus anthracis and that there is a class of inhibitors that possess sufficient potency and antibacterial activity to suggest further development. PMID:17005826

  4. Functional characterization and phylogenetic analysis of acquired and intrinsic macrolide phosphotransferases in the Bacillus cereus group.

    PubMed

    Wang, Chao; Sui, Zhihai; Leclercq, Sébastien Olivier; Zhang, Gang; Zhao, Meilin; Chen, Weiqi; Feng, Jie

    2015-05-01

    The Bacillus cereus group is composed of Gram-positive spore-forming bacteria of clinical and ecological importance. More than 200 B. cereus group isolates have been sequenced. However, there are few reports of B. cereus group antibiotic resistance genes. This study identified two functional classes of macrolide phosphotransferases (Mphs) in the B. cereus group. Cluster A Mphs inactivate 14- and 15-membered macrolides while Cluster B Mphs inactivate 14-, 15- and 16-membered compounds. The genomic region surrounding the Cluster B Mph gene is related to various plasmid sequences, suggesting that this gene is an acquired resistance gene. In contrast, the Cluster A Mph gene is located in a chromosomal region conserved among all B. cereus group isolates, and data indicated that it was acquired early in the evolution of the group. Therefore, the Cluster A gene can be considered an intrinsic resistance gene. However, the gene itself is not present in all strains and our comparative genomics analyses showed that it is exchanged among strains of the B. cereus group by the mean of homologous recombination. These results provide an alternative mechanism to intrinsic resistance.

  5. Prevalence, genetic diversity, and host range of tectiviruses among members of the Bacillus cereus group.

    PubMed

    Gillis, Annika; Mahillon, Jacques

    2014-07-01

    GIL01, Bam35, GIL16, AP50, and Wip1 are tectiviruses preying on the Bacillus cereus group. Despite the significant contributions of phages in different biological processes, little is known about the dealings taking place between tectiviruses and their Gram-positive bacterial hosts. Therefore, this work focuses on characterizing the interactions between tectiviruses and the B. cereus group by assessing their occurrence and genetic diversity and evaluating their host range. To study the occurrence of tectiviruses in the B. cereus group, 2,000 isolates were evaluated using primers designed to be specific to two variable regions detected in previously described elements. PCR and propagation tests revealed that tectivirus-like elements occurred in less than 3% of the isolates. Regardless of this limited distribution, several novel tectiviruses were found, and partial DNA sequencing indicated that a greater diversity exists within the family Tectiviridae. Analyses of the selected variable regions, along with their host range, showed that tectiviruses in the B. cereus group can be clustered mainly into two different groups: the ones infecting B. anthracis and those isolated from other B. cereus group members. In order to address the host range of some novel tectiviruses, 120 strains were tested for sensitivity. The results showed that all the tested tectiviruses produced lysis in at least one B. cereus sensu lato strain. Moreover, no simple relationship between the infection patterns of the tectiviruses and their diversity was found.

  6. Characterization of Bacillus cereus isolates from local dairy farms in China.

    PubMed

    Cui, Yifang; Liu, Xiaoye; Dietrich, Richard; Märtlbauer, Erwin; Cao, Jie; Ding, Shuangyang; Zhu, Kui

    2016-06-01

    Bacillus cereus is an important opportunistic foodborne pathogen. In the present work, a total of 306 milk and environmental samples were collected from 10 local dairy farms in Beijing, China. Of the 92 B. cereus-like isolates, 88 and 4 belonged to B. cereus and B. thuringiensis, respectively. The prevalence of B. cereus isolates in bedding, feces, feed, liquid manure and raw milk was 93.3%, 78.9%, 41.2%, 100.0% and 9.8%, respectively. Three main toxin genes nhe, hbl and ces were detected with rates of 100.0%, 78.3% and 1.1%, but no strain harbored cytK1 The production of Nhe, Hbl and cereulide could be confirmed by specific monoclonal antibodies-based enzyme immunoassays in 94.6%, 70.7% and 1.1% of all isolates, respectively. Cytotoxicity tests were used to further corroborate the results of genetic and protein-based assays; 91.3% of the isolates showed cytotoxicity to Vero cells. All isolates were tested for antimicrobial resistance against 17 antibiotics. All isolates were resistant to lincomycin, retapamulin, tiamulin and valnemulin, while two strains were susceptible to ampicillin and ceftiofur. A total of 16 isolated strains were resistant to tetracycline. Since spores of B. cereus are not inactivated during manufacturing of most milk products, contamination of milk with B. cereus on the farm level may represent a potential hazard, particularly with respect to emetic toxin-producing strains.

  7. Prevalence, Genetic Diversity, and Host Range of Tectiviruses among Members of the Bacillus cereus Group

    PubMed Central

    Gillis, Annika

    2014-01-01

    GIL01, Bam35, GIL16, AP50, and Wip1 are tectiviruses preying on the Bacillus cereus group. Despite the significant contributions of phages in different biological processes, little is known about the dealings taking place between tectiviruses and their Gram-positive bacterial hosts. Therefore, this work focuses on characterizing the interactions between tectiviruses and the B. cereus group by assessing their occurrence and genetic diversity and evaluating their host range. To study the occurrence of tectiviruses in the B. cereus group, 2,000 isolates were evaluated using primers designed to be specific to two variable regions detected in previously described elements. PCR and propagation tests revealed that tectivirus-like elements occurred in less than 3% of the isolates. Regardless of this limited distribution, several novel tectiviruses were found, and partial DNA sequencing indicated that a greater diversity exists within the family Tectiviridae. Analyses of the selected variable regions, along with their host range, showed that tectiviruses in the B. cereus group can be clustered mainly into two different groups: the ones infecting B. anthracis and those isolated from other B. cereus group members. In order to address the host range of some novel tectiviruses, 120 strains were tested for sensitivity. The results showed that all the tested tectiviruses produced lysis in at least one B. cereus sensu lato strain. Moreover, no simple relationship between the infection patterns of the tectiviruses and their diversity was found. PMID:24795369

  8. Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine

    PubMed Central

    Gao, Huijuan; Qi, Gaofu; Yin, Rong; Zhang, Hongchun; Li, Chenggang; Zhao, Xiuyun

    2016-01-01

    Plant-parasitic nematodes cause serious crop losses worldwidely. This study intended to discover the antagonistic mechanism of Bacillus cereus strain S2 against Meloidogyne incognita. Treatment with B. cereus strain S2 resulted in a mortality of 77.89% to Caenorhabditis elegans (a model organism) and 90.96% to M. incognita. In pot experiment, control efficiency of B. cereus S2 culture or supernatants were 81.36% and 67.42% towards M. incognita, respectively. In field experiment, control efficiency was 58.97% towards M. incognita. Nematicidal substances were isolated from culture supernatant of B. cereus S2 by polarity gradient extraction, silica gel column chromatography and HPLC. Two nematicidal compounds were identified as C16 sphingosine and phytosphingosine by LC-MS. The median lethal concentration of sphingosine was determined as 0.64 μg/ml. Sphingosine could obviously inhibit reproduction of C. elegans, with an inhibition rate of 42.72% for 24 h. After treatment with sphingosine, ROS was induced in intestinal tract, and genital area disappeared in nematode. Furthermore, B. cereus S2 could induce systemic resistance in tomato, and enhance activity of defense-related enzymes for biocontrol of M. incognita. This study demonstrates the nematicidal activity of B. cereus and its product sphingosine, as well provides a possibility for biocontrol of M. incognita. PMID:27338781

  9. Isolation of Bacillus cereus Group from the Fecal Material of Endangered Wood Turtles.

    PubMed

    Nfor, Nancy Ngvumbo; Lapin, Carly N; McLaughlin, Richard William

    2015-10-01

    Members of the Bacillus cereus group are opportunistic human pathogens. They can be found in a broad range of foods. Diarrheal food poisoning and/or emetic type syndromes can result from eating contaminated food. In this study, seven B. cereus group members were isolated from the fecal material of Wood Turtles (Glyptemys insculpta). The isolates were then assessed for the presence of enterotoxin genes (nheA, entFM, hblC, and cytK) using PCR. The most prevalent is the nonhemolytic enterotoxin gene which was found in all seven isolates. PMID:26175111

  10. Isolation of Bacillus cereus Group from the Fecal Material of Endangered Wood Turtles.

    PubMed

    Nfor, Nancy Ngvumbo; Lapin, Carly N; McLaughlin, Richard William

    2015-10-01

    Members of the Bacillus cereus group are opportunistic human pathogens. They can be found in a broad range of foods. Diarrheal food poisoning and/or emetic type syndromes can result from eating contaminated food. In this study, seven B. cereus group members were isolated from the fecal material of Wood Turtles (Glyptemys insculpta). The isolates were then assessed for the presence of enterotoxin genes (nheA, entFM, hblC, and cytK) using PCR. The most prevalent is the nonhemolytic enterotoxin gene which was found in all seven isolates.

  11. Draft Genome Sequence of Bacillus cereus Strain BcFL2013, a Clinical Isolate Similar to G9241.

    PubMed

    Gee, Jay E; Marston, Chung K; Sammons, Scott A; Burroughs, Mark A; Hoffmaster, Alex R

    2014-01-01

    Bacillus cereus strains, such as G9241, causing anthrax-like illnesses have recently been discovered. We report the genome sequence of a clinical strain, B. cereus BcFL2013, which is similar to G9241, recovered from a patient in Florida.

  12. Genome characteristics of a novel phage from Bacillus thuringiensis showing high similarity with phage from Bacillus cereus.

    PubMed

    Yuan, Yihui; Gao, Meiying; Wu, Dandan; Liu, Pengming; Wu, Yan

    2012-01-01

    Bacillus thuringiensis is an important entomopathogenic bacterium belongs to the Bacillus cereus group, which also includes B. anthracis and B. cereus. Several genomes of phages originating from this group had been sequenced, but no genome of Siphoviridae phage from B. thuringiensis has been reported. We recently sequenced and analyzed the genome of a novel phage, BtCS33, from a B. thuringiensis strain, subsp. kurstaki CS33, and compared the gneome of this phage to other phages of the B. cereus group. BtCS33 was the first Siphoviridae phage among the sequenced B. thuringiensis phages. It produced small, turbid plaques on bacterial plates and had a narrow host range. BtCS33 possessed a linear, double-stranded DNA genome of 41,992 bp with 57 putative open reading frames (ORFs). It had a typical genome structure consisting of three modules: the "late" region, the "lysogeny-lysis" region and the "early" region. BtCS33 exhibited high similarity with several phages, B. cereus phage Wβ and some variants of Wβ, in genome organization and the amino acid sequences of structural proteins. There were two ORFs, ORF22 and ORF35, in the genome of BtCS33 that were also found in the genomes of B. cereus phage Wβ and may be involved in regulating sporulation of the host cell. Based on these observations and analysis of phylogenetic trees, we deduced that B. thuringiensis phage BtCS33 and B. cereus phage Wβ may have a common distant ancestor.

  13. Genome Characteristics of a Novel Phage from Bacillus thuringiensis Showing High Similarity with Phage from Bacillus cereus

    PubMed Central

    Yuan, Yihui; Gao, Meiying; Wu, Dandan; Liu, Pengming; Wu, Yan

    2012-01-01

    Bacillus thuringiensis is an important entomopathogenic bacterium belongs to the Bacillus cereus group, which also includes B. anthracis and B. cereus. Several genomes of phages originating from this group had been sequenced, but no genome of Siphoviridae phage from B. thuringiensis has been reported. We recently sequenced and analyzed the genome of a novel phage, BtCS33, from a B. thuringiensis strain, subsp. kurstaki CS33, and compared the gneome of this phage to other phages of the B. cereus group. BtCS33 was the first Siphoviridae phage among the sequenced B. thuringiensis phages. It produced small, turbid plaques on bacterial plates and had a narrow host range. BtCS33 possessed a linear, double-stranded DNA genome of 41,992 bp with 57 putative open reading frames (ORFs). It had a typical genome structure consisting of three modules: the “late” region, the “lysogeny-lysis” region and the “early” region. BtCS33 exhibited high similarity with several phages, B. cereus phage Wβ and some variants of Wβ, in genome organization and the amino acid sequences of structural proteins. There were two ORFs, ORF22 and ORF35, in the genome of BtCS33 that were also found in the genomes of B. cereus phage Wβ and may be involved in regulating sporulation of the host cell. Based on these observations and analysis of phylogenetic trees, we deduced that B. thuringiensis phage BtCS33 and B. cereus phage Wβ may have a common distant ancestor. PMID:22649540

  14. Association of Genotyping of Bacillus cereus with Clinical Features of Post-Traumatic Endophthalmitis.

    PubMed

    Hong, Meng; Wang, Qian; Tang, Zhide; Wang, Youpei; Gu, Yunfeng; Lou, Yongliang; Zheng, Meiqin

    2016-01-01

    Bacillus cereus is the second most frequent cause of post-traumatic bacterial endophthalmitis. Although genotyping of B. cereus associated with gastrointestinal infections has been reported, little is known about the B. cereus clinical isolates associated with post-traumatic endophthalmitis. This is largely due to the limited number of clinical strains available isolated from infected tissues of patients with post-traumatic endophthalmitis. In this study, we report successful isolation of twenty-four B. cereus strains from individual patients with different disease severity of post-traumatic endophthalmitis. Phylogenetic analysis showed that all strains could be categorized into three genotypes (GTI, GTII and GTIII) and the clinical score showed significant differences among these groups. We then further performed genotyping using the vrrA gene, and evaluated possible correlation of genotype with the clinical features of B. cereus-caused post-traumatic endophthalmitis, and with the prognosis of infection by conducting follow-up with patients for up to 2 months. We found that the disease of onset and final vision acuity were significantly different among the three groups. These results suggested that the vrrA gene may play a significant role in the pathogenesis of endophthalmitis, and genotyping of B. cereus has the potential for predicting clinical manifestation and prognosis of endophthalmitis. To the best of our knowledge, this is the first report of isolation of large numbers of clinical isolates of B. cereus from patients with endophthalmitis. This work sets the foundation for future investigation of the pathogenesis endophthalmitis caused by B. cereus infection.

  15. Development of a high-resolution melting-based approach for efficient differentiation among Bacillus cereus group isolates.

    PubMed

    Antolinos, Vera; Fernández, Pablo S; Ros-Chumillas, María; Periago, Paula M; Weiss, Julia

    2012-09-01

    Strains belonging to Bacillus cereus Group include six different species, among which are Bacillus thuringiensis, Bacillus weihenstephanensis, and Bacillus cereus sensu stricto, a causative agent of food poisoning. Sequence of the panC-housekeeping gene is used for B. cereus Group affiliation to seven major phylogenetic groups (I-VII) with different ecological niches and variations in thermal growth range and spore heat resistance of B. cereus Group microorganisms varies among phylogenetic groups. We assigned a selection of B. cereus sensu stricto strains related to food poisoning from the Spanish cultivar Collection (Valencia) to Group IV strains based on panC gene sequence. Thermal inactivation assays revealed variability of spore heat resistance within these Group IV strains. Adequate food sanitizing treatments therefore require fast and reliable identification of particular strains. In the present study, feasibility of genotyping via high-resolution melting (HRM) analysis was examined. HRM analysis of amplified polymorphic 16S-23 intergenic spacer region (ISR) region proved to be discriminatory for B. cereus sensu stricto strain typing, while two other polymorphic regions within the bacterial rRNA operon allowed differentiation between Bacillus species, demonstrating its applicability for discrimination on the species and strain level within B. cereus Group.

  16. Genome organization of temperate phage 11143 from emetic Bacillus cereus NCTC11143.

    PubMed

    Lee, Young-Duck; Park, Jong-Hyun

    2012-05-01

    A temperate phage was isolated from emetic Bacillus cereus NCTC 11143 by mitomycin C and characterized by transmission electron microscopy and DNA and protein analyses. Whole genome sequencing of Bacillus phage 11143 was performed by GS-FLX. The phage has a dsDNA genome of 39,077 bp and a 35% G+C content. Bioinformatic analysis of the phage genome revealed 49 putative ORFs involved in replication, morphogenesis, DNA packaging, lysogeny, and host lysis. Bacillus phage 11143 could be classified as a member of the Siphoviridae family by morphology and genome structure. Genomic comparisons at the DNA and protein levels revealed homologous genetic modules with patterns and morphogenesis proteins similar to those of other Bacillus phages. Thus, Bacillus phages might have a mosaic genetic relationship.

  17. Bacteriostatic Mode of Action of Trypsin-Hydrolyzed Palm Kernel Expeller Peptide Against Bacillus cereus.

    PubMed

    Tan, Yen Nee; Matthews, Karl R; Di, Rong; Ayob, Mohd Khan

    2012-03-01

    Palm kernel expeller (PKE), the by-product derived from the palm kernel oil milling industry, is commonly added to ruminant feed as a source of protein. Recent research has demonstrated that the enzymatically hydrolyzed protein is inhibitory to spore-forming bacteria including Bacillus cereus. The trypsin-hydrolyzed PKE peptide appears to disrupt the membrane integrity and inhibit the intracellular macromolecule metabolism of B. cereus. The addition of the PKE peptide (350 and 700 μg/ml) to B. cereus cultures triggered the efflux of K(+) and caused the depletion of the intracellular ATP. However, no proportional increase in cell's extracellular ATP was observed. Analysis of the biosynthesis of macromolecules demonstrated that RNA was affected by the PKE peptide. Results of this study suggest that the PKE peptide is bacteriostatic interfering with membrane integrity and forming membrane pores permitting the efflux of K(+) and interferes with intracellular biopolymer synthesis.

  18. Erratum to: Seasonal trend and clinical presentation of Bacillus cereus bloodstream infection: association with summer and indwelling catheter.

    PubMed

    Kato, K; Matsumura, Y; Yamamoto, M; Nagao, M; Ito, Y; Takakura, S; Ichiyama, S

    2016-05-01

    Bacillus cereus, an opportunistic pathogen, can cause fatal infection. However, B. cereus bloodstream infections (BSIs) have not been well characterised. From 2008 to 2013, B. cereus isolates from all of the specimens and patients with B. cereus BSIs were identified. Environmental samples were collected to detect B. cereus contamination. We also characterised the clinical presentation of B. cereus BSI through analyses of risk factors for BSI and mortality. A total of 143 clinical B. cereus isolates was detected. Fifty-one patients with nosocomial infections were diagnosed as B. cereus BSI, and 37 had contaminated blood cultures. The number of B. cereus isolates and BSI patients was significantly greater from June to September than from January to April (3.4 vs. 1.0 per month and 1.4 vs. 0.2, respectively). All BSIs were nosocomial and related to central or peripheral vascular catheter. Urinary catheter [odds ratio (OR) 6.93, 95 % confidence interval (CI) 2.40-20.0] was the independent risk factor associated with BSI patients when compared to patients regarded as contaminated. In-hospital mortality among BSI patients was 20 % and was associated with urinary catheter (OR 12.3, 95 % CI 0.67-225, p=0.045) and higher Charlson index (OR 1.99, 95 % CI 1.26-3.12). The number of B. cereus isolates and BSI increased during summer. Inpatients with indwelling vascular or urinary catheters should be carefully monitored for potential B. cereus BSIs. PMID:27010814

  19. Identification and characterization of a novel marine Bacillus cereus for mosquito control.

    PubMed

    Poopathi, Subbiah; Mani, C; Thirugnanasambantham, K; Praba, V Lakshmi; Ahangar, Niyaz Ahmad; Balagangadharan, K

    2014-01-01

    Entomopathogenic bacteria to control mosquitoes are a promising environmentally friendly alternative to synthetic pesticides. In the present study, a novel mosquitocidal bacterium was isolated from marine soil collected from east coastal areas at Pondicherry (India). 16S rRNA gene sequence alignment depicted that this isolate belonged to Bacillus cereus VCRC-B520 (NCBI: KC-119192). Biochemical studies on bacterial growth, biomass, and toxin production have revealed that this strain could possibly be helpful in the production of a biopesticide in mosquito control. Toxicity assay with B. cereus against mosquito larvae has shown that the filariasis vector, Culex quinquefasciatus, is more susceptible than the other two species (Anopheles stephensi and Aedes aegypti). The LC50 and LC90 values for C. quinquefasciatus were 0.30 and 2.21 mg/L, respectively. No effect of B. cereus was found on nontargeted organisms. SDS-PAGE analysis and protein purification result from the cell mass of B. cereus have shown that a well-perceptible polypeptide was the dependable factor (85 kDa) for mosquitocidal action. Protein characterization (M/S MALDI-TOF) has shown that it is an endotoxin-specific insecticidal protein, namely "Cry4Aa". Phylogenetic analyses of 16S rDNA gene sequence from this marine isolate have revealed the presence of homology among closely related Bacillus strains. Therefore, considerable interest has been shown on the identification of a potential mosquitocidal bacterium from marine environment (B. cereus), which was not reported earlier in view of the current scenario of the rapid development of resistance to Bacillus sphaericus in mosquito vector control program.

  20. Anthrax Toxin-Expressing Bacillus cereus Isolated from an Anthrax-Like Eschar

    PubMed Central

    Marston, Chung K.; Ibrahim, Hisham; Lee, Philip; Churchwell, George; Gumke, Megan; Stanek, Danielle; Gee, Jay E.; Boyer, Anne E.; Gallegos-Candela, Maribel; Barr, John R.; Li, Han; Boulay, Darbi; Cronin, Li; Quinn, Conrad P.; Hoffmaster, Alex R.

    2016-01-01

    Bacillus cereus isolates have been described harboring Bacillus anthracis toxin genes, most notably B. cereus G9241, and capable of causing severe and fatal pneumonias. This report describes the characterization of a B. cereus isolate, BcFL2013, associated with a naturally occurring cutaneous lesion resembling an anthrax eschar. Similar to G9241, BcFL2013 is positive for the B. anthracis pXO1 toxin genes, has a multi-locus sequence type of 78, and a pagA sequence type of 9. Whole genome sequencing confirms the similarity to G9241. In addition to the chromosome having an average nucleotide identity of 99.98% when compared to G9241, BcFL2013 harbors three plasmids with varying homology to the G9241 plasmids (pBCXO1, pBC210 and pBFH_1). This is also the first report to include serologic testing of patient specimens associated with this type of B. cereus infection which resulted in the detection of anthrax lethal factor toxemia, a quantifiable serum antibody response to protective antigen (PA), and lethal toxin neutralization activity. PMID:27257909

  1. Anthrax Toxin-Expressing Bacillus cereus Isolated from an Anthrax-Like Eschar.

    PubMed

    Marston, Chung K; Ibrahim, Hisham; Lee, Philip; Churchwell, George; Gumke, Megan; Stanek, Danielle; Gee, Jay E; Boyer, Anne E; Gallegos-Candela, Maribel; Barr, John R; Li, Han; Boulay, Darbi; Cronin, Li; Quinn, Conrad P; Hoffmaster, Alex R

    2016-01-01

    Bacillus cereus isolates have been described harboring Bacillus anthracis toxin genes, most notably B. cereus G9241, and capable of causing severe and fatal pneumonias. This report describes the characterization of a B. cereus isolate, BcFL2013, associated with a naturally occurring cutaneous lesion resembling an anthrax eschar. Similar to G9241, BcFL2013 is positive for the B. anthracis pXO1 toxin genes, has a multi-locus sequence type of 78, and a pagA sequence type of 9. Whole genome sequencing confirms the similarity to G9241. In addition to the chromosome having an average nucleotide identity of 99.98% when compared to G9241, BcFL2013 harbors three plasmids with varying homology to the G9241 plasmids (pBCXO1, pBC210 and pBFH_1). This is also the first report to include serologic testing of patient specimens associated with this type of B. cereus infection which resulted in the detection of anthrax lethal factor toxemia, a quantifiable serum antibody response to protective antigen (PA), and lethal toxin neutralization activity. PMID:27257909

  2. Characterization of the complete zwittermicin A biosynthesis gene cluster from Bacillus cereus.

    PubMed

    Kevany, Brian M; Rasko, David A; Thomas, Michael G

    2009-02-01

    Bacillus cereus UW85 produces the linear aminopolyol antibiotic zwittermicin A (ZmA). This antibiotic has diverse biological activities, such as suppression of disease in plants caused by protists, inhibition of fungal and bacterial growth, and amplification of the insecticidal activity of the toxin protein from Bacillus thuringiensis. ZmA has an unusual chemical structure that includes a d amino acid and ethanolamine and glycolyl moieties, as well as having an unusual terminal amide that is generated from the modification of the nonproteinogenic amino acid beta-ureidoalanine. The diverse biological activities and unusual structure of ZmA have stimulated our efforts to understand how this antibiotic is biosynthesized. Here, we present the identification of the complete ZmA biosynthesis gene cluster from B. cereus UW85. A nearly identical gene cluster is identified on a plasmid from B. cereus AH1134, and we show that this strain is also capable of producing ZmA. Bioinformatics and biochemical analyses of the ZmA biosynthesis enzymes strongly suggest that ZmA is initially biosynthesized as part of a larger metabolite that is processed twice, resulting in the formation of ZmA and two additional metabolites. Additionally, we propose that the biosynthesis gene cluster for the production of the amino sugar kanosamine is contained within the ZmA biosynthesis gene cluster in B. cereus UW85.

  3. Anthrax Toxin-Expressing Bacillus cereus Isolated from an Anthrax-Like Eschar.

    PubMed

    Marston, Chung K; Ibrahim, Hisham; Lee, Philip; Churchwell, George; Gumke, Megan; Stanek, Danielle; Gee, Jay E; Boyer, Anne E; Gallegos-Candela, Maribel; Barr, John R; Li, Han; Boulay, Darbi; Cronin, Li; Quinn, Conrad P; Hoffmaster, Alex R

    2016-01-01

    Bacillus cereus isolates have been described harboring Bacillus anthracis toxin genes, most notably B. cereus G9241, and capable of causing severe and fatal pneumonias. This report describes the characterization of a B. cereus isolate, BcFL2013, associated with a naturally occurring cutaneous lesion resembling an anthrax eschar. Similar to G9241, BcFL2013 is positive for the B. anthracis pXO1 toxin genes, has a multi-locus sequence type of 78, and a pagA sequence type of 9. Whole genome sequencing confirms the similarity to G9241. In addition to the chromosome having an average nucleotide identity of 99.98% when compared to G9241, BcFL2013 harbors three plasmids with varying homology to the G9241 plasmids (pBCXO1, pBC210 and pBFH_1). This is also the first report to include serologic testing of patient specimens associated with this type of B. cereus infection which resulted in the detection of anthrax lethal factor toxemia, a quantifiable serum antibody response to protective antigen (PA), and lethal toxin neutralization activity.

  4. Method of measuring Bacillus anthracis spores in the presence of copious amounts of Bacillus thuringiensis and Bacillus cereus.

    PubMed

    Campbell, Gossett A; Mutharasan, Raj

    2007-02-01

    A sensitive and reliable method for the detection of Bacillus anthracis (BA; Sterne strain 7702) spores in presence of large amounts of Bacillus thuringiensis (BT) and Bacillus cereus (BC) is presented based on a novel PZT-anchored piezoelectric excited millimeter-sized cantilever (PAPEMC) sensor with a sensing area of 1.5 mm2. Antibody (anti-BA) specific to BA spores was immobilized on the sensing area and exposed to various samples of BA, BT, and BC containing the same concentration of BA at 333 spores/mL, and the concentration of BT + BC was varied in concentration ratios of (BA:BT + BC) 0:1, 1:0, 1:1, 1:10, 1:100, and 1:1000. In each case, the sensor responded with an exponential decrease in resonant frequency and the steady-state frequency changes reached were 14 +/- 31 (n = 11), 2742 +/- 38 (n = 3), 3053 +/- 19 (n = 2), 2777 +/- 26 (n = 2), 2953 +/- 24 (n = 2), and 3105 +/- 27 (n = 2) Hz, respectively, in 0, 27, 45, 63, 154, and 219 min. The bound BA spores were released in each experiment, and the sensor response was nearly identical to the frequency change during attachment. These results suggest that the transport of BA spores to the antibody immobilized surface was hindered by the presence of other Bacillus species. The observed binding rate constant, based on the Langmuir kinetic model, was determined to be 0.15 min-1. A hindrance factor (alpha) is defined to describe the reduced attachment rate in the presence of BT + BC and found to increase exponentially with BT and BC concentration. The hindrance factor increased from 3.52 at 333 BT + BC spores/mL to 11.04 at 3.33 x 105 BT + BC spores/mL, suggesting that alpha is a strong function of BT and BC concentration. The significance of these results is that anti-BA functionalized PEMC sensors are highly selective to Bacillus anthracis spores and the presence of other Bacillus species, in large amounts, does not prevent binding but impedes BA transport to the sensor.

  5. The Pathogenomic Sequence Analysis of B. cereus and B.thuringiensis Isolates Closely Related to Bacillus anthracis

    SciTech Connect

    Han, Cliff S.; Xie, Gary; Challacombe, Jean F.; Altherr, MichaelR.; Smriti, B.; Bruce, David; Campbell, Connie S.; Campbell, Mary L.; Chen, Jin; Chertkov, Olga; Cleland, Cathy; Dimitrijevic-Bussod, M.; Doggett, Norman A.; Fawcett, John J.; Glavina, Tijana; Goodwin, Lynne A.; Hill, Karen K.; Hitchcock, Penny; Jackson, Paul J.; Keim, Paul; Kewalramani, Avinash Ramesh; Longmire, Jon; Lucas, Susan; Malfatti,Stephanie; McMurry, Kim; Meincke, Linda J.; Misra, Monica; Moseman,Bernice L.; Mundt, Mark; Munk, A. Christine; Okinaka, Richard T.; Parson-Quintana, B.; Reilly, Lee P.; Richardson, Paul; Robinson, DonnaL.; Rubin, Eddy; Saunders, Elizabeth; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Ticknor, Lawrence O.; Wills, Patti L.; Gilna, Payl; Brettin, Thomas S.

    2005-08-18

    The sequencing and analysis of two close relatives of Bacillus anthracis are reported. AFLP analysis of over 300 isolates of B.cereus, B. thuringiensis and B. anthracis identified two isolates as being very closely related to B. anthracis. One, a B. cereus, BcE33L, was isolated from a zebra carcass in Nambia; the second, a B. thuringiensis, 97-27, was isolated from a necrotic human wound. The B. cereus appears to be the closest anthracis relative sequenced to date. A core genome of over 3,900 genes was compiled for the Bacillus cereus group, including Banthracis. Comparative analysis of these two genomes with other members of the B. cereus group provides insight into the evolutionary relationships among these organisms. Evidence is presented that differential regulation modulates virulence, rather than simple acquisition of virulence factors. These genome sequences provide insight into the molecular mechanisms contributing to the host range and virulence of this group of organisms.

  6. Elucidation of enterotoxigenic Bacillus cereus outbreaks in Austria by complementary epidemiological and microbiological investigations, 2013.

    PubMed

    Schmid, Daniela; Rademacher, Corinna; Kanitz, Elisabeth Eva; Frenzel, Elrike; Simons, Erica; Allerberger, Franz; Ehling-Schulz, Monika

    2016-09-01

    Identifying Bacillus cereus as the causative agent of a foodborne outbreak still poses a challenge. We report on the epidemiological and microbiological investigation of three outbreaks of food poisoning (A, B, and C) in Austria in 2013. A total of 44% among 32 hotel guests (A), 22% among 63 employees (B) and 29% among 362 residents of a rehab clinic (C) fell sick immediately after meal consumption. B. cereus isolated from left overs or retained samples from related foods were characterized by toxin gene profiling, and molecular typing using panC sequencing and M13-PCR typing (in outbreak A and C). We identified two B. cereus strains in outbreak A, and six B. cereus strains, each in outbreak B and C; we also found Staphylococcus aureus and staphylococcal enterotoxins in outbreak A. The panC sequence based phylogenetic affiliation of the B. cereus strains, together with findings of the retrospective cohort analyses, helped determining their etiological role. Consumption of a mashed potatoes dish in outbreak A (RR: ∞), a pancake strips soup in outbreak B (RR 13.0; 95% CI 1.8-93.0) and for outbreak C of a fruit salad (RR 1.50; 95% CI 1.09-2.00), deer ragout (RR: 1.99; 95% CI 1.23-3.22) and a cranberry/pear (RR 2.46; 95% CI 1.50-4.03)were associated with increased risk of falling sick. An enterotoxigenic strain affiliated to the phylogenetic group with the highest risk of food poisoning was isolated from the crème spinach and the strawberry buttermilk, and also from the stool samples of the one B. cereus positive outbreak case-patient, who ate both. Our investigation of three food poisoning outbreaks illustrates the added value of a combined approach by using epidemiological, microbiological and genotyping methods in identifying the likely outbreak sources and the etiological B. cereus strains. PMID:27257745

  7. Association of Genotyping of Bacillus cereus with Clinical Features of Post-Traumatic Endophthalmitis

    PubMed Central

    Hong, Meng; Wang, Qian; Tang, Zhide; Wang, Youpei; Gu, Yunfeng; Lou, Yongliang; Zheng, Meiqin

    2016-01-01

    Bacillus cereus is the second most frequent cause of post-traumatic bacterial endophthalmitis. Although genotyping of B. cereus associated with gastrointestinal infections has been reported, little is known about the B. cereus clinical isolates associated with post-traumatic endophthalmitis. This is largely due to the limited number of clinical strains available isolated from infected tissues of patients with post-traumatic endophthalmitis. In this study, we report successful isolation of twenty-four B. cereus strains from individual patients with different disease severity of post-traumatic endophthalmitis. Phylogenetic analysis showed that all strains could be categorized into three genotypes (GTI, GTII and GTIII) and the clinical score showed significant differences among these groups. We then further performed genotyping using the vrrA gene, and evaluated possible correlation of genotype with the clinical features of B. cereus–caused post-traumatic endophthalmitis, and with the prognosis of infection by conducting follow-up with patients for up to 2 months. We found that the disease of onset and final vision acuity were significantly different among the three groups. These results suggested that the vrrA gene may play a significant role in the pathogenesis of endophthalmitis, and genotyping of B. cereus has the potential for predicting clinical manifestation and prognosis of endophthalmitis. To the best of our knowledge, this is the first report of isolation of large numbers of clinical isolates of B. cereus from patients with endophthalmitis. This work sets the foundation for future investigation of the pathogenesis endophthalmitis caused by B. cereus infection. PMID:26886446

  8. Eco-Genetic Structure of Bacillus cereus sensu lato Populations from Different Environments in Northeastern Poland

    PubMed Central

    Drewnowska, Justyna M.; Swiecicka, Izabela

    2013-01-01

    The Bacillus cereus group, which includes entomopathogens and etiologic agents of foodborne illness or anthrax, persists in various environments. The basis of their ecological diversification remains largely undescribed. Here we present the genetic structure and phylogeny of 273 soil B. cereus s.l. isolates from diverse habitats in northeastern Poland, with samplings acquired from the last European natural forest (Białowieża National Park), the largest marshes in Europe (Biebrza National Park), and a farm. In multi-locus sequence typing (MLST), despite negative selection in seven housekeeping loci, the isolates exhibited high genetic diversity (325 alleles), mostly resulting from mutation events, and represented 148 sequencing types (131 STs new and 17 STs already described) grouped into 19 complexes corresponding with bacterial clones, and 80 singletons. Phylogenetic analyses showed that 74% of the isolates clustered with B. cereus s.l. environmental references (clade III), while only 11 and 15%, respectively, grouped with isolates of clinical origin (clade I), and B. cereus ATCC 14579 and reference B. thuringiensis (clade II). Predominantly within clade III, we found lineages adapted to low temperature (thermal ecotypes), while putative toxigenic isolates (cytK-positive) were scattered in all clades of the marsh and farm samplings. The occurrence of 92% of STs in bacilli originating from one habitat, and the description of new STs for 78% of the isolates, strongly indicate the existence of specific genotypes within the natural B. cereus s.l. populations. In contrast to the human-associated B. cereus s.l. that exhibit a significant level of similarity, the environmental isolates appear more complex. Thus we propose dividing B. cereus s.l. into two groups, the first including environmental isolates, and the second covering those that are of clinical relevance. PMID:24312460

  9. Elucidation of enterotoxigenic Bacillus cereus outbreaks in Austria by complementary epidemiological and microbiological investigations, 2013.

    PubMed

    Schmid, Daniela; Rademacher, Corinna; Kanitz, Elisabeth Eva; Frenzel, Elrike; Simons, Erica; Allerberger, Franz; Ehling-Schulz, Monika

    2016-09-01

    Identifying Bacillus cereus as the causative agent of a foodborne outbreak still poses a challenge. We report on the epidemiological and microbiological investigation of three outbreaks of food poisoning (A, B, and C) in Austria in 2013. A total of 44% among 32 hotel guests (A), 22% among 63 employees (B) and 29% among 362 residents of a rehab clinic (C) fell sick immediately after meal consumption. B. cereus isolated from left overs or retained samples from related foods were characterized by toxin gene profiling, and molecular typing using panC sequencing and M13-PCR typing (in outbreak A and C). We identified two B. cereus strains in outbreak A, and six B. cereus strains, each in outbreak B and C; we also found Staphylococcus aureus and staphylococcal enterotoxins in outbreak A. The panC sequence based phylogenetic affiliation of the B. cereus strains, together with findings of the retrospective cohort analyses, helped determining their etiological role. Consumption of a mashed potatoes dish in outbreak A (RR: ∞), a pancake strips soup in outbreak B (RR 13.0; 95% CI 1.8-93.0) and for outbreak C of a fruit salad (RR 1.50; 95% CI 1.09-2.00), deer ragout (RR: 1.99; 95% CI 1.23-3.22) and a cranberry/pear (RR 2.46; 95% CI 1.50-4.03)were associated with increased risk of falling sick. An enterotoxigenic strain affiliated to the phylogenetic group with the highest risk of food poisoning was isolated from the crème spinach and the strawberry buttermilk, and also from the stool samples of the one B. cereus positive outbreak case-patient, who ate both. Our investigation of three food poisoning outbreaks illustrates the added value of a combined approach by using epidemiological, microbiological and genotyping methods in identifying the likely outbreak sources and the etiological B. cereus strains.

  10. Complete genome sequence and phylogenetic position of the Bacillus cereus group phage JBP901.

    PubMed

    Asare, Paul Tetteh; Ryu, Sangryeol; Kim, Kwang-Pyo

    2015-09-01

    Bacteriophage JBP901, isolated from fermented food, is specific for Bacillus cereus group species and exhibits a broad host spectrum among a large number of B. cereus isolates. Genome sequence analysis revealed a linear 159,492-bp genome with overall G+C content of 39.7 mol%, and 201 ORFs. The presence of a putative methylase, the large number of tRNAs, and the large number of nucleotide-metabolism- and replication-related genes in JBP901 reflects its broad lytic capacity. Most of the ORFs showed a high degree of similarity to Bcp1, Bc431v3 and BCP78, and various comparative genomics analyses also consistently clustered JBP901 with orphan (unclassified) Bacillus phages in the subfamily Spounavirinae of the family Myoviridae, supporting the presence of a distinguishable group in the subfamily.

  11. [Isolation, identification and characterization of Bacillus cereus in the dairy industry].

    PubMed

    te Giffel, M C; Beumer, R R

    1998-11-01

    In order to determine the major contamination sources of milk with (psychrotrophic) Bacillus cereus, the incidence of vegetative cells and spores of B. cereus on dairy farms, at two dairy processing plants and in pasteurized milk in household refrigerators was investigated. On dairy farms the major contamination sources were soil and faeces. In winter, when the cows were housed, used bedding probably also participates in this contamination route. The udder will be contaminated, finally resulting in the presence of B. cereus in raw milk. The organism could be detected in 35% of the raw milk samples analyzed. During processing, an increase in the percentage of positive samples was observed. These results suggest that B. cereus can be introduced via sources other than raw milk; equipment may play an important role in this. Biochemical and molecular typing showed that selection of strains takes place in the milk production chain. It was demonstrated that some types were found in the raw milk, during processing and in the end products, indicating that raw milk is an important source of contamination. Other types could only be detected after the pasteurization step in the production process supporting the assumption that additional contamination occurs during processing. If stored under proper conditions, maximum storage temperature 7 degrees C, and consumed within the expiration date, the levels of B. cereus in pasteurized milk will, in general, not exceed 10(5) per ml and cause no problems for healthy adults.

  12. Proteome data to explore the impact of pBClin15 on Bacillus cereus ATCC 14579.

    PubMed

    Madeira, Jean-Paul; Alpha-Bazin, Béatrice; Armengaud, Jean; Omer, Hélène; Duport, Catherine

    2016-09-01

    This data article reports changes in the cellular and exoproteome of B. cereus cured from pBClin15.Time-course changes of proteins were assessed by high-throughput nanoLC-MS/MS. We report all the peptides and proteins identified and quantified in B. cereus with and without pBClin15. Proteins were classified into functional groups using the information available in the KEGG classification and we reported their abundance in term of normalized spectral abundance factor. The repertoire of experimentally confirmed proteins of B. cereus presented here is the largest ever reported, and provides new insights into the interplay between pBClin15 and its host B. cereus ATCC 14579. The data reported here is related to a published shotgun proteomics analysis regarding the role of pBClin15, "Deciphering the interactions between the Bacillus cereus linear plasmid, pBClin15, and its host by high-throughput comparative proteomics" Madeira et al. [1]. All the associated mass spectrometry data have been deposited in the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository (http://www.ebi.ac.uk/pride/), with the dataset identifier PRIDE: PXD001568, PRIDE: PXD002788 and PRIDE: PXD002789. PMID:27547804

  13. Comparative proteomic analysis of experimental evolution of the Bacillus cereus-Ketogulonicigenium vulgare co-culture.

    PubMed

    Ma, Qian; Zou, Yang; Lv, Yajin; Song, Hao; Yuan, Ying-Jin

    2014-01-01

    The microbial co-culture system composing of Ketogulonicigenium vulgare and Bacillus cereus was widely adopted in industry for the production of 2-keto-gulonic acid (2-KGA), the precursor of vitamin C. We found serial subcultivation of the co-culture could enhance the yield of 2-KGA by 16% in comparison to that of the ancestral co-culture. To elucidate the evolutionary dynamics and interaction mechanisms of the two microbes, we performed iTRAQ-based quantitative proteomic analyses of the pure cultures of K. vulgare, B. cereus and their co-culture during serial subcultivation. Hierarchy cluster analyses of the proteomic data showed that the expression level of a number of crucial proteins associated with sorbose conversion and oligopeptide transport was significantly enhanced by the experimental evolution. In particular, the expression level of sorbose/sorbosone dehydrogenase was enhanced in the evolved K. vulgare, while the expression level of InhA and the transport efficiency of oligopeptides were increased in the evolved B. cereus. The decreased sporulating protein expression and increased peptide transporter expression observed in evolved B. cereus, together with the increased amino acids synthesis in evolved K. vulgare suggested that serial subcultivation result in enhanced synergistic cooperation between K. vulgare and B. cereus, enabling an increased production of 2-KGA. PMID:24619085

  14. Anaerobic benzene biodegradation by a pure bacterial culture of Bacillus cereus under nitrate reducing conditions.

    PubMed

    Dou, Junfeng; Ding, Aizhong; Liu, Xiang; Du, Yongchao; Deng, Dong; Wang, Jinsheng

    2010-01-01

    A pure culture using benzene as sole carbon and energy sources was isolated by screening procedure from gasoline contaminated soil. The analysis of the 16S rDNA gene sequence, morpholpgical and physiological characteristics showed that the isolated strain was a member of genus Bacillus cereus. The biodegradation performance of benzene by B. cereus was evaluated, and the results showed that benzene could be efficiently biodegraded when the initial benzene concentration was below 150 mg/L. The metabolites of anaerobic nitrate-dependent benzene oxidation by strain B. cereus were identified as phenol and benzoate. The results of substrate interaction between binary combinations for benzene, phenol and benzoate showed that the simultaneous presence of benzene stimulated the degradation of benzoate, whereas the addition of benzene inhibited the degradation of phenol. Benzene degradation by B. cereus was enhanced by the addition of phenol and benzoate, the enhanced effects were more pronounced at higher concentration. To our knowledge, this is the first report that the isolated bacterial culture of B. cereus can efficiently degraded benzene under nitrate reducing conditions.

  15. Draft Genome Sequence of New Bacillus cereus Strain tsu1.

    PubMed

    Li, Hui; Zhou, Suping; Johnson, Terrance; Vercruysse, Koen; Ropelewski, Alexander J; Thannhauser, Theodore W

    2014-01-01

    This paper reports the draft genome sequence of new Bacillus cereus strain tsu1, isolated on an agar-cellulose plate. The draft genome sequence is 5.81 Mb, revealing 5,673 coding sequences. It contains genes for cellulose-degradation and biosynthesis pathways of polyhydroxybutyrate (PHB) and 8 rRNA genes (5S, 16S, and 23S).

  16. Genome Sequence of a Chromium-Reducing Strain, Bacillus cereus S612

    SciTech Connect

    Wang, Dongping; Boukhalfa, Hakim; Ware, Doug S.; Reimus, Paul W.; Daligault, Hajnalka E.; Gleasner, Cheryl D.; Johnson, Shannon L.; Li, Po-E

    2015-12-10

    We report here the genome sequence of an effective chromium-reducing bacterium,Bacillus cereusstrain S612. We found that the size of the draft genome sequence is approximately 5.4 Mb, with a G+C content of 35%, and it is predicted to contain 5,450 protein-coding genes.

  17. Symposium on microbiology update: old friends and new enemies. Bacillus cereus.

    PubMed

    Jackson, S G

    1991-01-01

    Bacillus cereus is an environmentally ubiquitous, Gram-positive, spore-forming bacillus responsible for 2 distinct foodborne disease syndromes as well as other manifestations of pathogenicity. The rapid-onset, "emetic," foodborne-disease syndrome is associated with an emetic toxin; the delayed-onset, "diarrheal" syndrome is associated with elaboration of enterotoxin. The majority of methods for detection of these toxins have relied on in vivo testing. More recent work on purification of enterotoxin facilitated the development of a rapid, specific, fluorescent immunodot assay and a tissue culture screening assay for enterotoxin. Work on characterization and detection of emetic toxin is ongoing.

  18. Continuous Cultivation for Apparent Optimization of Defined Media for Cellulomonas sp. and Bacillus cereus

    PubMed Central

    Summers, R. J.; Boudreaux, D. P.; Srinivasan, V. R.

    1979-01-01

    Steady-state continuous culture was used to optimize lean chemically defined media for a Cellulomonas sp. and Bacillus cereus strain T. Both organisms were extremely sensitive to variations in trace-metal concentrations. However, medium optimization by this technique proved rapid, and multifactor screening was easily conducted by using a minimum of instrumentation. The optimized media supported critical dilution rates of 0.571 and 0.467 h−1 for Cellulomonas and Bacillus, respectively. These values approximated maximum growth rate values observed in batch culture. PMID:16345417

  19. Alternative modes of biofilm formation by plant-associated Bacillus cereus.

    PubMed

    Gao, Tantan; Foulston, Lucy; Chai, Yunrong; Wang, Qi; Losick, Richard

    2015-06-01

    The ability to form multicellular communities known as biofilms is a widespread adaptive behavior of bacteria. Members of the Bacillus group of bacteria have been found to form biofilms on plant roots, where they protect against pathogens and promote growth. In the case of the model bacterium Bacillus subtilis the genetic pathway controlling biofilm formation and the production of an extracellular matrix is relatively well understood. However, it is unclear whether other members of this genus utilize similar mechanisms. We determined that a plant-associated strain of Bacillus cereus (905) can form biofilms by two seemingly independent pathways. In one mode involving the formation of floating biofilms (pellicles) B. cereus 905 appears to rely on orthologs of many of the genes known to be important for B. subtilis biofilm formation. We report that B. cereus 905 also forms submerged, surface-associated biofilms and in a manner that resembles biofilm formation by the pathogen Staphylococcus aureus. This alternative mode, which does not rely on B. subtilis-like genes for pellicle formation, takes place under conditions of glucose fermentation and depends on a drop in the pH of the medium.

  20. Effects of Electrolyzed Oxidizing Water on Inactivation of Bacillus subtilis and Bacillus cereus Spores in Suspension and on Carriers.

    PubMed

    Zhang, Chunling; Li, Baoming; Jadeja, Ravirajsinh; Hung, Yen-Con

    2016-01-01

    Spores of some Bacillus species are responsible for food spoilage and foodborne disease. These spores are highly resistant to various interventions and cooking processes. In this study, the sporicidal efficacy of acidic electrolyzed oxidizing (EO) water (AEW) and slightly acidic EO water (SAEW) with available chlorine concentration (ACC) of 40, 60, 80, 100, and 120 mg/L and treatment time for 1, 2, 3, 4, 5, and 6 min were tested on Bacillus subtilis and Bacillus cereus spores in suspension and on carrier with or without organics. The reduction of spore significantly increased with increasing ACC and treatment time (P < 0.05). Nondetectable level of B. cereus spore in suspension occurred within 2 min after exposure to both EO waters containing 120 mg/L ACC, while only SAEW at 120 mg/L and 2 min treatment achieved >6 log reductions of B. subtilis spore. Both types of EO water with ACC of 60 mg/L and 6 min treatment achieved a reduction of B. subtilis and B. cereus spores to nondetectable level. EO water with ACC of 80 mg/L and treatment time of 3 min on carrier test without organics addition resulted in reductions of B. subtilis spore to nondetectable level. But, addition of 0.3% organics on carrier decreased the inactivation effect of EO water. This study indicated that EO water was highly effective in inactivation of B. subtilis and B. cereus spores in suspension or on carrier, and therefore, rendered it as a promising disinfectant to be applied in food industry. PMID:26642381

  1. Effects of Electrolyzed Oxidizing Water on Inactivation of Bacillus subtilis and Bacillus cereus Spores in Suspension and on Carriers.

    PubMed

    Zhang, Chunling; Li, Baoming; Jadeja, Ravirajsinh; Hung, Yen-Con

    2016-01-01

    Spores of some Bacillus species are responsible for food spoilage and foodborne disease. These spores are highly resistant to various interventions and cooking processes. In this study, the sporicidal efficacy of acidic electrolyzed oxidizing (EO) water (AEW) and slightly acidic EO water (SAEW) with available chlorine concentration (ACC) of 40, 60, 80, 100, and 120 mg/L and treatment time for 1, 2, 3, 4, 5, and 6 min were tested on Bacillus subtilis and Bacillus cereus spores in suspension and on carrier with or without organics. The reduction of spore significantly increased with increasing ACC and treatment time (P < 0.05). Nondetectable level of B. cereus spore in suspension occurred within 2 min after exposure to both EO waters containing 120 mg/L ACC, while only SAEW at 120 mg/L and 2 min treatment achieved >6 log reductions of B. subtilis spore. Both types of EO water with ACC of 60 mg/L and 6 min treatment achieved a reduction of B. subtilis and B. cereus spores to nondetectable level. EO water with ACC of 80 mg/L and treatment time of 3 min on carrier test without organics addition resulted in reductions of B. subtilis spore to nondetectable level. But, addition of 0.3% organics on carrier decreased the inactivation effect of EO water. This study indicated that EO water was highly effective in inactivation of B. subtilis and B. cereus spores in suspension or on carrier, and therefore, rendered it as a promising disinfectant to be applied in food industry.

  2. Enterotoxins and emetic toxins production by Bacillus cereus and other species of Bacillus isolated from Soumbala and Bikalga, African alkaline fermented food condiments.

    PubMed

    Ouoba, Labia Irene I; Thorsen, Line; Varnam, Alan H

    2008-06-10

    The ability of various species of Bacillus from fermented seeds of Parkia biglobosa known as African locust bean (Soumbala) and fermented seeds of Hibiscus sabdariffa (Bikalga) was investigated. The study included screening of the isolates by haemolysis on blood agar, detection of toxins in broth and during the fermentation of African locust bean using the Bacillus cereus Enterotoxin Reverse Passive Latex Agglutination test kit (BCET-RPLA) and the Bacillus Diarrhoeal Enterotoxin Visual Immunoassay (BDEVIA). Detection of genes encoding cytotoxin K (CytK), haemolysin BL (Hbl A, Hbl C, Hbl D), non-hemolytic enterotoxin (NheA, NheB, NheC) and EM1 specific of emetic toxin producers was also investigated using PCR with single pair and multiplex primers. Of 41 isolates, 29 Bacillus belonging to the species of B. cereus, Bacillus subtilis, Bacillus licheniformis and Bacillus pumilus showed haemolysis on blood agar. Using RPLA, enterotoxin production was detected for three isolates of B. cereus in broth and all B. cereus (9) in fermented seeds. Using BDEVIA, enterotoxin production was detected in broth as well as in fermented seeds for all B. cereus isolates. None of the isolates belonging to the other Bacillus species was able to produce enterotoxins either by RPLA or BDEVIA. Nhe genes were detected in all B. cereus while Hbl and CytK genes were detected respectively in five and six B. cereus strains. A weak presence of Hbl (A, D) and CytK genes was detected in two isolates of B. subtilis and one of B. licheniformis but results were inconsistent, especially for Hbl genes. The emetic specific gene fragment EM1 was not detected in any of the isolates studied.

  3. Extending the Bacillus cereus group genomics to putative food-borne pathogens of different toxicity.

    PubMed

    Lapidus, Alla; Goltsman, Eugene; Auger, Sandrine; Galleron, Nathalie; Ségurens, Béatrice; Dossat, Carole; Land, Miriam L; Broussolle, Veronique; Brillard, Julien; Guinebretiere, Marie-Helene; Sanchis, Vincent; Nguen-The, Christophe; Lereclus, Didier; Richardson, Paul; Wincker, Patrick; Weissenbach, Jean; Ehrlich, S Dusko; Sorokin, Alexei

    2008-01-30

    The Bacillus cereus group represents sporulating soil bacteria containing pathogenic strains which may cause diarrheic or emetic food poisoning outbreaks. Multiple locus sequence typing revealed a presence in natural samples of these bacteria of about 30 clonal complexes. Application of genomic methods to this group was however biased due to the major interest for representatives closely related to Bacillus anthracis. Albeit the most important food-borne pathogens were not yet defined, existing data indicate that they are scattered all over the phylogenetic tree. The preliminary analysis of the sequences of three genomes discussed in this paper narrows down the gaps in our knowledge of the B. cereus group. The strain NVH391-98 is a rare but particularly severe food-borne pathogen. Sequencing revealed that the strain should be a representative of a novel bacterial species, for which the name Bacillus cytotoxis or Bacillus cytotoxicus is proposed. This strain has a reduced genome size compared to other B. cereus group strains. Genome analysis revealed absence of sigma B factor and the presence of genes encoding diarrheic Nhe toxin, not detected earlier. The strain B. cereus F837/76 represents a clonal complex close to that of B. anthracis. Including F837/76, three such B. cereus strains had been sequenced. Alignment of genomes suggests that B. anthracis is their common ancestor. Since such strains often emerge from clinical cases, they merit a special attention. The third strain, KBAB4, is a typical facultative psychrophile generally found in soil. Phylogenic studies show that in nature it is the most active group in terms of gene exchange. Genomic sequence revealed high presence of extra-chromosomal genetic material (about 530kb) that may account for this phenomenon. Genes coding Nhe-like toxin were found on a big plasmid in this strain. This may indicate a potential mechanism of toxicity spread from the psychrophile strain community. The results of this genomic

  4. Extending the Bacillus cereus group genomics to putative food-borne pathogens of different toxicity

    SciTech Connect

    Lapidus, Alla L.; Goltsman, Eugene; Auger, Sandrine; Galleron, Nathalie; Segurens, Beatrice; Simon, Jorg; Dossat, Carole; Broussolle, Veronique; Brillard, Julien; Guinebretiere, Marie-Helene; Sanchis, Vincent; Nguen-the, Christophe; Lereclus, Didier; Richardson, P M; Wincker, Patrick; Sorokin, Alexei

    2008-01-01

    The Bacillus cereus group represents sporulating soil bacteria containing pathogenic strains which may cause diarrheic or emetic food poisoning outbreaks. Multiple locus sequence typing revealed a presence in natural samples of these bacteria of about 30 clonal complexes. Application of genomic methods to this group was however biased due to the major interest for representatives closely related to Bacillus anthracis. Albeit the most important food-borne pathogens were not yet defined, existing data indicate that they are scattered all over the phylogenetic tree. The preliminary analysis of the sequences of three genomes discussed in this paper narrows down the gaps in our knowledge of the B. cereus group. The strain NVH391-98 is a rare but particularly severe food-borne pathogen. Sequencing revealed that the strain should be a representative of a novel bacterial species, for which the name Bacillus cytotoxis or Bacillus cytotoxicus is proposed. This strain has a reduced genome size compared to other B. cereus group strains. Genome analysis revealed absence of sigma B factor and the presence of genes encoding diarrheic Nhe toxin, not detected earlier. The strain B. cereus F837/76 represents a clonal complex close to that of B. anthracis. Including F837/76, three such B. cereus strains had been sequenced. Alignment of genomes suggests that B. anthracis is their common ancestor. Since such strains often emerge from clinical cases, they merit a special attention. The third strain, KBAB4, is a typical facultative psychrophile generally found in soil. Phylogenic studies show that in nature it is the most active group in terms of gene exchange. Genomic sequence revealed high presence of extra-chromosomal genetic material (about 530 kb) that may account for this phenomenon. Genes coding Nhe-like toxin were found on a big plasmid in this strain. This may indicate a potential mechanism of toxicity spread from the psychrophile strain community. The results of this genomic

  5. Toxin-Producing Ability among Bacillus spp. Outside the Bacillus cereus Group

    PubMed Central

    From, Cecilie; Pukall, Rudiger; Schumann, Peter; Hormazábal, Víctor; Granum, Per Einar

    2005-01-01

    A total of 333 Bacillus spp. isolated from foods, water, and food plants were examined for the production of possible enterotoxins and emetic toxins using a cytotoxicity assay on Vero cells, the boar spermatozoa motility assay, and a liquid chromatography-mass spectrometry method. Eight strains produced detectable toxins; six strains were cytotoxic, three strains produced putative emetic toxins (different in size from cereulide), and one strain produced both cytotoxin(s) and putative emetic toxin(s). The toxin-producing strains could be assigned to four different species, B. subtilis, B. mojavensis, B. pumilus, or B. fusiformis, by using a polyphasic approach including biochemical, chemotaxonomic, and DNA-based analyses. Four of the strains produced cytotoxins that were concentrated by ammonium sulfate followed by dialysis, and two strains produced cytotoxins that were not concentrated by such a treatment. Two cultures maintained full cytotoxic activity, two cultures reduced their activity, and two cultures lost their activity after boiling. The two most cytotoxic strains (both B. mojavensis) were tested for toxin production at different temperatures. One of these strains produced cytotoxin at growth temperatures ranging from 25 to 42°C, and no reduction in activity was observed even after 24 h of growth at 42°C. The strains that produced putative emetic toxins were tested for the influence of time and temperature on the toxin production. It was shown that they produced putative emetic toxin faster or just as fast at 30 as at 22°C. None of the cytotoxic strains produced B. cereus-like enterotoxins as tested by PCR or by immunological methods. PMID:15746316

  6. Minimizing the level of Bacillus cereus spores in farm tank milk.

    PubMed

    Vissers, M M M; Te Giffel, M C; Driehuis, F; De Jong, P; Lankveld, J M G

    2007-07-01

    In a year-long survey on 24 Dutch farms, Bacillus cereus spore concentrations were measured in farm tank milk (FTM), feces, bedding material, mixed grass and corn silage, and soil from the pasture. The aim of this study was to determine, in practice, factors affecting the concentration of B. cereus spores in FTM throughout the year. In addition, the results of the survey were used in combination with a previously published modeling study to determine requirements for a strategy to control B. cereus spore concentrations in FTM below the MSL of 3 log10 spores/L. The B. cereus spore concentration in FTM was 1.2 +/- 0.05 log10 spores/L and in none of samples was the concentration above the MSL. The spore concentration in soil (4.9 +/- 0.04 log10 spores/g) was more than 100-fold higher than the concentration in feces (2.2 +/- 0.05 log10 spores/g), bedding material (2.8 +/- 0.07 log10 spores/g), and mixed silage (2.4 +/- 0.07 log10 spores/g). The spore concentration in FTM increased between July and September compared with the rest of the year (0.5 +/- 0.02 log10 spores/L difference). In this period, comparable increases of the concentrations in feces (0.4 +/- 0.03 log10 spores/g), bedding material (0.5 +/- 0.05 log10 spores/g), and mixed silage (0.4 +/- 0.05 log10 spores/g) were found. The increased B. cereus spore concentration in FTM was not related to the grazing of cows. Significant correlations were found between the spore concentrations in FTM and feces (r = 0.51) and in feces and mixed silage (r = 0.43) when the cows grazed. The increased concentrations during summer could be explained by an increased growth of B. cereus due to the higher temperatures. We concluded that year-round B. cereus spores were predominantly transmitted from feeds, via feces, to FTM. Farmers should take measures that minimize the transmission of spores via this route by ensuring low initial contamination levels in the feeds (<3 log10 spores/g) and by preventing growth of B. cereus in the

  7. A hospital cafeteria-related food-borne outbreak due to Bacillus cereus: unique features.

    PubMed

    Baddour, L M; Gaia, S M; Griffin, R; Hudson, R

    1986-09-01

    Although Bacillus cereus is a well-known cause of food-borne illness, hospital-related outbreaks of food-borne disease due to B. cereus have rarely been documented. We report a hospital employee cafeteria outbreak due to foods contaminated with B. cereus in which an outside caterer was employed to prepare the suspect meals. Data were collected from 249 of 291 employees who had eaten either of the two meals. With a mean incubation period of 12.5 hours, 64% (160 of 249) of employees manifested illness. Symptoms, which averaged 24.3 hours in duration, included diarrhea (96.3%), abdominal cramps (90%), nausea (50.6%), weakness (24.7%), and vomiting (13.8%). Eighty-seven employees sought medical attention, 84 of whom were seen in an emergency room. Although a significant difference was not demonstrated in food-specific attack rates, B. cereus was cultured from both rice and chicken items that were served at both meals. Sixty-three employees submitted stools for culture that grew no enteric pathogens, but none were examined for B. cereus. This food-borne outbreak demonstrates: the need for hospital kitchen supervisors to ensure proper handling of food when outside caterers are employed; that significant differences in food-specific attack rates may not be demonstrated in outbreaks, which may be related to several factors; and the importance of notifying microbiology laboratory personnel when B. cereus is a suspect enteric pathogen, since many laboratories do not routinely attempt to identify this organism in stool specimens.

  8. A genomic region involved in the formation of adhesin fibers in Bacillus cereus biofilms

    PubMed Central

    Caro-Astorga, Joaquín; Pérez-García, Alejandro; de Vicente, Antonio; Romero, Diego

    2015-01-01

    Bacillus cereus is a bacterial pathogen that is responsible for many recurrent disease outbreaks due to food contamination. Spores and biofilms are considered the most important reservoirs of B. cereus in contaminated fresh vegetables and fruits. Biofilms are bacterial communities that are difficult to eradicate from biotic and abiotic surfaces because of their stable and extremely strong extracellular matrix. These extracellular matrixes contain exopolysaccharides, proteins, extracellular DNA, and other minor components. Although B. cereus can form biofilms, the bacterial features governing assembly of the protective extracellular matrix are not known. Using the well-studied bacterium B. subtilis as a model, we identified two genomic loci in B. cereus, which encodes two orthologs of the amyloid-like protein TasA of B. subtilis and a SipW signal peptidase. Deletion of this genomic region in B. cereus inhibited biofilm assembly; notably, mutation of the putative signal peptidase SipW caused the same phenotype. However, mutations in tasA or calY did not completely prevent biofilm formation; strains that were mutated for either of these genes formed phenotypically different surface attached biofilms. Electron microscopy studies revealed that TasA polymerizes to form long and abundant fibers on cell surfaces, whereas CalY does not aggregate similarly. Heterologous expression of this amyloid-like cassette in a B. subtilis strain lacking the factors required for the assembly of TasA amyloid-like fibers revealed (i) the involvement of this B. cereus genomic region in formation of the air-liquid interphase pellicles and (ii) the intrinsic ability of TasA to form fibers similar to the amyloid-like fibers produced by its B. subtilis ortholog. PMID:25628606

  9. Levels and toxigenicity of Bacillus cereus and Clostridium perfringens from retail seafood.

    PubMed

    Rahmati, T; Labbe, R

    2008-06-01

    For the period 1990 through 2003, seafood was the most commonly identified food linked to foodborne outbreaks in the United States. Fish as a commodity has rarely been examined for the presence of Bacillus cereus in particular. For the present study, 347 fresh and processed retail seafood samples were examined for the presence of Clostridium botulinum, Clostridium perfringens, and B. cereus. The presence of C. botulinum was not confirmed in any of the isolates, but C. perfringens was confirmed in 17 samples. One of the C. perfringens isolates possessed the enterotoxin gene, as determined by PCR. In contrast, 62 confirmed B. cereus isolates were obtained from separate samples at levels ranging from 3.6 to > 1,100 CFU/g. Thirty (48%) of 62 isolates produced both the hemolysin BL (HBL) and nonhemolytic (NHE) enterotoxins, and 58 (94%) and 31 (50%) produced NHE or HBL toxins, respectively. The presence of at least one of the three genes of the NHE complex was detected in 99% of the isolates; 69% of the isolates possessed all three genes. In contrast, 71% of the isolates possessed at least one of the three genes of the HBL complex, and 37% possessed all three HBL gene components. Fifty of the 62 B. cereus isolates were from imported seafood, and 19 (38%) of these samples were at levels > 100 CFU/g. Twelve of the 14 highest enterotoxin assay results were from isolates from imported food. Only one B. cereus isolate possessed the cereulide synthetase gene, ces; this isolate also possessed the genes for the three-component HBL and NHE complexes. A majority of enterotoxin-producing isolates were resistant to 2 of 10 antibiotics tested, ceftriaxone and clindamycin. Our results demonstrate the potential of seafood as a vehicle for foodborne illness caused by B. cereus, in particular the enterotoxin-producing genotype. PMID:18592743

  10. Toxin producing Bacillus cereus persist in ready-to-reheat spaghetti Bolognese mainly in vegetative state.

    PubMed

    Rajkovic, Andreja; Kljajic, Milica; Smigic, Nada; Devlieghere, Frank; Uyttendaele, Mieke

    2013-10-15

    The potential of Bacillus cereus to cause a diarrheal toxico-infection is related to its ability to perform de novo enterotoxin production in the small intestine. A prerequisite for this is presence of sufficient numbers of B. cereus that have survived gastro-intestinal passage. It is known that the percentage of survival is much smaller for vegetative cells in comparison to spores and it is therefore important to know the state in which B. cereus is ingested. The results of the current study performed on twelve B. cereus strains, comprising both diarrheal and emetic type, indicate that exposure via contaminated foods mainly concerns vegetative cells. Inoculated vegetative cells grew to high counts, with the growth dynamic depending on the storage temperature. At 28 °C growth to high counts resulted in spore formation, in general, after 1 day of storage. One strain was an exception, producing spores only after 16 days. At 12 °C obtained high counts did not result in spore formation for 11 of 12 tested strains after two weeks of storage. The highest counts and time to sporulation were different between strains, but no difference was observed on the group level of diarrheal and emetic strains. The spore counts were always lower than vegetative cell counts and occurred only when food was obviously sensory spoiled (visual and odor evaluation). Similar observations were made with food inoculated with B. cereus spores instead of vegetative cells. Although the prospect of consuming spores was found very weak, the numbers of vegetative B. cereus cells were high enough, without obvious sensory deviation, to survive in sufficient level to cause diarrheal toxico-infection.

  11. Cereulide produced by Bacillus cereus increases the fitness of the producer organism in low-potassium environments.

    PubMed

    Ekman, Jaakko V; Kruglov, Alexey; Andersson, Maria A; Mikkola, Raimo; Raulio, Mari; Salkinoja-Salonen, Mirja

    2012-04-01

    Cereulide, produced by certain Bacillus cereus strains, is a lipophilic cyclic peptide of 1152 Da that binds K(+) ions with high specificity and affinity. It is toxic to humans, but its role for the producer organism is not known. We report here that cereulide operates for B. cereus to scavenge potassium when the environment is growth limiting for this ion. Cereulide-producing B. cereus showed higher maximal growth rates (µ(max)) than cereulide non-producing B. cereus in K(+)-deficient medium (K(+) concentration ~1 mM). The cereulide-producing strains grew faster in K(+)-deficient than in K(+)-rich medium with or without added cereulide. Cereulide non-producing B. cereus neither increased µ(max) in K(+)-deficient medium compared with K(+)-rich medium, nor benefited from added cereulide. Cereulide-producing strains outcompeted GFP-labelled Bacillus thuringiensis in potassium-deficient (K(+) concentration ~1 mM) but not in potassium-rich (K(+) concentration ~30 mM) medium. Exposure to 2 µM cereulide in potassium-free medium lacking an energy source caused, within seconds, a major efflux of cellular K(+) from B. cereus not producing cereulide as well as from Bacillus subtilis. Cereulide depleted the cereulide non-producing B. cereus and B. subtilis cells of a major part of their K(+) stores, but did not affect cereulide-producing B. cereus strains. Externally added 6-10 µM cereulide triggered the generation of biofilms and pellicles by B. cereus. The results indicate that both endogenous and externally accessible cereulide supports the fitness of cereulide-producing B. cereus in environments where the potassium concentration is low.

  12. Intestinal carriage of Bacillus cereus: faecal isolation studies in three population groups.

    PubMed

    Turnbull, P C; Kramer, J M

    1985-12-01

    The results of examinations of stools for Bacillus cereus among three unrelated groups of individuals are presented. The groups consisted of (1) healthy school-children aged 6-11 years in a rural region of South Africa examined during each of the four seasons of the year; (2) 15 healthy volunteers comprising staff of a London microbiology laboratory and their families examined on each of 3 consecutive weeks; (3) 75 unrelated young children, 2 months to 5 years of age, in a second rural region of South Africa examined during a pilot study of 1 week's duration on the aetiology of rural gastroenteritis. The stools of the last group were submitted as being related to present or recent diarrhoea in the respective children. In group 1, B. cereus isolation rates ranged from 24.3% at the autumn visit to 43% at the summer visit with a significantly higher rate of isolation in the summer than at other seasons of the year (P less than 0.05). B. cereus was isolated from 40% of group 2 volunteers on week 1, none on week 2 and 20% on week 3. The organism was detected in the 12 positive specimens at levels of approximately 10(2)/g and constituted 2.5-30% of the total aerobic spore-forming bacillus population in the stools. In group 3, B. cereus was recovered from 18.7% of the stool samples and was isolated consecutively with other pathogens (enteropathogenic Escherichia coli and rotavirus) on only five occasions. In groups 1 and 3, less than 5% of the stools had '3+' levels of B. cereus (greater than 10 colonies per direct plate culture). B. cereus was readily isolated from all of 10 food samples, representative of the typical diet of the group 1 individuals, and was present in substantial numbers (10(4) to 5.5 X 10(6)/g) in half of them. The isolation results, supported by serotyping, indicated that carriage of B. cereus in stools is transient and its presence at any one time reflects solely its intake with foods.

  13. Intestinal carriage of Bacillus cereus: faecal isolation studies in three population groups.

    PubMed Central

    Turnbull, P. C.; Kramer, J. M.

    1985-01-01

    The results of examinations of stools for Bacillus cereus among three unrelated groups of individuals are presented. The groups consisted of (1) healthy school-children aged 6-11 years in a rural region of South Africa examined during each of the four seasons of the year; (2) 15 healthy volunteers comprising staff of a London microbiology laboratory and their families examined on each of 3 consecutive weeks; (3) 75 unrelated young children, 2 months to 5 years of age, in a second rural region of South Africa examined during a pilot study of 1 week's duration on the aetiology of rural gastroenteritis. The stools of the last group were submitted as being related to present or recent diarrhoea in the respective children. In group 1, B. cereus isolation rates ranged from 24.3% at the autumn visit to 43% at the summer visit with a significantly higher rate of isolation in the summer than at other seasons of the year (P less than 0.05). B. cereus was isolated from 40% of group 2 volunteers on week 1, none on week 2 and 20% on week 3. The organism was detected in the 12 positive specimens at levels of approximately 10(2)/g and constituted 2.5-30% of the total aerobic spore-forming bacillus population in the stools. In group 3, B. cereus was recovered from 18.7% of the stool samples and was isolated consecutively with other pathogens (enteropathogenic Escherichia coli and rotavirus) on only five occasions. In groups 1 and 3, less than 5% of the stools had '3+' levels of B. cereus (greater than 10 colonies per direct plate culture). B. cereus was readily isolated from all of 10 food samples, representative of the typical diet of the group 1 individuals, and was present in substantial numbers (10(4) to 5.5 X 10(6)/g) in half of them. The isolation results, supported by serotyping, indicated that carriage of B. cereus in stools is transient and its presence at any one time reflects solely its intake with foods. PMID:3937856

  14. Bacillus cereus and Bacillus thuringiensis spores in Korean rice: prevalence and toxin production as affected by production area and degree of milling.

    PubMed

    Kim, Booyoung; Bang, Jihyun; Kim, Hoikyung; Kim, Yoonsook; Kim, Byeong-Sam; Beuchat, Larry R; Ryu, Jee-Hoon

    2014-09-01

    We determined the prevalence of and toxin production by Bacillus cereus and Bacillus thuringiensis in Korean rice as affected by production area and degree of milling. Rough rice was collected from 64 farms in 22 agricultural areas and polished to produce brown and white rice. In total, rice samples were broadly contaminated with B. cereus spores, with no effect of production area. The prevalence and counts of B. cereus spores declined as milling progressed. Frequencies of hemolysin BL (HBL) production by isolates were significantly (P ≤ 0.01) reduced as milling progressed. This pattern corresponded with the presence of genes encoding the diarrheal enterotoxins. The frequency of B. cereus isolates positive for hblC, hblD, or nheB genes decreased as milling progressed. Because most B. cereus isolates from rice samples contained six enterotoxin genes, we concluded that B. cereus in rice produced in Korea is predominantly of the diarrheagenic type. The prevalence of B. thuringiensis in rice was significantly lower than that of B. cereus and not correlated with production area. All B. thuringiensis isolates were of the diarrheagenic type. This study provides information useful for predicting safety risks associated with B. cereus and B. thuringiensis in rough and processed Korean rice.

  15. Plant Compounds Enhance the Assay Sensitivity for Detection of Active Bacillus cereus Toxin

    PubMed Central

    Rasooly, Reuven; Hernlem, Bradley; He, Xiaohua; Friedman, Mendel

    2015-01-01

    Bacillus cereus is an important food pathogen, producing emetic and diarrheal syndromes, the latter mediated by enterotoxins. The ability to sensitively trace and identify this active toxin is important for food safety. This study evaluated a nonradioactive, sensitive, in vitro cell-based assay, based on B. cereus toxin inhibition of green fluorescent protein (GFP) synthesis in transduced monkey kidney Vero cells, combined with plant extracts or plant compounds that reduce viable count of B. cereus in food. The assay exhibited a dose dependent GFP inhibition response with ~25% inhibition at 50 ng/mL toxin evaluated in culture media or soy milk, rice milk or infant formula, products associated with food poisonings outbreak. The plant extracts of green tea or bitter almond and the plant compounds epicatechin or carvacrol were found to amplify the assay response to ~90% inhibition at the 50 ng/mL toxin concentration greatly increasing the sensitivity of this assay. Additional studies showed that the test formulations also inhibited the growth of the B. cereus bacteria, likely through cell membrane disruption. The results suggest that the improved highly sensitive assay for the toxin and the rapid inactivation of the pathogen producing the toxin have the potential to enhance food safety. PMID:25767986

  16. Incidence and characterization of diarrheal enterotoxins of fecal Bacillus cereus isolates associated with diarrhea.

    PubMed

    Al-Khatib, Mariam Saleh; Khyami-Horani, Hala; Badran, Eman; Shehabi, Asem A

    2007-12-01

    A total of 490 stool specimens were collected from patients with diarrhea and healthy controls without diarrhea to investigate the incidence of Bacillus cereus and its enterotoxins. B. cereus was found more significant in stools of persons with diarrhea than without diarrhea (9.5% versus 1.8%, P < 0.05), and was also detected more frequent but not significant in individuals aged > or =1 year and in adults than in children aged <1 year (11% and 8% versus 7.8%, P > 0.05). The hemolytic enterotoxin HBL genes of B. cereus isolates (hblA, hblC, hblD) were detected in 58%, 58%, and 68%, respectively, whereas the nonhemolytic enterotoxin NHE genes (nheA, nheB, nheC) were detected more frequent in 71.%, 84%, and 90% of the isolates, respectively. This study suggests that B. cereus isolates harboring 1 or more enterotoxin gene(s) can be a potential cause of diarrhea in Jordanian population.

  17. Antibacterial Effects of Cissus welwitschii and Triumfetta welwitschii Extracts against Escherichia coli and Bacillus cereus

    PubMed Central

    2015-01-01

    Antibiotic resistance has increased sharply, while the pace for the development of new antimicrobials has slowed down. Plants provide an alternative source for new drugs. This study aimed to screen extracts from Cissus welwitschii and Triumfetta welwitschii for antibacterial activity against Escherichia coli and Bacillus cereus. The tests conducted included a susceptibility determination test, analysis of the effect of T. welwitschii on cell wall integrity, and transport across the membrane. It was found that the T. welwitschii methanol extracts were more effective than the water extracts and had the lowest minimum inhibitory concentration and minimum bactericidal concentration at 0.125 mg/mL and 0.5 mg/mL, respectively, against E. coli and B. cereus. The C. welwitschii extract caused the most drug accumulation in E. coli. In B. cereus, no significant drug accumulation was observed. Nucleic acid leakage in B. cereus and E. coli and protein leakage in E. coli were observed after exposure to the T. welwitschii extract. The extracts from T. welwitschii had greater antibacterial activity than the extracts from C. welwitschii. T. welwitschii may be a potential source of lead compounds for that could be developed into antibacterial agents. PMID:26904744

  18. Phenotypic, genomic, transcriptomic and proteomic changes in Bacillus cereus after a short-term space flight

    NASA Astrophysics Data System (ADS)

    Su, Longxiang; Zhou, Lisha; Liu, Jinwen; Cen, Zhong; Wu, Chunyan; Wang, Tong; Zhou, Tao; Chang, De; Guo, Yinghua; Fang, Xiangqun; Wang, Junfeng; Li, Tianzhi; Yin, Sanjun; Dai, Wenkui; Zhou, Yuping; Zhao, Jiao; Fang, Chengxiang; Yang, Ruifu; Liu, Changting

    2014-01-01

    The environment in space could affect microorganisms by changing a variety of features, including proliferation rate, cell physiology, cell metabolism, biofilm production, virulence, and drug resistance. However, the relevant mechanisms remain unclear. To explore the effect of a space environment on Bacillus cereus, a strain of B. cereus was sent to space for 398 h by ShenZhou VIII from November 1, 2011 to November 17, 2011. A ground simulation with similar temperature conditions was simultaneously performed as a control. After the flight, the flight and control strains were further analyzed using phenotypic, genomic, transcriptomic and proteomic techniques to explore the divergence of B. cereus in a space environment. The flight strains exhibited a significantly slower growth rate, a significantly higher amikacin resistance level, and changes in metabolism relative to the ground control strain. After the space flight, three polymorphic loci were found in the flight strains LCT-BC25 and LCT-BC235. A combined transcriptome and proteome analysis was performed, and this analysis revealed that the flight strains had changes in genes/proteins relevant to metabolism. In addition, certain genes/proteins that are relevant to structural function, gene expression modification and translation, and virulence were also altered. Our study represents the first documented analysis of the phenotypic, genomic, transcriptomic, and proteomic changes that occur in B. cereus during space flight, and our results could be beneficial to the field of space microbiology.

  19. Occurrence and behavior of Bacillus cereus in naturally contaminated ricotta salata cheese during refrigerated storage.

    PubMed

    Spanu, Carlo; Scarano, Christian; Spanu, Vincenzo; Pala, Carlo; Casti, Daniele; Lamon, Sonia; Cossu, Francesca; Ibba, Michela; Nieddu, Gavino; De Santis, Enrico P L

    2016-09-01

    The present study shows the fate of Bacillus cereus in refrigerated ricotta salata cheese during shelf-life. 144 ricotta salata cheese belonging to nine naturally contaminated batches were stored refrigerated and analyzed at 24 h, 30, 60 and 90 days of storage. Total bacterial count, B. cereus spores and vegetative forms, intrinsic properties and composition were determined. The presence of spores was sporadic while the prevalence and the level of B. cereus vegetative cells decreased respectively from 83.3 % to 4.65 ± 0.74 cfu g(-1) at the beginning of the observation period to 33.3 % and 1.99 ± 0.55 cfu g(-1) after 90 days. No information is currently available on the fate of B. cereus in ricotta salata. The production process of ricotta salata includes steps such as whey heating followed by slow cooling of clots, which expose to the risk of spore germination and successive growth to levels compatible with toxins production. The prolonged refrigerated storage was not favorable to sporulation, explaining the successive death of vegetative cells. The present study demonstrate the potential risk of food poisoning as consequence of pre-formed emetic toxins in ricotta salata. Food safety of ricotta salata relies on the rapid refrigeration of the product during critical phases for cereulide production. PMID:27217369

  20. FlhF Is Required for Swarming Motility and Full Pathogenicity of Bacillus cereus

    PubMed Central

    Mazzantini, Diletta; Celandroni, Francesco; Salvetti, Sara; Gueye, Sokhna A.; Lupetti, Antonella; Senesi, Sonia; Ghelardi, Emilia

    2016-01-01

    Besides sporulation, Bacillus cereus can undergo a differentiation process in which short swimmer cells become elongated and hyperflagellated swarmer cells that favor migration of the bacterial community on a surface. The functionally enigmatic flagellar protein FlhF, which is the third paralog of the signal recognition particle (SRP) GTPases Ffh and FtsY, is required for swarming in many bacteria. Previous data showed that FlhF is involved in the control of the number and positioning of flagella in B. cereus. In this study, in silico analysis of B. cereus FlhF revealed that this protein presents conserved domains that are typical of SRPs in many organisms and a peculiar N-terminal basic domain. By proteomic analysis, a significant effect of FlhF depletion on the amount of secreted proteins was found with some proteins increased (e.g., B component of the non-hemolytic enterotoxin, cereolysin O, enolase) and others reduced (e.g., flagellin, L2 component of hemolysin BL, bacillolysin, sphingomyelinase, PC-PLC, PI-PLC, cytotoxin K) in the extracellular proteome of a ΔflhF mutant. Deprivation of FlhF also resulted in significant attenuation in the pathogenicity of this strain in an experimental model of infection in Galleria mellonella larvae. Our work highlights the multifunctional role of FlhF in B. cereus, being this protein involved in bacterial flagellation, swarming, protein secretion, and pathogenicity. PMID:27807433

  1. Plant compounds enhance the assay sensitivity for detection of active Bacillus cereus toxin.

    PubMed

    Rasooly, Reuven; Hernlem, Bradley; He, Xiaohua; Friedman, Mendel

    2015-03-01

    Bacillus cereus is an important food pathogen, producing emetic and diarrheal syndromes, the latter mediated by enterotoxins. The ability to sensitively trace and identify this active toxin is important for food safety. This study evaluated a nonradioactive, sensitive, in vitro cell-based assay, based on B. cereus toxin inhibition of green fluorescent protein (GFP) synthesis in transduced monkey kidney Vero cells, combined with plant extracts or plant compounds that reduce viable count of B. cereus in food. The assay exhibited a dose dependent GFP inhibition response with ~25% inhibition at 50 ng/mL toxin evaluated in culture media or soy milk, rice milk or infant formula, products associated with food poisonings outbreak. The plant extracts of green tea or bitter almond and the plant compounds epicatechin or carvacrol were found to amplify the assay response to ~90% inhibition at the 50 ng/mL toxin concentration greatly increasing the sensitivity of this assay. Additional studies showed that the test formulations also inhibited the growth of the B. cereus bacteria, likely through cell membrane disruption. The results suggest that the improved highly sensitive assay for the toxin and the rapid inactivation of the pathogen producing the toxin have the potential to enhance food safety. PMID:25767986

  2. Detection of toxigenic Bacillus cereus strains isolated from vegetables in Mexico City.

    PubMed

    Flores-Urbán, Karen A; Natividad-Bonifacio, Iván; Vázquez-Quiñones, Carlos R; Vázquez-Salinas, Carlos; Quiñones-Ramírez, Elsa Irma

    2014-12-01

    Bacillus cereus can cause diarrhea and emetic syndromes after ingestion of food contaminated with it. This ability is due to the production of enterotoxins by this microorganism, these being the hemolysin BL complex, which is involved in the diarrheal syndrome, and cereulide, which is responsible for the emetic syndrome. The detection of genes associated with the production of these toxins can predict the virulence of strains isolated from contaminated food. In this paper, we analyzed 100 samples of vegetables, 25 of each kind (broccoli, coriander, carrot, and lettuce) obtained from different markets in Mexico City and its metropolitan area. B. cereus was isolated in 32, 44, 84, and 68% of the samples of broccoli, carrot, lettuce, and coriander, respectively. The hblA gene (encoding one of the three subunits of hemolysin BL) was amplified in 100% of the B. cereus isolates, and the ces gene (encoding the cereulide) could not be amplified from any of them. This is the first report of B. cereus isolation from the vegetables analyzed in this work and, also, the first report in Mexico of the isolation from vegetables of strains with potential virulence. The results should serve as evidence of the potential risk of consuming these foods without proper treatment. PMID:25474064

  3. Isolation, identification and characterization of a glyphosate-degrading bacterium, Bacillus cereus CB4, from soil.

    PubMed

    Fan, Jieyu; Yang, Guoxia; Zhao, Haoyu; Shi, Guanying; Geng, Yucong; Hou, Taiping; Tao, Ke

    2012-01-01

    A bacterial strain named CB4, with highly effective glyphosate degradation capability, was isolated from soil after enrichment. On the basis of the Biolog omniLog identification system (Biolog) and 16S ribosomal RNA (rRNA) gene sequencing methods, strain CB4 was identified as Bacillus cereus. Further experiments were carried out to optimize the growth of strain CB4 and the glyphosate degradation activity by high performance liquid chromatography (HPLC). The optimal conditions were found as follows: initial pH 6.0, incubation temperature 35°C, glyphosate concentration 6 g L(-1), inoculation amount 5% and incubation time 5 days. Under the optimal conditions, stain CB4 utilized 94.47% of glyphosate. This is the first report on B. cereus with a capacity to utilize herbicide glyphosate, and it can degrade glyphosate concentrations up to 12 g L(-1). Metabolization of glyphosate by strain B. cereus CB4 was studied. Results indicated that two concurrent pathways were capable of degrading glyphosate to AMPA, glyoxylate, sarcosine, glycine and formaldehyde as products. Glyphosate breakdown in B. cereus CB4 was achieved by the C-P lyase activity and the glyphosate oxidoreductase activity. PMID:22990486

  4. From genome to toxicity: a combinatory approach highlights the complexity of enterotoxin production in Bacillus cereus.

    PubMed

    Jeßberger, Nadja; Krey, Viktoria M; Rademacher, Corinna; Böhm, Maria-Elisabeth; Mohr, Ann-Katrin; Ehling-Schulz, Monika; Scherer, Siegfried; Märtlbauer, Erwin

    2015-01-01

    In recent years Bacillus cereus has gained increasing importance as a food poisoning pathogen. It is the eponymous member of the B. cereus sensu lato group that consists of eight closely related species showing impressive diversity of their pathogenicity. The high variability of cytotoxicity and the complex regulatory network of enterotoxin expression have complicated efforts to predict the toxic potential of new B. cereus isolates. In this study, comprehensive analyses of enterotoxin gene sequences, transcription, toxin secretion and cytotoxicity were performed. For the first time, these parameters were compared in a whole set of B. cereus strains representing isolates of different origin (food or food poisoning outbreaks) and of different toxic potential (enteropathogenic and apathogenic) to elucidate potential starting points of strain-specific differential toxicity. While toxin gene sequences were highly conserved and did not allow for differentiation between high and low toxicity strains, comparison of nheB and hblD enterotoxin gene transcription and Nhe and Hbl protein titers revealed not only strain-specific differences but also incongruence between toxin gene transcripts and toxin protein levels. With one exception all strains showed comparable capability of protein secretion and so far, no secretion patterns specific for high and low toxicity strains were identified. These results indicate that enterotoxin expression is more complex than expected, possibly involving the orchestrated interplay of different transcriptional regulator proteins, as well as posttranscriptional and posttranslational regulatory mechanisms plus additional influences of environmental conditions.

  5. Detection of toxigenic Bacillus cereus strains isolated from vegetables in Mexico City.

    PubMed

    Flores-Urbán, Karen A; Natividad-Bonifacio, Iván; Vázquez-Quiñones, Carlos R; Vázquez-Salinas, Carlos; Quiñones-Ramírez, Elsa Irma

    2014-12-01

    Bacillus cereus can cause diarrhea and emetic syndromes after ingestion of food contaminated with it. This ability is due to the production of enterotoxins by this microorganism, these being the hemolysin BL complex, which is involved in the diarrheal syndrome, and cereulide, which is responsible for the emetic syndrome. The detection of genes associated with the production of these toxins can predict the virulence of strains isolated from contaminated food. In this paper, we analyzed 100 samples of vegetables, 25 of each kind (broccoli, coriander, carrot, and lettuce) obtained from different markets in Mexico City and its metropolitan area. B. cereus was isolated in 32, 44, 84, and 68% of the samples of broccoli, carrot, lettuce, and coriander, respectively. The hblA gene (encoding one of the three subunits of hemolysin BL) was amplified in 100% of the B. cereus isolates, and the ces gene (encoding the cereulide) could not be amplified from any of them. This is the first report of B. cereus isolation from the vegetables analyzed in this work and, also, the first report in Mexico of the isolation from vegetables of strains with potential virulence. The results should serve as evidence of the potential risk of consuming these foods without proper treatment.

  6. Plant compounds enhance the assay sensitivity for detection of active Bacillus cereus toxin.

    PubMed

    Rasooly, Reuven; Hernlem, Bradley; He, Xiaohua; Friedman, Mendel

    2015-03-11

    Bacillus cereus is an important food pathogen, producing emetic and diarrheal syndromes, the latter mediated by enterotoxins. The ability to sensitively trace and identify this active toxin is important for food safety. This study evaluated a nonradioactive, sensitive, in vitro cell-based assay, based on B. cereus toxin inhibition of green fluorescent protein (GFP) synthesis in transduced monkey kidney Vero cells, combined with plant extracts or plant compounds that reduce viable count of B. cereus in food. The assay exhibited a dose dependent GFP inhibition response with ~25% inhibition at 50 ng/mL toxin evaluated in culture media or soy milk, rice milk or infant formula, products associated with food poisonings outbreak. The plant extracts of green tea or bitter almond and the plant compounds epicatechin or carvacrol were found to amplify the assay response to ~90% inhibition at the 50 ng/mL toxin concentration greatly increasing the sensitivity of this assay. Additional studies showed that the test formulations also inhibited the growth of the B. cereus bacteria, likely through cell membrane disruption. The results suggest that the improved highly sensitive assay for the toxin and the rapid inactivation of the pathogen producing the toxin have the potential to enhance food safety.

  7. Toxin profile, antibiotic resistance, and phenotypic and molecular characterization of Bacillus cereus in Sunsik.

    PubMed

    Chon, Jung-Whan; Kim, Jong-Hyun; Lee, Sun-Jin; Hyeon, Ji-Yeon; Seo, Kun-Ho

    2012-10-01

    Sunsik, a ready-to-eat food in Korea, is comprised of various agricultural and marine products, and has been an important concern in Bacillus cereus food poisoning. The aim of this study was to investigate the toxin profiles, genotypic and phenotypic patterns as well as antibiotic resistance of B. cereus strains isolated from Sunsik. A subtyping method known as automated repetitive sequence-based PCR system (DiversiLab™) was used to assess the intraspecific biodiversity of these isolates. Thirty-five B. cereus strains were isolated from 100 commercial Sunsik samples, all of which harbored at least 1 enterotoxin gene. The detection rates of nheABC, hblCDA, cytK, and entFM enterotoxin gene among all isolates were 97%, 86%, 77%, and 100%, respectively. Most strains also produced corresponding enterotoxins such as HBL (83%) and NHE (94%). One strain (2.9%) carried the emetic toxin genes, including ces and EM1, and was positive for the HEp-2 cell emetic toxin assay. Most strains were positive for various biochemical tests such as salicin hydrolysis (86%), starch fermentation (89%), hemolysis (89%), motility test (100%) and lecithinase hydrolysis (89%). All isolates were susceptible to most antibiotics although they were highly resistant to β-lactam antibiotics. By using the automated rep-PCR system, all isolates were successfully differentiated, indicating the diversity of B. cereus strains present in Sunsik.

  8. Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax

    PubMed Central

    Hoffmaster, Alex R.; Ravel, Jacques; Rasko, David A.; Chapman, Gail D.; Chute, Michael D.; Marston, Chung K.; De, Barun K.; Sacchi, Claudio T.; Fitzgerald, Collette; Mayer, Leonard W.; Maiden, Martin C. J.; Priest, Fergus G.; Barker, Margaret; Jiang, Lingxia; Cer, Regina Z.; Rilstone, Jennifer; Peterson, Scott N.; Weyant, Robbin S.; Galloway, Darrell R.; Read, Timothy D.; Popovic, Tanja; Fraser, Claire M.

    2004-01-01

    Bacillus anthracis is the etiologic agent of anthrax, an acute fatal disease among mammals. It was thought to differ from Bacillus cereus, an opportunistic pathogen and cause of food poisoning, by the presence of plasmids pXO1 and pXO2, which encode the lethal toxin complex and the poly-γ-d-glutamic acid capsule, respectively. This work describes a non-B. anthracis isolate that possesses the anthrax toxin genes and is capable of causing a severe inhalation anthrax-like illness. Although initial phenotypic and 16S rRNA analysis identified this isolate as B. cereus, the rapid generation and analysis of a high-coverage draft genome sequence revealed the presence of a circular plasmid, named pBCXO1, with 99.6% similarity with the B. anthracis toxin-encoding plasmid, pXO1. Although homologues of the pXO2 encoded capsule genes were not found, a polysaccharide capsule cluster is encoded on a second, previously unidentified plasmid, pBC218. A/J mice challenged with B. cereus G9241 confirmed the virulence of this strain. These findings represent an example of how genomics could rapidly assist public health experts responding not only to clearly identified select agents but also to novel agents with similar pathogenic potentials. In this study, we combined a public health approach with genome analysis to provide insight into the correlation of phenotypic characteristics and their genetic basis. PMID:15155910

  9. An extracytoplasmic function sigma factor controls beta-lactamase gene expression in Bacillus anthracis and other Bacillus cereus group species.

    PubMed

    Ross, Cana L; Thomason, Kerrie S; Koehler, Theresa M

    2009-11-01

    The susceptibility of most Bacillus anthracis strains to beta-lactam antibiotics is intriguing considering that the closely related species Bacillus cereus and Bacillus thuringiensis typically produce beta-lactamases and the B. anthracis genome harbors two beta-lactamase genes, bla1 and bla2. We show that beta-lactamase activity associated with B. anthracis is affected by two genes, sigP (BA2502) and rsiP (BA2503), predicted to encode an extracytoplasmic function sigma factor and an anti-sigma factor, respectively. Deletion of the sigP-rsiP locus abolished beta-lactamase activity in a naturally occurring penicillin-resistant strain and had no effect on beta-lactamase activity in a prototypical penicillin-susceptible strain. Complementation with sigP and rsiP from the penicillin-resistant strain, but not with sigP and rsiP from the penicillin-susceptible strain, conferred constitutive beta-lactamase activity in both mutants. These results are attributed to a nucleotide deletion near the 5' end of rsiP in the penicillin-resistant strain that is predicted to result in a nonfunctional protein. B. cereus and B. thuringiensis sigP and rsiP homologues are required for inducible penicillin resistance in these species. Expression of the B. cereus or B. thuringiensis sigP and rsiP genes in a B. anthracis sigP-rsiP-null mutant confers inducible production of beta-lactamase activity, suggesting that while B. anthracis contains the genes necessary for sensing beta-lactam antibiotics, the B. anthracis sigP and rsiP gene products are not sufficient for bla induction. PMID:19717606

  10. Target range of zwittermicin A, an aminopolyol antibiotic from Bacillus cereus.

    PubMed

    Silo-Suh, L A; Stabb, E V; Raffel, S J; Handelsman, J

    1998-07-01

    Zwittermicin A is a novel antibiotic produced by Bacillus cereus UW85, which suppresses certain plant diseases in the laboratory and in the field. We developed a rapid method for large-scale purification of zwittermicin A and then studied the in vitro activity of zwittermicin A against bacteria, fungi, and protists. Zwittermicin A was highly active against the Oomycetes and their relatives, the algal protists, and had moderate activity against diverse Gram-negative bacteria and certain Gram-positive bacteria as well as against a wide range of plant pathogenic fungi. Zwittermicin A was more active against bacteria and fungi at pH 7-8 than at pH 5-6. When zwittermicin A was combined with kanosamine, another antibiotic produced by B. cereus, the two acted synergistically against Escherichia coli and additively against Phytophthora medicaginis, an Oomycete. The results indicate that there are diverse potential applications of this new class of antibiotic.

  11. Bacillus cereus autolytic endoglucosaminidase active on cell wall peptidoglycan with N-unsubstituted glucosamine residues.

    PubMed

    Kawagishi, S; Araki, Y; Ito, E

    1980-01-01

    An autolytic glycosidase from a lysozyme-resistant strain of Bacillus cereus capable of cleaving the glycosidic linkages of N-unsubstituted glucosamine in the cell wall peptidoglycan was studied. This glycosidase activity, together with N-acetylmuramyl-L-alanine amidase activity, was found in an autolytic enzyme preparation obtained from the 20,000 x g precipitate fraction by means of autolysis followed by ammonium sulfate fractionation. The major saccharide fragments resulting from digestion of the untreated, non-N-acetylated, cell wall peptidoglycan of B. cereus with the autolytic enzyme preparation were identified as N-acetylmuramyl-glucosamine and its dimer. The peptidoglycan N-acetylated with acetic anhydride could also be digested with the same enzyme preparation, giving N-acetylmuramyl-N-acetylglucosamine and its dimer as the major saccharide fragments. PMID:6766437

  12. High-level production of Bacillus cereus phospholipase C in Corynebacterium glutamicum.

    PubMed

    Ravasi, Pablo; Braia, Mauricio; Eberhardt, Florencia; Elena, Claudia; Cerminati, Sebastián; Peirú, Salvador; Castelli, Maria Eugenia; Menzella, Hugo G

    2015-12-20

    Enzymatic oil degumming (removal of phospholipids) using phospholipase C (PLC) is a well-established and environmentally friendly process for vegetable oil refining. In this work, we report the production of recombinant Bacillus cereus PLC in Corynebacterium glutamicum ATCC 13869 in a high cell density fermentation process and its performance in soybean oil degumming. A final concentration of 5.5g/L of the recombinant enzyme was achieved when the respective gene was expressed from the tac promoter in a semi-defined medium. After treatment with trypsin to cleave the propeptide, the mature enzyme completely hydrolyzed phosphatidylcholine and phosphatidylethanolamine, which represent 70% of the phospholipids present in soybean oil. The results presented here show the feasibility of using B. cereus PLC for oil degumming and provide a manufacturing process for the cost effective production of this enzyme. PMID:26519562

  13. Bacillus cereus Certhrax ADP-ribosylates vinculin to disrupt focal adhesion complexes and cell adhesion.

    PubMed

    Simon, Nathan C; Barbieri, Joseph T

    2014-04-11

    Bacillus cereus is often associated with mild to moderate gastroenteritis; however, some recent isolates cause inhalational anthrax-like diseases and death. These potential emerging human pathogens express multiple virulence factors. B. cereus strain G9241 expresses anthrax toxin, several polysaccharide capsules, and the novel ADP-ribosyltransferase, Certhrax. In this study, we show that Certhrax ADP-ribosylates Arg-433 of vinculin, a protein that coordinates actin cytoskeleton and extracellular matrix interactions. ADP-ribosylation of vinculin disrupted focal adhesion complexes and redistributed vinculin to the cytoplasm. Exogenous vinculin rescued these phenotypes. This provides a mechanism for strain G9241 to breach host barrier defenses and promote bacterial growth and spread. Certhrax is the first bacterial toxin to add a post-translational modification to vinculin to disrupt the actin cytoskeleton.

  14. Lifesaving liver transplantation for multi-organ failure caused by Bacillus cereus food poisoning.

    PubMed

    Tschiedel, Eva; Rath, Peter-Michael; Steinmann, Jörg; Becker, Heinz; Dietrich, Rudolf; Paul, Andreas; Felderhoff-Müser, Ursula; Dohna-Schwake, Christian

    2015-02-01

    Bacillus cereus is a spore-forming, gram-positive bacterium that causes food poisoning presenting with either emesis or diarrhea. Diarrhea is caused by proteinaceous enterotoxin complexes, mainly hemolysin BL, non-hemolytic enterotoxin (NHE), and cytotoxin K. In contrast, emesis is caused by the ingestion of the depsipeptide toxin cereulide, which is produced in B. cereus contaminated food, particularly in pasta or rice. In general, the illness is mild and self-limiting. However, due to cereulide intoxication, nine severe cases with rhabdomyolysis and/or liver failure, five of them lethal, are reported in literature. Here we report the first case of life-threatening liver failure and severe rhabdomyolysis in this context that could not be survived without emergency hepatectomy and consecutive liver transplantation.

  15. Zwittermicin A-producing strains of Bacillus cereus from diverse soils.

    PubMed Central

    Stabb, E V; Jacobson, L M; Handelsman, J

    1994-01-01

    Bacillus cereus UW85 produces a novel aminopolyol antibiotic, zwittermicin A, that contributes to the ability of UW85 to suppress damping-off of alfalfa caused by Phytophthora medicaginis. UW85 produces a second antibiotic, provisionally designated antibiotic B, which also contributes to suppression of damping-off but has not been structurally defined yet and is less potent than zwittermicin A. The purpose of this study was to isolate genetically diverse strains of B. cereus that produce zwittermicin A and suppress disease. We found that most isolates of B. cereus that were sensitive to phage P7 or inhibited the growth of Erwinia herbicola produced zwittermicin A; therefore, phage typing and E. herbicola inhibition provided indirect, but rapid screening tests for identification of zwittermicin A-producing isolates. We used these tests to screen a collection of 4,307 B. cereus and Bacillus thuringiensis isolates obtained from bacterial stock collections and from diverse soils collected in Honduras, Panama, Australia, The Netherlands, and the United States. A subset of the isolates screened by the P7 sensitivity and E. herbicola inhibition tests were assayed directly for production of zwittermicin A, leading to the identification of 57 isolates that produced zwittermicin A; 41 of these isolates also produced antibiotic B. Eight isolates produced antibiotic B but not zwittermicin A. The assay for phage P7 sensitivity was particularly useful because of its simplicity and rapidity and because 22 of the 23 P7-sensitive isolates tested produced zwittermicin A. However, not all zwittermicin A-producing isolates were sensitive to P7, and the more labor-intensive E. herbicola inhibition assay identified a larger proportion of the zwittermicin A producers.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7811080

  16. Inactivation of Enterobacter sakazakii, Bacillus cereus, and Salmonella typhimurium in powdered weaning food by electron-beam irradiation

    NASA Astrophysics Data System (ADS)

    Hong, Yun-Hee; Park, Ji-Yong; Park, Jong-Hyun; Chung, Myong-Soo; Kwon, Ki-Sung; Chung, Kyungsook; Won, Misun; Song, Kyung-Bin

    2008-09-01

    Inactivation of Enterobacter sakazakii, Bacillus cereus, and Salmonella typhimurium were evaluated in powdered weaning food using electron-beam irradiation. E. sakazakii, B. cereus, and S. typhimurium were eliminated by irradiation at 16, 8, and 8 kGy, respectively. The D10-vlaues of E. sakazakii, B. cereus, and S. typhimurium inoculated on powdered weaning food were 4.83, 1.22, and 0.98 kGy, respectively. The results suggest that electron-beam irradiation should inhibit the growth of pathogenic bacteria on baby food without impairing qualities.

  17. One-day pulsed-field gel electrophoresis protocol for rapid determination of emetic Bacillus cereus isolates.

    PubMed

    Kaminska, Paulina S; Fiedoruk, Krzysztof; Jankowska, Dominika; Mahillon, Jacques; Nowosad, Karol; Drewicka, Ewa; Zambrzycka, Monika; Swiecicka, Izabela

    2015-04-01

    Bacillus cereus, the Gram-positive and spore-forming ubiquitous bacterium, may cause emesis as the result of food intoxication with cereulide, a heat-stable emetic toxin. Rapid determination of cereulide-positive B. cereus isolates is of highest importance due to consequences of this intoxication for human health and life. Here we present a 1-day pulsed-field gel electrophoresis for emetic B. cereus isolates, which allows rapid and efficient determination of their genomic relatedness and helps determining the source of intoxication in case of outbreaks caused by these bacilli.

  18. Bacillus cereus cell response upon exposure to acid environment: toward the identification of potential biomarkers

    PubMed Central

    Desriac, Noémie; Broussolle, Véronique; Postollec, Florence; Mathot, Anne-Gabrielle; Sohier, Danièle; Coroller, Louis; Leguerinel, Ivan

    2013-01-01

    Microorganisms are able to adapt to different environments and evolve rapidly, allowing them to cope with their new environments. Such adaptive response and associated protections toward other lethal stresses, is a crucial survival strategy for a wide spectrum of microorganisms, including food spoilage bacteria, pathogens, and organisms used in functional food applications. The growing demand for minimal processed food yields to an increasing use of combination of hurdles or mild preservation factors in the food industry. A commonly used hurdle is low pH which allows the decrease in bacterial growth rate but also the inactivation of pathogens or spoilage microorganisms. Bacillus cereus is a well-known food-borne pathogen leading to economical and safety issues in food industry. Because survival mechanisms implemented will allow bacteria to cope with environmental changes, it is important to provide understanding of B. cereus stress response. Thus this review deals with the adaptive traits of B. cereus cells facing to acid stress conditions. The acid stress response of B. cereus could be divided into four groups (i) general stress response (ii) pH homeostasis, (iii) metabolic modifications and alkali production and (iv) secondary oxidative stress response. This current knowledge may be useful to understand how B. cereus cells may cope to acid environment such as encountered in food products and thus to find some molecular biomarkers of the bacterial behavior. These biomarkers could be furthermore used to develop new microbial behavior prediction tools which can provide insights into underlying molecular physiological states which govern the behavior of microorganisms and thus opening the avenue toward the detection of stress adaptive behavior at an early stage and the control of stress-induced resistance throughout the food chain. PMID:24106490

  19. Diversity of pulsed-field gel electrophoresis patterns of cereulide-producing isolates of Bacillus cereus and Bacillus weihenstephanensis.

    PubMed

    Castiaux, Virginie; N'guessan, Elise; Swiecicka, Izabela; Delbrassinne, Laurence; Dierick, Katelijne; Mahillon, Jacques

    2014-04-01

    Bacillus cereus is an important foodborne pathogen causing diarrhoea, emesis and in, rare cases, lethal poisonings. The emetic syndrome is caused by cereulide, a heat-stable toxin. Originally considered as a rather homogenous group, the emetic strains have since been shown to display some diversity, including the existence of two clusters of mesophilic B. cereus and psychrotolerant B. weihenstephanensis. Using pulsed-field gel electrophoresis (PFGE) analysis, this research aimed to better understand the diversity and spatio-temporal occurrence of emetic strains originating from environmental or food niches vs. those isolated from foodborne cases. The diversity was evaluated using a set of 52 B. cereus and B. weihenstephanensis strains isolated between 2000 and 2011 in ten countries. PFGE analysis could discriminate 17 distinct profiles (pulsotypes). The most striking observations were as follows: (1) more than one emetic pulsotype can be observed in a single outbreak; (2) the number of distinct isolates involved in emetic intoxications is limited, and these potentially clonal strains frequently occurred in successive and independent food poisoning cases; (3) isolates from different countries displayed identical profiles; and (4) the cereulide-producing psychrotolerant B. weihenstephanensis were, so far, only isolated from environmental niches.

  20. Characteristics and phylogeny of Bacillus cereus strains isolated from Maari, a traditional West African food condiment.

    PubMed

    Thorsen, Line; Kando, Christine Kere; Sawadogo, Hagrétou; Larsen, Nadja; Diawara, Bréhima; Ouédraogo, Georges Anicet; Hendriksen, Niels Bohse; Jespersen, Lene

    2015-03-01

    Maari is a spontaneously fermented food condiment made from baobab tree seeds in West African countries. This type of product is considered to be safe, being consumed by millions of people on a daily basis. However, due to the spontaneous nature of the fermentation the human pathogen Bacillus cereus occasionally occurs in Maari. This study characterizes succession patterns and pathogenic potential of B. cereus isolated from the raw materials (ash, water from a drilled well (DW) and potash), seed mash throughout fermentation (0-96h), after steam cooking and sun drying (final product) from two production sites of Maari. Aerobic mesophilic bacterial (AMB) counts in raw materials were of 10(5)cfu/ml in DW, and ranged between 6.5×10(3) and 1.2×10(4)cfu/g in potash, 10(9)-10(10)cfu/g in seed mash during fermentation and 10(7) - 10(9) after sun drying. Fifty three out of total 290 AMB isolates were identified as B. cereus sensu lato by use of ITS-PCR and grouped into 3 groups using PCR fingerprinting based on Escherichia coli phage-M13 primer (M13-PCR). As determined by panC gene sequencing, the isolates of B. cereus belonged to PanC types III and IV with potential for high cytotoxicity. Phylogenetic analysis of concatenated sequences of glpF, gmk, ilvD, pta, pur, pycA and tpi revealed that the M13-PCR group 1 isolates were related to B. cereus biovar anthracis CI, while the M13-PCR group 2 isolates were identical to cereulide (emetic toxin) producing B. cereus strains. The M13-PCR group 1 isolates harboured poly-γ-D-glutamic acid capsule biosynthesis genes capA, capB and capC showing 99-100% identity with the environmental B. cereus isolate 03BB108. Presence of cesB of the cereulide synthetase gene cluster was confirmed by PCR in M13-PCR group 2 isolates. The B. cereus harbouring the cap genes were found in potash, DW, cooking water and at 8h fermentation. The "emetic" type B. cereus were present in DW, the seed mash at 48-72h of fermentation and in the final product

  1. Toxigenic genes, spoilage potential, and antimicrobial resistance of Bacillus cereus group strains from ice cream.

    PubMed

    Arslan, Seza; Eyi, Ayla; Küçüksarı, Rümeysa

    2014-02-01

    Bacillus spp. can be recovered from almost every environment. It is also found readily in foods, where it may cause food spoilage and/or food poisoning due to its toxigenic and pathogenic nature, and extracellular enzymes. In this study, 29 Bacillus cereus group strains from ice cream were examined for the presence of following virulence genes hblC, nheA, cytK and ces genes, and tested for a range of the extracellular enzymes, and antimicrobial susceptibility. The strains were found to produce extracellular enzymes: proteolytic and lipolytic activity, gelatin hydrolysis and lecithinase production (100%), DNase production (93.1%) and amylase activity (93.1%). Of 29 strains examined, 24 (82.8%) showed hemolytic activity on blood agar. Beta-lactamase enzyme was only produced by 20.7% of B. cereus group. Among 29 B. cereus group from ice cream, nheA was the most common virulence gene detected in 44.8% of the strains, followed by hblC gene with 17.2%. Four (13.8%) of the 29 strains were positive for both hblC gene and nheA gene. Contrarily, cytK and ces genes were not detected in any of the strains. Antimicrobial susceptibility of ice cream isolates was tested to 14 different antimicrobial agents using the disc diffusion method. We detected resistance to penicillin and ampicillin with the same rate of 89.7%. Thirty-one percent of the strains were multiresistant to three or more antibiotics. This study emphasizes that the presence of natural isolates of Bacillus spp. harboring one or more enterotoxin genes, producing extracellular enzymes which may cause spoilage and acquiring antibiotic resistance might hold crucial importance in the food safety and quality.

  2. A quantitative microbiological exposure assessment model for Bacillus cereus in REPFEDs.

    PubMed

    Daelman, Jeff; Membré, Jeanne-Marie; Jacxsens, Liesbeth; Vermeulen, An; Devlieghere, Frank; Uyttendaele, Mieke

    2013-09-16

    One of the pathogens of concern in refrigerated and processed foods of extended durability (REPFED) is psychrotrophic Bacillus cereus, because of its ability to survive pasteurisation and grow at low temperatures. In this study a quantitative microbiological exposure assessment (QMEA) of psychrotrophic B. cereus in REPFEDs is presented. The goal is to quantify (i) the prevalence and concentration of B. cereus during production and shelf life, (ii) the number of packages with potential emetic toxin formation and (iii) the impact of different processing steps and consumer behaviour on the exposure to B. cereus from REPFEDs. The QMEA comprises the entire production and distribution process, from raw materials over pasteurisation and up to the moment it is consumed or discarded. To model this process the modular process risk model (MPRM) was used (Nauta, 2002). The product life was divided into nine modules, each module corresponding to a basic process: (1) raw material contamination, (2) cross contamination during handling, (3) inactivation during preparation, (4) growth during intermediate storage, (5) partitioning of batches in portions, (6) mixing portions to create the product, (7) recontamination during assembly and packaging, (8) inactivation during pasteurisation and (9) growth during shelf life. Each of the modules was modelled and built using a combination of newly gathered and literature data, predictive models and expert opinions. Units (batch/portion/package) with a B. cereus concentration of 10(5)CFU/g or more were considered 'risky' units. Results show that the main drivers of variability and uncertainty are consumer behaviour, strain variability and modelling error. The prevalence of B. cereus in the final products is estimated at 48.6% (±0.01%) and the number of packs with too high B. cereus counts at the moment of consumption is estimated at 4750 packs per million (0.48%). Cold storage at retail and consumer level is vital in limiting the exposure

  3. Toxin Profile, Biofilm Formation, and Molecular Characterization of Emetic Toxin-Producing Bacillus cereus Group Isolates from Human Stools.

    PubMed

    Oh, Su Kyung; Chang, Hyun-Joo; Choi, Sung-Wook; Ok, Gyeongsik; Lee, Nari

    2015-11-01

    Emetic toxin-producing Bacillus cereus group species are an important problem, because the staple food for Korean is grains such as rice. In this study, we determined the prevalence (24 of 129 isolates) of emetic B. cereus in 36,745 stool samples from sporadic food-poisoning cases in Korea between 2007 and 2008. The toxin gene profile, toxin production, and biofilm-forming ability of the emetic B. cereus isolates were investigated. Repetitive element sequence polymorphism polymerase chain reaction fingerprints (rep-PCR) were also used to assess the intraspecific biodiversity of these isolates. Emetic B. cereus was present in 0.07% of the sporadic food-poisoning cases. The 24 emetic isolates identified all carried the nheABC and entFM genes and produced NHE enterotoxin. However, they did not have hemolysin BL toxin or related genes. A relationship between biofilm formation and toxin production was not observed in this study. The rep-PCR fingerprints of the B. cereus isolates were not influenced by the presence of toxin genes, or biofilm-forming ability. The rep-PCR assay discriminated emetic B. cereus isolates from nonemetic isolates, even if this assay did not perfectly discriminate these isolates. Further study on emetic isolates possessing a high degree of diversity may be necessary to evaluate the performance of the subtyping assay to discriminate emetic and nonemetic B. cereus isolates and could provide a more accurate indication of the risk from B. cereus strains.

  4. A Novel Multiplex PCR Discriminates Bacillus anthracis and Its Genetically Related Strains from Other Bacillus cereus Group Species

    PubMed Central

    Ogawa, Hirohito; Fujikura, Daisuke; Ohnuma, Miyuki; Ohnishi, Naomi; Hang'ombe, Bernard M.; Mimuro, Hitomi; Ezaki, Takayuki; Mweene, Aaron S.; Higashi, Hideaki

    2015-01-01

    Anthrax is an important zoonotic disease worldwide that is caused by Bacillus anthracis, a spore-forming pathogenic bacterium. A rapid and sensitive method to detect B. anthracis is important for anthrax risk management and control in animal cases to address public health issues. However, it has recently become difficult to identify B. anthracis by using previously reported molecular-based methods because of the emergence of B. cereus, which causes severe extra-intestinal infection, as well as the human pathogenic B. thuringiensis, both of which are genetically related to B. anthracis. The close genetic relation of chromosomal backgrounds has led to complexity of molecular-based diagnosis. In this study, we established a B. anthracis multiplex PCR that can screen for the presence of B. anthracis virulent plasmids and differentiate B. anthracis and its genetically related strains from other B. cereus group species. Six sets of primers targeting a chromosome of B. anthracis and B. anthracis-like strains, two virulent plasmids, pXO1 and pXO2, a bacterial gene, 16S rRNA gene, and a mammalian gene, actin-beta gene, were designed. The multiplex PCR detected approximately 3.0 CFU of B. anthracis DNA per PCR reaction and was sensitive to B. anthracis. The internal control primers also detected all bacterial and mammalian DNAs examined, indicating the practical applicability of this assay as it enables monitoring of appropriate amplification. The assay was also applied for detection of clinical strains genetically related to B. anthracis, which were B. cereus strains isolated from outbreaks of hospital infections in Japan, and field strains isolated in Zambia, and the assay differentiated B. anthracis and its genetically related strains from other B. cereus group strains. Taken together, the results indicate that the newly developed multiplex PCR is a sensitive and practical method for detecting B. anthracis. PMID:25774512

  5. SpoVT: From Fine-Tuning Regulator in Bacillus subtilis to Essential Sporulation Protein in Bacillus cereus

    PubMed Central

    Eijlander, Robyn T.; Holsappel, Siger; de Jong, Anne; Ghosh, Abhinaba; Christie, Graham; Kuipers, Oscar P.

    2016-01-01

    Sporulation is a highly sophisticated developmental process adopted by most Bacilli as a survival strategy to withstand extreme conditions that normally do not support microbial growth. A complicated regulatory cascade, divided into various stages and taking place in two different compartments of the cell, involves a number of primary and secondary regulator proteins that drive gene expression directed toward the formation and maturation of an endospore. Such regulator proteins are highly conserved among various spore formers. Despite this conservation, both regulatory and phenotypic differences are observed between different species of spore forming bacteria. In this study, we demonstrate that deletion of the regulatory sporulation protein SpoVT results in a severe sporulation defect in Bacillus cereus, whereas this is not observed in Bacillus subtilis. Although spores are initially formed, the process is stalled at a later stage in development, followed by lysis of the forespore and the mother cell. A transcriptomic investigation of B. cereus ΔspoVT shows upregulation of genes involved in germination, potentially leading to premature lysis of prespores formed. Additionally, extreme variation in the expression of species-specific genes of unknown function was observed. Introduction of the B. subtilis SpoVT protein could partly restore the sporulation defect in the B. cereus spoVT mutant strain. The difference in phenotype is thus more than likely explained by differences in promoter targets rather than differences in mode of action of the conserved SpoVT regulator protein. This study stresses that evolutionary variances in regulon members of sporulation regulators can have profound effects on the spore developmental process and that mere protein homology is not a foolproof predictor of similar phenotypes. PMID:27790204

  6. Growth characteristics of Bacillus anthracis compared to other Bacillus spp. on the selective nutrient media Anthrax Blood Agar and Cereus Ident Agar.

    PubMed

    Tomaso, Herbert; Bartling, Carsten; Al Dahouk, Sascha; Hagen, Ralf M; Scholz, Holger C; Beyer, Wolfgang; Neubauer, Heinrich

    2006-01-01

    Anthrax Blood Agar (ABA) and Cereus Ident Agar (CEI) were evaluated as selective growth media for the isolation of Bacillus anthracis using 92 B. anthracis and 132 other Bacillus strains from 30 species. The positive predictive values for the identification of B. anthracis on ABA, CEI, and the combination of both were 72%, 71%, and 90%, respectively. Thus, less than 10% of all species were misidentified using both nutrient media. Species which might be misidentified as B. anthracis were B. cereus, B. mycoides, and B. thuringiensis. Particularly, 30% of B. weihenstephanensis strains were misidentified as B. anthracis.

  7. Complete genome sequence of the cold-active bacteriophage VMY22 from Bacillus cereus.

    PubMed

    Qin, Kunhao; Cheng, Benxu; Zhang, Shengting; Wang, Nan; Fang, Yuan; Zhang, Qi; Kuang, Anxiu; Lin, Lianbing; Ji, Xiuling; Wei, Yunlin

    2016-06-01

    The cold-active bacteriophage VMY22, belonging to the Podoviridae family, was isolated from Mingyong Glacier in China. Sequence analysis revealed that the genome is 18,609 bp long, with an overall G + C content of 36.4 mol%, and 25 open reading frames (ORFs). The sequence contains 46 potential promoters, 6 transcription terminators, and no tRNAs. Most of the ORFs show a high degree of similarity to B103 (NC_004165). Two noteworthy findings were made. First, one of the predicted proteins, ORF 19, shows high sequence similarity to the bacteriocin biosynthesis protein from Bacillus cereus. From this information, we propose that the VMY22 phage is at an intermediate phase in its coevolution with its bacterial host. Second, seven of the hypothetical proteins appear to be unique to this cold-active B. cereus phage (i.e., not found in temperate-active B. cereus phages). These observations add to our current knowledge about the coevolution of bacteriophages and their hosts. The identification of a novel group of gene and protein structures and functions will lead to a better understanding of cold-adaptation mechanisms in bacteria and their bacteriophages.

  8. Potential application in mercury bioremediation of a marine sponge-isolated Bacillus cereus strain Pj1.

    PubMed

    Santos-Gandelman, Juliana F; Cruz, Kimberly; Crane, Sharron; Muricy, Guilherme; Giambiagi-deMarval, Marcia; Barkay, Tamar; Laport, Marinella S

    2014-09-01

    Sponges are sessile marine invertebrates that can live for many years in the same location, and therefore, they have the capability to accumulate anthropogenic pollutants such as metals over a long period. Almost all marine sponges harbor a large number of microorganisms within their tissues. The Bacillus cereus strain Pj1 was isolated from a marine sponge, Polymastia janeirensis, and was found to be resistant to 100 μM HgCl(2) and to 10 μM methylmercury (MeHg). Pj1 was also highly resistant to other metals, including CdCl(2) and Pb(NO(3))(2), alone or in combination. The mer operon was located on the bacterial chromosome, and the volatilization test indicated that the B. cereus Pj1 was able to reduce Hg(2+)-Hg(0). Cold vapor atomic absorption spectrometry demonstrated that Pj1 volatilized 80 % of the total MeHg that it was exposed to and produced elemental Hg when incubated with 1.5 μM MeHg. Pj1 also demonstrated sensitivity to all antibiotics tested. In addition, Pj1 demonstrated a potential for biosurfactant production, presenting an emulsification activity better than synthetic surfactants. The results of this study indicate that B. cereus Pj1 is a strain that can potentially be applied in the bioremediation of HgCl(2) and MeHg contamination in aquatic environments.

  9. Antibacterial activity of 11 essential oils against Bacillus cereus in tyndallized carrot broth.

    PubMed

    Valero, M; Salmerón, M C

    2003-08-15

    The antibacterial activity of 11 essential oils from aromatic plants against the strain INRA L2104 of the foodborne pathogen Bacillus cereus grown in carrot broth at 16 degrees C was studied. The quantity needed by the essential oils of nutmeg, mint, clove, oregano, cinnamon, sassafras, sage, thyme or rosemary to produce 14-1110% relative extension of the lag phase was determined. Total growth inhibition of bacterial spores was observed for some of the antimicrobial agents assayed. The addition of 5 microl cinnamon essential oil per 100 ml of broth in combination with refrigeration temperatures of cereus for at least 60 days in a model, refrigerated minimally processed food product, made with carrots and tyndallized. This is especially important considering that the psychrotrophic enterotoxigenic strain of B. cereus INRA TZ415 was able to grow in this substrate at low temperatures in the absence of any essential oil. Furthermore, the study of the sensory characteristics of the final product suggests that the use of cinnamon essential oil can be considered as an alternative to "traditional food preservatives".

  10. Bacterial succession and metabolite changes during flax (Linum usitatissimum L.) retting with Bacillus cereus HDYM-02

    PubMed Central

    Zhao, Dan; Liu, Pengfei; Pan, Chao; Du, Renpeng; Ping, Wenxiang; Ge, Jingping

    2016-01-01

    High-throughput sequencing and GC-MS (gas chromatography-mass spectrometry) were jointly used to reveal the bacterial succession and metabolite changes during flax (Linum usitatissimum L.) retting. The inoculation of Bacillus cereus HDYM-02 decreased bacterial richness and diversity. This inoculum led to the replacement of Enterobacteriaceae by Bacillaceae. The level of aerobic Pseudomonadaceae (mainly Azotobacter) and anaerobic Clostridiaceae_1 gradually increased and decreased, respectively. Following the addition of B. cereus HDYM-02, the dominant groups were all degumming enzyme producers or have been proven to be involved in microbial retting throughout the entire retting period. These results could be verified by the metabolite changes, either degumming enzymes or their catalytic products galacturonic acid and reducing sugars. The GC-MS data showed a clear separation between flax retting with and without B. cereus HDYM-02, particularly within the first 72 h. These findings reveal the important bacterial groups that are involved in fiber retting and will facilitate improvements in the retting process. PMID:27585559

  11. Antimicrobial resistance among Pseudomonas spp. and the Bacillus cereus group isolated from Danish agricultural soil.

    PubMed

    Jensen, L B; Baloda, S; Boye, M; Aarestrup, F M

    2001-06-01

    From four Danish pig farms, bacteria of Pseudomonas spp. and the Bacillus cereus group were isolated from soil and susceptibility towards selected antimicrobials was tested. From each farm, soil samples representing soil just before and after spread of animal waste and undisturbed agricultural soil, when possible, were collected. Soil from a well-characterized Danish farm soil (Højbakkegaard) was collected for comparison. The Pseudomonas spp. and B. cereus were chosen as representative for Gram-negative and Gram-positive indigenous soil bacteria to test the effect of spread of animal waste on selection of resistance among soil bacteria. No variations in resistance levels were observed between farms; but when the four differently treated soils were compared, resistance was seen for carbadox, chloramphenicol, nalidixan (nalidixic acid), nitrofurantoin, streptomycin and tetracycline for Pseudomonas spp., and for bacitracin, erythromycin, penicillin and streptomycin for the B. cereus group. Variations in resistance levels were observed when soil before and after spread of animal waste was compared, indicating an effect from spread of animal waste. PMID:11485227

  12. Bactericidal thurincin H causes unique morphological changes in Bacillus cereus F4552 without affecting membrane permeability.

    PubMed

    Wang, Gaoyan; Feng, Guoping; Snyder, Abigail B; Manns, David C; Churey, John J; Worobo, Randy W

    2014-08-01

    Thurincin H is an antilisterial bacteriocin produced by Bacillus thuringiensis SF361. It exhibits inhibitory activity against a wide range of Gram-positive foodborne pathogens and spoilage bacteria including Listeria monocytogenes, B. cereus, and B. subtilis. This hydrophobic, anionic bacteriocin folds into a hairpin structure maintained by four pairs of unique sulfur to α-carbon thioether bonds. As its hydrophobicity and structure are quite different from most archived bacteriocins, this study aimed to elucidate its mode of action and compare it with the mechanisms of other well-characterized bacteriocins. The results indicated that, although bactericidal to B. cereus F4552, thurincin H did not lead to optical density reduction or detectable changes in cell membrane permeability. B. cereus F4552 imaged by scanning electron microscopy after treatment with thurincin H at 32 × MIC showed regular rod-shaped cells, while only cells treated with thurincin H at the elevated levels of 256 × MIC showed loss of cell integrity and rigidity. Both concentrations caused greater than 99% of cell viability reduction. In contrast, nisin caused significant cell membrane permeability at concentration as low as 2 × MIC. These results indicated a difference in the mode of action for thurincin H compared with the generalized pore-forming mechanism of many lantibiotics, such as nisin. PMID:24891232

  13. Antibacterial activity of 11 essential oils against Bacillus cereus in tyndallized carrot broth.

    PubMed

    Valero, M; Salmerón, M C

    2003-08-15

    The antibacterial activity of 11 essential oils from aromatic plants against the strain INRA L2104 of the foodborne pathogen Bacillus cereus grown in carrot broth at 16 degrees C was studied. The quantity needed by the essential oils of nutmeg, mint, clove, oregano, cinnamon, sassafras, sage, thyme or rosemary to produce 14-1110% relative extension of the lag phase was determined. Total growth inhibition of bacterial spores was observed for some of the antimicrobial agents assayed. The addition of 5 microl cinnamon essential oil per 100 ml of broth in combination with refrigeration temperatures of cereus for at least 60 days in a model, refrigerated minimally processed food product, made with carrots and tyndallized. This is especially important considering that the psychrotrophic enterotoxigenic strain of B. cereus INRA TZ415 was able to grow in this substrate at low temperatures in the absence of any essential oil. Furthermore, the study of the sensory characteristics of the final product suggests that the use of cinnamon essential oil can be considered as an alternative to "traditional food preservatives". PMID:12810272

  14. Bacillus cereus iron uptake protein fishes out an unstable ferric citrate trimer

    PubMed Central

    Fukushima, Tatsuya; Sia, Allyson K.; Allred, Benjamin E.; Nichiporuk, Rita; Zhou, Zhongrui; Andersen, Ulla N.; Raymond, Kenneth N.

    2012-01-01

    Citrate is a common biomolecule that chelates Fe(III). Many bacteria and plants use ferric citrate to fulfill their nutritional requirement for iron. Only the Escherichia coli ferric citrate outer-membrane transport protein FecA has been characterized; little is known about other ferric citrate-binding proteins. Here we report a unique siderophore-binding protein from the Gram-positive pathogenic bacterium Bacillus cereus that binds multinuclear ferric citrate complexes. We have demonstrated that B. cereus ATCC 14579 takes up 55Fe radiolabeled ferric citrate and that a protein, BC_3466 [renamed FctC (ferric citrate-binding protein C)], binds ferric citrate. The dissociation constant (Kd) of FctC at pH 7.4 with ferric citrate (molar ratio 1:50) is 2.6 nM. This is the tightest binding observed of any B. cereus siderophore-binding protein. Nano electrospray ionization–mass spectrometry (nano ESI-MS) analysis of FctC and ferric citrate complexes or citrate alone show that FctC binds diferric di-citrate, and triferric tricitrate, but does not bind ferric di-citrate, ferric monocitrate, or citrate alone. Significantly, the protein selectively binds triferric tricitrate even though this species is naturally present at very low equilibrium concentrations. PMID:23027976

  15. Antimicrobial potential of flavoring ingredients against Bacillus cereus in a milk-based beverage.

    PubMed

    Pina-Pérez, Maria C; Rodrigo, Dolores; Martínez-López, Antonio

    2013-11-01

    Natural ingredients--cinnamon, cocoa, vanilla, and anise--were assessed based on Bacillus cereus vegetative cell growth inhibition in a mixed liquid whole egg and skim milk beverage (LWE-SM), under different conditions: ingredient concentration (1, 2.5, and 5% [wt/vol]) and incubation temperature (5, 10, and 22 °C). According to the results obtained, ingredients significantly (p<0.05) reduced bacterial growth when supplementing the LWE-SM beverage. B. cereus behavior was mathematically described for each substrate by means of a modified Gompertz equation. Kinetic parameters, lag time, and maximum specific growth rate were obtained. Cinnamon was the most bacteriostatic ingredient and cocoa the most bactericidal one when they were added at 5% (wt/vol) and beverages were incubated at 5 °C. The bactericidal effect of cocoa 5% (wt/vol) reduced final B. cereus log10 counts (log Nf, log10 (colony-forming units/mL)) by 4.10 ± 0.21 log10 cycles at 5 °C.

  16. Bacillus cereus iron uptake protein fishes out an unstable ferric citrate trimer.

    PubMed

    Fukushima, Tatsuya; Sia, Allyson K; Allred, Benjamin E; Nichiporuk, Rita; Zhou, Zhongrui; Andersen, Ulla N; Raymond, Kenneth N

    2012-10-16

    Citrate is a common biomolecule that chelates Fe(III). Many bacteria and plants use ferric citrate to fulfill their nutritional requirement for iron. Only the Escherichia coli ferric citrate outer-membrane transport protein FecA has been characterized; little is known about other ferric citrate-binding proteins. Here we report a unique siderophore-binding protein from the gram-positive pathogenic bacterium Bacillus cereus that binds multinuclear ferric citrate complexes. We have demonstrated that B. cereus ATCC 14579 takes up (55)Fe radiolabeled ferric citrate and that a protein, BC_3466 [renamed FctC (ferric citrate-binding protein C)], binds ferric citrate. The dissociation constant (K(d)) of FctC at pH 7.4 with ferric citrate (molar ratio 1:50) is 2.6 nM. This is the tightest binding observed of any B. cereus siderophore-binding protein. Nano electrospray ionization-mass spectrometry (nano ESI-MS) analysis of FctC and ferric citrate complexes or citrate alone show that FctC binds diferric di-citrate, and triferric tricitrate, but does not bind ferric di-citrate, ferric monocitrate, or citrate alone. Significantly, the protein selectively binds triferric tricitrate even though this species is naturally present at very low equilibrium concentrations.

  17. Arsenic release by indigenous bacteria Bacillus cereus from aquifer sediments at Datong Basin, northern China

    NASA Astrophysics Data System (ADS)

    Xie, Zuoming; Wang, Yanxin; Duan, Mengyu; Xie, Xianjun; Su, Chunli

    2011-03-01

    Endemic arsenic poisoning due to long-term drinking of high arsenic groundwater has been reported in Datong Basin, northern China. To investigate the effects of microbial activities on arsenic mobilization in contaminated aquifers, Bacillus cereus ( B. cereus) isolated from high arsenic aquifer sediments of the basin was used in our microcosm experiments. The arsenic concentration in the treatment with both bacteria and sodium citrate or glucose had a rapid increase in the first 18 d, and then, it declined. Supplemented with bacteria only, the concentration could increase on the second day. By contrast, the arsenic concentration in the treatment supplemented with sodium citrate or glucose was kept very low. These results indicate that bacterial activities promoted the release of arsenic in the sediments. Bacterial activities also influenced other geochemical parameters of the aqueous phase, such as pH, Eh, and the concentrations of dissolved Fe, Mn, and Al that are important controls on arsenic release. The removal of Fe, Mn, and Al from sediment samples was observed with the presence of B. cereus. The effects of microbial activities on Fe, Mn, and Al release were nearly the same as those on As mobilization. The pH values of the treatments inoculated with bacteria were lower than those without bacteria, still at alkaline levels. With the decrease of Eh values in treatments inoculated with bacteria, the microcosms became more reducing and are thus favorable for arsenic release.

  18. Bacterial succession and metabolite changes during flax (Linum usitatissimum L.) retting with Bacillus cereus HDYM-02.

    PubMed

    Zhao, Dan; Liu, Pengfei; Pan, Chao; Du, Renpeng; Ping, Wenxiang; Ge, Jingping

    2016-01-01

    High-throughput sequencing and GC-MS (gas chromatography-mass spectrometry) were jointly used to reveal the bacterial succession and metabolite changes during flax (Linum usitatissimum L.) retting. The inoculation of Bacillus cereus HDYM-02 decreased bacterial richness and diversity. This inoculum led to the replacement of Enterobacteriaceae by Bacillaceae. The level of aerobic Pseudomonadaceae (mainly Azotobacter) and anaerobic Clostridiaceae_1 gradually increased and decreased, respectively. Following the addition of B. cereus HDYM-02, the dominant groups were all degumming enzyme producers or have been proven to be involved in microbial retting throughout the entire retting period. These results could be verified by the metabolite changes, either degumming enzymes or their catalytic products galacturonic acid and reducing sugars. The GC-MS data showed a clear separation between flax retting with and without B. cereus HDYM-02, particularly within the first 72 h. These findings reveal the important bacterial groups that are involved in fiber retting and will facilitate improvements in the retting process. PMID:27585559

  19. Time dynamics of the Bacillus cereus exoproteome are shaped by cellular oxidation.

    PubMed

    Madeira, Jean-Paul; Alpha-Bazin, Béatrice; Armengaud, Jean; Duport, Catherine

    2015-01-01

    At low density, Bacillus cereus cells release a large variety of proteins into the extracellular medium when cultivated in pH-regulated, glucose-containing minimal medium, either in the presence or absence of oxygen. The majority of these exoproteins are putative virulence factors, including toxin-related proteins. Here, B. cereus exoproteome time courses were monitored by nanoLC-MS/MS under low-oxidoreduction potential (ORP) anaerobiosis, high-ORP anaerobiosis, and aerobiosis, with a specific focus on oxidative-induced post-translational modifications of methionine residues. Principal component analysis (PCA) of the exoproteome dynamics indicated that toxin-related proteins were the most representative of the exoproteome changes, both in terms of protein abundance and their methionine sulfoxide (Met(O)) content. PCA also revealed an interesting interconnection between toxin-, metabolism-, and oxidative stress-related proteins, suggesting that the abundance level of toxin-related proteins, and their Met(O) content in the B. cereus exoproteome, reflected the cellular oxidation under both aerobiosis and anaerobiosis.

  20. Growth/no growth models for heat-treated psychrotrophic Bacillus cereus spores under cold storage.

    PubMed

    Daelman, Jeff; Vermeulen, An; Willemyns, Tine; Ongenaert, Rebecca; Jacxsens, Liesbeth; Uyttendaele, Mieke; Devlieghere, Frank

    2013-01-15

    The microbiological safety of refrigerated and processed foods of extended durability (REPFED) is linked to spore-forming pathogens, more specifically Clostridium botulinum and Bacillus cereus. In this study two sets of growth/no growth (GNG) models are presented for the spores of two B. cereus strains. The models incorporate both product (water activity (a(w)) and pH) and process parameters (pasteurization value at 90 °C (P(90)) or heating temperature). The first model evaluates the effect of four different P(90)-values (P(90)=0, 4, 7 or 10 min, all applied at 90 °C) on the germination and subsequent growth of B. cereus spores under different conditions of pH and a(w) at 10 °C. These models show that a heat treatment not only increases the time to growth (TTG), but also significantly increases the minimal a(w) and pH necessary for germination and subsequent growth: e.g. at a(w) 0.995 and without heat treatment (P(90)=0), strain FF355 B. cereus spores were predicted to germinate and grow at pH 5.3. With a P(90) of 10 min, the minimal pH increased to 5.7. The second set of models for B. cereus spores compares the effect of three heat treatments with the same P(90)-value (10 min) but applied at different temperatures (85, 87 and 90 °C), on the germination and subsequent growth at 10 °C. The second model shows that lower heating temperatures (85 and 87 °C) had less effect on the TTG and minimal a(w) and pH than a higher temperature (90 °C). Finally, the first set of models was validated in broth using spores of seven psychrotrophic B. cereus strains, to evaluate the effect of strain variability on the model predictions. The results of the validation (% growth) were compared to the predicted growth probability. The results showed that the models were prone to fail-dangerous results (i.e. predicting no growth when growth was observed: 17%-34%). Using a very low threshold for growth (0.1% predicted chance of growth was considered to be complete growth), the models

  1. Effect of temperatures on the growth, toxin production, and heat resistance of Bacillus cereus in cooked rice.

    PubMed

    Wang, Jun; Ding, Tian; Oh, Deog-Hwan

    2014-02-01

    Bacillus cereus is capable of producing enterotoxin and emetic toxin, and Bacillus foodborne illnesses occur due to the consumption of food contaminated with endospores. The objectives of this study were to investigate the growth and toxin production of B. cereus in cooked rice and to determine the effect of temperature on toxin destruction. Cooked rice inoculated with B. cereus was stored at 15, 25, 35, and 45°C or treated at 80, 90, and 100°C. The results indicated that emetic toxin was produced faster than enterotoxin (which was not detected below 15°C) at all the storage temperatures (15-45°C) during the first 72 h. Emetic toxin persisted at 100°C for 2 h, although enterotoxin was easily to be destroyed by this treatment within 15 min. In addition, B. cereus in cooked rice stored at a warm temperature for a period was not inactivated due to survival of the thermostable endospores. These data indicate that the contaminated cooked rice with B. cereus might present a potential risk to consumers. Results from this study may help enhance the safety of such food, and provide valuable and reliable information for risk assessment and management, associated with the problem of B. cereus in cooked rice.

  2. Influence of the probiotic Bacillus cereus var. toyoi on the intestinal immunity of piglets.

    PubMed

    Scharek, L; Altherr, B J; Tölke, C; Schmidt, M F G

    2007-12-15

    In a feeding trial, sows and piglets were fed with the probiotic bacterium Bacillus cereus var. toyoi as a feed additive, and the effects on immune cell populations were examined. The development of the gut immune system was determined for piglets at the ages of 14, 28, 35 and 56 days post partum. Tissue samples of the Jejunum and the continuous Peyer's patch were used for enumeration of intraepithelial lymphocyte populations by fluorescence activated flow cytometry and fluorescence microscopy. Both independent methods of investigation led to similar results: the population of intraepithelial CD8+ T cells was significantly enhanced in the probiotic group piglets (p< or =0.05), and the numbers of gammadelta T cells tended to be higher in the intestinal epithelium (p<0.1) at the time of weaning (day 28). Lamina propria lymphocytes were also influenced by the treatment. Application of B. cereus var. toyoi resulted in significantly more CD25+ lymphocytes and gammadelta T cells in the probiotic group post-weaning. The occurrence of pathogenic Escherichia coli serogroups was also less frequent in the feces of piglets from the probiotic group. The finding that the CD8+ T cell population in the intestinal mucosa showed changes on day 28 indicated that the influence of B. cereus var. toyoi supplementation on the intestinal immune system started before weaning, an observation supported by changes in the intestinal microflora observed during the suckling-period. The results suggest that feeding of B. cereus var. toyoi to sows may result in beneficial effects on piglet health status independent of their feed supplementation.

  3. Isolation and characterization of flagellar filaments from Bacillus cereus ATCC 14579.

    PubMed

    Tagawa, Yuichi

    2014-12-01

    Isolated flagellar filaments from the type strain of Bacillus cereus, ATCC 14579, were shown to consist of 34, 32 and 31 kDa proteins in similar proportions as judged by band intensities on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The N-terminal amino acid sequences of these three proteins of strain ATCC 14579 were identical with the deduced sequences of three flagellin genes BC1657, BC1658 and BC1659 in the whole genome sequence. Strain ATCC 14579 was classified into serotype T2 by a flagellar serotyping scheme for B. cereus strains that are untypeable into known flagellar serotypes H1 to H23. Flagellar filaments from a reference strain of serotype T2 contained two protein bands at 34 and 32 kDa, but a single protein band at 39 kDa was detected in flagellar filaments of a reference strain of serotype H1. Two murine monoclonal antibodies, 1A5 and 2A5, which recognize both the 34 and 32 kDa flagellins and a single flagellin of 32 kDa, respectively, were specifically reactive with B. cereus strains ATCC 14579 and serotype T2 in whole-cell ELISA and bacterial motility inhibition tests. In immunoelectron microscopy with monoclonal antibodies 1A5 and 2A5, colloidal gold spheres were shown to localize almost evenly over the entire part of flagellar filaments. Since strain ATCC 14579, and presumably strain serotype T2, are unusual among B. cereus strains in possessing multiple genes that encode flagellin subunits, a possible unique mechanism may contribute to assembly of multiple flagellin subunits into the filament over its entire length.

  4. Reduction of Listeria monocytogenes and Bacillus cereus in Milk by Zinc Oxide Nanoparticles

    PubMed Central

    Mirhosseini, Mahboubeh; Barzegari Firouzabadi, Fatemeh

    2015-01-01

    Background & Objectives: Direct addition of antimicrobial materials to food during food processing is an effective method for controlling microbial contaminants of food and extending the shelf- life of food products. Objective of this research was to study the antimicrobial effect of zinc oxide (ZnO) nanoparticle and potential applications of ZnO nanoparticles in terms of controling two food-borne pathogens in milk. Methods: Toxicity of different concentration (0, 0.5, 2, 5, and 10 mM) of ZnO nanoparticles on Listeria monocytogenes and Bacillus cereus was studied in culture media and milk. Results: Among the mentiond concentrations, treatment of 10 mM of ZnO nanoparticle was the most effective one for L. monocytogenes and B. cereus inhibition, which completely inhibited the growth of L. monocytogenes and B. cereus in 24h. These data revealed concentration-dependency of the antibacterial activity of ZnO. Therefore, 5 mM and 10 mM ZnO were selected for further studies, which were performed in milk, since they demonstrated significant growth inhibition. ZnO NPs were more capable in terms of reducing the initial growth counts of all the above-stated strains in milk. Conclusion: ZnO nanoparticles had an antimicrobial activity against L. monocytogenes and B. cereus in milk and the media. This work was a preliminary study that provided a starting point for determining whether the use of ZnO nanoparticles had the potential for being applied in food preservation or not. PMID:26351469

  5. Inhibition of Bacillus cereus Strains by Antimicrobial Metabolites from Lactobacillus johnsonii CRL1647 and Enterococcus faecium SM21.

    PubMed

    Soria, M Cecilia; Audisio, M Carina

    2014-12-01

    Bacillus cereus is an endospore-forming, Gram-positive bacterium able to cause foodborne diseases. Lactic acid bacteria (LAB) are known for their ability to synthesize organic acids and bacteriocins, but the potential of these compounds against B. cereus has been scarcely documented in food models. The present study has examined the effect of the metabolites produced by Lactobacillus johnsonii CRL1647 and Enterococcus faecium SM21 on the viability of select B. cereus strains. Furthermore, the effect of E. faecium SM21 metabolites against B. cereus strains has also been investigated on a rice food model. L. johnsonii CRL1647 produced 128 mmol/L of lactic acid, 38 mmol/L of acetic acid and 0.3 mmol/L of phenyl-lactic acid. These organic acids reduced the number of vegetative cells and spores of the B. cereus strains tested. However, the antagonistic effect disappeared at pH 6.5. On the other hand, E. faecium SM21 produced only lactic and acetic acid (24.5 and 12.2 mmol/L, respectively) and was able to inhibit both vegetative cells and spores of the B. cereus strains, at a final fermentation pH of 5.0 and at pH 6.5. This would indicate the action of other metabolites, different from organic acids, present in the cell-free supernatant. On cooked rice grains, the E. faecium SM21 bacteriocin(s) were tested against two B. cereus strains. Both of them were significantly affected within the first 4 h of contact; whereas B. cereus BAC1 cells recovered after 24 h, the effect on B. cereus 1 remained up to the end of the assay. The LAB studied may thus be considered to define future strategies for biological control of B. cereus.

  6. Production and characterization of poly-3-hydroxybutyrate from Bacillus cereus PS 10.

    PubMed

    Sharma, Priyanka; Bajaj, Bijender Kumar

    2015-11-01

    Usage of renewable raw materials for production of fully degradable bioplastics (bacterial poly-3-hydroxybutyrate, PHB) has gained immense research impetus considering recalcitrant nature of petroleum based plastics, dwindling fossil fuel feed stocks, and associated green house gas emissions. However, high production cost of PHB is the major bottleneck for its wide range industrial applications. In current study, Bacillus cereus PS 10, a recent isolate, efficiently utilized molasses, an abundantly available by-product from sugar industries as sole carbon source for growth and PHB production. Most influential bioprocess variables i.e. molasses, pH and NH4Cl were identified based on Plackett-Burman-designed experiments. Design of experiment approach (response surface methodology) was further employed for optimization of these bioprocess variables, and an enhanced PHB yield (57.5%) was obtained. PHB produced by Bacillus cereus PS 10 was investigated using various physico-chemical approaches viz. thermogravimetric analysis, proton and carbon NMR ((1)H and (13)C) spectroscopy, melting point, elemental analysis and polarimetry for its detail characterization, and assessment for industrial application potential.

  7. Production and characterization of poly-3-hydroxybutyrate from Bacillus cereus PS 10.

    PubMed

    Sharma, Priyanka; Bajaj, Bijender Kumar

    2015-11-01

    Usage of renewable raw materials for production of fully degradable bioplastics (bacterial poly-3-hydroxybutyrate, PHB) has gained immense research impetus considering recalcitrant nature of petroleum based plastics, dwindling fossil fuel feed stocks, and associated green house gas emissions. However, high production cost of PHB is the major bottleneck for its wide range industrial applications. In current study, Bacillus cereus PS 10, a recent isolate, efficiently utilized molasses, an abundantly available by-product from sugar industries as sole carbon source for growth and PHB production. Most influential bioprocess variables i.e. molasses, pH and NH4Cl were identified based on Plackett-Burman-designed experiments. Design of experiment approach (response surface methodology) was further employed for optimization of these bioprocess variables, and an enhanced PHB yield (57.5%) was obtained. PHB produced by Bacillus cereus PS 10 was investigated using various physico-chemical approaches viz. thermogravimetric analysis, proton and carbon NMR ((1)H and (13)C) spectroscopy, melting point, elemental analysis and polarimetry for its detail characterization, and assessment for industrial application potential. PMID:26257381

  8. The Arthromitus stage of Bacillus cereus: Intestinal symbionts of animals

    PubMed Central

    Margulis, Lynn; Jorgensen, Jeremy Z.; Dolan, Sona; Kolchinsky, Rita; Rainey, Frederick A.; Lo, Shyh-Ching

    1998-01-01

    In the guts of more than 25 species of arthropods we observed filaments containing refractile inclusions previously discovered and named “Arthromitus” in 1849 by Joseph Leidy [Leidy, J. (1849) Proc. Acad. Nat. Sci. Philadelphia 4, 225–233]. We cultivated these microbes from boiled intestines of 10 different species of surface-cleaned soil insects and isopod crustaceans. Literature review and these observations lead us to conclude that Arthromitus are spore-forming, variably motile, cultivable bacilli. As long rod-shaped bacteria, they lose their flagella, attach by fibers or fuzz to the intestinal epithelium, grow filamentously, and sporulate from their distal ends. When these organisms are incubated in culture, their life history stages are accelerated by light and inhibited by anoxia. Characterization of new Arthromitus isolates from digestive tracts of common sow bugs (Porcellio scaber), roaches (Gromphodorhina portentosa, Blaberus giganteus) and termites (Cryptotermes brevis, Kalotermes flavicollis) identifies these flagellated, spore-forming symbionts as a Bacillus sp. Complete sequencing of the 16S rRNA gene from four isolates (two sow bug, one hissing roach, one death’s head roach) confirms these as the low-G+C Gram-positive eubacterium Bacillus cereus. We suggest that B. cereus and its close relatives, easily isolated from soil and grown on nutrient agar, enjoy filamentous growth in moist nutrient-rich intestines of healthy arthropods and similar habitats. PMID:9448315

  9. Bacillus cereus strain isolated from Demodex folliculorum in patients with topical steroid-induced rosaceiform facial dermatitis*

    PubMed Central

    Tatu, Alin Laurentiu; Ionescu, Marius Anton; Clatici, Victor Gabriel; Cristea, Violeta Corina

    2016-01-01

    The aim of the study was to identify Bacillus species from the Demodex folliculorum of patients with topical steroidinduced facial rosaceiform dermatitis. Of the 75 patients examined, 20% had clinical spinulosis, while 18.66% had dermoscopic features of Demodex: follicular plugs and tails. Of the 17.33% positive patients identified upon microscopy for Demodex, samples for bacterial culture were plated on trypticase soy Colombia agar. Identification was performed by microorganisms grown method mass spectrometry. We identified a strain of Bacillus cereus.

  10. IlsA, A Unique Surface Protein of Bacillus cereus Required for Iron Acquisition from Heme, Hemoglobin and Ferritin

    PubMed Central

    Daou, Nadine; Buisson, Christophe; Gohar, Michel; Vidic, Jasmina; Bierne, Hélène; Kallassy, Mireille; Lereclus, Didier; Nielsen-LeRoux, Christina

    2009-01-01

    The human opportunistic pathogen Bacillus cereus belongs to the B. cereus group that includes bacteria with a broad host spectrum. The ability of these bacteria to colonize diverse hosts is reliant on the presence of adaptation factors. Previously, an IVET strategy led to the identification of a novel B. cereus protein (IlsA, Iron-regulated leucine rich surface protein), which is specifically expressed in the insect host or under iron restrictive conditions in vitro. Here, we show that IlsA is localized on the surface of B. cereus and hence has the potential to interact with host proteins. We report that B. cereus uses hemoglobin, heme and ferritin, but not transferrin and lactoferrin. In addition, affinity tests revealed that IlsA interacts with both hemoglobin and ferritin. Furthermore, IlsA directly binds heme probably through the NEAT domain. Inactivation of ilsA drastically decreases the ability of B. cereus to grow in the presence of hemoglobin, heme and ferritin, indicating that IlsA is essential for iron acquisition from these iron sources. In addition, the ilsA mutant displays a reduction in growth and virulence in an insect model. Hence, our results indicate that IlsA is a key factor within a new iron acquisition system, playing an important role in the general virulence strategy adapted by B. cereus to colonize susceptible hosts. PMID:19956654

  11. Toxicological profile of cereulide, the Bacillus cereus emetic toxin, in functional assays with human, animal and bacterial cells.

    PubMed

    Andersson, Maria A; Hakulinen, Pasi; Honkalampi-Hämäläinen, Ulla; Hoornstra, Douwe; Lhuguenot, Jean-Claude; Mäki-Paakkanen, Jorma; Savolainen, Martti; Severin, Isabelle; Stammati, Anna-Laura; Turco, Laura; Weber, Assi; von Wright, Atte; Zucco, Flavia; Salkinoja-Salonen, Mirja

    2007-03-01

    Some strains of the endospore-forming bacterium Bacillus cereus produce a heat-stable ionophoric peptide, cereulide, of high human toxicity. We assessed cell toxicity of cereulide by measuring the toxicities of crude extracts of cereulide producing and non-producing strains of B. cereus, and of pure cereulide, using cells of human, animal and bacterial origins. Hepatic cell lines and boar sperm, with cytotoxicity and sperm motility, respectively, as the end points, were inhibited by 1 nM of cereulide present as B. cereus extract. RNA synthesis and cell proliferation in HepG2 cells was inhibited by 2 nM of cereulide. These toxic effects were explainable by the action of cereulide as a high-affinity mobile K+ carrier. Exposure to cereulide containing extracts of B. cereus caused neither activation of CYP1A1 nor genotoxicity (comet assay, micronucleus test) at concentrations below those that were cytotoxic (0.6 nM cereulide). Salmonella typhimurium reverse mutation (Ames) test was negative. Exposure of Vibrio fischeri to extracts of B. cereus caused stimulated luminescence up to 600%, independent on the presence of cereulide, but purified cereulide inhibited the luminescence with an IC(50% (30 min)) of 170 nM. Thus the luminescence-stimulating B. cereus substance(s) masked the toxicity of cereulide in B. cereus extracts to V. fischeri.

  12. Analysis of the Bacillus cereus SpoIIS antitoxin-toxin system reveals its three-component nature.

    PubMed

    Melničáková, Jana; Bečárová, Zuzana; Makroczyová, Jana; Barák, Imrich

    2015-01-01

    Programmed cell death in bacteria is generally associated with two-component toxin-antitoxin systems. The SpoIIS toxin-antitoxin system, consisting of a membrane-bound SpoIISA toxin and a small, cytosolic antitoxin SpoIISB, was originally identified in Bacillus subtilis. In this work we describe the Bacillus cereus SpoIIS system which is a three-component system, harboring an additional gene spoIISC. Its protein product serves as an antitoxin, and similarly as SpoIISB, is able to bind SpoIISA and abolish its toxic effect. Our results indicate that SpoIISC seems to be present not only in B. cereus but also in other Bacilli containing a SpoIIS toxin-antitoxin system. In addition, we show that B. cereus SpoIISA can form higher oligomers and we discuss the possible role of this multimerization for the protein's toxic function.

  13. Synergistic effect of electrolyzed water and citric Acid against bacillus cereus cells and spores on cereal grains.

    PubMed

    Park, Young Bae; Guo, Jin Yong; Rahman, S M E; Ahn, Juhee; Oh, Deog-Hwan

    2009-01-01

    The effects of acidic electrolyzed water (AcEW), alkaline electrolyzed water (AlEW), 100 ppm sodium hypochlorite (NaClO), and 1% citric acid (CA) alone, and combinations of AcEW with 1% CA (AcEW + CA) and AlEW with 1% CA (AlEW + CA) against Bacillus cereus vegetative cells and spores was evaluated as a function of temperature (25, 30, 40, 50, or 60 degrees C) and dipping time (3 or 6 h). A 3-strain cocktail of Bacillus cereus cells or spores of approximately 10(7) CFU/g was inoculated in various cereal grains (brown rice, Job's tear rice, glutinous rice, and barley rice). B. cereus vegetative cells and spores were more rapidly inactivated at 40 degrees C than at 25 degrees C. Regardless of the dipping time, all treatments reduced the numbers of B. cereus vegetative cells and spore by more than 1 log CFU/g, except the deionized water (DIW), which showed approximately 0.7 log reduction. The reductions of B. cereus cells increased with increasing dipping temperature (25 to 60 degrees C). B. cereus vegetative cells were much more sensitive to the combined treatments than spores. The effectiveness of the combined electrolyzed water (EW) and 1% CA was considerable in inhibiting B. cereus on cereal grains. The application of combined EW and CA for controlling B. cereus cells and spores on cereal grains has not been previously reported. Therefore, the synergistic effect of EW and CA may provide a valuable insight on reducing foodborne pathogens on fruits, vegetables, and cereal grains.

  14. Finished Genome Sequence of Bacillus cereus Strain 03BB87, a Clinical Isolate with B. anthracis Virulence Genes.

    PubMed

    Johnson, Shannon L; Minogue, Timothy D; Teshima, Hazuki; Davenport, Karen W; Shea, April A; Miner, Haven L; Wolcott, Mark J; Chain, Patrick S G

    2015-01-01

    Bacillus cereus strain 03BB87, a blood culture isolate, originated in a 56-year-old male muller operator with a fatal case of pneumonia in 2003. Here we present the finished genome sequence of that pathogen, including a 5.46-Mb chromosome and two plasmids (209 and 52 Kb, respectively).

  15. Complete genome sequence of Bacillus cereus NC7401, which produces high levels of the emetic toxin cereulide.

    PubMed

    Takeno, Akira; Okamoto, Akira; Tori, Keizo; Oshima, Kenshiro; Hirakawa, Hideki; Toh, Hidehiro; Agata, Norio; Yamada, Keiko; Ogasawara, Naotake; Hayashi, Tetsuya; Shimizu, Tohru; Kuhara, Satoru; Hattori, Masahira; Ohta, Michio

    2012-09-01

    We report the complete and annotated genome sequence of Bacillus cereus NC7401, a representative of the strain group that causes emetic-type food poisoning. The emetic toxin, cereulide, is produced by a nonribosomal protein synthesis (NRPS) system that is encoded by a gene cluster on a large resident plasmid, pNCcld.

  16. A probability model for enterotoxin production of Bacillus cereus as a function of pH and temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacillus cereus is frequently isolated from a variety of foods including vegetables, dairy products, meat, and other raw and processed foods. The bacterium is capable of producing enterotoxin and emetic toxin that can cause severe nausea, vomiting and diarrhea. The objectives of this study were to a...

  17. Finished Genome Sequence of Bacillus cereus Strain 03BB87, a Clinical Isolate with B. anthracis Virulence Genes

    SciTech Connect

    Johnson, Shannon L.; Minogue, Timothy D.; Teshima, Hazuki; Davenport, Karen W.; Shea, April A.; Miner, Haven L.; Wolcott, Mark J.; Chain, Patrick S.G.

    2015-01-15

    Bacillus cereus strain 03BB87, a blood culture isolate, originated in a 56-year-old male muller operator with a fatal case of pneumonia in 2003. Here we present the finished genome sequence of that pathogen, including a 5.46-Mb chromosome and two plasmids (209 and 52 Kb, respectively).

  18. Recipes for Antimicrobial Wine Marinades against Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated bactericidal activities of several antimicrobial wine recipes consisting of red and white wine extracts of oregano leaves with added garlic juice and oregano oil against Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica. Dose-response plots were...

  19. Characterization of boron resistant and accumulating bacteria Lysinibacillus fusiformis M1, Bacillus cereus M2, Bacillus cereus M3, Bacillus pumilus M4 isolated from former mining site, Hokkaido, Japan.

    PubMed

    Raja, Chellaiah Edward; Omine, Kiyoshi

    2012-01-01

    Boron is known to be widespread environmental contaminant that is relatively mobile in soil when compared to other metal contaminants. The present study made an attempt to isolate and characterize the boron resistant and accumulating bacteria from former mining site at Hokkaido, Japan. Four potential strains M1, M2, M3 and M4 were selected based on high degree of boron and heavy metal resistances. The morphological, biochemical and 16S rDNA sequencing analysis of mining bacteria revealed that the isolates were highly homology to Lysinibacillus fusiformis M1 (99 %), Bacillus cereus M2 (99 %), Bacillus cereus M3 (99 %) and Bacillus pumilus M4 (99 %) respectively. The strains M1, M2, M3 and M4 showed resistance to several heavy metals such as As (III), As (V) and Cr (VI), Cu, Ni, Pb and Zn. The selected strains were found to be arsenic oxidizing bacteria confirmed by Silver nitrate test. The resting and growing cells of mining bacteria were used for boron accumulation analysis. Selected strains were found to be efficiently accumulating boron concentration ranging from 0.1-2.3 mg L (-1) and 1.5-4.7 mg L (-1) at 24 h and 168 h, respectively. The following results conclude that the mining bacteria act as potent bioaccumulator of boron and its resistant, removal characteristic can be valuable in boron bioremediation. PMID:22571522

  20. Characterization of boron resistant and accumulating bacteria Lysinibacillus fusiformis M1, Bacillus cereus M2, Bacillus cereus M3, Bacillus pumilus M4 isolated from former mining site, Hokkaido, Japan.

    PubMed

    Raja, Chellaiah Edward; Omine, Kiyoshi

    2012-01-01

    Boron is known to be widespread environmental contaminant that is relatively mobile in soil when compared to other metal contaminants. The present study made an attempt to isolate and characterize the boron resistant and accumulating bacteria from former mining site at Hokkaido, Japan. Four potential strains M1, M2, M3 and M4 were selected based on high degree of boron and heavy metal resistances. The morphological, biochemical and 16S rDNA sequencing analysis of mining bacteria revealed that the isolates were highly homology to Lysinibacillus fusiformis M1 (99 %), Bacillus cereus M2 (99 %), Bacillus cereus M3 (99 %) and Bacillus pumilus M4 (99 %) respectively. The strains M1, M2, M3 and M4 showed resistance to several heavy metals such as As (III), As (V) and Cr (VI), Cu, Ni, Pb and Zn. The selected strains were found to be arsenic oxidizing bacteria confirmed by Silver nitrate test. The resting and growing cells of mining bacteria were used for boron accumulation analysis. Selected strains were found to be efficiently accumulating boron concentration ranging from 0.1-2.3 mg L (-1) and 1.5-4.7 mg L (-1) at 24 h and 168 h, respectively. The following results conclude that the mining bacteria act as potent bioaccumulator of boron and its resistant, removal characteristic can be valuable in boron bioremediation.

  1. Bacillus cereus Biovar Anthracis Causing Anthrax in Sub-Saharan Africa-Chromosomal Monophyly and Broad Geographic Distribution.

    PubMed

    Antonation, Kym S; Grützmacher, Kim; Dupke, Susann; Mabon, Philip; Zimmermann, Fee; Lankester, Felix; Peller, Tianna; Feistner, Anna; Todd, Angelique; Herbinger, Ilka; de Nys, Hélène M; Muyembe-Tamfun, Jean-Jacques; Karhemere, Stomy; Wittig, Roman M; Couacy-Hymann, Emmanuel; Grunow, Roland; Calvignac-Spencer, Sébastien; Corbett, Cindi R; Klee, Silke R; Leendertz, Fabian H

    2016-09-01

    Through full genome analyses of four atypical Bacillus cereus isolates, designated B. cereus biovar anthracis, we describe a distinct clade within the B. cereus group that presents with anthrax-like disease, carrying virulence plasmids similar to those of classic Bacillus anthracis. We have isolated members of this clade from different mammals (wild chimpanzees, gorillas, an elephant and goats) in West and Central Africa (Côte d'Ivoire, Cameroon, Central African Republic and Democratic Republic of Congo). The isolates shared several phenotypic features of both B. anthracis and B. cereus, but differed amongst each other in motility and their resistance or sensitivity to penicillin. They all possessed the same mutation in the regulator gene plcR, different from the one found in B. anthracis, and in addition, carry genes which enable them to produce a second capsule composed of hyaluronic acid. Our findings show the existence of a discrete clade of the B. cereus group capable of causing anthrax-like disease, found in areas of high biodiversity, which are possibly also the origin of the worldwide distributed B. anthracis. Establishing the impact of these pathogenic bacteria on threatened wildlife species will require systematic investigation. Furthermore, the consumption of wildlife found dead by the local population and presence in a domestic animal reveal potential sources of exposure to humans.

  2. Bacillus cereus Biovar Anthracis Causing Anthrax in Sub-Saharan Africa—Chromosomal Monophyly and Broad Geographic Distribution

    PubMed Central

    Mabon, Philip; Zimmermann, Fee; Lankester, Felix; Peller, Tianna; Feistner, Anna; Todd, Angelique; Herbinger, Ilka; de Nys, Hélène M.; Muyembe-Tamfun, Jean-Jacques; Karhemere, Stomy; Wittig, Roman M.; Couacy-Hymann, Emmanuel; Grunow, Roland; Calvignac-Spencer, Sébastien; Corbett, Cindi R.; Klee, Silke R.; Leendertz, Fabian H.

    2016-01-01

    Through full genome analyses of four atypical Bacillus cereus isolates, designated B. cereus biovar anthracis, we describe a distinct clade within the B. cereus group that presents with anthrax-like disease, carrying virulence plasmids similar to those of classic Bacillus anthracis. We have isolated members of this clade from different mammals (wild chimpanzees, gorillas, an elephant and goats) in West and Central Africa (Côte d’Ivoire, Cameroon, Central African Republic and Democratic Republic of Congo). The isolates shared several phenotypic features of both B. anthracis and B. cereus, but differed amongst each other in motility and their resistance or sensitivity to penicillin. They all possessed the same mutation in the regulator gene plcR, different from the one found in B. anthracis, and in addition, carry genes which enable them to produce a second capsule composed of hyaluronic acid. Our findings show the existence of a discrete clade of the B. cereus group capable of causing anthrax-like disease, found in areas of high biodiversity, which are possibly also the origin of the worldwide distributed B. anthracis. Establishing the impact of these pathogenic bacteria on threatened wildlife species will require systematic investigation. Furthermore, the consumption of wildlife found dead by the local population and presence in a domestic animal reveal potential sources of exposure to humans. PMID:27607836

  3. Bacillus cereus Biovar Anthracis Causing Anthrax in Sub-Saharan Africa-Chromosomal Monophyly and Broad Geographic Distribution.

    PubMed

    Antonation, Kym S; Grützmacher, Kim; Dupke, Susann; Mabon, Philip; Zimmermann, Fee; Lankester, Felix; Peller, Tianna; Feistner, Anna; Todd, Angelique; Herbinger, Ilka; de Nys, Hélène M; Muyembe-Tamfun, Jean-Jacques; Karhemere, Stomy; Wittig, Roman M; Couacy-Hymann, Emmanuel; Grunow, Roland; Calvignac-Spencer, Sébastien; Corbett, Cindi R; Klee, Silke R; Leendertz, Fabian H

    2016-09-01

    Through full genome analyses of four atypical Bacillus cereus isolates, designated B. cereus biovar anthracis, we describe a distinct clade within the B. cereus group that presents with anthrax-like disease, carrying virulence plasmids similar to those of classic Bacillus anthracis. We have isolated members of this clade from different mammals (wild chimpanzees, gorillas, an elephant and goats) in West and Central Africa (Côte d'Ivoire, Cameroon, Central African Republic and Democratic Republic of Congo). The isolates shared several phenotypic features of both B. anthracis and B. cereus, but differed amongst each other in motility and their resistance or sensitivity to penicillin. They all possessed the same mutation in the regulator gene plcR, different from the one found in B. anthracis, and in addition, carry genes which enable them to produce a second capsule composed of hyaluronic acid. Our findings show the existence of a discrete clade of the B. cereus group capable of causing anthrax-like disease, found in areas of high biodiversity, which are possibly also the origin of the worldwide distributed B. anthracis. Establishing the impact of these pathogenic bacteria on threatened wildlife species will require systematic investigation. Furthermore, the consumption of wildlife found dead by the local population and presence in a domestic animal reveal potential sources of exposure to humans. PMID:27607836

  4. Establishment of a novel multiplex PCR assay and detection of toxigenic strains of the species in the Bacillus cereus group.

    PubMed

    Yang, I-Chen; Shih, Daniel Yang-Chih; Huang, Tsui-Ping; Huang, Yun-Pu; Wang, Jan-Yi; Pan, Tzu-Ming

    2005-10-01

    Five different enterotoxins and one emetic toxin of Bacillus cereus have been characterized. To amplify all of the enterotoxin and emetic-specific sequences of the species in the B. cereus group, a multiplex PCR with 12 primer pairs was established. In developing the assay method, a common terminal sequence at the 3' ends of all primers was chosen and a hot start Taq polymerase was used to overcome primer dimer formation. The assay was successfully applied to analyze the toxigenic potential of 162 food-poisoning and food-related strains. Results showed that there were 10 toxigenic patterns for all the test strains. All of the B. cereus strains carried at least one toxin gene. More than 70% of Bacillus mycoides strains carried no known toxin genes. The toxin profiles and toxin genes of B. mycoides strains were significantly different from B. cereus strains (P < 0.05), although the two species were closely related. The results suggest that many B. mycoides strains might be less prone to cause food poisoning. They also indicate the importance of detecting the toxin genes together with the detection of the species in the B. cereus group.

  5. Diversity of Bacillus cereus group strains is reflected in their broad range of pathogenicity and diverse ecological lifestyles.

    PubMed

    Ceuppens, Siele; Boon, Nico; Uyttendaele, Mieke

    2013-06-01

    Bacillus cereus comprises a highly versatile group of bacteria, which are of particular interest because of their capacity to cause disease. Emetic food poisoning is caused by the toxin cereulide produced during the growth of emetic B. cereus in food, while diarrhoeal food poisoning is the result of enterotoxin production by viable vegetative B. cereus cells in the small intestine, probably in the mucus layer and/or attached to the host's intestinal epithelium. The numbers of B. cereus causing disease are highly variable, depending on diverse factors linked to the host (age, diet, physiology and immunology), bacteria (cellular form, toxin genes and expression) and food (nutritional composition and meal characteristics). Bacillus cereus group strains show impressive ecological diversity, ranging from their saprophytic life cycle in soil to symbiotic (commensal and mutualistic) lifestyles near plant roots and in guts of insects and mammals to various pathogenic ones in diverse insect and mammalian hosts. During all these different ecological lifestyles, their toxins play important roles ranging from providing competitive advantages within microbial communities to inhibition of specific pathogenic organisms for their host and accomplishment of infections by damaging their host's tissues.

  6. Bacillus cereus spores during housing of dairy cows: factors affecting contamination of raw milk.

    PubMed

    Magnusson, M; Christiansson, A; Svensson, B

    2007-06-01

    The contamination of raw milk with Bacillus cereus spores was studied during the indoor confinement of dairy cattle. The occurrence of spores in fresh and used bedding material, air samples, feed, feces, and the rinse water from milking equipment was compared with the spore level in bulk tank milk on 2 farms, one of which had 2 different housing systems. A less extensive study was carried out on an additional 5 farms. High spore concentrations of >100 spores/L in the raw milk were found on 4 of the farms. The number of spores found in the feed, feces, and air was too small to be of importance for milk contamination. Elevated spore contents in the rinse water from the milking equipment (up to 322 spores/L) were observed and large numbers of spores were found in the used bedding material, especially in free stalls with >5 cm deep sawdust beds. At most, 87,000 spores/g were found in used sawdust bedding. A positive correlation was found between the spore content in used bedding material and milk (r = 0.72). Comparison of the genetic fingerprints obtained by the random amplified polymorphic DNA PCR of isolates of B. cereus from the different sources indicated that used bedding material was the major source of contamination. A separate feeding experiment in which cows were experimentally fed B. cereus spores showed a positive relationship between the number of spores in the feed and feces and in the feces and milk (r = 0.78). The results showed that contaminated feed could be a significant source of spore contamination of raw milk if the number of spores excreted in the feces exceeded 100,000/g.

  7. Surface characteristics of Bacillus cereus and its adhesion to stainless steel.

    PubMed

    Peng, J S; Tsai, W C; Chou, C C

    2001-04-11

    The ability of a Bacillus cereus strain, isolated from spoiled milk, to adhere to the surface of stainless steel chips was evaluated during its growth in diluted tryptic soy broth (DTSB). The number of cells that adhered to the surface increased markedly as the culture reached the end of the log phase and entered stationary phase, and continued to increase with further incubation. The surface properties of cells from the log, stationary, and late stationary phases were measured by hydrophobic interaction chromatography (HIC) and electrostatic interaction chromatography (ESIC). It was found that surface hydrophobicity of B. cereus vegetative cells from the late stationary phase was the highest followed by those from the stationary phase and the log phase cultures. While the vegetative cells prepared from stationary phase and log phase cultures, respectively, had the highest and the lowest surface charges. Adhesion of B. cereus vegetative cells to stainless steel was positively correlated with the cell surface hydrophobicity (R = 0.979). Surface hydrophobicity and surface positive charge noted on the spores harvested from diluted tryptic soy agar (DTSA) and Mn2+-tryptone glucose extract agar were higher than those harvested from the sucrose or lactose-added DTSA. A wide variation in the surface charge values was noted on the surface of various spores prepared from cultures grown on the four different media tested, while their ability to adhere to stainless steel chips in phosphate buffered saline (PBS) showed no significant difference (p > 0.05). Similarly, the number of spores or vegetative cells adhering to stainless steel suspended in PBS, milk or diluted milk (1000 x) did not differ significantly (p > 0.05).

  8. Cloning and expression of vgb gene in Bacillus cereus, improve phenol and p-nitrophenol biodegradation

    NASA Astrophysics Data System (ADS)

    Vélez-Lee, Angel Eduardo; Cordova-Lozano, Felipe; Bandala, Erick R.; Sanchez-Salas, Jose Luis

    2016-02-01

    In this work, the vgb gene from Vitrocilla stercoraria was used to genetically modify a Bacillus cereus strain isolated from pulp and paper wastewater effluent. The gene was cloned in a multicopy plasmid (pUB110) or uni-copy gene using a chromosome integrative vector (pTrpBG1). B. cereus and its recombinant strains were used for phenol and p-nitrophenol biodegradation using aerobic or micro-aerobic conditions and two different temperatures (i.e. 37 and 25 °C). Complete (100%) phenol degradation was obtained for the strain where the multicopy of vgb gene was present, 98% for the strain where uni-copy gene was present and 45% for wild type strain for the same experimental conditions (i.e. 37 °C and aerobic condition). For p-nitrophenol degradation at the same conditions, the strain with the multi-copy vgb gene was capable to achieve 50% of biodegradation, ˜100% biodegradation was obtained using the uni-copy strain and ˜24% for wild type strain. When the micro-aerobic condition was tested, the biodegradation yield showed a significant decreased. The biodegradation trend observed for aerobic was similar for micro-aerobic assessments: the modified strains showed higher degradation rates when compared with wild type strain. For all experimental conditions, the highest p-nitrophenol degradation was observed using the strain with uni-copy of vgb gene. Besides the increase of biodegradative capability of the strain, insertion of the vgb gene was observed able to modify other morphological characteristics such as avoiding the typical flake formation in the B. cereus culture. In both cases, the modification seems to be related with the enhancement of oxygen supply to the cells generated by the vgb gene insertion. The application of the genetically modified microorganism (GMM) to the biodegradation of pollutants in contaminated water possesses high potential as an environmentally friendly technology to facing this emergent problem.

  9. Conducting polymer based DNA biosensor for the detection of the Bacillus cereus group species

    NASA Astrophysics Data System (ADS)

    Velusamy, Vijayalakshmi; Arshak, Khalil; Korostynska, Olga; Oliwa, Kamila; Adley, Catherine

    2009-05-01

    Biosensor designs are emerging at a significant rate and play an increasingly important role in foodborne pathogen detection. Conducting polymers are excellent tools for the fabrication of biosensors and polypyrrole has been used in the detection of biomolecules due to its unique properties. The prime intention of this paper was to pioneer the design and fabrication of a single-strand (ss) DNA biosensor for the detection of the Bacillus cereus (B.cereus) group species. Growth of B. cereus, results in production of several highly active toxins. Therefore, consumption of food containing >106 bacteria/gm may results in emetic and diarrhoeal syndromes. The most common source of this bacterium is found in liquid food products, milk powder, mixed food products and is of particular concern in the baby formula industry. The electrochemical deposition technique, such as cyclic voltammetry, was used to develop and test a model DNA-based biosensor on a gold electrode electropolymerized with polypyrrole. The electrically conducting polymer, polypyrrole is used as a platform for immobilizing DNA (1μg) on the gold electrode surface, since it can be more easily deposited from neutral pH aqueous solutions of pyrrolemonomers. The average current peak during the electrodeposition event is 288μA. There is a clear change in the current after hybridization of the complementary oligonucleotide (6.35μA) and for the noncomplementary oligonucleotide (5.77μA). The drop in current after each event was clearly noticeable and it proved to be effective.

  10. Characterization of LysPBC4, a novel Bacillus cereus-specific endolysin of bacteriophage PBC4.

    PubMed

    Na, Hongjun; Kong, Minsuk; Ryu, Sangryeol

    2016-06-01

    Bacillus cereus is a spore-forming, Gram-positive bacterium and is a major food-borne pathogen. A B. cereus-specific bacteriophage PBC4 was isolated from the soil of a stock farm, and its genome was analyzed. PBC4 belongs to the Siphoviridae family and has a genome consisting of 80 647-bp-long double-stranded DNA, including 123 genes and two tRNAs. LysPBC4, the endolysin of PBC4, has an enzymatically active domain (EAD) on its N-terminal region and a putative cell wall-binding domain (CBD) on its C-terminal region, respectively. Although the phage PBC4 showed a very limited host range, LysPBC4 could lyse all of the B. cereus strains tested. However, LysPBC4 did not kill other bacteria such as B. subtilis or Listeria, indicating that the endolysin has specific lytic activity against the B. cereus group species. Furthermore, LysPBC4_CBD fused with enhanced green fluorescent protein (EGFP) could decorate limited strains of B. cereus group, suggesting that the LysPBC4_CBD may be a promising material for specific detection of B. cereus.

  11. Bacillus cereus NVH 0500/00 Can Adhere to Mucin but Cannot Produce Enterotoxins during Gastrointestinal Simulation

    PubMed Central

    Tsilia, Varvara; Kerckhof, Frederiek-Maarten; Heyndrickx, Marc

    2015-01-01

    Adhesion to the intestinal epithelium could constitute an essential mechanism of Bacillus cereus pathogenesis. However, the enterocytes are protected by mucus, a secretion composed mainly of mucin glycoproteins. These may serve as nutrients and sites of adhesion for intestinal bacteria. In this study, the food poisoning bacterium B. cereus NVH 0500/00 was exposed in vitro to gastrointestinal hurdles prior to evaluation of its attachment to mucin microcosms and its ability to produce nonhemolytic enterotoxin (Nhe). The persistence of mucin-adherent B. cereus after simulated gut emptying was determined using a mucin adhesion assay. The stability of Nhe toward bile and pancreatin (intestinal components) in the presence of mucin agar was also investigated. B. cereus could grow and simultaneously adhere to mucin during in vitro ileal incubation, despite the adverse effect of prior exposure to a low pH or intestinal components. The final concentration of B. cereus in the simulated lumen at 8 h of incubation was 6.62 ± 0.87 log CFU ml−1. At that point, the percentage of adhesion was approximately 6%. No enterotoxin was detected in the ileum, due to either insufficient bacterial concentrations or Nhe degradation. Nevertheless, mucin appears to retain B. cereus and to supply it to the small intestine after simulated gut emptying. Additionally, mucin may play a role in the protection of enterotoxins from degradation by intestinal components. PMID:26497468

  12. Root Exudate-Induced Alterations in Bacillus cereus Cell Wall Contribute to Root Colonization and Plant Growth Promotion

    PubMed Central

    Dutta, Swarnalee; Rani, T. Swaroopa; Podile, Appa Rao

    2013-01-01

    The outcome of an interaction between plant growth promoting rhizobacteria and plants may depend on the chemical composition of root exudates (REs). We report the colonization of tobacco, and not groundnut, roots by a non-rhizospheric Bacillus cereus (MTCC 430). There was a differential alteration in the cell wall components of B. cereus in response to the REs from tobacco and groundnut. Attenuated total reflectance infrared spectroscopy revealed a split in amide I region of B. cereus cells exposed to tobacco-root exudates (TRE), compared to those exposed to groundnut-root exudates (GRE). In addition, changes in exopolysaccharides and lipid-packing were observed in B. cereus grown in TRE-amended minimal media that were not detectable in GRE-amended media. Cell-wall proteome analyses revealed upregulation of oxidative stress-related alkyl hydroperoxide reductase, and DNA-protecting protein chain (Dlp-2), in response to GRE and TRE, respectively. Metabolism-related enzymes like 2-amino-3-ketobutyrate coenzyme A ligase and 2-methylcitrate dehydratase and a 60 kDa chaperonin were up-regulated in response to TRE and GRE. In response to B. cereus, the plant roots altered their exudate-chemodiversity with respect to carbohydrates, organic acids, alkanes, and polyols. TRE-induced changes in surface components of B. cereus may contribute to successful root colonization and subsequent plant growth promotion. PMID:24205213

  13. Bacillus cereus NVH 0500/00 Can Adhere to Mucin but Cannot Produce Enterotoxins during Gastrointestinal Simulation.

    PubMed

    Tsilia, Varvara; Kerckhof, Frederiek-Maarten; Rajkovic, Andreja; Heyndrickx, Marc; Van de Wiele, Tom

    2015-10-23

    Adhesion to the intestinal epithelium could constitute an essential mechanism of Bacillus cereus pathogenesis. However, the enterocytes are protected by mucus, a secretion composed mainly of mucin glycoproteins. These may serve as nutrients and sites of adhesion for intestinal bacteria. In this study, the food poisoning bacterium B. cereus NVH 0500/00 was exposed in vitro to gastrointestinal hurdles prior to evaluation of its attachment to mucin microcosms and its ability to produce nonhemolytic enterotoxin (Nhe). The persistence of mucin-adherent B. cereus after simulated gut emptying was determined using a mucin adhesion assay. The stability of Nhe toward bile and pancreatin (intestinal components) in the presence of mucin agar was also investigated. B. cereus could grow and simultaneously adhere to mucin during in vitro ileal incubation, despite the adverse effect of prior exposure to a low pH or intestinal components. The final concentration of B. cereus in the simulated lumen at 8 h of incubation was 6.62 ± 0.87 log CFU ml(-1). At that point, the percentage of adhesion was approximately 6%. No enterotoxin was detected in the ileum, due to either insufficient bacterial concentrations or Nhe degradation. Nevertheless, mucin appears to retain B. cereus and to supply it to the small intestine after simulated gut emptying. Additionally, mucin may play a role in the protection of enterotoxins from degradation by intestinal components.

  14. gyrB as a phylogenetic discriminator for members of the Bacillus anthracis-cereus-thuringiensis group

    NASA Technical Reports Server (NTRS)

    La Duc, Myron T.; Satomi, Masataka; Agata, Norio; Venkateswaran, Kasthuri

    2004-01-01

    Bacillus anthracis, the causative agent of the human disease anthrax, Bacillus cereus, a food-borne pathogen capable of causing human illness, and Bacillus thuringiensis, a well-characterized insecticidal toxin producer, all cluster together within a very tight clade (B. cereus group) phylogenetically and are indistinguishable from one another via 16S rDNA sequence analysis. As new pathogens are continually emerging, it is imperative to devise a system capable of rapidly and accurately differentiating closely related, yet phenotypically distinct species. Although the gyrB gene has proven useful in discriminating closely related species, its sequence analysis has not yet been validated by DNA:DNA hybridization, the taxonomically accepted "gold standard". We phylogenetically characterized the gyrB sequences of various species and serotypes encompassed in the "B. cereus group," including lab strains and environmental isolates. Results were compared to those obtained from analyses of phenotypic characteristics, 16S rDNA sequence, DNA:DNA hybridization, and virulence factors. The gyrB gene proved more highly differential than 16S, while, at the same time, as analytical as costly and laborious DNA:DNA hybridization techniques in differentiating species within the B. cereus group.

  15. Optimization of inactivation of endospores of Bacillus cereus by antimicrobial lipopeptides from Bacillus subtilis fmbj strains using a response surface method.

    PubMed

    Huang, Xianqing; Lu, Zhaoxin; Bie, Xiaomei; Lü, FengXia; Zhao, Haizhen; Yang, Shujing

    2007-02-01

    Bacillus subtilis fmbj can produce a lipopeptide antimicrobial substance, the main components of which are surfactin and fengycin. In this paper, the sensitivity of Bacillus cereus to antimicrobial lipopeptides from B. subtilis fmbj was observed, and the effect of the microstructure of antimicrobial lipopeptide on spores of B. cereus was investigated. At the same time, the optimization of the inactivation of antimicrobial lipopeptides to spores of B. cereus by a response surface methodology was studied. Results showed that B. cereus had high sensitivity to it, whose minimal inhibitory concentration was 156.25 microg/ml. It could result in the death of spores by destroying the structure of resting spores and sprouting spores, as was observed by transmission electron microscopy. The optimization result indicated that spores of B. cereus could be inactivated by 2 orders of magnitude when the temperature was 29.6 degrees C, the action time was 7.6 h, and the concentration was 3.46 mg.ml(-1).

  16. Bacillus cereus spores in raw milk: factors affecting the contamination of milk during the grazing period.

    PubMed

    Christiansson, A; Bertilsson, J; Svensson, B

    1999-02-01

    Psychrotrophic Bacillus cereus is a limiting factor for the shelf-life of pasteurized milk, particularly during the grazing season. Potential sources of contamination and factors that might affect the spore content of milk were studied in detail for a group of eight cows during three 2-wk study periods from June to September over 2 yr. The spore content of milk was strongly associated with the degree of contamination of the teats with soil. High water content of soil, low evaporation of water and dirty access alloys were the most important factors correlating with high spore concentrations. The spore content of soil varied from < 50 to 380,000/g, depending on time and sampling site. The milking equipment did not contribute significantly to the contamination. The spore contents in air during milking (< 100 cfu/m3) and in feed (silage, hay, fresh grass, and concentrates) were too low to be of importance for contamination. The spore content in dung was also low. Further support that soil was the major contamination source was found by comparison of genetic fingerprints by random amplified polymorphic DNA polymerase chain reaction of isolates of B. cereus from soil and milk and by teat cleansing experiments, which resulted in reduced contamination levels in milk.

  17. The Bacillus cereus group is an excellent reservoir of novel lanthipeptides.

    PubMed

    Xin, Bingyue; Zheng, Jinshui; Xu, Ziya; Song, Xiaoling; Ruan, Lifang; Peng, Donghai; Sun, Ming

    2015-03-01

    Lantibiotics are ribosomally synthesized peptides that contain multiple posttranslational modifications. Research on lantibiotics has increased recently, mainly due to their broad-spectrum antimicrobial activity, especially against some clinical Gram-positive pathogens. Many reports about various bacteriocins in the Bacillus cereus group have been published, but few were about lantibiotics. In this study, we identified 101 putative lanthipeptide gene clusters from 77 out of 223 strains of this group, and these gene clusters were further classified into 20 types according to their gene organization and the homologies of their functional genes. Among them, 18 types were novel and have not yet been experimentally verified. Two novel lantibiotics (thuricin 4A-4 and its derivative, thuricin 4A-4D) were identified in the type I-1 lanthipeptide gene cluster and showed activity against all tested Gram-positive bacteria. The mode of action of thuricin 4A-4 was studied, and we found that it acted as a bactericidal compound. The transcriptional analysis of four structural genes (thiA1, thiA2, thiA3, and thiA4) in the thuricin 4A gene cluster showed that only one structural gene, thiA4, showed efficient transcription in the exponential growth phase; the other three structural genes did not. In addition, the putative transmembrane protein ThiI was responsible for thuricin 4A-4 immunity. Genome analysis and functional verification illustrated that B. cereus group strains were a prolific source of novel lantibiotics.

  18. Genotoxicity evaluation of tannery effluent treated with newly isolated hexavalent chromium reducing Bacillus cereus.

    PubMed

    Kumari, Vineeta; Yadav, Ashutosh; Haq, Izharul; Kumar, Sharad; Bharagava, Ram Naresh; Singh, Sudheer Kumar; Raj, Abhay

    2016-12-01

    In this study, the efficiency of free and immobilized cells of newly isolated hexavalent chromium [Cr(VI)] reducing Bacillus cereus strain Cr1 (accession no. KJ162160) was studied in the treatment of tannery effluent. The analysis of effluents revealed high chemical oxygen demand (COD-1260 mg/L), biological oxygen demand (BOD5-660 mg/L), total dissolved solids (TDS-14000 mg/L), electrical conductivity (EC-21.5 mS/cm) and total chromium (TC-2.4 mg/L). The effluents also showed genotoxic effects to Allium cepa. Treatment of tannery effluent with isolated B. cereus strain led to considerable reduction of pollutant load. The pollutant load reduction was studied with both immobilized and free cells and immobilized cells were more effective in reducing COD (65%), BOD (80%), TDS (67%), EC (65%) and TC (92%) after 48 h. GC-MS analysis of pre and post-treatment tannery effluent samples revealed reduction of organic load after treatment with free and immobilized cells. An improvement in mitotic index and reduction in chromosomal aberrations was also observed in A. cepa grown with post-treatement effluent samples compared to untreated sample. Results demonstrate that both methods of bacterial treatment (free and immobilized) were efficient in reducing the pollutant load of tannery effluent as well as in reducing genotoxic effects, however, treatment with immobilized cells was more effective. PMID:27591849

  19. Depsipeptide Intermediates Interrogate Proposed Biosynthesis of Cereulide, the Emetic Toxin of Bacillus cereus

    PubMed Central

    Marxen, Sandra; Stark, Timo D.; Rütschle, Andrea; Lücking, Genia; Frenzel, Elrike; Scherer, Siegfried; Ehling-Schulz, Monika; Hofmann, Thomas

    2015-01-01

    Cereulide and isocereulides A-G are biosynthesized as emetic toxins by Bacillus cereus via a non-ribosomal peptide synthetase (NRPS) called Ces. Although a thiotemplate mechanisms involving cyclo-trimerization of ready-made D-O-Leu-D-Ala-L-O-Val-L-Val via a thioesterase (TE) domain is proposed for cereulide biosynthesis, the exact mechanism is far from being understood. UPLC-TOF MS analysis of B. cereus strains in combination with 13C-labeling experiments now revealed tetra-, octa-, and dodecapeptides of a different sequence, namely (L-O-Val-L-Val-D-O-Leu-D-Ala)1-3, as intermediates of cereulide biosynthesis. Surprisingly, also di-, hexa-, and decadepsipeptides were identified which, together with the structures of the previously reported isocereulides E, F, and G, do not correlate to the currently proposed mechanism for cereulide biosynthesis and violate the canonical NRPS biosynthetic logic. UPLC-TOF MS metabolite analysis and bioinformatic gene cluster analysis highlighted dipeptides rather than single amino or hydroxy acids as the basic modules in tetradepsipeptide assembly and proposed the CesA C-terminal C* domain and the CesB C-terminal TE domain to function as a cooperative esterification and depsipeptide elongation center repeatedly recruiting the action of the C* domain to oligomerize tetradepsipeptides prior to the release of cereulide from the TE domain by macrocyclization. PMID:26013201

  20. Depsipeptide Intermediates Interrogate Proposed Biosynthesis of Cereulide, the Emetic Toxin of Bacillus cereus.

    PubMed

    Marxen, Sandra; Stark, Timo D; Rütschle, Andrea; Lücking, Genia; Frenzel, Elrike; Scherer, Siegfried; Ehling-Schulz, Monika; Hofmann, Thomas

    2015-01-01

    Cereulide and isocereulides A-G are biosynthesized as emetic toxins by Bacillus cereus via a non-ribosomal peptide synthetase (NRPS) called Ces. Although a thiotemplate mechanisms involving cyclo-trimerization of ready-made D-O-Leu-D-Ala-L-O-Val-L-Val via a thioesterase (TE) domain is proposed for cereulide biosynthesis, the exact mechanism is far from being understood. UPLC-TOF MS analysis of B. cereus strains in combination with (13)C-labeling experiments now revealed tetra-, octa-, and dodecapeptides of a different sequence, namely (L-O-Val-L-Val-D-O-Leu-D-Ala)1-3, as intermediates of cereulide biosynthesis. Surprisingly, also di-, hexa-, and decadepsipeptides were identified which, together with the structures of the previously reported isocereulides E, F, and G, do not correlate to the currently proposed mechanism for cereulide biosynthesis and violate the canonical NRPS biosynthetic logic. UPLC-TOF MS metabolite analysis and bioinformatic gene cluster analysis highlighted dipeptides rather than single amino or hydroxy acids as the basic modules in tetradepsipeptide assembly and proposed the CesA C-terminal C* domain and the CesB C-terminal TE domain to function as a cooperative esterification and depsipeptide elongation center repeatedly recruiting the action of the C* domain to oligomerize tetradepsipeptides prior to the release of cereulide from the TE domain by macrocyclization. PMID:26013201

  1. Estimation of the growth kinetic parameters of Bacillus cereus spores as affected by pulsed light treatment.

    PubMed

    Aguirre, Juan S; de Fernando, Gonzalo García; Hierro, Eva; Hospital, Xavier F; Ordóñez, Juan A; Fernández, Manuela

    2015-06-01

    Quantitative microbial risk assessment requires the knowledge of the effect of food preservation technologies on the growth parameters of the survivors of the treatment. This is of special interest in the case of the new non-thermal technologies that are being investigated for minimal processing of foods. This is a study on the effect of pulsed light technology (PL) on the lag phase of Bacillus cereus spores surviving the treatment and the maximum growth rate (μmax) of the survivors after germination. The D value was estimated as 0.35 J/cm(2) and our findings showed that PL affected the kinetic parameters of the microorganism. A log linear relationship was observed between the lag phase and the intensity of the treatment. Increasing the lethality lengthened the mean lag phase and proportionally increased its variability. A polynomial regression was fitted between the μmax of the survivors and the inactivation achieved. The μmax decreased as intensity increased. From these data, and their comparison to published results on the effect of heat and e-beam irradiation on B. cereus spores, it was observed that the shelf-life of PL treated foods would be longer than those treated with heat and similar to irradiated ones. These findings offer information of interest for the implementation of PL for microbial decontamination in the food industry. PMID:25755081

  2. Infrared decontamination of oregano: effects on Bacillus cereus spores, water activity, color, and volatile compounds.

    PubMed

    Eliasson, Lovisa; Libander, Patrik; Lövenklev, Maria; Isaksson, Sven; Ahrné, Lilia

    2014-12-01

    Infrared (IR) heating, a novel technology for decontaminating oregano, was evaluated by investigating the reduction of inoculated Bacillus cereus spores and the effect on water activity (a(w)), color, and headspace volatile compounds after exposure to IR treatment. Conditioned oregano (a(w) 0.88) was IR-treated in a closed heating unit at 90 and 100 °C for holding times of 2 and 10 min, respectively. The most successful reduction in B. cereus spore numbers (5.6 log units) was achieved after a holding time of 10 min at 90 °C, while treatment at 100 °C for the same time resulted in a lower reduction efficiency (4.7 log units). The lower reduction at 100 °C was probably due to a reduced aw (aw 0.76) during IR treatment or possibly to the alteration or loss of volatile compounds possessing antimicrobial properties. The green color of oregano was only slightly affected, while the composition of volatile compounds was clearly altered by IR heating. However, two of the key aroma compounds, carvacrol and thymol, were only slightly affected, compared to the effect on the other studied compounds, indicating that the typical oregano aroma can likely be preserved. In conclusion, IR heating shows potential for the successful decontamination of oregano without severe alteration of its color or the key aroma compounds, carvacrol and thymol. PMID:25393824

  3. Depsipeptide Intermediates Interrogate Proposed Biosynthesis of Cereulide, the Emetic Toxin of Bacillus cereus.

    PubMed

    Marxen, Sandra; Stark, Timo D; Rütschle, Andrea; Lücking, Genia; Frenzel, Elrike; Scherer, Siegfried; Ehling-Schulz, Monika; Hofmann, Thomas

    2015-05-27

    Cereulide and isocereulides A-G are biosynthesized as emetic toxins by Bacillus cereus via a non-ribosomal peptide synthetase (NRPS) called Ces. Although a thiotemplate mechanisms involving cyclo-trimerization of ready-made D-O-Leu-D-Ala-L-O-Val-L-Val via a thioesterase (TE) domain is proposed for cereulide biosynthesis, the exact mechanism is far from being understood. UPLC-TOF MS analysis of B. cereus strains in combination with (13)C-labeling experiments now revealed tetra-, octa-, and dodecapeptides of a different sequence, namely (L-O-Val-L-Val-D-O-Leu-D-Ala)1-3, as intermediates of cereulide biosynthesis. Surprisingly, also di-, hexa-, and decadepsipeptides were identified which, together with the structures of the previously reported isocereulides E, F, and G, do not correlate to the currently proposed mechanism for cereulide biosynthesis and violate the canonical NRPS biosynthetic logic. UPLC-TOF MS metabolite analysis and bioinformatic gene cluster analysis highlighted dipeptides rather than single amino or hydroxy acids as the basic modules in tetradepsipeptide assembly and proposed the CesA C-terminal C* domain and the CesB C-terminal TE domain to function as a cooperative esterification and depsipeptide elongation center repeatedly recruiting the action of the C* domain to oligomerize tetradepsipeptides prior to the release of cereulide from the TE domain by macrocyclization.

  4. Genomic insights into the taxonomic status of the Bacillus cereus group

    PubMed Central

    Liu, Yang; Lai, Qiliang; Göker, Markus; Meier-Kolthoff, Jan P.; Wang, Meng; Sun, Yamin; Wang, Lei; Shao, Zongze

    2015-01-01

    The identification and phylogenetic relationships of bacteria within the Bacillus cereus group are controversial. This study aimed at determining the taxonomic affiliations of these strains using the whole-genome sequence-based Genome BLAST Distance Phylogeny (GBDP) approach. The GBDP analysis clearly separated 224 strains into 30 clusters, representing eleven known, partially merged species and accordingly 19–20 putative novel species. Additionally, 16S rRNA gene analysis, a novel variant of multi-locus sequence analysis (nMLSA) and screening of virulence genes were performed. The 16S rRNA gene sequence was not sufficient to differentiate the bacteria within this group due to its high conservation. The nMLSA results were consistent with GBDP. Moreover, a fast typing method was proposed using the pycA gene, and where necessary, the ccpA gene. The pXO plasmids and cry genes were widely distributed, suggesting little correlation with the phylogenetic positions of the host bacteria. This might explain why classifications based on virulence characteristics proved unsatisfactory in the past. In summary, this is the first large-scale and systematic study of the taxonomic status of the bacteria within the B. cereus group using whole-genome sequences, and is likely to contribute to further insights into their pathogenicity, phylogeny and adaptation to diverse environments. PMID:26373441

  5. Comparative Transcriptomic and Phenotypic Analysis of the Responses of Bacillus cereus to Various Disinfectant Treatments▿ †

    PubMed Central

    Ceragioli, Mara; Mols, Maarten; Moezelaar, Roy; Ghelardi, Emilia; Senesi, Sonia; Abee, Tjakko

    2010-01-01

    Antimicrobial chemicals are widely applied to clean and disinfect food-contacting surfaces. However, the cellular response of bacteria to various disinfectants is unclear. In this study, the physiological and genome-wide transcriptional responses of Bacillus cereus ATCC 14579 exposed to four different disinfectants (benzalkonium chloride, sodium hypochlorite, hydrogen peroxide, and peracetic acid) were analyzed. For each disinfectant, concentrations leading to the attenuation of growth, growth arrest, and cell death were determined. The transcriptome analysis revealed that B. cereus, upon exposure to the selected concentrations of disinfectants, induced common and specific responses. Notably, the common response included genes involved in the general and oxidative stress responses. Exposure to benzalkonium chloride, a disinfectant known to induce membrane damage, specifically induced genes involved in fatty acid metabolism. Membrane damage induced by benzalkonium chloride was confirmed by fluorescence microscopy, and fatty acid analysis revealed modulation of the fatty acid composition of the cell membrane. Exposure to sodium hypochlorite induced genes involved in metabolism of sulfur and sulfur-containing amino acids, which correlated with the excessive oxidation of sulfhydryl groups observed in sodium hypochlorite-stressed cells. Exposures to hydrogen peroxide and peracetic acid induced highly similar responses, including the upregulation of genes involved in DNA damage repair and SOS response. Notably, hydrogen peroxide- and peracetic acid-treated cells exhibited high mutation rates correlating with the induced SOS response. PMID:20348290

  6. Estimation of the growth kinetic parameters of Bacillus cereus spores as affected by pulsed light treatment.

    PubMed

    Aguirre, Juan S; de Fernando, Gonzalo García; Hierro, Eva; Hospital, Xavier F; Ordóñez, Juan A; Fernández, Manuela

    2015-06-01

    Quantitative microbial risk assessment requires the knowledge of the effect of food preservation technologies on the growth parameters of the survivors of the treatment. This is of special interest in the case of the new non-thermal technologies that are being investigated for minimal processing of foods. This is a study on the effect of pulsed light technology (PL) on the lag phase of Bacillus cereus spores surviving the treatment and the maximum growth rate (μmax) of the survivors after germination. The D value was estimated as 0.35 J/cm(2) and our findings showed that PL affected the kinetic parameters of the microorganism. A log linear relationship was observed between the lag phase and the intensity of the treatment. Increasing the lethality lengthened the mean lag phase and proportionally increased its variability. A polynomial regression was fitted between the μmax of the survivors and the inactivation achieved. The μmax decreased as intensity increased. From these data, and their comparison to published results on the effect of heat and e-beam irradiation on B. cereus spores, it was observed that the shelf-life of PL treated foods would be longer than those treated with heat and similar to irradiated ones. These findings offer information of interest for the implementation of PL for microbial decontamination in the food industry.

  7. Genomic insights into the taxonomic status of the Bacillus cereus group.

    PubMed

    Liu, Yang; Lai, Qiliang; Göker, Markus; Meier-Kolthoff, Jan P; Wang, Meng; Sun, Yamin; Wang, Lei; Shao, Zongze

    2015-01-01

    The identification and phylogenetic relationships of bacteria within the Bacillus cereus group are controversial. This study aimed at determining the taxonomic affiliations of these strains using the whole-genome sequence-based Genome BLAST Distance Phylogeny (GBDP) approach. The GBDP analysis clearly separated 224 strains into 30 clusters, representing eleven known, partially merged species and accordingly 19-20 putative novel species. Additionally, 16S rRNA gene analysis, a novel variant of multi-locus sequence analysis (nMLSA) and screening of virulence genes were performed. The 16S rRNA gene sequence was not sufficient to differentiate the bacteria within this group due to its high conservation. The nMLSA results were consistent with GBDP. Moreover, a fast typing method was proposed using the pycA gene, and where necessary, the ccpA gene. The pXO plasmids and cry genes were widely distributed, suggesting little correlation with the phylogenetic positions of the host bacteria. This might explain why classifications based on virulence characteristics proved unsatisfactory in the past. In summary, this is the first large-scale and systematic study of the taxonomic status of the bacteria within the B. cereus group using whole-genome sequences, and is likely to contribute to further insights into their pathogenicity, phylogeny and adaptation to diverse environments. PMID:26373441

  8. Infrared decontamination of oregano: effects on Bacillus cereus spores, water activity, color, and volatile compounds.

    PubMed

    Eliasson, Lovisa; Libander, Patrik; Lövenklev, Maria; Isaksson, Sven; Ahrné, Lilia

    2014-12-01

    Infrared (IR) heating, a novel technology for decontaminating oregano, was evaluated by investigating the reduction of inoculated Bacillus cereus spores and the effect on water activity (a(w)), color, and headspace volatile compounds after exposure to IR treatment. Conditioned oregano (a(w) 0.88) was IR-treated in a closed heating unit at 90 and 100 °C for holding times of 2 and 10 min, respectively. The most successful reduction in B. cereus spore numbers (5.6 log units) was achieved after a holding time of 10 min at 90 °C, while treatment at 100 °C for the same time resulted in a lower reduction efficiency (4.7 log units). The lower reduction at 100 °C was probably due to a reduced aw (aw 0.76) during IR treatment or possibly to the alteration or loss of volatile compounds possessing antimicrobial properties. The green color of oregano was only slightly affected, while the composition of volatile compounds was clearly altered by IR heating. However, two of the key aroma compounds, carvacrol and thymol, were only slightly affected, compared to the effect on the other studied compounds, indicating that the typical oregano aroma can likely be preserved. In conclusion, IR heating shows potential for the successful decontamination of oregano without severe alteration of its color or the key aroma compounds, carvacrol and thymol.

  9. Iron Regulates Expression of Bacillus cereus Hemolysin II via Global Regulator Fur

    PubMed Central

    Shadrin, Andrey; Rodikova, Ekaterina A.; Andreeva-Kovalevskaya, Zhanna I.; Protsenko, Alexey S.; Mayorov, Sergey G.; Galaktionova, Darya Yu; Magelky, Erica

    2012-01-01

    The capacity of pathogens to respond to environmental signals, such as iron concentration, is key to bacterial survival and establishment of a successful infection. Bacillus cereus is a widely distributed bacterium with distinct pathogenic properties. Hemolysin II (HlyII) is one of its pore-forming cytotoxins and has been shown to be involved in bacterial pathogenicity in a number of cell and animal models. Unlike many other B. cereus pathogenicity factors, HlyII is not regulated by pleiotropic transcriptional regulator PlcR but is controlled by its own regulator, HlyIIR. Using a combination of in vivo and in vitro techniques, we show that hlyII expression is also negatively regulated by iron by the global regulator Fur via direct interaction with the hlyII promoter. DNase I footprinting and in vitro transcription experiments indicate that Fur prevents RNA polymerase binding to the hlyII promoter. HlyII expression profiles demonstrate that both HlyIIR and Fur regulate HlyII expression in a concerted fashion, with the effect of Fur being maximal in the early stages of bacterial growth. In sum, these results show that Fur serves as a transcriptional repressor for hlyII expression. PMID:22522892

  10. Genomic insights into the taxonomic status of the Bacillus cereus group.

    PubMed

    Liu, Yang; Lai, Qiliang; Göker, Markus; Meier-Kolthoff, Jan P; Wang, Meng; Sun, Yamin; Wang, Lei; Shao, Zongze

    2015-09-16

    The identification and phylogenetic relationships of bacteria within the Bacillus cereus group are controversial. This study aimed at determining the taxonomic affiliations of these strains using the whole-genome sequence-based Genome BLAST Distance Phylogeny (GBDP) approach. The GBDP analysis clearly separated 224 strains into 30 clusters, representing eleven known, partially merged species and accordingly 19-20 putative novel species. Additionally, 16S rRNA gene analysis, a novel variant of multi-locus sequence analysis (nMLSA) and screening of virulence genes were performed. The 16S rRNA gene sequence was not sufficient to differentiate the bacteria within this group due to its high conservation. The nMLSA results were consistent with GBDP. Moreover, a fast typing method was proposed using the pycA gene, and where necessary, the ccpA gene. The pXO plasmids and cry genes were widely distributed, suggesting little correlation with the phylogenetic positions of the host bacteria. This might explain why classifications based on virulence characteristics proved unsatisfactory in the past. In summary, this is the first large-scale and systematic study of the taxonomic status of the bacteria within the B. cereus group using whole-genome sequences, and is likely to contribute to further insights into their pathogenicity, phylogeny and adaptation to diverse environments.

  11. Short communication: Presence of neutral metallopeptidase (npr) gene and proteolytic activity of Bacillus cereus isolated from dairy products.

    PubMed

    Montanhini, M T M; Colombo, M; Nero, L A; Bersot, L S

    2013-09-01

    The control of proteolytic microorganisms is one of the main challenges of the dairy industry, due to their spoilage activity that jeopardizes the quality of their products. Seventy-four Bacillus cereus strains isolated from powdered, UHT, and pasteurized milks were tested for the presence of the neutral metallopeptidase (npr) gene and proteolytic activity at 7, 10, 25, 30, and 37°C. All strains had the npr gene, and proteolytic activity increased with the incubation temperature. The obtained results highlight the relevance of B. cereus as a spoiling agent in the dairy industry in terms of its genetic predisposition for proteolytic capacity, especially at room temperature.

  12. The Genetically Remote Pathogenic Strain NVH391-98 of the Bacillus cereus Group Represents the Cluster of Thermophilic Strains

    SciTech Connect

    Auger, Sandrine; Galleron, Nathalie; Bidnenko, Elena; Ehrlich, S. Dusko; Lapidus, Alla; Sorokin, Alexei

    2007-10-02

    Bacteria of the Bacillus cereus group are known to cause food poisoning. A rare phylogenetically remote strain, NVH391-98, was recently characterized to encode a particularly efficient cytotoxin K presumably responsible for food poisoning. This pathogenic strain and its close relatives can be phenotypically distinguished from other strains of the B. cereus group by the inability to grow at temperatures below 17 degrees C and by the ability to grow at temperatures from 48 to 53 degrees C. A temperate phage, phBC391A2, residing in the genome of NVH391-98 allows us to distinguish the three known members of this thermophilic strain cluster.

  13. Short communication: Presence of neutral metallopeptidase (npr) gene and proteolytic activity of Bacillus cereus isolated from dairy products.

    PubMed

    Montanhini, M T M; Colombo, M; Nero, L A; Bersot, L S

    2013-09-01

    The control of proteolytic microorganisms is one of the main challenges of the dairy industry, due to their spoilage activity that jeopardizes the quality of their products. Seventy-four Bacillus cereus strains isolated from powdered, UHT, and pasteurized milks were tested for the presence of the neutral metallopeptidase (npr) gene and proteolytic activity at 7, 10, 25, 30, and 37°C. All strains had the npr gene, and proteolytic activity increased with the incubation temperature. The obtained results highlight the relevance of B. cereus as a spoiling agent in the dairy industry in terms of its genetic predisposition for proteolytic capacity, especially at room temperature. PMID:23849645

  14. Penicillin and Cell Wall Synthesis: A Study of Bacillus cereus by Electron Microscopy

    PubMed Central

    Highton, Peter J.; Hobbs, D. G.

    1972-01-01

    The changes in wall structure of a penicillinase micro-constitutive strain of Bacillus cereus (569/H/24), on exposure to penicillin, and after its removal by addition of penicillinase, have suggested the following model for the growth of the walls of these cylindrical cells. Longitudinal extension is by addition of material to a large and continuously increasing number of growing points uniformly distributed over the cylindrical surface. Addition is only in the longitudinal direction so that the cell diameter remains constant. Cross walls grow by addition to their inner edge, and on completion the two new rounded ends of the daughter cells are formed by splitting at the outer edge and continued addition at the center. The ends are conserved. Images PMID:4110923

  15. Crystallization and preliminary X-ray analysis of a phosphopentomutase from Bacillus cereus

    SciTech Connect

    Panosian, Timothy D.; Nannemann, David P.; Bachmann, Brian O.; Iverson, T.M.

    2013-09-18

    Phosphopentomutases (PPMs) interconvert D-ribose 5-phosphate and {alpha}-D-ribose 1-phosphate to link glucose and nucleotide metabolism. PPM from Bacillus cereus was overexpressed in Escherichia coli, purified to homogeneity and crystallized. Bacterial PPMs are predicted to contain a di-metal reaction center, but the catalytically relevant metal has not previously been identified. Sparse-matrix crystallization screening was performed in the presence or absence of 50 mM MnCl{sub 2}. This strategy resulted in the formation of two crystal forms from two chemically distinct conditions. The crystals that formed with 50 mM MnCl{sub 2} were more easily manipulated and diffracted to higher resolution. These results suggest that even if the catalytically relevant metal is not known, the crystallization of putative metalloproteins may still benefit from supplementation of the crystallization screens with potential catalytic metals.

  16. Effects of Aronia melanocarpa constituents on biofilm formation of Escherichia coli and Bacillus cereus.

    PubMed

    Bräunlich, Marie; Økstad, Ole A; Slimestad, Rune; Wangensteen, Helle; Malterud, Karl E; Barsett, Hilde

    2013-01-01

    Many bacteria growing on surfaces form biofilms. Adaptive and genetic changes of the microorganisms in this structure make them resistant to antimicrobial agents. Biofilm-forming organisms on medical devices can pose serious threats to human health. Thus, there is a need for novel prevention and treatment strategies. This study aimed to evaluate the ability of Aronia melanocarpa extracts, subfractions and compounds to prevent biofilm formation and to inhibit bacterial growth of Escherichia coli and Bacillus cereus in vitro. It was found that several aronia substances possessed anti-biofilm activity, however, they were not toxic to the species screened. This non-toxic inhibition may confer a lower potential for resistance development compared to conventional antimicrobials.

  17. A soluble Bacillus cereus cytochrome P-450cin system catalyzes 1,4-cineole hydroxylations.

    PubMed Central

    Liu, W; Rosazza, J P

    1993-01-01

    A cytochrome P-450-dependent monooxygenase system that catalyzes the stereospecific hydroxylation of the monoterpene substrate 1,4-cineole was demonstrated in cell-free preparations of Bacillus cereus UI-1477. 1,4-Cineole hydroxylations were catalyzed by a 100,000 x g (1-h)-centrifuging soluble, hexane-inducible enzyme that activated and incorporated molecular oxygen into hydroxylated products; required NADH; was inhibited by SKF-525A, imidazole, metyrapone, and octylamine; and displayed a 452-nm peak in the carbon monoxide difference absorption spectrum. The constant 7:1 ratio of endo/exo alcohol products formed when 1,4-cineole was hydroxylated by normal cells, hexane-induced cells, and cell extracts suggested that a single enzyme designated cytochrome P-450cin was responsible for both reactions. PMID:8285692

  18. Effects of Aronia melanocarpa constituents on biofilm formation of Escherichia coli and Bacillus cereus.

    PubMed

    Bräunlich, Marie; Økstad, Ole A; Slimestad, Rune; Wangensteen, Helle; Malterud, Karl E; Barsett, Hilde

    2013-01-01

    Many bacteria growing on surfaces form biofilms. Adaptive and genetic changes of the microorganisms in this structure make them resistant to antimicrobial agents. Biofilm-forming organisms on medical devices can pose serious threats to human health. Thus, there is a need for novel prevention and treatment strategies. This study aimed to evaluate the ability of Aronia melanocarpa extracts, subfractions and compounds to prevent biofilm formation and to inhibit bacterial growth of Escherichia coli and Bacillus cereus in vitro. It was found that several aronia substances possessed anti-biofilm activity, however, they were not toxic to the species screened. This non-toxic inhibition may confer a lower potential for resistance development compared to conventional antimicrobials. PMID:24317526

  19. Detection of Multiple Resistances, Biofilm Formation and Conjugative Transfer of Bacillus cereus from Contaminated Soils.

    PubMed

    Anjum, Reshma; Krakat, Niclas

    2016-03-01

    The purpose of this study was to detect microbial resistances to a set of antibiotics/pesticides (multi-resistance) within pesticide and antibiotic-contaminated alluvial soils and to identify the corresponding antibiotic resistance genes (ARGs). To assess whether identified multi-resistant isolates are able to construct biofilms, several biofilm formation and conjugation experiments were conducted. Out of 35 isolates, six strains were used for filter mating experiments. Nine strains were identified by 16S rDNA gene sequence analyses and those were closely related to Pseudomonas sp., Citrobacter sp., Acinetobacter sp., Enterobacter sp., and in addition, Bacillus cereus was chosen for multi-resistant and pesticide-tolerant studies. Antibiotic-resistant and pesticide-tolerant bacterial strains were tested for the presence of ARGs. All nine strains were containing multiple ARGs (ampC, ermB, ermD, ermG, mecA, tetM) in different combinations. Interestingly, only strain WR34 (strongly related to Bacillus cereus) exhibited a high biofilm forming capacity on glass beads. Results obtained by filter mating experiments demonstrated gene transfer frequencies from 10(-5) to 10(-8). This study provides evidence that alluvial soils are hot spots for the accumulation of antibiotics, pesticides and biofilm formation. Particularly high resistances to tetracycline, ampicillin, amoxicillin and methicillin were proved. Apparently, isolate WR34 strongly correlated to a pathogenic organism had high potential to deploy biofilms in alluvial soils. Thus, we assume that loosened and unconsolidated soils investigated pose a high risk of an enhanced ARG prevalence. PMID:26650381

  20. Certhrax toxin, an anthrax-related ADP-ribosyltransferase from Bacillus cereus.

    PubMed

    Visschedyk, Danielle; Rochon, Amanda; Tempel, Wolfram; Dimov, Svetoslav; Park, Hee-Won; Merrill, A Rod

    2012-11-30

    We identified Certhrax, the first anthrax-like mART toxin from the pathogenic G9241 strain of Bacillus cereus. Certhrax shares 31% sequence identity with anthrax lethal factor from Bacillus anthracis; however, we have shown that the toxicity of Certhrax resides in the mART domain, whereas anthrax uses a metalloprotease mechanism. Like anthrax lethal factor, Certhrax was found to require protective antigen for host cell entry. This two-domain enzyme was shown to be 60-fold more toxic to mammalian cells than anthrax lethal factor. Certhrax localizes to distinct regions within mouse RAW264.7 cells by 10 min postinfection and is extranuclear in its cellular location. Substitution of catalytic residues shows that the mART function is responsible for the toxicity, and it binds NAD(+) with high affinity (K(D) = 52.3 ± 12.2 μM). We report the 2.2 Å Certhrax structure, highlighting its structural similarities and differences with anthrax lethal factor. We also determined the crystal structures of two good inhibitors (P6 (K(D) = 1.7 ± 0.2 μM, K(i) = 1.8 ± 0.4 μM) and PJ34 (K(D) = 5.8 ± 2.6 μM, K(i) = 9.6 ± 0.3 μM)) in complex with Certhrax. As with other toxins in this family, the phosphate-nicotinamide loop moves toward the NAD(+) binding site with bound inhibitor. These results indicate that Certhrax may be important in the pathogenesis of B. cereus.

  1. Effect of endophytic Bacillus cereus ERBP inoculation into non-native host: Potentials and challenges for airborne formaldehyde removal.

    PubMed

    Khaksar, Gholamreza; Treesubsuntorn, Chairat; Thiravetyan, Paitip

    2016-10-01

    Phytoremediation could be a cost-effective, environmentally friendly approach for the treatment of indoor air. However, some drawbacks still dispute the expediency of phytotechnology. Our objectives were to investigate the competency of plant growth-promoting (PGP) endophytic Bacillus cereus ERBP (endophyte root blue pea), isolated from the root of Clitoria ternatea, to colonize and stabilize within Zamioculcas zamiifolia and Euphorbia milii as non-native hosts without causing any disease or stress symptoms. Moreover, the impact of B. cereus ERBP on the natural shoot endophytic community and for the airborne formaldehyde removal capability of non-native hosts was assessed. Non-native Z. zamiifolia was effectively inoculated with B. cereus ERBP through soil as the most efficient method of endophyte inoculation. Denaturing gradient gel electrophoresis profiling of the shoot endophytic community verified the colonization and stability of B. cereus ERBP within its non-native host during a 20-d fumigation period without interfering with the natural shoot endophytic diversity of Z. zamiifolia. B. cereus ERBP conferred full protection to its non-native host against formaldehyde phytotoxicity and enhanced airborne formaldehyde removal of Z. zamiifolia whereas non-inoculated plants suffered from formaldehyde phytotoxicity because their natural shoot endophytic community was detrimentally affected by formaldehyde. In contrast, B. cereus ERBP inoculation into non-native E. milii deteriorated airborne formaldehyde removal of the non-native host (compared to a non-inoculated one) as B. cereus ERBP interfered with natural shoot endophytic community of E. milii, which caused stress symptoms and stimulated ethylene biosynthesis. Non-native host inoculation with PGP B. cereus ERBP could bear potentials and challenges for airborne formaldehyde removal. PMID:27362296

  2. Purification and characterization of a new Bacillus thuringiensis bacteriocin active against Listeria monocytogenes, Bacillus cereus and Agrobacterium tumefaciens.

    PubMed

    Kamoun, Fakher; Fguira, Ines Ben; Hassen, Najeh Belguith Ben; Mejdoub, Hafedh; Lereclus, Didier; Jaoua, Samir

    2011-09-01

    This study reports on the identification, characterization and purification of a new bacteriocin, named Bacthuricin F103, from a Bacillus thuringiensis strain BUPM103. Bacthuricin F103 production began in the early exponential phase and reached a maximum in the middle of the same phase. Two chromatographic methods based on high performance liquid chromatography and fast protein liquid chromatography systems were used to purify Bacthuricin F103. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis revealed that this bacteriocin had a molecular weight of approximately 11 kDa. It also showed a wide range of thermostability of up to 80 °C for 60 min and a broad spectrum of antimicrobial activity over a pH range of 3.0-10.0. This bacteriocin was noted, and for the first time, to exhibit potent antimicrobial activity against Agrobacterium subsp. strains, the major causal agents of crown gall disease in tomato and vineyard crops, and against several challenging organisms in food, such as Listeria monocytogenes and Bacillus cereus. Complete killing with immediate impact on cells was observed within a short period of time. The sequence obtained for Bacthuricin F103 by direct N-terminal sequencing shared considerable homology with hemolysin. Bacthuricin F103 was noted to act through the depletion of intracellular ions, which suggest that the cell membrane was a possible target to Bacthuricin F103. PMID:21487734

  3. Effects of Bacillus cereus var. toyoi on immune parameters of pregnant sows.

    PubMed

    Schierack, Peter; Filter, Matthias; Scharek, Lydia; Toelke, Christiane; Taras, David; Tedin, Karsten; Haverson, Karin; Lübke-Becker, Antina; Wieler, Lothar H

    2009-01-15

    Changing immune parameters during pregnancy have previously been reported in humans and cattle, and have been suggested to contribute to increased susceptibility to infections. However, data regarding immune parameters during pregnancy in sows are rare. In this study, we investigated the peripartal immune status of sows using phenotypical (FACS analysis) as well as functional (proliferation assays, cytokine analysis) parameters of peripheral blood mononuclear cells (PBMCs) in pregnant sows. In previous studies, we reported a modulation of the immune system after feed supplementation of the probiotic Bacillus cereus var. toyoi in piglets [Schierack, P., Wieler, L.H., Taras, D., Herwig, V., Tachu, B., Hlinak, A., Schmidt, M.F., Scharek, L., 2007. Bacillus cereus var. toyoi enhanced systemic immune response in piglets. Vet. Immunol. Immunopathol. 118, 1-11]. Here, we extended these previous studies to include investigations of possible probiotic effects on the peripartal immune status of sows and their reproductivity. We show that immune parameters of sows change during pregnancy, the proliferative response of PBMCs to several bacterial antigens in control animals decreased from days 90 to 30 ante partum. Relative numbers (%) of CD3+CD8+, CD4+, cytotoxic T, CD14+ and CD21+ cells were reduced compared to non-pregnant sows. In contrast, the proliferative response of PBMCs of probiotic-treated sows increased during pregnancy. Bacterial antigens primarily stimulated the proliferation of naïve CD21+ cells and the relative CD21+ cell numbers were elevated in the probiotic group in the absence of effects on other immune cell populations. The clinical and microbial status of both control and probiotic sows was similar, excluding pre-existing health problems or infections as responsible for the immunological changes, and feed supplementation also had no significant effects on reproductivity. The results suggest that the probiotic B. cereus var. toyoi can alter the

  4. Use of 16S rRNA, 23S rRNA, and gyrB gene sequence analysis to determine phylogenetic relationships of Bacillus cereus group.

    SciTech Connect

    Bayvkin, S. G.; Lysov, Y. P.; Zakhariev, V.; Kelly, J. J.; Jackman, J.; Stahl, D. A.; Cherni, A.; Engelhardt Inst. of Molecular Biology; Loyola Univ.; Johns Hopkins Univ.; Univ. of Washington

    2004-08-01

    In order to determine if variations in rRNA sequence could be used for discrimination of the members of the Bacillus cereus group, we analyzed 183 16S rRNA and 74 23S rRNA sequences for all species in the B. cereus group. We also analyzed 30 gyrB sequences for B. cereus group strains with published 16S rRNA sequences. Our findings indicated that the three most common species of the B. cereus group, B. cereus, Bacillus thuringiensis, and Bacillus mycoides, were each heterogeneous in all three gene sequences, while all analyzed strains of Bacillus anthracis were found to be homogeneous. Based on analysis of 16S and 23S rRNA sequence variations, the microorganisms within the B. cereus group were divided into seven subgroups, Anthracis, Cereus A and B, Thuringiensis A and B, and Mycoides A and B, and these seven subgroups were further organized into two distinct clusters. This classification of the B. cereus group conflicts with current taxonomic groupings, which are based on phenotypic traits. The presence of B. cereus strains in six of the seven subgroups and the presence of B. thuringiensis strains in three of the subgroups do not support the proposed unification of B. cereus and B. thuringiensis into one species. Analysis of the available phenotypic data for the strains included in this study revealed phenotypic traits that may be characteristic of several of the subgroups. Finally, our results demonstrated that rRNA and gyrB sequences may be used for discriminating B. anthracis from other microorganisms in the B. cereus group.

  5. A hospital food-borne outbreak of diarrhea caused by Bacillus cereus: clinical, epidemiologic, and microbiologic studies.

    PubMed

    Giannella, R A; Brasile, L

    1979-03-01

    An outbreak of diarrhea involving 28 patients occurred in two wards of a chronic disease hospital. The illness was characterized by abdominal cramps and watery diarrhea without vomiting or fever. An epidemiologic investigation suggested food-borne intoxication and incriminated turkey loaf served at the preceding evening meal as the source of the outbreak. Bacillus cereus was isolated both from the stool of all 14 symptomatic patients who were cultured and from turkey loaf. No other enteropathogens were found. The isolate of B. cereus was shown to elaborate an enterotoxin that caused fluid secretion in assays in the rabbit ileal loop and suckling mice and that also caused a positive response in the Y-1 adrenal cell assay. B. cereus is an enteropathogen that should be sought in outbreaks of food-related gastroenteritis. This organism affects the gastrointestinal tract probably by the elaboration of enterotoxins.

  6. Characterization and genome analysis of the Bacillus cereus-infecting bacteriophages BPS10C and BPS13.

    PubMed

    Shin, Hakdong; Lee, Ju-Hoon; Park, Jaeeun; Heu, Sunggi; Ryu, Sangryeol

    2014-08-01

    Due to the emergence of antibiotic-resistant strains, bacteriophages are considered to be an alternative approach for the control of pathogens. In this study, the bacteriophages BPS10C and BPS13 were isolated and characterized to investigate their ability to control food-borne pathogenic Bacillus cereus. Phage BPS13 exhibited slightly higher host lysis activity compared with phage BPS10C. In addition, phage BPS13 exhibited greater stability under various pH and temperature conditions. To extend our knowledge of the lysis of B. cereus by these phages, their genomes were completely sequenced and analyzed, revealing that these phage genomes encode endolysin and two tail lysins, which are likely involved in host lysis and invasion mechanisms, respectively. These lysis-related proteins may increase the bactericidal activities of these phages, suggesting that they may be good candidates for the potential control of B. cereus.

  7. Characterization and complete genome sequence of a virulent bacteriophage B4 infecting food-borne pathogenic Bacillus cereus.

    PubMed

    Lee, Ju-Hoon; Shin, Hakdong; Son, Bokyung; Heu, Sunggi; Ryu, Sangryeol

    2013-10-01

    Bacillus cereus causes food poisoning, resulting in vomiting and diarrhea, due to production of enterotoxins. As a means of controlling this food-borne pathogen, the virulent bacteriophage B4 was isolated and characterized. Bacterial challenge assays showed that phage B4 effectively inhibited growth of members of the B. cereus group as well as B. subtilis, and growth inhibition persisted for over 20 h. One-step growth analysis also revealed the host lysis activity of phage B4, with relatively short eclipse/latent times (10/15 min) and a large burst size (>200 PFU). The complete genome of phage B4, containing a 162-kb DNA with 277 ORFs, was analyzed. The endolysin encoded by the phage B4 genome accounts for the cell lysis activity of this phage. These results suggest that phage B4 has potential as a biological agent to control B. cereus propagation.

  8. Effectiveness of cleaning and disinfection procedures on the removal of enterotoxigenic bacillus cereus from infant feeding bottles.

    PubMed

    Rowan, N J; Anderson, J G

    1998-02-01

    Reconstituted infant milk formulas are considered a food class of high risk because of the susceptibility of the infant population to enteric bacterial pathogens, severe response to enterotoxins, and increased mortality. Twenty infant feeding bottles, contaminated with different levels of enterotoxigenic Bacillus cereus, were subjected in triplicate to a variety of commonly used cleaning and disinfection procedures Although thorough cleaning reduced microbial numbers, it did not remove all B. cereus present. Three commercially available disinfection procedures (i.e., one chemical and two thermal) successfully eliminated this organism when the level of contamination was <10(5) organisms ml(-1). However, the chemical disinfection method failed to eliminate enterotoxigenic B. cereus totally at potentially hazardous contamination levels (i.e., greater than or equal to 10(5) organisms ml(-1)) that may be encountered under storage abuse conditions in the home. PMID:9708281

  9. Kinetic analysis of extension of substrate specificity with Xanthomonas maltophilia, Aeromonas hydrophila, and Bacillus cereus metallo-beta-lactamases.

    PubMed Central

    Felici, A; Amicosante, G

    1995-01-01

    Twenty beta-lactam molecules, including penicillins, cephalosporins, penems, carbapenems, and monobactams, were investigated as potential substrates for Xanthomonas maltophilia ULA-511, Aeromonas hydrophila AE036, and Bacillus cereus 5/B/6 metallo-beta-lactamases. A detailed analysis of the kinetic parameters examined confirmed these enzymes to be broad-spectrum beta-lactamases with different ranges of catalytic efficiency. Cefoxitin and moxalactam, substrates for the beta-lactamases from X. maltophilia ULA-511 and B. cereus 5/B/6, behaved as inactivators of the A. hydrophila AE036 metallo-beta-lactamase, which appeared to be unique among the enzymes tested in this study. In addition, we report a new, faster, and reliable purification procedure for the B. cereus 5/B/6 metallo-beta-lactamase, cloned in Escherichia coli HB101. PMID:7695305

  10. Identification and Classification of bcl Genes and Proteins of Bacillus cereus Group Organisms and Their Application in Bacillus anthracis Detection and Fingerprinting▿ †

    PubMed Central

    Leski, Tomasz A.; Caswell, Clayton C.; Pawlowski, Marcin; Klinke, David J.; Bujnicki, Janusz M.; Hart, Sean J.; Lukomski, Slawomir

    2009-01-01

    The Bacillus cereus group includes three closely related species, B. anthracis, B. cereus, and B. thuringiensis, which form a highly homogeneous subdivision of the genus Bacillus. One of these species, B. anthracis, has been identified as one of the most probable bacterial biowarfare agents. Here, we evaluate the sequence and length polymorphisms of the Bacillus collagen-like protein bcl genes as a basis for B. anthracis detection and fingerprinting. Five genes, designated bclA to bclE, are present in B. anthracis strains. Examination of bclABCDE sequences identified polymorphisms in bclB alleles of the B. cereus group organisms. These sequence polymorphisms allowed specific detection of B. anthracis strains by PCR using both genomic DNA and purified Bacillus spores in reactions. By exploiting the length variation of the bcl alleles it was demonstrated that the combined bclABCDE PCR products generate markedly different fingerprints for the B. anthracis Ames and Sterne strains. Moreover, we predict that bclABCDE length polymorphism creates unique signatures for B. anthracis strains, which facilitates identification of strains with specificity and confidence. Thus, we present a new diagnostic concept for B. anthracis detection and fingerprinting, which can be used alone or in combination with previously established typing platforms. PMID:19767469

  11. Identification, genetic diversity and cereulide producing ability of Bacillus cereus group strains isolated from Beninese traditional fermented food condiments.

    PubMed

    Thorsen, Line; Azokpota, Paulin; Hansen, Bjarne Munk; Hounhouigan, D Joseph; Jakobsen, Mogens

    2010-08-15

    Bacillus cereus sensu lato is often detected in spontaneously fermented African foods but is rarely identified to species level. Only some of the B. cereus group species are reported to be pathogenic to humans and identification to species level is necessary to estimate the safety of these products. In the present study, a total of 19 Bacillus cereus group spp. isolated from afitin, iru and sonru, three spontaneously fermented African locust (Parkia biglobosa) bean based condiments produced in Benin, were investigated. The strains were isolated at 6, 12, 18, 24 and 48 h fermentation time. By using phenotypic and genotypic methods all of the isolates could be identified as B. cereus sensu stricto. The isolates were grouped according to their PM13 PCR (random amplification of polymorphic DNA PCR) fingerprint and formed two major clusters, one of which contained eight strains isolated from afitin (cluster 1). Highly similar PM13 profiles were obtained for seven of the isolates, one from afitin, one from iru and five from sonru (cluster 2). Four of the isolates, one from afitin and three from sonru, did not form any particular cluster. The PM13 profiles of cluster 2 isolates were identical to those which are specific to emetic toxin producers. Cereulide production of these isolates was confirmed by liquid chromatography mass spectrometry/mass spectrometry. This is the first report on cereulide producing B. cereus in African fermented foods. Occurrence of the opportunistic human pathogen B. cereus, which is able to produce emetic toxin in afitin, iru and sonru, could impose a health hazard. Interestingly, no reports on food poisoning from the consumption of the fermented condiments exist.

  12. Characterization and Exposure Assessment of Emetic Bacillus cereus and Cereulide Production in Food Products on the Dutch Market.

    PubMed

    Biesta-Peters, Elisabeth G; Dissel, Serge; Reij, Martine W; Zwietering, Marcel H; in't Veld, Paul H

    2016-02-01

    The emetic toxin cereulide, which can be produced by Bacillus cereus, can be the cause of food poisoning upon ingestion by the consumer. The toxin causes vomiting and is mainly produced in farinaceous food products. This article includes the prevalence of B. cereus and of cereulide in food products in The Netherlands, a characterization of B. cereus isolates obtained, cereulide production conditions, and a comparison of consumer exposure estimates with those of a previous exposure assessment. Food samples (n = 1,489) were tested for the presence of B. cereus; 5.4% of the samples contained detectable levels (>10(2) CFU/g), and 0.7% contained levels above 10(5) CFU/g. Samples (n = 3,008) also were tested for the presence of cereulide. Two samples (0.067%) contained detectable levels of cereulide at 3.2 and 5.4 μg/kg of food product. Of the 481 tested isolates, 81 produced cereulide and/or contained the ces gene. None of the starch-positive and hbl-containing isolates possessed the ces gene, whereas all strains contained the nhe genes. Culture of emetic B. cereus under nonoptimal conditions revealed a delay in onset of cereulide production compared with culture under optimal conditions, and cereulide was produced in all cases when B. cereus cells had been in the stationary phase for some time. The prevalence of cereulide-contaminated food approached the prevalence of contaminated products estimated in an exposure assessment. The main food safety focus associated with this pathogen should be to prevent germination and growth of any B. cereus present in food products and thus prevent cereulide production in foods.

  13. Epidemiologic Investigation of a Cluster of Neuroinvasive Bacillus cereus Infections in 5 Patients With Acute Myelogenous Leukemia.

    PubMed

    Rhee, Chanu; Klompas, Michael; Tamburini, Fiona B; Fremin, Brayon J; Chea, Nora; Epstein, Lauren; Halpin, Alison Laufer; Guh, Alice; Gallen, Rachel; Coulliette, Angela; Gee, Jay; Hsieh, Candace; Desjardins, Christopher A; Pedamullu, Chandra Sekhar; DeAngelo, Daniel J; Manzo, Veronica E; Folkerth, Rebecca Dunn; Milner, Danny A; Pecora, Nicole; Osborne, Matthew; Chalifoux-Judge, Diane; Bhatt, Ami S; Yokoe, Deborah S

    2015-09-01

    Background.  Five neuroinvasive Bacillus cereus infections (4 fatal) occurred in hospitalized patients with acute myelogenous leukemia (AML) during a 9-month period, prompting an investigation by infection control and public health officials. Methods.  Medical records of case-patients were reviewed and a matched case-control study was performed. Infection control practices were observed. Multiple environmental, food, and medication samples common to AML patients were cultured. Multilocus sequence typing was performed for case and environmental B cereus isolates. Results.  All 5 case-patients received chemotherapy and had early-onset neutropenic fevers that resolved with empiric antibiotics. Fever recurred at a median of 17 days (range, 9-20) with headaches and abrupt neurological deterioration. Case-patients had B cereus identified in central nervous system (CNS) samples by (1) polymerase chain reaction or culture or (2) bacilli seen on CNS pathology stains with high-grade B cereus bacteremia. Two case-patients also had colonic ulcers with abundant bacilli on autopsy. No infection control breaches were observed. On case-control analysis, bananas were the only significant exposure shared by all 5 case-patients (odds ratio, 9.3; P = .04). Five environmental or food isolates tested positive for B cereus, including a homogenized banana peel isolate and the shelf of a kitchen cart where bananas were stored. Multilocus sequence typing confirmed that all case and environmental strains were genetically distinct. Multilocus sequence typing-based phylogenetic analysis revealed that the organisms clustered in 2 separate clades. Conclusions.  The investigation of this neuroinvasive B cereus cluster did not identify a single point source but was suggestive of a possible dietary exposure. Our experience underscores the potential virulence of B cereus in immunocompromised hosts. PMID:26269794

  14. Epidemiologic Investigation of a Cluster of Neuroinvasive Bacillus cereus Infections in 5 Patients With Acute Myelogenous Leukemia

    PubMed Central

    Rhee, Chanu; Klompas, Michael; Tamburini, Fiona B.; Fremin, Brayon J.; Chea, Nora; Epstein, Lauren; Halpin, Alison Laufer; Guh, Alice; Gallen, Rachel; Coulliette, Angela; Gee, Jay; Hsieh, Candace; Desjardins, Christopher A.; Pedamullu, Chandra Sekhar; DeAngelo, Daniel J.; Manzo, Veronica E.; Folkerth, Rebecca Dunn; Milner, Danny A.; Pecora, Nicole; Osborne, Matthew; Chalifoux-Judge, Diane; Bhatt, Ami S.; Yokoe, Deborah S.

    2015-01-01

    Background. Five neuroinvasive Bacillus cereus infections (4 fatal) occurred in hospitalized patients with acute myelogenous leukemia (AML) during a 9-month period, prompting an investigation by infection control and public health officials. Methods. Medical records of case-patients were reviewed and a matched case-control study was performed. Infection control practices were observed. Multiple environmental, food, and medication samples common to AML patients were cultured. Multilocus sequence typing was performed for case and environmental B cereus isolates. Results. All 5 case-patients received chemotherapy and had early-onset neutropenic fevers that resolved with empiric antibiotics. Fever recurred at a median of 17 days (range, 9–20) with headaches and abrupt neurological deterioration. Case-patients had B cereus identified in central nervous system (CNS) samples by (1) polymerase chain reaction or culture or (2) bacilli seen on CNS pathology stains with high-grade B cereus bacteremia. Two case-patients also had colonic ulcers with abundant bacilli on autopsy. No infection control breaches were observed. On case-control analysis, bananas were the only significant exposure shared by all 5 case-patients (odds ratio, 9.3; P = .04). Five environmental or food isolates tested positive for B cereus, including a homogenized banana peel isolate and the shelf of a kitchen cart where bananas were stored. Multilocus sequence typing confirmed that all case and environmental strains were genetically distinct. Multilocus sequence typing-based phylogenetic analysis revealed that the organisms clustered in 2 separate clades. Conclusions. The investigation of this neuroinvasive B cereus cluster did not identify a single point source but was suggestive of a possible dietary exposure. Our experience underscores the potential virulence of B cereus in immunocompromised hosts. PMID:26269794

  15. Incidence, Antibiotic Susceptibility, and Toxin Profiles of Bacillus cereus sensu lato Isolated from Korean Fermented Soybean Products.

    PubMed

    Yim, Jin-Hyeok; Kim, Kwang-Yeop; Chon, Jung-Whan; Kim, Dong-Hyeon; Kim, Hong-Seok; Choi, Da-Som; Choi, In-Soo; Seo, Kun-Ho

    2015-06-01

    Korean fermented soybean products, such as doenjang, kochujang, ssamjang, and cho-kochujang, can harbor foodborne pathogens such as Bacillus cereus sensu lato (B. cereus sensu lato). The aim of this study was to characterize the toxin gene profiles, biochemical characteristics, and antibiotic resistance patterns of B. cereus sensu lato strains isolated from Korean fermented soybean products. Eighty-eight samples of Korean fermented soybean products purchased from retails in Seoul were tested. Thirteen of 26 doenjang samples, 13 of 23 kochujang samples, 16 of 30 ssamjang samples, and 5 of 9 cho-kochujang samples were positive for B. cereus sensu lato strains. The contamination level of all positive samples did not exceed 4 log CFU/g of food (maximum levels of Korea Food Code). Eighty-seven B. cereus sensu lato strains were isolated from 47 positive samples, and all isolates carried at least one enterotoxin gene. The detection rates of hblCDA, nheABC, cytK, and entFM enterotoxin genes among all isolates were 34.5%, 98.9%, 57.5%, and 100%, respectively. Fifteen strains (17.2%) harbored the emetic toxin gene. Most strains tested positive for salicin fermentation (62.1%), starch hydrolysis (66.7%), hemolysis (98.9%), motility test (100%), and lecithinase production (96.6%). The B. cereus sensu lato strains were highly resistant to β-lactam antibiotics such as ampicillin, penicillin, cefepime, imipenem, and oxacillin. Although B. cereus sensu lato levels in Korean fermented soybean products did not exceed the maximum levels permitted in South Korea (<10(4) CFU/g), these results indicate that the bacterial isolates have the potential to cause diarrheal or emetic gastrointestinal diseases.

  16. Quantitative Prevalence and Toxin Gene Profile of Bacillus cereus from Ready-to-Eat Vegetables in South Korea.

    PubMed

    Chon, Jung-Whan; Yim, Jin-Hyeok; Kim, Hong-Seok; Kim, Dong-Hyeon; Kim, Hyunsook; Oh, Deog-Hwan; Kim, Soo-Ki; Seo, Kun-Ho

    2015-09-01

    Ready-to-eat (RTE) foods such as prepared vegetables are becoming an increasingly popular food choice. Since RTE vegetables are not commonly sterilized by heat treatment, contamination with foodborne pathogens such as Bacillus cereus (B. cereus) is a major concern. The objective of this study was to assess the quantitative prevalence and toxin gene profiles of B. cereus strains isolated from RTE vegetables. We found that 70 of the 145 (48%) tested retail vegetable salad and sprout samples were positive for B. cereus. The B. cereus isolates harbored at least one enterotoxin gene. The detection rates of nheABC, hblCDA, cytK, and entFM enterotoxin genes among all isolates were 97.1%, 100%, 81.4%, and 98.6%, respectively. No strain carried the emetic toxin genes. Only 4 strains (5.7%) from the 70 isolates were psychrotrophic and were able to grow at 7°C. All of the psychrotrophic isolates possessed at least 1 enterotoxin gene.

  17. A procedure for estimating Bacillus cereus spores in soil and stream-sediment samples - A potential exploration technique

    USGS Publications Warehouse

    Watterson, J.R.

    1985-01-01

    The presence of bacterial spores of the Bacillus cereus group in soils and stream sediments appears to be a sensitive indicator of several types of concealed mineral deposits, including vein-type gold deposits. The B. cereus assay is rapid, inexpensive, and inherently reproducible. The test, currently under investigation for its potential in mineral exploration, is recommended for use on a research basis. Among the aerobic spore-forming bacilli, only B. cereus and closely related strains produce an opaque zone in egg-yolk emulsion agar. This characteristic, also known as the Nagler of lecitho-vitellin reaction, has long been used to rapidly indentify and estimate presumptive B. cereus. The test is here adapted to permit rapid estimation of B. cereus spores in soil and stream-sediment samples. Relative standard deviation was 10.3% on counts obtained from two 40-replicate pour-plate determinations. As many as 40 samples per day can be processed. Enough procedural detail is included to permit investigation of the test in conventional geochemical laboratories using standard microbiological safety precautions. ?? 1985.

  18. Evaluation of the Toxicity and Toxicokinetics of Cereulide from an Emetic Bacillus cereus Strain of Milk Origin.

    PubMed

    Cui, Yifang; Liu, Yuan; Liu, Xiaoye; Xia, Xi; Ding, Shuangyang; Zhu, Kui

    2016-01-01

    Bacillus cereus is an opportunistic foodborne agent causing food poisoning and many infectious diseases. The heat-stable emetic toxin cereulide is one of the most prevalent toxins produced by pathogenic B. cereus, resulting in symptoms such as emesis and liver failure. In the present work, the toxicity and toxicokinetics of cereulide from an emetic B. cereus isolate (CAU45) of raw milk were evaluated. The production of cereulide was tested by a cytotoxicity test and enzyme immunoassay, and confirmed by the presence of the ces (cereulide synthetase) gene and the ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. All results showed that the amount and toxicity of cereulide produced by CAU45 was 7 to 15.3 folds higher than the reference emetic B. cereus DSMZ 4312. Cereulide in plasma was collected at different time points after a single intravenous injection to evaluate its toxicokinetics in rabbits. The maximum concentration of cereulide was achieved in 2.6 ± 3.4 h after administration, with the elimination half-life of 10.8 ± 9.1 h, which expands our understanding of the toxic effects of cereulide. Together, it suggests that urgent sanitary practices are needed to eliminate emetic toxins and emetic B. cereus in raw milk. PMID:27275834

  19. Evaluation of the Toxicity and Toxicokinetics of Cereulide from an Emetic Bacillus cereus Strain of Milk Origin

    PubMed Central

    Cui, Yifang; Liu, Yuan; Liu, Xiaoye; Xia, Xi; Ding, Shuangyang; Zhu, Kui

    2016-01-01

    Bacillus cereus is an opportunistic foodborne agent causing food poisoning and many infectious diseases. The heat-stable emetic toxin cereulide is one of the most prevalent toxins produced by pathogenic B. cereus, resulting in symptoms such as emesis and liver failure. In the present work, the toxicity and toxicokinetics of cereulide from an emetic B. cereus isolate (CAU45) of raw milk were evaluated. The production of cereulide was tested by a cytotoxicity test and enzyme immunoassay, and confirmed by the presence of the ces (cereulide synthetase) gene and the ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. All results showed that the amount and toxicity of cereulide produced by CAU45 was 7 to 15.3 folds higher than the reference emetic B. cereus DSMZ 4312. Cereulide in plasma was collected at different time points after a single intravenous injection to evaluate its toxicokinetics in rabbits. The maximum concentration of cereulide was achieved in 2.6 ± 3.4 h after administration, with the elimination half-life of 10.8 ± 9.1 h, which expands our understanding of the toxic effects of cereulide. Together, it suggests that urgent sanitary practices are needed to eliminate emetic toxins and emetic B. cereus in raw milk. PMID:27275834

  20. Evaluation of the Toxicity and Toxicokinetics of Cereulide from an Emetic Bacillus cereus Strain of Milk Origin.

    PubMed

    Cui, Yifang; Liu, Yuan; Liu, Xiaoye; Xia, Xi; Ding, Shuangyang; Zhu, Kui

    2016-06-06

    Bacillus cereus is an opportunistic foodborne agent causing food poisoning and many infectious diseases. The heat-stable emetic toxin cereulide is one of the most prevalent toxins produced by pathogenic B. cereus, resulting in symptoms such as emesis and liver failure. In the present work, the toxicity and toxicokinetics of cereulide from an emetic B. cereus isolate (CAU45) of raw milk were evaluated. The production of cereulide was tested by a cytotoxicity test and enzyme immunoassay, and confirmed by the presence of the ces (cereulide synthetase) gene and the ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. All results showed that the amount and toxicity of cereulide produced by CAU45 was 7 to 15.3 folds higher than the reference emetic B. cereus DSMZ 4312. Cereulide in plasma was collected at different time points after a single intravenous injection to evaluate its toxicokinetics in rabbits. The maximum concentration of cereulide was achieved in 2.6 ± 3.4 h after administration, with the elimination half-life of 10.8 ± 9.1 h, which expands our understanding of the toxic effects of cereulide. Together, it suggests that urgent sanitary practices are needed to eliminate emetic toxins and emetic B. cereus in raw milk.

  1. Identification and Characterization of Bacillus cereus SW7-1 in Bombyx mori (Lepidoptera: Bombycidae).

    PubMed

    Li, Guan-Nan; Xia, Xue-Juan; Zhao, Huan-Huan; Sendegeya, Parfait; Zhu, Yong

    2015-01-01

    The bacterial diseases of silkworms cause significant reductions in sericulture and result in huge economic loss. This study aimed to identify and characterize a pathogen from diseased silkworm. SW7-1, a pathogenic bacterial strain, was isolated from the diseased silkworm. The strain was identified on the basis of its bacteriological properties and 16S rRNA gene sequence. The colony was round, slightly convex, opaque, dry, and milky on a nutrient agar medium, the colony also exhibited jagged edges. SW7-1 was Gram-positive, without parasporal crystal, and 0.8-1.2 by 2.6-3.4 µm in length, resembling long rods with rounded ends. The strain was positive to most of the physiological biochemical tests used in this study. The strain could utilize glucose, sucrose, and maltose. The results of its 16S rRNA gene sequence analysis revealed that SW7-1 shared the highest sequence identity (>99%) with Bacillus cereus strain 14. The bacterial strain was highly susceptible to gentamycin, streptomycin, erythromycin, norfloxacin, and ofloxacin and moderately susceptible to tetracycline and rifampicin. It exhibited resistance to other antibiotics. SW7-1 had hemolytic activity and could produce extracellular casease, lipase, and amylase. SW7-1 could reproduce septicemia-like symptoms with high mortality rate when re-fed to healthy silkworm. .The median lethal concentration (LC50) was 5.45 × 10(4) cfu/ml. Thus, SW7-1 was identified as B. cereus, which is a pathogen for silkworm and human infections are possible.

  2. Isolation and characterization of a furfural-degrading bacterium Bacillus cereus sp. strain DS1.

    PubMed

    Zheng, Dan; Bao, Jianguo; Lu, Jueming; Gao, Chunlei

    2015-02-01

    Furfural was found to be the main organic pollutant in the wastewater coming from the Diosgenin factory. This substance is derived from acidic pentosan in Dioscorea zingiberensis and is also found in a variety of agricultural byproducts, including corncobs, oat, wheat bran, and sawdust. It is regarded as a toxicant and an inhibitor to the growth of microorganism in both sewage disposal and biological fermentation. A furfural-degrading strain (DS1) was isolated from activated sludge of wastewater treatment plant in a diosgenin factory by continuous enrichment culture. The strain was identified as Bacillus cereus based on morphological, physiological tests, as well as on 16S rDNA sequence and Biolog analyses. The capacity of this strain to grow on a mineral salt medium, utilizing furfural as the sole carbon and energy source to degrade furfural, was investigated in this study. Under the condition of pH 9.0, temperature 35 °C, with rotating speed of 150 rpm, and an inoculum of 6 %, the strain showed that the furfural degradation capacity reaches 35 % in 7 days, as measured by high-performance liquid chromatography. The addition of inorganic carbon sources could bring down the biodegradation efficiency of the furfural. The strain DS1 showed better furfural removal capacity, as compared to other inorganic carbon sources in the media. Furthermore, a furfural concentration of as high as 4,000 mg L(-1) was tolerated by the culture. The capacity to degrade furfural was demonstrated for the first time by using the genus B. cereus. This study suggests the possible application in biodegradation strategies.

  3. Identification and Characterization of Bacillus cereus SW7-1 in Bombyx mori (Lepidoptera: Bombycidae)

    PubMed Central

    Li, Guan-Nan; Xia, Xue-Juan; Zhao, Huan-Huan; Sendegeya, Parfait; Zhu, Yong

    2015-01-01

    The bacterial diseases of silkworms cause significant reductions in sericulture and result in huge economic loss. This study aimed to identify and characterize a pathogen from diseased silkworm. SW7-1, a pathogenic bacterial strain, was isolated from the diseased silkworm. The strain was identified on the basis of its bacteriological properties and 16S rRNA gene sequence. The colony was round, slightly convex, opaque, dry, and milky on a nutrient agar medium, the colony also exhibited jagged edges. SW7-1 was Gram-positive, without parasporal crystal, and 0.8–1.2 by 2.6–3.4 µm in length, resembling long rods with rounded ends. The strain was positive to most of the physiological biochemical tests used in this study. The strain could utilize glucose, sucrose, and maltose. The results of its 16S rRNA gene sequence analysis revealed that SW7-1 shared the highest sequence identity (>99%) with Bacillus cereus strain 14. The bacterial strain was highly susceptible to gentamycin, streptomycin, erythromycin, norfloxacin, and ofloxacin and moderately susceptible to tetracycline and rifampicin. It exhibited resistance to other antibiotics. SW7-1 had hemolytic activity and could produce extracellular casease, lipase, and amylase. SW7-1 could reproduce septicemia-like symptoms with high mortality rate when re-fed to healthy silkworm. .The median lethal concentration (LC50) was 5.45 × 104 cfu/ml. Thus, SW7-1 was identified as B. cereus, which is a pathogen for silkworm and human infections are possible. PMID:26411789

  4. Isolation and characterization of a furfural-degrading bacterium Bacillus cereus sp. strain DS1.

    PubMed

    Zheng, Dan; Bao, Jianguo; Lu, Jueming; Gao, Chunlei

    2015-02-01

    Furfural was found to be the main organic pollutant in the wastewater coming from the Diosgenin factory. This substance is derived from acidic pentosan in Dioscorea zingiberensis and is also found in a variety of agricultural byproducts, including corncobs, oat, wheat bran, and sawdust. It is regarded as a toxicant and an inhibitor to the growth of microorganism in both sewage disposal and biological fermentation. A furfural-degrading strain (DS1) was isolated from activated sludge of wastewater treatment plant in a diosgenin factory by continuous enrichment culture. The strain was identified as Bacillus cereus based on morphological, physiological tests, as well as on 16S rDNA sequence and Biolog analyses. The capacity of this strain to grow on a mineral salt medium, utilizing furfural as the sole carbon and energy source to degrade furfural, was investigated in this study. Under the condition of pH 9.0, temperature 35 °C, with rotating speed of 150 rpm, and an inoculum of 6 %, the strain showed that the furfural degradation capacity reaches 35 % in 7 days, as measured by high-performance liquid chromatography. The addition of inorganic carbon sources could bring down the biodegradation efficiency of the furfural. The strain DS1 showed better furfural removal capacity, as compared to other inorganic carbon sources in the media. Furthermore, a furfural concentration of as high as 4,000 mg L(-1) was tolerated by the culture. The capacity to degrade furfural was demonstrated for the first time by using the genus B. cereus. This study suggests the possible application in biodegradation strategies. PMID:25274411

  5. Multiparametric Quantitation of the Bacillus cereus Toxins Cereulide and Isocereulides A-G in Foods.

    PubMed

    Marxen, Sandra; Stark, Timo D; Rütschle, Andrea; Lücking, Genia; Frenzel, Elrike; Scherer, Siegfried; Ehling-Schulz, Monika; Hofmann, Thomas

    2015-09-23

    Consumption of food products contaminated with cereulide (1), a toxin produced by Bacillus cereus, might cause intoxications with symptoms reported to range from indigestion pain and emesis to death. Recently, a series of structural variants, coined isocereulides A-G (2-8), were identified for the first time to be produced along with cereulide (1). The observation that isocereulide A (2) shows an ∼ 8-fold increased cytotoxicity when compared to 1 urges the development of analytical tools enabling an accurate quantitation of these toxins. Therefore, a rapid, sensitive, and robust stable isotope dilution assay (SIDA) was developed for the combined quantitation of 1-8 by means of UPLC-MS/MS. On average, trueness and precision of the method were 112.5 ± 1.8% RSD, repeatability and reproducibility were 2 and 4% for cereulide and isocereulides A-G, and the LOD and LOQ of 0.1 and 0.5 ng/g, respectively, demonstrated a high sensitivity for the developed SIDA method. Application of this method to food samples revealed elevated levels of 1-8 in two suspicious noodle samples, for example, ranging from 0.59 (7) to 189.08 ng/g (1) in sample 1 and from 5.77 (7) to 6198.17 ng/g (1) in sample 2, whereas the analysis of 25 randomly selected food samples, which have not been the subject to any complaints, did not contain detectable amounts of any of these toxins. As a consequence, this SIDA method could add an important contribution to the knowledge-based risk assessment of B. cereus toxins in foods.

  6. Cloning and expression of vgb gene in Bacillus cereus, improve phenol and p-nitrophenol biodegradation

    NASA Astrophysics Data System (ADS)

    Vélez-Lee, Angel Eduardo; Cordova-Lozano, Felipe; Bandala, Erick R.; Sanchez-Salas, Jose Luis

    2016-02-01

    In this work, the vgb gene from Vitrocilla stercoraria was used to genetically modify a Bacillus cereus strain isolated from pulp and paper wastewater effluent. The gene was cloned in a multicopy plasmid (pUB110) or uni-copy gene using a chromosome integrative vector (pTrpBG1). B. cereus and its recombinant strains were used for phenol and p-nitrophenol biodegradation using aerobic or micro-aerobic conditions and two different temperatures (i.e. 37 and 25 °C). Complete (100%) phenol degradation was obtained for the strain where the multicopy of vgb gene was present, 98% for the strain where uni-copy gene was present and 45% for wild type strain for the same experimental conditions (i.e. 37 °C and aerobic condition). For p-nitrophenol degradation at the same conditions, the strain with the multi-copy vgb gene was capable to achieve 50% of biodegradation, ∼100% biodegradation was obtained using the uni-copy strain and ∼24% for wild type strain. When the micro-aerobic condition was tested, the biodegradation yield showed a significant decreased. The biodegradation trend observed for aerobic was similar for micro-aerobic assessments: the modified strains showed higher degradation rates when compared with wild type strain. For all experimental conditions, the highest p-nitrophenol degradation was observed using the strain with uni-copy of vgb gene. Besides the increase of biodegradative capability of the strain, insertion of the vgb gene was observed able to modify other morphological characteristics such as avoiding the typical flake formation in the B. cereus culture. In both cases, the modification seems to be related with the enhancement of oxygen supply to the cells generated by the vgb gene insertion. The application of the genetically modified microorganism (GMM) to the biodegradation of pollutants in contaminated water possesses high potential as an environmentally friendly technology to facing this emergent problem.

  7. Transcriptional responses of Bacillus cereus towards challenges with the polysaccharide chitosan.

    PubMed

    Mellegård, Hilde; Kovács, Ákos T; Lindbäck, Toril; Christensen, Bjørn E; Kuipers, Oscar P; Granum, Per E

    2011-01-01

    The antibacterial activity of the polysaccharide chitosan towards different bacterial species has been extensively documented. The response mechanisms of bacteria exposed to this biopolymer and the exact molecular mechanism of action, however, have hardly been investigated. This paper reports the transcriptome profiling using DNA microarrays of the type-strain of Bacillus cereus (ATCC 14579) exposed to subinhibitory concentrations of two water-soluble chitosan preparations with defined chemical characteristics (molecular weight and degree of acetylation (F(A))). The expression of 104 genes was significantly altered upon chitosan A (weight average molecular weight (M(w)) 36.0 kDa, F(A) = 0.01) exposure and 55 genes when treated with chitosan B (M(w) 28.4 kDa, F(A) = 0.16). Several of these genes are involved in ion transport, especially potassium influx (BC0753-BC0756). Upregulation of a potassium transporting system coincides with previous studies showing a permeabilizing effect on bacterial cells of this polymer with subsequent loss of potassium. Quantitative PCR confirmed the upregulation of the BC0753 gene encoding the K(+)-transporting ATPase subunit A. A markerless gene replacement method was used to construct a mutant strain deficient of genes encoding an ATP-driven K(+) transport system (Kdp) and the KdpD sensor protein. Growth of this mutant strain in potassium limiting conditions and under salt stress did not affect the growth pattern or growth yield compared to the wild-type strain. The necessity of the Kdp system for potassium acquisition in B. cereus is therefore questionable. Genes involved in the metabolism of arginine, proline and other cellular constituents, in addition to genes involved in the gluconeogenesis, were also significantly affected. BC2798 encoding a chitin binding protein was significantly downregulated due to chitosan exposure. This study provides insight into the response mechanisms of B. cereus to chitosan treatment and the

  8. The genomes, proteomes, and structures of three novel phages that infect the Bacillus cereus group and carry putative virulence factors.

    PubMed

    Grose, Julianne H; Belnap, David M; Jensen, Jordan D; Mathis, Andrew D; Prince, John T; Merrill, Bryan D; Burnett, Sandra H; Breakwell, Donald P

    2014-10-01

    This article reports the results of studying three novel bacteriophages, JL, Shanette, and Basilisk, which infect the pathogen Bacillus cereus and carry genes that may contribute to its pathogenesis. We analyzed host range and superinfection ability, mapped their genomes, and characterized phage structure by mass spectrometry and transmission electron microscopy (TEM). The JL and Shanette genomes were 96% similar and contained 217 open reading frames (ORFs) and 220 ORFs, respectively, while Basilisk has an unrelated genome containing 138 ORFs. Mass spectrometry revealed 23 phage particle proteins for JL and 15 for Basilisk, while only 11 and 4, respectively, were predicted to be present by sequence analysis. Structural protein homology to well-characterized phages suggested that JL and Shanette were members of the family Myoviridae, which was confirmed by TEM. The third phage, Basilisk, was similar only to uncharacterized phages and is an unrelated siphovirus. Cryogenic electron microscopy of this novel phage revealed a T=9 icosahedral capsid structure with the major capsid protein (MCP) likely having the same fold as bacteriophage HK97 MCP despite the lack of sequence similarity. Several putative virulence factors were encoded by these phage genomes, including TerC and TerD involved in tellurium resistance. Host range analysis of all three phages supports genetic transfer of such factors within the B. cereus group, including B. cereus, B. anthracis, and B. thuringiensis. This study provides a basis for understanding these three phages and other related phages as well as their contributions to the pathogenicity of B. cereus group bacteria. Importance: The Bacillus cereus group of bacteria contains several human and plant pathogens, including B. cereus, B. anthracis, and B. thuringiensis. Phages are intimately linked to the evolution of their bacterial hosts and often provide virulence factors, making the study of B. cereus phages important to understanding the

  9. Survival of foodborne pathogenic bacteria (Bacillus cereus, Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, Staphylococcus aureus, and Listeria monocytogenes) and Bacillus cereus spores in fermented alcoholic beverages (beer and refined rice wine).

    PubMed

    Kim, S A; Kim, N H; Lee, S H; Hwang, I G; Rhee, M S

    2014-03-01

    Only limited information is available on the microbiological safety of fermented alcoholic beverages because it is still a common belief that such beverages do not provide a favorable environment for bacterial growth and survival. Thus, in this study, we examined the survival of major foodborne pathogens and spores in fermented alcoholic beverages. Foodborne pathogens (Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica serovar Typhimurium, and Staphylococcus aureus) and B. cereus spores (initial population, 3 to 4 log CFU/ml) were inoculated separately into three types of beer and refined rice wine, which were then stored at 5 and 22°C. Bacterial counts were assayed periodically for up to 28 days. Vegetative B. cereus counts decreased rapidly, whereas B. cereus spore counts remained constant (P > 0.05) for a long period of time in all beverages. Vegetative B. cereus cells formed spores in beer at 5 and 22°C, and the spores survived for long periods. Among vegetative cells, E. coli O157:H7 had the highest survival (only 1.49 to 1.56 log reduction during 28 days in beer at 5°C). Beer and refined rice wine supported microbial survival from several days to several weeks. Our results appear to contradict the common belief that pathogens cannot survive in alcoholic beverages. Long-term survival of pathogens (especially B. cereus and E. coli O157:H7) in beer and refined rice wine should be taken into consideration by the manufacturers of these beverages. This study provides basic information that should help further research into microbial survival in alcoholic beverages and increase the microbiological safety regulation of fermented alcoholic beverages.

  10. Survival of foodborne pathogenic bacteria (Bacillus cereus, Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, Staphylococcus aureus, and Listeria monocytogenes) and Bacillus cereus spores in fermented alcoholic beverages (beer and refined rice wine).

    PubMed

    Kim, S A; Kim, N H; Lee, S H; Hwang, I G; Rhee, M S

    2014-03-01

    Only limited information is available on the microbiological safety of fermented alcoholic beverages because it is still a common belief that such beverages do not provide a favorable environment for bacterial growth and survival. Thus, in this study, we examined the survival of major foodborne pathogens and spores in fermented alcoholic beverages. Foodborne pathogens (Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica serovar Typhimurium, and Staphylococcus aureus) and B. cereus spores (initial population, 3 to 4 log CFU/ml) were inoculated separately into three types of beer and refined rice wine, which were then stored at 5 and 22°C. Bacterial counts were assayed periodically for up to 28 days. Vegetative B. cereus counts decreased rapidly, whereas B. cereus spore counts remained constant (P > 0.05) for a long period of time in all beverages. Vegetative B. cereus cells formed spores in beer at 5 and 22°C, and the spores survived for long periods. Among vegetative cells, E. coli O157:H7 had the highest survival (only 1.49 to 1.56 log reduction during 28 days in beer at 5°C). Beer and refined rice wine supported microbial survival from several days to several weeks. Our results appear to contradict the common belief that pathogens cannot survive in alcoholic beverages. Long-term survival of pathogens (especially B. cereus and E. coli O157:H7) in beer and refined rice wine should be taken into consideration by the manufacturers of these beverages. This study provides basic information that should help further research into microbial survival in alcoholic beverages and increase the microbiological safety regulation of fermented alcoholic beverages. PMID:24674433

  11. The Redox Regulator Fnr Is Required for Fermentative Growth and Enterotoxin Synthesis in Bacillus cereus F4430/73▿

    PubMed Central

    Zigha, Assia; Rosenfeld, Eric; Schmitt, Philippe; Duport, Catherine

    2007-01-01

    Glucose-grown cells of Bacillus cereus respond to anaerobiosis and low extracellular oxidoreduction potentials (ORP), notably by enhancing enterotoxin production. This response involves the ResDE two-component system. We searched the B. cereus genome for other redox response regulators potentially involved in this adaptive process, and we identified one gene encoding a protein predicted to have an amino acid sequence 58% identical (80% similar) to that of the Bacillus subtilis Fnr redox regulator. The fnr gene of the food-borne pathogen B. cereus F4430/73 has been cloned and partially characterized. We showed that fnr was up-regulated during anaerobic fermentation, especially when fermentation occurred at low ORP (under highly reducing conditions). The expression of fnr was down-regulated in the presence of O2 and nitrate which, unlike fumarate, stimulated the respiratory pathways. The inactivation of B. cereus fnr abolished fermentative growth but only moderately affected aerobic and anaerobic nitrate respiratory growth. Analyses of glucose by-products and the transcription profiles of key catabolic genes confirmed the strong regulatory impact of Fnr on B. cereus fermentative pathways. More importantly, the fnr mutation strongly decreased the expression of PlcR-dependent hbl and nhe genes, leading to the absence of hemolysin BL (Hbl) and nonhemolytic enterotoxin (Nhe) secretion by the mutant. These data indicate that fnr is essential for both fermentation and toxinogenesis. The results also suggest that both Fnr and the ResDE two-component system belong to a redox regulatory pathway that functions at least partially independently of the pleiotropic virulence gene regulator PlcR to regulate enterotoxin gene expression. PMID:17259311

  12. [The nutritive effect of Bacillus cereus as a probiotic in the raising of piglets. 2. Effect and microbial count, composition and resistance determination of gastrointestinal and fecal microflora].

    PubMed

    Gedek, B; Kirchgessner, M; Wiehler, S; Bott, A; Eidelsburger, U; Roth, F X

    1993-01-01

    After a feeding trial of 42 days with 4 x 12 piglets 4 x 6 piglets were slaughtered and the influence of spores of the Bacillus cereus strain FH 1457 S added to the feed on the microorganism counts of Lactobacillus/Bifidobacterium, Eubacteria, Bacteroidaceae, E. coli, Enterococcus and passants (Bacillus cereus) in duodenum, jejunum, ileum, caecum and colon was investigated. Beside a negative control the feed was supplemented with 10(7), 10(8) and 10(9) CFU Bacillus cereus/kg. The feeding trial included two periods each of 21 days. In each period faeces was collected from all animals and the influence on the microorganism counts and also the frequency of resistance of the E. coli and Enterococcus germs against selected antibiotics and chemotherapeutics investigated. The addition of 10(8) CFU Bacillus cereus decreased E. coli counts in duodenum and jejunum, however increased them in ileum, caecum and colon. In the highest dosage the counts of Bacillus cereus in duodenum, caecum, colon and faeces were significantly higher. The addition of Bacillus cereus reduced the counts of E. coli and Enterococcus in faeces in the first period. In the second period the dosage 10(8) CFU showed significant increased counts of E. coli and the sums of microorganisms of the main and satellite flora. The additions had no influence on the frequency of resistance of E. coli and enterococci against the tested antibiotics and synthetic chemotherapeutics. From the addition of Bacillus cereus in this case a selection of factors influencing resistance is not to be expected.

  13. A probability model for enterotoxin production of Bacillus cereus as a function of pH and temperature.

    PubMed

    Ding, Tian; Wang, Jun; Park, Myoung-Su; Hwang, Cheng-An; Oh, Deog-Hwan

    2013-02-01

    Bacillus cereus is frequently isolated from a variety of foods, including vegetables, dairy products, meats, and other raw and processed foods. The bacterium is capable of producing an enterotoxin and emetic toxin that can cause severe nausea, vomiting, and diarrhea. The objectives of this study were to assess and model the probability of enterotoxin production of B. cereus in a broth model as affected by the broth pH and storage temperature. A three-strain mixture of B. cereus was inoculated in tryptic soy broth adjusted to pH 5.0, 6.0, 7.2, 8.0, and 8.5, and the samples were stored at 15, 20, 25, 30, and 35°C for 24 h. A total of 25 combinations of pH and temperature, each with 10 samples, were tested. The presence of enterotoxin in broth was assayed using a commercial test kit. The probabilities of positive enterotoxin production in 25 treatments were fitted with a logistic regression to develop a probability model to describe the probability of toxin production as a function of pH and temperature. The resulting model showed that the probabilities of enterotoxin production of B. cereus in broth increased as the temperature increased and/or as the broth pH approached 7.0. The model described the experimental data satisfactorily and identified the boundary of pH and temperature for the production of enterotoxin. The model could provide information for assessing the food poisoning risk associated with enterotoxins of B. cereus and for the selection of product pH and storage temperature for foods to reduce the hazards associated with B. cereus.

  14. Cost-effective-substrates for production of poly-β-hydroxybutyrate by a newly isolated Bacillus cereus PS-10.

    PubMed

    Sharma, Priyanka; Bajaj, Bijender Kumar

    2015-11-01

    Poly-β-hydroxybutyrate (PHB) may serve as one of the imperative substitutes for petroleum derived plastics because of their close functional analogy and biodegradation quality. In the present study, PHB producing ability of bacterial isolates was examined on low-cost agro industrial residues. Isolate PS-10 from domestic waste landfills, identified as Bacillus cereus PS-10 produced and accumulated appreciable amount of PHB. Bacillus cereus PS-10 was capable of using a wide variety of agro-based residues viz. maize bran, rice husk, wood waste, molasses, whey etc. as cost-effective carbon sources for PHB production. Molasses at 3% (w/v) supported maximum PHB production (9.5 gl(-1)) and was followed by glycerol (8.9 gl(-1)) at 2% (w/v). Certain carbon sources like almond shell powder and walnut shell powder are being reported for the first time for PHB production and supported reasonable PHB yield i.e. 6.6 and 4.6 gl(-1), respectively. Different cost-effective nitrogen sources like corn steep liquor, chick pea bran, soy bean meal, mustard cake etc. were used for PHB production. Highest PHB production was observed at pH 7 (9.6 gl(-1)) after 48 hrs of fermentation, although B. cereus PS-10 grew and produced PHB over pH range of 5-9. Optimum inoculum level for maximum PHB production was found to be 5% v/v (A600 0.9; approximately 10(8) cfu ml(-1)). Fourier transform infrared spectroscopy (FT-IR) analysis of the extracted PHB showed characteristic peaks (1721.95, 1632.19 and 2926.43 cm(-1)) similar to standard PHB. Melting point of PHB was found to be 185°C. Bacillus cereus PS-10 may be a sound PHB producer, especially by exploiting low cost substrates. PMID:26688964

  15. Cost-effective-substrates for production of poly-β-hydroxybutyrate by a newly isolated Bacillus cereus PS-10.

    PubMed

    Sharma, Priyanka; Bajaj, Bijender Kumar

    2015-11-01

    Poly-β-hydroxybutyrate (PHB) may serve as one of the imperative substitutes for petroleum derived plastics because of their close functional analogy and biodegradation quality. In the present study, PHB producing ability of bacterial isolates was examined on low-cost agro industrial residues. Isolate PS-10 from domestic waste landfills, identified as Bacillus cereus PS-10 produced and accumulated appreciable amount of PHB. Bacillus cereus PS-10 was capable of using a wide variety of agro-based residues viz. maize bran, rice husk, wood waste, molasses, whey etc. as cost-effective carbon sources for PHB production. Molasses at 3% (w/v) supported maximum PHB production (9.5 gl(-1)) and was followed by glycerol (8.9 gl(-1)) at 2% (w/v). Certain carbon sources like almond shell powder and walnut shell powder are being reported for the first time for PHB production and supported reasonable PHB yield i.e. 6.6 and 4.6 gl(-1), respectively. Different cost-effective nitrogen sources like corn steep liquor, chick pea bran, soy bean meal, mustard cake etc. were used for PHB production. Highest PHB production was observed at pH 7 (9.6 gl(-1)) after 48 hrs of fermentation, although B. cereus PS-10 grew and produced PHB over pH range of 5-9. Optimum inoculum level for maximum PHB production was found to be 5% v/v (A600 0.9; approximately 10(8) cfu ml(-1)). Fourier transform infrared spectroscopy (FT-IR) analysis of the extracted PHB showed characteristic peaks (1721.95, 1632.19 and 2926.43 cm(-1)) similar to standard PHB. Melting point of PHB was found to be 185°C. Bacillus cereus PS-10 may be a sound PHB producer, especially by exploiting low cost substrates.

  16. Siderophore-mediated iron acquisition systems in Bacillus cereus: identification of receptors for anthrax virulence-associated petrobactin†a

    PubMed Central

    Zawadzka, Anna M.; Abergel, Rebecca J.; Nichiporuk, Rita; Andersen, Ulla N.; Raymond, Kenneth N.

    2009-01-01

    During growth under iron limitation, Bacillus cereus and Bacillus anthracis, two human pathogens from the Bacillus cereus group of Gram-positive bacteria, secrete two siderophores, bacillibactin (BB) and petrobactin (PB), for iron acquisition via membrane-associated substrate-binding proteins (SBPs) and other ABC transporter components. Since PB is associated with virulence traits in B. anthracis, the PB-mediated iron uptake system presents a potential target for antimicrobial therapies; its characterization in B. cereus is described here. Separate transporters for BB, PB, and several xenosiderophores are suggested by 55Fe-siderophore uptake studies. The PB precursor, 3,4-dihydroxybenzoic acid (3,4-DHB), and the photoproduct of FePB (FePBν) also mediate iron delivery into iron-deprived cells. Putative SBPs were recombinantly expressed, and their ligand specificity and binding affinity assessed using fluorescence spectroscopy. The noncovalent complexes of the SBPs with their respective siderophores were characterized using ESI-MS. The differences between solution phase behavior and gas phase measurements are indicative of noncovalent interactions between the siderophores and the binding sites of their respective SBPs. These studies combined with bioinformatics sequence comparison identify SBPs from five putative transporters specific for BB and enterobactin (FeuA), 3,4-DHB and PB (FatB), PB (FpuA), schizokinen (YfiY), and desferrioxamine and ferrichrome (YxeB). The two PB receptors show different substrate ranges: FatB has the highest affinity for ferric 3,4-DHB, iron-free PB, FePB, and FePBν, whereas FpuA is specific to only apo- and ferric PB. The biochemical characterization of these SBPs provides the first identification of the transporter candidates that most likely play a role in the B. cereus group pathogenicity. PMID:19254027

  17. Siderophore-mediated iron acquisition systems in Bacillus cereus: Identification of receptors for anthrax virulence-associated petrobactin .

    PubMed

    Zawadzka, Anna M; Abergel, Rebecca J; Nichiporuk, Rita; Andersen, Ulla N; Raymond, Kenneth N

    2009-04-28

    During growth under iron limitation, Bacillus cereus and Bacillus anthracis, two human pathogens from the Bacillus cereus group of Gram-positive bacteria, secrete two siderophores, bacillibactin (BB) and petrobactin (PB), for iron acquisition via membrane-associated substrate-binding proteins (SBPs) and other ABC transporter components. Since PB is associated with virulence traits in B. anthracis, the PB-mediated iron uptake system presents a potential target for antimicrobial therapies; its characterization in B. cereus is described here. Separate transporters for BB, PB, and several xenosiderophores are suggested by (55)Fe-siderophore uptake studies. The PB precursor, 3,4-dihydroxybenzoic acid (3,4-DHB), and the photoproduct of FePB (FePB(nu)) also mediate iron delivery into iron-deprived cells. Putative SBPs were recombinantly expressed, and their ligand specificity and binding affinity were assessed using fluorescence spectroscopy. The noncovalent complexes of the SBPs with their respective siderophores were characterized using ESI-MS. The differences between solution phase behavior and gas phase measurements are indicative of noncovalent interactions between the siderophores and the binding sites of their respective SBPs. These studies combined with bioinformatics sequence comparison identify SBPs from five putative transporters specific for BB and enterobactin (FeuA), 3,4-DHB and PB (FatB), PB (FpuA), schizokinen (YfiY), and desferrioxamine and ferrichrome (YxeB). The two PB receptors show different substrate ranges: FatB has the highest affinity for ferric 3,4-DHB, iron-free PB, FePB, and FePB(nu), whereas FpuA is specific to only apo- and ferric PB. The biochemical characterization of these SBPs provides the first identification of the transporter candidates that most likely play a role in the B. cereus group pathogenicity.

  18. Multiplex PCR assay for the detection of enterotoxic Bacillus cereus group strains and its application in food matrices.

    PubMed

    Kalyan Kumar, T D; Murali, H S; Batra, H V

    2010-06-01

    Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis are the major concerns for the food safety in terms of frequency and/or seriousness of the disease. Being members of the same group and sharing DNA homology to a larger extent, they do create problems when their specific detection/identification is attempted from different food and environmental sources. Numerous individual polymerase chain reaction (PCR) and few multiplex PCR (mPCR) methods have been employed to detect these organisms by targeting toxin genes but with lack of internal amplification control (IAC). Therefore, we attempted a mPCR with IAC for the detection of enterotoxic B. cereus group strains by selecting hbl A, nhe A and cyt K genes from B. cereus, indicative of the diarrheal potential and cry I A and pag genes, the plasmid borne phenotypic markers specific to B. thuringiensis and B. anthracis strains, respectively. Multiplex PCR assay validation was performed by simultaneous comparison with the results of single-target PCR assays and correlated to the classical conventional and biochemical identification of the organisms. The mPCR was able to detect as low as 10(1)-10(2) organisms per ml following overnight enrichment of spiked food samples (vegetable biriyani and milk) in buffered peptone water (BPW). The presence of these organisms could also be detected by mPCR in naturally contaminated samples of rice based dishes and milk. The high throughput and cost-effective mPCR method described could provide a powerful tool for simultaneous, rapid and reliable detection of enterotoxic B. cereus group organisms.

  19. An alkaline D-stereospecific endopeptidase with beta-lactamase activity from Bacillus cereus.

    PubMed

    Asano, Y; Ito, H; Dairi, T; Kato, Y

    1996-11-22

    We purified a novel extracellular D-stereospecific endopeptidase, alkaline D-peptidase (D-stereospecific peptide hydrolase, EC 3.4.11.-), to homogeneity from the culture broth of the soil bacterium Bacillus cereus strain DF4-B. The Mr of the enzyme was 37,952, and it was composed of a single polypeptide chain. The optimal pH for activity was approximately 10.3. The enzyme was strictly D-stereospecific toward oligopeptides composed of Dphenylalanine such as (D-Phe)3 and (D-Phe)4. The enzyme also acted to a lesser extent on (D-Phe)6, Boc-(D-Phe)4 (where Boc is tert-butoxycarbonyl), Boc-(D-Phe)4 methyl ester, Boc-(D-Phe)3 methyl ester, Boc-(D-Phe)2, (D-Phe)2, and others, but not upon their corresponding peptides composed of L-Phe, (D-Ala)n (n = 2-5), (D-Val)3, and (D-Leu)2. The mode of action of the enzyme was clarified with synthetic substrates ((D-Phe)2-D-Tyr and D-Tyr-(D-Phe)2) and eight stereoisomers of (Phe)3. The enzyme had beta-lactamase activity toward ampicillin and penicillin G, although carboxypeptidase DD and D-aminopeptidase activities were undetectable. The gene coding for alkaline D-peptidase (adp) was cloned into plasmid pUC118, and a 1164-base pair open reading frame consisting of 388 codons was identified as the adp gene. The predicted polypeptide was similar to carboxypeptidase DD from Streptomyces R61, penicillin-binding proteins from Streptomyces lactamdurans and Bacillus subtilis, and class C beta-lactamases. Thus, the enzyme was categorized as a new "penicillin-recognizing enzyme." PMID:8939979

  20. Lysis of erythrocytes from stored human blood by phospholipase C (Bacillus cereus).

    PubMed Central

    Little, C; Rumsby, M G

    1980-01-01

    The ability of phospholipase C (Bacillus cereus) to lyse erythrocytes from human blood that had been stored under Transfusion Service conditions for up to 16 weeks has been examined. When incubated at 20 degrees C with enzyme (0.03 mg/ml, 55 units/ml) for up to 1 h fresh erythrocytes were not lysed. After about 4 weeks of storage a population of very readily lysed erythrocytes appeared. The morphological changes in erythrocytes from blood stored up to 16 weeks were examined by scanning electron microscopy. The proportion of very readily lysed erythrocytes correlated well with the proportion of spheroechinocytes I. This morphological form was shown to be preferentially removed by phospholipase C and before lysis a transient appearance of smooth spheres occurred. The decrease in blood ATP concentrations on storage was measured and found to correlate with the disappearance of discoid erythrocyte forms, but not directly with the increased susceptibility of the erythrocytes to lysis by the enzyme. However, erythrocytes of up to at least 15 weeks of age could be made less susceptible to lysis by pre-incubation in a medium designed to cause intracellular regeneration of ATP. During the lysis of spheroechinocytes I by electrophoretically pure recrystallized phospholipase C a rapid degradation of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine + phosphatidylinositol) occurred together with a slower degradation of sphingomyelin. Images PLATE 2 PLATE 1 PMID:6773524

  1. Influence of Anaerobiosis and Low Temperature on Bacillus cereus Growth, Metabolism, and Membrane Properties

    PubMed Central

    Clavel, Thierry; Clerté, Caroline; Carlin, Frédéric; Giniès, Christian; Nguyen-The, Christophe

    2012-01-01

    The impact of simultaneous anaerobiosis and low temperature on growth parameters, metabolism, and membrane properties of Bacillus cereus ATCC 14579 was studied. No growth was observed under anaerobiosis at 12°C. In bioreactors, growth rates and biomass production were drastically reduced by simultaneous anaerobiosis and low temperature (15°C). The two conditions had a synergistic effect on biomass reduction. In anaerobic cultures, fermentative metabolism was modified by low temperature, with a marked reduction in ethanol production leading to a lower ability to produce NAD+. Anaerobiosis reduced unsaturated fatty acids at both low optimal temperatures. In addition, simultaneous anaerobiosis and low temperatures markedly reduced levels of branched-chain fatty acids compared to all other conditions (accounting for 33% of total fatty acids against more 71% for low-temperature aerobiosis, optimal-temperature aerobiosis, and optimal-temperature anaerobiosis). This corresponded to high-melting-temperature lipids and to low-fluidity membranes, as indicated by differential scanning calorimetry, 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescence anisotropy, and infrared spectroscopy. This is in contrast to requirements for cold adaptation. A link between modification in the synthesis of metabolites of fermentative metabolism and the reduction of branched-chain fatty acids at low temperature under anaerobiosis, through a modification of the oxidizing capacity, is assumed. This link may partly explain the impact of low temperature and anaerobiosis on membrane properties and growth performance. PMID:22247126

  2. Single-step purification of chitosanases from Bacillus cereus using expanded bed chromatography.

    PubMed

    de Araújo, Nathália Kelly; Pagnoncelli, Maria Giovana Binder; Pimentel, Vanessa Carvalho; Xavier, Maria Luiza Oliveira; Padilha, Carlos Eduardo Araújo; de Macedo, Gorete Ribeiro; Dos Santos, Everaldo Silvino

    2016-01-01

    A chitosanase-producing strain was isolated and identified as Bacillus cereus C-01. The purification and characterization of two chitosanases were studied. The purification assay was accomplished by ion exchange expanded-bed chromatography. Experiments were carried out in the presence and in the absence of cells through different expansion degree to evaluate the process performance. The adsorption experiments demonstrated that the biomass does not affect substantially the adsorption capacity of the matrix. The enzyme bound to the resin with the same extent using clarified and unclarified broth (0.32 and 0.30 U/g adsorbent, respectively). The fraction recovered exhibited 31% of the yield with a 1.26-fold increase on the specific activity concerned to the initial broth. Two chitosanases from different elution steps were recovery. Chit A and Chit B were stable at 30-60°C, pH 5.5-8.0 and 5.5-7.5, respectively. The highest activity was found at 55°C, pH 5.5 to Chit A and 50°C, pH 6.5 to Chit B. The ions Cu(2+), Fe(2+) and Zn(2+) indicated inhibitory effect on chitosanases activities that were significantly activated by Mn(2+). The methodology applied in this study enables the partial purification of a stable chitosanase using a feedstock without any pre-treatment using a single-step purification.

  3. Engineered Mononuclear Variants in Bacillus cereus Metallo-β-lactamase BcII Are Inactive†

    PubMed Central

    Abriata, Luciano A.; González, Lisandro J.; Llarrull, Leticia I.; Tomatis, Pablo E.; Myers, William K.; Costello, Alison L.; Tierney, David L.; Vila, Alejandro J.

    2008-01-01

    Metallo-β-lactamases (MβLs) are zinc enzymes able to hydrolyze almost all β-lactam antibiotics, rendering them inactive, at the same time endowing bacteria high levels of resistance. The design of inhibitors active against all classes of MβLs has been hampered by their structural diversity and by the heterogeneity in metal content in enzymes from different sources. BcII is the metallo-β-lactamase from Bacillus cereus, which is found in both the mononuclear and dinuclear forms. Despite extensive studies, there is still controversy about the nature of the active BcII species. Here we have designed two mutant enzymes in which each one of the metal binding sites was selectively removed. Both mutants were almost inactive, despite preserving most of the structural features of each metal site. These results reveal that neither site isolated in the MβL scaffold is sufficient to render a fully active enzyme. This suggests that only the dinuclear species is active or that the mononuclear variants can be active only if aided by other residues that would be metal ligands in the dinuclear species. PMID:18652482

  4. Purification and characterization of an endoxylanase from the culture broth of Bacillus cereus BSA1.

    PubMed

    Mandal, A; Kar, S; Das Mohapatra, P K; Maity, C; Pati, B R; Mondal, K C

    2011-01-01

    An extracellular xylanase from the fermented broth of Bacillus cereus BSA1 was purified and characterized. The enzyme was purified to 3.43 fold through ammonium sulphate precipitation, DEAE-cellulose chromatography and followed by gel filtration through Sephadex G-100 column. The molecular mass of the purified xylanse was about 33 kDa. The enzyme was an endoxylanase as it initially degraded xylan to xylooligomers. The purified enzyme showed optimum activity at 55 degrees C and at pH 7.0 and remained reasonably stable in a wide range ofpH (5.0-8.0) and temperature (40-65 degrees C). The Km and Vmax values were found to be 8.2 mg/ml and 181.8 micromol/(min mg), respectively. The enzyme had no apparent requirement ofcofactors, and its activity was strongly inhibited by Cu++, Hg++. It was also a salt tolerant enzyme and stable upto 2.5 M of NaCl and retained its 85% activity at 3.0 M. For stability and substrate binding, the enzyme needed hydrophobic interaction that revealed when most surfactants inhihited xylanase activity. Since the enzyme was active over wide range ofpH, temperature and remained active in higher salt concentration, it could find potential uses in biobleaching process in paper industries.

  5. Nature versus nurture in two highly enantioselective esterases from Bacillus cereus and Thermoanaerobacter tengcongensis.

    PubMed

    Grosse, Stephan; Bergeron, Hélène; Imura, Akihiro; Boyd, Jason; Wang, Shaozhao; Kubota, Kazuo; Miyadera, Akihiko; Sulea, Traian; Lau, Peter C K

    2010-01-01

    There is an increasing need for the use of biocatalysis to obtain enantiopure compounds as chiral building blocks for drug synthesis such as antibiotics. The principal findings of this study are: (i) the complete sequenced genomes of Bacillus cereus ATCC 14579 and Thermoanaerobacter tengcongensis MB4 contain a hitherto undescribed enantioselective and alkaliphilic esterase (BcEST and TtEST respectively) that is specific for the production of (R)-2-benzyloxy-propionic acid ethyl ester, a key intermediate in the synthesis of levofloxacin, a potent antibiotic; and (ii) directed evolution targeted for increased thermostability of BcEST produced two improved variants, but in either case the 3-5 °C increase in the apparent melting temperature (T(m)) of the mutants over the native BcEST that has a T(m) of 50 °C was outperformed by TtEST, a naturally occurring homologue with a T(m) of 65 °C. Protein modelling of BcEST mapped the S148C and K272R mutations at protein surface and the I88T and Q110L mutations at more buried locations. This work expands the repertoire of characterized members of the α/β-fold hydrolase superfamily. Further, it shows that genome mining is an economical option for new biocatalyst discovery and we provide a rare example of a naturally occurring thermostable biocatalyst that outperforms experimentally evolved homologues that carry out the same hydrolysis. PMID:21255307

  6. Aerobic biodegradation of 2,4,6-trinitrotoluene (TNT) by Bacillus cereus isolated from contaminated soil.

    PubMed

    Mercimek, H Aysun; Dincer, Sadık; Guzeldag, Gulcihan; Ozsavli, Aysenur; Matyar, Fatih

    2013-10-01

    In this study, biological degradation of 2,4,6-trinitrotoluene (TNT) which is very highly toxic environmentally and an explosive in nitroaromatic character was researched in minimal medium by Bacillus cereus isolated from North Atlantic Treaty Organization (NATO) TNT-contaminated soils. In contrast to most previous studies, the capability of this bacteria to transform in liquid medium containing TNT was investigated. During degradation, treatment of TNT was followed by high-performance liquid chromatography (HPLC) and achievement of degradation was calculated as percentage. At an initial concentration of 50 and 75 mg L(-1), TNT was degraded respectively 68 % and 77 % in 96 h. It transformed into 2,4-dinitrotoluene and 4-aminodinitrotoluene derivates, which could be detected as intermediate metabolites by using thin-layer chromatography and gas chromatography-mass spectrometry analyses. Release of nitrite and nitrate ions were searched by spectrophotometric analyses. Depending upon Meisenheimer complex, while nitrite production was observed, nitrate was detected in none of the cultures. Results of our study propose which environmental pollutant can be removed by using microorganisms that are indigenous to the contaminated site. PMID:23715804

  7. Enzymatic Synthesis of Isopropyl Acetate by Immobilized Bacillus cereus Lipase in Organic Medium

    PubMed Central

    Verma, Madan Lal; Azmi, Wamik; Kanwar, Shamsher Singh

    2011-01-01

    Selective production of fragrance fatty acid ester from isopropanol and acetic acid has been achieved using silica-immobilized lipase of Bacillus cereus MTCC 8372. A purified thermoalkalophilic extracellular lipase was immobilized by adsorption onto the silica. The effects of various parameters like molar ratio of substrates (isopropanol and acetic acid; 25 to 100 mM), concentration of biocatalyst (25–125 mg/mL), reaction time, reaction temperature, organic solvents, molecular sieves, and initial water activity were studied for optimal ester synthesis. Under optimized conditions, 66.0 mM of isopropyl acetate was produced when isopropanol and acetic acid were used at 100 mM: 75 mM in 9 h at 55°C in n-heptane under continuous shaking (160 rpm) using bound lipase (25 mg). Addition of molecular sieves (3 Å × 1.5 mm) resulted in a marked increase in ester synthesis (73.0 mM). Ester synthesis was enhanced by water activity associated with pre-equilibrated saturated salt solution of LiCl. The immobilized lipase retained more than 50% of its activity after the 6th cycle of reuse. PMID:21603222

  8. Aerobic biodegradation of 2,4,6-trinitrotoluene (TNT) by Bacillus cereus isolated from contaminated soil.

    PubMed

    Mercimek, H Aysun; Dincer, Sadık; Guzeldag, Gulcihan; Ozsavli, Aysenur; Matyar, Fatih

    2013-10-01

    In this study, biological degradation of 2,4,6-trinitrotoluene (TNT) which is very highly toxic environmentally and an explosive in nitroaromatic character was researched in minimal medium by Bacillus cereus isolated from North Atlantic Treaty Organization (NATO) TNT-contaminated soils. In contrast to most previous studies, the capability of this bacteria to transform in liquid medium containing TNT was investigated. During degradation, treatment of TNT was followed by high-performance liquid chromatography (HPLC) and achievement of degradation was calculated as percentage. At an initial concentration of 50 and 75 mg L(-1), TNT was degraded respectively 68 % and 77 % in 96 h. It transformed into 2,4-dinitrotoluene and 4-aminodinitrotoluene derivates, which could be detected as intermediate metabolites by using thin-layer chromatography and gas chromatography-mass spectrometry analyses. Release of nitrite and nitrate ions were searched by spectrophotometric analyses. Depending upon Meisenheimer complex, while nitrite production was observed, nitrate was detected in none of the cultures. Results of our study propose which environmental pollutant can be removed by using microorganisms that are indigenous to the contaminated site.

  9. Antioxidant and DNA Damage Protecting Activity of Exopolysaccharides from the Endophytic Bacterium Bacillus cereus SZ1.

    PubMed

    Zheng, Li Ping; Zou, Tin; Ma, Yan Jun; Wang, Jian Wen; Zhang, Yu Qing

    2016-01-01

    An endophytic bacterium was isolated from the Chinese medicinal plant Artemisia annua L. The phylogenetic and physiological characterization indicated that the isolate, strain SZ-1, was Bacillus cereus. The endophyte could produce an exopolysaccharide (EPS) at 46 mg/L. The 1,1-diphenyl-2-picrylhydracyl (DPPH) radical scavenging activity of the EPS reached more than 50% at 3-5 mg/mL. The EPS was also effective in scavenging superoxide radical in a concentration dependent fashion with an EC50 value of 2.6 mg/mL. The corresponding EC50 for scavenging hydroxyl radical was 3.1 mg/mL. Moreover, phenanthroline-copper complex-mediated chemiluminescent emission of DNA damage was both inhibited and delayed by EPS. The EPS at 0.7-1.7 mg/mL also protected supercoiled DNA strands in plasmid pBR322 against scission induced by Fenton-mediated hydroxyl radical. The preincubation of PC12 cells with the EPS prior to H₂O₂ exposure increased the cell survival and glutathione (GSH) level and catalase (CAT) activities, and decreased the level of malondialdehyde (MDA) and lactate dehydrogenase (LDH) activity in a dose-dependent manner, suggesting a pronounced protective effect against H₂O₂-induced cytotoxicity. Our study indicated that the EPS could be useful for preventing oxidative DNA damage and cellular oxidation in pharmaceutical and food industries. PMID:26861269

  10. Forensic differentiation of Bacillus cereus spores grown using different culture media using Raman spectroscopy.

    PubMed

    Dettman, Joshua R; Goss, Jessica M; Ehrhardt, Christopher J; Scott, Kristina A; Bannan, Jason D; Robertson, James M

    2015-06-01

    Some microorganisms have been shown to retain a chemical signature indicative of the medium used for culturing. However, the repeatability of medium-specific chemical signatures has not been demonstrated from samples of microorganisms produced in the same batch or in different batches by the same sporulation protocol. Here, the variation in Raman spectra of bacterial endospores repeatedly prepared by the same procedure is compared to the variation between Raman spectra of spores prepared using different media. Bacillus cereus T strain (BcT) samples were correctly classified according to the medium used to induce sporulation for 100 % of spores grown in a controlled manner by the same scientist using Raman spectroscopy and multivariate data analysis. The proof-of-concept results from BcT spores produced in 12 different sporulation media showed correct classification by medium for 98 % of samples (with 100 % classification accuracy for all but one sporulation medium in this data set). Spectral differences were discerned between spores that had been freshly prepared or freeze-dried and spores that had been frozen; however, the differences did not impact the classification of the sporulation medium. Latent variables reduced the classification accuracy of BcT sporulated in G medium by different scientists using different media lots and stored for different periods of time and requires further study. PMID:25893804

  11. Sensitivity of Hep G2 cells to Bacillus cereus emetic toxin.

    PubMed

    Kamata, Yoichi; Kanno, Shinji; Mizutani, Noriko; Agata, Norio; Kawakami, Hiroshi; Sugiyama, Kei-ichi; Sugita-Konishi, Yoshiko

    2012-11-01

    We herein examined the sensitivity of Hep G2 human hepatoma cells to Bacillus cereus emetic toxin. Hep G2 cells were treated with the emetic toxin, and the cell shape was observed. The same experiments were performed for comparison purposes, using HEp-2 cells, which are currently used by most laboratories for a bioassay of the emetic toxin. Hep G2 cells showed clearer vacuolation in the cytosol within 2 hr and required a shorter incubation period than HEp-2 cells (10 hr). The number of vacuoles in the Hep G2 cells was greater, and the size of the vacuoles was larger than those observed in HEp-2 cells. The minimal concentration of the emetic toxin required to induce the vacuolation of Hep G2 cells was 0.04 ng/ml. The concentration for the HEp-2 cells was 1 ng/ml. These findings indicate that Hep G2 cells show higher sensitivity to the emetic toxin. Hep G2 cells may be superior to the currently used HEp-2 cells for the bioassay of the emetic toxin.

  12. Secreted Compounds of the Probiotic Bacillus clausii Strain O/C Inhibit the Cytotoxic Effects Induced by Clostridium difficile and Bacillus cereus Toxins.

    PubMed

    Ripert, Gabrielle; Racedo, Silvia M; Elie, Anne-Marie; Jacquot, Claudine; Bressollier, Philippe; Urdaci, Maria C

    2016-06-01

    Although the use of probiotics based on Bacillus strains to fight off intestinal pathogens and antibiotic-associated diarrhea is widespread, the mechanisms involved in producing their beneficial effects remain unclear. Here, we studied the ability of compounds secreted by the probiotic Bacillus clausii strain O/C to counteract the cytotoxic effects induced by toxins of two pathogens, Clostridium difficile and Bacillus cereus, by evaluating eukaryotic cell viability and expression of selected genes. Coincubation of C. difficile and B. cereus toxic culture supernatants with the B. clausii supernatant completely prevented the damage induced by toxins in Vero and Caco-2 cells. The hemolytic effect of B. cereus was also avoided by the probiotic supernatant. Moreover, in these cells, the expression of rhoB, encoding a Rho GTPase target for C. difficile toxins, was normalized when C. difficile supernatant was pretreated using the B. clausii supernatant. All of the beneficial effects observed with the probiotic were abolished by the serine protease inhibitor phenylmethylsulfonyl fluoride (PMSF). Suspecting the involvement of a secreted protease in this protective effect, a protease was purified from the B. clausii supernatant and identified as a serine protease (M-protease; GenBank accession number Q99405). Experiments on Vero cells demonstrated the antitoxic activity of the purified protease against pathogen supernatants. This is the first report showing the capacity of a protease secreted by probiotic bacteria to inhibit the cytotoxic effects of toxinogenic C. difficile and B. cereus strains. This extracellular compound could be responsible, at least in part, for the protective effects observed for this human probiotic in antibiotic-associated diarrhea.

  13. Secreted Compounds of the Probiotic Bacillus clausii Strain O/C Inhibit the Cytotoxic Effects Induced by Clostridium difficile and Bacillus cereus Toxins.

    PubMed

    Ripert, Gabrielle; Racedo, Silvia M; Elie, Anne-Marie; Jacquot, Claudine; Bressollier, Philippe; Urdaci, Maria C

    2016-06-01

    Although the use of probiotics based on Bacillus strains to fight off intestinal pathogens and antibiotic-associated diarrhea is widespread, the mechanisms involved in producing their beneficial effects remain unclear. Here, we studied the ability of compounds secreted by the probiotic Bacillus clausii strain O/C to counteract the cytotoxic effects induced by toxins of two pathogens, Clostridium difficile and Bacillus cereus, by evaluating eukaryotic cell viability and expression of selected genes. Coincubation of C. difficile and B. cereus toxic culture supernatants with the B. clausii supernatant completely prevented the damage induced by toxins in Vero and Caco-2 cells. The hemolytic effect of B. cereus was also avoided by the probiotic supernatant. Moreover, in these cells, the expression of rhoB, encoding a Rho GTPase target for C. difficile toxins, was normalized when C. difficile supernatant was pretreated using the B. clausii supernatant. All of the beneficial effects observed with the probiotic were abolished by the serine protease inhibitor phenylmethylsulfonyl fluoride (PMSF). Suspecting the involvement of a secreted protease in this protective effect, a protease was purified from the B. clausii supernatant and identified as a serine protease (M-protease; GenBank accession number Q99405). Experiments on Vero cells demonstrated the antitoxic activity of the purified protease against pathogen supernatants. This is the first report showing the capacity of a protease secreted by probiotic bacteria to inhibit the cytotoxic effects of toxinogenic C. difficile and B. cereus strains. This extracellular compound could be responsible, at least in part, for the protective effects observed for this human probiotic in antibiotic-associated diarrhea. PMID:27001810

  14. Survival and germination of Bacillus cereus spores without outgrowth or enterotoxin production during in vitro simulation of gastrointestinal transit.

    PubMed

    Ceuppens, Siele; Uyttendaele, Mieke; Drieskens, Katrien; Heyndrickx, Marc; Rajkovic, Andreja; Boon, Nico; Van de Wiele, Tom

    2012-11-01

    To study the gastrointestinal survival and enterotoxin production of the food-borne pathogen Bacillus cereus, an in vitro simulation experiment was developed to mimic gastrointestinal passage in 5 phases: (i) the mouth, (ii) the stomach, with gradual pH decrease and fractional emptying, (iii) the duodenum, with high concentrations of bile and digestive enzymes, (iv) dialysis to ensure bile reabsorption, and (v) the ileum, with competing human intestinal bacteria. Four different B. cereus strains were cultivated and sporulated in mashed potato medium to obtain an inoculum of 7.0 log spores/ml. The spores showed survival and germination during the in vitro simulation of gastrointestinal passage, but vegetative outgrowth of the spores was suppressed by the intestinal bacteria during the final ileum phase. No bacterial proliferation or enterotoxin production was observed, despite the high inoculum levels. Little strain variability was observed: except for the psychrotrophic food isolate, the spores of all strains survived well throughout the gastrointestinal passage. The in vitro simulation experiments investigated the survival and enterotoxin production of B. cereus in the gastrointestinal lumen. The results obtained support the hypothesis that localized interaction of B. cereus with the host's epithelium is required for diarrheal food poisoning.

  15. Development of blood-yolk-polymyxin B-trimethoprim agar for the enumeration of Bacillus cereus in various foods.

    PubMed

    Kim, Dong-Hyeon; Kim, Hyunsook; Chon, Jung-Whan; Moon, Jin-San; Song, Kwang-Young; Seo, Kun-Ho

    2013-07-15

    Blood-yolk-polymyxin B-trimethoprim agar (BYPTA) was developed by the addition of egg yolk, laked horse blood, sodium pyruvate, polymyxin B, and trimethoprim, and compared with mannitol-yolk-polymyxin B agar (MYPA) for the isolation and enumeration of Bacillus cereus (B. cereus) in pure culture and various food samples. In pure culture, there was no statistical difference (p>0.05) between the recoverability and sensitivity of MYPA and BYPTA, whereas BYPTA exhibited higher specificity (p<0.05). To evaluate BYPTA agar with food samples, B. cereus was experimentally spiked into six types of foods, triangle kimbab, sandwich, misugaru, Saengsik, red pepper powder, and soybean paste. No statistical difference was observed in recoverability (p>0.05) between MYPA and BYPTA in all tested foods, whereas BYPTA exhibited higher selectivity than MYPA, especially in foods with high background microflora, such as Saengsik, red pepper powder, and soybean paste. The newly developed selective medium BYPTA could be a useful enumeration tool to assess the level of B. cereus in foods, particularly with high background microflora.

  16. Bacillus cereus AR156-Induced Resistance to Colletotrichum acutatum Is Associated with Priming of Defense Responses in Loquat Fruit

    PubMed Central

    Wang, Xiaoli; Wang, Lei; Wang, Jing; Jin, Peng; Liu, Hongxia; Zheng, Yonghua

    2014-01-01

    The effectiveness of a biocontrol agent Bacillus cereus AR156 for control of anthracnose rot caused by Colletotrichum acutatum in harvested loquat fruit and the possible mechanisms of its action have been investigated. Treatment of fruit with B. cereus AR156 resulted in lower disease incidence and smaller lesion diameters compared with that of untreated fruit. The treatment enhanced activities of defense-related enzymes including chitinase, β-1, 3-glucanase, phenylalanine ammonia-lyase, peroxidase and polyphenoloxidase, and promoted accumulation of H2O2. Total phenolic content and 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity were also increased by treatment. Transcripts of three defense-related genes were enhanced only in fruit undergoing both B. cereus AR156 treatment and C. acutatum inoculation compared with those receiving either intervention alone. These results suggest that the disease resistance against C. acutatum in loquat fruit is enhanced by B. cereus AR156 and that the induced resistance is associated with induction and priming of defense responses in the fruit. PMID:25386680

  17. Proteomics identifies Bacillus cereus EntD as a pivotal protein for the production of numerous virulence factors

    PubMed Central

    Omer, Hélène; Alpha-Bazin, Béatrice; Brunet, Jean-Luc; Armengaud, Jean; Duport, Catherine

    2015-01-01

    Bacillus cereus is a Gram-positive pathogen that causes a wide variety of diseases in humans. It secretes into the extracellular milieu proteins that may contribute directly or indirectly to its virulence. EntD is a novel exoprotein identified by proteogenomics of B. cereus ATCC 14579. We constructed a ΔentD mutant and analyzed the impact of entD disruption on the cellular proteome and exoproteome isolated from early, late, and stationary-phase cultures. We identified 308 and 79 proteins regulated by EntD in the cellular proteome and the exoproteome, respectively. The contribution of these proteins to important virulence-associated functions, including central metabolism, cell structure, antioxidative ability, cell motility, and toxin production, are presented. The proteomic data were correlated with the growth defect, cell morphology change, reduced motility, and reduced cytotoxicity of the ΔentD mutant strain. We conclude that EntD is an important player in B. cereus virulence. The function of EntD and the putative EntD-dependent regulatory network are discussed. To our knowledge, this study is the first characterization of an Ent family protein in a species of the B. cereus group. PMID:26500610

  18. Proteomics identifies Bacillus cereus EntD as a pivotal protein for the production of numerous virulence factors.

    PubMed

    Omer, Hélène; Alpha-Bazin, Béatrice; Brunet, Jean-Luc; Armengaud, Jean; Duport, Catherine

    2015-01-01

    Bacillus cereus is a Gram-positive pathogen that causes a wide variety of diseases in humans. It secretes into the extracellular milieu proteins that may contribute directly or indirectly to its virulence. EntD is a novel exoprotein identified by proteogenomics of B. cereus ATCC 14579. We constructed a ΔentD mutant and analyzed the impact of entD disruption on the cellular proteome and exoproteome isolated from early, late, and stationary-phase cultures. We identified 308 and 79 proteins regulated by EntD in the cellular proteome and the exoproteome, respectively. The contribution of these proteins to important virulence-associated functions, including central metabolism, cell structure, antioxidative ability, cell motility, and toxin production, are presented. The proteomic data were correlated with the growth defect, cell morphology change, reduced motility, and reduced cytotoxicity of the ΔentD mutant strain. We conclude that EntD is an important player in B. cereus virulence. The function of EntD and the putative EntD-dependent regulatory network are discussed. To our knowledge, this study is the first characterization of an Ent family protein in a species of the B. cereus group.

  19. Cytochrome c551 and the cytochrome c maturation pathway affect virulence gene expression in Bacillus cereus ATCC 14579.

    PubMed

    Han, Hesong; Sullivan, Thomas; Wilson, Adam C

    2015-02-01

    Loss of the cytochrome c maturation system in Bacillus cereus results in increased transcription of the major enterotoxin genes nhe, hbl, and cytK and the virulence regulator plcR. Increased virulence factor production occurs at 37°C under aerobic conditions, similar to previous findings in Bacillus anthracis. Unlike B. anthracis, much of the increased virulence gene expression can be attributed to loss of only c551, one of the two small c-type cytochromes. Additional virulence factor expression occurs with loss of resBC, encoding cytochrome c maturation proteins, independently of the presence of the c-type cytochrome genes. Hemolytic activity of strains missing either cccB or resBC is increased relative to that in the parental strain, while sporulation efficiency is unaffected in the mutants. Increased virulence gene expression in the ΔcccB and ΔresBC mutants occurs only in the presence of an intact plcR gene, indicating that this process is PlcR dependent. These findings suggest a new mode of regulation of B. cereus virulence and reveal intriguing similarities and differences in virulence regulation between B. cereus and B. anthracis.

  20. RNA-seq analysis of antibiotic-producing Bacillus subtilis SC-8 in response to signal peptide PapR of Bacillus cereus.

    PubMed

    Yeo, In-Cheol; Lee, Nam Keun; Yang, Byung Wook; Hahm, Young Tae

    2014-01-01

    Bacillus subtilis SC-8 produces an antibiotic that has narrow antagonistic activity against bacteria in the Bacillus cereus group. In B. cereus group bacteria, peptide-activating PlcR (PapR) plays a significant role in regulating the transcription of virulence factors. When B. subtilis SC-8 and B. cereus are co-cultured, PapR is assumed to stimulate antibiotic production by B. subtilis SC-8. To better understand the effect of PapR on this interspecies interaction, the global transcriptome profile of B. subtilis SC-8 was analyzed in the presence of PapR. Significant changes were detected in 12.8 % of the total transcripts. Genes related to amino acid transport and metabolism (16.5 %) and transcription (15 %) were mainly upregulated, whereas genes involved in carbohydrate transport and metabolism (12.7 %) were markedly downregulated. The expression of genes related to transcription, including several transcriptional regulators and proteins involved in tRNA biosynthesis, was increased. The expression levels of genes associated with several transport systems, such as antibiotic, cobalt, and iron complex transporters, was also significantly altered. Among the downregulated genes were transcripts associated with spore formation, the subtilosin A gene cluster, and nitrogen metabolism.

  1. Influence of food matrix on outgrowth heterogeneity of heat damaged Bacillus cereus spores.

    PubMed

    Warda, Alicja K; den Besten, Heidy M W; Sha, Na; Abee, Tjakko; Nierop Groot, Masja N

    2015-05-18

    Spoilage of heat treated foods can be caused by the presence of surviving spore-formers. It is virtually impossible to prevent contamination at the primary production level as spores are ubiquitous present in the environment and can contaminate raw products. As a result spore inactivation treatments are widely used by food producing industries to reduce the microbial spore loads. However consumers prefer mildly processed products that have less impact on its quality and this trend steers industry towards milder preservation treatments. Such treatments may result in damaged instead of inactivated spores, and these spores may germinate, repair, and grow out, possibly leading to quality and safety issues. The ability to repair and grow out is influenced by the properties of the food matrix. In the current communication we studied the outgrowth from heat damaged Bacillus cereus ATCC 14579 spores on Anopore membrane, which allowed following outgrowth heterogeneity of individual spores on broccoli and rice-based media as well as standard and mildly acidified (pH 5.5) meat-based BHI. Rice, broccoli and BHI pH 5.5 media resulted in delayed outgrowth from untreated spores, and increased heterogeneity compared to BHI pH 7.4, with the most pronounced effect in rice media. Exposure to wet heat for 1 min at 95 °C caused 2 log inactivation and approximately 95% of the spores in the surviving fraction were damaged resulting in substantial delay in outgrowth based on the time required to reach a maximum microcolony size of 256 cells. The delay was most pronounced for heat-treated spores on broccoli medium followed by spores on rice media (both untreated and treated). Interestingly, the increase in outgrowth heterogeneity of heat treated spores on BHI pH 7.4 was more pronounced than on rice, broccoli and BHI pH 5.5 conceivably reflecting that conditions in BHI pH 7.4 better support spore damage repair. This study compares the effects of three main factors, namely heat treatment, p

  2. Cooperation and the evolutionary ecology of bacterial virulence: the Bacillus cereus group as a novel study system.

    PubMed

    Raymond, Ben; Bonsall, Michael B

    2013-08-01

    How significant is social evolution theory for the maintenance of virulence in natural populations? We assume that secreted, distantly acting virulence factors are highly likely to be cooperative public goods. Using this assumption, we discuss and critically assess the potential importance of social interactions for understanding the evolution, diversity and distribution of virulence in the Bacillus cereus group, a novel study system for microbial social biology. We conclude that dynamic equilibria in Cry toxin production, as well as strong spatial structure and population bottlenecks in hosts are the main ecological factors maintaining the cooperative secretion of virulence factors and argue that collective action has contributed to the evolution of narrow host range. Non-linearities in the benefits associated with public goods, as well as the lack of private secretion systems in the Firmicutes may also explain the prevalence and importance of distantly acting virulence factors in B. cereus and its relatives.

  3. An emetic Bacillus cereus outbreak in a kindergarten: detection and quantification of critical levels of cereulide toxin.

    PubMed

    Delbrassinne, Laurence; Botteldoorn, Nadine; Andjelkovic, Mirjana; Dierick, Katelijne; Denayer, Sarah

    2015-01-01

    A Bacillus cereus-related emetic outbreak was reported in a Belgian kindergarten. High levels of emetic B. cereus (>1.5E+07 colony-forming units/g) were detected in the food leftovers, and the presence of an emetic strain was confirmed in feces. Emetic toxin levels ranging up to 4.2 μg/g were also quantified in the leftovers by liquid chromatography coupled to tandem mass spectrometry (LC-MS(2)) analysis. Those levels, although moderate in comparison with earlier published intoxications, provoked profuse-vomiting episodes in 20 toddlers aged between 10 and 18 months. Few studies have focused on the levels of emetic toxin implicated in food intoxications. This publication emphasizes the importance of defining toxic doses of emetic toxin among high-risk population groups.

  4. Dechlorination of chloroorganics, decolorization, and simultaneous bioremediation of Cr6+ from real tannery effluent employing indigenous Bacillus cereus isolate.

    PubMed

    Tripathi, Manikant; Garg, Satyendra Kumar

    2014-04-01

    A native Bacillus cereus isolate has been employed, for the first time, for simultaneous decolorization, dechlorination of chloroorganics, and Cr(6+) remediation from the real tannery effluent. Most of the physicochemical variables in 3:1 diluted effluent were well above the standard prescribed limits, which decreased substantially upon microbial treatment. The extent of bioremediation was better in diluted (3:1) as compared to undiluted effluent supplemented with nutrients and augmented with B. cereus isolate. Maximum growth, effluent decolorization (42.5 %), dechlorination (74.1 %), and Cr(6+) remediation (34.2 %) were attained with 4.0 % (v/v) inoculum, 0.8 % glucose, and 0.2 % ammonium chloride in 3:1 diluted effluent at natural pH (8.1) within 72 h of incubation. The efficiency of bioremediation in a bioreactor was higher as compared to a flask trial during 72 h of incubation: decolorization (47.9 %) was enhanced by 5.4 %, dechlorination (77.4 %) by 3.3 %, and Cr(6+) removal (41.7 %) by 7.5 % at an initial color of 286 Pt-Co units and initial concentration of 62 mg chloride ions and 108 mg l(-1) Cr(6+). Immobilized biomass of Pseudomonas putida and B. cereus coculture enhanced the extent of Cr(6+) remediation (51.9 %) by 10.2 % compared to the bioreactor trial. Chromate reductase activity and reduced Cr directly correlated and were mainly associated with soluble fraction of B. cereus plus effluent natural microflora. The GC-MS analyses revealed the formation of metabolites such as acetic acid and 2-butenoic acid in bacterially treated effluent. The supplementation of nutrients along with B. cereus augmentation is required for efficient effluent bioremediation.

  5. Amino acids improve acid tolerance and internal pH maintenance in Bacillus cereus ATCC14579 strain.

    PubMed

    Senouci-Rezkallah, Khadidja; Schmitt, Philippe; Jobin, Michel P

    2011-05-01

    This study investigated the involvement of glutamate-, arginine- and lysine-dependent systems in the Acid Tolerance Response (ATR) of Bacillus cereus ATCC14579 strain. Cells were grown in a chemostat at external pH (pH(e)) 7.0 and 5.5. Population reduction after acid shock at pH 4.0 was strongly limited in cells grown at pH 5.5 (acid-adapted) compared with cells grown at pH 7.0 (unadapted), indicating that B. cereus cells grown at low pH(e) were able to induce a marked ATR. Glutamate, arginine and lysine enhanced the resistance of unadapted cells to pH 4.0 acid shock of 1-log or 2-log populations, respectively. Amino acids had no detectable effect on acid resistance in acid-adapted cells. An acid shock at pH 4.0 resulted in a marked drop in internal pH (pH(i)) in unadapted cells compared with acid-adapted cells. When acid shock was achieved in the presence of glutamate, arginine or lysine, pH(i) was maintained at higher values (6.31, 6.69 or 6.99, respectively) compared with pH(i) in the absence of amino acids (4.88). Acid-adapted cells maintained their pH(i) at around 6.4 whatever the condition. Agmatine (a competitive inhibitor of arginine decarboxylase) had a negative effect on the ability of B. cereus cells to survive and maintain their pH(i) during acid shock. Our data demonstrate that B. cereus is able to induce an ATR during growth at low pH. This adaptation depends on pH(i) homeostasis and is enhanced in the presence of glutamate, arginine and lysine. Hence evaluations of the pathogenicity of B. cereus must take into account its ability to adapt to acid stress.

  6. Decontamination of Mesquite Pod Flour Naturally Contaminated with Bacillus cereus and Formation of Furan by Ionizing Irradiation.

    PubMed

    Fan, Xuetong; Felker, Peter; Sokorai, Kimberly J

    2015-05-01

    Mesquite pod flour produced from nitrogen-fixing trees of the Prosopis species has a unique aroma and flavor that is preferred by some consumers. Due to the presence of wildlife, grazing domestic animals, and insects, the pods have a high potential of being contaminated with human pathogenic bacteria, such as Bacillus cereus. Nonthermal processing technologies are helpful to reduce the population of microorganisms in the flour because heating deteriorates the characteristic flavor. A study was conducted to investigate the efficacy of ionizing radiation in decontaminating two types of mesquite pod flours (Prosopis alba and Prosopis pallida) naturally contaminated with B. cereus and the effects of irradiation on the formation of furan, a possible human carcinogen. Results showed that the populations of B. cereus were 3.8 and 5.4 log CFU/g in nonirradiated P. alba and P. pallida flours, respectively, and populations of microflora, mesophilic spores, B. cereus, and B. cereus spores decreased with increasing radiation doses. At 6 kGy, the populations fell below 1 log CFU/g. Irradiation at 6 kGy had no significant effect on the fructose, glucose, or sucrose content of the flour. Nonirradiated P. alba and P. pallida flours contained 13.0 and 3.1 ng/g of furan, respectively. Furan levels increased with irradiation doses at rates of 2.3 and 2.4 ng/g/kGy in the two flours. The level of 3-methylbutanal was reduced or not affected by irradiation, while the hexanal level was increased. Our results suggested that irradiation was effective in decontaminating contaminated mesquite flour. The significance of furan formation and possible changes in flavor due to irradiation may need to be further examined.

  7. Detection and quantification of viable Bacillus cereus group species in milk by propidium monoazide quantitative real-time PCR.

    PubMed

    Cattani, Fernanda; Barth, Valdir C; Nasário, Jéssica S R; Ferreira, Carlos A S; Oliveira, Sílvia D

    2016-04-01

    The Bacillus cereus group includes important spore-forming bacteria that present spoilage capability and may cause foodborne diseases. These microorganisms are traditionally evaluated in food using culturing methods, which can be laborious and time-consuming, and may also fail to detect bacteria in a viable but nonculturable state. The purpose of this study was to develop a quantitative real-time PCR (qPCR) combined with a propidium monoazide (PMA) treatment to analyze the contamination of UHT milk by B. cereus group species viable cells. Thirty micrograms per milliliter of PMA was shown to be the most effective concentration for reducing the PCR amplification of extracellular DNA and DNA from dead cells. The quantification limit of the PMA-qPCR assay was 7.5 × 10(2) cfu/mL of milk. One hundred thirty-five UHT milk samples were analyzed to evaluate the association of PMA to qPCR to selectively detect viable cells. The PMA-qPCR was able to detect B. cereus group species in 44 samples (32.6%), whereas qPCR without PMA detected 78 positive samples (57.8%). Therefore, the PMA probably inhibited the amplification of DNA from cells that were killed during UHT processing, which avoided an overestimation of bacterial cells when using qPCR and, thus, did not overvalue potential health risks. A culture-based method was also used to detect and quantify B. cereus sensu stricto in the same samples and showed positive results in 15 (11.1%) samples. The culture method and PMA-qPCR allowed the detection of B. cereus sensu stricto in quantities compatible with the infective dose required to cause foodborne disease in 3 samples, indicating that, depending on the storage conditions, even after UHT treatment, infective doses may be reached in ready-to-consume products. PMID:26830746

  8. Arthromitus (Bacillus cereus) symbionts in the cockroach Blaberus giganteus: dietary influences on bacterial development and population density.

    PubMed

    Feinberg, L; Jorgensen, J; Haselton, A; Pitt, A; Rudner, R; Margulis, L

    1999-01-01

    The filamentous spore-forming bacterium Arthromitus, discovered in termites, millipedes, sow bugs and other soil-dwelling arthropods by Leidy (1850), is the intestinal stage of Bacillus cereus. We extend the range of Arthromitus habitats to include the hindgut of Blaberus giganteus, the large tropical American cockroach. The occurrence and morphology of the intestinal form of the bacillus were compared in individual cockroaches (n=24) placed on four different diet regimes: diurnally maintained insects fed (1) dog food, (2) soy protein only, (3)purified cellulose only, and (4) a dog food-fed group maintained in continuous darkness. Food quality exerted strong influence on population densities and developmental stages of the filamentous bacterium and on fecal pellet composition. The most dramatic rise in Arthromitus populations, defined as the spore-forming filament intestinal stage, occurred in adult cockroaches kept in the dark on a dog food diet. Limited intake of cellulose or protein alone reduced both the frequency of Arthromitus filaments and the rate of weight gain of the insects. Spores isolated from termites, sow bugs, cockroaches and moths, grown on various hard surfaces display a branching mobility and resistance to antibiotics characteristic to group I Bacilli whose members include B. cereus, B. circulans, B. alvei and B. macerans. DNA isolated from pure cultures of these bacilli taken from the guts of Blaberus giganteus (cockroach), Junonia coenia (moth), Porcellio scaber (sow bug) and Cryptotermes brevis (termite) and subjected to Southern hybridization with a 23S-5S B. subtilis ribosomal sequence probe verified that they are indistinguishable from laboratory strains of Bacillus cereus.

  9. Arthromitus (Bacillus cereus) symbionts in the cockroach Blaberus giganteus: dietary influences on bacterial development and population density

    NASA Technical Reports Server (NTRS)

    Feinberg, L.; Jorgensen, J.; Haselton, A.; Pitt, A.; Rudner, R.; Margulis, L.

    1999-01-01

    The filamentous spore-forming bacterium Arthromitus, discovered in termites, millipedes, sow bugs and other soil-dwelling arthropods by Leidy (1850), is the intestinal stage of Bacillus cereus. We extend the range of Arthromitus habitats to include the hindgut of Blaberus giganteus, the large tropical American cockroach. The occurrence and morphology of the intestinal form of the bacillus were compared in individual cockroaches (n=24) placed on four different diet regimes: diurnally maintained insects fed (1) dog food, (2) soy protein only, (3)purified cellulose only, and (4) a dog food-fed group maintained in continuous darkness. Food quality exerted strong influence on population densities and developmental stages of the filamentous bacterium and on fecal pellet composition. The most dramatic rise in Arthromitus populations, defined as the spore-forming filament intestinal stage, occurred in adult cockroaches kept in the dark on a dog food diet. Limited intake of cellulose or protein alone reduced both the frequency of Arthromitus filaments and the rate of weight gain of the insects. Spores isolated from termites, sow bugs, cockroaches and moths, grown on various hard surfaces display a branching mobility and resistance to antibiotics characteristic to group I Bacilli whose members include B. cereus, B. circulans, B. alvei and B. macerans. DNA isolated from pure cultures of these bacilli taken from the guts of Blaberus giganteus (cockroach), Junonia coenia (moth), Porcellio scaber (sow bug) and Cryptotermes brevis (termite) and subjected to Southern hybridization with a 23S-5S B. subtilis ribosomal sequence probe verified that they are indistinguishable from laboratory strains of Bacillus cereus.

  10. Genome sequence and analysis of a broad-host range lytic bacteriophage that infects the Bacillus cereus group

    PubMed Central

    2013-01-01

    Background Comparatively little information is available on members of the Myoviridae infecting low G+C content, Gram-positive host bacteria of the family Firmicutes. While numerous Bacillus phages have been isolated up till now only very few Bacillus cereus phages have been characterized in detail. Results Here we present data on the large, virulent, broad-host-range B. cereus phage vB_BceM_Bc431v3 (Bc431v3). Bc431v3 features a 158,618 bp dsDNA genome, encompassing 239 putative open reading frames (ORFs) and, 20 tRNA genes encoding 17 different amino acids. Since pulsed-field gel electrophoresis indicated that the genome of this phage has a mass of 155-158 kb Bc431v3 DNA appears not to contain long terminal repeats that are found in the genome of Bacillus phage SPO1. Conclusions Bc431v3 displays significant sequence similarity, at the protein level, to B. cereus phage BCP78, Listeria phage A511 and Enterococcus phage ØEF24C and other morphologically related phages infecting Firmicutes such as Staphylococcus phage K and Lactobacillus phage LP65. Based on these data we suggest that Bc431v3 should be included as a member of the Spounavirinae; however, because of all the diverse taxonomical information has been addressed recently, it is difficult to determine the genus. The Bc431v3 phage contains some highly unusual genes such as gp143 encoding putative tRNAHis guanylyltransferase. In addition, it carries some genes that appear to be related to the host sporulation regulators. These are: gp098, which encodes a putative segregation protein related to FstK/SpoIIIE DNA transporters; gp105, a putative segregation protein; gp108, RNA polymerase sigma factor F/B; and, gp109 encoding RNA polymerase sigma factor G. PMID:23388049

  11. Arthromitus (Bacillus cereus) symbionts in the cockroach Blaberus giganteus: dietary influences on bacterial development and population density.

    PubMed

    Feinberg, L; Jorgensen, J; Haselton, A; Pitt, A; Rudner, R; Margulis, L

    1999-01-01

    The filamentous spore-forming bacterium Arthromitus, discovered in termites, millipedes, sow bugs and other soil-dwelling arthropods by Leidy (1850), is the intestinal stage of Bacillus cereus. We extend the range of Arthromitus habitats to include the hindgut of Blaberus giganteus, the large tropical American cockroach. The occurrence and morphology of the intestinal form of the bacillus were compared in individual cockroaches (n=24) placed on four different diet regimes: diurnally maintained insects fed (1) dog food, (2) soy protein only, (3)purified cellulose only, and (4) a dog food-fed group maintained in continuous darkness. Food quality exerted strong influence on population densities and developmental stages of the filamentous bacterium and on fecal pellet composition. The most dramatic rise in Arthromitus populations, defined as the spore-forming filament intestinal stage, occurred in adult cockroaches kept in the dark on a dog food diet. Limited intake of cellulose or protein alone reduced both the frequency of Arthromitus filaments and the rate of weight gain of the insects. Spores isolated from termites, sow bugs, cockroaches and moths, grown on various hard surfaces display a branching mobility and resistance to antibiotics characteristic to group I Bacilli whose members include B. cereus, B. circulans, B. alvei and B. macerans. DNA isolated from pure cultures of these bacilli taken from the guts of Blaberus giganteus (cockroach), Junonia coenia (moth), Porcellio scaber (sow bug) and Cryptotermes brevis (termite) and subjected to Southern hybridization with a 23S-5S B. subtilis ribosomal sequence probe verified that they are indistinguishable from laboratory strains of Bacillus cereus. PMID:11762374

  12. Combined effects of plant extracts in inhibiting the growth of Bacillus cereus in reconstituted infant rice cereal.

    PubMed

    Jun, Hyejung; Kim, Jinsol; Bang, Jihyun; Kim, Hoikyung; Beuchat, Larry R; Ryu, Jee-Hoon

    2013-01-01

    A study was done to determine the potential use of plant extracts to inhibit the growth of Bacillus cereus in reconstituted infant rice cereal. A total of 2116 extracts were screened for inhibitory activity against B. cereus using an agar well diffusion assay. The minimal inhibitory concentrations (MIC) and minimal lethal concentrations (MLC) of 14 promising extracts in tryptic soy broth (TSB) were determined. Dryopteris erythrosora (autumn fern) root extract showed the lowest MIC (0.0156 mg/ml), followed by Siegesbeckia glabrescens (Siegesbeckia herb) leaf (0.0313 mg/ml), Morus alba (white mulberry) cortex (0.0313 mg/ml), Carex pumila (sand sedge) root (0.0625 mg/ml), and Citrus paradisi (grapefruit) seed (0.0625 mg/ml) extracts. The order of MLCs of extracts was D. erythrosora root (0.0156 mg/ml)cereus in TSB were determined using a checkerboard assay. A combination of D. erythrosora and C. pumila extracts showed a partial synergistic inhibition, with a fractional inhibitory concentration index (FICI) of 0.75. Single and combined inhibitory activities of selected plant extracts against B. cereus in reconstituted infant rice cereal were investigated. The MICs of S. glabrescens, M. alba, D. erythrosora, and C. pumila extracts against B. cereus were 1.0, 2.0, 2.0, and 8.0mg/ml, respectively. A combination of D. erythrosora (1.00 mg/ml) and C. pumila (1.00 mg/ml) extracts showed a partial synergistic effect (FICI 0.63) in inhibiting the growth of B. cereus. Results indicate that by combining extracts, the amounts of D. erythrosora and C. pumila extracts can be reduced by 50% and 87.5%, respectively, compared with individual extracts, and give similar inhibitory activity in reconstituted infant rice cereal. Sensory evaluation showed that supplementing reconstituted

  13. Reconstitution of Bacillus cereus 5/B/6 metallo-[beta]-lactamase activity with copper

    SciTech Connect

    Hilliard, N.P.; Shaw, R.W. )

    1992-01-01

    Pathogenic bacteria become resistant to [beta]-lactam antibiotics such as penicillins and cephalosporins through the production of enzymes called [beta]-lactamases. The authors have successfully reconstituted the enzymatic activity of the metallo-[beta]-lactamase of Bacillus cereus 5/B/6 purified from an E. coli expression vector system by the addition of Cu(II) to the apoenzyme. This is the first report that copper supports catalytic activity in this enzyme. Maximal activity of the copper-reconstituted enzyme was achieved by a careful addition of a stoichiometric amount of CuSO[sub 4] to 200 [mu]M apoenzyme. Using either benzylpenicillin or cephalosporin C as the substrate, reconstitution of the activity by addition of copper to the apoenzyme resulted in the recovery of approximately 35% of the control activity of the native Zn(II) enzyme. In agreement with previous reports, in the presence of excess Cu(II), the preparation did not possess measurable catalytic activity. Electronic spectra of the copper-reconstituted enzyme displayed adsorption maxima at 394, 698 and 1,022 nm with extinction coefficients of 2,656, 55 and < 3 M[sup [minus]1]cm[sup [minus]1] respectively. Circular dichorism spectra in the ultraviolent region (UVCD) of the copper-reconstituted enzyme were identical with those of the native Zn(II) enzyme. Addition of excess cephalosporin C to the copper-reconstituted enzyme caused a decrease of about 50% of the absorbance of the 394 nm band and the formation of a new feature at 350 nm.

  14. Carvacrol suppresses high pressure high temperature inactivation of Bacillus cereus spores.

    PubMed

    Luu-Thi, Hue; Corthouts, Jorinde; Passaris, Ioannis; Grauwet, Tara; Aertsen, Abram; Hendrickx, Marc; Michiels, Chris W

    2015-03-16

    The inactivation of bacterial spores generally proceeds faster and at lower temperatures when heat treatments are conducted under high pressure, and high pressure high temperature (HPHT) processing is, therefore, receiving an increased interest from food processors. However, the mechanisms of spore inactivation by HPHT treatment are poorly understood, particularly at moderately elevated temperature. In the current work, we studied inactivation of the spores of Bacillus cereus F4430/73 by HPHT treatment for 5 min at 600MPa in the temperature range of 50-100°C, using temperature increments of 5°C. Additionally, we investigated the effect of the natural antimicrobial carvacrol on spore germination and inactivation under these conditions. Spore inactivation by HPHT was less than about 1 log unit at 50 to 70°C, but gradually increased at higher temperatures up to about 5 log units at 100°C. DPA release and loss of spore refractility in the spore population were higher at moderate (≤65°C) than at high (≥70°C) treatment temperatures, and we propose that moderate conditions induced the normal physiological pathway of spore germination resulting in fully hydrated spores, while at higher temperatures this pathway was suppressed and replaced by another mechanism of pressure-induced dipicolinic acid (DPA) release that results only in partial spore rehydration, probably because spore cortex hydrolysis is inhibited. Carvacrol strongly suppressed DPA release and spore rehydration during HPHT treatment at ≤65°C and also partly inhibited DPA release at ≥65°C. Concomitantly, HPHT spore inactivation was reduced by carvacrol at 65-90°C but unaffected at 95-100°C.

  15. Three important amino acids control the regioselectivity of flavonoid glucosidation in glycosyltransferase-1 from Bacillus cereus.

    PubMed

    Chiu, Hsi-Ho; Hsieh, Yin-Cheng; Chen, Ya-Huei; Wang, Hsin-Ying; Lu, Chia-Yu; Chen, Chun-Jung; Li, Yaw-Kuen

    2016-10-01

    Glycosyltransferase-1 from Bacillus cereus (BcGT1) catalyzes a reaction that transfers a glucosyl moiety to flavonoids, such as quercetin, kaempferol, and myricetin. The enzymatic glucosidation shows a broad substrate specificity when the reaction is catalyzed by wild-type BcGT1. Preliminary assays demonstrated that the F240A mutant significantly improves the regioselectivity of enzymatic glucosidation toward quercetin. To unveil and further to control the catalytic function of BcGT1, mutation of F240 to other amino acids, such as C, E, G, R, Y, W, and K, was performed. Among these mutants, F240A, F240G, F240R, and F240K greatly altered the regioselectivity. The quercetin-3-O-glucoside, instead of quercetin-7-O-glucoside as for the wild-type enzyme, was obtained as the major product. Among these mutants, F240R showed nearly 100 % product specificity but only retained 25 % catalytic efficiency of wild-type enzyme. From an inspection of the protein structure, we found two other amino acids, F132 and F138, together with F240, are likely to form a hydrophobic binding region, which is sufficiently spacious to accommodate substrates with varied aromatic moieties. Through the replacement of a phenylalanine by a tyrosine residue in the substrate-binding region, the mutants may be able to fix the orientation of flavonoids, presumably through the formation of a hydrogen bond between substrates and mutants. Multiple mutants-F240R_F132Y, F240R_F138Y, and F240R_F132Y_F138Y-were thus constructed for further investigation. The multiple points of mutants not only maintained the high product specificity but also significantly improved the catalytic efficiency, relative to F240R. The same product specificity was obtained when kaempferol and myricetin were used as a substrate. PMID:27198725

  16. Three important amino acids control the regioselectivity of flavonoid glucosidation in glycosyltransferase-1 from Bacillus cereus.

    PubMed

    Chiu, Hsi-Ho; Hsieh, Yin-Cheng; Chen, Ya-Huei; Wang, Hsin-Ying; Lu, Chia-Yu; Chen, Chun-Jung; Li, Yaw-Kuen

    2016-10-01

    Glycosyltransferase-1 from Bacillus cereus (BcGT1) catalyzes a reaction that transfers a glucosyl moiety to flavonoids, such as quercetin, kaempferol, and myricetin. The enzymatic glucosidation shows a broad substrate specificity when the reaction is catalyzed by wild-type BcGT1. Preliminary assays demonstrated that the F240A mutant significantly improves the regioselectivity of enzymatic glucosidation toward quercetin. To unveil and further to control the catalytic function of BcGT1, mutation of F240 to other amino acids, such as C, E, G, R, Y, W, and K, was performed. Among these mutants, F240A, F240G, F240R, and F240K greatly altered the regioselectivity. The quercetin-3-O-glucoside, instead of quercetin-7-O-glucoside as for the wild-type enzyme, was obtained as the major product. Among these mutants, F240R showed nearly 100 % product specificity but only retained 25 % catalytic efficiency of wild-type enzyme. From an inspection of the protein structure, we found two other amino acids, F132 and F138, together with F240, are likely to form a hydrophobic binding region, which is sufficiently spacious to accommodate substrates with varied aromatic moieties. Through the replacement of a phenylalanine by a tyrosine residue in the substrate-binding region, the mutants may be able to fix the orientation of flavonoids, presumably through the formation of a hydrogen bond between substrates and mutants. Multiple mutants-F240R_F132Y, F240R_F138Y, and F240R_F132Y_F138Y-were thus constructed for further investigation. The multiple points of mutants not only maintained the high product specificity but also significantly improved the catalytic efficiency, relative to F240R. The same product specificity was obtained when kaempferol and myricetin were used as a substrate.

  17. The comER Gene Plays an Important Role in Biofilm Formation and Sporulation in both Bacillus subtilis and Bacillus cereus

    PubMed Central

    Yan, Fang; Yu, Yiyang; Wang, Luyao; Luo, Yuming; Guo, Jian-hua; Chai, Yunrong

    2016-01-01

    Bacteria adopt alternative cell fates during development. In Bacillus subtilis, the transition from planktonic growth to biofilm formation and sporulation is controlled by a complex regulatory circuit, in which the most important event is activation of Spo0A, a transcription factor and a master regulator for genes involved in both biofilm formation and sporulation. In B. cereus, the regulatory pathway controlling biofilm formation and cell differentiation is much less clear. In this study, we show that a novel gene, comER, plays a significant role in biofilm formation as well as sporulation in both B. subtilis and B. cereus. Mutations in the comER gene result in defects in biofilm formation and a delay in spore formation in the two Bacillus species. Our evidence supports the idea that comER may be part of the regulatory circuit that controls Spo0A activation. comER likely acts upstream of sda, a gene encoding a small checkpoint protein for both sporulation and biofilm formation, by blocking the phosphor-relay and thereby Spo0A activation. In summary, our studies outlined a conserved, positive role for comER, a gene whose function was previously uncharacterized, in the regulation of biofilm formation and sporulation in the two Bacillus species. PMID:27446060

  18. The comER Gene Plays an Important Role in Biofilm Formation and Sporulation in both Bacillus subtilis and Bacillus cereus.

    PubMed

    Yan, Fang; Yu, Yiyang; Wang, Luyao; Luo, Yuming; Guo, Jian-Hua; Chai, Yunrong

    2016-01-01

    Bacteria adopt alternative cell fates during development. In Bacillus subtilis, the transition from planktonic growth to biofilm formation and sporulation is controlled by a complex regulatory circuit, in which the most important event is activation of Spo0A, a transcription factor and a master regulator for genes involved in both biofilm formation and sporulation. In B. cereus, the regulatory pathway controlling biofilm formation and cell differentiation is much less clear. In this study, we show that a novel gene, comER, plays a significant role in biofilm formation as well as sporulation in both B. subtilis and B. cereus. Mutations in the comER gene result in defects in biofilm formation and a delay in spore formation in the two Bacillus species. Our evidence supports the idea that comER may be part of the regulatory circuit that controls Spo0A activation. comER likely acts upstream of sda, a gene encoding a small checkpoint protein for both sporulation and biofilm formation, by blocking the phosphor-relay and thereby Spo0A activation. In summary, our studies outlined a conserved, positive role for comER, a gene whose function was previously uncharacterized, in the regulation of biofilm formation and sporulation in the two Bacillus species. PMID:27446060

  19. Enhancement of soybean nodulation by Bacillus cereus UW85 in the field and in a growth chamber.

    PubMed Central

    Halverson, L J; Handelsman, J

    1991-01-01

    Seed treatments with Bacillus cereus UW85 increased nodulation of soybeans in three field seasons and in three different sterilized soils in the growth chamber. In the field, 28 and 35 days after planting, UW85-treated plants had 31 to 133% more nodules than untreated plants. From 49 days after planting until seed harvest, there were no significant differences between nodulation of UW85-treated plants and untreated control plants. In the growth chamber, in sterilized soil-vermiculite mixtures, at 28 days after planting, UW85 seed treatments enhanced nodulation by 34 to 61%, indicating that the increase in nodulation was not dependent on the soil flora. PMID:1768151

  20. Bacillus cereus G9241 makes anthrax toxin and capsule like highly virulent B. anthracis Ames but behaves like attenuated toxigenic nonencapsulated B. anthracis Sterne in rabbits and mice.

    PubMed

    Wilson, Melissa K; Vergis, James M; Alem, Farhang; Palmer, John R; Keane-Myers, Andrea M; Brahmbhatt, Trupti N; Ventura, Christy L; O'Brien, Alison D

    2011-08-01

    Bacillus cereus G9241 was isolated from a welder with a pulmonary anthrax-like illness. The organism contains two megaplasmids, pBCXO1 and pBC218. These plasmids are analogous to the Bacillus anthracis Ames plasmids pXO1 and pXO2 that encode anthrax toxins and capsule, respectively. Here we evaluated the virulence of B. cereus G9241 as well as the contributions of pBCXO1 and pBC218 to virulence. B. cereus G9241 was avirulent in New Zealand rabbits after subcutaneous inoculation and attenuated 100-fold compared to the published 50% lethal dose (LD(50)) values for B. anthracis Ames after aerosol inoculation. A/J and C57BL/6J mice were comparably susceptible to B. cereus G9241 by both subcutaneous and intranasal routes of infection. However, the LD(50)s for B. cereus G9241 in both mouse strains were markedly higher than those reported for B. anthracis Ames and more like those of the toxigenic but nonencapsulated B. anthracis Sterne. Furthermore, B. cereus G9241 spores could germinate and disseminate after intranasal inoculation into A/J mice, as indicated by the presence of vegetative cells in the spleen and blood of animals 48 h after infection. Lastly, B. cereus G9241 derivatives cured of one or both megaplasmids were highly attenuated in A/J mice. We conclude that the presence of the toxin- and capsule-encoding plasmids pBCXO1 and pBC218 in B. cereus G9241 alone is insufficient to render the strain as virulent as B. anthracis Ames. However, like B. anthracis, full virulence of B. cereus G9241 for mice requires the presence of both plasmids.

  1. Detection of viable enterotoxin-producing Bacillus cereus and analysis of toxigenicity from ready-to-eat foods and infant formula milk powder by multiplex PCR.

    PubMed

    Zhang, Zhihong; Feng, Lixia; Xu, Hengyi; Liu, Chengwei; Shah, Nagendra P; Wei, Hua

    2016-02-01

    Bacillus cereus is responsible for several outbreaks of foodborne diseases due to its emetic toxin and enterotoxin. Enterotoxins, cytotoxin K (CytK), nonhemolytic enterotoxin (Nhe), and hemolysin BL (Hbl), have been recorded in several diarrheal cases due to food poisoning from B. cereus. The objective of this study was to develop a rapid and accurate method that combines multiplex PCR with propidium monoazide to selectively detect viable cells of enterotoxin-producing B. cereus in milk powder, noodles, and rice, and investigate the distribution of enterotoxins in 62 strains of B. cereus in Jiangxi province, China. The specificity of primers of 3 enterotoxins (i.e., cytK, nheA, and hblD) of B. cereus was verified by inclusivity and exclusivity tests using single PCR. Upon optimization of multiplex PCR conditions, it was found that the detection limit of viable cells was 10(2) cfu/mL of B. cereus in pure culture. By enrichment for 3 or 4 h and propidium monoazide pretreatment, a protocol for detection of viable cells as low as 2.2×10(1) cfu/g in spiked food (e.g., milk powder, noodles, and rice) was established and proved valid even under the interference of non-Bacillus cereus at as high as 10(5) cfu/g. Moreover, the protocol based on multiplex PCR for detection was applied for the analysis of distribution of toxin gene of B. cereus, and the results showed a regional feature for toxin gene distribution, indicating that potential toxigenicity of B. cereus should be evaluated further.

  2. Food Sensing: Aptamer-Based Trapping of Bacillus cereus Spores with Specific Detection via Real Time PCR in Milk.

    PubMed

    Fischer, Christin; Hünniger, Tim; Jarck, Jan-Hinnerk; Frohnmeyer, Esther; Kallinich, Constanze; Haase, Ilka; Hahn, Ulrich; Fischer, Markus

    2015-09-16

    Aerobic spores pose serious problems for both food product manufacturers and consumers. Milk is particularly at risk and thus an important issue of preventive consumer protection and quality assurance. The spore-former Bacillus cereus is a food poisoning Gram-positive pathogen which mainly produces two different types of toxins, the diarrhea inducing and the emetic toxins. Reliable and rapid analytical assays for the detection of B. cereus spores are required, which could be achieved by combining in vitro generated aptamers with highly specific molecular biological techniques. For the development of routine bioanalytical approaches, already existing aptamers with high affinity to B. cereus spores have been characterized by surface plasmon resonance (SPR) spectroscopy and fluorescence microscopy in terms of their dissociation constants and selectivity. Dissociation constants in the low nanomolar range (from 5.2 to 52.4 nM) were determined. Subsequently, the characterized aptamers were utilized for the establishment and validation of an aptamer-based trapping technique in both milk simulating buffer and milk with fat contents between 0.3 and 3.5%. Thereby, enrichment factors of up to 6-fold could be achieved. It could be observed that trapping protocol and characterized aptamers were fully adaptable to the application in milk. Due to the fact that aptamer selectivity is limited, a highly specific real time PCR assay was utilized following trapping to gain a higher degree of selectivity. PMID:26306797

  3. Combined effect of cadmium, lead, and UV rays on Bacillus cereus using comet assay and oxidative stress parameters.

    PubMed

    El-Sonbaty, S M; El-Hadedy, D E

    2015-03-01

    Exposure to environmental chemicals and oxidative stress particularly at low dose levels may produce additive or synergistic interactions not seen in single component exposure. Exposure to cadmium, lead, and ultraviolet rays occurs in many occupational settings, such as pigment and battery production, galvanization, and recycling of electric tools. However, little is known about interactions between heavy metals and ultraviolet rays. This study aimed to evaluate the interactions of ultraviolet rays of 254 nm (UV-B) with cadmium or lead on Bacillus cereus. B. cereus was treated with different concentrations of cadmium or lead followed by exposure to UV-B radiation as combined effect. Photoirradiation of B. cereus with UV-B with exposure to cadmium or lead results in DNA damage, cytotoxicity, depletion of glutathione, and formation of lipid peroxidation. UV-B rays alone enhanced glutathione production which was depleted with lead and high doses of cadmium. Lead alone does not increase DNA breaking. The mechanism behind these interactions might be repair inhibition of oxidative DNA damage, since a decrease in repair capacity will increase susceptibility to reactive oxygen species generated by cadmium or lead. Lipid peroxidation was increased with exposure to UV-B and cadmium or lead. DNA, glutathione, and lipid peroxidation can be used as biomarkers to identify possible environmental contamination in bacteria. One conclusion from this model is the existence of more than multiplicative effects for co-exposures of cadmium or lead and UV rays.

  4. A novel hybrid kinase is essential for regulating the sigma(B)-mediated stress response of Bacillus cereus.

    PubMed

    de Been, Mark; Tempelaars, Marcel H; van Schaik, Willem; Moezelaar, Roy; Siezen, Roland J; Abee, Tjakko

    2010-03-01

    A common bacterial strategy for monitoring environmental challenges is to use two-component systems, which consist of a sensor histidine kinase (HK) and a response regulator (RR). In the food-borne pathogen Bacillus cereus, the alternative sigma factor sigma(B) is activated by the RR RsbY. Here we present strong indications that the PP2C-type phosphatase RsbY receives its input from the multi-sensor hybrid kinase BC1008 (renamed RsbK). Genome analyses revealed that, across bacilli, rsbY and rsbK are located in a conserved gene cluster. A B. cereus rsbK deletion strain was shown to be incapable of inducing sigma(B) upon stress conditions and was impaired in its heat adaptive response. Comparison of the wild-type and rsbK mutant transcriptomes upon heat shock revealed that RsbK was primarily involved in the activation of the sigma(B)-mediated stress response. Truncation of the RsbK RR receiver domain demonstrated the importance of this domain for sigma(B) induction upon stress. The domain architecture of RsbK suggests that in the B. cereus group and in other bacilli, environmental and intracellular stress signalling routes are combined into one single protein. This strategy is markedly different from the sigma(B) activation pathway in other low-GC Gram-positives.

  5. Rapid detection of vip1-type genes from Bacillus cereus and characterization of a novel vip binary toxin gene.

    PubMed

    Yu, Xiumei; Liu, Tao; Liang, Xiaoxing; Tang, Changqing; Zhu, Jun; Wang, Shiquan; Li, Shuangcheng; Deng, Qiming; Wang, Linxia; Zheng, Aiping; Li, Ping

    2011-12-01

    A PCR-restriction fragment length polymorphism (PCR-RFLP) method for identifying vegetative insecticidal protein (vip) 1-type genes from Bacillus cereus was developed by designing specific primers based on the conserved regions of the genes to amplify vip1-type gene fragments. PCR products were digested with endonuclease AciI, and four known vip1-type genes were identified. Vip1Ac and vip1Aa-type genes appeared in 17 of 26 B. cereus strains. A novel vip1-type gene, vip1Ac1, was identified from B. cereus strain HL12. The vip1Ac1 and vip2Ae3 genes were co-expressed in Escherichia coli strain BL21 by vector pCOLADuet-1. The binary toxin showed activity only against Aphis gossypii (Homoptera), but not for Coleptera (Tenebrio molitor, Holotrichia oblita), Lepidoptera (Spodoptera exigua, Helicoverpa armigera, and Chilo suppressalis), Diptera (Culex quinquefasciatus). The LC(50) of this binary toxin for A. gossypii is 87.5 (34.2-145.3) ng mL(-1) . This is probably only the second report that Vip1 and Vip2 binary toxin shows toxicity against homopteran pests. The PCR-RFLP method developed could be very useful for identifying novel Vip1-Vip2-type binary toxins, and the novel binary toxins, Vip1Ac1 and Vip2Ae3, identified in this study may have applications in biological control of insects, thus avoiding potential problems of resistance. PMID:22092859

  6. Rapid detection of vip1-type genes from Bacillus cereus and characterization of a novel vip binary toxin gene.

    PubMed

    Yu, Xiumei; Liu, Tao; Liang, Xiaoxing; Tang, Changqing; Zhu, Jun; Wang, Shiquan; Li, Shuangcheng; Deng, Qiming; Wang, Linxia; Zheng, Aiping; Li, Ping

    2011-12-01

    A PCR-restriction fragment length polymorphism (PCR-RFLP) method for identifying vegetative insecticidal protein (vip) 1-type genes from Bacillus cereus was developed by designing specific primers based on the conserved regions of the genes to amplify vip1-type gene fragments. PCR products were digested with endonuclease AciI, and four known vip1-type genes were identified. Vip1Ac and vip1Aa-type genes appeared in 17 of 26 B. cereus strains. A novel vip1-type gene, vip1Ac1, was identified from B. cereus strain HL12. The vip1Ac1 and vip2Ae3 genes were co-expressed in Escherichia coli strain BL21 by vector pCOLADuet-1. The binary toxin showed activity only against Aphis gossypii (Homoptera), but not for Coleptera (Tenebrio molitor, Holotrichia oblita), Lepidoptera (Spodoptera exigua, Helicoverpa armigera, and Chilo suppressalis), Diptera (Culex quinquefasciatus). The LC(50) of this binary toxin for A. gossypii is 87.5 (34.2-145.3) ng mL(-1) . This is probably only the second report that Vip1 and Vip2 binary toxin shows toxicity against homopteran pests. The PCR-RFLP method developed could be very useful for identifying novel Vip1-Vip2-type binary toxins, and the novel binary toxins, Vip1Ac1 and Vip2Ae3, identified in this study may have applications in biological control of insects, thus avoiding potential problems of resistance.

  7. Food Sensing: Aptamer-Based Trapping of Bacillus cereus Spores with Specific Detection via Real Time PCR in Milk.

    PubMed

    Fischer, Christin; Hünniger, Tim; Jarck, Jan-Hinnerk; Frohnmeyer, Esther; Kallinich, Constanze; Haase, Ilka; Hahn, Ulrich; Fischer, Markus

    2015-09-16

    Aerobic spores pose serious problems for both food product manufacturers and consumers. Milk is particularly at risk and thus an important issue of preventive consumer protection and quality assurance. The spore-former Bacillus cereus is a food poisoning Gram-positive pathogen which mainly produces two different types of toxins, the diarrhea inducing and the emetic toxins. Reliable and rapid analytical assays for the detection of B. cereus spores are required, which could be achieved by combining in vitro generated aptamers with highly specific molecular biological techniques. For the development of routine bioanalytical approaches, already existing aptamers with high affinity to B. cereus spores have been characterized by surface plasmon resonance (SPR) spectroscopy and fluorescence microscopy in terms of their dissociation constants and selectivity. Dissociation constants in the low nanomolar range (from 5.2 to 52.4 nM) were determined. Subsequently, the characterized aptamers were utilized for the establishment and validation of an aptamer-based trapping technique in both milk simulating buffer and milk with fat contents between 0.3 and 3.5%. Thereby, enrichment factors of up to 6-fold could be achieved. It could be observed that trapping protocol and characterized aptamers were fully adaptable to the application in milk. Due to the fact that aptamer selectivity is limited, a highly specific real time PCR assay was utilized following trapping to gain a higher degree of selectivity.

  8. Identification of the reactive cysteinyl residue and ATP binding site in Bacillus cereus glutamine synthetase by chemical modification.

    PubMed

    Nakano, Y; Itoh, M; Tanaka, E; Kimura, K

    1990-02-01

    Bacillus cereus glutamine synthetase was modified by reaction with a fluorescent SH reagent, N-[[(iodoacetyl)amino]ethyl]-5-naphthylamine-1-sulfonic acid (IAEDANS), or an ATP analog, 5'-p-fluorosulfonylbenzoyladenosine (FSBA). The locations of the specific binding sites of these reagents were identified. IAEDANS inactivated Mg2(+)-dependent activity and activated Mn2(+)-dependent activity. FSBA inactivated only Mn2(+)-dependent activity. Mg2+ plus Mn2(+)-dependent activity was inactivated by IAEDANS or FSBA. Amino acid sequence analysis of the single AEDANS-labeled proteolytic fragment showed the cysteinyl residue at position 306 to be the site of modification. Cys 306 is one of three cysteines that are unique to Bacillus glutamine synthetase. The result suggested that the cysteine has a role in the active site of the enzyme. We also report that the amino acid residue modified by FSBA was the lysyl residue at position 43.

  9. Effects of nisin and temperature on survival, growth, and enterotoxin production characteristics of psychrotrophic Bacillus cereus in beef gravy.

    PubMed Central

    Beuchat, L R; Clavero, M R; Jaquette, C B

    1997-01-01

    The presence of psychrotrophic enterotoxigenic Bacillus cereus in ready-to-serve meats and meat products that have not been subjected to sterilization treatment is a public health concern. A study was undertaken to determine the survival, growth, and diarrheal enterotoxin production characteristics of four strains of psychrotrophic B. cereus in brain heart infusion (BHI) broth and beef gravy as affected by temperature and supplementation with nisin. A portion of unheated vegetative cells from 24-h BHI broth cultures was sensitive to nisin as evidenced by an inability to form colonies on BHI agar containing 10 micrograms of nisin/ml. Heat-stressed cells exhibited increased sensitivity to nisin. At concentrations as low as 1 microgram/ml, nisin was lethal to B. cereus, the effect being more pronounced in BHI broth than in beef gravy. The inhibitory effect of nisin (1 microgram/ml) was greater on vegetative cells than on spores inoculated into beef gravy and was more pronounced at 8 degrees C than at 15 degrees C. Nisin, at a concentration of 5 or 50 micrograms/ml, inhibited growth in gravy inoculated with vegetative cells and stored at 8 or 15 degrees C, respectively, for 14 days. Growth of vegetative cells and spores of B. cereus after an initial period of inhibition is attributed to loss of activity of nisin. One of two test strains produced diarrheal enterotoxin in gravy stored at 8 or 15 degrees C within 9 or 3 days, respectively. Enterotoxin production was inhibited in gravy supplemented with 1 microgram of nisin/ml and stored at 8 degrees C for 14 days; 5 micrograms of nisin/ml was required for inhibition at 15 degrees C. Enterotoxin was not detected in gravy in which less than 5.85 log10 CFU of B. cereus/ml had grown. Results indicate that as little as 1 microgram of nisin/ml may be effective in inhibiting or retarding growth of and diarrheal enterotoxin production by vegetative cells and spores of psychrotrophic B. cereus in beef gravy at 8 degrees C, a

  10. Effects of nisin and temperature on survival, growth, and enterotoxin production characteristics of psychrotrophic Bacillus cereus in beef gravy.

    PubMed

    Beuchat, L R; Clavero, M R; Jaquette, C B

    1997-05-01

    The presence of psychrotrophic enterotoxigenic Bacillus cereus in ready-to-serve meats and meat products that have not been subjected to sterilization treatment is a public health concern. A study was undertaken to determine the survival, growth, and diarrheal enterotoxin production characteristics of four strains of psychrotrophic B. cereus in brain heart infusion (BHI) broth and beef gravy as affected by temperature and supplementation with nisin. A portion of unheated vegetative cells from 24-h BHI broth cultures was sensitive to nisin as evidenced by an inability to form colonies on BHI agar containing 10 micrograms of nisin/ml. Heat-stressed cells exhibited increased sensitivity to nisin. At concentrations as low as 1 microgram/ml, nisin was lethal to B. cereus, the effect being more pronounced in BHI broth than in beef gravy. The inhibitory effect of nisin (1 microgram/ml) was greater on vegetative cells than on spores inoculated into beef gravy and was more pronounced at 8 degrees C than at 15 degrees C. Nisin, at a concentration of 5 or 50 micrograms/ml, inhibited growth in gravy inoculated with vegetative cells and stored at 8 or 15 degrees C, respectively, for 14 days. Growth of vegetative cells and spores of B. cereus after an initial period of inhibition is attributed to loss of activity of nisin. One of two test strains produced diarrheal enterotoxin in gravy stored at 8 or 15 degrees C within 9 or 3 days, respectively. Enterotoxin production was inhibited in gravy supplemented with 1 microgram of nisin/ml and stored at 8 degrees C for 14 days; 5 micrograms of nisin/ml was required for inhibition at 15 degrees C. Enterotoxin was not detected in gravy in which less than 5.85 log10 CFU of B. cereus/ml had grown. Results indicate that as little as 1 microgram of nisin/ml may be effective in inhibiting or retarding growth of and diarrheal enterotoxin production by vegetative cells and spores of psychrotrophic B. cereus in beef gravy at 8 degrees C, a

  11. Enterotoxigenic profiling of emetic toxin- and enterotoxin-producing Bacillus cereus, Isolated from food, environmental, and clinical samples by multiplex PCR.

    PubMed

    Forghani, Fereidoun; Kim, Jung-Beom; Oh, Deog-Hwan

    2014-11-01

    Bacillus cereus comprises the largest group of endospore-forming bacteria and can cause emetic and diarrheal food poisoning. A total of 496 B. cereus strains isolated from various sources (food, environmental, clinical) were assessed by a multiplex PCR for the presence of enterotoxin genes. The detection rate of nheA, entFM, hblC, and cytK enterotoxin genes among all B. cereus strains was 92.33%, 77.21%, 59.47%, and 47.58%, respectively. Enterotoxigenic profiles were determined in emetic toxin- (8 patterns) and enterotoxin-producing strains (12 patterns). The results provide important information on toxin prevalence and toxigenic profiles of B. cereus from various sources. Our findings revealed that B. cereus must be considered a serious health hazard and Bacillus thuringiensis should be considered of a greater potential concern to food safety among all B. cereus group members. Also, there is need for intensive and continuous monitoring of products embracing both emetic toxin and enterotoxin genes. PMID:25311736

  12. Enterotoxigenic profiling of emetic toxin- and enterotoxin-producing Bacillus cereus, Isolated from food, environmental, and clinical samples by multiplex PCR.

    PubMed

    Forghani, Fereidoun; Kim, Jung-Beom; Oh, Deog-Hwan

    2014-11-01

    Bacillus cereus comprises the largest group of endospore-forming bacteria and can cause emetic and diarrheal food poisoning. A total of 496 B. cereus strains isolated from various sources (food, environmental, clinical) were assessed by a multiplex PCR for the presence of enterotoxin genes. The detection rate of nheA, entFM, hblC, and cytK enterotoxin genes among all B. cereus strains was 92.33%, 77.21%, 59.47%, and 47.58%, respectively. Enterotoxigenic profiles were determined in emetic toxin- (8 patterns) and enterotoxin-producing strains (12 patterns). The results provide important information on toxin prevalence and toxigenic profiles of B. cereus from various sources. Our findings revealed that B. cereus must be considered a serious health hazard and Bacillus thuringiensis should be considered of a greater potential concern to food safety among all B. cereus group members. Also, there is need for intensive and continuous monitoring of products embracing both emetic toxin and enterotoxin genes.

  13. Comparative analysis of biofilm formation by Bacillus cereus reference strains and undomesticated food isolates and the effect of free iron.

    PubMed

    Hayrapetyan, Hasmik; Muller, Lisette; Tempelaars, Marcel; Abee, Tjakko; Nierop Groot, Masja

    2015-05-01

    Biofilm formation of Bacillus cereus reference strains ATCC 14579 and ATCC 10987 and 21 undomesticated food isolates was studied on polystyrene and stainless steel as contact surfaces. For all strains, the biofilm forming capacity was significantly enhanced when in contact with stainless steel (SS) as a surface as compared to polystyrene (PS). For a selection of strains, the total CFU and spore counts in biofilms were determined and showed a good correlation between CFU counts and total biomass of these biofilms. Sporulation was favoured in the biofilm over the planktonic state. To substantiate whether iron availability could affect B. cereus biofilm formation, the free iron availability was varied in BHI by either the addition of FeCl3 or by depletion of iron with the scavenger 2,2-Bipyridine. Addition of iron resulted in increased air-liquid interface biofilm on polystyrene but not on SS for strain ATCC 10987, while the presence of Bipyridine reduced biofilm formation for both materials. Biofilm formation was restored when excess FeCl3 was added in combination with the scavenger. Further validation of the iron effect for all 23 strains in microtiter plate showed that fourteen strains (including ATCC10987) formed a biofilm on PS. For eight of these strains biofilm formation was enhanced in the presence of added iron and for eleven strains it was reduced when free iron was scavenged. Our results show that stainless steel as a contact material provides more favourable conditions for B. cereus biofilm formation and maturation compared to polystyrene. This effect could possibly be linked to iron availability as we show that free iron availability affects B. cereus biofilm formation.

  14. Combined effect of anaerobiosis, low pH and cold temperatures on the growth capacities of psychrotrophic Bacillus cereus.

    PubMed

    Guérin, Alizée; Dargaignaratz, Claire; Broussolle, Véronique; Clavel, Thierry; Nguyen-The, Christophe

    2016-10-01

    Psychrotrophic strains of the foodborne pathogen Bacillus cereus can multiply during the refrigerated storage of food products. The aim of this study was to determine the impact of anaerobiosis on the growth of two psychrotrophic B. cereus strains exposed to acidic pH at a cold temperature in a laboratory medium. At 10 °C, growth occurred at pH values equal to or higher than 5.7 during anaerobiosis, whereas aerobic growth was observed from pH 5.4. Growth rates during aerobiosis were similar at pH 5.4 and pH 7. No growth was observed for the two tested strains at 8 °C without oxygen regardless of the pH; however, both strains grew at this temperature from pH 5.4 in the presence of oxygen. These pH growth limits in aerobiosis are consistent with those reported for different strains and different foods or media, but no other studies have described anaerobic growth at acidic pH values. The maximal B. cereus concentration was approximately 6.0 log10 CFU/ml for cultures in the absence of oxygen and approximately 8.0 log10 CFU/ml for cultures in the presence of oxygen. In conclusion, we found that the combination of anaerobiosis, pH < 5.7 at 10 °C, or anaerobiosis and temperatures ≤8 °C prevent psychrotrophic B. cereus growth.

  15. Iron Acquisition in Bacillus cereus: The Roles of IlsA and Bacillibactin in Exogenous Ferritin Iron Mobilization

    PubMed Central

    Buisson, Christophe; Daou, Nadine; Kallassy, Mireille; Lereclus, Didier; Arosio, Paolo; Bou-Abdallah, Fadi; Nielsen Le Roux, Christina

    2014-01-01

    In host-pathogen interactions, the struggle for iron may have major consequences on the outcome of the disease. To overcome the low solubility and bio-availability of iron, bacteria have evolved multiple systems to acquire iron from various sources such as heme, hemoglobin and ferritin. The molecular basis of iron acquisition from heme and hemoglobin have been extensively studied; however, very little is known about iron acquisition from host ferritin, a 24-mer nanocage protein able to store thousands of iron atoms within its cavity. In the human opportunistic pathogen Bacillus cereus, a surface protein named IlsA (Iron-regulated leucine rich surface protein type A) binds heme, hemoglobin and ferritin in vitro and is involved in virulence. Here, we demonstrate that IlsA acts as a ferritin receptor causing ferritin aggregation on the bacterial surface. Isothermal titration calorimetry data indicate that IlsA binds several types of ferritins through direct interaction with the shell subunits. UV-vis kinetic data show a significant enhancement of iron release from ferritin in the presence of IlsA indicating for the first time that a bacterial protein might alter the stability of the ferritin iron core. Disruption of the siderophore bacillibactin production drastically reduces the ability of B. cereus to utilize ferritin for growth and results in attenuated bacterial virulence in insects. We propose a new model of iron acquisition in B. cereus that involves the binding of IlsA to host ferritin followed by siderophore assisted iron uptake. Our results highlight a possible interplay between a surface protein and a siderophore and provide new insights into host adaptation of B. cereus and general bacterial pathogenesis. PMID:24550730

  16. Effects of potential probiotic Bacillus cereus EN25 on growth, immunity and disease resistance of juvenile sea cucumber Apostichopus japonicus.

    PubMed

    Zhao, Yancui; Yuan, Lei; Wan, Junli; Sun, Zhenxing; Wang, Yiyan; Sun, Hushan

    2016-02-01

    This study was conducted to determine effects of potential probiotic Bacillus cereus EN25 (isolated from mud of sea cucumber culturing water bodies) on growth, immunity and disease resistance against Vibrio splendidus infection in juvenile sea cucumbers Apostichopus japonicus. Animals were respectively fed diets with B. cereus EN25 at 0 (control), 10(5), 10(7) and 10(9) CFU/g for 30 days. Results showed that dietary B. cereus EN25 had no significant effects on growth, total coelomocytes counts and acid phosphatase activity of A. japonicus (P > 0.05). Dietary EN25 at 10(7) CFU/g had significantly improved the phagocytosis, respiratory burst activity and total nitric oxide synthase activity of animals (P < 0.05). Compared to control, dietary EN25 at 10(5) or 10(7) CFU/g had no significant effects on superoxide dismutase activity of A. japonicus (P > 0.05), whereas dietary EN25 at 10(9) CFU/g had significantly decreased its activity (P < 0.05). The cumulative mortality after V. splendidus challenge decreased significantly in sea cucumbers fed with EN25 at 10(7) CFU/g (P < 0.05). The present study confirmed dietary B. cereus EN25 at 10(7) CFU/g could significantly improve immunity and disease resistance in juvenile A. japonicus. PMID:26723266

  17. Effects of potential probiotic Bacillus cereus EN25 on growth, immunity and disease resistance of juvenile sea cucumber Apostichopus japonicus.

    PubMed

    Zhao, Yancui; Yuan, Lei; Wan, Junli; Sun, Zhenxing; Wang, Yiyan; Sun, Hushan

    2016-02-01

    This study was conducted to determine effects of potential probiotic Bacillus cereus EN25 (isolated from mud of sea cucumber culturing water bodies) on growth, immunity and disease resistance against Vibrio splendidus infection in juvenile sea cucumbers Apostichopus japonicus. Animals were respectively fed diets with B. cereus EN25 at 0 (control), 10(5), 10(7) and 10(9) CFU/g for 30 days. Results showed that dietary B. cereus EN25 had no significant effects on growth, total coelomocytes counts and acid phosphatase activity of A. japonicus (P > 0.05). Dietary EN25 at 10(7) CFU/g had significantly improved the phagocytosis, respiratory burst activity and total nitric oxide synthase activity of animals (P < 0.05). Compared to control, dietary EN25 at 10(5) or 10(7) CFU/g had no significant effects on superoxide dismutase activity of A. japonicus (P > 0.05), whereas dietary EN25 at 10(9) CFU/g had significantly decreased its activity (P < 0.05). The cumulative mortality after V. splendidus challenge decreased significantly in sea cucumbers fed with EN25 at 10(7) CFU/g (P < 0.05). The present study confirmed dietary B. cereus EN25 at 10(7) CFU/g could significantly improve immunity and disease resistance in juvenile A. japonicus.

  18. Biocontrol of Aspergillus species on peanut kernels by antifungal diketopiperazine producing Bacillus cereus associated with entomopathogenic nematode.

    PubMed

    Kumar, Sasidharan Nishanth; Sreekala, Sreerag Ravikumar; Chandrasekaran, Dileep; Nambisan, Bala; Anto, Ruby John

    2014-01-01

    The rhabditid entomopathogenic nematode associated Bacillus cereus and the antifungal compounds produced by this bacterium were evaluated for their activity in reducing postharvest decay of peanut kernels caused by Aspergillus species in in vitro and in vivo tests. The results showed that B. cereus had a significant effect on biocontrol effectiveness in in vitro and in vivo conditions. The antifungal compounds produced by the B. cereus were purified using silica gel column chromatography and their structure was elucidated using extensive spectral analyses. The compounds were identified as diketopiperazines (DKPs) [cyclo-(L-Pro-Gly), cyclo(L-Tyr-L-Tyr), cyclo-(L-Phe-Gly) and cyclo(4-hydroxy-L-Pro-L-Trp)]. The antifungal activities of diketopiperazines were studied against five Aspergillus species and best MIC of 2 µg/ml was recorded against A. flavus by cyclo(4-hydroxy-L-Pro-L-Trp). To investigate the potential application of cyclo(4-hydroxy-L-Pro-L-Trp) to eliminate fungal spoilage in food and feed, peanut kernels was used as a food model system. White mycelia and dark/pale green spores of Aspergillus species were observed in the control peanut kernels after 2 days incubation. However the fungal growth was not observed in peanut kernels treated with cyclo(4-hydroxy-L-Pro-L-Trp). The cyclo(4-hydroxy-L-Pro-L-Trp) was nontoxic to two normal cell lines [fore skin (FS) normal fibroblast and African green monkey kidney (VERO)] up to 200 µg/ml in MTT assay. Thus the cyclo(4-hydroxy-L-Pro-L-Trp) identified in this study may be a promising alternative to chemical preservatives as a potential biopreservative agent which prevent fungal growth in food and feed. To the best of our knowledge, this is the first report demonstrating that the entomopathogenic nematode associated B. cereus and cyclo(4-hydroxy-L-Pro-L-Trp) could be used as a biocontrol agents against postharvest fungal disease caused by Aspergillus species.

  19. Bacillus cereus enterotoxins act as major virulence factors and exhibit distinct cytotoxicity to different human cell lines.

    PubMed

    Jeßberger, Nadja; Dietrich, Richard; Bock, Stefanie; Didier, Andrea; Märtlbauer, Erwin

    2014-01-01

    A comparative analysis on the relevance of the Bacillus cereus enterotoxins Nhe (nonhemolytic enterotoxin), HBL (haemolysin BL) and CytK (cytotoxin K) was accomplished, concerning their toxic activity towards different target cell lines. Overall, among the components secreted by the reference strains for Nhe and HBL, the enterotoxin complexes accounted for over 90% of the total toxicity. Vero and primary endothelial cells (HUVEC) were highly susceptible to Nhe, whereas Hep-G2, Vero and A549 reacted most sensitive to Nhe plus HBL. For CytK the highest toxicity was observed on CaCo-2 cells. As HBL positive strains always produce Nhe in parallel, the specific contribution of both enterotoxin complexes to the overall observed cytotoxic effects was determined by consecutively removing their single components. While in most cell lines Nhe and HBL contributed more or less equally (40-60%) to cytotoxicity, the relative activity of Nhe was approximately 90% in HUVEC, and that of HBL 75% in A549 cells. With U937, a nearly Nhe resistant cell line was identified for the first time. This distinct susceptibility of cell lines was confirmed by investigating a set of 37 B. cereus strains. Interestingly, whereas Nhe is the enterotoxin mainly responsible for cell death as determined by WST-1 bioassays, more rapid pore formation was observed when HBL was present, pointing to a different mode of action of the two enterotoxin complexes. Furthermore, correlation was observed between cytotoxicity of solely Nhe producing strains and NheB. Cytotoxicity of Nhe/HBL producing isolates correlated with the expression of HBL L1, NheB and HBL B. In conclusion, the observed susceptibilities of target cell lines of different histological origin underline that B. cereus enterotoxins represent major virulence factors and that toxicity is not restricted to gastrointestinal infections. The varying contribution of Nhe and HBL to total cytotoxicity strongly indicates that Nhe as well as HBL specific B

  20. Biodegradation of benzo[a]pyrene by the mixed culture of Bacillus cereus and Bacillus vireti isolated from the petrochemical industry.

    PubMed

    Mohandass, Ramya; Rout, Pallabi; Jiwal, Sonia; Sasikala, Chitrambalam

    2012-11-01

    Polycyclic aromatic hydrocarbons are a group of compounds that pose threat to humans and animal life. Methods to reduce the amount of PAHs in the environment are continuously being sought. The bacterial consortium capable of utilizing benzo(a)pyrene as the sole source of carbon and energy was isolated from petrochemical soil. The isolates were identified as Bacillus cereus and Bacillus viretibased on morphological characterization, and 16S rDNA gene sequence analysis. About 58.98% of benzo(a)pyrene at concentration of 500 mg l(-1) in mineral salts medium were removed by bacterial consortium. GC mass spectral analysis showed the presence of metabolite cis-4-(7-hydroxypyren-8-yl)-2-oxobut-3enoic acid. The results indicate that the bacterial consortium is a new bacterial resource for biodegrading benzo(a)pyrene and might be used for bioremediation of sites heavily contaminated by benzo[a]pyrene and its derivatives.

  1. Recipes for antimicrobial wine marinades against Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica.

    PubMed

    Friedman, Mendel; Henika, P R; Levin, C E; Mandrell, R E

    2007-08-01

    We have evaluated bactericidal activities against Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica of several antimicrobial wine recipes, each consisting of red or white wine extracts of oregano leaves with added garlic juice and oregano oil. Dose-response plots were used to determine the percentage of the recipes that resulted in a 50% decrease in colony-forming units (CFU) at 60 min (BA(50)). Studies designed to optimize antibacterial activities of the recipes demonstrated that several combinations of the naturally occurring plant-derived ingredients rapidly inactivated the above mentioned 4 foodborne pathogens. We also showed that (a) incubation temperature affected activities in the following order: 37 degrees C > 21 degrees C > 4 degrees C; (b) varying the initial bacterial concentrations from 10(3) to 10(4) to 10(5) CFU/well did not significantly affect BA(50) values; (c) storage of 3 marinades up to 2 mo did not change their effectiveness against Salmonella enterica; and (d) polyphenolic compounds isolated by chromatography from red wine exhibited exceptional activity at nanogram levels against 2 strains of Bacillus cereus. These observations suggest that antimicrobial wine formulations have the potential to improve the microbiological safety of foods.

  2. Isolation and characterization of glacier VMY22, a novel lytic cold-active bacteriophage of Bacillus cereus.

    PubMed

    Ji, Xiuling; Zhang, Chunjing; Fang, Yuan; Zhang, Qi; Lin, Lianbing; Tang, Bing; Wei, Yunlin

    2015-02-01

    As a unique ecological system with low temperature and low nutrient levels, glaciers are considered a "living fossil" for the research of evolution. In this work, a lytic cold-active bacteriophage designated VMY22 against Bacillus cereus MYB41-22 was isolated from Mingyong Glacier in China, and its characteristics were studied. Electron microscopy revealed that VMY22 has an icosahedral head (59.2 nm in length, 31.9 nm in width) and a tail (43.2 nm in length). Bacteriophage VMY22 was classified as a Podoviridae with an approximate genome size of 18 to 20 kb. A one-step growth curve revealed that the latent and the burst periods were 70 and 70 min, respectively, with an average burst size of 78 bacteriophage particles per infected cell. The pH and thermal stability of bacteriophage VMY22 were also investigated. The maximum stability of the bacteriophage was observed to be at pH 8.0 and it was comparatively stable at pH 5.0-9.0. As VMY22 is a cold-active bacteriophage with low production temperature, its characterization and the relationship between MYB41-22 and Bacillus cereus bacteriophage deserve further study.

  3. Structure of the NheA component of the Nhe toxin from Bacillus cereus: implications for function.

    PubMed

    Ganash, Magdah; Phung, Danh; Sedelnikova, Svetlana E; Lindbäck, Toril; Granum, Per Einar; Artymiuk, Peter J

    2013-01-01

    The structure of NheA, a component of the Bacillus cereus Nhe tripartite toxin, has been solved at 2.05 Å resolution using selenomethionine multiple-wavelength anomalous dispersion (MAD). The structure shows it to have a fold that is similar to the Bacillus cereus Hbl-B and E. coli ClyA toxins, and it is therefore a member of the ClyA superfamily of α-helical pore forming toxins (α-PFTs), although its head domain is significantly enlarged compared with those of ClyA or Hbl-B. The hydrophobic β-hairpin structure that is a characteristic of these toxins is replaced by an amphipathic β-hairpin connected to the main structure via a β-latch that is reminiscent of a similar structure in the β-PFT Staphylococcus aureus α-hemolysin. Taken together these results suggest that, although it is a member of an archetypal α-PFT family of toxins, NheA may be capable of forming a β rather than an α pore.

  4. Fate and effect of ingested Bacillus cereus spores and vegetative cells in the intestinal tract of human-flora-associated rats.

    PubMed

    Wilcks, Andrea; Hansen, Bjarne Munk; Hendriksen, Niels Bohse; Licht, Tine Rask

    2006-02-01

    The fate and effect of Bacillus cereus F4433/73R in the intestine of human-flora-associated rats was studied using bacteriological culturing techniques and PCR-denaturing gradient gel electrophoresis in combination with cell assays and immunoassays for detection of enterotoxins. In faecal samples from animals receiving vegetative cells, only few B. cereus cells were detected. Spores survived the gastric barrier well, and were in some cases detected up to 2 weeks after ingestion. Selective growing revealed no major changes in the intestinal flora during passage of B. cereus. However, denaturing gradient gel electrophoresis analysis with universal 16S rRNA gene primers revealed significant changes in the intestinal microbiota of animals dosed with spores. Vero cell assays and a commercial kit (BCET-RPLA) did not reveal any enterotoxin production from B. cereus F4433/73R in the intestinal tract.

  5. Effects of Mentha longifolia L. essential oil and nisin alone and in combination on Bacillus cereus and Bacillus subtilis in a food model and bacterial ultrastructural changes.

    PubMed

    Pajohi, Mohamad Reza; Tajik, Hossein; Farshid, Amir Abbas; Basti, Afshin Akhondzadeh; Hadian, Mojtaba

    2011-02-01

    In the face of emerging new pathogens and ever-growing health-conscious customers, food preservation technology remains on the top agenda of food industry. This study was aimed at determining the effects of the essential oil of Mentha longifolia L., alone and in combination with nisin, on Bacillus cereus and Bacillus subtilis at 8°C and 25°C in a food model (commercial barley soup) during 15 days. The essential oil alone at 8°C inhibited bacterial growth significantly compared with the control (p < 0.05). However, at 25°C, none of the concentrations of the essential oil alone showed inhibitory effect on bacterial growth. At 8°C, the combination effect of the essential oil and nisin on bacteria was noted at 0.25 μg mL(-1) for nisin and 0.05 μL mL(-1) for the essential oil (p < 0.05). The combination of nisin and the essential oil demonstrated significant inhibitory effects on the vegetative forms of bacteria at 25°C, although it was comparable to that of nisin alone at the same concentrations. Electron microscopy studies revealed a great deal of damage to B. cereus treated with a combination of nisin and the essential oil. However, the combination of nisin with the essential oil led to a complete destruction of cell wall and cytoplasm of vegetative cells of B. subtilis.

  6. Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil

    PubMed Central

    2010-01-01

    Background Microorganisms that are exposed to pollutants in the environment, such as metals/metalloids, have a remarkable ability to fight the metal stress by various mechanisms. These metal-microbe interactions have already found an important role in biotechnological applications. It is only recently that microorganisms have been explored as potential biofactories for synthesis of metal/metalloid nanoparticles. Biosynthesis of selenium (Se0) nanospheres in aerobic conditions by a bacterial strain isolated from the coalmine soil is reported in the present study. Results The strain CM100B, identified as Bacillus cereus by morphological, biochemical and 16S rRNA gene sequencing [GenBank:GU551935.1] was studied for its ability to generate selenium nanoparticles (SNs) by transformation of toxic selenite (SeO32-) anions into red elemental selenium (Se0) under aerobic conditions. Also, the ability of the strain to tolerate high levels of toxic selenite ions was studied by challenging the microbe with different concentrations of sodium selenite (0.5 mM-10 mM). ESEM, AFM and SEM studies revealed the spherical Se0 nanospheres adhering to bacterial biomass as well as present as free particles. The TEM microscopy showed the accumulation of spherical nanostructures as intracellular and extracellular deposits. The deposits were identified as element selenium by EDX analysis. This is also indicated by the red coloration of the culture broth that starts within 2-3 h of exposure to selenite oxyions. Selenium nanoparticles (SNs) were further characterized by UV-Visible spectroscopy, TEM and zeta potential measurement. The size of nanospheres was in the range of 150-200 nm with high negative charge of -46.86 mV. Conclusions This bacterial isolate has the potential to be used as a bionanofactory for the synthesis of stable, nearly monodisperse Se0 nanoparticles as well as for detoxification of the toxic selenite anions in the environment. A hypothetical mechanism for the biogenesis

  7. Draft Genome Sequence of Bacillus cereus LCR12, a Plant Growth–Promoting Rhizobacterium Isolated from a Heavy Metal–Contaminated Environment

    PubMed Central

    Egidi, Eleonora; Wood, Jennifer L.; Mathews, Elizabeth; Fox, Edward; Liu, Wuxing

    2016-01-01

    Bacillus cereus LCR12 is a plant growth–promoting rhizobacterium, isolated from a heavy metal–contaminated environment. The 6.01-Mb annotated genome sequence provides the genetic basis for revealing its potential application to remediate contaminated soils in association with plants. PMID:27688340

  8. Draft Genome Sequence of Bacillus cereus LCR12, a Plant Growth-Promoting Rhizobacterium Isolated from a Heavy Metal-Contaminated Environment.

    PubMed

    Egidi, Eleonora; Wood, Jennifer L; Mathews, Elizabeth; Fox, Edward; Liu, Wuxing; Franks, Ashley E

    2016-01-01

    Bacillus cereus LCR12 is a plant growth-promoting rhizobacterium, isolated from a heavy metal-contaminated environment. The 6.01-Mb annotated genome sequence provides the genetic basis for revealing its potential application to remediate contaminated soils in association with plants. PMID:27688340

  9. Draft Genome Sequence of Bacillus cereus LCR12, a Plant Growth-Promoting Rhizobacterium Isolated from a Heavy Metal-Contaminated Environment.

    PubMed

    Egidi, Eleonora; Wood, Jennifer L; Mathews, Elizabeth; Fox, Edward; Liu, Wuxing; Franks, Ashley E

    2016-09-29

    Bacillus cereus LCR12 is a plant growth-promoting rhizobacterium, isolated from a heavy metal-contaminated environment. The 6.01-Mb annotated genome sequence provides the genetic basis for revealing its potential application to remediate contaminated soils in association with plants.

  10. Inactivation of Bacillus cereus and Salmonella enterica serovar Typhimurium by aqueous ozone (O3): Modeling and Uv-Vis spectroscopic analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ozone (O3) is a natural antimicrobial agent with potential applications in food industry. In this study, inactivation of Bacillus cereus and Salmonella enterica Typhimurium by aqueous ozone was evaluated. Ozone gas was generated using a domestic ozone generator with an output of 200 mg/hr (approx. 0...

  11. Combined effects of pH, nisin, and temperature on growth and survival of psychrotrophic Bacillus cereus.

    PubMed

    Jaquette, C B; Beuchat, L R

    1998-05-01

    Growth of vegetative cells and outgrowth of spores of enterotoxigenic psychrotrophic Bacillus cereus in refrigerated minimally processed food products is a public health concern. A study was undertaken to determine the combined effects of pH, nisin, and temperature on growth and survival of 20 strains of B. cereus. The minimum growth temperatures in tryptic soy broth (pH 7.3) and brain heart infusion broth (BHI broth, pH 7.4) were 5 degrees C for two strains and 8 degrees C for five other strains. Vegetative cells of four of eight strains grew at 8 degrees C in BHI broth (pH 6.01 and 6.57) containing 10 micrograms of nisin per ml. At 15 degrees C, all strains grew at pH 5.53 to 6.57; three strains tolerated nisin at 50 micrograms/ml (pH 6.57), whereas two other strains had a maximum tolerance of 10 micrograms of nisin per ml. Tolerance of vegetative cells of B. cereus to nisin increased as the pH of the broth was increased from 5.53 to 6.01 and again to pH 6.57. Outgrowth of spores (six of six strains tested) was inhibited by 5 and 50 micrograms of nisin per ml at 8 and 15 degrees C, respectively. At 15 degrees C, outgrowth of spores of two strains occurred at pH 6.52 in BHI broth containing 10 micrograms of nisin per ml. The effectiveness of nisin in controlling the growth of psychrotrophic strains of B. cereus capable of causing human illness was more pronounced at 8 degrees C than at 15 degrees C and as the pH was decreased from 6.57 to 5.53. Studies to determine the effectiveness of nisin in controlling growth of psychrotrophic B. cereus in nonpasteurized foods held at refrigeration temperatures are warranted. PMID:9709228

  12. The mechanism of Microcystis aeruginosa death upon exposure to Bacillus mycoides

    NASA Astrophysics Data System (ADS)

    Gumbo, J. R.; Cloete, T. E.

    Electron microscopy observations revealed at least two mechanisms of Microcystis aeruginosa cell death upon exposure to Bacillus mycoides, i.e. cell membrane lysis and shadowing of algal cells leading to photo-inhibition. There were ultra-structural changes that occurred in bacteria treated M. aeruginosa cells. SEM images showed swollen M. aeruginosa cells due to cell membrane damage and increased osmotic pressure. The production of intracellular stress related structures by M. aeruginosa indicated cell stress as a result of bacteria causing shadowing and photo-inhibition affecting the photosynthetic system. There is evidence, which showed that B. mycoides B16 might be an ectoparasite during the lysis of Microcystis cells and exhibit multicellular forms that are Bdellovibrio-like bacteria during the last stages lysis of Microcystis cells in order to survive an adverse external environment that was nutrient limited. The mechanism of cyanobacterial lysis may involve changes in ultrastructure of M. aeruginosa, possibly affecting energy sources and the photosynthetic system after exposure to bacteria. This may lead to the death of the cyanobacteria after exhaustion of energy sources and loss of nutrients to the predator bacteria, B. mycoides B16. A better understanding of the interactions between B. mycoides 16 and M. aeruginosa is important for the development of a biological control agent and ultimately the management of harmful algal blooms dominated by M. aeruginosa.

  13. Isolation of mosquitocidal bacteria (Bacillus thuringiensis, B.sphaericus and B. cereus) from excreta of arid birds.

    PubMed

    Poopathi, Subbiah; Thirugnanasambantham, K; Mani, C; Ragul, K; Sundarapandian, S M

    2014-07-01

    Mosquitocidal bacteria are environmentally friendly alternatives to chemical insecticides for controlling mosquitoes and therefore, there have been tremendous world-wide efforts to identify novel mosquitocidal bacteria from natural environment. In the present study, excreta from arid-birds were analyzed for identifying mosquitocidal bacteria. The selection of sample for bacterial screening is significant, because, arid-birds are the unique living species and gathering the foods from variety of sources from environment. Out of 1000 samples examined, twelve bacterial strains were identified as mosquitocidal and the 16S rRNA gene sequence alignment depicted that these isolates belonged to Bacillus species (Bacillus thuringiensis, B.sphaericus and B. cereus). Toxicity assay against mosquito vectors have shown that these isolates are potential. The B. sphaericus VCRC-B547 (NCBI: JN377789) has shown a higher toxicity against Cx. quinquefasciatus, An. stephensi, and Aed. aegypti. Result from SDS-PAGE has shown that there was considerable difference in the protein profiles among the new bacterial isolates. Phylogenetic tree with branch length 0.05 revealed three distinct groups with homology among the closely related Bacillus strains. This study therefore throws considerable interest on the diversity of microbial organisms from arid birds and its application in mosquito control.

  14. Comparison of plant growth-promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables

    PubMed Central

    Adesemoye, A.O.; Obini, M.; Ugoji, E.O.

    2008-01-01

    Our objective was to compare some plant growth promoting rhizobacteria (PGPR) properties of Bacillus subtilis and Pseudomonas aeruginosa as representatives of their two genera. Solanum lycopersicum L. (tomato), Abelmoschus esculentus (okra), and Amaranthus sp. (African spinach) were inoculated with the bacterial cultures. At 60 days after planting, dry biomass for plants treated with B. subtilis and P. aeruginosa increased 31% for tomato, 36% and 29% for okra, and 83% and 40% for African spinach respectively over the non-bacterized control. Considering all the parameters tested, there were similarities but no significant difference at P < 0.05 between the overall performances of the two organisms. PMID:24031240

  15. Addition of ethanol to supercritical carbon dioxide enhances the inactivation of bacterial spores in the biofilm of Bacillus cereus.

    PubMed

    Park, Hyong Seok; Choi, Hee Jung; Kim, Myoung-Dong; Kim, Kyoung Heon

    2013-09-01

    Supercritical carbon dioxide (SC-CO2) was used to inactivate Bacillus cereus spores inside biofilms, which were grown on stainless steel. SC-CO2 treatment was tested using various conditions, such as pressure treatment (10-30 MPa), temperature (35-60°C), and time (10-120 min). B. cereus vegetative cells in the biofilm were completely inactivated by treatment with SC-CO2 at 10 MPa and at 35°C for 5 min. However, SC-CO2 alone did not inactivate spores in biofilm even after the treatment time was extended to 120 min. When ethanol was used as a cosolvent with SC-CO2 in the SC-CO2 treatment using only 2-10 ml of ethanol in 100ml of SC-CO2 vessel for 60-90 min of treatment time at 10 MPa and 60°C, B. cereus spores in the biofilm were found to be completely inactivated in the colony-forming test. We also assessed the viability of SC-CO2-treated bacterial spores and vegetative cells in the biofilm by staining with SYTO 9 and propidium iodide. The membrane integrity of the vegetative cells was completely lost, while the integrity of the membrane was still maintained in most spores. However, when SC-CO2 along with ethanol was used, both vegetative cells and spores lost their membrane integrity, indicating that the use of ethanol as a cosolvent with SC-CO2 is efficient in inactivating the bacterial spores in the biofilm.

  16. Molecular Differences between a Mutase and a Phosphatase: Investigations of the Activation Step in Bacillus cereus Phosphopentomutase

    SciTech Connect

    Iverson, T.M.; Panosian, Timothy D.; Birmingham, William R.; Nannemann, David P.; Bachmann, Brian O.

    2012-05-09

    Prokaryotic phosphopentomutases (PPMs) are di-Mn{sup 2+} enzymes that catalyze the interconversion of {alpha}-D-ribose 5-phosphate and {alpha}-D-ribose 1-phosphate at an active site located between two independently folded domains. These prokaryotic PPMs belong to the alkaline phosphatase superfamily, but previous studies of Bacillus cereus PPM suggested adaptations of the conserved alkaline phosphatase catalytic cycle. Notably, B. cereus PPM engages substrates when the active site nucleophile, Thr-85, is phosphorylated. Further, the phosphoenzyme is stable throughout purification and crystallization. In contrast, alkaline phosphatase engages substrates when the active site nucleophile is dephosphorylated, and the phosphoenzyme reaction intermediate is only stably trapped in a catalytically compromised enzyme. Studies were undertaken to understand the divergence of these mechanisms. Crystallographic and biochemical investigations of the PPM{sup T85E} phosphomimetic variant and the neutral corollary PPM{sup T85Q} determined that the side chain of Lys-240 underwent a change in conformation in response to active site charge, which modestly influenced the affinity for the small molecule activator {alpha}-D-glucose 1,6-bisphosphate. More strikingly, the structure of unphosphorylated B. cereus PPM revealed a dramatic change in the interdomain angle and a new hydrogen bonding interaction between the side chain of Asp-156 and the active site nucleophile, Thr-85. This hydrogen bonding interaction is predicted to align and activate Thr-85 for nucleophilic addition to {alpha}-D-glucose 1,6-bisphosphate, favoring the observed equilibrium phosphorylated state. Indeed, phosphorylation of Thr-85 is severely impaired in the PPM{sup D156A} variant even under stringent activation conditions. These results permit a proposal for activation of PPM and explain some of the essential features that distinguish between the catalytic cycles of PPM and alkaline phosphatase.

  17. Growth inhibitory effects of kimchi (Korean traditional fermented vegetable product) against Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus.

    PubMed

    Kim, Yong-Suk; Zheng, Zian-Bin; Shin, Dong-Hwa

    2008-02-01

    Kimchi is a unique Korean traditional vegetable product that is fermented by lactic acid bacteria (LAB) and is mainly consumed as a side dish with boiled rice. Its main ingredients are brined Chinese cabbage, red pepper powder, and fermented fish sauce, and these are combined with many spices such as garlic, green onion, ginger, and some seaweed. The relationship between the concentration of LAB or the pH and the growth of three gram-positive foodborne pathogens (Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus) was evaluated. Heat treatment (HT; 85 degrees C for 15 min) or neutralization treatment (NT; pH 7.0) was conducted on day 0 (0-D group) and day 3 (3-D group) of incubation. The pH in the control group and the NT group dropped sharply to 4.12 to 4.30 after 2 days of incubation and slightly decreased thereafter, whereas the pH in the control group and HT group stayed at 7.0 during incubation. LAB were not detected in the HT kimchi during incubation. B. cereus in the NT-0-D, NT-3-D, and HT-3-D groups was reduced by 1.5 to 3.1 log CFU/ml but increased slightly in the HT-0-D group. L. monocytogenes in HT-3-D and NT-3-D groups disappeared after 5 days of incubation, and S. aureus in the NT-0-D group disappeared after 4 days. These findings indicate that growth of all the foodborne pathogens was inhibited by NT-0-D, HT-3-D, and NT-3-D, but B. cereus was not inhibited by HT-0-D. Thus, growth of LAB in kimchi is an important factor in the control of foodborne pathogens. PMID:18326182

  18. Complete sequence of three plasmids from Bacillus thuringiensis INTA-FR7-4 environmental isolate and comparison with related plasmids from the Bacillus cereus group.

    PubMed

    Amadio, Ariel F; Benintende, Graciela B; Zandomeni, Rubén O

    2009-11-01

    Bacillus thuringiensis is an insect pathogen used worldwide as a bioinsecticide. It belongs to the Bacillus cereus sensu lato group as well as Bacillus anthracis and B. cereus. Plasmids from this group of organisms have been implicated in pathogenicity as they carry the genes responsible for different types of diseases that affect mammals and insects. Some plasmids, like pAW63 and pBT9727, encode a functional conjugation machinery allowing them to be transferred to a recipient cell. They also share extensive homology with the non-functional conjugation apparatus of pXO2 from B. anthracis. In this study we report the complete sequence of three plasmids from an environmental B. thuringiensis isolate from Argentina, obtained by a shotgun sequencing method. We obtained the complete nucleotide sequence of plasmids pFR12 (12,095bp), pFR12.5 (12,459bp) and pFR55 (55,712bp) from B. thuringiensis INTA-FR7-4. pFR12 and pFR12.5 were classified as cryptic as they do not code for any obvious functions besides replication and mobilization. Both small plasmids were classified as RCR plasmids due to similarities with the replicases they encode. Plasmid pFR55 showed a structural organization similar to that observed for plasmids pAW63, pBT9727 and pXO2. pFR55 also shares a tra region with these plasmids, containing genes related to T4SS and conjugation. A comparison between pFR55 and conjugative plasmids led to the postulation that pFR55 is a conjugative plasmid. Genes related to replication functions in pFR55 are different to those described for plasmids with known complete sequences. pFR55 is the first completely sequenced plasmid with a replication machinery related to that of ori44. The analysis of the complete sequence of plasmids from an environmental isolate of B. thuringiensis permitted the identification of a near complete conjugation apparatus in pFR55, resembling those of plasmids pAW63, pBT9727 and pXO2. The availability of this sequence is a step forward in the study

  19. A metallo-β-lactamase is responsible for the degradation of ceftiofur by the bovine intestinal bacterium Bacillus cereus P41.

    PubMed

    Erickson, Bruce D; Elkins, Christopher A; Mullis, Lisa B; Heinze, Thomas M; Wagner, R Doug; Cerniglia, Carl E

    2014-08-27

    Ceftiofur is a highly effective veterinary cephalosporin, yet it is rapidly degraded by bacteria in the gut. The goal of this work was to directly determine the mechanism of ceftiofur degradation by the bovine intestinal isolate Bacillus cereus P41. B. cereus P41 was isolated from the feces of a cow that had not been treated with cephalosporins, and was found to rapidly degrade ceftiofur in culture. Analysis of spent culture media by HPLC/UV and HPLC/MS revealed one major metabolite of ceftiofur, with a negative ion m/z of 127. Comparison of ceftiofur, ceftriaxone, and cefpodoxime degradation suggested that the major stable ceftiofur metabolite was the thiofuroic acid group eliminated from the C-3 position of the drug after hydrolysis by β-lactamase. Genomic DNA from B. cereus P41 was cloned into Escherichia coli, and the transformants were screened for growth in the presence of ceftiofur. DNA sequencing of the plasmid pHSG299-BC-3 insert revealed the presence of a gene encoding a metallo-β-lactamase. Incubation of ceftiofur with either the E. coli transformant or a commercial B. cereus metallo-β-lactamase showed degradation of the drug and formation of the same major metabolite produced by B. cereus P41. These data demonstrate that a metallo-β-lactamase plays a major role in the degradation of ceftiofur by the bovine intestinal bacterium B. cereus P41.

  20. Common Mechanism of Cross-Resistance Development in Pathogenic Bacteria Bacillus cereus Against Alamethicin and Pediocin Involves Alteration in Lipid Composition.

    PubMed

    Meena, Sunita; Mehla, Jitender; Kumar, Raj; Sood, S K

    2016-10-01

    To understand the mechanism of development of cross-resistance in food pathogen Bacillus cereus against an antimicrobial peptide pediocin and antibiotic alamethicin, the present study was designed. Pediococcus pentosaceus was taken as a source of pediocin, and it was purified by ammonium sulphate precipitation followed by cation exchange chromatography with 14.01-fold purity and 14.4 % recovery. B. cereus strains alamethicin-resistant strains (IC50 3.23 µg/ml) were selected from sensitive population with IC50 2.37 µg/ml. The development of resistance in B. cereus against alamethicin was associated with decrease in alamethicin-membrane interaction observed by in vitro assay. Resistant strain of B. cereus was found to harbour one additional general lipid as compared to sensitive strain, one amino group lacking phospholipid and one amino group containing phospholipid (ACP). In addition, ACP content was increased in resistant mutant (29.7 %) as compared to sensitive strain (14.56 %). The alamethicin-resistant mutant B. cereus also showed increased IC50 (58.8 AU/ml) for pediocin as compared to sensitive strain (IC50 47.8 AU/ml). Cross-resistance to pediocin and alamethicin in resistant mutant of B. cereus suggested a common mechanism of resistance. Therefore, this understanding could result in the development of peptide which will be effective against the resistant strains that share same mechanism of resistance.

  1. Protein- and DNA-based anthrax toxin vaccines confer protection in guinea pigs against inhalational challenge with Bacillus cereus G9241.

    PubMed

    Palmer, John; Bell, Matt; Darko, Christian; Barnewall, Roy; Keane-Myers, Andrea

    2014-11-01

    In the past decade, several Bacillus cereus strains have been isolated from otherwise healthy individuals who succumbed to bacterial pneumonia presenting symptoms resembling inhalational anthrax. One strain was indistinguishable from B. cereus G9241, previously cultured from an individual who survived a similar pneumonia-like illness and which was shown to possess a complete set of plasmid-borne anthrax toxin-encoding homologs. The finding that B. cereus G9241 pathogenesis in mice is dependent on pagA1-derived protective antigen (PA) synthesis suggests that an anthrax toxin-based vaccine may be effective against this toxin-encoding B. cereus strain. Dunkin Hartley guinea pigs were immunized with protein- and DNA-based anthrax toxin-based vaccines, immune responses were evaluated and survival rates were calculated after lethal aerosol exposure with B. cereus G9241 spores. Each vaccine induced seroconversion with the protein immunization regimen eliciting significantly higher serum levels of antigen-specific antibodies at the prechallenge time-point compared with the DNA-protein prime-boost immunization schedule. Complete protection against lethal challenge was observed in all groups with a detectable prechallenge serum titer of toxin neutralizing antibodies. For the first time, we demonstrated that the efficacy of fully defined anthrax toxin-based vaccines was protective against lethal B. cereus G9241 aerosol challenge in the guinea pig animal model.

  2. Pseudo-outbreak of toxigenic Bacillus cereus isolated from stools of three patients with diarrhoea after oral administration of a probiotic medication.

    PubMed

    Kniehl, E; Becker, A; Forster, D H

    2003-09-01

    From December 2000 to January 2001 toxigenic Bacillus cereus was isolated from stools of three patients with diarrhoea at two tertiary hospitals in southwest Germany. Two cases with nosocomial diarrhoea were apparently epidemiologically related (same time and ward), a third case was unrelated with respect to time and location. In order to investigate the epidemiology of these three cases, clinical isolates and isolates from an unexpected, possible common source (probiotic medication) were compared by toxin assay, biotyping and randomly amplified polymorphic DNA (RAPD) analysis. The three clinical isolates, as well as the two isolates from different lots of the probiotic medication (Bactisubtil containing 'Bacillus IP 5832'; Cassella-med, Cologne, Germany), were indistinguishable by toxin assay, biotyping and RAPD, when compared with other distinguishable clinical B. cereus strains. As the diarrhoeal disease had begun before the probiotic medication had been administered to overcome it, the isolated B. cereus probably was at least initially, not the cause of the observed diarrhoeal disease. Isolation of toxigenic B. cereus from stools appeared to be a diagnostically misleading epiphenomenon after oral medication with the probiotic. We conclude, that probiotic medication with Bactisubtil (Bacillus IP 5832) may result in diagnostically misleading results when culturing stool specimens from patients with diarrhoea. The clonal identity of isolates may be misinterpreted as an outbreak. Stool specimens should be taken before start of probiotic treatment and clinicians should state probiotic medication when ordering stool examinations to allow correct interpretation of results. Nevertheless, it is noteworthy that a probiotic medication contains potentially toxigenic material.

  3. Bacillus cereus Phosphopentomutase Is an Alkaline Phosphatase Family Member That Exhibits an Altered Entry Point into the Catalytic Cycle

    SciTech Connect

    Panosian, Timothy D.; Nannemann, David P.; Watkins, Guy R.; Phelan, Vanessa V.; McDonald, W. Hayes; Wadzinski, Brian E.; Bachmann, Brian O.; Iverson, Tina M.

    2011-09-15

    Bacterial phosphopentomutases (PPMs) are alkaline phosphatase superfamily members that interconvert {alpha}-D-ribose 5-phosphate (ribose 5-phosphate) and {alpha}-D-ribose 1-phosphate (ribose 1-phosphate). We investigated the reaction mechanism of Bacillus cereus PPM using a combination of structural and biochemical studies. Four high resolution crystal structures of B. cereus PPM revealed the active site architecture, identified binding sites for the substrate ribose 5-phosphate and the activator {alpha}-D-glucose 1,6-bisphosphate (glucose 1,6-bisphosphate), and demonstrated that glucose 1,6-bisphosphate increased phosphorylation of the active site residue Thr-85. The phosphorylation of Thr-85 was confirmed by Western and mass spectroscopic analyses. Biochemical assays identified Mn{sup 2+}-dependent enzyme turnover and demonstrated that glucose 1,6-bisphosphate treatment increases enzyme activity. These results suggest that protein phosphorylation activates the enzyme, which supports an intermolecular transferase mechanism. We confirmed intermolecular phosphoryl transfer using an isotope relay assay in which PPM reactions containing mixtures of ribose 5-[{sup 18}O{sub 3}]phosphate and [U-{sup 13}C{sub 5}]ribose 5-phosphate were analyzed by mass spectrometry. This intermolecular phosphoryl transfer is seemingly counter to what is anticipated from phosphomutases employing a general alkaline phosphatase reaction mechanism, which are reported to catalyze intramolecular phosphoryl transfer. However, the two mechanisms may be reconciled if substrate encounters the enzyme at a different point in the catalytic cycle.

  4. Bacillus cereus efflux protein BC3310 - a multidrug transporter of the unknown major facilitator family, UMF-2.

    PubMed

    Kroeger, Jasmin K; Hassan, Karl; Vörös, Aniko; Simm, Roger; Saidijam, Massoud; Bettaney, Kim E; Bechthold, Andreas; Paulsen, Ian T; Henderson, Peter J F; Kolstø, Anne-Brit

    2015-01-01

    Phylogenetic classification divides the major facilitator superfamily (MFS) into 82 families, including 25 families that are comprised of transporters with no characterized functions. This study describes functional data for BC3310 from Bacillus cereus ATCC 14579, a member of the "unknown major facilitator family-2" (UMF-2). BC3310 was shown to be a multidrug efflux pump conferring resistance to ethidium bromide, SDS and silver nitrate when heterologously expressed in Escherichia coli DH5α ΔacrAB. A conserved aspartate residue (D105) in putative transmembrane helix 4 was identified, which was essential for the energy dependent ethidium bromide efflux by BC3310. Transport proteins of the MFS comprise specific sequence motifs. Sequence analysis of UMF-2 proteins revealed that they carry a variant of the MFS motif A, which may be used as a marker to distinguish easily between this family and other MFS proteins. Genes orthologous to bc3310 are highly conserved within the B. cereus group of organisms and thus belong to the core genome, suggesting an important conserved functional role in the normal physiology of these bacteria.

  5. Degradation of raw feather by a novel high molecular weight extracellular protease from newly isolated Bacillus cereus DCUW.

    PubMed

    Ghosh, Abhrajyoti; Chakrabarti, Krishanu; Chattopadhyay, Dhrubajyoti

    2008-08-01

    Biotreatment of feather wastes and utilization of the degraded products in feed and foodstuffs has been a challenge. In the present study, we have demonstrated the degradation of feather waste by Bacillus cereus DCUW strain isolated during a functional screening based microbial diversity study on East Calcutta Wetland Area. A high molecular weight keratinolytic protease from feather degrading DCUW strain was purified and characterized. Moreover, utilization of degraded products during feather hydrolysis was developed and demonstrated. The purified keratinolytic protease was found to show pH and temperature optima of 8.5 and 50 degrees C, respectively. PMSF was found to inhibit the enzyme completely. The purified enzyme showed molecular weight of 80 kDa (from SDS-PAGE). The protease was found to have broad range substrate specificities that include keratin, casein, collagen, fibrin, BAPNA and gelatin. The protease was identified as minor extracellular protease (Vpr) by RT-PCR and northern blotting techniques. This is the first report describing the characterization of minor extracellular protease (Vpr) and its involvement in feather degradation in B. cereus group of organisms.

  6. Effect of pH and Sodium Chloride on Growth of Bacillus cereus in Laboratory Media and Certain Foods

    PubMed Central

    Raevuori, Marrku; Genigeorgis, Constantin

    1975-01-01

    The effects of NaCl concentration, pH, and water activity (aw) on the ability of vegetative cells of Bacillus cereus to initiate aerobic growth in brain heart infusion broth at 30 C were studied in a factorial design experiment. By using multiple regression techniques, equations were derived which related the decimal reduction of the bacterial population to the concentration of NaCl and pH of broth to which the population was exposed. From these equations, the percentage of inoculated cells capable of initiating growth could be calculated. The reliability of these equations in foods was tested in laboratory-processed meat and rice media. The foods were less inhibitory than the broths, so that accurate prediction of growth initiation in foods was not possible by using the developed formulas. The impact of this type of quantitative study on the development of specific microbial standards for foods is discussed. When the NaCl concentration is increased, the aw is decreased and, with increased deviation of pH from optimum, more concentrated inoculum of B. cereus cells is needed to assure initiation of growth in culture media and foods. PMID:234158

  7. Emetic Bacillus cereus are more volatile than thought: recent foodborne outbreaks and prevalence studies in Bavaria (2007-2013).

    PubMed

    Messelhäusser, Ute; Frenzel, Elrike; Blöchinger, Claudia; Zucker, Renate; Kämpf, Peter; Ehling-Schulz, Monika

    2014-01-01

    Several Bacillus cereus strains possess the genetic fittings to produce two different types of toxins, the heat-stable cereulide or different heat-labile proteins with enterotoxigenic potential. Unlike the diarrheal toxins, cereulide is (pre-)formed in food and can cause foodborne intoxications shortly after ingestion of contaminated food. Based on the widely self-limiting character of cereulide intoxications and rarely performed differential diagnostic in routine laboratories, the real incidence is largely unknown. Therefore, during a 7-year period about 4.300 food samples linked to foodborne illness with a preliminary report of vomiting as well as food analysed in the context of monitoring programs were investigated to determine the prevalence of emetic B. cereus in food environments. In addition, a lux-based real-time monitoring system was employed to assess the significance of the detection of emetic strains in different food matrices and to determine the actual risk of cereulide toxin production in different types of food. This comprehensive study showed that emetic strains are much more volatile than previously thought. Our survey highlights the importance and need of novel strategies to move from the currently taxonomic-driven diagnostic to more risk orientated diagnostics to improve food and consumer safety.

  8. Bacillus cereus efflux protein BC3310 – a multidrug transporter of the unknown major facilitator family, UMF-2

    PubMed Central

    Kroeger, Jasmin K.; Hassan, Karl; Vörös, Aniko; Simm, Roger; Saidijam, Massoud; Bettaney, Kim E.; Bechthold, Andreas; Paulsen, Ian T.; Henderson, Peter J. F.; Kolstø, Anne-Brit

    2015-01-01

    Phylogenetic classification divides the major facilitator superfamily (MFS) into 82 families, including 25 families that are comprised of transporters with no characterized functions. This study describes functional data for BC3310 from Bacillus cereus ATCC 14579, a member of the “unknown major facilitator family-2” (UMF-2). BC3310 was shown to be a multidrug efflux pump conferring resistance to ethidium bromide, SDS and silver nitrate when heterologously expressed in Escherichia coli DH5α ΔacrAB. A conserved aspartate residue (D105) in putative transmembrane helix 4 was identified, which was essential for the energy dependent ethidium bromide efflux by BC3310. Transport proteins of the MFS comprise specific sequence motifs. Sequence analysis of UMF-2 proteins revealed that they carry a variant of the MFS motif A, which may be used as a marker to distinguish easily between this family and other MFS proteins. Genes orthologous to bc3310 are highly conserved within the B. cereus group of organisms and thus belong to the core genome, suggesting an important conserved functional role in the normal physiology of these bacteria. PMID:26528249

  9. Fatty Acid Profiles for Differentiating Growth Medium Formulations Used to Culture Bacillus cereus T-strain Spores.

    PubMed

    Ehrhardt, Christopher J; Murphy, Devonie L; Robertson, James M; Bannan, Jason D

    2015-07-01

    Microbial biomarkers that indicate aspects of an organism's growth conditions are important targets of forensic research. In this study, we examined fatty acid composition as a signature for the types of complex nutrients in the culturing medium. Bacillus cereus T-strain spores were grown in medium formulations supplemented with one of the following: peptone (meat protein), tryptone (casein protein), soy protein, and brain-heart infusion. Cellular biomass was profiled with fatty acid methyl ester (FAME) analysis. Results showed peptone cultures produced spores enriched in straight-chained lipids. Tryptone cultures produced spores enriched in branched-odd lipids when compared with peptone, soy, and brain-heart formulations. The observed FAME variation was used to construct a set of discriminant functions that could help identify the nutrients in a culturing recipe for an unknown spore sample. Blinded classification tests were most successful for spores grown on media containing peptone and tryptone, showing 88% and 100% correct identification, respectively.

  10. Fatty Acid Profiles for Differentiating Growth Medium Formulations Used to Culture Bacillus cereus T-strain Spores.

    PubMed

    Ehrhardt, Christopher J; Murphy, Devonie L; Robertson, James M; Bannan, Jason D

    2015-07-01

    Microbial biomarkers that indicate aspects of an organism's growth conditions are important targets of forensic research. In this study, we examined fatty acid composition as a signature for the types of complex nutrients in the culturing medium. Bacillus cereus T-strain spores were grown in medium formulations supplemented with one of the following: peptone (meat protein), tryptone (casein protein), soy protein, and brain-heart infusion. Cellular biomass was profiled with fatty acid methyl ester (FAME) analysis. Results showed peptone cultures produced spores enriched in straight-chained lipids. Tryptone cultures produced spores enriched in branched-odd lipids when compared with peptone, soy, and brain-heart formulations. The observed FAME variation was used to construct a set of discriminant functions that could help identify the nutrients in a culturing recipe for an unknown spore sample. Blinded classification tests were most successful for spores grown on media containing peptone and tryptone, showing 88% and 100% correct identification, respectively. PMID:25854710

  11. Cytotoxic Potential of Bacillus cereus Strains ATCC 11778 and 14579 Against Human Lung Epithelial Cells Under Microaerobic Growth Conditions

    PubMed Central

    Kilcullen, Kathleen; Teunis, Allison; Popova, Taissia G.; Popov, Serguei G.

    2016-01-01

    Bacillus cereus, a food poisoning bacterium closely related to Bacillus anthracis, secretes a multitude of virulence factors including enterotoxins, hemolysins, and phospholipases. However, the majority of the in vitro experiments evaluating the cytotoxic potential of B. cereus were carried out in the conditions of aeration, and the impact of the oxygen limitation in conditions encountered by the microbe in natural environment such as gastrointestinal tract remains poorly understood. This research reports comparative analysis of ATCC strains 11778 (BC1) and 14579 (BC2) in aerobic and microaerobic (static) cultures with regard to their toxicity for human lung epithelial cells. We showed that BC1 increased its toxicity upon oxygen limitation while BC2 was highly cytotoxic in both growth conditions. The combined effect of the pore-forming, cholesterol-dependent hemolysin, cereolysin O (CLO), and metabolic product(s) such as succinate produced in microaerobic conditions provided substantial contribution to the toxicity of BC1 but not BC2 which relied mainly on other toxins. This mechanism is shared between CB1 and B. anthracis. It involves the permeabilization of the cell membrane which facilitates transport of toxic bacterial metabolites into the cell. The toxicity of BC1 was potentiated in the presence of bovine serum albumin which appeared to serve as reservoir for bacteria-derived nitric oxide participating in the downstream production of reactive oxidizing species with the properties of peroxynitrite. In agreement with this the BC1 cultures demonstrated the increased oxidation of the indicator dye Amplex Red catalyzed by peroxidase as well as the increased toxicity in the presence of externally added ascorbic acid. PMID:26870026

  12. Biocontrol of Aspergillus Species on Peanut Kernels by Antifungal Diketopiperazine Producing Bacillus cereus Associated with Entomopathogenic Nematode

    PubMed Central

    Kumar, Sasidharan Nishanth; Sreekala, Sreerag Ravikumar; Chandrasekaran, Dileep; Nambisan, Bala; Anto, Ruby John

    2014-01-01

    The rhabditid entomopathogenic nematode associated Bacillus cereus and the antifungal compounds produced by this bacterium were evaluated for their activity in reducing postharvest decay of peanut kernels caused by Aspergillus species in in vitro and in vivo tests. The results showed that B. cereus had a significant effect on biocontrol effectiveness in in vitro and in vivo conditions. The antifungal compounds produced by the B. cereus were purified using silica gel column chromatography and their structure was elucidated using extensive spectral analyses. The compounds were identified as diketopiperazines (DKPs) [cyclo-(L-Pro-Gly), cyclo(L-Tyr-L-Tyr), cyclo-(L-Phe-Gly) and cyclo(4-hydroxy-L-Pro-L-Trp)]. The antifungal activities of diketopiperazines were studied against five Aspergillus species and best MIC of 2 µg/ml was recorded against A. flavus by cyclo(4-hydroxy-L-Pro-L-Trp). To investigate the potential application of cyclo(4-hydroxy-L-Pro-L-Trp) to eliminate fungal spoilage in food and feed, peanut kernels was used as a food model system. White mycelia and dark/pale green spores of Aspergillus species were observed in the control peanut kernels after 2 days incubation. However the fungal growth was not observed in peanut kernels treated with cyclo(4-hydroxy-L-Pro-L-Trp). The cyclo(4-hydroxy-L-Pro-L-Trp) was nontoxic to two normal cell lines [fore skin (FS) normal fibroblast and African green monkey kidney (VERO)] up to 200 µg/ml in MTT assay. Thus the cyclo(4-hydroxy-L-Pro-L-Trp) identified in this study may be a promising alternative to chemical preservatives as a potential biopreservative agent which prevent fungal growth in food and feed. To the best of our knowledge, this is the first report demonstrating that the entomopathogenic nematode associated B. cereus and cyclo(4-hydroxy-L-Pro-L-Trp) could be used as a biocontrol agents against postharvest fungal disease caused by Aspergillus species. PMID:25157831

  13. Effects of Mentha longifolia L. essential oil and nisin alone and in combination on Bacillus cereus and Bacillus subtilis in a food model and bacterial ultrastructural changes.

    PubMed

    Pajohi, Mohamad Reza; Tajik, Hossein; Farshid, Amir Abbas; Basti, Afshin Akhondzadeh; Hadian, Mojtaba

    2011-02-01

    In the face of emerging new pathogens and ever-growing health-conscious customers, food preservation technology remains on the top agenda of food industry. This study was aimed at determining the effects of the essential oil of Mentha longifolia L., alone and in combination with nisin, on Bacillus cereus and Bacillus subtilis at 8°C and 25°C in a food model (commercial barley soup) during 15 days. The essential oil alone at 8°C inhibited bacterial growth significantly compared with the control (p < 0.05). However, at 25°C, none of the concentrations of the essential oil alone showed inhibitory effect on bacterial growth. At 8°C, the combination effect of the essential oil and nisin on bacteria was noted at 0.25 μg mL(-1) for nisin and 0.05 μL mL(-1) for the essential oil (p < 0.05). The combination of nisin and the essential oil demonstrated significant inhibitory effects on the vegetative forms of bacteria at 25°C, although it was comparable to that of nisin alone at the same concentrations. Electron microscopy studies revealed a great deal of damage to B. cereus treated with a combination of nisin and the essential oil. However, the combination of nisin with the essential oil led to a complete destruction of cell wall and cytoplasm of vegetative cells of B. subtilis. PMID:21034248

  14. Description of Bacillus toyonensis sp. nov., a novel species of the Bacillus cereus group, and pairwise genome comparisons of the species of the group by means of ANI calculations.

    PubMed

    Jiménez, Guillermo; Urdiain, Mercedes; Cifuentes, Ana; López-López, Aránzazu; Blanch, Anicet R; Tamames, Javier; Kämpfer, Peter; Kolstø, Anne-Brit; Ramón, Daniel; Martínez, Juan F; Codoñer, Francisco M; Rosselló-Móra, Ramon

    2013-09-01

    Strain BCT-7112(T) was isolated in 1966 in Japan from a survey designed to obtain naturally occurring microorganisms as pure cultures in the laboratory for use as probiotics in animal nutrition. This strain, which was primarily identified as Bacillus cereus var toyoi, has been in use for more than 30 years as the active ingredient of the preparation TOYOCERIN(®), an additive for use in animal nutrition (e.g. swine, poultry, cattle, rabbits and aquaculture). Despite the fact that the strain was initially classified as B. cereus, it showed significant genomic differences from the type strains of the B. cereus group that were large enough (ANI values below 92%) to allow it to be considered as a different species within the group. The polyphasic taxonomic study presented here provides sufficient discriminative parameters to classify BCT-7112(T) as a new species for which the name Bacillus toyonensis sp. nov. is proposed, with BCT-7112(T) (=CECT 876(T); =NCIMB 14858(T)) being designated as the type strain. In addition, a pairwise comparison between the available genomes of the whole B. cereus group by means of average nucleotide identity (ANI) calculations indicated that besides the eight classified species (including B. toyonensis), additional genomospecies could be detected, and most of them also had ANI values below 94%. ANI values were on the borderline of a species definition only in the cases of representatives of B. cereus versus B. thuringiensis, and B. mycoides and B. weihenstephanensis.

  15. Bacillus cereus can attack the cell membranes of the alga Chara corallina by means of HlyII.

    PubMed

    Kataev, Anatoly A; Andreeva-Kovalevskaya, Zhanna I; Solonin, Alexander S; Ternovsky, Vadim I

    2012-05-01

    We studied the influence of Bacillus cereus bacteria on cells of the freshwater alga Chara corallina. These bacteria and recombinant Bacillus subtilis strains are capable of producing the secreted toxin HlyII, which changes the electrophysiological parameters of the algal electrically excitable plasma membrane by forming pores. Cooperative incubation of bacterial cells, which carry active hlyII gene, and Chara corallina cells caused a decrease in the resting potential (V(m)) and plasma membrane resistance (R(m)) of algal cells. The efficiency of each strain was commensurable with its ability to produce HlyII. Purified hemolysin II caused a similar effect on V(m) and R(m) of intact and perfused cells. This protein changed the kinetics and magnitude of transient voltage-dependent calcium and calcium-activated chloride currents owing to the formation of additional Ca(2+)-permeable pores in algal cell membrane. Occurrence of the cellulose cell wall with pores 2.1 to 4.6nm in diameter suggests that HlyII molecules reach the plasma membrane surface strictly as monomers.

  16. Capsules, toxins and AtxA as virulence factors of emerging Bacillus cereus biovar anthracis.

    PubMed

    Brézillon, Christophe; Haustant, Michel; Dupke, Susann; Corre, Jean-Philippe; Lander, Angelika; Franz, Tatjana; Monot, Marc; Couture-Tosi, Evelyne; Jouvion, Gregory; Leendertz, Fabian H; Grunow, Roland; Mock, Michèle E; Klee, Silke R; Goossens, Pierre L

    2015-04-01

    Emerging B. cereus strains that cause anthrax-like disease have been isolated in Cameroon (CA strain) and Côte d'Ivoire (CI strain). These strains are unusual, because their genomic characterisation shows that they belong to the B. cereus species, although they harbour two plasmids, pBCXO1 and pBCXO2, that are highly similar to the pXO1 and pXO2 plasmids of B. anthracis that encode the toxins and the polyglutamate capsule respectively. The virulence factors implicated in the pathogenicity of these B. cereus bv anthracis strains remain to be characterised. We tested their virulence by cutaneous and intranasal delivery in mice and guinea pigs; they were as virulent as wild-type B. anthracis. Unlike as described for pXO2-cured B. anthracis, the CA strain cured of the pBCXO2 plasmid was still highly virulent, showing the existence of other virulence factors. Indeed, these strains concomitantly expressed a hyaluronic acid (HA) capsule and the B. anthracis polyglutamate (PDGA) capsule. The HA capsule was encoded by the hasACB operon on pBCXO1, and its expression was regulated by the global transcription regulator AtxA, which controls anthrax toxins and PDGA capsule in B. anthracis. Thus, the HA and PDGA capsules and toxins were co-regulated by AtxA. We explored the respective effect of the virulence factors on colonisation and dissemination of CA within its host by constructing bioluminescent mutants. Expression of the HA capsule by itself led to local multiplication and, during intranasal infection, to local dissemination to the adjacent brain tissue. Co-expression of either toxins or PDGA capsule with HA capsule enabled systemic dissemination, thus providing a clear evolutionary advantage. Protection against infection by B. cereus bv anthracis required the same vaccination formulation as that used against B. anthracis. Thus, these strains, at the frontier between B. anthracis and B. cereus, provide insight into how the monomorphic B. anthracis may have emerged.

  17. Capsules, Toxins and AtxA as Virulence Factors of Emerging Bacillus cereus Biovar anthracis

    PubMed Central

    Corre, Jean-Philippe; Lander, Angelika; Franz, Tatjana; Monot, Marc; Couture-Tosi, Evelyne; Jouvion, Gregory; Leendertz, Fabian H.; Grunow, Roland; Mock, Michèle E.; Klee, Silke R.; Goossens, Pierre L.

    2015-01-01

    Emerging B. cereus strains that cause anthrax-like disease have been isolated in Cameroon (CA strain) and Côte d’Ivoire (CI strain). These strains are unusual, because their genomic characterisation shows that they belong to the B. cereus species, although they harbour two plasmids, pBCXO1 and pBCXO2, that are highly similar to the pXO1 and pXO2 plasmids of B. anthracis that encode the toxins and the polyglutamate capsule respectively. The virulence factors implicated in the pathogenicity of these B. cereus bv anthracis strains remain to be characterised. We tested their virulence by cutaneous and intranasal delivery in mice and guinea pigs; they were as virulent as wild-type B. anthracis. Unlike as described for pXO2-cured B. anthracis, the CA strain cured of the pBCXO2 plasmid was still highly virulent, showing the existence of other virulence factors. Indeed, these strains concomitantly expressed a hyaluronic acid (HA) capsule and the B. anthracis polyglutamate (PDGA) capsule. The HA capsule was encoded by the hasACB operon on pBCXO1, and its expression was regulated by the global transcription regulator AtxA, which controls anthrax toxins and PDGA capsule in B. anthracis. Thus, the HA and PDGA capsules and toxins were co-regulated by AtxA. We explored the respective effect of the virulence factors on colonisation and dissemination of CA within its host by constructing bioluminescent mutants. Expression of the HA capsule by itself led to local multiplication and, during intranasal infection, to local dissemination to the adjacent brain tissue. Co-expression of either toxins or PDGA capsule with HA capsule enabled systemic dissemination, thus providing a clear evolutionary advantage. Protection against infection by B. cereus bv anthracis required the same vaccination formulation as that used against B. anthracis. Thus, these strains, at the frontier between B. anthracis and B. cereus, provide insight into how the monomorphic B. anthracis may have emerged. PMID

  18. Exploring the biosynthesis of unsaturated fatty acids in Bacillus cereus ATCC 14579 and functional characterization of novel acyl-lipid desaturases.

    PubMed

    Chazarreta Cifré, Lorena; Alemany, Mariana; de Mendoza, Diego; Altabe, Silvia

    2013-10-01

    At low temperatures, Bacillus cereus synthesizes large amounts of unsaturated fatty acids (UFAs) with double bonds in positions Δ5 and Δ10, as well as Δ5,10 diunsaturated fatty acids. Through sequence homology searches, we identified two open reading frames (ORFs) encoding a putative Δ5 desaturase and a fatty acid acyl-lipid desaturase in the B. cereus ATCC 14579 genome, and these were named BC2983 and BC0400, respectively. Functional characterization of ORFs BC2983 and BC0400 by means of heterologous expression in Bacillus subtilis confirmed that they both encode acyl-lipid desaturases that use phospholipids as the substrates and have Δ5 and Δ10 desaturase activities. Thus, these ORFs were correspondingly named desA (Δ5 desaturase) and desB (Δ10 desaturase). We established that DesA utilizes ferredoxin and flavodoxins (Flds) as electron donors for the desaturation reaction, while DesB preferably employs Flds. In addition, increased amounts of UFAs were found when B. subtilis expressing B. cereus desaturases was subjected to a cold shock treatment, indicating that the activity or the expression of these enzymes is upregulated in response to a decrease in growth temperature. This represents the first work reporting the functional characterization of fatty acid desaturases from B. cereus.

  19. Exploring the biosynthesis of unsaturated fatty acids in Bacillus cereus ATCC 14579 and functional characterization of novel acyl-lipid desaturases.

    PubMed

    Chazarreta Cifré, Lorena; Alemany, Mariana; de Mendoza, Diego; Altabe, Silvia

    2013-10-01

    At low temperatures, Bacillus cereus synthesizes large amounts of unsaturated fatty acids (UFAs) with double bonds in positions Δ5 and Δ10, as well as Δ5,10 diunsaturated fatty acids. Through sequence homology searches, we identified two open reading frames (ORFs) encoding a putative Δ5 desaturase and a fatty acid acyl-lipid desaturase in the B. cereus ATCC 14579 genome, and these were named BC2983 and BC0400, respectively. Functional characterization of ORFs BC2983 and BC0400 by means of heterologous expression in Bacillus subtilis confirmed that they both encode acyl-lipid desaturases that use phospholipids as the substrates and have Δ5 and Δ10 desaturase activities. Thus, these ORFs were correspondingly named desA (Δ5 desaturase) and desB (Δ10 desaturase). We established that DesA utilizes ferredoxin and flavodoxins (Flds) as electron donors for the desaturation reaction, while DesB preferably employs Flds. In addition, increased amounts of UFAs were found when B. subtilis expressing B. cereus desaturases was subjected to a cold shock treatment, indicating that the activity or the expression of these enzymes is upregulated in response to a decrease in growth temperature. This represents the first work reporting the functional characterization of fatty acid desaturases from B. cereus. PMID:23913431

  20. Effects of dietary Bacillus cereus G19, B. cereus BC-01, and Paracoccus marcusii DB11 supplementation on the growth, immune response, and expression of immune-related genes in coelomocytes and intestine of the sea cucumber (Apostichopus japonicus Selenka).

    PubMed

    Yang, Gang; Tian, Xiangli; Dong, Shuanglin; Peng, Mo; Wang, Dongdong

    2015-08-01

    Probiotics have positive effects on the nutrient digestibility and absorption, immune responses, and growth of aquatic animals, including the sea cucumber (Apostichopus japonicus Selenka). A 60-day feeding trial was conducted to evaluate the effects of Bacillus cereus G19, B. cereus BC-01 and Paracoccus marcusii DB11 supplementation on the growth, immune response, and expression level of four immune-related genes (Aj-p105, Aj-p50, Aj-rel, and Aj-lys) in coelomocytes and the intestine of juvenile sea cucumbers. One group was fed the basal diet (control group), while three other groups were fed the basal diet supplemented with B. cereus G19 (G19 group), B. cereus BC-01 (BC group), or P. marcusii DB11 (PM group). The growth rate of sea cucumbers fed diets with probiotics supplementation was significantly higher than that of the control group (P < 0.05). Sea cucumbers in the G19 and PM groups had a significantly greater phagocytic activity of coelomocytes compared to the control group (P < 0.05), while those in the G19 and BC groups had a greater respiratory burst activity (P < 0.05). The alkaline phosphatase (AKP) activity of coelomocytes in sea cucumbers fed diets with probiotics supplementation was significantly higher than the control group (P < 0.05). Comparatively, superoxide dismutase (SOD) activity of coelomocytes for sea cucumber in the PM group was significantly greater (P < 0.05). As for the immune-related genes, B. cereus G19 supplementation significantly increased the expression level of the Aj-rel gene in coelomocytes (P < 0.05), while B. cereus BC-01 supplementation significantly increased that of the Aj-p50 gene as compared to the control group (P < 0.05). In the intestine, the relative expression level of Aj-p105, Aj-p50, and Aj-lys genes in the PM group was significantly higher than that in the control group (P < 0.05). These results suggested that B. cereus G19 and B. cereus BC-01 supplementation could improve the growth performance and the immune

  1. Effects of dietary Bacillus cereus G19, B. cereus BC-01, and Paracoccus marcusii DB11 supplementation on the growth, immune response, and expression of immune-related genes in coelomocytes and intestine of the sea cucumber (Apostichopus japonicus Selenka).

    PubMed

    Yang, Gang; Tian, Xiangli; Dong, Shuanglin; Peng, Mo; Wang, Dongdong

    2015-08-01

    Probiotics have positive effects on the nutrient digestibility and absorption, immune responses, and growth of aquatic animals, including the sea cucumber (Apostichopus japonicus Selenka). A 60-day feeding trial was conducted to evaluate the effects of Bacillus cereus G19, B. cereus BC-01 and Paracoccus marcusii DB11 supplementation on the growth, immune response, and expression level of four immune-related genes (Aj-p105, Aj-p50, Aj-rel, and Aj-lys) in coelomocytes and the intestine of juvenile sea cucumbers. One group was fed the basal diet (control group), while three other groups were fed the basal diet supplemented with B. cereus G19 (G19 group), B. cereus BC-01 (BC group), or P. marcusii DB11 (PM group). The growth rate of sea cucumbers fed diets with probiotics supplementation was significantly higher than that of the control group (P < 0.05). Sea cucumbers in the G19 and PM groups had a significantly greater phagocytic activity of coelomocytes compared to the control group (P < 0.05), while those in the G19 and BC groups had a greater respiratory burst activity (P < 0.05). The alkaline phosphatase (AKP) activity of coelomocytes in sea cucumbers fed diets with probiotics supplementation was significantly higher than the control group (P < 0.05). Comparatively, superoxide dismutase (SOD) activity of coelomocytes for sea cucumber in the PM group was significantly greater (P < 0.05). As for the immune-related genes, B. cereus G19 supplementation significantly increased the expression level of the Aj-rel gene in coelomocytes (P < 0.05), while B. cereus BC-01 supplementation significantly increased that of the Aj-p50 gene as compared to the control group (P < 0.05). In the intestine, the relative expression level of Aj-p105, Aj-p50, and Aj-lys genes in the PM group was significantly higher than that in the control group (P < 0.05). These results suggested that B. cereus G19 and B. cereus BC-01 supplementation could improve the growth performance and the immune

  2. Lethality of chlorine, chlorine dioxide, and a commercial produce sanitizer to Bacillus cereus and Pseudomonas in a liquid detergent, on stainless steel, and in biofilm.

    PubMed

    Kreske, Audrey C; Ryu, Jee-Hoon; Pettigrew, Charles A; Beuchat, Larry R

    2006-11-01

    Many factors that are not fully understood may influence the effectiveness of sanitizer treatments for eliminating pathogens and spoilage microorganisms in food or detergent residues or in biofilms on food contact surfaces. This study was done to determine the sensitivities of Pseudomonas cells and Bacillus cereus cells and spores suspended in a liquid dishwashing detergent and inoculated onto the surface of stainless steel to treatment with chlorine, chlorine dioxide, and a commercial produce sanitizer (Fit). Cells and spores were incubated in a liquid dishwashing detergent for 16 to 18 h before treatment with sanitizers. At 50 microg/ml, chlorine dioxide killed a significantly higher number of Pseudomonas cells (3.82 log CFU/ml) than did chlorine (a reduction of 1.34 log CFU/ml). Stainless steel coupons were spot inoculated with Pseudomonas cells and B. cereus cells and spores, with water and 5% horse serum as carriers. Chlorine was more effective than chlorine dioxide in killing cells and spores of B. cereus suspended in horse serum. B. cereus biofilm on stainless steel coupons that were treated with chlorine dioxide or chlorine at 200 microg/ml had total population reductions (vegetative cells plus spores) of > or = 4.42 log CFU per coupon; the number of spores was reduced by > or = 3.80 log CFU per coupon. Fit (0.5%) was ineffective for killing spot-inoculated B. cereus and B. cereus in biofilm, but treatment with mixtures of Fit and chlorine dioxide caused greater reductions than did treatment with chlorine dioxide alone. In contrast, when chlorine was combined with Fit, the lethality of chlorine was completely lost. This study provides information on the survival and sanitizer sensitivity of Pseudomonas and B. cereus in a liquid dishwashing detergent, on the surface of stainless steel, and in a biofilm. This information will be useful for developing more effective strategies for cleaning and sanitizing contact surfaces in food preparation and processing

  3. Possible use of bacteriophages active against Bacillus anthracis and other B. cereus group members in the face of a bioterrorism threat.

    PubMed

    Jończyk-Matysiak, Ewa; Kłak, Marlena; Weber-Dąbrowska, Beata; Borysowski, Jan; Górski, Andrzej

    2014-01-01

    Anthrax is an infectious fatal disease with epidemic potential. Nowadays, bioterrorism using Bacillus anthracis is a real possibility, and thus society needs an effective weapon to neutralize this threat. The pathogen may be easily transmitted to human populations. It is easy to store, transport, and disseminate and may survive for many decades. Recent data strongly support the effectiveness of bacteriophage in treating bacterial diseases. Moreover, it is clear that bacteriophages should be considered a potential incapacitative agent against bioterrorism using bacteria belonging to B. cereus group, especially B. anthracis. Therefore, we have reviewed the possibility of using bacteriophages active against Bacillus anthracis and other species of the B. cereus group in the face of a bioterrorism threat. PMID:25247187

  4. Possible use of bacteriophages active against Bacillus anthracis and other B. cereus group members in the face of a bioterrorism threat.

    PubMed

    Jończyk-Matysiak, Ewa; Kłak, Marlena; Weber-Dąbrowska, Beata; Borysowski, Jan; Górski, Andrzej

    2014-01-01

    Anthrax is an infectious fatal disease with epidemic potential. Nowadays, bioterrorism using Bacillus anthracis is a real possibility, and thus society needs an effective weapon to neutralize this threat. The pathogen may be easily transmitted to human populations. It is easy to store, transport, and disseminate and may survive for many decades. Recent data strongly support the effectiveness of bacteriophage in treating bacterial diseases. Moreover, it is clear that bacteriophages should be considered a potential incapacitative agent against bioterrorism using bacteria belonging to B. cereus group, especially B. anthracis. Therefore, we have reviewed the possibility of using bacteriophages active against Bacillus anthracis and other species of the B. cereus group in the face of a bioterrorism threat.

  5. Possible Use of Bacteriophages Active against Bacillus anthracis and Other B. cereus Group Members in the Face of a Bioterrorism Threat

    PubMed Central

    Weber-Dąbrowska, Beata; Borysowski, Jan; Górski, Andrzej

    2014-01-01

    Anthrax is an infectious fatal disease with epidemic potential. Nowadays, bioterrorism using Bacillus anthracis is a real possibility, and thus society needs an effective weapon to neutralize this threat. The pathogen may be easily transmitted to human populations. It is easy to store, transport, and disseminate and may survive for many decades. Recent data strongly support the effectiveness of bacteriophage in treating bacterial diseases. Moreover, it is clear that bacteriophages should be considered a potential incapacitative agent against bioterrorism using bacteria belonging to B. cereus group, especially B. anthracis. Therefore, we have reviewed the possibility of using bacteriophages active against Bacillus anthracis and other species of the B. cereus group in the face of a bioterrorism threat. PMID:25247187

  6. Complete genome sequence of Bacillus cereus FORC_005, a food-borne pathogen from the soy sauce braised fish-cake with quail-egg.

    PubMed

    Lee, Dong-Hoon; Kim, Hye Rim; Chung, Han Young; Lim, Jong Gyu; Kim, Suyeon; Kim, Se Keun; Ku, Hye-Jin; Kim, Heebal; Ryu, Sangryeol; Choi, Sang Ho; Lee, Ju-Hoon

    2015-01-01

    Due to abundant contamination in various foods, the pathogenesis of Bacillus cereus has been widely studied in physiological and molecular level. B. cereus FORC_005 was isolated from a Korean side dish, soy sauce braised fish-cake with quail-egg in South Korea. While 21 complete genome sequences of B. cereus has been announced to date, this strain was completely sequenced, analyzed, and compared with other complete genome sequences of B. cereus to elucidate the distinct pathogenic features of a strain isolated in South Korea. The genomic DNA containing a circular chromosome consists of 5,349,617-bp with a GC content of 35.29 %. It was predicted to have 5170 open reading frames, 106 tRNA genes, and 42 rRNA genes. Among the predicted ORFs, 3892 ORFs were annotated to encode functional proteins (75.28 %) and 1278 ORFs were predicted to encode hypothetical proteins (748 conserved and 530 non-conserved hypothetical proteins). This genome information of B. cereus FORC_005 would extend our understanding of its pathogenesis in genomic level for efficient control of its contamination in foods and further food poisoning.

  7. The CasKR two-component system is required for the growth of mesophilic and psychrotolerant Bacillus cereus strains at low temperatures.

    PubMed

    Diomandé, Sara Esther; Chamot, Stéphanie; Antolinos, Vera; Vasai, Florian; Guinebretière, Marie-Hélène; Bornard, Isabelle; Nguyen-the, Christophe; Broussolle, Véronique; Brillard, Julien

    2014-04-01

    The different strains of Bacillus cereus can grow at temperatures covering a very diverse range. Some B. cereus strains can grow in chilled food and consequently cause food poisoning. We have identified a new sensor/regulator mechanism involved in low-temperature B. cereus growth. Construction of a mutant of this two-component system enabled us to show that this system, called CasKR, is required for growth at the minimal temperature (Tmin). CasKR was also involved in optimal cold growth above Tmin and in cell survival below Tmin. Microscopic observation showed that CasKR plays a key role in cell shape during cold growth. Introducing the casKR genes in a ΔcasKR mutant restored its ability to grow at Tmin. Although it was first identified in the ATCC 14579 model strain, this mechanism has been conserved in most strains of the B. cereus group. We show that the role of CasKR in cold growth is similar in other B. cereus sensu lato strains with different growth temperature ranges, including psychrotolerant strains.

  8. The CasKR Two-Component System Is Required for the Growth of Mesophilic and Psychrotolerant Bacillus cereus Strains at Low Temperatures

    PubMed Central

    Diomandé, Sara Esther; Chamot, Stéphanie; Antolinos, Vera; Vasai, Florian; Guinebretière, Marie-Hélène; Bornard, Isabelle; Nguyen-the, Christophe; Broussolle, Véronique

    2014-01-01

    The different strains of Bacillus cereus can grow at temperatures covering a very diverse range. Some B. cereus strains can grow in chilled food and consequently cause food poisoning. We have identified a new sensor/regulator mechanism involved in low-temperature B. cereus growth. Construction of a mutant of this two-component system enabled us to show that this system, called CasKR, is required for growth at the minimal temperature (Tmin). CasKR was also involved in optimal cold growth above Tmin and in cell survival below Tmin. Microscopic observation showed that CasKR plays a key role in cell shape during cold growth. Introducing the casKR genes in a ΔcasKR mutant restored its ability to grow at Tmin. Although it was first identified in the ATCC 14579 model strain, this mechanism has been conserved in most strains of the B. cereus group. We show that the role of CasKR in cold growth is similar in other B. cereus sensu lato strains with different growth temperature ranges, including psychrotolerant strains. PMID:24509924

  9. Complete genome sequence of Bacillus cereus FORC_005, a food-borne pathogen from the soy sauce braised fish-cake with quail-egg.

    PubMed

    Lee, Dong-Hoon; Kim, Hye Rim; Chung, Han Young; Lim, Jong Gyu; Kim, Suyeon; Kim, Se Keun; Ku, Hye-Jin; Kim, Heebal; Ryu, Sangryeol; Choi, Sang Ho; Lee, Ju-Hoon

    2015-01-01

    Due to abundant contamination in various foods, the pathogenesis of Bacillus cereus has been widely studied in physiological and molecular level. B. cereus FORC_005 was isolated from a Korean side dish, soy sauce braised fish-cake with quail-egg in South Korea. While 21 complete genome sequences of B. cereus has been announced to date, this strain was completely sequenced, analyzed, and compared with other complete genome sequences of B. cereus to elucidate the distinct pathogenic features of a strain isolated in South Korea. The genomic DNA containing a circular chromosome consists of 5,349,617-bp with a GC content of 35.29 %. It was predicted to have 5170 open reading frames, 106 tRNA genes, and 42 rRNA genes. Among the predicted ORFs, 3892 ORFs were annotated to encode functional proteins (75.28 %) and 1278 ORFs were predicted to encode hypothetical proteins (748 conserved and 530 non-conserved hypothetical proteins). This genome information of B. cereus FORC_005 would extend our understanding of its pathogenesis in genomic level for efficient control of its contamination in foods and further food poisoning. PMID:26566422

  10. Genome Sequences of Two Bacillus cereus Group Bacteriophages, Eyuki and AvesoBmore

    PubMed Central

    2015-01-01

    The genomes of two double-stranded DNA (dsDNA) bacteriophages isolated on Bacillus thuringiensis show similarity to previously sequenced phages and provide evidence of the mosaicism of phage genomes. PMID:26472840

  11. The dlt Operon of Bacillus cereus Is Required for Resistance to Cationic Antimicrobial Peptides and for Virulence in Insects▿

    PubMed Central

    Abi Khattar, Z.; Rejasse, A.; Destoumieux-Garzón, D.; Escoubas, J. M.; Sanchis, V.; Lereclus, D.; Givaudan, A.; Kallassy, M.; Nielsen-Leroux, C.; Gaudriault, S.

    2009-01-01

    The dlt operon encodes proteins that alanylate teichoic acids, the major components of cell walls of gram-positive bacteria. This generates a net positive charge on bacterial cell walls, repulsing positively charged molecules and conferring resistance to animal and human cationic antimicrobial peptides (AMPs) in gram-positive pathogenic bacteria. AMPs damage the bacterial membrane and are the most effective components of the humoral immune response against bacteria. We investigated the role of the dlt operon in insect virulence by inactivating this operon in Bacillus cereus, which is both an opportunistic human pathogen and an insect pathogen. The ΔdltBc mutant displayed several morphological alterations but grew at a rate similar to that for the wild-type strain. This mutant was less resistant to protamine and several bacterial cationic AMPs, such as nisin, polymyxin B, and colistin, in vitro. It was also less resistant to molecules from the insect humoral immune system, lysozyme, and cationic AMP cecropin B from Spodoptera frugiperda. ΔdltBc was as pathogenic as the wild-type strain in oral infections of Galleria mellonella but much less virulent when injected into the hemocoels of G. mellonella and Spodoptera littoralis. We detected the dlt operon in three gram-negative genera: Erwinia (Erwinia carotovora), Bordetella (Bordetella pertussis, Bordetella parapertussis, and Bordetella bronchiseptica), and Photorhabdus (the entomopathogenic bacterium Photorhabdus luminescens TT01, the dlt operon of which did not restore cationic AMP resistance in ΔdltBc). We suggest that the dlt operon protects B. cereus against insect humoral immune mediators, including hemolymph cationic AMPs, and may be critical for the establishment of lethal septicemia in insects and in nosocomial infections in humans. PMID:19767427

  12. A medium for the isolation, enumeration and rapid presumptive identification of injured Clostridium perfringens and Bacillus cereus.

    PubMed

    Hood, A M; Tuck, A; Dane, C R

    1990-09-01

    A blood-free egg yolk medium (BCP) containing pyruvate, inositol, mannitol and a bromocresol purple indicator in a nutrient agar base has been developed to initiate the growth of Clostridium perfringens. It is comparable to blood agar for the growth of normal, chilled stored vegetative cells and heat-injured spores of Cl. perfringens and Bacillus cereus. It has the advantage over blood agar in exhibiting presumptive evidence of Cl. perfringens (production of lecithinase and inositol fermentation) after an overnight incubation at 43 degrees - 45 degrees C. Pyruvate, catalase and other hydrogen peroxide degraders were found to remove toxins rapidly formed in media exposed to air and light. Free radical scavengers of superoxide, hydroxyl ions and singlet oxygen were ineffective. Without scavengers the formation of 10-20 micrograms/ml hydrogen peroxide in the exposed medium was indicated and found lethal to injured Cl. perfringens. The BCP medium has been used successfully for the rapid identification and enumeration of Cl. perfringens in foods and faeces from food poisoning outbreaks and cases of suspected infectious diarrhoea. Greater recovery of severely injured vegetative Cl. perfrigens could be obtained by pre-incubation at 37 degrees C of inoculated media for 2-4 h followed by overnight incubation at 43 degrees - 45 degrees C. Tryptose-sulphite-cycloserine and Shahidi-Ferguson-perfringens agar base were found to inhibit the growth of several strains of injured vegetative Cl. perfringens. This was not completely overcome by the addition of pyruvate. The inclusion of mannitol also allows the medium to be used for the presumptive identification of B. cereus. Growth and lecithinase activity are profuse on BCP. Heat-injured spores are recovered equally well on BCP and blood agar. A scheme for the identification of some other clostridia on BCP is presented.

  13. Recovery of Heat Treated Bacillus cereus Spores Is Affected by Matrix Composition and Factors with Putative Functions in Damage Repair

    PubMed Central

    Warda, Alicja K.; Tempelaars, Marcel H.; Abee, Tjakko; Nierop Groot, Masja N.

    2016-01-01

    The ability of spores to recover and grow out after food processing is affected by cellular factors and by the outgrowth conditions. In the current communication we studied the recovery and outgrowth of individually sorted spores in BHI and rice broth media and on agar plates using flow cytometry. We show that recovery of wet heat treated Bacillus cereus ATCC 14579 spores is affected by matrix composition with highest recovery in BHI broth or on rice agar plates, compared to BHI agar plates and rice broth. Data show that not only media composition but also its liquid or solid state affect the recovery of heat treated spores. To determine the impact of factors with putative roles in recovery of heat treated spores, specific genes previously shown to be highly expressed in outgrowing heat-treated spores were selected for mutant construction. Spores of nine B. cereus ATCC 14579 deletion mutants were obtained and their recovery from wet heat treatment was evaluated using BHI and rice broth and agar plates. Deletion mutant spores showed different capacity to recover from heat treatment compared to wild type with the most pronounced effect for a mutant lacking BC5242, a gene encoding a membrane protein with C2C2 zinc finger which resulted in over 95% reduction in recovery compared to the wild type in BHI broth. Notably, similar relative performance of wild type and mutants was observed using the other recovery conditions. We obtained insights on the impact of matrix composition and state on recovery of individually sorted heat treated spores and identified cellular factors with putative roles in this process. These results may provide leads for future developments in design of more efficient combined preservation treatments. PMID:27486443

  14. Recovery of Heat Treated Bacillus cereus Spores Is Affected by Matrix Composition and Factors with Putative Functions in Damage Repair.

    PubMed

    Warda, Alicja K; Tempelaars, Marcel H; Abee, Tjakko; Nierop Groot, Masja N

    2016-01-01

    The ability of spores to recover and grow out after food processing is affected by cellular factors and by the outgrowth conditions. In the current communication we studied the recovery and outgrowth of individually sorted spores in BHI and rice broth media and on agar plates using flow cytometry. We show that recovery of wet heat treated Bacillus cereus ATCC 14579 spores is affected by matrix composition with highest recovery in BHI broth or on rice agar plates, compared to BHI agar plates and rice broth. Data show that not only media composition but also its liquid or solid state affect the recovery of heat treated spores. To determine the impact of factors with putative roles in recovery of heat treated spores, specific genes previously shown to be highly expressed in outgrowing heat-treated spores were selected for mutant construction. Spores of nine B. cereus ATCC 14579 deletion mutants were obtained and their recovery from wet heat treatment was evaluated using BHI and rice broth and agar plates. Deletion mutant spores showed different capacity to recover from heat treatment compared to wild type with the most pronounced effect for a mutant lacking BC5242, a gene encoding a membrane protein with C2C2 zinc finger which resulted in over 95% reduction in recovery compared to the wild type in BHI broth. Notably, similar relative performance of wild type and mutants was observed using the other recovery conditions. We obtained insights on the impact of matrix composition and state on recovery of individually sorted heat treated spores and identified cellular factors with putative roles in this process. These results may provide leads for future developments in design of more efficient combined preservation treatments.

  15. Recovery of Heat Treated Bacillus cereus Spores Is Affected by Matrix Composition and Factors with Putative Functions in Damage Repair.

    PubMed

    Warda, Alicja K; Tempelaars, Marcel H; Abee, Tjakko; Nierop Groot, Masja N

    2016-01-01

    The ability of spores to recover and grow out after food processing is affected by cellular factors and by the outgrowth conditions. In the current communication we studied the recovery and outgrowth of individually sorted spores in BHI and rice broth media and on agar plates using flow cytometry. We show that recovery of wet heat treated Bacillus cereus ATCC 14579 spores is affected by matrix composition with highest recovery in BHI broth or on rice agar plates, compared to BHI agar plates and rice broth. Data show that not only media composition but also its liquid or solid state affect the recovery of heat treated spores. To determine the impact of factors with putative roles in recovery of heat treated spores, specific genes previously shown to be highly expressed in outgrowing heat-treated spores were selected for mutant construction. Spores of nine B. cereus ATCC 14579 deletion mutants were obtained and their recovery from wet heat treatment was evaluated using BHI and rice broth and agar plates. Deletion mutant spores showed different capacity to recover from heat treatment compared to wild type with the most pronounced effect for a mutant lacking BC5242, a gene encoding a membrane protein with C2C2 zinc finger which resulted in over 95% reduction in recovery compared to the wild type in BHI broth. Notably, similar relative performance of wild type and mutants was observed using the other recovery conditions. We obtained insights on the impact of matrix composition and state on recovery of individually sorted heat treated spores and identified cellular factors with putative roles in this process. These results may provide leads for future developments in design of more efficient combined preservation treatments. PMID:27486443

  16. Methylatable Signaling Helix Coordinated Inhibitory Receiver Domain in Sensor Kinase Modulates Environmental Stress Response in Bacillus Cereus

    PubMed Central

    Chen, Jung-Chi; Liu, Jyung-Hurng; Hsu, Duen-Wei; Shu, Jwu-Ching; Chen, Chien-Yen; Chen, Chien-Cheng

    2015-01-01

    σB, an alternative transcription factor, controls the response of the cell to a variety of environmental stresses in Bacillus cereus. Previously, we reported that RsbM negatively regulates σB through the methylation of RsbK, a hybrid sensor kinase, on a signaling helix (S-helix). However, RsbK comprises a C-terminal receiver (REC) domain whose function remains unclear. In this study, deletion of the C-terminal REC domain of RsbK resulted in high constitutive σB expression independent of environmental stimuli. Thus, the REC domain may serve as an inhibitory element. Mutagenic substitution was employed to modify the putative phospho-acceptor residue D827 in the REC domain of RsbK. The expression of RsbKD827N and RsbKD827E exhibited high constitutive σB, indicating that D827, if phosphorylatable, possibly participates in σB regulation. Bacterial two-hybrid analyses demonstrated that RsbK forms a homodimer and the REC domain interacts mainly with the histidine kinase (HK) domain and partly with the S-helix. In particular, co-expression of RsbM strengthens the interaction between the REC domain and the S-helix. Consistently, our structural model predicts a significant interaction between the HK and REC domains of the RsbK intradimer. Here, we demonstrated that coordinated the methylatable S-helix and the REC domain of RsbK is functionally required to modulate σB-mediated stress response in B. cereus and maybe ubiquitous in microorganisms encoded RsbK-type sensor kinases. PMID:26379238

  17. Application of sonication to release DNA from Bacillus cereus for quantitative detection by real-time PCR.

    PubMed

    Fykse, Else Marie; Olsen, Jaran Strand; Skogan, Gunnar

    2003-10-01

    A rapid sonication method for lysis of Gram-positive bacteria was evaluated for use in combination with quantitative real-time polymerase chain reaction (PCR) analyses for detection. Other criteria used for evaluation of lysis were microscopic cell count, colony forming units (cfu), optical density at 600 nm and total yield of DNA measured by PicoGreen fluorescence. The aim of this study was complete disruption of cellular structures and release of DNA without the need for lysing reagents and time-consuming sample preparation. The Gram-positive bacterium Bacillus cereus was used as a model organism for Gram-positive bacteria. It was demonstrated by real-time PCR that maximum yield of DNA was obtained after 3 to 5 min of sonication. The yield of DNA was affected by culture age and the cells from a 4-h-old culture in the exponential phase of growth gave a higher yield of DNA after 5 min of sonication than a 24-h-old culture in the stationary phase of growth. The 4-h-old culture was also more sensitive for lysis caused by heating. The maximum yield of DNA, evaluated by real-time PCR, from a culture of the Gram-negative bacterium Escherichia coli, was obtained after 20 s of sonication. However, the yield of target DNA from E. coli rapidly decreased after 50 s of sonication due to degradation of DNA. Plate counting (cfu), microscopic counting and absorbance at 600 nm showed that the number of viable and structurally intact B. cereus cells decreased rapidly with sonication time, whereas the yield of DNA increased as shown by PicoGreen fluorescence and real-time PCR. The present results indicate that 3-5 min of sonication is sufficient for lysis and release of DNA from samples of Gram-positive bacteria.

  18. Solid-state fermentation: tool for bioremediation of adsorbed textile dyestuff on distillery industry waste-yeast biomass using isolated Bacillus cereus strain EBT1.

    PubMed

    Kadam, Avinash A; Kamatkar, Jeevan D; Khandare, Rahul V; Jadhav, Jyoti P; Govindwar, Sanjay P

    2013-02-01

    Bioremediation of textile dyestuffs under solid-state fermentation (SSF) using industrial wastes as substrate pose an economically feasible, promising, and eco-friendly alternative. The purpose of this study was to adsorb Red M5B dye, a sample of dyes mixture and a real textile effluent on distillery industry waste-yeast biomass (DIW-YB) and its further bioremediation using Bacillus cereus EBT1 under SSF. Textile dyestuffs were allowed to adsorb on DIW-YB. DIW-YB adsorbed dyestuffs were decolorized under SSF by using B. cereus. Enzyme analysis was carried out to ensure decolorization of Red M5B. Metabolites after dye degradation were analyzed using UV-Vis spectroscopy, FTIR, HPLC, and GC-MS. DIW-YB showed adsorption of Red M5B, dyes mixture and a textile wastewater sample up to 87, 70, and 81 %, respectively. DIW-YB adsorbed Red M5B was decolorized up to 98 % by B. cereus in 36 h. Whereas B. cereus could effectively reduce American Dye Manufacture Institute value from DIW-YB adsorbed mixture of textile dyes and textile wastewater up to 70 and 100 %, respectively. Induction of extracellular enzymes such as laccase and azoreductase suggests their involvement in dye degradation. Repeated utilization of DIW-YB showed consistent adsorption and ADMI removal from textile wastewater up to seven cycles. HPLC and FTIR analysis confirms the biodegradation of Red M5B. GC-MS analysis revealed the formation of new metabolites. B. cereus has potential to bioremediate adsorbed textile dyestuffs on DIW-YB. B. cereus along with DIW-YB showed enhanced decolorization performance in tray bioreactor which suggests its potential for large-scale treatment procedures.

  19. Adaptive responses of Bacillus cereus ATCC14579 cells upon exposure to acid conditions involve ATPase activity to maintain their internal pH

    PubMed Central

    Senouci-Rezkallah, Khadidja; Jobin, Michel P; Schmitt, Philippe

    2015-01-01

    This study examined the involvement of ATPase activity in the acid tolerance response (ATR) of Bacillus cereus ATCC14579 strain. In the current work, B. cereus cells were grown in anaerobic chemostat culture at external pH (pHe) 7.0 or 5.5 and at a growth rate of 0.2 h−1. Population reduction and internal pH (pHi) after acid shock at pH 4.0 was examined either with or without ATPase inhibitor N,N’-dicyclohexylcarbodiimide (DCCD) and ionophores valinomycin and nigericin. Population reduction after acid shock at pH 4.0 was strongly limited in cells grown at pH 5.5 (acid-adapted cells) compared with cells grown at pH 7.0 (unadapted cells), indicating that B. cereus cells grown at low pHe were able to induce a significant ATR and Exercise-induced increase in ATPase activity. However, DCCD and ionophores had a negative effect on the ability of B. cereus cells to survive and maintain their pHi during acid shock. When acid shock was achieved after DCCD treatment, pHi was markedly dropped in unadapted and acid-adapted cells. The ATPase activity was also significantly inhibited by DCCD and ionophores in acid-adapted cells. Furthermore, transcriptional analysis revealed that atpB (ATP beta chain) transcripts was increased in acid-adapted cells compared to unadapted cells before and after acid shock. Our data demonstrate that B. cereus is able to induce an ATR during growth at low pH. These adaptations depend on the ATPase activity induction and pHi homeostasis. Our data demonstrate that the ATPase enzyme can be implicated in the cytoplasmic pH regulation and in acid tolerance of B. cereus acid-adapted cells. PMID:25740257

  20. Optimization of Pulsed-field Gel Electrophoresis Procedure for Bacillus cereus.

    PubMed

    Zhang, Hui Juan; Pan, Zhuo; Wei, Jian Chun; Zhang, En Min; Cai, Hong; Liang, Xu Dong; Li, Wei

    2016-03-01

    In order to develop a rapid and reliable method for B. cereus genotyping, factors influencing PFGE results, including preparation of bacterial cells embedded in agarose, lysis of embedded cells, enzymatic digestion of intact genomic DNA, and electrophoresis parameters allowing for reproducible and meaningful DNA fragment separation, were controlled. Optimal cellular growth (Luria-Bertani agar plates for 12-18 h) and lysis conditions (4 h incubation with 500 µg/mL lysozyme) produced sharp bands on the gel. Restriction enzyme NotI was chosen as the most suitable. Twenty-two isolates were analyzed by NotI digestion, using three electrophoretic parameters (EPs). The EP-a was optimal for distinguishing between isolates. The optimized protocol could be completed within 40 h which is a significant improvement over the previous methods. PMID:27109136

  1. Genome Sequence of a Chromium-Reducing Strain, Bacillus cereus S612

    DOE PAGES

    Wang, Dongping; Boukhalfa, Hakim; Ware, Doug S.; Reimus, Paul W.; Daligault, Hajnalka E.; Gleasner, Cheryl D.; Johnson, Shannon L.; Li, Po-E

    2015-12-10

    We report here the genome sequence of an effective chromium-reducing bacterium,Bacillus cereusstrain S612. We found that the size of the draft genome sequence is approximately 5.4 Mb, with a G+C content of 35%, and it is predicted to contain 5,450 protein-coding genes.

  2. Purification, crystallization and X-ray crystallographic studies of a Bacillus cereus MepR-like transcription factor, BC0657.

    PubMed

    Cho, Min Uk; Kim, Meong Il; Hong, Minsun

    2015-06-01

    Transcription factors of the MarR family respond to internal and external changes and regulate a variety of biological functions through ligand association with microorganisms. MepR belongs to the MarR family, and its mutations are associated with the development of multidrug resistance in Staphylococcus aureus, which has caused a growing health problem. In this study, a Bacillus cereus MepR-like transcription regulator, BC0657, was crystallized. The BC0657 crystals diffracted to 2.05 Å resolution and belonged to either space group P6(2)22 or P6(4)22, with unit-cell parameters a = 110.57, b = 110.57, c = 67.29 Å. There was one molecule per asymmetric unit. Future comparative structural studies on BC0657 would extend knowledge of ligand-induced transcriptional regulatory mechanisms in the MarR family and would make a significant contribution to the design of antibiotic drugs against multidrug-resistant bacteria.

  3. Production of poly-β-hydroxybutyrate by Bacillus cereus PS 10 using biphasic-acid-pretreated rice straw.

    PubMed

    Sharma, Priyanka; Bajaj, Bijender Kumar

    2015-08-01

    Poly-β-hydroxybutyrate (PHB) has attracted a great deal of attention in recent years due to its potential use for production of fully degradable bioplastics, however, high cost of PHB production is the major bottleneck for its wide range industrial applications. In the current study rice straw hydrolysate (RSH) was employed as a cost-effective substrate for PHB production. RSH was prepared based on biphasic acid-pretreatment of rice straw i.e. first phase treatment with 1% sulphuric acid at 121 °C for 45 min, followed by second phase treatment using 5% sulphuric acid at 121 °C for 60 min (solid:liquid ratio, 1:10). RSH turned out be an efficient substrate for PHB production from a recently isolated Bacillus cereus PS 10, and yielded higher PHB amount than that obtained with glucose (8.6g/L in glucose based medium vs 10.61 g/L in RSH based medium) after response surface methodology (RSM) based optimization. Design of experiments based on RSM was used to optimize three process variables i.e. amount of RSH and NH4Cl, and medium pH, and enhanced PHB yield (23.3%) was obtained. PHB produced was investigated by differential scanning calorimetry and X-ray diffraction powder analysis. PMID:26047898

  4. Identification and characterization of the endophytic plant growth prompter Bacillus Cereus strain mq23 isolated from Sophora Alopecuroides root nodules

    PubMed Central

    Zhao, Longfei; Xu, Yajun; Sun, Ran; Deng, Zhenshan; Yang, Wenquan; Wei, Gehong

    2011-01-01

    Endophytes MQ23 and MQ23R isolated from Sophora alopecuroides root nodules were characterized by observing their ability to promote plant growth and employing molecular analysis techniques. Results showed that MQ23 and MQ23R are potential N2-fixing endophytes and belong to the same species as Bacillus cereus. MQ23 was shown to be able to produce siderophores, IAA, and demonstrate certain antifungal activity to plant pathogenic fungi. Co-inoculation with MQ23+MQ23II showed a more significant effect than inoculation alone in vitro for most of positive actions suggesting they have a cooperative interaction. Results of plant inoculation with endophytes indicated that the growth indexes of co-inoculated MQ23+MQ23II were higher than those of inoculated alone (p<0.05) (the exception being for root fresh weight) when compared to negative control. There have been little of any studies of nonrhizobial putative endophytes with growth-promotion attributes in S. alopecuroides root nodules. This could be exploited as potential bio-inoculants and biocontrol agents in agriculture. PMID:24031669

  5. Enhancement of cypermethrin degradation by a coculture of Bacillus cereus ZH-3 and Streptomyces aureus HP-S-01.

    PubMed

    Chen, Shaohua; Luo, Jianjun; Hu, Meiying; Lai, Kaiping; Geng, Peng; Huang, Huasheng

    2012-04-01

    Degradation of cypermethrin was significantly enhanced in a coculture of Bacillus cereus ZH-3 and Streptomyces aureus HP-S-01. In the pure culture, longer half-lives (t(1/2)=32.6-43.0h) of cypermethrin were observed, as compared to the mixed cocultures (t(1/2)=13.0h). The optimal degradation conditions were determined to be 28.2°C and pH 7.5 based on response surface methodology (RSM). Under these conditions, the mixed cultures completely metabolized cypermethrin (50mgL(-1)) within 72h. Analysis of degradation products of cypermethrin indicated that the microbial consortium converted cypermethrin to α-hydroxy-3-phenoxy-benzeneacetonitrile, 3-phenoxybenzaldehyde and 4-phenoxyphenyl-2,2-dimethyl-propiophenone, and subsequently transformed these compounds with a maximum specific degradation rate (q(max)), half-saturation constant (K(s)) and inhibition constant (K(i)) of 0.1051h(-1), 31.2289mgL(-1) and 220.5752mgL(-1), respectively. This is the first report of a proposed pathway of degradation of cypermethrin by hydrolysis of ester linkage and oxidization of 3-phenoxybenzyl in a coculture. Finally, this coculture is the first described mixed microbial consortium capable of metabolizing cypermethrin.

  6. Fibrinolytic enzyme production by newly isolated Bacillus cereus SRM-001 with enhanced in-vitro blood clot lysis potential.

    PubMed

    Narasimhan, Manoj Kumar; Chandrasekaran, Muthukumaran; Rajesh, Mathur

    2015-01-01

    The discovery of plasmin-like microbial fibrinolytic enzymes having high specificity and negligible side effects is crucial for thrombolytic therapy. Herein, we report one such extra-cellular fibrinolytic enzyme producing Bacillus cereus SRM-001 isolated from the blood-laden soil of a chicken dump yard. The potency of the enzyme was established with fibrin plate assay and in-vitro blood clot lysis assay. The shake-flask operating parameters and media composition were optimized for maximizing the productivity of the enzyme. The operating parameters, pH 7, 37°C, 1% inoculum volume and 24 h inoculum age, were found to be the optimum. The levels of media components, corn flour (0.3% w/v), soyabean powder (1.9% w/v) and MnSO4 (11.5 mM) were optimized by statistical analysis using Box-Behnken design derived RSM. This resulted in an almost 1.8 fold increase in fibrinolytic enzyme productivity. The 3D response surface plots showed soyabean powder and MnSO4 to be the key ingredients for enhancing the enzyme productivity, whereas corn flour had a marginal effect. The in-vitro blood clot lysis assay conducted at near physiological pH 7 at 37°C showed the enzyme to be a potential therapeutic thrombolytic agent. PMID:26582284

  7. Cyclo(L-Pro-D-Arg): a new antibacterial and antitumour diketopiperazine from Bacillus cereus associated with a rhabditid entomopathogenic.

    PubMed

    Kumar, S Nishanth; Mohandas, C; Nambisan, Bala; Sreerag, R S; Jayaprakas, C A

    2014-05-01

    In continuation of our search for new antimicrobial secondary metabolites from Bacillus cereus associated with rhabditid entomopathogenic nematode, a new microbial diketopiperazine, cyclo(L-Pro-D-Arg), was isolated from the ethyl acetate extract of fermented modified nutrient broth. The chemical structures of the isolated compounds were identified based on their 1D, 2D NMR and high-resolution electrospray ionisation-mass spectroscopy data. Antibacterial activity of the compound was determined by minimum inhibitory concentration and disc diffusion method against medically important bacteria, and the compound was recorded to have significant antibacterial activity against test bacteria. The highest activity was recorded against Klebsiella pneumoniae (1 μg/mL). Cyclo(L-Pro-D-Arg) was recorded to have significant antitumor activity against HeLa cells (IC50 value 50 μg/mL), and this compound was recorded to have no cytotoxicity against normal monkey kidney cells (VERO) up to 100 μg/mL). To the best of our knowledge, this is the first time that cyclo(L-Pro-D-Arg) has been isolated from a microbial natural source.

  8. The effect of calcium and sodium lactates on growth from spores of Bacillus cereus and Clostridium perfringens in a 'sous-vide' beef goulash under temperature abuse.

    PubMed

    Aran, N

    2001-01-22

    The effect of calcium and sodium lactates on growth from spores of Bacillus cereus and Clostridium perfringens at three different concentrations (0, 1.5 and 3% w/w) and at different temperatures (10, 15 and 20 degrees C for B. cereus and 15, 20 and 25 degrees C for C. perfringens) was investigated, using beef goulash as a model system for pasteurised vacuum-packaged convenience foods. Calcium lactate at a level of 3% reduced the pH values of the samples from 6.0 to 5.5. No B. cereus growth was observed at 10 degrees C, but after 7 days at an incubation temperature of 15 degrees C, cell number increased by 1 log cfu/g in the control samples. At this temperature, lactates were seen to be effective at inhibiting growth. Calcium lactate was more inhibitory than sodium lactate as the growth of B. cereus was inhibited at 1.5 and 3% concentrations at 20 degrees C, respectively. Growth of C. perfringens was arrested in the presence of 1.5% calcium lactate at all storage temperatures, whereas growth was inhibited by 3% sodium lactate only at 15 degrees C. PMID:11205943

  9. A Rapid Multiplex Real-Time PCR High-Resolution Melt Curve Assay for the Simultaneous Detection of Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus in Food.

    PubMed

    Forghani, Fereidoun; Wei, Shuai; Oh, Deog-Hwan

    2016-05-01

    Three important foodborne pathogens, Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus, are of great concern for food safety. They may also coexist in food matrices and, in the case of B. cereus and S. aureus, the resulting illnesses can resemble each other owing to similar symptoms. Therefore, their simultaneous detection may have advantages in terms of cost savings and rapidity. Given this context, a rapid multiplex real-time PCR high-resolution melt curve assay for the simultaneous detection of these three pathogens in food was developed. The assay successfully detected B. cereus (gyrB), L. monocytogenes (hly), and S. aureus (nuc) in a single reaction, and the average melting temperatures were 76.23, 80.19, and 74.01°C, respectively. The application of SYTO9 dye and a slow melt curve analysis ramp rate (0.1°C/s) enabled the production of sharp, high-resolution melt curve peaks that were easily distinguishable from each other. The detection limit in food (milk, rice, and lettuce) was 3.7 × 10(3) CFU/g without an enrichment step and 3.7 × 10(1) CFU/g following the 10-h enrichment. Hence, the assay developed here is specific and sensitive, providing an efficient tool for implementation in food for the simultaneous detection of B. cereus, L. monocytogenes, and S. aureus . PMID:27296430

  10. [Detection of toxigenic genes nheA, nheB and nheC in Bacillus cereus strains isolated from powdered milk samples in Costa Rica].

    PubMed

    Rojas, Jonathan; Rodríguez-Rodríguez, Carlos E; Pérez, Cristian; Chaves, Carolina; Arias, María Laura

    2014-09-01

    Powdered milk is a frequently consumed product that does not need to be kept under cold conditions. Nevertheless, different microorganisms may contaminate it. Powdered milk is a highly consumed product by Costa Rican population, and Bacillus cereus is a potentially pathogenic bacteria associated to it, with the ability to develop toxins depending on the presence of the respective codifying genes. The aim of this study was to determine the presence of the toxigenic genes nheA, nheB and nheC from B. cereus strains, found in powdered milk sold at the Costa Rican national market. Five different lots of ten brands of powdered milk, distributed in the metropolitan area of San José, Costa Rica were analyzed. B cereus load was quantified using the Most Probable Number technique and identified using the Vitek system. The presence of the toxigenic genes was determined using the PCR technique. The isolation frequency of this bacteria in the powdered milk samples analyzed reached 50%, with populations ranging from 3 to > 100 MPN/g. Five out from nineteen strains were found positive for the three toxigenic genes, indicating contamination with potentially toxigenic B. cereus in powdered milk distributed in the national market, and an important risk for public. health.

  11. Purification and partial characterization of a novel calcium-binding protein from Bacillus cereus T spores and inhibition of germination by calmodulin antagonists

    SciTech Connect

    Shyu, Y.

    1989-01-01

    A novel calcium-binding protein has been purified from the dormant spores of Bacillus cereus T. B. cereus T spores were extensively washed, broken, and heated at 90{degree}C for 2 min. Using calcium-dependent hydrophobic interaction chromatography plus DEAE-cellulose and hydroxylapatite columns, a single protein was obtained which possessed calcium-binding capacity and some characteristics of calmodulin. This heat-stable protein was retained by hydrophobic matrices or a calmodulin antagonist in a calcium-dependent manner. The crude spore extract displaced bovine brain calmodulin from its antibody in a radioimmunoassay and the immunoreactive specific activity of the partially purified fraction which eluted from phenyl-Sepharose was ca. 200-fold greater than the crude spore extract. Purity of this protein was verified by sodium dodecyl sulfate-polyarcylamide gel electrophoresis and reversed-phase HPLC. Calcium-binding ability was verified with a competitive calcium binding assay using Chelex-100 resin and {sup 45}Ca autoradiography. SDS-PAGE and amino acid composition indicated the molecular weight of the protein was 24-kDa. The effects of two calmodulin antagonists, trifluoperazine (TFP) and N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W-7) on L-alanine-induced germination of Bacillus cereus T spores were examined by measuring commitment to germination, loss of heat resistance, release of calcium, decrease in optical density at 660 nm and phase-contrast microscopy.

  12. Application of MALDI-TOF mass spectrometry for the detection of enterotoxins produced by pathogenic strains of the Bacillus cereus group.

    PubMed

    Tsilia, Varvara; Devreese, Bart; de Baenst, Ilse; Mesuere, Bart; Rajkovic, Andreja; Uyttendaele, Mieke; Van de Wiele, Tom; Heyndrickx, Marc

    2012-10-01

    Enterotoxins produced by different species of the Bacillus cereus group, such as cytotoxin K1 (CytK1) and non-haemolytic enterotoxin (NHE), have been associated with diarrhoeal food poisoning incidents. Detection of CytK1 is not possible with commercial assays while NHE is recognised by an immunological kit (TECRA) that does not specifically target this protein because it is based on polyclonal antibodies. It is evident that the lack of suitable tools for the study of enterotoxins hampers the possibilities for accurate hazard identification and characterisation in microbial food safety risk assessment. We applied matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS) for the detection of CytK1 and NHE produced by pathogenic strains of the B. cereus group using protein digests from 1D gel electrophoresis. Secretion of CytK1 and two of the three components of NHE was confirmed in supernatants of different B. cereus cultures. For each protein, we introduce biomarkers that could be used for the screening of food poisoning or food/environmental isolates that can secrete enterotoxins. For example, tryptic peptides of 2,310.2 and 1,192.5 Da (calculated mass) can be indicators for CytK1 and NheA, respectively, although a simultaneous detection of other enterotoxin-specific peptides is recommended to assure the presence of a toxin in an unknown sample. Comparison of MALDI-TOF/MS with the TECRA kit showed that our methodological strategy performed well and it had the competitive advantage of specifically detecting NheA. Therefore, MALDI-TOF/MS can be successfully incorporated into risk assessment procedures in order to determine the involvement of strains of the B. cereus group in foodborne outbreaks, including the recently described cytK1 producing species, Bacillus cytotoxicus.

  13. Characterization of three Bacillus cereus strains involved in a major outbreak of food poisoning after consumption of fermented black beans (Douchi) in Yunan, China.

    PubMed

    Zhou, Guoping; Bester, Kai; Liao, Bin; Yang, Zushun; Jiang, Rongrong; Hendriksen, Niels Bohse

    2014-10-01

    Three Bacillus cereus strains isolated from an outbreak of food poisoning caused by the consumption of fermented black beans (douchi) containing B. cereus is described. The outbreak involved 139 persons who had nausea, vomiting, and diarrhea. The strains were isolated from vomit and the unprepared douchi. Two of the strains produced the emetic toxin cereulide, as evidenced by polymerase chain reaction analysis for the presence of the nonribosomal synthetase cluster responsible for the synthesis of cereulide and by chemical analysis by high-performance liquid chromatography-mass spectrometry. These two strains belong to genetic group III of B. cereus, and multiple locus sequence typing revealed that the type was ST26, as a major part of B. cereus emetic strains. One of these strains produced significantly more cereulide at 37°C than the type cereulide producer (F4810/72), and it was also able to produce the toxin at 40°C and 42°C. The third strain belongs to genetic group IV, and it is a new multiple locus sequence type closely related to strains that are cytotoxic and enterotoxigenic. It possesses genes for hemolysin BL, nonhemolytic enterotoxin, and cytotoxin K2; however, it varies from the majority of strains possessing genes for hemolysin BL by not being hemolytic. Thus, two B. cereus strains producing the emetic toxin cereulide and a strain producing enterotoxins might have been involved in this food-poisoning incident caused by the consumption of a natural fermented food. The ability of one of the strains to produce cereulide at ≥37°C makes it possible that it is produced in the human gut in addition to occurring in the food.

  14. Mechanism and site of inhibition of Bacillus cereus spore outgrowth by nitrosothiols

    SciTech Connect

    Morris, S.L.

    1982-01-01

    Structure vs. activity studies demonstrate that nitrosothiols inhibit outgrowth of B. cereus spores by reversible covalent bond formation with sensitive spore components. Kinetic studies of the binding of nitrosothiols and iodoacetate, a known sulfhydryl reagent, show that they complete for the same spore sites. Since two other nitrite derivatives, the Perigo factor and the transferrin inhibitor, interfere with iodoacetate label uptake in a kinetically similar fashion, all of these compounds may inhibit spore outgrowth by interacting with the same spore thiol groups. Disruption of spores which have been inhibited by radioactive iodoacetate demonstrates that much of the label is incorporated into a membrane-rich fraction that sediments as a single peak on a sucrose density gradient. SDS gel electrophoresis and autofluorography allows the identification of four intensely labelled proteins with molecular weights of 13,000, 28,000, 29,000, and 30,000. If the iodoacetate labelling is carried out in the presence of nitrosothiol, incorporation is greatly reduced into all components. When germinating spores are labelled with succinate or the lactose analog, o-nitrophenylgalactopyranoside, a significant reduction in the amount of label bound is also observed suggesting that two iodoacetate-reactive sites may be the succinate and lactose permease systems. Severe decreases in the transport of succinate and lactose into iodoacetate and nitrosothiol inhibited spores further implicates a nitrosothiol (iodoacetate) permease interaction. Iodoacetate and nitrosothiols therefore may exert their inhibitory effects by interfering with critical membrane protein sulfhydryl groups, possibly by a a covalent modification mechanism. Some of these sensitive thiols may be involved in active transport processes.

  15. MALDI-TOF MS and CD Spectral Analysis for Identification and Structure Prediction of a Purified, Novel, Organic Solvent Stable, Fibrinolytic Metalloprotease from Bacillus cereus B80

    PubMed Central

    Saxena, Rajshree

    2015-01-01

    The ability to predict protein function from structure is becoming increasingly important; hence, elucidation and determination of protein structure become the major steps in proteomics. The present study was undertaken for identification of metalloprotease produced by Bacillus cereus B80 and recognition of characteristics that can be industrially exploited. The enzyme was purified in three steps combining precipitation and chromatographic methods resulting in 33.5% recovery with 13.1-fold purification of enzyme which was detected as a single band with a molecular mass of 26 kDa approximately in SDS-PAGE and zymogram. The MALDI-TOF MS showed that the enzyme exhibited 70–93% similarity with zinc metalloproteases from various strains Bacillus sp. specifically from Bacillus cereus group. The sequence alignment revealed the presence of zinc-binding region VVVHEMCHMV in the most conserved C terminus region. Secondary structure of the enzyme was obtained by CD spectra and I-TASSER. The enzyme kinetics revealed a Michaelis constant (Km) of 0.140 μmol/ml and Vmax of 2.11 μmol/min. The application studies showed that the enzyme was able to hydrolyze various proteins with highest affinity towards casein followed by BSA and gelatin. The enzyme exhibited strong fibrinolytic, collagenolytic, and gelatinolytic properties and stability in various organic solvents. PMID:25802851

  16. 2-aminohydroxamic acid derivatives as inhibitors of Bacillus cereus phosphatidylcholine preferred phospholipase C PC-PLC(Bc).

    PubMed

    González-Bulnes, Patricia; González-Roura, Albert; Canals, Daniel; Delgado, Antonio; Casas, Josefina; Llebaria, Amadeu

    2010-12-15

    Phosphatidylcholine preferring phospholipase C (PC-PLC) is an important enzyme that plays a key role in a variety of cellular events and lipid homoeostases. Bacillus cereus phospholipase C (PC-PLC(Bc)) has antigenic similarity with the elusive mammalian PC-PLC, which has not thus far been isolated and purified. Therefore the discovery of inhibitors of PC-PLC(Bc) is of current interest. Here, we describe the synthesis and biological evaluation of a new type of compounds inhibiting PC-PLC(Bc). These compounds have been designed by evolution of previously described 2-aminohydroxamic acid PC-PLC(Bc) inhibitors that block the enzyme by coordination of the zinc active site atoms present in PC-PLC(Bc) [Gonzalez-Roura, A.; Navarro, I.; Delgado, A.; Llebaria, A.; Casas, J. Angew. Chem. Int. Ed.2004, 43, 862]. The new compounds maintain the zinc coordinating groups and possess an extra trimethylammonium function, linked to the hydroxyamide nitrogen by an alkyl chain, which is expected to mimic the trimethylammonium group of the phosphatidylcholine PC-PLC(Bc) substrates. Some of the compounds described inhibit the enzyme with IC(50)'s in the low micromolar range. Unexpectedly, the most potent inhibitors found are those that possess a trimethylammonium group but have chemically blocked the zinc coordinating functionalities. The results obtained suggest that PC-PLC(Bc) inhibition is not due to the interaction of compounds with the phospholipase catalytic zinc atoms, but rather results from the inhibitor cationic group recognition by the PC-PLC(Bc) amino acids involved in choline lipid binding.

  17. Regulation of Extracellular Protease Production in Bacillus cereus T: Characterization of Mutants Producing Altered Amounts of Protease

    PubMed Central

    Aronson, A. I.; Angelo, N.; Holt, S. C.

    1971-01-01

    Twenty-nine mutants of Bacillus cereus T were selected on casein agar for their inability to produce large amounts of extracellular protease. They all formed spores, and 27 were also auxotrophs for purines or pyrimidines. Upon reversion to prototrophy, a large fraction regained the capacity to produce protease. Conversely, reversion to normal protease production resulted in loss of the purine or pyrimidine requirement in a large fraction of the revertants. One spontaneous low-protease-producing pyrimidine auxotroph studied in detail grew as well as the wild type and produced spores which were identical to those produced by the wild type on the basis of heat resistance, dipicolinic acid content, density, and appearance in the electron microscope. The rate of protein turnover in the mutant was the same as the wild type. The mutant did grow poorly, however, when casein was the principal carbon source. A mutant excreting 5 to 10 times as much protease as the wild type was isolated as a secondary mutation from the hypoproducer discussed above. Loss of the pyrimidine requirement in this case did not alter the regulation of protease production. Although the secondary mutant grew somewhat faster in most media than the wild type, the final cell yield was lower. The spores of this mutant appeared to have excess coat on the basis of both electron microscopic and chemical studies. There appear to be closely related but distinct catabolic controls for both extracellular protease and spore formation. These controls can be dissociated as for the hypoproducers but can also appear integrated as for the hyperprotease producer. Images PMID:4104235

  18. Statistical Optimization of Fibrinolytic Enzyme Production Using Agroresidues by Bacillus cereus IND1 and Its Thrombolytic Activity In Vitro

    PubMed Central

    Prakash Vincent, Samuel Gnana

    2014-01-01

    A potent fibrinolytic enzyme-producing Bacillus cereus IND1 was isolated from the Indian food, rice. Solid-state fermentation was carried out using agroresidues for the production of fibrinolytic enzyme. Among the substrates, wheat bran supported more enzyme production and has been used for the optimized enzyme production by statistical approach. Two-level full-factorial design demonstrated that moisture, supplementation of beef extract, and sodium dihydrogen phosphate have significantly influenced enzyme production (P < 0.05). A central composite design resulted in the production of 3699 U/mL of enzyme in the presence of 0.3% (w/w) beef extract and 0.05% (w/w) sodium dihydrogen phosphate, at 100% (v/w) moisture after 72 h of fermentation. The enzyme production increased fourfold compared to the original medium. This enzyme was purified to homogeneity by ammonium sulfate precipitation, diethylaminoethyl-cellulose ion-exchange chromatography, Sephadex G-75 gel filtration chromatography, and casein-agarose affinity chromatography and had an apparent molecular mass of 29.5 kDa. The optimum pH and temperature for the activity of fibrinolytic enzyme were found to be 8.0 and 60°C, respectively. This enzyme was highly stable at wide pH range (7.0–9.0) and showed 27% ± 6% enzyme activity after initial denaturation at 60°C for 1 h. In vitro assays revealed that the enzyme could activate plasminogen and significantly degraded the fibrin net of blood clot, which suggests its potential as an effective thrombolytic agent. PMID:25003130

  19. Mutational analysis of the two zinc-binding sites of the Bacillus cereus 569/H/9 metallo-beta-lactamase.

    PubMed Central

    de Seny, Dominique; Prosperi-Meys, Christelle; Bebrone, Carine; Rossolini, Gian Maria; Page, Michael I; Noel, Philippe; Frère, Jean-Marie; Galleni, Moreno

    2002-01-01

    The metallo-beta-lactamase BcII from Bacillus cereus 569/H/9 possesses a binuclear zinc centre. The mono-zinc form of the enzyme displays an appreciably high activity, although full efficiency is observed for the di-zinc enzyme. In an attempt to assign the involvement of the different zinc ligands in the catalytic properties of BcII, individual substitutions of selected amino acids were generated. With the exception of His(116)-->Ser (H116S), C221A and C221S, the mono- and di-zinc forms of all the other mutants were poorly active. The activity of H116S decreases by a factor of 10 when compared with the wild type. The catalytic efficiency of C221A and C221S was zinc-dependent. The mono-zinc forms of these mutants exhibited a low activity, whereas the catalytic efficiency of their respective di-zinc forms was comparable with that of the wild type. Surprisingly, the zinc contents of the mutants and the wild-type BcII were similar. These data suggest that the affinity of the beta-lactamase for the metal was not affected by the substitution of the ligand. The pH-dependence of the H196S catalytic efficiency indicates that the zinc ions participate in the hydrolysis of the beta-lactam ring by acting as a Lewis acid. The zinc ions activate the catalytic water molecule, but also polarize the carbonyl bond of the beta-lactam ring and stabilize the development of a negative charge on the carbonyl oxygen of the tetrahedral reaction intermediate. Our studies also demonstrate that Asn(233) is not directly involved in the interaction with the substrates. PMID:11964169

  20. The Endospore-Forming Pathogen Bacillus cereus Exploits a Small Colony Variant-Based Diversification Strategy in Response to Aminoglycoside Exposure

    PubMed Central

    Frenzel, Elrike; Kranzler, Markus; Stark, Timo D.; Hofmann, Thomas

    2015-01-01

    ABSTRACT Bacillus cereus is among the microorganisms most often isolated from cases of food spoilage and causes gastrointestinal diseases as well as nongastrointestinal infections elicited by the emetic toxin cereulide, enterotoxins, and a panel of tissue-destructive virulence factors. This opportunistic pathogen is increasingly associated with rapidly fatal clinical infections especially linked to neonates and immunocompromised individuals. Fatality results from either the misdiagnosis of B. cereus as a contaminant of the clinical specimen or from failure of antibiotic therapy. Here we report for the first time that exposure to aminoglycoside antibiotics induces a phenotype switching of emetic B. cereus subpopulations to a slow-growing small colony variant (SCV) state. Along with altered antibiotic resistance, SCVs showed distinct phenotypic and metabolic properties, bearing the risk of antibiotic treatment failure and of clinical misdiagnosis by standard identification tests used in routine diagnostic. The SCV subpopulation is characterized by enhanced production of the toxin cereulide, but it does not secrete tissue-destructive and immune system-affecting enzymes such as sphingomyelinase and phospholipase. SCVs showed significantly prolonged persistence and decreased virulence in the Galleria mellonella model for bacterial infections, indicating diversification concerning their ecological lifestyle. Importantly, diversification into coexisting wild-type and SCV subpopulations also emerged during amikacin pressure during in vivo infection experiments. PMID:26646008

  1. Identification of CdnL, a Putative Transcriptional Regulator Involved in Repair and Outgrowth of Heat-Damaged Bacillus cereus Spores.

    PubMed

    Warda, Alicja K; Tempelaars, Marcel H; Boekhorst, Jos; Abee, Tjakko; Nierop Groot, Masja N

    2016-01-01

    Spores are widely present in the environment and are common contaminants in the food chain, creating a challenge for food industry. Nowadays, heat treatments conventionally applied in food processing may become milder to comply with consumer desire for products with higher sensory and nutritional values. Consequently subpopulations of spores may emerge that are sublethally damaged rather than inactivated. Such spores may germinate, repair damage, and eventually grow out leading to uncontrolled spoilage and safety issues. To gain insight into both the behaviour of damaged Bacillus cereus spores, and the process of damage repair, we assessed the germination and outgrowth performance using OD595 measurements and microscopy combined with genome-wide t