Science.gov

Sample records for aeruginosa cytochrome c-551

  1. The evolutionary stability of cytochrome c-551 in Pseudomonas aeruginosa and Pseudomonas fluorescens biotype C

    PubMed Central

    Ambler, R. P.

    1974-01-01

    Cytochrome c-551 was prepared from nine different strains of Pseudomonas aeruginosa and six of Pseudomonas fluorescens biotype C, and their amino acid sequences were compared with the sequences previously determined for the cytochromes of type strains of each species. The standard of sequence examination was such that all single amino acid substitutions, delections or insertions ought to have been detected. Balanced double changes in sites in the same part of the sequence might have escaped detection. The standard of some of the quantitative amino acid analyses was not as high as would be required for the investigation of completely unknown sequences. Eight of the Ps. aeruginosa sequences could not be distinguished from the type sequence, whereas the ninth had a single amino acid substitution. The sequences from Ps. fluorescens biotype C were more varied, differing in from zero to four substitutions from the type sequence, with the most diverse sequences differing in seven positions. The results for Ps. aeruginosa are interpreted as evidence that neutral mutations are not responsible for much molecular evolution. The superficially paradoxical differences in the results for the two species are discussed. PMID:4362497

  2. Modulation of the ligand-field anisotropy in a series of ferric low-spin cytochrome c mutants derived from Pseudomonas aeruginosa cytochrome c-551 and Nitrosomonas europaea cytochrome c-552: a nuclear magnetic resonance and electron paramagnetic resonance study.

    PubMed

    Zoppellaro, Giorgio; Harbitz, Espen; Kaur, Ravinder; Ensign, Amy A; Bren, Kara L; Andersson, K Kristoffer

    2008-11-19

    Cytochromes of the c type with histidine-methionine (His-Met) heme axial ligation play important roles in electron-transfer reactions and in enzymes. In this work, two series of cytochrome c mutants derived from Pseudomonas aeruginosa (Pa c-551) and from the ammonia-oxidizing bacterium Nitrosomonas europaea (Ne c-552) were engineered and overexpressed. In these proteins, point mutations were induced in a key residue (Asn64) near the Met axial ligand; these mutations have a considerable impact both on heme ligand-field strength and on the Met orientation and dynamics (fluxionality), as judged by low-temperature electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectra. Ne c-552 has a ferric low-spin (S = 1/2) EPR signal characterized by large g anisotropy with g(max) resonance at 3.34; a similar large g(max) value EPR signal is found in the mitochondrial complex III cytochrome c1. In Ne c-552, deletion of Asn64 (NeN64Delta) changes the heme ligand field from more axial to rhombic (small g anisotropy and g(max) at 3.13) and furthermore hinders the Met fluxionality present in the wild-type protein. In Pa c-551 (g(max) at 3.20), replacement of Asn64 with valine (PaN64V) induces a decrease in the axial strain (g(max) at 3.05) and changes the Met configuration. Another set of mutants prepared by insertion (ins) and/or deletion (Delta) of a valine residue adjacent to Asn64, resulting in modifications in the length of the axial Met-donating loop (NeV65Delta, NeG50N/V65Delta, PaN50G/V65ins), did not result in appreciable alterations of the originally weak (Ne c-552) or very weak (Pa c-551) axial field but had an impact on Met orientation, fluxionality, and relaxation dynamics. Comparison of the electronic fingerprints in the overexpressed proteins and their mutants reveals a linear relationship between axial strain and average paramagnetic heme methyl shifts, irrespective of Met orientation or dynamics. Thus, for these His-Met axially coordinated Fe

  3. Docking stability and electronic structure of azurin-cytochrome c551 complex system

    NASA Astrophysics Data System (ADS)

    Sugiyama, Ayumu; Takamatsu, Yuichiro; Nishikawa, Keigo; Nagao, Hidemi; Nishikawa, Kiyoshi

    We investigate the docking structure between cytochrome c551 and azurin proteins by quantum mechanical calculation and molecular dynamics (MD). A model for the docking structure of the cytochrome-azurin complex is presented. We calculate the charge distribution around the active site for each protein and force field parameters to simulate the complex system by MD. We estimate some physical properties, such as binding free energy and the dynamical cross-correlation map. We discuss the stability of the cytochrome c551-azurin complex system.

  4. The amino acid sequence of cytochromes c-551 from three species of Pseudomonas

    PubMed Central

    Ambler, R. P.; Wynn, Margaret

    1973-01-01

    The amino acid sequences of the cytochromes c-551 from three species of Pseudomonas have been determined. Each resembles the protein from Pseudomonas strain P6009 (now known to be Pseudomonas aeruginosa, not Pseudomonas fluorescens) in containing 82 amino acids in a single peptide chain, with a haem group covalently attached to cysteine residues 12 and 15. In all four sequences 43 residues are identical. Although by bacteriological criteria the organisms are closely related, the differences between pairs of sequences range from 22% to 39%. These values should be compared with the differences in the sequence of mitochondrial cytochrome c between mammals and amphibians (about 18%) or between mammals and insects (about 33%). Detailed evidence for the amino acid sequences of the proteins has been deposited as Supplementary Publication SUP 50015 at the National Lending Library for Science and Technology, Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1973), 131, 5. PMID:4352718

  5. Importance of hydrophobic interaction between a SoxB-type cytochrome c oxidase with its natural substrate cytochrome c-551 and its mutants.

    PubMed

    Kagekawa, Sayaka; Mizukami, Makoto; Noguchi, Shunsuke; Sakamoto, Junshi; Sone, Nobuhito

    2002-08-01

    Cytochrome c-551, the electron donor of SoxB-type cytochrome c oxidase in thermophilic bacilli, can be over-expressed in Bacillus thermodenitrificans cells by tranformation with pSTEc551. Several mutant cytochromes c-551 were prepared by site-directed mutagenesis to this expression plasmid. Among them, several Lys residues were changed to Ala/Ser, and we found that these mutant cytochromes retained their activity as substrates, although their K(m) values were 0.04-0.12 microM, depending on the site replaced. In contrast, the C19A mutant cytochrome, which was produced in Brevibacillus choshinensis as a secretion protein, lost its activity as a substrate, suggesting that the fatty acyl-glyceryl residue covalently bound to the cysteine residue of the wild-type c-551 plays a very important role in the activity. The importance of the hydrophobic fatty acid residue for the binding of cytochrome c-551 to the oxidase was also shown by the loss of substrate activity in deacylated cytochrome c-551. These results show the importance of the hydrophobic interaction between this cytochrome and SoxB-type oxidase, despite the fact that the importance of an electrostatic interaction between cytochrome c and mitochondrial cytochrome aa(3) oxidase has already been established.

  6. Free Energy Calculation of Docking Structure of Azurin(I)-Cytochrome c551(III) Complex Systems by Using the Energetic Representation

    NASA Astrophysics Data System (ADS)

    Nishikawa, Keigo; Yamamoto, Tetsunori; Sugiyama, Ayumu; Purqon, Acep; Mizukami, Taku; Shimahara, Hideto; Nagao, Hidemi; Nishikawa, Kiyoshi

    2008-02-01

    We investigate the docking stability of Azurin(I)—Cytochrome C551(III) complex by molecular dynamic simulations. The charge distribution around the active sites for Azurin(I) and Cytochrome C551(III) is estimated by quantum chemical calculation to simulate the complex system by molecular dynamic simulations. We estimete some physical properties such as the root square mean deviation, distance between iron ion in active site of Cytochrome C551(III) and copper ion in active site of Azurin(I), the dynamical cross-correlation map and free energy in the energetic representation. We discuss the stability of the complex system of Azurin(I)—Cytochrome C551(III) from these properties.

  7. Amicyanin transfers electrons from methylamine dehydrogenase to cytochrome c-551i via a ping-pong mechanism, not a ternary complex.

    PubMed

    Meschi, Francesca; Wiertz, Frank; Klauss, Linda; Cavalieri, Chiara; Blok, Anneloes; Ludwig, Bernd; Heering, Hendrik A; Merli, Angelo; Rossi, Gian Luigi; Ubbink, Marcellus

    2010-10-20

    The first crystal structure of a ternary redox protein complex was comprised of the enzyme methylamine dehydrogenase (MADH) and two electron transfer proteins, amicyanin and cytochrome c-551i from Paracoccus denitrificans [Chen et al. Science 1994, 264, 86-90]. The arrangement of the proteins suggested possible electron transfer from the active site of MADH via the amicyanin copper ion to the cytochrome heme iron, although the distance between the metals is large. We studied the interactions between these proteins in solution. A titration followed by NMR spectroscopy shows that amicyanin binds cytochrome c-551i. The interface comprises the hydrophobic and positive patches of amicyanin, not the binding site observed in the ternary complex. NMR experiments further show that amicyanin binds tightly to MADH with an interface that matches the one observed in the crystal structure and that mostly overlaps with the binding site for cytochrome c-551i. Upon addition of cytochrome c-551i, no changes in the NMR spectrum of MADH-bound amicyanin are observed, suggesting that a possible interaction of the cytochrome with the binary complex must be very weak, with a dissociation constant higher than 2 mM. Reconstitution of the entire redox chain in vitro demonstrates that amicyanin can react rapidly with cytochrome c-551i, but that association of amicyanin with MADH inhibits this reaction. It is concluded that electron transfer from MADH to cytochrome c-551i does not involve a ternary complex but occurs via a ping-pong mechanism in which amicyanin uses the same interface for the reactions with MADH and cytochrome c-551i.

  8. Studies of cytochrome c-551 unfolding using fluorescence correlation spectroscopy and other biophysical techniques.

    PubMed

    Sil, Pallabi; Paul, Simanta Sarani; Silvio, Eva Di; Travaglini-Allocatelli, Carlo; Chattopadhyay, Krishnananda

    2016-09-21

    In this paper, we have studied the equilibrium unfolding transitions of cytochrome c from Pseudomonas aeruginosa (cytc551), a small bacterial protein. Similar to eukaryotic cytochrome c, cytc551 folds sequentially, although significant differences exist in the order of folding units (foldons). There are two regions of cytc551 (N-terminal helix with residue number 3 to 10 and the loop 2 region containing residues 34 to 45), in which no foldon unit could be assigned. In addition, the helix containing the Cys-X-X-Cys-His motif, adjacent to the N-terminal helix (residue number 3 to 10), shows unexplained ultra-fast collapse. To obtain further insights, we have studied cytc551 site-directed mutants using fluorescence correlation spectroscopy (FCS) and molecular dynamics simulation. We have found out that cytc551 unfolds through the formation of a fluorescently dark intermediate state and the amplitude of the dark component depends on the position of labeling. We have utilized this position dependence to propose a shape change model during the unfolding of cytc551. The present results show that the N-terminal helix remains in a collapsed position even in the completely unfolded state and this helix may act as a rigid support to guide the folding of its adjacent helix. This rigid support may be responsible for the ultra-fast collapse of the adjacent helix region, which occurs during the initial events of folding. The present results also show that the C-terminal end of loop 2 traverses a large distance during unfolding compared to the N-terminal end, which justifies the observed flexibility of the loop 2 region.

  9. A purification procedure for the soluble cytochrome oxidase and some other respiratory proteins from Pseudomonas aeruginosa.

    PubMed

    Parr, S R; Barber, D; Greenwood, C

    1976-08-01

    The production of the soluble cytochrome oxidase/nitrite reductase in the bacterium Pseudomonas aeruginosa is favoured by anaerobic conditions and the presence of KNO3(20g/l) in the culture medium. Of three methods commonly used for the disruption of bacterial suspensions (ultrasonication, liquid-shear homogenization and glass-bead grinding), sonication proved the most efficient in releasing the Pseudomonas cytochrome oxidase. A polarographic assay of Pseudomonas cytochrome oxidase activity with sodium ascorbate as substrate and NNN'N'-tetramethyl-p-phenylenediamine dihydrochloride as electron mediator is described. A purification procedure was developed which can be used on the small scale (40-litre cultures) or the large scale (400-litre cultures) and provides high yields of three respiratory-chain proteins, Pseudomonas cytochrome oxidase, cytochrome c551 and azurin, in a pure state. A typical preparation of 250g of Ps.aeruginosa cell paste yielded 180mg of Pseudomonas cytochrome oxidase, 81 mg of Pseudomonas cytochrome c551 and 275mg of Pseudomonas azurin.

  10. Catalysis by Methylamine Dehydrogenase and Electron Transfer to Amicyanin and Cytochrome C(551I) from Paracoccus Denitrificans.

    NASA Astrophysics Data System (ADS)

    Brooks, Harold Burns

    1995-01-01

    The quinoprotein methylamine dehydrogenase (MADH), a type I copper protein, amicyanin, and cytochrome c _{55li} form a physiologic ternary complex (Chen et al. (1994) Science 264, 86-90) in which electrons are transferred from tryptophan tryptophylquinone to copper to heme. The reduction of MADH by rm H_3- and rm D_3 -methylamine, the reoxidation of MADH by amicyanin, and the reduction of cytochrome c_{55li } by reduced amicyanin in the presence of MADH have been studied by stopped-flow spectroscopy. When rm CD_3NH_2 was used as a substrate for MADH a deuterium kinetic isotope effect of 17.2 was measured for the hydrogen abstraction step. The maximum deuterium kinetic isotope effect that was measured in steady-state kinetic experiments was 3.0. The temperature dependencies of the rate constants for the reaction of methylamine with MADH were also determined. An iminosemiquinone intermediate for the oxidation of substrate-reduced MADH by amicyanin was detected using stopped-flow spectroscopy, and the presence of the substrate derived nitrogen was confirmed by electron spin echo envelope modulation (ESEEM) spectroscopy. Marcus theory, which was used to analyze the electron transfer reaction between the dithionite-generated redox forms of MADH and amicyanin, gave values of 218 kJ rm mol^{ -1} (2.3 eV) for the reorganizational energy (lambda ) and 11.6 rm cm^{-1} for the coupling rm (H_{AB}). In contrast, the oxidation of substrate-reduced MADH by amicyanin was a gated electron transfer reaction with values for DeltaH* of 76 kJ rm mol^ {-1} and DeltaS* of -41 J rm mol^{ -1} ^circ K^ {-1}. These studies are consistent with the formation of transient unstable intermediates preceeding electron transfer between MADH and amicyanin. Preliminary investigations of the ternary complex of MADH, amicyanin, and cytochrome c_{55li } suggest two distinct cytochrome c _{55li} binding sites on amicyanin. This conclusion is supported by the biphasic nature of the stopped -flow trace

  11. The electron-transfer reaction between azurin and the cytochrome c oxidase from Pseudomonas aeruginosa.

    PubMed

    Parr, S R; Barber, D; Greenwood, C; Brunori, M

    1977-11-01

    A stopped-flow investigation of the electron-transfer reaction between oxidized azurin and reduced Pseudomonas aeruginosa cytochrome c-551 oxidase and between reduced azurin and oxidized Ps. aeruginosa cytochrome c-551 oxidase was performed. Electrons leave and enter the oxidase molecule via its haem c component, with the oxidation and reduction of the haem d1 occurring by internal electron transfer. The reaction mechanism in both directions is complex. In the direction of oxidase oxidation, two phases assigned on the basis of difference spectra to haem c proceed with rate constants of 3.2 X 10(5)M-1-S-1 and 2.0 X 10(4)M-1-S-1, whereas the haem d1 oxidation occurs at 0.35 +/- 0.1S-1. Addition of CO to the reduced enzyme profoundly modifies the rate of haem c oxidation, with the faster process tending towards a rate limit of 200S-1. Reduction of the oxidase was similarly complex, with a fast haem c phase tending to a rate limit of 120S-1, and a slower phase with a second-order rate of 1.5 X 10(4)M-1-S-1; the internal transfer rate in this direction was o.25 +/- 0.1S-1. These results have been applied to a kinetic model originally developed from temperature-jump studies.

  12. Aminoglycoside-resistant mutants of Pseudomonas aeruginosa deficient in cytochrome d, nitrite reductase, and aerobic transport.

    PubMed Central

    Bryan, L E; Kwan, S

    1981-01-01

    Two gentamicin-resistant mutants of Pseudomonas aeruginosa PAO 503 were selected after ethyl methane sulfonate mutagenesis. Mutant PAO 2403 had significantly increased resistance to aminoglycoside but not to other antibiotics. Mutant PAO 2402 showed a similar spectrum of resistance but of lower magnitude. Both mutants showed no detectable cytochrome d and had a high frequency of reversion to a fully wild-type phenotype. PAO 2403 had a marked decrease and PAO 2402 had a moderate decrease in nitrite reductase activity. Both mutants had reduced uptake of gentamicin and dihydrostreptomycin. Mutant PAO 2403 showed a general decrease in transport rate of cationic compounds, whereas mutant PAO 2402 had only deficient glucose transport. Both mutants showed enhanced rates of glutamine transport and no change in glutamic acid transport. Other components of electron transport and oxidative phosphorylation were normal. These mutants involve ferrocytochrome C551 oxidoreductase formed only on anaerobic growth but illustrate transport defects in aerobically grown cells. PMID:6791588

  13. Circular-dichroic properties and secondary structure of Pseudomonas aeruginosa soluble cytochrome c oxidase.

    PubMed

    Tordi, M G; Silvestrini, M C; Colosimo, A; Provencher, S; Brunori, M

    1984-03-15

    The c.d. spectra of Pseudomonas aeruginosa cytochrome c oxidase in the oxidized state and the reduced state are reported in the visible- and u.v. absorption regions. In the visible region the comparison between the spectra of reduced cytochrome c oxidase and ferrocytochrome c-551 allows the identification of the c.d. bands mainly due to the d1 haem chromophore in cytochrome c oxidase. In the near-u.v. region the assignment of some of the observed peaks to the haem groups and to the aromatic amino acid residues is proposed. A careful analysis of the data in the far-u.v. region leads to the determination of the relative amounts of alpha-helix and beta-sheet in the enzyme, giving for the first time a picture of its secondary structure. A significant difference in this respect between the reduced and the oxidized species is observed and discussed in the light of similar conclusions reported by other workers.

  14. [Properties of a nitrite reductase inhibitor protein from Pseudomonas aeruginosa].

    PubMed

    Karapetian, A V; Nalbandian, R M

    1993-08-01

    The amino acid composition and major physico-chemical properties of the "nonblue" copper protein isolated earlier from Pseudomonas aeruginosa have been determined. It has been found that the azurin oxidase, cytochrome c551 oxidase and superoxide dismutase activities of the enzyme are inhibited by this protein. The inhibition seems to be due to the protein interaction with the electron-accepting center of nitrite reductase.

  15. Gallium-Protoporphyrin IX Inhibits Pseudomonas aeruginosa Growth by Targeting Cytochromes

    PubMed Central

    Hijazi, Sarah; Visca, Paolo; Frangipani, Emanuela

    2017-01-01

    Pseudomonas aeruginosa is a challenging pathogen due to both innate and acquired resistance to antibiotics. It is capable of causing a variety of infections, including chronic lung infection in cystic fibrosis (CF) patients. Given the importance of iron in bacterial physiology and pathogenicity, iron-uptake and metabolism have become attractive targets for the development of new antibacterial compounds. P. aeruginosa can acquire iron from a variety of sources to fulfill its nutritional requirements both in the environment and in the infected host. The adaptation of P. aeruginosa to heme iron acquisition in the CF lung makes heme utilization pathways a promising target for the development of new anti-Pseudomonas drugs. Gallium [Ga(III)] is an iron mimetic metal which inhibits P. aeruginosa growth by interfering with iron-dependent metabolism. The Ga(III) complex of the heme precursor protoporphyrin IX (GaPPIX) showed enhanced antibacterial activity against several bacterial species, although no inhibitory effect has been reported on P. aeruginosa. Here, we demonstrate that GaPPIX is indeed capable of inhibiting the growth of clinical P. aeruginosa strains under iron-deplete conditions, as those encountered by bacteria during infection, and that GaPPIX inhibition is reversed by iron. Using P. aeruginosa PAO1 as model organism, we show that GaPPIX enters cells through both the heme-uptake systems has and phu, primarily via the PhuR receptor which plays a crucial role in P. aeruginosa adaptation to the CF lung. We also demonstrate that intracellular GaPPIX inhibits the aerobic growth of P. aeruginosa by targeting cytochromes, thus interfering with cellular respiration. PMID:28184354

  16. Gallium-Protoporphyrin IX Inhibits Pseudomonas aeruginosa Growth by Targeting Cytochromes.

    PubMed

    Hijazi, Sarah; Visca, Paolo; Frangipani, Emanuela

    2017-01-01

    Pseudomonas aeruginosa is a challenging pathogen due to both innate and acquired resistance to antibiotics. It is capable of causing a variety of infections, including chronic lung infection in cystic fibrosis (CF) patients. Given the importance of iron in bacterial physiology and pathogenicity, iron-uptake and metabolism have become attractive targets for the development of new antibacterial compounds. P. aeruginosa can acquire iron from a variety of sources to fulfill its nutritional requirements both in the environment and in the infected host. The adaptation of P. aeruginosa to heme iron acquisition in the CF lung makes heme utilization pathways a promising target for the development of new anti-Pseudomonas drugs. Gallium [Ga(III)] is an iron mimetic metal which inhibits P. aeruginosa growth by interfering with iron-dependent metabolism. The Ga(III) complex of the heme precursor protoporphyrin IX (GaPPIX) showed enhanced antibacterial activity against several bacterial species, although no inhibitory effect has been reported on P. aeruginosa. Here, we demonstrate that GaPPIX is indeed capable of inhibiting the growth of clinical P. aeruginosa strains under iron-deplete conditions, as those encountered by bacteria during infection, and that GaPPIX inhibition is reversed by iron. Using P. aeruginosa PAO1 as model organism, we show that GaPPIX enters cells through both the heme-uptake systems has and phu, primarily via the PhuR receptor which plays a crucial role in P. aeruginosa adaptation to the CF lung. We also demonstrate that intracellular GaPPIX inhibits the aerobic growth of P. aeruginosa by targeting cytochromes, thus interfering with cellular respiration.

  17. A temperature-jump study of the reaction between azurin and cytochrome c oxidase from Pseudomonas aeruginosa.

    PubMed

    Brunori, M; Parr, S R; Greenwood, C; Wilson, M T

    1975-10-01

    The electron-transfer reaction between azurin and the cytochrome oxidase from Pseudomonas aeruginosa was investigated by temperature-jump relaxation in the absence of O2 and in the presence of CO. The results show that: (i) reduced azurin exists in two forms in equilibrium, only one of which is capable of exchanging electrons with the Pseudomonas cytochrome oxidase, in agreement with M. T. Wilson, C. Greenwood, M. Brunori & E. Antonini (1975) (Biochem. J. 145, 449-457); (ii) the electron transfer between azurin and Pseudomonas cytochrome oxidase occurs within a molecular complex of the two proteins; this internal transfer becomes rate-limiting at high reagent concentrations.

  18. Correlation between the stability and redox potential of three homologous cytochromes c from two thermophiles and one mesophile.

    PubMed

    Takeda, Taku; Sonoyama, Takafumi; Takayama, Shin-ichi J; Mita, Hajime; Yamamoto, Yasuhiko; Sambongi, Yoshihiro

    2009-02-01

    The stability of the oxidized and reduced forms of three homologous cytochromes c from two thermophiles and one mesophile was systematically monitored by means of Soret absorption measurements in the presence of various concentrations of a denaturant, guanidine thiocyanate, at pH 7.0 at 25 degrees C. Thermophilic Hydrogenobacter thermophilus cytochrome c(552) was the most stable in both redox states, followed by moderately thermophilic Hydrogenophilus thermoluteolus cytochrome c(552), and then mesophilic Pseudomonas aeruginosa cytochrome c(551). Further stability and electrochemical analysis of the three proteins and the reciprocal variants, which exhibited a different hydrophobic interaction with the heme, showed that the one with the higher stability in both redox states had the lower redox potential. Consequently, these cytochromes c probably adapted to the cellular environments of the original bacteria with correlated stability and redox potential constraints, which are in part regulated by the hydrophobicity around the heme.

  19. A mutant of Pseudomonas aeruginosa that lacks c-type cytochromes has a functional cyanide-insensitive oxidase.

    PubMed

    Ray, A; Williams, H D

    1996-01-01

    Using transposon mutagenesis and screening for the loss of the ability to oxidise the artificial electron donor N,N,N',N'-tetramethyl-p-phenylenediamine, we have isolated a mutant of Pseudomonas aeruginosa that lacks all c-type cytochromes. This mutant is unable to grow anaerobically with nitrate as a terminal electron acceptor. Analysis of its respiratory function indicates that the mutant has lost its cytochrome c oxidase-terminated respiratory pathway but the cyanide-insensitive oxidase-terminated branch remains functional. Complementation of the mutant by in vivo cloning led to recovery of the wild-type characteristics. These data are consistent with the idea that the cyanide-insensitive respiratory pathway does not contain haem c and that the pathway's terminal oxidase is a quinol oxidase.

  20. In vivo studies disprove an obligatory role of azurin in denitrification in Pseudomonas aeruginosa and show that azu expression is under control of rpoS and ANR.

    PubMed

    Vijgenboom, E; Busch, J E; Canters, G W

    1997-09-01

    The role of the blue copper protein azurin and cytochrome C551 as the possible electron donors to nitrite reductase in the dissimilatory nitrate reduction pathway in Pseudomonas aeruginosa have been investigated. It was shown by an in vivo approach with mutant strains of P. aeruginosa deficient in one or both of these electron-transfer proteins that cytochrome C551, but not azurin, is functional in this pathway. Expression studies demonstrated the presence of azurin in both aerobic and anaerobic cultures. A sharp increase in azurin expression was observed when cultures were shifted from exponential to stationary phase. The stationary-phase sigma factor, sigma s, was shown to be responsible for this induction. In addition, one of the two promoters transcribing the azu gene was regulated by the anaerobic transcriptional regulator ANR. An azurin-deficient mutant was more sensitive to hydrogen peroxide and paraquat than the wild-type P. aeruginosa. These results suggest a physiological role of azurin in stress situations like those encountered in the transition to the stationary phase.

  1. Cytochromes c-552 from two strains of the hydrogenotrophic bacterium Alcaligenes eutrophus are sequence homologs of the cytochromes c8 from the denitrifying pseudomonads.

    PubMed

    Klarskov, K; Bartsch, R G; Meyer, T E; Cusanovich, M A; Van Beeumen, J J

    1997-12-05

    Soluble cytochromes c-552 were purified from two strains of the hydrogenothrophic species Alcaligenes eutrophus and their amino acid sequences determined. The two cytochromes were found to have 5 differences out of a total of 89 residues. The proteins are clearly related to the cytochromes c8 (formerly called Pseudomonas cytochromes c-551), but require a single residue insertion after the methionine sixth heme ligand relative to the Pseudomonas aeruginosa protein. The consensus residues Trp56 and Trp77, characteristic for the c8 family, are also present in the Alcaligenes proteins. Overall, the Alcaligenes cytochromes are only 43% identical to the Pseudomonas proteins which average 68% identity to one another. They are also only 45% identical to cytochrome c8 from Hydrogenobacter thermophilus, another hydrogenothrophic species, which indicates that the hydrogen utilizing bacteria are not more closely related to one another than they are to other species. The finding of cytochrome c8 in Alcaligenes eutrophus completes the recent characterization of a cytochrome cd1-nitrite reductase from this bacterial species and suggests the existence of the same denitrification pathway as in Pseudomonas where these two proteins are reaction partners.

  2. Expression of multiple cbb3 cytochrome c oxidase isoforms by combinations of multiple isosubunits in Pseudomonas aeruginosa.

    PubMed

    Hirai, Takehiro; Osamura, Tatsuya; Ishii, Masaharu; Arai, Hiroyuki

    2016-10-24

    The ubiquitous opportunistic human pathogen Pseudomonas aeruginosa has five terminal oxidases for aerobic respiration and uses them under different growth conditions. Two of them are cbb3-type cytochrome c oxidases encoded by the gene clusters ccoN1O1Q1P1 and ccoN2O2Q2P2, which are the main terminal oxidases under high- and low-oxygen conditions, respectively. P. aeruginosa also has two orphan gene clusters, ccoN3Q3 and ccoN4Q4, encoding the core catalytic CcoN isosubunits, but the roles of these genes have not been clarified. We found that 16 active cbb3 isoforms could be produced by combinations of four CcoN, two CcoO, and two CcoP isosubunits. The CcoN3- or CcoN4-containing isoforms were produced in the WT cell membrane in response to nitrite and cyanide, respectively. The strains carrying these isoforms were more resistant to nitrite or cyanide under low-oxygen conditions. These results indicate that P. aeruginosa gains resistance to respiratory inhibitors using multiple cbb3 isoforms with different features, which are produced through exchanges of multiple core catalytic isosubunits.

  3. Redox state dependence of axial ligand dynamics in Nitrosomonas europaea cytochrome c552.

    PubMed

    Kaur, Ravinder; Bren, Kara L

    2013-12-12

    Analysis of NMR spectra reveals that the heme axial Met ligand orientation and dynamics in Nitrosomonas europaea cytochrome c552 (Ne cyt c) are dependent on the heme redox state. In the oxidized state, the heme axial Met is fluxional, interconverting between two conformers related to each other by inversion through the Met δS atom. In the reduced state, there is no evidence of fluxionality, with the Met occupying one conformation similar to that seen in the homologous Pseudomonas aeruginosa cytochrome c551. Comparison of the observed and calculated pseudocontact shifts for oxidized Ne cyt c using the reduced protein structure as a reference structure reveals a redox-dependent change in the structure of the loop bearing the axial Met (loop 3). Analysis of nuclear Overhauser effects (NOEs) and existing structural data provides further support for the redox state dependence of the loop 3 structure. Implications for electron transfer function are discussed.

  4. The reaction of Pseudomonas aeruginosa cytochrome c oxidase with carbon monoxide.

    PubMed

    Parr, S R; Wilson, M T; Greenwood, C

    1975-10-01

    The binding of CO to ascorbate-reduced Pseudomonas cytochrome oxidase was investigated by static-titration, stopped-flow and flash-photolytic techniques. Static-titration data indicated that the binding process was non-stoicheiometric, with a Hill number of 1.44. Stopped-flow kinetics obtained on the binding of CO to reduced Pseudomonas cytochrome oxidase were biphasic in form; the faster rate exhibited a linear dependence on CO concentration with a second-order rate constant of 2 X 10(4) M-1-s-1, whereas the slower reaction rapidly reached a pseudo-first-order rate limit at approx. 1s-1. The relative proportions of the two phases observed in stopped-flow experiments also showed a dependency on CO concentration, the slower phase increasing as the CO concentration decreased. The kinetics of CO recombination after flash-photolytic dissociation of the reduced Pseudomonas cytochrome oxidase-CO complex were also biphasic in character, both phases showing a linear pseudo-first-order rate dependence on CO concentration. The second-order rate constants were determined as 3.6 X 10(4)M-1-s-1 and 1.6 X 10(4)M-1-s-1 respectively. Again the relative proportions of the two phases varied with CO concentration, the slower phase predominating at low CO concentrations. CO dissociation from the enzyme-CO complex measured in the presence of O2 and NO indicated the presence of two rates, of the order of 0.03s-1 and 0.15s-1. When sodium dithionite was used as a reducing agent for the Pseudomonas cytochrome oxidase, the CO-combination kinetics observed by both stopped flow and flash photolysis were extremely complex and not able to be simply analysed.

  5. A novel terminal oxidase, cytochrome baa3 purified from aerobically grown Pseudomonas aeruginosa: it shows a clear difference between resting state and pulsed state.

    PubMed

    Fujiwara, T; Fukumori, Y; Yamanaka, T

    1992-08-01

    A novel type of cytochrome c oxidase was purified to homogeneity from Pseudomonas aeruginosa which was grown aerobically. The purified oxidase contained two molecules of heme a, two atoms of copper, and one molecule of protoheme per molecule. One of the two heme a molecules in the oxidase reacted with carbon monoxide, so that the enzyme was of baa3-type. The oxidase molecule was composed of three subunits with molecular weights of 38,000, 57,000, and 82,000. Although the oxidase oxidized ferrocytochrome c-550 obtained from the bacterial cells grown aerobically, the oxidizing activity was not high. The "resting form" and the "pulsed form" of the oxidase were observed clearly with this enzyme, and the transition from the resting form to the pulsed form was accompanied by a distinct change of the enzymatic activity. The difference in the kinetics of the catalytic reactions between the two forms is discussed.

  6. A comparison of the physical and chemical properties of four cytochromes c from Azotobacter vinelandii

    PubMed Central

    Campbell, Wilbur H.; Orme-Johnson, William H.; Burris, Robert H.

    1973-01-01

    1. A modified method for the separation and purification of four cytochromes c from Azotobacter vinelandii is described. Two new cytochromes c have been purified and are designated cytochromes c(551) and c(555). 2. Additional evidence is presented to establish the dihaem nature of cytochrome c4. Ultracentrifugation data indicated similar molecular weights for the native and the denatured protein. Cleavage with CNBr yielded seven peptides; the amino acid compositions of the purified peptides were determined. Only one haem peptide was recovered. 3. Cytochromes c(551) and c(555) were characterized as acidic proteins of molecular weights about 12000. The spectral properties, isoelectric points, `maps' of peptides from CNBr cleavage and amino acid compositions were determined for these two proteins. 4. The spectral properties, isoelectric points, molecular weights, CNBr peptide `maps', amino acid compositions, relative oxidation–reduction potentials and e.p.r. (electron-paramagnetic-resonance) spectra of the four cytochromes c were compared. Cytochrome c4 and cytochrome c(551) appear to be distinct proteins. The distinction between cytochromes c5 and c(555) was not as clear, and our data are inadequate to establish firmly that they are distinct proteins. 5. The dihaem nature of cytochrome c4 is evident in its e.p.r. spectrum. The e.p.r. spectra are similar to the spectra of mammalian cytochromes c. PMID:4360247

  7. In Silico/In Vivo Insights into the Functional and Evolutionary Pathway of Pseudomonas aeruginosa Oleate-Diol Synthase. Discovery of a New Bacterial Di-Heme Cytochrome C Peroxidase Subfamily

    PubMed Central

    Estupiñán, Mónica; Álvarez-García, Daniel; Barril, Xavier; Diaz, Pilar; Manresa, Angeles

    2015-01-01

    As previously reported, P. aeruginosa genes PA2077 and PA2078 code for 10S-DOX (10S-Dioxygenase) and 7,10-DS (7,10-Diol Synthase) enzymes involved in long-chain fatty acid oxygenation through the recently described oleate-diol synthase pathway. Analysis of the amino acid sequence of both enzymes revealed the presence of two heme-binding motifs (CXXCH) on each protein. Phylogenetic analysis showed the relation of both proteins to bacterial di-heme cytochrome c peroxidases (Ccps), similar to Xanthomonas sp. 35Y rubber oxidase RoxA. Structural homology modelling of PA2077 and PA2078 was achieved using RoxA (pdb 4b2n) as a template. From the 3D model obtained, presence of significant amino acid variations in the predicted heme-environment was found. Moreover, the presence of palindromic repeats located in enzyme-coding regions, acting as protein evolution elements, is reported here for the first time in P. aeruginosa genome. These observations and the constructed phylogenetic tree of the two proteins, allow the proposal of an evolutionary pathway for P. aeruginosa oleate-diol synthase operon. Taking together the in silico and in vivo results obtained we conclude that enzymes PA2077 and PA2078 are the first described members of a new subfamily of bacterial peroxidases, designated as Fatty acid-di-heme Cytochrome c peroxidases (FadCcp). PMID:26154497

  8. Stability of the heme Fe-N-terminal amino group coordination bond in denatured cytochrome c.

    PubMed

    Tai, Hulin; Munegumi, Toratane; Yamamoto, Yasuhiko

    2009-01-05

    In the denatured states of Hydrogenobacter thermophilus cytochrome c(552) (HT) and Pseudomonas aeruginosa cytochrome c(551) (PA), and their mutants, the N-terminal amino group of the polypeptide chain is coordinated to heme Fe in place of the axial Met, the His-N(term) form being formed. The coordination of the N-terminal amino group to heme Fe leads to loop formation by the N-terminal stretch preceding the first Cys residue bound to the heme, and the N-terminal stretches of HT and PA are different from each other in terms of both the sequence and the number of constituent amino acid residues. The His-N(term) form was shown to be rather stable, and hence it can influence the stability of the denatured state. We have investigated the heme Fe coordination structures and stabilities of the His-N(term) forms emerging upon guanidine hydrochloric acid-induced unfolding of the oxidized forms of the proteins. The Fe-N(term) coordination bond in the His-N(term) form with a 9-residue N-terminal stretch of HT proteins was found to be tilted to some extent away from the heme normal, as reflected by the great heme methyl proton shift spread. On the other hand, the small heme methyl proton shift spread of the His-N(term) form with an 11-residue stretch of PA proteins indicated that its Fe-N(term) bond is nearly parallel with the heme normal. The stability of the His-N(term) form was found to be affected by the structural properties of the N-terminal stretch, such as its length and the N-terminal residue. With a given N-terminal residue, the stability of the His-N(term) form is higher for a 9-residue N-terminal stretch than an 11-residue one. In addition, with a given length of the N-terminal stretch, the His-N(term) form with an N-terminal Glu is stabilized by a few kJ mol(-1) relative to that with an N-terminal Asn. These results provide a novel insight into the stabilizing interactions in the denatured cyts c that will facilitate elucidation of the folding/unfolding mechanisms

  9. Cytochrome f

    SciTech Connect

    Soriano, G.M.; Smith, J.L.; Cramer, W.A.

    2001-07-17

    Cytochrome f (f, folium, leaf), a c-type cytochrome with a characteristic CysXXCysHis amino acid sequence for heme ligation, is the largest of the four major protein subunits of the membrane-embedded cytochrome b{sub 6}{sup f} complex of oxygenic photosynthesis. It contains 285-86 amino acids, consisting of a soluble 250-residue domain on the p-side (positive-side) or lumen-side of the membrane, a single trans-membrane 20-residue {alpha}-helix, and an n- or stromal-side segment consisting of 15 residues. These domains contain, respectively, the heme prosthetic group and intraprotein electron transfer pathway, the membrane anchor and a short segment that is important in the assembly of the b{sub 6}{sup f} complex. The function of the cytochrome f in oxygenic photosynthesis is to act as the terminal electron acceptor in the membrane-embedded cytochrome b{sub 6}{sup f} complex that provides the electron transport connection between the photosystem II and photosystem I reaction centers. Electron transfer through the complex is coupled to proton translocation and generation of a proton electrochemical potential that is utilized to drive the synthesis of ATP through the proton-motive ATP synthase. These functions of the cytochrome b{sub 6}{sup f} complex are analogous to those of the multisubunit cytochrome bc{sub 1} complex (ubiquinol:cytochrome c oxidoreductase) of the mitochondrial respiratory chain and photosynthetic bacteria. Both complexes contain four redox centers with very similar redox and structural properties: a covalently bound c-type heme in cytochrome f or c{sub 1}, the 2Fe-2S cluster of the Rieske ISP, and the two noncovalently bound hemes of cytochrome b. The structure properties have been defined in 3.0-3.1 {angstrom} structures of the b{sub 6}{sup f} complex from a thermophilic cyanobacterium and a green alga. These structures also defined a fifth redox prosthetic group, a novel covalently bound heme, tentatively called heme x. With the exception of

  10. Bioenergetics and the Role of Soluble Cytochromes c for Alkaline Adaptation in Gram-Negative Alkaliphilic Pseudomonas

    PubMed Central

    Matsuno, T.; Yumoto, I.

    2015-01-01

    Very few studies have been conducted on alkaline adaptation of Gram-negative alkaliphiles. The reversed difference of H+ concentration across the membrane will make energy production considerably difficult for Gram-negative as well as Gram-positive bacteria. Cells of the alkaliphilic Gram-negative bacterium Pseudomonas alcaliphila AL15-21T grown at pH 10 under low-aeration intensity have a soluble cytochrome c content that is 3.6-fold higher than that of the cells grown at pH 7 under high-aeration intensity. Cytochrome c-552 content was higher (64% in all soluble cytochromes c) than those of cytochrome c-554 and cytochrome c-551. In the cytochrome c-552-dificient mutant grown at pH 10 under low-aeration intensity showed a marked decrease in μmax⁡ [h−1] (40%) and maximum cell turbidity (25%) relative to those of the wild type. Considering the high electron-retaining abilities of the three soluble cytochromes c, the deteriorations in the growth of the cytochrome c-552-deficient mutant could be caused by the soluble cytochromes c acting as electron storages in the periplasmic space of the bacterium. These electron-retaining cytochromes c may play a role as electron and H+ condenser, which facilitate terminal oxidation at high pH under air-limited conditions, which is difficult to respire owing to less oxygen and less H+. PMID:25705691

  11. Derived amino acid sequences of the nosZ gene (respiratory N2O reductase) from Alcaligenes eutrophus, Pseudomonas aeruginosa and Pseudomonas stutzeri reveal potential copper-binding residues. Implications for the CuA site of N2O reductase and cytochrome-c oxidase.

    PubMed

    Zumft, W G; Dreusch, A; Löchelt, S; Cuypers, H; Friedrich, B; Schneider, B

    1992-08-15

    The nosZ genes encoding the multicopper enzyme nitrous oxide reductase of Alcaligenes eutrophus H16 and the type strain of Pseudomonas aeruginosa were cloned and sequenced for structural comparison of their gene products with the homologous product of the nosZ gene from Pseudomonas stutzeri [Viebrock, A. & Zumft, W. G. (1988) J. Bacteriol. 170, 4658-4668] and the subunit II of cytochrome-c oxidase (COII). Both types of enzymes possess the CuA binding site. The nosZ genes were identified in cosmid libraries by hybridization with an internal 1.22-kb PstI fragment (NS220) of nosZ from P. stutzeri. The derived amino acid sequences indicate unprocessed gene products of 70084 Da (A. eutrophus) and 70695 Da (P. aeruginosa). The N-terminal sequences of the NosZ proteins have the characteristics of signal peptides for transport. A homologous domain, extending over at least 50 residues, is shared among the three derived NosZ sequences and the CuA binding region of 32 COII sequences. Only three out of nine cysteine residues of the NosZ protein (P. stutzeri) are invariant. Cys618 and Cys622 are assigned to a binuclear center, A, which is thought to represent the CuA site of NosZ and is located close to the C terminus. Two conserved histidines, one methionine, one aspartate, one valine and two aromatic residues are also part of the CuA consensus sequence, which is the domain homologous between the two enzymes. The CuA consensus sequence, however, lacks four strictly conserved residues present in all COII sequences. Cys165 is likely to be a ligand of a second binuclear center, Z, for which we assume mainly histidine coordination. Of 23 histidine residues in NosZ (P. stutzeri), 14 are invariant, 7 of which are in regions with a degree of conservation well above the 50% positional identity between the Alcaligenes and Pseudomonas sequences. Conserved tryptophan residues are located close to several potential copper ligands. Trp615 may contribute to the observed quenching of

  12. The effects of mutation of the anr gene on the aerobic respiratory chain of Pseudomonas aeruginosa.

    PubMed

    Ray, A; Williams, H D

    1997-11-15

    The anr gene of Pseudomonas aeruginosa encodes a transcriptional regulator of anaerobic gene expression, homologous to the Fnr protein of Escherichia coli. We report here that Anr has a role in regulating the activity of the aerobic respiratory chain of P. aeruginosa. Strains with internal deletions in their anr gene had lowered levels of membrane bound cytochromes whilst the activity of the cytochrome c oxidase, cytochrome co (likely to be a cytochrome cbb3-type oxidase), and the cyanide-insensitive respiratory pathway was markedly higher than in the wild-type strains. These data, and the finding that provision of multiple copies of the anr gene led to severe repression of these respiratory activities, suggest that Anr is a repressor of aerobic respiratory pathways and possibly the terminal oxidases themselves. In contrast, Anr activated cytochrome c peroxidase, a respiratory chain linked enzyme induced under low oxygen conditions.

  13. Purification and some properties of cytochrome c-552 from an extreme thermophile, Thermus thermophilus HB8.

    PubMed

    Hon-Nami, K; Oshima, T

    1977-09-01

    A c-type cytochrome, cytochrome c-552, from a soluble fraction of an extreme thermophile, Thermus thermophilus HB8, was highly purified and its properties investigated. The absorption peaks were at 552, 522, and 417 nm in the reduced form, and at 408 nm in the oxidized form. The isoelectric point was at PH 10.8, the midpoint redox potential was about +0.23 V, and the molecular weight was about 15,000. The cytochrome c-552 was highly thermoresistant. The cytochrome reacted rapidly with pseudomonas aeruginosa nitrite reductase [EC 1.9.3.2], but slowly with bovine cytochrome oxidase [EC 1.9.3.1], yeast cytochrome c peroxidase [EC 1.11.1.5], or Nitrosomonas europaea hydroxylamine-cytochrome c reductase [EC 1.7.3.4].

  14. Human cytochrome c enters murine J774 cells and causes G{sub 1} and G{sub 2}/M cell cycle arrest and induction of apoptosis

    SciTech Connect

    Hiraoka, Yoshinori; Granja, Ana Teresa; Fialho, Arsenio M.; Schlarb-Ridley, Beatrix G.; Das Gupta, Tapas K.; Chakrabarty, Ananda M.; Yamada, Tohru . E-mail: tohru@uic.edu

    2005-12-16

    Cytochrome c is well known as a carrier of electrons during respiration. Current evidence indicates that cytochrome c also functions as a major component of apoptosomes to induce apoptosis in eukaryotic cells as well as an antioxidant. More recently, a prokaryotic cytochrome c, cytochrome c {sub 551} from Pseudomonas aeruginosa, has been shown to enter in mammalian cells such as the murine macrophage-like J774 cells and causes inhibition of cell cycle progression. Much less is known about such functions by mammalian cytochromes c, particularly the human cytochrome c. We now report that similar to P. aeruginosa cytochrome c {sub 551}, the purified human cytochrome c protein can enter J774 cells and induce cell cycle arrest at the G{sub 1} to S phase, as well as at the G{sub 2}/M phase at higher concentrations. Unlike P. aeruginosa cytochrome c {sub 551} which had no effect on the induction of apoptosis, human cytochrome c induces significant apoptosis and cell death in J774 cells, presumably through inhibition of the cell cycle at the G{sub 2}/M phase. When incubated with human breast cancer MCF-7 and normal mammary epithelial cell line MCF-10A1 cells, human cytochrome c entered in both types of cells but induced cell death only in the normal MCF-10A1 cells. The ability of human cytochrome c to enter J774 cells was greatly reduced at 4 deg. C, suggesting energy requirement in the entry process.

  15. Electron-paramagnetic-resonance studies of structure and function of the two-haem enzymes Pseudomonas cytochrome c peroxidase and beef heart cytochrome c oxidase.

    PubMed

    Vänngård, T

    1985-06-01

    Beef heart cytochrome c oxidase contains two cytochromes, a and a3, and Pseudomonas aeruginosa cytochrome c peroxidase has one high- and one low-potential c haem, cHP and cLP. The parallelism in co-ordination and spin states between cytochrome a and haem cHP on the one hand and between cytochrome a3 and haem cLP on the other is illustrated. The two latter haems become accessible to cyanide, when the former are reduced. Such reduction also leads to an activation of the enzymes. Mechanisms are presented in which ferryl forms of cytochromes a3 and haem cLP take part. The enzymes reach an oxidation state, formally the same as resting enzyme, but with different properties.

  16. A soxA Gene, Encoding a Diheme Cytochrome c, and a sox Locus, Essential for Sulfur Oxidation in a New Sulfur Lithotrophic Bacterium

    PubMed Central

    Mukhopadhyaya, Pratap N.; Deb, Chirajyoti; Lahiri, Chandrajit; Roy, Pradosh

    2000-01-01

    A mobilizable suicide vector, pSUP5011, was used to introduce Tn5-mob in a new facultative sulfur lithotrophic bacterium, KCT001, to generate mutants defective in sulfur oxidation (Sox−). The Sox− mutants were unable to oxidize thiosulfate while grown mixotrophically in the presence of thiosulfate and succinate. The mutants were also impaired in oxidizing other reduced sulfur compounds and elemental sulfur as evident from the study of substrate oxidation by the whole cells. Sulfite oxidase activity was significantly diminished in the cell extracts of all the mutants. A soxA gene was identified from the transposon-adjacent genomic DNA of a Sox− mutant strain. The sequence analysis revealed that the soxA open reading frame (ORF) is preceded by a potential ribosome binding site and promoter region with −10- and −35-like sequences. The deduced nucleotide sequence of the soxA gene was predicted to code for a protein of 286 amino acids. It had a signal peptide of 26 N-terminal amino acids. The amino acid sequence showed similarity with a putative gene product of Aquifex aeolicus, soluble cytochrome c551 of Chlorobium limicola, and the available partial SoxA sequence of Paracoccus denitrificans. The soxA-encoded product seems to be a diheme cytochrome c for KCT001 and A. aeolicus, but the amino acid sequence of C. limicola cytochrome c551 revealed a single heme-binding region. Another transposon insertion mutation was mapped within the soxA ORF. Four other independent transposon insertion mutations were mapped in the 4.4-kb soxA contiguous genomic DNA region. The results thus suggest that a sox locus of KCT001, essential for sulfur oxidation, was affected by all these six independent insertion mutations. PMID:10894738

  17. The reaction of Pseudomonas aeurginosa cytochrome c oxidase with sodium metabisulphite.

    PubMed

    Parr, S R; Wilson, M T; Greenwood, C

    1974-04-01

    Spectrophotometric evidence is presented for the formation of a complex between metabisulphite and reduced Pseudomonas aeruginosa cytochrome c oxidase. The effects of metabisulphite on the recombination of CO with the reduced enzyme are discussed in terms of alternate binding sites for S(2)O(5) (2-) and CO.

  18. [Pneumonia due to Pseudomonas aeruginosa].

    PubMed

    Vallés, Jordi; Mariscal, Dolors

    2005-12-01

    Pseudomonas aeruginosa is one of the leading causes of Gram-negative nosocomial pneumonia. It is the most common cause of ventilator-associated pneumonia and carries the highest mortality among hospital-acquired infections. P. aeruginosa produces a large number of toxins and surface components that make it especially virulent compared with other microorganisms. These include pili, flagella, membrane bound lipopolysaccharide, and secreted products such as exotoxins A, S and U, elastase, alkaline protease, cytotoxins and phospholipases. The most common mechanism of infection in mechanically ventilated patients is through aspiration of upper respiratory tract secretions previously colonized in the process of routine nursing care or via contaminated hands of hospital personnel. Intravenous therapy with an antipseudomonal regimen should be started immediately when P. aeruginosa pneumonia is suspected or confirmed. Empiric therapy with drugs active against P. aeruginosa should be started, especially in patients who have received previous antibiotics or present late-onset pneumonia.

  19. Chronic Pseudomonas aeruginosa cervical osteomyelitis

    PubMed Central

    Meher, Sujeet Kumar; Jain, Harsh; Tripathy, Laxmi Narayan; Basu, Sunandan

    2016-01-01

    Pseudomonas aeruginosa is a rare cause of osteomyelitis of the cervical spine and is usually seen in the background of intravenous drug use and immunocompromised state. Very few cases of osteomyelitis of the cervical spine caused by pseudomonas aeruginosa have been reported in otherwise healthy patients. This is a case presentation of a young female, who in the absence of known risk factors for cervical osteomyelitis presented with progressively worsening neurological signs and symptoms. PMID:27891039

  20. Cytochrome C — EDRN Public Portal

    Cancer.gov

    CYCS, or cytochrome C, is an electron carrier protein that is an important part of the electron transport chain in mitochondria. The cytochrome C protein is a small heme protein that associates with the inner membrane of the mitochondrion where it accepts electrons from cytochrome b and transfers them to the cytochrome oxidase complex. Cytochrome C also plays a role in apoptosis.

  1. The mechanism by which oxygen and cytochrome c increase the rate of electron transfer from cytochrome a to cytochrome a3 of cytochrome c oxidase.

    PubMed

    Bickar, D; Turrens, J F; Lehninger, A L

    1986-11-05

    When cytochrome c oxidase is isolated from mitochondria, the purified enzyme requires both cytochrome c and O2 to achieve its maximum rate of internal electron transfer from cytochrome a to cytochrome a3. When reductants other than cytochrome c are used, the rate of internal electron transfer is very slow. In this paper we offer an explanation for the slow reduction of cytochrome a3 when reductants other than cytochrome c are used and for the apparent allosteric effects of cytochrome c and O2. Our model is based on the conventional understanding of cytochrome oxidase mechanism (i.e. electron transfer from cytochrome a/CuA to cytochrome a3/CuB), but assumes a relatively rapid two-electron transfer between cytochrome a/CuA and cytochrome a3/CuB and a thermodynamic equilibrium in the "resting" enzyme (the enzyme as isolated) which favors reduced cytochrome a and oxidized cytochrome a3. Using the kinetic constants that are known for this reaction, we find that the activating effects of O2 and cytochrome c on the rate of electron transfer from cytochrome a to cytochrome a3 conform to the predictions of the model and so provide no evidence of any allosteric effects or control of cytochrome c oxidase by O2 or cytochrome c.

  2. Pseudomonas aeruginosa Pyocyanin Induces Neutrophil Death via Mitochondrial Reactive Oxygen Species and Mitochondrial Acid Sphingomyelinase

    PubMed Central

    Managò, Antonella; Becker, Katrin Anne; Carpinteiro, Alexander; Wilker, Barbara; Soddemann, Matthias; Seitz, Aaron P.; Edwards, Michael J.; Grassmé, Heike

    2015-01-01

    Abstract Aims: Pulmonary infections with Pseudomonas aeruginosa are a serious clinical problem and are often lethal. Because many strains of P. aeruginosa are resistant to antibiotics, therapeutic options are limited. Neutrophils play an important role in the host's early acute defense against pulmonary P. aeruginosa. Therefore, it is important to define the mechanisms by which P. aeruginosa interacts with host cells, particularly neutrophils. Results: Here, we report that pyocyanin, a membrane-permeable pigment and toxin released by P. aeruginosa, induces the death of wild-type neutrophils; its interaction with the mitochondrial respiratory chain results in the release of reactive oxygen species (ROS), the activation of mitochondrial acid sphingomyelinase, the formation of mitochondrial ceramide, and the release of cytochrome c from mitochondria. A genetic deficiency in acid sphingomyelinase prevents both the activation of this pathway and pyocyanin-induced neutrophil death. This reduced death, on the other hand, is associated with an increase in the release of interleukin-8 from pyocyanin-activated acid sphingomyelinase-deficient neutrophils but not from wild-type cells. Innovation: These studies identified the mechanisms by which pyocyanin induces the release of mitochondrial ROS and by which ROS induce neutrophil death via mitochondrial acid sphingomyelinase. Conclusion: These findings demonstrate a novel mechanism of pyocyanin-induced death of neutrophils and show how this apoptosis balances innate immune reactions. Antioxid. Redox Signal. 22, 1097–1110. PMID:25686490

  3. Regulation and Function of Versatile Aerobic and Anaerobic Respiratory Metabolism in Pseudomonas aeruginosa

    PubMed Central

    Arai, Hiroyuki

    2011-01-01

    Pseudomonas aeruginosa is a ubiquitously distributed opportunistic pathogen that inhabits soil and water as well as animal-, human-, and plant-host-associated environments. The ubiquity would be attributed to its very versatile energy metabolism. P. aeruginosa has a highly branched respiratory chain terminated by multiple terminal oxidases and denitrification enzymes. Five terminal oxidases for aerobic respiration have been identified in the P. aeruginosa cells. Three of them, the cbb3-1 oxidase, the cbb3-2 oxidase, and the aa3 oxidase, are cytochrome c oxidases and the other two, the bo3 oxidase and the cyanide-insensitive oxidase, are quinol oxidases. Each oxidase has a specific affinity for oxygen, efficiency of energy coupling, and tolerance to various stresses such as cyanide and reactive nitrogen species. These terminal oxidases are used differentially according to the environmental conditions. P. aeruginosa also has a complete set of the denitrification enzymes that reduce nitrate to molecular nitrogen via nitrite, nitric oxide (NO), and nitrous oxide. These nitrogen oxides function as alternative electron acceptors and enable P. aeruginosa to grow under anaerobic conditions. One of the denitrification enzymes, NO reductase, is also expected to function for detoxification of NO produced by the host immune defense system. The control of the expression of these aerobic and anaerobic respiratory enzymes would contribute to the adaptation of P. aeruginosa to a wide range of environmental conditions including in the infected hosts. Characteristics of these respiratory enzymes and the regulatory system that controls the expression of the respiratory genes in the P. aeruginosa cells are overviewed in this article. PMID:21833336

  4. Cytochromes P450

    PubMed Central

    Bak, Søren; Beisson, Fred; Bishop, Gerard; Hamberger, Björn; Höfer, René; Paquette, Suzanne; Werck-Reichhart, Danièle

    2011-01-01

    There are 244 cytochrome P450 genes (and 28 pseudogenes) in the Arabidopsis genome. P450s thus form one of the largest gene families in plants. Contrary to what was initially thought, this family diversification results in very limited functional redundancy and seems to mirror the complexity of plant metabolism. P450s sometimes share less than 20% identity and catalyze extremely diverse reactions leading to the precursors of structural macromolecules such as lignin, cutin, suberin and sporopollenin, or are involved in biosynthesis or catabolism of all hormone and signaling molecules, of pigments, odorants, flavors, antioxidants, allelochemicals and defense compounds, and in the metabolism of xenobiotics. The mechanisms of gene duplication and diversification are getting better understood and together with co-expression data provide leads to functional characterization. PMID:22303269

  5. Pseudomonas aeruginosa: breaking down barriers.

    PubMed

    Berube, Bryan J; Rangel, Stephanie M; Hauser, Alan R

    2016-02-01

    Many bacterial pathogens have evolved ingenious ways to escape from the lung during pneumonia to cause bacteremia. Unfortunately, the clinical consequences of this spread to the bloodstream are frequently dire. It is therefore important to understand the molecular mechanisms used by pathogens to breach the lung barrier. We have recently shown that Pseudomonas aeruginosa, one of the leading causes of hospital-acquired pneumonia, utilizes the type III secretion system effector ExoS to intoxicate pulmonary epithelial cells. Injection of these cells leads to localized disruption of the pulmonary-vascular barrier and dissemination of P. aeruginosa to the bloodstream. We put these data in the context of previous studies to provide a holistic model of P. aeruginosa dissemination from the lung. Finally, we compare P. aeruginosa dissemination to that of other bacteria to highlight the complexity of bacterial pneumonia. Although respiratory pathogens use distinct and intricate strategies to escape from the lungs, a thorough understanding of these processes can lay the foundation for new therapeutic approaches for bacterial pneumonia.

  6. The cytochrome p450 homepage.

    PubMed

    Nelson, David R

    2009-10-01

    The Cytochrome P450 Homepage is a universal resource for nomenclature and sequence information on cytochrome P450 ( CYP ) genes. The site has been in continuous operation since February 1995. Currently, naming information for 11,512 CYPs are available on the web pages. The P450 sequences are manually curated by David Nelson, and the nomenclature system conforms to an evolutionary scheme such that members of CYP families and subfamilies share common ancestors. The organisation and content of the Homepage are described.

  7. Enzymatic characterization and in vivo function of five terminal oxidases in Pseudomonas aeruginosa.

    PubMed

    Arai, Hiroyuki; Kawakami, Takuro; Osamura, Tatsuya; Hirai, Takehiro; Sakai, Yoshiaki; Ishii, Masaharu

    2014-12-01

    The ubiquitous opportunistic pathogen Pseudomonas aeruginosa has five aerobic terminal oxidases: bo(3)-type quinol oxidase (Cyo), cyanide-insensitive oxidase (CIO), aa3-type cytochrome c oxidase (aa3), and two cbb(3)-type cytochrome c oxidases (cbb(3)-1and cbb(3)-2). These terminal oxidases are differentially regulated under various growth conditions and are thought to contribute to the survival of this microorganism in a wide variety of environmental niches. Here, we constructed multiple mutant strains of P. aeruginosa that express only one aerobic terminal oxidase to investigate the enzymatic characteristics and in vivo function of each enzyme. The Km values of Cyo, CIO, and aa3 for oxygen were similar and were 1 order of magnitude higher than those of cbb(3)-1 and cbb(3)-2, indicating that Cyo, CIO, and aa3 are low-affinity enzymes and that cbb(3)-1 and cbb(3)-2 are high-affinity enzymes. Although cbb(3)-1 and cbb(3)-2 exhibited different expression patterns in response to oxygen concentration, they had similar Km values for oxygen. Both cbb(3)-1 and cbb(3)-2 utilized cytochrome c4 as the main electron donor under normal growth conditions. The electron transport chains terminated by cbb(3)-1 and cbb(3)-2 generate a proton gradient across the cell membrane with similar efficiencies. The electron transport chain of aa3 had the highest proton translocation efficiency, whereas that of CIO had the lowest efficiency. The enzymatic properties of the terminal oxidases reported here are partially in agreement with their regulatory patterns and may explain the environmental adaptability and versatility of P. aeruginosa.

  8. Phosphate taxis in Pseudomonas aeruginosa.

    PubMed

    Kato, J; Ito, A; Nikata, T; Ohtake, H

    1992-08-01

    Pseudomonas aeruginosa was shown to be attracted to phosphate. The chemotactic response was induced by phosphate starvation. The specificity of chemoreceptors for phosphate was high so that no other tested phosphorus compounds elicited a chemotactic response as strong as that elicited by phosphate. Competition experiments showed that the chemoreceptors for phosphate appeared to be different from those for the common amino acids. Mutants constitutive for alkaline phosphatase showed the chemotactic response to phosphate regardless of whether the cells were starved for phosphate.

  9. Carbenicillin resistance of Pseudomonas aeruginosa.

    PubMed Central

    Rodríguez-Tebar, A; Rojo, F; Dámaso, D; Vázquez, D

    1982-01-01

    Four strains of Pseudomonas aeruginosa obtained from clinical isolates which are carbenicillin resistant were studied to find the cause(s) of resistance to this beta-lactam antibiotic. The electrophoresis patterns of the four strains (PH20610, PH20815, PH4011, and PH4301) were found to be different from those of a wild-type strain, P. aeruginosa NCTC 10662, and appeared to lack penicillin-binding protein 2. Affinity of other penicillin-binding proteins from strains PH20610 and PH20815 for carbenicillin seemed to be normal or slightly diminished. Electrophoretic patterns of penicillin-binding proteins from strains PH4011 and PH4301 had more profound differences, since the affinities of their penicillin-binding proteins 1a, 1b, and 4 for carbenicillin were decreased by nearly two orders of magnitude relative to the preparations from the wild-type strain. Kinetic studies on binding of carbenicillin to penicillin-binding proteins both in isolated membrane preparations and in intact cells revealed that carbenicillin penetration into resistant cells was a much slower process than in susceptible cells, suggesting that the outer envelope structures serve as an efficient barrier against carbenicillin entry into our P. aeruginosa strains from clinical isolates. PMID:6821456

  10. Coulometric and spectroscopic analysis of the purified cytochrome d complex of Escherichia coli: evidence for the identification of "cytochrome a1" as cytochrome b595.

    PubMed

    Lorence, R M; Koland, J G; Gennis, R B

    1986-05-06

    Coulometric and spectroscopic analyses were performed on the three cytochrome components (cytochrome d, cytochrome b558, and the cytochrome previously described as cytochrome a1) of the purified cytochrome d complex, a terminal oxidase of the Escherichia coli aerobic respiratory chain. On the basis of heme extraction, spectroscopic, and coulometric data, the "cytochrome a1" component was identified as a b-type cytochrome: cytochrome b595. The pyridine hemochromogen technique revealed the presence of two molecules of protoheme IX per cytochrome d complex. This quantity of protoheme IX fully accounted for the sum of the cytochrome b558 and cytochrome b595 components as determined coulometrically. The renaming of cytochrome a1 as cytochrome b595 was further indicated by the lack of any heme a in the complex and by its resolved reduced-minus-oxidized spectrum. The latter was found to be similar to that of cytochrome c peroxidase, which contains protoheme IX. Coulometric titrations and carbon monoxide binding titrations revealed that there are two molecules of cytochrome d per complex. A convenient measurement of the amount of cytochrome b558 was found to be the beta-band at 531 nm since cytochrome b558 was observed to be the only component of the cytochrome d complex with a peak at this wavelength. By use of this method and the extinction coefficient for the purified cytochrome b558, it was estimated that there is one molecule of cytochrome b595 and one of cytochrome b558 per cytochrome complex.

  11. Pseudomonas aeruginosa Population Structure Revisited

    PubMed Central

    Pirnay, Jean-Paul; Bilocq, Florence; Pot, Bruno; Cornelis, Pierre; Zizi, Martin; Van Eldere, Johan; Deschaght, Pieter; Vaneechoutte, Mario; Jennes, Serge; Pitt, Tyrone; De Vos, Daniel

    2009-01-01

    At present there are strong indications that Pseudomonas aeruginosa exhibits an epidemic population structure; clinical isolates are indistinguishable from environmental isolates, and they do not exhibit a specific (disease) habitat selection. However, some important issues, such as the worldwide emergence of highly transmissible P. aeruginosa clones among cystic fibrosis (CF) patients and the spread and persistence of multidrug resistant (MDR) strains in hospital wards with high antibiotic pressure, remain contentious. To further investigate the population structure of P. aeruginosa, eight parameters were analyzed and combined for 328 unrelated isolates, collected over the last 125 years from 69 localities in 30 countries on five continents, from diverse clinical (human and animal) and environmental habitats. The analysed parameters were: i) O serotype, ii) Fluorescent Amplified-Fragment Length Polymorphism (FALFP) pattern, nucleotide sequences of outer membrane protein genes, iii) oprI, iv) oprL, v) oprD, vi) pyoverdine receptor gene profile (fpvA type and fpvB prevalence), and prevalence of vii) exoenzyme genes exoS and exoU and viii) group I pilin glycosyltransferase gene tfpO. These traits were combined and analysed using biological data analysis software and visualized in the form of a minimum spanning tree (MST). We revealed a network of relationships between all analyzed parameters and non-congruence between experiments. At the same time we observed several conserved clones, characterized by an almost identical data set. These observations confirm the nonclonal epidemic population structure of P. aeruginosa, a superficially clonal structure with frequent recombinations, in which occasionally highly successful epidemic clones arise. One of these clones is the renown and widespread MDR serotype O12 clone. On the other hand, we found no evidence for a widespread CF transmissible clone. All but one of the 43 analysed CF strains belonged to a ubiquitous P

  12. The Cytochrome P450 Homepage

    PubMed Central

    2009-01-01

    The Cytochrome P450 Homepage is a universal resource for nomenclature and sequence information on cytochrome P450 (CYP) genes. The site has been in continuous operation since February 1995. Currently, naming information for 11,512 CYPs are available on the web pages. The P450 sequences are manually curated by David Nelson, and the nomenclature system conforms to an evolutionary scheme such that members of CYP families and subfamilies share common ancestors. The organisation and content of the Homepage are described. PMID:19951895

  13. Purification of Pseudomonas cytochrome oxidase (or nitrite reductase) by immunological methods.

    PubMed

    Silvestrini, M C; Citro, G; Colosimo, A; Chersi, A; Zito, R; Brunori, M

    1983-03-01

    A new purification procedure for the cytochrome oxidase from Pseudomonas aeruginosa based on immunoaffinity chromatography has been compared with the biochemical method and shown to be (i) fully competitive in terms of chemical homogeneity and enzymatic properties of the purified protein (ii) slightly less efficient in terms of total recovery and (iii) much more convenient in terms of the time required. A further evolution of the method that minimizes the number of purification steps and any stress to the native structure of the protein is suggested.

  14. The Accessory Genome of Pseudomonas aeruginosa

    PubMed Central

    Kung, Vanderlene L.; Ozer, Egon A.; Hauser, Alan R.

    2010-01-01

    Summary: Pseudomonas aeruginosa strains exhibit significant variability in pathogenicity and ecological flexibility. Such interstrain differences reflect the dynamic nature of the P. aeruginosa genome, which is composed of a relatively invariable “core genome” and a highly variable “accessory genome.” Here we review the major classes of genetic elements comprising the P. aeruginosa accessory genome and highlight emerging themes in the acquisition and functional importance of these elements. Although the precise phenotypes endowed by the majority of the P. aeruginosa accessory genome have yet to be determined, rapid progress is being made, and a clearer understanding of the role of the P. aeruginosa accessory genome in ecology and infection is emerging. PMID:21119020

  15. Cytochrome aa3 in Haloferax volcanii

    PubMed Central

    Tanaka, Mikiei; Ogawa, Naohide; Ihara, Kunio; Sugiyama, Yasuo; Mukohata, Yasuo

    2002-01-01

    A cytochrome in an extremely halophilic archaeon, Haloferax volcanii, was purified to homogeneity. This protein displayed a redox difference spectrum that is characteristic of a-type cytochromes and a CN− complex spectrum that indicates the presence of heme a and heme a3. This cytochrome aa3 consisted of 44- and 35-kDa subunits. The amino acid sequence of the 44-kDa subunit was similar to that of the heme-copper oxidase subunit I, and critical amino acid residues for metal binding, such as histidines, were highly conserved. The reduced cytochrome c partially purified from the bacterial membrane fraction was oxidized by the cytochrome aa3, providing physiological evidence for electron transfer from cytochrome c to cytochrome aa3 in archaea. PMID:11790755

  16. Isolation and characterization of mutants defective in the cyanide-insensitive respiratory pathway of Pseudomonas aeruginosa.

    PubMed

    Cunningham, L; Williams, H D

    1995-01-01

    The branched respiratory chain of Pseudomonas aeruginosa contains at least two terminal oxidases which are active under normal physiological conditions. One of these, cytochrome co, is a cytochrome c oxidase which is completely inhibited by concentrations of the respiratory inhibitor potassium cyanide as low as 100 microM. The second oxidase, the cyanide-insensitive oxidase, is resistant to cyanide concentrations in excess of 1 mM as well as to sodium azide. In this work, we describe the isolation and characterization of a mutant of P. aeruginosa defective in cyanide-insensitive respiration. This insertion mutant was isolated with mini-D171 (a replication-defective derivative of the P. aeruginosa phage D3112) as a mutagen and by screening the resulting tetracycline-resistant transductants for the loss of ability to grow in the presence of 1 mM sodium azide. Polarographic studies on the NADH-mediated respiration rate of the mutant indicated an approximate 50% loss of activity, and titration of this activity against increasing cyanide concentrations gave a monophasic curve clearly showing the complete loss of cyanide-insensitive respiration. The mutated gene for a mutant affected in the cyanide-insensitive, oxidase-terminated respiratory pathway has been designated cio. We have complemented the azide-sensitive phenotype of this mutant with a wild-type copy of the gene by in vivo cloning with another mini-D element, mini-D386, carried on plasmid pADD386. The complemented cio mutant regained the ability to grow on medium containing 1 mM azide, titration of its NADH oxidase activity with cyanide gave a biphasic curve similar to that of the wild-type organism, and the respiration rate returned to normal levels. Spectral analysis of the cytochrome contents of the membranes of the wild type, the cio mutant, and the complemented mutant suggests that the cio mutant is not defective in any membrane-bound cytochromes and that the complementing gene does not encode a heme

  17. Cytochromes P450 in Nanodiscs

    PubMed Central

    Denisov, Ilia G.; Sligar, Stephen G.

    2010-01-01

    Nanodiscs have proven to be a versatile tool for the study all types of membrane proteins, including receptors, transporters, enzymes and viral antigens. The self-assembled Nanodisc system provides a robust and common means for rendering these targets soluble in aqueous media while providing a native like bilayer environment that maintains functional activity. This system has thus provided a means for studying the extensive collection of membrane bound cytochromes P450 with the same biochemical and biophysical tools that have been previously limited to use with the soluble P450s. These include a plethora of spectroscopic, kinetic and surface based methods. Significant improvements in homogeneity and stability of these preparations open new possibilities for detailed analysis of equilibrium and steady-state kinetic characteristics of catalytic mechanisms of human cytochromes P450 involved in xenobiotic metabolism and in steroid biosynthesis. The experimental methods developed for physico-chemical and functional studies of membrane cytochromes P450 incorporated in Nanodiscs allow for more detailed understanding of the scientific questions along the lines pioneered by Professor Klaus Ruckpaul and his array of colleagues and collaborators. PMID:20685623

  18. Antibiotic Conditioned Growth Medium of Pseudomonas Aeruginosa

    ERIC Educational Resources Information Center

    Benathen, Isaiah A.; Cazeau, Barbara; Joseph, Njeri

    2004-01-01

    A simple method to study the consequences of bacterial antibiosis after interspecific competition between microorganisms is presented. Common microorganisms are used as the test organisms and Pseudomonas aeruginosa are used as the source of the inhibitor agents.

  19. Occurrence of Pseudomonas aeruginosa in Kuwait soil.

    PubMed

    Al-Saleh, Esmaeil; Akbar, Abrar

    2015-02-01

    Environmentally ubiquitous bacteria such as Pseudomonas aeruginosa evolved mechanisms to adapt and prevail under diverse conditions. In the current investigation, strains of P. aeruginosa demonstrating high rates of crude oil utilization and tolerance to high concentrations of heavy metals were found in both crude oil-contaminated and uncontaminated sites in Kuwait, and were dominant in the contaminated sites. The incidence of P. aeruginosa in tested soils implies the definitive pattern of crude oil contamination in the selection of the bacterial population in petroleum-contaminated sites in Kuwait. Surprisingly, the unculturable P. aeruginosa in different soil samples showed significant high similarity coefficients based on 16S-RFLP analyses, implying that the unculturable fraction of existing bacterial population in environmental samples is more stable and, hence, reliable for phylogenetic studies compared to the culturable bacteria.

  20. Osmoregulation in Pseudomonas aeruginosa under hyperosmotic shock.

    PubMed

    Velasco, R; Burgoa, R; Flores, E; Hernández, E; Villa, A; Vaca, S

    1995-01-01

    Pseudomonas aeruginosa PAO1 strain was found to be able to tolerate 700 mM NaCl. 0.5 mM of the osmoprotectant betaine restablished the growth of this strain in 1200 mM NaCl. Intracellular K+ and glutamate concentrations of P. aeruginosa PAO1 after an hyperosmotic shock (400 mM NaCl) showed a permanent increase. Adition of betaine (0.5 mM) to the medium with NaCl had an inhibitory effect on the intracellular accumulation of glutamate. The results indicate that P. aeruginosa PAO1 resists high NaCl concentrations, K+ accumulation and glutamate synthesis probably being the first mechanisms involved in adaptation to osmotic stress. Also is is demonstrated that betaine modulates intracellular glutamate levels in osmotically stressed P. aeruginosa PAO1.

  1. Cytochrome Electron Transfer and Biomolecular Electronics.

    DTIC Science & Technology

    1988-06-22

    polarograms of cytochrome c3 "a) DvM: Desulfovibrio vulgaris Miyazaki F (solid line,rmeasured; dots, si ulated) .. b) DvH: Desulfovibrio vulgaris ...Miyazaki); 2. D. vulgaris (H ldenborough); 3. D. sulfurlcans (Norway) and % 4. D. gigas. The macroscopic redox potentials for each of the hemes in the...Structure of Cytochrome C 3 Four cytochromes C have been selected for study: 1. D. vulgaris (Miyazaki) DvM) ; 2. D. vulgaris (Hildenborough) (DvH); 3. D

  2. Cytochrome P450-activated prodrugs

    PubMed Central

    Ortiz de Montellano, Paul R

    2013-01-01

    A prodrug is a compound that has negligible, or lower, activity against a specified pharmacological target than one of its major metabolites. Prodrugs can be used to improve drug delivery or pharmacokinetics, to decrease toxicity, or to target the drug to specific cells or tissues. Ester and phosphate hydrolysis are widely used in prodrug design because of their simplicity, but such approaches are relatively ineffective for targeting drugs to specific sites. The activation of prodrugs by the cytochrome P450 system provides a highly versatile approach to prodrug design that is particularly adaptable for targeting drug activation to the liver, to tumors or to hypoxic tissues. PMID:23360144

  3. Cytochrome c Adducts with PCB Quinoid Metabolites

    PubMed Central

    Li, Miao; Teesch, Lynn M.; Murry, Daryl J.; Pope, R. Marshal; Li, Yalan; Robertson, Larry W.; Ludewig, Gabriele

    2015-01-01

    PCBs are a group of 209 individual congeners widely used as industrial chemicals. PCBs are found as by-products in dye and paint manufacture and are legacy, ubiquitous and persistent as human and environmental contaminants. PCBs with fewer chlorine atoms may be metabolized to hydroxy- and dihydroxy- metabolites and further oxidized to quinoid metabolites both in vitro and in vivo. Specifically, quinoid metabolites may form adducts on nucleophilic sites within cells. We hypothesized that the PCB-quinones covalently bind to cytochrome c and thereby cause defects in the function of cytochrome c. In this study synthetic PCB quinones (2-(4’-chlorophenyl)-1,4-benzoquinone, 2-(3’, 5’-dichlorophenyl)-1,4-benzoquinone, 2-(3’,4’, 5’-trichlorophenyl)-1,4-benzoquinone, and 2-(4’-chlorophenyl)-3,6-dichloro-1,4-benzoquinone) were incubated with cytochrome c, and adducts were detected by LC-MS and MALDI TOF. SDS PAGE gel electrophoresis was employed to separate the adducted proteins, while trypsin digestion and LC-MS/MS were applied to identify the amino acid binding sites on cytochrome c. Conformation change of cytochrome c after binding with PCB3-para-quinone was investigated by SYBYL-X simulation and cytochrome c function was examined. We found that more than one molecule of PCB-quinone may bind to one molecule of cytochrome c. Lysine and glutamic acid were identified as the predominant binding sites. Software simulation showed conformation changes of adducted cytochrome c. Additionally, cross-linking of cytochrome c was observed on the SDS PAGE gel. Cytochrome c was found to be in the reduced form after incubation with PCB quinones. These data provide evidence that the covalent binding of PCB quinone metabolites to cytochrome c may be included among the toxic effects of PCBs. PMID:26062463

  4. Mitochondrial cytochrome c oxidase deficiency.

    PubMed

    Rak, Malgorzata; Bénit, Paule; Chrétien, Dominique; Bouchereau, Juliette; Schiff, Manuel; El-Khoury, Riyad; Tzagoloff, Alexander; Rustin, Pierre

    2016-03-01

    As with other mitochondrial respiratory chain components, marked clinical and genetic heterogeneity is observed in patients with a cytochrome c oxidase deficiency. This constitutes a considerable diagnostic challenge and raises a number of puzzling questions. So far, pathological mutations have been reported in more than 30 genes, in both mitochondrial and nuclear DNA, affecting either structural subunits of the enzyme or proteins involved in its biogenesis. In this review, we discuss the possible causes of the discrepancy between the spectacular advances made in the identification of the molecular bases of cytochrome oxidase deficiency and the lack of any efficient treatment in diseases resulting from such deficiencies. This brings back many unsolved questions related to the frequent delay of clinical manifestation, variable course and severity, and tissue-involvement often associated with these diseases. In this context, we stress the importance of studying different models of these diseases, but also discuss the limitations encountered in most available disease models. In the future, with the possible exception of replacement therapy using genes, cells or organs, a better understanding of underlying mechanism(s) of these mitochondrial diseases is presumably required to develop efficient therapy.

  5. Mitochondrial Cytochrome c Oxidase Deficiency

    PubMed Central

    Rak, Malgorzata; Bénit, Paule; Chrétien, Dominique; Bouchereau, Juliette; Schiff, Manuel; El-Khoury, Riyad; Tzagoloff, Alexander; Rustin, Pierre

    2016-01-01

    As with other mitochondrial respiratory chain components, marked clinical and genetic heterogeneity is observed in patients with a cytochrome c oxidase deficiency. This constitutes a considerable diagnostic challenge and raises a number of puzzling questions. So far, pathological mutations have been reported in more than 30 genes, in both mitochondrial and nuclear DNA, affecting either structural subunits of the enzyme or proteins involved in its biogenesis. In this review, we discuss the possible causes of the discrepancy between the spectacular advances made in the identification of the molecular bases of cytochrome oxidase deficiency and the lack of any efficient treatment in diseases resulting from such deficiencies. This brings back many unsolved questions related to the frequent delay of clinical manifestation, variable course and severity, and tissue-involvement often associated with these diseases. In this context, we stress the importance to study different models of these diseases, but also discuss the limitations encountered in most available disease models. In the future, with the possible exception of replacement therapy using genes, cells or organs, a better understanding of underlying mechanism(s) of these mitochondrial diseases is presumably required to develop efficient therapy. PMID:26846578

  6. Cytochrome c Negatively Regulates NLRP3 Inflammasomes

    PubMed Central

    Shi, Chong-Shan; Kehrl, John H.

    2016-01-01

    The release of cytochrome c from the inner mitochondrial membrane, where it is anchored by caridolipin, triggers the formation of the Apaf-1 apoptosome. Cardiolipin also interacts with NLRP3 recruiting NLRP3 to mitochondria and facilitating inflammasome assembly. In this study we investigated whether cytosolic cytochrome c impacts NLRP3 inflammasome activation in macrophages. We report that cytochrome c binds to the LRR domain of NLRP3 and that cytochrome c reduces the interactions between NLRP3 and cardiolipin and between NLRP3 and NEK7, a recently recognized component of the NLRP3 inflammasome needed for NLRP3 oligomerization. Protein transduction of cytochrome c impairs NLRP3 inflammasome activation, while partially silencing cytochrome c expression enhances it. The addition of cytochrome c to an in vitro inflammasome assay severely limited caspase-1 activation. We propose that there is a crosstalk between the NLRP3 inflammasome and apoptosome pathways mediated by cytochrome c, whose release during apoptosis acts to limit NLRP3 inflammasome activation. PMID:28030552

  7. Cloning, expression, crystallization and preliminary X-ray characterization of cytochrome c{sub 552} from a moderate thermophilic bacterium, Hydrogenophilus thermoluteolus

    SciTech Connect

    Ichiki, Shin-ichi; Nakamura, Shota; Ohkubo, Tadayasu; Kobayashi, Yuji; Hasegawa, Jun; Uchiyama, Susumu; Nishihara, Hirofumi; Mizuta, Keiko; Sambongi, Yoshihiro

    2005-04-01

    Cytochrome c{sub 552} of a moderate thermophile, H. thermoluteolus, was overexpressed in E. coli and crystallized for X-ray diffraction study. The amino-acid sequence of cytochrome c{sub 552} (PH c{sub 552}) from a moderately thermophilic bacterium, Hydrogenophilus thermoluteolus, was more than 50% identical to that of cytochrome c from an extreme thermophile, Hydrogenobacter thermophilus (HT c{sub 552}), and from a mesophile, Pseudomonas aeruginosa (PA c{sub 551}). The PH c{sub 552} gene was overexpressed as a correctly processed holoprotein in the Escherichia coli periplasm. The overexpressed PH c{sub 552} has been crystallized by vapour diffusion from polyethylene glycol 4000 pH 6.5. The crystals belong to space group C222{sub 1}, with unit-cell parameters a = 48.98, b = 57.99, c = 56.20 Å. The crystals diffract X-rays to around 2.1 Å resolution.

  8. Developing an international Pseudomonas aeruginosa reference panel.

    PubMed

    De Soyza, Anthony; Hall, Amanda J; Mahenthiralingam, Eshwar; Drevinek, Pavel; Kaca, Wieslaw; Drulis-Kawa, Zuzanna; Stoitsova, Stoyanka R; Toth, Veronika; Coenye, Tom; Zlosnik, James E A; Burns, Jane L; Sá-Correia, Isabel; De Vos, Daniel; Pirnay, Jean-Paul; Kidd, Timothy J; Reid, David; Manos, Jim; Klockgether, Jens; Wiehlmann, Lutz; Tümmler, Burkhard; McClean, Siobhán; Winstanley, Craig

    2013-12-01

    Pseudomonas aeruginosa is a major opportunistic pathogen in cystic fibrosis (CF) patients and causes a wide range of infections among other susceptible populations. Its inherent resistance to many antimicrobials also makes it difficult to treat infections with this pathogen. Recent evidence has highlighted the diversity of this species, yet despite this, the majority of studies on virulence and pathogenesis focus on a small number of strains. There is a pressing need for a P. aeruginosa reference panel to harmonize and coordinate the collective efforts of the P. aeruginosa research community. We have collated a panel of 43 P. aeruginosa strains that reflects the organism's diversity. In addition to the commonly studied clones, this panel includes transmissible strains, sequential CF isolates, strains with specific virulence characteristics, and strains that represent serotype, genotype or geographic diversity. This focussed panel of P. aeruginosa isolates will help accelerate and consolidate the discovery of virulence determinants, improve our understanding of the pathogenesis of infections caused by this pathogen, and provide the community with a valuable resource for the testing of novel therapeutic agents.

  9. Pseudomonas aeruginosa Dose-Response and Bathing Water Infection

    EPA Science Inventory

    Pseudomonas aeruginosa is the most commonly identified opportunistic pathogen associated with pool acquired bather disease. To better understand why this microorganism poses this protracted problem we recently appraised P. aeruginosa pool risk management. Much is known about the ...

  10. Iron-stimulated toxin production in Microcystis aeruginosa.

    PubMed Central

    Utkilen, H; Gjølme, N

    1995-01-01

    Nitrate- and phosphate-limited conditions had no effect on toxin production by Microcystis aeruginosa. In contrast, iron-limited conditions influenced toxin production by M. aeruginosa, and iron uptake was light dependent. A model for production of toxin by M. aeruginosa is proposed. PMID:7574617

  11. Structure and ANR-dependent transcription of the nir genes for denitrification from Pseudomonas aeruginosa.

    PubMed

    Arai, H; Igarashi, Y; Kodama, T

    1994-07-01

    In the denitrification gene cluster from Pseudomonas aeruginosa, an operon encoding three open reading frames (nirQ, ORF2, ORF3) was upstream of the structural gene for nitrite reductase (nirS) as a divergent transcriptional organization. A nucleotide-binding protein encoded by nirQ was 76% identical to the Pseudomonas stutzeri nirQ gene product, which was shown to be necessary for activating nitrite and nitric oxide reductases. The gene product of ORF2 was homologous to subunit III of cytochrome oxidases. The nirQ gene was transcribed under denitrifying conditions. The intergenic region of nirS and nirQ has only one binding motif for ANR, a regulatory protein for anaerobic gene expression correspond to FNR in E. coli. Complementation analyses showed that the transcription of both nirS and nirQ completely depended on ANR.

  12. Risk assessment of Pseudomonas aeruginosa in water.

    PubMed

    Mena, Kristina D; Gerba, Charles P

    2009-01-01

    P. aeruginosa is part of a large group of free-living bacteria that are ubiquitous in the environment. This organism is often found in natural waters such as lakes and rivers in concentrations of 10/100 mL to >1,000/100 mL. However, it is not often found in drinking water. Usually it is found in 2% of samples, or less, and at concentrations up to 2,300 mL(-1) (Allen and Geldreich 1975) or more often at 3-4 CFU/mL. Its occurrence in drinking water is probably related more to its ability to colonize biofilms in plumbing fixtures (i.e., faucets, showerheads, etc.) than its presence in the distribution system or treated drinking water. P. aeruginosa can survive in deionized or distilled water (van der Jooij et al. 1982; Warburton et al. 1994). Hence, it may be found in low nutrient or oligotrophic environments, as well as in high nutrient environments such as in sewage and in the human body. P. aeruginosa can cause a wide range of infections, and is a leading cause of illness in immunocompromised individuals. In particular, it can be a serious pathogen in hospitals (Dembry et al. 1998). It can cause endocarditis, osteomyelitis, pneumonia, urinary tract infections, gastrointestinal infections, and meningitis, and is a leading cause of septicemia. P. aeruginosa is also a major cause of folliculitis and ear infections acquired by exposure to recreational waters containing the bacterium. In addition, it has been recognized as a serious cause of keratitis, especially in patients wearing contact lenses. P. aeruginosa is also a major pathogen in burn and cystic fibrosis (CF) patients and causes a high mortality rate in both populations (MOlina et al. 1991; Pollack 1995). P. aeruginosa is frequently found in whirlpools and hot tubs, sometimes in 94-100% of those tested at concenrations of <1 to 2,400 CFU/mL. The high concentrations found probably result from the relatively high temperatures of whirlpools, which favor the growth of P. aeruginosa, and the aeration which also

  13. The Interaction of Microsomal Cytochrome P450 2B4 with its Redox Partners, Cytochrome P450 Reductase and Cytochrome b5

    PubMed Central

    Im, Sang-Choul; Waskell, Lucy

    2010-01-01

    1 Cytochrome P450 2B4 is a microsomal protein with a multi-step reaction cycle similar to that observed in the majority of other cytochromes P450. The cytochrome P450 2B4-substrate complex is reduced from the ferric to the ferrous form by cytochrome P450 reductase. After binding oxygen, the oxyferrous protein accepts a second electron which is provided by either cytochrome P450 reductase or cytochrome b5. In both instances, product formation occurs. When the second electron is donated by cytochrome b5, catalysis (product formation) is ∼ 10 to 100-fold faster than in the presence of cytochrome P450 reductase. This allows less time for side product formation (hydrogen peroxide and superoxide) and improves by ∼ 15% the coupling of NADPH consumption to product formation. Cytochrome b5 has also been shown to compete with cytochrome P450 reductase for a binding site on the proximal surface of cytochrome P450 2B4. These two different effects of cytochrome b5 on cytochrome P450 2B4 reactivity can explain how cytochrome b5 is able to stimulate, inhibit, or have no effect on cytochrome P450 2B4 activity. At low molar ratios (<1) of cytochrome b5 to cytochrome P450 reductase, the more rapid catalysis results in enhanced substrate metabolism. In contrast, at high molar ratios (>1) of cytochome b5 to cytochrome P450 reductase, cytochrome b5 inhibits activity by binding to the proximal surface of cytochrome P450 and preventing the reductase from reducing ferric cytochrome P450 to the ferrous protein, thereby aborting the catalytic reaction cycle. When the stimulatory and inhibitory effects of cytochrome b5 are equal, it will appear to have no effect on the enzymatic activity. It is hypothesized that cytochrome b5 stimulates catalysis by causing a conformational change in the active site, which allows the active oxidizing oxyferryl species of cytochrome P450 to be formed more rapidly than in the presence of reductase. PMID:21055385

  14. Effect of naphthalene on cytochrome oxidase activity

    SciTech Connect

    Harmon, H.J.

    1988-01-01

    Previous reports have demonstrated that naphthalene inhibits oxygen consumption in Daphnia magna tissue culture cells, and intact mitochondria and submitochondrial particles. These studies were extended to algal mitochondrial respiration as well as photosynthetic activity. The authors were able to demonstrate the specific site of apparent respiratory inhibition to be coenzyme Q (ubiquinone, UQ) and later to demonstrate the molecular basis of this inhibition at ubiquinone. The authors previously could not demonstrate an effect of naphthalene on cytochrome oxidase activity. However, the observation that naphthalene can stimulate respiration in algae prompted the reinvestigation of the effect of naphthalene on the kinetics of cytochrome oxidase. Cytochrome oxidase is a multi-subunit membranous protein responsible for the oxidation of cytochrome c and the reduction of molecular oxygen to water. Because of the complicated nature and mechanism of this enzyme, the potential exists for multiple and possibly opposite effects of naphthalene on its function.

  15. Cytochrome P450 (CYP450) Tests

    MedlinePlus

    ... By Mayo Clinic Staff Your doctor may use cytochrome P450 (CYP450) tests to help determine how your body processes (metabolizes) a drug. The human body contains P450 enzymes to process medications. Because of inherited (genetic) traits ...

  16. Pseudomonas Aeruginosa: Resistance to the Max

    PubMed Central

    Poole, Keith

    2011-01-01

    Pseudomonas aeruginosa is intrinsically resistant to a variety of antimicrobials and can develop resistance during anti-pseudomonal chemotherapy both of which compromise treatment of infections caused by this organism. Resistance to multiple classes of antimicrobials (multidrug resistance) in particular is increasingly common in P. aeruginosa, with a number of reports of pan-resistant isolates treatable with a single agent, colistin. Acquired resistance in this organism is multifactorial and attributable to chromosomal mutations and the acquisition of resistance genes via horizontal gene transfer. Mutational changes impacting resistance include upregulation of multidrug efflux systems to promote antimicrobial expulsion, derepression of ampC, AmpC alterations that expand the enzyme's substrate specificity (i.e., extended-spectrum AmpC), alterations to outer membrane permeability to limit antimicrobial entry and alterations to antimicrobial targets. Acquired mechanisms contributing to resistance in P. aeruginosa include β-lactamases, notably the extended-spectrum β-lactamases and the carbapenemases that hydrolyze most β-lactams, aminoglycoside-modifying enzymes, and 16S rRNA methylases that provide high-level pan-aminoglycoside resistance. The organism's propensity to grow in vivo as antimicrobial-tolerant biofilms and the occurrence of hypermutator strains that yield antimicrobial resistant mutants at higher frequency also compromise anti-pseudomonal chemotherapy. With limited therapeutic options and increasing resistance will the untreatable P. aeruginosa infection soon be upon us? PMID:21747788

  17. Spaceflight Effects on Virulence of Pseudomonas Aeruginosa

    NASA Astrophysics Data System (ADS)

    Broadway, S.; Goins, T.; Crandell, C.; Richards, C.; Patel, M.; Pyle, B.

    2008-06-01

    Pseudomonas aeruginosa is an opportunistic pathogen found in the environment. It is known to infect the immunocompromised. The organism has about 25 virulence genes that play different roles in disease processes. Several exotoxin proteins may be produced, including ExoA, ExoS, ExoT and ExoY, and other virulence factors. In spaceflight, possible increased expression of P. aeruginosa virulence proteins could increase health risks for spaceflight crews who experience decreased immunity. Cultures of P. aeruginosa strains PA01 and PA103 grown on orbit on Shuttle Endeavour flight STS-123 vs. static ground controls were used for analysis. The production of ETA was quantitated using an ELISA procedure. Results showed that while flight cultures of PA103 produced slightly more ETA than corresponding ground controls, the opposite was found for PA01. While it appears that spaceflight has little effect on ETA, stimulation of other virulence factors could cause increased virulence of this organism in space flight. Similar increased virulence in spaceflight has been observed for other bacteria. This is important because astronauts may be more susceptible to opportunistic pathogens including P. aeruginosa.

  18. Characterization of temporal protein production in Pseudomonas aeruginosa biofilms.

    PubMed

    Southey-Pillig, Christopher J; Davies, David G; Sauer, Karin

    2005-12-01

    Phenotypic and genetic evidence supporting the notion of biofilm formation as a developmental process is growing. In the present work, we provide additional support for this hypothesis by identifying the onset of accumulation of biofilm-stage specific proteins during Pseudomonas aeruginosa biofilm maturation and by tracking the abundance of these proteins in planktonic and three biofilm developmental stages. The onset of protein production was found to correlate with the progression of biofilms in developmental stages. Protein identification revealed that proteins with similar function grouped within similar protein abundance patterns. Metabolic and housekeeping proteins were found to group within a pattern separate from virulence, antibiotic resistance, and quorum-sensing-related proteins. The latter were produced in a progressive manner, indicating that attendant features that are characteristic of biofilms such as antibiotic resistance and virulence may be part of the biofilm developmental process. Mutations in genes for selected proteins from several protein production patterns were made, and the impact of these mutations on biofilm development was evaluated. The proteins cytochrome c oxidase, a probable chemotaxis transducer, a two-component response regulator, and MexH were produced only in mature and late-stage biofilms. Mutations in the genes encoding these proteins did not confer defects in growth, initial attachment, early biofilm formation, or twitching motility but were observed to arrest biofilm development at the stage of cell cluster formation we call the maturation-1 stage. The results indicated that expression of theses genes was required for the progression of biofilms into three-dimensional structures on abiotic surfaces and the completion of the biofilm developmental cycle. Reverse transcription-PCR analysis confirmed the detectable change in expression of the respective genes ccoO, PA4101, and PA4208. We propose a possible mechanism for the

  19. Metazoan cytochrome P450 evolution.

    PubMed

    Nelson, D R

    1998-11-01

    There are 37 cytochrome P450 families currently identified in animals. The concept of higher order groupings of P450 families called P450 CLANS is introduced. The mammalian CYP3 and CYP5 families belong to the same clan as insect CYP6 and CYP9. All mitochondrial P450s seem to belong to the same clan. Lack of mitochondrial P450s in C. elegans suggests that mitochondrial P450s probably arose from the mistargeting of a microsomal P450 after the coelomates diverged from acoelomates and pseudocoelomates. Different taxonomic groups appear to have recruited different ancestral P450s for expansion as they evolved, since each major taxon seems to have one large cluster of P450s. In insects, this cluster derives from the ancestor to the CYP4 family. Vertebrates and C. elegans may have used the same ancestor independently to generate the CYP1, 2, 17, and 21 families in vertebrates and a large distinctive clan with 45 genes in C. elegans.

  20. Periplasmic response upon disruption of transmembrane Cu transport in Pseudomonas aeruginosa.

    PubMed

    Raimunda, Daniel; Padilla-Benavides, Teresita; Vogt, Stefan; Boutigny, Sylvain; Tomkinson, Kaleigh N; Finney, Lydia A; Argüello, José M

    2013-02-01

    Pseudomonas aeruginosa, an opportunistic pathogen, has two transmembrane Cu(+) transport ATPases, CopA1 and CopA2. Both proteins export cytoplasmic Cu(+) into the periplasm and mutation of either gene leads to attenuation of virulence. CopA1 is required for maintaining cytoplasmic copper levels, while CopA2 provides copper for cytochrome c oxidase assembly. We hypothesized that transported Cu(+) ions would be directed to their destination via specific periplasmic partners and disruption of transport should affect the periplasmic copper homeostasis. Supporting this, mutation of either ATPase gene led to large increments in periplasmic cuproprotein levels. Toward identifying the proteins participating in this cellular response the periplasmic metalloproteome was resolved in non-denaturing bidimensional gel electrophoresis, followed by X-ray fluorescence visualization and identification by mass-spectrometry. A single spot containing the electron shuttle protein azurin was responsible for the observed increments in cuproprotein contents. In agreement, lack of either Cu(+)-ATPase induced an increase in azu transcription. This is associated with an increase in the expression of anr and rpoS oxidative stress response regulators, rather than cueR, a copper sensing regulator. We propose that azurin overexpression and accumulation in the periplasm is part of the cellular response to cytoplasmic oxidative stress in P. aeruginosa.

  1. Cytochrome bd Displays Significant Quinol Peroxidase Activity

    PubMed Central

    Al-Attar, Sinan; Yu, Yuanjie; Pinkse, Martijn; Hoeser, Jo; Friedrich, Thorsten; Bald, Dirk; de Vries, Simon

    2016-01-01

    Cytochrome bd is a prokaryotic terminal oxidase that catalyses the electrogenic reduction of oxygen to water using ubiquinol as electron donor. Cytochrome bd is a tri-haem integral membrane enzyme carrying a low-spin haem b558, and two high-spin haems: b595 and d. Here we show that besides its oxidase activity, cytochrome bd from Escherichia coli is a genuine quinol peroxidase (QPO) that reduces hydrogen peroxide to water. The highly active and pure enzyme preparation used in this study did not display the catalase activity recently reported for E. coli cytochrome bd. To our knowledge, cytochrome bd is the first membrane-bound quinol peroxidase detected in E. coli. The observation that cytochrome bd is a quinol peroxidase, can provide a biochemical basis for its role in detoxification of hydrogen peroxide and may explain the frequent findings reported in the literature that indicate increased sensitivity to hydrogen peroxide and decreased virulence in mutants that lack the enzyme. PMID:27279363

  2. A cytochrome cd1-type nitrite reductase mediates the first step of denitrification in Alcaligenes eutrophus.

    PubMed

    Sann, R; Kostka, S; Friedrich, B

    1994-01-01

    Respiratory nitrite reductase (NIR) has been purified from the soluble extract of denitrifying cells of Alcaligenes eutrophus strain H16 to apparent electrophoretic homogeneity. The enzyme was induced under anoxic conditions in the presence of nitrite. Purified NIR showed typical features of a cytochrome cd1-type nitrite reductase. It appeared to be a dimer of kDa subunits, its activity was only weakly inhibited by the copper chelator diethyldithiocarbamate, and spectral analysis revealed absorption maxima which were characteristic for the presence of heme c and heme d1. The isoelectric point of 8.6 was considerably higher than the pI determined for cd1 nitrite reductases from pseudomonads. Eighteen amino acids at the N-terminus of the A. eutrophus NIR, obtained by protein sequencing, showed no significant homology to the N-terminal region of nitrite reductases from Pseudomonas stutzeri and Pseudomonas aeruginosa.

  3. A Geobacter sulfurreducens strain expressing pseudomonas aeruginosa type IV pili localizes OmcS on pili but is deficient in Fe(III) oxide reduction and current production.

    PubMed

    Liu, Xing; Tremblay, Pier-Luc; Malvankar, Nikhil S; Nevin, Kelly P; Lovley, Derek R; Vargas, Madeline

    2014-02-01

    The conductive pili of Geobacter species play an important role in electron transfer to Fe(III) oxides, in long-range electron transport through current-producing biofilms, and in direct interspecies electron transfer. Although multiple lines of evidence have indicated that the pili of Geobacter sulfurreducens have a metal-like conductivity, independent of the presence of c-type cytochromes, this claim is still controversial. In order to further investigate this phenomenon, a strain of G. sulfurreducens, designated strain PA, was constructed in which the gene for the native PilA, the structural pilin protein, was replaced with the PilA gene of Pseudomonas aeruginosa PAO1. Strain PA expressed and properly assembled P. aeruginosa PilA subunits into pili and exhibited a profile of outer surface c-type cytochromes similar to that of a control strain expressing the G. sulfurreducens PilA. Surprisingly, the strain PA pili were decorated with the c-type cytochrome OmcS in a manner similar to the control strain. However, the strain PA pili were 14-fold less conductive than the pili of the control strain, and strain PA was severely impaired in Fe(III) oxide reduction and current production. These results demonstrate that the presence of OmcS on pili is not sufficient to confer conductivity to pili and suggest that there are unique structural features of the G. sulfurreducens PilA that are necessary for conductivity.

  4. A Geobacter sulfurreducens Strain Expressing Pseudomonas aeruginosa Type IV Pili Localizes OmcS on Pili but Is Deficient in Fe(III) Oxide Reduction and Current Production

    PubMed Central

    Liu, Xing; Tremblay, Pier-Luc; Malvankar, Nikhil S.; Nevin, Kelly P.; Vargas, Madeline

    2014-01-01

    The conductive pili of Geobacter species play an important role in electron transfer to Fe(III) oxides, in long-range electron transport through current-producing biofilms, and in direct interspecies electron transfer. Although multiple lines of evidence have indicated that the pili of Geobacter sulfurreducens have a metal-like conductivity, independent of the presence of c-type cytochromes, this claim is still controversial. In order to further investigate this phenomenon, a strain of G. sulfurreducens, designated strain PA, was constructed in which the gene for the native PilA, the structural pilin protein, was replaced with the PilA gene of Pseudomonas aeruginosa PAO1. Strain PA expressed and properly assembled P. aeruginosa PilA subunits into pili and exhibited a profile of outer surface c-type cytochromes similar to that of a control strain expressing the G. sulfurreducens PilA. Surprisingly, the strain PA pili were decorated with the c-type cytochrome OmcS in a manner similar to the control strain. However, the strain PA pili were 14-fold less conductive than the pili of the control strain, and strain PA was severely impaired in Fe(III) oxide reduction and current production. These results demonstrate that the presence of OmcS on pili is not sufficient to confer conductivity to pili and suggest that there are unique structural features of the G. sulfurreducens PilA that are necessary for conductivity. PMID:24296506

  5. Cytochrome c1 exhibits two binding sites for cytochrome c in plants.

    PubMed

    Moreno-Beltrán, Blas; Díaz-Quintana, Antonio; González-Arzola, Katiuska; Velázquez-Campoy, Adrián; De la Rosa, Miguel A; Díaz-Moreno, Irene

    2014-10-01

    In plants, channeling of cytochrome c molecules between complexes III and IV has been purported to shuttle electrons within the supercomplexes instead of carrying electrons by random diffusion across the intermembrane bulk phase. However, the mode plant cytochrome c behaves inside a supercomplex such as the respirasome, formed by complexes I, III and IV, remains obscure from a structural point of view. Here, we report ab-initio Brownian dynamics calculations and nuclear magnetic resonance-driven docking computations showing two binding sites for plant cytochrome c at the head soluble domain of plant cytochrome c1, namely a non-productive (or distal) site with a long heme-to-heme distance and a functional (or proximal) site with the two heme groups close enough as to allow electron transfer. As inferred from isothermal titration calorimetry experiments, the two binding sites exhibit different equilibrium dissociation constants, for both reduced and oxidized species, that are all within the micromolar range, thus revealing the transient nature of such a respiratory complex. Although the docking of cytochrome c at the distal site occurs at the interface between cytochrome c1 and the Rieske subunit, it is fully compatible with the complex III structure. In our model, the extra distal site in complex III could indeed facilitate the functional cytochrome c channeling towards complex IV by building a "floating boat bridge" of cytochrome c molecules (between complexes III and IV) in plant respirasome.

  6. Cytochrome P450 3A, NADPH cytochrome P450 reductase and cytochrome b5 in the upper airways in horse.

    PubMed

    Tydén, E; Olsén, L; Tallkvist, J; Tjälve, H; Larsson, P

    2008-08-01

    Gene and protein expression as well as catalytic activity of cytochrome P450 (CYP) 3A were studied in the nasal olfactory and respiratory mucosa and the tracheal mucosa of the horse. We also examined the activity of NADPH cytochrome P450 reductase (NADPH P450 reductase), the amount of cytochrome b(5) and the total CYP content in these tissues. Comparative values for the above were obtained using liver as a control. The CYP3A related catalytic activity in the tissues of the upper airways was considerably higher than in the liver. The CYP3A gene and protein expression, on the other hand, was higher in the liver than in the upper airway tissues. Thus, the pattern of CYP3A metabolic activity does not correlate with the CYP3A gene and protein expression. Our results showed that the activity of NADPH P450 reductase and the level of cytochrome b(5) in the relation to the gene and protein expression of CYP3A were higher in the tissues of the upper airways than in the liver. It is concluded that CYP3A related metabolism in horse is not solely dependent on the expression of the enzyme but also on adequate levels of NADPH P450 reductase and cytochrome b(5).

  7. Cytochrome bc1 complexes of microorganisms.

    PubMed Central

    Trumpower, B L

    1990-01-01

    The cytochrome bc1 complex is the most widely occurring electron transfer complex capable of energy transduction. Cytochrome bc1 complexes are found in the plasma membranes of phylogenetically diverse photosynthetic and respiring bacteria, and in the inner mitochondrial membrane of all eucaryotic cells. In all of these species the bc1 complex transfers electrons from a low-potential quinol to a higher-potential c-type cytochrome and links this electron transfer to proton translocation. Most bacteria also possess alternative pathways of quinol oxidation capable of circumventing the bc1 complex, but these pathways generally lack the energy-transducing, protontranslocating activity of the bc1 complex. All cytochrome bc1 complexes contain three electron transfer proteins which contain four redox prosthetic groups. These are cytochrome b, which contains two b heme groups that differ in their optical and thermodynamic properties; cytochrome c1, which contains a covalently bound c-type heme; and a 2Fe-2S iron-sulfur protein. The mechanism which links proton translocation to electron transfer through these proteins is the proton motive Q cycle, and this mechanism appears to be universal to all bc1 complexes. Experimentation is currently focused on understanding selected structure-function relationships prerequisite for these redox proteins to participate in the Q-cycle mechanism. The cytochrome bc1 complexes of mitochondria differ from those of bacteria, in that the former contain six to eight supernumerary polypeptides, in addition to the three redox proteins common to bacteria and mitochondria. These extra polypeptides are encoded in the nucleus and do not contain redox prosthetic groups. The functions of the supernumerary polypeptides of the mitochondrial bc1 complexes are generally not known and are being actively explored by genetically manipulating these proteins in Saccharomyces cerevisiae. Images PMID:2163487

  8. A cytochrome c methyltransferase from Crithidia oncopelti.

    PubMed Central

    Valentine, J; Pettigrew, G W

    1982-01-01

    The mitochondrial cytochrome c-557 of Crithidia oncopelti contains two lysine residues and an N-terminal proline residue that are methylated in vivo by the methyl group of methionine. The purified cytochrome can act as a methyl acceptor for a methyltransferase activity in the cell extract that uses S-adenosylmethionine as methyl donor. Crithidia cytochrome c-557 is by far the best substrate for this methyltransferase of those tested, in spite of the fact that methylation sites are already almost fully occupied. The radioactive uptake of [14C]methyl groups from S-adenosylmethionine occurred only at a lysine residue (-8) and the N-terminal proline residue. This methyltransferase appears to differ from that of Neurospora and yeast [Durban, Nochumson, Kim, Paik & Chan (1978) J. Biol. Chem. 253, 1427-1435; DiMaria, Polastro, DeLange, Kim & Paik (1979) J. Biol. Chem. 254, 4645-4652] in that lysine-72 of horse cytochrome c is a poor acceptor. Also, the Crithidia methyltransferase appears to be stable to carry lysine methylation much further to completion than do the enzymes from yeast and Neurospora, which produce very low degrees of methylation in native cytochromes c. PMID:6282265

  9. Cytochrome b5 from Giardia lamblia.

    PubMed

    Alam, Samiah; Yee, Janet; Couture, Manon; Takayama, Shin-ichi J; Tseng, Wan-Hsin; Mauk, A Grant; Rafferty, Steven

    2012-12-01

    The protozoan intestinal parasite Giardia lamblia lacks mitochondria and the ability to make haem yet encodes several putative haem-binding proteins, including three of the cytochrome b(5) family. We cloned one of these (gCYTb5-I) and expressed it within Escherichia coli as a soluble holoprotein. UV-visible and resonance Raman spectra of gCYTb5-I resemble those of microsomal cytochrome b(5), and homology modelling supports a structure in which a pair of invariant histidine residues act as axial ligands to the haem iron. The reduction potential of gCYTb5-I is -165 mV vs. SHE and is relatively low compared to most values (-110 to +80 mV) for this class of protein. The amino- and carboxy-terminal sequences that flank the central haem-binding core of the Giardia cytochromes are highly charged and differ from those of other family members. A core gCYTb5-I variant lacking these flanking sequences was also able to bind haem. The presence of one actual and two probable functional cytochromes b(5) in Giardia is evidence of uncharacterized cytochrome-mediated metabolic processes within this medically important protist.

  10. Yeast mutants overproducing iso-cytochromes c

    SciTech Connect

    Sherman, F.; Cardillo, T.S.; Errede, B.; Friedman, L.; McKnight, G.; Stiles, J.I.

    1980-01-01

    For over 15 years, the iso-cytochrome c system in the yeast Saccharomyces cerevisiae has been used to investigate a multitude of problems in genetics and molecular biology. More recently, attention has been focused on using mutants for examining translation and transcriptional processes and for probing regulatory regions governing gene expression. In an effort to explore regulatory mechanisms and to investigate mutational alterations that lead to increased levels of gene products, we have isolated and characterized mutants that overproduce cytochrome c. In this paper we have briefly summarized background information of some essential features of the iso-cytochrome c system and we have described the types of mutants that overproduce iso-1-cytochrome c or iso-2-cytochrome c. Genetic procedures and recombinant DNA procedures were used to demonstrate that abnormally high amounts of gene products occur in mutants as result of duplications of gene copies or of extended alteration of regulatory regions. The results summarized in this paper point out the requirements of gross mutational changes or rearrangements of chromosomal segments for augmenting gene products.

  11. Pseudomonas aeruginosa ventilator-associated pneumonia management.

    PubMed

    Ramírez-Estrada, Sergio; Borgatta, Bárbara; Rello, Jordi

    2016-01-01

    Ventilator-associated pneumonia is the most common infection in intensive care unit patients associated with high morbidity rates and elevated economic costs; Pseudomonas aeruginosa is one of the most frequent bacteria linked with this entity, with a high attributable mortality despite adequate treatment that is increased in the presence of multiresistant strains, a situation that is becoming more common in intensive care units. In this manuscript, we review the current management of ventilator-associated pneumonia due to P. aeruginosa, the most recent antipseudomonal agents, and new adjunctive therapies that are shifting the way we treat these infections. We support early initiation of broad-spectrum antipseudomonal antibiotics in present, followed by culture-guided monotherapy de-escalation when susceptibilities are available. Future management should be directed at blocking virulence; the role of alternative strategies such as new antibiotics, nebulized treatments, and vaccines is promising.

  12. Pseudomonas aeruginosa ventilator-associated pneumonia management

    PubMed Central

    Ramírez-Estrada, Sergio; Borgatta, Bárbara; Rello, Jordi

    2016-01-01

    Ventilator-associated pneumonia is the most common infection in intensive care unit patients associated with high morbidity rates and elevated economic costs; Pseudomonas aeruginosa is one of the most frequent bacteria linked with this entity, with a high attributable mortality despite adequate treatment that is increased in the presence of multiresistant strains, a situation that is becoming more common in intensive care units. In this manuscript, we review the current management of ventilator-associated pneumonia due to P. aeruginosa, the most recent antipseudomonal agents, and new adjunctive therapies that are shifting the way we treat these infections. We support early initiation of broad-spectrum antipseudomonal antibiotics in present, followed by culture-guided monotherapy de-escalation when susceptibilities are available. Future management should be directed at blocking virulence; the role of alternative strategies such as new antibiotics, nebulized treatments, and vaccines is promising. PMID:26855594

  13. Population genetic structure of Bellamya aeruginosa (Mollusca: Gastropoda: Viviparidae) in China: weak divergence across large geographic distances.

    PubMed

    Gu, Qian H; Husemann, Martin; Ding, Baoqing; Luo, Zhi; Xiong, Bang X

    2015-11-01

    Bellamya aeruginosa is a widely distributed Chinese freshwater snail that is heavily harvested, and its natural habitats are under severe threat due to fragmentation and loss. We were interested whether the large geographic distances between populations and habitat fragmentation have led to population differentiation and reduced genetic diversity in the species. To estimate the genetic diversity and population structure of B. aeruginosa, 277 individuals from 12 populations throughout its distribution range across China were sampled: two populations were sampled from the Yellow River system, eight populations from the Yangtze River system, and two populations from isolated plateau lakes. We used seven microsatellite loci and mitochondrial cytochrome oxidase I sequences to estimate population genetic parameters and test for demographic fluctuations. Our results showed that (1) the genetic diversity of B. aeruginosa was high for both markers in most of the studied populations and effective population sizes appear to be large, (2) only very low and mostly nonsignificant levels of genetic differentiation existed among the 12 populations, gene flow was generally high, and (3) relatively weak geographic structure was detected despite large geographic distances between populations. Further, no isolation by linear or stream distance was found among populations within the Yangtze River system and no signs of population bottlenecks were detected. Gene flow occurred even between far distant populations, possibly as a result of passive dispersal during flooding events, zoochoric dispersal, and/or anthropogenic translocations explaining the lack of stronger differentiation across large geographic distances. The high genetic diversity of B. aeruginosa and the weak population differentiation are likely the results of strong gene flow facilitated by passive dispersal and large population sizes suggesting that the species currently is not of conservation concern.

  14. Kinetics of the interaction of the cytochrome c oxidase of Paracoccus denitrificans with its own and bovine cytochrome c.

    PubMed

    Bolgiano, B; Smith, L; Davies, H C

    1988-04-22

    We have devised a relatively simple method for the purification of cytochrome aa3 of Paracoccus denitrificans with three major subunits similar to those of the larger subunits of the mitochondrial cytochrome oxidase. This preparation has no c-type cytochrome. Studies were made of the oxidation of soluble cytochromes c from bovine heart and Paracoccus. The cytochrome-c oxidase activity was stimulated by low concentrations of either cytochrome c, providing an explanation for the multiphasic nature of plots of v/S versus v. Kinetics of the oxidation of bovine cytochrome c by the Paracoccus oxidase resembled those of bovine oxidase with bovine cytochrome c in every way; the Paracoccus oxidase with bovine cytochrome c can serve as an appropriate model for the mitochondrial system. The kinetics of the oxidation of the soluble Paracoccus cytochrome c by the Paracoccus oxidase were different from those seen with bovine cytochrome c, but resembled the latter if poly(L-lysine) was added to the assays. The important difference between the two species of cytochrome c is the more highly negative hemisphere on the side of the molecule way from the heme crevice in the Paracoccus cytochrome. Thus, the data emphasize the importance of all of the charged groups on cytochrome c in influencing the binding or electron transfer reactions of this oxidation-reduction system. The data also permit some interesting connotations about the possible evolution from the bacterial to the mitochondrial electron transport system.

  15. Cryptic transposable phages of Pseudomonas aeruginosa

    SciTech Connect

    Krylov, V.N.; Mit`kina, L.N.; Pleteneva, E.A.; Aleshin, V.V.

    1995-11-01

    Frequencies of nucleotide sequences homologous to phage transposons (PT) of two species, D3112 and B3, were assessed in genomes of natural Pseudomonas aeruginosa strains by the dot-blot hybridization method. These strains were incapable of liberating viable phages on a lawn of the PA01 standard indicator strain of P. aeruginosa. It was shown that the homologies detected belong to two groups, high and intermediate, with respect to homology level. Homology patterns were classified as high when they provided signals comparable to those for hybridization in a positive control; patterns were classified as intermediate when the hybridization level was higher than the background level, but lower than in the positive control. Homologous PT sequences were designated as cryptic PT. Intact cryptic PT prophages were shown to exist in genomes of particular natural strains manifesting a higher level of hybridization. However, the growth of these phages was limited by the restriction system of strain PA01. It is possible to isolate strains maintaining the growth of some cryptic PT. These strains differed from P. aeruginosa with respect to the specificity of the restriction and modification system. Nevertheless, in most cases, the attempt to identify a novel host capable of maintaining growth of a cryptic PT failed. Natural strains often carry cryptic PT related to both known PT species, D3112 and B3. The frequency of cryptic PT is extremely high, reaching 30% in strains with a high level of homology only and up to 50% in all strains exhibiting homology. This high PT frequency is assumed to be associated with the considerable variation of P. aeruginosa. 15 refs., 1 fig., 2 tabs.

  16. Pseudomonas aeruginosa essentials: an update on investigation of essential genes.

    PubMed

    Juhas, Mario

    2015-11-01

    Pseudomonas aeruginosa is the leading cause of nosocomial infections, particularly in immunocompromised, cancer, burn and cystic fibrosis patients. Development of novel antimicrobials against P. aeruginosa is therefore of the highest importance. Although the first reports on P. aeruginosa essential genes date back to the early 2000s, a number of more sensitive genomic approaches have been used recently to better define essential genes in this organism. These analyses highlight the evolution of the definition of an 'essential' gene from the traditional to the context-dependent. Essential genes, particularly those indispensable under the clinically relevant conditions, are considered to be promising targets of novel antibiotics against P. aeruginosa. This review provides an update on the investigation of P. aeruginosa essential genes. Special focus is on recently identified P. aeruginosa essential genes and their exploitation for the development of antimicrobials.

  17. Glycerol metabolism promotes biofilm formation by Pseudomonas aeruginosa.

    PubMed

    Scoffield, Jessica; Silo-Suh, Laura

    2016-08-01

    Pseudomonas aeruginosa causes persistent infections in the airways of cystic fibrosis (CF) patients. Airway sputum contains various host-derived nutrients that can be utilized by P. aeruginosa, including phosphotidylcholine, a major component of host cell membranes. Phosphotidylcholine can be degraded by P. aeruginosa to glycerol and fatty acids to increase the availability of glycerol in the CF lung. In this study, we explored the role that glycerol metabolism plays in biofilm formation by P. aeruginosa. We report that glycerol metabolism promotes biofilm formation by both a chronic CF isolate (FRD1) and a wound isolate (PAO1) of P. aeruginosa. Moreover, loss of the GlpR regulator, which represses the expression of genes involved in glycerol metabolism, enhances biofilm formation in FRD1 through the upregulation of Pel polysaccharide. Taken together, our results suggest that glycerol metabolism may be a key factor that contributes to P. aeruginosa persistence by promoting biofilm formation.

  18. Two-dimensional crystallization of monomeric bovine cytochrome c oxidase with bound cytochrome c in reconstituted lipid membranes.

    PubMed

    Osuda, Yukiho; Shinzawa-Itoh, Kyoko; Tani, Kazutoshi; Maeda, Shintaro; Yoshikawa, Shinya; Tsukihara, Tomitake; Gerle, Christoph

    2016-06-01

    Mitochondrial cytochrome c oxidase utilizes electrons provided by cytochrome c for the active vectorial transport of protons across the inner mitochondrial membrane through the reduction of molecular oxygen to water. Direct structural evidence on the transient cytochrome c oxidase-cytochrome c complex thus far, however, remains elusive and its physiological relevant oligomeric form is unclear. Here, we report on the 2D crystallization of monomeric bovine cytochrome c oxidase with tightly bound cytochrome c at a molar ratio of 1:1 in reconstituted lipid membranes at the basic pH of 8.5 and low ionic strength.

  19. Autophagy enhances bacterial clearance during P. aeruginosa lung infection.

    PubMed

    Junkins, Robert D; Shen, Ann; Rosen, Kirill; McCormick, Craig; Lin, Tong-Jun

    2013-01-01

    Pseudomonas aeruginosa is an opportunistic bacterial pathogen which is the leading cause of morbidity and mortality among cystic fibrosis patients. Although P. aeruginosa is primarily considered an extacellular pathogen, recent reports have demonstrated that throughout the course of infection the bacterium acquires the ability to enter and reside within host cells. Normally intracellular pathogens are cleared through a process called autophagy which sequesters and degrades portions of the cytosol, including invading bacteria. However the role of autophagy in host defense against P. aeruginosa in vivo remains unknown. Understanding the role of autophagy during P. aeruginosa infection is of particular importance as mutations leading to cystic fibrosis have recently been shown to cause a blockade in the autophagy pathway, which could increase susceptibility to infection. Here we demonstrate that P. aeruginosa induces autophagy in mast cells, which have been recognized as sentinels in the host defense against bacterial infection. We further demonstrate that inhibition of autophagy through pharmacological means or protein knockdown inhibits clearance of intracellular P. aeruginosa in vitro, while pharmacologic induction of autophagy significantly increased bacterial clearance. Finally we find that pharmacological manipulation of autophagy in vivo effectively regulates bacterial clearance of P. aeruginosa from the lung. Together our results demonstrate that autophagy is required for an effective immune response against P. aeruginosa infection in vivo, and suggest that pharmacological interventions targeting the autophagy pathway could have considerable therapeutic potential in the treatment of P. aeruginosa lung infection.

  20. Mechanism of resistance to benzalkonium chloride by Pseudomonas aeruginosa.

    PubMed

    Sakagami, Y; Yokoyama, H; Nishimura, H; Ose, Y; Tashima, T

    1989-08-01

    The mechanisms of resistance of Pseudomonas aeruginosa to benzalkonium chloride (BC) were studied. The effluence of cell components was observed in susceptible P. aeruginosa by electron microscopy, but resistant P. aeruginosa seemed to be undamaged. No marked changes in cell surface potential between Escherichia coli NIHJC-2 and a spheroplast strain were found. The contents of phospholipids (PL) and fatty and neutral lipids (FNL) in the cell walls of resistant P. aeruginosa were higher than those in the cell walls of susceptible P. aeruginosa. The amounts of BC adsorbed to PL and FNL of cell walls of BC-resistant P. aeruginosa were lower than those for BC-susceptible P. aeruginosa. Fifteen species of cellular fatty acids were identified by capillary gas chromatography and gas chromatography-mass spectrometry. The ability of BC to permeate the cell wall was reduced because of the increase in cellular fatty acids. These results suggested that the resistance of P. aeruginosa to BC is mainly a result of increased in the contents of PL and FNL. In resistant P. aeruginosa, the decrease in the amount of BC adsorbed is likely to be the result of increases in the contents of PL and FNL.

  1. Mechanism of resistance to benzalkonium chloride by Pseudomonas aeruginosa.

    PubMed Central

    Sakagami, Y; Yokoyama, H; Nishimura, H; Ose, Y; Tashima, T

    1989-01-01

    The mechanisms of resistance of Pseudomonas aeruginosa to benzalkonium chloride (BC) were studied. The effluence of cell components was observed in susceptible P. aeruginosa by electron microscopy, but resistant P. aeruginosa seemed to be undamaged. No marked changes in cell surface potential between Escherichia coli NIHJC-2 and a spheroplast strain were found. The contents of phospholipids (PL) and fatty and neutral lipids (FNL) in the cell walls of resistant P. aeruginosa were higher than those in the cell walls of susceptible P. aeruginosa. The amounts of BC adsorbed to PL and FNL of cell walls of BC-resistant P. aeruginosa were lower than those for BC-susceptible P. aeruginosa. Fifteen species of cellular fatty acids were identified by capillary gas chromatography and gas chromatography-mass spectrometry. The ability of BC to permeate the cell wall was reduced because of the increase in cellular fatty acids. These results suggested that the resistance of P. aeruginosa to BC is mainly a result of increased in the contents of PL and FNL. In resistant P. aeruginosa, the decrease in the amount of BC adsorbed is likely to be the result of increases in the contents of PL and FNL. Images PMID:2506813

  2. Detection of human lung cytochromes P450 that are immunochemically related to cytochrome P450IIE1 and cytochrome P450IIIA.

    PubMed

    Wheeler, C W; Wrighton, S A; Guenthner, T M

    1992-07-07

    We have used monoclonal antibodies that were prepared against and specifically recognize human hepatic cytochromes P450 as probes for solid phase radioimmunoassay and Western immunoblotting to directly demonstrate the presence in human lung microsomes of cytochromes P450 immunochemically related to human liver cytochromes P450IIE1 (CYP2E1) and P450IIIA (CYP3A). The detected levels of these cytochromes are much lower than levels in human liver microsomes, but similar to the levels seen in microsomes from untreated baboon lung. Proteins immunochemically related to two other constitutive hepatic cytochromes P450, cytochrome P450IIC8 (CYP2C8) and cytochrome P450IIC9 (CYP2C9), were not detectable in lung microsomes.

  3. Nerval influences on liver cytochrome P450.

    PubMed

    Klinger, W; Karge, E; Danz, M; Krug, M

    1995-09-01

    In male young adult Wistar rats the influences of nucleus raphe electrocoagulation, spinal cord dissection (cordotomy between C7 and Th1), vagotomy and denervation of liver hilus by phenol on liver cytochrome P450-system (cytochrome P450 concentration, ethylmorphine N-demethylation and ethoxycoumarin O-deethylation activities, hexobarbitone sleeping time) were investigated. In general the influences were small or negligible when compared with sham operated controls, only after vagotomy the depressing effect of sham operation was abolished. In all cases sham operation had a depressing effect until up to five weeks after operation.

  4. Reactive Intermediates in Cytochrome P450 Catalysis*

    PubMed Central

    Krest, Courtney M.; Onderko, Elizabeth L.; Yosca, Timothy H.; Calixto, Julio C.; Karp, Richard F.; Livada, Jovan; Rittle, Jonathan; Green, Michael T.

    2013-01-01

    Recently, we reported the spectroscopic and kinetic characterizations of cytochrome P450 compound I in CYP119A1, effectively closing the catalytic cycle of cytochrome P450-mediated hydroxylations. In this minireview, we focus on the developments that made this breakthrough possible. We examine the importance of enzyme purification in the quest for reactive intermediates and report the preparation of compound I in a second P450 (P450ST). In an effort to bring clarity to the field, we also examine the validity of controversial reports claiming the production of P450 compound I through the use of peroxynitrite and laser flash photolysis. PMID:23632017

  5. Genetic characterization of Bagarius species using cytochrome c oxidase I and cytochrome b genes.

    PubMed

    Nagarajan, Muniyandi; Raja, Manikam; Vikram, Potnuru

    2016-09-01

    In this study, we first inferred the genetic variability of two Bagarius bagarius populations collected from Ganges and Brahmaputra rivers of India using two mtDNA markers. Sequence analysis of COI gene did not show significant differences between two populations whereas cytochrome b gene showed significant differences between two populations. Followed by, genetic relationship of B. bagarius and B. yarrielli was analyzed using COI and cytochrome b gene and the results showed a higher level genetic variation between two species. The present study provides support for the suitability of COI and cytochrome b genes for the identification of B. bagarius and B. yarrielli.

  6. Evolution of cytochrome c genes and pseudogenes.

    PubMed

    Wu, C I; Li, W H; Shen, J J; Scarpulla, R C; Limbach, K J; Wu, R

    1986-01-01

    A statistical analysis of the nucleotide sequences of cytochrome c genes from four species of animals and two of yeast and of cytochrome c pseudogenes from rat, mouse, and human was conducted. It was estimated that animals and yeast diverged 1.2 billion years ago, that the two duplicated genes DC3 and DC4 in Drosophila diverged 520 million years ago, and that the two duplicated genes Iso-1 and Iso-2 in the yeast Saccharomyces cerevisiae diverged 200 million years ago. DC3 is expressed at a low level and has evolved 3 times faster than DC4. This observation supports the neutralist view that relaxation of functional constraints is a more likely cause of accelerated evolution following gene duplication than is advantageous mutation. All the rodent pseudogenes examined appear to be processed pseudogenes derived directly from the functional genes, and most of them apparently arose after the mouse-rat split. No event of gene conversion could be detected between any pair of the rodent pseudogenes. Our analysis suggests that the human cytochrome c gene has evolved at a rate comparable to the average rate for pseudogenes, whereas some human cytochrome c pseudogenes have evolved at an exceptionally low rate.

  7. Design and Use of Photoactive Ruthenium Complexes to Study Electron Transfer within Cytochrome bc1 and from Cytochrome bc1 to Cytochrome c

    PubMed Central

    Millett, Francis; Havens, Jeffrey; Rajagukguk, Sany; Durham, Bill

    2012-01-01

    The cytochrome bc1 complex (ubiquinone:cytochrome c oxidoreductase) is the central integral membrane protein in the mitochondrial respiratory chain as well as the electron-transfer chains of many respiratory and photosynthetic prokaryotes. Based on X-ray crystallographic studies of cytochrome bc1, a mechanism has been proposed in which the extrinsic domain of the iron-sulfur protein first binds to cytochrome b where it accepts an electron from ubiquinol in the Qo site, and then rotates by 57o to a position close to cytochrome c1 where it transfers an electron to cytochrome c1. This review describes the development of a ruthenium photooxidation technique to measure key electron transfer steps in cytochrome bc1, including rapid electron transfer from the iron-sulfur protein to cytochrome c1. It was discovered that this reaction is rate-limited by the rotational dynamics of the iron-sulfur protein rather than true electron transfer. A conformational linkage between the occupant of the Qo ubiquinol binding site and the rotational dynamics of the iron-sulfur protein was discovered which could play a role in the bifurcated oxidation of ubiquinol. A ruthenium photoexcitation method is also described for the measurement of electron transfer from cytochrome c1 to cytochrome c. This article is part of a special issue entitled: Respiratory Complex III. PMID:22985600

  8. Isolation of ubiquinol oxidase from Paracoccus denitrificans and resolution into cytochrome bc1 and cytochrome c-aa3 complexes.

    PubMed

    Berry, E A; Trumpower, B L

    1985-02-25

    An enzyme complex with ubiquinol-cytochrome c oxidoreductase, cytochrome c oxidase, and ubiquinol oxidase activities was purified from a detergent extract of the plasma membrane of aerobically grown Paracoccus denitrificans. This ubiquinol oxidase consists of seven polypeptides and contains two b cytochromes, cytochrome c1, cytochrome aa3, and a previously unreported c-type cytochrome. This c-type cytochrome has an apparent Mr of 22,000 and an alpha absorption maximum at 552 nm. Retention of this c cytochrome through purification presumably accounts for the independence of ubiquinol oxidase activity on added cytochrome c. Ubiquinol oxidase can be separated into a 3-subunit bc1 complex, a 3-subunit c-aa3 complex, and a 57-kDa polypeptide. This, together with detection of covalently bound heme and published molecular weights of cytochrome c1 and the subunits of cytochrome c oxidase, allows tentative identification of most of the subunits of ubiquinol oxidase with the prosthetic groups present. Ubiquinol oxidase contains cytochromes corresponding to those of the mitochondrial bc1 complex, cytochrome c oxidase complex, and a bound cytochrome c. Ubiquinol-cytochrome c oxidoreductase activity of the complex is inhibited by inhibitors of the mitochondrial bc1 complex. Thus it seems likely that the pathway of electron transfer through the bc1 complex of ubiquinol oxidase is similar to that through the mitochondrial bc1 complex. The number of polypeptides present is less than half the number in the corresponding mitochondrial complexes. This structural simplicity may make ubiquinol oxidase from P. denitrificans a useful system with which to study the mechanisms of electron transfer and energy transduction in the bc1 and cytochrome c oxidase sections of the respiratory chain.

  9. Social cheating in Pseudomonas aeruginosa quorum sensing.

    PubMed

    Sandoz, Kelsi M; Mitzimberg, Shelby M; Schuster, Martin

    2007-10-02

    In a process termed quorum sensing, bacteria use diffusible chemical signals to coordinate cell density-dependent gene expression. In the human pathogen Pseudomonas aeruginosa, quorum sensing controls hundreds of genes, many of which encode extracellular virulence factors. Quorum sensing is required for P. aeruginosa virulence in animal models. Curiously, quorum sensing-deficient variants, most of which carry a mutation in the gene encoding the central quorum sensing regulator lasR, are frequently isolated from acute and chronic infections. The mechanism for their emergence is not known. Here we provide experimental evidence suggesting that these lasR mutants are social cheaters that cease production of quorum-controlled factors and take advantage of their production by the group. We detected an emerging subpopulation of lasR mutants after approximately 100 generations of in vitro evolution of the P. aeruginosa wild-type strain under culture conditions that require quorum sensing for growth. Under such conditions, quorum sensing appears to impose a metabolic burden on the proliferating bacterial cell, because quorum-controlled genes not normally induced until cessation of growth were highly expressed early in growth, and a defined lasR mutant showed a growth advantage when cocultured with the parent strain. The emergence of quorum-sensing-deficient variants in certain environments is therefore an indicator of high quorum sensing activity of the bacterial population as a whole. It does not necessarily indicate that quorum sensing is insignificant, as has previously been suggested. Thus, novel antivirulence strategies aimed at disrupting bacterial communication may be particularly effective in such clinical settings.

  10. First report of NDM-1-producing Pseudomonas aeruginosa in Egypt.

    PubMed

    Zafer, Mai Mahmoud; Amin, Mady; El Mahallawy, Hadir; Ashour, Mohammed Seif El-Din; Al Agamy, Mohamed

    2014-12-01

    This work reports the occurrence of New Delhi metallo-beta-lactamase 1 (NDM-1) in metallo-beta-lactamase-producing Pseudomonas aeruginosa in Egypt for the first time, and the presence of more than one blaMBL gene in carbapenem-resistant P. aeruginosa.

  11. Oxidation of 1-Tetradecene by Pseudomonas aeruginosa

    PubMed Central

    Markovetz, A. J.; Klug, M. J.; Forney, F. W.

    1967-01-01

    Pseudomonas aeruginosa strain Sol 20 was grown on 1-tetradecene as sole carbon source, and a vinyl-unsaturated 14-carbon monocarboxylic acid, 13-tetradecenoic acid, was identified from culture fluid. This acid was not produced when n-tetradecane served as substrate for growth. Oxidation of the methyl group represents one method of attack on the 1-alkene by this organism. Tentative identification of 2-tetradecanol indicates that an attack on the double bond is also occurring. α, ω-Dienes would not support growth. PMID:4962057

  12. The ccoNOQP gene cluster codes for a cb-type cytochrome oxidase that functions in aerobic respiration of Rhodobacter capsulatus.

    PubMed

    Thöny-Meyer, L; Beck, C; Preisig, O; Hennecke, H

    1994-11-01

    The genes for a new type of a haem-copper cytochrome oxidase were cloned from Rhodobacter capsulatus strain 37b4, using the Bradyrhizobium japonicum fixNOQP gene region as a hybridizing probe. Four genes, probably organized in an operon (ccoNOQP), were identified; their products share extensive amino acid sequence similarity with the FixN, O, Q and P proteins that have recently been shown to be the subunits of a cb-type oxidase. CcoN is a b-type cytochrome, CcoO and CcoP are membrane-bound mono- and dihaem c-type cytochromes and CcoQ is a small membrane protein of unknown function. Genes for a similar oxidase are also present in other non-rhizobial bacterial species such as Azotobacter vinelandii, Agrobacterium tumefaciens and Pseudomonas aeruginosa, as revealed by polymerase chain reaction analysis. A ccoN mutant was constructed whose phenotype, in combination with the structural information on the gene products, provides evidence that the CcoNOQP oxidase is a cytochrome c oxidase of the cb type, which supports aerobic respiration in R. capsulatus and which is probably identical to the cbb3-type oxidase that was recently purified from a different strain of the same species. Mutant analysis also showed that this oxidase has no influence on photosynthetic growth and nitrogen-fixation activity.

  13. Molecular epidemiology of Pseudomonas aeruginosa in an intensive care unit.

    PubMed Central

    Döring, G.; Hörz, M.; Ortelt, J.; Grupp, H.; Wolz, C.

    1993-01-01

    Genotyping was used to analyse Pseudomonas aeruginosa isolates from sink drains and 15 intubated patients as part of a 3-month prospective study of strain transmission in a medical-surgical intensive care unit. Ninety percent of all washbasin drains were persistently contaminated with several P. aeruginosa genotypes. In 60% (9/15) of the patients, P. aeruginosa colonization or infection was hospital-acquired: P. aeruginosa strains isolated from these patients were present in hospital sinks or in other patients before their admission. Since all patients were immobile, personnel were the probable route of transmission of P. aeruginosa in the hospital. The mechanism of strain transmission from sinks to hands during hand washing was investigated in a children's hospital. When P. aeruginosa was present at densities of > 10(5)/c.f.u. per ml in sink drains, hand washing resulted in hand contamination with P. aeruginosa via aerosol generation in the majority of experiments or P. aeruginosa was detected using an air sampler above the washing basin. High P. aeruginosa cfu were present at 4.30 h in the eight sinks (5.4 x 10(5)-7.0 x 10(10) c.f.u./ml), whereas at 13.00 h P. aeruginosa c.f.u. were significantly lower (3.1 x 10(2)-8.0 x 10(5) c.f.u./ml). These data reveal that the danger of bacterial contamination of hands during hand washing is highest in the morning. The identified transmission routes demand more effective hygienic measures in hospital settings particularly concerning personnel hands and sink drains. Images Fig. 1 PMID:8519308

  14. Imported PER-1 producing Pseudomonas aeruginosa, PER-1 producing Acinetobacter baumanii and VIM-2-producing Pseudomonas aeruginosa strains in Hungary

    PubMed Central

    Szabó, Dora; Szentandrássy, Julia; Juhász, Zsuzsa; Katona, Katalin; Nagy, Károly; Rókusz, László

    2008-01-01

    Introduction Pseudomonas aeruginosa and Acinetobacter baumanii are important nosocomial pathogens with wide intrinsic resistance. However, due to the dissemination of the acquired resistance mechanisms, such as extended-spectrum beta-lactamase (ESBL) and metallo beta-lactamase (MBL) production, multidrug resistant strains have been isolated more often. Case presentation We report a case of a Hungarian tourist, who was initially hospitalized in Egypt and later transferred to Hungary. On the day of admission PER-1-producing P. aeruginosa, PER-1 producing A. baumannii, SHV-5-producing Klebsiella pneumoniae and VIM-2-producing P. aeruginosa isolates were subcultured from the patient's samples in Hungary. Comparing the pulsed-field gel electrophoresis (PFGE) patterns of the P. aeruginosa strains from the patient to the P. aeruginosa strains occurring in this hospital, we can state that the PER-1-producing P. aeruginosa and VIM-2-producing P. aeruginosa had external origin. Conclusion This is the first report of PER-1-producing P. aeruginosa,and PER-1-producing A. baumanii strains in Hungary. This case highlights the importance of spreading of the beta-lactamase-mediated resistance mechanisms between countries and continents, showing the importance of careful screening and the isolation of patients arriving from a different country. PMID:18513394

  15. Isolation and purification of the cytochrome oxidase of Azotobacter vinelandii.

    PubMed

    Jurtshuk, P; Mueller, T J; Wong, T Y

    1981-09-14

    A membrane-bound cytochrome oxidase for Azobacter vinelandii was purified 20-fold using a detergent-solubilization procedure. Activity was monitored using as ascorbate-TMPD oxidation assay. The oxidase was 'solubilized' from a sonic-type electron-transport particle (R3 fraction) using Triton X-100 and deoxycholate. Low detergent concentrations first solubilized the flavoprotein oxidoreductases, then higher concentrations of Triton X-100 and KCl solubilized the oxidase, which was precipitated at 27-70% (NH4)2SO4. The highly purified cytochrome oxidase has a V of 60-78 microgatom O consumed/min per mg protein. TMPD oxidation by the purified enzyme was inhibited by CO, KCN, NaN3 and NH2OH; NaNO2 (but not NaNO3) also had a potent inhibitory effect. Spectral analyses revealed two major hemoproteins, the c-type cytochrome c4 and cytochrome o; cytochromes a1 and d were not detected. The Azotobacter cytochrome oxidase is an integrated cytochrome c4-o complex, TMPD-dependent cytochrome oxidase activity being highest in preparations having a high c-type cytochrome content. This TMPD-dependent cytochrome oxidase serves as a major oxygen-activation site for the A. vinelandii respiratory chain. It appears functionally analogous to cytochrome a+a3 oxidase of mammalian mitochondria.

  16. Biotransformation of myrcene by Pseudomonas aeruginosa

    PubMed Central

    2011-01-01

    Background Dihydrolinalool and terpineol are sources of fragrances that provide a unique volatile terpenoid alcohol of low toxicity and thus are widely used in the perfumery industry, in folk medicine, and in aromatherapy. They are important chemical constituents of the essential oil of many plants. Previous studies have concerned the biotransformation of limonene by Pseudomonas putida. The objective of this research was to study biotransformation of myrcene by Pseudomonas aeruginosa. The culture preparation was done using such variables as different microbial methods and incubation periods to obtain maximum cells of P. aeruginosa for myrcene biotransformation. Results It was found that myrcene was converted to dihydrolinalool and 2,6-dimethyloctane in high percentages. The biotransformation products were identified by Fourier-transform infrared spectroscopy (FT-IR), ultraviolet (UV) analysis, gas chromatography (GC), and gas chromatography-mass spectroscopy (GC-MS). Comparison of the different incubation times showed that 3 days was more effective, the major products being 2,6-dimethyloctane (90.0%) and α-terpineol (7.7%) and comprising 97.7%. In contrast, the main compounds derived for an incubation time of 1.5 days were dihydrolinalool (79.5%) and 2,6-dimethyloctane (9.3%), with a total yield of 88.8%. PMID:21609445

  17. Purification of extracellular lipase from Pseudomonas aeruginosa.

    PubMed Central

    Stuer, W; Jaeger, K E; Winkler, U K

    1986-01-01

    Lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) was excreted by Pseudomonas aeruginosa PAC1R during the late logarithmic growth phase. Characterization of cell-free culture supernatants by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of significant amounts of lipopolysaccharide, part of which seemed to be tightly bound to lipase. After concentration of culture supernatants by ultrafiltration, lipase-lipopolysaccharide complexes were dissociated by treatment with EDTA-Tris buffer and subsequent sonication in the presence of the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. The solubilized lipase was purified by isoelectric focusing in an agarose gel containing the same detergent; the lipase activity appeared in a single peak corresponding to a distinct band in the silver-stained gel. The isoelectric point was 5.8. Analysis of purified lipase by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and scanning revealed an apparent molecular weight of 29,000 and a specific activity of 760 mu kat/mg of protein. Estimations based on these data showed that a single P. aeruginosa cell excreted about 200 molecules of lipase, each having a molecular activity of 2.2 X 10(4) per s. Images PMID:3096967

  18. Pseudomonas aeruginosa biofilm-associated homoserine lactone C12 rapidly activates apoptosis in airway epithelia.

    PubMed

    Schwarzer, Christian; Fu, Zhu; Patanwala, Maria; Hum, Lauren; Lopez-Guzman, Mirielle; Illek, Beate; Kong, Weidong; Lynch, Susan V; Machen, Terry E

    2012-05-01

    Pseudomonas aeruginosa (PA) forms biofilms in lungs of cystic fibrosis (CF) patients, a process regulated by quorum-sensing molecules including N-(3-oxododecanoyl)-l-homoserine lactone (C12). C12 (10-100 µM) rapidly triggered events commonly associated with the intrinsic apoptotic pathway in JME (CF ΔF508CFTR, nasal surface) epithelial cells: depolarization of mitochondrial (mito) membrane potential (Δψ(mito)) and release of cytochrome C (cytoC) from mitos into cytosol and activation of caspases 3/7, 8 and 9. C12 also had novel effects on the endoplasmic reticulum (release of both Ca(2+) and ER-targeted GFP and oxidized contents into the cytosol). Effects began within 5 min and were complete in 1-2 h. C12 caused similar activation of caspases and release of cytoC from mitos in Calu-3 (wtCFTR, bronchial gland) cells, showing that C12-triggered responses occurred similarly in different airway epithelial types. C12 had nearly identical effects on three key aspects of the apoptosis response (caspase 3/7, depolarization of Δψ(mito) and reduction of redox potential in the ER) in JME and CFTR-corrected JME cells (adenoviral expression), showing that CFTR was likely not an important regulator of C12-triggered apoptosis in airway epithelia. Exposure of airway cultures to biofilms from PAO1wt caused depolarization of Δψ(mito) and increases in Ca(cyto) like 10-50 µM C12. In contrast, biofilms from PAO1ΔlasI (C12 deficient) had no effect, suggesting that C12 from P. aeruginosa biofilms may contribute to accumulation of apoptotic cells that cannot be cleared from CF lungs. A model to explain the effects of C12 is proposed.

  19. Differential expression of multiple terminal oxidases for aerobic respiration in Pseudomonas aeruginosa.

    PubMed

    Kawakami, Takuro; Kuroki, Miho; Ishii, Masaharu; Igarashi, Yasuo; Arai, Hiroyuki

    2010-06-01

    Pseudomonas aeruginosa has five terminal oxidases for aerobic respiration. Two of them, the bo(3) oxidase (Cyo) and the cyanide-insensitive oxidase (CIO), are quinol oxidases and the other three, the cbb(3)-1 oxidase (Cbb3-1), the cbb(3)-2 oxidase (Cbb3-2) and the aa(3) oxidase (Aa3), are cytochrome c oxidases. The expression pattern of the genes for these terminal oxidases under various growth conditions was investigated by using lacZ transcriptional fusions and some novel regulatory issues were found. The Aa3 genes were induced under starvation conditions. The Cyo genes were induced by exposure to the nitric oxide-generating reagent S-nitrosoglutathione. The CIO genes were induced by exposure to sodium nitroprusside as well as cyanide. The stationary phase sigma factor RpoS was found to be involved in the expression of the Aa3 and CIO genes. The role of two redox-responsive transcriptional regulators, ANR and RoxSR, was investigated using the anr and roxSR mutant strains. The ANR was involved in the repression of the CIO genes and induction of the Cbb3-2 genes. The other three terminal oxidase genes were not significantly regulated by ANR. On the other hand, all five terminal oxidase genes were shown to be directly or indirectly regulated by RoxSR. The Aa3 genes were repressed but the genes for the other four enzymes were induced by RoxSR. The transcriptome data also showed that some respiration-related genes were regulated by RoxSR, suggesting that this two-component regulatory system plays an important role in the regulation of respiration in P. aeruginosa.

  20. Unusual Cytochrome P450 Enzymes and Reactions*

    PubMed Central

    Guengerich, F. Peter; Munro, Andrew W.

    2013-01-01

    Cytochrome P450 enzymes primarily catalyze mixed-function oxidation reactions, plus some reductions and rearrangements of oxygenated species, e.g. prostaglandins. Most of these reactions can be rationalized in a paradigm involving Compound I, a high-valent iron-oxygen complex (FeO3+), to explain seemingly unusual reactions, including ring couplings, ring expansion and contraction, and fusion of substrates. Most P450s interact with flavoenzymes or iron-sulfur proteins to receive electrons from NAD(P)H. In some cases, P450s are fused to protein partners. Other P450s catalyze non-redox isomerization reactions. A number of permutations on the P450 theme reveal the diversity of cytochrome P450 form and function. PMID:23632016

  1. Subinhibitory bismuth-thiols reduce virulence of Pseudomonas aeruginosa.

    PubMed

    Wu, Chieh-Liang; Domenico, Philip; Hassett, Daniel J; Beveridge, Terry J; Hauser, Alan R; Kazzaz, Jeffrey A

    2002-06-01

    Pseudomonas aeruginosa is a common pathogen in mechanically ventilated patients and produces a wide array of virulence factors. Bismuth-thiols (BTs) are active in vitro against all bacterial lung pathogens, including P. aeruginosa. The objective of these studies was to examine the biochemical and morphologic effects of sublethal BT concentrations on P. aeruginosa and to evaluate virulence in cell culture. Bismuth-dimercaprol, at a fraction of the minimal inhibitory concentration, reduced alginate expression by 67% in P. aeruginosa, whereas subinhibitory bismuth-ethanedithiol (BisEDT) reduced alginate by 92% in P. syringae. BisEDT effects on lipopolysaccharide content and type III secreted cytoxins were examined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Subinhibitory BisEDT reduced cell-associated lipopolysaccharide, and inhibited processing of the secreted cytotoxic protein ExoU. BisEDT-induced outer membrane blebbing and aggregation of cytoplasmic material was noted in electron microscopy. Virulence of P. aeruginosa was assessed by adherence to epithelial cells and sensitivity to serum killing. BisEDT inhibited adherence of P. aeruginosa to 16HBE14o- cells by 28% and to a collagen matrix by 53%. BisEDT-treated bacteria were also 100-fold more sensitive to serum bactericidal activity. In summary, low BT concentrations affect P. aeruginosa in a variety of ways, the combination of which may help prevent or resolve respiratory tract infection.

  2. Dynorphin Activates Quorum Sensing Quinolone Signaling in Pseudomonas aeruginosa

    PubMed Central

    Zaborina, Olga; Lepine, Francois; Xiao, Gaoping; Valuckaite, Vesta; Chen, Yimei; Li, Terry; Ciancio, Mae; Zaborin, Alex; Petroff, Elaine; Turner, Jerrold R; Rahme, Laurence G; Chang, Eugene; Alverdy, John C

    2007-01-01

    There is now substantial evidence that compounds released during host stress directly activate the virulence of certain opportunistic pathogens. Here, we considered that endogenous opioids might function as such compounds, given that they are among the first signals to be released at multiple tissue sites during host stress. We tested the ability of various opioid compounds to enhance the virulence of Pseudomonas aeruginosa using pyocyanin production as a biological readout, and demonstrated enhanced virulence when P. aeruginosa was exposed to synthetic (U-50,488) and endogenous (dynorphin) κ-agonists. Using various mutants and reporter strains of P. aeruginosa, we identified involvement of key elements of the quorum sensing circuitry such as the global transcriptional regulator MvfR and the quorum sensing-related quinolone signaling molecules PQS, HHQ, and HQNO that respond to κ-opioids. The in vivo significance of κ-opioid signaling of P. aeruginosa was demonstrated in mice by showing that dynorphin is released from the intestinal mucosa following ischemia/reperfusion injury, activates quinolone signaling in P. aeruginosa, and enhances the virulence of P. aeruginosa against Lactobacillus spp. and Caenorhabditis elegans. Taken together, these data demonstrate that P. aeruginosa can intercept opioid compounds released during host stress and integrate them into core elements of quorum sensing circuitry leading to enhanced virulence. PMID:17367209

  3. Otopathogenic Pseudomonas aeruginosa Enters and Survives Inside Macrophages

    PubMed Central

    Mittal, Rahul; Lisi, Christopher V.; Kumari, Hansi; Grati, M’hamed; Blackwelder, Patricia; Yan, Denise; Jain, Chaitanya; Mathee, Kalai; Weckwerth, Paulo H.; Liu, Xue Z.

    2016-01-01

    Otitis media (OM) is a broad term describing a group of infectious and inflammatory disorders of the middle ear. Despite antibiotic therapy, acute OM can progress to chronic suppurative otitis media (CSOM) characterized by ear drum perforation and purulent discharge. Pseudomonas aeruginosa is the most common pathogen associated with CSOM. Although, macrophages play an important role in innate immune responses but their role in the pathogenesis of P. aeruginosa-induced CSOM is not known. The objective of this study is to examine the interaction of P. aeruginosa with primary macrophages. We observed that P. aeruginosa enters and multiplies inside human and mouse primary macrophages. This bacterial entry in macrophages requires both microtubule and actin dependent processes. Transmission electron microscopy demonstrated that P. aeruginosa was present in membrane bound vesicles inside macrophages. Interestingly, deletion of oprF expression in P. aeruginosa abrogates its ability to survive inside macrophages. Our results suggest that otopathogenic P. aeruginosa entry and survival inside macrophages is OprF-dependent. The survival of bacteria inside macrophages will lead to evasion of killing and this lack of pathogen clearance by phagocytes contributes to the persistence of infection in CSOM. Understanding host–pathogen interaction will provide novel avenues to design effective treatment modalities against OM. PMID:27917157

  4. Interactions between Neutrophils and Pseudomonas aeruginosa in Cystic Fibrosis

    PubMed Central

    Rada, Balázs

    2017-01-01

    Cystic fibrosis (CF) affects 70,000 patients worldwide. Morbidity and mortality in CF is largely caused by lung complications due to the triad of impaired mucociliary clearance, microbial infections and chronic inflammation. Cystic fibrosis airway inflammation is mediated by robust infiltration of polymorphonuclear neutrophil granulocytes (PMNs, neutrophils). Neutrophils are not capable of clearing lung infections and contribute to tissue damage by releasing their dangerous cargo. Pseudomonas aeruginosa is an opportunistic pathogen causing infections in immunocompromised individuals. P. aeruginosa is a main respiratory pathogen in CF infecting most patients. Although PMNs are key to attack and clear P. aeruginosa in immunocompetent individuals, PMNs fail to do so in CF. Understanding why neutrophils cannot clear P. aeruginosa in CF is essential to design novel therapies. This review provides an overview of the antimicrobial mechanisms by which PMNs attack and eliminate P. aeruginosa. It also summarizes current advances in our understanding of why PMNs are incapable of clearing P. aeruginosa and how this bacterium adapts to and resists PMN-mediated killing in the airways of CF patients chronically infected with P. aeruginosa. PMID:28282951

  5. Mast cells protect against Pseudomonas aeruginosa-induced lung injury.

    PubMed

    Junkins, Robert D; Carrigan, Svetlana O; Wu, Zhengli; Stadnyk, Andrew W; Cowley, Elizabeth; Issekutz, Thomas; Berman, Jason; Lin, Tong-Jun

    2014-08-01

    Pseudomonas aeruginosa, an opportunistic pathogen, is the leading cause of morbidity and mortality in immune-compromised individuals. Maintaining the integrity of the respiratory epithelium is critical for an effective host response to P. aeruginosa. Given the close spatial relationship between mast cells and the respiratory epithelium, and the importance of tightly regulated epithelial permeability during lung infections, we examined whether mast cells influence airway epithelial integrity during P. aeruginosa lung infection in a mouse model. We found that mast cell-deficient Kit(W-sh)/Kit(W-sh) mice displayed greatly increased epithelial permeability, bacterial dissemination, and neutrophil accumulation compared with wild-type animals after P. aeruginosa infection; these defects were corrected on reconstitution with mast cells. An in vitro Transwell co-culture model further demonstrated that a secreted mast cell factor decreased epithelial cell apoptosis and tumor necrosis factor production after P. aeruginosa infection. Together, our data demonstrate a previously unrecognized role for mast cells in the maintenance of epithelial integrity during P. aeruginosa infection, through a mechanism that likely involves prevention of epithelial apoptosis and tumor necrosis factor production. Our understanding of mechanisms of the host response to P. aeruginosa will open new avenues for the development of successful preventative and treatment strategies.

  6. Environmental Pseudomonads Inhibit Cystic Fibrosis Patient-Derived Pseudomonas aeruginosa.

    PubMed

    Chatterjee, Payel; Davis, Elizabeth; Yu, Fengan; James, Sarah; Wildschutte, Julia H; Wiegmann, Daniel D; Sherman, David H; McKay, Robert M; LiPuma, John J; Wildschutte, Hans

    2017-01-15

    Pseudomonas aeruginosa is an opportunistic pathogen which is evolving resistance to many currently used antibiotics. While much research has been devoted to the roles of pathogenic P. aeruginosa in cystic fibrosis (CF) patients, less is known of its ecological properties. P. aeruginosa dominates the lungs during chronic infection in CF patients, yet its abundance in some environments is less than that of other diverse groups of pseudomonads. Here, we sought to determine if clinical isolates of P. aeruginosa are vulnerable to environmental pseudomonads that dominate soil and water habitats in one-to-one competitions which may provide a source of inhibitory factors. We isolated a total of 330 pseudomonads from diverse habitats of soil and freshwater ecosystems and competed these strains against one another to determine their capacity for antagonistic activity. Over 900 individual inhibitory events were observed. Extending the analysis to P. aeruginosa isolates revealed that clinical isolates, including ones with increased alginate production, were susceptible to competition by multiple environmental strains. We performed transposon mutagenesis on one isolate and identified an ∼14.8-kb locus involved in antagonistic activity. Only two other environmental isolates were observed to carry the locus, suggesting the presence of additional unique compounds or interactions among other isolates involved in outcompeting P. aeruginosa This collection of strains represents a source of compounds that are active against multiple pathogenic strains. With the evolution of resistance of P. aeruginosa to currently used antibiotics, these environmental strains provide opportunities for novel compound discovery against drug-resistant clinical strains.

  7. Comparison of UVB and UVC irradiation disinfection efficacies on Pseudomonas Aeruginosa (P. aeruginosa) biofilm

    NASA Astrophysics Data System (ADS)

    Argyraki, A.; Markvart, M.; Nielsen, Anne; Bjarnsholt, T.; Bjørndal, L.; Petersen, P. M.

    2016-04-01

    Disinfection routines are important in all clinical applications. The uprising problem of antibiotic resistance has driven major research efforts towards alternative disinfection approaches, involving light-based solutions. Pseudomonas aeruginosa (P. aeruginosa) is a common bacterium that can cause skin, soft tissue, lungs, kidney and urinary tract infections. Moreover, it can be found on and in medical equipment causing often cross infections in hospitals. The objective of this study was to test the efficiency, of two different light-based disinfection treatments, namely UVB and UVC irradiation, on P. aeruginosa biofilms at different growth stages. In our experiments a new type of UV light emitting diodes (LEDs) were used to deliver UV irradiation on the biofilms, in the UVB (296nm) and UVC (266nm) region. The killing rate was studied as a function of dose for 24h grown biofilms. The dose was ramped from 72J/m2 to 10000J/m2. It was shown that UVB irradiation was more effective than UVC irradiation in inactivating P. aeruginosa biofilms. No colony forming units (CFU) were observed for the UVB treated biofilms when the dose was 10000 J/m2 (CFU in control sample: 7.5 x 104). UVB irradiation at a dose of 20000J/m2 on mature biofilms (72h grown) resulted in a 3.9 log killing efficacy. The fact that the wavelength of 296nm exists in daylight and has such disinfection ability on biofilms gives new perspectives for applications within disinfection at hospitals.

  8. Cytochrome cbb3 of Thioalkalivibrio is a Na+-pumping cytochrome oxidase

    PubMed Central

    Muntyan, Maria S.; Cherepanov, Dmitry A.; Malinen, Anssi M.; Bloch, Dmitry A.; Sorokin, Dimitry Y.; Severina, Inna I.; Ivashina, Tatiana V.; Lahti, Reijo; Muyzer, Gerard; Skulachev, Vladimir P.

    2015-01-01

    Cytochrome c oxidases (Coxs) are the basic energy transducers in the respiratory chain of the majority of aerobic organisms. Coxs studied to date are redox-driven proton-pumping enzymes belonging to one of three subfamilies: A-, B-, and C-type oxidases. The C-type oxidases (cbb3 cytochromes), which are widespread among pathogenic bacteria, are the least understood. In particular, the proton-pumping machinery of these Coxs has not yet been elucidated despite the availability of X-ray structure information. Here, we report the discovery of the first (to our knowledge) sodium-pumping Cox (Scox), a cbb3 cytochrome from the extremely alkaliphilic bacterium Thioalkalivibrio versutus. This finding offers clues to the previously unknown structure of the ion-pumping channel in the C-type Coxs and provides insight into the functional properties of this enzyme. PMID:26056262

  9. Thermal mitigation of Pseudomonas aeruginosa biofilms

    PubMed Central

    O’Toole, Ann; Ricker, Erica B.; Nuxoll, Eric

    2015-01-01

    Bacterial biofilms infect 2 – 4 % of medical devices upon implantation, resulting in multiple surgeries and increased recovery time due to the very great increase in antibiotic resistance in the biofilm phenotype. This work investigates the feasibility of thermal mitigation of biofilms at physiologically accessible temperatures. Pseudomonas aeruginosa biofilms were cultured to high bacterial density (1.7 × 109 CFU cm−2) and subjected to thermal shocks ranging from 50 °C to 80 °C for durations of 1 to 30 min. The decrease in viable bacteria was closely correlated with an Arrhenius temperature dependence and Weibull-style time dependence, demonstrating up to six orders of magnitude reduction in bacterial load. The bacterial load for films with more conventional initial bacterial densities dropped below quantifiable levels, indicating thermal mitigation as a viable approach to biofilm control. PMID:26371591

  10. The Regulatory Network of Pseudomonas aeruginosa

    PubMed Central

    2011-01-01

    Background Pseudomonas aeruginosa is an important bacterial model due to its metabolic and pathogenic abilities, which allow it to interact and colonize a wide range of hosts, including plants and animals. In this work we compile and analyze the structure and organization of an experimentally supported regulatory network in this bacterium. Results The regulatory network consists of 690 genes and 1020 regulatory interactions between their products (12% of total genes: 54% sigma and 16% of transcription factors). This complex interplay makes the third largest regulatory network of those reported in bacteria. The entire network is enriched for activating interactions and, peculiarly, self-activation seems to occur more prominent for transcription factors (TFs), which contrasts with other biological networks where self-repression is dominant. The network contains a giant component of 650 genes organized into 11 hierarchies, encompassing important biological processes, such as, biofilms formation, production of exopolysaccharide alginate and several virulence factors, and of the so-called quorum sensing regulons. Conclusions The study of gene regulation in P. aeruginosa is biased towards pathogenesis and virulence processes, all of which are interconnected. The network shows power-law distribution -input degree -, and we identified the top ten global regulators, six two-element cycles, the longest paths have ten steps, six biological modules and the main motifs containing three and four elements. We think this work can provide insights for the design of further studies to cover the many gaps in knowledge of this important bacterial model, and for the design of systems strategies to combat this bacterium. PMID:22587778

  11. Ambroxol interferes with Pseudomonas aeruginosa quorum sensing.

    PubMed

    Lu, Qi; Yu, Jialin; Yang, Xiqiang; Wang, Jiarong; Wang, Lijia; Lin, Yayin; Lin, Lihua

    2010-09-01

    The mucolytic agent ambroxol has been reported to interfere with the formation of Pseudomonas aeruginosa-derived biofilms in addition to reducing alginate production by undefined mechanisms. Since quorum sensing is a key regulator of virulence and biofilm formation, we examined the effects of ambroxol on P. aeruginosa PAO1 wild-type bacterial clearance rates, adhesion profiles and biofilm formation compared with the quorum sensing-deficient, double-mutant strains DeltalasR DeltarhlR and DeltalasI DeltarhlI. Data presented in this report demonstrated that ambroxol treatment reduced survival rates of the double-mutant strains compared with the wild-type strain in a dose-dependent manner even though the double-mutants had increased adhesion in the presence of ambroxol compared with the wild-type strain. The PAO1 wild-type strain produced a significantly thicker biofilm (21.64+/-0.57 microm) compared with the biofilms produced by the DeltalasR DeltarhlR (7.36+/-0.2 microm) and DeltalasI DeltarhlI (6.62+/-0.31 microm) isolates. Ambroxol treatment reduced biofilm thickness, increased areal porosity, and decreased the average diffusion distance and textual entropy of wild-type and double-mutant strains. However, compared with the double-mutant strains, the changes observed for the wild-type strain were more clearly defined. Finally, ambroxol exhibited significant antagonistic quorum-sensing properties, suggesting that it could be adapted for use clinically in the treatment of cystic fibrosis and to reduce biofilm formation and in the colonisation of indwelling devices.

  12. The cytochrome c peroxidase and cytochrome c encounter complex: the other side of the story.

    PubMed

    Schilder, Jesika; Löhr, Frank; Schwalbe, Harald; Ubbink, Marcellus

    2014-05-21

    Formation of an encounter complex is important for efficient protein complex formation. The encounter state consists of an ensemble of orientations of two proteins in the complex. Experimental description of such ensembles inherently suffers from insufficient data availability. We have measured paramagnetic relaxation enhancements (PRE) on cytochrome c peroxidase (CcP) caused by its partner cytochrome c (Cc) carrying a spin label. The data complement earlier PRE data of spin labelled CcP, identifying several new interactions. This work demonstrates the need of obtaining as many independent data sets as possible to achieve the most accurate description of an encounter complex.

  13. Biogenesis of cytochrome b6 in photosynthetic membranes

    PubMed Central

    Saint-Marcoux, Denis; Wollman, Francis-André

    2009-01-01

    In chloroplasts, binding of a c′-heme to cytochrome b6 on the stromal side of the thylakoid membranes requires a specific mechanism distinct from the one at work for c-heme binding to cytochromes f and c6 on the lumenal side of membranes. Here, we show that the major protein components of this pathway, the CCBs, are bona fide transmembrane proteins. We demonstrate their association in a series of hetero-oligomeric complexes, some of which interact transiently with cytochrome b6 in the process of heme delivery to the apoprotein. In addition, we provide preliminary evidence for functional assembly of cytochrome b6f complexes even in the absence of c′-heme binding to cytochrome b6. Finally, we present a sequential model for apo- to holo-cytochrome b6 maturation integrated within the assembly pathway of b6f complexes in the thylakoid membranes. PMID:19564403

  14. Biogenesis of cytochrome b6 in photosynthetic membranes.

    PubMed

    Saint-Marcoux, Denis; Wollman, Francis-André; de Vitry, Catherine

    2009-06-29

    In chloroplasts, binding of a c'-heme to cytochrome b(6) on the stromal side of the thylakoid membranes requires a specific mechanism distinct from the one at work for c-heme binding to cytochromes f and c(6) on the lumenal side of membranes. Here, we show that the major protein components of this pathway, the CCBs, are bona fide transmembrane proteins. We demonstrate their association in a series of hetero-oligomeric complexes, some of which interact transiently with cytochrome b(6) in the process of heme delivery to the apoprotein. In addition, we provide preliminary evidence for functional assembly of cytochrome b(6)f complexes even in the absence of c'-heme binding to cytochrome b(6). Finally, we present a sequential model for apo- to holo-cytochrome b(6) maturation integrated within the assembly pathway of b(6)f complexes in the thylakoid membranes.

  15. Spectral and potentiometric analysis of cytochromes from Bacillus subtilis.

    PubMed

    de Vrij, W; van den Burg, B; Konings, W N

    1987-08-03

    Bacillus subtilis cytoplasmic membranes contain several cytochromes which are linked to the respiratory chain. At least six different cytochromes have been separated and identified by ammonium sulphate fractionation and ion-exchange chromatography. They include two terminal oxidases with CO-binding properties and cyanide sensitivity. One of these is an aa3-type cytochrome c oxidase which has characteristic absorption maxima in the reduced-oxidized difference spectrum at 601 nm in the alpha-band and at 443 nm in the Soret band regions. In the alpha-band two separate electron transitions with Em = +205 mV and Em = +335 mV can be discriminated by redox potentiometric titration. The other CO-binding cytochrome c oxidase contains two cytochrome b components with alpha-band maxima at 556 nm and 559 nm. Cytochrome b556 can be reduced by ascorbate and has an Em + +215 mV, whereas cytochrome b559 has an Em = +140 mV. Furthermore a complex consisting of a cytochrome b564 (Em = +140 mV) associated with a cytochrome c554 (Em = +250 mV) was found. This cytochrome c554, which can be reduced by ascorbate, appears to have an asymmetrical alpha-peak and stains for heme-catalyzed peroxidase activity on SDS-containing polyacrylamide gels. A protein with a molecular mass of about 30 kDa is responsible for this activity. A cytochrome b559 (Em = +65 mV) appears to be an essential part of succinate dehydrogenase. Finally a cytochrome c550 component with an apparent mid-point potential of Em = +195 mV has been detected.

  16. Stimulation of cellular XTT reduction by cytochrome oxidase inhibitors.

    PubMed

    Kunimoto, S; Nosaka, C; Takeuchi, T

    1999-06-01

    XTT reducing activity by CHO and L1210 cells was found to be stimulated by the presence of cytochrome oxidase inhibitors such as NaN3 or KCN. Among the other respiratory chain inhibitors, antimycin A (a complex III inhibitor) and chlorpromazine inhibited cellular XTT reduction, and rotenone and malonate showed slight inhibition and no effect, respectively. It is suggested that XTT reduction is coupled with the respiratory chain via cytochrome c, which is located between complexes III and IV (cytochrome oxidase).

  17. Isolation of oxidase-negative Pseudomonas aeruginosa from sputum culture.

    PubMed

    Hampton, K D; Wasilauskas, B L

    1979-05-01

    Two isolates of Pseudomonas aeruginosa lacking characteristic indophenol oxidase were recovered from a sputum specimen. A discussion of the characteristic biochemical tests and antibiograms along with a possible explanation for this phenomenon is presented.

  18. Electrochemically monitoring the antibiotic susceptibility of Pseudomonas aeruginosa biofilms.

    PubMed

    Webster, Thaddaeus A; Sismaet, Hunter J; Chan, I-ping J; Goluch, Edgar D

    2015-11-07

    The condition of cells in Pseudomonas aeruginosa biofilms was monitored via the electrochemical detection of the electro-active virulence factor pyocyanin in a fabricated microfluidic growth chamber coupled with a disposable three electrode cell. Cells were exposed to 4, 16, and 100 mg L(-1) colistin sulfate after overnight growth. At the end of testing, the measured maximum peak current (and therefore pyocyanin concentration) was reduced by approximately 68% and 82% in P. aeruginosa exposed to 16 and 100 mg L(-1) colistin sulfate, respectively. Samples were removed from the microfluidic chamber, analyzed for viability using staining, and streaked onto culture plates to confirm that the P. aeruginosa cells were affected by the antibiotics. The correlation between electrical signal drop and the viability of P. aeruginosa cells after antibiotic exposure highlights the usefulness of this approach for future low cost antibiotic screening applications.

  19. Acquisition and Role of Molybdate in Pseudomonas aeruginosa

    PubMed Central

    Pederick, Victoria G.; Eijkelkamp, Bart A.; Ween, Miranda P.; Begg, Stephanie L.; Paton, James C.

    2014-01-01

    In microaerophilic or anaerobic environments, Pseudomonas aeruginosa utilizes nitrate reduction for energy production, a process dependent on the availability of the oxyanionic form of molybdenum, molybdate (MoO42−). Here, we show that molybdate acquisition in P. aeruginosa occurs via a high-affinity ATP-binding cassette permease (ModABC). ModA is a cluster D-III solute binding protein capable of interacting with molybdate or tungstate oxyanions. Deletion of the modA gene reduces cellular molybdate concentrations and results in inhibition of anaerobic growth and nitrate reduction. Further, we show that conditions that permit nitrate reduction also cause inhibition of biofilm formation and an alteration in fatty acid composition of P. aeruginosa. Collectively, these data highlight the importance of molybdate for anaerobic growth of P. aeruginosa and reveal novel consequences of nitrate reduction on biofilm formation and cell membrane composition. PMID:25172858

  20. Oxylipins produced by Pseudomonas aeruginosa promote biofilm formation and virulence

    PubMed Central

    Martínez, Eriel; Campos-Gómez, Javier

    2016-01-01

    The oxygenation of unsaturated fatty acids by dioxygenases occurs in all kingdoms of life and produces physiologically important lipids called oxylipins. The biological roles of oxylipins have been extensively studied in animals, plants, algae and fungi, but remain largely unidentified in prokaryotes. The bacterium Pseudomonas aeruginosa displays a diol synthase activity that transforms several monounsaturated fatty acids into mono- and di-hydroxylated derivatives. Here we show that oxylipins derived from this activity inhibit flagellum-driven motility and upregulate type IV pilus-dependent twitching motility of P. aeruginosa. Consequently, these oxylipins promote bacterial organization in microcolonies, increasing the ability of P. aeruginosa to form biofilms in vitro and in vivo (in Drosophila flies). We also demonstrate that oxylipins produced by P. aeruginosa promote virulence in Drosophila flies and lettuce. Our study thus uncovers a role for prokaryotic oxylipins in the physiology and pathogenicity of bacteria. PMID:27929111

  1. Acquisition and role of molybdate in Pseudomonas aeruginosa.

    PubMed

    Pederick, Victoria G; Eijkelkamp, Bart A; Ween, Miranda P; Begg, Stephanie L; Paton, James C; McDevitt, Christopher A

    2014-11-01

    In microaerophilic or anaerobic environments, Pseudomonas aeruginosa utilizes nitrate reduction for energy production, a process dependent on the availability of the oxyanionic form of molybdenum, molybdate (MoO4 (2-)). Here, we show that molybdate acquisition in P. aeruginosa occurs via a high-affinity ATP-binding cassette permease (ModABC). ModA is a cluster D-III solute binding protein capable of interacting with molybdate or tungstate oxyanions. Deletion of the modA gene reduces cellular molybdate concentrations and results in inhibition of anaerobic growth and nitrate reduction. Further, we show that conditions that permit nitrate reduction also cause inhibition of biofilm formation and an alteration in fatty acid composition of P. aeruginosa. Collectively, these data highlight the importance of molybdate for anaerobic growth of P. aeruginosa and reveal novel consequences of nitrate reduction on biofilm formation and cell membrane composition.

  2. Isoelectrophoretic characterization of Pseudomonas cytochrome oxidase/nitrite reductase and its heme d1-containing domain.

    PubMed

    Hull, H H; Wharton, D C

    1993-02-15

    The cytochrome oxidase/nitrite reductase of Pseudomonas aeruginosa has been purified to homogeneity as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When this "homogeneous" protein is subjected to electrophoretic titration curve analysis in ampholines or to isoelectric focusing in immobilized pH gradient gels it is resolved into several bands, each of which possesses the olive-green color of the holoenzyme. Although the patterns of resolution replicate for a given enzyme preparation differences occur among different preparations. Furthermore, storage for several months at -20 degrees C leads to an increase in the number of isoelectrophoretic forms. All preparations, however, have two primary bands, one with a pI of 6.97 and the other of 7.02. Both these bands possess significant cytochrome oxidase activity after elution from the gels. When each of the primary bands is eluted and again subjected to isoelectric focusing under the same conditions as before, each band interconverts into two bands with pIs of 6.97 and 7.02. The addition of the ligand cyanide to the holoenzyme produces a shift in the pI of the two bands to pIs 7.04 and 7.12 while the addition of nitrite shifts some of the band at pI 6.97 into that at pI 7.02. The heme d1-containing dipeptide of the enzyme, produced by treatment with subtilisin, also exhibits considerable heterogeneity upon electrophoretic titration curve analysis and by isoelectric focusing in immobiline gels. Possible explanations for the observed isoelectrophoretic behavior in terms of protein conformation and heme chemistry are discussed.

  3. Catalysis of nitrosyl transfer reactions by a dissimilatory nitrite reductase (cytochrome c,d1).

    PubMed

    Kim, C H; Hollocher, T C

    1984-02-25

    The dissimilatory nitrite reductase (cytochrome c,d1) from Pseudomonas aeruginosa was observed at pH 7.5 to catalyze nitrosyl transfer (nitrosation) between [15N]nitrite and several N-nucleophiles or H2 18O, with rate enhancement of the order of 10(8) relative to analogous chemical reactions. The reducing system (ascorbate, N,N,N',N'-tetramethylphenylenediamine) could reduce nitrite (but not NO) enzymatically and had essentially no direct chemical reactivity toward nitrite or NO. The N-nitrosations showed saturation kinetics with respect to the nucleophile and, while exhibiting Vmax values which varied by about 40-fold, nevertheless showed little or no dependence of Vmax on nucleophile pKa. The N-nitrosations and NO-2/H2O-18O exchange required the reducing system, whereas NO/H2O-18O exchange was inhibited by the reducing system. NO was not detected to serve as a nitrosyl donor to N-nucleophiles. These and other kinetic observations suggest that the enzymatic nitrosyl donor is an enzyme-bound species derived from reduced enzyme and one molecule of nitrite, possibly a heme-nitrosyl compound (E-FeII X NO+) for which there is precedence. Nitrosyl transfer to N-nucleophiles may occur within a ternary complex of enzyme, nitrite, and nucleophile. Catalysis of nitrosyl transfer by nitrite reductase represents a new class of enzymatic reactions and may present another example of electrophilic catalysis by a metal center. The nitrosyl donor trapped by these reactions is believed to represent an intermediate in the reduction of nitrite by cytochrome c,d1.

  4. Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris

    USGS Publications Warehouse

    Lovley, D.R.; Widman, P.K.; Woodward, J.C.; Phillips, E.J.P.

    1993-01-01

    The mechanism for U(VI) reduction by Desulfovibrio vulgaris (Hildenborough) was investigated. The H2-dependent U(VI) reductase activity in the soluble fraction of the cells was lost when the soluble fraction was passed over a cationic exchange column which extracted cytochrome c3. Addition of cytochrome c3 back to the soluble fraction that had been passed over the cationic exchange column restored the U(VI)-reducing capacity. Reduced cytochrome c3 was oxidized by U(VI), as was a c-type cytochrome(s) in whole-cell suspensions. When cytochrome c3 was combined with hydrogenase, its physiological electron donor, U(VI) was reduced in the presence of H2. Hydrogenase alone could not reduce U(VI). Rapid U(VI) reduction was followed by a subsequent slow precipitation of the U(IV) mineral uraninite. Cytochrome c3 reduced U(VI) in a uranium-contaminated surface water and groundwater. Cytochrome c3 provides the first enzyme model for the reduction and biomineralization of uranium in sedimentary environments. Furthermore, the finding that cytochrome c3 can catalyze the reductive precipitation of uranium may aid in the development of fixed-enzyme reactors and/or organisms with enhanced U(VI)-reducing capacity for the bioremediation of uranium- contaminated waters and waste streams.

  5. Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris.

    PubMed Central

    Lovley, D R; Widman, P K; Woodward, J C; Phillips, E J

    1993-01-01

    The mechanism for U(VI) reduction by Desulfovibrio vulgaris (Hildenborough) was investigated. The H2-dependent U(VI) reductase activity in the soluble fraction of the cells was lost when the soluble fraction was passed over a cationic exchange column which extracted cytochrome c3. Addition of cytochrome c3 back to the soluble fraction that had been passed over the cationic exchange column restored the U(VI)-reducing capacity. Reduced cytochrome c3 was oxidized by U(VI), as was a c-type cytochrome(s) in whole-cell suspensions. When cytochrome c3 was combined with hydrogenase, its physiological electron donor, U(VI) was reduced in the presence of H2. Hydrogenase alone could not reduce U(VI). Rapid U(VI) reduction was followed by a subsequent slow precipitation of the U(IV) mineral uraninite. Cytochrome c3 reduced U(VI) in a uranium-contaminated surface water and groundwater. Cytochrome c3 provides the first enzyme model for the reduction and biomineralization of uranium in sedimentary environments. Furthermore, the finding that cytochrome c3 can catalyze the reductive precipitation of uranium may aid in the development of fixed-enzyme reactors and/or organisms with enhanced U(VI)-reducing capacity for the bioremediation of uranium-contaminated waters and waste streams. PMID:8285665

  6. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa.

    PubMed

    Lovewell, Rustin R; Patankar, Yash R; Berwin, Brent

    2014-04-01

    Pseudomonas aeruginosa is an opportunistic bacterial pathogen responsible for a high incidence of acute and chronic pulmonary infection. These infections are particularly prevalent in patients with chronic obstructive pulmonary disease and cystic fibrosis: much of the morbidity and pathophysiology associated with these diseases is due to a hypersusceptibility to bacterial infection. Innate immunity, primarily through inflammatory cytokine production, cellular recruitment, and phagocytic clearance by neutrophils and macrophages, is the key to endogenous control of P. aeruginosa infection. In this review, we highlight recent advances toward understanding the innate immune response to P. aeruginosa, with a focus on the role of phagocytes in control of P. aeruginosa infection. Specifically, we summarize the cellular and molecular mechanisms of phagocytic recognition and uptake of P. aeruginosa, and how current animal models of P. aeruginosa infection reflect clinical observations in the context of phagocytic clearance of the bacteria. Several notable phenotypic changes to the bacteria are consistently observed during chronic pulmonary infections, including changes to mucoidy and flagellar motility, that likely enable or reflect their ability to persist. These traits are likewise examined in the context of how the bacteria avoid phagocytic clearance, inflammation, and sterilizing immunity.

  7. Tracking the immunopathological response to Pseudomonas aeruginosa during respiratory infections

    PubMed Central

    Cigana, Cristina; Lorè, Nicola Ivan; Riva, Camilla; De Fino, Ida; Spagnuolo, Lorenza; Sipione, Barbara; Rossi, Giacomo; Nonis, Alessandro; Cabrini, Giulio; Bragonzi, Alessandra

    2016-01-01

    Repeated cycles of infections, caused mainly by Pseudomonas aeruginosa, combined with a robust host immune response and tissue injury, determine the course and outcome of cystic fibrosis (CF) lung disease. As the disease progresses, P. aeruginosa adapts to the host modifying dramatically its phenotype; however, it remains unclear whether and how bacterial adaptive variants and their persistence influence the pathogenesis and disease development. Using in vitro and murine models of infection, we showed that P. aeruginosa CF-adaptive variants shaped the innate immune response favoring their persistence. Next, we refined a murine model of chronic pneumonia extending P. aeruginosa infection up to three months. In this model, including CFTR-deficient mice, we unveil that the P. aeruginosa persistence lead to CF hallmarks of airway remodelling and fibrosis, including epithelial hyperplasia and structure degeneration, goblet cell metaplasia, collagen deposition, elastin degradation and several additional markers of tissue damage. This murine model of P. aeruginosa chronic infection, reproducing CF lung pathology, will be instrumental to identify novel molecular targets and test newly tailored molecules inhibiting chronic inflammation and tissue damage processes in pre-clinical studies. PMID:26883959

  8. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa

    PubMed Central

    Lovewell, Rustin R.; Patankar, Yash R.

    2014-01-01

    Pseudomonas aeruginosa is an opportunistic bacterial pathogen responsible for a high incidence of acute and chronic pulmonary infection. These infections are particularly prevalent in patients with chronic obstructive pulmonary disease and cystic fibrosis: much of the morbidity and pathophysiology associated with these diseases is due to a hypersusceptibility to bacterial infection. Innate immunity, primarily through inflammatory cytokine production, cellular recruitment, and phagocytic clearance by neutrophils and macrophages, is the key to endogenous control of P. aeruginosa infection. In this review, we highlight recent advances toward understanding the innate immune response to P. aeruginosa, with a focus on the role of phagocytes in control of P. aeruginosa infection. Specifically, we summarize the cellular and molecular mechanisms of phagocytic recognition and uptake of P. aeruginosa, and how current animal models of P. aeruginosa infection reflect clinical observations in the context of phagocytic clearance of the bacteria. Several notable phenotypic changes to the bacteria are consistently observed during chronic pulmonary infections, including changes to mucoidy and flagellar motility, that likely enable or reflect their ability to persist. These traits are likewise examined in the context of how the bacteria avoid phagocytic clearance, inflammation, and sterilizing immunity. PMID:24464809

  9. The axial ligands of heme in cytochromes: a near-infrared magnetic circular dichroism study of yeast cytochromes c, c1, and b and spinach cytochrome f.

    PubMed

    Simpkin, D; Palmer, G; Devlin, F J; McKenna, M C; Jensen, G M; Stephens, P J

    1989-10-03

    Room temperature near-infrared magnetic circular dichroism and low-temperature electron paramagnetic resonance measurements have been used to characterize the ligands of the heme iron in mitochondrial cytochromes c, c1, and b and in cytochrome f of the photosynthetic electron transport chain. The MCD data show that methionine is the sixth ligand of the heme of oxidized yeast cytochrome c1; the identify of this residue is inferred to be the single conserved methionine identified from a partial alignment of the available cytochrome c1 amino acid sequences. A different residue, which is most likely lysine, is the sixth heme ligand in oxidized spinach cytochrome f. The data for oxidized yeast cytochrome b are consistent with bis-histidine coordination of both hemes although the possibility that one of the hemes is ligated by histidine and lysine cannot be rigorously excluded. The neutral and alkaline forms of oxidized yeast cytochrome c have spectroscopic properties very similar to those of the horse heart proteins, and thus, by analogy, the sixth ligands are methionine and lysine, respectively.

  10. Studies on cytochrome c oxidase activity of the cytochrome c1aa3 complex from Thermus thermophilus.

    PubMed

    Yoshida, T; Fee, J A

    1984-01-25

    Cytochrome oxidase from T. thermophilus is isolated as a noncovalent complex of cytochromes c1 and aa3 in which the four redox components of aa3 appear to be associated with a single approximately 55,000-D subunit while the heme C is associated with a approximately 33,000-D peptide (Yoshida, T., Lorence, R. M., Choc, M. G., Tarr, G. E., Findling, K. L., and Fee, J. A. (1983) J. Biol. Chem. 258, 112-123). We have examined the steady state transfer of electrons from ascorbate to oxygen by cytochrome c1aa3 as mediated by horse heart, Candida krusei, and T. thermophilus (c552) cytochromes c as well as tetramethylphenylenediamine (TMPD). These mediators exhibit simple Michaelis-Menten kinetic behavior yielding Vmax and KM values characteristic of the experimental conditions. Three classes of kinetic behavior were observed and are qualitatively discussed in terms of a reaction scheme. The data show that tetramethylphenyldiamine and cytochromes c react with the enzyme at independent sites; it is suggested that cytochrome c1 may efficiently transfer electrons to cytochrome aa3. When incorporated into phospholipid vesicles, the highly purified cytochrome c1aa3 was found to translocate one proton into the exterior medium for each molecule of cytochrome c552 oxidized. The combined results suggest that this bacterial enzyme functions in a manner generally identical with the more complex eucaryotic enzyme.

  11. Resistance to pefloxacin in Pseudomonas aeruginosa.

    PubMed Central

    Michea-Hamzehpour, M; Lucain, C; Pechere, J C

    1991-01-01

    Mechanisms of resistance to pefloxacin were investigated in four isogenic Pseudomonas aeruginosa strains: S (parent isolate; MIC, 2 micrograms/ml), PT1 and PT2 (posttherapy isolates obtained in animals; MICs, 32 and 128 micrograms/ml, respectively), and PT2-r (posttherapy isolate obtained after six in vitro subpassages of PT2; MIC, 32 micrograms/ml). [2-3H]adenine incorporation (indirect evidence of DNA gyrase activity) in EDTA-permeabilized cells was less affected by pefloxacin in PT2 and PT2-r (50% inhibitory concentration, 0.27 and 0.26 microgram/ml, respectively) than it was in S and PT1 (50% inhibitory concentration, 0.04 and 0.05 microgram/ml, respectively). Reduced [14C]pefloxacin labeling of intact cells in strains PT1 and PT2 correlated with more susceptibility to EDTA and the presence of more calcium (P less than 0.05) and phosphorus in the outer membrane fractions. Outer membrane protein analysis showed reduced expression of protein D2 (47 kDa) in strains PT1 and PT2. Other proteins were apparently similar in all strains. The addition of calcium chloride (2 mM) to the sodium dodecyl sulfate-solubilized samples of outer membrane proteins, before heating and Western blotting, probed with monoclonal antibody anti-OmpF showed electrophoretic mobility changes of OmpF in strains PT1 and PT2 which were not seen in strain S. Calcium-induced changes were reversed with ethyleneglycoltetraacetate. Decreased [14C]pefloxacin labeling was further correlated with an altered lipopolysaccharide pattern and increased 3-deoxy-D-mannooctulosonic acid concentration (P less than 0.01). These findings suggested that resistance to pefloxacin is associated with altered DNA gyrase in strain PT2-r, with altered permeability in PT1, and with both mechanisms in PT2. The decreased expression of protein D2 and the higher calcium and lipopolysaccharide contents of the outer membrane could be responsible for the permeability deficiency in P. aeruginosa. Images PMID:1645509

  12. Environmental Pseudomonads Inhibit Cystic Fibrosis Patient-Derived Pseudomonas aeruginosa

    PubMed Central

    Chatterjee, Payel; Davis, Elizabeth; Yu, Fengan; James, Sarah; Wildschutte, Julia H.; Wiegmann, Daniel D.; Sherman, David H.; McKay, Robert M.; LiPuma, John J.

    2016-01-01

    ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen which is evolving resistance to many currently used antibiotics. While much research has been devoted to the roles of pathogenic P. aeruginosa in cystic fibrosis (CF) patients, less is known of its ecological properties. P. aeruginosa dominates the lungs during chronic infection in CF patients, yet its abundance in some environments is less than that of other diverse groups of pseudomonads. Here, we sought to determine if clinical isolates of P. aeruginosa are vulnerable to environmental pseudomonads that dominate soil and water habitats in one-to-one competitions which may provide a source of inhibitory factors. We isolated a total of 330 pseudomonads from diverse habitats of soil and freshwater ecosystems and competed these strains against one another to determine their capacity for antagonistic activity. Over 900 individual inhibitory events were observed. Extending the analysis to P. aeruginosa isolates revealed that clinical isolates, including ones with increased alginate production, were susceptible to competition by multiple environmental strains. We performed transposon mutagenesis on one isolate and identified an ∼14.8-kb locus involved in antagonistic activity. Only two other environmental isolates were observed to carry the locus, suggesting the presence of additional unique compounds or interactions among other isolates involved in outcompeting P. aeruginosa. This collection of strains represents a source of compounds that are active against multiple pathogenic strains. With the evolution of resistance of P. aeruginosa to currently used antibiotics, these environmental strains provide opportunities for novel compound discovery against drug-resistant clinical strains. IMPORTANCE We demonstrate that clinical CF-derived isolates of P. aeruginosa are susceptible to competition in the presence of environmental pseudomonads. We observed that many diverse environmental strains exhibited varied

  13. Cytochrome P450-2D6 Screening Among Elderly Using Antidepressants (CYSCE)

    ClinicalTrials.gov

    2016-10-24

    Depression; Depressive Disorder; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Intermediate Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Ultrarapid Metabolizer Due to Cytochrome P450 CYP2D6 Variant

  14. The photosynthetic cytochrome c 550 from the diatom Phaeodactylum tricornutum.

    PubMed

    Bernal-Bayard, Pilar; Puerto-Galán, Leonor; Yruela, Inmaculada; García-Rubio, Inés; Castell, Carmen; Ortega, José M; Alonso, Pablo J; Roncel, Mercedes; Martínez, Jesús I; Hervás, Manuel; Navarro, José A

    2016-12-28

    The photosynthetic cytochrome c 550 from the marine diatom Phaeodactylum tricornutum has been purified and characterized. Cytochrome c 550 is mostly obtained from the soluble cell extract in relatively large amounts. In addition, the protein appeared to be truncated in the last hydrophobic residues of the C-terminus, both in the soluble cytochrome c 550 and in the protein extracted from the membrane fraction, as deduced by mass spectrometry analysis and the comparison with the gene sequence. Interestingly, it has been described that the C-terminus of cytochrome c 550 forms a hydrophobic finger involved in the interaction with photosystem II in cyanobacteria. Cytochrome c 550 was almost absent in solubilized photosystem II complex samples, in contrast with the PsbO and Psb31 extrinsic subunits, thus suggesting a lower affinity of cytochrome c 550 for the photosystem II complex. Under iron-limiting conditions the amount of cytochrome c 550 decreases up to about 45% as compared to iron-replete cells, pointing to an iron-regulated synthesis. Oxidized cytochrome c 550 has been characterized using continuous wave EPR and pulse techniques, including HYSCORE, and the obtained results have been interpreted in terms of the electrostatic charge distribution in the surroundings of the heme centre.

  15. Periplasmic c cytochromes and chlorate reduction in Ideonella dechloratans.

    PubMed

    Bäcklund, Anna Smedja; Bohlin, Jan; Gustavsson, Niklas; Nilsson, Thomas

    2009-04-01

    The aim of this study was to clarify the pathway of electron transfer between the inner membrane components and the periplasmic chlorate reductase. Several soluble c-type cytochromes were found in the periplasm. The optical difference spectrum of dithionite-reduced periplasmic extract shows that at least one of these components is capable of acting as an electron donor to the enzyme chlorate reductase. The cytochromes were partially separated, and the fractions were analyzed by UV/visible spectroscopy to determine the ability of donating electrons to chlorate reductase. Our results show that one of the c cytochromes (6 kDa) is able to donate electrons, both to chlorate reductase and to the membrane-bound cytochrome c oxidase, whereas the roles of the remaining c cytochromes still remain to be elucidated. Peptide extracts of the c cytochromes were obtained by tryptic in-gel digestion for matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis. Peptide sequences obtained indicate that the 6-kDa cytochrome c protein is similar to c cytochromes from the chlorate-reducing bacterium Dechloromonas aromatica.

  16. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence

    PubMed Central

    Moradali, M. Fata; Ghods, Shirin; Rehm, Bernd H. A.

    2017-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen affecting immunocompromised patients. It is known as the leading cause of morbidity and mortality in cystic fibrosis (CF) patients and as one of the leading causes of nosocomial infections. Due to a range of mechanisms for adaptation, survival and resistance to multiple classes of antibiotics, infections by P. aeruginosa strains can be life-threatening and it is emerging worldwide as public health threat. This review highlights the diversity of mechanisms by which P. aeruginosa promotes its survival and persistence in various environments and particularly at different stages of pathogenesis. We will review the importance and complexity of regulatory networks and genotypic-phenotypic variations known as adaptive radiation by which P. aeruginosa adjusts physiological processes for adaptation and survival in response to environmental cues and stresses. Accordingly, we will review the central regulatory role of quorum sensing and signaling systems by nucleotide-based second messengers resulting in different lifestyles of P. aeruginosa. Furthermore, various regulatory proteins will be discussed which form a plethora of controlling systems acting at transcriptional level for timely expression of genes enabling rapid responses to external stimuli and unfavorable conditions. Antibiotic resistance is a natural trait for P. aeruginosa and multiple mechanisms underlying different forms of antibiotic resistance will be discussed here. The importance of each mechanism in conferring resistance to various antipseudomonal antibiotics and their prevalence in clinical strains will be described. The underlying principles for acquiring resistance leading pan-drug resistant strains will be summarized. A future outlook emphasizes the need for collaborative international multidisciplinary efforts to translate current knowledge into strategies to prevent and treat P. aeruginosa infections while reducing the rate of antibiotic resistance

  17. Why Does the Healthy Cornea Resist Pseudomonas aeruginosa Infection?

    PubMed Central

    Evans, David J.; Fleiszig, Suzanne M. J.

    2013-01-01

    Purpose To provide our perspective on why the cornea is resistant to infection based on our research results with Pseudomonas aeruginosa. Perspective We focus on our current understanding of the interplay between bacteria, tear fluid and the corneal epithelium that determine health as the usual outcome, and propose a theoretical model for how contact lens wear might change those interactions to enable susceptibility to P. aeruginosa infection. Methods Use of “null-infection” in vivo models, cultured human corneal epithelial cells, contact lens-wearing animal models, and bacterial genetics help to elucidate mechanisms by which P. aeruginosa survive at the ocular surface, adheres, and traverses multilayered corneal epithelia. These models also help elucidate the molecular mechanisms of corneal epithelial innate defense. Results and Discussion Tear fluid and the corneal epithelium combine to make a formidable defense against P. aeruginosa infection of the cornea. Part of that defense involves the expression of antimicrobials such as β-defensins, the cathelicidin LL-37, cytokeratin-derived antimicrobial peptides, and RNase7. Immunomodulators such as SP-D and ST2 also contribute. Innate defenses of the cornea depend in part on MyD88, a key adaptor protein of TLR and IL-1R signaling, but the basal lamina represents the final barrier to bacterial penetration. Overcoming these defenses involves P. aeruginosa adaptation, expression of the type three secretion system, proteases, and P. aeruginosa biofilm formation on contact lenses. Conclusion After more than two decades of research focused on understanding how contact lens wear predisposes to P. aeruginosa infection, our working hypothesis places blame for microbial keratitis on bacterial adaptation to ocular surface defenses, combined with changes to the biochemistry of the corneal surface caused by trapping bacteria and tear fluid against the cornea under the lens. PMID:23601656

  18. Evaluation of flagella and flagellin of Pseudomonas aeruginosa as vaccines.

    PubMed

    Campodónico, Victoria L; Llosa, Nicolás J; Grout, Martha; Döring, Gerd; Maira-Litrán, Tomás; Pier, Gerald B

    2010-02-01

    Pseudomonas aeruginosa is a serious pathogen in hospitalized, immunocompromised, and cystic fibrosis (CF) patients. P. aeruginosa is motile via a single polar flagellum made of polymerized flagellin proteins differentiated into two major serotypes: a and b. Antibodies to flagella delay onset of infection in CF patients, but whether immunity to polymeric flagella and that to monomeric flagellin are comparable has not been addressed, nor has the question of whether such antibodies might negatively impact Toll-like receptor 5 (TLR5) activation, an important component of innate immunity to P. aeruginosa. We compared immunization with flagella and that with flagellin for in vitro effects on motility, opsonic killing, and protective efficacy using a mouse pneumonia model. Antibodies to flagella were superior to antibodies to flagellin at inhibiting motility, promoting opsonic killing, and mediating protection against P. aeruginosa pneumonia in mice. Protection against the flagellar type strains PAK and PA01 was maximal, but it was only marginal against motile clinical isolates from flagellum-immunized CF patients who nonetheless became colonized with P. aeruginosa. Purified flagellin was a more potent activator of TLR5 than were flagella and also elicited higher TLR5-neutralizing antibodies than did immunization with flagella. Antibody to type a but not type b flagella or flagellin inhibited TLR5 activation by whole bacterial cells. Overall, intact flagella appear to be superior for generating immunity to P. aeruginosa, and flagellin monomers might induce antibodies capable of neutralizing innate immunity due to TLR5 activation, but solid immunity to P. aeruginosa based on flagellar antigens may require additional components beyond type a and type b proteins from prototype strains.

  19. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence.

    PubMed

    Moradali, M Fata; Ghods, Shirin; Rehm, Bernd H A

    2017-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen affecting immunocompromised patients. It is known as the leading cause of morbidity and mortality in cystic fibrosis (CF) patients and as one of the leading causes of nosocomial infections. Due to a range of mechanisms for adaptation, survival and resistance to multiple classes of antibiotics, infections by P. aeruginosa strains can be life-threatening and it is emerging worldwide as public health threat. This review highlights the diversity of mechanisms by which P. aeruginosa promotes its survival and persistence in various environments and particularly at different stages of pathogenesis. We will review the importance and complexity of regulatory networks and genotypic-phenotypic variations known as adaptive radiation by which P. aeruginosa adjusts physiological processes for adaptation and survival in response to environmental cues and stresses. Accordingly, we will review the central regulatory role of quorum sensing and signaling systems by nucleotide-based second messengers resulting in different lifestyles of P. aeruginosa. Furthermore, various regulatory proteins will be discussed which form a plethora of controlling systems acting at transcriptional level for timely expression of genes enabling rapid responses to external stimuli and unfavorable conditions. Antibiotic resistance is a natural trait for P. aeruginosa and multiple mechanisms underlying different forms of antibiotic resistance will be discussed here. The importance of each mechanism in conferring resistance to various antipseudomonal antibiotics and their prevalence in clinical strains will be described. The underlying principles for acquiring resistance leading pan-drug resistant strains will be summarized. A future outlook emphasizes the need for collaborative international multidisciplinary efforts to translate current knowledge into strategies to prevent and treat P. aeruginosa infections while reducing the rate of antibiotic resistance

  20. Jacobsen catalyst as a cytochrome P450 biomimetic model for the metabolism of monensin A.

    PubMed

    Rocha, Bruno Alves; de Oliveira, Anderson Rodrigo Moraes; Pazin, Murilo; Dorta, Daniel Junqueira; Rodrigues, Andresa Piacezzi Nascimento; Berretta, Andresa Aparecida; Peti, Ana Paula Ferranti; de Moraes, Luiz Alberto Beraldo; Lopes, Norberto Peporine; Pospíšil, Stanislav; Gates, Paul Jonathan; Assis, Marilda das Dores

    2014-01-01

    Monensin A is a commercially important natural product isolated from Streptomyces cinnamonensins that is primarily employed to treat coccidiosis. Monensin A selectively complexes and transports sodium cations across lipid membranes and displays a variety of biological properties. In this study, we evaluated the Jacobsen catalyst as a cytochrome P450 biomimetic model to investigate the oxidation of monensin A. Mass spectrometry analysis of the products from these model systems revealed the formation of two products: 3-O-demethyl monensin A and 12-hydroxy monensin A, which are the same ones found in in vivo models. Monensin A and products obtained in biomimetic model were tested in a mitochondrial toxicity model assessment and an antimicrobial bioassay against Staphylococcus aureus, S. aureus methicillin-resistant, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Escherichia coli. Our results demonstrated the toxicological effects of monensin A in isolated rat liver mitochondria but not its products, showing that the metabolism of monensin A is a detoxification metabolism. In addition, the antimicrobial bioassay showed that monensin A and its products possessed activity against Gram-positive microorganisms but not for Gram-negative microorganisms. The results revealed the potential of application of this biomimetic chemical model in the synthesis of drug metabolites, providing metabolites for biological tests and other purposes.

  1. Construction and characterization of an azurin analog for the purple copper site in cytochrome c oxidase.

    PubMed

    Hay, M; Richards, J H; Lu, Y

    1996-01-09

    A protein analog of a purple copper center has been constructed from a recombinant blue copper protein (Pseudomonas aeruginosa azurin) by replacing the loop containing the three ligands to the blue copper center with the corresponding loop of the CuA center in cytochrome c oxidase (COX) from Paracoccus denitrificans. The electronic absorption in the UV and visible region (UV-vis) and electron paramagnetic resonance (EPR) spectra of this analog are remarkably similar to those of the native CuA center in COX from Paracoccus denitrificans. The above spectra can be obtained upon addition of a mixture of Cu2+ and Cu+. Addition of Cu2+ only results in a UV-vis spectrum consisting of absorptions from both a purple copper center and a blue copper center. This spectrum can be converted to the spectrum of a pure purple copper by a prolonged incubation in the air, or by addition of excess ascorbate. The azurin mutant reported here is an example of an engineered purple copper center with the A480/A530 ratio greater than 1 and with no detectable hyperfines, similar to those of the CuA sites in COX of bovine heart and of Paracoccus denitrificans.

  2. Secretion of phospholipase C by Pseudomonas aeruginosa.

    PubMed Central

    Stinson, M W; Hayden, C

    1979-01-01

    The conditions necessary for the secretion of phospholipase C (phosphatidylcholine cholinephosphohydrolase) by Pseudomonas aeruginosa were studied. Enzyme secretion by washed cell suspensions required a carbon source and ammonium, potassium, and calcium ions. The calcium requirement could be substituted by magnesium and strontium but not by copper, manganese, cobalt, or zinc. During growth in liquid medium, cells secreted phospholipase C during late logarithmic and early stationary phases. Secretion was repressed by the addition of inorganic phosphate but not by organic phosphates, glucose, or sodium succinate. Studies with tetracycline indicated that de novo protein synthesis was necessary for the secretion of phospholipase C and that the exoenzyme was not released from a preformed periplasmic pool. Similarly, extraction of actively secreting cells with 0.2 M MgCl2 at pH 8.4 solubilized large quantities of the periplasmic enzyme alkaline phosphatase but insignificant amounts of phospholipase C. Bacteria continued to secrete enzyme for nearly 45 min after the addition of inorganic phosphate or rifampin. Images PMID:114487

  3. Comprehensive transposon mutant library of Pseudomonas aeruginosa

    PubMed Central

    Jacobs, Michael A.; Alwood, Ashley; Thaipisuttikul, Iyarit; Spencer, David; Haugen, Eric; Ernst, Stephen; Will, Oliver; Kaul, Rajinder; Raymond, Christopher; Levy, Ruth; Chun-Rong, Liu; Guenthner, Donald; Bovee, Donald; Olson, Maynard V.; Manoil, Colin

    2003-01-01

    We have developed technologies for creating saturating libraries of sequence-defined transposon insertion mutants in which each strain is maintained. Phenotypic analysis of such libraries should provide a virtually complete identification of nonessential genes required for any process for which a suitable screen can be devised. The approach was applied to Pseudomonas aeruginosa, an opportunistic pathogen with a 6.3-Mbp genome. The library that was generated consists of 30,100 sequence-defined mutants, corresponding to an average of five insertions per gene. About 12% of the predicted genes of this organism lacked insertions; many of these genes are likely to be essential for growth on rich media. Based on statistical analyses and bioinformatic comparison to known essential genes in E. coli, we estimate that the actual number of essential genes is 300-400. Screening the collection for strains defective in two defined multigenic processes (twitching motility and prototrophic growth) identified mutants corresponding to nearly all genes expected from earlier studies. Thus, phenotypic analysis of the collection may produce essentially complete lists of genes required for diverse biological activities. The transposons used to generate the mutant collection have added features that should facilitate downstream studies of gene expression, protein localization, epistasis, and chromosome engineering. PMID:14617778

  4. Comprehensive transposon mutant library of Pseudomonas aeruginosa.

    PubMed

    Jacobs, Michael A; Alwood, Ashley; Thaipisuttikul, Iyarit; Spencer, David; Haugen, Eric; Ernst, Stephen; Will, Oliver; Kaul, Rajinder; Raymond, Christopher; Levy, Ruth; Chun-Rong, Liu; Guenthner, Donald; Bovee, Donald; Olson, Maynard V; Manoil, Colin

    2003-11-25

    We have developed technologies for creating saturating libraries of sequence-defined transposon insertion mutants in which each strain is maintained. Phenotypic analysis of such libraries should provide a virtually complete identification of nonessential genes required for any process for which a suitable screen can be devised. The approach was applied to Pseudomonas aeruginosa, an opportunistic pathogen with a 6.3-Mbp genome. The library that was generated consists of 30,100 sequence-defined mutants, corresponding to an average of five insertions per gene. About 12% of the predicted genes of this organism lacked insertions; many of these genes are likely to be essential for growth on rich media. Based on statistical analyses and bioinformatic comparison to known essential genes in E. coli, we estimate that the actual number of essential genes is 300-400. Screening the collection for strains defective in two defined multigenic processes (twitching motility and prototrophic growth) identified mutants corresponding to nearly all genes expected from earlier studies. Thus, phenotypic analysis of the collection may produce essentially complete lists of genes required for diverse biological activities. The transposons used to generate the mutant collection have added features that should facilitate downstream studies of gene expression, protein localization, epistasis, and chromosome engineering.

  5. Adherence of Pseudomonas aeruginosa to contact lenses

    SciTech Connect

    Miller, M.J.

    1988-01-01

    The purpose of this research was to examined the interactions of P. aeruginosa with hydrogel contact lenses and other substrata, and characterize adherence to lenses under various physiological and physicochemical conditions. Isolates adhered to polystyrene, glass, and hydrogel lenses. With certain lens types, radiolabeled cells showed decreased adherence with increasing water content of the lenses, however, this correlation with not found for all lenses. Adherence to rigid gas permeable lenses was markedly greater than adherence to hydrogels. Best adherence occurred near pH 7 and at a sodium chloride concentration of 50 mM. Passive adhesion of heat-killed cells to hydrogels was lower than the adherence obtained of viable cells. Adherence to hydrogels was enhanced by mucin, lactoferrin, lysozyme, IgA, bovine serum albumin, and a mixture of these macromolecules. Adherence to coated and uncoated lenses was greater with a daily-wear hydrogel when compared with an extended-wear hydrogel of similar polymer composition. Greater adherence was attributed to a higher concentration of adsorbed macromolecules on the 45% water-content lens in comparison to the 55% water-content lens.

  6. Mitochondrial cytochrome c biogenesis: no longer an enigma

    PubMed Central

    Babbitt, Shalon E.; Sutherland, Molly C.; Francisco, Brian San; Mendez, Deanna L.; Kranz, Robert G.

    2015-01-01

    Cytochromes c and c1are heme proteins that are essential for aerobic respiration. Release of cytochrome c from mitochondria is an important signal in apoptosis initiation. Biogenesis of c-type cytochromes involves covalent attachment of heme to two cysteines (at a conserved CXXCH sequence) in the apocytochrome. Heme attachment is catalyzed in most mitochondria by holocytochrome c synthase (HCCS), which is also necessary for import of apocytochrome c. Thus, HCCS affects cellular levels of cytochrome c, impacting mitochondrial physiology and cell death. Here, we review the mechanisms of HCCS function and the roles played by heme and residues in the CXXCH motif. Additionally, we consider concepts emerging within the two prokaryotic cytochrome c biogenesis pathways. PMID:26073510

  7. Cytochrome c6 from Monoraphidium braunii. A cytochrome with an unusual heme axial coordination.

    PubMed

    Campos, A P; Aguiar, A P; Hervás, M; Regalla, M; Navarro, J A; Ortega, J M; Xavier, A V; De La Rosa, M A; Teixeira, M

    1993-08-15

    A soluble monoheme c-type cytochrome (cytochrome c6) has been isolated from the green alga Monoraphidium braunii. It has a molecular mass of 9.3 kDa, an isoelectric point of 3.6 and a reduction potential of 358 mV at pH 7. The determined amino acid sequence allows its classification as a class-I c-type cytochrome. The ferric and ferrous cytochrome forms and their pH equilibria have been studied using 1H-NMR, ultraviolet/visible, EPR and Mössbauer spectroscopies. The pH equilibria are complex, several pKa values and pH-dependent forms being observed. The amino acid sequence, the reduction-potential value and the visible and NMR spectroscopies data in the pH range 4-9 indicate that the heme iron has a methionine-histidine axial coordination. However, the EPR and Mössbauer data obtained for the ferricytochrome show that in this pH range two distinct forms are present: form I, gz = 3.27, gy = 2.05 and gx = 1.05; form II, gz = 2.95, gy = 2.29 and gx = 1.43. While form I has crystal-field parameters typical of a methionine-histidine coordination, those associated with form II would suggest a histidine-histidine axial ligation. This possibility was extensively analyzed by spectroscopic methods and by chemical modification of a histidine residue. It was concluded that form II actually corresponds to an unusual type of methionine-histidine axial coordination. Straightforward examples of this type of coordination have recently been found in other c-type hemeproteins [Teixeira, M., Campos, A. P., Aguiar, A. P., Costa, H. S., Santos, H., Turner, D. L. & Xavier, A. V. (1993) FEBS Lett. 317, 233-236], corroborating our proposal. Since both forms, with very distinct crystal-field parameters, are shown to have the same reduction potential, it may be concluded that the axial and rhombic distortions of the heme-iron ligand field cannot be directly correlated with the heme-reduction potential. The pH-dependence studies have also shown that the form I and form II are

  8. Purification and characterization of an NADPH-cytochrome P450 (cytochrome c) reductase from spearmint (Mentha spicata) glandular trichomes.

    PubMed

    Ponnamperuma, K; Croteau, R

    1996-05-01

    Solubilized NADPH-cytochrome c (P450) reductase was purified to homogeneity from an extract of spearmint (Mentha spicata) glandular trichomes by dye-ligand interaction chromatography on Matrex-Gel Red A and affinity chromatography on 2', 5'-adenosine diphosphate agarose. SDS-PAGE of the purified enzyme preparation revealed the presence of two similar proteins with masses of 82 kDa (major) and 77 kDa (minor) that crossreacted on immunoblot analysis with polyclonal antibodies directed against NADPH-cytochrome P450 reductase from Jerusalem artichoke and from mung bean. Complete immunoinhibition of reductase activity was observed with both types of polyclonal antibodies, while only partial inhibition of activity resulted using a family of monoclonal antibodies directed against the Jerusalem artichoke cytochrome P450 reductase. Inhibition of the spearmint oil gland cytochrome c reductase was also observed with the diphenyliodonium ion. The K(m) values for the cosubstrates NADPH and cytochrome c were 6.2 and 3.7 microM, respectively, and the pH optimum for activity was at 8.5. The NADPH-cytochrome c reductase reconstituted NADPH-dependent (-)-4S-limonene-6-hydroxylase activity in the presence of cytochrome P450, purified from the microsomal fraction of spearmint oil gland cells and dilauroyl phosphatidyl choline. These characteristics establish the identity of the purified enzyme as a NADPH-cytochrome P450 reductase.

  9. Iron Depletion Enhances Production of Antimicrobials by Pseudomonas aeruginosa

    PubMed Central

    Nguyen, Angela T.; Jones, Jace W.; Ruge, Max A.; Kane, Maureen A.

    2015-01-01

    ABSTRACT Cystic fibrosis (CF) is a heritable disease characterized by chronic, polymicrobial lung infections. While Staphylococcus aureus is the dominant lung pathogen in young CF patients, Pseudomonas aeruginosa becomes predominant by adulthood. P. aeruginosa produces a variety of antimicrobials that likely contribute to this shift in microbial populations. In particular, secretion of 2-alkyl-4(1H)-quinolones (AQs) contributes to lysis of S. aureus in coculture, providing an iron source to P. aeruginosa both in vitro and in vivo. We previously showed that production of one such AQ, the Pseudomonas quinolone signal (PQS), is enhanced by iron depletion and that this induction is dependent upon the iron-responsive PrrF small RNAs (sRNAs). Here, we demonstrate that antimicrobial activity against S. aureus during coculture is also enhanced by iron depletion, and we provide evidence that multiple AQs contribute to this activity. Strikingly, a P. aeruginosa ΔprrF mutant, which produces very little PQS in monoculture, was capable of mediating iron-regulated growth suppression of S. aureus. We show that the presence of S. aureus suppresses the ΔprrF1,2 mutant's defect in iron-regulated PQS production, indicating that a PrrF-independent iron regulatory pathway mediates AQ production in coculture. We further demonstrate that iron-regulated antimicrobial production is conserved in multiple P. aeruginosa strains, including clinical isolates from CF patients. These results demonstrate that iron plays a central role in modulating interactions of P. aeruginosa with S. aureus. Moreover, our studies suggest that established iron regulatory pathways of these pathogens are significantly altered during polymicrobial infections. IMPORTANCE Chronic polymicrobial infections involving Pseudomonas aeruginosa and Staphylococcus aureus are a significant cause of morbidity and mortality, as the interplay between these two organisms exacerbates infection. This is in part due to enhanced

  10. A network biology approach to denitrification in Pseudomonas aeruginosa

    DOE PAGES

    Arat, Seda; Bullerjahn, George S.; Laubenbacher, Reinhard

    2015-02-23

    Pseudomonas aeruginosa is a metabolically flexible member of the Gammaproteobacteria. Under anaerobic conditions and the presence of nitrate, P. aeruginosa can perform (complete) denitrification, a respiratory process of dissimilatory nitrate reduction to nitrogen gas via nitrite (NO₂), nitric oxide (NO) and nitrous oxide (N₂O). This study focuses on understanding the influence of environmental conditions on bacterial denitrification performance, using a mathematical model of a metabolic network in P. aeruginosa. To our knowledge, this is the first mathematical model of denitrification for this bacterium. Analysis of the long-term behavior of the network under changing concentration levels of oxygen (O₂), nitrate (NO₃),more » and phosphate (PO₄) suggests that PO₄ concentration strongly affects denitrification performance. The model provides three predictions on denitrification activity of P. aeruginosa under various environmental conditions, and these predictions are either experimentally validated or supported by pertinent biological literature. One motivation for this study is to capture the effect of PO₄ on a denitrification metabolic network of P. aeruginosa in order to shed light on mechanisms for greenhouse gas N₂O accumulation during seasonal oxygen depletion in aquatic environments such as Lake Erie (Laurentian Great Lakes, USA). Simulating the microbial production of greenhouse gases in anaerobic aquatic systems such as Lake Erie allows a deeper understanding of the contributing environmental effects that will inform studies on, and remediation strategies for, other hypoxic sites worldwide.« less

  11. Influence of Pseudomonas Aeruginosa on Exacerbation in Patients with Bronchiectasis

    PubMed Central

    Chawla, Kiran; Vishwanath, Shashidhar; Manu, Mohan K; Lazer, Bernaitis

    2015-01-01

    Background: A majority of the studies done on the western population have shown that Pseudomonas aeruginosa causes many severe infections in patients with bronchiectasis as compared to other pathogens. There is scarcity of similar data from the Asian population. Materials and Methods: A prospective study was undertaken to identify the various pathogens isolated from the respiratory samples of 117 patients with bronchiectasis from south India and to compare the clinicomicrobiological profile of infections caused by P. aeruginosa and other respiratory pathogens. Results: The respiratory pathogens were isolated from 63 (53.8%) patients. P. aeruginosa was the most common isolate (46.0%) followed by Klebsiella pneumoniae (14.3%) and other pathogenic bacteria. Patients included in the P. aeruginosa group had a higher number of exacerbations (p: 0.008), greater number of hospital admissions (p: 0.007), a prolonged hospital stay (p: 0.03), and poor lung function, compared to the patients infected with the non-Pseudomonas group. Conclusion: It is necessary to investigate the etiology of respiratory tract infections among bronchiectasis patients followed by the prompt management of cases diagnosed with P. aeruginosa infections, so as to lower the morbidity and have a better prognosis. PMID:25722615

  12. Pseudomonas aeruginosa Virulence and Therapy: Evolving Translational Strategies

    PubMed Central

    Veesenmeyer, Jeffrey L.; Lisboa, Thiago; Rello, Jordi

    2009-01-01

    Structured abstract Objective Although most reviews of Pseudomonas aeruginosa therapeutics focus on antibiotics currently in use or in the pipeline, we review evolving translational strategies aimed at using virulence factor antagonists as adjuvant therapies. Data Source Current literature regarding P. aeruginosa virulence determinants and approaches that target them, with an emphasis on type III secretion, quorum-sensing, biofilms, and flagella. Data Extraction and Synthesis P. aeruginosa remains one of the most important pathogens in nosocomial infections, with high associated morbidity and mortality. Its predilection to develop resistance to antibiotics and expression of multiple virulence factors contributes to the frequent ineffectiveness of current therapies. Among the many P. aeruginosa virulence determinants that impact infections, type III secretion, quorum sensing, biofilm formation, and flagella have been the focus of much recent investigation. Here we review how increased understanding of these important bacterial structures and processes has enabled the development of novel approaches to inhibit each. These promising translational strategies may lead to the development of adjuvant therapies capable of improving outcomes. Conclusions Adjuvant therapies directed against virulence factors have the potential to improve outcomes in P. aeruginosa infections. PMID:19325463

  13. [Resistance to antibiotics in Pseudomonas aeruginosa in Colombian hospitals].

    PubMed

    Villa, Lina M; Cortés, Jorge A; Leal, Aura L; Meneses, Andrés; Meléndez, Martha P

    2013-12-01

    Pseudomonas aeruginosa infections cause high morbidity and mortality. We performed a descriptive analysis of the rates of antibiotic resistance in isolates of P. aeruginosa in 33 hospitals enrolled in a surveillance network in Colombia. The study was conducted between January 2005 and December 2009 .9905 isolates of P. aeruginosa were identified, (4.9% of all strains). In intensive care units (ICU) P. aeruginosa showed an overall resistance to aztreonam, cefepime , ceftazidime, imipenem, meropenem , and piperacillin / tazobactam of 31.8% , 23.9% , 24.8%, 22.5%, 20.3% and 22.3%, respectively. Resistance rates increased for piperacillin/tazobactam, cefepime, and imipenem; remained unchanged for meropenem; and decreased for aminoglycosides, quinolones and ceftazidime. Resistance to one, two and three or more families of antibiotics was found in 17%, 12.5%, and 32.1%, respectively. In samples collected from the wards, the resistance rate was lower but usually over 10%. Antibiotic resistance in P. aeruginosa isolates in hospitalized patients and particularly in those admitted to ICUs in Colombia is high.

  14. Gold-functionalized magnetic nanoparticles restrict growth of Pseudomonas aeruginosa.

    PubMed

    Niemirowicz, Katarzyna; Swiecicka, Izabela; Wilczewska, Agnieszka Z; Misztalewska, Iwona; Kalska-Szostko, Beata; Bienias, Kamil; Bucki, Robert; Car, Halina

    2014-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) and their derivatives (aminosilane and gold-coated) have been widely investigated in numerous medical applications, including their potential to act as antibacterial drug carriers that may penetrate into bacteria cells and biofilm mass. Pseudomonas aeruginosa is a frequent cause of infection in hospitalized patients, and significant numbers of currently isolated clinical strains are resistant to standard antibiotic therapy. Here we describe the impact of three types of SPIONs on the growth of P. aeruginosa during long-term bacterial culture. Their size, structure, and physicochemical properties were determined using transmission electron microscopy, X-ray diffraction analysis, and Fourier transform infrared spectroscopy. We observed significant inhibition of P. aeruginosa growth in bacterial cultures continued over 96 hours in the presence of gold-functionalized nanoparticles (Fe₃O₄@Au). At the 48-hour time point, growth of P. aeruginosa, as assessed by the number of colonies grown from treated samples, showed the highest inhibition (decreased by 40%). These data provide strong evidence that Fe₃O₄@Au can dramatically reduce growth of P. aeruginosa and provide a platform for further study of the antibacterial activity of this nanomaterial.

  15. The Genomic Basis of Evolutionary Innovation in Pseudomonas aeruginosa

    PubMed Central

    Wagner, Andreas; MacLean, R. Craig

    2016-01-01

    Novel traits play a key role in evolution, but their origins remain poorly understood. Here we address this problem by using experimental evolution to study bacterial innovation in real time. We allowed 380 populations of Pseudomonas aeruginosa to adapt to 95 different carbon sources that challenged bacteria with either evolving novel metabolic traits or optimizing existing traits. Whole genome sequencing of more than 80 clones revealed profound differences in the genetic basis of innovation and optimization. Innovation was associated with the rapid acquisition of mutations in genes involved in transcription and metabolism. Mutations in pre-existing duplicate genes in the P. aeruginosa genome were common during innovation, but not optimization. These duplicate genes may have been acquired by P. aeruginosa due to either spontaneous gene amplification or horizontal gene transfer. High throughput phenotype assays revealed that novelty was associated with increased pleiotropic costs that are likely to constrain innovation. However, mutations in duplicate genes with close homologs in the P. aeruginosa genome were associated with low pleiotropic costs compared to mutations in duplicate genes with distant homologs in the P. aeruginosa genome, suggesting that functional redundancy between duplicates facilitates innovation by buffering pleiotropic costs. PMID:27149698

  16. The Genomic Basis of Evolutionary Innovation in Pseudomonas aeruginosa.

    PubMed

    Toll-Riera, Macarena; San Millan, Alvaro; Wagner, Andreas; MacLean, R Craig

    2016-05-01

    Novel traits play a key role in evolution, but their origins remain poorly understood. Here we address this problem by using experimental evolution to study bacterial innovation in real time. We allowed 380 populations of Pseudomonas aeruginosa to adapt to 95 different carbon sources that challenged bacteria with either evolving novel metabolic traits or optimizing existing traits. Whole genome sequencing of more than 80 clones revealed profound differences in the genetic basis of innovation and optimization. Innovation was associated with the rapid acquisition of mutations in genes involved in transcription and metabolism. Mutations in pre-existing duplicate genes in the P. aeruginosa genome were common during innovation, but not optimization. These duplicate genes may have been acquired by P. aeruginosa due to either spontaneous gene amplification or horizontal gene transfer. High throughput phenotype assays revealed that novelty was associated with increased pleiotropic costs that are likely to constrain innovation. However, mutations in duplicate genes with close homologs in the P. aeruginosa genome were associated with low pleiotropic costs compared to mutations in duplicate genes with distant homologs in the P. aeruginosa genome, suggesting that functional redundancy between duplicates facilitates innovation by buffering pleiotropic costs.

  17. Catalytic reduction of O2 by cytochrome C using a synthetic model of cytochrome C oxidase.

    PubMed

    Collman, James P; Ghosh, Somdatta; Dey, Abhishek; Decréau, Richard A; Yang, Ying

    2009-04-15

    Cytochrome c oxidase (CcO) catalyzes the four-electron reduction of oxygen to water, the one-electron reductant Cytochrome c (Cytc) being the source of electrons. Recently we reported a functional model of CcO that electrochemically catalyzes the four-electron reduction of O(2) to H(2)O (Collman et al. Science 2007, 315, 1565). The current paper shows that the same functional CcO model catalyzes the four-electron reduction of O(2) using the actual biological reductant Cytc in a homogeneous solution. Both single and steady-state turnover kinetics studies indicate that O(2) binding is rate-determining and that O-O bond cleavage and electron transfer from reduced Cytc to the oxidized model complex are relatively fast.

  18. Flower colour and cytochromes P450.

    PubMed

    Tanaka, Yoshikazu; Brugliera, Filippa

    2013-02-19

    Cytochromes P450 play important roles in biosynthesis of flavonoids and their coloured class of compounds, anthocyanins, both of which are major floral pigments. The number of hydroxyl groups on the B-ring of anthocyanidins (the chromophores and precursors of anthocyanins) impact the anthocyanin colour, the more the bluer. The hydroxylation pattern is determined by two cytochromes P450, flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) and thus they play a crucial role in the determination of flower colour. F3'H and F3'5'H mostly belong to CYP75B and CYP75A, respectively, except for the F3'5'Hs in Compositae that were derived from gene duplication of CYP75B and neofunctionalization. Roses and carnations lack blue/violet flower colours owing to the deficiency of F3'5'H and therefore lack the B-ring-trihydroxylated anthocyanins based upon delphinidin. Successful redirection of the anthocyanin biosynthesis pathway to delphinidin was achieved by expressing F3'5'H coding regions resulting in carnations and roses with novel blue hues that have been commercialized. Suppression of F3'5'H and F3'H in delphinidin-producing plants reduced the number of hydroxyl groups on the anthocyanidin B-ring resulting in the production of monohydroxylated anthocyanins based on pelargonidin with a shift in flower colour to orange/red. Pelargonidin biosynthesis is enhanced by additional expression of a dihydroflavonol 4-reductase that can use the monohydroxylated dihydrokaempferol (the pelargonidin precursor). Flavone synthase II (FNSII)-catalysing flavone biosynthesis from flavanones is also a P450 (CYP93B) and contributes to flower colour, because flavones act as co-pigments to anthocyanins and can cause blueing and darkening of colour. However, transgenic plants expression of a FNSII gene yielded paler flowers owing to a reduction of anthocyanins because flavanones are precursors of anthocyanins and flavones.

  19. Characterization of Cytochrome 579, an Unusual Cytochrome Isolated from an Iron-Oxidizing Microbial Community

    SciTech Connect

    Singer, Steven; Chan, Clara S; Zemla, Adam; Verberkmoes, Nathan C; Hwang, Mona; Hettich, Robert {Bob} L; Banfield, Jillian F.; Thelen, Michael P.

    2008-01-01

    Proteogenomic studies of Fe(II)-oxidizing microbial biofilms collected from an extremely acidic environment have identified a novel, soluble cytochrome as one of the most abundant proteins produced by these communities. This red cytochrome, extracted from biofilms with dilute sulfuric acid and purified by cation exchange chromatography, has an unusual visible spectral signature at 579 nm. Fe(II)-dependent reduction of Cyt579 was thermodynamically favorable at pH>3, raising the possibility that Cyt579 acts as an accessory protein for electron transfer. Transmission electron microscopy of immuno-gold labeled biofilm indicated that the Cyt579 is localized near the bacterial cell surface, consistent with periplasmic localization. Further protein analysis of Cyt579, using preparative chromatofocusing and SDS-PAGE, revealed three forms of the protein that correspond to different N-terminal truncations of the amino acid sequence. Intact protein analysis corroborated the post-translational modifications of these forms and identified a genomically uncharacterized Cyt579 variant. Homology modeling was used to predict the overall cytochrome structure and heme binding site; positions of nine amino acid substitutions found in 3 Cyt579 variants all map to the surface of the protein and away from the heme group. Based on this detailed characterization of Cyt579, we propose that Cyt579 acts an electron transfer protein shuttling electrons derived from Fe(II) oxidation to support critical metabolic functions in the acidophilic microbial community.

  20. Use of an ultraviolet light at point-of-dispense faucet to eliminate Pseudomonas aeruginosa.

    PubMed

    Gerba, Charles P

    2015-05-01

    Tap water is believed to be a significant source of Pseudomonas aeruginosa in health care environments. This study evaluated an ultraviolet (UV) light point-of-dispense water treatment system for control of P aeruginosa. No P aeruginosa was detected in 30 different water dispensers in which the UV light device had been operating for 1-34 months. In comparison, P aeruginosa was found in other taps that did not feature this UV light system.

  1. The respiratory system of the marine bacterium Beneckea natriegens. I. Cytochrome composition.

    PubMed

    Weston, J A; Knowles, C J

    1974-02-22

    (1) The cytochrome composition of Beneckea natriegens grown under aerobic conditions has been examined. (2) Cell-free extracts obtained by sonication were separated into particulate and supernatant fractions by centrifugation at 150,000 x g. (3) The particulate fraction contained cytochromes b562, b557, b or c554, c549.5, c547, and low concentrations of cytochromes a1 and a2. (Subscripts refer to the wavelength optima of the b and c type cytochrome alpha-peaks in low temperature (77 degrees K) difference spectra.) Also present was a second cytochrome c549.5 which is capable of binding carbon monoxide (cytochrome c549.5(CO)) and which is also found in the supernatant fraction. (4) Reduced plus CO minus reduced difference spectra had spectral peaks corresponding to cytochrome o and two c type cytochromes, and low concentrations of cytochromes a1 and a2. (5) Action spectra for the relief of CO inhibition showed that cytochrome a2, the CO binding c type cytochrome(s) and possibly cytochrome o, but not cytochrome a1, had oxidase activity in intact cells. In cells grown to the late stationary phase, when cytochrome a2 and particularly cytochrome a1 were induced, the primary functual oxidase was cytochrome a1.

  2. Ambroxol inhibits mucoid conversion of Pseudomonas aeruginosa and contributes to the bactericidal activity of ciprofloxacin against mucoid P. aeruginosa biofilms.

    PubMed

    Wang, Wenlei; Yu, Jialin; He, Yu; Wang, Zhengli; Li, Fang

    2016-07-01

    Pseudomonas aeruginosa is an opportunistic human pathogen that can cause severe infections in immunocompromised individuals. Because it forms biofilms, which protect against host immune attack and increase resistance to conventional antibiotics, mucoid P. aeruginosa is nearly impossible to eradicate. Moreover, mucoid conversion of P. aeruginosa in cystic fibrosis (CF) patients leads to poor outcomes. This conversion is mainly due to mucA gene mutation, which is thought to be induced by polymorphonuclear leukocytes (PMNs) and the reactive oxygen species they release. Ambroxol, a mucolytic agent with antioxidant characteristics, is used clinically, and this compound has recently been demonstrated to possess anti-biofilm properties. In this study, we found that ambroxol inhibits the H2 O2 -mediated conversion of P. aeruginosa from a non-mucoid to a mucoid phenotype, an effect that is due to its antioxidant property against H2 O2 . Furthermore, the bactericidal activity of ciprofloxacin against mucoid P. aeruginosa biofilms was increased in vitro when used in combination with ambroxol.

  3. Subtilase SprP exerts pleiotropic effects in Pseudomonas aeruginosa

    PubMed Central

    Pelzer, Alexander; Polen, Tino; Funken, Horst; Rosenau, Frank; Wilhelm, Susanne; Bott, Michael; Jaeger, Karl-Erich

    2014-01-01

    The open reading frame PA1242 in the genome of Pseudomonas aeruginosa PAO1 encodes a putative protease belonging to the peptidase S8 family of subtilases. The respective enzyme termed SprP consists of an N-terminal signal peptide and a so-called S8 domain linked by a domain of unknown function (DUF). Presumably, this DUF domain defines a discrete class of Pseudomonas proteins as homologous domains can be identified almost exclusively in proteins of the genus Pseudomonas. The sprP gene was expressed in Escherichia coli and proteolytic activity was demonstrated. A P. aeruginosa ΔsprP mutant was constructed and its gene expression pattern compared to the wild-type strain by genome microarray analysis revealing altered expression levels of 218 genes. Apparently, SprP is involved in regulation of a variety of different cellular processes in P. aeruginosa including pyoverdine synthesis, denitrification, the formation of cell aggregates, and of biofilms. PMID:24376018

  4. Sphingoid long chain bases prevent lung infection by Pseudomonas aeruginosa

    PubMed Central

    Pewzner-Jung, Yael; Tavakoli Tabazavareh, Shaghayegh; Grassmé, Heike; Becker, Katrin Anne; Japtok, Lukasz; Steinmann, Jörg; Joseph, Tammar; Lang, Stephan; Tuemmler, Burkhard; Schuchman, Edward H; Lentsch, Alex B; Kleuser, Burkhard; Edwards, Michael J; Futerman, Anthony H; Gulbins, Erich

    2014-01-01

    Cystic fibrosis patients and patients with chronic obstructive pulmonary disease, trauma, burn wound, or patients requiring ventilation are susceptible to severe pulmonary infection by Pseudomonas aeruginosa. Physiological innate defense mechanisms against this pathogen, and their alterations in lung diseases, are for the most part unknown. We now demonstrate a role for the sphingoid long chain base, sphingosine, in determining susceptibility to lung infection by P. aeruginosa. Tracheal and bronchial sphingosine levels were significantly reduced in tissues from cystic fibrosis patients and from cystic fibrosis mouse models due to reduced activity of acid ceramidase, which generates sphingosine from ceramide. Inhalation of mice with sphingosine, with a sphingosine analog, FTY720, or with acid ceramidase rescued susceptible mice from infection. Our data suggest that luminal sphingosine in tracheal and bronchial epithelial cells prevents pulmonary P. aeruginosa infection in normal individuals, paving the way for novel therapeutic paradigms based on inhalation of acid ceramidase or of sphingoid long chain bases in lung infection. PMID:25085879

  5. Subtilase SprP exerts pleiotropic effects in Pseudomonas aeruginosa.

    PubMed

    Pelzer, Alexander; Polen, Tino; Funken, Horst; Rosenau, Frank; Wilhelm, Susanne; Bott, Michael; Jaeger, Karl-Erich

    2014-02-01

    The open reading frame PA1242 in the genome of Pseudomonas aeruginosa PAO1 encodes a putative protease belonging to the peptidase S8 family of subtilases. The respective enzyme termed SprP consists of an N-terminal signal peptide and a so-called S8 domain linked by a domain of unknown function (DUF). Presumably, this DUF domain defines a discrete class of Pseudomonas proteins as homologous domains can be identified almost exclusively in proteins of the genus Pseudomonas. The sprP gene was expressed in Escherichia coli and proteolytic activity was demonstrated. A P. aeruginosa ∆sprP mutant was constructed and its gene expression pattern compared to the wild-type strain by genome microarray analysis revealing altered expression levels of 218 genes. Apparently, SprP is involved in regulation of a variety of different cellular processes in P. aeruginosa including pyoverdine synthesis, denitrification, the formation of cell aggregates, and of biofilms.

  6. Pseudomonas aeruginosa biofilm, a programmed bacterial life for fitness.

    PubMed

    Lee, Keehoon; Yoon, Sang Sun

    2017-03-17

    Biofilm is a community of microbes that typically inhabits on surfaces and is encased in an extracellular matrix. Biofilms display very dissimilar characteristics to their planktonic counterparts. Biofilms are ubiquitous in the environments and influence our life tremendously in both positive and negative ways. Pseudomonas aeruginosa is a bacterium, known to produce robust biofilms. P. aeruginosa biofilms cause severe problems in immunocompromised patients including those with cystic fibrosis or wound infection. Moreover, the unique biofilm properties further complicates the eradication of the biofilm infection and leading to the development of chronic infections. In this review, we discuss a history of biofilm research and general characteristics of bacterial biofilms. Then, distinct features pertaining to each stage of P. aeruginosa biofilm development are highlighted. Furthermore, infections caused by biofilms of its own or in association with other bacterial species (i.e., multi-species biofilms) are discussed in detail.

  7. Multilayered polyelectrolyte microcapsules: interaction with the enzyme cytochrome C oxidase.

    PubMed

    Pastorino, Laura; Dellacasa, Elena; Noor, Mohamed R; Soulimane, Tewfik; Bianchini, Paolo; D'Autilia, Francesca; Antipov, Alexei; Diaspro, Alberto; Tofail, Syed A M; Ruggiero, Carmelina

    2014-01-01

    Cell-sized polyelectrolyte capsules functionalized with a redox-driven proton pump protein were assembled for the first time. The interaction of polyelectrolyte microcapsules, fabricated by electrostatic layer-by-layer assembly, with cytochrome c oxidase molecules was investigated. We found that the cytochrome c oxidase retained its functionality, that the functionalized microcapsules interacting with cytochrome c oxidase were permeable and that the permeability characteristics of the microcapsule shell depend on the shell components. This work provides a significant input towards the fabrication of an integrated device made of biological components and based on specific biomolecular functions and properties.

  8. Anionic fluoroquinolones as antibacterials against biofilm-producing Pseudomonas aeruginosa.

    PubMed

    Long, Timothy E; Keding, Lexie C; Lewis, Demetria D; Anstead, Michael I; Withers, T Ryan; Yu, Hongwei D

    2016-02-15

    Pseudomonas aeruginosa is a common biofilm-forming bacterial pathogen implicated in diseases of the lungs. The extracellular polymeric substances (EPS) of respiratory Pseudomonas biofilms are largely comprised of anionic molecules such as rhamnolipids and alginate that promote a mucoid phenotype. In this Letter, we examine the ability of negatively-charged fluoroquinolones to transverse the EPS and inhibit the growth of mucoid P. aeruginosa. Anionic fluoroquinolones were further compared with standard antibiotics via a novel microdiffusion assay to evaluate drug penetration through pseudomonal alginate and respiratory mucus from a patient with cystic fibrosis.

  9. A case of Pseudomonas Aeruginosa commercial tattoo infection.

    PubMed

    Maloberti, A; Betelli, M; Perego, M R; Foresti, S; Scarabelli, G; Grassi, G

    2015-11-18

    Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium that can cause disease in immunocompromised patients but also burn wounds and other cutaneous infections. We report the case of a 31 years old woman with a P. Aeruginosa commercial tattoo infection treated with intravenous antibiotic therapy. Today tattooing is increasingly common and despite specific regulations many cases of tattoo site infection are reported in the literature. Principal actual tattoo infective epidemiology includes Streptococcus pyogenes, Staphylococcus aureus and mycosis infections and parenteral transmission of HIV, HBV and HCV but also recently published cases of Methicillin-Resistant Staphylococcus aureus and non tuberculous mycobacterium tattoo infection.

  10. Isolation and Characterization of a Hybrid Respiratory Supercomplex Consisting of Mycobacterium tuberculosis Cytochrome bcc and Mycobacterium smegmatis Cytochrome aa3.

    PubMed

    Kim, Mi-Sun; Jang, Jichan; Ab Rahman, Nurlilah Binte; Pethe, Kevin; Berry, Edward A; Huang, Li-Shar

    2015-06-05

    Recently, energy production pathways have been shown to be viable antitubercular drug targets to combat multidrug-resistant tuberculosis and eliminate pathogen in the dormant state. One family of drugs currently under development, the imidazo[1,2-a]pyridine derivatives, is believed to target the pathogen's homolog of the mitochondrial bc1 complex. This complex, denoted cytochrome bcc, is highly divergent from mitochondrial Complex III both in subunit structure and inhibitor sensitivity, making it a good target for drug development. There is no soluble cytochrome c in mycobacteria to transport electrons from the bcc complex to cytochrome oxidase. Instead, the bcc complex exists in a "supercomplex" with a cytochrome aa3-type cytochrome oxidase, presumably allowing direct electron transfer. We describe here purification and initial characterization of the mycobacterial cytochrome bcc-aa3 supercomplex using a strain of M. smegmatis that has been engineered to express the M. tuberculosis cytochrome bcc. The resulting hybrid supercomplex is stable during extraction and purification in the presence of dodecyl maltoside detergent. It is hoped that this purification procedure will potentiate functional studies of the complex as well as crystallographic studies of drug binding and provide structural insight into a third class of the bc complex superfamily.

  11. Microelectrochemistry and Measurement of the Diffusivity of Oxidized and Reduced Horse Heart Cytochrome c

    DTIC Science & Technology

    1989-10-01

    outer-sphere redox components and cytochrome c have been studied extensively. 4 However, cytochrome c is a solution protein where cytochrome c oxidase and...ferrocytochrome c to cytochrome c oxidase . This study profiles the diffusion of species over 1.4 lm to 26 4m and the characteristic collection

  12. Flower colour and cytochromes P450†

    PubMed Central

    Tanaka, Yoshikazu; Brugliera, Filippa

    2013-01-01

    Cytochromes P450 play important roles in biosynthesis of flavonoids and their coloured class of compounds, anthocyanins, both of which are major floral pigments. The number of hydroxyl groups on the B-ring of anthocyanidins (the chromophores and precursors of anthocyanins) impact the anthocyanin colour, the more the bluer. The hydroxylation pattern is determined by two cytochromes P450, flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H) and thus they play a crucial role in the determination of flower colour. F3′H and F3′5′H mostly belong to CYP75B and CYP75A, respectively, except for the F3′5′Hs in Compositae that were derived from gene duplication of CYP75B and neofunctionalization. Roses and carnations lack blue/violet flower colours owing to the deficiency of F3′5′H and therefore lack the B-ring-trihydroxylated anthocyanins based upon delphinidin. Successful redirection of the anthocyanin biosynthesis pathway to delphinidin was achieved by expressing F3′5′H coding regions resulting in carnations and roses with novel blue hues that have been commercialized. Suppression of F3′5′H and F3′H in delphinidin-producing plants reduced the number of hydroxyl groups on the anthocyanidin B-ring resulting in the production of monohydroxylated anthocyanins based on pelargonidin with a shift in flower colour to orange/red. Pelargonidin biosynthesis is enhanced by additional expression of a dihydroflavonol 4-reductase that can use the monohydroxylated dihydrokaempferol (the pelargonidin precursor). Flavone synthase II (FNSII)-catalysing flavone biosynthesis from flavanones is also a P450 (CYP93B) and contributes to flower colour, because flavones act as co-pigments to anthocyanins and can cause blueing and darkening of colour. However, transgenic plants expression of a FNSII gene yielded paler flowers owing to a reduction of anthocyanins because flavanones are precursors of anthocyanins and flavones. PMID:23297355

  13. Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm.

    PubMed

    Xu, Dake; Xia, Jin; Zhou, Enze; Zhang, Dawei; Li, Huabing; Yang, Chunguang; Li, Qi; Lin, Hai; Li, Xiaogang; Yang, Ke

    2017-02-01

    Microbiologically influenced corrosion (MIC) of 2205 duplex stainless steel (DSS) in the presence of Pseudomonas aeruginosa was investigated through electrochemical and surface analyses. The electrochemical results showed that P. aeruginosa significantly reduced the corrosion resistance of 2205 DSS. Confocal laser scanning microscopy (CLSM) images showed that the depths of the largest pits on 2205 DSS with and without P. aeruginosa were 14.0 and 4.9μm, respectively, indicating that the pitting corrosion was accelerated by P. aeruginosa. X-ray photoelectron spectroscopy (XPS) results revealed that CrO3 and CrN formed on the 2205 DSS surface in the presence of P. aeruginosa.

  14. Genetics Home Reference: cytochrome P450 oxidoreductase deficiency

    MedlinePlus

    ... hormones, which are needed for normal development and reproduction. The hormonal changes associated with cytochrome P450 oxidoreductase ... which are essential for normal sexual development and reproduction; corticosteroids, which are involved in the body's response ...

  15. Pseudomonas aeruginosa facilitates Campylobacter jejuni growth in biofilms under oxic flow conditions.

    PubMed

    Culotti, Alessandro; Packman, Aaron I

    2015-12-01

    We investigated the growth of Campylobacter jejuni in biofilms with Pseudomonas aeruginosa under oxic flow conditions. We observed the growth of C. jejuni in mono-culture, deposited on pre-established P. aeruginosa biofilms, and co-inoculated with P. aeruginosa. In mono-culture, C. jejuni was unable to form biofilms. However, deposited C. jejuni continuously grew on pre-established P. aeruginosa biofilms for a period of 3 days. The growth of scattered C. jejuni clusters was strictly limited to the P. aeruginosa biofilm surface, and no intergrowth was observed. Co-culturing of C. jejuni and P. aeruginosa also enabled the growth of both organisms in biofilms, with C. jejuni clusters developing on the surface of the P. aeruginosa biofilm. Dissolved oxygen (DO) measurements in the medium showed that P. aeruginosa biofilms depleted the effluent DO from 9.0 to 0.5 mg L(-1) 24 hours after inoculation. The localized microaerophilic environment generated by P. aeruginosa promoted the persistence and growth of C. jejuni. Our findings show that P. aeruginosa not only prolongs the survival of C. jejuni under oxic conditions, but also enables the growth of C. jejuni on the surface of P. aeruginosa biofilms.

  16. Pseudomonas Aeruginosa Endocarditis in Acute Myeloid Leukemia: A Rare Complication

    PubMed Central

    J, Barshay; A, Nemets; A, Ducach; G, Lugassy

    2008-01-01

    Infectious endocarditis is a rarely encountered complication among leukemia patient during induction therapy. We describe a young patient who developed prolonged high fever after aggressive chemotherapy for Acute Myeloid Leukemia. Pseudomonas Aeruginosa endocarditis was found to be the etiology for the febrile state. Our purpose is to emphasize the need for an early diagnosis of this rare, albeit treatable complication. PMID:23675106

  17. [Hospital infections caused by Pseudomonas aeruginosa. Significance in intensive therapy].

    PubMed

    Sidorenko, S V; Gel'fand, E B; Mamontova, O A

    1999-01-01

    The significance of P. aeruginosa as an agent of hospital infections in intensive care departments is determined by high prevalence of this microorganism, its natural and acquired resistance to antibiotics of various groups, and severity of the infection it induces. The resistance of P. aeruginosa to antibiotics is different in different regions. Among the strains isolated in Moscow in intensive care wards for newborns 9% were resistant to meropenem, 10% to amicacine, 15% to imipramine, 16% to cefepime, 37% to ceftasidime, 45% to piperacylline/tasobactam, 45% to ciprofloxacine, and 60% to gentamicin; 1.5% of these strains were resistant to all tested antibiotics. High prevalence of antibiotic resistance among P. aeruginosa impedes the choice of drugs for empirical antibiotic therapy and increases the significance of microbiological diagnosis. Even if an agent is sensitive to such antibiotics as semisynthetic penicillines and aminoglycosides, their use as monotherapy in infections caused by P. aeruginosa is ineffective. Carbapenemes, III- IV generations cefalosporines, and fluoroquinolones can be used as mono therapy.

  18. Inhibition of Pseudomonas aeruginosa biofilm formation on wound dressings

    PubMed Central

    Brandenburg, Kenneth S.; Calderon, Diego F.; Kierski, Patricia R.; Brown, Amanda L.; Shah, Nihar M.; Abbott, Nicholas L.; Schurr, Michael J.; Murphy, Christopher J.; McAnulty, Jonathan F.; Czuprynski, Charles J.

    2016-01-01

    Chronic non-healing skin wounds often contain bacterial biofilms that prevent normal wound healing and closure and present challenges to the use of conventional wound dressings. We investigated inhibition of Pseudomonas aeruginosa biofilm formation, a common pathogen of chronic skin wounds, on a commercially available biological wound dressing. Building upon prior reports, we examined whether the amino acid tryptophan would inhibit P. aeruginosa biofilm formation on the 3-dimensional surface of the biological dressing. Bacterial biomass and biofilm polysaccharides were quantified using crystal violet staining or an enzyme linked lectin, respectively. Bacterial cells and biofilm matrix adherent to the wound dressing were visualized through scanning electron microscopy. D-/L-tryptophan inhibited P. aeruginosa biofilm formation on the wound dressing in a dose dependent manner and was not directly cytotoxic to immortalized human keratinocytes although there was some reduction in cellular metabolism or enzymatic activity. More importantly, D-/L-tryptophan did not impair wound healing in a splinted skin wound murine model. Furthermore, wound closure was improved when D-/L-tryptophan treated wound dressing with P. aeruginosa biofilms were compared with untreated dressings. These findings indicate that tryptophan may prove useful for integration into wound dressings to inhibit biofilm formation and promote wound healing. PMID:26342168

  19. Genetic characterization of Microcystis aeruginosa isolates from Portuguese freshwater systems.

    PubMed

    Moreira, Cristiana; Vasconcelos, Vitor; Antunes, Agostinho

    2016-07-01

    Cyanobacteria are microorganisms that pose a serious threat to the aquatic waterways through the production of dense blooms under eutrophic conditions and the release of toxic secondary metabolites-cyanotoxins. Within cyanobacteria, the colonial planktonic Microcystis aeruginosa is widely distributed in both fresh and brackish aquatic environments throughout the world being frequently observed in the Portuguese water systems. Apart from the well-established distribution of M. aeruginosa in Portugal, knowledge of its genetic diversity and population structure is unknown. Therefore, in this study twenty-seven strains were obtained from the North, Centre and South regions of Portugal and were subjected to extensive phylogenetic analyses using simultaneously four distinct genetic markers (16S rRNA, 16S-23S ITS, DNA gyrase subunit ß and cell division protein (ftsZ)) encompassing in total 2834 bp. With this work we characterized the phylogenetic relationship among the Portuguese strains, with the southern strains showing higher genetic structure relatively to the North and Centre strains. A total of fifteen genotypes were determined for M. aeruginosa in Portuguese water systems revealing a high genetic diversity. This is also the first study to report geographic variation on the population structure of the Portuguese M. aeruginosa.

  20. Pseudomonas aeruginosa sepsis in stem cell transplantation patients.

    PubMed

    Fanci, Rosa; Pecile, Patrizia; Casalone, Enrico; Mengoni, Alessio; Tamburini, Elena; Guidi, Stefano; Cecconi, Daniela; Bosi, Alberto; Nicoletti, Pierluigi; Mastromei, Giorgio

    2006-07-01

    We report the epidemiological investigation of an outbreak of Pseudomonas aeruginosa infection in 6 patients who shared, during different periods, the same 2 rooms of a bone marrow transplantation unit. Phenotypic and molecular analysis of isolates from patients and from the environment strongly suggested a single, environmental source of infection.

  1. 7-fluoroindole as an antivirulence compound against Pseudomonas aeruginosa.

    PubMed

    Lee, Jin-Hyung; Kim, Yong-Guy; Cho, Moo Hwan; Kim, Jung-Ae; Lee, Jintae

    2012-04-01

    The emergence of antibiotic resistance has necessitated new therapeutic approaches for combating persistent bacterial infection. An alternative approach is regulation of bacterial virulence instead of growth suppression, which can readily lead to drug resistance. The virulence of the opportunistic human pathogen Pseudomonas aeruginosa depends on a large number of extracellular factors and biofilm formation. Thirty-one natural and synthetic indole derivatives were screened. 7-fluoroindole (7FI) was identified as a compound that inhibits biofilm formation and blood hemolysis without inhibiting the growth of planktonic P. aeruginosa cells. Moreover, 7FI markedly reduced the production of quorum-sensing (QS)-regulated virulence factors 2-heptyl-3-hydroxy-4(1H)-quinolone, pyocyanin, rhamnolipid, two siderophores, pyoverdine and pyochelin. 7FI clearly suppressed swarming motility, protease activity and the production of a polymeric matrix in P. aeruginosa. However, unlike natural indole compounds, synthetic 7FI did not increase antibiotic resistance. Therefore, 7FI is a potential candidate for use in an antivirulence approach against persistent P. aeruginosa infection.

  2. Removal of Microcystis aeruginosa using cationic starch modified soils.

    PubMed

    Shi, Wenqing; Tan, Wanqiao; Wang, Lijing; Pan, Gang

    2016-06-15

    A cheap and biodegradable modifier, cationic starch (CS), was used to turn local soils into effective flocculants for Microcystis aeruginosa (M. aeruginosa) removal. The isoelectric point of soil particles was remarkably increased from pH 0.5 to 11.8 after modification with CS, which made CS modified soil particles positively charged and obtain algal flocculation ability. At the soil concentration of 100 mg/L, when the CS modifier was 10 mg/L, 86% of M. aeruginosa cells were removed within 30 min. Lower or higher CS dosage led to limited algal removal. About 71% and 45% of M. aeruginosa cells were removed within 30 min when CS was 5 mg/L and 80 mg/L, respectively. This is because only part of algal cells combined with CS modified soil particles through charge neutralization at low dosage, while flocs formed at high CS dosage were positively charged which prevents further aggregation among the flocs. The floc stability was quantified by a floc breakage index under applied shear force. Algal flocs formed at acid and alkaline conditions were more prone to be broken than those at the neutral condition. The cost and biodegradability concerns may be largely reduced through the use of CS modified local soils. For field applications, other practical issues (e.g., re-suspension) should be further studied by jointly using other methods.

  3. Production of mucoid exopolysaccharide during development of Pseudomonas aeruginosa biofilms.

    PubMed Central

    Hoyle, B D; Williams, L J; Costerton, J W

    1993-01-01

    Production of mucoid exopolysaccharide by planktonic, chemostat-derived, and adherent Pseudomonas aeruginosa 579 bacteria was separately monitored for 7 days by using a lacZ-algD promoter-reporter gene and assays of total carbohydrate and metabolic activity. Mucoid exopolysaccharide production was transiently elevated following adherence but declined to planktonic levels by day 7. PMID:8423105

  4. Full Virulence of Pseudomonas aeruginosa Requires OprF▿

    PubMed Central

    Fito-Boncompte, Laurène; Chapalain, Annelise; Bouffartigues, Emeline; Chaker, Hichem; Lesouhaitier, Olivier; Gicquel, Gwendoline; Bazire, Alexis; Madi, Amar; Connil, Nathalie; Véron, Wilfried; Taupin, Laure; Toussaint, Bertrand; Cornelis, Pierre; Wei, Qing; Shioya, Koki; Déziel, Eric; Feuilloley, Marc G. J.; Orange, Nicole; Dufour, Alain; Chevalier, Sylvie

    2011-01-01

    OprF is a general outer membrane porin of Pseudomonas aeruginosa, a well-known human opportunistic pathogen associated with severe hospital-acquired sepsis and chronic lung infections of cystic fibrosis patients. A multiphenotypic approach, based on the comparative study of a wild-type strain of P. aeruginosa, its isogenic oprF mutant, and an oprF-complemented strain, showed that OprF is required for P. aeruginosa virulence. The absence of OprF results in impaired adhesion to animal cells, secretion of ExoT and ExoS toxins through the type III secretion system (T3SS), and production of the quorum-sensing-dependent virulence factors pyocyanin, elastase, lectin PA-1L, and exotoxin A. Accordingly, in the oprF mutant, production of the signal molecules N-(3-oxododecanoyl)-l-homoserine lactone and N-butanoyl-l-homoserine lactone was found to be reduced and delayed, respectively. Pseudomonas quinolone signal (PQS) production was decreased, while its precursor, 4-hydroxy-2-heptylquinoline (HHQ), accumulated in the cells. Taken together, these results show the involvement of OprF in P. aeruginosa virulence, at least partly through modulation of the quorum-sensing network. This is the first study showing a link between OprF, PQS synthesis, T3SS, and virulence factor production, providing novel insights into virulence expression. PMID:21189321

  5. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA.

    PubMed

    Teixeira, Bertinellys; Rodulfo, Hectorina; Carreño, Numirin; Guzmán, Militza; Salazar, Elsa; De Donato, Marcos

    2016-01-01

    The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC), aminoglycoside-adenyltransferases (AAD), and aminoglycoside-phosphotransferases (APH), is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA) were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137) were identified from the Intensive Care Unit (ICU), mainly from discharges (96/137). The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively). Phenotype VI, resistant to these antibiotics, was the most frequent (14/49), followed by phenotype I, resistant to all the aminoglycosides tested (12/49). The aac(6´)-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´)-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America.

  6. Identification, cloning, and expression of Pseudomonas aeruginosa phosphorylcholine phosphatase gene.

    PubMed

    Massimelli, María J; Beassoni, Paola R; Forrellad, Marina A; Barra, José L; Garrido, Mónica N; Domenech, Carlos E; Lisa, Angela T

    2005-05-01

    Pseudomonas aeruginosa phosphorylcholine phosphatase (PChP) is a periplasmic enzyme produced simultaneously with the hemolytic phospholipase C (PLc-H) when the bacteria are grown in the presence of choline, betaine, dimethylglycine or carnitine. Molecular analysis of the P. aeruginosa mutant JUF8-00, after Tn5-751 mutagenesis, revealed that the PA5292 gene in the P. aeruginosa PAO1 genome was responsible for the synthesis of PChP. The enzyme expressed in E. coli, rPChP-Ec, purified by a chitin-binding column (IMPACT-CN system, New England BioLabs) was homogeneous after SDS-PAGE analysis. PChP was also expressed in P. aeruginosa PAO1-LAC, rPChP-Pa. Both recombinant enzymes exhibited a molecular mass of approximately 40 kDa, as expected for the size of the PA5292 gene, and catalyzed the hydrolysis of phosphorylcholine, phosphorylethanolamine, and p-nitrophenylphosphate. The saturation curve of rPChP-Ec and rPChP-Pa by phosphorylcholine revealed that these recombinant enzymes, like the purified native PChP, also contained the high- and low-affinity sites for phosphorylcholine and that the enzyme activity was inhibited by high substrate concentration.

  7. Effects of azithromycin in Pseudomonas aeruginosa burn wound infection

    PubMed Central

    Nichols, DP; Caceres, S; Caverly, L; Fratelli, C; Kim, SH; Malcolm, KC; Poch, KR; Saavedra, M; Solomon, G; Taylor-Cousar, J; Moskowitz, SM; Nick, JA

    2013-01-01

    Background Cutaneous thermal injuries (i.e. burns) remain a common form of debilitating trauma and outcomes are often worsened by wound infection with environmental bacteria, chiefly Pseudomonas aeruginosa. Materials and Methods We tested the effects of early administration of a single dose of azithromycin, with or without subsequent anti-pseudomonal antibiotics, in a mouse model of standardized thermal injury infected with P. aeruginosa on both wound site and systemic infection. We also tested the antimicrobial effects of these antibiotics alone or combined in comparative biofilm and planktonic cultures in vitro. Results In our model, early azithromycin administration significantly reduced wound and systemic infection without altering wound site or circulating neutrophil activity. The antimicrobial effect of azithromycin was additive with ciprofloxacin but significantly reduced the antimicrobial effect of tobramycin. This pattern was reproduced in biofilm cultures and not observed in planktonic cultures of P. aeruginosa. Conclusion these data suggest that early administration of azithromycin following burn-related trauma and infection may reduce P. aeruginosa infection and potential interactions with other antibiotics should be considered when designing future studies. PMID:23478086

  8. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA

    PubMed Central

    TEIXEIRA, Bertinellys; RODULFO, Hectorina; CARREÑO, Numirin; GUZMÁN, Militza; SALAZAR, Elsa; DONATO, Marcos DE

    2016-01-01

    The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC), aminoglycoside-adenyltransferases (AAD), and aminoglycoside-phosphotransferases (APH), is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA) were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137) were identified from the Intensive Care Unit (ICU), mainly from discharges (96/137). The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively). Phenotype VI, resistant to these antibiotics, was the most frequent (14/49), followed by phenotype I, resistant to all the aminoglycosides tested (12/49). The aac(6´)-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´)-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America. PMID:27007556

  9. Modular assembly of yeast cytochrome oxidase.

    PubMed

    McStay, Gavin P; Su, Chen Hsien; Tzagoloff, Alexander

    2013-02-01

    Previous studies of yeast cytochrome oxidase (COX) biogenesis identified Cox1p, one of the three mitochondrially encoded core subunits, in two high-molecular weight complexes combined with regulatory/assembly factors essential for expression of this subunit. In the present study we use pulse-chase labeling experiments in conjunction with isolated mitochondria to identify new Cox1p intermediates and place them in an ordered pathway. Our results indicate that before its assimilation into COX, Cox1p transitions through five intermediates that are differentiated by their compositions of accessory factors and of two of the eight imported subunits. We propose a model of COX biogenesis in which Cox1p and the two other mitochondrial gene products, Cox2p and Cox3p, constitute independent assembly modules, each with its own complement of subunits. Unlike their bacterial counterparts, which are composed only of the individual core subunits, the final sequence in which the mitochondrial modules associate to form the holoenzyme may have been conserved during evolution.

  10. Novel extrahepatic cytochrome P450s

    SciTech Connect

    Karlgren, Maria . E-mail: Maria.Karlgren@imm.ki.se; Miura, Shin-ichi; Ingelman-Sundberg, Magnus

    2005-09-01

    The cytochrome P450 enzymes are highly expressed in the liver and are involved in the metabolism of xenobiotics. Because of the initiatives associated with the Human Genome Project, a great progress has recently been seen in the identification and characterization of novel extrahepatic P450s, including CYP2S1, CYP2R1, CYP2U1 and CYP2W1. Like the hepatic enzymes, these P450s may play a role in the tissue-specific metabolism of foreign compounds, but they may also have important endogenous functions. CYP2S1 has been shown to metabolize all-trans retinoic acid and CYP2R1 is a major vitamin D 25-hydroxylase. Regarding their metabolism of xenobiotics, much remains to be established, but CYP2S1 metabolizes naphthalene and it is likely that these P450s are responsible for metabolic activation of several different kinds of xenobiotic chemicals and contribute to extrahepatic toxicity and carcinogenesis.

  11. Cytochrome P450 expression in oesophageal cancer.

    PubMed Central

    Murray, G I; Shaw, D; Weaver, R J; McKay, J A; Ewen, S W; Melvin, W T; Burke, M D

    1994-01-01

    The cytochrome P450 superfamily of enzymes play a central part in the metabolism of carcinogens and anti-cancer drugs. The expression, cellular localisation, and distribution of different forms of P450 and the functionally associated enzymes epoxide hydrolase and glutathione S-transferases have been investigated in oesophageal cancer and non-neoplastic oesophageal tissue using immunohistochemistry. Expression of the different enzymes was confined to epithelial cells in both non-neoplastic samples and tumour samples except the CYP3A was also identified in mast cells and glutathione S-transferase pi was present in chronic inflammatory cells. CYP1A was present in a small percentage of non-neoplastic samples but both CYP2C and CYP3A were absent. Epoxide hydrolase was present in half of the non-neoplastic samples and the different classes of glutathione S-transferase were present in a low number of samples. In carcinomas CYP1A, CYP3A, epoxide hydrolase, and glutathione S-transferase pi were expressed in at least 60% of samples. The expression of glutathione S-transferases alpha and mu were significantly less in adenocarcinoma compared with squamous carcinoma. Images Figure 1 Figure 2 Figure 3 PMID:8200549

  12. Cytochrome C stabilization and immobilization in aerogels.

    PubMed

    Harper-Leatherman, Amanda S; Wallace, Jean Marie; Rolison, Debra R

    2011-01-01

    Sol-gel-derived aerogels are three-dimensional, nanoscale materials that combine large surface areas and high porosities. These traits make them useful for any rate-critical chemical process, particularly sensing or electrochemical applications, once physical or chemical moieties are incorporated into the gels to add their functionality into the ultraporous scaffold. Incorporating biomolecules into aerogels has been challenging due to the inability of most biomolecules to remain structurally intact within the gels during the necessary supercritical fluid processing. However, the heme protein cytochrome c (cyt. c) forms self-organized superstructures around gold (or silver) nanoparticles in buffer that can be encapsulated within silica and processed to form aerogels in which cyt. c retains its characteristic visible absorption. The gold (or silver) nanoparticle-nucleated superstructures protect the majority of the protein from the harsh physicochemical conditions necessary to form an aerogel. The Au∼cyt. c superstructures exhibit rapid gas-phase recognition of nitric oxide (NO) within the aerogel matrix, as facilitated by the high-quality pore structure of the aerogel, and remain viable for weeks at room temperature.

  13. Comparative studies on growth and physiological responses of unicellular and colonial Microcystis aeruginosa to Acorus calamus.

    PubMed

    Zhang, S-H; Chang, J-J; Cao, J-Y; Yang, C-L

    2015-02-01

    In order to explore the growth inhibition and physiological responses of unicellular and colonial Microcystis aeruginosa during coexistence with Acorus calamus, algal densities, chlorophyll a contents, exopolysaccharide (EPS) concentrations, malondialdehyde (MDA) contents, catalase (CAT) activities, and peroxidase (POD) activities of the two algae strains were analyzed. Although the unicellular and colonial strains of M. aeruginosa were both inhibited by A. calamus, unicellular algae were more sensitive than the colonial algae. The measurement results for EPS, MDA, CAT, and POD showed that unicellular M. aeruginosa had higher levels of stress related damage than colonial strains when they were exposed to the same density of A. calamus, and the cellular defense system of colonial M. aeruginosa was stronger than that of unicellular M. aeruginosa. Natural blooms of Microcystis are typically composed of colonial forms of M. aeruginosa, therefore future efforts to control such blooms, possibly through the development of new algicides, should focus on the unique characteristics of colonial M. aeruginosa strains.

  14. Purification of cytochrome c oxidase by lysine-affinity chromatography.

    PubMed

    Felsch, J; Kotake, S; Copeland, R A

    1992-02-01

    A method for the purification of cytochrome c oxidase that is based on the affinity of this enzyme for polycations such as poly-L-lysine is described. When detergent extracts of bovine cardiac mitochondria were applied to either a poly-L-lysine-agarose or a lysine-Sepharose column at low ionic strength, cytochrome c oxidase was found to adhere tightly, whereas the bulk of the proteins were eluted by washing with the same buffer. The cytochrome c oxidase was eluted by application of a linear potassium chloride gradient to the columns. The resulting enzyme was identical to that obtained by more traditional purification methods in terms of its subunit composition, optical and resonance Raman spectra, and cytochrome c oxidizing activity. When detergent extracts of spheroplasts from Paracoccus denitrificans were applied to these columns, the cytochrome c oxidase from this organism was also found to adhere tightly. Thus this purification method appears applicable to both prokaryotic and eukaryotic forms of the enzyme. The advantages of this new purification method are that it is less labor intensive than the traditional procedure and less expensive than methods based on cytochrome c-affinity chromatography.

  15. Dissecting the Machinery That Introduces Disulfide Bonds in Pseudomonas aeruginosa

    PubMed Central

    Arts, Isabelle S.; Ball, Geneviève; Leverrier, Pauline; Garvis, Steven; Nicolaes, Valérie; Vertommen, Didier; Ize, Bérengère; Tamu Dufe, Veronica; Messens, Joris; Voulhoux, Romé; Collet, Jean-François

    2013-01-01

    ABSTRACT Disulfide bond formation is required for the folding of many bacterial virulence factors. However, whereas the Escherichia coli disulfide bond-forming system is well characterized, not much is known on the pathways that oxidatively fold proteins in pathogenic bacteria. Here, we report the detailed unraveling of the pathway that introduces disulfide bonds in the periplasm of the human pathogen Pseudomonas aeruginosa. The genome of P. aeruginosa uniquely encodes two DsbA proteins (P. aeruginosa DsbA1 [PaDsbA1] and PaDsbA2) and two DsbB proteins (PaDsbB1 and PaDsbB2). We found that PaDsbA1, the primary donor of disulfide bonds to secreted proteins, is maintained oxidized in vivo by both PaDsbB1 and PaDsbB2. In vitro reconstitution of the pathway confirms that both PaDsbB1 and PaDsbB2 shuttle electrons from PaDsbA1 to membrane-bound quinones. Accordingly, deletion of both P. aeruginosa dsbB1 (PadsbB1) and PadsbB2 is required to prevent the folding of several P. aeruginosa virulence factors and to lead to a significant decrease in pathogenicity. Using a high-throughput proteomic approach, we also analyzed the impact of PadsbA1 deletion on the global periplasmic proteome of P. aeruginosa, which allowed us to identify more than 20 new potential substrates of this major oxidoreductase. Finally, we report the biochemical and structural characterization of PaDsbA2, a highly oxidizing oxidoreductase, which seems to be expressed under specific conditions. By fully dissecting the machinery that introduces disulfide bonds in P. aeruginosa, our work opens the way to the design of novel antibacterial molecules able to disarm this pathogen by preventing the proper assembly of its arsenal of virulence factors. PMID:24327342

  16. Zingerone silences quorum sensing and attenuates virulence of Pseudomonas aeruginosa.

    PubMed

    Kumar, Lokender; Chhibber, Sanjay; Kumar, Rajnish; Kumar, Manoj; Harjai, Kusum

    2015-04-01

    Quorum sensing in Pseudomonas aeruginosa plays an imperative role in virulence factor, biofilm formation and antimicrobial resistance. Blocking quorum sensing pathways are viewed as viable anti-virulent therapy in association with traditional antimicrobial therapy. Anti-quorum sensing dietary phytochemicals with may prove to be a safe and viable choice as anti-virulent drug candidates. Previously, our lab proved zingerone as potent anti-biofilm agent hence; further its anti-virulent and anti-quorum activities were evaluated. Zingerone, besides decreasing swimming, swarming and twitching phenotypes of P. aeruginosa PAO1, reduced biofilm forming capacity and production of virulence factors including rhamnolipid, elastase, protease, pyocyanin, cell free and cell bound hemolysin (p<0.001) indicating anti-virulent property attributing towards attenuation of virulence of P. aeruginosa. Further zingerone not only had marked effect on the production of quorum sensing signal molecules by clinical isolates of P. aeruginosa but also showed significant interference with the activation of QS reporter strains. To study the mechanism of blocking quorum sensing cascade, in silico analysis was carried out. Anti-QS activity was attributed to interference with the ligand receptor interaction of zingerone with QS receptors (TraR, LasR, RhlR and PqsR). Zingerone showed a good comparative docking score to respective autoinducer molecules which was even higher than that of vanillin, a proven anti-quorum sensing phytochemical. The results of the present study revealed the anti-quorum sensing activity of zingerone targeting ligand-receptor interaction, hence proposing zingerone as a suitable anti-virulent drug candidate against P. aeruginosa infections.

  17. Electron transfer properties and catalytic competence of cytochrome b5 in the fusion protein Hmwb5-EGFP in reactions catalyzed by cytochrome P450 3A4.

    PubMed

    Yantsevich, A V; Gilep, A A; Usanov, S A

    2009-08-01

    In the present paper we describe studies on molecular mechanisms of protein-protein interactions between cytochrome P450 3A4 (CYP3A4) and cytochrome b(5), the latter being incorporated into the artificial recombinant protein Hmwb(5)-EGFP containing full-length cytochrome b(5) (functional module) and a mutant form of the green fluorescent protein EGFP (signal module) fused into a single polypeptide chain. It is shown that cytochrome b(5) within the fusion protein Hmwb(5)-EGFP can be reduced by NADPH-cytochrome P450 reductase in the presence of NADPH, the rate of reduction being dependent on solution ionic strength, indicating that the signal module does not prevent the interaction of the flavo- and hemeproteins. Interaction of cytochrome P450 3A4 and Hmwb(5)-EGFP was estimated based on spin equilibrium shift of cytochrome P450 3A4 to high-spin state in the presence of Hmwb(5)-EGFP, as well as based on steady-state fluorescence anisotropy of the EGFP component of the fusion protein in the presence of CYP3A4. The engineering of chimeric protein Hmwb(5)-EGFP gives an independent method to determine dissociation constant for the complex of cytochrome P450 and cytochrome b(5) that is less sensitive to environmental factors compared to spectrophotometric titration used before. Reconstitution of catalytic activity of cytochrome P450 3A4 in the reaction of testosterone 6beta-hydroxylation in the presence of Hmwb(5)-EGFP indicates that cytochrome b(5) in the fusion protein is able to stimulate the hydroxylation reaction. Using other fusion proteins containing either cytochrome b(5) or its hydrophilic domain to reconstitute catalytic activity of cytochrome P450 3A4 showed that the hydrophobic domain of cytochrome b(5) participates not only in hemeprotein interaction, but also in electron transfer from cytochrome b(5) to cytochrome P450.

  18. Cystic Fibrosis Isolates of Pseudomonas aeruginosa Retain Iron-Regulated Antimicrobial Activity against Staphylococcus aureus through the Action of Multiple Alkylquinolones.

    PubMed

    Nguyen, Angela T; Jones, Jace W; Cámara, Miguel; Williams, Paul; Kane, Maureen A; Oglesby-Sherrouse, Amanda G

    2016-01-01

    Cystic fibrosis (CF) is a hereditary disease that predisposes individuals to pulmonary dysfunction and chronic infections. Early infection of the CF lung with Staphylococcus aureus is common, while Pseudomonas aeruginosa becomes dominant as disease progresses. Emergence of P. aeruginosa likely depends on the action of multiple 2-alkyl-4-(1H)-quinolones (AQ) secreted by this organism. We recently showed that antimicrobial activity against S. aureus is enhanced by iron depletion and is dependent upon multiple AQ metabolites. Two of these AQs, the Pseudomonas quinolone signal [PQS; 2-heptyl-3-hydroxy-4(1H)-quinolone] and 2-heptyl-4-hydroxyquinoline (HHQ), are quorum sensing molecules that activate the expression of multiple microbicidal factors. Here we show for the first time that HHQ also exhibits innate antimicrobial activity against S. aureus. We further show that iron depletion potentiates the antistaphylococcal activity of HHQ, as well as 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO), another AQ that functions as a cytochrome B inhibitor. Notably, we found that deletion of the genes for the terminal biosynthetic steps for either PQS or HQNO results in overproduction of the HHQ intermediate, likely maintaining the ability of these mutants to mediate antimicrobial activity. Compensatory increases in HHQ were also observed in PQS-deficient CF isolates, which also retained the ability to mediate iron-regulated antimicrobial activity against S. aureus. These studies demonstrate that iron-regulated antimicrobial activity of P. aeruginosa against S. aureus is due to the cumulative effects of multiple AQ metabolites, both the production and activity of which are modulated by environmental iron levels.

  19. Cystic Fibrosis Isolates of Pseudomonas aeruginosa Retain Iron-Regulated Antimicrobial Activity against Staphylococcus aureus through the Action of Multiple Alkylquinolones

    PubMed Central

    Nguyen, Angela T.; Jones, Jace W.; Cámara, Miguel; Williams, Paul; Kane, Maureen A.; Oglesby-Sherrouse, Amanda G.

    2016-01-01

    Cystic fibrosis (CF) is a hereditary disease that predisposes individuals to pulmonary dysfunction and chronic infections. Early infection of the CF lung with Staphylococcus aureus is common, while Pseudomonas aeruginosa becomes dominant as disease progresses. Emergence of P. aeruginosa likely depends on the action of multiple 2-alkyl-4-(1H)-quinolones (AQ) secreted by this organism. We recently showed that antimicrobial activity against S. aureus is enhanced by iron depletion and is dependent upon multiple AQ metabolites. Two of these AQs, the Pseudomonas quinolone signal [PQS; 2-heptyl-3-hydroxy-4(1H)-quinolone] and 2-heptyl-4-hydroxyquinoline (HHQ), are quorum sensing molecules that activate the expression of multiple microbicidal factors. Here we show for the first time that HHQ also exhibits innate antimicrobial activity against S. aureus. We further show that iron depletion potentiates the antistaphylococcal activity of HHQ, as well as 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO), another AQ that functions as a cytochrome B inhibitor. Notably, we found that deletion of the genes for the terminal biosynthetic steps for either PQS or HQNO results in overproduction of the HHQ intermediate, likely maintaining the ability of these mutants to mediate antimicrobial activity. Compensatory increases in HHQ were also observed in PQS-deficient CF isolates, which also retained the ability to mediate iron-regulated antimicrobial activity against S. aureus. These studies demonstrate that iron-regulated antimicrobial activity of P. aeruginosa against S. aureus is due to the cumulative effects of multiple AQ metabolites, both the production and activity of which are modulated by environmental iron levels. PMID:27512392

  20. Caspase cleavage of cytochrome c1 disrupts mitochondrial function and enhances cytochrome c release.

    PubMed

    Zhu, Yushan; Li, Min; Wang, Xiaohui; Jin, Haijing; Liu, Shusen; Xu, Jianxin; Chen, Quan

    2012-01-01

    Mitochondrial catastrophe can be the cause or consequence of apoptosis and is associated with a number of pathophysiological conditions. The exact relationship between mitochondrial catastrophe and caspase activation is not completely understood. Here we addressed the underlying mechanism, explaining how activated caspase could feedback to attack mitochondria to amplify further cytochrome c (cyto.c) release. We discovered that cytochrome c1 (cyto.c1) in the bc1 complex of the mitochondrial respiration chain was a novel substrate of caspase 3 (casp.3). We found that cyto.c1 was cleaved at the site of D106, which is critical for binding with cyto.c, following apoptotic stresses or targeted expression of casp.3 into the mitochondrial intermembrane space. We demonstrated that this cleavage was closely linked with further cyto.c release and mitochondrial catastrophe. These mitochondrial events could be effectively blocked by expressing non-cleavable cyto.c1 (D106A) or by caspase inhibitor z-VAD-fmk. Our results demonstrate that the cleavage of cyto.c1 represents a critical step for the feedback amplification of cyto.c release by caspases and subsequent mitochondrial catastrophe.

  1. Identification of a small tetraheme cytochrome c and a flavocytochrome c as two of the principal soluble cytochromes c in Shewanella oneidensis strain MR1

    NASA Technical Reports Server (NTRS)

    Tsapin, A. I.; Vandenberghe, I.; Nealson, K. H.; Scott, J. H.; Meyer, T. E.; Cusanovich, M. A.; Harada, E.; Kaizu, T.; Akutsu, H.; Leys, D.; Van Beeumen, J. J.

    2001-01-01

    Two abundant, low-redox-potential cytochromes c were purified from the facultative anaerobe Shewanella oneidensis strain MR1 grown anaerobically with fumarate. The small cytochrome was completely sequenced, and the genes coding for both proteins were cloned and sequenced. The small cytochrome c contains 91 residues and four heme binding sites. It is most similar to the cytochromes c from Shewanella frigidimarina (formerly Shewanella putrefaciens) NCIMB400 and the unclassified bacterial strain H1R (64 and 55% identity, respectively). The amount of the small tetraheme cytochrome is regulated by anaerobiosis, but not by fumarate. The larger of the two low-potential cytochromes contains tetraheme and flavin domains and is regulated by anaerobiosis and by fumarate and thus most nearly corresponds to the flavocytochrome c-fumarate reductase previously characterized from S. frigidimarina to which it is 59% identical. However, the genetic context of the cytochrome genes is not the same for the two Shewanella species, and they are not located in multicistronic operons. The small cytochrome c and the cytochrome domain of the flavocytochrome c are also homologous, showing 34% identity. Structural comparison shows that the Shewanella tetraheme cytochromes are not related to the Desulfovibrio cytochromes c(3) but define a new folding motif for small multiheme cytochromes c.

  2. Molecular organization of cytochrome c2 near the binding domain of cytochrome bc1 studied by electron spin-lattice relaxation enhancement.

    PubMed

    Pietras, Rafał; Sarewicz, Marcin; Osyczka, Artur

    2014-06-19

    Measurements of specific interactions between proteins are challenging. In redox systems, interactions involve surfaces near the attachment sites of cofactors engaged in interprotein electron transfer (ET). Here we analyzed binding of cytochrome c2 to cytochrome bc1 by measuring paramagnetic relaxation enhancement (PRE) of spin label (SL) attached to cytochrome c2. PRE was exclusively induced by the iron atom of heme c1 of cytochrome bc1, which guaranteed that only the configurations with SL to heme c1 distances up to ∼30 Å were detected. Changes in PRE were used to qualitatively and quantitatively characterize the binding. Our data suggest that at low ionic strength and under an excess of cytochrome c2 over cytochrome bc1, several cytochrome c2 molecules gather near the binding domain forming a "cloud" of molecules. When the cytochrome bc1 concentration increases, the cloud disperses to populate additional available binding domains. An increase in ionic strength weakens the attractive forces and the average distance between cytochrome c2 and cytochrome bc1 increases. The spatial arrangement of the protein complex at various ionic strengths is different. Above 150 mM NaCl the lifetime of the complexes becomes so short that they are undetectable. All together the results indicate that cytochrome c2 molecules, over the range of salt concentration encompassing physiological ionic strength, do not form stable, long-lived complexes but rather constantly collide with the surface of cytochrome bc1 and ET takes place coincidentally with one of these collisions.

  3. Cytochrome P450 gene polymorphism and cancer.

    PubMed

    Agundez, Jose A G

    2004-06-01

    Human cytochrome P450 (CYP) enzymes play a key role in the metabolism of drugs and environmental chemicals. Several CYP enzymes metabolically activate procarcinogens to genotoxic intermediates. Phenotyping analyses revealed an association between CYP enzyme activity and the risk to develop several forms of cancer. Research carried out in the last decade demonstrated that several CYP enzymes are polymorphic due to single nucleotide polymorphisms, gene duplications and deletions. As genotyping procedures became available for most human CYP, an impressive number of association studies on CYP polymorphisms and cancer risk were conducted. Here we review the findings obtained in these studies regarding CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, CYP3A7, CYP8A1 and CYP21 gene polymorphisms. Consistent evidences for association between CYP polymorphisms and lung, head and neck, and liver cancer were reported. Controversial findings suggest that colorectal and prostate cancers may be associated to CYP polymorphisms, whereas no evidences for a relevant association with breast or bladder cancers were reported. We summarize the available information related to the association of CYP polymorphisms with leukaemia, lymphomas and diverse types of cancer that were investigated only for some CYP genes, including brain, esophagus, stomach, pancreas, pituitary, cervical epithelium, melanoma, ovarian, kidney, anal and vulvar cancers. This review discusses on causes of heterogeneity in the proposed associations, controversial findings on cancer risk, and identifies topics that require further investigation. In addition, some recommendations on study design, in order to obtain more conclusive findings in further studies, are provided.

  4. Recent advances in cytochrome c biosensing technologies.

    PubMed

    Manickam, Pandiaraj; Kaushik, Ajeet; Karunakaran, Chandran; Bhansali, Shekhar

    2017-01-15

    This review is an attempt, for the first time, to describe advancements in sensing technology for cytochrome c (cyt c) detection, at point-of-care (POC) application. Cyt c, a heme containing metalloprotein is located in the intermembrane space of mitochondria and released into bloodstream during pathological conditions. The release of cyt c from mitochondria is a key initiative step in the activation of cell death pathways. Circulating cyt c levels represents a novel in-vivo marker of mitochondrial injury after resuscitation from heart failure and chemotherapy. Thus, cyt c detection is not only serving as an apoptosis biomarker, but also is of great importance to understand certain diseases at cellular level. Various existing techniques such as enzyme-linked immunosorbent assays (ELISA), Western blot, high performance liquid chromatography (HPLC), spectrophotometry and flow cytometry have been used to estimate cyt c. However, the implementation of these techniques at POC application is limited due to longer analysis time, expensive instruments and expertise needed for operation. To overcome these challenges, significant efforts are being made to develop electrochemical biosensing technologies for fast, accurate, selective, and sensitive detection of cyt c. Presented review describes the cutting edge technologies available in the laboratories to detect cyt c. The recent advancements in designing and development of electrochemical cyt c biosensors for the quantification of cyt c are also discussed. This review also highlights the POC cyt c biosensors developed recently, that would prove of interest to biologist and therapist to get real time informatics needed to evaluate death process, diseases progression, therapeutics and processes related with mitochondrial injury.

  5. Comparative modelling of cytochromes P450.

    PubMed

    Kirton, Stewart B; Baxter, Carol A; Sutcliffe, Michael J

    2002-03-31

    The superfamily of enzymes known as the cytochromes P450 (P450s) comprises a wide-ranging class of proteins with diverse functions. They are known, amongst other things, to be involved in the hormonal regulation of metabolism and reproduction, as well as having a major clinical significance through their association with diseases such as cancer, diabetes and hepatitis. Knowledge of the three-dimensional (3D) structure of a protein gives insight into its function. The 3D structures of P450s are therefore of considerable scientific interest. A number of high-resolution structures of P450s have been determined by X-ray crystallography and studies of these structures have provided valuable insights into the mechanism of these enzymes. Only one of these structures is mammalian and as yet there is no structural information on human P450s in the public domain. Until such a structure is solved it is necessary to employ alternative methods to gain structural insight into how human P450s perform their biological function. Here we report on the use of comparative modelling to predict the structure of human P450s based on knowledge of their amino acid sequences plus the 3D structures of other (not human) P450s. As an illustrative example of these techniques we have modelled the structure of P450 2C5 using five bacterial P450 structures as templates. We examine the importance of selecting suitable templates, obtaining a good amino acid sequence alignment, and evaluating the models generated. To improve the quality of the models an iterative cycle of sequence alignment, model building, and model evaluation is employed. The result is a model with excellent stereochemistry, good amino acid side chain environment properties, and a Calpha trace similar to the crystal structure.

  6. Cytochrome c Stabilization and Immobilization in Aerogels.

    PubMed

    Harper-Leatherman, Amanda S; Wallace, Jean Marie; Rolison, Debra R

    2017-01-01

    Sol-gel-derived aerogels are three-dimensional, nanoscale materials that combine large surface area with high porosity. These traits make them useful for any rate-critical chemical process, particularly sensing or electrochemical applications, once physical or chemical moieties are incorporated into the gels to add their functionality to the ultraporous scaffold. Incorporating biomolecules into aerogels, other than such rugged species as lipases or cellulose, has been challenging due to the inability of most biomolecules to remain structurally intact within the gels during the necessary supercritical fluid (SCF) processing. However, the heme protein cytochrome c (cyt.c) forms self-organized superstructures around gold (or silver) nanoparticles in buffer that can be encapsulated into wet gels as the sol undergoes gelation. The guest-host wet gel can then be processed to form composite aerogels in which cyt.c retains its characteristic visible absorption. The gold (or silver) nanoparticle-nucleated superstructures protect the majority of the protein from the harsh physicochemical conditions necessary to form an aerogel. The Au~cyt.c superstructures exhibit rapid gas-phase recognition of nitric oxide (NO) within the bioaerogel matrix, as facilitated by the high-quality pore structure of the aerogel, while remaining viable for weeks at room temperature. More recently, careful control of synthetic parameters (e.g., buffer concentration, protein concentration, SCF extraction rate) have allowed for the preparation of cyt.c-silica aerogels, sans nucleating nanoparticles; these bioaerogels also exhibit rapid gas-phase sensing while retaining protein structural stability.

  7. Cytochrome P450 1 family and cancers.

    PubMed

    Go, Ryeo-Eun; Hwang, Kyung-A; Choi, Kyung-Chul

    2015-03-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcriptional factor that dimerizes with aryl hydrocarbon receptor nuclear translocator (ARNT). This complex binds to xenobiotics response element (XREs), and then starts the expressions of downstream genes including cytochrome P450 (CYP) 1 family members: CYP1A1, CYP1A2 and CYP1B1. Role of CYP1 family is involved in the metabolism of endogenous hormones, xenobiotics and drug. The expression of CYP1 family is regulated by estradiol (E2) or xenobiotics in diverse cancers. In breast cancers expressing estrogen receptors (ERs), level of CYP1B1 is increased by E2 and reversed by an estrogen receptor antagonist, ICI 182,780 or 4-hydrotamoxifen, which indicates that the expression of CYP1 family in downstream region of AhR is regulated by an activation of ERα. In metabolic pathways, E2 is converted into 4-hydroxyestradiol by CYP1B1, which can be converted into mainly estradiol-3,4-quinone, a potential carcinogen, by peroxidase. Increased expression of CYP1 family indicates the possibility of carcinogenesis by exposure of xenobiotics in endometrial and ovarian cancers. Apart from roles of CYP1 family in relation with ER pathway, CYP1 family is over-expressed in ER independent cancers. CYP1A1 exhibits hydroxylase activity in oxidation of arachidonic acid, which has been transformed to 12(R)-hydrxyeicosatetraenoic (HETEs), a potent activator of AhR activity. On the basis of results, phytoestrogens and dexamethasone are provided as cancer therapy regulating the expression of CYP1 family. Thus, this review focuses on the role(s) of CYP1 family in ER-dependent or ER-independent cancers and the potential for cancer therapy to target CYP1 family in these cancers.

  8. Cytochrome P450s and molecular epidemiology

    NASA Astrophysics Data System (ADS)

    Gonzalez, Frank J.; Gelboin, Harry V.

    1993-03-01

    Cytochrome P450 (P450) represent a superfamily of heme-containing monooxygenases that are found throughout the animal and plant kingdoms and in many microorganisms. A number of these enzymes are involved in biosynthetic pathways of steroid synthesis but in mammals the vast majority of P450s function to metabolize foreign chemicals or xenobiotics. In the classical phase I reactions on the latter, a membrane-bound P450 will hydroxylate a compound, usually hydrophobic in nature, and the hydroxyl group will serve as a substrate for the various transferases or phase II enzymes that attach hydrophilic substituents such as glutathione, sulfate or glucuronic acid. Some chemicals, however, are metabolically-activated by P450s to electrophiles capable of reacting with cellular macromolecules. The cellular concentrations of the chemical and P450, reactivity of the active metabolite with nucleic acid and the repairability of the resultant adducts, in addition to the nature of the cell type, likely determines whether a chemical will be toxic and kill the cell or will transform the cell. Immunocorrelative and cDNA-directed expression have been used to define the substrate specificities of numerous human P450s. Levels of expression of different human P450 forms have been measured by both in vivo and in vitro methodologies leading to the realization that a large degree of interindividual differences occur in P450 expression. Reliable procedures for measuring P450 expression in healthy and diseased subjects will lead to prospective and case- cohort studies to determine whether interindividual differences in levels of P450 are associated with susceptibility or resistance to environmentally-based disease.

  9. Strong incidence of Pseudomonas aeruginosa on bacterial rrs and ITS genetic structures of cystic fibrosis sputa

    PubMed Central

    Pages-Monteiro, Laurence; Marti, Romain; Commun, Carine; Alliot, Nolwenn; Bardel, Claire; Meugnier, Helene; Perouse-de-Montclos, Michele; Reix, Philippe; Durieu, Isabelle; Durupt, Stephane; Vandenesch, Francois; Freney, Jean; Cournoyer, Benoit; Doleans-Jordheim, Anne

    2017-01-01

    Cystic fibrosis (CF) lungs harbor a complex community of interacting microbes, including pathogens like Pseudomonas aeruginosa. Meta-taxogenomic analysis based on V5-V6 rrs PCR products of 52 P. aeruginosa-positive (Pp) and 52 P. aeruginosa-negative (Pn) pooled DNA extracts from CF sputa suggested positive associations between P. aeruginosa and Stenotrophomonas and Prevotella, but negative ones with Haemophilus, Neisseria and Burkholderia. Internal Transcribed Spacer analyses (RISA) from individual DNA extracts identified three significant genetic structures within the CF cohorts, and indicated an impact of P. aeruginosa. RISA clusters Ip and IIIp contained CF sputa with a P. aeruginosa prevalence above 93%, and of 24.2% in cluster IIp. Clusters Ip and IIIp showed lower RISA genetic diversity and richness than IIp. Highly similar cluster IIp RISA profiles were obtained from two patients harboring isolates of a same P. aeruginosa clone, suggesting convergent evolution in the structure of their microbiota. CF patients of cluster IIp had received significantly less antibiotics than patients of clusters Ip and IIIp but harbored the most resistant P. aeruginosa strains. Patients of cluster IIIp were older than those of Ip. The effects of P. aeruginosa on the RISA structures could not be fully dissociated from the above two confounding factors but several trends in these datasets support the conclusion of a strong incidence of P. aeruginosa on the genetic structure of CF lung microbiota. PMID:28282386

  10. VDUP1 exacerbates bacteremic shock in mice infected with Pseudomonas aeruginosa.

    PubMed

    Piao, Zheng-Hao; Kim, Mi Sun; Jeong, Mira; Yun, Sohyun; Lee, Suk Hyung; Sun, Hu-Nan; Song, Hae Young; Suh, Hyun-Woo; Jung, Haiyoung; Yoon, Suk Ran; Kim, Tae-Don; Lee, Young-Ho; Choi, Inpyo

    2012-11-01

    Vitamin-D3 upregulated protein-1 (VDUP1) is a stress response protein. Pseudomonas aeruginosa (P. aeruginosa) infection is a leading cause of death. Mice infected with live P. aeruginosa exhibit significantly decreased VDUP1 expression. However, the function of VDUP1 during P. aeruginosa-induced mouse bacteremic shock is unknown. To address the function of VDUP1 in P. aeruginosa-infected mice, we constructed a bacteremic shock model wherein both wild-type and VDUP1-deficient mice were infected intra-peritoneally with live P. aeruginosa. We found that VDUP1-deficient mice were more resistant to P. aeruginosa-induced bacteremic shock than wild-type mice, as shown by the increased survival, accelerated bacterial clearance and suppression of cytokine overproduction of the VDUP1-deficient mice. VDUP1 promoted the recruitment of neutrophils into the peritoneal cavities of infected mice. VDUP1 impeded the phagocytosis of non-opsonized P. aeruginosa via phosphatidylinositide 3-kinase (PI3K) pathway in macrophages. P. aeruginosa infection induced the generation of reactive oxygen species (ROS), and the increased production of ROS by the peritoneal cells of VDUP1-deficient mice was advantageous in clearing the bacteria. Overall, VDUP1 aggravates bacteremic shock; thus, VDUP1 can be considered a target molecule for the inhibition of P. aeruginosa-induced bacteremic shock.

  11. Properties of cytochrome c modified by attachment to a carbohydrate polymer.

    PubMed

    Silvestrini, M C; Colosimo, A; Brunori, M; Antonini, E

    1978-02-01

    By enzymic digestion of the polysaccharide part of the covalent complex between cytochrome c and Sephadex G-200, a new water-soluble cytochrome c derivative is obtained (called cytochrome cr). Measurement of the free amino groups of this derivative indicates that on average the molar ratio between cytochrome c and polysaccharide is close to 1. Chemical determination of the sugar content gives a value of approx. 24000 for the molecular weight of cytochrome cr. On these bases the soluble cytochrome cr complex may be thought of as a folded protein to which a long polysaccharide tail is covalently bound. The functional behaviour of cytochrome cr is much more similar to that of the native molecule than to that of the insoluble complex (cytochrome ci). In particular the kinetics of the reaction of cytochrome cr and cytochrome cn (native) with ascorbate, ferrocyanide-ferricyanide, O2 and cytochrome c oxidase were investigated in considerable detail. The results of these experiments, together with the observation that the insoluble complex of cytochrome c is a very poor substrate of cytochrome c oxidase [Colosimo, Brunori & Antonini (1976) Biochem. J. 153, (657-661], indicate that hindrance effects constraining the approach between cytochrome cr and its oxidase are of greater importance than specific chemical modifications in determining the functional behavior of the protein.

  12. Toxicogenomic response of Pseudomonas aeruginosa to ortho-phenylphenol

    PubMed Central

    Nde, Chantal W; Jang, Hyeung-Jin; Toghrol, Freshteh; Bentley, William E

    2008-01-01

    Background Pseudomonas aeruginosa (P. aeruginosa) is the most common opportunistic pathogen implicated in nosocomial infections and in chronic lung infections in cystic fibrosis patients. Ortho-phenylphenol (OPP) is an antimicrobial agent used as an active ingredient in several EPA registered disinfectants. Despite its widespread use, there is a paucity of information on its target molecular pathways and the cellular responses that it elucidates in bacteria in general and in P. aeruginosa in particular. An understanding of the OPP-driven gene regulation and cellular response it elicits will facilitate more effective utilization of this antimicrobial and possibly lead to the development of more effective disinfectant treatments. Results Herein, we performed a genome-wide transcriptome analysis of the cellular responses of P. aeruginosa exposed to 0.82 mM OPP for 20 and 60 minutes. Our data indicated that OPP upregulated the transcription of genes encoding ribosomal, virulence and membrane transport proteins after both treatment times. After 20 minutes of exposure to 0.82 mM OPP, genes involved in the exhibition of swarming motility and anaerobic respiration were upregulated. After 60 minutes of OPP treatment, the transcription of genes involved in amino acid and lipopolysaccharide biosynthesis were upregulated. Further, the transcription of the ribosome modulation factor (rmf) and an alternative sigma factor (rpoS) of RNA polymerase were downregulated after both treatment times. Conclusion Results from this study indicate that after 20 minutes of exposure to OPP, genes that have been linked to the exhibition of anaerobic respiration and swarming motility were upregulated. This study also suggests that the downregulation of the rmf and rpoS genes may be indicative of the mechanism by which OPP causes decreases in cell viability in P. aeruginosa. Consequently, a protective response involving the upregulation of translation leading to the increased synthesis of

  13. Cytochrome P450-mediated metabolism of vitamin D

    PubMed Central

    Jones, Glenville; Prosser, David E.; Kaufmann, Martin

    2014-01-01

    The vitamin D signal transduction system involves a series of cytochrome P450-containing sterol hydroxylases to generate and degrade the active hormone, 1α,25-dihydroxyvitamin D3, which serves as a ligand for the vitamin D receptor-mediated transcriptional gene expression described in companion articles in this review series. This review updates our current knowledge of the specific anabolic cytochrome P450s involved in 25- and 1α-hydroxylation, as well as the catabolic cytochrome P450 involved in 24- and 23-hydroxylation steps, which are believed to initiate inactivation of the vitamin D molecule. We focus on the biochemical properties of these enzymes; key residues in their active sites derived from crystal structures and mutagenesis studies; the physiological roles of these enzymes as determined by animal knockout studies and human genetic diseases; and the regulation of these different cytochrome P450s by extracellular ions and peptide modulators. We highlight the importance of these cytochrome P450s in the pathogenesis of kidney disease, metabolic bone disease, and hyperproliferative diseases, such as psoriasis and cancer; as well as explore potential future developments in the field. PMID:23564710

  14. Reduction of Heavy Metals by Cytochrome c(3)

    SciTech Connect

    ABDELOUAS,A.; GONG,W.L.; LUTZE,W.; NUTTALL,E.H.; SPRAGUE,F.; SHELNUTT,JOHN A.; STRIETELMEIER,B.A.; FRANCO,R.; MOURA,I.; MOURA,J.J.G.

    2000-01-18

    We report on reduction and precipitation of Se(VI), Pb(II), CU(II), U(VI), Mo(VI), and Cr(VI) in water by cytochrome c{sub 3} isolated from Desulfomicrobium baczdatum [strain 9974]. The tetraheme protein cytochrome c{sub 3} was reduced by sodium dithionite. Redox reactions were monitored by UV-visible spectroscopy of cytochrome c{sub 3}. Analytical electron microscopy work showed that Se(VI), Pb(II), and CU(II) were reduced to the metallic state, U(W) and Mo(W) to U(IV) and Mo(IV), respectively, and Cr(VI) probably to Cr(III). U(IV) and Mo(W) precipitated as oxides and Cr(III) as an amorphous hydroxide. Cytochrome c{sub 3} was used repeatedly in the same solution without loosing its effectiveness. The results suggest usage of cytochrome c{sub 3} to develop innovative and environmentally benign methods to remove heavy metals from waste- and groundwater.

  15. Homotropic cooperativity of monomeric cytochrome P450 3A4

    SciTech Connect

    Baas, Bradley J.; Denisov, Ilia G.; Sligar, Stephen G.

    2010-11-16

    Mechanistic studies of mammalian cytochrome P450s are often obscured by the phase heterogeneity of solubilized preparations of membrane enzymes. The various protein-protein aggregation states of microsomes, detergent solubilized cytochrome or a family of aqueous multimeric complexes can effect measured substrate binding events as well as subsequent steps in the reaction cycle. In addition, these P450 monooxygenases are normally found in a membrane environment and the bilayer composition and dynamics can also effect these catalytic steps. Here, we describe the structural and functional characterization of a homogeneous monomeric population of cytochrome P450 3A4 (CYP 3A4) in a soluble nanoscale membrane bilayer, or Nanodisc [Nano Lett. 2 (2002) 853]. Cytochrome P450 3A4:Nanodisc assemblies were formed and purified to yield a 1:1 ratio of CYP 3A4 to Nanodisc. Solution small angle X-ray scattering was used to structurally characterize this monomeric CYP 3A4 in the membrane bilayer. The purified CYP 3A4:Nanodiscs showed a heretofore undescribed high level of homotropic cooperativity in the binding of testosterone. Soluble CYP 3A4:Nanodisc retains its known function and shows prototypic hydroxylation of testosterone when driven by hydrogen peroxide. This represents the first functional characterization of a true monomeric preparation of cytochrome P450 monooxygenase in a phospholipid bilayer and elucidates new properties of the monomeric form.

  16. Calorimetric studies of the thermal denaturation of cytochrome c peroxidase

    SciTech Connect

    Kresheck, G.C.; Erman, J.E.

    1988-04-05

    Two endotherms are observed by differential scanning calorimetry during the thermal denaturation of cytochrome c peroxidase at pH 7.0. The transition midpoint temperatures (t/sub m/) were 43.9 +- 1.4 and 63.3 +- 1.6 /sup 0/C, independent of concentration. The two endotherms were observed at all pH values between 4 and 8, with the transition temperatures varying with pH. Precipitation was observed between pH 4 and 6, and only qualitative data are presented for this region. The thermal unfolding of cytochrome c peroxidase was sensitive to the presence and ligation state of the heme. Only a single endotherm was observed for the unfolding of the apoprotein, and this transition was similar to the high-temperature transition in the holoenzyme. Addition of KCN to the holoenzyme increases the midpoint of the high-temperature transition whereas the low-temperature transition was increased upon addition of KF. Binding of the natural substrate ferricytochrome c to the enzyme increases the low-temperature transition by 4.8 +- 1.3 /sup 0/C but has no effect on the high-temperature transition at pH 7. The presence of cytochrome c peroxidase decreases the stability of cytochrome c, and both proteins appear to unfold simultaneously. The results are discussed in terms of the two domains evident in the X-ray crystallographic structure of cytochrome c peroxidase

  17. Cardiolipin modulates allosterically peroxynitrite detoxification by horse heart cytochrome c

    SciTech Connect

    Ascenzi, Paolo; Ciaccio, Chiara; Sinibaldi, Federica; Santucci, Roberto; Coletta, Massimo

    2011-01-07

    Research highlights: {yields} Cardiolipin binding to cytochrome c. {yields} Cardiolipin-dependent peroxynitrite isomerization by cytochrome c. {yields} Cardiolipin-cytochrome c complex plays pro-apoptotic effects. {yields} Cardiolipin-cytochrome c complex plays anti-apoptotic effects. -- Abstract: Upon interaction with bovine heart cardiolipin (CL), horse heart cytochrome c (cytc) changes its tertiary structure disrupting the heme-Fe-Met80 distal bond, reduces drastically the midpoint potential out of the range required for its physiological role, binds CO and NO with high affinity, and displays peroxidase activity. Here, the effect of CL on peroxynitrite isomerization by ferric cytc (cytc-Fe(III)) is reported. In the absence of CL, hexa-coordinated cytc does not catalyze peroxynitrite isomerization. In contrast, CL facilitates cytc-Fe(III)-mediated isomerization of peroxynitrite in a dose-dependent fashion inducing the penta-coordination of the heme-Fe(III)-atom. The value of the second order rate constant for CL-cytc-Fe(III)-mediated isomerization of peroxynitrite (k{sub on}) is (3.2 {+-} 0.4) x 10{sup 5} M{sup -1} s{sup -1}. The apparent dissociation equilibrium constant for CL binding to cytc-Fe(III) is (5.1 {+-} 0.8) x 10{sup -5} M. These results suggest that CL-cytc could play either pro-apoptotic or anti-apoptotic effects facilitating lipid peroxidation and scavenging of reactive nitrogen species, such as peroxynitrite, respectively.

  18. Epinecidin-1 Has Immunomodulatory Effects, Facilitating Its Therapeutic Use in a Mouse Model of Pseudomonas aeruginosa Sepsis

    PubMed Central

    Pan, Chieh-Yu; Chen, Jian-Chyi; Sheen, Jenn-Feng; Lin, Tai-Lang

    2014-01-01

    Antimicrobial peptides (AMPs) are garnering attention as possible alternatives to antibiotics. Here, we describe the antimicrobial properties of epinecidin-1 against a multidrug-resistant clinical isolate of P. aeruginosa (P. aeruginosa R) and a P. aeruginosa strain from ATCC (P. aeruginosa ATCC 19660) in vivo. The MICs of epinecidin-1 against P. aeruginosa R and P. aeruginosa ATCC 19660 were determined and compared with those of imipenem. Epinecidin-1 was found to be highly effective at combating peritonitis infection caused by P. aeruginosa R or P. aeruginosa ATCC 19660 in mouse models, without inducing adverse behavioral effects or liver or kidney toxicity. Taken together, our results indicate that epinecidin-1 enhances the rate of survival of mice infected with the bacterial pathogen P. aeruginosa through both antimicrobial and immunomodulatory effects. PMID:24820078

  19. Thiomers: Inhibition of cytochrome P450 activity.

    PubMed

    Iqbal, Javed; Sakloetsakun, Duangkamon; Bernkop-Schnürch, Andreas

    2011-08-01

    The aim of the present study was to investigate the potential of different thiolated polymers (thiomers) on the catalytic activity of CYP450s on one hand and to explore new inhibitors for CYP activity on the other hand. Several thiolated polymers including poly(acrylic acid)-cysteine (PAA-cysteine), chitosan-thioglycolic acid (chitosan-TGA), and thiolated PEG-g-PEI copolymer along with brij 35, myrj 52 and the well-established CYPP450 inhibitor verapamil were screened for their CYP3A4 and CYP2A6 inhibitory activity, and their IC(50) values were determined. Both enzyme inhibition assays were performed in 96-well microtiter plates. 7-Benzyloxy-4-(trifluoromethyl)-coumarin (BFC) and 7-hydroxycoumarin (7-HC) were used as fluorescent substrates in order to determine CYP3A4 and CYP2A6 catalytic activity, respectively. All investigated compounds inhibited CYP3A4 as well as CYP2A6 activity. All tested (thiolated) polymers were found to be more potent inhibitors of CYP3A4 than of CYP2A6 catalytic activity. Apart from verapamil that is a known CYP3A4 inhibitor, brij 35 and myrj 52 were explored as potent inhibitors of CYP3A4 and CYP2A6 catalytic activity. Among the tested polymers, the rank order for CYP3A4 inhibition was PAA-cysteine (100 kDa)>brij 35>thiolated PEG-g-PEI copolymer (16 kDa)>myrj 52>PAA (100 kDa)>PAA-cysteine (450 kDa)>verapamil>PAA (450 kDa)>chitosan-TGA (150 kDa)>chitosan (150 kDa). On the other hand, the rank order of CYP2A6 inhibition was brij 35>PAA-cysteine (100kDa)>chitosan-TGA (150 kDa)>PAA (100 kDa)>thiolated PEG-g-PEI copolymer (16 kDa)>PAA-cysteine (450 kDa)>chitosan (150 kDa)>verapamil>PAA (450 kDa)>myrj 52. Thus, this study suggests that (thiolated) polymers display a promising potential to inhibit cytochrome P450s activity and might turn out to be potentially valuable tools for improving the oral bioavailability of actively secreted compounds by avoiding intestinal metabolism.

  20. Does Pseudomonas aeruginosa use intercellular signalling to build biofilm communities?

    PubMed

    Kirisits, Mary Jo; Parsek, Matthew R

    2006-12-01

    Pseudomonas aeruginosa is a Gram-negative bacterial species that causes several opportunistic human infections. This organism is also found in the environment, where it is renowned (like other Pseudomonads) for its ability to use a wide variety of compounds as carbon and energy sources. It is a model species for studying group-related behaviour in bacteria. Two types of group behaviour it engages in are intercellular signalling, or quorum sensing, and the formation of surface-associated communities called biofilms. Both quorum sensing and biofilm formation are important in the pathogenesis of P. aeruginosa infections. Quorum sensing regulates the expression of several secreted virulence factors and quorum sensing mutant strains are attenuated for virulence in animal models. Biofilms have been implicated in chronic infections. Two examples are the chronic lung infections afflicting people suffering from cystic fibrosis and colonization of indwelling medical devices. This review will discuss quorum sensing and biofilm formation and studies that link these two processes.

  1. Pseudomonas aeruginosa dose response and bathing water infection.

    PubMed

    Roser, D J; van den Akker, B; Boase, S; Haas, C N; Ashbolt, N J; Rice, S A

    2014-03-01

    Pseudomonas aeruginosa is the opportunistic pathogen mostly implicated in folliculitis and acute otitis externa in pools and hot tubs. Nevertheless, infection risks remain poorly quantified. This paper reviews disease aetiologies and bacterial skin colonization science to advance dose-response theory development. Three model forms are identified for predicting disease likelihood from pathogen density. Two are based on Furumoto & Mickey's exponential 'single-hit' model and predict infection likelihood and severity (lesions/m2), respectively. 'Third-generation', mechanistic, dose-response algorithm development is additionally scoped. The proposed formulation integrates dispersion, epidermal interaction, and follicle invasion. The review also details uncertainties needing consideration which pertain to water quality, outbreaks, exposure time, infection sites, biofilms, cerumen, environmental factors (e.g. skin saturation, hydrodynamics), and whether P. aeruginosa is endogenous or exogenous. The review's findings are used to propose a conceptual infection model and identify research priorities including pool dose-response modelling, epidermis ecology and infection likelihood-based hygiene management.

  2. Flagellation of Pseudomonas aeruginosa in newly divided cells

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Lee, Calvin; Anda, Jaime; Wong, Gerard

    2015-03-01

    For monotrichous bacteria, Pseudomonas aeruginosa, after cell division, one daughter cell inherits the old flagellum from its mother cell, and the other grows a new flagellum during or after cell division. It had been shown that the new flagellum grows at the distal pole of the dividing cell when the two daughter cells haven't completely separated. However, for those daughter cells who grow new flagella after division, it still remains unknown at which pole the new flagellum will grow. Here, by combining our newly developed bacteria family tree tracking techniques with genetic manipulation method, we showed that for the daughter cell who did not inherit the old flagellum, a new flagellum has about 90% chances to grow at the newly formed pole. We proposed a model for flagellation of P. aeruginosa.

  3. Transport of Aromatic Amino Acids by Pseudomonas aeruginosa

    PubMed Central

    Kay, W. W.; Gronlund, Audrey F.

    1971-01-01

    Kinetic studies of the transport of aromatic amino acids by Pseudomonas aeruginosa revealed the existence of two high-affinity transport systems which recognized the three aromatic amino acids. From competition data and studies on the exchange of preformed aromatic amino acid pools, the first transport system was found to be functional with phenylalanine, tyrosine, and tryptophan (in order of decreasing activity), whereas the second system was active with tryptophan, phenylalanine, and tyrosine. The two systems also transported a number of aromatic amino acid analogues but not other amino acids. Mutants defective in each of the two and in both transport systems were isolated and described. When the amino acids were added at low external concentrations to cells growing logarithmically in glucose minimal medium, the tryptophan pool very quickly became saturated. Under identical conditions, phenylalanine and tyrosine each accumulated in the intracellular pool of P. aeruginosa at a concentration which was 10 times greater than that of tryptophan. PMID:4994029

  4. Mass Spectrometry Analysis of Pseudomonas aeruginosa Treated With Azithromycin

    PubMed Central

    Phelan, Vanessa V.; Fang, Jinshu; Dorrestein, Pieter C.

    2015-01-01

    In microbiology, changes in specialized metabolite production (cell-to-cell signaling metabolites, virulence factors and natural products) are measured using phenotypic assays. However, advances in mass spectrometry based techniques including imaging mass spectrometry (IMS) now allow researchers to directly visualize the production of specialized metabolites from microbial colony biofilms. In this study, a combination of IMS and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to visualize the effect of the macrolide antibiotic azithromycin (AZM) on colony biofilms of Pseudomonas aeruginosa. While previous research suggested that AZM may inhibit cell-to-cell signaling of P. aeruginosa and thereby reducing pathogenicity, we observed no clear decrease in specialized metabolite production. PMID:25801585

  5. Regulation of Pseudomonas aeruginosa Virulence by Distinct Iron Sources

    PubMed Central

    Reinhart, Alexandria A.; Oglesby-Sherrouse, Amanda G.

    2016-01-01

    Pseudomonas aeruginosa is a ubiquitous environmental bacterium and versatile opportunistic pathogen. Like most other organisms, P. aeruginosa requires iron for survival, yet iron rapidly reacts with oxygen and water to form stable ferric (FeIII) oxides and hydroxides, limiting its availability to living organisms. During infection, iron is also sequestered by the host innate immune system, further limiting its availability. P. aeruginosa’s capacity to cause disease in diverse host environments is due to its ability to scavenge iron from a variety of host iron sources. Work over the past two decades has further shown that different iron sources can affect the expression of distinct virulence traits. This review discusses how the individual components of P. aeruginosa’s iron regulatory network allow this opportunist to adapt to a multitude of host environments during infection. PMID:27983658

  6. Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa.

    PubMed

    Evans, L R; Linker, A

    1973-11-01

    The slime polysaccharides produced by Pseudomonas aeruginosa isolated from a variety of human infections were investigated. Slime production in culture seemed optimal when adequate amounts of carbohydrate were present and under conditions of either high osmotic pressure or inadequate protein supply. The polysaccharides produced by the organisms were similar to each other, to the slime of Azotobacter vinelandii, and to seaweed alginic acids. They were composed of beta-1,4-linked d-mannuronic acid residues and variable amounts of its 5-epimer l-guluronic acid. All bacterial polymers contained o-acetyl groups which are absent in the alginates. The polysaccharides differed considerably in the ratio of mannuronic to guluronic acid content and in the number of o-acetyl groups. The particular composition of the slime was not found to be characteristic for the disease process from which the mucoid variants of P. aeruginosa were obtained.

  7. Alginate Overproduction Affects Pseudomonas aeruginosa Biofilm Structure and Function

    PubMed Central

    Hentzer, Morten; Teitzel, Gail M.; Balzer, Grant J.; Heydorn, Arne; Molin, Søren; Givskov, Michael; Parsek, Matthew R.

    2001-01-01

    During the course of chronic cystic fibrosis (CF) infections, Pseudomonas aeruginosa undergoes a conversion to a mucoid phenotype, which is characterized by overproduction of the exopolysaccharide alginate. Chronic P. aeruginosa infections involve surface-attached, highly antibiotic-resistant communities of microorganisms organized in biofilms. Although biofilm formation and the conversion to mucoidy are both important aspects of CF pathogenesis, the relationship between them is at the present unclear. In this study, we report that the overproduction of alginate affects biofilm development on an abiotic surface. Biofilms formed by an alginate-overproducing strain exhibit a highly structured architecture and are significantly more resistant to the antibiotic tobramycin than a biofilm formed by an isogenic nonmucoid strain. These results suggest that an important consequence of the conversion to mucoidy is an altered biofilm architecture that shows increasing resistance to antimicrobial treatments. PMID:11514525

  8. Mass Spectrometry Analysis of Pseudomonas aeruginosa Treated with Azithromycin

    NASA Astrophysics Data System (ADS)

    Phelan, Vanessa V.; Fang, Jinshu; Dorrestein, Pieter C.

    2015-06-01

    In microbiology, changes in specialized metabolite production (cell-to-cell signaling metabolites, virulence factors, and natural products) are measured using phenotypic assays. However, advances in mass spectrometry-based techniques including imaging mass spectrometry (IMS) now allow researchers to directly visualize the production of specialized metabolites from microbial colony biofilms. In this study, a combination of IMS and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to visualize the effect of the macrolide antibiotic azithromycin (AZM) on colony biofilms of Pseudomonas aeruginosa. Although previous research suggested that AZM may inhibit cell-to-cell signaling of P. aeruginosa and thereby reduce pathogenicity, we observed no clear decrease in specialized metabolite production.

  9. The Psl economy in early P. aeruginosa biofilm development

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Tseng, Boo Shan; Jin, Fan; Gibiansky, Max; Harrison, Joe; Parsek, Matthew; Wong, Gerard

    2012-02-01

    Psl from P. aeruginosa (PAO1) is a mannose- and galactose-rich exopolysaccharide (EPS). It has been shown that Psl plays an important role in bacterial surface adhesion. Here, we examine role of Psl in controlling motility and microcolony formation during early biofilm development, by translating video microscopy movies into searchable databases of bacterial trajectories. We use a massively-parallel cell tracking algorithm to extract the full motility history of every cell in a large community. We find that at early stages of growth, P. aeruginosa motility is guided by Psl and self-organize in a manner analogous to a capitalist economic system, resulting in a power law bacterial distribution where a small number of bacteria are extremely ``rich'' in communally produced Psl. By comparing overproducers and underproducers of Psl, we find that local Psl levels determine post-division cell fates: High local Psl levels drive the formation of sessile microcolonies that grow exponentially.

  10. [Water used for hemodialysis equipment: where is Pseudomonas aeruginosa?].

    PubMed

    Ducki, Sébastien; Francini, Nicolas; Blech, Marie-Françoise

    2005-05-01

    The water used in dilution of the dialysis solutions constitutes an essential element of the efficiency and the safety of this therapeutics. Water must be specifically treated, and some technical rules must be respected, such as disinfection of the equipment for water treatment, to guarantee a satisfying level for whole the installation. This article reports the investigations, which were led to find the spring of Pseudomonas aeruginosa which contamined in a recurring way the water feeding dialysis equipment. The observation of samples'chronology and an analysis of the sanitary pad suggested a contamination during disinfection. Sample of residual water from the pump used for the injection of Dialox identified this reservoir as origin of the contamination. To stop this contamination by P. aeruginosa, a pump maintenance revision and purges of the system were used.

  11. Airway epithelial control of Pseudomonas aeruginosa infection in cystic fibrosis

    PubMed Central

    Campόdonico, Victoria L; Gadjeva, Mihaela; Paradis-Bleau, Catherine; Uluer, Ahmet; Pier, Gerald B

    2013-01-01

    Defective expression or function of the cystic fibrosis transmembrane conductance regulator (CFTR) underlies the hypersusceptibility of cystic fibrosis (CF) patients to chronic airway infections, particularly with Pseudomonas aeruginosa. CFTR is involved in the specific recognition of P. aeruginosa, thereby contributing to effective innate immunity and proper hydration of the airway surface layer (ASL). In CF, the airway epithelium fails to initiate an appropriate innate immune response, allowing the microbe to bind to mucus plugs that are then not properly cleared because of the dehydrated ASL. Recent studies have identified numerous CFTR-dependent factors that are recruited to the epithelial plasma membrane in response to infection and that are needed for bacterial clearance, a process that is defective in CF patients hypersusceptible to infection with this organism. PMID:18262467

  12. A spectroscopic study of uranyl-cytochrome b5/cytochrome c interactions

    NASA Astrophysics Data System (ADS)

    Sun, Mei-Hui; Liu, Shuang-Quan; Du, Ke-Jie; Nie, Chang-Ming; Lin, Ying-Wu

    2014-01-01

    Uranium is harmful to human health due to its radiation damage and the ability of uranyl ion (UO22+) to interact with various proteins and disturb their biological functions. Cytochrome b5 (cyt b5) is a highly negatively charged heme protein and plays a key role in mediating cytochrome c (cyt c) signaling in apoptosis by forming a dynamic cyt b5-cyt c complex. In previous molecular modeling study in combination with UV-Vis studies, we found that UO22+ is capable of binding to cyt b5 at surface residues, Glu37 and Glu43. In this study, we further investigated the structural consequences of cyt b5 and cyt c, as well as cyt b5-cyt c complex, upon uranyl binding, by fluorescence spectroscopic and circular dichroism techniques. Moreover, we proposed a uranyl binding site for cyt c at surface residues, Glu66 and Glu69, by performing a molecular modeling study. It was shown that uranyl binds to cyt b5 (KD = 10 μM), cyt c (KD = 87 μM), and cyt b5-cyt c complex (KD = 30 μM) with a different affinity, which slightly alters the protein conformation and disturbs the interaction of cyt b5-cyt c complex. Additionally, we investigated the functional consequences of uranyl binding to the protein surface, which decreases the inherent peroxidase activity of cyt c. The information of uranyl-cyt b5/cyt c interactions gained in this study likely provides a clue for the mechanism of uranyl toxicity.

  13. A spectroscopic study of uranyl-cytochrome b5/cytochrome c interactions.

    PubMed

    Sun, Mei-Hui; Liu, Shuang-Quan; Du, Ke-Jie; Nie, Chang-Ming; Lin, Ying-Wu

    2014-01-24

    Uranium is harmful to human health due to its radiation damage and the ability of uranyl ion (UO2(2+)) to interact with various proteins and disturb their biological functions. Cytochrome b5 (cyt b5) is a highly negatively charged heme protein and plays a key role in mediating cytochrome c (cyt c) signaling in apoptosis by forming a dynamic cyt b5-cyt c complex. In previous molecular modeling study in combination with UV-Vis studies, we found that UO2(2+) is capable of binding to cyt b5 at surface residues, Glu37 and Glu43. In this study, we further investigated the structural consequences of cyt b5 and cyt c, as well as cyt b5-cyt c complex, upon uranyl binding, by fluorescence spectroscopic and circular dichroism techniques. Moreover, we proposed a uranyl binding site for cyt c at surface residues, Glu66 and Glu69, by performing a molecular modeling study. It was shown that uranyl binds to cyt b5 (KD=10 μM), cyt c (KD=87 μM), and cyt b5-cyt c complex (KD=30 μM) with a different affinity, which slightly alters the protein conformation and disturbs the interaction of cyt b5-cyt c complex. Additionally, we investigated the functional consequences of uranyl binding to the protein surface, which decreases the inherent peroxidase activity of cyt c. The information of uranyl-cyt b5/cyt c interactions gained in this study likely provides a clue for the mechanism of uranyl toxicity.

  14. The cytochrome P450 genesis locus: the origin and evolution of animal cytochrome P450s

    PubMed Central

    Nelson, David R.; Goldstone, Jared V.; Stegeman, John J.

    2013-01-01

    The neighbourhoods of cytochrome P450 (CYP) genes in deuterostome genomes, as well as those of the cnidarians Nematostella vectensis and Acropora digitifera and the placozoan Trichoplax adhaerens were examined to find clues concerning the evolution of CYP genes in animals. CYP genes created by the 2R whole genome duplications in chordates have been identified. Both microsynteny and macrosynteny were used to identify genes that coexisted near CYP genes in the animal ancestor. We show that all 11 CYP clans began in a common gene environment. The evidence implies the existence of a single locus, which we term the ‘cytochrome P450 genesis locus’, where one progenitor CYP gene duplicated to create a tandem set of genes that were precursors of the 11 animal CYP clans: CYP Clans 2, 3, 4, 7, 19, 20, 26, 46, 51, 74 and mitochondrial. These early CYP genes existed side by side before the origin of cnidarians, possibly with a few additional genes interspersed. The Hox gene cluster, WNT genes, an NK gene cluster and at least one ARF gene were close neighbours to this original CYP locus. According to this evolutionary scenario, the CYP74 clan originated from animals and not from land plants nor from a common ancestor of plants and animals. The CYP7 and CYP19 families that are chordate-specific belong to CYP clans that seem to have originated in the CYP genesis locus as well, even though this requires many gene losses to explain their current distribution. The approach to uncovering the CYP genesis locus overcomes confounding effects because of gene conversion, sequence divergence, gene birth and death, and opens the way to understanding the biodiversity of CYP genes, families and subfamilies, which in animals has been obscured by more than 600 Myr of evolution. PMID:23297357

  15. Pseudomonas aeruginosa exoenzyme S induces proliferation of human T lymphocytes.

    PubMed Central

    Mody, C H; Buser, D E; Syme, R M; Woods, D E

    1995-01-01

    Pseudomonas aeruginosa is a gram-negative bacterium that is responsible for devastating acute and chronic infections, which include bronchiectasis in cystic fibrosis, nosocomial pneumonia, and infection of burn wounds. Previous studies have demonstrated that these patients have impaired host responses, including cell-mediated immune responses, which are important in anti-Pseudomonas host defense. The P. aeruginosa exoproduct, exoenzyme S, has a number of characteristics which suggest that it might be important in cell-mediated immunity. To determine whether exoenzyme S activates lymphocytes to proliferate, peripheral blood mononuclear cells (PBMC) from normal volunteers were stimulated with purified exoenzyme S, and the lymphocyte response was assessed by measuring [3H]thymidine uptake and by counting the number of cells after various times in culture. Ninety-five percent of healthy adult donors had a lymphocyte response to exoenzyme S. The optimal lymphocyte response occurred on day 7, with 4 x 10(5) PBMC per microtiter well when cells were stimulated with 10 micrograms exoenzyme S per ml. [3H]thymidine uptake correlated with an increase in the number of mononuclear cells, indicating that proliferation occurred. In unseparated PBMC, T cells, and to a lesser extent B cells, proliferated. Purified T cells proliferated, while purified B cells proliferated only after the addition of irradiated T cells. Thus, T lymphocytes are necessary and sufficient for the proliferative response to exoenzyme S. We speculate that exoenzyme S from P. aeruginosa is important in T-lymphocyte-mediated host defense to P. aeruginosa. In strategies to enhance impaired cell-mediated immunity, exoenzyme S should be considered as a potential stimulant. PMID:7537248

  16. Membrane proteomes of Pseudomonas aeruginosa and Acinetobacter baumannii.

    PubMed

    Dé, E; Cosette, P; Coquet, L; Siroy, A; Alexandre, S; Duncan, A; Naudin, B; Rihouey, C; Schaumann, A; Junter, G A; Jouenne, T

    2011-12-01

    Acinetobacter baumannii and Pseudomonas aeruginosa are known for their intrinsic resistance to antibiotics. Between mechanisms involved in this resistance, diminished expression of outer membrane proteins and up-regulation of efflux pumps play an important role. The characterization of membrane proteins is consequently necessary because of their importance in the antibiotic resistance but also in virulence. This review presents proteomic investigations aiming to describe the protein content of the membranes of these two bacterial species.

  17. Functionalized polyanilines disrupt Pseudomonas aeruginosa and Staphylococcus aureus biofilms.

    PubMed

    Gizdavic-Nikolaidis, Marija R; Pagnon, Joanne C; Ali, Naseem; Sum, Reuben; Davies, Noel; Roddam, Louise F; Ambrose, Mark

    2015-12-01

    The purpose of the present study was to investigate the antimicrobial effects of functionalized polyanilines (fPANIs) against stationary phase cells and biofilms of Pseudomonas aeruginosa and Staphylococcus aureus using homopolymer of sulfanilic acid (poly-SO3H) as a model. The chemically synthesized poly-SO3H was characterized using Fourier Transform Infra-Red (FTIR) and Ultraviolet-Visible (UV-Vis) spectroscopies. The molecular weight (Mw) and elemental analysis of homopolymer poly-SO3H were also examined. We found that poly-SO3H was bactericidal against stationary phase cells of P. aeruginosa and S. aureus at a concentration of 20 mgml(-1). Surprisingly, we discovered that the same concentration (20 mgml(-1)) of poly-SO3H significantly disrupted and killed bacterial cells present in pre-established forty-eight hour static biofilms of these organisms, as shown by crystal violet and bacterial live/dead fluorescence staining assays. In support of these data, poly-SO3H extensively diminished the expression of bacterial genes related to biofilm formation in stationary phase cells of P. aeruginosa, and seemed to greatly reduce the amount of the quorum sensing molecule N-(3-oxododecanoyl)-l-homoserine lactone (3OC12-HSL) able to be recovered from biofilms of this organism. Furthermore, we found that poly-SO3H was able to effectively penetrate and kill cells in biofilms formed by the P. aeruginosa (AESIII) isolate derived from the sputum of a cystic fibrosis patient. Taken together, the results of the present study emphasise the broad antimicrobial activities of fPANI, and suggest that they could be developed further and used in some novel ways to construct medical devices and/or industrial equipment that are refractory to colonization by biofilm-forming bacteria.

  18. Enterobactin-mediated iron transport in Pseudomonas aeruginosa.

    PubMed Central

    Poole, K; Young, L; Neshat, S

    1990-01-01

    A pyoverdine-deficient strain of Pseudomonas aeruginosa was unable to grow in an iron-deficient minimal medium in the presence of the nonmetabolizable iron chelator ethylene diamine-di(omega-hydroxyphenol acetic acid) (EDDHA), although addition of enterobactin to EDDHA-containing minimal media did restore growth of the pyoverdine-deficient P. aeruginosa. Consistent with the apparent ability of enterobactin to provide iron to P. aeruginosa, enterobactin-dependent 55Fe3+ uptake was observed in cells of P. aeruginosa previously grown in an iron-deficient medium containing enterobactin (or enterobactin-containing Escherichia coli culture supernatant). This uptake was energy dependent, was observable at low concentrations (60 nM) of FeCl3, and was absent in cells cultured without enterobactin. A novel protein with a molecular weight of approximately 80,000 was identified in the outer membranes of cells grown in iron-deficient minimal medium containing enterobactin, concomitant with the induction of enterobactin-dependent iron uptake. A Tn501 insertion mutant lacking this protein was isolated and shown to be deficient in enterobactin-mediated iron transport at 60 nM FeCl3, although it still exhibited enterobactin-dependent growth in iron-deficient medium containing EDDHA. It was subsequently observed that the mutant was, however, capable of enterobactin-mediated iron transport at much higher concentrations (600 nM) of FeCl3. Indeed, enterobactin-dependent iron uptake at this concentration of iron was observed in both the mutant and parent strains irrespective of whether they had been cultured in the presence of enterobactin.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:2174865

  19. Genetics of O-Antigen Biosynthesis in Pseudomonas aeruginosa

    PubMed Central

    Rocchetta, H. L.; Burrows, L. L.; Lam, J. S.

    1999-01-01

    Pathogenic bacteria produce an elaborate assortment of extracellular and cell-associated bacterial products that enable colonization and establishment of infection within a host. Lipopolysaccharide (LPS) molecules are cell surface factors that are typically known for their protective role against serum-mediated lysis and their endotoxic properties. The most heterogeneous portion of LPS is the O antigen or O polysaccharide, and it is this region which confers serum resistance to the organism. Pseudomonas aeruginosa is capable of concomitantly synthesizing two types of LPS referred to as A band and B band. The A-band LPS contains a conserved O polysaccharide region composed of d-rhamnose (homopolymer), while the B-band O-antigen (heteropolymer) structure varies among the 20 O serotypes of P. aeruginosa. The genes coding for the enzymes that direct the synthesis of these two O antigens are organized into two separate clusters situated at different chromosomal locations. In this review, we summarize the organization of these two gene clusters to discuss how A-band and B-band O antigens are synthesized and assembled by dedicated enzymes. Examples of unique proteins required for both A-band and B-band O-antigen synthesis and for the synthesis of both LPS and alginate are discussed. The recent identification of additional genes within the P. aeruginosa genome that are homologous to those in the A-band and B-band gene clusters are intriguing since some are able to influence O-antigen synthesis. These studies demonstrate that P. aeruginosa represents a unique model system, allowing studies of heteropolymeric and homopolymeric O-antigen synthesis, as well as permitting an examination of the interrelationship of the synthesis of LPS molecules and other virulence determinants. PMID:10477307

  20. Effect of Tyrosol and Farnesol on Virulence and Antibiotic Resistance of Clinical Isolates of Pseudomonas aeruginosa.

    PubMed

    Abdel-Rhman, Shaymaa Hassan; El-Mahdy, Areej Mostafa; El-Mowafy, Mohammed

    2015-01-01

    Mixed-species biofilms could create a protected environment that allows for survival to external antimicrobials and allows different bacterial-fungal interactions. Pseudomonas aeruginosa-Candida albicans coexistence is an example for such mixed-species community. Numerous reports demonstrated how P. aeruginosa or its metabolites could influence the growth, morphogenesis, and virulence of C. albicans. In this study, we investigated how the C. albicans quorum sensing compounds, tyrosol and farnesol, might affect Egyptian clinical isolates of P. aeruginosa regarding growth, antibiotic sensitivity, and virulence. We could demonstrate that tyrosol possesses an antibacterial activity against P. aeruginosa (10 µM inhibited more than 50% of growth after 16 h cultivation). Moreover, we could show for the first time that tyrosol strongly inhibits the production of the virulence factors hemolysin and protease in P. aeruginosa, whereas farnesol inhibits, to lower extent, hemolysin production in this bacterial pathogen. Cumulatively, tyrosol is expected to strongly affect P. aeruginosa in mixed microbial biofilm.

  1. Purification and two-dimensional crystallization of bacterial cytochrome oxidases.

    PubMed

    Warne, A; Wang, D N; Saraste, M

    1995-12-01

    A novel strategy which employes chromatography on an immobilized metal ion has been developed for the purification of bacterial cytochrome c and quinol oxidases. Many bacterial oxidase complexes appear to have a natural affinity to bind to the chelated copper ion. A combination of three different chromatographic principles (anion exchange, metal-affinity and gel filtration) makes an effective tool chest for the preparation of homogeneous and protein-chemically pure bacterial oxidases. These preparations have been used for two-dimensional crystallization. Until now, crystals have been obtained using the Paracococcus denitrificans and Rhodobacter sphaeroides cytochrome aa3 and the Escherichia coli cytochrome bo. The crystals diffract to approximately 2.5 nm in negative stain and have potential for further structural studies.

  2. Mitochondrial cytochrome c biogenesis: no longer an enigma.

    PubMed

    Babbitt, Shalon E; Sutherland, Molly C; San Francisco, Brian; Mendez, Deanna L; Kranz, Robert G

    2015-08-01

    Cytochromes c (cyt c) and c1 are heme proteins that are essential for aerobic respiration. Release of cyt c from mitochondria is an important signal in apoptosis initiation. Biogenesis of c-type cytochromes involves covalent attachment of heme to two cysteines (at a conserved CXXCH sequence) in the apocytochrome. Heme attachment is catalyzed in most mitochondria by holocytochrome c synthase (HCCS), which is also necessary for the import of apocytochrome c (apocyt c). Thus, HCCS affects cellular levels of cyt c, impacting mitochondrial physiology and cell death. Here, we review the mechanisms of HCCS function and the roles of heme and residues in the CXXCH motif. Additionally, we consider concepts emerging within the two prokaryotic cytochrome c biogenesis pathways.

  3. Cytochrome c catalyzes the in vitro synthesis of arachidonoyl glycine

    SciTech Connect

    McCue, Jeffrey M.; Driscoll, William J.; Mueller, Gregory P.

    2008-01-11

    Long chain fatty acyl glycines are an emerging class of biologically active molecules that occur naturally and produce a wide array of physiological effects. Their biosynthetic pathway, however, remains unknown. Here we report that cytochrome c catalyzes the synthesis of N-arachidonoyl glycine (NAGly) from arachidonoyl coenzyme A and glycine in the presence of hydrogen peroxide. The identity of the NAGly product was verified by isotope labeling and mass analysis. Other heme-containing proteins, hemoglobin and myoglobin, were considerably less effective in generating arachidonoyl glycine as compared to cytochrome c. The reaction catalyzed by cytochrome c in vitro points to its potential role in the formation of NAGly and other long chain fatty acyl glycines in vivo.

  4. Light intensity adaptation and phycobilisome composition of Microcystis aeruginosa

    SciTech Connect

    Raps, S.; Kycia, J.H.; Ledbetter, M.C.; Siegelman, H.W.

    1985-12-01

    Phycobilisomes isolated from Microcystis aeruginosa grown to midlog at high light (270 microeinsteins per square meter per second) or at low light intensities (40 microeinsteins per square meter per second) were found to be identical. Electron micrographs established that they have a triangular central core apparently consisting of three allophycocyanin trimers surrounded by six rods, each composed of two hexameric phycocyanin molecules. The apparent mass of a phycobilisome obtained by gel filtration is 2.96 x 10/sup 6/ daltons. The molar ratio of the phycobiliproteins per phycobilisome is 12 phycocyanin hexamers:9 allophycocyanin trimers. The electron microscopic observations combined with the phycobilisome apparent mass and the phycobiliprotein stoichiometry data indicate that M. aeruginosa phycobilisomes are composed of a triangular central core of three stacks of three allophycocyanin trimers and six rods each containing two phycocyanin hexamers. Adaptation of M. aeruginosa to high light intensity results in a decrease in the number of phycobilisomes per cell with no alteration in phycobilisome composition or structure.

  5. Heterogeneity of Pseudomonas aeruginosa in Brazilian Cystic Fibrosis Patients

    PubMed Central

    Silbert, Suzane; Barth, Afonso Luis; Sader, Hélio S.

    2001-01-01

    The aim of this study was to assess the diversity and genomic variability of Pseudomonas aeruginosa isolates from cystic fibrosis (CF) patients being treated at a university hospital in Brazil. Ninety-seven isolates of P. aeruginosa from 43 CF patients were characterized by macrorestriction analysis of chromosomal DNA by pulsed-field gel electrophoresis (PFGE) and tested for susceptibility to 20 antimicrobial agents by broth microdilution. It was possible to evaluate single isolates from 20 patients and multiple isolates (two to seven) from 23 patients collected during a 22-month period. Among all of the unrelated patients, we detected only one pair of patients sharing a common strain. Among the 77 isolates from 23 patients who had multiple isolates analyzed, we identified 37 major types by PFGE, and five different colonization patterns were recognized. The isolates were susceptible to several antimicrobial agents, although consecutive isolates from the same patient may display differences in their susceptibilities. Mucoid isolates were more resistant (P < 0.001) than nonmucoid isolates to five antibiotics. Our results indicate that CF patients remain colonized by more than one strain of P. aeruginosa for long periods of time. In addition, the finding of several different genotypes in the same patient suggests that the colonizing strain may occasionally be replaced. PMID:11682517

  6. Exploitation of syndecan-1 shedding by Pseudomonas aeruginosa enhances virulence.

    PubMed

    Park, P W; Pier, G B; Hinkes, M T; Bernfield, M

    2001-05-03

    Cell-surface heparan sulphate proteoglycans (HSPGs) are ubiquitous and abundant receptors/co-receptors of extracellular ligands, including many microbes. Their role in microbial infections is poorly defined, however, because no cell-surface HSPG has been clearly connected to the pathogenesis of a particular microbe. We have previously shown that Pseudomonas aeruginosa, through its virulence factor LasA, enhances the in vitro shedding of syndecan-1-the predominant cell-surface HSPG of epithelia. Here we show that shedding of syndecan-1 is also activated by P. aeruginosa in vivo, and that the resulting syndecan-1 ectodomains enhance bacterial virulence in newborn mice. Newborn mice deficient in syndecan-1 resist P. aeruginosa lung infection but become susceptible when given purified syndecan-1 ectodomains or heparin, but not when given ectodomain core protein, indicating that the ectodomain's heparan sulphate chains are the effectors. In wild-type newborn mice, inhibition of syndecan-1 shedding or inactivation of the shed ectodomain's heparan sulphate chains prevents lung infection. Our findings uncover a pathogenetic mechanism in which a host response to tissue injury-syndecan-1 shedding-is exploited to enhance microbial virulence apparently by modulating host defences.

  7. Human immune response to Pseudomonas aeruginosa mucoid exopolysaccharide (alginate) vaccine.

    PubMed Central

    Pier, G B; DesJardin, D; Grout, M; Garner, C; Bennett, S E; Pekoe, G; Fuller, S A; Thornton, M O; Harkonen, W S; Miller, H C

    1994-01-01

    Chronic lung infection with mucoid Pseudomonas aeruginosa is the major pathologic feature of cystic fibrosis. Previous studies suggested that a failure to produce opsonic antibody to the mucoid exopolysaccharide (MEP; also called alginate) capsule is associated with the maintenance of chronic bacterial infection. Provision of MEP-specific opsonic antibodies has therapeutic potential. To evaluate the ability of MEP to elicit opsonic antibodies, humans were immunized with two lots of MEP vaccine that differed principally in molecular size. Lot 2 had a larger average MEP polymer size. Both vaccines were well tolerated, but lot 1 was poorly immunogenic, inducing long-lived opsonic antibodies in only 2 of 28 vaccinates given doses of 10 to 150 micrograms. In contrast, at the optimal dose of 100 micrograms, lot 2 elicited long-lived opsonic antibodies in 80 to 90% of the vaccinates. The antibodies elicited by both lots enhanced deposition of C3 onto mucoid P. aeruginosa cells and mediated opsonic killing of heterologous mucoid strains expressing distinct MEP antigens. These results indicate that the polymers of MEP with the largest molecular sizes safely elicit opsonic antibodies in a sufficiently large proportion of vaccinates to permit studies of active and passive immunization of cystic fibrosis patients against infection with mucoid P. aeruginosa. PMID:8063415

  8. Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms.

    PubMed

    Kirisits, Mary Jo; Prost, Lynne; Starkey, Melissa; Parsek, Matthew R

    2005-08-01

    In this study, we report the isolation of small, rough, strongly cohesive colony morphology variants from aging Pseudomonas aeruginosa PAO1 biofilms. Similar to many of the P. aeruginosa colony morphology variants previously described in the literature, these variants autoaggregate in liquid culture and hyperadhere to solid surfaces. They also exhibit increased hydrophobicity and reduced motility compared to the wild-type parent strain. Despite the similarities in appearance of our colony morphology variant isolates on solid medium, the isolates showed a range of responses in various phenotypic assays. These variants form biofilms with significant three-dimensional structure and more biomass than the wild-type parent. To further explore the nature of the variants, their transcriptional profiles were evaluated. The variants generally showed increased expression of the psl and pel loci, which have been previously implicated in the adherence of P. aeruginosa to solid surfaces. When a mutation in the psl locus was introduced into a colony morphology variant, the colony morphology was only partially affected, but hyperadherence and autoaggregation were lost. Finally, similar colony morphology variants were found in isolates from cystic fibrosis patients. These variants displayed many of the same characteristics as the laboratory variants, suggesting a link between laboratory and cystic fibrosis biofilms.

  9. Origin and Impact of Nitric Oxide in Pseudomonas aeruginosa Biofilms

    PubMed Central

    2015-01-01

    The formation of the organized bacterial community called biofilm is a crucial event in bacterial physiology. Given that biofilms are often refractory to antibiotics and disinfectants to which planktonic bacteria are susceptible, their formation is also an industrially and medically relevant issue. Pseudomonas aeruginosa, a well-known human pathogen causing acute and chronic infections, is considered a model organism to study biofilms. A large number of environmental cues control biofilm dynamics in bacterial cells. In particular, the dispersal of individual cells from the biofilm requires metabolic and morphological reprogramming in which the second messenger bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP) plays a central role. The diatomic gas nitric oxide (NO), a well-known signaling molecule in both prokaryotes and eukaryotes, is able to induce the dispersal of P. aeruginosa and other bacterial biofilms by lowering c-di-GMP levels. In this review, we summarize the current knowledge on the molecular mechanisms connecting NO sensing to the activation of c-di-GMP-specific phosphodiesterases in P. aeruginosa, ultimately leading to c-di-GMP decrease and biofilm dispersal. PMID:26260455

  10. Measuring antimicrobial susceptibility of Pseudomonas aeruginosa using Poloxamer 407 gel.

    PubMed

    Yamada, Hiroyuki; Koike, Naohito; Ehara, Tomoko; Matsumoto, Tetsuya

    2011-04-01

    Pseudomonas aeruginosa is a Gram-negative bacterium that causes various opportunistic infections. Chronic and intractable infections with P. aeruginosa are closely related to the high levels of resistance displayed by this organism to antimicrobial agents and its ability to form biofilms. Although the standard method for examining antimicrobial resistance involves susceptibility testing using Mueller-Hinton agar or broth, this method does not take into account the influence of biofilm formation on antimicrobial susceptibility. Poloxamer 407 is a hydrophilic, nonionic surfactant of the more general class of copolymers that can be used to culture bacteria with similar properties as cells in a biofilm environment. Therefore, the aim of this study was to compare the antimicrobial susceptibility of bacteria cultured in Poloxamer 407 gel to those grown on Mueller-Hinton agar using the Kirby-Bauer disk diffusion method with 24 strains of P. aeruginosa. Antimicrobial sensibility differed between the two mediums, with >60% of the strains displaying increased resistance to β-lactams when cultured on Poloxamer 407 gel. In addition, scanning electron microscopy revealed that typical biofilm formation and extracellular polymeric substance production was only observed with bacteria grown on Poloxamer 407 gel. Therefore, antimicrobial susceptibility test using Poloxamer 407 gel may provide more accurate information and allow the selection of suitable antimicrobial agents for treating patients infected with biofilm-forming pathogens.

  11. Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems

    PubMed Central

    Singh, Braj R.; Singh, Brahma N.; Singh, Akanksha; Khan, Wasi; Naqvi, Alim H.; Singh, Harikesh B.

    2015-01-01

    Quorum sensing (QS) is a chemical communication process that Pseudomonas aeruginosa uses to regulate virulence and biofilm formation. Disabling of QS is an emerging approach for combating its pathogenicity. Silver nanoparticles (AgNPs) have been widely applied as antimicrobial agents against human pathogenic bacteria and fungi, but not for the attenuation of bacterial QS. Here we mycofabricated AgNPs (mfAgNPs) using metabolites of soil fungus Rhizopus arrhizus BRS-07 and tested their effect on QS-regulated virulence and biofilm formation of P. aeruginosa. Transcriptional studies demonstrated that mfAgNPs reduced the levels of LasIR-RhlIR. Treatment of mfAgNPs inhibited biofilm formation, production of several virulence factors (e.g. LasA protease, LasB elastrase, pyocyanin, pyoverdin, pyochelin, rhamnolipid, and alginate) and reduced AHLs production. Further genes quantification analyses revealed that mfAgNPs significantly down-regulated QS-regulated genes, specifically those encoded to the secretion of virulence factors. The results clearly indicated the anti-virulence property of mfAgNPs by inhibiting P. aeruginosa QS signaling. PMID:26347993

  12. In vitro antimicrobial activity of LED irradiation on Pseudomonas aeruginosa.

    PubMed

    Petrini, Morena; Trentini, Paolo; Tripodi, Domenico; Spoto, Giuseppe; D'Ercole, Simonetta

    2017-03-01

    Pseudomonas aeruginosa is an opportunistic pathogen responsible of many deaths due to nosocomial pneumonia each year. It is particularly resistant to many different classes of antibiotics and disinfectants. For all these reasons, there is the necessity to find novel approaches of treatment. The aim of this study was to evaluate the effect of 880nm light emitting diodes (LED) irradiation on P. aeruginosa, in vitro. Different LED irradiation parameters (time, energy output and the addition of methylene blue and chlorhexidine) have been tested in order to evaluate the effects on this bacterium. After treatment, the colony forming units per milliliter (CFU mL-1) were recorded and the data were submitted to ANOVA and Bonferroni post hoc tests at a level of significance of 5%. A statistical significant reduction of bacterial count has been registered after 5min of LED irradiation. The antibacterial effect was directly proportional to irradiation time and the output energy. The pre-treatment with methylene blue, seems to be not effective against P. aeruginosa, independently from irradiation parameters. On the contrary, the contemporary action of LED and chlorhexidine has shown a great reduction of bacterial count that was statistical significant respect chlorhexidine and LED alone. The effect of LED irradiation was visible also after 24h, when a lower bacterial count characterized all irradiated samples respect controls.

  13. Indole and 7‐hydroxyindole diminish Pseudomonas aeruginosa virulence

    PubMed Central

    Lee, Jintae; Attila, Can; Cirillo, Suat L. G.; Cirillo, Jeffrey D.; Wood, Thomas K.

    2009-01-01

    Summary Indole is an extracellular biofilm signal for Escherichia coli, and many bacterial oxygenases readily convert indole to various oxidized compounds including 7‐hydroxyindole (7HI). Here we investigate the impact of indole and 7HI on Pseudomonas aeruginosa PAO1 virulence and quorum sensing (QS)‐regulated phenotypes; this strain does not synthesize these compounds but degrades them rapidly. Indole and 7HI both altered extensively gene expression in a manner opposite that of acylhomoserine lactones; the most repressed genes encode the mexGHI‐opmD multidrug efflux pump and genes involved in the synthesis of QS‐regulated virulence factors including pyocyanin (phz operon), 2‐heptyl‐3‐hydroxy‐4(1H)‐quinolone (PQS) signal (pqs operon), pyochelin (pch operon) and pyoverdine (pvd operon). Corroborating these microarray results, indole and 7HI decreased production of pyocyanin, rhamnolipid, PQS and pyoverdine and enhanced antibiotic resistance. In addition, indole affected the utilization of carbon, nitrogen and phosphorus, and 7HI abolished swarming motility. Furthermore, 7HI reduced pulmonary colonization of P. aeruginosa in guinea pigs and increased clearance in lungs. Hence, indole‐related compounds have potential as a novel antivirulence approach for the recalcitrant pathogen P. aeruginosa. PMID:21261883

  14. Indole and 7-hydroxyindole diminish Pseudomonas aeruginosa virulence.

    PubMed

    Lee, Jintae; Attila, Can; Cirillo, Suat L G; Cirillo, Jeffrey D; Wood, Thomas K

    2009-01-01

    Indole is an extracellular biofilm signal for Escherichia coli, and many bacterial oxygenases readily convert indole to various oxidized compounds including 7-hydroxyindole (7HI). Here we investigate the impact of indole and 7HI on Pseudomonas aeruginosa PAO1 virulence and quorum sensing (QS)-regulated phenotypes; this strain does not synthesize these compounds but degrades them rapidly. Indole and 7HI both altered extensively gene expression in a manner opposite that of acylhomoserine lactones; the most repressed genes encode the mexGHI-opmD multidrug efflux pump and genes involved in the synthesis of QS-regulated virulence factors including pyocyanin (phz operon), 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) signal (pqs operon), pyochelin (pch operon) and pyoverdine (pvd operon). Corroborating these microarray results, indole and 7HI decreased production of pyocyanin, rhamnolipid, PQS and pyoverdine and enhanced antibiotic resistance. In addition, indole affected the utilization of carbon, nitrogen and phosphorus, and 7HI abolished swarming motility. Furthermore, 7HI reduced pulmonary colonization of P. aeruginosa in guinea pigs and increased clearance in lungs. Hence, indole-related compounds have potential as a novel antivirulence approach for the recalcitrant pathogen P. aeruginosa.

  15. Strategies for improved rhamnolipid production by Pseudomonas aeruginosa PA1

    PubMed Central

    Pereira Jr, Nei; Freire, Denise M.G.

    2016-01-01

    Rhamnolipids are biosurfactants with potential for diversified industrial and environmental uses. The present study evaluated three strategies for increasing the production of rhamnolipid-type biosurfactants produced by Pseudomonas aeruginosa strain PA1. The influence of pH, the addition of P. aeruginosa spent culture medium and the use of a fed-batch process were examined. The culture medium adjusted to pH 7.0 was the most productive. Furthermore, the pH of the culture medium had a measurable effect on the ratio of synthesized mono- and dirhamnolipids. At pH values below 7.3, the proportion of monorhamnolipids decreased from 45 to 24%. The recycling of 20% of the spent culture medium in where P. aeruginosa was grown up to the later stationary phase was responsible for a 100% increase in rhamnolipid volumetric productivity in the new culture medium. Finally, the use of fed-batch operation under conditions of limited nitrogen resulted in a 3.8-fold increase in the amount of rhamnolipids produced (2.9 g L−1–10.9 g L−1). These results offer promising pathways for the optimization of processes for the production of rhamnolipids. PMID:27257553

  16. Gallium induces the production of virulence factors in Pseudomonas aeruginosa.

    PubMed

    García-Contreras, Rodolfo; Pérez-Eretza, Berenice; Lira-Silva, Elizabeth; Jasso-Chávez, Ricardo; Coria-Jiménez, Rafael; Rangel-Vega, Adrián; Maeda, Toshinari; Wood, Thomas K

    2014-02-01

    The novel antimicrobial gallium is a nonredox iron III analogue with bacteriostatic and bactericidal properties, effective for the treatment of Pseudomonas aeruginosa in vitro and in vivo in mouse and rabbit infection models. It interferes with iron metabolism, transport, and presumably its homeostasis. As gallium exerts its antimicrobial effects by competing with iron, we hypothesized that it ultimately will lead cells to an iron deficiency status. As iron deficiency promotes the expression of virulence factors in vitro and promotes the pathogenicity of P. aeruginosa in animal models, it is anticipated that treatment with gallium will also promote the production of virulence factors. To test this hypothesis, the reference strain PA14 and two clinical isolates from patients with cystic fibrosis were exposed to gallium, and their production of pyocyanin, rhamnolipids, elastase, alkaline protease, alginate, pyoverdine, and biofilm was determined. Gallium treatment induced the production of all the virulence factors tested in the three strains except for pyoverdine. In addition, as the Ga-induced virulence factors are quorum sensing controlled, co-administration of Ga and the quorum quencher brominated furanone C-30 was assayed, and it was found that C-30 alleviated growth inhibition from gallium. Hence, adding both C-30 and gallium may be more effective in the treatment of P. aeruginosa infections.

  17. Mechanism of azithromycin inhibition of HSL synthesis in Pseudomonas aeruginosa

    PubMed Central

    Zeng, Jianming; Zhang, Ni; Huang, Bin; Cai, Renxin; Wu, Binning; E, Shunmei; Fang, Chengcai; Chen, Cha

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen and a leading cause of nosocomial infections. Unfortunately, P. aeruginosa has low antibiotic susceptibility due to several chromosomally encoded antibiotic resistance genes. Hence, we carried out mechanistic studies to determine how azithromycin affects quorum sensing and virulence in P. aeruginosa. lasI and rhlI single and double mutants were constructed. We then undertook a quantitative approach to determine the optimal concentration of azithromycin and culture time that can affect the expression of HSLs. Furthermore, based on the above results, the effect on quorum sensing was analyzed at a transcriptional level. It was found that 2 μg/mL azithromycin caused a 79% decrease in 3-oxo-C12-HSL secretion during cultivation, while C4-HSL secretion was strongly repressed in the early stages. Azithromycin acts on ribosomes; to determine whether this can elicit alternative modes of gene expression, transcriptional regulation of representative virulence genes was analyzed. We propose a new relationship for lasI and rhlI: lasI acts as a cell density sensor, and rhlI functions as a fine-tuning mechanism for coordination between different quorum sensing systems. PMID:27075730

  18. INHIBITION OF VIRULENCE FACTORS OF PSEUDOMONAS AERUGINOSA BY DICLOFENAC SODIUM.

    PubMed

    Abbas, Hisham A

    2015-01-01

    Resistance of Pseudomonas aeruginosa to antibiotics is a major problem. Targeting virulence factors is an alternative option to avoid the emergence of resistance to antibiotics. The effect of sub-inhibitory concentration of diclofenac sodium on the production of virulence factors of P. aeruginosa was investigated. The virulence factors included protease, haemolysin, pyocyanin and pyoverdin, in addition to pathogenic behaviors such as swimming and twitching motilities and biofilm formation. Diclofenac sodium showed significant inhibition of virulence factors as compared to the control. Diclofenac sodium decreased twitching and swimming motilities by 29.27% and 45.36%, respectively. The percentage of inhibition of pyocyanin by diclofenac sodium was 42.32%. On the other hand, pyoverdin was inhibited to a lesser extent (36.72%). Diclofenac sodium reduced protease by 52.58% and biofilm formation by 58.37%. Moreover, haemolytic activity in the presence of diclofenac sodium was 15.64% as compared to the control (100% haemolytic activity). The inhibitory activities may be due to inhibition of quorum sensing that regulates the expression of virulence factors. This study suggests the potential for the use of diclofenac sodium as an anti-virulence agent in the treatment of Pseudomonas aeruginosa infections.

  19. Quorum sensing and policing of Pseudomonas aeruginosa social cheaters.

    PubMed

    Wang, Meizhen; Schaefer, Amy L; Dandekar, Ajai A; Greenberg, E Peter

    2015-02-17

    The bacterium Pseudomonas aeruginosa is an opportunistic human pathogen that uses a quorum sensing signal cascade to activate expression of dozens of genes when sufficient population densities have been reached. Quorum sensing controls production of several key virulence factors, including secreted proteases such as elastase. Cooperating groups of bacteria growing on protein are susceptible to social cheating by quorum-sensing defective mutants. A possible way to restrict cheater emergence is by policing where cooperators produce costly goods to sanction or punish cheats. The P. aeruginosa LasR-LasI quorum sensing system controls genes including those encoding proteases and also those encoding a second quorum-sensing system, the RhlR-RhlI system, which controls numerous genes including those for cyanide production. By using RhlR quorum sensing mutants and cyanide synthesis mutants, we show that cyanide production is costly and cyanide-producing cooperators use cyanide to punish LasR-null social cheaters. Cooperators are less susceptible to cyanide than are LasR mutants. These experiments demonstrate policing in P. aeruginosa, provide a mechanistic understanding of policing, and show policing involves the cascade organization of the two quorum sensing systems in this bacterium.

  20. Strategies for improved rhamnolipid production by Pseudomonas aeruginosa PA1.

    PubMed

    Soares Dos Santos, Alexandre; Pereira, Nei; Freire, Denise M G

    2016-01-01

    Rhamnolipids are biosurfactants with potential for diversified industrial and environmental uses. The present study evaluated three strategies for increasing the production of rhamnolipid-type biosurfactants produced by Pseudomonas aeruginosa strain PA1. The influence of pH, the addition of P. aeruginosa spent culture medium and the use of a fed-batch process were examined. The culture medium adjusted to pH 7.0 was the most productive. Furthermore, the pH of the culture medium had a measurable effect on the ratio of synthesized mono- and dirhamnolipids. At pH values below 7.3, the proportion of monorhamnolipids decreased from 45 to 24%. The recycling of 20% of the spent culture medium in where P. aeruginosa was grown up to the later stationary phase was responsible for a 100% increase in rhamnolipid volumetric productivity in the new culture medium. Finally, the use of fed-batch operation under conditions of limited nitrogen resulted in a 3.8-fold increase in the amount of rhamnolipids produced (2.9 g L(-1)-10.9 g L(-1)). These results offer promising pathways for the optimization of processes for the production of rhamnolipids.

  1. Pseudomonas Aeruginosa Lectins As Targets for Novel Antibacterials

    PubMed Central

    Grishin, A. V.; Krivozubov, M. S.; Karyagina, A. S.; Gintsburg, A. L.

    2015-01-01

    Pseudomonas aeruginosa is one of the most widespread and troublesome opportunistic pathogens that is capable of colonizing various human tissues and organs and is often resistant to many currently used antibiotics. This resistance is caused by different factors, including the acquisition of specific resistance genes, intrinsic capability to diminish antibiotic penetration into the bacterial cell, and the ability to form biofilms. This situation has prompted the development of novel compounds differing in their mechanism of action from traditional antibiotics that suppress the growth of microorganisms or directly kill bacteria. Instead, these new compounds should decrease the pathogens’ ability to colonize and damage human tissues by inhibiting the virulence factors and biofilm formation. The lectins LecA and LecB that bind galactose and fucose, as well as oligo- and polysaccharides containing these sugars, are among the most thoroughly-studied targets for such novel antibacterials. In this review, we summarize the results of experiments highlighting the importance of these proteins for P. aeruginosa pathogenicity and provide information on existing lectins inhibitors and their effectiveness in various experimental models. Particular attention is paid to the effects of lectins inhibition in animal models of infection and in clinical practice. We argue that lectins inhibition is a perspective approach to combating P. aeruginosa. However, despite the existence of highly effective in vitro inhibitors, further experiments are required in order to advance these inhibitors into pre-clinical studies. PMID:26085942

  2. Proteolytic regulation of alginate overproduction in Pseudomonas aeruginosa.

    PubMed

    Damron, F Heath; Goldberg, Joanna B

    2012-05-01

    Pseudomonas aeruginosa, a Gram-negative bacterium, is a significant opportunistic pathogen associated with skin and soft tissue infections, nosocomial pneumonia and sepsis. In addition, it can chronically colonize the lungs of cystic fibrosis (CF) patients. Overproduction of the exopolysaccharide called alginate provides P. aeruginosa with a selective advantage and facilitates survival in the CF lung. The in vitro phenotype of alginate overproduction observed on solid culture media is referred to as mucoid. Expression of the alginate machinery and biosynthetic enzymes are controlled by the extracytoplasmic sigma factor, σ(22) (AlgU/T). The key negative regulator of both σ(22) activity and the mucoid phenotype is the cognate anti-sigma factor MucA. MucA sequesters σ(22) to the inner membrane inhibiting the sigma factor's transcriptional activity. The well-studied mechanism for transition to the mucoid phenotype is mutation of mucA, leading to loss of MucA function and therefore activation of σ(22) . Recently, regulated intramembrane proteolysis (RIP) has been recognized as a mechanism whereby proteolysis of the anti-sigma factor MucA leads to active σ(22) allowing P. aeruginosa to respond to environmental stress conditions by overproduction of alginate. The goal of this review is to illuminate the pathways leading to RIP that have been identified and proposed.

  3. General and condition-specific essential functions of Pseudomonas aeruginosa

    PubMed Central

    Lee, Samuel A.; Gallagher, Larry A.; Thongdee, Metawee; Staudinger, Benjamin J.; Lippman, Soyeon; Singh, Pradeep K.; Manoil, Colin

    2015-01-01

    The essential functions of a bacterial pathogen reflect the most basic processes required for its viability and growth, and represent potential therapeutic targets. Most screens for essential genes have assayed a single condition—growth in a rich undefined medium—and thus have not distinguished genes that are generally essential from those that are specific to this particular condition. To help define these classes for Pseudomonas aeruginosa, we identified genes required for growth on six different media, including a medium made from cystic fibrosis patient sputum. The analysis used the Tn-seq circle method to achieve high genome coverage and analyzed more than 1,000,000 unique insertion positions (an average of one insertion every 6.0 bp). We identified 352 general and 199 condition-specific essential genes. A subset of assignments was verified in individual strains with regulated expression alleles. The profile of essential genes revealed that, compared with Escherichia coli, P. aeruginosa is highly vulnerable to mutations disrupting central carbon-energy metabolism and reactive oxygen defenses. These vulnerabilities may arise from the stripped-down architecture of the organism’s carbohydrate utilization pathways and its reliance on respiration for energy generation. The essential function profile thus provides fundamental insights into P. aeruginosa physiology as well as identifying candidate targets for new antibacterial agents. PMID:25848053

  4. Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems.

    PubMed

    Singh, Braj R; Singh, Brahma N; Singh, Akanksha; Khan, Wasi; Naqvi, Alim H; Singh, Harikesh B

    2015-09-08

    Quorum sensing (QS) is a chemical communication process that Pseudomonas aeruginosa uses to regulate virulence and biofilm formation. Disabling of QS is an emerging approach for combating its pathogenicity. Silver nanoparticles (AgNPs) have been widely applied as antimicrobial agents against human pathogenic bacteria and fungi, but not for the attenuation of bacterial QS. Here we mycofabricated AgNPs (mfAgNPs) using metabolites of soil fungus Rhizopus arrhizus BRS-07 and tested their effect on QS-regulated virulence and biofilm formation of P. aeruginosa. Transcriptional studies demonstrated that mfAgNPs reduced the levels of LasIR-RhlIR. Treatment of mfAgNPs inhibited biofilm formation, production of several virulence factors (e.g. LasA protease, LasB elastrase, pyocyanin, pyoverdin, pyochelin, rhamnolipid, and alginate) and reduced AHLs production. Further genes quantification analyses revealed that mfAgNPs significantly down-regulated QS-regulated genes, specifically those encoded to the secretion of virulence factors. The results clearly indicated the anti-virulence property of mfAgNPs by inhibiting P. aeruginosa QS signaling.

  5. Draft Genome Sequences of Pseudomonas aeruginosa Isolates from Wounded Military Personnel.

    PubMed

    Arivett, Brock A; Ream, Dave C; Fiester, Steven E; Kidane, Destaalem; Actis, Luis A

    2016-08-11

    Pseudomonas aeruginosa, a Gram-negative bacterium that causes severe hospital-acquired infections, is grouped as an ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogen because of its extensive drug resistance phenotypes and effects on human health worldwide. Five multidrug resistant P. aeruginosa strains isolated from wounded military personnel were sequenced and annotated in this work.

  6. Quorum-sensing inhibition abrogates the deleterious impact of Pseudomonas aeruginosa on airway epithelial repair.

    PubMed

    Ruffin, Manon; Bilodeau, Claudia; Maillé, Émilie; LaFayette, Shantelle L; McKay, Geoffrey A; Trinh, Nguyen Thu Ngan; Beaudoin, Trevor; Desrosiers, Martin-Yvon; Rousseau, Simon; Nguyen, Dao; Brochiero, Emmanuelle

    2016-09-01

    Chronic Pseudomonas aeruginosa lung infections are associated with progressive epithelial damage and lung function decline. In addition to its role in tissue injury, the persistent presence of P. aeruginosa-secreted products may also affect epithelial repair ability, raising the need for new antivirulence therapies. The purpose of our study was to better understand the outcomes of P. aeruginosa exoproducts exposure on airway epithelial repair processes to identify a strategy to counteract their deleterious effect. We found that P. aeruginosa exoproducts significantly decreased wound healing, migration, and proliferation rates, and impaired the ability of directional migration of primary non-cystic fibrosis (CF) human airway epithelial cells. Impact of exoproducts was inhibited after mutations in P. aeruginosa genes that encoded for the quorum-sensing (QS) transcriptional regulator, LasR, and the elastase, LasB, whereas impact was restored by LasB induction in ΔlasR mutants. P. aeruginosa purified elastase also induced a significant decrease in non-CF epithelial repair, whereas protease inhibition with phosphoramidon prevented the effect of P. aeruginosa exoproducts. Furthermore, treatment of P. aeruginosa cultures with 4-hydroxy-2,5-dimethyl-3(2H)-furanone, a QS inhibitor, abrogated the negative impact of P. aeruginosa exoproducts on airway epithelial repair. Finally, we confirmed our findings in human airway epithelial cells from patients with CF, a disease featuring P. aeruginosa chronic respiratory infection. These data demonstrate that secreted proteases under the control of the LasR QS system impair airway epithelial repair and that QS inhibitors could be of benefit to counteract the deleterious effect of P. aeruginosa in infected patients.-Ruffin, M., Bilodeau, C., Maillé, É., LaFayette, S. L., McKay, G. A., Trinh, N. T. N., Beaudoin, T., Desrosiers, M.-Y., Rousseau, S., Nguyen, D., Brochiero, E. Quorum-sensing inhibition abrogates the deleterious impact

  7. [Detection of synthesized microsomal hemoproteins (cytochrome P-448) using autofluorography].

    PubMed

    Chasovnikova, O B; Tsyrlov, I B

    1986-01-01

    Simple and informative method for the elucidation of de novo synthesized forms of microsomal cytochrome P-448 induced by 3-methylcholanthrene and 2,3,7,8-tetrachlordibenzo-p-dioxine has been developed. The method is based on gel fluorography upon electrophoretic separation of microsomal proteins obtained from the liver of rats pre-treated with the inducers of monooxygenase system components and then with 14C-leucine. At least two forms of cytochrome P-448 (with molecular weight of 56000 and 53000) were shown to be de novo synthesized under the influence of 3-methylcholanthrene and 2,3,7,8-tetrachlodbibenzo-p-dioxine.

  8. Spectroscopic quantitation of cytochrome P-450 in human lung microsomes.

    PubMed

    Wheeler, C W; Guenthner, T M

    1990-01-01

    The cytochrome P-450 content of human lung microsomes was measured by difference spectroscopy of the carbon monoxide-complexed hemoprotein. These measurements were only possible after the microsome preparation had been subjected to centrifugation over a discontinuous sucrose gradient, to remove an opaque black contaminant. The specific concentration of total cytochrome P-450 in human lung microsomes is essentially identical to that of microsomes prepared under identical conditions from untreated baboon lungs, but is only 0.7% of the specific content found in lung microsomes from untreated rabbits. These measurements correspond well to the observed metabolic capacities of the various microsome samples.

  9. The optical properties of CuA in bovine cytochrome c oxidase determined by low-temperature magnetic-circular-dichroism spectroscopy.

    PubMed

    Greenwood, C; Hill, B C; Barber, D; Eglinton, D G; Thomson, A J

    1983-11-01

    The visible-near-i.r.-region m.c.d. (magnetic-circular-dichroism) spectrum recorded at low temperature in the range 450-900 nm is reported for oxidized resting mammalian cytochrome c oxidase. M.c.d. magnetization curves determined at different wavelengths reveal the presence of two paramagnetic species. Curves at 576, 613 and 640 nm fit well to those expected for an x,y-polarized haem transition with g values of 3.03, 2.21 and 1.45, i.e. cytochrome a3+. The m.c.d. features at 515, 785 and 817 nm magnetize as a S = 1/2 paramagnet with average g values close to 2, and simulated m.c.d. magnetization curves obtained by using the observed g values of CuA2+, i.e. 2.18, 2.03 and 1.99, fit well to the experimental observations. The form of the m.c.d. magnetization curve at 466 nm is curious, but it can be explained if CuA2+ and cytochrome a3+ contribute with oppositely signed bands at this wavelength. By comparing the m.c.d. spectrum of the enzyme with that of extracted haem a-bisimidazole complex it has been possible to deconvolute the m.c.d. spectrum of CuA2+, which shows transitions throughout the spectral region from 450 to 950 nm. The m.c.d.-spectral properties of CuA2+ were compared with those of a well-defined type I blue copper centre in azurin isolated from Pseudomonas aeruginosa. The absolute intensities of the m.c.d. signals at equal fields and temperatures for CuA2+ are 10-20-fold greater than those for azurin. The optical spectrum of CuA2+ strongly suggests an assignment as a d9 ion rather than Cu(I) bound to a thiyl radical.

  10. Alginate Lyase Promotes Diffusion of Aminoglycosides through the Extracellular Polysaccharide of Mucoid Pseudomonas aeruginosa

    PubMed Central

    Hatch, Richard A.; Schiller, Neal L.

    1998-01-01

    We demonstrated that a 2% suspension of Pseudomonas aeruginosa alginate completely blocked the diffusion of gentamicin and tobramycin, but not that of carbenicillin, illustrating how alginate production can help protect P. aeruginosa growing within alginate microcolonies in patients with cystic fibrosis (CF) from the effects of aminoglycosides. This aminoglycoside diffusion barrier was degraded with a semipurified preparation of P. aeruginosa alginate lyase, suggesting that this enzyme deserves consideration as an adjunctive agent for CF patients colonized by mucoid strains of P. aeruginosa. PMID:9559826

  11. Virulence genome analysis of Pseudomonas aeruginosa VRFPA10 recovered from patient with scleritis.

    PubMed

    Murugan, Nandagopal; Malathi, Jambulingam; Umashankar, Vetrivel; Madhavan, Hajib Narahari Rao

    2017-06-01

    Infectious keratitis is a major cause of blindness, next to cataract and majority of cases are mainly caused by gram negative bacterium Pseudomonas aeruginosa (P. aeruginosa). In this study, we investigated a P. aeruginosa VRFPA10 genome which exhibited susceptibility to commonly used drugs in vitro but the patient had poor prognosis due to its hyper virulent nature. Genomic analysis of VRFPA10 deciphered multiple virulence factors and P.aeruginosa Genomic Islands (PAGIs) VRFPA10 genome which correlated with hyper virulence nature of the organism. The genome sequence has been deposited in DDBJ/EMBL/GenBank under the accession numbers LFMZ01000001-LFMZ01000044.

  12. [Justification of the significance of Pseudomonas aeruginosa index in assessing the quality of drinking water].

    PubMed

    Ivanova, L V; Artemova, T Z; Gipp, E K; Zagaĭnova, A V; Maksimkina, T N; Krasniak, A V; Korneĭchuk, S S

    2013-01-01

    The analysis of literature data was carried out and performed research justifying the epidemic value of detection in water P. aeruginosa in drinking and domestic water use. The were revealed features of the vital activity of P aeruginosa in water bodies as opposed to conventional microbiological indicators. It was shown that the coliform group indices can not guarantee the epidemic safety of drinking water use in relation to P aeruginosa. The data obtained justify the need for the introduction of P aeruginosa as an additional index in monitoring the water quality of centralized and decentralized water supply.

  13. Fast and specific detection of Pseudomonas Aeruginosa from other pseudomonas species by PCR

    PubMed Central

    Jami Al-Ahmadi, G.; Zahmatkesh Roodsari, R.

    2016-01-01

    Summary Pseudomonas aeruginosa is an important life-threatening nosocomial pathogen that plays a prominent role in wound infections of burned patients. We designed this study to identify the isolates of P. aeruginosa recovered from burned patients at the genus and species level through primers targeting oprI and oprL genes, and analyzed their antimicrobial resistance pattern. Over a 2-month period, wound samples were taken from burned patients and plated on MacConkey agar. All suspected colonies were primarily screened for P. aeruginosa by a combination of phenotypic tests. Molecular identifications of colonies were done using specific primers for oprI and oprL genes. Bacterial isolates were recovered from burn wound infections. Based on phenotypical identification tests, 138 (34%) P. aeruginosa isolates were identified; whereas by molecular techniques, just 128 P. aeruginosa yielded amplicon of oprL gene using species-specific primers, verifying the identity of P. aeruginosa; the others yielded amplicon of oprI gene using genus-specific primers, confirming the identity of fluorescent pseudomonads. This study indicates that molecular detection of P. aeruginosa in burn patients employing the OprL gene target is a useful technique for the early and precise detection of P. aeruginosa. PCR detection should be carried out as well as phenotypic testing for the best aggressive antibiotic treatment of P. aeruginosa strains at an earlier stage. It also has significant benefits on clinical outcomes. PMID:28289359

  14. Pseudomonas aeruginosa on vinyl-canvas inflatables and foam teaching aids in swimming pools.

    PubMed

    Schets, F M; van den Berg, H H J L; Baan, R; Lynch, G; de Roda Husman, A M

    2014-12-01

    Swimming pool-related Pseudomonas aeruginosa infections mainly result in folliculitis and otitis externa. P. aeruginosa forms biofilms on surfaces in the swimming pool environment. The presence of P. aeruginosa on inflatables and foam teaching aids in 24 public swimming pools in the Netherlands was studied. Samples (n = 230) were taken from 175 objects and analysed for P. aeruginosa by culture. Isolated P. aeruginosa were tested for antibiotic resistance by disk diffusion. P. aeruginosa was detected in 63 samples (27%), from 47 objects (27%) in 19 (79%) swimming pools. More vinyl-canvas objects (44%) than foam objects (20%) were contaminated, as were wet objects (43%) compared to dry objects (13%). Concentrations were variable, and on average higher on vinyl-canvas than on foam objects. Forty of 193 (21%) P. aeruginosa isolates from 11 different objects were (intermediate) resistant to one or more of 12 clinically relevant antibiotics, mostly to imipenem and aztreonam. The immediate risk of a P. aeruginosa infection from exposure to swimming pool objects seems limited, but the presence of P. aeruginosa on pool objects is unwanted and requires attention of pool managers and responsible authorities. Strict drying and cleaning policies are needed for infrequently used vinyl-canvas objects.

  15. Inactivation of Microcystis aeruginosa using dielectric barrier discharge low-temperature plasma

    SciTech Connect

    Pu, Sichuan; Chen, Jierong; Wang, Gang; Li, Xiaoyong; Ma, Yun

    2013-05-13

    The efficiency of Microcystis aeruginosa plasma inactivation was investigated using dielectric barrier discharge low-temperature plasma. The inactivation efficiency was characterized in terms of optical density. The influence of electrical and physicochemical parameters on M. aeruginosa inactivation was studied to determine the optimal experimental conditions. The influence of active species was studied. The proliferation of the M. aeruginosa cells was significantly decreased under plasma exposure. The morphologic changes in M. aeruginosa were characterized under scanning electron microscopy. These results suggest that the low-temperature plasma technology is a promising method for water pollution control.

  16. Pseudomonas aeruginosa forms Biofilms in Acute InfectionIndependent of Cell-to-Cell Signaling

    SciTech Connect

    Schaber, J. Andy; Triffo, W.J.; Suh, Sang J.; Oliver, Jeffrey W.; Hastert, Mary C.; Griswold, John A.; Auer, Manfred; Hamood, Abdul N.; Rumbaugh, Kendra P.

    2006-09-20

    Biofilms are bacterial communities residing within a polysaccharide matrix that are associated with persistence and antibiotic resistance in chronic infections. We show that the opportunistic pathogen Pseudomonas aeruginosa forms biofilms within 8 hours of infection in thermally-injured mice, demonstrating that biofilms contribute to bacterial colonization in acute infections. P. aeruginosa biofilms were visualized within burned tissue surrounding blood vessels and adipose cells. Although quorum sensing (QS), a bacterial signaling mechanism, coordinates differentiation of biofilms in vitro, wild type and QS-deficient P. aeruginosa formed similar biofilms in vivo. Our findings demonstrate that P. aeruginosa forms biofilms on specific host tissues independent of QS.

  17. Cystic fibrosis transmembrane conductance regulator and caveolin-1 regulate epithelial cell internalization of Pseudomonas aeruginosa

    PubMed Central

    Bajmoczi, Milan; Gadjeva, Mihaela; Alper, Seth L.; Pier, Gerald B.; Golan, David E.

    2009-01-01

    Patients with cystic fibrosis (CF) exhibit defective innate immunity and are susceptible to chronic lung infection with Pseudomonas aeruginosa. To investigate the molecular bases for the hypersusceptibility of CF patients to P. aeruginosa, we used the IB3-1 cell line with two defective CF transmembrane conductance regulator (CFTR) genes (ΔF508/W1282X) to generate isogenic stable, clonal lung epithelial cells expressing wild-type (WT)-CFTR with an NH2-terminal green fluorescent protein (GFP) tag. GFP-CFTR exhibited posttranslational modification, subcellular localization, and anion transport function typical of WT-CFTR. P. aeruginosa internalization, a component of effective innate immunity, required functional CFTR and caveolin-1, as shown by: 1) direct correlation between GFP-CFTR expression levels and P. aeruginosa internalization; 2) enhanced P. aeruginosa internalization by aminoglycoside-induced read through of the CFTR W1282X allele in IB3-1 cells; 3) decreased P. aeruginosa internalization following siRNA knockdown of GFP-CFTR or caveolin-1; and 4) spatial association of P. aeruginosa with GFP-CFTR and caveolin-1 at the cell surface. P. aeruginosa internalization also required free lateral diffusion of GFP-CFTR, allowing for bacterial coclustering with GFP-CFTR and caveolin-1 at the plasma membrane. Thus efficient initiation of innate immunity to P. aeruginosa requires formation of an epithelial “internalization platform” involving both caveolin-1 and functional, laterally mobile CFTR. PMID:19386787

  18. Cystic fibrosis transmembrane conductance regulator and caveolin-1 regulate epithelial cell internalization of Pseudomonas aeruginosa.

    PubMed

    Bajmoczi, Milan; Gadjeva, Mihaela; Alper, Seth L; Pier, Gerald B; Golan, David E

    2009-08-01

    Patients with cystic fibrosis (CF) exhibit defective innate immunity and are susceptible to chronic lung infection with Pseudomonas aeruginosa. To investigate the molecular bases for the hypersusceptibility of CF patients to P. aeruginosa, we used the IB3-1 cell line with two defective CF transmembrane conductance regulator (CFTR) genes (DeltaF508/W1282X) to generate isogenic stable, clonal lung epithelial cells expressing wild-type (WT)-CFTR with an NH(2)-terminal green fluorescent protein (GFP) tag. GFP-CFTR exhibited posttranslational modification, subcellular localization, and anion transport function typical of WT-CFTR. P. aeruginosa internalization, a component of effective innate immunity, required functional CFTR and caveolin-1, as shown by: 1) direct correlation between GFP-CFTR expression levels and P. aeruginosa internalization; 2) enhanced P. aeruginosa internalization by aminoglycoside-induced read through of the CFTR W1282X allele in IB3-1 cells; 3) decreased P. aeruginosa internalization following siRNA knockdown of GFP-CFTR or caveolin-1; and 4) spatial association of P. aeruginosa with GFP-CFTR and caveolin-1 at the cell surface. P. aeruginosa internalization also required free lateral diffusion of GFP-CFTR, allowing for bacterial coclustering with GFP-CFTR and caveolin-1 at the plasma membrane. Thus efficient initiation of innate immunity to P. aeruginosa requires formation of an epithelial "internalization platform" involving both caveolin-1 and functional, laterally mobile CFTR.

  19. Effect of Human Burn Wound Exudate on Pseudomonas aeruginosa Virulence

    PubMed Central

    Gonzalez, Manuel R.; Fleuchot, Betty; Lauciello, Leonardo; Jafari, Paris; Applegate, Lee Ann; Raffoul, Wassim; Que, Yok-Ai

    2016-01-01

    ABSTRACT Burn wound sepsis is currently the main cause of morbidity and mortality after burn trauma. Infections by notorious pathogens such as Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii impair patient recovery and can even lead to fatality. In this study, we investigated the effect of burn wound exudates (BWEs) on the virulence of those pathogens. BWEs were collected within 7 days after burn trauma from 5 burn patients. We first monitored their effect on pathogen growth. In contrast to A. baumannii and S. aureus, P. aeruginosa was the only pathogen able to grow within these human fluids. Expression of typical virulence factors such as pyocyanin and pyoverdine was even enhanced compared the levels seen with standard laboratory medium. A detailed chemical composition analysis of BWE was performed, which enabled us to determine the major components of BWE and underline the metabolic modifications induced by burn trauma. These data are essential for the development of an artificial medium mimicking the burn wound environment and the establishment of an in vitro system to analyze the initial steps of burn wound infections. IMPORTANCE Microbial infection of severe burn wounds is currently a major medical challenge. Of the infections by bacteria able to colonize such injuries, those by Pseudomonas aeruginosa are among the most severe, causing major delays in burn patient recovery or leading to fatal issues. In this study, we investigated the growth properties of several burn wound pathogens in biological fluids secreted from human burn wounds. We found that P. aeruginosa strains were able to proliferate but not those of the other pathogens tested. In addition, burn wound exudates (BWEs) stimulate the expression of virulence factors in P. aeruginosa. The chemical composition analysis of BWEs enabled us to determine the major components of these fluids. These data are essential for the development of an artificial medium mimicking the

  20. Effect of Human Burn Wound Exudate on Pseudomonas aeruginosa Virulence.

    PubMed

    Gonzalez, Manuel R; Fleuchot, Betty; Lauciello, Leonardo; Jafari, Paris; Applegate, Lee Ann; Raffoul, Wassim; Que, Yok-Ai; Perron, Karl

    2016-01-01

    Burn wound sepsis is currently the main cause of morbidity and mortality after burn trauma. Infections by notorious pathogens such as Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii impair patient recovery and can even lead to fatality. In this study, we investigated the effect of burn wound exudates (BWEs) on the virulence of those pathogens. BWEs were collected within 7 days after burn trauma from 5 burn patients. We first monitored their effect on pathogen growth. In contrast to A. baumannii and S. aureus, P. aeruginosa was the only pathogen able to grow within these human fluids. Expression of typical virulence factors such as pyocyanin and pyoverdine was even enhanced compared the levels seen with standard laboratory medium. A detailed chemical composition analysis of BWE was performed, which enabled us to determine the major components of BWE and underline the metabolic modifications induced by burn trauma. These data are essential for the development of an artificial medium mimicking the burn wound environment and the establishment of an in vitro system to analyze the initial steps of burn wound infections. IMPORTANCE Microbial infection of severe burn wounds is currently a major medical challenge. Of the infections by bacteria able to colonize such injuries, those by Pseudomonas aeruginosa are among the most severe, causing major delays in burn patient recovery or leading to fatal issues. In this study, we investigated the growth properties of several burn wound pathogens in biological fluids secreted from human burn wounds. We found that P. aeruginosa strains were able to proliferate but not those of the other pathogens tested. In addition, burn wound exudates (BWEs) stimulate the expression of virulence factors in P. aeruginosa. The chemical composition analysis of BWEs enabled us to determine the major components of these fluids. These data are essential for the development of an artificial medium mimicking the burn wound

  1. Cytochrome b5 and NADH cytochrome b5 reductase: genotype-phenotype correlations for hydroxylamine reduction

    PubMed Central

    Sacco, James C.; Trepanier, Lauren A.

    2010-01-01

    Objectives NADH cytochrome b5 reductase (b5R) and cytochrome b5 (b5) catalyze the reduction of sulfamethoxazole hydroxylamine (SMX-HA), which can contribute to sulfonamide hypersensitivity, to the parent drug sulfamethoxazole. Variability in hydroxylamine reduction could thus play a role in adverse drug reactions. The aim of this study was to characterize variability in SMX-HA reduction in 111 human livers, and investigate its association with single nucleotide polymorphisms (SNPs) in b5 and b5R cDNA. Methods Liver microsomes were assayed for SMX-HA reduction activity, and b5 and b5R expression was semi-quantified by immunoblotting. The coding regions of the b5 (CYB5A) and b5R (CYB5R3) genes were resequenced. Results Hepatic SMX-HA reduction displayed a 19-fold range of individual variability (0.06–1.11 nmol/min/mg protein), and a 17-fold range in efficiency (Vmax/Km) among outliers. SMX-HA reduction was positively correlated with b5 and b5R protein content (p < 0.0001, r = 0.42; p = 0.01, r = 0.23, respectively), and expression of both proteins correlated with one another (p < 0.0001; r = 0.74). A novel cSNP in CYB5A (S5A) was associated with very low activity and protein expression. Two novel CYB5R3 SNPs, R59H and R297H, displayed atypical SMX-HA reduction kinetics and decreased SMX-HA reduction efficiency. Conclusion These studies indicate that while novel cSNPs in CYB5A and CYB5R3 are associated with significantly altered protein expression and/or hydroxylamine reduction activities, these low frequency cSNPs only appear to minimally impact overall observed phenotypic variability. Work is underway to characterize polymorphisms in other regions of these genes to further account for individual variability in hydroxylamine reduction. PMID:19997042

  2. Low reduction potential cytochrome b5 isotypes of Giardia intestinalis.

    PubMed

    Pazdzior, Robert; Yang, Zhen Alice; Mesbahuddin, Mirfath Sultana; Yee, Janet; van der Est, Art; Rafferty, Steven

    2015-10-01

    Despite lacking mitochondria and a known pathway for heme biosynthesis the micro-aerotolerant anaerobic protozoan parasite Giardia intestinalis encodes four members of the cytochrome b5 family of electron transfer proteins, three of which are small, single-domain proteins. While these are similar in size and fold to their better-known mammalian counterparts the Giardia proteins have distinctly lower reduction potentials, ranging from -140 to -171 mV compared to +6 mV for the bovine microsomal protein. This difference is accounted for by a more polar heme environment in the Giardia proteins, as mutation of a conserved heme pocket tyrosine residue to phenylalanine in the Giardia cytochrome b5 isotype-I (gCYTb5-I Y61F) raises its reduction potential by nearly 100 mV. All three isotypes have UV-visible spectra consistent with axial coordination of the heme by a pair of histidine residues, but electron paramagnetic spectroscopy indicates that the planes of their imidazole rings are nearly perpendicular rather than coplanar as observed in mammalian cytochrome b5, which may be due to geometrical constraints imposed by a one-residue shorter spacing between the ligand pair in the Giardia proteins. Although no function has yet to be ascribed to any Giardia cytochrome b5, the presence of similar sequences in many other eukaryotes indicates that these represent an under-characterized class of low reduction potential family members.

  3. Cytochrome allelic variants and clopidogrel metabolism in cardiovascular diseases therapy.

    PubMed

    Jarrar, Mohammed; Behl, Shalini; Manyam, Ganiraju; Ganah, Hany; Nazir, Mohammed; Nasab, Reem; Moustafa, Khaled

    2016-06-01

    Clopidogrel and aspirin are among the most prescribed dual antiplatelet therapies to treat the acute coronary syndrome and heart attacks. However, their potential clinical impacts are a subject of intense debates. The therapeutic efficiency of clopidogrel is controlled by the actions of hepatic cytochrome P450 (CYPs) enzymes and impacted by individual genetic variations. Inter-individual polymorphisms in CYPs enzymes affect the metabolism of clopidogrel into its active metabolites and, therefore, modify its turnover and clinical outcome. So far, clinical trials fail to confirm higher or lower adverse cardiovascular effects in patients treated with combinations of clopidogrel and proton pump inhibitors, compared with clopidogrel alone. Such inconclusive findings may be due to genetic variations in the cytochromes CYP2C19 and CYP3A4/5. To investigate potential interactions/effects of these cytochromes and their allele variants on the treatment of acute coronary syndrome with clopidogrel alone or in combination with proton pump inhibitors, we analyze recent literature and discuss the potential impact of the cytochrome allelic variants on cardiovascular events and stent thrombosis treated with clopidogrel. The diversity of CYP2C19 polymorphisms and prevalence span within various ethnic groups, subpopulations and demographic areas are also debated.

  4. Solubilized cytochrome c oxidase from Paracoccus denitrificans is a monomer.

    PubMed

    Ludwig, B; Grabo, M; Gregor, I; Lustig, A; Regenass, M; Rosenbusch, J P

    1982-05-25

    Cytochrome c oxidase purified from the bacterium Paracoccus denitrificans was analyzed by analytical ultracentrifugation. In the detergent octyltetra/pentaoxyethylene (C8E45), the isolated enzyme exhibits a molecular weight of 79,000 to 84,000. The detergent-solubilized enzyme is thus a monomer which contains one copy of each of the two subunits.

  5. The number of nucleotide binding sites in cytochrome C oxidase.

    PubMed

    Rieger, T; Napiwotzki, J; Hüther, F J; Kadenbach, B

    1995-12-05

    The binding of 2'(3')-O-(2,4,6-trinitrophenyl)-adenosine-5'-triphosphate (TNP-ATP), [35S]ATP alpha S and 8-azido-[gamma-32P]ATP to isolated cytochrome c oxidase of bovine heart and liver and to the two-subunit enzyme of Paracoccus dentrificans was studied by measuring the fluorescence change or bound radioactivity, respectively. With TNP-ATP three binding sites were determined at cytochrome c oxidase from bovine heart and liver, both with two dissociation constants Kd of about 0.2 and 0.9 microM. Trypsin treatment of the enzyme from bovine heart, resulted in one binding site with a Kd of 0.3 microM. The two-subunit enzyme of Paracoccus dentrificans had only one binding site with a Kd of 3.6 microM. The binding of [35S]ATP alpha S to cytochrome c oxidase was studied by equilibrium dialysis. With the enzyme of bovine heart seven and the enzyme of liver six high-affinity binding sites with apparent Kd's of 7.5 and 12 microM, respectively, were obtained. The two-subunit enzyme of Paracoccus denitrificans had one binding site with a Kd of 20 microM. The large number of binding sites at cytochrome c oxidase from bovine heart, mainly at nuclear coded subunits, was verified by photoaffinity labelling with 8-azido-[gamma-32P]ATP.

  6. Cation binding site of cytochrome c oxidase: progress report.

    PubMed

    Vygodina, Tatiana V; Kirichenko, Anna; Konstantinov, Alexander A

    2014-07-01

    Cytochrome c oxidase from bovine heart binds Ca(2+) reversibly at a specific Cation Binding Site located near the outer face of the mitochondrial membrane. Ca(2+) shifts the absorption spectrum of heme a, which allowed earlier the determination of the kinetic and equilibrium characteristics of the binding, and, as shown recently, the binding of calcium to the site inhibits cytochrome oxidase activity at low turnover rates of the enzyme [Vygodina, Т., Kirichenko, A., Konstantinov, A.A (2013). Direct Regulation of Cytochrome c Oxidase by Calcium Ions. PloS ONE 8, e74436]. This paper summarizes further progress in the studies of the Cation Binding Site in this group presenting the results to be reported at 18th EBEC Meeting in Lisbon, 2014. The paper revises specificity of the bovine oxidase Cation Binding Site for different cations, describes dependence of the Ca(2+)-induced inhibition on turnover rate of the enzyme and reports very high affinity binding of calcium with the "slow" form of cytochrome oxidase. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Guest Editors: Manuela Pereira and Miguel Teixeira.

  7. Relationship between horn fly infestation and polymorphisms in cytochrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Individual animal variation occurs regarding external parasite infestation in beef cattle. Our objective was to determine if horn flies infestations present on beef cattle are associated with the single nucleotide polymorphism (SNP; T-318C) in the cytochrome P450 gene (CYP3A28) and the prolactin (PR...

  8. Cytochrome P450 arachidonic acid metabolism in bovine corneal epithelium

    SciTech Connect

    Masferrer, J.; Schwartzman, M.L.; Abraham, N.G.; Dunn, M.W.; McGiff, J.C.

    1986-03-01

    The presence of the cytochrom P450 system and its involvement in the metabolism of AA was studied in the corneal epithelium. This tissue contains cytochrome P450 as assessed directly by measurement of the carbon monoxide reduced spectrum (specific activity of 161 pmol/10 mg protein) and indirectly by measuring the activity of aryl hydrocarbon hydroxylase (AHH) - a cytochrome P450-dependent enzyme (11-39 pmol 3-OH benzopyrene/mg protein/10 min). When corneal epithelial microsomes were incubated with /sup 14/C-arachidonic acid, 30-50% of the total radioactivity was converted to two peaks, I and II. Further separation using high performance liquid chromatography has shown that each peak contains two metabolites, A,B and C,D. Metabolite formation was dependent on the addition of NADPH (1 mM) and inhibited by carbon monoxide and SKF-525A (100 ..mu..M) suggesting a cytochrome P450-dependent mechanism. Compound C (5-10 ..mu..M) inhibited the activity of corneal epithelial Na-K-ATPase by 30-60%, being 100-fold more potent than ouabain. Compound D (10-100 ng) induced a dose dependent relaxation of the rat caudal artery. Compound D also inhibited corneal Na-K-ATPase activity but less potently than compound C. These compounds may be important to transport processes of ocular epithelia and participate in the control of the ocular circulation and aqueous humor dynamics.

  9. Isolation of a cytochrome aa3 gene from Bradyrhizobium japonicum

    PubMed Central

    O'Brian, Mark R.; Maier, Robert J.

    1987-01-01

    Bradyhizobium japonicum strain LO501 is a Tn5-induced mutant that does not express the terminal oxidase cytochrome aa3 (cytochrome-c oxidase, EC 1.9.3.1). Two and one-half kilobase pairs of LO501 genomic DNA that flanks the transposon was isolated and used as a hybridization probe to obtain the wild-type gene from a cosmid library. Two subcloned fragments from two of the isolated cosmids were ligated into broad host range vectors, and restriction maps of these fragments were generated. The resultant plasmids, pCA1 and pBL33, each contained DNA homologous to that mutated in strain LO501. The two plasmids were each introduced into strain LO501 by conjugal transfer, and it was found that pCA1, but not pBL33, complemented the oxidase mutant. The transconjugant strain LO501[pCA1] expressed wild-type levels of cytochrome aa3, as discerned spectrophotometrically, and had restored N,N,N′,N′-tetramethyl-p-phenylenediamine oxidase activity. Furthermore, the frequency of complementation of LO501 cells that received pCA1 by conjugation was 1.0, demonstrating that pCA1 complemented the mutant in trans. The results show that pCA1 contains the entire wild-type gene that was mutated in strain LO501, and this gene is required for cytochrome aa3 expression. Images PMID:16593835

  10. Soluble CuA domain of cyanobacterial cytochrome c oxidase.

    PubMed

    Paumann, Martina; Lubura, Borjana; Regelsberger, Günther; Feichtinger, Markus; Köllensberger, Gunda; Jakopitsch, Christa; Furtmüller, Paul G; Peschek, Günter A; Obinger, Christian

    2004-03-12

    The genomes of several cyanobacteria show the existence of gene clusters encoding subunits I, II, and III of aa(3)-type cytochrome c oxidase. The enzyme occurs on both plasma and thylakoid membranes of these oxygenic phototrophic prokaryotes. Here we report the expression and purification of a truncated subunit II copper A (Cu(A)) domain (i.e. the electron entry and donor binding site) of cytochrome c oxidase from the cyanobacterium Synechocystis PCC 6803 in high yield. The water-soluble purple redox-active bimetallic center displays a relatively low standard reduction potential of 216 mV. Its absorption spectrum at pH 7 is similar to that of other soluble fragments from aa(3)-type oxidases, but the insensitivity of both absorbance and circular dichroism spectra to pH suggests that it is less exposed to the aqueous milieu compared with other Cu(A) domains. Oxidation of horse heart cytochrome c by the bimetallic center follows monophasic kinetics. At pH 7 and low ionic strength the bimolecular rate constant is (2.1 +/- 0.3) x 10(4) m-1 s(-1), and the rates decrease upon the increase of ionic strength. Sequence alignment and modeling of cyanobacterial Cu(A) domains show several peculiarities such as: (i) a large insertion located between the second transmembrane region and the putative hydrophobic cytochrome c docking site, (ii) the lack of acidic residues shown to be important in the interaction between cytochrome c and Paracoccus Cu(A) domain, and (iii) an extended C terminus similar to Escherichia coli ubiquinol oxidase.

  11. Cytochromes P450 in the bioactivation of chemicals.

    PubMed

    Ioannides, Costas; Lewis, David F V

    2004-01-01

    The initial view that the cytochrome P450 enzyme system functions simply in the deactivation of xenobiotics is anachronistic on the face of mounting evidence that this system can also transform many innocuous chemicals to toxic products. However, not all xenobiotic-metabolising cytochrome P450 subfamilies show the same propensity in the bioactivation of chemicals. For example, the CYP2C, 2B and 2D subfamilies play virtually no role in the bioactivation of toxic and carcinogenic chemicals, whereas the CYP1A, 1B and 2E subfamilies are responsible for the bioactivation of the majority of xenobiotics. Electronic and molecular structural features of organic chemicals appear to predispose them to either bioactivation by one cytochrome P450 enzyme or deactivation by another. Consequently, the fate of a chemical in the body is largely dependent on the cytochrome P450 profile at the time of exposure. Any factor that modulates the enzymes involved in the metabolism of a certain chemical will also influence its toxicity and carcinogenicity. For example, many chemical carcinogens bioactivated by CYP1, on repeated administration, selectively induce this family, thus exacerbating their carcinogenicity. CYP1 induction potency by chemicals appears to be determined by a combination of their molecular shape and electron activation. The function of cytochromes P450 in the bioactivation of chemicals is currently being exploited to design systems that can be used clinically to facilitate the metabolic conversion of prodrugs to their biologically-active metabolites in cells that poorly express them, such as tumour cells, in the so-called gene-directed prodrug therapy.

  12. The increasing threat of Pseudomonas aeruginosa high-risk clones.

    PubMed

    Oliver, Antonio; Mulet, Xavier; López-Causapé, Carla; Juan, Carlos

    2015-01-01

    The increasing prevalence of chronic and hospital-acquired infections produced by multidrug-resistant (MDR) or extensively drug-resistant (XDR) Pseudomonas aeruginosa strains is associated with significant morbidity and mortality. This growing threat results from the extraordinary capacity of this pathogen for developing resistance through chromosomal mutations and from the increasing prevalence of transferable resistance determinants, particularly those encoding carbapenemases or extended-spectrum β-lactamases (ESBLs). P. aeruginosa has a nonclonal epidemic population structure, composed of a limited number of widespread clones which are selected from a background of a large quantity of rare and unrelated genotypes that are recombining at high frequency. Indeed, recent concerning reports have provided evidence of the existence of MDR/XDR global clones, denominated high-risk clones, disseminated in hospitals worldwide; ST235, ST111, and ST175 are likely those more widespread. Noteworthy, the vast majority of infections by MDR, and specially XDR, strains are produced by these and few other clones worldwide. Moreover, the association of high-risk clones, particularly ST235, with transferable resistance is overwhelming; nearly 100 different horizontally-acquired resistance elements and up to 39 different acquired β-lactamases have been reported so far among ST235 isolates. Likewise, MDR internationally-disseminated epidemic strains, such as the Liverpool Epidemic Strain (LES, ST146), have been noted as well among cystic fibrosis patients. Here we review the population structure, epidemiology, antimicrobial resistance mechanisms and virulence of the P. aeruginosa high-risk clones. The phenotypic and genetic factors potentially driving the success of high-risk clones, the aspects related to their detection in the clinical microbiology laboratory and the implications for infection control and public health are also discussed.

  13. Pseudomonas aeruginosa EftM Is a Thermoregulated Methyltransferase*

    PubMed Central

    Owings, Joshua P.; Kuiper, Emily G.; Prezioso, Samantha M.; Meisner, Jeffrey; Varga, John J.; Zelinskaya, Natalia; Dammer, Eric B.; Duong, Duc M.; Seyfried, Nicholas T.; Albertí, Sebastián; Conn, Graeme L.; Goldberg, Joanna B.

    2016-01-01

    Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that trimethylates elongation factor-thermo-unstable (EF-Tu) on lysine 5. Lysine 5 methylation occurs in a temperature-dependent manner and is generally only seen when P. aeruginosa is grown at temperatures close to ambient (25 °C) but not at higher temperatures (37 °C). We have previously identified the gene, eftM (for EF-Tu-modifying enzyme), responsible for this modification and shown its activity to be associated with increased bacterial adhesion to and invasion of respiratory epithelial cells. Bioinformatic analyses predicted EftM to be a Class I S-adenosyl-l-methionine (SAM)-dependent methyltransferase. An in vitro methyltransferase assay was employed to show that, in the presence of SAM, EftM directly trimethylates EF-Tu. A natural variant of EftM, with a glycine to arginine substitution at position 50 in the predicted SAM-binding domain, lacks both SAM binding and enzyme activity. Mass spectrometry analysis of the in vitro methyltransferase reaction products revealed that EftM exclusively methylates at lysine 5 of EF-Tu in a distributive manner. Consistent with the in vivo temperature dependence of methylation of EF-Tu, preincubation of EftM at 37 °C abolished methyltransferase activity, whereas this activity was retained when EftM was preincubated at 25 °C. Irreversible protein unfolding at 37 °C was observed, and we propose that this instability is the molecular basis for the temperature dependence of EftM activity. Collectively, our results show that EftM is a thermolabile, SAM-dependent methyltransferase that directly trimethylates lysine 5 of EF-Tu in P. aeruginosa. PMID:26677219

  14. Biotic inactivation of the Pseudomonas aeruginosa quinolone signal molecule.

    PubMed

    Soh, Eliza Ye-Chen; Chhabra, Siri R; Halliday, Nigel; Heeb, Stephan; Müller, Christine; Birmes, Franziska S; Fetzner, Susanne; Cámara, Miguel; Chan, Kok-Gan; Williams, Paul

    2015-11-01

    In Pseudomonas aeruginosa, quorum sensing (QS) regulates the production of secondary metabolites, many of which are antimicrobials that impact on polymicrobial community composition. Consequently, quenching QS modulates the environmental impact of P. aeruginosa. To identify bacteria capable of inactivating the QS signal molecule 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS), a minimal medium containing PQS as the sole carbon source was used to enrich a Malaysian rainforest soil sample. This yielded an Achromobacter xylosoxidans strain (Q19) that inactivated PQS, yielding a new fluorescent compound (I-PQS) confirmed as PQS-derived using deuterated PQS. The I-PQS structure was elucidated using mass spectrometry and nuclear magnetic resonance spectroscopy as 2-heptyl-2-hydroxy-1,2-dihydroquinoline-3,4-dione (HHQD). Achromobacter xylosoxidans Q19 oxidized PQS congeners with alkyl chains ranging from C1 to C5 and also N-methyl PQS, yielding the corresponding 2-hydroxy-1,2-dihydroquinoline-3,4-diones, but was unable to inactivate the PQS precursor HHQ. This indicates that the hydroxyl group at position 3 in PQS is essential and that A. xylosoxidans inactivates PQS via a pathway involving the incorporation of oxygen at C2 of the heterocyclic ring. The conversion of PQS to HHQD also occurred on incubation with 12/17 A. xylosoxidans strains recovered from cystic fibrosis patients, with P. aeruginosa and with Arthrobacter, suggesting that formation of hydroxylated PQS may be a common mechanism of inactivation.

  15. Regional Control of Chromosome Segregation in Pseudomonas aeruginosa

    PubMed Central

    Lagage, Valentine

    2016-01-01

    Chromosome segregation in bacteria occurs concomitantly with DNA replication, and the duplicated regions containing the replication origin oriC are generally the first to separate and migrate to their final specific location inside the cell. In numerous bacterial species, a three-component partition machinery called the ParABS system is crucial for chromosome segregation. This is the case in the gammaproteobacterium Pseudomonas aeruginosa, where impairing the ParABS system is very detrimental for growth, as it increases the generation time and leads to the formation of anucleate cells and to oriC mispositioning inside the cell. In this study, we investigate in vivo the ParABS system in P. aeruginosa. Using chromatin immuno-precipitation coupled with high throughput sequencing, we show that ParB binds to four parS site located within 15 kb of oriC in vivo, and that this binding promotes the formation of a high order nucleoprotein complex. We show that one parS site is enough to prevent anucleate cell formation, therefore for correct chromosome segregation. By displacing the parS site from its native position on the chromosome, we demonstrate that parS is the first chromosomal locus to be separated upon DNA replication, which indicates that it is the site of force exertion of the segregation process. We identify a region of approximatively 650 kb surrounding oriC in which the parS site must be positioned for chromosome segregation to proceed correctly, and we called it “competence zone” of the parS site. Mutant strains that have undergone specific genetic rearrangements allow us to propose that the distance between oriC and parS defines this “competence zone”. Implications for the control of chromosome segregation in P. aeruginosa are discussed. PMID:27820816

  16. Emergence of colistin resistant Pseudomonas aeruginosa at Tabriz hospitals, Iran

    PubMed Central

    Goli, Hamid Reza; Nahaei, Mohammad Reza; Ahangarzadeh Rezaee, Mohammad; Hasani, Alka; Samadi Kafil, Hossein; Aghazadeh, Mohammad

    2016-01-01

    Background and Objectives: The prevalence of multidrug resistant Pseudomonas aeruginosa is the main reason of new drugs resurgence such as colistin. The main objectives of this study were to determine the antibiotic resistance pattern and the rate of colistin resistance along with its correlation with overexpression of MexAB-OprM and MexXY-OprM efflux pumps among P. aeruginosa isolates. Materials and Methods: Hundred clinical isolates were collected from 100 patients during 6 months in 2014. Susceptibility to the eight antibiotics was investigated using Kirby-Bauer and agar dilution methods. The Quantitative Real-time PCR was used to determine the expression levels of efflux genes. Results: Resistance rates to various antibiotics were as follows: ticarcillin (73%), ciprofloxacin (65%), aztreonam (60%), ceftazidime (55%), gentamicin (55%), imipenem (49%), piperacillin/tazobactam (34%) and colistin (2%). In disk diffusion method, only two isolates were non susceptible to colistin, however in agar dilution method the two isolates were confirmed as resistant and two others were intermediate resistant. Sixty eight (68%) isolates were multi-drug resistant and 10 isolates were susceptible to all tested antibiotics. Both colistin resistant isolates showed overexpression of both efflux pumps, but two intermediate resistant isolates exhibited reduction of efflux genes expression. Conclusions: Emergence of colistin resistance is increasing in P. aeruginosa indicating great challenge in the treatment of infections caused by MDR strains of this organism in Iran. ParRS may promote either induced or constitutive resistance to colistin through the activation of distinct mechanisms such as MDR efflux pumps, and LPS modification. PMID:27092226

  17. Detection of Pseudomonas aeruginosa in sputum headspace through volatile organic compound analysis

    PubMed Central

    2012-01-01

    Introduction Chronic pulmonary infection is the hallmark of Cystic Fibrosis lung disease. Searching for faster and easier screening may lead to faster diagnosis and treatment of Pseudomonas aeruginosa (P. aeruginosa). Our aim was to analyze and build a model to predict the presence of P. aeruginosa in sputa. Methods Sputa from 28 bronchiectatic patients were used for bacterial culturing and analysis of volatile compounds by gas chromatography–mass spectrometry. Data analysis and model building were done by Partial Least Squares Regression Discriminant analysis (PLS-DA). Two analysis were performed: one comparing P. aeruginosa positive with negative cultures at study visit (PA model) and one comparing chronic colonization according to the Leeds criteria with P. aeruginosa negative patients (PACC model). Results The PA model prediction of P. aeruginosa presence was rather poor, with a high number of false positives and false negatives. On the other hand, the PACC model was stable and explained chronic P. aeruginosa presence for 95% with 4 PLS-DA factors, with a sensitivity of 100%, a positive predictive value of 86% and a negative predictive value of 100%. Conclusion Our study shows the potential for building a prediction model for the presence of chronic P. aeruginosa based on volatiles from sputum. PMID:23031195

  18. Predicting the growth situation of Pseudomonas aeruginosa on agar plates and meat stuffs using gas sensors

    NASA Astrophysics Data System (ADS)

    Gu, Xinzhe; Sun, Ye; Tu, Kang; Dong, Qingli; Pan, Leiqing

    2016-12-01

    A rapid method of predicting the growing situation of Pseudomonas aeruginosa is presented. Gas sensors were used to acquire volatile compounds generated by P. aeruginosa on agar plates and meat stuffs. Then, optimal sensors were selected to simulate P. aeruginosa growth using modified Logistic and Gompertz equations by odor changes. The results showed that the responses of S8 or S10 yielded high coefficients of determination (R2) of 0.89–0.99 and low root mean square errors (RMSE) of 0.06–0.17 for P. aeruginosa growth, fitting the models on the agar plate. The responses of S9, S4 and the first principal component of 10 sensors fit well with the growth of P. aeruginosa inoculated in meat stored at 4 °C and 20 °C, with R2 of 0.73–0.96 and RMSE of 0.25–1.38. The correlation coefficients between the fitting models, as measured by electronic nose responses, and the colony counts of P. aeruginosa were high, ranging from 0.882 to 0.996 for both plate and meat samples. Also, gas chromatography–mass spectrometry results indicated the presence of specific volatiles of P. aeruginosa on agar plates. This work demonstrated an acceptable feasibility of using gas sensors—a rapid, easy and nondestructive method for predicting P. aeruginosa growth.

  19. The Pseudomonas aeruginosa Pathogenicity Island PAPI-1 is transferred via a novel Type IV pilus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas aeruginosa is a major cause of nosocomial infections, particularly in immunocompromised patients or in individuals with cystic fibrosis. The notable ability of P. aeruginosa to inhabit a broad range of environments including humans is in part due to its large and diverse genomic repertoi...

  20. Draft Genome Sequence of Beneficial Rice Rhizosphere Isolate Pseudomonas aeruginosa PUPa3

    PubMed Central

    Uzelac, Gordana; Bertani, Iris; Kojic, Milan; Paszkiewicz, Konrad H.; Studholme, David J.; Passos da Silva, Daniel

    2014-01-01

    Pseudomonas aeruginosa PUPa3 is a rhizosphere-colonizing and plant growth-promoting strain isolated from the rhizosphere of rice. This strain has, however, been shown to be pathogenic in two nonmammalian infection models. Here we report the draft genome sequence of P. aeruginosa PUPa3. PMID:24994800

  1. Draft Genome Sequence of Beneficial Rice Rhizosphere Isolate Pseudomonas aeruginosa PUPa3.

    PubMed

    Uzelac, Gordana; Bertani, Iris; Kojic, Milan; Paszkiewicz, Konrad H; Studholme, David J; Passos da Silva, Daniel; Venturi, Vittorio

    2014-07-03

    Pseudomonas aeruginosa PUPa3 is a rhizosphere-colonizing and plant growth-promoting strain isolated from the rhizosphere of rice. This strain has, however, been shown to be pathogenic in two nonmammalian infection models. Here we report the draft genome sequence of P. aeruginosa PUPa3.

  2. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Hwang, Sohyun; Kim, Chan Yeong; Ji, Sun-Gou; Go, Junhyeok; Kim, Hanhae; Yang, Sunmo; Kim, Hye Jin; Cho, Ara; Yoon, Sang Sun; Lee, Insuk

    2016-05-01

    Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa.

  3. Pseudomonas aeruginosa and Its Bacterial Components Influence the Cytokine Response in Thymocytes and Splenocytes

    PubMed Central

    Zimmermann, Corinna; Mausberg, Anne K.; Dehmel, Thomas; Kieseier, Bernd C.; Hartung, Hans-Peter; Hofstetter, Harald H.

    2016-01-01

    Infections with Pseudomonas aeruginosa may cause many different diseases. The spectrum of such infections in general includes inflammation and bacterial sepsis. Hospital-acquired pneumonia, naturally resistant to a wide range of antibiotics, is associated with a particularly high mortality rate in mechanically ventilated patients. The pathogenesis of P. aeruginosa is complex and mediated by several virulence factors, as well as cell-associated factors. We have previously demonstrated that stimulation with different bacteria triggers the cytokine response of thymocytes. In this study, we investigated the effect of P. aeruginosa and its different components on the cytokine production of immature and mature immune cells. We found that the induced cytokine pattern in the thymus and the spleen after infections with P. aeruginosa is primarily mediated by lipopolysaccharide (LPS) of the outer cell membrane, but other components of the bacterium can influence the cytokine secretion as well. Stimulation with heat-killed P. aeruginosa and LPS does not influence the amount of cytokine-producing CD4+ T cells but instead suppresses the emergence of Th17 cells. However, stimulation with P. aeruginosa or its components triggers the interleukin-17 (IL-17) response both in thymocytes and in splenocytes. We conclude that infections with P. aeruginosa affect the cytokine secretion of immature and mature cells and that IL-17 and Th17 cells play only a minor role in the development of pathological systemic inflammatory disease conditions during P. aeruginosa infections. Therefore, other inflammatory immune responses must be responsible for septic reactions of the host. PMID:26902726

  4. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa

    PubMed Central

    Hwang, Sohyun; Kim, Chan Yeong; Ji, Sun-Gou; Go, Junhyeok; Kim, Hanhae; Yang, Sunmo; Kim, Hye Jin; Cho, Ara; Yoon, Sang Sun; Lee, Insuk

    2016-01-01

    Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa. PMID:27194047

  5. Cellular responses and biodegradation of amoxicillin in Microcystis aeruginosa at different nitrogen levels.

    PubMed

    Liu, Ying; Wang, Feng; Chen, Xiao; Zhang, Jian; Gao, Baoyu

    2015-01-01

    The influence of nitrogen on the interactions between amoxicillin and Microcystis aeruginosa was investigated using a 7-day exposure test. Growth of M. aeruginosa was not significantly (p>0.05) affected by amoxicillin at the lowest nitrogen level of 0.05 mg L(-1), stimulated by 500 ng L(-1) of amoxicillin at a moderate nitrogen level of 0.5 mg L(-1) and enhanced by 200-500 ng L(-1) of amoxicillin at the highest nitrogen level of 5 mg L(-1). The generation of reactive oxygen species (ROS) and the synthesis of glutathione S-transferases (GST) and glutathione (GSH) were more sensitive to amoxicillin and were stimulated at all nitrogen levels. At the lowest nitrogen level of 0.05 mg L(-1), superoxide dismutase and peroxidase were not effective at eliminating amoxicillin-induced ROS, resulting in the highest malondialdehyde content in M. aeruginosa. The biodegradation of 18.5-30.5% of amoxicillin by M. aeruginosa was coupled to increasing GST activity and GSH content. Elevated nitrogen concentrations significantly enhanced (p<0.05) the stimulation effect of amoxicillin on the growth of M. aeruginosa, the antioxidant responses to amoxicillin and the biodegradation of amoxicillin in M. aeruginosa. The nitrogen-dependent hormesis effect of the coexisting amoxicillin contaminant on the M. aeruginosa bloom should be fully considered during the control of M. aeruginosa bloom.

  6. Effects of sulfate on microcystin production, photosynthesis, and oxidative stress in Microcystis aeruginosa.

    PubMed

    Chen, Lei; Gin, Karina Y H; He, Yiliang

    2016-02-01

    Increasing sulfate in freshwater systems, caused by human activities and climate change, may have negative effects on aquatic organisms. Microcystis aeruginosa (M. aeruginosa) is both a major primary producer and a common toxic cyanobacterium, playing an important role in the aquatic environment. This study first investigated the effects of sulfate on M. aeruginosa. The experiment presented here aims at analyzing the effects of sulfate on physiological indices, molecular levels, and its influencing mechanism. The results of our experiment showed that sulfate (at 40, 80, and 300 mg L(-1)) inhibited M. aeruginosa growth, increased both intracellular and extracellular toxin contents, and enhanced the mcyD transcript level. Sulfate inhibited the photosynthesis of M. aeruginosa, based on the decrease in pigment content and the down-regulation of photosynthesis-related genes after sulfate exposure. Furthermore, sulfate decreased the maximum electron transport rate, causing the cell to accumulate surplus electrons and form reactive oxygen species (ROS). Sulfate also increased the malondialdehyde (MDA) content, which showed that sulfate damaged the cytomembrane. This damage contributed to the release of intracellular toxin to the culture medium. Although sulfate increased superoxide dismutase (SOD) activities, expression of sod, and total antioxidant capacity in M. aeruginosa, it still overwhelmed the antioxidant system since the ROS level simultaneously increased, and finally caused oxidative stress. Our results indicate that sulfate has direct effects on M. aeruginosa, inhibits photosynthesis, causes oxidative stress, increases toxin production, and affects the related genes expression in M. aeruginosa.

  7. Draft Genome Sequence of Pseudomonas aeruginosa Strain RB, a Bacterium Capable of Synthesizing Cadmium Selenide Nanoparticles.

    PubMed

    Ayano, Hiroyuki; Kuroda, Masashi; Soda, Satoshi; Ike, Michihiko

    2014-05-15

    Pseudomonas aeruginosa strain RB is a bacterium capable of synthesizing cadmium selenide (CdSe) nanoparticles and was isolated from a soil sample. Here, we present the draft genome sequence of P. aeruginosa strain RB. To the best of our knowledge, this is the first report of a draft genome of a CdSe-synthesizing bacterium.

  8. Plasmid-Determined Resistance to Boron and Chromium Compounds in Pseudomonas aeruginosa

    PubMed Central

    Summers, Anne O.; Jacoby, George A.

    1978-01-01

    Plasmids determining resistance to arsenic, mercury, silver, and tellurium compounds in Escherichia coli and Pseudomonas aeruginosa were tested for resistance to 40 other metal compounds. Resistance to trivalent boron and hexavalent chromium compounds was a property of certain P. aeruginosa plasmids. PMID:96730

  9. Effects of Microcystis aeruginosa on life history of water flea Daphnia magna

    NASA Astrophysics Data System (ADS)

    Liu, Liping; Li, Kang; Chen, Taoying; Dai, Xilin; Jiang, Min; Diana, James S.

    2011-07-01

    Cyanobacterial blooms in eutrophic freshwater systems are a worldwide problem, creating adverse effects for many aquatic organisms by producing toxic microcystins and deteriorating water quality. In this study, microcystins (MCs) in Microcystis aeruginosa, and Daphnia magna exposed to M. aeruginosa, were analyzed by HPLC-MS, and the effects of M. aeruginosa on D. magna were investigated. When D. magna was exposed to M. aeruginosa for more than 2 h, Microcystin-LR (MC-LR) was detected. When exposed to 1.5 × 106, 3 × 106, 0.75 × 107, and 1.5 × 107 cell/mL of M. aeruginosa for 96 h, average survival of D. magna for treatments were 23.33%, 33.33%, 13.33%, 16.67%, respectively, which were significantly lower than the average 100% survival in the control group ( P < 0.05). The adverse effects of M. aeruginosa on body length, time for the first brood, brood numbers, gross fecundity, lifespan, and population growth of D. magna were density-dependent. These results suggest that the occurrence of M. aeruginosa blooms could strongly inhibit the population growth of D. magna through depression of survival, individual growth and gross fecundity. In the most serious situations, M. aeruginosa blooms could undermine the food web by eliminating filter-feeding zooplankton, which would destroy the ecological balance of aquaculture water bodies.

  10. Predicting the growth situation of Pseudomonas aeruginosa on agar plates and meat stuffs using gas sensors

    PubMed Central

    Gu, Xinzhe; Sun, Ye; Tu, Kang; Dong, Qingli; Pan, Leiqing

    2016-01-01

    A rapid method of predicting the growing situation of Pseudomonas aeruginosa is presented. Gas sensors were used to acquire volatile compounds generated by P. aeruginosa on agar plates and meat stuffs. Then, optimal sensors were selected to simulate P. aeruginosa growth using modified Logistic and Gompertz equations by odor changes. The results showed that the responses of S8 or S10 yielded high coefficients of determination (R2) of 0.89–0.99 and low root mean square errors (RMSE) of 0.06–0.17 for P. aeruginosa growth, fitting the models on the agar plate. The responses of S9, S4 and the first principal component of 10 sensors fit well with the growth of P. aeruginosa inoculated in meat stored at 4 °C and 20 °C, with R2 of 0.73–0.96 and RMSE of 0.25–1.38. The correlation coefficients between the fitting models, as measured by electronic nose responses, and the colony counts of P. aeruginosa were high, ranging from 0.882 to 0.996 for both plate and meat samples. Also, gas chromatography–mass spectrometry results indicated the presence of specific volatiles of P. aeruginosa on agar plates. This work demonstrated an acceptable feasibility of using gas sensors—a rapid, easy and nondestructive method for predicting P. aeruginosa growth. PMID:27941841

  11. Isolation and characterization of an Escherichia coli mutant lacking cytochrome d terminal oxidase.

    PubMed Central

    Green, G N; Gennis, R B

    1983-01-01

    A screening procedure was devised which permitted the isolation of a cytochrome d-deficient mutant by its failure to oxidize the artificial electron donor N,N,N',N'-tetramethyl-p-phenylenediamine. Cytochrome a1 and probably cytochrome b558 were also missing in the mutant. Growth and oxygen uptake rates were similar for both parent and mutant strains. However, the strain lacking cytochrome d had an increased sensitivity to cyanide, indicating that cytochrome d confers some resistance to this respiratory inhibitor. The gene responsible for these phenotypes has been named cyd and maps between tolA and sucB. PMID:6304009

  12. Mechanistic Scrutiny Identifies a Kinetic Role for Cytochrome b5 Regulation of Human Cytochrome P450c17 (CYP17A1, P450 17A1)

    PubMed Central

    Simonov, Alexandr N.; Holien, Jessica K.; Yeung, Joyee Chun In; Nguyen, Ann D.; Corbin, C. Jo; Zheng, Jie; Kuznetsov, Vladimir L.; Auchus, Richard J.; Conley, Alan J.; Bond, Alan M.; Parker, Michael W.; Rodgers, Raymond J.; Martin, Lisandra L.

    2015-01-01

    Cytochrome P450c17 (P450 17A1, CYP17A1) is a critical enzyme in the synthesis of androgens and is now a target enzyme for the treatment of prostate cancer. Cytochrome P450c17 can exhibit either one or two physiological enzymatic activities differentially regulated by cytochrome b5. How this is achieved remains unknown. Here, comprehensive in silico, in vivo and in vitro analyses were undertaken. Fluorescence Resonance Energy Transfer analysis showed close interactions within living cells between cytochrome P450c17 and cytochrome b5. In silico modeling identified the sites of interaction and confirmed that E48 and E49 residues in cytochrome b5 are essential for activity. Quartz crystal microbalance studies identified specific protein-protein interactions in a lipid membrane. Voltammetric analysis revealed that the wild type cytochrome b5, but not a mutated, E48G/E49G cyt b5, altered the kinetics of electron transfer between the electrode and the P450c17. We conclude that cytochrome b5 can influence the electronic conductivity of cytochrome P450c17 via allosteric, protein-protein interactions. PMID:26587646

  13. The orientations of cytochrome c in the highly dynamic complex with cytochrome b5 visualized by NMR and docking using HADDOCK

    PubMed Central

    Volkov, Alexander N.; Ferrari, Davide; Worrall, Jonathan A.R.; Bonvin, Alexandre M.J.J.; Ubbink, Marcellus

    2005-01-01

    The interaction of bovine microsomal ferricytochrome b5 with yeast iso-1-ferri and ferrocytochrome c has been investigated using heteronuclear NMR techniques. Chemical-shift perturbations for 1H and 15N nuclei of both cytochromes, arising from the interactions with the unlabeled partner proteins, were used for mapping the interacting surfaces on both proteins. The similarity of the binding shifts observed for oxidized and reduced cytochrome c indicates that the complex formation is not influenced by the oxidation state of the cytochrome c. Protein–protein docking simulations have been performed for the binary cytochrome b5–cytochrome c and ternary (cytochrome b5)–(cytochrome c)2 complexes using a novel HADDOCK approach. The docking procedure, which makes use of the experimental data to drive the docking, identified a range of orientations assumed by the proteins in the complex. It is demonstrated that cytochrome c uses a confined surface patch for interaction with a much more extensive surface area of cytochrome b5. Taken together, the experimental data suggest the presence of a dynamic ensemble of conformations assumed by the proteins in the complex. PMID:15689516

  14. Adaptation of the cyanobacterium Microcystis aeruginosa to light intensity

    SciTech Connect

    Raps, S.; Wyman, K.; Siegelman, H.W.; Falkowski, P.G.

    1983-01-01

    Light intensity adaptation (20 to 565 microeinsteins per square meter per second) of Microcystis aeruginosa (UV-027) was examined in turbidostat culture. Chlorophyll a and phycocyanin concentrations decreased with increasing light intensity while carotenoid, cellular carbon, and nitrogen contents did not vary. Variation in the number but not the size of photosynthetic units per cell, based on chlorophyll a/P/sub 700/ ratios, occurred on light intensity adaptation. Changes in the numbers of photosynthetic units partially dampened the effects of changes in light intensity on growth rates.

  15. [Necrotizing fasciitis caused by pseudomonas aeruginosa (an obervation)].

    PubMed

    Abada, A; Benhmidoune, L; Tahiri, H; Essalim, K; Chakib, A; Elbelhadji, M; Rachid, R; Zaghloul, K; Amraoui, A

    2007-01-01

    Necrotizing fasciitis is an exceptional and severe form of subcutaneous gangrene which requires early diagnosis and emergency treatment. We report the case of a 24 year old woman presenting with necrotizing fasciitis after pansinusitis resistant to treatment. The germ detected was pseudomonas aeruginosa. The infection was controled with intensive care, antibiotics and surgical resection of necrotic tissues. The aim of this observation is to highlight the clinical characteristics of this disease, and to insist on the necessity to recognize the early symptoms and to start treatment as soon as possible.

  16. Phosphorylated tyrosine in the flagellum filament protein of Pseudomonas aeruginosa

    SciTech Connect

    Kelly-Wintenberg, K.; Anderson, T.; Montie, T.C. )

    1990-09-01

    Purified flagella from two strains of {sup 32}P-labeled Pseudomonas aeruginosa were shown to be phosphorylated. This was confirmed by autoradiography of flagellin protein in polyacrylamide gels. Thin-layer electrophoresis and autoradiography of flagellin partial hydrolysates indicated that phosphotyrosine was the major phosphorylated amino acid. High-pressure liquid chromatographic analysis confirmed the presence of phosphotyrosine in flagellum filament protein. Preliminary data indicated that less than one tyrosine per subunit was phosphorylated. No evidence was found for phosphorylation of serine or threonine. A function related to tyrosine phosphorylation has not been determined.

  17. Vaccines for Pseudomonas aeruginosa: A long and winding road

    PubMed Central

    Priebe, Gregory P.; Goldberg, Joanna B.

    2015-01-01

    Summary Despite the recognition of Pseudomonas aeruginosa is an opportunistic pathogen, no vaccine against this bacteria have come to market. This review describes the current state-of-the-art in vaccinology for this bacterium. This includes a discussion of those at risk for infection, the types of vaccines and the approaches for empirical and targeted antigen selection under development, as well as a perspective on where the field should go. In addition, the challenges in developing a vaccine for those individuals at risk are discussed. PMID:24575895

  18. The Approach to Pseudomonas aeruginosa in Cystic Fibrosis.

    PubMed

    Talwalkar, Jaideep S; Murray, Thomas S

    2016-03-01

    There is a high prevalence of Pseudomonas aeruginosa in patients with cystic fibrosis and clear epidemiologic links between chronic infection and morbidity and mortality exist. Prevention and early identification of infection are critical, and stand to improve with the advent of new vaccines and laboratory methods. Once the organism is identified, a variety of treatment options are available. Aggressive use of antipseudomonal antibiotics is the standard of care for acute pulmonary exacerbations in cystic fibrosis, and providers must take into account specific patient characteristics when making treatment decisions related to antibiotic selection, route and duration of administration, and site of care.

  19. Bacteriophages of Pseudomonas aeruginosa: long-term prospects for use in phage therapy.

    PubMed

    Krylov, Victor N

    2014-01-01

    Bacteria Pseudomonas aeruginosa, being opportunistic pathogens, are the major cause of nosocomial infections and, in some cases, the primary cause of death. They are virtually untreatable with currently known antibiotics. Phage therapy is considered as one of the possible approaches to the treatment of P. aeruginosa infections. Difficulties in the implementation of phage therapy in medical practice are related, for example, to the insufficient number and diversity of virulent phages that are active against P. aeruginosa. Results of interaction of therapeutic phages with bacteria in different conditions and environments are studied insufficiently. A little is known about possible interactions of therapeutic phages with resident prophages and plasmids in clinical strains in the foci of infections. This chapter highlights the different approaches to solving these problems and possible ways to expand the diversity of therapeutic P. aeruginosa phages and organizational arrangements (as banks of phages) to ensure long-term use of phages in the treatment of P. aeruginosa infections.

  20. [Studies on hyperspectral characteristics of Microcystis aeruginosa under the cultivation conditions with different phosphorus concentrations].

    PubMed

    Qin, Zhao-Yang; Liu, Xue-Hua; Zhao, Jin-Bo

    2013-02-01

    Microcystis aeruginosa is one of the most common species in the algae-bloom events of domestic lakes. Illumination incubator was used to cultivate M. aeruginosa under conditions of different phosphorus concentrations in the laboratory. Spectroscopic data of culture solutions were collected by GER1500 spectrometer under the sunlight. The study focused on the growth rhythm of M. aeruginosa and the characteristics of spectral variation in the culture solutions. The results showed that low phosphorus concentration (< or =10 microg x L(-1)) is a restricting factor for the growth and reproduction of M. aeruginosa. Moreover, the reflections of spectrum from culture solutions of M. aeruginosa showed significant changes along with cultivation period, such as at the wavelengths of 550, 610, 660, 700-710 and 760 nm.

  1. Assessment of biofilm formation in Pseudomonas aeruginosa by antisense mazE-PNA.

    PubMed

    Valadbeigi, Hassan; Sadeghifard, Nourkhoda; Salehi, Majid Baseri

    2017-03-01

    The hallmark patogenicity in Pseudomonas aeruginosa (P. aeruginosa) is biofilm formation that is not easy to eradicate, because it has variety mechanisms for antibiotic resistance. In addition, toxin-antitoxin (TA) system may play role in biofilm formation. The current study aimed to evaluate the role of TA loci in biofilm formation. Therefore, 18 P. aeruginosa clinical isolates were collected and evaluated for specific biofilm and TA genes. The analysis by RT-qPCR demonstrated that expression of mazE antitoxin in biofilm formation was increase. On the other hand, mazE antitoxin TA system was used as target for antisense PNA. mazE-PNA was able to influence in biofilm formation and was inhibit at 5,10 and 15 μM concentrations biofilm formation in P. aeruginosa. Therefore, it could be highlighted target for anti-biofilm target to eradicate P. aeruginosa biofilm producer.

  2. Pseudomonas aeruginosa PAO1 resistance to Zinc pyrithione: phenotypic changes suggest the involvement of efflux pumps.

    PubMed

    Abdel Malek, Suzanne M; Al-Adham, Ibrahim S; Matalka, Khalid Z; Collier, Philip J

    2009-08-01

    The aim of this study is to investigate the involvement of an efflux pump in the development of Pseudomonas aeruginosa resistance to zinc pyrithione (ZnPT). In the presence of efflux inhibitor carbonyl cyanide m-chlorophenyl-hydrazone (CCCP), the minimum inhibitory concentration of ZnPT for P. aeruginosa resistant cells is reduced significantly (p < 0.05). In addition, the concentration of ZnPT excluded by the resistant bacteria was reduced significantly (p < 0.01). However, the above reductions did not reach the levels measured for P. aeruginosa PAO1 sensitive strain. Furthermore, such changes in P. aeruginosa resistant cells were correlated with the overexpression of outer membrane proteins, reduced sensitivity toward imipenem (p < 0.01) and increased sensitivity toward sulphatriad and chloramphenicol (p < 0.05). In a continuation to a previous study, we conclude that P. aeruginosa resistance to ZnPT is multifactorial and involves induced efflux systems.

  3. Insights into the respiratory tract microbiota of patients with cystic fibrosis during early Pseudomonas aeruginosa colonization

    DOE PAGES

    Keravec, Marlène; Mounier, Jérôme; Prestat, Emmanuel; ...

    2015-08-09

    Pseudomonas aeruginosa plays a major role in cystic fibrosis (CF) progression. Therefore, it is important to understand the initial steps of P. aeruginosa infection. The structure and dynamics of CF respiratory tract microbial communities during the early stages of P. aeruginosa colonization were characterized by pyrosequencing and cloning-sequencing. The respiratory microbiota showed high diversity, related to the young age of the CF cohort (mean age 10 years). Wide inter- and intra-individual variations were revealed. A common core microbiota of 5 phyla and 13 predominant genera was found, the majority of which were obligate anaerobes. A few genera were significantly moremore » prevalent in patients never infected by P. aeruginosa. Persistence of an anaerobic core microbiota regardless of P. aeruginosa status suggests a major role of certain anaerobes in the pathophysiology of lung infections in CF. Some genera may be potential biomarkers of pulmonary infection state.« less

  4. Insights into the respiratory tract microbiota of patients with cystic fibrosis during early Pseudomonas aeruginosa colonization

    SciTech Connect

    Keravec, Marlene; Mounier, Jerome; Prestat , Emmanuel; Vallet, Sophie; Jansson, Janet K.; Bergaud , Gaetaqn; Rosec, Silvain; Gourious, Stephanie; Rault, Gilles; Coton, Emmanuel; Barbier, George; Hery-Arnaud, Geneveieve

    2015-08-09

    Abstract Pseudomonas aeruginosa plays a major role in cystic fibrosis (CF) progression. Therefore, it is important to understand the initial steps of P. aeruginosa infection. The structure and dynamics of CF respiratory tract microbial communities during the early stages of P. aeruginosa colonization were characterized by pyrosequencing and cloning-sequencing. The respiratory microbiota showed high diversity, related to the young age of the CF cohort (mean age 10 years). Wide inter- and intra-individual variations were revealed. A common core microbiota of 5 phyla and 13 predominant genera was found, the majority of which were obligate anaerobes. A few genera were significantly more prevalent in patients never infected by P. aeruginosa. Persistence of an anaerobic core microbiota regardless of P. aeruginosa status suggests a major role of certain anaerobes in the pathophysiology of lung infections in CF. Some genera may be potential biomarkers of pulmonary infection state.

  5. Diminished degradation of yeast cytochrome c by interactions with its physiological partners.

    PubMed Central

    Pearce, D A; Sherman, F

    1995-01-01

    The level and structure of yeast iso-1-cytochrome c and iso-2-cytochrome c, encoded by the nuclear genes CYC1 and CYC7, respectively, are normally not altered in rho- mutants, which completely lack the cytochromes a.a3 subunits and cytochrome b that are encoded by mitochondrial DNA. In contrast, iso-cytochromes c containing the amino acid change Thr-78-->Ile (T78I) were observed at the normal or near-normal wild-type level in rho+ strains but were completely absent in rho- mutants. We have demonstrated with the "global" suppressor mutation Asn-52-->Ile and by pulse-chase labeling that the T78I iso-1-cytochrome c undergoes rapid cellular degradation in rho- mutants. Furthermore, specific mutations revealed that the deficiency of T78I iso-1 cytochrome c can be caused by the lack of cytochrome a.a3 or cytochrome c1, but not by the lack of cytochrome b. Thus, this and certain other, but not all, labile forms of cytochrome c are protected from degradation by the interaction with its physiological partners. Images Fig. 2 Fig. 3 PMID:7731975

  6. Purification of Paracoccus denitrificans cytochrome c552 and sequence analysis of the gene.

    PubMed

    Turba, A; Jetzek, M; Ludwig, B

    1995-07-01

    Unlike mitochondria, many bacteria use a large repertoire of c-type cytochromes in different branches of their electron transport system. Among the many cytochromes c present in the soil bacterium Paracoccus denitrificans, a membrane-bound cytochrome (c552) has been suggested to mediate the electron transport between the cytochrome bc1 complex and cytochrome-c oxidase [Berry, E. A. & Trumpower, B. L. (1985) J. Biol. Chem. 260, 2458-2467]. We have purified this cytochrome from cytoplasmic membranes, and cloned and sequenced its gene, cycM. Sequence analysis reveals that, while its C-terminal portion is highly similar to type-I cytochromes c, its N-terminal part contains a hydrophobic segment providing membrane attachment. In addition, we present immunological evidence for its functional role in respiration.

  7. Molecular cloning of the cytochrome aa3 gene from the archaeon (Archaebacterium) Halobacterium halobium.

    PubMed

    Denda, K; Fujiwara, T; Seki, M; Yoshida, M; Fukumori, Y; Yamanaka, T

    1991-11-27

    A novel aa3-type cytochrome oxidase from the extremely halophilic archaeon, Halobacterium halobium, differs significantly from those of other prokaryotic and eukaryotic cytochrome oxidases (Fujiwara, T., Fukumori, Y., and Yamanaka, T. (1989) J. Biochem. 105, 287-292). In the present study, we cloned and sequenced the gene which encodes the cytochrome aa3 by using the polymerase chain reaction methods. The deduced amino acid sequence of subunit I of H. halobium cytochrome aa3 was more similar to that of subunit I of the eukaryotic cytochrome (44%, maize mitochondria) than that of the cytochrome from other bacteria (36%, Paracoccus denitrificans). The consensus sequence in putative metal binding residues is well-conserved also in H. halobium cytochrome aa3.

  8. Impact of alginate-producing Pseudomonas aeruginosa on alveolar macrophage apoptotic cell clearance.

    PubMed

    McCaslin, Charles A; Petrusca, Daniela N; Poirier, Christophe; Serban, Karina A; Anderson, Gregory G; Petrache, Irina

    2015-01-01

    Pseudomonas aeruginosa infection is a hallmark of lung disease in cystic fibrosis. Acute infection with P. aeruginosa profoundly inhibits alveolar macrophage clearance of apoptotic cells (efferocytosis) via direct effect of virulence factors. During chronic infection, P. aeruginosa evades host defense by decreased virulence, which includes the production or, in the case of mucoidy, overproduction of alginate. The impact of alginate on innate immunity, in particular on macrophage clearance of apoptotic cells is not known. We hypothesized that P. aeruginosa strains that exhibit reduced virulence impair macrophage clearance of apoptotic cells and we investigated if the polysaccharide alginate produced by mucoid P. aeruginosa is sufficient to inhibit alveolar macrophage efferocytosis. Rat alveolar or human peripheral blood monocyte (THP-1)-derived macrophage cell lines were exposed in vitro to exogenous alginate or to wild type or alginate-overproducing mucoid P. aeruginosa prior to challenge with apoptotic human Jurkat T-lymphocytes. The importance of LPS contamination and that of structural integrity of alginate polymers was tested using alginate of different purities and alginate lyase, respectively. Alginate inhibited alveolar macrophage efferocytosis in a dose- and time-dependent manner. This effect was augmented but not exclusively attributed to lipopolysaccharide (LPS) present in alginates. Alginate-producing P. aeruginosa inhibited macrophage efferocytosis by more than 50%. A mannuronic-specific alginate lyase did not restore efferocytosis inhibited by exogenous guluronic-rich marine alginate, but had a marked beneficial effect on efferocytosis of alveolar macrophages exposed to mucoid P. aeruginosa. Despite decreased virulence, mucoid P. aeruginosa may contribute to chronic airway inflammation through significant inhibition of alveolar clearance of apoptotic cells and debris. The mechanism by which mucoid bacteria inhibit efferocytosis may involve alginate

  9. Polymorphonuclear Leukocytes Restrict Growth of Pseudomonas aeruginosa in the Lungs of Cystic Fibrosis Patients

    PubMed Central

    Kragh, Kasper N.; Alhede, Morten; Jensen, Peter Ø.; Moser, Claus; Scheike, Thomas; Jacobsen, Carsten S.; Seier Poulsen, Steen; Eickhardt-Sørensen, Steffen Robert; Trøstrup, Hannah; Christoffersen, Lars; Hougen, Hans-Petter; Rickelt, Lars F.; Kühl, Michael; Høiby, Niels

    2014-01-01

    Cystic fibrosis (CF) patients have increased susceptibility to chronic lung infections by Pseudomonas aeruginosa, but the ecophysiology within the CF lung during infections is poorly understood. The aim of this study was to elucidate the in vivo growth physiology of P. aeruginosa within lungs of chronically infected CF patients. A novel, quantitative peptide nucleic acid (PNA) fluorescence in situ hybridization (PNA-FISH)-based method was used to estimate the in vivo growth rates of P. aeruginosa directly in lung tissue samples from CF patients and the growth rates of P. aeruginosa in infected lungs in a mouse model. The growth rate of P. aeruginosa within CF lungs did not correlate with the dimensions of bacterial aggregates but showed an inverse correlation to the concentration of polymorphonuclear leukocytes (PMNs) surrounding the bacteria. A growth-limiting effect on P. aeruginosa by PMNs was also observed in vitro, where this limitation was alleviated in the presence of the alternative electron acceptor nitrate. The finding that P. aeruginosa growth patterns correlate with the number of surrounding PMNs points to a bacteriostatic effect by PMNs via their strong O2 consumption, which slows the growth of P. aeruginosa in infected CF lungs. In support of this, the growth of P. aeruginosa was significantly higher in the respiratory airways than in the conducting airways of mice. These results indicate a complex host-pathogen interaction in chronic P. aeruginosa infection of the CF lung whereby PMNs slow the growth of the bacteria and render them less susceptible to antibiotic treatment while enabling them to persist by anaerobic respiration. PMID:25114118

  10. Magnetic fields suppress Pseudomonas aeruginosa biofilms and enhance ciprofloxacin activity.

    PubMed

    Bandara, H M H N; Nguyen, D; Mogarala, S; Osiñski, M; Smyth, H D C

    2015-01-01

    Due to the refractory nature of pathogenic microbial biofilms, innovative biofilm eradication strategies are constantly being sought. Thus, this study addresses a novel approach to eradicate Pseudomonas aeruginosa biofilms. Magnetic nanoparticles (MNP), ciprofloxacin (Cipro), and magnetic fields were systematically evaluated in vitro for their relative anti-biofilm contributions. Twenty-four-hour biofilms exposed to aerosolized MNPs, Cipro, or a combination of both, were assessed in the presence or absence of magnetic fields (Static one-sided, Static switched, Oscillating, Static + oscillating) using changes in bacterial metabolism, biofilm biomass, and biofilm imaging. The biofilms exposed to magnetic fields alone exhibited significant metabolic and biomass reductions (p < 0.05). When biofilms were treated with a MNP/Cipro combination, the most significant metabolic and biomass reductions were observed when exposed to static switched magnetic fields (p < 0.05). The exposure of P. aeruginosa biofilms to a static switched magnetic field alone, or co-administration with MNP/Cipro/MNP + Cipro appears to be a promising approach to eradicate biofilms of this bacterium.

  11. [Allelopathy effects of ferulic acid and coumarin on Microcystis aeruginosa].

    PubMed

    Guo, Ya-Li; Fu, Hai-Yan; Huang, Guo-He; Gao, Pan-Feng; Chai, Tian; Yan, Bin; Liao, Huan

    2013-04-01

    The inhibitory effects and allelopathy mechanism of ferulic acid and coumarin on Microcystis aeruginosa were investigated by measuring the D680 value, the content of chlorophyll-a, the electrical conductivity (EC) and superoxide anion radical O*- value. Ferulic acid and coumarin had allelopathic effects on the growth of M. aeruginosa and promoted the physiological metabolism at low concentrations while inhibited the metabolism at high concentrations. Obvious inhibitory effects were observed when the concentration of ferulic acid or coumarin was over 100 mg x L(-1). The average inhibitory rates reached 80.3% and 58.0% after six days when the concentration of ferulic acid or coumarin was 200 mg x L(-1). The content of chlorophyll-a was decreased while the EC value and O2*- concentration were promoted by higher concentrations of ferulic acid or coumarin, suggesting that the growth of algae was inhibited probably by the damage of cell membrane, increase in the content of O2*- and decrease in the content of chlorophyll-a. In addition, seed germination test elucidated that Ferulic acid was safer than Coumarin.

  12. Non-apoptotic toxicity of Pseudomonas aeruginosa toward murine cells.

    PubMed

    Roy, Sanhita; Bonfield, Tracey; Tartakoff, Alan M

    2013-01-01

    Although P. aeruginosa is especially dangerous in cystic fibrosis (CF), there is no consensus as to how it kills representative cell types that are of key importance in the lung. This study concerns the acute toxicity of the sequenced strain, PAO1, toward a murine macrophage cell line (RAW 264.7). Toxicity requires brief contact with the target cell, but is then delayed for more than 12 h. None of the classical toxic effectors of this organism is required and cell death occurs without phagocytosis or acute perturbation of the actin cytoskeleton. Apoptosis is not required for toxicity toward either RAW 264.7 cells or for alveolar macrophages. Transcriptional profiling shows that encounter between PAO1 and RAW 264.7 cells elicits an early inflammatory response, followed by growth arrest. As an independent strategy to understand the mechanism of toxicity, we selected variant RAW 264.7 cells that resist PAO1. Upon exposure to P. aeruginosa, they are hyper-responsive with regard to classical inflammatory cytokine production and show transient downregulation of transcripts that are required for cell growth. They do not show obvious morphologic changes. Although they do not increase interferon transcripts, when exposed to PAO1 they dramatically upregulate a subset of the responses that are characteristic of exposure to g-interferon, including several guanylate-binding proteins. The present observations provide a novel foundation for learning how to equip cells with resistance to a complex challenge.

  13. Chromosomal DNA deletion confers phage resistance to Pseudomonas aeruginosa.

    PubMed

    Le, Shuai; Yao, Xinyue; Lu, Shuguang; Tan, Yinling; Rao, Xiancai; Li, Ming; Jin, Xiaolin; Wang, Jing; Zhao, Yan; Wu, Nicholas C; Lux, Renate; He, Xuesong; Shi, Wenyuan; Hu, Fuquan

    2014-04-28

    Bacteria develop a broad range of phage resistance mechanisms, such as prevention of phage adsorption and CRISPR/Cas system, to survive phage predation. In this study, Pseudomonas aeruginosa PA1 strain was infected with lytic phage PaP1, and phage-resistant mutants were selected. A high percentage (~30%) of these mutants displayed red pigmentation phenotype (Red mutant). Through comparative genomic analysis, one Red mutant PA1r was found to have a 219.6 kb genomic fragment deletion, which contains two key genes hmgA and galU related to the observed phenotypes. Deletion of hmgA resulted in the accumulation of a red compound homogentisic acid; while A galU mutant is devoid of O-antigen, which is required for phage adsorption. Intriguingly, while the loss of galU conferred phage resistance, it significantly attenuated PA1r in a mouse infection experiment. Our study revealed a novel phage resistance mechanism via chromosomal DNA deletion in P. aeruginosa.

  14. [Pseudomonas aeruginosa bacteriaemia: new clinical and therapeutic aspects ].

    PubMed

    Janbon, F; Despaux, E; Lepeu, G; Jonquet, O; Santoni, A; Balmayer, B; Bertrand, A

    1982-06-01

    Fifty one cases of Pseudomonas aeruginosa bacteriaemia observed during the last 12 years are reported. Thirty five patients were over fifty years old; 92 p. cent were admitted for several days and about 50 p. cent were in post-operative period. A previous antibiotherapy and an impaired status are promotive factors. The respiratory or peritoneal origins are the most frequent. All patients were feverish; 24 have had an infectious shock which was inaugural in 12 cases. Seven pneumonitis, 3 endocarditis, one pericarditis and 2 osteitis were observed. An ecthyma gangrenosum was noted in three patients. Mortality was 70 p. cent. Comparison between recovered and died patients improved bad prognosis of old age, post operative period, neoplasic, previous organica weakness and pulmonary or peritoneal origins. Used alone, colimycin has seemed to be more effective than aminosid antibiotics; but their association with betalactamins was better. An in vitro study of the susceptibility of 100 Pseudomonas aeruginosa strains has proved the interest of piperacillin and cefsulodin; azlocillin, cefoperazone and ceftriaxone are just less effective.

  15. Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa

    PubMed Central

    Persat, Alexandre; Inclan, Yuki F.; Engel, Joanne N.; Stone, Howard A.; Gitai, Zemer

    2015-01-01

    Bacteria have evolved a wide range of sensing systems to appropriately respond to environmental signals. Here we demonstrate that the opportunistic pathogen Pseudomonas aeruginosa detects contact with surfaces on short timescales using the mechanical activity of its type IV pili, a major surface adhesin. This signal transduction mechanism requires attachment of type IV pili to a solid surface, followed by pilus retraction and signal transduction through the Chp chemosensory system, a chemotaxis-like sensory system that regulates cAMP production and transcription of hundreds of genes, including key virulence factors. Like other chemotaxis pathways, pili-mediated surface sensing results in a transient response amplified by a positive feedback that increases type IV pili activity, thereby promoting long-term surface attachment that can stimulate additional virulence and biofilm-inducing pathways. The methyl-accepting chemotaxis protein-like chemosensor PilJ directly interacts with the major pilin subunit PilA. Our results thus support a mechanochemical model where a chemosensory system measures the mechanically induced conformational changes in stretched type IV pili. These findings demonstrate that P. aeruginosa not only uses type IV pili for surface-specific twitching motility, but also as a sensor regulating surface-induced gene expression and pathogenicity. PMID:26041805

  16. Identification of Pseudomonas aeruginosa Phenazines that Kill Caenorhabditis elegans

    PubMed Central

    Cezairliyan, Brent; Vinayavekhin, Nawaporn; Grenfell-Lee, Daniel; Yuen, Grace J.; Saghatelian, Alan; Ausubel, Frederick M.

    2013-01-01

    Pathogenic microbes employ a variety of methods to overcome host defenses, including the production and dispersal of molecules that are toxic to their hosts. Pseudomonas aeruginosa, a Gram-negative bacterium, is a pathogen of a diverse variety of hosts including mammals and the nematode Caenorhabditis elegans. In this study, we identify three small molecules in the phenazine class that are produced by P. aeruginosa strain PA14 that are toxic to C. elegans. We demonstrate that 1-hydroxyphenazine, phenazine-1-carboxylic acid, and pyocyanin are capable of killing nematodes in a matter of hours. 1-hydroxyphenazine is toxic over a wide pH range, whereas the toxicities of phenazine-1-carboxylic acid and pyocyanin are pH-dependent at non-overlapping pH ranges. We found that acidification of the growth medium by PA14 activates the toxicity of phenazine-1-carboxylic acid, which is the primary toxic agent towards C. elegans in our assay. Pyocyanin is not toxic under acidic conditions and 1-hydroxyphenazine is produced at concentrations too low to kill C. elegans. These results suggest a role for phenazine-1-carboxylic acid in mammalian pathogenesis because PA14 mutants deficient in phenazine production have been shown to be defective in pathogenesis in mice. More generally, these data demonstrate how diversity within a class of metabolites could affect bacterial toxicity in different environmental niches. PMID:23300454

  17. Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants.

    PubMed

    D'Argenio, David A; Calfee, M Worth; Rainey, Paul B; Pesci, Everett C

    2002-12-01

    Two distinctive colony morphologies were noted in a collection of Pseudomonas aeruginosa transposon insertion mutants. One set of mutants formed wrinkled colonies of autoaggregating cells. Suppressor analysis of a subset of these mutants showed that this was due to the action of the regulator WspR and linked this regulator (and the chemosensory pathway to which it belongs) to genes that encode a putative fimbrial adhesin required for biofilm formation. WspR homologs, related in part by a shared GGDEF domain, regulate cell surface factors, including aggregative fimbriae and exopolysaccharides, in diverse bacteria. The second set of distinctive insertion mutants formed colonies that lysed at their center. Strains with the most pronounced lysis overproduced the Pseudomonas quinolone signal (PQS), an extracellular signal that interacts with quorum sensing. Autolysis was suppressed by mutation of genes required for PQS biosynthesis, and in one suppressed mutant, autolysis was restored by addition of synthetic PQS. The mechanism of autolysis may involve activation of the endogenous prophage and phage-related pyocins in the genome of strain PAO1. The fact that PQS levels correlated with autolysis suggests a fine balance in natural populations of P. aeruginosa between survival of the many and persistence of the few.

  18. Pseudomonas aeruginosa: my research passion. Interview by Hannah Branch.

    PubMed

    Hazlett, Linda

    2013-07-01

    Linda Hazlett is a department chair and distinguished professor at Wayne State University (MI, USA). Her research is focused on the host immune response to Pseudomonas aeruginosa and its role in ocular infections. Dr Hazlett has been funded continuously by the NIH by R01 support for 34 years. She is currently principal investigator of two R01 grants from the National Eye Institute that study pathogenesis of P. aeruginosa in the eye. Dr Hazlett oversees four Course Directors who lead Year 1 medical student teaching, in addition to two graduate course directors. Furthermore, although not involved in medical teaching, she educates graduate students and mentors a Research Scientist and a Research Assistant Professor. Throughout her career, Dr Hazlett has achieved several honors and awards including Distinguished Professor at Wayne State University (2008), National Eye Institute Core Center (P30) grant for 1987-2013, Chair of Physiology Search 2008-2009, Member of the Academy of Scholars at Wayne State University, Association for Research in Vision and Ophthalmology fellow at the Gold Medal level (2009) and was an invited speaker at the Gordon Conference 2010.

  19. Production and properties of crude enterotoxin of Pseudomonas aeruginosa.

    PubMed

    Grover, S; Batish, V K; Srinivasan, R A

    1990-05-01

    Pseudomonas aeruginosa CTM-3 was found to be the most potentially enterotoxigenic strain out of the 12 isolates recovered from milk, as a high fluid length ratio, i.e. F/L (1.1) in rabbit gut and a strong permeability response in rabbit skin (38.5 mm2 necrotic zone) was obtained with this culture. No clear-cut relationship between the two tests was observed. Six of the ethidium bromide (300 micrograms/ml) cured variants of this culture completely lost their ability to produce enterotoxin indicating the possible involvement of a plasmid in enterotoxin synthesis. The crude enterotoxin from P. aeruginosa CTM-3 was completely inactivated in 15 s at 72 degrees C. However, it was fairly stable at pH values in the range 4.5-7.5. Both pepsin and trypsin inactivated the enterotoxin activity at a concentration of 40 micrograms/ml. Organic acids, formalin and hydrogen peroxide had no significant effect on the enterotoxin activity. The need for further investigations with purified preparations is emphasized.

  20. Bacteriophages for the treatment of Pseudomonas aeruginosa infections.

    PubMed

    Harper, D R; Enright, M C

    2011-07-01

    Bacteriophages were first identified in 1915 and were used as antimicrobial agents from 1919 onwards. Despite apparent successes and widespread application, early users did not understand the nature of these agents and their efficacy remained controversial. As a result, they were replaced in the west by chemical antibiotics once these became available. However, bacteriophages remained a common therapeutic approach in parts of Eastern Europe where they are still in use. Increasing levels of antibiotic-resistant bacterial infections are now driving demand for novel therapeutic approaches. In cases where antibiotic options are limited or nonexistent, the pressure for new agents is greatest. One of the most prominent areas of concern is multidrug-resistant Gram-negative bacteria. Pseudomonas aeruginosa is a prominent member of this class and is the cause of damaging infections that can be resistant to successful treatment with conventional antibiotics. At the same time, it exhibits a number of properties that make it a suitable target for bacteriophage-based approaches, including growth in biofilms that can hydrolyse following phage infection. Pseudomonas aeruginosa provides a striking example of an infection where clinical need and the availability of a practical therapy coincide.

  1. Mechanical destruction of pseudomonas aeruginosa biofilms by ultrasound exposure

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Bigelow, Timothy A.; Halverson, Larry J.; Middendorf, Jill; Rusk, Ben

    2012-10-01

    Medical implants are prone to colonization by bacterial biofilms, which are highly resistant to antibiotics. Normally, surgery is required to replace the infected implant. One promising non-invasive treatment option is to destroy the biofilm with high-intensity focused ultrasound (HIFU) exposure. In our study, Pseudomonas aeruginosa bacterial biofilms were grown on graphite disks in a flow chamber for three days prior to exposing them to ultrasound pulses of varying duration or burst period. The pulses were 20 cycles in duration at a frequency of 1.1 MHz from a spherically focused transducer (f/1, 63 mm focal length), creating peak compressional and rarefactional pressures at the disk surface of 30 and 13 MPa, respectively. P. aeruginosa were tagged with GFP and cells killed by HIFU were visualized using propidium iodide, which permeates membranes of dead cells, to aid determining the extent of biofilm destruction and whether cells are alive or dead. Our results indicate that a 30-s exposure and 6-ms pulse period or those combinations with the same number of pulses, were sufficient to destroy the biofilm and to kill the remaining cells. Reducing the number of pulses decreased biofilm destruction, leaving more dead and live bacteria on the surface.

  2. Host defense mechanisms against pneumonia due to Pseudomonas aeruginosa.

    PubMed

    Pennington, J E; Ehrie, M G; Hickey, W F

    1984-01-01

    Pneumonia due to Pseudomonas aeruginosa is associated with unusually high mortalities. Accordingly, efforts to define better the most important components of lung defenses against this infection are justified as a prelude to defining improved management strategies. In this report, a guinea pig model of experimental aspiration pseudomonas pneumonia was employed for studies of cellular and humoral mechanisms of pulmonary defense. Animals treated with cortisone acetate plus cyclophosphamide experienced decreased survival from pneumonia, and survival rates correlated directly with the degree of myelosuppression. Numbers of pulmonary macrophages and polymorphonuclear neutrophils were reduced in drug-treated animals before impairment of macrophage antibacterial function. Thus, a reduction in numbers of phagocytes alone was sufficient to markedly reduce lung defenses. In additional experiments, normal guinea pigs were vaccinated with a lipopolysaccharide pseudomonas vaccine. Improved survival from pneumonia correlated with high titers of type-specific, heat-stable opsonic antibody. It is concluded that adequate numbers of lung phagocytes, plus type-specific opsonic antibody, represent the ideal status for lung defense against P. aeruginosa infection.

  3. Pseudomonas aeruginosa sabotages the generation of host proresolving lipid mediators.

    PubMed

    Flitter, Becca A; Hvorecny, Kelli L; Ono, Emiko; Eddens, Taylor; Yang, Jun; Kwak, Daniel H; Bahl, Christopher D; Hampton, Thomas H; Morisseau, Christophe; Hammock, Bruce D; Liu, Xinyu; Lee, Janet S; Kolls, Jay K; Levy, Bruce D; Madden, Dean R; Bomberger, Jennifer M

    2017-01-03

    Recurrent Pseudomonas aeruginosa infections coupled with robust, damaging neutrophilic inflammation characterize the chronic lung disease cystic fibrosis (CF). The proresolving lipid mediator, 15-epi lipoxin A4 (15-epi LXA4), plays a critical role in limiting neutrophil activation and tissue inflammation, thus promoting the return to tissue homeostasis. Here, we show that a secreted P. aeruginosa epoxide hydrolase, cystic fibrosis transmembrane conductance regulator inhibitory factor (Cif), can disrupt 15-epi LXA4 transcellular biosynthesis and function. In the airway, 15-epi LXA4 production is stimulated by the epithelial-derived eicosanoid 14,15-epoxyeicosatrienoic acid (14,15-EET). Cif sabotages the production of 15-epi LXA4 by rapidly hydrolyzing 14,15-EET into its cognate diol, eliminating a proresolving signal that potently suppresses IL-8-driven neutrophil transepithelial migration in vitro. Retrospective analyses of samples from patients with CF supported the translational relevance of these preclinical findings. Elevated levels of Cif in bronchoalveolar lavage fluid were correlated with lower levels of 15-epi LXA4, increased IL-8 concentrations, and impaired lung function. Together, these findings provide structural, biochemical, and immunological evidence that the bacterial epoxide hydrolase Cif disrupts resolution pathways during bacterial lung infections. The data also suggest that Cif contributes to sustained pulmonary inflammation and associated loss of lung function in patients with CF.

  4. Combined effects of two antibiotic contaminants on Microcystis aeruginosa.

    PubMed

    Liu, Ying; Zhang, Jian; Gao, Baoyu; Feng, Suping

    2014-08-30

    Combined toxicity of spiramycin and amoxicillin was tested in Microcystis aeruginosa. The respective 50% effective concentrations (EC50mix) expressed in toxic unit (TU) values were 1.25 and 1.83 for spiramycin and amoxicillin mixed at 1:7 and 1:1, suggesting an antagonistic interaction at the median effect level. Deviations from the prediction of concentration addition (CA) and independent action (IA) models further indicated that combined toxicity of two antibiotics mixed at 1:1 varied from synergism to antagonism with increasing test concentration. Both the EC50mix of 0.86 (in TU value) and the deviation from two models manifested a synergistic interaction between spiramycin and amoxicillin mixed at 7:1. At an environmentally relevant concentration of 800ngL(-1), combined effect of mixed antibiotics on algal growth changed from stimulation to inhibition with the increasing proportion of higher toxic component (spiramycin). Chlorophyll-a content and expression levels of psbA, psaB, and rbcL varied in a similar manner as growth rate, suggesting a correlation between algal growth and photosynthesis under exposure to mixed antibiotics. The stimulation of microcystin-production by mixed antibiotics was related with the elevated expression of mcyB. The mixture of two target antibiotics with low proportion of spiramycin (<50%) could increase the harm of M. aeruginosa to aquatic environments by stimulating algal growth and production and release of microcystin-LR at their current contamination levels.

  5. Genotyping of Pseudomonas aeruginosa isolated from cockroaches and human urine.

    PubMed

    Saitou, Keiko; Furuhata, Katsunori; Fukuyama, Masafumi

    2010-10-01

    Molecular-epidemiological analysis of Pseudomonas aeruginosa isolated from cockroaches captured in hospitals and from patient urine was performed, employing randomly amplified polymorphic DNA (RAPD) analysis to investigate the usefulness of RAPD analysis. Four specific bands at positions of 993, 875, 521, and 402 bp were commonly detected using primer 272 in 16 of 45 cockroach-derived strains (35.6%), but not in 21 urine-derived strains. On analysis using primer 208, 4 specific bands at positions of 1,235, 1,138, 1,068, and 303 bp were commonly detected in 15 of the 45 cockroach-derived (33.3%) and 10 of the 21 patient urine-derived (47.6%) strains, in a total of 25 of 66 strains (37.8%). On cluster analysis, 12 (48.5%) and 16 (66.7%) clusters were grouped based on a homology of 89% or greater, using primer 272 and primer 208, respectively, showing that primer 208 was suitable for the confirmation of diversity. Seven patterns were clustered based on 100% homology using either primer, and 6 of these consisted of only cockroach-derived strains. In the individual groups with 100% homology, all strains in the group were isolated at an identical site during the same period. P. aeruginosa isolated from cockroaches showed diverse genotypes suggesting several sources of contamination, indicating the necessity for investigating infection control targeting cockroaches inhabiting hospitals.

  6. Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa.

    PubMed Central

    Askeland, R A; Morrison, S M

    1983-01-01

    Of 200 water isolates screened, five strains of Pseudomonas fluorescens and one strain of Pseudomonas aeruginosa were cyanogenic. Maximum cyanogenesis by two strains of P. fluorescens in a defined growth medium occurred at 25 to 30 degrees C over a pH range of 6.6 to 8.9. Cyanide production per cell was optimum at 300 mM phosphate. A linear relationship was observed between cyanogenesis and the log of iron concentration over a range of 3 to 300 microM. The maximum rate of cyanide production occurred during the transition from exponential to stationary growth phase. Radioactive tracer experiments with [1-14C]glycine and [2-14C]glycine demonstrated that the cyanide carbon originates from the number 2 carbon of glycine for both P. fluorescens and P. aeruginosa. Cyanide production was not observed in raw industrial wastewater or in sterile wastewater inoculated with pure cultures of cyanogenic Pseudomonas strains. Cyanide was produced when wastewater was amended by the addition of components of the defined growth medium. PMID:6410989

  7. Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa.

    PubMed

    Askeland, R A; Morrison, S M

    1983-06-01

    Of 200 water isolates screened, five strains of Pseudomonas fluorescens and one strain of Pseudomonas aeruginosa were cyanogenic. Maximum cyanogenesis by two strains of P. fluorescens in a defined growth medium occurred at 25 to 30 degrees C over a pH range of 6.6 to 8.9. Cyanide production per cell was optimum at 300 mM phosphate. A linear relationship was observed between cyanogenesis and the log of iron concentration over a range of 3 to 300 microM. The maximum rate of cyanide production occurred during the transition from exponential to stationary growth phase. Radioactive tracer experiments with [1-14C]glycine and [2-14C]glycine demonstrated that the cyanide carbon originates from the number 2 carbon of glycine for both P. fluorescens and P. aeruginosa. Cyanide production was not observed in raw industrial wastewater or in sterile wastewater inoculated with pure cultures of cyanogenic Pseudomonas strains. Cyanide was produced when wastewater was amended by the addition of components of the defined growth medium.

  8. Mechanical Properties of Type IV Pili in P. Aeruginosa

    NASA Astrophysics Data System (ADS)

    Lu, Shun; Touhami, Ahmed; Scheurwater, Edie; Harvey, Hanjeong; Burrows, Lori; Dutcher, John

    2009-03-01

    Type IV pili (Tfp) are thin flexible protein filaments that extend from the cell membrane of bacteria such as Pseudomonas aeruginosa and Neisseria gonorrhoeae. The mechanical properties of Tfp are of great importance since they allow bacteria to interact with and colonize various surfaces. In the present study, we have used atomic force microscopy (AFM) for both imaging and pulling on Tfp from P. aeruginosa (PAO1) and from its PilA, PilT, and FliC mutants. A single pilus filament was mechanically stretched and the resulting force-extension profiles were fitted using the worm-like-chain (WLC) model. The statistical distributions obtained for contour length, persistence length, and number of pili per bacteria pole, were used to evaluate the mechanical properties of a single pilus and the biogenesis functions of different proteins (PilA, PilT) involved in its assembly and disassembly. Importantly, the persistence length value of ˜ 1 μm measured in the present study, which is consistent with the curvature of the pili observed in our AFM images, is significantly lower than the value of 5 μm reported earlier by Skerker et al. (1). Our results shed new light on the role of mechanical forces that mediate bacteria-surface interactions and biofilm formation. 1- J.M. Skerker and H.C. Berg, Proc. Natl. Acad. Sci. USA, 98, 6901-6904 (2001).

  9. Pseudomonas aeruginosa Exopolyphosphatase Is Also a Polyphosphate: ADP Phosphotransferase.

    PubMed

    Beassoni, Paola R; Gallarato, Lucas A; Boetsch, Cristhian; Garrido, Mónica N; Lisa, Angela T

    2015-01-01

    Pseudomonas aeruginosa exopolyphosphatase (paPpx; EC 3.6.1.11) catalyzes the hydrolysis of polyphosphates (polyP), producing polyPn-1 plus inorganic phosphate (Pi). In a recent work we have shown that paPpx is involved in the pathogenesis of P. aeruginosa. The present study was aimed at performing the biochemical characterization of this enzyme. We found some properties that were already described for E. coli Ppx (ecPpx) but we also discovered new and original characteristics of paPpx: (i) the peptide that connects subdomains II and III is essential for enzyme activity; (ii) NH4 (+) is an activator of the enzyme and may function at concentrations lower than those of K(+); (iii) Zn(2+) is also an activator of paPpx and may substitute Mg(2+) in the catalytic site; and (iv) paPpx also has phosphotransferase activity, dependent on Mg(2+) and capable of producing ATP regardless of the presence or absence of K(+) or NH4 (+) ions. In addition, we detected that the active site responsible for the phosphatase activity is also responsible for the phosphotransferase activity. Through the combination of molecular modeling and docking techniques, we propose a model of the paPpx N-terminal domain in complex with a polyP chain of 7 residues long and a molecule of ADP to explain the phosphotransferase activity.

  10. Computer simulation of the rough lipopolysaccharide membrane of Pseudomonas aeruginosa.

    PubMed Central

    Lins, R D; Straatsma, T P

    2001-01-01

    Lipopolysaccharides (LPSs) form the major constituent of the outer membrane of Gram-negative bacteria, and are believed to play a key role in processes that govern microbial metal binding, microbial adsorption to mineral surfaces, and microbe-mediated oxidation/reduction reactions at the bacterial exterior surface. A computational modeling capability is being developed for the study of geochemical reactions at the outer bacterial envelope of Gram-negative bacteria. A molecular model for the rough LPS of Pseudomonas aeruginosa has been designed based on experimentally determined structural information. An electrostatic model was developed based on Hartree-Fock SCF calculations of the complete LPS molecule to obtain partial atomic charges. The exterior of the bacterial membrane was assembled by replication of a single LPS molecule and a single phospholipid molecule. Molecular dynamics simulations of the rough LPS membrane of P. aeruginosa were carried out and trajectories were analyzed for the energetic and structural factors that determine the role of LPS in processes at the cell surface. PMID:11463645

  11. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa.

    PubMed

    Chan, Benjamin K; Sistrom, Mark; Wertz, John E; Kortright, Kaitlyn E; Narayan, Deepak; Turner, Paul E

    2016-05-26

    Increasing prevalence and severity of multi-drug-resistant (MDR) bacterial infections has necessitated novel antibacterial strategies. Ideally, new approaches would target bacterial pathogens while exerting selection for reduced pathogenesis when these bacteria inevitably evolve resistance to therapeutic intervention. As an example of such a management strategy, we isolated a lytic bacteriophage, OMKO1, (family Myoviridae) of Pseudomonas aeruginosa that utilizes the outer membrane porin M (OprM) of the multidrug efflux systems MexAB and MexXY as a receptor-binding site. Results show that phage selection produces an evolutionary trade-off in MDR P. aeruginosa, whereby the evolution of bacterial resistance to phage attack changes the efflux pump mechanism, causing increased sensitivity to drugs from several antibiotic classes. Although modern phage therapy is still in its infancy, we conclude that phages, such as OMKO1, represent a new approach to phage therapy where bacteriophages exert selection for MDR bacteria to become increasingly sensitive to traditional antibiotics. This approach, using phages as targeted antibacterials, could extend the lifetime of our current antibiotics and potentially reduce the incidence of antibiotic resistant infections.

  12. Biological activity of phenolic compounds. Hepatic cytochrome P-450, cytochrome b/sub 5/ and NADPH cytochrome c reductase in chicks and rats fed phenolic monomers, polymers, and glycosides

    SciTech Connect

    Klasing, S.A.; Mora, M.I.; Wilson, W.C.; Fahey, G.C. Jr.; Garst, J.E.

    1985-09-01

    Experiments were conducted to determine effects of a phenolic polymer (Kraft wood lignin, Indulin), phenolic glycosides (cane molasses and wood molasses), and phenolic monomers (vanillin, vanillic acid, ferulic acid, and p-coumaric acid) on liver cytochromes P-450, cytochrome b/sub 5/, and NADPH cytochrome c reductase in chicks and rats. Chicks fed 6.0% lignin had a higher cytochromes P-450 content than did chicks fed 0% fiber, 6.0% wood cellulose, or 6.0% arenaceous flour. Chicks fed 12.0% wood molasses had a higher cytochromes P-450 level than did chicks fed 0% fiber or 6.0% wood molasses. Cane molasses incorporated at both 6.0 and 12.0% of the diet induced cytochromes P-450 content over those of control-fed birds. Chicks fed 6.0% lignin, with or without antibiotic, had a higher cytochromes P-450 level than did chicks fed control diets, with or without antibiotic. Additionally, chicks fed 6.0% lignin had lower intestinal diaminopimelic acid (DAP) levels than did chicks fed 0% fiber. Rats fed 0% fiber, 6.0% wood cellulose, 6.0% arenaceous flour, or 6.0% lignin exhibited no difference in cytochrome level or activity among treatments. Chicks fed 0.5% vanillin, 0.5% vanillic acid, 0.5% ferulic acid, or 0.5% p-coumaric acid had comparable cytochromes level and activity compared with chicks fed no phenolics. Chicks fed 0.5% p-coumaric acid had lower rates of gain than did chicks fed control or other phenolic-containing diets. Rats fed these phenolics had similar cytochromes P-450 content among treatments.

  13. Rapid purification of cytochrome c oxidase from Paracoccus denitrificans.

    PubMed

    Steffens, G C; Pascual, E; Buse, G

    1990-11-23

    Two methods are described for the purification of cytochrome c oxidase from Triton X-100 extracts of the periplasma membrane of Paracoccus denitrificans. The first is a large-scale procedure for the preparation of 100-250 nmol of cytochrome c oxidase (10-20 mg) in 1 week. The second is a rapid procedure for isolating up to 25 nmol in 2-3 days. Owing to the high yields given by fast protein liquid chromatography (FPLC) on Mono Q columns, the overall yield is about 20%, whereas the yield in many other previously published procedures does not exceed 10%. The use of FPLC on Mono Q also offers a considerable saving of time.

  14. Redox processes controlling the biogenesis of c-type cytochromes.

    PubMed

    Bonnard, Géraldine; Corvest, Vincent; Meyer, Etienne H; Hamel, Patrice P

    2010-11-01

    In mitochondria, two mono heme c-type cytochromes are essential electron shuttles of the respiratory chain. They are characterized by the covalent attachment of their heme C to a CXXCH motif in the apoproteins. This post-translational modification occurs in the intermembrane space compartment. Dedicated assembly pathways have evolved to achieve this chemical reaction that requires a strict reducing environment. In mitochondria, two unrelated machineries operate, the rather simple System III in yeast and animals and System I in plants and some protozoans. System I is also found in bacteria and shares some common features with System II that operates in bacteria and plastids. This review aims at presenting how different systems control the chemical requirements for the heme ligation in the compartments where cytochrome c maturation takes place. A special emphasis will be given on the redox processes that are required for the heme attachment reaction onto apocytochromes c.

  15. Special issue: Cytochrome P450 structure and function: introduction.

    PubMed

    Munro, Andrew W; Leys, David

    2012-05-01

    The 17th International Conference on Cytochrome P450 Biochemistry, Biophysics and Structure was held in Manchester, UK from 26-30 June 2011. This issue of FEBS J. contains review and primary research articles reflecting the breadth of science covered at this conference, and reflecting the impact of P450-related research in fields as diverse as steroid metabolism, plant biochemistry, structural biology and biotechnology.

  16. Simulating energy flow in biomolecules: application to tuna cytochrome c.

    PubMed Central

    Wang, Q; Wong, C F; Rabitz, H

    1998-01-01

    By constructing a continuity equation of energy flow, one can utilize results from a molecular dynamics simulation to calculate the energy flux or flow in different parts of a biomolecule. Such calculations can yield useful insights into the pathways of energy flow in biomolecules. The method was first tested on a small system of a cluster of 13 argon atoms and then applied to the study of the pathways of energy flow after a tuna ferrocytochrome c molecule was oxidized. Initially, energy propagated faster along the direction perpendicular to the heme plane. This was due to an efficient through-bond mechanism, because the heme iron in cytochrome c was covalently bonded to a cysteine and a histidine. For the oxidation of cytochrome c, electrostatic interactions also facilitated a long-range through-space mechanism of energy flow. As a result, polar or charged groups that were further away from the oxidation site could receive energy earlier than nonpolar groups closer to the site. Another bridging mechanism facilitating efficient long-range responses to cytochrome c oxidation involved the coupling of far-off atoms with atoms that were nearer to, and interacted directly with, the oxidation site. The different characteristics of these energy transfer mechanisms defied a simple correlation between the time that the excess energy of the oxidation site first dissipated to an atom and the distance of the atom from the oxidation site. For tuna cytochrome c, all of the atoms of the protein had sensed the effects of the oxidation within approximately 40 fs. For the length scale of energy transfer considered in this study, the speed of the energy propagation in the protein was on the order of 10(5) m/s. PMID:9649368

  17. Engineering Cytochrome P450 Biocatalysts for Biotechnology, Medicine, and Bioremediation

    PubMed Central

    Kumar, Santosh

    2009-01-01

    Importance of the field: Cytochrome P450 enzymes comprise a superfamily of heme monooxygenases that are of considerable interest for the: 1) synthesis of novel drugs and drug metabolites, 2) targeted cancer gene therapy, 3) biosensor design, and 4) bioremediation. However, their applications are limited because cytochrome P450, especially mammalian P450 enzymes, show a low turnover rate and stability, and require a complex source of electrons through cytochrome P450 reductase and NADPH. Areas covered in this review: In this review, we discuss the recent progress towards the use of P450 enzymes in a variety of above-mentioned applications. We also present alternate and cost-effective ways to perform P450-mediated reaction, especially using peroxides. Furthermore, we expand upon the current progress in P450 engineering approaches describing several recent examples that are utilized to enhance heterologous expression, stability, catalytic efficiency, and utilization of alternate oxidants. What the reader will gain: The review will provide a comprehensive knowledge in the design of P450 biocatalysts for potentially practical purposes. Finally, we provide a prospective on the future aspects of P450 engineering and its applications in biotechnology, medicine, and bioremediation. Take home message: Because of its wide applications, academic and pharmaceutical researchers, environmental scientists, and health care providers are expected to gain current knowledge and future prospects of the practical use of P450 biocatalysts. PMID:20064075

  18. Chemiluminescence of lipid vesicles supplemented with cytochrome c and hydroperoxide.

    PubMed Central

    Cadenas, E; Boveris, A; Chance, B

    1980-01-01

    The increase in light emission of hydroperoxide-supplemented cytochrome c observed on addition of lipid vesicles was related to the degree of unsaturation of the fatty acids of the phospholipids: dipalmitoyl phosphatidylcholine was without effect, whereas dioleoyl phosphatidylcholine and soya-bean phosphatidylcholine enhanced chemiluminescence 2- and 3-fold respectively. Effects on light-emission were similar to those on O2 uptake. The chemiluminescence of the present system was sensitive to cyanide and to the radical trap 2,5-di-t-butylquinol, indicating a catlytic activity of cytochrome c and the presence of free-radical species respectively. Lipid-vesicle enhanced chemiluminescence showed different kinetic behaviours, apparently depending on unsaturation: three phases are described for soya-bean phosphatidylcholine, whereas only one phase was present in mixtures containing dipalmitoyl and dioleoyl phospholipids. Chemiluminescence of lipid vesicles supplemented with cytochrome c and hydroperoxide showed similar kinetic patterns with H2O2 and primary (ethyl) and tertiary (t-butyl and cumene) hydroperoxides. Participation of singlet molecular oxygen, mainly on the phase III of chemiluminescence, is suggested by the increase of light-emission by 1,4-diazabicyclo[2.2.2]-octane as well as by data from spectral analysis. PMID:6258556

  19. Studies of multi-heme cytochromes from Geobacter sulfurreducens

    SciTech Connect

    Londer, Yuri; Pokkuluri, P. Raj; Orshonsky, Valerie; Duke, Norma; Schiffer, Marianne

    2004-03-17

    The Geobacteraceae family predominates in the reduction of uranium in subsurface environments. We are focusing on the model organism, Geobacter sulfurreducens; its genome contains a large number (>100) of cytochromes c that function in metal reduction pathways. Intensive functional genomics and physiological studies are in progress in Prof. Derek Lovley's laboratory, and the complete genome sequence of this organism has been determined by Methe et al. 2003. We are studying cytochromes from the c{sub 7} family that are required for the reduction of Fe(III). Previously, we expressed in E. coli (Londer et al., 2002) and determined the three-dimensional structure at 1.45 {angstrom} resolution (Pokkuluri et al., 2004a) of the three-heme cytochrome c{sub 7} (PpcA, coded by ORF01023) characterized by Lloyd et al., 2003. Further we identified in the G. sulfurreducens genome ORFs for several of its homologs (Pokkuluri et al., 2004a). Four of the ORFs are the same size as PpcA; three other ORFs are polymers of c{sub 7}-type domains, two of which consist of four domains and one of nine domains, that contain 12 and 27 hemes respectively.

  20. Studies of multi-heme cytochromes from Geobacter sulfurreducens

    SciTech Connect

    Pokkuluri, P. Raj; Londer, Yuri, Y.; Orshonsky, Valerie; Orshonsky, Lisa; Duke, Norma; Schiffer, Marianne

    2006-04-05

    The Geobacteraceae family predominates in the reduction of uranium in subsurface environments. We are focusing on the model organism, Geobacter sulfurreducens; its genome contains a large number (>100) of cytochromes c that function in metal reduction pathways. Intensive functional genomics and physiological studies are in progress in Prof. Derek Lovley's laboratory, and the complete genome sequence of this organism has been determined by Methe et al. 2003. We are studying cytochromes from the c{sub 7} family that are required for the reduction of Fe(III). Previously, we expressed in E. coli (Londer et al., 2002) and determined the three-dimensional structure at 1.45 {angstrom} resolution (Pokkuluri et al., 2004a) of the three-heme cytochrome c{sub 7} (PpcA, coded by ORF01023) characterized by Lloyd et al., 2003. Further we identified in the G. sulfurreducens genome ORFs for several of its homologs (Pokkuluri et al., 2004a). Four of the ORFs are the same size as PpcA; three other ORFs are polymers of c7-type domains, two of which consist of four domains and one of nine domains, that contain 12 and 27 hemes respectively.

  1. Enhanced expression of cytochrome P450 in stomach cancer.

    PubMed Central

    Murray, G. I.; Taylor, M. C.; Burke, M. D.; Melvin, W. T.

    1998-01-01

    The cytochromes P450 have a central role in the oxidative activation and detoxification of a wide range of xenobiotics, including many carcinogens and several anti-cancer drugs. Thus the cytochrome P450 enzyme system has important roles in both tumour development and influencing the response of tumours to chemotherapy. Stomach cancer is one of the commonest tumours of the alimentary tract and environmental factors, including dietary factors, have been implicated in the development of this tumour. This type of tumour has a poor prognosis and responds poorly to current therapies. In this study, the presence and cellular localization of several major forms of P450, CYP1A, CYP2E1 and CYP3A have been investigated in stomach cancer and compared with their expression in normal stomach. There was enhanced expression of CYP1A and CYP3A in stomach cancer with CYP1A present in 51% and CYP3A present in 28% of cases. In contrast, no P450 was identified in normal stomach. The presence of CYP1A and CYP3A in stomach cancer provides further evidence for the enhanced expression of specific forms of cytochrome P450 in tumours and may be important therapeutically for the development of anti-cancer drugs that are activated by these forms of P450. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9569036

  2. A superoxide sensor based on a multilayer cytochrome c electrode.

    PubMed

    Beissenhirtz, Moritz K; Scheller, Frieder W; Lisdat, Fred

    2004-08-15

    A novel multilayer cytochrome c electrode for the quantification of superoxide radical concentrations is introduced. The electrode consists of alternating layers of cytochrome c and poly(aniline(sulfonic acid)) on a gold wire electrode. The formation of multilayer structures was proven by SPR experiments. Assemblies with 2-15 protein layers showed electrochemical communication with the gold electrode. For every additional layer, a substantial increase in electrochemically active cytochrome c (cyt. c) was found. For electrodes of more than 10 layers, the increase was more than 1 order of magnitude as compared to monolayer electrode systems. Thermodynamic and kinetic parameters of the electrodes were characterized. The mechanism of electron transfer within the multilayer assembly was studied, with results suggesting a protein-protein electron-transfer model. Electrodes of 2-15 layers were applied to the in vitro quantification of enzymatically generated superoxide, showing superior sensitivity as compared to a monolayer-based sensor. An electrode with 6 cyt. c/PASA layers showed the highest sensitivity of the systems studied, giving an increase in sensitivity of half an order of magnitude versus the that of the monolayer electrode. The stability of the system was optimized using thermal treatment, resulting in no loss in sensor signal or protein loading after 10 successive measurements or 2 days of storage.

  3. Using Cytochrome c{sub 3} to Make Selenium Nanowires

    SciTech Connect

    ABDELOUAS,A.; FRANCO,R.; GONG,W.L.; LUTZE,W.; MOURA,I.; SHELNUTT,JOHN A.

    1999-11-24

    We report on a new method to make nanostructures, in this case selenium nanowires, in aqueous solution at room temperature. We used the protein cytochrome c{sub 3} to reduce selenate (SeO{sub 4}{sup 2{minus}}) to selenium (Se{sup 0}). Cytochrome c{sub 3} is known for its ability to catalyze reduction of metals including U{sup VI} {yields} U{sup IV}, Cr{sup VI} {yields} Cr{sup III}, Mo{sup VI} {yields} Mo{sup IV}, Cu{sup II} {yields} Cu{sup 0}, Pb{sup II} {yields} Pb{sup 0}, Hg{sup II} {yields} Hg{sup 0}. Nanoparticles of Se{sup 0} precipitated from an aqueous solution at room temperature, followed by spontaneous self-assembling into nanowires. Cytochrome c{sub 3} was extracted from the sulfate-reducing bacteria Desulfovibrio vulgaris (strain Holdenborough) and isolated by the procedure of DerVartanian and Legall.

  4. Cytochrome c biosensor--a model for gas sensing.

    PubMed

    Hulko, Michael; Hospach, Ingeborg; Krasteva, Nadejda; Nelles, Gabriele

    2011-01-01

    This work is about gas biosensing with a cytochrome c biosensor. Emphasis is put on the analysis of the sensing process and a mathematical model to make predictions about the biosensor response. Reliable predictions about biosensor responses can provide valuable information and facilitate biosensor development, particularly at an early development stage. The sensing process comprises several individual steps, such as phase partition equilibrium, intermediate reactions, mass-transport, and reaction kinetics, which take place in and between the gas and liquid phases. A quantitative description of each step was worked out and finally combined into a mathematical model. The applicability of the model was demonstrated for a particular example of methanethiol gas detection by a cytochrome c biosensor. The model allowed us to predict the optical readout response of the biosensor from tabulated data and data obtained in simple liquid phase experiments. The prediction was experimentally verified with a planar three-electrode electro-optical cytochrome c biosensor in contact with methanethiol gas in a gas tight spectroelectrochemical measurement cell.

  5. Reduction of Hg2+ with reduced mammalian cytochrome c by cytochrome c oxidase purified from a mercury-resistant acidithiobacillus ferrooxidans strain, MON-1.

    PubMed

    Sugio, Tsuyoshi; Fujii, Mitsuko; Ninomiya, Yumika; Kanao, Tadayoshi; Negishi, Atsunori; Takeuchi, Fumiaki

    2008-07-01

    Acidithiobacillus ferrooxidans AP19-3, ATCC 23270, and MON-1 are mercury-sensitive, moderately mercury-resistant, and highly mercury-resistant strains respectively. It is known that 2,3,5,6-tetramethyl-p-phenylendiamine (TMPD) and reduced cytochrome c are used as electron donors specific for cytochrome c oxidase. Resting cells of strain MON-1 had TMPD oxidase activity and volatilized metal mercury with TMPD as an electron donor. Cytochrome c oxidase purified from strain MON-1 reduced mercuric ions to metalic mercury with reduced mammalian cytochrome c as well as TMPD. These mercury volatilization activities with reduced cytochrome c and TMPD were completely inhibited by 1 mM NaCN. These results indicate that cytochrome c oxidase is involved in mercury reduction in A. ferrooxidans cells. The cytochrome c oxidase activities of strains AP19-3 and ATCC 23270 were completely inhibited by 1 muM and 5 muM of mercuric chloride respectively. In contrast, the activity of strain MON-1 was inhibited 33% by 5 muM, and 70% by 10 muM of mercuric chloride, suggesting that the levels of mercury resistance in A. ferrooxidans strains correspond well with the levels of mercury resistance of cytochrome c oxidase.

  6. Disruption of protein-protein interactions: design of a synthetic receptor that blocks the binding of cytochrome c to cytochrome c peroxidase.

    PubMed

    Wei, Y; McLendon, G L; Hamilton, A D; Case, M A; Purring, C B; Lin, Q; Park, H S; Lee, C S; Yu, T

    2001-09-07

    Synthetic receptor 1 has been found via fluorescence titration to compete effectively with cytochrome c peroxidase for binding cytochrome c (Cc), forming 1:1 Cc:1 complex with a binding constant of (3 +/- 1) x 10(8) M-1, and to disrupt Cc: Apaf-1 complex, a key adduct in apoptosis.

  7. Structural and Functional Analysis of Novel Human Cytochrome c Targets in Apoptosis*

    PubMed Central

    Martínez-Fábregas, Jonathan; Díaz-Moreno, Irene; González-Arzola, Katiuska; Janocha, Simon; Navarro, José A.; Hervás, Manuel; Bernhardt, Rita; Velázquez-Campoy, Adrián; Díaz-Quintana, Antonio; De la Rosa, Miguel A.

    2014-01-01

    Since the first description of apoptosis four decades ago, great efforts have been made to elucidate, both in vivo and in vitro, the molecular mechanisms involved in its regulation. Although the role of cytochrome c during apoptosis is well established, relatively little is known about its participation in signaling pathways in vivo due to its essential role during respiration. To obtain a better understanding of the role of cytochrome c in the onset of apoptosis, we used a proteomic approach based on affinity chromatography with cytochrome c as bait in this study. In this approach, novel cytochrome c interaction partners were identified whose in vivo interaction and cellular localization were facilitated through bimolecular fluorescence complementation. Modeling of the complex interface between cytochrome c and its counterparts indicated the involvement of the surface surrounding the heme crevice of cytochrome c, in agreement with the vast majority of known redox adducts of cytochrome c. However, in contrast to the high turnover rate of the mitochondrial cytochrome c redox adducts, those occurring under apoptosis led to the formation of stable nucleo-cytoplasmic ensembles, as inferred mainly from surface plasmon resonance and nuclear magnetic resonance measurements, which permitted us to corroborate the formation of such complexes in vitro. The results obtained suggest that human cytochrome c interacts with pro-survival, anti-apoptotic proteins following its release into the cytoplasm. Thus, cytochrome c may interfere with cell survival pathways and unlock apoptosis in order to prevent the spatial and temporal coexistence of antagonist signals. PMID:24643968

  8. Cystic Fibrosis Transmembrane Conductance Regulator is an Epithelial Cell Receptor for Clearance of Pseudomonas aeruginosa from the Lung

    NASA Astrophysics Data System (ADS)

    Pier, Gerald B.; Grout, Martha; Zaidi, Tanweer S.

    1997-10-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride ion channel, but its relationship to the primary clinical manifestation of CF, chronic Pseudomonas aeruginosa pulmonary infection, is unclear. We report that CFTR is a cellular receptor for binding, endocytosing, and clearing P. aeruginosa from the normal lung. Murine cells expressing recombinant human wild-type CFTR ingested 30-100 times as many P. aeruginosa as cells lacking CFTR or expressing mutant Δ F508 CFTR protein. Purified CFTR inhibited ingestion of P. aeruginosa by human airway epithelial cells. The first extracellular domain of CFTR specifically bound to P. aeruginosa and a synthetic peptide of this region inhibited P. aeruginosa internalization in vivo, leading to increased bacterial lung burdens. CFTR clears P. aeruginosa from the lung, indicating a direct connection between mutations in CFTR and the clinical consequences of CF.

  9. Behaviors of Microcystis aeruginosa cells during floc storage in drinking water treatment process.

    PubMed

    Xu, Hangzhou; Pei, Haiyan; Xiao, Hongdi; Jin, Yan; Li, Xiuqing; Hu, Wenrong; Ma, Chunxia; Sun, Jiongming; Li, Hongmin

    2016-10-07

    This is the first study to systematically investigate the different behaviors of Microcystis aeruginosa in the sludges formed by AlCl3, FeCl3, and polymeric aluminium ferric chloride (PAFC) coagulants during storage. Results show that the viability of Microcystis aeruginosa in PAFC sludge was stronger than that of cells in either AlCl3 or FeCl3 sludge after the same storage time, while the cells' viability in the latter two systems stayed at almost the same level. In AlCl3 and FeCl3 sludges high concentrations of Al and Fe were toxic to Microcystis aeruginosa, whereas in PAFC sludge low levels of Al showed little toxic effect on Microcystis aeruginosa growth and moderate amounts of Fe were beneficial to growth. The lysis of Microcystis aeruginosa in AlCl3 sludge was more serious than that in PAFC sludge, for the same storage time. Although the cell viability in FeCl3 sludge was low (similar to AlCl3 sludge), the Microcystis aeruginosa cells remained basically intact after 10 d storage (similar to PAFC sludge). The maintenance of cellular integrity in FeCl3 sludge might be due to the large floc size and high density, which had a protective effect for Microcystis aeruginosa.

  10. Direct measurement of efflux in Pseudomonas aeruginosa using an environment-sensitive fluorescent dye.

    PubMed

    Iyer, Ramkumar; Erwin, Alice L

    2015-01-01

    Resistance-Nodulation-Division (RND) family pumps AcrB and MexB are the major efflux routes in Escherichia coli and Pseudomonas aeruginosa respectively. Fluorescent environment-sensitive dyes provide a means to study efflux pump function in live bacterial cells in real-time. Recently, we demonstrated the utility of this approach using the dye Nile Red to quantify AcrB-mediated efflux and measured the ability of antibiotics and other efflux pump substrates to compete with efflux of Nile Red, independent of antibacterial activity. Here, we extend this method to P. aeruginosa and describe a novel application that permits the comparison and rank-ordering of bacterial strains by their inherent efflux potential. We show that glucose and l-malate re-energize Nile Red efflux in P. aeruginosa, and we highlight differences in the glucose dependence and kinetics of efflux between P. aeruginosa and E. coli. We quantify the differences in efflux among a set of P. aeruginosa laboratory strains, which include PAO1, the hyper-sensitive strain ATCC 35151 and its parent, ATCC 12055. Efflux of Nile Red in P. aeruginosa is mediated by MexAB-OprM and is slower than in E. coli. In conclusion, we describe an efflux measurement tool for use in antibacterial drug discovery and basic research on P. aeruginosa efflux pumps.

  11. Second harmonic generation imaging of corneal stroma after infection by Pseudomonas aeruginosa

    PubMed Central

    Robertson, Danielle M.; Rogers, Nathan A.; Petroll, W. Matthew; Zhu, Meifang

    2017-01-01

    Pseudomonas aeruginosa is a pathogenic gram-negative organism that has the ability to cause blinding corneal infections following trauma and during contact lens wear. In this study, we investigated the directional movement and orientation of an invasive corneal isolate of P. aeruginosa in the corneal stroma during infection of ex vivo and in vivo rabbit corneas using multiphoton fluorescence and second harmonic generation (SHG) imaging. Ex vivo, rabbit corneas were subject to three partial thickness wounds prior to inoculation. In vivo, New Zealand white rabbits were fit with P. aeruginosa laden contact lenses in the absence of a penetrating wound. At all time points tested, infiltration of the corneal stroma by P. aeruginosa revealed a high degree of alignment between the bacteria and collagen lamellae ex vivo (p < 0.001). In vivo, P. aeruginosa traveled throughout the stroma in discrete regions or bands. Within each region, the bacteria showed good alignment with collagen lamellae (P = 0.002). Interestingly, in both the in vitro and in vivo models, P. aeruginosa did not appear to cross the corneal limbus. Taken together, our findings suggest that P. aeruginosa exploits the precise spacing of collagen lamellae in the central cornea to facilitate spread throughout the stroma.

  12. Behaviors of Microcystis aeruginosa cells during floc storage in drinking water treatment process

    PubMed Central

    Xu, Hangzhou; Pei, Haiyan; Xiao, Hongdi; Jin, Yan; Li, Xiuqing; Hu, Wenrong; Ma, Chunxia; Sun, Jiongming; Li, Hongmin

    2016-01-01

    This is the first study to systematically investigate the different behaviors of Microcystis aeruginosa in the sludges formed by AlCl3, FeCl3, and polymeric aluminium ferric chloride (PAFC) coagulants during storage. Results show that the viability of Microcystis aeruginosa in PAFC sludge was stronger than that of cells in either AlCl3 or FeCl3 sludge after the same storage time, while the cells’ viability in the latter two systems stayed at almost the same level. In AlCl3 and FeCl3 sludges high concentrations of Al and Fe were toxic to Microcystis aeruginosa, whereas in PAFC sludge low levels of Al showed little toxic effect on Microcystis aeruginosa growth and moderate amounts of Fe were beneficial to growth. The lysis of Microcystis aeruginosa in AlCl3 sludge was more serious than that in PAFC sludge, for the same storage time. Although the cell viability in FeCl3 sludge was low (similar to AlCl3 sludge), the Microcystis aeruginosa cells remained basically intact after 10 d storage (similar to PAFC sludge). The maintenance of cellular integrity in FeCl3 sludge might be due to the large floc size and high density, which had a protective effect for Microcystis aeruginosa. PMID:27713525

  13. 3-indolylacetonitrile decreases Escherichia coli O157:H7 biofilm formation and Pseudomonas aeruginosa virulence.

    PubMed

    Lee, Jin-Hyung; Cho, Moo Hwan; Lee, Jintae

    2011-01-01

    Intercellular signal indole and its derivative hydroxyindoles inhibit Escherichia coli biofilm and diminish Pseudomonas aeruginosa virulence. However, indole and bacterial indole derivatives are unstable in the microbial community because they are quickly degraded by diverse bacterial oxygenases. Hence, this work sought to identify novel, non-toxic, stable and potent indole derivatives from plant sources for inhibiting the biofilm formation of E. coli O157:H7 and P. aeruginosa. Here, plant auxin 3-indolylacetonitrile (IAN) was found to inhibit the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth. IAN more effectively inhibited biofilms than indole for the two pathogenic bacteria. Additionally, IAN decreased the production of virulence factors including 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS), pyocyanin and pyoverdine in P. aeruginosa. DNA microarray analysis indicated that IAN repressed genes involved in curli formation and glycerol metabolism, whereas IAN induced indole-related genes and prophage genes in E. coli O157:H7. It appeared that IAN inhibited the biofilm formation of E. coli by reducing curli formation and inducing indole production. Also, corroborating phenotypic results of P. aeruginosa, whole-transcriptomic data showed that IAN repressed virulence-related genes and motility-related genes, while IAN induced several small molecule transport genes. Furthermore, unlike bacterial indole derivatives, plant-originated IAN was stable in the presence of either E. coli or P. aeruginosa. Additionally, indole-3-carboxyaldehyde was another natural biofilm inhibitor for both E. coli and P. aeruginosa.

  14. Bacterial Secretant from Pseudomonas aeruginosa Dampens Inflammasome Activation in a Quorum Sensing-Dependent Manner

    PubMed Central

    Yang, Jungmin; Lee, Kang-Mu; Park, Sangjun; Cho, Yoeseph; Lee, Eunju; Park, Jong-Hwan; Shin, Ok Sarah; Son, Junghyun; Yoon, Sang Sun; Yu, Je-Wook

    2017-01-01

    Inflammasome signaling can contribute to host innate immune defense against bacterial pathogens such as Pseudomonas aeruginosa. However, bacterial evasion of host inflammasome activation is still poorly elucidated. Quorum sensing (QS) is a bacterial communication mechanism that promotes coordinated adaptation by triggering expression of a wide range of genes. QS is thought to strongly contribute to the virulence of P. aeruginosa, but the molecular impact of bacterial QS on host inflammasome defense is completely unknown. Here, we present evidence that QS-related factors of the bacterial secretant (BS) from P. aeruginosa can dampen host inflammasome signaling in mouse bone marrow-derived macrophages. We found that BS from QS-defective ΔlasR/rhlR mutant, but not from wild-type (WT) P. aeruginosa, induces robust activation of the NLRC4 inflammasome. P. aeruginosa-released flagellin mediates this inflammasome activation by ΔlasR/rhlR secretant, but QS-regulated bacterial proteases in the WT BS impair extracellular flagellin to attenuate NLRC4 inflammasome activation. P. aeruginosa-secreted proteases also degrade inflammasome components in the extracellular space to inhibit the propagation of inflammasome-mediated responses. Furthermore, QS-regulated virulence factor pyocyanin and QS autoinducer 3-oxo-C12-homoserine lactone directly suppressed NLRC4- and even NLRP3-mediated inflammasome assembly and activation. Taken together, our data indicate that QS system of P. aeruginosa facilitates bacteria to evade host inflammasome-dependent sensing machinery.

  15. CHANGES IN THE MORPHOLOGY AND POLYSACCHARIDE CONTENT OF MICROCYSTIS AERUGINOSA (CYANOBACTERIA) DURING FLAGELLATE GRAZING(1).

    PubMed

    Yang, Zhou; Kong, Fanxiang; Shi, Xiaoli; Zhang, Min; Xing, Peng; Cao, Huansheng

    2008-06-01

    To investigate the changes in the morphology and polysaccharide content of Microcystis aeruginosa (Kütz.) Kütz. during flagellate grazing, cultures of M. aeruginosa were exposed to grazing Ochromonas sp. for a period of 9 d under controlled laboratory conditions. M. aeruginosa responded actively to flagellate grazing and formed colonies, most of which were made up of several or dozens of cells, suggesting that flagellate grazing may be one of the biotic factors responsible for colony formation in M. aeruginosa. When colonies were formed, the cell surface ultrastructure changed, and the polysaccharide layer on the surface of the cell wall became thicker. This change indicated that synthesis and secretion of extracellular polysaccharide (EPS) of M. aeruginosa cells increased under flagellate grazing pressure. The contents of soluble extracellular polysaccharide (sEPS), bound extracellular polysaccharide (bEPS), and total polysaccharide (TPS) in colonial cells of M. aeruginosa increased significantly compared with those in single cells. This finding suggested that the increased amount of EPS on the cell surface may play a role in keeping M. aeruginosa cells together to form colonies.

  16. Effects of laser irradiation on a bloom forming cyanobacterium Microcystis aeruginosa.

    PubMed

    Li, Tiancui; Bi, Yonghong; Liu, Jiantong; Wu, Chenxi

    2016-10-01

    Effects of laser irradiation on photosystem II (PS II) photochemical efficiencies, growth, and other physiological responses of Microcystis aeruginosa were investigated in this study. Results indicate that laser irradiation (wavelengths 405, 450, 532, and 650 nm) could effectively inhibit maximal PS II quantum yield (Fv/Fm) and maximal electron transport rates (ETRmax) of M. aeruginosa, while saturating light levels (Ek) of M. aeruginosa did not change significantly. Among the four tested wavelengths, 650 nm laser (red light) showed the highest inhibitory efficiency. Following 650 nm laser irradiation, the growth of M. aeruginosa was significantly suppressed, and contents of cellular photosynthetic pigments (chlorophyll a, carotenoid, phycocyanin, and allophycocyanin) decreased as irradiation dose increased. Meanwhile, laser irradiation enhanced the enzyme activities of superoxide dismutase (SOD) and peroxidase (POD) in M. aeruginosa cells. Lower irradiation doses did not change the intracellular microcystin contents, but higher dose irradiation (>1284 J cm(-2)) caused the release of microcystin into the culture medium. Transmission electron microscope examination showed that the ultrastructure of M. aeruginosa cells was destructed progressively following laser irradiation. Effects of laser irradiation on M. aeruginosa may be a combination of photochemical, electromagnetic, and thermal effects.

  17. Behaviors of Microcystis aeruginosa cells during floc storage in drinking water treatment process

    NASA Astrophysics Data System (ADS)

    Xu, Hangzhou; Pei, Haiyan; Xiao, Hongdi; Jin, Yan; Li, Xiuqing; Hu, Wenrong; Ma, Chunxia; Sun, Jiongming; Li, Hongmin

    2016-10-01

    This is the first study to systematically investigate the different behaviors of Microcystis aeruginosa in the sludges formed by AlCl3, FeCl3, and polymeric aluminium ferric chloride (PAFC) coagulants during storage. Results show that the viability of Microcystis aeruginosa in PAFC sludge was stronger than that of cells in either AlCl3 or FeCl3 sludge after the same storage time, while the cells’ viability in the latter two systems stayed at almost the same level. In AlCl3 and FeCl3 sludges high concentrations of Al and Fe were toxic to Microcystis aeruginosa, whereas in PAFC sludge low levels of Al showed little toxic effect on Microcystis aeruginosa growth and moderate amounts of Fe were beneficial to growth. The lysis of Microcystis aeruginosa in AlCl3 sludge was more serious than that in PAFC sludge, for the same storage time. Although the cell viability in FeCl3 sludge was low (similar to AlCl3 sludge), the Microcystis aeruginosa cells remained basically intact after 10 d storage (similar to PAFC sludge). The maintenance of cellular integrity in FeCl3 sludge might be due to the large floc size and high density, which had a protective effect for Microcystis aeruginosa.

  18. Annona glabra Flavonoids Act As Antimicrobials by Binding to Pseudomonas aeruginosa Cell Walls

    PubMed Central

    Galvão, Stanley de S. L.; Monteiro, Andrea de S.; Siqueira, Ezequias P.; Bomfim, Maria Rosa Q.; Dias-Souza, Marcus Vinícius; Ferreira, Gabriella F.; Denadai, Angelo Márcio L.; Santos, Áquila R. C.; Lúcia dos Santos, Vera; de Souza-Fagundes, Elaine M.; Fernandes, Elizabeth S.; Monteiro-Neto, Valério

    2016-01-01

    Pseudomonas aeruginosa is an important pathogen in opportunistic infections in humans. The increased incidence of antimicrobial-resistant P. aeruginosa isolates has highlighted the need for novel and more potent therapies against this microorganism. Annona glabra is known for presenting different compounds with diverse biological activities, such as anti-tumor and immunomodulatory activities. Although other species of the family display antimicrobial actions, this has not yet been reported for A. glabra. Here, we investigated the antimicrobial activity of the ethyl acetate fraction (EAF) obtained from the leaf hydroalcoholic extract of A. glabra. EAF was bactericidal against different strains of P. aeruginosa. EAF also presented with a time- and concentration-dependent effect on P. aeruginosa viability. Testing of different EAF sub-fractions showed that the sub-fraction 32-33 (SF32-33) was the most effective against P. aeruginosa. Analysis of the chemical constituents of SF32-33 demonstrated a high content of flavonoids. Incubation of this active sub-fraction with P. aeruginosa ATCC 27983 triggered an endothermic reaction, which was accompanied by an increased electric charge, suggesting a high binding of SF32-33 compounds to bacterial cell walls. Collectively, our results suggest that A. glabra-derived compounds, especially flavonoids, may be useful for treating infections caused by P. aeruginosa. PMID:28066374

  19. Distribution and Inhibition of Liposomes on Staphylococcus aureus and Pseudomonas aeruginosa Biofilm

    PubMed Central

    Dong, Dong; Thomas, Nicky; Thierry, Benjamin; Vreugde, Sarah; Prestidge, Clive A.; Wormald, Peter-John

    2015-01-01

    Background Staphylococcus aureus and Pseudomonas aeruginosa are major pathogens in chronic rhinosinusitis (CRS) and their biofilms have been associated with poorer postsurgical outcomes. This study investigated the distribution and anti-biofilm effect of cationic (+) and anionic (-) phospholipid liposomes with different sizes (unilamellar and multilamellar vesicle, ULV and MLV respectively) on S. aureus and P. aeruginosa biofilms. Method Specific biofilm models for S. aureus ATCC 25923 and P. aeruginosa ATCC 15692 were established. Liposomal distribution was determined by observing SYTO9 stained biofilm exposed to DiI labeled liposomes using confocal scanning laser microscopy, followed by quantitative image analysis. The anti-biofilm efficacy study was carried out by using the alamarBlue assay to test the relative viability of biofilm treated with various liposomes for 24 hours and five minutes. Results The smaller ULVs penetrated better than larger MLVs in both S. aureus and P. aeruginosa biofilm. Except that +ULV and –ULV displayed similar distribution in S. aureus biofilm, the cationic liposomes adhered better than their anionic counterparts. Biofilm growth was inhibited at 24-hour and five-minute exposure time, although the decrease of viability for P. aeruginosa biofilm after liposomal treatment did not reach statistical significance. Conclusion The distribution and anti-biofilm effects of cationic and anionic liposomes of different sizes differed in S. aureus and P. aeruginosa biofilms. Reducing the liposome size and formulating liposomes as positively charged enhanced the penetration and inhibition of S. aureus and P. aeruginosa biofilms. PMID:26125555

  20. SERS detection of the biomarker hydrogen cyanide from Pseudomonas aeruginosa cultures isolated from cystic fibrosis patients

    PubMed Central

    Lauridsen, Rikke Kragh; Sommer, Lea M.; Johansen, Helle Krogh; Rindzevicius, Tomas; Molin, Søren; Jelsbak, Lars; Engelsen, Søren Balling; Boisen, Anja

    2017-01-01

    Pseudomonas aeruginosa is the primary cause of chronic airway infections in cystic fibrosis (CF) patients. Persistent infections are seen from the first P. aeruginosa culture in about 75% of young CF patients, and it is important to discover new ways to detect P. aeruginosa at an earlier stage. The P. aeruginosa biomarker hydrogen cyanide (HCN) contains a triple bond, which is utilized in this study because of the resulting characteristic C≡N peak at 2135 cm−1 in a Raman spectrum. The Raman signal was enhanced by surface-enhanced Raman spectroscopy (SERS) on a Au-coated SERS substrate. After long-term infection, a mutation in the patho-adaptive lasR gene can alter the expression of HCN, which is why it is sometimes not possible to detect HCN in the breath of chronically infected patients. Four P. aeruginosa reference strains and 12 clinical P. aeruginosa strains isolated from CF children were evaluated, and HCN was clearly detected from overnight cultures of all wild type-like isolates and half of the later isolates from the same patients. The clinical impact could be that P. aeruginosa infections could be detected at an earlier stage, because daily breath sampling with an immediate output could be possible with a point-of-care SERS device. PMID:28349938

  1. The complex interplay of iron, biofilm formation, and mucoidy affecting antimicrobial resistance of Pseudomonas aeruginosa.

    PubMed

    Oglesby-Sherrouse, Amanda G; Djapgne, Louise; Nguyen, Angela T; Vasil, Adriana I; Vasil, Michael L

    2014-04-01

    Pseudomonas aeruginosa is a Gram-negative opportunistic bacterial pathogen that is refractory to a variety of current antimicrobial therapeutic regimens. Complicating treatment for such infections is the ability of P. aeruginosa to form biofilms, as well as several innate and acquired resistance mechanisms. Previous studies suggest iron plays a role in resistance to antimicrobial therapy, including the efficacy of an FDA-approved iron chelator, deferasirox (DSX), or Gallium, an iron analog, in potentiating antibiotic-dependent killing of P. aeruginosa biofilms. Here, we show that iron-replete conditions enhance resistance of P. aeruginosa nonbiofilm growth against tobramycin and tigecycline. Interestingly, the mechanism of iron-enhanced resistance to each of these antibiotics is distinct. Whereas pyoverdine-mediated iron uptake is important for optimal resistance to tigecycline, it does not enhance tobramycin resistance. In contrast, heme supplementation results in increased tobramycin resistance, while having no significant effect on tigecycline resistance. Thus, nonsiderophore bound iron plays an important role in resistance to tobramycin, while pyoverdine increases the ability of P. aeruginosa to resist tigecycline treatment. Lastly, we show that iron increases the minimal concentration of tobramycin, but not tigecycline, required to eradicate P. aeruginosa biofilms. Moreover, iron depletion blocks the previous observed induction of biofilm formation by subinhibitory concentrations of tobramycin, suggesting iron and tobramycin signal through overlapping regulatory pathways to affect biofilm formation. These data further support the role of iron in P. aeruginosa antibiotic resistance, providing yet another compelling case for targeting iron acquisition for future antimicrobial drug development.

  2. COMPARATIVE TAXONOMY OF CRYSTALLOGENIC STRAINS OF PSEUDOMONAS AERUGINOSA AND PSEUDOMONAS CHLORORAPHIS

    PubMed Central

    Haynes, William C.; Rhodes, Lenora J.

    1962-01-01

    Haynes, William C. (Northern Utilization Research and Development Division, Peoria, Ill.) and Lenora J. Rhodes. Comparative taxonomy of crystallogenic strains of Pseudomonas aeruginosa and Pseudomonas chlororaphis. J. Bacteriol. 84:1080–1084. 1962.—Only 11 of 39 strains received in the Agricultural Research Service Culture Collection under the designation Pseudonomas chlororaphis proved to be authentic; 28 were typical, pyocyanogenic strains of P. aeruginosa. The reason for this disproportionately high rate of misidentification apparently arises from an erroneous belief that the ability to produce green and yellow crystals of chlororaphin and oxychlororaphin is confined to P. chlororaphis. The ability of many strains of P. aeruginosa to do likewise is not well known. Inasmuch as the characteristic is not unique to P. chlororaphis, other criteria are required to distinguish crystallogenic strains of these species. After a taxonomic comparison of 18 strains of P. chlororaphis and 47 crystallogenic strains of P. aeruginosa, it was determined that there are three main distinctions: (i) P. aeruginosa grows well at 42 C but fails to grow upon serial transfer at 5 C, whereas P. chlororaphis fails to grow at 42 C, but grows well at 5 C: (ii) most strains of P. aeruginosa produce pyocyanin, whereas P. chlororaphis strains do not; (iii) P. aeruginosa cells possess only one or two polar flagella, whereas P. chlororaphis usually has at least four, sometimes as many as eight, polar flagella. PMID:13963593

  3. BIIL 284 reduces neutrophils numbers but increases P. aeruginosa bacteraemia and inflammation in mouse lungs

    PubMed Central

    Döring, Gerd; Bragonzi, Alessandra; Paroni, Moira; Aktürk, Firdevs-Fatma; Cigana, Cristina; Schmidt, Annika; Gilpin, Deirdre; Heyder, Susanne; Born, Torsten; Smaczny, Christina; Kohlhäufl, Martin; Wagner, Thomas O. F.; Loebinger, Michael R.; Bilton, Diana; Tunney, Michael M.; Elborn, J. Stuart; Pier, Gerald B.; Konstan, Michael W.; Ulrich, Martina

    2014-01-01

    Background A clinical study to investigate the leukotriene B4 (LTB4)-receptor antagonist BIIL 284 in cystic fibrosis (CF) patients was prematurely terminated due to a significantly increased risk of adverse pulmonary events. We aimed to establish the effect of BIIL284 in models of Pseudomonas aeruginosa lung infection, thereby contributing to a better understanding of what could have led to adverse pulmonary events in CF patients. Methods P. aeruginosa DNA in the blood of CF patients during and after acute pulmonary exacerbations and in stable patients with non-CF bronchiectasis (NCFB) and healthy individuals was assessed by PCR. The effect of BIIL 284 treatment was tested in an agar beads murine model of Pseudomonas aeruginosa lung infection. Bacterial count and inflammation were evaluated in lung and other organs. Result Most CF patients (98%) and all patients with NCFB and healthy individuals had negative P. aeruginosa DNA in their blood. Similarly, the P. aeruginosa-infected mice showed bacterial counts in the lung but not blood or spleen. BIIL 284 treatment decreased pulmonary neutrophils and increased P. aeruginosa numbers in mouse lungs leading to significantly higher bacteremia rates and lung inflammation compared to placebo treated animals. Conclusions Decreased airway neutrophils induced lung proliferation and severe bacteraemia in a murine model of P. aeruginosa lung infection. These data suggest that caution should be taken when administering anti-inflammatory compounds to patients with bacterial infections. PMID:24183915

  4. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections.

    PubMed

    Cornelis, Pierre; Dingemans, Jozef

    2013-01-01

    Pseudomonas aeruginosa is a Gram-negative γ-Proteobacterium which is known for its capacity to colonize various niches, including some invertebrate and vertebrate hosts, making it one of the most frequent bacteria causing opportunistic infections. P. aeruginosa is able to cause acute as well as chronic infections and it uses different colonization and virulence factors to do so. Infections range from septicemia, urinary infections, burn wound colonization, and chronic colonization of the lungs of cystic fibrosis patients. Like the vast majority of organisms, P. aeruginosa needs iron to sustain growth. P. aeruginosa utilizes different strategies to take up iron, depending on the type of infection it causes. Two siderophores are produced by this bacterium, pyoverdine and pyochelin, characterized by high and low affinities for iron respectively. P. aeruginosa is also able to utilize different siderophores from other microorganisms (siderophore piracy). It can also take up heme from hemoproteins via two different systems. Under microaerobic or anaerobic conditions, P. aeruginosa is also able to take up ferrous iron via its Feo system using redox-cycling phenazines. Depending on the type of infection, P. aeruginosa can therefore adapt by switching from one iron uptake system to another as we will describe in this short review.

  5. Efficacy of the Novel Antibiotic POL7001 in Preclinical Models of Pseudomonas aeruginosa Pneumonia

    PubMed Central

    Cigana, Cristina; Bernardini, Francesca; Facchini, Marcella; Alcalá-Franco, Beatriz; Riva, Camilla; De Fino, Ida; Rossi, Alice; Ranucci, Serena; Misson, Pauline; Chevalier, Eric; Brodmann, Maj; Schmitt, Michel; Wach, Achim; Dale, Glenn E.

    2016-01-01

    The clinical development of antibiotics with a new mode of action combined with efficient pulmonary drug delivery is a priority against untreatable Pseudomonas aeruginosa lung infections. POL7001 is a macrocycle antibiotic belonging to the novel class of protein epitope mimetic (PEM) molecules with selective and potent activity against P. aeruginosa. We investigated ventilator-associated pneumonia (VAP) and cystic fibrosis (CF) as indications of the clinical potential of POL7001 to treat P. aeruginosa pulmonary infections. MICs of POL7001 and comparators were measured for reference and clinical P. aeruginosa strains. The therapeutic efficacy of POL7001 given by pulmonary administration was evaluated in murine models of P. aeruginosa acute and chronic pneumonia. POL7001 showed potent in vitro activity against a large panel of P. aeruginosa isolates from CF patients, including multidrug-resistant (MDR) isolates with adaptive phenotypes such as mucoid or hypermutable phenotypes. The efficacy of POL7001 was demonstrated in both wild-type and CF mice. In addition to a reduced bacterial burden in the lung, POL7001-treated mice showed progressive body weight recovery and reduced levels of inflammatory markers, indicating an improvement in general condition. Pharmacokinetic studies indicated that POL7001 reached significant concentrations in the lung after pulmonary administration, with low systemic exposure. These results support the further evaluation of POL7001 as a novel therapeutic agent for the treatment of P. aeruginosa pulmonary infections. PMID:27297477

  6. Subunit analysis of mitochondrial cytochrome c oxidase and cytochrome bc1 by reversed-phase high-performance liquid chromatography.

    PubMed

    Kesa, Peter; Bhide, Mangesh; Lysakova, Veronika; Musatov, Andrey

    2017-01-01

    A rapid separation of the ten nuclearly-encoded subunits of mitochondrial cytochrome c oxidase, and ten out of the eleven subunits of cytochrome bc1, was achieved using a short, 50 mm C18-reversed-phase column. The short column decreased the elution time 4-7 fold while maintaining the same resolution quality. Elution was similar to a previously published protocol, i.e., a water/acetonitrile elution gradient containing trifluoroacetic acid. Isolated subunits were identified by MALDI-TOF. The rapidity of the described method makes it extremely useful for determining the subunit composition of isolated mitochondrial complexes. The method can be used for both analytical and micro-preparative purposes.

  7. Electrochemical determination of hydrogen peroxide with cytochrome c peroxidase and horse heart cytochrome c entrapped in a gelatin hydrogel.

    PubMed

    De Wael, Karolien; Bashir, Qamar; Van Vlierberghe, Sandra; Dubruel, Peter; Heering, Hendrik A; Adriaens, Annemie

    2012-02-01

    A novel and versatile method, based on a membrane-free enzyme electrode in which both the enzyme and a mediator protein are entrapped in a gelatine hydrogel was developed for the fabrication of biosensors. As a proof of principle, we prepared a hydrogen peroxide biosensor by successfully entrapping both horse heart cytochrome c (HHC) and Saccharomyces cerevisae cytochrome c peroxidase (CCP) in a gelatin matrix which is immobilized on a gold electrode. This electrode was first pretreated with 6-mercaptohexanol. The biosensor displayed a rapid response and an expanded linear response range from 0 to 0.3 mM (R = 0.987) with a detection limit of 1 × 10(-5)M in a HEPES buffer solution (pH 7.0). This method of encapsulation is now further investigated for industrial biosensor applications.

  8. Solar Disinfection of Pseudomonas aeruginosa in Harvested Rainwater: A Step towards Potability of Rainwater

    PubMed Central

    Amin, Muhammad T.; Nawaz, Mohsin; Amin, Muhammad N.; Han, Mooyoung

    2014-01-01

    Efficiency of solar based disinfection of Pseudomonas aeruginosa (P. aeruginosa) in rooftop harvested rainwater was evaluated aiming the potability of rainwater. The rainwater samples were exposed to direct sunlight for about 8–9 hours and the effects of water temperature (°C), sunlight irradiance (W/m2), different rear surfaces of polyethylene terephthalate bottles, variable microbial concentrations, pH and turbidity were observed on P. aeruginosa inactivation at different weathers. In simple solar disinfection (SODIS), the complete inactivation of P. aeruginosa was obtained only under sunny weather conditions (>50°C and >700 W/m2) with absorptive rear surface. Solar collector disinfection (SOCODIS) system, used to improve the efficiency of simple SODIS under mild and weak weather, completely inactivated the P. aeruginosa by enhancing the disinfection efficiency of about 20% only at mild weather. Both SODIS and SOCODIS systems, however, were found inefficient at weak weather. Different initial concentrations of P. aeruginosa and/or Escherichia coli had little effects on the disinfection efficiency except for the SODIS with highest initial concentrations. The inactivation of P. aeruginosa increased by about 10–15% by lowering the initial pH values from 10 to 3. A high initial turbidity, adjusted by adding kaolin, adversely affected the efficiency of both systems and a decrease, about 15–25%; in inactivation of P. aeruginosa was observed. The kinetics of this study was investigated by Geeraerd Model for highlighting the best disinfection system based on reaction rate constant. The unique detailed investigation of P. aeruginosa disinfection with sunlight based disinfection systems under different weather conditions and variable parameters will help researchers to understand and further improve the newly invented SOCODIS system. PMID:24595188

  9. Diverse effects of Galleria mellonella infection with entomopathogenic and clinical strains of Pseudomonas aeruginosa.

    PubMed

    Andrejko, Mariola; Zdybicka-Barabas, Agnieszka; Cytryńska, Małgorzata

    2014-01-01

    In numerous studies, the greater wax moth Galleria mellonella has been exploited as an alternative model host for investigating virulence factors of different pathogenic bacteria. In the present paper, we provide evidence that G. mellonella constitutes a useful and convenient model for analysis of the pathogenicity of Pseudomonas aeruginosa clinical strains. In this in vivo study on the G. mellonella–P. aeruginosa interaction, a bidirectional analysis comprising evaluation of humoral immune response of the bacteria-infected larvae and determination of P. aeruginosa proteinases synthesized during the infection was performed. The effects of G. mellonella infection by two clinical strains (PA C124/9 and PA 02/18) and one entomopathogenic strain (ATCC 27853) cultured in a rich LB and minimal M9 medium, known to induce synthesis of different sets of extracellular proteinases, were evaluated. Both clinical isolates were able to establish infection in G. mellonella caterpillars after intrahemocelic injection. However, although the final effect of the larvae infection by each P. aeruginosa strain was their death within ca. 48 h, considerable strain and medium-dependent differences in the immune response of the insects were detected. The results indicated that G. mellonella larvae distinguished between the three P. aeruginosa strains, which was well reflected by the diverse humoral immune response. The significant differences concerned, among others, the level of phenoloxidase, lysozyme, and antibacterial activity in the hemolymph of the infected insects. An analysis of proteinases performed using specific activity tests, zymography and immunoblotting, revealed that elastase B and alkaline protease were synthesized by each P. aeruginosa strain during the infection. In contrast, a high level of elastase A activity was detected only in the larvae infected by the P. aeruginosa ATCC 27853 strain. It can be postulated that the three P. aeruginosa strains exploit different

  10. Anti-Pseudomonas aeruginosa antibody detection in patients with bronchiectasis without cystic fibrosis

    PubMed Central

    Caballero, E; Drobnic, M; Perez, M; Manresa, J; Ferrer, A; Orriols, R

    2001-01-01

    BACKGROUND—Pseudomonas aeruginosa is a frequent cause of infection in patients with bronchiectasis. Differentiation between non-infected patients and those with different degrees of P aeruginosa infection could influence the management and prognosis of these patients. The diagnostic usefulness of serum IgG antibodies against P aeruginosa outer membrane proteins was determined in patients with bronchiectasis without cystic fibrosis.
METHODS—Fifty six patients were classified according to sputum culture into three groups: group A (n=18) with no P aeruginosa in any sample; group B (n=18) with P aeruginosa alternating with other microorganisms; and group C (n=20) with P aeruginosa in all sputum samples. Each patient had at least three sputum cultures in the 6 months prior to serum collection. Detection of antibodies was performed by Western blot and their presence against 20 protein bands (10-121 kd) was assessed.
RESULTS—Antibodies to more than four bands in total or to five individual bands (36, 26, 22, 20 or 18 kd) differentiated group B from group A, while antibodies to a total of more than eight bands or to 10 individual bands (104, 69, 63, 56, 50, 44, 30, 25, 22,13 kd) differentiated group C from group B. When discordant results between the total number of bands and the frequency of P aeruginosa isolation were obtained, the follow up of patients suggested that the former, in most cases, predicted chronic P aeruginosa colonisation.
CONCLUSION—In patients with bronchiectasis the degree of P aeruginosa infection can be determined by the number and type of outer membrane protein bands indicating which serum antibodies are present.

 PMID:11514685

  11. Candida albicans Inhibits Pseudomonas aeruginosa Virulence through Suppression of Pyochelin and Pyoverdine Biosynthesis

    PubMed Central

    Lopez-Medina, Eduardo; Fan, Di; Coughlin, Laura A.; Ho, Evi X.; Lamont, Iain L.; Reimmann, Cornelia; Hooper, Lora V.; Koh, Andrew Y.

    2015-01-01

    Bacterial-fungal interactions have important physiologic and medical ramifications, but the mechanisms of these interactions are poorly understood. The gut is host to trillions of microorganisms, and bacterial-fungal interactions are likely to be important. Using a neutropenic mouse model of microbial gastrointestinal colonization and dissemination, we show that the fungus Candida albicans inhibits the virulence of the bacterium Pseudomonas aeruginosa by inhibiting P. aeruginosa pyochelin and pyoverdine gene expression, which plays a critical role in iron acquisition and virulence. Accordingly, deletion of both P. aeruginosa pyochelin and pyoverdine genes attenuates P. aeruginosa virulence. Heat-killed C. albicans has no effect on P. aeruginosa, whereas C. albicans secreted proteins directly suppress P. aeruginosa pyoverdine and pyochelin expression and inhibit P. aeruginosa virulence in mice. Interestingly, suppression or deletion of pyochelin and pyoverdine genes has no effect on P. aeruginosa’s ability to colonize the GI tract but does decrease P. aeruginosa’s cytotoxic effect on cultured colonocytes. Finally, oral iron supplementation restores P. aeruginosa virulence in P. aeruginosa and C. albicans colonized mice. Together, our findings provide insight into how a bacterial-fungal interaction can modulate bacterial virulence in the intestine. Previously described bacterial-fungal antagonistic interactions have focused on growth inhibition or colonization inhibition/modulation, yet here we describe a novel observation of fungal-inhibition of bacterial effectors critical for virulence but not important for colonization. These findings validate the use of a mammalian model system to explore the complexities of polymicrobial, polykingdom infections in order to identify new therapeutic targets for preventing microbial disease. PMID:26313907

  12. Carbapenem Susceptibility and Multidrug-Resistance in Pseudomonas aeruginosa Isolates in Egypt

    PubMed Central

    Hashem, Hany; Hanora, Amro; Abdalla, Salah; Shawky, Alaa; Saad, Alaa

    2016-01-01

    Background Resistant Pseudomonas aeruginosa is a serious concern for antimicrobial therapy, as the common isolates exhibit variable grades of resistance, involving beta-lactamase enzymes, beside native defense mechanisms. Objectives The present study was designed to determine the occurrence of Metallo-β- Lactamases (MBL) and Amp C harboring P. aeruginosa isolates from Suez Canal university hospital in Ismailia, Egypt. Methods A total of 147 P. aeruginosa isolates, recovered from 311 patients during a 10-month period, were collected between May 2013 and February 2014; the isolates were collected from urine, wound and sputum. Minimum inhibitory concentration (MIC) determined by agar dilution methods was ≥2 μg/mL for meropenem and imipenem. Identification of P. aeruginosa was confirmed using API 20NE. Metallo-β- Lactamases and Amp C were detected based on different phenotypic methods. Results Overall, 26.5% of P. aeruginosa isolates (39/147) were carbapenem resistant isolates. Furthermore, 64.1% (25/39) were MBL producers, these isolates were screened by the combined disc and disc diffusion methods to determine the ability of MBL production. Both MBL and Amp C harbored P. aeruginosa isolates were 28% (7/25). Sixty-four percent of P. aeruginosa isolates were multidrug resistant (MDR) (16/25). The sensitivity toward polymyxin, imipenem, norfloxacin, piperacillin-tazobactam and gentamicin was 99%, 91%, 88%, 82% and 78%, respectively. The resistance rate towards cefotaxime, ceftazidime, cefepime, aztreonam and meropenem was 98.6%, 86%, 71.4%, 34% and 30%, respectively. Conclusions Multidrug resistance was significantly associated with MBL production in P. aeruginosa. Early detection of MBL-producing P. aeruginosa and hospital antibiotic policy prescription helps proper antimicrobial therapy and avoidance of dissemination of these multidrug resistance isolates. PMID:28138370

  13. Insights into Mechanisms and Proteomic Characterisation of Pseudomonas aeruginosa Adaptation to a Novel Antimicrobial Substance

    PubMed Central

    Cierniak, Peter; Jübner, Martin; Müller, Stefan; Bender, Katja

    2013-01-01

    Antibiotic resistance has been reported since the introduction of synthetic antibiotics. Bacteria, such as one of the most common nosocomial pathogens P. aeruginosa, adapt quickly to changing environmental conditions, due to their short generation time. Thus microevolutional changes can be monitored in situ. In this study, the microevolutional process of Pseudomonas aeruginosa PAO1 resistance against a recently developed novel antibacterial zinc Schiff-base (ZSB) was investigated at the proteome level. After extended exposure to ZSB the passaged strain differed in tolerance against ZSB, with the adapted P. aeruginosa PAO1 exhibiting 1.6 times higher minimal inhibitory concentration. Using Two-dimensional Difference Gel Electrophoresis, the changes in the proteome of ZSB adapted P. aeruginosa PAO1 were examined by comparison with the non-adapted P. aeruginosa PAO1. The proteome of the adapted P. aeruginosa PAO1 strain differed significantly from the non-adapted in the abundance of two proteins when both strains were grown under stressing conditions. One protein could be identified as the outer membrane protein D that plays a role in uptake of basic amino acids as well as in carbapeneme resistance. The second protein has been identified as alkyl peroxide reductase subunit F. Our data indicated a slight increase in abundance of alkyl peroxide reductase F (AhpF) in the case of ZSB passaged P. aeruginosa PAO1. Higher abundance of Ahp has been discussed in the literature as a promoter of accelerated detoxification of benzene derivatives. The observed up-regulated AhpF thus appears to be connected to an increased tolerance against ZSB. Changes in the abundance of proteins connected to oxidative stress were also found after short-time exposure of P. aeruginosa PAO1 to the ZSB. Furthermore, adapted P. aeruginosa PAO1 showed increased tolerance against hydrogen peroxide and, in addition, showed accelerated degradation of ZSB, as determined by HPLC measurements. PMID:23869205

  14. Antioxidant responses and degradation of two antibiotic contaminants in Microcystis aeruginosa.

    PubMed

    Liu, Ying; Guan, Yuntao; Gao, Baoyu; Yue, Qinyan

    2012-12-01

    Cyanobacteria may interact with antibiotic contaminants in aquatic environments, but the interaction effects and mechanisms remain unclear. In the present study, aqueous culture of Microcystis aeruginosa was exposed to 50ng/l-1μg/l of spiramycin and amoxicillin for seven days. The influences of antibiotics on the antioxidant system of M. aeruginosa and the degradation of antibiotics by M. aeruginosa were investigated. The activities of superoxide dismutase (SOD) in spiramycin-treated M. aeruginosa were stimulated by up to 2.2 folds, while the activities of peroxidase (POD) and catalase (CAT) were inhibited by spiramycin at test concentrations of 500ng/l-1μg/l, with a decrease of up to 71% and 76% compared to the control, respectively. The activities of SOD, POD and CAT in M. aeruginosa were stimulated by amoxicillin during the whole exposure period, with respective increases of up to 60%, 30% and 120% relative to the control. At test concentrations of 500ng/l-1μg/l, the higher MDA contents in spiramycin-treated M. aeruginosa indicated a higher toxicity of spiramycin than amoxicillin, possibly due to the accumulation of hydrogen peroxide caused by the inhibited activities of POD and CAT under exposure to spiramycin. The increase of glutathione content, the stimulation of glutathione S-transferase activity and the degradation of each antibiotic were observed in M. aeruginosa during the 7-day exposure. At the end of exposure, 12.5%-32.9% of spiramycin and 30.5%-33.6% of amoxicillin could be degraded by M. aeruginosa from the culture medium, indicating the ability of M. aeruginosa to eliminate coexisting contaminants via detoxification.

  15. Detection of Metallo-Beta Lactamases Among Carbapenem-Resistant Pseudomonas aeruginosa

    PubMed Central

    Farajzadeh Sheikh, Ahmad; Rostami, Soodabeh; Jolodar, Abbas; Tabatabaiefar, Mohammad Amin; Khorvash, Farzin; Saki, Azadeh; Shoja, Saeed; Sheikhi, Raheleh

    2014-01-01

    Background: Carbapenems are important drugs used for the treatment of Pseudomonas aeruginosa infections, however metallo-β-lactamases (MBL) are able to efficiently hydrolyze these classes of drugs. Immediate detection of the MBL-producing P. aeruginosa is necessary in order to accurately treat infections caused by this organism. Objectives: To determine the prevalence of MBL producing P. aeruginosa in burn and non-burn patients by two phenotypic tests and polymerase chain reaction (PCR) and to compare phenotypic tests with PCR. Materials and Methods: A total of 223 non-duplicate strains of P. aeruginosa were collected from three teaching hospitals of Ahvaz, Iran. Antimicrobial susceptibility and minimum inhibitory concentrations (MICs) of carbapenems (imipenem, meropenem, doripenem and ertapenem) were determined by the Kirby-Bauer and E-test methods. Combined disk (CD) test, MBL E-test and PCR were performed for carbapenem-resistant P. aeruginosa isolates. Results: Amongst all the P. aeruginosa isolates, 58.7% were resistant to imipenem while 31.8%, 13.5% and 74.4% were resistant to meropenem, doripenem and ertapenem, respectively. Amongst all the P. aeruginosa isolates, 44.4% were multidrug resistant and 13.45% were resistant to all of the carbapenems. The CD test with doripenem disk / 750 μg ethylene diamine tetra acetic acid (EDTA) had the highest efficiency compared to the other phenotypic tests. blaIMP and blaVIM genes were detected in 11.7% and 0.4% of isolates, respectively. blaSPM and blaNDM genes were not observed. Conclusions: Epidemiological and regional evaluation of MBL-producing P. aeruginosa through simple and inexpensive methods should be considered for effective treatment of carbapenem-resistant P. aeruginosa infections. PMID:25774271

  16. New Arabidopsis thaliana Cytochrome c Partners: A Look Into the Elusive Role of Cytochrome c in Programmed Cell Death in Plants*

    PubMed Central

    Martínez-Fábregas, Jonathan; Díaz-Moreno, Irene; González-Arzola, Katiuska; Janocha, Simon; Navarro, José A.; Hervás, Manuel; Bernhardt, Rita; Díaz-Quintana, Antonio; De la Rosa, Miguel Á.

    2013-01-01

    Programmed cell death is an event displayed by many different organisms along the evolutionary scale. In plants, programmed cell death is necessary for development and the hypersensitive response to stress or pathogenic infection. A common feature in programmed cell death across organisms is the translocation of cytochrome c from mitochondria to the cytosol. To better understand the role of cytochrome c in the onset of programmed cell death in plants, a proteomic approach was developed based on affinity chromatography and using Arabidopsis thaliana cytochrome c as bait. Using this approach, ten putative new cytochrome c partners were identified. Of these putative partners and as indicated by bimolecular fluorescence complementation, nine of them bind the heme protein in plant protoplasts and human cells as a heterologous system. The in vitro interaction between cytochrome c and such soluble cytochrome c-targets was further corroborated using surface plasmon resonance. Taken together, the results obtained in the study indicate that Arabidopsis thaliana cytochrome c interacts with several distinct proteins involved in protein folding, translational regulation, cell death, oxidative stress, DNA damage, energetic metabolism, and mRNA metabolism. Interestingly, some of these novel Arabidopsis thaliana cytochrome c-targets are closely related to those for Homo sapiens cytochrome c (Martínez-Fábregas et al., unpublished). These results indicate that the evolutionarily well-conserved cytosolic cytochrome c, appearing in organisms from plants to mammals, interacts with a wide range of targets on programmed cell death. The data have been deposited to the ProteomeXchange with identifier PXD000280. PMID:24019145

  17. Post-translational modifications in Pseudomonas aeruginosa revolutionized by proteomic analysis.

    PubMed

    Ouidir, Tassadit; Jouenne, Thierry; Hardouin, Julie

    2016-06-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes severe infections in vulnerable individuals. It is known that post-translational modifications (PTMs) play a key role in bacterial physiology. Their characterization is still challenging and the recent advances in proteomics allow large-scale and high-throughput analyses of PTMs. Here, we provide an overview of proteomic data about the modified proteins in P. aeruginosa. We emphasize the significant contribution of proteomics in knowledge enhancement of PTMs (phosphorylation, N-acetylation and glycosylation) and we discuss their importance in P. aeruginosa physiology.

  18. Pseudomonas aeruginosa porphobilinogen synthase assembly state regulators: hit discovery and initial SAR studies

    PubMed Central

    Reitz, Allen B.; Ramirez, Ursula D.; Stith, Linda; Du, Yanming; Smith, Garry R.; Jaffe, Eileen K.

    2010-01-01

    Porphobilinogen synthase (PBGS) catalyzes the first common step in the biosynthesis of the essential heme, chlorophyll and vitamin B12 heme pigments. PBGS activity is regulated by assembly state, with certain oligomers exhibiting biological activity and others either partially or completely inactive, affording an innovative means of allosteric drug action. Pseudomonas aeruginosa PBGS is functionally active as an octamer, and inactive as a dimer. We have identified a series of compounds that stabilize the inactive P. aeruginosa dimer by a computational prescreen followed by native PAGE gel mobility shift analysis. From those results, we have prepared related thiadiazoles and evaluated their ability to regulate P. aeruginosa PBGS assembly state. PMID:21643541

  19. Specific cleavage of human type III and IV collagens by Pseudomonas aeruginosa elastase.

    PubMed Central

    Heck, L W; Morihara, K; McRae, W B; Miller, E J

    1986-01-01

    Purified Pseudomonas aeruginosa elastase cleaved human type III and IV collagens with the formation of specific cleavage products. Furthermore, type I collagen appeared to be slowly cleaved by both P. aeruginosa elastase and alkaline protease. These cleavage fragments from type III and IV collagens were separated from the intact collagen chains by SDS polyacrylamide gradient gel electrophoresis run under reducing conditions, and they were detected by their characteristic Coomassie blue staining pattern. The results of these studies suggest that the pathogenesis of tissue invasion and hemorrhagic tissue necrosis observed in P. aeruginosa infections may be related to the degradation of these collagen types by bacterial extracellular proteases. Images PMID:3079727

  20. R-type pyocin is required for competitive growth advantage between Pseudomonas aeruginosa strains.

    PubMed

    Heo, Yun-Jeong; Chung, In-Young; Choi, Kelly B; Cho, You-Hee

    2007-01-01

    R-type pyocin is a bacteriophage tail-shaped bacteriocin produced by Pseudomonas aeruginosa, but its physiological roles are relatively unknown. Here we describe a role of R-type pyocin in the competitive growth advantages between P. aeruginosa strains. Partial purification and gene disruption revealed that the major killing activity from the culture supernatant of PA14 is attributed to R-type pyocin, neither F-type nor S-type pyocins. These findings may provide insight into the forces governing P. aeruginosa population dynamics to promote and maintain its biodiversity.

  1. The effect of flagellar motor-rotor complexes on twitching motility in P. aeruginosa

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Utada, Andrew; Gibiansky, Maxsim; Xian, Wujing; Wong, Gerard

    2013-03-01

    P. aeruginosa is an opportunistic bacterium responsible for a broad range of biofilm infections. In order for biofilms to form, P. aeruginosa uses different types of surface motility. In the current understanding, flagella are used for swarming motility and type IV pili are used for twitching motility. The flagellum also plays important roles in initial surface attachment and in shaping the architectures of mature biofilms. Here we examine how flagella and pili interact during surface motility, by using cell tracking techniques. We show that the pili driven twitching motility of P. aeruginosa can be affected by the motor-rotor complexes of the flagellar system.

  2. Cloning of a Phosphate-Regulated Hemolysin Gene (Phospholipase C) from Pseudomonas aeruginosa

    PubMed Central

    Vasil, Michael L.; Berka, Randy M.; Gray, Gregory L.; Nakai, Hiroshi

    1982-01-01

    Phospholipase C (heat-labile hemolysin) of Pseudomonas aeruginosa is a phosphate (Pi)-regulated extracellular protein which may be a significant virulence factor of this organism. The gene for this hemolytic enzyme was cloned on a 4.1-megadalton (Mdal) fragment from a BamHI digest of P. aeruginosa PAO1 genomic DNA and was inserted into the BamHI sites of the multicopy Escherichia coli(pBR322) and P. aeruginosa(pMW79) vectors. The E. coli and P. aeruginosa recombinant plasmids were designated pGV26 and pVB81, respectively. A restriction map of the 4.1-Mdal fragment from pGV26 was constructed, using double and single digestions with BamHI and EcoRI and several different restriction enzymes. Based on information from this map, a 2.4-Mdal BamHI/BglII fragment containing the gene for phospholipase C was subcloned to pBR322. The hybrid plasmids pGV26 and pVB81 direct the synthesis of enzymatically active phospholipase C, which is also hemolytic. The plasmid-directed synthesis of phospholipase C in E. coli or P. aeruginosa is not repressible by Pi as is the chromosomally directed synthesis in P. aeruginosa. Data are presented which suggest that the synthesis of phospholipase C from pGV26 and pVB81 is directed from the tetracycline resistance gene promoter. The level of enzyme activity produced by E. coli(pGV26) is slightly higher than the levels produced by P. aeruginosa(pMW79) under repressed conditions. In contrast, the levels produced by P. aeruginosa(pVB81) are at least 600-fold higher than the levels produced by P. aeruginosa(pMW79) under repressed conditions and approximately 20-fold higher than those produced by P. aeruginosa(pMW79) under derepressed conditions. The majority (85%) of the enzyme produced by E. coli(pGV26) remained cell associated, whereas >95% of the enzyme produced by P. aeruginosa(pVB81) was extracellular. Analysis of extracellular proteins from cultures of P. aeruginosa(pMW79) and P. aeruginosa(pVB81) by high-performance liquid chromotography and

  3. A physical genome map of Pseudomonas aeruginosa PAO.

    PubMed Central

    Römling, U; Grothues, D; Bautsch, W; Tümmler, B

    1989-01-01

    A complete macrorestriction map of the 5.9 Mb genome of Pseudomonas aeruginosa PAO (DSM 1707) was constructed by the combination of various one- and two-dimensional pulsed field gel electrophoresis techniques. A total of 51 restriction sites (36 SpeI sites, 15 DpnI sites) were placed on the physical map yielding an average resolution of 110 kb. Several genes encoding virulence factors and enzymes of metabolic pathways were located on the anonymous map by Southern hybridization. Distances between the gene loci were similar on the genetic and physical maps, suggesting an even distribution of genome mobility throughout the bacterial chromosome. The four rRNA operons were organized in pairs of inverted repeats. The two-dimensional macro-restriction techniques described herein are generally applicable for the genome mapping of any prokaryote and lower eukaryote which yields resolvable fragment patterns on two-dimensional pulsed field gels. Images PMID:2512121

  4. Heat shock mediated labelling of Pseudomonas aeruginosa with quantum dots.

    PubMed

    Kumar, Natasha; Wiraja, Christian; Palanisamy, Kannan; Marsili, Enrico; Xu, Chenjie

    2016-06-01

    Biocompatible nanoparticles are good candidates to label bacteria for imaging and diagnosis purposes. A high labeling efficiency reduces the concentration of nanoparticles required for labeling and allows the labeled bacteria to be tracked for longer periods. This report explores the optimal labeling strategy for Pseudomonas aeruginosa, a common gram-negative opportunistic pathogen, with quantum dots. Three strategies including direct incubation, calcium chloride treatment, and heat shock are compared and the labeling efficiency is assessed through fluorescence microscopy and flow cytometry analysis. Of the three, heat shock is finally selected due to its comparable labeling efficiency and simplicity. Through the assay of the respiration rate of bacteria together with morphology analysis, the heat shock process does not show any negative effect over the cells activity even at sub-toxic concentrations.

  5. Decrease of Pseudomonas aeruginosa biofilm formation by food waste materials.

    PubMed

    Maderova, Zdenka; Horska, Katerina; Kim, Sang-Ryoung; Lee, Chung-Hak; Pospiskova, Kristyna; Safarikova, Mirka; Safarik, Ivo

    2016-01-01

    The formation of bacterial biofilm on various surfaces has significant negative economic effects. The aim of this study was to find a simple procedure to decrease the Pseudomonas aeruginosa biofilm formation in a water environment by using different food waste biological materials as signal molecule adsorbents. The selected biomaterials did not reduce the cell growth but affected biofilm formation. Promising biomaterials were magnetically modified in order to simplify manipulation and facilitate their magnetic separation. The best biocomposite, magnetically modified spent grain, exhibited substantial adsorption of signal molecules and decreased the biofilm formation. These results suggest that selected food waste materials and their magnetically responsive derivatives could be applied to solve biofilm problems in water environment.

  6. Cellular proteins of Microcystis aeruginosa inhibiting coagulation with polyaluminum chloride.

    PubMed

    Takaara, Tomoko; Sano, Daisuke; Konno, Hiroshi; Omura, Tatsuo

    2007-04-01

    Cyanobacterial growth in semi-closed water areas such as reservoirs brings about a coagulation inhibition in a drinking water treatment system, but the inhibitory substances and mechanisms involved have yet to be elucidated. In this study, proteins having a high affinity with polyaluminum chloride (PACl) were isolated from organic substances produced by Microcystis aeruginosa with the affinity chromatography technique. Both extracellular organic matter (EOM) and cellular organic matter (COM) disturbed the flocculation of suspended kaolin with PACl, but it was likely that nonproteinous substances in EOM cause the reduction of coagulation effciency. In contrast, proteins in COM were obtained as possible inhibitory substances for the coagulation with PACl. These proteins could consume PACl in the coagulation process due to the formation of chelate complexes between these inhibitory proteins and the coagulant. The consumption of PACl by cyanobacterial proteins could be one of the important causes of the increase in coagulant demand.

  7. Production of proteinase on noncarbohydrate carbon sources by Pseudomonas aeruginosa.

    PubMed

    Morihara, K

    1965-09-01

    Proteinase production by Pseudomonas aeruginosa was studied in medium containing noncarbohydrate materials, especially various hydrocarbons, as the sole carbon source. On heavy oil, kerosene, n-paraffinic hydrocarbon of C(12), C(14), or C(16), and propylene glycol, the bacteria grew well and high protinase production was observed. However, production on paraffinic hydrocarbon differed remarkably with strains of varied origins. The elastase-positive strain, IFO 3455, showed abundant growth and high proteinase production on medium containing a paraffin of C(12), C(14), or C(16), whereas the elastase-negative strain, IFO 3080, showed little growth on the same medium. Neither elastase-positive nor elastase-negative strains, however, utilized n-paraffins of C(5) to C(10), or various aromatic hydrocarbons such as benzene, naphthalene, phenanthrene, and anthracene. The proteinases produced on the noncarbohydrate medium were identical with those produced in glucose medium.

  8. Bioengineered lysozyme in combination therapies for Pseudomonas aeruginosa lung infections

    PubMed Central

    Griswold, Karl E; Bement, Jenna L; Teneback, Charlotte C; Scanlon, Thomas C; Wargo, Matthew J; Leclair, Laurie W

    2014-01-01

    There is increasing urgency in the battle against drug-resistant bacterial pathogens, and this public health crisis has created a desperate need for novel antimicrobial agents. Recombinant human lysozyme represents one interesting candidate for treating pulmonary infections, but the wild type enzyme is subject to electrostatic mediated inhibition by anionic biopolymers that accumulate in the infected lung. We have redesigned lysozyme’s electrostatic potential field, creating a genetically engineered variant that is less susceptible to polyanion inhibition, yet retains potent bactericidal activity. A recent publication demonstrated that the engineered enzyme outperforms wild type lysozyme in a murine model of Pseudomonas aeruginosa lung infection. Here, we expand upon our initial studies and consider dual therapies that combine lysozymes with an antimicrobial peptide. Consistent with our earlier results, the charge modified lysozyme combination outperformed its wild type counterpart, yielding more than an order-of-magnitude reduction in bacterial burden following treatment with a single dose. PMID:24637705

  9. Pseudomonas aeruginosa KUCD1, a possible candidate for cadmium bioremediation

    PubMed Central

    Sinha, Sangram; Mukherjee, Samir Kumar

    2009-01-01

    A cadmium (8 mM) resistant Pseudomonas aeruginosa strain KUCd1 exhibiting high Cd accumulation under in vitro aerobic condition has been reported. The isolate showed a significant ability to remove more than 75% and 89% of the soluble cadmium during the active growth phase from the growth medium and from Cd-amended industrial wastewater under growth supportive condition. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDXS) suggest the presence of Cd in the cells from mid stationary phase. The cell fractionation study revealed membrane and periplasm to be the major accumulating site in this strain. The chemical nature of the accumulated Cd was studied by X-ray powder diffraction analysis. PMID:24031411

  10. Biofilm formation and surface exploration behavior of P. aeruginosa

    NASA Astrophysics Data System (ADS)

    Beckerman, Bernard; Zhao, Kun; Wong, Gerard; Luijten, Erik

    2013-03-01

    Despite extensive studies, the early stages of biofilm formation are not fully understood. Recent work on the opportunistic pathogen Pseudomonas aeruginosa has shown that these bacteria deposit the exopolysaccharide Psl as they move across a surface, which in turn attracts repeat visits of bacteria to the sites of deposition. Using a massively parallel cell-tracking algorithm combined with fluorescent Psl staining and computer simulations, we show that this behavior results in a surface visit distribution that can be approximated by a power law. The steepness of this Zipf's Law is a measure of the hierarchical nature of bacterial surface visits, and is (among other parameters) a function of both Psl secretion rate and sensitivity of the bacteria to Psl. We characterize the bacterial distributions using various computational techniques to quantitatively analyze the effect of Psl on microcolony organization and to identify the key stages of microcolony growth. This work was supported by the National Institutes of Health and the National Science Foundation.

  11. Crystal structure of PvdO from Pseudomonas aeruginosa.

    PubMed

    Yuan, Zenglin; Gao, Fei; Bai, Guohui; Xia, Hengchuan; Gu, Lichuan; Xu, Sujuan

    2017-02-26

    Pyoverdine I (PVDI) is a water-soluble fluorescein siderophore with strong iron chelating ability from the gram-negative pathogen Pseudomonas aeruginosa PAO1. Compared to common siderophores, PVDI is a relatively large compound whose synthesis requires a group of enzymes with different catalytic activities. In addition to four nonribosomal peptide synthetases (NRPS) which are responsible for the production of the peptide backbone of PVDI, several additional enzymes are associated with the modification of the side chains. PvdO is one of these enzymes and participates in PVDI precursor maturation in the periplasm. We determined the crystal structure of PvdO at 1.24 Å resolution. The PvdO structure shares a common fold with some FGly-generating enzymes (FGE) and is stabilized by Ca(2+). However, the catalytic residues in FGE are not observed in PvdO, indicating PvdO adopts a unique catalytic mechanism.

  12. Cox26 is a novel stoichiometric subunit of the yeast cytochrome c oxidase.

    PubMed

    Levchenko, Maria; Wuttke, Jan-Moritz; Römpler, Katharina; Schmidt, Bernhard; Neifer, Klaus; Juris, Lisa; Wissel, Mirjam; Rehling, Peter; Deckers, Markus

    2016-07-01

    The cytochrome c oxidase (COX) is the terminal enzyme of the respiratory chain. The complex accepts electrons from cytochrome c and passes them onto molecular oxygen. This process contributes to energy capture in the form of a membrane potential across the inner membrane. The enzyme complex assembles in a stepwise process from the three mitochondria-encoded core subunits Cox1, Cox2 and Cox3, which associate with nuclear-encoded subunits and cofactors. In the yeast Saccharomyces cerevisiae, the cytochrome c oxidase associates with the bc1-complex into supercomplexes, allowing efficient energy transduction. Here we report on Cox26 as a protein found in respiratory chain supercomplexes containing cytochrome c oxidase. Our analyses reveal Cox26 as a novel stoichiometric structural subunit of the cytochrome c oxidase. A loss of Cox26 affects cytochrome c oxidase activity and respirasome organization.

  13. Metabolic conditions determining the composition and catalytic activity of cytochrome P-450 monooxygenases in Candida tropicalis.

    PubMed Central

    Sanglard, D; Käppeli, O; Fiechter, A

    1984-01-01

    In the microsomal fraction of Candida tropicalis cells, two distinct monooxygenases were detected, depending on the growth conditions. The distinction of the two monooxygenases was evident from: (i) the absorption maxima in the reduced CO difference spectra of the terminal oxidases (cytochromes P-450 and P-448); (ii) the contents of the monooxygenase components (cytochromes P-450/P-448, NADPH-cytochrome c (P-450) reductase, and cytochrome b5) and (iii) the catalytic activity of the complete system (aliphatic hydroxylation and N-demethylation activity). The occurrence of the respective monooxygenases could be related to the carbon source (n-alkanes or glucose). Oxygen limitation led to a significant increase of cytochrome P-450/P-448 content, independent of the carbon source utilized by the cells. An improved method for the isolation of microsomes enabled us to demonstrate the presence of cytochrome P-448 in glucose-grown cells. PMID:6690424

  14. Cytochrome c binding to Apaf-1: The effects of dATP and ionic strength

    PubMed Central

    Purring-Koch, Cherie; McLendon, George

    2000-01-01

    In the apoptosis pathway in mammals, cytochrome c and dATP are critical cofactors in the activation of caspase 9 by Apaf-1. Until now, the detailed sequence of events in which these cofactors interact has been unclear. Here, we show through fluorescence polarization experiments that cytochrome c can bind to Apaf-1 in the absence of dATP; when dATP is added to the cytochrome c·Apaf-1 complex, further assembly occurs to produce the apoptosome. These findings, along with the discovery that the exposed heme edge of cytochrome c is involved in the cytochrome c·Apaf-1 interaction, are confirmed through enhanced chemiluminescence visualization of native PAGE gels and through acrylamide fluorescence quenching experiments. We also report here that the cytochrome c·Apaf-1 interaction depends highly on ionic strength, indicating that there is a strong electrostatic interaction between the two proteins. PMID:11035811

  15. Pyocyanin Production by Pseudomonas aeruginosa Confers Resistance to Ionic Silver

    PubMed Central

    Merrett, Neil D.

    2014-01-01

    Silver in its ionic form (Ag+), but not the bulk metal (Ag0), is toxic to microbial life forms and has been used for many years in the treatment of wound infections. The prevalence of bacterial resistance to silver is considered low due to the nonspecific nature of its toxicity. However, the recent increased use of silver as an antimicrobial agent for medical, consumer, and industrial products has raised concern that widespread silver resistance may emerge. Pseudomonas aeruginosa is a common pathogen that produces pyocyanin, a redox toxin and a reductant for molecular oxygen and ferric (Fe3+) ions. The objective of this study was to determine whether pyocyanin reduces Ag+ to Ag0, which may contribute to silver resistance due to lower bioavailability of the cation. Using surface plasmon resonance spectroscopy and scanning electron microscopy, pyocyanin was confirmed to be a reductant for Ag+, forming Ag0 nanoparticles and reducing the bioavailability of free Ag+ by >95% within minutes. Similarly, a pyocyanin-producing strain of P. aeruginosa (PA14) reduced Ag+ but not a pyocyanin-deficient (ΔphzM) strain of the bacterium. Challenge of each strain with Ag+ (as AgNO3) gave MICs of 20 and 5 μg/ml for the PA14 and ΔphzM strains, respectively. Removal of pyocyanin from the medium strain PA14 was grown in or its addition to the medium that ΔphzM mutant was grown in gave MICs of 5 and 20 μg/ml, respectively. Clinical isolates demonstrated similar pyocyanin-dependent resistance to Ag+. We conclude that pseudomonal silver resistance exists independently of previously recognized intracellular mechanisms and may be more prevalent than previously considered. PMID:25001302

  16. Phosphorylcholine Phosphatase: A Peculiar Enzyme of Pseudomonas aeruginosa

    PubMed Central

    Domenech, Carlos Eduardo; Otero, Lisandro Horacio; Beassoni, Paola Rita; Lisa, Angela Teresita

    2011-01-01

    Pseudomonas aeruginosa synthesizes phosphorylcholine phosphatase (PchP) when grown on choline, betaine, dimethylglycine or carnitine. In the presence of Mg2+ or Zn2+, PchP catalyzes the hydrolysis of p-nitrophenylphosphate (p-NPP) or phosphorylcholine (Pcho). The regulation of pchP gene expression is under the control of GbdR and NtrC; dimethylglycine is likely the metabolite directly involved in the induction of PchP. Therefore, the regulation of choline metabolism and consequently PchP synthesis may reflect an adaptive response of P. aeruginosa to environmental conditions. Bioinformatic and biochemistry studies shown that PchP contains two sites for alkylammonium compounds (AACs): one in the catalytic site near the metal ion-phosphoester pocket, and another in an inhibitory site responsible for the binding of the alkylammonium moiety. Both sites could be close to each other and interact through the residues 42E, 43E and 82YYY84. Zn2+ is better activator than Mg2+ at pH 5.0 and it is more effective at alleviating the inhibition produced by the entry of Pcho or different AACs in the inhibitory site. We postulate that Zn2+ induces at pH 5.0 a conformational change in the active center that is communicated to the inhibitory site, producing a compact or closed structure. However, at pH 7.4, this effect is not observed because to the hydrolysis of the [Zn2+L2−1L20(H2O)2] complex, which causes a change from octahedral to tetrahedral in the metal coordination geometry. This enzyme is also present in P. fluorescens, P. putida, P. syringae, and other organisms. We have recently crystallized PchP and solved its structure. PMID:21915373

  17. Sequences and expression of pyruvate dehydrogenase genes from Pseudomonas aeruginosa.

    PubMed Central

    Rae, J L; Cutfield, J F; Lamont, I L

    1997-01-01

    A mutant of Pseudomonas aeruginosa, OT2100, which appeared to be defective in the production of the fluorescent yellow-green siderophore pyoverdine had been isolated previously following transposon mutagenesis (T. R. Merriman and I. L. Lamont, Gene 126:17-23, 1993). DNA from either side of the transposon insertion site was cloned, and the sequence was determined. The mutated gene had strong identity with the dihydrolipoamide acetyltransferase (E2) components of pyruvate dehydrogenase (PDH) from other bacterial species. Enzyme assays revealed that the mutant was defective in the E2 subunit of PDH, preventing assembly of a functional complex. PDH activity in OT2100 cell extracts was restored when extract from an E1 mutant was added. On the basis of this evidence, OT2100 was identified as an aceB or E2 mutant. A second gene, aceA, which is likely to encode the E1 component of PDH, was identified upstream from aceB. Transcriptional analysis revealed that aceA and aceB are expressed as a 5-kb polycistronic transcript from a promoter upstream of aceA. An intergenic region of 146 bp was located between aceA and aceB, and a 2-kb aceB transcript that originated from a promoter in the intergenic region was identified. DNA fragments upstream of aceA and aceB were shown to have promoter activities in P. aeruginosa, although only the aceA promoter was active in Escherichia coli. It is likely that the apparent pyoverdine-deficient phenotype of mutant OT2100 is a consequence of acidification of the growth medium due to accumulation of pyruvic acid in the absence of functional PDH. PMID:9171401

  18. Fructooligosacharides Reduce Pseudomonas aeruginosa PAO1 Pathogenicity through Distinct Mechanisms

    PubMed Central

    Ortega-González, Mercedes; Sánchez de Medina, Fermín; Molina-Santiago, Carlos; López-Posadas, Rocío; Pacheco, Daniel; Krell, Tino; Martínez-Augustin, Olga; Abdelali, Daddaoua

    2014-01-01

    Pseudomonas aeruginosa is ubiquitously present in the environment and acts as an opportunistic pathogen on humans, animals and plants. We report here the effects of the prebiotic polysaccharide inulin and its hydrolysed form FOS on this bacterium. FOS was found to inhibit bacterial growth of strain PAO1, while inulin did not affect growth rate or yield in a significant manner. Inulin stimulated biofilm formation, whereas a dramatic reduction of the biofilm formation was observed in the presence of FOS. Similar opposing effects were observed for bacterial motility, where FOS inhibited the swarming and twitching behaviour whereas inulin caused its stimulation. In co-cultures with eukaryotic cells (macrophages) FOS and, to a lesser extent, inulin reduced the secretion of the inflammatory cytokines IL-6, IL-10 and TNF-α. Western blot experiments indicated that the effects mediated by FOS in macrophages are associated with a decreased activation of the NF-κB pathway. Since FOS and inulin stimulate pathway activation in the absence of bacteria, the FOS mediated effect is likely to be of indirect nature, such as via a reduction of bacterial virulence. Further, this modulatory effect is observed also with the highly virulent ptxS mutated strain. Co-culture experiments of P. aeruginosa with IEC18 eukaryotic cells showed that FOS reduces the concentration of the major virulence factor, exotoxin A, suggesting that this is a possible mechanism for the reduction of pathogenicity. The potential of these compounds as components of antibacterial and anti-inflammatory cocktails is discussed. PMID:24465697

  19. Biological Markers of Pseudomonas aeruginosa Epidemic High-Risk Clones

    PubMed Central

    Mulet, Xavier; Cabot, Gabriel; Ocampo-Sosa, Alain A.; Domínguez, M. Angeles; Zamorano, Laura; Juan, Carlos; Tubau, Fe; Rodríguez, Cristina; Moyà, Bartolomé; Peña, Carmen; Martínez-Martínez, Luis

    2013-01-01

    A limited number of Pseudomonas aeruginosa genotypes (mainly ST-111, ST-175, and ST-235), known as high-risk clones, are responsible for epidemics of nosocomial infections by multidrug-resistant (MDR) or extensively drug-resistant (XDR) strains worldwide. We explored the potential biological parameters that may explain the success of these clones. A total of 20 isolates from each of 4 resistance groups (XDR, MDR, ModR [resistant to 1 or 2 classes], and MultiS [susceptible to all antipseudomonals]), recovered from a multicenter study of P. aeruginosa bloodstream infections performed in 10 Spanish hospitals, were analyzed. A further set of 20 XDR isolates belonging to epidemic high-risk clones (ST-175 [n = 6], ST-111 [n = 7], and ST-235 [n = 7]) recovered from different geographical locations was also studied. When unknown, genotypes were documented through multilocus sequence typing. The biological parameters evaluated included twitching, swimming, and swarming motility, biofilm formation, production of pyoverdine and pyocyanin, spontaneous mutant frequencies, and the in vitro competition index (CI) obtained with a flow cytometry assay. All 20 (100%) XDR, 8 (40%) MDR, and 1 (5%) ModR bloodstream isolate from the multicenter study belonged to high-risk clones. No significant differences were observed between clonally diverse ModR and MultiS isolates for any of the parameters. In contrast, MDR/XDR high-risk clones showed significantly increased biofilm formation and mutant frequencies but significantly reduced motility (twitching, swimming, and swarming), production of pyoverdine and pyocyanin, and fitness. The defined biological markers of high-risk clones, which resemble those resulting from adaptation to chronic infections, could be useful for the design of specific treatment and infection control strategies. PMID:23979744

  20. Crystal structure of the flavoenzyme PA4991 from Pseudomonas aeruginosa

    SciTech Connect

    Jacewicz, Agata; Schnell, Robert; Lindqvist, Ylva; Schneider, Gunter

    2016-01-22

    PA4991 is a FAD-dependent oxidoreductase from the pathogen P. aeruginosa that is essential for virulence and survival in the infected host. The structure of this enzyme, determined to 2.4 Å resolution, reveals that PA4991 belongs to the GR{sub 2} family of flavoenzymes. The locus PA4991 in Pseudomonas aeruginosa encodes an open reading frame that has been identified as essential for the virulence and/or survival of this pathogenic organism in the infected host. Here, it is shown that this gene encodes a monomeric FAD-binding protein of molecular mass 42.2 kDa. The structure of PA4991 was determined by a combination of molecular replacement using a search model generated with Rosetta and phase improvement by a low-occupancy heavy-metal derivative. PA4991 belongs to the GR{sub 2} family of FAD-dependent oxidoreductases, comprising an FAD-binding domain typical of the glutathione reductase family and a second domain dominated by an eight-stranded mixed β-sheet. Most of the protein–FAD interactions are via the FAD-binding domain, but the isoalloxazine ring is located at the domain interface and interacts with residues from both domains. A comparison with the structurally related glycine oxidase and glycerol-3-phosphate dehydrogenase shows that in spite of very low amino-acid sequence identity (<18%) several active-site residues involved in substrate binding in these enzymes are conserved in PA4991. However, enzymatic assays show that PA4991 does not display amino-acid oxidase or glycerol-3-phosphate dehydrogenase activities, suggesting that it requires different substrates for activity.

  1. Structural Characterization of Novel Pseudomonas aeruginosa Type IV Pilins

    SciTech Connect

    Nguyen, Y.; Jackson, S; Aidoo, F; Junop, M; Burrows, L

    2010-01-01

    Pseudomonas aeruginosa type IV pili, composed of PilA subunits, are used for attachment and twitching motility on surfaces. P. aeruginosa strains express one of five phylogenetically distinct PilA proteins, four of which are associated with accessory proteins that are involved either in pilin posttranslational modification or in modulation of pilus retraction dynamics. Full understanding of pilin diversity is crucial for the development of a broadly protective pilus-based vaccine. Here, we report the 1.6-{angstrom} X-ray crystal structure of an N-terminally truncated form of the novel PilA from strain Pa110594 (group V), which represents the first non-group II pilin structure solved. Although it maintains the typical T4a pilin fold, with a long N-terminal {alpha}-helix and four-stranded antiparallel {beta}-sheet connected to the C-terminus by a disulfide-bonded loop, the presence of an extra helix in the {alpha}{beta}-loop and a disulfide-bonded loop with helical character gives the structure T4b pilin characteristics. Despite the presence of T4b features, the structure of PilA from strain Pa110594 is most similar to the Neisseria gonorrhoeae pilin and is also predicted to assemble into a fiber similar to the GC pilus, based on our comparative pilus modeling. Interactions between surface-exposed areas of the pilin are suggested to contribute to pilus fiber stability. The non-synonymous sequence changes between group III and V pilins are clustered in the same surface-exposed areas, possibly having an effect on accessory protein interactions. However, based on our high-confidence model of group III PilA{sub PA14}, compensatory changes allow for maintenance of a similar shape.

  2. Endocrine involvement in mitochondrial encephalomyopathy with partial cytochrome c oxidase deficiency.

    PubMed Central

    Doriguzzi, C; Palmucci, L; Mongini, T; Bresolin, N; Bet, L; Comi, G; Lala, R

    1989-01-01

    A 19-year-old man born with thyroprivic hypothyroidism, due to congenital development defect, manifested hypogonadism, stunted growth, chronic progressive external ophthalmoplegia (CPEO), diffuse muscle weakness and wasting, right bundle branch block, cerebral atrophy. Muscle biopsy showed mitochondrial abnormalities. Biochemical investigations on muscle disclosed partial (50%) cytochrome c oxidase deficiency, 58% decrease of cytochrome aa3 and 41% decrease of cytochrome b. Enzyme-linked immunosorbent assay showed decrease of the immunologically active enzyme protein. Images PMID:2540284

  3. The human cytochrome b561 gene (CYB561) is located at 17q11-qter

    SciTech Connect

    McBride, O.W.; Yi, H.F.; Srivastava, M.

    1994-06-01

    Cytochrome b561 is a major transmembrane protein that is specific to catacholamine and neuropeptide secretory vesicles of the adrenal medulla, pituitary gland, and other neuroendocrine tissues. This 30-kDa cytochrome is present in both the small synaptic vesicles and the large dense core vesicles (chromaffin granules) of the tissues. In this paper, we report that the human gene encoding cytochrome b561 (CYB561; GenBank Accession No. U06715) is localized to 17q11-qter.

  4. Characterization of superoxide overproduction by the D-Loop(Nox4)-Nox2 cytochrome b(558) in phagocytes-Differential sensitivity to calcium and phosphorylation events.

    PubMed

    Carrichon, Laure; Picciocchi, Antoine; Debeurme, Franck; Defendi, Federica; Beaumel, Sylvain; Jesaitis, Algirdas J; Dagher, Marie-Claire; Stasia, Marie-José

    2011-01-01

    NADPH oxidase is a crucial element of phagocytes involved in microbicidal mechanisms. It becomes active when membrane-bound cytochrome b(558), the redox core, is assembled with cytosolic p47(phox), p67(phox), p40(phox), and rac proteins to produce superoxide, the precursor for generation of toxic reactive oxygen species. In a previous study, we demonstrated that the potential second intracellular loop of Nox2 was essential to maintaining NADPH oxidase activity by controlling electron transfer from FAD to O(2). Moreover, replacement of this loop by the Nox4-D-loop (D-loop(Nox4)-Nox2) in PLB-985 cells induced superoxide overproduction. In the present investigation, we demonstrated that both soluble and particulate stimuli were able to induce this superoxide overproduction. Superoxide overproduction was also observed after phosphatidic acid activation in a purified cell-free-system assay. The highest oxidase activity was obtained after ionomycin and fMLF stimulation. In addition, enhanced sensitivity to Ca(2+) influx was shown by thapsigargin, EDTA, or BTP2 treatment before fMLF activation. Mutated cytochrome b(558) was less dependent on phosphorylation triggered by ERK1/2 during fMLF or PMA stimulation and by PI3K during OpZ stimulation. The superoxide overproduction of the D-loop(Nox4)-Nox2 mutant may come from a change of responsiveness to intracellular Ca(2+) level and to phosphorylation events during oxidase activation. Finally the D-loop(Nox4)-Nox2-PLB-985 cells were more effective against an attenuated strain of Pseudomonas aeruginosa compared to WT-Nox2 cells. The killing mechanism was biphasic, an early step of ROS production that was directly bactericidal, and a second oxidase-independent step related to the amount of ROS produced in the first step.

  5. Reduction of U(VI) and Toxic Metals by Desulfovibrio Cytochrome c3

    SciTech Connect

    Wall, Judy D.

    2003-06-01

    The project, ''Reduction of U(VI) and toxic metals by Desulfovibrio cytochrome c3'', is designed to obtain spectroscopic information for or against a functional interaction of cytochrome c3 and uranium in the whole cells. That is, is the cytochrome c3 the uranium reductase? Our approach has been to start with purified cytochrome and determine any unique spectral disturbances during electron flow to U(VI). Then we will attempt to identify these signals emanating from cells actively reducing uranium. This project is being carried out in collaboration with Dr. William Woodruff at the Los Alamos National Laboratory where the spectral experiments are being carried out.

  6. Regulation of cytochrome C peroxidase activity by nitric oxide and laser irradiation.

    PubMed

    Osipov, A N; Stepanov, G O; Vladimirov, Yu A; Kozlov, A V; Kagan, V E

    2006-10-01

    Apoptosis can be induced by activation of so-called "death receptors" (extrinsic pathway) or multiple apoptotic factors (intrinsic pathway), which leads to release of cytochrome c from mitochondria. This event is considered to be a point of no return in apoptosis. One of the most important events in the development of apoptosis is the enhancement of cytochrome c peroxidase activity upon its interaction with cardiolipin, which modifies the active center of cytochrome c. In the present work, we have investigated the effects of nitric oxide on the cytochrome c peroxidase activity when cytochrome c is bound to cardiolipin or sodium dodecyl sulfate. We have observed that cytochrome c peroxidase activity, distinctly increased due to the presence of anionic lipids, is completely suppressed by nitric oxide. At the same time, nitrosyl complexes of cytochrome c, produced in the interaction with nitric oxide, demonstrated sensitivity to laser irradiation (441 nm) and were photolyzed during irradiation. This decomposition led to partial restoration of cytochrome c peroxidase activity. Finally, we conclude that nitric oxide and laser irradiation may serve as effective instruments for regulating the peroxidase activity of cytochrome c, and, probably, apoptosis.

  7. The molecular structure of an unusual cytochrome c2 determined at 2.0 A; the cytochrome cH from Methylobacterium extorquens.

    PubMed Central

    Read, J.; Gill, R.; Dales, S. L.; Cooper, J. B.; Wood, S. P.; Anthony, C.

    1999-01-01

    Cytochrome cH is the electron donor to the oxidase in methylotrophic bacteria. Its amino acid sequence suggests that it is a typical Class 1 cytochrome c, but some features of the sequence indicated that its structure might be of special interest. The structure of oxidized cytochrome cH has been solved to 2.0 A resolution by X-ray diffraction. It has the classical tertiary structure of the Class 1 cytochromes c but bears a closer gross resemblance to mitochondrial cytochrome c than to the bacterial cytochrome c2. The left-hand side of the haem cleft is unique; in particular, it is highly hydrophobic, the usual water is absent, and the "conserved" Tyr67 is replaced by tryptophan. A number of features of the structure demonstrate that the usual hydrogen bonding network involving water in the haem channel is not essential and that other mechanisms may exist for modulation of redox potentials in this cytochrome. PMID:10386873

  8. Influence of the hydrodynamic environment on quorum sensing in Pseudomonas aeruginosa biofilms.

    PubMed

    Kirisits, Mary Jo; Margolis, Jeffrey J; Purevdorj-Gage, Boloroo L; Vaughan, Benjamin; Chopp, David L; Stoodley, Paul; Parsek, Matthew R

    2007-11-01

    We provide experimental and modeling evidence that the hydrodynamic environment can impact quorum sensing (QS) in a Pseudomonas aeruginosa biofilm. The amount of biofilm biomass required for full QS induction of the population increased as the flow rate increased.

  9. Altered denA and anr gene expression in aminoglycoside adaptive resistance in Pseudomonas aeruginosa.

    PubMed

    Karlowsky, J A; Hoban, D J; Zelenitsky, S A; Zhanel, G G

    1997-09-01

    Adaptive resistance to aminoglycoside killing and cytoplasmic accumulation occurs in cultures of originally susceptible Pseudomonas aeruginosa following an initial incubation with aminoglycoside. Anaerobiosis has also been reported to reduce bacterial killing and limit cytoplasmic aminoglycoside accumulation. We hypothesized that a common mechanism may facilitate reduced bacterial killing and aminoglycoside accumulation in both cases. Northern blot analysis of P. aeruginosa adaptively resistant to gentamicin demonstrated increased mRNA levels of both denA (nitrite reductase), which facilitates terminal electron acceptance in the anaerobic respiratory pathway, and its regulatory protein, ANR, in the absence of promoter DNA sequence changes, when compared with controls. These observations suggested that P. aeruginosa may regulate the expression of genes in its anaerobic respiratory pathway in response to aminoglycosides and may explain, at least partially, P. aeruginosa adaptive resistance to aminoglycosides.

  10. The interaction between nitrobenzene and Microcystis aeruginosa and its potential to impact water quality.

    PubMed

    Liu, Zhiquan; Cui, Fuyi; Ma, Hua; Fan, Zhenqiang; Zhao, Zhiwei; Hou, Zhenling; Liu, Dongmei; Jia, Xuebin

    2013-08-01

    The potential water quality problems caused by the interaction between nitrobezene (NB) and Microcystis aeruginosa was investigated by studying the growth inhibition, the haloacetic acids formation potential (HAAFP) and the secretion of microcystin-LR (MC-LR). The results showed that NB can inhibit the growth of M. aeruginosa, and the value of EC50 increased with the increase of initial algal density. Although NB can hardly react with chlorine to form HAAs, the presence of NB can enhance the HAAFP productivity. The secretion of the intracellular MC-LR is constant under the steady experimental conditions. However, the presence of NB can reduce the MC-LR productivity of M. aeruginosa. Overall, the increased disinfection risk caused by the interaction has more important effect on the safety of drinking water quality than the benefit of the decreased MC-LR productivity, and should be serious considered when the water contained NB and M. aeruginosa is used as drinking water source.

  11. A study on the effect of Pseudomonas aeruginosa in semen on bovine fertility.

    PubMed Central

    Eaglesome, M D; Garcia, M M; Bielanski, A B

    1995-01-01

    Two experiments were done to demonstrate whether the presence of Pseudomonas aeruginosa in bovine semen could affect fertilization and/or early embryonic development. In the first experiment, superovulated heifers were inseminated with semen naturally contaminated with P. aeruginosa (ADRI 102) or clean semen and seven day-old embryos were collected nonsurgically. The endometrium of treated heifers appeared more sensitive to the flush procedures. In experiment 2, heifers were inseminated at synchronized estrus with semen experimentally contaminated with P. aeruginosa (ADRI 102) and processed in the same way as commercial semen with antibiotics (gentamicin, lincomycin, spectinomycin and tylosin) or processed without antibiotics added. Embryos were recovered at slaughter seven days later. In general, there was no significant reduction in fertility or development of embryos in vitro as a result of relatively high numbers of P. aeruginosa in bovine semen. PMID:7704848

  12. Draft Genome Sequence of Microcystis aeruginosa CACIAM 03, a Cyanobacterium Isolated from an Amazonian Freshwater Environment

    PubMed Central

    Castro, Wendel Oliveira; Lima, Alex Ranieri Jerônimo; Moraes, Pablo Henrique Gonçalves; Siqueira, Andrei Santos; Aguiar, Délia Cristina Figueira; Baraúna, Anna Rafaella Ferreira; Martins, Luisa Carício; Fuzii, Hellen Thais; de Lima, Clayton Pereira Silva; Vianez-Júnior, João Lídio Silva Gonçalves; Nunes, Márcio Roberto Teixeira; Dall'Agnol, Leonardo Teixeira

    2016-01-01

    Given its toxigenic potential, Microcystis aeruginosa is an important bloom-forming cyanobacterium. Here, we present a draft genome and annotation of the strain CACIAM 03, which was isolated from an Amazonian freshwater environment. PMID:27856592

  13. Pseudomonas aeruginosa Diversification during Infection Development in Cystic Fibrosis Lungs—A Review

    PubMed Central

    Sousa, Ana Margarida; Pereira, Maria Olívia

    2014-01-01

    Pseudomonas aeruginosa is the most prevalent pathogen of cystic fibrosis (CF) lung disease. Its long persistence in CF airways is associated with sophisticated mechanisms of adaptation, including biofilm formation, resistance to antibiotics, hypermutability and customized pathogenicity in which virulence factors are expressed according the infection stage. CF adaptation is triggered by high selective pressure of inflamed CF lungs and by antibiotic treatments. Bacteria undergo genetic, phenotypic, and physiological variations that are fastened by the repeating interplay of mutation and selection. During CF infection development, P. aeruginosa gradually shifts from an acute virulent pathogen of early infection to a host-adapted pathogen of chronic infection. This paper reviews the most common changes undergone by P. aeruginosa at each stage of infection development in CF lungs. The comprehensive understanding of the adaptation process of P. aeruginosa may help to design more effective antimicrobial treatments and to identify new targets for future drugs to prevent the progression of infection to chronic stages. PMID:25438018

  14. Phage-antibiotic synergism: a possible approach to combatting Pseudomonas aeruginosa.

    PubMed

    Knezevic, Petar; Curcin, Sanja; Aleksic, Verica; Petrusic, Milivoje; Vlaski, Ljiljana

    2013-01-01

    Pseudomonas aeruginosa is a highly resistant opportunistic pathogen and an important etiological agent of various types of infections. During the last decade, P. aeruginosa phages have been extensively examined as alternative antimicrobial agents. The aim of the study was to determine antimicrobial effectiveness of combining subinhibitory concentrations of gentamicin, ceftriaxone, ciprofloxacin or polymyxin B with P. aeruginosa-specific bacteriophages belonging to families Podoviridae and Siphoviridae. The time-kill curve method showed that a combination of bacteriophages and subinhibitory concentrations of ceftriaxone generally reduced bacterial growth, and synergism was proven for a Siphoviridae phage σ-1 after 300 min of incubation. The detected alteration in morphology after ceftriaxone application, resulting in cell elongation, along with its specific mode of action, seemed to be a necessary but was not a sufficient reason for phage-antibiotic synergism. The phenomenon offers an opportunity for future development of treatment strategies for potentially lethal infections caused by P. aeruginosa.

  15. Dissemination of high-risk clones of extensively drug-resistant Pseudomonas aeruginosa in colombia.

    PubMed

    Correa, Adriana; Del Campo, Rosa; Perenguez, Marcela; Blanco, Victor M; Rodríguez-Baños, Mercedes; Perez, Federico; Maya, Juan J; Rojas, Laura; Cantón, Rafael; Arias, Cesar A; Villegas, Maria V

    2015-04-01

    The ability of Pseudomonas aeruginosa to develop resistance to most antimicrobials represents an important clinical threat worldwide. We report the dissemination in several Colombian hospitals of two predominant lineages of extensively drug-resistant (XDR) carbapenemase-producing P. aeruginosa strains. These lineages belong to the high-risk clones sequence type 111 (ST111) and ST235 and harbor blaVIM-2 on a class 1 integron and blaKPC-2 on a Tn4401 transposon, respectively. Additionally, P. aeruginosa ST1492, a novel single-locus variant of ST111, was identified. Clonal dissemination and the presence of mobile genetic elements likely explain the successful spread of XDR P. aeruginosa strains in Colombia.

  16. Lichen secondary metabolite evernic acid as potential quorum sensing inhibitor against Pseudomonas aeruginosa.

    PubMed

    Gökalsın, Barış; Sesal, Nüzhet Cenk

    2016-09-01

    Cystic Fibrosis is a genetic disease and it affects the respiratory and digestive systems. Pseudomonas aeruginosa infections in Cystic Fibrosis are presented as the main cause for high mortality and morbidity rates. Pseudomonas aeruginosa populations can regulate their virulence gene expressions via the bacterial communication system: quorum sensing. Inhibition of quorum sensing by employing quorum sensing inhibitors can leave the bacteria vulnerable. Therefore, determining natural sources to obtain potential quorum sensing inhibitors is essential. Lichens have ethnobotanical value for their medicinal properties and it is possible that their secondary metabolites have quorum sensing inhibitor properties. This study aims to investigate an alternative treatment approach by utilizing lichen secondary metabolite evernic acid to reduce the expressions of Pseudomonas aeruginosa virulence factors by inhibiting quorum sensing. For this purpose, fluorescent monitor strains were utilized for quorum sensing inhibitor screens and quantitative reverse-transcriptase PCR analyses were conducted for comparison. Results indicate that evernic acid is capable of inhibiting Pseudomonas aeruginosa quorum sensing systems.

  17. Pseudomonas aeruginosa Airway Infection Recruits and Modulates Neutrophilic Myeloid-Derived Suppressor Cells

    PubMed Central

    Öz, Hasan H.; Zhou, Benyuan; Voss, Pina; Carevic, Melanie; Schroth, Carolin; Frey, Nina; Rieber, Nikolaus; Hector, Andreas; Hartl, Dominik

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes infections mainly in patients with cystic fibrosis (CF) lung disease. Despite innate and adaptive immune responses upon infection, P. aeruginosa is capable of efficiently escaping host defenses, but the underlying immune mechanisms remain poorly understood. Myeloid-derived suppressor cells (MDSCs) are innate immune cells that are functionally characterized by their potential to suppress T- and natural killer (NK)-cell responses. Here we demonstrate, using an airway in vivo infection model, that P. aeruginosa recruits and activates neutrophilic MDSCs, which functionally suppress T-cell responses. We further show that the CF gene defect (CF transmembrane conductance regulator, CFTR) modulates the functionality, but not the recruitment or generation of neutrophilic MDSCs. Collectively, we define a mechanism by which P. aeruginosa airway infection undermines host immunity by modulating neutrophilic MDSCs in vivo. PMID:27965936

  18. Epidemiology and Ecology of Opportunistic Premise Plumbing Pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa

    EPA Science Inventory

    BACKGROUND: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa are opportunistic premise plumbing pathogens (OPPPs) that persist and grow in household plumbing, habitats they share with humans. Infections caused by these OPPPs involve individuals with preexis...

  19. Biological activities of pyochelins: iron-chelating agents of Pseudomonas aeruginosa.

    PubMed Central

    Liu, P V; Shokrani, F

    1978-01-01

    Strains of Pseudomonas aeruginosa able to grow readily in serum (serum resistant) produce siderophores in large quantity, enabling them to extract iron from transferrins. The term pyochelin has been proposed for this group of compounds. Pyochelin extractable with ethyl acetate and designated pyochelin A appears to be a mixture of catechols and other phenolates. The structures of water-soluble siderophores, designated pyochelin B, have not been determined. Pyochelins enabled growth in serum of strains of serum-sensitive P. aeruginosa and other gram-negative bacilli. Serum-resistant strains of P. aeruginosa tended to be more virulent than equally toxigenic strains of the serum-sensitive group. However, incorporation of pyochelins into the inocula of serum-sensitive strains could reduce, rather than enhance, their virulence. Utilization of pyochelins by serum-sensitive strains of P. aeruginosa rendered some of these organisms resistant to pyocins which were otherwise lethal to them. Images PMID:103839

  20. A Novel Antimicrobial Endolysin, LysPA26, against Pseudomonas aeruginosa

    PubMed Central

    Guo, Mingquan; Feng, Chunyan; Ren, Jie; Zhuang, Xuran; Zhang, Yan; Zhu, Yongzhang; Dong, Ke; He, Ping; Guo, Xiaokui; Qin, Jinhong

    2017-01-01

    The global increase in multidrug resistant (MDR) bacteria has led to phage therapy being refocused upon. A novel endolysin, LysPA26, containing a lysozyme-like domain, was screened against Pseudomonas aeruginosa in this study. It had activity against MDR P. aeruginosa without pretreatment with an outer-membrane permeabilizer. LysPA26 could kill up to 4 log units P. aeruginosa in 30 min. In addition, temperature and pH effect assays revealed that LysPA26 had good stability over a broad range of pH and temperatures. Moreover, LysPA26 could kill other Gram-negative bacteria, such as Klebsiella pneumonia, Acinetobacter baumannii and Escherichia coli, but not Gram-positive bacteria. Furthermore, LysPA26 could eliminate P. aeruginosa in biofilm formation. Our current results show that LysPA26 is a new and promising antimicrobial agent for the combat of Gram-negative pathogens. PMID:28289407

  1. Mechanisms responsible for the emergence of carbapenem resistance in Pseudomonas aeruginosa

    PubMed Central

    Meletis, G; Exindari, M; Vavatsi, N; Sofianou, D; Diza, E

    2012-01-01

    Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen associated with a range of nosocomial infections. This microorganism is noted for its intrinsic resistance to antibiotics and for its ability to acquire genes encoding resistance determinants. Among the beta-lactam antibiotics, carbapenems with antipseudomonal activity are important agents for the therapy of infections due to P. aeruginosa. The development of carbapenem resistance among P. aeruginosa strains is multifactorial. Plasmid or integron-mediated carbapenemases, increased expression of efflux systems, reduced porin expression and increased chromosomal cephalosporinase activity have all been defined as contributory factors. Phenotypic tests and molecular techniques are used for the characterization of the resistance determinants. The isolation of carbapenem resistant strains is alarming and requires the implementation of strict infection control measures in order to prevent the spread of carbapenemase encoding genes to unrelated clones or to other bacterial species. PMID:23935307

  2. Dissemination of High-Risk Clones of Extensively Drug-Resistant Pseudomonas aeruginosa in Colombia

    PubMed Central

    del Campo, Rosa; Perenguez, Marcela; Blanco, Victor M.; Rodríguez-Baños, Mercedes; Perez, Federico; Maya, Juan J.; Rojas, Laura; Cantón, Rafael; Arias, Cesar A.; Villegas, Maria V.

    2015-01-01

    The ability of Pseudomonas aeruginosa to develop resistance to most antimicrobials represents an important clinical threat worldwide. We report the dissemination in several Colombian hospitals of two predominant lineages of extensively drug-resistant (XDR) carbapenemase-producing P. aeruginosa strains. These lineages belong to the high-risk clones sequence type 111 (ST111) and ST235 and harbor blaVIM-2 on a class 1 integron and blaKPC-2 on a Tn4401 transposon, respectively. Additionally, P. aeruginosa ST1492, a novel single-locus variant of ST111, was identified. Clonal dissemination and the presence of mobile genetic elements likely explain the successful spread of XDR P. aeruginosa strains in Colombia. PMID:25605362

  3. Polydopamine-Mediated Immobilization of Alginate Lyase to Prevent P. aeruginosa Adhesion.

    PubMed

    Alves, Diana; Sileika, Tadas; Messersmith, Phillip B; Pereira, Maria Olívia

    2016-09-01

    Given alginate's contribution to Pseudomonas aeruginosa virulence, it has long been considered a promising target for interventional therapies, which have been performed by using the enzyme alginate lyase. In this work, instead of treating pre-established mucoid biofilms, alginate lyase is immobilized onto a surface as a preventive measure against P. aeruginosa adhesion. A polydopamine dip-coating strategy is employed for functionalization of polycarbonate surfaces. Enzyme immobilization is confirmed by surface characterization. Surfaces functionalized with alginate lyase exhibit anti-adhesive properties, inhibiting the attachment of the mucoid strain. Moreover, surfaces modified with this enzyme also inhibit the adhesion of the tested non-mucoid strain. Unexpectedly, treatment with heat-inactivated enzyme also inhibits the attachment of mucoid and non-mucoid P. aeruginosa strains. These findings suggest that the antibacterial performance of alginate lyase functional coatings is catalysis-independent, highlighting the importance of further studies to better understand its mechanism of action against P. aeruginosa strains.

  4. Impact of new water systems on healthcare-associated colonization or infection with Pseudomonas aeruginosa

    PubMed Central

    Lefebvre, Annick; Quantin, Catherine; Vanhems, Philippe; Lucet, Jean-Christophe; Bertrand, Xavier; Astruc, Karine; Chavanet, Pascal; Aho-Glélé, Ludwig S.

    2016-01-01

    Aim: We aimed to study the impact of new water systems, which were less contaminated with P. aeruginosa, on the incidence of healthcare-associated P. aeruginosa cases (colonizations or infections) in care units that moved to a different building between 2005 and 2014. Methods: Generalized Estimated Equations were used to compare the incidence of P. aeruginosa healthcare-associated cases according to the building. Results: Twenty-nine units moved during the study period and 2,759 cases occurred in these units. No difference was observed when the new building was compared with older buildings overall. Conclusion: Our results did not support our hypothesis of a positive association between water system contamination and the incidence of healthcare-associated P. aeruginosa cases. These results must be confirmed by linking results of water samples and patients’ data. PMID:27274443

  5. Application of bacteriophages to selectively remove Pseudomonas aeruginosa in water and wastewater filtration systems.

    PubMed

    Zhang, Yanyan; Hunt, Heather K; Hu, Zhiqiang

    2013-09-01

    Water and wastewater filtration systems often house pathogenic bacteria, which must be removed to ensure clean, safe water. Here, we determine the persistence of the model bacterium Pseudomonas aeruginosa in two types of filtration systems, and use P. aeruginosa bacteriophages to determine their ability to selectively remove P. aeruginosa. These systems used beds of either anthracite or granular activated carbon (GAC), which were operated at an empty bed contact time (EBCT) of 45 min. The clean bed filtration systems were loaded with an instantaneous dose of P. aeruginosa at a total cell number of 2.3 (± 0.1 [standard deviation]) × 10(7) cells. An immediate dose of P. aeruginosa phages (1 mL of phage stock at the concentration of 2.7 × 10(7) PFU (Plaque Forming Units)/mL) resulted in a reduction of 50% (± 9%) and >99.9% in the effluent P. aeruginosa concentrations in the clean anthracite and GAC filters, respectively. To further evaluate the effects of P. aeruginosa phages, synthetic stormwater was run through anthracite and GAC biofilters where mixed-culture biofilms were present. Eighty five days after an instantaneous dose of P. aeruginosa (2.3 × 10(7) cells per filter) on day 1, 7.5 (± 2.8) × 10(7) and 1.1 (± 0.5) × 10(7) P. aeruginosa cells/g filter media were detected in the top layer (close to the influent port) of the anthracite and GAC biofilters, respectively, demonstrating the growth and persistence of pathogenic bacteria in the biofilters. A subsequent 1-h dose of phages, at the concentration of 5.1 × 10(6) PFU/mL and flow rate of 1.6 mL/min, removed the P. aeruginosa inside the GAC biofilters and the anthracite biofilters by 70% (± 5%) and 56% (± 1%), respectively, with no P. aeruginosa detected in the effluent, while not affecting ammonia oxidation or the ammonia-oxidizing bacterial community inside the biofilters. These results suggest that phage treatment can selectively remove pathogenic bacteria with minimal impact on beneficial

  6. Pseudomonas aeruginosa isolates in severe chronic obstructive pulmonary disease: characterization and risk factors

    PubMed Central

    2014-01-01

    Background Patients with severe chronic obstructive pulmonary disease (COPD) are at increased risk of infection by P. aeruginosa. The specific role of bronchiectasis in both infection and chronic colonization by this microorganism in COPD, however, remains ill defined. To evaluate the prevalence and risk factors for P. aeruginosa recovery from sputum in outpatients with severe COPD, characterizing P. aeruginosa isolates by pulsed-field gel electrophoresis (PFGE) and focusing on the influence of bronchiectasis on chronic colonization in these patients. Methods A case-cohort study of 118 patients with severe COPD attended at a Respiratory Day Unit for an acute infectious exacerbation and followed up over one year. High-resolution CT scans were performed during stability for bronchiectasis assessment and sputum cultures were obtained during exacerbation and stability in all patients. P. aeruginosa isolates were genotyped by PFGE. Determinants of the recovery of P. aeruginosa in sputum and chronic colonization by this microorganism were assessed by multivariate analysis. Results P. aeruginosa was isolated from 41 of the 118 patients studied (34.7%). Five of these 41 patients (12.2%) with P. aeruginosa recovery fulfilled criteria for chronic colonization. In the multivariate analysis, the extent of bronchiectasis (OR 9.8, 95% CI: 1.7 to 54.8) and the number of antibiotic courses (OR 1.7, 95% CI: 1.1 to 2.5) were independently associated with an increased risk of P. aeruginosa isolation. Chronic colonization was unrelated to the presence of bronchiectasis (p=0.75). In patients with chronic colonization the isolates of P. aeruginosa retrieved corresponded to the same clones during the follow-up, and most of the multidrug resistant isolates (19/21) were harbored by these patients. Conclusions The main risk factors for P. aeruginosa isolation in severe COPD were the extent of bronchiectasis and exposure to antibiotics. Over 10% of these patients fulfilled criteria for

  7. Physiological and biochemical effects of allelochemical ethyl 2-methyl acetoacetate (EMA) on cyanobacterium Microcystis aeruginosa.

    PubMed

    Hong, Yu; Hu, Hong-Ying; Li, Feng-Min

    2008-10-01

    The physiological and biochemical effects of an allelochemical ethyl 2-methyl acetoacetate (EMA) isolated from reed (Phragmites communis) on bloom-forming cyanobacterium, Microcystis aeruginosa, were investigated. EMA significantly inhibited the growth of M. aeruginosa in a concentration-dependent way. The metabolic indices (represented by esterase and total dehydrogenase activities), the cellular redox status (represented by the level of reactive oxygen species (ROS)), and the oxidative damage index (represented by the content of malondialdehyde (MDA), the product of membrane lipid peroxidation) were used to evaluate the physiological and biochemical changes in M. aeruginosa after EMA exposure. Esterase activity in M. aeruginosa did not change (P>0.05) after 2 h of exposure to EMA, but increased greatly after 24 and 48 h (P<0.05). EMA exposure (>0.5 mg L(-1)) resulted in a remarkable loss of total dehydrogenase activity in M. aeruginosa after 4 h (P<0.01), but an increase after 40 h (P<0.05). EMA caused a great increase in ROS level of the algal cells. At high EMA concentration (4 mg L(-1)), the ROS level was remarkably elevated to 1.91 times as much as that in the controls after 2 h. Increases in the ROS level also occurred after 24 and 48 h. The increase in lipid peroxidation of M. aeruginosa was dependent upon EMA concentration and the exposure time. After 40 h of exposure, the MDA content at 4 mg L(-1) of EMA reached approximately 3.5 times (P<0.01) versus the controls. These results suggest that the cellular structure and metabolic activity of M. aeruginosa are influenced by EMA; the increased metabolic activity perhaps reflects the fact that the resistance of cellular response system to the stress from EMA is initiated during EMA exposure, and the oxidative damage induced by EMA via the oxidation of ROS may be an important factor responsible for the inhibition of EMA on the growth of M. aeruginosa.

  8. A long-chain flavodoxin protects Pseudomonas aeruginosa from oxidative stress and host bacterial clearance.

    PubMed

    Moyano, Alejandro J; Tobares, Romina A; Rizzi, Yanina S; Krapp, Adriana R; Mondotte, Juan A; Bocco, José L; Saleh, Maria-Carla; Carrillo, Néstor; Smania, Andrea M

    2014-02-01

    Long-chain flavodoxins, ubiquitous electron shuttles containing flavin mononucleotide (FMN) as prosthetic group, play an important protective role against reactive oxygen species (ROS) in various microorganisms. Pseudomonas aeruginosa is an opportunistic pathogen which frequently has to face ROS toxicity in the environment as well as within the host. We identified a single ORF, hereafter referred to as fldP (for fl avo d oxin from P . aeruginosa), displaying the highest similarity in length, sequence identity and predicted secondary structure with typical long-chain flavodoxins. The gene was cloned and expressed in Escherichia coli. The recombinant product (FldP) could bind FMN and exhibited flavodoxin activity in vitro. Expression of fldP in P. aeruginosa was induced by oxidative stress conditions through an OxyR-independent mechanism, and an fldP-null mutant accumulated higher intracellular ROS levels and exhibited decreased tolerance to H2O2 toxicity compared to wild-type siblings. The mutant phenotype could be complemented by expression of a cyanobacterial flavodoxin. Overexpression of FldP in a mutT-deficient P. aeruginosa strain decreased H2O2-induced cell death and the hypermutability caused by DNA oxidative damage. FldP contributed to the survival of P. aeruginosa within cultured mammalian macrophages and in infected Drosophila melanogaster, which led in turn to accelerated death of the flies. Interestingly, the fldP gene is present in some but not all P. aeruginosa strains, constituting a component of the P. aeruginosa accessory genome. It is located in a genomic island as part of a self-regulated polycistronic operon containing a suite of stress-associated genes. The collected results indicate that the fldP gene encodes a long-chain flavodoxin, which protects the cell from oxidative stress, thereby expanding the capabilities of P. aeruginosa to thrive in hostile environments.

  9. Use of the paraffin wax baiting system for identification of Pseudomonas aeruginosa clinical isolates.

    PubMed

    Massengale, A R; Ollar, R A; Giordano, S J; Felder, M S; Aronoff, S C

    1999-11-01

    Pseudomonas aeruginosa is the primary pathogen among the Pseudomonads and is known for its minimal nutritional requirements, capacity to use paraffin as a sole carbon source, and biofilm formation. Because the ability of Pseudomonads to grow on paraffin is not commonly found among human pathogens and the primary Pseudomonas human pathogen is P. aeruginosa, we studied the adaptation of the paraffin baiting system for the growth and identification of clinical isolates of P. aeruginosa. We also studied the effectiveness of combining a fluorescence assay measuring fluorescein (pyoverdin) production and oxidase test with the paraffin baiting assay for P. aeruginosa speciation. Strains were tested for the capacity to use paraffin as a sole carbon source using the paraffin baiting system with Czapek's minimal salt medium. Of 111 P. aeruginosa clinical isolates tested for using paraffin as a sole carbon source, 45% exhibited growth on paraffin at 24 h and 76.6% exhibited growth on paraffin at 48 h. The ability of the reference strains and clinical isolates were then tested for their ability to associate with the paraffin slide in the presence of an additional carbon source. Of 111 P. aeruginosa clinical isolates tested, 85 strains (76.6%), and 102 (93%) were associated with the paraffin surface at 24 and 48 h. We successfully combined fluorescence and oxidase assays with the paraffin baiting system for identification of P. aeruginosa. The simple and inexpensive paraffin baiting system is a useful method for the identification and study of P. aeruginosa suitable for both the clinical and research laboratory.

  10. Maintenance of Paraoxonase 2 Activity as a Strategy to Attenuate P. Aeruginosa Virulence

    DTIC Science & Technology

    2013-10-01

    Bacterial Pathogenesis, Host Defense, Host-Pathogen Interactions, Innate Immunity, Paraoxonase, Pseudomonas aeruginosa, Quorum Sensing 16. SECURITY...esterase that has been shown to efficiently hydrolyze, and thereby inactivate, the P. aeruginosa quorum sensing molecule 3OC12(1). This suggests that...PON2 may be an important component of the innate defense which can disrupt bacterial quorum sensing , limiting the pathogenicity of the bacteria. We

  11. Inhibition of Biofilm Formation by Esomeprazole in Pseudomonas aeruginosa and Staphylococcus aureus

    PubMed Central

    Singh, Vandana; Arora, Vaneet; Alam, M. Jahangir

    2012-01-01

    Staphylococcus aureus and Pseudomonas aeruginosa are common nosocomial pathogens responsible for biofilm-associated infections. Proton pump inhibitors (PPI), such as esomeprazole, may have novel antimicrobial properties. The objective of this study was to assess whether esomeprazole prevents sessile bacterial growth and biofilm formation and whether it may have synergistic killing effects with standard antibiotics. The antibiofilm activity of esomeprazole at 0.25 mM was tested against two strains each of S. aureus and P. aeruginosa. Bacterial biofilms were prepared using a commercially available 96-peg-plate Calgary biofilm device. Sessile bacterial CFU counts and biomass were assessed during 72 hours of esomeprazole exposure. The killing activities after an additional 24 hours of vancomycin (against S. aureus) and meropenem (against P. aeruginosa) treatment with or without preexposure to esomeprazole were also assessed by CFU and biomass analyses. P. aeruginosa and S. aureus strains exposed to esomeprazole displayed decreased sessile bacterial growth and biomass (P < 0.001, each parameter). After 72 h of exposure, there was a 1-log10 decrease in the CFU/ml of esomeprazole-exposed P. aeruginosa and S. aureus strains compared to controls (P < 0.001). After 72 h of exposure, measured absorbance was 100% greater in P. aeruginosa control strains than in esomeprazole-exposed strains (P < 0.001). Increased killing and decreased biomass were observed for esomeprazole-treated bacteria compared to untreated controls exposed to conventional antibiotics (P < 0.001, each parameter). Reduced biofilm growth after 24 h was visibly apparent by light micrographs for P. aeruginosa and S. aureus isolates exposed to esomeprazole compared to untreated controls. In conclusion, esomeprazole demonstrated an antibiofilm effect against biofilm-producing S. aureus and P. aeruginosa. PMID:22664967

  12. The Effect of Strict Segregation on Pseudomonas aeruginosa in Cystic Fibrosis Patients

    PubMed Central

    van Mansfeld, Rosa; de Vrankrijker, Angelica; Brimicombe, Roland; Heijerman, Harry; Teding van Berkhout, Ferdinand; Spitoni, Cristian; Grave, Sanne; van der Ent, Cornelis; Wolfs, Tom; Willems, Rob; Bonten, Marc

    2016-01-01

    Introduction Segregation of patients with cystic fibrosis (CF) was implemented to prevent chronic infection with epidemic Pseudomonas aeruginosa strains with presumed detrimental clinical effects, but its effectiveness has not been carefully evaluated. Methods The effect of strict segregation on the incidence of P. aeruginosa infection in CF patients was investigated through longitudinal protocolized follow-up of respiratory tract infection before and after segregation. In two nested cross-sectional studies in 2007 and 2011 the P. aeruginosa population structure was investigated and clinical parameters were determined in patients with and without infection with the Dutch epidemic P. aeruginosa clone (ST406). Results Of 784 included patients 315 and 382 were at risk for acquiring chronic P. aeruginosa infection before and after segregation. Acquisition rates were, respectively, 0.14 and 0.05 per 1,000 days at risk (HR: 0.66, 95% CI [0.2548–1.541]; p = 0.28). An exploratory subgroup analysis indicated lower acquisition after segregation in children < 15 years of age (HR: 0.43, 95% CI[0.21–0.95]; p = 0.04). P. aeruginosa population structure did not change after segregation and ST406 was not associated with lung function decline, death or lung transplantation. Conclusions Strict segregation was not associated with a statistically significant lower acquisition of chronic P. aeruginosa infection and ST406 was not associated with adverse clinical outcome. After segregation there were no new acquisitions of ST406. In an unplanned exploratory analysis chronic acquisition of P. aeruginosa was lower after implementation of segregation in patients under 15 years of age. PMID:27280467

  13. A Long-Chain Flavodoxin Protects Pseudomonas aeruginosa from Oxidative Stress and Host Bacterial Clearance

    PubMed Central

    Moyano, Alejandro J.; Krapp, Adriana R.; Mondotte, Juan A.; Bocco, José L.; Saleh, Maria-Carla; Carrillo, Néstor; Smania, Andrea M.

    2014-01-01

    Long-chain flavodoxins, ubiquitous electron shuttles containing flavin mononucleotide (FMN) as prosthetic group, play an important protective role against reactive oxygen species (ROS) in various microorganisms. Pseudomonas aeruginosa is an opportunistic pathogen which frequently has to face ROS toxicity in the environment as well as within the host. We identified a single ORF, hereafter referred to as fldP (for flavodoxin from P . aeruginosa), displaying the highest similarity in length, sequence identity and predicted secondary structure with typical long-chain flavodoxins. The gene was cloned and expressed in Escherichia coli. The recombinant product (FldP) could bind FMN and exhibited flavodoxin activity in vitro. Expression of fldP in P. aeruginosa was induced by oxidative stress conditions through an OxyR-independent mechanism, and an fldP-null mutant accumulated higher intracellular ROS levels and exhibited decreased tolerance to H2O2 toxicity compared to wild-type siblings. The mutant phenotype could be complemented by expression of a cyanobacterial flavodoxin. Overexpression of FldP in a mutT-deficient P. aeruginosa strain decreased H2O2-induced cell death and the hypermutability caused by DNA oxidative damage. FldP contributed to the survival of P. aeruginosa within cultured mammalian macrophages and in infected Drosophila melanogaster, which led in turn to accelerated death of the flies. Interestingly, the fldP gene is present in some but not all P. aeruginosa strains, constituting a component of the P. aeruginosa accessory genome. It is located in a genomic island as part of a self-regulated polycistronic operon containing a suite of stress-associated genes. The collected results indicate that the fldP gene encodes a long-chain flavodoxin, which protects the cell from oxidative stress, thereby expanding the capabilities of P. aeruginosa to thrive in hostile environments. PMID:24550745

  14. Nosocomial Infections with IMP-19−Producing Pseudomonas aeruginosa Linked to Contaminated Sinks, France

    PubMed Central

    Amoureux, Lucie; Riedweg, Karena; Chapuis, Angélique; Bador, Julien; Siebor, Eliane; Péchinot, André; Chrétien, Marie-Lorraine; de Curraize, Claire

    2017-01-01

    We isolated IMP-19–producing Pseudomonas aeruginosa from 7 patients with nosocomial infections linked to contaminated sinks in France. We showed that blaIMP-19 was located on various class 1 integrons among 8 species of gram-negative bacilli detected in sinks: P. aeruginosa, Achromobacter xylosoxidans, A. aegrifaciens, P. putida, Stenotrophomonas maltophilia, P. mendocina, Comamonas testosteroni, and Sphingomonas sp. PMID:28098548

  15. Antibiotic Tolerance Induced by Lactoferrin in Clinical Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients

    PubMed Central

    Andrés, María T.; Viejo-Diaz, Mónica; Pérez, Francisco; Fierro, José F.

    2005-01-01

    Lactoferrin-induced cell depolarization and a delayed tobramycin-killing effect on Pseudomonas aeruginosa cells were correlated. This antibiotic tolerance effect (ATE) reflects the ability of a defense protein to modify the activity of an antibiotic as a result of its modulatory effect on bacterial physiology. P. aeruginosa isolates from cystic fibrosis patients showed higher ATE values (≤6-fold) than other clinical strains. PMID:15793153

  16. Kinetic modelling of cytochrome c adsorption on SBA-15.

    PubMed

    Yokogawa, Yoshiyuki; Yamauchi, Rie; Saito, Akira; Yamato, Yuta; Toma, Takeshi

    2017-01-01

    The adsorption capacity of mesoporous silicate (MPS) materials as an adsorbent for protein adsorption from the aqueous phase and the mechanism of the adsorption processes by comparative analyses of the applicability of five kinetic transfer models, pseudo-first-order model, pseudo-second-order model, Elovich kinetic model, Bangham's equation model, and intraparticle diffusion model, were investigated. A mixture of tetraethyl orthosilicate (TEOS) and triblock copolymer as a template was stirred, hydrothermally treated to form the mesoporous SBA-15 structure, and heat-treated at 550°C to form the MPS material, SBA-15. The synthesized SBA-15 was immersed in a phosphate buffered saline (PBS) solution containing cytochrome c for 2, 48, and 120 hours at 4°C. The TEM observations of proteins on/in mesoporous SBA-15 revealed the protein behaviors. The holes of the MPS materials were observed to overlap those of the stained proteins for the first 2 hours of immersion. The stained proteins were observed between primary particles and partly inside the mesoporous channels in the MPS material when it had been immersed for 48 hours. For MPS when it had been immersed for 120 hours, stained proteins were observed in almost all meso-scale channels of MPS. The time profiles for adsorption of proteins can be described well by Bangham's equation model and the intraparticle diffusion model. The Bangham's equation model is based on the assumption that pore diffusion was the only rate controlling step during adsorption, whose contribution to the overall mechanism of cytochrome c adsorption on SBA-15 should not be neglected. The kinetic curves obtained from the experiment for cytochrome c adsorption on SBA-15 could show the three steps: the initial rapid increase of the adsorbed amount of cytochrome c, the second gradual increase, and the final equilibrium stage. These three adsorption steps can be interpreted well by the multi-linearity of the intraparticle diffusion model

  17. A Conserved Steroid Binding Site in Cytochrome c Oxidase

    SciTech Connect

    Qin, Ling; Mills, Denise A.; Buhrow, Leann; Hiser, Carrie; Ferguson-Miller, Shelagh

    2010-09-02

    Micromolar concentrations of the bile salt deoxycholate are shown to rescue the activity of an inactive mutant, E101A, in the K proton pathway of Rhodobacter sphaeroides cytochrome c oxidase. A crystal structure of the wild-type enzyme reveals, as predicted, deoxycholate bound with its carboxyl group at the entrance of the K path. Since cholate is a known potent inhibitor of bovine oxidase and is seen in a similar position in the bovine structure, the crystallographically defined, conserved steroid binding site could reveal a regulatory site for steroids or structurally related molecules that act on the essential K proton path.

  18. Regulation of cytochrome P450 (CYP) genes by nuclear receptors.

    PubMed Central

    Honkakoski, P; Negishi, M

    2000-01-01

    Members of the nuclear-receptor superfamily mediate crucial physiological functions by regulating the synthesis of their target genes. Nuclear receptors are usually activated by ligand binding. Cytochrome P450 (CYP) isoforms often catalyse both formation and degradation of these ligands. CYPs also metabolize many exogenous compounds, some of which may act as activators of nuclear receptors and disruptors of endocrine and cellular homoeostasis. This review summarizes recent findings that indicate that major classes of CYP genes are selectively regulated by certain ligand-activated nuclear receptors, thus creating tightly controlled networks. PMID:10749660

  19. Updates on cytochrome P450-mediated cardiovascular drug interactions.

    PubMed

    Cheng, Judy W M; Frishman, William H; Aronow, Wilbert S

    2009-01-01

    Cytochrome P (CYP) 450 is a superfamily of hemoproteins that play an important role in the metabolism of steroid hormones, fatty acids, and many medications. Many agents used for management of cardiovascular diseases are substrates, inhibitors, or inducers of CYP450 enzymes.When two agents that are substrates, inhibitors, or inducers of CYP450 are administered together, drug interactions with significant clinical consequences may occur. This review discusses CYP450-mediated cardiovascular drug interactions as well as noncardiovascular drug interactions that produced significant cardiovascular side effects. The principles in predicting drug interactions are also discussed.

  20. Functions of the hydrophilic channels in protonmotive cytochrome c oxidase

    PubMed Central

    Rich, Peter R.; Maréchal, Amandine

    2013-01-01

    The structures and functions of hydrophilic channels in electron-transferring membrane proteins are discussed. A distinction is made between proton channels that can conduct protons and dielectric channels that are non-conducting but can dielectrically polarize in response to the introduction of charge changes in buried functional centres. Functions of the K, D and H channels found in A1-type cytochrome c oxidases are reviewed in relation to these ideas. Possible control of function by dielectric channels and their evolutionary relation to proton channels is explored. PMID:23864498

  1. Cumene hydroperoxide effected hydroperoxidation by cytochrome P-450.

    PubMed

    Chen, C; Gurka, D P

    1985-04-01

    9-Methylfluorene was found to be oxygenated to 9-hydroperoxy-9-methylfluorene and 9-hydroxy-9-methylfluorene by cytochrome P-450 in the presence of cumene hydroperoxide. Molecular oxygen is required and carbon monoxide is inhibitory. The reaction is inhibited by SKF-525A and metyrapone. Metyrapone and cumene hydroperoxide also retard the conversion of 9-hydroperoxy-9-methylfluorene to 9-hydroxy-9-methylfluorene. The reaction is different from hydroperoxide-supported oxygenation, since the cumene hydroperoxide appears to act as an effector of the enzyme rather than oxygen donor. It is suggested that substrates with stable radicals can be dioxygenated in this manner.

  2. Cytochromes P450 for terpene functionalisation and metabolic engineering.

    PubMed

    Pateraki, Irini; Heskes, Allison Maree; Hamberger, Björn

    2015-01-01

    Plants have evolved the capacity to produce a striking array of specialised metabolites. Terpenoids are the oldest and most diverse class of such compounds and have attracted interest for industrial and pharmaceutical applications. The development of biotechnological alternatives for their production is the focus of intense research. Photosynthetic systems provide new strategies for autotrophic metabolic engineering. Focusing on cytochromes P450, involved in the functionalisation of the core terpene molecules, this review highlights the latest approaches in this field and looks towards recent discoveries that have the potential to shape the future of terpenoid bioengineering.

  3. Comparison of cytochromes b5 from insects and vertebrates.

    PubMed

    Wang, Lijun; Cowley, Aaron B; Terzyan, Simon; Zhang, Xuejun; Benson, David R

    2007-05-01

    We report a 1.55 A X-ray crystal structure of the heme-binding domain of cytochrome b(5) from Musca domestica (house fly; HF b(5)), and compare it with previously published structures of the heme-binding domains of bovine microsomal cytochrome b(5) (bMc b(5)) and rat outer mitochondrial membrane cytochrome b(5) (rOM b(5)). The structural comparison was done in the context of amino acid sequences of all known homologues of the proteins under study. We show that insect b(5)s contain an extended hydrophobic patch at the base of the heme binding pocket, similar to the one previously shown to stabilize mammalian OM b(5)s relative to their Mc counterparts. The hydrophobic patch in insects includes a residue with a bulky hydrophobic side chain at position 71 (Met). Replacing Met71 in HF b(5) with Ser, the corresponding residue in all known mammalian Mc b(5)s, is found to substantially destabilize the holoprotein. The destabilization is a consequence of two related factors: (1) a large decrease in apoprotein stability and (2) extension of conformational disruption in the apoprotein beyond the empty heme binding pocket (core 1) and into the heme-independent folding core (core 2). Analogous changes have previously been shown to accompany replacement of Leu71 in rOM b(5) with Ser. That the stabilizing role of Met71 in HF b(5) is manifested primarily in the apo state is highlighted by the fact that its crystallographic Calpha B factor is modestly larger than that of Ser71 in bMc b(5), indicating that it slightly destabilizes local polypeptide conformation when heme is in its binding pocket. Finally, we show that the final unit of secondary structure in the cytochrome b(5) heme-binding domain, a 3(10) helix known as alpha6, differs substantially in length and packing interactions not only for different protein isoforms but also for given isoforms from different species.

  4. Detection of cytochrome b5 from the house-fly, Musca domestica: comparison of immunological and spectrophotometric methods.

    PubMed

    Wheelock, G D; Scott, J G

    1994-06-01

    Spectrophotometric assay of microsomal cytochrome b5 in house-flies produces different results depending on whether sodium dithionite or NADH is used as the reducing agent and whether or not detergent is present. Microsomes assayed for cytochrome b5 with dithionite in the presence of detergent gave the highest values, followed by dithionite alone, NADH plus detergent, and then NADH alone. Isopropanol treatment of microsomes extracted cytochrome b5 free of spectrophotometrically interfering cytochrome P-450. Studies using immunoblotting and rocket immunoelectrophoresis with polyclonal antisera raised against the purified cytochrome b5 showed that isopropanol treatment quantitatively extracted cytochrome b5.

  5. Immunological evaluation of an alginate-based conjugate as a vaccine candidate against Pseudomonas aeruginosa.

    PubMed

    Farjah, Ali; Owlia, Parviz; Siadat, Seyed Davar; Mousavi, Seyed Fazlollah; Ardestani, Mehdi Shafiee; Mohammadpour, Hashem Khorsand

    2015-02-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes serious infections, is usually resistant to antimicrobial agents, and is the leading cause of morbidity and premature mortality in patients with cystic fibrosis (CF). Mucoid strains of P. aeruginosa produce a virulence factor known as alginate. Developing a strategy to raise opsonic antibodies against alginate could be promising for the treatment of P. aeruginosa infection in CF patients. Conjugation of alginate to a carrier protein is a good method for increasing the immunogenicity of alginate. We conjugated alginate to the outer membrane vesicle (OMV) of Neisseria meningitidis serogroup B, which is a safe carrier protein, and evaluated its efficacy in mice. To evaluate the immune response, total IgG, IgG1, IgG2a, and IgG2b titers were analyzed. Immunization of mice with the alginate-OMV conjugate raised the levels of opsonic antibodies, and the vaccinated mice were protected when challenged intranasally with P. aeruginosa. Further studies showed that the conjugated vaccine could eliminate P. aeruginosa from the lungs of infected mice. This study supports the proposal that immunization of mice with an alginate-OMV conjugate vaccine could be safe and protective against P. aeruginosa infection.

  6. [Strategies for management of difficult to treat Gram-negative infections: focus on Pseudomonas aeruginosa].

    PubMed

    Bassetti, Matteo

    2007-09-01

    Pseudomonas aeruginosa is often involved in the aetiology of numerous infections, particularly those occurring in hospital. The infections in which P. aeruginosa most frequently has a pathogenic role include respiratory tract infections, particularly those occurring in patients with chronic obstructive pulmonary disease (COPD), nosocomial pneumonia, ventilator-associated pneumonia, and cystic fibrosis, as well as those developing in patients with AIDS, bacteraemia, sepsis, urinary tract infections, especially those related to catheterisation or kidney transplants, infections in neutropenic patients, and skin infections, particular those developing in surgical wounds or in burns. Thus, in practice, P. aeruginosa is ubiquitously present in all body districts. Particular attention should also be given to the presence of P. aeruginosa in the community setting, for example when it causes community-acquired pneumonia in the elderly or pneumonia in patients with advanced stage COPD. The mortality rate of patients with severe P. aeruginosa infections is very high. Treatment should be initiated very promptly with the most suitable drug, perhaps making use of combination therapy with a beta-lactam and a fluoroquinolone when indicated, and continued for a sufficiently long period. As far as concerns future therapeutic options for the treatment of P. aeruginosa infections, the only two new molecules that will probably become available are doripenem and ceftobiprole. Given this prospective, trust must be placed in the already known drugs, exploiting them more appropriately.

  7. Elimination of Pseudomonas aeruginosa through Efferocytosis upon Binding to Apoptotic Cells

    PubMed Central

    Arias, Paula; Kierbel, Arlinet

    2016-01-01

    For opportunistic pathogens such as Pseudomonas aeruginosa, the mucosal barrier represents a formidable challenge. Infections develop only in patients with altered epithelial barriers. Here, we showed that P. aeruginosa interacts with a polarized epithelium, adhering almost exclusively at sites of multi-cellular junctions. In these sites, numerous bacteria attach to an extruded apoptotic cell or apoptotic body. This dead cell tropism is independent of the type of cell death, as P. aeruginosa also binds to necrotic cells. We further showed that P. aeruginosa is internalized through efferocytosis, a process in which surrounding epithelial cells engulf and dispose of extruded apoptotic cells. Intracellularly, along with apoptotic cell debris, P. aeruginosa inhabits an efferocytic phagosome that acquires lysosomal features, and is finally killed. We propose that elimination of P. aeruginosa through efferocytosis is part of a host defense mechanism. Our findings could be relevant for the study of cystic fibrosis, which is characterized by an exacerbated number of apoptotic cells and ineffective efferocytosis. PMID:27977793

  8. [Effect of nitrogen and phosphorus on growth and competition of M. aeruginosa and S. quadricauda].

    PubMed

    Wan, Lei; Zhu, Wei; Zhao, Lian-Fang

    2007-06-01

    In order to disclosure the formation rule of predominant species in different nutrition conditions, three kinds of nutrition concentration were selected for the competition experiments with the common species of blue-green algae bloom Microcystis aeruginosa and the common species of green algae bloom Scenedesmus quadricauda. The competition relation was analysed by the competition parameters. The results indicate, in low nutrition, Scenedesmus quadricauda can stimulate the growth of Microcystis aeruginosa in mixed culture, the simulation becomes evident in low N/P ratio and M. aeruginosa can also stimulate the growth of S. quadricauda; in eutrophic condition, inhibition effect is connected with N/P; in hyper-eutrophic condition, the inhibition effect of S. quadricauda on M. aeruginosa is about three times as that of M. aeruginosa on S. quadricauda, and the effect of N/P ratio on competition inhibition parameters isn't evident. In low concentration N and P water, M. aeruginosa is easy to become predominant species, while in high concentration N and P water, S. quadricanda is easy to become predominant species.

  9. Inhibition of Pseudomonas aeruginosa Swarming Motility by 1-Naphthol and Other Bicyclic Compounds Bearing Hydroxyl Groups

    PubMed Central

    Oura, Hiromu; Tashiro, Yosuke; Toyofuku, Masanori; Ueda, Kousetsu; Kiyokawa, Tatsunori; Ito, Satoshi; Takahashi, Yurika; Lee, Seunguk; Nojiri, Hideaki; Nakajima-Kambe, Toshiaki; Uchiyama, Hiroo; Futamata, Hiroyuki

    2015-01-01

    Many bacteria convert bicyclic compounds, such as indole and naphthalene, to oxidized compounds, including hydroxyindoles and naphthols. Pseudomonas aeruginosa, a ubiquitous bacterium that inhabits diverse environments, shows pathogenicity against animals, plants, and other microorganisms, and increasing evidence has shown that several bicyclic compounds alter the virulence-related phenotypes of P. aeruginosa. Here, we revealed that hydroxyindoles (4- and 5-hydroxyindoles) and naphthalene derivatives bearing hydroxyl groups specifically inhibit swarming motility but have minor effects on other motilities, including swimming and twitching, in P. aeruginosa. Further analyses using 1-naphthol showed that this effect is also associated with clinically isolated hyperswarming P. aeruginosa cells. Swarming motility is associated with the dispersion of cells from biofilms, and the addition of 1-naphthol maintained biofilm biomass without cell dispersion. We showed that this 1-naphthol-dependent swarming inhibition is independent of changes of rhamnolipid production and the intracellular level of signaling molecule cyclic-di-GMP (c-di-GMP). Transcriptome analyses revealed that 1-naphthol increases gene expression associated with multidrug efflux and represses gene expression associated with aerotaxis and with pyochelin, flagellar, and pilus synthesis. In the present study, we showed that several bicyclic compounds bearing hydroxyl groups inhibit the swarming motility of P. aeruginosa, and these results provide new insight into the chemical structures that inhibit the specific phenotypes of P. aeruginosa. PMID:25681177

  10. Pseudomonas aeruginosa quorum sensing molecules correlate with clinical status in cystic fibrosis.

    PubMed

    Barr, Helen L; Halliday, Nigel; Cámara, Miguel; Barrett, David A; Williams, Paul; Forrester, Douglas L; Simms, Rebecca; Smyth, Alan R; Honeybourne, David; Whitehouse, Joanna L; Nash, Edward F; Dewar, Jane; Clayton, Andrew; Knox, Alan J; Fogarty, Andrew W

    2015-10-01

    Pseudomonas aeruginosa produces quorum sensing signal molecules that are potential biomarkers for infection.A prospective study of 60 cystic fibrosis patients with chronic P. aeruginosa, who required intravenous antibiotics for pulmonary exacerbations, was undertaken. Clinical measurements and biological samples were obtained at the start and end of the treatment period. Additional data were available for 29 of these patients when they were clinically stable.Cross-sectionally, quorum sensing signal molecules were detectable in the sputum, plasma and urine of 86%, 75% and 83% patients, respectively. They were positively correlated between the three biofluids. Positive correlations were observed for most quorum sensing signal molecules in sputum, plasma and urine, with quantitative measures of pulmonary P. aeruginosa load at the start of a pulmonary exacerbation. Plasma concentrations of 2-nonyl-4-hydroxy-quinoline (NHQ) were significantly higher at the start of a pulmonary exacerbation compared to clinical stability (p<0.01). Following the administration of systemic antibiotics, plasma 2-heptyl-4-hydroxyquinoline (p=0.02) and NHQ concentrations (p<0.01) decreased significantly.In conclusion, quorum sensing signal molecules are detectable in cystic fibrosis patients with pulmonary P. aeruginosa infection and are positively correlated with quantitative measures of P. aeruginosa. NHQ correlates with clinical status and has potential as a novel biomarker for P. aeruginosa infection.

  11. Photodynamic antimicrobial therapy to inhibit pseudomonas aeruginosa of corneal isolates (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Durkee, Heather A.; Relhan, Nidhi; Arboleda, Alejandro; Halili, Francisco; De Freitas, Carolina; Alawa, Karam; Aguilar, Mariela C.; Amescua, Guillermo; Miller, Darlene; Parel, Jean-Marie

    2016-03-01

    Keratitis associated with Pseudomonas aeruginosa is difficult to manage. Treatment includes antibiotic eye drops, however, some strains of Pseudomonas aeruginosa are resistant. Current research efforts are focused on finding alternative and adjunct therapies to treat multi-drug resistant bacteria. One promising alternate technique is photodynamic therapy (PDT). The purpose of this study was to evaluate the effect of riboflavin- and rose bengal-mediated PDT on Pseudomonas aeruginosa keratitis isolates in vitro. Two isolates (S+U- and S-U+) of Pseudomonas aeruginosa were derived from keratitis patients and exposed to five experimental groups: (1) Control (dark, UV-A irradiation, 525nm irradiation); (2) 0.1% riboflavin (dark, UV-A irradiation); and (3) 0.1% rose bengal, (4) 0.05% rose bengal and (5) 0.01% rose bengal (dark, 525nm irradiation). Three days after treatment, in dark conditions of all concentration of riboflavin and rose bengal showed no inhibition in both S+U- and S-U+ strains of Pseudomonas aeruginosa. In 0.1% and 0.05% rose bengal irradiated groups, for both S+U- and S-U+ strains, there was complete inhibition of bacterial growth in the central 50mm zone corresponding to the diameter of the green light source. These in vitro results suggest that rose bengal photodynamic therapy may be an effective adjunct treatment for Pseudomonas aeruginosa keratitis.

  12. Pseudomonas aeruginosa quorum sensing molecules correlate with clinical status in cystic fibrosis

    PubMed Central

    Halliday, Nigel; Cámara, Miguel; Barrett, David A.; Williams, Paul; Forrester, Douglas L.; Simms, Rebecca; Smyth, Alan R.; Honeybourne, David; Whitehouse, Joanna L.; Nash, Edward F.; Dewar, Jane; Clayton, Andrew; Knox, Alan J.; Fogarty, Andrew W.

    2015-01-01

    Pseudomonas aeruginosa produces quorum sensing signal molecules that are potential biomarkers for infection. A prospective study of 60 cystic fibrosis patients with chronic P. aeruginosa, who required intravenous antibiotics for pulmonary exacerbations, was undertaken. Clinical measurements and biological samples were obtained at the start and end of the treatment period. Additional data were available for 29 of these patients when they were clinically stable. Cross-sectionally, quorum sensing signal molecules were detectable in the sputum, plasma and urine of 86%, 75% and 83% patients, respectively. They were positively corre