Science.gov

Sample records for aeruginosa enterobacter aerogenes

  1. Transmission of Enterobacter aerogenes septicemia in healthcare workers.

    PubMed

    Jha, Piyush; Kim, Choon-Mee; Kim, Dong-Min; Chung, Jong-Hoon; Yoon, Na-Ra; Jha, Babita; Kim, Seok Won; Jang, Sook Jin; Ahn, Young-Joon; Chung, Jae Keun; Jeon, Doo Young

    2016-01-01

    Enterobacter aerogenes is recognized as an important bacterial pathogen in hospital-acquired infections. This report describes two unusual cases of septicemia caused by E. aerogenes in immunocompetent healthcare workers. E. aerogenes was isolated from blood cultures of the two patients experiencing septicemia. The clinical isolates were initially identified as E. aerogenes using a VITEK II automated system and 16S rRNA sequence analysis, and; both isolates involved in the outbreak shared a common pulse-field gel electrophoresis pattern. The similarities between the two cases included the simultaneous development of gastroenteritis symptoms, severe sepsis and thrombocytopenia after taking intravenous injections of ketorolac tromethamine. A common source of normal saline, a 100 mL bottle, was used for diluting the analgesic in both cases. In addition to the general population, healthcare workers, especially those who are also intravenous drug abusers, should be considered subjects that could cause a transmission of Enterobacter infection. PMID:27610316

  2. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment

    PubMed Central

    Davin-Regli, Anne; Pagès, Jean-Marie

    2015-01-01

    Enterobacter aerogenes and E. cloacae have been reported as important opportunistic and multiresistant bacterial pathogens for humans during the last three decades in hospital wards. These Gram-negative bacteria have been largely described during several outbreaks of hospital-acquired infections in Europe and particularly in France. The dissemination of Enterobacter sp. is associated with the presence of redundant regulatory cascades that efficiently control the membrane permeability ensuring the bacterial protection and the expression of detoxifying enzymes involved in antibiotic degradation/inactivation. In addition, these bacterial species are able to acquire numerous genetic mobile elements that strongly contribute to antibiotic resistance. Moreover, this particular fitness help them to colonize several environments and hosts and rapidly and efficiently adapt their metabolism and physiology to external conditions and environmental stresses. Enterobacter is a versatile bacterium able to promptly respond to the antibiotic treatment in the colonized patient. The balance of the prevalence, E. aerogenes versus E. cloacae, in the reported hospital infections during the last period, questions about the horizontal transmission of mobile elements containing antibiotic resistance genes, e.g., the efficacy of the exchange of resistance genes Klebsiella pneumoniae to Enterobacter sp. It is also important to mention the possible role of antibiotic use in the treatment of bacterial infectious diseases in this E. aerogenes/E. cloacae evolution. PMID:26042091

  3. Biological Conversion of Glycerol to Ethanol by Enterobacter aerogenes

    NASA Astrophysics Data System (ADS)

    Nwachukwu, Raymond E. S.

    In a search to turn the economically and environmentally non-valuable "waste" streams of biodiesel production into a profitable byproduct, a mutant strain of Enterobacter aerogenes ATCC 13048 was developed by six-tube subculturing technique. This technique is based on the principle of adaptive evolution, and involved subculturing the bacterium in a tryptic soy broth without dextrose (TSB) containing specific glycerol and ethanol concentration for six consecutive times. Then, the six consecutive subculturing was repeated in a fresh TSB of higher glycerol and ethanol concentrations. A new mutant strain, E. aerogenes S012, which could withstand a combination of 200 g/l glycerol and 30 g/l ethanol concentrations, was developed. The wild and mutant strains were used for the fermentation of pure (P-) and recovered (R-) glycerol. Taguchi and full factorial methods of design of experiments were used to screen and optimize the important process factors that influence the microbial production of ethanol. A statistically sound regression model was used to establish the mathematical relationship between the process variables and ethanol production. Temperature of 38°C, agitation speed of 200 rpm, pH of 6.3-6.6, and microaerobic condition were the optimum process conditions. Different pretreatment methods to recover glycerol from the crude glycerol and the subsequent fermentation method showed that direct acidification using 85% H3PO4 was the best. The R-glycerol contained 51% pure glycerol and 21% methanol. The wild strain, E. aerogenes ATCC 13048, produced only 12 g/l and 12.8 g/l ethanol from 20 g/l P- and R-glycerol respectively, and could not utilize higher glycerol concentrations. The mutant, E. aerogenes S012, produced ethanol amount and yield of 43 g/l and 1.12 mol/mol-glycerol from P-glycerol, respectively within 96 h. It also produced ethanol amount and yield of 26.8 g/l and 1.07 mol/mol-glycerol, respectively, from R-glycerol within the same duration. In a

  4. Bioconversion of glycerol to ethanol by a mutant Enterobacter aerogenes

    PubMed Central

    2012-01-01

    The main objective of this research is to develop, by adaptive evolution, mutant strains of Enterobacter aerogenes ATCC 13048 that are capable of withstanding high glycerol concentration as well as resisting ethanol-inhibition. The mutant will be used for high ethanol fermentation from glycerol feedstock. Ethanol production from pure (P-) and recovered (R-) glycerol using the stock was evaluated. A six-tube-subculture-generations method was used for developing the mutant. This involved subculturing the organism six consecutive times in tubes containing the same glycerol and ethanol concentrations at the same culture conditions. Then, the glycerol and/or ethanol concentration was increased and the six subculture generations were repeated. A strain capable of growing in 200 g/L glycerol and 30 g/L ethanol was obtained. The ability of this mutant, vis-à-vis the original strain, in utilizing glycerol in a high glycerol containing medium, with the concomitant ethanol yield, was assessed. Tryptic soy broth without dextrose (TSB) was used as the fermentation medium. Fermentation products were analyzed using HPLC. In a 20 g/L glycerol TSB, E. aerogenes ATCC 13048 converted 18.5 g/L P-glycerol and 17.8 g/L R-glycerol into 12 and 12.8 g/L ethanol, respectively. In a 50 g/L P-glycerol TSB, it utilized only 15.6 g/L glycerol; but the new strain used up 39 g/L, yielding 20 g/L ethanol after 120 h, an equivalence of 1.02 mol ethanol/mol-glycerol. This is the highest ethanol yield reported from glycerol bioconversion. The result of this P-glycerol fermentation can be duplicated using the R-glycerol from biodiesel production. PMID:22455837

  5. Isolation and characterization of a bacteriophage phiEap-2 infecting multidrug resistant Enterobacter aerogenes

    PubMed Central

    Li, Erna; Wei, Xiao; Ma, Yanyan; Yin, Zhe; Li, Huan; Lin, Weishi; Wang, Xuesong; Li, Chao; Shen, Zhiqiang; Zhao, Ruixiang; Yang, Huiying; Jiang, Aimin; Yang, Wenhui; Yuan, Jing; Zhao, Xiangna

    2016-01-01

    Enterobacter aerogenes (Enterobacteriaceae) is an important opportunistic pathogen that causes hospital-acquired pneumonia, bacteremia, and urinary tract infections. Recently, multidrug-resistant E. aerogenes have been a public health problem. To develop an effective antimicrobial agent, bacteriophage phiEap-2 was isolated from sewage and its genome was sequenced because of its ability to lyse the multidrug-resistant clinical E. aerogenes strain 3-SP. Morphological observations suggested that the phage belongs to the Siphoviridae family. Comparative genome analysis revealed that phage phiEap-2 is related to the Salmonella phage FSL SP-031 (KC139518). All of the structural gene products (except capsid protein) encoded by phiEap-2 had orthologous gene products in FSL SP-031 and Serratia phage Eta (KC460990). Here, we report the complete genome sequence of phiEap-2 and major findings from the genomic analysis. Knowledge of this phage might be helpful for developing therapeutic strategies against E. aerogenes. PMID:27320081

  6. Isolation and characterization of a bacteriophage phiEap-2 infecting multidrug resistant Enterobacter aerogenes.

    PubMed

    Li, Erna; Wei, Xiao; Ma, Yanyan; Yin, Zhe; Li, Huan; Lin, Weishi; Wang, Xuesong; Li, Chao; Shen, Zhiqiang; Zhao, Ruixiang; Yang, Huiying; Jiang, Aimin; Yang, Wenhui; Yuan, Jing; Zhao, Xiangna

    2016-01-01

    Enterobacter aerogenes (Enterobacteriaceae) is an important opportunistic pathogen that causes hospital-acquired pneumonia, bacteremia, and urinary tract infections. Recently, multidrug-resistant E. aerogenes have been a public health problem. To develop an effective antimicrobial agent, bacteriophage phiEap-2 was isolated from sewage and its genome was sequenced because of its ability to lyse the multidrug-resistant clinical E. aerogenes strain 3-SP. Morphological observations suggested that the phage belongs to the Siphoviridae family. Comparative genome analysis revealed that phage phiEap-2 is related to the Salmonella phage FSL SP-031 (KC139518). All of the structural gene products (except capsid protein) encoded by phiEap-2 had orthologous gene products in FSL SP-031 and Serratia phage Eta (KC460990). Here, we report the complete genome sequence of phiEap-2 and major findings from the genomic analysis. Knowledge of this phage might be helpful for developing therapeutic strategies against E. aerogenes. PMID:27320081

  7. Enterobacter aerogenes Needle Stick Leads to Improved Biological Management System

    SciTech Connect

    Johanson, Richard E.

    2004-08-01

    A laboratory worker who received a needle stick from a contaminated needle while working with a culture containing Enterobactor aerogenes developed a laboratory acquired infection. Although this organism has been shown to cause community and nosocomial infections, there have been no documented cases of a laboratory acquired infections. Lessons learned from the event led to corrective actions which included modification of lab procedures, development of a biological inventory tracking and risk identification system and the establishment of an effective biological safety program.

  8. Acanthamoeba castellanii of the T4 genotype is a potential environmental host for Enterobacter aerogenes and Aeromonas hydrophila

    PubMed Central

    2013-01-01

    Background Acanthamoeba can interact with a wide range of microorganisms such as viruses, algae, yeasts, protists and bacteria including Legionella pneumophila, Pseudomonas aeruginosa, Vibrio cholerae, Helicobacter pylori, Listeria monocytogenes, Mycobacterium spp., and Escherichia coli. In this capacity, Acanthamoeba has been suggested as a vector in the transmission of bacterial pathogens to the susceptible hosts. Methods Here, we used a keratitis isolate of A. castellanii of the T4 genotype and studied its interactions with two bacterial genera which have not been tested before, Enterobacter aerogenes, and Aeromonas hydrophila, as well as E. coli. Assays were performed to determine bacterial association with and invasion of A. castellanii. Additionally, bacterial survival intracellular of A. castellanii trophozoites as well as cysts was determined. Results All three bacterial isolates tested, associated, invaded, and survived inside A. castellanii trophozoites as well as A. castellanii cysts. However, E. aerogenes and E. coli exhibited significantly reduced association with and invasion of A. castellanii as compared with A. hydrophila (P < 0.01 using paired T-test, one tail distribution). In the long term survival assays, all three bacterial isolates tested remained viable inside A. castellanii trophozoites, while amoeba remained intact; however A. hydrophila exhibited higher survival inside amoebae (14.54 ± 3.3 bacteria:amoeba ratio) compared with E. aerogenes (3.96 ± 0.7 bacteria:amoeba ratio) and E. coli (5.85 ± 1.1 bacteria:amoeba ratio). A. hydrophila, E. coli, and E. aerogenes remained viable during the encystment process and exhibited higher levels of recovery from mature cysts (14.13 ± 0.89 A. hydrophila:amoeba ratio, 10.13 ± 1.17 E. aerogenes:amoeba ratio, and 11.95 ± 0.7 E. coli:amoeba ratio). Conclusions A. hydrophila and E. aerogenes also joined the ranks of other bacteria that could benefit from A. castellanii

  9. Enhanced dark hydrogen fermentation by addition of ferric oxide nanoparticles using Enterobacter aerogenes.

    PubMed

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Liu, Min; Zhou, Junhu; Cen, Kefa

    2016-05-01

    Ferric oxide nanoparticles (FONPs) were used to facilitate dark hydrogen fermentation using Enterobacter aerogenes. The hydrogen yield of glucose increased from 164.5±2.29 to 192.4±1.14mL/g when FONPs concentration increased from 0 to 200mg/L. SEM images of E. aerogenes demonstrated the existence of bacterial nanowire among cells, suggesting FONPs served as electron conduits to enhance electron transfer. TEM showed cellular internalization of FONPs, indicating hydrogenase synthesis and activity was potentially promoted due to the released iron element. When further increasing FONPs concentration to 400mg/L, the hydrogen yield of glucose decreased to 147.2±2.54mL/g. Soluble metabolic products revealed FONPs enhanced acetate pathway of hydrogen production, but weakened ethanol pathway. This shift of metabolic pathways allowed more nicotinamide adenine dinucleotide for reducing proton to hydrogen. PMID:26890796

  10. Most Enterobacter aerogenes Strains in France Belong to a Prevalent Clone

    PubMed Central

    Bosi, Claude; Davin-Regli, Anne; Bornet, Charleric; Mallea, Monique; Pages, Jean-Marie; Bollet, Claude

    1999-01-01

    The aim of this study was to determine the distribution in France of the Enterobacter aerogenes prevalent clone isolated in the hospitals of the Marseille area (A. Davin-Regli, D. Monnet, P. Saux, C. Bosi, R. Charrel, A. Barthelemy, and C. Bollet, J. Clin. Microbiol. 34:1474–1480, 1996). A total of 123 E. aerogenes isolates were collected from 23 hospital laboratories and analyzed by random amplification of polymorphic DNA and enterobacterial repetitive intergenic consensus-PCR to determine their epidemiological relatedness. Molecular typing revealed that 21 of the 23 laboratories had isolated this prevalent clone harboring the plasmid encoding for extended-spectrum β-lactamase of the TEM-24 type. Most isolates were susceptible only to imipenem and gentamicin. Their dissemination seems to be clonal and was probably the result of the general use of broad-spectrum cephalosporins and quinolones. Four isolates showed an alteration of their outer membrane proteins, causing decrease of susceptibility to third-generation cephalosporins and imipenem and leading to the critical situation of having no alternative therapeutic. The large dissemination of the E. aerogenes prevalent clone probably results from its good adaptation to the antibiotics administered in France and the hospital environment, particularly in intensive care units. PMID:10364580

  11. Biodegradation of 2-methylquinoline by Enterobacter aerogenes TJ-D isolated from activated sludge.

    PubMed

    Wang, Lin; Li, Yongmei; Duan, Jingyuan

    2013-07-01

    Bacterial strain Enterobacter aerogenes TJ-D capable of utilizing 2-methylquinoline as the sole carbon and energy source was isolated from acclimated activated sludge under denitrifying conditions. The ability to degrade 2-methylquinoline by E. aerogenes TJ-D was investigated under denitrifying conditions. Under optimal conditions of temperature (35 degrees C) and initial pH 7, 2-methylquinoline of 100 mg/L was degraded within 176 hr. The degradation of 2-methylquinoline by E. aerogenes TJ-D could be well described by the Haldane model (R2 > 0.91). During the degradation period of 2-methylquinoline (initial concentration 100 mg/L), nitrate was almost completely consumed (the removal efficiency was 98.5%), while nitrite remained at low concentration (< 0.62 mg/L) during the whole denitrification period. 1,2,3,4-Tetrahydro-2-methylquinoline, 4-ethyl-benzenamine, N-butyl-benzenamine, N-ethyl-benzenamine and 2,6-diethyl-benzenamine were metabolites produced during the degradation. The degradation pathway of 2-methylquinoline by E. aerogenes TJ-D was proposed. 2-Methylquinoline is initially hydroxylated at C-4 to form 2-methyl-4-hydroxy-quinoline, and then forms 2-methyl-4-quinolinol as a result of tautomerism. Hydrogenation of the heterocyclic ring at positions 2 and 3 produces 2,3-dihydro-2-methyl-4-quinolinol. The carbon-carbon bond at position 2 and 3 in the heterocyclic ring may cleave and form 2-ethyl-N-ethyl-benzenamine. Tautomerism may result in the formation of 2,6-diethyl-benzenamine and N-butyl-benzenamine. 4-Ethyl-benzenamine and N-ethyl-benzenamine were produced as a result of losing one ethyl group from the above molecules. PMID:24218841

  12. Study of the role of anaerobic metabolism in succinate production by Enterobacter aerogenes.

    PubMed

    Tajima, Yoshinori; Kaida, Kenichi; Hayakawa, Atsushi; Fukui, Keita; Nishio, Yousuke; Hashiguchi, Kenichi; Fudou, Ryosuke; Matsui, Kazuhiko; Usuda, Yoshihiro; Sode, Koji

    2014-09-01

    Succinate is a core biochemical building block; optimizing succinate production from biomass by microbial fermentation is a focus of basic and applied biotechnology research. Lowering pH in anaerobic succinate fermentation culture is a cost-effective and environmentally friendly approach to reducing the use of sub-raw materials such as alkali, which are needed for neutralization. To evaluate the potential of bacteria-based succinate fermentation under weak acidic (pH <6.2) and anaerobic conditions, we characterized the anaerobic metabolism of Enterobacter aerogenes AJ110637, which rapidly assimilates glucose at pH 5.0. Based on the profile of anaerobic products, we constructed single-gene knockout mutants to eliminate the main anaerobic metabolic pathways involved in NADH re-oxidation. These single-gene knockout studies showed that the ethanol synthesis pathway serves as the dominant NADH re-oxidation pathway in this organism. To generate a metabolically engineered strain for succinate production, we eliminated ethanol formation and introduced a heterogeneous carboxylation enzyme, yielding E. aerogenes strain ΔadhE/PCK. The strain produced succinate from glucose with a 60.5% yield (grams of succinate produced per gram of glucose consumed) at pH <6.2 and anaerobic conditions. Thus, we showed the potential of bacteria-based succinate fermentation under weak acidic conditions. PMID:24962116

  13. Effect of nanocomposite packaging containing ZnO on growth of Bacillus subtilis and Enterobacter aerogenes.

    PubMed

    Esmailzadeh, Hakimeh; Sangpour, Parvaneh; Shahraz, Farzaneh; Hejazi, Jalal; Khaksar, Ramin

    2016-01-01

    Recent advances in nanotechnology have opened new windows in active food packaging. Nano-sized ZnO is an inexpensive material with potential antimicrobial properties. The aim of the present study is to evaluate the antibacterial effect of low density Polyethylene (LDPE) containing ZnO nanoparticles on Bacillus subtilis and Enterobacter aerogenes. ZnO nanoparticles have been synthesized by facil molten salt method and have been characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM). Nanocomposite films containing 2 and 4 wt.% ZnO nanoparticles were prepared by melt mixing in a twin-screw extruder. The growth of both microorganisms has decreased in the presence of ZnO containing nanocomposites compared with controls. Nanocomposites with 4 wt.% ZnO nanoparticles had stronger antibacterial effect against both bacteria in comparison with the 2 wt.% ZnO containing nanocomposites. B. subtilis as Gram-positive bacteria were more sensitive to ZnO containing nanocomposite films compared with E. aerogenes as Gram-negative bacteria. There were no significant differences between the migration of Zn ions from 2 and 4 wt.% ZnO containing nanocomposites and the released Zn ions were not significantly increased in both groups after 14 days compared with the first. Regarding the considerable antibacterial effects of ZnO nanoparticles, their application in active food packaging can be a suitable solution for extending the shelf life of food. PMID:26478403

  14. Enhancing hydrogen production of Enterobacter aerogenes by heterologous expression of hydrogenase genes originated from Synechocystis sp.

    PubMed

    Song, Wenlu; Cheng, Jun; Zhao, Jinfang; Zhang, Chuanxi; Zhou, Junhu; Cen, Kefa

    2016-09-01

    The hydrogenase genes (hoxEFUYH) of Synechocystis sp. PCC 6803 were cloned and heterologously expressed in Enterobacter aerogenes ATCC13408 for the first time in this study, and the hydrogen yield was significantly enhanced using the recombinant strain. A recombinant plasmid containing the gene in-frame with Glutathione-S-Transferase (GST) gene was transformed into E. aerogenes ATCC13408 to produce a GST-fusion protein. SDS-PAGE and western blot analysis confirm the successful expression of the hox genes. The hydrogenase activity of the recombinant strain is 237.6±9.3ml/(g-DW·h), which is 152% higher than the wild strain. The hydrogen yield of the recombinant strain is 298.3ml/g-glucose, which is 88% higher than the wild strain. During hydrogen fermentation, the recombinant strain produces more acetate and butyrate, but less ethanol. This is corresponding to the NADH metabolism in the cell due to the higher hydrogenase activity with the heterologous expression of hox genes. PMID:27343449

  15. Draft Genome Assemblies of Enterobacter aerogenes CDC 6003-71, Enterobacter cloacae CDC 442-68, and Pantoea agglomerans UA 0804-01.

    PubMed

    Minogue, T D; Daligault, H E; Davenport, K W; Bishop-Lilly, K A; Bruce, D C; Chain, P S; Coyne, S R; Chertkov, O; Freitas, T; Frey, K G; Jaissle, J; Koroleva, G I; Ladner, J T; Palacios, G F; Redden, C L; Xu, Y; Johnson, S L

    2014-01-01

    The Enterobacteriaceae are environmental and enteric microbes. We sequenced the genomes of two Enterobacter reference strains, E. aerogenes CDC 6003-71 and E. cloacae CDC 442-68, as well as one near neighbor used as an exclusionary reference for diagnostics, Pantoea agglomerans CDC UA0804-01. The genome sizes range from 4.72 to 5.55 Mbp and have G+C contents from 54.6 to 55.1%. PMID:25342683

  16. Draft Genome Sequence of Enterobacter aerogenes, a DDE-Degrading and Plant Growth-Promoting Strain Isolated from Cucurbita pepo

    PubMed Central

    Eevers, Nele; Van Hamme, Jonathan D.; Bottos, Eric M.; Weyens, Nele

    2015-01-01

    We report here the draft genome of Enterobacter aerogenes, a Gram-negative bacterium of the Enterobacteriaceae isolated from Cucurbita pepo root tissue. This bacterium shows 2,2-bis(p-chlorophenyl)-1,1-dichloroethylene (DDE)-degrading potential and plant growth-promoting capacity. An analysis of its 4.5-Mb draft genome will enhance the understanding of DDE degradation pathways and phytoremediation applications for DDE-contaminated soils. PMID:25883299

  17. Optimization of cultural conditions for conversion of glycerol to ethanol by Enterobacter aerogenes S012.

    PubMed

    Nwachukwu, Raymond E S; Shahbazi, Abolghasem; Wang, Lijun; Worku, Mulumebet; Ibrahim, Salam; Schimmel, Keith

    2013-01-01

    The aim of this research is to optimize the cultural conditions for the conversion of glycerol to ethanol by Enterobacter aerogenes S012. Taguchi method was used to screen the cultural conditions based on their signal to noise ratio (SN). Temperature (°C), agitation speed (rpm) and time (h) were found to have the highest influence on both glycerol utilization and ethanol production by the organism while pH had the lowest. Full factorial design, statistical analysis, and regression model equation were used to optimize the selected cultural parameters for maximum ethanol production. The result showed that fermentation at 38°C and 200 rpm for 48 h would be ideal for the bacteria to produce maximum amount of ethanol from glycerol. At these optimum conditions, ethanol production, yield and productivity were 25.4 g/l, 0.53 g/l/h, and 1.12 mol/mol-glycerol, repectively. Ethanol production increased to 26.5 g/l while yield and productivity decreased to 1.04 mol/mol-glycerol and 0.37 g/l/h, respectively, after 72 h. Analysis of the fermentation products was performed using HPLC, while anaerobic condition was created by purging the fermentation vessel with nitrogen gas. PMID:23388539

  18. Optimization of cultural conditions for conversion of glycerol to ethanol by Enterobacter aerogenes S012

    PubMed Central

    2013-01-01

    The aim of this research is to optimize the cultural conditions for the conversion of glycerol to ethanol by Enterobacter aerogenes S012. Taguchi method was used to screen the cultural conditions based on their signal to noise ratio (SN). Temperature (°C), agitation speed (rpm) and time (h) were found to have the highest influence on both glycerol utilization and ethanol production by the organism while pH had the lowest. Full factorial design, statistical analysis, and regression model equation were used to optimize the selected cultural parameters for maximum ethanol production. The result showed that fermentation at 38°C and 200 rpm for 48 h would be ideal for the bacteria to produce maximum amount of ethanol from glycerol. At these optimum conditions, ethanol production, yield and productivity were 25.4 g/l, 0.53 g/l/h, and 1.12 mol/mol-glycerol, repectively. Ethanol production increased to 26.5 g/l while yield and productivity decreased to 1.04 mol/mol-glycerol and 0.37 g/l/h, respectively, after 72 h. Analysis of the fermentation products was performed using HPLC, while anaerobic condition was created by purging the fermentation vessel with nitrogen gas. PMID:23388539

  19. Investigation and control of an outbreak of Enterobacter aerogenes bloodstream infection in a neonatal intensive care unit in Fiji.

    PubMed

    Narayan, Swastika A; Kool, Jacob L; Vakololoma, Miriama; Steer, Andrew C; Mejia, Amelita; Drake, Anne; Jenney, Adam; Turton, Jane F; Kado, Joseph; Tikoduadua, Lisi

    2009-08-01

    Ten neonates developed blood stream infection with extended-spectrum beta-lactamase-producing Enterobacter aerogenes in a neonatal intensive care unit in Fiji. The source of the outbreak was traced to a bag of contaminated normal saline in the ward, which was used for multiple patients. All isolates recovered from patients were indistinguishable from the bacteria recovered from the normal saline by pulsed-field gel electrophoresis. The outbreak was controlled using simple infection control practices such as reinforcement of strict hand hygiene policy, provision of single use vials of normal saline, and strict aseptic technique for injections. PMID:19552517

  20. Biohydrogen and Bioethanol Production from Biodiesel-Based Glycerol by Enterobacter aerogenes in a Continuous Stir Tank Reactor

    PubMed Central

    Jitrwung, Rujira; Yargeau, Viviane

    2015-01-01

    Crude glycerol from the biodiesel manufacturing process is being produced in increasing quantities due to the expanding number of biodiesel plants. It has been previously shown that, in batch mode, semi-anaerobic fermentation of crude glycerol by Enterobacter aerogenes can produce biohydrogen and bioethanol simultaneously. The present study demonstrated the possible scaling-up of this process from small batches performed in small bottles to a 3.6-L continuous stir tank reactor (CSTR). Fresh feed rate, liquid recycling, pH, mixing speed, glycerol concentration, and waste recycling were optimized for biohydrogen and bioethanol production. Results confirmed that E. aerogenes uses small amounts of oxygen under semi-anaerobic conditions for growth before using oxygen from decomposable salts, mainly NH4NO3, under anaerobic condition to produce hydrogen and ethanol. The optimal conditions were determined to be 500 rpm, pH 6.4, 18.5 g/L crude glycerol (15 g/L glycerol) and 33% liquid recycling for a fresh feed rate of 0.44 mL/min. Using these optimized conditions, the process ran at a lower media cost than previous studies, was stable after 7 days without further inoculation and resulted in yields of 0.86 mol H2/mol glycerol and 0.75 mol ethanol/mole glycerol. PMID:25970750

  1. Biohydrogen and polyhydroxyalkanoate co-production by Enterobacter aerogenes and Rhodobacter sphaeroides from Calophyllum inophyllum oil cake.

    PubMed

    Arumugam, A; Sandhya, M; Ponnusami, V

    2014-07-01

    The feasibility of coupled biohydrogen and polyhydroxyalkanoate production by Enterobacter aerogenes and Rhodobacter sphaeroides using Calophyllum inophyllum oil cake was studied under dark and photo fermentation conditions. The utilization of a non-edible acidic oil cake (C. inophyllum), and exploitation of a modified minimal salt media led to reduction in the cost of media. Cost of fermentation is reduced by implementation of alternate dark-photo fermentative periods and through the use of a co-culture consisting of a dark fermentative (E. aerogenes) and a photo fermentative (R. sphaeroides) bacterium. The biohydrogen and polyhydroxyalkanoate produced were 7.95 L H2/L media and 10.73 g/L media, respectively, under alternate dark and photo fermentation and were 3.23 L H2/L media and 5.6g/L media, respectively under complete dark fermentation. The characteristics of the oil cake and alternate dark (16 h) and photo (8h) fermentative conditions were found to be supportive in producing high biohydrogen and polyhydroxyalkanoate (PHA) yield. PMID:24859207

  2. Biohydrogen and Bioethanol Production from Biodiesel-Based Glycerol by Enterobacter aerogenes in a Continuous Stir Tank Reactor.

    PubMed

    Jitrwung, Rujira; Yargeau, Viviane

    2015-01-01

    Crude glycerol from the biodiesel manufacturing process is being produced in increasing quantities due to the expanding number of biodiesel plants. It has been previously shown that, in batch mode, semi-anaerobic fermentation of crude glycerol by Enterobacter aerogenes can produce biohydrogen and bioethanol simultaneously. The present study demonstrated the possible scaling-up of this process from small batches performed in small bottles to a 3.6-L continuous stir tank reactor (CSTR). Fresh feed rate, liquid recycling, pH, mixing speed, glycerol concentration, and waste recycling were optimized for biohydrogen and bioethanol production. Results confirmed that E. aerogenes uses small amounts of oxygen under semi-anaerobic conditions for growth before using oxygen from decomposable salts, mainly NH4NO3, under anaerobic condition to produce hydrogen and ethanol. The optimal conditions were determined to be 500 rpm, pH 6.4, 18.5 g/L crude glycerol (15 g/L glycerol) and 33% liquid recycling for a fresh feed rate of 0.44 mL/min. Using these optimized conditions, the process ran at a lower media cost than previous studies, was stable after 7 days without further inoculation and resulted in yields of 0.86 mol H2/mol glycerol and 0.75 mol ethanol/mole glycerol. PMID:25970750

  3. Biotransformation of Ferulic acid to 4-Vinylguaiacol by Enterobacter soli and E. aerogenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated the conversion of ferulic acid to 4-vinylguaiacol (4-VG), vanillin, vanillyl alcohol and vanillic acid by five Enterobacter strains. These high-value chemicals are usually synthesized using chemical methods but biological synthesis adds value. Ferulic acid, a relatively inexpensive...

  4. Mutational analysis of the hyc-operon determining the relationship between hydrogenase-3 and NADH pathway in Enterobacter aerogenes.

    PubMed

    Pi, Jian; Jawed, Muhammad; Wang, Jun; Xu, Li; Yan, Yunjun

    2016-01-01

    In this study, the hydrogenase-3 gene cluster (hycDEFGH) was isolated and identified from Enterobacter aerogenes CCTCC AB91102. All gene products were highly homologous to the reported bacterial hydrogenase-3 (Hyd-3) proteins. The genes hycE, hycF, hycG encoding the subunits of hydrogenase-3 were targeted for genetic knockout to inhibit the FHL hydrogen production pathway via the Red recombination system, generating three mutant strains AB91102-E (ΔhycE), AB91102-F (ΔhycF) and AB91102-G (ΔhycG). Deletion of the three genes affected the integrity of hydrogenase-3. The hydrogen production experiments with the mutant strains showed that no hydrogen was detected compared with the wild type (0.886 mol/mol glucose), demonstrating that knocking out any of the three genes could inhibit NADH hydrogen production pathway. Meanwhile, the metabolites of the mutant strains were significantly changed in comparison with the wild type, indicating corresponding changes in metabolic flux by mutation. Additionally, the activity of NADH-mediated hydrogenase was found to be nil in the mutant strains. The chemostat experiments showed that the NADH/NAD(+) ratio of the mutant strains increased nearly 1.4-fold compared with the wild type. The NADH-mediated hydrogenase activity and NADH/NAD(+) ratio analysis both suggested that NADH pathway required the involvement of the electron transport chain of hydrogenase-3. PMID:26672442

  5. Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes.

    PubMed Central

    Blomqvist, K; Nikkola, M; Lehtovaara, P; Suihko, M L; Airaksinen, U; Stråby, K B; Knowles, J K; Penttilä, M E

    1993-01-01

    The genes involved in the 2,3-butanediol pathway coding for alpha-acetolactate decarboxylase, alpha-acetolactate synthase (alpha-ALS), and acetoin (diacetyl) reductase were isolated from Klebsiella terrigena and shown to be located in one operon. This operon was also shown to exist in Enterobacter aerogenes. The budA gene, coding for alpha-acetolactate decarboxylase, gives in both organisms a protein of 259 amino acids. The amino acid similarity between these proteins is 87%. The K. terrigena genes budB and budC, coding for alpha-ALS and acetoin reductase, respectively, were sequenced. The 559-amino-acid-long alpha-ALS enzyme shows similarities to the large subunits of the Escherichia coli anabolic alpha-ALS enzymes encoded by the genes ilvB, ilvG, and ilvI. The K. terrigena alpha-ALS is also shown to complement an anabolic alpha-ALS-deficient E. coli strain for valine synthesis. The 243-amino-acid-long acetoin reductase has the consensus amino acid sequence for the insect-type alcohol dehydrogenase/ribitol dehydrogenase family and has extensive similarities with the N-terminal and internal regions of three known dehydrogenases and one oxidoreductase. Images PMID:8444801

  6. Phenolic compounds: Strong inhibitors derived from lignocellulosic hydrolysate for 2,3-butanediol production by Enterobacter aerogenes.

    PubMed

    Lee, Sang Jun; Lee, Ju Hun; Yang, Xiaoguang; Kim, Sung Bong; Lee, Ja Hyun; Yoo, Hah Young; Park, Chulhwan; Kim, Seung Wook

    2015-12-01

    Lignocellulosic biomass are attractive feedstocks for 2,3-butanediol production due to their abundant supply and low price. During the hydrolysis of lignocellulosic biomass, various byproducts are formed and their effects on 2,3-butanediol production were not sufficiently studied compared to ethanol production. Therefore, the effects of compounds derived from lignocellulosic biomass (weak acids, furan derivatives and phenolics) on the cell growth, the 2,3-butanediol production and the enzymes activity involved in 2,3-butanediol production were evaluated using Enterobacter aerogenes ATCC 29007. The phenolic compounds showed the most toxic effects on cell growth, 2,3-butanediol production and enzyme activity, followed by furan derivatives and weak acids. The significant effects were not observed in the presence of acetic acid and formic acid. Also, feasibility of 2,3-butanediol production from lignocellulosic biomass was evaluated using Miscanthus as a feedstock. In the fermentation of Miscanthus hydrolysate, 11.00 g/L of 2,3-butanediol was obtained from 34.62 g/L of reducing sugar. However, 2,3-butanediol was not produced when the concentration of total phenolic compounds in the hydrolysate increased to more than 1.5 g/L. The present study provides useful information to develop strategies for biological production of 2,3-butanediol and to establish biorefinery for biochemicals from lignocellulosic biomass. PMID:26479290

  7. High-yield production of hydrogen by Enterobacter aerogenes mutants with decreased alpha-acetolactate synthase activity.

    PubMed

    Ito, Takeshi; Nakashimada, Yutaka; Kakizono, Toshihide; Nishio, Naomichi

    2004-01-01

    To enhance hydrogen (H2) production from glucose by Enterobacter aerogenes HU-101, two mutants, strains VP-1 and VP-2, with decreased alpha-acetolactate synthase activity, were isolated using the Voges-Proskauer (VP) test. In pH-uncontrolled batch culture, both mutants showed a lower 2,3-butanediol yield for the glucose consumed than that shown by the wild-type strain, although glucose remained in the medium after 12 h of culture. In the same cultures, compared to the H2 yield of 0.80 mol/mol-glucose of the wild-type strain, strain VP-1 showed a high H2 yield of 1.8 mol/mol-glucose with decreased lactate and increased succinate yields, while strain VP-2 showed an H2 yield of 1.0 mol/mol-glucose with an increased lactate yield. Increasing the phosphate buffer concentration, which contributes to maintaining the pH in the medium, increased the glucose consumption by both strains. However, in a pH-controlled batch culture at neutral pH, the H2 yield of strain VP-1 was decreased to 1.2 mol/mol-glucose due to the accumulation of formate, an intermediate of the H2-producing pathway, with the yield of H2 plus formate being 1.7 mol/mol-glucose. PMID:16233620

  8. Isolation of Enterobacter aerogenes carrying blaTEM-1 and blaKPC-3 genes recovered from a hospital Intensive Care Unit.

    PubMed

    Pulcrano, Giovanna; Pignanelli, Salvatore; Vollaro, Adriana; Esposito, Matilde; Iula, Vita Dora; Roscetto, Emanuela; Soriano, Amata Amy; Catania, Maria Rosaria

    2016-06-01

    Enterobacter aerogenes has recently emerged as an important hospital pathogen. In this study, we showed the emergence of E. aerogenes isolates carrying the blaKPC gene in patients colonized by carbapenem-resistant Klebsiella pneumoniae strains. Two multiresistant E. aerogenes isolates were recovered from bronchial aspirates of two patients hospitalized in the Intensive Care Unit at the "Santa Maria della Scaletta" Hospital, Imola. The antimicrobial susceptibility test showed the high resistance to carbapenems and double-disk synergy test confirmed the phenotype of KPC and AmpC production. Other investigation revealed that ESBL and blaKPC genes were carried on the conjugative pKpQIL plasmid. This is a relevant report in Italy that describes a nosocomial infection due to the production of KPC beta-lactamases by an E. aerogenes isolate in patients previously colonized by K. pneumoniae carbapenem-resistant. In conclusion, it's necessary a continuous monitoring of multidrug-resistant strains for the detection of any KPC-producing bacteria that could expand the circulation of carbapenem-resistant pathogens. PMID:27004836

  9. Effects of eliminating pyruvate node pathways and of coexpression of heterogeneous carboxylation enzymes on succinate production by Enterobacter aerogenes.

    PubMed

    Tajima, Yoshinori; Yamamoto, Yoko; Fukui, Keita; Nishio, Yousuke; Hashiguchi, Kenichi; Usuda, Yoshihiro; Sode, Koji

    2015-02-01

    Lowering the pH in bacterium-based succinate fermentation is considered a feasible approach to reduce total production costs. Newly isolated Enterobacter aerogenes strain AJ110637, a rapid carbon source assimilator under weakly acidic (pH 5.0) conditions, was selected as a platform for succinate production. Our previous work showed that the ΔadhE/PCK strain, developed from AJ110637 with inactivated ethanol dehydrogenase and introduced Actinobacillus succinogenes phosphoenolpyruvate carboxykinase (PCK), generated succinate as a major product of anaerobic mixed-acid fermentation from glucose under weakly acidic conditions (pH <6.2). To further improve the production of succinate by the ΔadhE/PCK strain, metabolically engineered strains were designed based on the elimination of pathways that produced undesirable products and the introduction of two carboxylation pathways from phosphoenolpyruvate and pyruvate to oxaloacetate. The highest production of succinate was observed with strain ES04/PCK+PYC, which had inactivated ethanol, lactate, acetate, and 2,3-butanediol pathways and coexpressed PCK and Corynebacterium glutamicum pyruvate carboxylase (PYC). This strain produced succinate from glucose with over 70% yield (gram per gram) without any measurable formation of ethanol, lactate, or 2,3-butanediol under weakly acidic conditions. The impact of lowering the pH from 7.0 to 5.5 on succinate production in this strain was evaluated under pH-controlled batch culture conditions and showed that the lower pH decreased the succinate titer but increased its yield. These findings can be applied to identify additional engineering targets to increase succinate production. PMID:25416770

  10. In Vivo Evolution of Bacterial Resistance in Two Cases of Enterobacter aerogenes Infections during Treatment with Imipenem

    PubMed Central

    Santini, Sébastien; Pinet, Elizabeth; Claverie, Jean-Michel; Davin-Régli, Anne-Véronique; Pagès, Jean-Marie; Masi, Muriel

    2015-01-01

    Infections caused by multidrug resistant (MDR) bacteria are a major concern worldwide. Changes in membrane permeability, including decreased influx and/or increased efflux of antibiotics, are known as key contributors of bacterial MDR. Therefore, it is of critical importance to understand molecular mechanisms that link membrane permeability to MDR in order to design new antimicrobial strategies. In this work, we describe genotype-phenotype correlations in Enterobacter aerogenes, a clinically problematic and antibiotic resistant bacterium. To do this, series of clinical isolates have been periodically collected from two patients during chemotherapy with imipenem. The isolates exhibited different levels of resistance towards multiple classes of antibiotics, consistently with the presence or the absence of porins and efflux pumps. Transport assays were used to characterize membrane permeability defects. Simultaneous genome-wide analysis allowed the identification of putative mutations responsible for MDR. The genome of the imipenem-susceptible isolate G7 was sequenced to closure and used as a reference for comparative genomics. This approach uncovered several loci that were specifically mutated in MDR isolates and whose products are known to control membrane permeability. These were omp35 and omp36, encoding the two major porins; rob, encoding a global AraC-type transcriptional activator; cpxA, phoQ and pmrB, encoding sensor kinases of the CpxRA, PhoPQ and PmrAB two-component regulatory systems, respectively. This report provides a comprehensive analysis of membrane alterations relative to mutational steps in the evolution of MDR of a recognized nosocomial pathogen. PMID:26398358

  11. Quantifying the effect of hand wash duration, soap use, ground beef debris, and drying methods on the removal of Enterobacter aerogenes on hands.

    PubMed

    Jensen, Dane A; Danyluk, Michelle D; Harris, Linda J; Schaffner, Donald W

    2015-04-01

    Hand washing is recognized as a crucial step in preventing foodborne disease transmission by mitigating crosscontamination among hands, surfaces, and foods. This research was undertaken to establish the importance of several keys factors (soap, soil, time, and drying method) in reducing microorganisms during hand washing. A nonpathogenic nalidixic acid-resistant Enterobacter aerogenes surrogate for Salmonella was used to assess the efficacy of using soap or no soap for 5 or 20 s on hands with or without ground beef debris and drying with paper towel or air. Each experiment consisted of 20 replicates, each from a different individual with ∼ 6 log CFU/ml E. aerogenes on their hands. A reduction of 1.0 ± 0.4 and 1.7 ± 0.8 log CFU of E. aerogenes was observed for a 5-s wash with no soap and a 20-s wash with soap, respectively. When there was no debris on the hands, there was no significant difference between washing with and without soap for 20 s (P > 0.05). Likewise, there was no significant difference in the reductions achieved when washing without soap, whether or not debris was on the hands (P > 0.05). A significantly greater reduction (P < 0.05) in E. aerogenes (0.5 log CFU greater reduction) was observed with soap when there was ground beef debris on the hands. The greatest difference (1.1 log CFU greater average reduction) in effectiveness occurred when ground beef debris was on the hands and a 20-s wash with water was compared with a 20-s wash with soap. Significantly greater (P < 0.05) reductions were observed with paper towel drying compared with air (0.5 log CFU greater reductions). Used paper towels may contain high bacterial levels (>4.0 log CFU per towel) when hands are highly contaminated. Our results support future quantitative microbial risk assessments needed to effectively manage risks of foodborne illness in which food workers' hands are a primary cause. PMID:25836392

  12. NDM-1 encoded by a pNDM-BJ01-like plasmid p3SP-NDM in clinical Enterobacter aerogenes

    PubMed Central

    Chen, Zhenhong; Li, Hongxia; Feng, Jiao; Li, Yuxue; Chen, Xin; Guo, Xuemin; Chen, Weijun; Wang, Li; Lin, Lei; Yang, Huiying; Yang, Wenhui; Wang, Jie; Zhou, Dongsheng; Liu, Changting; Yin, Zhe

    2015-01-01

    A carbapenem-nonsusceptible Enterobacter aerogenes strain named 3-SP was isolated from a human case of pneumonia in a Chinese teaching hospital. NDM-1 carbapenemase is produced by a pNDM-BJ01-like conjugative plasmid designated p3SP-NDM to account for carbapenem resistance of 3-SP. p3SP-NDM was fully sequenced and compared with all publically available pNDM-BJ01-like plasmids. The genetic differences between p3SP-NDM and pNDM-BJ01 include only 18 single nucleotide polymorphisms, a 1 bp deletion and a 706 bp deletion. p3SP-NDM and pNDM-BJ01 harbor an identical Tn125 element organized as ISAba125, blaNDM−1, bleMBL, ΔtrpF, dsbC, cutA, ΔgroES, groEL, ISCR27, and ISAba125. The blaNDM−1 surrounding regions in these pNDM-BJ01-like plasmids have a conserved linear organization ISAba14-aphA6-Tn125-unknown IS, with considerable genetic differences identified within or immediately downstream of Tn125. All reported pNDM-BJ01-like plasmids are exclusively found in Acinetobacter, whereas this is the first report of identification of a pNDM-BJ01-like plasmid in Enterobacteriaceae. PMID:25926823

  13. Malonate-bound structure of the glycerophosphodiesterase from Enterobacter aerogenes (GpdQ) and characterization of the native Fe[supscript 2+] metal-ion preference

    SciTech Connect

    Jackson, Colin J.; Hadler, Kieran S.; Carr, Paul D.; Oakley, Aaron J.; Yip, Sylvia; Schenk, Gerhard; Ollis, David L.

    2010-09-20

    The structure of a malonate-bound form of the glycerophosphodiesterase from Enterobacter aerogenes, GpdQ, has been refined at a resolution of 2.2 {angstrom} to a final R factor of 17.1%. The structure was originally solved to 2.9 {angstrom} resolution using SAD phases from Zn{sup 2+} metal ions introduced into the active site of the apoenzyme [Jackson et al. (2007), J. Mol. Biol. 367, 1047-1062]. However, the 2.9 {angstrom} resolution was insufficient to discern significant details of the architecture of the binuclear metal centre that constitutes the active site. Furthermore, kinetic analysis revealed that the enzyme lost a significant amount of activity in the presence of Zn{sup 2+}, suggesting that it is unlikely to be a catalytically relevant metal ion. In this communication, a higher resolution structure of GpdQ is presented in which malonate is visibly coordinated in the active site and analysis of the native metal-ion preference is presented using atomic absorption spectroscopy and anomalous scattering. Catalytic implications of the structure and its Fe{sup 2+} metal-ion preference are discussed.

  14. Malonate-bound structure of the glycerophosphodiesterase from Enterobacter aerogenes (GpdQ) and characterization of the native Fe[superscript 2+] metal-ion preference

    SciTech Connect

    Jackson, Colin J.; Hadler, Kieran S.; Carr, Paul D.; Oakley, Aaron J.; Yip, Sylvia; Schenk, Gerhard; Ollis, David L.

    2011-09-28

    The structure of a malonate-bound form of the glycerophosphodiesterase from Enterobacter aerogenes, GpdQ, has been refined at a resolution of 2.2 {angstrom} to a final R factor of 17.1%. The structure was originally solved to 2.9 {angstrom} resolution using SAD phases from Zn{sup 2+} metal ions introduced into the active site of the apoenzyme [Jackson et al. (2007), J. Mol. Biol. 367, 1047-1062]. However, the 2.9 {angstrom} resolution was insufficient to discern significant details of the architecture of the binuclear metal centre that constitutes the active site. Furthermore, kinetic analysis revealed that the enzyme lost a significant amount of activity in the presence of Zn2+, suggesting that it is unlikely to be a catalytically relevant metal ion. In this communication, a higher resolution structure of GpdQ is presented in which malonate is visibly coordinated in the active site and analysis of the native metal-ion preference is presented using atomic absorption spectroscopy and anomalous scattering. Catalytic implications of the structure and its Fe{sup 2+} metal-ion preference are discussed.

  15. Effect of aerosol immunization with RE 595 Salmonella minnesota on lung bactericidal activity against Serratia marcescens, Enterobacter cloacae, and Pseudomonas aeruginosa.

    PubMed

    LaForce, F M

    1977-08-01

    Intrapulmonary bactericidal activity was measured after mice were given 3 weekly aerosol exposures to acid-hydrolyzed Re 595 Salmonella minnesota. Ten days after their last immunization, mice were challenged with aerolized Serratia marcescens, Enterobacter cloacae, or Pseudomonas aeruginosa. Quantitative bacterial counts in ground lung were obtained immediately after exposure and again 4 hours later. Enhanced bactericidal activity against Serratia marcescens and Enterobacter cloacae was seen in immunized animals, whereas no difference with Pseudomonas aeruginosa was noted. In separate studies, immunization with Serratia marcescens yielded a similar enhancement of lung bactericidal activity. Mucociliary transport, as measured by disappearance of aerosolized Serratia marcescens labeled with phosphorus-32, was identical for both immunized and control animals. Using a standardized in vitro mouse alveolar macrophage phagocytic system, lung washes from animals immunized with Re 595 Salmonella minnesota had significant opsonic activity for Serratia marcescens but not for Pseudomonas aeruginosa. PMID:407823

  16. In71, an Enterobacter cloacae blaVIM-1-carrying integron related to In70.2 from Italian Pseudomonas aeruginosa isolates: a SENTRY Antimicrobial Surveillance Program report.

    PubMed

    Castanheira, Mariana; Sader, Hélio S; Jones, Ronald N; Debbia, Eugenio; Picão, Renata C; Gales, Ana C

    2007-01-01

    An Enterobacter cloacae strain showing decreased susceptibility to carbapenems was isolated from a blood culture of a patient hospitalized in Genoa, Italy, and screened for the presence of metallo-beta-lactamase (MBL) genes as part of the SENTRY Antimicrobial Surveillance Program. A bla(VIM-1)-carrying integron named In71 nearly identical to In70.2 reported in Pseudomonas aeruginosa strains isolated from various Italian cities since 2001 was identified in this strain. Interestingly, the In71 did not carry aadA1 nor possess the ISPa7 usually found in the P. aeruginosa integron In70.2. Mobilization of MBL genes from P. aeruginosa to members of the Enterobacteriaceae family is very worrisome because the rapid and wide dissemination of these potent antimicrobial resistance mechanisms could jeopardize the clinical use of carbapenems for the treatment of multidrug-resistant Enterobacteriaceae infections. PMID:17650966

  17. (1)H NMR spectroscopy in the diagnosis of Pseudomonas aeruginosa-induced urinary tract infection.

    PubMed

    Gupta, Ashish; Dwivedi, Mayank; Nagana Gowda, G A; Ayyagari, Archana; Mahdi, A A; Bhandari, M; Khetrapal, C L

    2005-08-01

    The utility of (1)H NMR spectroscopy is suggested and demonstrated for the diagnosis of Pseudomonas aeruginosa in urinary tract infection (UTI). The specific property of P. aeruginosa of metabolizing nicotinic acid to 6-hydroxynicotinic acid (6-OHNA) is exploited. The quantity of 6-OHNA produced correlates well with the viable bacterial count. Other common bacteria causing UTI such as Escherichia coli, Klebsiella pneumonia, Enterobacter aerogenes, Acinetobacter baumanii, Proteus mirabilis, Citrobacter frundii, Enterococcus faecalis, Streptococcus gp B and Staphylococcus aureus do not metabolize nicotinic acid under similar conditions. The method provides a single-step documentation of P. aeruginosa qualitatively as well as quantitatively. The NMR method is demonstrated on urine samples from 30 patients with UTI caused by P. aeruginosa. PMID:15759292

  18. Serine utilization by Klebsiella aerogenes.

    PubMed Central

    Vining, L C; Magasanik, B

    1981-01-01

    Klebsiella aerogenes was found to contain a specific L-serine dehydrase that was induced by threonine, glycine or leucine, but not by its substrate. Cellular concentrations were sensitive to carbon rather than nitrogen sources in the growth medium. A nonspecific isoleucine-sensitive L-threonine dehydrase supplemented the specific L-serine dehydrase activity. K. aerogenes also contains a leucine-inducible L-threonine dehydrogenase which probably initiated a threonine-utilization pathway in which the serine-specific dehydrate participated. Strains that were altered in their ability to metabolize serine differed in either L-serine dehydrase or L-threonine dehydrase activity. Thus, K. aerogenes growing on L-serine as a sole nitrogen source relies upon two enzymes that metabolize the amino acid as subsidiary functions. PMID:6783624

  19. Epidemiology of Extended-Spectrum β-Lactamase-Producing Enterobacter Isolates in a Spanish Hospital during a 12-Year Period

    PubMed Central

    Cantón, Rafael; Oliver, Antonio; Coque, Teresa M.; Varela, María del Carmen; Pérez-Díaz, José Claudio; Baquero, Fernando

    2002-01-01

    Fifteen Enterobacter clinical isolates (11 Enterobacter cloacae isolates, 3 Enterobacter aerogenes isolates, and 1 Enterobacter gergoviae isolate), representing 0.4% of all Enterobacter isolates recovered in our hospital from 1989 to 2000, were suspected of harboring an extended-spectrum β-lactamase (ESBL). These isolates were recovered from 14 different patients. ESBLs were transferred by conjugation into an Escherichia coli recipient strain. Pulsed-field gel electrophoresis (PFGE) revealed a single clone of E. aerogenes and six different clones of E. cloacae. Four of these E. cloacae clonal types were represented by only one isolate each, but the other two were represented by three and four isolates, respectively. Isoelectric focusing, susceptibility phenotyping, PCR analysis, and sequencing demonstrated the presence of three different ESBLs. The most frequent was the recently characterized CTX-M-10 ESBL, which was found in the E. gergoviae isolate and in all but one of the E. cloacae isolates. The remaining E. cloacae isolate harbored a TEM-27 ESBL, and the three E. aerogenes isolates harbored a TEM-24 ESBL. PFGE revealed that our E. aerogenes strain was indistinguishable from the French TEM-24-producing E. aerogenes endemic clone. Although a low prevalence of ESBL-producing Enterobacter isolates was found in our institution over a 12-year period, a diversity of nonepidemic E. cloacae clones was detected, as was the persistence of the CTX-M-10 β-lactamase. The presence of the TEM-24-producing E. aerogenes French clone in our institution also demonstrates the intercountry dissemination of ESBL-producing isolates. PMID:11923338

  20. Carbapenem Resistance among Enterobacter Species in a Tertiary Care Hospital in Central India

    PubMed Central

    Khajuria, Atul; Praharaj, Ashok Kumar; Kumar, Mahadevan; Grover, Naveen

    2014-01-01

    Objective. To detect genes encoding carbapenem resistance among Enterobacter species in a tertiary care hospital in central India. Methods. Bacterial identification of Enterobacter spp. isolates from various clinical specimens in patients admitted to intensive care units was performed by routine conventional microbial culture and biochemical tests using standard recommended techniques. Antibiotic sensitivity test was performed by standard Kirby Bauer disc diffusion technique. PCR amplification and automated sequencing was carried out. Transfer of resistance genes was determined by conjugation. Results. A total of 70/130 (53.84%) isolates of Enterobacter spp. were found to exhibit reduced susceptibility to imipenem (diameter of zones of inhibition ≤13 mm) by disc diffusion method. Among 70 isolates tested, 48 (68.57%) isolates showed MIC values for imipenem and meropenem ranging from 32 to 64 mg/L as per CLSI breakpoints. All of these 70 isolates were found susceptible to colistin in vitro as per MIC breakpoints (<0.5 mg/L). PCR carried out on these 48 MBL (IP/IPI) E-test positive isolates (12 Enterobacter aerogenes, 31 Enterobacter cloacae, and 05 Enterobacter cloacae complex) was validated by sequencing for beta-lactam resistance genes and result was interpreted accordingly. Conclusion. The study showed MBL production as an important mechanism in carbapenem resistance in Enterobacter spp. and interspecies transfer of these genes through plasmids suggesting early detection by molecular methods. PMID:25180095

  1. Dechlorination of DDT by Aerobacter aerogenes

    USGS Publications Warehouse

    1966-01-01

    Dechlorination of DDT to DDD in higher animals requires the presence of molecular oxygen, but in microorganisms the presence of oxygen hinders dechlorination. In cell-free preparations of Aerobacter aerogenes, the use of selected metabolic inhibitors indicated that reduced Fe(II) cytochrome oxidase was responsible for DDT dechlorination. This finding may possibly explain. the persistence of DDT residues in soils and sediments.

  2. The aerogen-π bonds involving π systems

    NASA Astrophysics Data System (ADS)

    Gao, Meng; Cheng, Jianbo; Li, Wenzuo; Xiao, Bo; Li, Qingzhong

    2016-05-01

    Ab initio calculations have been performed to study the complexes of XeOF2 and a series of π systems including ethyne, ethene, benzene, pyrrole, furan, and thiophene. More than two structures were obtained for each complex with an aerogen-π bond. The configuration of complex has a significant effect on its stability. The strength of aerogen-π interaction is comparable with that of lone pair-aerogen interaction and conventional hydrogen bonds. A breakdown of the aerogen-π interaction attributes its stability to approximately equal parts electrostatic and polarization energies, with a relatively smaller contribution from dispersion energy.

  3. First report of metallo-β-lactamases producing Enterobacter spp. strains from Venezuela.

    PubMed

    Martínez, Dianny; Rodulfo, Hectorina E; Rodríguez, Lucy; Caña, Luisa E; Medina, Belkis; Guzman, Militza; Carreño, Numirin; Marcano, Daniel; De Donato, Marcos

    2014-01-01

    Clinical strains of Enterobacter were isolated from Cumana's Central Hospital in Venezuela, and classified as E. cloacae (21), E. aerogenes (7), E. intermedium (1), E. sakazakii (1) and three unclassified. The strains showed high levels of resistance, especially to SXT (58.1%), CRO (48.8%), CAZ (46.6%), PIP (46.4%), CIP (45.2%) and ATM (43.3%). This is the first report for South America of blaVIM-2 in two E. cloacae and one Enterobacter sp., which also showed multiple mechanisms of resistance. Both E. cloacae showed blaTEM-1, but only one showed blaCTX-M-15 gene, while no blaSHV was detected. PMID:24553611

  4. FIRST REPORT OF METALLO-β-LACTAMASES PRODUCING Enterobacter spp. STRAINS FROM VENEZUELA

    PubMed Central

    Martínez, Dianny; Rodulfo, Hectorina E.; Rodríguez, Lucy; Caña, Luisa E.; Medina, Belkis; Guzman, Militza; Carreño, Numirin; Marcano, Daniel; Donato, Marcos De

    2014-01-01

    Clinical strains of Enterobacter were isolated from Cumana's Central Hospital in Venezuela, and classified as E. cloacae (21), E. aerogenes (7), E. intermedium (1), E. sakazakii (1) and three unclassified. The strains showed high levels of resistance, especially to SXT (58.1%), CRO (48.8%), CAZ (46.6%), PIP (46.4%), CIP (45.2%) and ATM (43.3%). This is the first report for South America of bla VIM-2 in two E. cloacae and one Enterobacter sp., which also showed multiple mechanisms of resistance. Both E. cloacae showed bla TEM-1, but only one showed bla CTX-M-15 gene, while no bla SHV was detected. PMID:24553611

  5. Ribitol Catabolic Pathway in Klebsiella aerogenes

    PubMed Central

    Charnetzky, W. T.; Mortlock, R. P.

    1974-01-01

    In Klebsiella aerogenes W70, there is an inducible pathway for the catabolism of ribitol consisting of at least two enzymes, ribitol dehydrogenase (RDH) and d-ribulokinase (DRK). These two enzymes are coordinately controlled and induced in response to d-ribulose, an intermediate of the pathway. Whereas wild-type K. aerogenes W70 are unable to utilize xylitol as a carbon and energy source, mutants constitutive for the ribitol pathway are able to utilize RDH to oxidize the unusual pentitol, xylitol, to d-xylulose. These mutants are able to grow on xylitol, presumably by utilization of the d-xylulose produced. Mutants constitutive for l-fucose isomerase can utilize the isomerase to convert d-arabinose to d-ribulose. In the presence of d-ribulose, RDH and DRK are induced, and such mutants are thus able to phosphorylate the d-ribulose by using the DRK of the ribitol pathway. Derivatives of an l-fucose isomerase-constitutive mutant were plated on d-arabinose, ribitol, and xylitol to select and identify mutations in the ribitol pathway. Using the transducing phage PW52, we were able to demonstrate genetic linkage of the loci involved. Three-point crosses, using constitutive mutants as donors and RDH−, DRK− double mutants as recipients and selecting for DRK+ transductants on d-arabinose, resulted in DRK+RDH+-constitutive, DRK+RDH+-inducible, and DRK+RDH−-inducible transductants but no detectable DRK+RDH− constitutive transductants, data consistent with the order rbtC-rbtD-rbtK, where rbtC is a control site and rbtD and rbtK correspond to the sites for the sites for the enzymes RDH and DRK, respectively. PMID:4366025

  6. Epidemiology and molecular characterization of extended-spectrum beta-lactamase-producing Enterobacter spp., Pantoea agglomerans, and Serratia marcescens isolates from a Bulgarian hospital.

    PubMed

    Markovska, Rumyana Donkova; Stoeva, Temenuga Jekova; Bojkova, Kalina Dineva; Mitov, Ivan Gergov

    2014-04-01

    Forty-two extended-spectrum beta-lactamase (ESBL)-producing isolates of Enterobacter aerogenes, Enterobacter cloacae, Pantoea agglomerans, and Serratia marcescens, collected consecutively during the period January-November 2011 from the University Hospital in Varna, Bulgaria, were studied to characterize their ESBLs by isoelectric focusing, group-specific PCR, and sequencing. The epidemiological relationship was evaluated by random amplified polymorphic DNA analysis (RAPD). Transferability of ESBL genes was determined by conjugation experiments. Plasmid analysis was done by replicon typing and PstI fingerprinting. The overall rate of ESBL production was 20%. The most widespread enzyme was CTX-M-3, found in 64%. It was dominant in E. aerogenes (100%) and S. marcescens (83%). SHV-12, CTX-M-3, and CTX-M-15 were found among E. cloacae isolates in 50%, 35%, and 45%, respectively. Three main CTX-M-3-producing epidemic clones of E. aerogenes and S. marcescens have been detected. Among E. cloacae isolates, six different RAPD profiles were discerned. The plasmids harboring blaCTX-M-3 belonged to IncL/M type and demonstrated similar PstI fingerprinting profiles. IncFII plasmids were detected in two CTX-M-15-producing E. cloacae isolates. Our results demonstrate wide intrahospital dissemination of clonal E. aerogenes and S. marcescens isolates, carrying IncL/M conjugative plasmids. PMID:24171449

  7. Partial hydrolysis of dieldrin by Aerobacter aerogenes

    USGS Publications Warehouse

    Wedemeyer, G.

    1968-01-01

    Although dieldrin (1,2,3 ,4,10,10-hexachloro- 6,7-epoxy-1 ,4 ,4a ,5 ,6 ,7 ,8, 8a-octahydro-1 ,4-endo, exo-5, 8-dimethanonaphthalene) metabolism by mammals (F. Korte and H. Arent, Life Sci. 4:2017, 1965) and insects (D. F. Heath and M. Vanderkar, Brit. J. Ind. Med. 21:269, 1964) has been reported, little is known about the degradation of this important pesticide by microorganisms. Korte et al. (Ann. Chem. Liebigs 656:135, 1962) and Chacko et al. (Science 154: 893, 1966) reported that a number of ubiquitous microorganisms were incapable of degrading dieldrin; however, more recently Matsumura and Boush (Science 156:959, 1967) isolated several species of Pseudomonas and Bacillus which could degrade dieldrin, from a number of soil samples having similar activity. They did not specifically attempt to identify the dieldrin metabolites formed, but they did suggest, on the basis of an identical RF value with an authentic control that 6,7-trans-dihydroxydihydroaldrin (aldrin diol) might be a major product. Work carried out concurrently in this laboratory has shown that another ubiquitous bacterium, Aerobacter aerogenes, converts dieldrin in vitro to a compound chromatographically

  8. Occurrence and analysis of irp2 virulence gene in isolates of Klebsiella pneumoniae and Enterobacter spp. from microbiota and hospital and community-acquired infections.

    PubMed

    Souza Lopes, Ana Catarina; Rodrigues, Juliana Falcão; Cabral, Adriane Borges; da Silva, Maíra Espíndola; Leal, Nilma Cintra; da Silveira, Vera Magalhães; de Morais Júnior, Marcos Antônio

    2016-07-01

    Eighty-five isolates of Klebsiella pneumoniae and Enterobacter spp., originating from hospital- and community-acquired infections and from oropharyngeal and faecal microbiota from patients in Recife-PE, Brazil, were analyzed regarding the presence of irp2 gene. This is a Yersinia typical gene involved in the synthesis of siderophore yersiniabactin. DNA sequencing confirmed the identity of irp2 gene in five K. pneumoniae, five Enterobacter aerogenes and one Enterobacter amnigenus isolates. To our knowledge in the current literature, this is the first report of the irp2 gene in E. amnigenus, a species considered an unusual human pathogen, and in K. pneumoniae and E. aerogenes isolates from the normal microbiota and from community infections, respectively. Additionally, the analyses of nucleotide and amino acid sequences suggest the irp2 genes derived from isolates used in this study are more closely related to that of Yersinia pestis P.CE882 than to that of Yersinia enterocolitica 8081. These data demonstrated that K. pneumoniae and Enterobacter spp. from normal microbiota and from community- and hospital-acquired infections possess virulence factors important for the establishment of extra-intestinal infections. PMID:27133266

  9. Mutational Enzymatic Resistance of Enterobacter Species to Beta-Lactam Antibiotics

    PubMed Central

    Lampe, Mary F.; Allan, Barbara J.; Minshew, Barbara H.; Sherris, John C.

    1982-01-01

    Mutants with enhanced β-lactam resistance were selected from strains of Enterobacter cloacae and E. aerogenes by using three antibiotics. High-level β-lactamase-producing mutants had similar degrees of increased resistance, enzyme substrate profiles, and isoelectric (pI) values irrespective of the selective agent. Reverse mutants from a resistant E. cloacae mutant regained the susceptibility pattern originally exhibited by the wild type, or were of enhanced susceptibility, and no longer expressed increased β-lactamase production. β-Lactamases of the mutants were similar in pI values to the wild-type enzyme. The increased resistance of the mutants therefore appeared to be accounted for by increased β-lactamase production. Images PMID:6979311

  10. Single-electron aerogen bonds: Do they exist?

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Mohammadian-Sabet, Fariba; Solimannejad, Mohammad

    2016-08-01

    A novel type of σ-hole interaction is characterized between some noble gas containing molecules (KrOF2, KrO3, XeOF2 and XeO3) and methyl (CH3) or ethyl (C2H5) radical by means of ab initio calculations. This interaction is named as single-electron aerogen bond (SEAB), in view of the concepts of aerogen bond and single-electron bond interactions. The properties of SEABs are studied by molecular electrostatic potential, quantum theory of atom in molecules, natural bonding orbital and noncovalent interaction index analyses. The formation of an O⋯H interaction tends to increase the strength of the SEAB, when they coexist in a ternary complex.

  11. Draft Genome Sequences of Pseudomonas aeruginosa Isolates from Wounded Military Personnel

    PubMed Central

    Arivett, Brock A.; Ream, Dave C.; Fiester, Steven E.; Kidane, Destaalem

    2016-01-01

    Pseudomonas aeruginosa, a Gram-negative bacterium that causes severe hospital-acquired infections, is grouped as an ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogen because of its extensive drug resistance phenotypes and effects on human health worldwide. Five multidrug resistant P. aeruginosa strains isolated from wounded military personnel were sequenced and annotated in this work. PMID:27516516

  12. Draft Genome Sequences of Pseudomonas aeruginosa Isolates from Wounded Military Personnel.

    PubMed

    Arivett, Brock A; Ream, Dave C; Fiester, Steven E; Kidane, Destaalem; Actis, Luis A

    2016-01-01

    Pseudomonas aeruginosa, a Gram-negative bacterium that causes severe hospital-acquired infections, is grouped as an ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogen because of its extensive drug resistance phenotypes and effects on human health worldwide. Five multidrug resistant P. aeruginosa strains isolated from wounded military personnel were sequenced and annotated in this work. PMID:27516516

  13. Infectious discitis caused by Enterobacter cloacae.

    PubMed Central

    Solans, R; Simeon, P; Cuenca, R; Fonollosa, V; Bago, J; Vilardell, M

    1992-01-01

    The case is reported of a patient who developed a vertebral osteomyelitis caused by Enterobacter cloacae. The organism was isolated in cultures of blood and vertebral puncture biopsy samples. The patient was satisfactorily treated with trimethroprim and sulphamethoxazole. Enterobacter cloacae, a Gram negative organism, has been confirmed as the cause of bacteremia in patients with burns, urinary infections, in adults with pneumonia, and in children with joint infections. Spondylodiscitis caused by Enterobacter cloacae has not previously been described. Images PMID:1632668

  14. Further studies on the sources of Klebsiella aerogenes in hospital patients.

    PubMed Central

    Cooke, E. M.; Pool, R.; Brayson, J. C.; Edmondson, A. S.; Munro, M. E.; Shinebaum, R.

    1979-01-01

    We report an investigation into faecal carriage of Klebsiella aerogenes and the distribution of this organism in the environment of three wards. In all three wards faecal carriage rates were high (60-70%). The faecal carriage rate increased with antibiotic administration and with length of in-patient stay. K. aerogenes was widely distributed in the ward environment and was found on the hands of nursing staff. Clusters of isolations of K. aerogenes of the same serotype were demonstrated indicating either patient-to-patient transfer or a common source of infection. The results indicate that even under conditions in which there are no outbreaks of K. aerogenes infection, there is a large reservoir of this organism both in the bowel of patients and in the ward environment. PMID:390043

  15. Methionine-to-Cysteine Recycling in Klebsiella aerogenes

    PubMed Central

    Seiflein, Thomas A.; Lawrence, Jeffrey G.

    2001-01-01

    In the enteric bacteria Escherichia coli and Salmonella enterica, sulfate is reduced to sulfide and assimilated into the amino acid cysteine; in turn, cysteine provides the sulfur atom for other sulfur-bearing molecules in the cell, including methionine. These organisms cannot use methionine as a sole source of sulfur. Here we report that this constraint is not shared by many other enteric bacteria, which can use either cysteine or methionine as the sole source of sulfur. The enteric bacterium Klebsiella aerogenes appears to use at least two pathways to allow the reduced sulfur of methionine to be recycled into cysteine. In addition, the ability to recycle methionine on solid media, where cys mutants cannot use methionine as a sulfur source, appears to be different from that in liquid media, where they can. One pathway likely uses a cystathionine intermediate to convert homocysteine to cysteine and is induced under conditions of sulfur starvation, which is likely sensed by low levels of the sulfate reduction intermediate adenosine-5′-phosphosulfate. The CysB regulatory proteins appear to control activation of this pathway. A second pathway may use a methanesulfonate intermediate to convert methionine-derived methanethiol to sulfite. While the transsulfurylation pathway may be directed to recovery of methionine, the methanethiol pathway likely represents a general salvage mechanism for recovery of alkane sulfide and alkane sulfonates. Therefore, the relatively distinct biosyntheses of cysteine and methionine in E. coli and Salmonella appear to be more intertwined in Klebsiella. PMID:11114934

  16. A hospital epidemic caused by gentamicin-resistant Klebsiella aerogenes.

    PubMed

    Curie, K; Speller, D C; Simpson, R A; Stephens, M; Cooke, D I

    1978-02-01

    In the 15 months, February 1976 to April 1977, more than 241 patients became colonized with a strain of Klebsiella aerogenes, capsular serotype K2, resistant to most antibiotics. Urinary tract infection was the most common clinical manifestation but bacteraemia and, occasionally, infections of other sites were encountered. The main reservoir of the epidemic klebsiella was the gut, urine and skin of colonized patients. Gut carriage among staff was very uncommon. The most susceptible patients were elderly males, with debilitating illnesses and urinary tract abnormalities, especially if they were catheterized or receiving antibiotics. Likely vehicles for spread were the hands of staff, and contaminated bedpans and urinals. Control measures were directed at these factors. At the end of April 1977 no new cases had occurred for 3 months in the ward in which the outbreak began, and which had been the main focus of infection, and only 5 patients in the affected hospitals were known to be colonized by the epidemic klebsiella. PMID:340580

  17. A hospital epidemic caused by gentamicin-resistant Klebsiella aerogenes.

    PubMed Central

    Curie, K.; Speller, D. C.; Simpson, R. A.; Stephens, M.; Cooke, D. I.

    1978-01-01

    In the 15 months, February 1976 to April 1977, more than 241 patients became colonized with a strain of Klebsiella aerogenes, capsular serotype K2, resistant to most antibiotics. Urinary tract infection was the most common clinical manifestation but bacteraemia and, occasionally, infections of other sites were encountered. The main reservoir of the epidemic klebsiella was the gut, urine and skin of colonized patients. Gut carriage among staff was very uncommon. The most susceptible patients were elderly males, with debilitating illnesses and urinary tract abnormalities, especially if they were catheterized or receiving antibiotics. Likely vehicles for spread were the hands of staff, and contaminated bedpans and urinals. Control measures were directed at these factors. At the end of April 1977 no new cases had occurred for 3 months in the ward in which the outbreak began, and which had been the main focus of infection, and only 5 patients in the affected hospitals were known to be colonized by the epidemic klebsiella. PMID:340580

  18. Inorganic phosphate accumulation and cadmium detoxification in Klebsiella aerogenes NCTC 418 growing in continuous culture

    SciTech Connect

    Aiking, H.; Stijnman, A.; van Garderen, C.; van Heerikhuizen, H.; van Riet, J.

    1984-02-01

    Klebsiella aerogenes NCTC-418, growing in the presence of cadmium under glucose-, sulfate-, or phosphate-limited conditions in continuous culture, exhibits two different cadmium detoxifying mechanisms. In addition to sulfide formation, increased accumulation of P/sub i/ is demonstrated as a novel mechanism. Intracellular cadmium is always quantitatively counterbalanced by a concerted increase in both inorganic sulfide and P/sub i/ contents of the cells. This led to the conclusion that production of sulfide and accumulation of P/sub i/ are detoxification mechanisms present in K. aerogenes but that their relative importance is crucially dependent on the strain and the growth conditions employed.

  19. Genomic Diversity within the Enterobacter cloacae Complex

    PubMed Central

    Paauw, Armand; Caspers, Martien P. M.; Schuren, Frank H. J.; Leverstein-van Hall, Maurine A.; Delétoile, Alexis; Montijn, Roy C.; Verhoef, Jan; Fluit, Ad C.

    2008-01-01

    Background Isolates of the Enterobacter cloacae complex have been increasingly isolated as nosocomial pathogens, but phenotypic identification of the E. cloacae complex is unreliable and irreproducible. Identification of species based on currently available genotyping tools is already superior to phenotypic identification, but the taxonomy of isolates belonging to this complex is cumbersome. Methodology/Principal Findings This study shows that multilocus sequence analysis and comparative genomic hybridization based on a mixed genome array is a powerful method for studying species assignment within the E. cloacae complex. The E. cloacae complex is shown to be evolutionarily divided into two clades that are genetically distinct from each other. The younger first clade is genetically more homogenous, contains the Enterobacter hormaechei species and is the most frequently cultured Enterobacter species in hospitals. The second and older clade consists of several (sub)species that are genetically more heterogonous. Genetic markers were identified that could discriminate between the two clades and cluster 1. Conclusions/Significance Based on genomic differences it is concluded that some previously defined (clonal and heterogenic) (sub)species of the E. cloacae complex have to be redefined because of disagreements with known or proposed nomenclature. However, further improved identification of the redefined species will be possible based on novel markers presented here. PMID:18716657

  20. The Function of UreB in Klebsiella aerogenes Urease†

    PubMed Central

    Carter, Eric L.; Boer, Jodi L.; Farrugia, Mark A.; Flugga, Nicholas; Towns, Christopher L.; Hausinger, Robert P.

    2011-01-01

    Urease from Klebsiella aerogenes is composed of three subunits (UreA, UreB, and UreC) which assemble into a (UreABC)3 quaternary structure. UreC harbors the dinuclear nickel active site, whereas the functions of UreA and UreB remain unknown. UreD and UreF accessory proteins previously were suggested to reposition UreB and increase exposure of the nascent urease active site, thus facilitating metallocenter assembly. In this study, cells were engineered to separately produce (UreAC)3 or UreB, and the purified proteins were characterized. Monomeric UreB spontaneously binds to the trimeric heterodimer of UreA plus UreC to form (UreABC*)3 apoprotein, as shown by gel filtration chromatography, integration of electrophoretic gel band intensities, and mass spectrometry. Similar to authentic urease apoprotein, active enzyme is produced by incubation of (UreABC*)3 with Ni2+ and bicarbonate. Conversely, UreBΔ1-19, lacking the 19 residue potential hinge and tether to UreC, does not form a complex with (UreAC)3 and yields negligible levels of active enzyme when incubated under activation conditions with (UreAC)3. Comparison of activities and nickel contents for (UreAC)3, (UreABC*)3, and (UreABC)3 samples treated with Ni2+ and bicarbonate and then desalted indicates that UreB facilitates efficient incorporation of the metal into the active site and protects the bound metal from chelation. Amylose resin pull-down studies reveal that MBP-UreD (a fusion of maltose binding protein with UreD) forms complexes with (UreABC)3, (UreAC)3, and UreB in vivo, but not in vitro. By contrast, MBP-UreD does not form an in vivo complex with UreBΔ1-19. The soluble MBP-UreD:UreF:UreG complex binds in vitro to (UreABC)3, but not to (UreAC)3 or UreB. Together these data demonstrate that UreB facilitates the interaction of urease with accessory proteins during metallocenter assembly, with the N-terminal hinge and tether region being specifically required for this process. In addition to its role in

  1. Enterobacter morus sp. nov., a novel Enterobacter species associated with bacterial wilt on mulberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A mulberry pathogenetic bacterial strain R18-2T isolated from the diseased mulberry root was analyzed by a polyphasic taxonomic study. Comparative 16S rRNA gene sequence analysis combined with rpoB gene sequence analysis allocated the strain R18-2T to the genus Enterobacter. The strain was Gram nega...

  2. Enterobacter asburiae sp. nov., a new species found in clinical specimens, and reassignment of Erwinia dissolvens and Erwinia nimipressuralis to the genus Enterobacter as Enterobacter dissolvens comb. nov. and Enterobacter nimipressuralis comb. nov.

    PubMed Central

    Brenner, D J; McWhorter, A C; Kai, A; Steigerwalt, A G; Farmer, J J

    1986-01-01

    Enterobacter asburiae sp. nov. is a new species that was formerly referred to as Enteric Group 17 and that consists of 71 strains, 70 of which were isolated from humans. Enterobacter asburiae sp. nov. strains gave positive reactions in tests for methyl red, citrate utilization (Simmons and Christensen's), urea hydrolysis, L-ornithine decarboxylase, growth in KCN, acid and gas production from D-glucose, and acid production from L-arabinose, cellobiose, glycerol (negative in 1 to 2 days, positive in 3 to 7 days), lactose, D-mannitol, alpha-methyl-D-glucoside, salicin, D-sorbitol, sucrose, trehalose, and D-xylose. They gave negative reactions in the Voges-Proskauer test and in tests for indole, H2S production, phenylalanine, L-lysine decarboxylase, motility, gelatin, utilization of malonate, lipase, DNase, tyrosine clearing, acid production from adonitol, D-arabitol, dulcitol, erythritol, i(myo)-inositol, melibiose, and L-rhamnose. They gave variable reactions in tests for L-arginine dihydrolase (25% positive after 2 days) and acid production from raffinose (69% positive after 2 days). Thirty-four Enterobacter asburiae sp. nov. strains were tested for DNA relatedness by the hydroxyapatite method with 32PO4-labeled DNA from the designated type strain (1497-78, ATCC 35953). The strains were 69 to 100% related in 60 degrees C reactions and 63 to 100% related in 75 degrees C reactions. Divergence within related sequences was 0 to 2.5%. Relatedness of Enterobacter asburiae sp. nov. to 84 strains of members of the Enterobacteriaceae was 5 to 63%, with closest relatedness to strains of Enterobacter cloacae, Erwinia dissolvens, Enterobacter taylorae, Enterobacter agglomerans, Erwinia nimipressuralis, and Enterobacter gergoviae. All strains tested were susceptible to gentamicin and sulfdiazine, and most were susceptible to chloramphenicol, colistin, kanamycin, nalidixic acid, carbenicillin and streptomycin. All strains were resistant to ampicillan, cephalothin, and penicillin

  3. Enterobacter asburiae sp. nov., a new species found in clinical specimens, and reassignment of Erwinia dissolvens and Erwinia nimipressuralis to the genus Enterobacter as Enterobacter dissolvens comb. nov. and Enterobacter nimipressuralis comb. nov.

    PubMed

    Brenner, D J; McWhorter, A C; Kai, A; Steigerwalt, A G; Farmer, J J

    1986-06-01

    Enterobacter asburiae sp. nov. is a new species that was formerly referred to as Enteric Group 17 and that consists of 71 strains, 70 of which were isolated from humans. Enterobacter asburiae sp. nov. strains gave positive reactions in tests for methyl red, citrate utilization (Simmons and Christensen's), urea hydrolysis, L-ornithine decarboxylase, growth in KCN, acid and gas production from D-glucose, and acid production from L-arabinose, cellobiose, glycerol (negative in 1 to 2 days, positive in 3 to 7 days), lactose, D-mannitol, alpha-methyl-D-glucoside, salicin, D-sorbitol, sucrose, trehalose, and D-xylose. They gave negative reactions in the Voges-Proskauer test and in tests for indole, H2S production, phenylalanine, L-lysine decarboxylase, motility, gelatin, utilization of malonate, lipase, DNase, tyrosine clearing, acid production from adonitol, D-arabitol, dulcitol, erythritol, i(myo)-inositol, melibiose, and L-rhamnose. They gave variable reactions in tests for L-arginine dihydrolase (25% positive after 2 days) and acid production from raffinose (69% positive after 2 days). Thirty-four Enterobacter asburiae sp. nov. strains were tested for DNA relatedness by the hydroxyapatite method with 32PO4-labeled DNA from the designated type strain (1497-78, ATCC 35953). The strains were 69 to 100% related in 60 degrees C reactions and 63 to 100% related in 75 degrees C reactions. Divergence within related sequences was 0 to 2.5%. Relatedness of Enterobacter asburiae sp. nov. to 84 strains of members of the Enterobacteriaceae was 5 to 63%, with closest relatedness to strains of Enterobacter cloacae, Erwinia dissolvens, Enterobacter taylorae, Enterobacter agglomerans, Erwinia nimipressuralis, and Enterobacter gergoviae. All strains tested were susceptible to gentamicin and sulfdiazine, and most were susceptible to chloramphenicol, colistin, kanamycin, nalidixic acid, carbenicillin and streptomycin. All strains were resistant to ampicillan, cephalothin, and penicillin

  4. Enhanced Aerogen-π Interaction by a Cation-π Force.

    PubMed

    Miao, Junjian; Song, Bo; Gao, Yi

    2016-02-18

    The interaction between a noble gas atom and an aromatic π-electron system, which mainly originates from the London dispersion force, is very weak and has not attracted enough attention yet. Herein, we reported a type of notably enhanced aerogen-π interaction between cation-π systems and noble gas atoms. The binding strength of a divalent cation-π system with a xenon atom is comparable to a moderate hydrogen bond (up to ca. 7 kcal mol(-1)), whereas krypton and argon atoms produce slightly weaker interactions. Energy-decomposition analysis reveals that the induction interaction is responsible for the stabilization of divalent cation-π⋅Xe species besides the dispersion interaction. Our results might be helpful to increase the understanding of some unsolved mysteries of aerogens. PMID:26699400

  5. [Evaluation of aerogenic occupational health risk for workers engaged into periclase-carbon refractories production].

    PubMed

    Drugova, O G; Roslyĭ, O F

    2014-01-01

    The work is aimed to evaluate aerogenic occupational health risk for workers engaged into preparation and formation of technologic mass in periclase-carbon refractories production, using organic binding agent according to criteria R 2.2.2006-05 and R 2.2.1716-03. Occupational dust is a complicated chemical mixture containing manganum oxide, phenol, formaldehyde, aerosols containing silicon, benzpyrene (if "Carbores" binding agent used). Hygienic evaluation revealed occupational health risk due to occupational dust at workplaces of runners operator, press operator, batching feeder, crane operator. Aerogenic occupational risk at workplace of grinder operator is assessed as negligibly small (tolerable). Experimental and epidemiologic studies prove probable (proof category 1B) occupational risk of respiratory disease at the studied production. PMID:25282807

  6. Glutamine synthetase of Klebsiella aerogenes: properties of glnD mutants lacking uridylyltransferase.

    PubMed Central

    Foor, F; Cedergren, R J; Streicher, S L; Rhee, S G; Magasanik, B

    1978-01-01

    The glnD mutation of Klebsiella aerogenes is cotransducible by phage P1 with pan (requirement for pantothenate) and leads to a loss of uridylytransferase and uridylyl-removing enzyme, components of the glutamine synthetase adenylylation system. This defect results in an inability to deadenylylate glutamine synthetase rapidly and in a requirement for glutamine for normal growth. Suppression of the glnD mutation are located at the glutamine synthetase structural gene glnA. PMID:26659

  7. Biohydrogen production by co-fermentation of crude glycerol and apple pomace hydrolysate using co-culture of Enterobacter aerogenes and Clostridium butyricum.

    PubMed

    Pachapur, Vinayak Laxman; Sarma, Saurabh Jyoti; Brar, Satinder Kaur; Le Bihan, Yann; Buelna, Gerardo; Verma, Mausam

    2015-10-01

    Co-substrate utilization of various wastes with complementary characteristics can provide a complete medium for higher hydrogen production. This study evaluated potential of apple pomace hydrolysate (APH) co-fermented with crude glycerol (CG) for increased H2 production and decreased by-products formation. The central composite design (CCD) along with response surface methodology (RSM) was used as tool for optimization and 15 g/L of CG, 5 g/L of APH and 15% (v/v) inoculum were found to be optimum to produce as high as 26.07 ± 1.57 mmol H2/L of medium. The p-value of 0.0017 indicated that APH at lower concentration had a significant effect on H2 production. By using CG as sole carbon source, reductive pathway of glycerol metabolism was favored with 19.46 mmol H2/L. However, with APH, oxidative pathway was favored with higher H2 production (26.07 ± 1.57 mmol/L) and decrease in reduced by-products (1,3-propanediol and ethanol) formation. APH inclusion enhanced H2 production, and decreased substrate inhibition. PMID:26142996

  8. Purification and characterization of the nickel-containing multicomponent urease from Klebsiella aerogenes.

    PubMed

    Todd, M J; Hausinger, R P

    1987-05-01

    Klebsiella aerogenes urease was purified 1,070-fold with a 25% yield by a simple procedure involving DEAE-Sepharose, phenyl-Sepharose, Mono Q, and Superose 6 chromatographies. The enzyme preparation was comprised of three polypeptides with estimated Mr = 72,000, 11,000, and 9,000 in a alpha 2 beta 4 gamma 4 quaternary structure. The three components remained associated during native gel electrophoresis, Mono Q chromatography, and Superose 6 chromatography despite the presence of thiols, glycols, detergents, and varied buffer conditions. The apparent compositional complexity of K. aerogenes urease contrasts with the simple well-characterized homohexameric structure for jack bean urease (Dixon, N. E., Hinds, J. A., Fihelly, A. K., Gazzola, C., Winzor, D. J., Blakeley, R. L., and Zerner, B. (1980) Can. J. Biochem. 58, 1323-1334); however, heteromeric subunit compositions were also observed for the enzymes from Proteus mirabilis, Sporosarcina ureae, and Selemonomas ruminantium. K. aerogenes urease exhibited a Km for urea of 2.8 +/- 0.6 mM and a Vmax of 2,800 +/- 200 mumol of urea min-1 mg-1 at 37 degrees C in 25 mM N-2-hydroxyethylpiperazineN'-2-ethanesulfonic acid, 5.0 mM EDTA buffer, pH 7.75. The enzyme activity was stable in 1% sodium dodecyl sulfate, 5% Triton X-100, 1 M KCl, and over a pH range from 5 to 10.5, with maximum activity observed at pH 7.75. Two active site groups were defined by their pKa values of 6.55 and 8.85. The amino acid composition of K. aerogenes urease more closely resembled that for the enzyme from Brevibacter ammoniagenes (Nakano, H., Takenishi, S., and Watanabe, Y. (1984) Agric. Biol. Chem. 48, 1495-1502) than those for plant ureases. Atomic absorption analysis was used to establish the presence of 2.1 +/- 0.3 mol of nickel per mol of 72,000-dalton subunit in K. aerogenes urease. PMID:3553184

  9. Cronobacter (Enterobacter sakazakii): an opportunistic foodborne pathogen.

    PubMed

    Healy, Brendan; Cooney, Shane; O'Brien, Stephen; Iversen, Carol; Whyte, Paul; Nally, Jarlath; Callanan, John J; Fanning, Séamus

    2010-04-01

    Cronobacter spp. (Enterobacter sakazakii) are a recently described genus that is comprised of six genomospecies. The classification of these organisms was revised based on a detailed polyphasic taxonomic study. Cronobacter spp. are regarded as ubiquitous organisms having been isolated from a wide variety of foods. These bacteria are opportunistic pathogens and are linked with life-threatening infections in neonates. Clinical symptoms of Cronobacter infection include necrotizing enterocolitis, bacteremia, and meningitis, with case fatality rates of 50-80% being reported. Contaminated powdered infant formula has been epidemiologically linked with infections. Recently, infections among immunocompromised adults, mainly the elderly, have also been reported. A high tolerance to osmotic stress and elevated temperatures contribute to the survival of Cronobacter spp. in dried foods such as powdered infant formula. Controlling the organism in the production environment, thereby reducing dissemination, necessitates the provision of suitable diagnostic tools. Studies demonstrated that a high degree of variability exists amongst the phenotypic-based methods used to identify Cronobacter spp. However, advances in molecular detection and subtyping techniques have significantly improved the identification and characterization of Cronobacter spp. The dose required to induce infection has yet to be determined. In vitro virulence studies have shown that Cronobacter spp. may survive in macrophage cells and efficiently attach to and invade epithelial cell lines. The production of exopolysaccharide may contribute to the formation of biofilm and active efflux pumps promote resistance to antimicrobial agents such as bile salts and disinfectants. A holistic approach combining techniques such as comparative genome analysis, proteomics, and in vivo challenges could help unravel the complex interactions between this pathogen and its host. These data would help identify those properties in

  10. Geraniol Restores Antibiotic Activities against Multidrug-Resistant Isolates from Gram-Negative Species▿ †

    PubMed Central

    Lorenzi, Vannina; Muselli, Alain; Bernardini, Antoine François; Berti, Liliane; Pagès, Jean-Marie; Amaral, Leonard; Bolla, Jean-Michel

    2009-01-01

    The essential oil of Helichrysum italicum significantly reduces the multidrug resistance of Enterobacter aerogenes, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Combinations of the two most active fractions of the essential oil with each other or with phenylalanine arginine β-naphthylamide yield synergistic activity. Geraniol, a component of one fraction, significantly increased the efficacy of β-lactams, quinolones, and chloramphenicol. PMID:19258278

  11. Effect of Several Clay Minerals and Humic Acid on the Survival of Klebsiella aerogenes Exposed to Ultraviolet Irradiation1

    PubMed Central

    Bitton, Gabriel; Henis, Y.; Lahav, N.

    1972-01-01

    The effect of various clay minerals and humic acid on the survival of Klebsiella aerogenes exposed to ultraviolet (UV) irradiation was investigated. A protective effect was observed and found to depend on the specific light absorption and light scattering properties of the clay minerals and the humic acid used. The higher the specific absorption, the better was the survival of K. aerogenes after UV irradiation. Bacterial survival was lower in clays saturated with divalent cations (Ca, Zn) than in those homoionic to monovalent cations (K). PMID:5031559

  12. Detection of amp C in Enterobacter cloacae in China.

    PubMed

    Zhang, Y L; Li, J T; Zhao, M W

    2001-10-01

    PCR amplification of 55 strains of Enterobacter cloacae indicated 51 of them had amp C structural gene verified by DNA sequence and Southern blotting. All PCR products were cleaved into 666- and 328-bp fragments by Kpn1 restriction enzyme. Imipenem was the most potent inducer for mRNA expression of amp C gene and beta-lactamase activity. The beta-Lactamase inhibitor R0481220 strongly inhibited Amp C beta-lactamases; 96.4% (53/55) of Enterobacter cloacae producing Amp C enzyme were susceptible to cefepime. PMID:11691570

  13. Complex Regulation Pathways of AmpC-Mediated β-Lactam Resistance in Enterobacter cloacae Complex

    PubMed Central

    Guérin, François; Isnard, Christophe; Giard, Jean Christophe

    2015-01-01

    Enterobacter cloacae complex (ECC), an opportunistic pathogen causing numerous infections in hospitalized patients worldwide, is able to resist β-lactams mainly by producing the AmpC β-lactamase enzyme. AmpC expression is highly inducible in the presence of some β-lactams, but the underlying genetic regulation, which is intricately linked to peptidoglycan recycling, is still poorly understood. In this study, we constructed different mutant strains that were affected in genes encoding enzymes suspected to be involved in this pathway. As expected, the inactivation of ampC, ampR (which encodes the regulator protein of ampC), and ampG (encoding a permease) abolished β-lactam resistance. Reverse transcription-quantitative PCR (qRT-PCR) experiments combined with phenotypic studies showed that cefotaxime (at high concentrations) and cefoxitin induced the expression of ampC in different ways: one involving NagZ (a N-acetyl-β-d-glucosaminidase) and another independent of NagZ. Unlike the model established for Pseudomonas aeruginosa, inactivation of DacB (also known as PBP4) was not responsible for a constitutive ampC overexpression in ECC, whereas it caused AmpC-mediated high-level β-lactam resistance, suggesting a post-transcriptional regulation mechanism. Global transcriptomic analysis by transcriptome sequencing (RNA-seq) of a dacB deletion mutant confirmed these results. Lastly, analysis of 37 ECC clinical isolates showed that amino acid changes in the AmpD sequence were likely the most crucial event involved in the development of high-level β-lactam resistance in vivo as opposed to P. aeruginosa where dacB mutations have been commonly found. These findings bring new elements for a better understanding of β-lactam resistance in ECC, which is essential for the identification of novel potential drug targets. PMID:26438498

  14. Regulation of nitrogen metabolism in Escherichia coli and Klebsiella aerogenes: studies with the continuous-culture technique.

    PubMed Central

    Senior, P J

    1975-01-01

    Ammonia-nitrogen-limited continuous cultures of Escherichia coli and Klebsiella aerogenes contain induced levels of glutamine synthetase that is deadenylyated (i.e., fully active). In the presence of excess ammonia or glutamate in glucose-limited cultures of E. coli, glutamine synthetase is repressed and adenylylated (inactive). The average state of adenylylation (n) is a linear function of the specific growth rate. At low specific growth rates, glutamine synthetase is adenylylated; as the specific growth rate increases, n decreases, approaching 0 to 2 at rapid growth rates. The average state of adenylylation correlates well with the intracellular concentrations and ratios of alpha-ketoglutarate and glutamine, which are key effectors in the adenylylation-deadenylylation systems. E. coli and K. aerogenes differ markedly in their growth yields, growth rates, and enzymatic composition during nitrogen limitation. The data suggest that, unlike K. aerogenes, E. coli W uses glutamate dehydrogenase to incorporate ammonia during nitrogen limitation. In E. coli, glutamate dehydrogenase is progressively induced during nitrogen limitation when mu (growth rate) approaches mumax. In contrast, in K. aerogenes glutamate dehydrogenase is repressed during nitrogen limitation, whereas glutamate synthase, an alternative supplier of glutamate to the cell, is induced. Data are presented that support the regulatory schemes proposed for the control of glutamine synthetase activity by induction-repression phenomena and adenylylation-deadenylylation reaction. We propose that the intracellular ratio of alpha-ketoglutarate to glutamine may be the most important physiological parameter in determining the activity of glutamine synthetase. PMID:238954

  15. Complete Genome Sequence of a Clinical Isolate of Enterobacter asburiae

    PubMed Central

    Liu, Feng; Yang, Jian; Xiao, Yan; Li, Li; Jin, Qi

    2016-01-01

    We report here the complete genome sequence of Enterobacter asburiae strain ENIPBJ-CG1, isolated from a bone marrow transplant patient. The size of the genome sequence is approximately 4.65 Mb, with a G+C content of 55.76%, and it is predicted to contain 4,790 protein-coding genes. PMID:27284137

  16. Glutamate dehydrogenase: genetic mapping and isolation of regulatory mutants of Klebsiella aerogenes.

    PubMed Central

    Bender, R A; Macaluso, A; Magasanik, B

    1976-01-01

    The gene for glutamate dehydrogenase (gdhD) has been mapped in Klebsiella aerogenes by P1 transduction. It is linked to pyrF and trp with the order pyrF-trp-gdh. Complementation analysis using F' episomes from Escherichia coli suggests an analogous location in E. coli. Two mutants able to produce glutamate dehydrogenase in the presence of high levels of glutamine synthetase have been isolated. One, tightly linked to gdhD, shows normal repression control by glutamine synthetase but produces four times as much glutamate dehydrogenase activity as does the wild type under all conditions tested. The other revertant is not linked to gdhD or glnA. PMID:6429

  17. Biodegradation of dichlorodiphenyltrichloroethane: intermediates in dichlorodiphenylacetic acid metabolism by aerobacter aerogenes

    USGS Publications Warehouse

    Wedemeyer, Gary

    1967-01-01

    The final product of dichlorodiphenyltrichloroethane (DDT) degradation by vertebrates is commonly considered to be dichlorodiphenylacetic acid, DDA. Recently, certain organisms have been found to degrade further DDA to dichlorobenzophenone (DBP), but the possibility that such degradation was due to microbial action could not be excluded. Significantly, dichlorobenzhydrol (DBH), dichlorophenylmethane (DPM), and dichlorodiphenylethylene (DDE) have been tentatively identified in rats fed DDA. Since DDA as well as DDT is degraded by the ubiquitous microorganism Aerobacter aerogenes, it seemed reasonable that the intestinal microflora might be involved in DBP formation, DPM and DBH being intermediates in its pathway from DDA. Since DDA is a (3,y-unsaturated acid, ketone formation via an alkene and an alcohol would be expected.

  18. Antibiotic susceptibilities of Serratia marcescens and Enterobacter liquefaciens.

    PubMed

    Greenup, P; Blazevic, D J

    1971-09-01

    Production of 5'-nucleotides by Serratia marcescens and Enterobacter liquefaciens correlates with deoxyribonuclease production, indicating the close relationship between these two organisms. To determine further relationships, susceptibilities of 279 strains of the tribe Klebsielleae were determined by the high-potency disc method, agar-dilution method, or both, by using 14 antibiotics. Ninety-seven per cent of S. marcescens (201 of 207 strains) and 100% of E. liquefaciens (17 strains) had minimum inhibitory concentration (MIC) of 100 mug/ml or greater with colistin and polymyxin B. With these two antibiotics, 93% of other Enterobacter species (28 strains) had MIC values of less than 1.6 mug/ml, and 100% of Klebsiella (27 strains) had MIC values less than 1.6 mug/ml. Consistent patterns were not noted with the other antibiotics tested, but the results with colistin and polymyxin B provide additional evidence of the close relationship of S. marcescens and E. liquefaciens. PMID:4330312

  19. Exploring "aerogen-hydride" interactions between ZOF2 (Z = Kr, Xe) and metal hydrides: An ab initio study

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Mohammadian-Sabet, Fariba

    2016-06-01

    In this work, a new σ-hole interaction formed between ZOF2 (Z = Kr and Xe) as the Lewis acid and a series of metal-hydrides HMX (M = Be, Mg, Zn and X = H, F, CN, CH3) is reported. The nature of this interaction, called "aerogen-hydride" interaction, is unveiled by molecular electrostatic potential, non-covalent interaction, quantum theory of atoms in molecules and natural bond orbital analyses. Our results indicate that the aerogen-hydride interactions are quite strong and can be comparable in strength to other σ-hole bonds. An important charge-transfer interaction is also associated with the formation of OF2Z⋯HMX complexes.

  20. Random mutagenesis of pullulanase from Klebsiella aerogenes for studies of the structure and function of the enzyme.

    PubMed

    Yamashita, M; Kinoshita, T; Ihara, M; Mikawa, T; Murooka, Y

    1994-12-01

    To study the structure and function of pullulanase from Klebsiella aerogenes, a method involving random mutagenesis of the entire gene for pullulanase was used. Out of 50,000 clones screened at high temperature, seven genes for mutant proteins were identified by DNA sequencing. The amino acid substitutions in the seven mutant proteins were clustered on the NH2-terminal side of the four conserved regions found in alpha-amylases. These mutant pullulanases were classified into two types: those whose catalytic activity was altered and those whose thermal stability was increased. The results presented here and in previous reports suggest that pullulanase from K. aerogenes has similar active sites to those of alpha-amylases with the four conserved regions, as well as another substrate-binding site closer to the NH2-terminus. The plate assay method used for isolation of thermostable variants may be applicable to the generation of useful variants of other enzymes. PMID:7706211

  1. [Aerogenic microflora in animal husbandry and poultry breeding areas, criteria of its harmful effect and hygienic regulation].

    PubMed

    Erman, M I; Eglite, M E; Olefir, A I; Kalinina, L N

    1989-01-01

    In consequence of the analysis of workers' health status and microbic contamination of the working zone of animal and poultry husbandry production area the study established direct dependence of microorganism sensitization rate, incidence of infectious and allergic skin and respiratory diseases on microbic aerosol concentration. Feasibility of aerogenic microflora standardization was substantiated proceeding from the comparison of hygienic and clinical findings; MAC for microbic aerosol was set up for the working zone. PMID:2744566

  2. Effect of Growth Rate on Histidine Catabolism and Histidase Synthesis in Aerobacter aerogenes1

    PubMed Central

    Jensen, Donald E.; Neidhardt, Frederick C.

    1969-01-01

    A study was made of how the catabolism of a carbon and energy source is affected by the biosynthetic demands of growing bacterial cells. Cultures of Aerobacter aerogenes in l-histidine medium were grown in a chemostat at rates determined by the supply of either sulfate or a required amino acid, l-arginine. It was discovered that the rate at which these cells grow under a biosynthetic restriction determines both the rate and the pattern of histidine degradation. (i) Histidine catabolism is partially coupled to the growth rate. This coupling is achieved by catabolite repression of histidase (histidine ammonia lyase; EC 4.3.1.3.), and also by a slightly decreased in vivo function of this enzyme at low growth rates. (ii) The looseness of the coupling results in a direct relationship between growth rate and growth yield, and possibly is correlated with an altered pattern of carbon flow from histidine. (iii) Sudden decreases in growth rate cause total repression of histidase synthesis for substantial periods of time. (iv) Sudden release of biosynthetic restriction leads rapidly to an increase in the functioning of the cells' complement of histidase, an increase in the rate of synthesis of this enzyme, and an increase in the growth yield from histidine. PMID:5781570

  3. Biodegradation of ichlorodiphenyltrichloroe-thane: Intermediates in dichlorodiphenylacetic acid metabolism by Aerobacter aerogenes

    USGS Publications Warehouse

    1967-01-01

    The final product of dichlorodiphenyltrichloroethane (DDT) degradation by vertebrates is commonly considered to be dichlorodiphenylacetic acid, DDA (J. E. Peterson and W. H. Robison, Toxicol. Appl. Pharmacol. 6:321, 1964). Recently, certain organisms (A. S. Perry, S. Miller, and A. J. Buckner. J. Agr. Food Chem. 11:457, 1963; J. D. Pinto, M. N. Comien, and M. S. Dunn. J. Biol. Chem. 240:2148, 1965) have been found to degrade further DDA to dichlorobenzophenone (DBP), but the possibility that such degradation was due to microbial action could not be excluded. Significantly, dichlorobenzhydrol (DBH), dichlorophenylmethane (DPM), and dichlorodiphenylethylene (DDE) have been tentatively identified in rats fed DDA (Pinto et al., J. Biol. Chem. 240:2148, 1965). Since DDA as well as DDT is degraded by the ubiquitous microorganism Aerobacter aerogenes (G. Wedemeyer, Appl. Microbiol. 15:569, 1967; J. L. Mendel, and M. S. Walton, Science 151:1527, 1966), it seemed reasonable that the intestinal microflora might be involved in DBP formation, DPM and DBH being intermediates in its pathway from DDA. Since DDA is a (3,y-unsaturated acid, ketone formation via an alkene and an alcohol would be expected (S. G. Waley, Mechanisms of Organic and Enzymatic Reactions, Oxford University Press, London, England 1962).

  4. Growth and heavy metal removal by Klebsiella aerogenes at different pH and temperature

    SciTech Connect

    Al-Shahwani, M.F.; Jazrawi, S.F.; Al-Rawi, E.H.; Ayar, N.S.

    1984-01-01

    A strain of Klebsiella aerogenes isolated from Rustamiyah Station for treatment of wastewater was examined for its ability to grow in a media supplemented with maximum tolerance concentrations of Pb/sup + +/, Zn/sup + +/, Ni/sup + +/, and Cd/sup + +/, separately, at different temperatures and initial pH. The results indicated that at 28/sup 0/C during the first 24 hr, Pb/sup + +/ and Ni/sup + +/ had no effect on the growth of the bacteria, while the presence of Zn/sup + +/ and Cd/sup + +/ decreased the cell count. The growth reached a maximum level after the second day and started to decrease gradually. The bacterial count at 37/sup 0/C was less than that at 28/sup 0/C. No bacterial multiplication occurred at 44/sup 0/C. There was little difference between heavy metal removal at 28 and 37/sup 0/C. At 44/sup 0/C, little removal took place. In general, slightly acidic or neutral medium was better for both bacterial growth and metal removal.

  5. Detoxification of mercury, cadmium, and lead in Klebsiella aerogenes NCTC 418 growing in continuous culture

    SciTech Connect

    Aiking, H.; Govers, H.; van 'T Riet, J.

    1985-11-01

    Klebsiella aerogenes NCTC 418 growing in the presence of cadmium under glucose-, sulfate-, or phosphate-limited conditions in continuous culture exhibited sulfide formation and P/sub i/ accumulation as the only demonstrable detoxification mechanisms. In the presence of mercury under similar conditions only HgS formation could be confirmed, by an increased sensitivity to mercury under sulfate-limited conditions, among others. The fact that the cells were most sensitive to cadmium under conditions of phosphate limitation and most sensitive to mercury under conditions of sulfate limitation led to the hypothesis that these inorganic detoxification mechanisms generally depended on a kind of facilitated precipitation. The process was coined thus because heavy metals were probably accumulated and precipitated near the cell perimeter due to the relatively high local concentrations of sulfide and phosphate there. Depending on the growth-limiting nutrient, mercury proved to be 25-fold (phosphate limitation), 75-fold (glycerol limitation), or 150-fold (sulfate limitation) more toxic than cadmium to this organism. In the presence of lead, PbS formation was suggested. since no other detoxification mechanisms were detected, for example, rendering heavy metal ions innocuous as metallo-organic compounds, it was concluded that formation of heavy metal precipitates is crucially important to this organism. In addition, it was observed that several components of a defined mineral medium were able to reduce mercuric ions to elemental mercury. This abiotic mercury volatilization was studied in detail, and its general and environmental implications are discussed.

  6. Complete genome of the switchgrass endophyte Enterobacter clocace P101

    PubMed Central

    Humann, Jodi L.; Wildung, Mark; Pouchnik, Derek; Bates, Austin A.; Drew, Jennifer C.; Zipperer, Ursula N.; Triplett, Eric W.; Main, Dorrie; Schroeder, Brenda K.

    2014-01-01

    The Enterobacter cloacae complex is genetically very diverse. The increasing number of complete genomic sequences of E. cloacae is helping to determine the exact relationship among members of the complex. E. cloacae P101 is an endophyte of switchgrass (Panicum virgatum) and is closely related to other E. cloacae strains isolated from plants. The P101 genome consists of a 5,369,929 bp chromosome. The chromosome has 5,164 protein-coding regions, 100 tRNA sequences, and 8 rRNA operons. PMID:25197457

  7. Complete Genome Sequence of Enterobacter cloacae B2-DHA, a Chromium-Resistant Bacterium

    PubMed Central

    Rahman, Aminur; Nahar, Noor; Olsson, Björn

    2016-01-01

    Previously, we reported a chromium-resistant bacterium, Enterobacter cloacae B2-DHA, isolated from the landfills of tannery industries in Bangladesh. Here, we investigated its genetic composition using massively parallel sequencing and comparative analysis with other known Enterobacter genomes. Assembly of the sequencing reads revealed a genome of ~4.21 Mb in size. PMID:27257201

  8. Genome Sequence of Enterobacter radicincitans DSM16656T, a Plant Growth-Promoting Endophyte

    PubMed Central

    Witzel, Katja; Gwinn-Giglio, Michelle; Nadendla, Suvarna; Shefchek, Kent

    2012-01-01

    Enterobacter radicincitans sp. nov. DSM16656T represents a new species of the genus Enterobacter which is a biological nitrogen-fixing endophytic bacterium with growth-promoting effects on a variety of crop and model plant species. The presence of genes for nitrogen fixation, phosphorous mobilization, and phytohormone production reflects this microbe's potential plant growth-promoting activity. PMID:22965092

  9. PYRUVATE DEHYDROGENASE ACTIVITY IS IMPORTANT FOR COLONIZATION OF SEEDS AND ROOTS BY ENTEROBACTER CLOACAE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enterobacter cloacae shows promise for suppression of damping-off of cucumber and other crops caused by Pythium ultimum. Enterobacter cloacae M43 is a transposon mutant of E. cloacae 501R3 that was significantly impaired in colonization of seeds and roots of diverse crop plants. Strain M43 did not...

  10. Draft Genome Sequence of an Enterobacter Species Associated with Illnesses and Powdered Infant Formula

    PubMed Central

    Jackson, Emily E.; Ogrodzki, Pauline; Pascoe, Ben; Sheppard, Samuel K.

    2016-01-01

    This is the first report of the draft genome sequence of an Enterobacter species that may have been transmitted from powdered infant formula (PIF) to infants, resulting in illness. Enterobacter spp. are currently permitted in PIF, but the transmission of this strain indicates that the microbiological criteria for PIF may need revision. PMID:26769921

  11. Complete Genome Sequence of Enterobacter cloacae B2-DHA, a Chromium-Resistant Bacterium.

    PubMed

    Rahman, Aminur; Nahar, Noor; Olsson, Björn; Mandal, Abul

    2016-01-01

    Previously, we reported a chromium-resistant bacterium, Enterobacter cloacae B2-DHA, isolated from the landfills of tannery industries in Bangladesh. Here, we investigated its genetic composition using massively parallel sequencing and comparative analysis with other known Enterobacter genomes. Assembly of the sequencing reads revealed a genome of ~4.21 Mb in size. PMID:27257201

  12. Susceptibility of Austrian Clinical Klebsiella and Enterobacter Isolates Linked to Patient-Related Data

    PubMed Central

    Badura, Alexandra; Pregartner, Gudrun; Holzer, Judith C.; Feierl, Gebhard; Grisold, Andrea J.

    2016-01-01

    The aim of the study was to analyze the antimicrobial susceptibility of Austrian clinical Klebsiella sp. and Enterobacter sp. isolates linked to patient-related data over a time period from 1998 to 2014. The main findings of this study were (i) a marked difference of antibiotic susceptibility rates between different infection sites for both Klebsiella sp. and Enterobacter sp., (ii) significantly greater percentages of resistant isolates among both Klebsiella sp. and Enterobacter sp. in male patients compared to female patients and (iii) significantly greater percentages of resistant isolates among both Klebsiella sp. and Enterobacter sp. from hospital-derived samples compared to samples from the community. In conclusion, our statistical data analysis clearly indicated a strong association of patient-related data and Klebsiella sp. and Enterobacter sp. susceptibility profiles. PMID:26903953

  13. Use of microdilution panels with and without beta-lactamase inhibitors as a phenotypic test for beta-lactamase production among Escherichia coli, Klebsiella spp., Enterobacter spp., Citrobacter freundii, and Serratia marcescens.

    PubMed

    Thomson, K S; Sanders, C C; Moland, E S

    1999-06-01

    Over the past decade, a number of new beta-lactamases have appeared in clinical isolates of Enterobacteriaceae that, unlike their predecessors, do not confer beta-lactam resistance that is readily detected in routine antibiotic susceptibility tests. Because optimal methodologies are needed to detect these important new beta-lactamases, a study was designed to evaluate the ability of a panel of various beta-lactam antibiotics tested alone and in combination with beta-lactamase inhibitors to discriminate between the production of extended-spectrum beta-lactamases, AmpC beta-lactamases, high levels of K1 beta-lactamase, and other beta-lactamases in 141 isolates of Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae, Enterobacter aerogenes, Citrobacter freundii, and Serratia marcescens possessing well-characterized beta-lactamases. The microdilution panels studied contained aztreonam, cefpodoxime, ceftazidime, cefotaxime, and ceftriaxone, with and without 1, 2, and 4 microg of clavulanate per ml or 8 microg of sulbactam per ml and cefoxitin and cefotetan with and without 8 microg of sulbactam per ml. The results indicated that a minimum panel of five tests would provide maximum separation of extended-spectrum beta-lactamase high AmpC, high K1, and other beta-lactamase production in Enterobacteriaceae. These included cefpodoxime, cefpodoxime plus 4 microg of clavulanate per ml, ceftazidime, ceftriaxone, and ceftriaxone plus 8 microg of sulbactam per ml. Ceftriaxone plus 2 microg of clavulanate per ml could be substituted for cefpodoxime plus 4 microg of clavulanate per ml without altering the accuracy of the tests. This study indicated that tests with key beta-lactam drugs, alone and in combination with beta-lactamase inhibitors, could provide a convenient approach to the detection of a variety of beta-lactamases in members of the family Enterobacteriaceae. PMID:10348759

  14. Chemotaxis by Pseudomonas aeruginosa.

    PubMed Central

    Moulton, R C; Montie, T C

    1979-01-01

    Chemotaxis by Pseudomonas aeruginosa RM46 has been studied, and conditions required for chemotaxis have been defined, by using the Adler capillary assay technique. Several amino acids, organic acids, and glucose were shown to be attractants of varying effectiveness for this organism. Ethylenediaminetetraacetic acid was absolutely required for chemotaxis, and magnesium was also necessary for a maximum response. Serine taxis was greatest when the chemotaxis medium contained 1.5 X 10(-5) M ethylenediaminetetraacetic acid and 0.005 M magnesium chloride. It was not necessary to include methionine in the chemotaxis medium. The strength of the chemotactic responses to glucose and to citrate was dependent on prior growth of the bacteria on glucose and citrate, respectively. Accumulation in response to serine was inhibited by the addition of succinate, citrate, malate, glucose, pyruvate, or methionine to the chemotaxis medium. Inhibition by succinate was not dependent on the concentration of attractant in the capillary. However, the degree to which glucose and citrate inhibited serine taxis was dependent on the carbon source utilized for growth. Further investigation of this inhibition may provide information about the mechanisms of chemotaxis in P. aeruginosa. PMID:104961

  15. Enterobacter xiangfangensis sp. nov., isolated from Chinese traditional sourdough, and reclassification of Enterobacter sacchari Zhu et al. 2013 as Kosakonia sacchari comb. nov.

    PubMed

    Gu, Chun Tao; Li, Chun Yan; Yang, Li Jie; Huo, Gui Cheng

    2014-08-01

    A Gram-stain-negative bacterial strain, 10-17(T), was isolated from traditional sourdough in Heilongjiang Province, China. The bacterium was characterized by a polyphasic approach, including 16S rRNA gene sequence analysis, RNA polymerase β subunit (rpoB) gene sequence analysis, DNA gyrase (gyrB) gene sequence analysis, initiation translation factor 2 (infB) gene sequence analysis, ATP synthase β subunit (atpD) gene sequence analysis, fatty acid methyl ester analysis, determination of DNA G+C content, DNA-DNA hybridization and an analysis of phenotypic features. Strain 10-17(T) was phylogenetically related to Enterobacter hormaechei CIP 103441(T), Enterobacter cancerogenus LMG 2693(T), Enterobacter asburiae JCM 6051(T), Enterobacter mori LMG 25706(T), Enterobacter ludwigii EN-119(T) and Leclercia adecarboxylata LMG 2803(T), having 99.5%, 99.3%, 98.7%, 98.5%, 98.4% and 98.4% 16S rRNA gene sequence similarity, respectively. On the basis of polyphasic characterization data obtained in the present study, a novel species, Enterobacter xiangfangensis sp. nov., is proposed and the type strain is 10-17(T) ( = LMG 27195(T) = NCIMB 14836(T) = CCUG 62994(T)). Enterobacter sacchari Zhu et al. 2013 was reclassified as Kosakonia sacchari comb. nov. on the basis of 16S rRNA, rpoB, gyrB, infB and atpD gene sequence analysis and the type strain is strain SP1(T)( = CGMCC 1.12102(T) = LMG 26783(T)). PMID:24824638

  16. Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae.

    PubMed

    Band, Victor I; Crispell, Emily K; Napier, Brooke A; Herrera, Carmen M; Tharp, Greg K; Vavikolanu, Kranthi; Pohl, Jan; Read, Timothy D; Bosinger, Steven E; Trent, M Stephen; Burd, Eileen M; Weiss, David S

    2016-01-01

    Antibiotic resistance is a major public health threat, further complicated by unexplained treatment failures caused by bacteria that appear antibiotic susceptible. We describe an Enterobacter cloacae isolate harbouring a minor subpopulation that is highly resistant to the last-line antibiotic colistin. This subpopulation was distinct from persisters, became predominant in colistin, returned to baseline after colistin removal and was dependent on the histidine kinase PhoQ. During murine infection, but in the absence of colistin, innate immune defences led to an increased frequency of the resistant subpopulation, leading to inefficacy of subsequent colistin therapy. An isolate with a lower-frequency colistin-resistant subpopulation similarly caused treatment failure but was misclassified as susceptible by current diagnostics once cultured outside the host. These data demonstrate the ability of low-frequency bacterial subpopulations to contribute to clinically relevant antibiotic resistance, elucidating an enigmatic cause of antibiotic treatment failure and highlighting the critical need for more sensitive diagnostics. PMID:27572838

  17. Quorum Sensing Activity of Enterobacter asburiae Isolated from Lettuce Leaves

    PubMed Central

    Lau, Yin Yin; Sulaiman, Joanita; Chen, Jian Woon; Yin, Wai-Fong; Chan, Kok-Gan

    2013-01-01

    Bacterial communication or quorum sensing (QS) is achieved via sensing of QS signaling molecules consisting of oligopeptides in Gram-positive bacteria and N-acyl homoserine lactones (AHL) in most Gram-negative bacteria. In this study, Enterobacteriaceae isolates from Batavia lettuce were screened for AHL production. Enterobacter asburiae, identified by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) was found to produce short chain AHLs. High resolution triple quadrupole liquid chromatography mass spectrometry (LC/MS) analysis of the E. asburiae spent supernatant confirmed the production of N-butanoyl homoserine lactone (C4-HSL) and N–hexanoyl homoserine lactone (C6-HSL). To the best of our knowledge, this is the first report of AHL production by E. asburiae. PMID:24152877

  18. Complete genome sequence of “Enterobacter lignolyticus” SCF1

    SciTech Connect

    DeAngelis, Kristen M.; D'Haeseleer, Patrik; Chivian, Dylan; Fortney, Julian L.; Khudyakov, Jane I.; Simmons, Blake A.; Woo, Hannah; Arkin, Adam P.; Davenport, Karen W.; Goodwin, Lynne A.; Chen, Amy; Ivanova, Natalia; Kyrpides, Nikos C.; Mavromatis, Konstantinos; Woyke, Tanja; Hazen, Terry C.

    2011-09-23

    In an effort to discover anaerobic bacteria capable of lignin degradation, we isolated 'Ente-robacter lignolyticus' SCF1 on minimal media with alkali lignin as the sole source of carbon. This organism was isolated anaerobically from tropical forest soils collected from the Short Cloud Forest site in the El Yunque National Forest in Puerto Rico, USA, part of the Luquillo Long-Term Ecological Research Station. At this site, the soils experience strong fluctuations in redox potential and are net methane producers. Because of its ability to grow on lignin anae-robically, we sequenced the genome. The genome of 'E. lignolyticus' SCF1 is 4.81 Mbp with no detected plasmids, and includes a relatively small arsenal of lignocellulolytic carbohy-drate active enzymes. Lignin degradation was observed in culture, and the genome revealed two putative laccases, a putative peroxidase, and a complete 4-hydroxyphenylacetate degra-dation pathway encoded in a single gene cluster.

  19. Thermal inactivation of Enterobacter sakazakii in rehydrated infant formula.

    PubMed

    Edelson-Mammel, Sharon G; Buchanan, Robert L

    2004-01-01

    The presence of low levels of Enterobacter sakazakii in dried infant formula have been linked to outbreaks of meningitis, septicemia, and necrotizing enterocolitis in neonates, particularly those who are premature or immunocompromised. In the current study, the ability of 12 strains of E. sakazakii to survive heating in rehydrated infant formula was determined at 58 degrees C with a submerged coil apparatus. The observed D58-values ranged from 30.5 to 591.9 s, with the strains appearing to fall into two distinct heat resistance phenotypes. The z-value of the most heat-resistant strain was 5.6 degrees C. When dried infant formula containing this strain was rehydrated with water preequilibrated to various temperatures, a more than 4-log reduction in E. sakazakii levels was achieved by preparing the formula with water at 70 degrees C or greater. PMID:14717352

  20. Kinetic characterization of a novel acid ectophosphatase from Enterobacter asburiae.

    PubMed

    Sato, Vanessa Sayuri; Galdiano Júnior, Renato F; Rodrigues, Gisele Regina; Lemos, Eliana G M; Pizauro Junior, João Martins

    2016-02-01

    Expression of acid ectophosphatase by Enterobacter asburiae, isolated from Cattleya walkeriana (Orchidaceae) roots and identified by the 16S rRNA gene sequencing analysis, was strictly regulated by phosphorus ions, with its optimal activity being observed at an inorganic phosphate concentration of 7 mM. At the optimum pH 3.5, intact cells released p-nitrophenol at a rate of 350.76 ± 13.53 nmol of p-nitrophenolate (pNP)/min/10(8) cells. The membrane-bound enzyme was obtained by centrifugation at 100,000 × g for 1 h at 4 °C. p-Nitrophenylphosphate (pNPP) hydrolysis by the enzyme follows "Michaelis-Menten" kinetics with V = 61.2 U/mg and K0.5 = 60 μM, while ATP hydrolysis showed V = 19.7 U/mg, K0.5 = 110 μM, and nH = 1.6 and pyrophosphate hydrolysis showed V = 29.7 U/mg, K0.5 = 84 μM, and nH = 2.3. Arsenate and phosphate were competitive inhibitors with K i = 0.6 mM and K i = 1.8 mM, respectively. p-Nitrophenyl phosphatase (pNPPase) activity was inhibited by vanadate, while p-hydroxymercuribenzoate, EDTA, calcium, copper, and cobalt had no inhibitory effects. Magnesium ions were stimulatory (K0.5 = 2.2 mM and nH = 0.5). Production of an acid ectophosphatase can be a mechanism for the solubilization of mineral phosphates by microorganisms such as Enterobacter asburiae that are versatile in the solubilization of insoluble minerals, which, in turn, increases the availability of nutrients for plants, particularly in soils that are poor in phosphorus. PMID:26832666

  1. Eight-Year Surveillance of Antimicrobial Resistance among Enterobacter Cloacae Isolated in the First Bethune Hospital

    NASA Astrophysics Data System (ADS)

    Zhou, Qi; Zhang, Man; Wang, Ailin; Xu, Jiancheng; Yuan, Ye

    This study was to investigate the antimicrobial resistance of Enterobacter cloacae isolated in 8 consecutive years in the First Bethune Hospital. Disk diffusion test was used to study the antimicrobial resistance. The data were analyzed by WHONET 5 software according to Clinical and Laboratory Standards Institute (CLSI). Most of 683 strains of Enterobacter cloacae were collected from sputum 410 (60.0%), secretions and pus 105 (15.4%), urine 69 (10.1%) during the past 8 years. No Enterobacter cloacae was resistant to imipenem and meropenem in the First Bethune Hospital. The antimicrobial resistance of Enterobacter cloacae had increased in recent 8 years. The change of the antimicrobial resistance should be investigated in order to direct rational drug usage in the clinic and prevent bacterial strain of drug resistance from b eing transmitted.

  2. Long Chain N-acyl Homoserine Lactone Production by Enterobacter sp. Isolated from Human Tongue Surfaces

    PubMed Central

    Yin, Wai-Fong; Purmal, Kathiravan; Chin, Shenyang; Chan, Xin-Yue; Chan, Kok-Gan

    2012-01-01

    We report the isolation of N-acyl homoserine lactone-producing Enterobacter sp. isolate T1-1 from the posterior dorsal surfaces of the tongue of a healthy individual. Spent supernatants extract from Enterobacter sp. isolate T1-1 activated the biosensor Agrobacterium tumefaciens NTL4(pZLR4), suggesting production of long chain AHLs by these isolates. High resolution mass spectrometry analysis of these extracts confirmed that Enterobacter sp. isolate T1-1 produced a long chain N-acyl homoserine lactone, namely N-dodecanoyl-homoserine lactone (C12-HSL). To the best of our knowledge, this is the first isolation of Enterobacter sp., strain T1-1 from the posterior dorsal surface of the human tongue and N-acyl homoserine lactones production by this bacterium. PMID:23202161

  3. Antibacterial activity of cefoperazone alone and in combination against cephalosporinase-producing Enterobacter cloacae.

    PubMed Central

    Minami, S; Matsubara, N; Yotsuji, A; Watanabe, Y; Yasuda, T; Saikawa, I; Mitsuhashi, S

    1983-01-01

    The activity of cefoperazone against a strain with an inducible cephalosporinase and a mutant that produces the enzyme constitutively indicates that the low inducer activity of this antibiotic plays an important role in its activity against Enterobacter cloacae. PMID:6605112

  4. Concomitant rock phosphate dissolution and lead immobilization by phosphate solubilizing bacteria (Enterobacter sp.).

    PubMed

    Park, Jin Hee; Bolan, Nanthi; Megharaj, Mallavarapu; Naidu, Ravi

    2011-04-01

    This paper examines the potential value of phosphate solubilizing bacteria (Enterobacter cloacae) in the dissolution of rock phosphate (RP) and subsequent immobilization of lead (Pb) in both bacterial growth medium and soils. Enterobacter sp. showed resistance to Pb and the bacterium solubilized 17.5% of RP in the growth medium. Enterobacter sp. did not enhance Pb immobilization in solution because of acidification of bacterial medium, thereby inhibiting the formation of P-induced Pb precipitation. However, in the case of soil, Enterobacter sp. increased Pb immobilization by 6.98, 25.6 and 32.0% with the RP level of 200, 800 and 1600 mg P/kg, respectively. The immobilization of Pb in Pb-spiked soils was attributed to pyromorphite formation as indicated by XRD analysis. Inoculation of phosphate solubilizing bacteria with RP in soil can be used as an alternative technique to soluble P compounds which can cause eutrophication of surface water. PMID:21190789

  5. Enterobacter pulveris sp. nov., isolated from fruit powder, infant formula and an infant formula production environment.

    PubMed

    Stephan, Roger; Van Trappen, Stefanie; Cleenwerck, Ilse; Iversen, Carol; Joosten, Han; De Vos, Paul; Lehner, Angelika

    2008-01-01

    Six Gram-negative, facultatively anaerobic, non-spore-forming, coccoid rod-shaped isolates were obtained from fruit powder (n=3), infant formula (n=2) and an infant formula production environment (n=1) and investigated in a polyphasic taxonomic study. Comparative 16S rRNA gene sequence analysis combined with rpoB gene sequence analysis allocated the isolates to the family Enterobacteriaceae. The highest rpoB gene sequence similarities (91.2-95.8%) were obtained with Enterobacter helveticus, Enterobacter radicincitans, Enterobacter turicensis and Enterobacter sakazakii and the phylogenetic branch formed by these species was supported by a high bootstrap value. Biochemical data revealed that the isolates could be differentiated from their nearest neighbours by their ability to utilize melibiose, sucrose, D-arabitol, mucate and 1-O-methyl-alpha-galactopyranoside and their negative reactions for D-sorbitol utilization and the Voges-Proskauer test. On the basis of the phylogenetic analyses, DNA-DNA hybridization data, and unique physiological and biochemical characteristics, it is proposed that the isolates represent a novel species of the genus Enterobacter, Enterobacter pulveris sp. nov. The type strain is 601/05(T) (=LMG 24057(T)=DSM 19144(T)). PMID:18175715

  6. Vibrio furnissii (formerly aerogenic biogroup of Vibrio fluvialis), a new species isolated from human feces and the environment.

    PubMed Central

    Brenner, D J; Hickman-Brenner, F W; Lee, J V; Steigerwalt, A G; Fanning, G R; Hollis, D G; Farmer, J J; Weaver, R E; Joseph, S W; Seidler, R J

    1983-01-01

    Strains formerly classified as the aerogenic (gas-producing) biogroup of Vibrio fluvialis were shown by DNA relatedness to be a separate species. The species was named Vibrio furnissii sp. nov. (type strain ATCC 35016 = CDC B3215). Three strains of V. furnissii were 79% or more related to the type strain of V. furnissii and about 50% related to the type strain of V. fluvialis. V. fluvialis strains were 40 to 64% related to the type strain of V. furnissii. Divergence in related sequences was only 0.0 to 1.5% among strains of V. furnissii and among strains of V. fluvialis but was 5.0 to 8.0% in interspecific reactions between V. fluvialis and V. furnissii. V. furnissii was aerogenic (produced gas from the fermentation of carbohydrates), whereas V. fluvialis was anaerogenic (did not produce gas from the fermentation of carbohydrates). Another test of some help in differentiating the two species was fermentation of L-rhamnose (57% positive for V. furnissii and negative for V. fluvialis). In addition to the reactions above, V. furnissii is distinguished from other salt-requiring vibrios on the basis of its positive reactions in tests for Møller L-arginine, L-arabinose, maltose, and D-mannitol and its negative reactions for Møller L-lysine and L-ornithine, lactose, and Voges-Proskauer. V. furnissii has been isolated from patients with acute gastroenteritis in at least two outbreaks of food poisoning; its role as a cause of diarrhea needs further study. PMID:6630464

  7. Vibrio furnissii (formerly aerogenic biogroup of Vibrio fluvialis), a new species isolated from human feces and the environment.

    PubMed

    Brenner, D J; Hickman-Brenner, F W; Lee, J V; Steigerwalt, A G; Fanning, G R; Hollis, D G; Farmer, J J; Weaver, R E; Joseph, S W; Seidler, R J

    1983-10-01

    Strains formerly classified as the aerogenic (gas-producing) biogroup of Vibrio fluvialis were shown by DNA relatedness to be a separate species. The species was named Vibrio furnissii sp. nov. (type strain ATCC 35016 = CDC B3215). Three strains of V. furnissii were 79% or more related to the type strain of V. furnissii and about 50% related to the type strain of V. fluvialis. V. fluvialis strains were 40 to 64% related to the type strain of V. furnissii. Divergence in related sequences was only 0.0 to 1.5% among strains of V. furnissii and among strains of V. fluvialis but was 5.0 to 8.0% in interspecific reactions between V. fluvialis and V. furnissii. V. furnissii was aerogenic (produced gas from the fermentation of carbohydrates), whereas V. fluvialis was anaerogenic (did not produce gas from the fermentation of carbohydrates). Another test of some help in differentiating the two species was fermentation of L-rhamnose (57% positive for V. furnissii and negative for V. fluvialis). In addition to the reactions above, V. furnissii is distinguished from other salt-requiring vibrios on the basis of its positive reactions in tests for Møller L-arginine, L-arabinose, maltose, and D-mannitol and its negative reactions for Møller L-lysine and L-ornithine, lactose, and Voges-Proskauer. V. furnissii has been isolated from patients with acute gastroenteritis in at least two outbreaks of food poisoning; its role as a cause of diarrhea needs further study. PMID:6630464

  8. Enterobacter cloacae inhibits human norovirus infectivity in gnotobiotic pigs

    PubMed Central

    Lei, Shaohua; Samuel, Helen; Twitchell, Erica; Bui, Tammy; Ramesh, Ashwin; Wen, Ke; Weiss, Mariah; Li, Guohua; Yang, Xingdong; Jiang, Xi; Yuan, Lijuan

    2016-01-01

    Human noroviruses (HuNoVs) are the leading cause of epidemic gastroenteritis worldwide. Study of HuNoV biology has been hampered by the lack of an efficient cell culture system. Recently, enteric commensal bacteria Enterobacter cloacae has been recognized as a helper in HuNoV infection of B cells in vitro. To test the influences of E. cloacae on HuNoV infectivity and to determine whether HuNoV infects B cells in vivo, we colonized gnotobiotic pigs with E. cloacae and inoculated pigs with 2.74 × 104 genome copies of HuNoV. Compared to control pigs, reduced HuNoV shedding was observed in E. cloacae colonized pigs, characterized by significantly shorter duration of shedding in post-inoculation day 10 subgroup and lower cumulative shedding and peak shedding in individual pigs. Colonization of E. cloacae also reduced HuNoV titers in intestinal tissues and in blood. In both control and E. cloacae colonized pigs, HuNoV infection of enterocytes was confirmed, however infection of B cells was not observed in ileum, and the entire lamina propria in sections of duodenum, jejunum, and ileum were HuNoV-negative. In summary, E. cloacae inhibited HuNoV infectivity, and B cells were not a target cell type for HuNoV in gnotobiotic pigs, with or without E. cloacae colonization. PMID:27113278

  9. Plant growth promoting bacteria Enterobacter asburiae JAS5 and Enterobacter cloacae JAS7 in mineralization of endosulfan.

    PubMed

    Abraham, Jayanthi; Silambarasan, Sivagnanam

    2015-04-01

    Endosulfan and their metabolites can be detected in soils with a history of endosulfan application. Microbial degradation offers an effective approach to remove toxicants, and in this study, Enterobacter asburiae JAS5 and Enterobacter cloacae JAS7 were isolated through enrichment technique. The biodegradation of endosulfan and its metabolites rate constant (k) and DT50 were determined through first-order kinetic models. E. asburiae JAS5 degraded the endosulfan, and its metabolites in liquid medium was characterized by the k which was 0.382 day(-1) (α-endosulfan), 0.284 day(-1) (β-endosulfan) and 0.228 day(-1) (endosulfan sulphate), and DT50 was 1.8 day (α-endosulfan), 2.4 days (β-endosulfan) and 3.0 days (endosulfan sulphate). The α-endosulfan, β-endosulfan and endosulfan sulphate metabolites were present in the liquid medium that was degraded by E. cloacae JAS7 which was characterized by the k of 0.391, 0.297 day(-1) and 0.273 day(-1), and DT50 was 1.7, 2.3 and 2.5 days, respectively. The infrared spectrum of endosulfan degraded sample in the aqueous medium by E. asburiae JAS5 and E. cloacae JAS7 showed a band at 1402 cm(-1) which is the characteristics of COOH group. E. asburiae JAS5 and E. cloacae JAS7 strains also showed the ability of plant growth promoting traits such as indole-3-acetic acid (IAA) production, organic acids production and solubilization of various inorganic phosphates. E. asburiae JAS5 solubilized 324 ± 2 μg ml(-1) of tricalcium phosphate, 296 ± 6 μg ml(-1) of dicalcium phosphate and 248 ± 5 μg ml(-1) of zinc phosphate, whereas E. cloacae JAS7 solubilized 338 ± 5, 306 ± 4 and 268 ± 3 μg ml(-1) of tricalcium phosphate, dicalcium phosphate and zinc phosphate, respectively. The IAA production by JAS5 and JAS7 strains were estimated to be 38.6 ± 0.3 and 46.6 ± 0.5 μg ml(-1), respectively. These bacterial strains form a potential candidate for bioremediation of pesticide-contaminated agricultural

  10. Capsule production by Pseudomonas aeruginosa

    SciTech Connect

    Lynn, A.R.

    1984-01-01

    Mucoid strains of Pseudomonas aeruginosa, associated almost exclusively with chronic respiratory infections in patients with cystic fibrosis, possess a capsule composed of alginic acid similar to one produced by Azotobacter vinelandii. Recent reports have provided evidence that the biosynthetic pathway for alginate in P. aeruginosa may differ from the pathway proposed for A. vinelandii in that synthesis in P. aeruginosa may occur by way of the Entner-Doudoroff pathway. Incorporation of isotope from (6-/sup 14/C)glucose into alginate by both P. aueroginosa and A. vinelandii was 10-fold greater than that from either (1-/sup 14/C)/sup -/ or (2-/sup 14/C)glucose, indicating preferential utilization of the bottom half of the glucose molecule for alginate biosynthesis. These data strongly suggest that the Entner-Doudoroff pathway plays a major role in alginate synthesis in both P. aeruginosa and A. vinelandii. The enzymes of carbohydrate metabolism in mucoid strains of P. aeruginosa appear to be unchanged whether alignate is actively produced or not and activities do not differ significantly from nonmucoid strain PAO.

  11. Dictyostelium discoideum as a surrogate host-microbe model for antivirulence screening in Pseudomonas aeruginosa PAO1.

    PubMed

    Bravo-Toncio, Catalina; Álvarez, Javiera A; Campos, Francisca; Ortíz-Severín, Javiera; Varas, Macarena; Cabrera, Ricardo; Lagos, Carlos F; Chávez, Francisco P

    2016-05-01

    The interest of the pharmaceutical industry in developing new antibiotics is decreasing, as established screening systems which identify compounds that kill or inhibit the growth of bacteria can no longer be used. Consequently, antimicrobial screening using classical minimum inhibitory concentration (MIC) measurements is becoming obsolete. The discovery of antimicrobial agents that specifically target a bacterial pathogen without affecting the host and its beneficial bacteria is a promising strategy. However, few host-microbe models are available for in vivo screening of novel antivirulence molecules. Here we designed high-throughput developmental assays in the social amoeba Dictyostelium discoideum to measure Pseudomonas aeruginosa virulence and to screen for novel antivirulence molecules without side effects to the host and its beneficial bacteria Klebsiella aerogenes. Thirty compounds were evaluated that had been previously selected by virtual screening for inhibitors of P. aeruginosa PAO1 polyphosphate kinase 1 (PaPPK1) and diverse compounds with combined PPK1 inhibitory and antivirulence activities were identified. This approach demonstrates that D. discoideum is a suitable surrogate host for preliminary high-throughput screening of antivirulence agents and that PPK1 is a suitable target for developing novel antivirulence compounds that can be further validated in mammalian models. PMID:27066943

  12. Characterization of SFO-1, a plasmid-mediated inducible class A beta-lactamase from Enterobacter cloacae.

    PubMed

    Matsumoto, Y; Inoue, M

    1999-02-01

    Enterobacter cloacae 8009 produced an inducible class A beta-lactamase which hydrolyzed cefotaxime efficiently. It also hydrolyzed other beta-lactams except cephamycins and carbapenems. The activity was inhibited by clavulanic acid and imipenem. The bla gene was transferable to Escherichia coli by electroporation of plasmid DNA. The molecular mass of the beta-lactamase was 29 kDa and its pI was 7.3. All of these phenotypic characteristics of the enzyme except for inducible production resemble those of some extended-spectrum class A beta-lactamases like FEC-1. The gene encoding this beta-lactamase was cloned and sequenced. The deduced amino acid sequence of the beta-lactamase was homologous to the AmpA sequences of the Serratia fonticola chromosomal enzyme (96%), MEN-1 (78%), Klebsiella oxytoca chromosomal enzymes (77%), TOHO-1 (75%), and FEC-1 (72%). The conserved sequences of class A beta-lactamases, including the S-X(T)-X(S)-K motif, in the active site were all conserved in this enzyme. On the basis of the high degree of homology to the beta-lactamase of S. fonticola, the enzyme was named SFO-1. The ampR gene was located upstream of the ampA gene, and the AmpR sequence of SFO-1 had homology with the AmpR sequences of the chromosomal beta-lactamases from Citrobacter diversus (80%), Proteus vulgaris (68%), and Pseudomonas aeruginosa (60%). SFO-1 was also inducible in E. coli. However, a transformant harboring plasmid without intact ampR produced a small amount of beta-lactamase constitutively, suggesting that AmpR works as an activator of ampA of SFO-1. This is the first report from Japan describing an inducible plasmid-mediated class A beta-lactamase in gram-negative bacteria. PMID:9925524

  13. Re-examination of the taxonomic status of Enterobacter helveticus, Enterobacter pulveris and Enterobacter turicensis as members of the genus Cronobacter and their reclassification in the genera Franconibacter gen. nov. and Siccibacter gen. nov. as Franconibacter helveticus comb. nov., Franconibacter pulveris comb. nov. and Siccibacter turicensis comb. nov., respectively

    PubMed Central

    Grim, Christopher J.; Gopinath, Gopal R.; Mammel, Mark K.; Sathyamoorthy, Venugopal; Trach, Larisa H.; Chase, Hannah R.; Fanning, Séamus; Tall, Ben D.

    2014-01-01

    Recently, a taxonomical re-evaluation of the genus Enterobacter, based on multi-locus sequence typing (MLST) analysis, has led to the proposal that the species Enterobacter pulveris, Enterobacter helveticus and Enterobacter turicensis should be reclassified as novel species of the genus Cronobacter. In the present work, new genome-scale analyses, including average nucleotide identity, genome-scale phylogeny and k-mer analysis, coupled with previously reported DNA–DNA hybridization values and biochemical characterization strongly indicate that these three species of the genus Enterobacter are not members of the genus Cronobacter, nor do they belong to the re-evaluated genus Enterobacter. Furthermore, data from this polyphasic study indicated that all three species constitute two new genera. We propose reclassifying Enterobacter pulveris and Enterobacter helveticus in the genus Franconibacter gen. nov. as Franconibacter pulveris comb. nov. (type strain 601/05T = LMG 24057T = DSM 19144T) and Franconibacter helveticus comb. nov. (type strain 513/05T = LMG 23732T = DSM 18396T), respectively, and Enterobacter turicensis in the genus Siccibacter gen. nov. as Siccibacter turicensis comb. nov. (type strain 508/05T = LMG 23730T = DSM 18397T). PMID:25028159

  14. A selective differential medium for Enterobacter sakazakii, a preliminary study.

    PubMed

    Iversen, Carol; Druggan, Patrick; Forsythe, Stephen

    2004-11-01

    Enterobacter sakazakii can cause fatal invasive infection of neonates associated with the presence of this organism in powdered infant milk formula. A new chromogenic medium (Druggan-Forsythe-Iversen agar, DFI) is described for the selective detection of this emergent pathogen. The medium is based on the alpha-glucosidase reaction which is detected using 5-bromo-4-chloro-3-indolyl-alpha,D-glucopyranoside (XalphaGlc). Ent. sakazakii hydrolyses this substrate to an indigo pigment, producing blue-green colonies on this medium. DFI was compared with the current method of detection on violet red bile glucose agar (VRBGA) followed by pigment production on tryptone soy agar (TSA) after 48-72 h at 25 degrees C and subsequent biochemical profile determination using Biomerieux API20E. Ninety-five clinical and food strains of Ent. sakazakii were detected on the DFI chromogenic medium 2 days sooner than the alternative method. The characteristics of 148 strains representing 17 genera of non-Ent. sakazakii Enterobacteriaceae were compared using the two methods. Only 16/18 Escherichia vulneris strains, 2/3 strains of Pantoea spp. and 1/8 Citrobacter koseri strains gave false positive results on DFI agar. Eight alpha-glucosidase positive strains were identified as Pantoea using their API20E biochemical profile, but had higher percentage identification as Ent. sakazakii using ID32E. Therefore the DFI medium enables the detection of Ent. sakazakii within mixed cultures of Enterobacteriaceae, whereas the organism could be missed when using VRBGA since the latter is a general Enterobacteriaceae selective medium. In addition, the common use of API20E to check yellow pigmented colonies on TSA may lead to false negative results and consequently the acceptance of a batch of infant formula milk (IFM) that contains Ent. sakazakii. PMID:15364468

  15. Enterobacter cloacae is an endophytic symbiont of corn.

    PubMed

    Hinton, D M; Bacon, C W

    1995-01-01

    The bacterium Enterobacter cloacae is presently used for biocontrol of postharvest diseases of fruits and vegetables and as a preplant seed treatment for suppression of damping-off. This bacterium has apparent affinities for several grass species, but it is not considered to be an endophyte. While screening corn for fungi and bacteria with potential for biocontrol of various corn diseases, the surface-sterilized kernels of one unknown Italian corn cultivar produced fungus-free corn seedlings with roots endophytically infected by E. cloacae. This paper describes the microscopic nature of E. cloacae RRC 101 with corn, and the in vitro control of Fusarium moniliforme and other fungi with this bacterium. Light and electron microscopy determined that this isolate of E. cloacae was biologically associated with corn seedling roots, where it was distributed intercellularly within the cortex and stele. This is a first report of a strain of this bacterium as an endophytic symbiont of roots. Following a topical application of E. cloacae to kernels, and upon germination this bacterium readily infected roots of two other corn cultivars. The bacterium was observed within the endosperm of germinating corn seedling, but germination was not affected. Further, the bacterium was isolated from leaves and stems of 3- to 6-week-old seedlings indicating that the above ground portions of corn were also colonized. There was no evidence of damage to cells of the root during a three to four week observation period. This bacterium was antagonistic to several isolates of the corn pathogen Fusarium moniliforme, and to two other species of fungi, all of which produce mycotoxins on corn. PMID:7659140

  16. Integrated evaluation of aerogenic pollution by air-transported heavy metals (Pb, Cd, Ni, Zn, Mn and Cu) in the analysis of the main deposit media.

    PubMed

    Baltrėnaitė, Edita; Baltrėnas, Pranas; Lietuvninkas, Arvydas; Serevičienė, Vaida; Zuokaitė, Eglė

    2014-01-01

    The composition of the ambient air is constantly changing; therefore, the monitoring of ambient air quality to detect the changes caused by aerogenic pollutants makes the essential part of general environmental monitoring. To achieve more effective improvement of the ambient air quality, the Directive 2008/50/EC on 'Ambient Air Quality and Cleaner Air for Europe' was adopted by the European Parliament and the European Council. It informed the public and enterprises about a negative effect of pollution on humans, animals and plants, as well as about the need for monitoring aerogenic pollutants not only at the continuous monitoring stations but also by using indicator methods, i.e. by analysing natural deposit media. The problem of determining the relationship between the accumulation level of pollutants by a deposit medium and the level of air pollution and its risks is constantly growing in importance. The paper presents a comprehensive analysis of the response of the main four deposit media, i.e. snow cover, soil, pine bark and epigeic mosses, to the long-term pollution by aerogenic pollutants which can be observed in the area of oil refinery influence. Based on the quantitative expressions of the amounts of the accumulated pollutants in the deposit media, the territory of the oil refinery investigated in this paper has been referred to the areas of mild or moderate pollution. PMID:23933956

  17. Enterobacter spp.: pathogens poised to flourish at the turn of the century.

    PubMed Central

    Sanders, W E; Sanders, C C

    1997-01-01

    Knowledge of the genus Enterobacter and its role in human disease has expanded exponentially in recent years. The incidence of infection in the hospital and the community has increased. New clinical syndromes have been recognized. Enterobacter spp. have also been implicated as causes of other syndromes that traditionally have been associated almost exclusively with more easily treatable pathogens, such as group A streptococci and staphylococci. Rapid emergence of multiple-drug resistance has been documented in individual patients during therapy and in populations and environments with strong selective pressure from antimicrobial agents, especially the cephalosporins. Therapeutic options for patients infected with multiply resistant strains have become severely limited. Carbapenems or, alternatively, fluoroquinolones are the most predictively active options, although resistance to both classes has been observed on rare occasions. Enterobacter spp. appear well adapted for survival and even proliferation as the turn of the century approaches. PMID:9105752

  18. The prevalence of extended-spectrum beta-lactamase in environmental isolates of Enterobacter.

    PubMed

    Sharma, Anjana; Dour, Prashant; Singh, Thakur Nirbhay

    2008-01-01

    The incidence of extended-spectrum beta-lactamase (ESBL)-producing strains and multidrug-resistant strains of Enterobacter spp. isolated from the 1312 km long river Narmada was investigated. Out of the 57 isolates of Enterobacter, 73.68% were found to be ESBL producers including the isolates of E. taylorae and isolates of E. agglomerans, which have been characterized for the first time. All the isolates were found susceptible to the antibiotic imipenem. AmpC gene was found in all the Enterobacter strains tested. AmpC beta-lactamase-producing bacterial pathogens may cause major therapeutic failure if not detected and reported in time. It was seen that these enzymes are mainly chromosomally mediated along with several non-AmpC beta-lactamase. PMID:18417885

  19. Comparison of two multimetal resistant bacterial strains: Enterobacter sp. YSU and Stenotrophomonas maltophilia ORO2.

    PubMed

    Holmes, Andrew; Vinayak, Anubhav; Benton, Cherise; Esbenshade, Aaron; Heinselman, Carlisle; Frankland, Daniel; Kulkarni, Samatha; Kurtanich, Adrienne; Caguiat, Jonathan

    2009-11-01

    The Y-12 plant in Oak Ridge, TN, which manufactured nuclear weapons during World War II and the Cold War, contaminated East Fork Poplar Creek with heavy metals. The multimetal resistant bacterial strain, Stenotrophomonas maltophilia Oak Ridge strain O2 (S. maltophilia O2), was isolated from East Fork Poplar Creek. Sequence analysis of 16s rDNA suggested that our working strain of S. maltophilia O2 was a strain of Enterobacter. Phylogenetic tree analysis and biochemical tests confirmed that it belonged to an Enterobacter species. This new strain was named Enterobacter sp. YSU. Using a modified R3A growth medium, R3A-Tris, the Hg(II), Cd(II), Zn(II), Cu(II), Au(III), Cr(VI), Ag(I), As(III), and Se(IV) MICs for a confirmed strain of S. maltophilia O2 were 0.24, 0.33, 5, 5, 0.25, 7, 0.03, 14, and 40 mM, respectively, compared to 0.07, 0.24, 0.8, 3, 0.05, 0.4, 0.08, 14, and 40 mM, respectively, for Enterobacter sp. YSU. Although S. maltophilia O2 was generally more metal resistant than Enterobacter sp. YSU, in comparison to Escherichia coli strain HB101, Enterobacter sp. YSU was resistant to Hg(II), Cd(II), Zn(II), Au(III), Ag(I), As(III), and Se(IV). By studying metal resistances in these two strains, it may be possible to understand what makes one microorganism more metal resistant than another microorganism. This work also provided benchmark MICs that can be used to evaluate the metal resistance properties of other bacterial isolates from East Fork Poplar Creek and other metal contaminated sites. PMID:19688378

  20. A nosocomial outbreak due to Enterobacter cloacae strains with the E. hormaechei genotype in patients treated with fluoroquinolones.

    PubMed Central

    Davin-Regli, A; Bosi, C; Charrel, R; Ageron, E; Papazian, L; Grimont, P A; Cremieux, A; Bollet, C

    1997-01-01

    During a 7-month period, we isolated 21 highly fluoroquinolone-resistant Enterobacter cloaecae strains in units from two hospitals in Marseille, France. Random amplification of polymorphic DNA showed clonal identity between isolates which, furthermore, presented the Enterobacter hormaechei genotype on DNA-DNA hybridization. The emergence of this clone was observed only in patients treated with fluoroquinolones. PMID:9157119

  1. Draft genome sequence of Enterobacter cloacae subsp. cloacae strain 08XA1, a fecal bacterium of giant pandas.

    PubMed

    Yan, Yue; Zhao, Chuan-Wu; Zhang, Yi-Zheng; Zhang, Zhi-He; Pan, Guang-Lin; Liu, Wen-Wang; Ma, Qing-Yi; Hou, Rong; Tan, Xue-Mei

    2012-12-01

    Enterobacter cloacae, a common pathogenic bacterium, is a Gram-negative bacillus. We analyzed the draft genome of Enterobacter cloacae subsp. cloacae strain 08XA1 from the feces of a giant panda in China. Genes encoding a β-lactamase and efflux pumps, as well as other factors, have been found in the genome. PMID:23209197

  2. MUTATION IN A DEGS HOMOLOGUE IN ENTEROBACTER CLOACAE RESULTS IN DECREASED SEEDLING AND ROOT COLONIZATION BY THIS BACTERIUM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enterobacter cloacae 501R3 shows promise as a biological control agent for damping-off of cucumber caused by Pythium ultimum. Enterobacter cloacae strain C10 is a mini-Tn5 Km transposon mutant of strain 501R3 that was deficient in colonization of cucumber seedlings, and significantly reduced in colo...

  3. Whole-Genome Sequence of Enterobacter sp. Strain SST3, an Endophyte Isolated from Jamaican Sugarcane (Saccharum sp.) Stalk Tissue

    PubMed Central

    Gan, Han Ming; McGroty, Sean E.; Chew, Teong Han; Chan, Kok Gan; Buckley, Larry J.; Savka, Michael A.

    2012-01-01

    Enterobacter sp. strain SST3 is an endophytic bacterium isolated from Saccharum spp. Here we present its annotated draft genome that may shed light on its role as a bacterial endophyte of sugarcane. To our knowledge, this is the first genome announcement of a sugarcane-associated bacterium from the genus Enterobacter. PMID:23045495

  4. Dechlorination of 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane by Aerobacter aerogenes

    USGS Publications Warehouse

    Wedemeyer, Gary

    1967-01-01

    Whole cells or cell-free extracts of Aerobacter aerogenes catalyze the degradation of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) in vitro to at least seven metabolites: 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE); 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (DDD); 1-chloro-2,2-bis(p-chlorophenyl)ethylene (DDMU); 1-chloro-2,2-bis(p-chlorophenyl)ethane (DDMS); unsym-bis(p-chlorophenyl)ethylene (DDNU); 2,2-bis(p-chlorophenyl)acetate (DDA); and 4,4′-dichlorobenzophenone (DBP). The use of metabolic inhibitors together with pH and temperature studies indicated that discrete enzymes are involved. By use of the technique of sequential analysis, the metabolic pathway was shown to be: DDT → DDD →DDMU →DDMS → DDNU → DDA → DBP, or DDT → DDE. Dechlorination was marginally enhanced by light-activated flavin mononucleotide.

  5. Role of the nac gene product in the nitrogen regulation of some NTR-regulated operons of Klebsiella aerogenes.

    PubMed

    Macaluso, A; Best, E A; Bender, R A

    1990-12-01

    A positive, genetic selection against the activity of the nitrogen regulatory (NTR) system was used to isolate insertion mutations affecting nitrogen regulation in Klebsiella aerogenes. Two classes of mutation were obtained: those affecting the NTR system itself and leading to the loss of almost all nitrogen regulation, and those affecting the nac locus and leading to a loss of nitrogen regulation of a family of nitrogen-regulated enzymes. The set of these nac-dependent enzymes included histidase, glutamate dehydrogenase, glutamate synthase, proline oxidase, and urease. The enzymes shown to be nac independent included glutamine synthetase, asparaginase, tryptophan permease, nitrate reductase, the product of the nifLA operon, and perhaps nitrite reductase. The expression of the nac gene was itself highly nitrogen regulated, and this regulation was mediated by the NTR system. The loss of nitrogen regulation was found in each of the four insertion mutants studied, showing that loss of nitrogen regulation resulted from the absence of nac function rather than from an altered form of the nac gene product. Thus we propose two classes of nitrogen-regulated operons: in class I, the NTR system directly activates expression of the operon; in class II, the NTR system activates nac expression and the product(s) of the nac locus activates expression of the operon. PMID:1979323

  6. Pseudomonas aeruginosa biofilms in disease.

    PubMed

    Mulcahy, Lawrence R; Isabella, Vincent M; Lewis, Kim

    2014-07-01

    Pseudomonas aeruginosa is a ubiquitous organism that is the focus of intense research because of its prominent role in disease. Due to its relatively large genome and flexible metabolic capabilities, this organism exploits numerous environmental niches. It is an opportunistic pathogen that sets upon the human host when the normal immune defenses are disabled. Its deadliness is most apparent in cystic fibrosis patients, but it also is a major problem in burn wounds, chronic wounds, chronic obstructive pulmonary disorder, surface growth on implanted biomaterials, and within hospital surface and water supplies, where it poses a host of threats to vulnerable patients (Peleg and Hooper, N Engl J Med 362:1804-1813, 2010; Breathnach et al., J Hosp Infect 82:19-24, 2012). Once established in the patient, P. aeruginosa can be especially difficult to treat. The genome encodes a host of resistance genes, including multidrug efflux pumps (Poole, J Mol Microbiol Biotechnol 3:255-264, 2001) and enzymes conferring resistance to beta-lactam and aminoglycoside antibotics (Vahdani et al., Annal Burns Fire Disast 25:78-81, 2012), making therapy against this gram-negative pathogen particularly challenging due to the lack of novel antimicrobial therapeutics (Lewis, Nature 485: 439-440, 2012). This challenge is compounded by the ability of P. aeruginosa to grow in a biofilm, which may enhance its ability to cause infections by protecting bacteria from host defenses and chemotherapy. Here, we review recent studies of P. aeruginosa biofilms with a focus on how this unique mode of growth contributes to its ability to cause recalcitrant infections. PMID:24096885

  7. Inactivation of Enterobacter sakazakii by Water-soluble Muscadine Seed Extracts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hot and cold water-soluble muscadine (Vitis rotundifolia) seed extracts and their polar and polyphenol fractions from two Muscadine cultivars (‘Ison’, purple and ‘Carlos’, bronze) were investigated for their inhibition of Enterobacter sakazakii. The heat treatment on each seed extract not only incre...

  8. Microarray-based Comparative Genomic Indexing of the Cronobacter genus (Enterobacter sakazakii)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cronobacter is a recently defined genus synonymous with Enterobacter sakazakii. This new genus currently comprises 6 genomospecies. To extend our understanding of the genetic relationship between Cronobacter sakazakii BAA-894 and the other species of this genus, microarray-based comparative genomi...

  9. Draft Genome Sequence of Enterobacter sp. Strain UCD-UG_FMILLET (Phylum Proteobacteria)

    PubMed Central

    Ettinger, Cassandra L.; Mousa, Walaa M.; Raizada, Manish N.

    2015-01-01

    Here, we present the draft genome of Enterobacter sp. strain UCD-UG_FMILLET. This strain is an endophyte isolated from the roots of finger millet, an Afro-Indian cereal crop. The genome contains 4,801,411 bp in 53 scaffolds. PMID:25614569

  10. Bacterial cellulose synthesis mechanism of facultative anaerobe Enterobacter sp. FY-07.

    PubMed

    Ji, Kaihua; Wang, Wei; Zeng, Bing; Chen, Sibin; Zhao, Qianqian; Chen, Yueqing; Li, Guoqiang; Ma, Ting

    2016-01-01

    Enterobacter sp. FY-07 can produce bacterial cellulose (BC) under aerobic and anaerobic conditions. Three potential BC synthesis gene clusters (bcsI, bcsII and bcsIII) of Enterobacter sp. FY-07 have been predicted using genome sequencing and comparative genome analysis, in which bcsIII was confirmed as the main contributor to BC synthesis by gene knockout and functional reconstitution methods. Protein homology, gene arrangement and gene constitution analysis indicated that bcsIII had high identity to the bcsI operon of Enterobacter sp. 638; however, its arrangement and composition were same as those of BC synthesizing operon of G. xylinum ATCC53582 except for the flanking sequences. According to the BC biosynthesizing process, oxygen is not directly involved in the reactions of BC synthesis, however, energy is required to activate intermediate metabolites and synthesize the activator, c-di-GMP. Comparative transcriptome and metabolite quantitative analysis demonstrated that under anaerobic conditions genes involved in the TCA cycle were downregulated, however, genes in the nitrate reduction and gluconeogenesis pathways were upregulated, especially, genes in three pyruvate metabolism pathways. These results suggested that Enterobacter sp. FY-07 could produce energy efficiently under anaerobic conditions to meet the requirement of BC biosynthesis. PMID:26911736

  11. Bacterial cellulose synthesis mechanism of facultative anaerobe Enterobacter sp. FY-07

    PubMed Central

    Ji, Kaihua; Wang, Wei; Zeng, Bing; Chen, Sibin; Zhao, Qianqian; Chen, Yueqing; Li, Guoqiang; Ma, Ting

    2016-01-01

    Enterobacter sp. FY-07 can produce bacterial cellulose (BC) under aerobic and anaerobic conditions. Three potential BC synthesis gene clusters (bcsI, bcsII and bcsIII) of Enterobacter sp. FY-07 have been predicted using genome sequencing and comparative genome analysis, in which bcsIII was confirmed as the main contributor to BC synthesis by gene knockout and functional reconstitution methods. Protein homology, gene arrangement and gene constitution analysis indicated that bcsIII had high identity to the bcsI operon of Enterobacter sp. 638; however, its arrangement and composition were same as those of BC synthesizing operon of G. xylinum ATCC53582 except for the flanking sequences. According to the BC biosynthesizing process, oxygen is not directly involved in the reactions of BC synthesis, however, energy is required to activate intermediate metabolites and synthesize the activator, c-di-GMP. Comparative transcriptome and metabolite quantitative analysis demonstrated that under anaerobic conditions genes involved in the TCA cycle were downregulated, however, genes in the nitrate reduction and gluconeogenesis pathways were upregulated, especially, genes in three pyruvate metabolism pathways. These results suggested that Enterobacter sp. FY-07 could produce energy efficiently under anaerobic conditions to meet the requirement of BC biosynthesis. PMID:26911736

  12. The status of the species Enterobacter siamensisKhunthongpan et al. 2014. Request for an Opinion.

    PubMed

    Kämpfer, Peter; Doijad, Swapnil; Chakraborty, Trinad; Glaeser, Stefanie P

    2016-01-01

    In the course of a taxonomic study describing novel species of the genus Enterobacter it was found that the 16S rRNA gene sequence of the type strain of Enterobacter siamensis, obtained both directly from the authors of the publication on Enterobacter siamensis and from the Korean Collection for Type Cultures (C2361T and KCTC 23282T, respectively), was not congruent with the 16S rRNA gene sequence deposited in the GenBank database under the accession number HQ888848, which was applied for phylogenetic analysis in the species proposal. The remaining deposit in the Japanese type culture collection, NBRC 107138T, showed an identical 16S rRNA gene sequence to the other two cultures and overall, this sequence differed at 35 positions in comparison with the 1429 bp sequence published under the accession number HQ888848.Therefore, the type strain of this species cannot be included in any further scientific comparative study. It is proposed that the Judicial Commission of the International Committee on Systematics of Prokaryotes place the name Enterobacter siamensis on the list of rejected names, if a suitable replacement for the type strain is not found or a neotype strain is not proposed within two years following the publication of this Request for an Opinion. PMID:26581210

  13. Evaluating Hawaii-Grown Papaya for Resistance to Internal Yellowing Disease Caused by Enterobacter cloacae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Papaya (Carica papaya L.) cultivars and breeding lines were evaluated for resistance to Enterobacter cloacae (Jordan) Hormaeche & Edwards, the bacterial causal agent of internal yellowing disease (IY), using a range of concentrations of the bacterium. Linear regression analysis was performed and IY ...

  14. Atypical internal yellowing of papaya fruit in Hawaii caused by Enterobacter sakazakii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Internal yellowing (IY), characterized by yellow discolored tissue around the papaya (Carica papaya) seed cavity, diffuse margins and the presence of a distinctly rotten odor, was first reported in 1987. These symptoms were associated with the causal agent Enterobacter cloacae. Here we report the fo...

  15. Tryptophan Inhibits Biofilm Formation by Pseudomonas aeruginosa

    PubMed Central

    Brandenburg, Kenneth S.; Rodriguez, Karien J.; McAnulty, Jonathan F.; Murphy, Christopher J.; Abbott, Nicholas L.; Schurr, Michael J.

    2013-01-01

    Biofilm formation by Pseudomonas aeruginosa has been implicated in the pathology of chronic wounds. Both the d and l isoforms of tryptophan inhibited P. aeruginosa biofilm formation on tissue culture plates, with an equimolar ratio of d and l isoforms producing the greatest inhibitory effect. Addition of d-/l-tryptophan to existing biofilms inhibited further biofilm growth and caused partial biofilm disassembly. Tryptophan significantly increased swimming motility, which may be responsible in part for diminished biofilm formation by P. aeruginosa. PMID:23318791

  16. Enterobacter hormaechei, a new species of the family Enterobacteriaceae formerly known as enteric group 75.

    PubMed

    O'Hara, C M; Steigerwalt, A G; Hill, B C; Farmer, J J; Fanning, G R; Brenner, D J

    1989-09-01

    The name Enterobacter hormaechei is proposed for a new species of the family Enterobacteriaceae, formerly called Enteric Group 75, which consists of 23 strains, 22 of which were isolated from humans. DNAs from 12 E. hormaechei strains tested were highly related to the type strain (ATCC 49162) by DNA hybridization, using the hydroxyapatite method (80 to 97% in 60 degrees C reactions; 80 to 90% in 75 degrees C reactions). The strains were most closely related (50 to 63%) to Enterobacter cloacae, Enterobacter dissolvens, Enterobacter taylorae, and Enterobacter nimipressuralis. E. hormaechei strains were positive within 48 h for the following: Voges-Proskauer test; citrate utilization (Simmons and Christensen); urea hydrolysis (87%); ornithine decarboxylase; growth in potassium cyanide (KCN); malonate utilization; production of acid from D-glucose, L-arabinose, cellobiose, dulcitol (87%), D-galactose, maltose, D-mannitol, D-mannose, L-rhamnose, sucrose, trehalose, and D-xylose; acid production from mucate; nitrate reduction; and o-nitrophenyl-beta-D-galactopyranoside. Delayed positive reactions were seen in tests for arginine dihydrolase, gas from D-glucose, acid from alpha-methyl-D-glucoside, and acetate utilization. E. hormaechei was negative in tests for indole production; H2S production; phenylalanine deaminase; lysine decarboxylase; gelatin hydrolysis; acid production from D-adonitol, D-arabitol, erythritol, glycerol, i(myo)-inositol, melibiose, raffinose, and D-sorbitol; esculin hydrolysis; DNase; lipase; and tyrosine clearing. Variable reactions occurred in tests for methyl red, motility, and tartrate. All strains tested were susceptible or moderately susceptible to amikacin, azlocillin, cefotaxime, ceftazidime, ceftriaxone, chloramphenicol, gentamicin, mezlocillin, moxalactam, piperacillin, trimethoprim-sulfamethoxazole, sulfisoxazole, thienamycin, tobramycin, and trimethoprim. All strains tested were resistant to nitrofurantoin; the majority were resistant to

  17. Pseudomonas aeruginosa Population Structure Revisited

    PubMed Central

    Pirnay, Jean-Paul; Bilocq, Florence; Pot, Bruno; Cornelis, Pierre; Zizi, Martin; Van Eldere, Johan; Deschaght, Pieter; Vaneechoutte, Mario; Jennes, Serge; Pitt, Tyrone; De Vos, Daniel

    2009-01-01

    At present there are strong indications that Pseudomonas aeruginosa exhibits an epidemic population structure; clinical isolates are indistinguishable from environmental isolates, and they do not exhibit a specific (disease) habitat selection. However, some important issues, such as the worldwide emergence of highly transmissible P. aeruginosa clones among cystic fibrosis (CF) patients and the spread and persistence of multidrug resistant (MDR) strains in hospital wards with high antibiotic pressure, remain contentious. To further investigate the population structure of P. aeruginosa, eight parameters were analyzed and combined for 328 unrelated isolates, collected over the last 125 years from 69 localities in 30 countries on five continents, from diverse clinical (human and animal) and environmental habitats. The analysed parameters were: i) O serotype, ii) Fluorescent Amplified-Fragment Length Polymorphism (FALFP) pattern, nucleotide sequences of outer membrane protein genes, iii) oprI, iv) oprL, v) oprD, vi) pyoverdine receptor gene profile (fpvA type and fpvB prevalence), and prevalence of vii) exoenzyme genes exoS and exoU and viii) group I pilin glycosyltransferase gene tfpO. These traits were combined and analysed using biological data analysis software and visualized in the form of a minimum spanning tree (MST). We revealed a network of relationships between all analyzed parameters and non-congruence between experiments. At the same time we observed several conserved clones, characterized by an almost identical data set. These observations confirm the nonclonal epidemic population structure of P. aeruginosa, a superficially clonal structure with frequent recombinations, in which occasionally highly successful epidemic clones arise. One of these clones is the renown and widespread MDR serotype O12 clone. On the other hand, we found no evidence for a widespread CF transmissible clone. All but one of the 43 analysed CF strains belonged to a ubiquitous P

  18. The Accessory Genome of Pseudomonas aeruginosa

    PubMed Central

    Kung, Vanderlene L.; Ozer, Egon A.; Hauser, Alan R.

    2010-01-01

    Summary: Pseudomonas aeruginosa strains exhibit significant variability in pathogenicity and ecological flexibility. Such interstrain differences reflect the dynamic nature of the P. aeruginosa genome, which is composed of a relatively invariable “core genome” and a highly variable “accessory genome.” Here we review the major classes of genetic elements comprising the P. aeruginosa accessory genome and highlight emerging themes in the acquisition and functional importance of these elements. Although the precise phenotypes endowed by the majority of the P. aeruginosa accessory genome have yet to be determined, rapid progress is being made, and a clearer understanding of the role of the P. aeruginosa accessory genome in ecology and infection is emerging. PMID:21119020

  19. Physiological responses of Microcystis aeruginosa against the algicidal bacterium Pseudomonas aeruginosa.

    PubMed

    Zhou, Su; Yin, Hua; Tang, Shaoyu; Peng, Hui; Yin, Donggao; Yang, Yixuan; Liu, Zehua; Dang, Zhi

    2016-05-01

    Proliferation of cyanobacteria in aquatic ecosystems has caused water security problems throughout the world. Our preliminary study has showed that Pseudomonas aeruginosa can inhibit the growth of cyanobacterium, Microcystis aeruginosa. In order to explore the inhibitory mechanism of P. aeruginosa on the cell growth and synthesis of intracellular substances of M. aeruginosa, concentrations of Chlorophyll-a, intracellular protein, carbohydrate, enzyme activities and ion metabolism of M. aeruginosa, were investigated. The results indicated that 83.84% algicidal efficiency of P. aeruginosa was achieved after treatment for 7 days. The strain inhibited the reproduction of M. aeruginosa by impeding the synthesis of intracellular protein and carbohydrate of cyanobacterium, and only a very small part of intracellular protein and carbohydrate was detected after exposure to P. aeruginosa for 5 days. P. aeruginosa caused the alteration of intracellular antioxidant enzyme activity of M. aeruginosa, such as catalase, peroxidase. The accumulation of malondialdehyde aggravated membrane injury after treatment for 3 days. P. aeruginosa also affected the ion metabolism of cyanobacteria. The release of Na(+) and Cl(-) was significantly enhanced while the uptake of K(+), Ca(2+), Mg(2+), NO3(-) and SO4(2)(-) decreased. Surface morphology and intracellular structure of cyanobacteria and bacterial cells changed dramatically over time as evidenced by electron microscope (SEM) and transmission electron microscope (TEM) analysis. These results revealed that the algicidal activity of P. aeruginosa was primarily due to the fermentation liquid of P. aeruginosa that impeded the synthesis of intracellular protein and carbohydrate, and damaged the cell membrane through membrane lipid peroxidation. PMID:26866757

  20. KPC and VIM producing Enterobacter cloacae strain from a hospital in northeastern Venezuela.

    PubMed

    Martínez, Dianny; Marcano, Daniel; Rodulfo, Hectorina; Salgado, Nurys; Cuaical, Nirvia; Rodriguez, Lucy; Caña, Luisa; Medina, Belkis; Guzman, Militza; De Donato, Marcos

    2015-06-01

    An 83-year-old male patient is admitted to the central hospital in Cumana, Venezuela with severe urinary infection, history of hospitalizaions and prolonged antimicrobial treatments. A strain of Enterobacter cloacae was isolated showing resistance to multiple types of antibiotics (only sensitive to gentamicin), with phenotype of serine- and metallo-carbapenemases. Both, bla(VIM-2) and bla(KPC) genes were detected in the isolate. This is the first report of an Enterobacteriaceae species producing both KPC carbapenemase and VIM metallo carbapenemase in Venezuela. This finding has a great clinical and epidemiological impact in the region, because of the feasibility of transferring these genes, through mobile elements to other strains of Enterobacter and to other infection-causing species of bacteria. PMID:26299058

  1. Enterobacter sepsis in infants and children due to contaminated intravenous fluids.

    PubMed

    Matsaniotis, N S; Syriopoulou, V P; Theodoridou, M C; Tzanetou, K G; Mostrou, G I

    1984-10-01

    Sixty-three cases of nosocomial sepsis occurring from April through October 1981, in a 500-bed pediatric hospital, were traced to bacterial contamination of intravenous fluid produced by a single manufacturer. Two species of uncommon blood stream pathogens, Enterobacter cloacae and Enterobacter agglomerans contaminated the fluid. Infections with these organisms might have contributed to the death of four patients; two who were immunosuppressed, one who was asplenic and one premature infant. Epidemiologic and laboratory investigations identified the site of contamination to be within the screw-caps of the bottles containing the intravenous fluid. Contamination occurred during insertion of the intravenous fluid administration set into the bottle. The "epidemic" terminated when the hospital discontinued the use of infusion fluids from that manufacturer. We conclude that intravenous fluids should be examined during outbreaks of nosocomial bacteremia due to unusual pathogens. PMID:6567611

  2. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638

    SciTech Connect

    Taghavi, S.; van der Lelie, D.; Hoffman, A.; Zhang, Y.-B.; Walla, M. D.; Vangronsveld, J.; Newman, L.; Monchy, S.

    2010-05-13

    Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpa x deltoides cv. H11-11), a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1). Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plant roots), root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis), colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase), plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol), and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT-PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further exploited to

  3. Bioethanol production from mannitol by a newly isolated bacterium, Enterobacter sp. JMP3.

    PubMed

    Wang, Jing; Kim, Young Mi; Rhee, Hong Soon; Lee, Min Woo; Park, Jong Moon

    2013-05-01

    In this study a new bacterium capable of growing on brown seaweed Laminaria japonica, Enterobacter sp. JMP3 was isolated from the gut of turban shell, Batillus cornutus. In anaerobic condition, it produced high yields of ethanol (1.15 mol-EtOH mol-mannitol(-1)) as well as organic acids from mannitol, the major carbohydrate component of L. japonica. Based on carbon distribution and metabolic flux analysis, it was revealed that mannitol was more favorable than glucose for ethanol production due to their different redox states. This indicates that L. japonica is one of the promising feedstock for bioethanol production. Additionally, the mannitol dehydrogenation pathway in Enterobacter sp. JMP3 was examined and verified. Finally, an attempt was made to explore the possibility of controlling ethanol production by altering the redox potential via addition of external NADH in mannitol fermentation. PMID:23186687

  4. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638

    PubMed Central

    Taghavi, Safiyh; van der Lelie, Daniel; Hoffman, Adam; Zhang, Yian-Biao; Walla, Michael D.; Vangronsveld, Jaco; Newman, Lee; Monchy, Sébastien

    2010-01-01

    Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpa×deltoides cv. H11-11), a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1). Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plant roots), root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis), colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase), plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol), and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT–PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further exploited to

  5. Burn sepsis: bacterial interference with Pseudomonas aeruginosa.

    PubMed

    Levenson, S M; Gruber, D K; Gruber, C; Watford, A; Seifter, E

    1981-05-01

    The pathogenicity of several strains of Pseudomonas aeruginosa for burned rats (3 degrees scald burns, 20% body surface) following topical application of the bacteria to the burn within 1 hour after burning was established. Following this, it was demonstrated that purposeful infection of such 3 degrees scald burns of rats by a strain of Ps. aeruginosa of low virulence (JB-77) protects the rats from the lethal effect of subsequent (48-hour) topical contamination of the burn by a highly virulent strain of Ps. aeruginosa (VA-134) (p less than 0.001). This finding was confirmed in a similar experiment beginning with germfree rats. When the challenge with the highly virulent Ps. aeruginosa strain was 24 hours (rather than 48 hours) after the burning and topical contamination of the burn with the low virulence strain of Ps. aeruginosa, there was little protection (p N.S.). When burned rats were given the low virulence strain of Ps. aeruginosa by gavage right after burning, there was not protection to subsequent (48 hours) challenge by topical application of the highly virulent strain of Ps. aeruginosa to the burn (11/12 vs 12/12 dying). Our finding that purposeful infection of a 3 degrees burn of rats (conventional and also germfree) by a strain of Ps. aeruginosa of low virulence protects from the lethal effect of subsequent (48-hour) topical contamination of the burn by a highly virulent strain of Ps. aeruginosa is due, we believe, to direct bacterial interference between the two strains of pseudomonas. PMID:6785444

  6. Transposon mutagenesis of Pseudomonas aeruginosa exoprotease genes.

    PubMed Central

    Stapleton, M J; Jagger, K S; Warren, R L

    1984-01-01

    Transposon Tn5 was used to generate protease-deficient insertion mutants of Pseudomonas aeruginosa. The presence of Tn5 in the chromosome of P. aeruginosa was demonstrated by transduction and DNA-DNA hybridization. The altered protease production and kanamycin resistance were cotransduced into a wild-type P. aeruginosa strain. A radiolabeled probe of Tn5 DNA hybridized to specific BamHI fragments isolated from the insertion mutants. Two independently isolated Tn5 insertion mutants had reduced protease production, partially impaired elastase activity, and no immunologically reactive alkaline protease. Images PMID:6317657

  7. Occurrence of Pseudomonas aeruginosa in Kuwait soil.

    PubMed

    Al-Saleh, Esmaeil; Akbar, Abrar

    2015-02-01

    Environmentally ubiquitous bacteria such as Pseudomonas aeruginosa evolved mechanisms to adapt and prevail under diverse conditions. In the current investigation, strains of P. aeruginosa demonstrating high rates of crude oil utilization and tolerance to high concentrations of heavy metals were found in both crude oil-contaminated and uncontaminated sites in Kuwait, and were dominant in the contaminated sites. The incidence of P. aeruginosa in tested soils implies the definitive pattern of crude oil contamination in the selection of the bacterial population in petroleum-contaminated sites in Kuwait. Surprisingly, the unculturable P. aeruginosa in different soil samples showed significant high similarity coefficients based on 16S-RFLP analyses, implying that the unculturable fraction of existing bacterial population in environmental samples is more stable and, hence, reliable for phylogenetic studies compared to the culturable bacteria. PMID:25014900

  8. Antibiotic Conditioned Growth Medium of Pseudomonas Aeruginosa

    ERIC Educational Resources Information Center

    Benathen, Isaiah A.; Cazeau, Barbara; Joseph, Njeri

    2004-01-01

    A simple method to study the consequences of bacterial antibiosis after interspecific competition between microorganisms is presented. Common microorganisms are used as the test organisms and Pseudomonas aeruginosa are used as the source of the inhibitor agents.

  9. Inoculation of hybrid poplar with the endophytic bacterium Enterobacter sp. 638 increases biomass but does not impact leaf level physiology

    SciTech Connect

    Rogers, A.; McDonald, K.; Muehlbauer, M. F.; Hoffman, A.; Koenig, K.; Newman, L.; Taghavi, S.; Van Der Lelie, D.

    2011-01-01

    Endophytic bacteria have been shown to provide several advantages to their host, including enhanced growth. Inoculating biofuel species with endophytic bacteria is therefore an attractive option to increase the productivity of biofuel feedstocks. Here, we investigated the effect of inoculating hard wood cuttings of Populus deltoides Bartr. x Populus. nigra L. clone OP367 with Enterobacter sp. 638. After 17 weeks, plants inoculated with Enterobacter sp. 638 had 55% greater total biomass than un-inoculated control plants. Study of gas exchange and fluorescence in developing and mature leaves over a diurnal cycle and over a 5 week measurement campaign revealed no effects of inoculation on photosynthesis, stomatal conductance, photosynthetic water use efficiency or the maximum and operating efficiency of photosystem II. However, plants inoculated with Enterobacter sp. 638 had a canopy that was 39% larger than control plants indicating that the enhanced growth was fueled by increased leaf area, not by improved physiology. Leaf nitrogen content was determined at two stages over the 5 week measurement period. No effect of Enterobacter sp. 638 on leaf nitrogen content was found indicating that the larger plants were acquiring sufficient nitrogen. Enterobacter sp. 638 lacks the genes for N{sub 2} fixation, therefore the increased availability of nitrogen likely resulted from enhanced nitrogen acquisition by the 84% larger root system. These data show that Enterobacter sp. 638 has the potential to dramatically increase productivity in poplar. If fully realized in the production environment, these results indicate that an increase in the environmental and economic viability of poplar as a biofuel feedstock is possible when inoculated with endophytic bacteria like Enterobacter sp. 638.

  10. Vaccination against respiratory Pseudomonas aeruginosa infection

    PubMed Central

    Grimwood, Keith; Kyd, Jennelle M; Owen, Suzzanne J; Massa, Helen M; Cripps, Allan W

    2014-01-01

    Respiratory infections caused by Pseudomonas aeruginosa are a major clinical problem globally, particularly for patients with chronic pulmonary disorders, such as those with cystic fibrosis (CF), non-CF bronchiectasis (nCFB) and severe chronic obstructive pulmonary disease (COPD). In addition, critically ill and immunocompromised patients are also at significant risk of P. aeruginosa infection. For almost half a century, research efforts have focused toward development of a vaccine against infections caused by P. aeruginosa, but a licensed vaccine is not yet available. Significant advances in identifying potential vaccine antigens have been made. Immunisations via both the mucosal and systemic routes have been trialled in animal models and their effectiveness in clearing acute infections demonstrated. The challenge for translation of this research to human applications remains, since P. aeruginosa infections in the human respiratory tract can present both as an acute or chronic infection. In addition, immunisation prior to infection may not be possible for many patients with CF, nCFB or COPD. Therefore, development of a therapeutic vaccine provides an alternative approach for treatment of chronic infection. Preliminary animal and human studies suggest that mucosal immunisation may be effective as a therapeutic vaccine against P. aeruginosa respiratory infections. Nevertheless, more research is needed to improve our understanding of the basic biology of P. aeruginosa and the mechanisms needed to upregulate the induction of host immune pathways to prevent infection. Recognition of variability in the host immune responses for a range of patient health conditions at risk from P. aeruginosa infection is also required to support development of a successful vaccine delivery strategy and vaccine. Activation of mucosal immune responses may provide improved efficacy of vaccination for P. aeruginosa during both acute exacerbations and chronic infection. PMID:25483510

  11. Induction of beta-lactamase by various beta-lactam antibiotics in Enterobacter cloacae.

    PubMed Central

    Minami, S; Yotsuji, A; Inoue, M; Mitsuhashi, S

    1980-01-01

    The induction of beta-lactamase in Enterobacter cloacae GN5797 was studied by using 23 beta-lactam antiobiotics, including newly introduced drugs, as inducers. the beta-lactam antibiotics can be classified into three groups on the basis of their inducer activity. Among the tested cephalosporins, cephamycin derivatives such as cefoxitin, cefmetazole, and YM09330 had high inducer activity even at low drug concentrations. On the other hand, cefoperazone, cefsulodin, piperacillin, and apalcillin showed low inducer activity when compared with the other cephalosporins. PMID:6968541

  12. Transformation of Enterobacter gergoviae isolated from pink bollworm (Lepidoptera: Gelechiidae) gut with Bacillus thuringiensis toxin.

    PubMed

    Kuzina, Lyudmila V; Miller, Ernie D; Ge, Baoxue; Miller, Thomas A

    2002-01-01

    Production of molecules with toxic activity by genetically transformed symbiotic bacteria of pest insects may serve as a powerful approach to biological control. The symbiont, Enterobacter gergoviae, isolated from the gut of the pink bollworm (PBW), has been transformed to express Cyt1A, a cytolytic protein toxin lethal to mosquito and black fly larvae, as a model system. These transgenic bacteria might be used to spread genes encoding insecticidal proteins to populations of agricultural insects or as replacement for chemical insecticides such as malathion used in bait formulation to control specific insect pests, because of extreme public pressure against organophosphate pesticide spraying. PMID:11727033

  13. Complete genome sequence of Enterobacter cloacae GGT036: a furfural tolerant soil bacterium.

    PubMed

    Gong, Gyeongtaek; Um, Youngsoon; Park, Tai Hyun; Woo, Han Min

    2015-01-10

    Enterobacter cloacae is a facultative anaerobic bacterium to be an important cause of nosocomial infection. However, the isolated E. cloacae GGT036 showed higher furfural-tolerant cellular growth, compared to industrial relevant strains such as Escherichia coli and Corynebacterium glutamicum. Here, we report the complete genome sequence of E. cloacae GGT036 isolated from Mt. Gwanak, Seoul, Republic of Korea. The genomic DNA sequence of E. cloacae GGT036 will provide valuable genetic resources for engineering of industrially relevant strains being tolerant to cellular inhibitors present in lignocellulosic hydrolysates. PMID:25444880

  14. Genomic Characterization of Enterobacter cloacae Isolates from China That Coproduce KPC-3 and NDM-1 Carbapenemases.

    PubMed

    Du, Hong; Chen, Liang; Chavda, Kalyan D; Pandey, Ruchi; Zhang, Haifang; Xie, Xiaofang; Tang, Yi-Wei; Kreiswirth, Barry N

    2016-04-01

    Here, we report twoEnterobacter cloacaesequence type 231 isolates coproducing KPC-3 and NDM-1 that have caused lethal infections in a tertiary hospital in China. TheblaNDM-1-harboring plasmids carry IncA/C2and IncR replicons, showing a mosaic plasmid structure, and theblaNDM-1is harbored on a novel class I integron-like element.blaKPC-3is located on a Tn3-ΔblaTEM-1-blaKPC-3-ΔTn1722element, flanked by two 9-bp direct-repeat sequences and harbored on an IncX6 plasmid. PMID:26787700

  15. Responses of Pseudomonas aeruginosa to antimicrobials

    PubMed Central

    Morita, Yuji; Tomida, Junko; Kawamura, Yoshiaki

    2014-01-01

    Infections caused by Pseudomonas aeruginosa often are hard to treat; inappropriate chemotherapy readily selects multidrug-resistant P. aeruginosa. This organism can be exposed to a wide range of concentrations of antimicrobials during treatment; learning more about the responses of P. aeruginosa to antimicrobials is therefore important. We review here responses of the bacterium P. aeruginosa upon exposure to antimicrobials at levels below the inhibitory concentration. Carbapenems (e.g., imipenem) have been shown to induce the formation of thicker and more robust biofilms, while fluoroquinolones (e.g., ciprofloxacin) and aminoglycosides (e.g., tobramycin) have been shown to induce biofilm formation. Ciprofloxacin also has been demonstrated to enhance the frequency of mutation to carbapenem resistance. Conversely, although macrolides (e.g., azithromycin) typically are not effective against P. aeruginosa because of the pseudomonal outer-membrane impermeability and efflux, macrolides do lead to a reduction in virulence factor production. Similarly, tetracycline is not very effective against this organism, but is known to induce the type-III secretion system and consequently enhance cytotoxicity of P. aeruginosa in vivo. Of special note are the effects of antibacterials and disinfectants on pseudomonal efflux systems. Sub-inhibitory concentrations of protein synthesis inhibitors (aminoglycosides, tetracycline, chloramphenicol, etc.) induce the MexXY multidrug efflux system. This response is known to be mediated by interference with the translation of the leader peptide PA5471.1, with consequent effects on expression of the PA5471 gene product. Additionally, induction of the MexCD-OprJ multidrug efflux system is observed upon exposure to sub-inhibitory concentrations of disinfectants such as chlorhexidine and benzalkonium. This response is known to be dependent upon the AlgU stress response factor. Altogether, these biological responses of P. aeruginosa provide useful

  16. Responses of Pseudomonas aeruginosa to antimicrobials.

    PubMed

    Morita, Yuji; Tomida, Junko; Kawamura, Yoshiaki

    2014-01-01

    Infections caused by Pseudomonas aeruginosa often are hard to treat; inappropriate chemotherapy readily selects multidrug-resistant P. aeruginosa. This organism can be exposed to a wide range of concentrations of antimicrobials during treatment; learning more about the responses of P. aeruginosa to antimicrobials is therefore important. We review here responses of the bacterium P. aeruginosa upon exposure to antimicrobials at levels below the inhibitory concentration. Carbapenems (e.g., imipenem) have been shown to induce the formation of thicker and more robust biofilms, while fluoroquinolones (e.g., ciprofloxacin) and aminoglycosides (e.g., tobramycin) have been shown to induce biofilm formation. Ciprofloxacin also has been demonstrated to enhance the frequency of mutation to carbapenem resistance. Conversely, although macrolides (e.g., azithromycin) typically are not effective against P. aeruginosa because of the pseudomonal outer-membrane impermeability and efflux, macrolides do lead to a reduction in virulence factor production. Similarly, tetracycline is not very effective against this organism, but is known to induce the type-III secretion system and consequently enhance cytotoxicity of P. aeruginosa in vivo. Of special note are the effects of antibacterials and disinfectants on pseudomonal efflux systems. Sub-inhibitory concentrations of protein synthesis inhibitors (aminoglycosides, tetracycline, chloramphenicol, etc.) induce the MexXY multidrug efflux system. This response is known to be mediated by interference with the translation of the leader peptide PA5471.1, with consequent effects on expression of the PA5471 gene product. Additionally, induction of the MexCD-OprJ multidrug efflux system is observed upon exposure to sub-inhibitory concentrations of disinfectants such as chlorhexidine and benzalkonium. This response is known to be dependent upon the AlgU stress response factor. Altogether, these biological responses of P. aeruginosa provide useful

  17. Multiyear, Multinational Survey of the Incidence and Global Distribution of Metallo-β-Lactamase-Producing Enterobacteriaceae and Pseudomonas aeruginosa.

    PubMed

    Kazmierczak, Krystyna M; Rabine, Sharon; Hackel, Meredith; McLaughlin, Robert E; Biedenbach, Douglas J; Bouchillon, Samuel K; Sahm, Daniel F; Bradford, Patricia A

    2016-02-01

    Metallo-β-lactamases (MBLs) hydrolyze all classes of β-lactams except monobactams and are not inhibited by classic serine β-lactamase inhibitors. Gram-negative pathogens isolated from patient infections were collected from 202 medical centers in 40 countries as part of a global surveillance study from 2012 to 2014. Carbapenem-nonsusceptible Enterobacteriaceae and Pseudomonas aeruginosa were characterized for bla genes encoding VIM, IMP, NDM, SPM, and GIM variants using PCR and sequencing. A total of 471 MBL-positive isolates included the following species (numbers of isolates are in parentheses): P. aeruginosa (308), Klebsiella spp. (85), Enterobacter spp. (39), Proteeae (16), Citrobacter freundii (12), Escherichia coli (6), and Serratia marcescens (5) and were submitted by sites from 34 countries. Of these, 69.6% were collected in 9 countries (numbers of isolates are in parentheses): Russia (72), Greece (61), Philippines (54), Venezuela (29), and Kuwait, Nigeria, Romania, South Africa, and Thailand (20 to 25 isolates each). Thirty-two different MBL variants were detected (14 VIM, 14 IMP, and 4 NDM enzymes). Seven novel MBL variants were encountered in the study, each differing from a previously reported variant by one amino acid substitution: VIM-42 (VIM-1 [V223I]), VIM-43 (VIM-4 [A24V]), VIM-44 (VIM-2 [K257N]), VIM-45 (VIM-2 [T35I]), IMP-48 (IMP-14 [I69T]), IMP-49 (IMP-18 [V49F]), and NDM-16 (NDM-1 [R264H]). The in vitro activities of all tested antibiotics against MBL-positive Enterobacteriaceae were significantly reduced with the exception of that of aztreonam-avibactam (MIC90, 0.5 to 1 μg/ml), whereas colistin was the most effective agent against MBL-positive P. aeruginosa isolates (>97% susceptible). Although the global percentage of isolates encoding MBLs remains relatively low, their detection in 12 species, 34 countries, and all regions participating in this surveillance study is concerning. PMID:26643349

  18. Multiyear, Multinational Survey of the Incidence and Global Distribution of Metallo-β-Lactamase-Producing Enterobacteriaceae and Pseudomonas aeruginosa

    PubMed Central

    Rabine, Sharon; Hackel, Meredith; McLaughlin, Robert E.; Biedenbach, Douglas J.; Bouchillon, Samuel K.; Sahm, Daniel F.; Bradford, Patricia A.

    2015-01-01

    Metallo-β-lactamases (MBLs) hydrolyze all classes of β-lactams except monobactams and are not inhibited by classic serine β-lactamase inhibitors. Gram-negative pathogens isolated from patient infections were collected from 202 medical centers in 40 countries as part of a global surveillance study from 2012 to 2014. Carbapenem-nonsusceptible Enterobacteriaceae and Pseudomonas aeruginosa were characterized for bla genes encoding VIM, IMP, NDM, SPM, and GIM variants using PCR and sequencing. A total of 471 MBL-positive isolates included the following species (numbers of isolates are in parentheses): P. aeruginosa (308), Klebsiella spp. (85), Enterobacter spp. (39), Proteeae (16), Citrobacter freundii (12), Escherichia coli (6), and Serratia marcescens (5) and were submitted by sites from 34 countries. Of these, 69.6% were collected in 9 countries (numbers of isolates are in parentheses): Russia (72), Greece (61), Philippines (54), Venezuela (29), and Kuwait, Nigeria, Romania, South Africa, and Thailand (20 to 25 isolates each). Thirty-two different MBL variants were detected (14 VIM, 14 IMP, and 4 NDM enzymes). Seven novel MBL variants were encountered in the study, each differing from a previously reported variant by one amino acid substitution: VIM-42 (VIM-1 [V223I]), VIM-43 (VIM-4 [A24V]), VIM-44 (VIM-2 [K257N]), VIM-45 (VIM-2 [T35I]), IMP-48 (IMP-14 [I69T]), IMP-49 (IMP-18 [V49F]), and NDM-16 (NDM-1 [R264H]). The in vitro activities of all tested antibiotics against MBL-positive Enterobacteriaceae were significantly reduced with the exception of that of aztreonam-avibactam (MIC90, 0.5 to 1 μg/ml), whereas colistin was the most effective agent against MBL-positive P. aeruginosa isolates (>97% susceptible). Although the global percentage of isolates encoding MBLs remains relatively low, their detection in 12 species, 34 countries, and all regions participating in this surveillance study is concerning. PMID:26643349

  19. Pseudomonas aeruginosa Dose-Response and Bathing Water Infection

    EPA Science Inventory

    Pseudomonas aeruginosa is the most commonly identified opportunistic pathogen associated with pool acquired bather disease. To better understand why this microorganism poses this protracted problem we recently appraised P. aeruginosa pool risk management. Much is known about the ...

  20. Genome Sequence of Enterobacter cloacae Strain SENG-6, a Bacterium Producing Histo-Blood Group Antigen-Like Substances That Can Bind with Human Noroviruses

    PubMed Central

    Amarasiri, Mohan; Hashiba, Satoshi; Yang, Peiyi; Okabe, Satoshi

    2016-01-01

    Enterobacter sp. strain SENG-6, isolated from healthy human feces, produces histo-blood group antigen (HBGA)-like substances that can bind with human noroviruses. Based on the genome sequence analysis, strain SENG-6 belongs to the species Enterobacter cloacae. The genome sequence of this strain should help identify genes associated with the production of HBGA-like substances. PMID:27563051

  1. Developing an international Pseudomonas aeruginosa reference panel

    PubMed Central

    De Soyza, Anthony; Hall, Amanda J; Mahenthiralingam, Eshwar; Drevinek, Pavel; Kaca, Wieslaw; Drulis-Kawa, Zuzanna; Stoitsova, Stoyanka R; Toth, Veronika; Coenye, Tom; Zlosnik, James E A; Burns, Jane L; Sá-Correia, Isabel; De Vos, Daniel; Pirnay, Jean-Paul; Kidd, Timothy J; Reid, David; Manos, Jim; Klockgether, Jens; Wiehlmann, Lutz; Tümmler, Burkhard; McClean, Siobhán; Winstanley, Craig

    2013-01-01

    Pseudomonas aeruginosa is a major opportunistic pathogen in cystic fibrosis (CF) patients and causes a wide range of infections among other susceptible populations. Its inherent resistance to many antimicrobials also makes it difficult to treat infections with this pathogen. Recent evidence has highlighted the diversity of this species, yet despite this, the majority of studies on virulence and pathogenesis focus on a small number of strains. There is a pressing need for a P. aeruginosa reference panel to harmonize and coordinate the collective efforts of the P. aeruginosa research community. We have collated a panel of 43 P. aeruginosa strains that reflects the organism's diversity. In addition to the commonly studied clones, this panel includes transmissible strains, sequential CF isolates, strains with specific virulence characteristics, and strains that represent serotype, genotype or geographic diversity. This focussed panel of P. aeruginosa isolates will help accelerate and consolidate the discovery of virulence determinants, improve our understanding of the pathogenesis of infections caused by this pathogen, and provide the community with a valuable resource for the testing of novel therapeutic agents. PMID:24214409

  2. Clonal complex Pseudomonas aeruginosa in horses.

    PubMed

    Kidd, Timothy J; Gibson, Justine S; Moss, Susan; Greer, Ristan M; Cobbold, Rowland N; Wright, John D; Ramsay, Kay A; Grimwood, Keith; Bell, Scott C

    2011-05-01

    Pseudomonas aeruginosa is associated with infectious endometritis in horses. Although infectious endometritis is often considered a venereal infection, there is relatively limited genotypic-based evidence to support this mode of transmission. The study sought to determine the relatedness between genital P. aeruginosa isolates collected from a limited geographical region using molecular strain typing. Enterobacterial repetitive intergenic consensus PCR typing was performed on 93 isolates collected between 2005 and 2009 from 2058 thoroughbred horses (including 18 stallions) at 66 studs. While P. aeruginosa was not detected in the stallions, 53/93 (57%) mares harbouring P. aeruginosa had clonally related strains, which included a single dominant genotype detected in 42 (45%) mares from 13 different studs. These novel findings suggest that most equine genital P. aeruginosa infections in this region may have been acquired from mechanisms other than direct horse to horse transmission. Instead, other potential acquisition pathways, as well as strain specific adaptation to the equine genital tract, should be investigated. PMID:21183294

  3. Study of bio-degradation and bio-decolourization of azo dye by Enterobacter sp. SXCR.

    PubMed

    Prasad, Shiv Shankar; Aikat, Kaustav

    2014-01-01

    The objective of this study was to evaluate the decolourization potential of textile dyes by a relatively newly identified bacteria species, Enterobacter sp. SXCR which was isolated from the petroleum polluted soil samples. The bacterial strain was identified by 16S rRNA gene sequence analysis. The effects of operational conditions like initial dye concentration, pH, and temperature were optimized to develop an economically feasible decolourization process. The isolate was able to decolourize sulphonated azo dye (Congo red) over a wide range (0.1-1 gl(-1)), pH 5-9, and temperature 22-40 degrees C in static condition. Anaerobic condition with minimal salt medium supplemented with 2 gl(-1) glucose, pH 7 and 34 degrees C were considered to be the optimum decolourizing condition. The bacterial isolate SXCR showed a strong ability to decolourize dye (0.2 gl(-1)) within 93 h. The biodegradation was monitored by UV-vis, fourier transform infra-red spectroscopy (FTIR) spectroscopy and high performance liquid chromatography (HPLC). Furthermore, the involvement of azoreductase in the decolourization process was identified in this strain. Cells of Enterobacter cloacae were immobilized by entrapment in calcium-alginate beads. Immobilized bacterial cells were able to reduced azo bonds enzymatically and used as a biocatalyst for decolourization of azo dye Congo red. Michaelis-Menten kinetics was used to describe the correlation between the decolourization rate and the dye concentration. PMID:24645479

  4. Characterization of a collection of Enterobacter sakazakii isolates from environmental and food sources.

    PubMed

    Drudy, Denise; O'Rourke, Michele; Murphy, Mary; Mullane, Niall R; O'Mahony, Rebecca; Kelly, Lorraine; Fischer, Matthias; Sanjaq, Suhad; Shannon, Pauline; Wall, Patrick; O'Mahony, Micheál; Whyte, Paul; Fanning, Séamus

    2006-07-15

    Enterobacter sakazakii has emerged as a rare cause of neonatal meningitis, septicemia and enterocolitis. Contaminated infant milk formula (IMF) has been identified as one infection route. A small number of clinical outbreaks have been epidemiologically linked to IMF contaminated post-pasteurization during manufacture and/or mishandled when reconstituted. Currently no agreed standardized typing protocol has been developed to trace E. sakazakii. The objectives of this study were to apply biochemical and genetic methods to characterize 51 environmental and food E. sakazakii isolates and 6 E. sakazakii type strains. Isolates were presumptively identified using biochemical profiles based on API 20E and ID32E methods and by culture on differential selective Druggan Forsythe Iversen (DFI) agar. Identification was subsequently confirmed by real time polymerase chain reaction (PCR). All but one of the isolates was identified as E. sakazakii by biochemical profiling. One isolate was identified as Escherichia vulneris by ID 32E and as Pantoea agglomerans by API 20E. All isolates produced green/blue colonies on DFI medium characteristic of this organism. Real time PCR could differentiate between E. sakazakii, Enterobacter spp. and other Enterobacteriacae. Analysis of RAPD banding patterns revealed 3 major clusters of E. sakazakii. There was a large degree of diversity noted amongst the remaining isolates. Our findings indicate that RAPD may be applied as a useful and reliable tool for direct comparison of E. sakazakii isolates providing traceability through the infant formula food chain. PMID:16730386

  5. Dry stress and survival time of Enterobacter sakazakii and other Enterobacteriaceae in dehydrated powdered infant formula.

    PubMed

    Barron, Juncal Caubilla; Forsythe, Stephen J

    2007-09-01

    Powdered infant formula is not a sterile product, and opportunistic pathogens could multiply in the reconstituted product, resulting in neonatal infections. In this study, the generation of sublethally injured Enterobacteriaceae during desiccation and their persistence in dehydrated powdered infant formula was assessed during a 2.5-year period. The study included 27 strains of Enterobacter sakazakii, Enterobacter cloacae, Salmonella Enteritidis, Citrobacter koseri, Citrobacter freundii, Escherichia coli, Escherichia vulneris, Pantoea spp., Klebsiella oxytoca, and Klebsiella pneumoniae. The number of sublethally injured cells generated during desiccation was lower for K. oxytoca, Pantoea spp., Salmonella Enteritidis, and capsulated strains of E. sakazakii than for the other Enterobacteriaceae. The Enterobacteriaceae could be divided into three groups with respect to their long-term survival in the desiccated state. C. freundii, C. koseri, and E. cloacae were no longer recoverable after 6 months, and Salmonella Enteritidis, K. pneumoniae, and E. coli could not be recovered after 15 months. Pantoea spp., K. oxytoca, and E. vulneris persisted over 2 years, and some capsulated strains of E. sakazakii were still recoverable after 2.5 years. PMID:17900090

  6. Association of antibiotic resistance with SHV-12 extended-spectrum β-lactamase in Enterobacter cloacae

    PubMed Central

    LIU, JUN; LI, GUO-MING; LIN, LI-YAO; WU, XIA-LEI; HUANG, SHAO-LONG; ZHOU, YONG; ZHAO, ZU-GUO

    2016-01-01

    The association between antibiotic resistance and SHV-12 extended-spectrum β-lactamase (ESBL) in Enterobacter cloacae remains unknown. The aim of the present study was to investigate the prevalence of both chromosome- and plasmid-borne SHV-12 ESBL genes in Enterobacter cloacae. Transmission of the SHV-12 ESBL gene was explored, and the risk factors for antibiotic resistance in E. cloacae were analyzed. Polymerase chain reaction (PCR) results showed that 58 out of the 100 isolates carried the SHV-12 ESBL gene: 34.48% of them occurred in the chromosome, 48.28% were plasmid-borne and 17.24% appeared in both. Enterobacterial repetitive intergenic consensus-PCR tests detected 82 chromosomal genotypes. Conjugation assays showed that 70.00% of plasmid-borne SHV-12 ESBL genes were successfully transconjugated into E. coli C600 and that the antibiotic resistance phenotype of E. cloacae was partially (84%) or completely (10%) transferred. A significantly higher SHV-12 ESBL detection rate was found in patients with underlying conditions and/or complications compared with those without (P<0.05). The detection of SHV-12 ESBL-producing E. cloacae from vertical transmission varied significantly across clinical departments and age groups (P<0.05), with the highest rates in the intensive care unit and the group of patients aged ≥60 years. The present results indicate that the location and transmission efficiency of SHV-12 ESBL are closely correlated with the antibiotic resistance of E. cloacae. PMID:26889253

  7. Enterobacter cloacae Sacroiliitis with Acute Respiratory Distress Syndrome in an Adolescent

    PubMed Central

    Kim, Jin Soo; Ko, Jeong Hee; Lee, Seunghun; Jeon, Seok Chol

    2015-01-01

    Enterobacter cloacae has emerged as an important nosocomial pathogen, but is rarely a cause of sacroiliitis. Herein, we present the first reported case of Enterobacter cloacae sacroiliitis associated with sepsis and acute respiratory distress syndrome (ARDS). A previously healthy 14-year-old boy presented with low-grade fever and pain in the left side of the hip that was aggravated by walking. Pelvic computed tomography (CT) showed normal findings, and the patient received supportive care for transient synovitis with no antibiotics. However, there was no clinical improvement. On the third day of hospitalization, magnetic resonance imaging of the hip revealed findings compatible with sacroiliitis, for which vancomycin and ceftriaxone were administered. The patient suddenly developed high fever with dyspnea. Chest radiography and CT findings and a PaO2/FiO2 ratio <200 mmHg were suggestive of ARDS; the patient subsequently received ventilatory support and low-dose methylprednisolone infusions. Within one week, defervescence occurred, and the patient was able to breathe on his own. Following the timely recognition of, and therapeutic challenge to, ARDS, and after 6 weeks of parenteral antimicrobial therapy, the patient was discharged in good health with no complications. PMID:26157593

  8. Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1

    SciTech Connect

    DeAngelis, Kristen M.; Sharma, Deepak; Varney, Rebecca; Simmons, Blake A.; Isern, Nancy G.; Markillie, Lye Meng; Nicora, Carrie D.; Norbeck, Angela D.; Taylor, Ronald C.; Aldrich, Joshua T.; Robinson, Errol W.

    2013-08-29

    The anaerobic isolate Enterobacter lignolyticus SCF1 was initially cultivated based on anaerobic growth on lignin as sole carbon source. The source of the isolated bacteria was from tropical forest soils that decompose litter rapidly with low and fluctuating redox potentials, making it likely that bacteria using oxygen-independent enzymes play an important role in decomposition. We have examined differential expression of the anaerobic isolate Enterobacter lignolyticus SCF1 during growth on lignin. After 48 hours of growth, we used transcriptomics and proteomics to define the enzymes and other regulatory machinery that these organisms use to degrade lignin, as well as metabolomics to measure lignin degradation and monitor the use of lignin and iron as terminal electron acceptors that facilitate more efficient use of carbon. Proteomics revealed accelerated xylose uptake and metabolism under lignin-amended growth, and lignin degradation via the 4-hydroxyphenylacetate degradation pathway, catalase/peroxidase enzymes, and the glutathione biosynthesis and glutathione S-transferase proteins. We also observed increased production of NADH-quinone oxidoreductase, other electron transport chain proteins, and ATP synthase and ATP-binding cassette (ABC) transporters. Our data shows the advantages of a multi-omics approach, where incomplete pathways identified by genomics were completed, and new observations made on coping with poor carbon availability. The fast growth, high efficiency and specificity of enzymes employed in bacterial anaerobic litter deconstruction makes these soils useful templates for improving biofuel production.

  9. Identification of sdiA-regulated genes in a mouse commensal strain of Enterobacter cloacae

    PubMed Central

    Sabag-Daigle, Anice; Dyszel, Jessica L.; Gonzalez, Juan F.; Ali, Mohamed M.; Ahmer, Brian M. M.

    2015-01-01

    Many bacteria determine their population density using quorum sensing. The most intensively studied mechanism of quorum sensing utilizes proteins of the LuxI family to synthesize a signaling molecule of the acylhomoserine lactone (AHL) type, and a protein of the LuxR family to bind AHL and regulate transcription. Genes regulated by quorum sensing often encode functions that are most effective when a group of bacteria are working cooperatively (e.g., luminescence, biofilm formation, host interactions). Bacteria in the Escherichia, Salmonella, Klebsiella, and Enterobacter genera do not encode an AHL synthase but they do encode an AHL receptor of the LuxR family, SdiA. Instead of detecting their own AHL synthesis, these organisms use SdiA to detect the AHLs synthesized by other bacterial species. In this study, we used a genetic screen to identify AHL-responsive genes in a commensal Enterobacter cloacae strain that was isolated from a laboratory mouse. The genes include a putative type VI secretion system, copA (a copper transporter), and fepE (extends O-antigen chain length). A new transposon mutagenesis strategy and suicide vectors were used to construct an sdiA mutant of E. cloacae. The AHL-responsiveness of all fusions was entirely sdiA-dependent, although some genes were regulated by sdiA in the absence of AHL. PMID:26075189

  10. The application of peptide nucleic acid probes for rapid detection and enumeration of eubacteria, Staphylococcus aureus and Pseudomonas aeruginosa in recreational beaches of S. Florida.

    PubMed

    Esiobu, Nwadiuto; Mohammed, Renuka; Echeverry, Andrea; Green, Melissa; Bonilla, Tonya; Hartz, Aaron; McCorquodale, Don; Rogerson, Andrew

    2004-05-01

    A novel chemiluminescent in situ hybridization technique using peptide nucleic acids (PNA) was adapted for the detection of bacteria in beach sand and recreational waters in South Florida. The simultaneous detection and enumeration of eubacteria and the novel indicators, Staphylococcus aureus and Pseudomonas aeruginosa, was achieved within 6-8 h of processing. Following 5 h of incubation on TSA, soybean peroxidase-labeled peptide nucleic acid probes (Boston Probes, Boston, MA) targeting species-specific 16S rRNA sequences of P. aeruginosa and S. aureus were used to hybridize microcolonies of the target species in-situ. In addition, a universal probe for 16S rRNA sequences was used to target the eubacteria. Probes were detected after a light generating reaction with a chemiluminescent substrate and their presence recorded on Polaroid film. The probes showed limited cross-reactivity with mixed indigenous bacteria extracted from seawater and sand by shaking with phosphate-buffered saline (PBS). Specificity and cross-reactivity was tested on the reference bacterial genera Pseudomonas, Staphylococcus, Vibrio, Shigella, Salmonella, Acinetobacter, Enterobacter, Escherichia and Citrobacter. These tests confirmed that the probes were specific for the microorganisms of interest and were unaffected by high salt levels. The results of the PNA chemiluminescent in situ hybridization were compared with traditional plate count methods (PCM) for total 'freshwater' eubacteria, S. aureus and P. aeruginosa. Counts of eubacteria and S. aureus were comparable with numbers obtained from traditional plate counts but levels of P. aeruginosa were higher with PNA than with PCM. It is possible that PNA is more sensitive than PCM because it can detect microcolonies on the agar surface that never fully develop with the plate count method. We conclude that the in situ hybridization technique used here represents an important potential tool for the rapid monitoring of novel indicator organisms in

  11. Antimicrobial activity of essential oil from Schinus molle Linn.

    PubMed

    Gundidza, M

    1993-11-01

    The essential oil from the fresh leaves of Schinus molle isolated by hydrodistillation was tested for antibacterial activity using the hole plate diffusion method and for antifungal activity using the mycelium or single cell growth inhibition method. Results obtained showed that the volatile oil exhibited significant activity against the following bacterial species: Klebsiella pneumoniae, Alcaligenes faecalis, Pseudomonas aeruginosa, Leuconostoc cremoris, Enterobacter aerogenes, Proteus vulgaris, Clostridium sporogenes, Acinetobacter calcoacetica, Escherichia coli, Beneckea natriegens, Citrobacter freundii, Serratia marcescens, Bacillus subtilis and Brochothrix thermosphacata. The fungal species Aspergillus ochraceus, Aspergillus parasiticus, Fusarium culmorum and Alternaria alternata exhibited significant sensitivity to the volatile oil. PMID:8055554

  12. Draft Genome Sequence of Endophytic Bacterium Enterobacter asburiae PDA134, Isolated from Date Palm (Phoenix dactylifera L.) Roots

    PubMed Central

    2016-01-01

    In this report, a draft of the Enterobacter asburiae strain PDA134 genome was sequenced. This bacterial strain was isolated from the root tissue of a date palm, where it has the ability to produce 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and indole-3-acetic acid (IAA) under salinity stress. PMID:27540071

  13. Draft Genome Sequence of Endophytic Bacterium Enterobacter asburiae PDA134, Isolated from Date Palm (Phoenix dactylifera L.) Roots.

    PubMed

    Yaish, Mahmoud W

    2016-01-01

    In this report, a draft of the Enterobacter asburiae strain PDA134 genome was sequenced. This bacterial strain was isolated from the root tissue of a date palm, where it has the ability to produce 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and indole-3-acetic acid (IAA) under salinity stress. PMID:27540071

  14. Infections with VIM-1 Metallo-β-Lactamase-Producing Enterobacter cloacae and Their Correlation with Clinical Outcome▿

    PubMed Central

    Falcone, Marco; Mezzatesta, Maria Lina; Perilli, Mariagrazia; Forcella, Chiara; Giordano, Alessandra; Cafiso, Viviana; Amicosante, Gianfranco; Stefani, Stefania; Venditti, Mario

    2009-01-01

    The aim of this study was to ascertain the incidence and clinical significance of metallo-β-lactamases among Enterobacter strains isolated from patients with nosocomial infections. We prospectively collected data on patients with Enterobacter infection during a 13-month period. All of the strains were investigated for antibiotic susceptibility, the presence and expression of metallo-β-lactamases, and clonality. Of 29 infections (11 involving the urinary tract, 7 pneumonias, 3 skin/soft tissue infections, 3 intra-abdominal infections, 3 bacteremias, and 2 other infections), 7 (24%) were caused by Enterobacter cloacae strains harboring a blaVIM-1 gene associated or not with a blaSHV12 gene. Infections caused by VIM-1-producing strains were more frequently associated with a recent prior hospitalization (P = 0.006), cirrhosis (P = 0.03), relapse of infection (P < 0.001), and more prolonged duration of antibiotic therapy (P = 0.01) than were other infections. All of the isolates were susceptible to imipenem and meropenem and had blaVIM-1 preceded by a weak P1 promoter and inactivated P2 promoters. Most VIM-1-producing Enterobacter isolates belonged to a main clone, but four different clones were found. Multiclonal VIM-1-producing E. cloacae infections are difficult to diagnose due to an apparent susceptibility to various beta-lactams, including carbapenems, and are associated with a high relapse rate and a more prolonged duration of antibiotic therapy. PMID:19741074

  15. Demonstrating Pathogenicity of Enterobacter cloacae on Macadamia and Identifying Associated Volatiles of Gray Kernel of Macadamia in Hawaii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gray kernel is an important disease of macadamia that affects the quality of kernels, causing gray discoloration and a permeating, foul odor. Gray kernel symptoms were produced in raw, in-shell kernels of three cultivars of macadamia that were inoculated with strains of Enterobacter cloacae. Koch’...

  16. Plant growth promotion and root colonization by EPS producing Enterobacter sp. RZS5 under heavy metal contaminated soil.

    PubMed

    Sayyed, R Z; Patel, P R; Shaikh, S S

    2015-02-01

    The heavy metal resistant bacterium isolated from field soil and identified as Enterobacter sp. RZS5 tolerates a high concentration (100-2000 μM) of various heavy metal ions such as Mn2+, Ni2+, Zn2+, Cu2+, CO2+ and Fe2+ when grown in such environment and produces exopolysaccharides (EPS). Here, we have demonstrated EPS production by Enterobacter sp. RZS5 during 60 h of growth in yeast extract mannitol broth (YEMB). The yield increased by two fold after the addition of 60 μM of Ca2+; 50 μM of Fe2+ and 60 μM of Mg2+ ions in YEMB, and the optimization of physico-chemical parameters. EPS was extracted with 30% (v/v) of isopropanol as against the commonly used 50% (v/v) isopropanol method. EPS-rich broth promoted seed germination, shoot height, root length, number of leaves and chlorophyll content of wheat (Triticum aestivum) seed and peanut (Arachis hypogaea) seed. The higher colony-forming unit of Enterobacter sp. in soil inoculated with EPS rich broth of Enterobacter sp. indicated the root colonizing potential and rhizosphere competence of the isolate. The FTIR spectra of the EPS extract confirmed the presence of the functional group characteristics of EPS known to exhibit a high binding affinity towards certain metal ions. This overall growth and vigour in plants along with the effective root colonization, reflected the potential of the isolate as an efficient bio-inoculant in bioremediation. PMID:25757243

  17. Association of Enterobacter cloacae and other bacteria with onion bulb rot in the Columbia Basin of Washington and Oregon, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Approximately 1.6 million metric tons of onion bulbs are produced annually in the Pacific Northwest USA. Bulb decay can be a major problem and is caused by a variety of plant pathogens. Onion bulbs exhibiting symptoms of bacterial rot were sampled to determine the causal agents. Enterobacter cloacae...

  18. Production of Internal Yellowing Symptoms on Resistant and Susceptible Papaya Cultivars by Enterobacter cloacae at Varying Inoculum Concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Internal yellowing (IY) is a bacterial disease of ripening papaya flesh caused by Enterobacter cloacae and characterized by yellow softening tissue. IY restricts food safety of value-added products like fresh or frozen papaya cubes. The incidence of E. cloacae presumably differs in resistant (R) a...

  19. Spaceflight Effects on Virulence of Pseudomonas Aeruginosa

    NASA Astrophysics Data System (ADS)

    Broadway, S.; Goins, T.; Crandell, C.; Richards, C.; Patel, M.; Pyle, B.

    2008-06-01

    Pseudomonas aeruginosa is an opportunistic pathogen found in the environment. It is known to infect the immunocompromised. The organism has about 25 virulence genes that play different roles in disease processes. Several exotoxin proteins may be produced, including ExoA, ExoS, ExoT and ExoY, and other virulence factors. In spaceflight, possible increased expression of P. aeruginosa virulence proteins could increase health risks for spaceflight crews who experience decreased immunity. Cultures of P. aeruginosa strains PA01 and PA103 grown on orbit on Shuttle Endeavour flight STS-123 vs. static ground controls were used for analysis. The production of ETA was quantitated using an ELISA procedure. Results showed that while flight cultures of PA103 produced slightly more ETA than corresponding ground controls, the opposite was found for PA01. While it appears that spaceflight has little effect on ETA, stimulation of other virulence factors could cause increased virulence of this organism in space flight. Similar increased virulence in spaceflight has been observed for other bacteria. This is important because astronauts may be more susceptible to opportunistic pathogens including P. aeruginosa.

  20. [Macrolides, Pseudomonas aeruginosa and cystic fibrosis].

    PubMed

    Guillot, M; Amiour, M; El Hachem, C; Harchaoui, S; Ribault, V; Paris, C

    2006-10-01

    Long-term low dose azithromycin treatment in cystic fibrosis patients with chronic Pseudomonas aeruginosa infection is safe and reduces the decline in lung function, the number of acute exacerbations and improves nutritional status; underlying efficacy mechanisms are multiple and synergistic. PMID:17370396

  1. Pseudomonas Aeruginosa: Resistance to the Max

    PubMed Central

    Poole, Keith

    2011-01-01

    Pseudomonas aeruginosa is intrinsically resistant to a variety of antimicrobials and can develop resistance during anti-pseudomonal chemotherapy both of which compromise treatment of infections caused by this organism. Resistance to multiple classes of antimicrobials (multidrug resistance) in particular is increasingly common in P. aeruginosa, with a number of reports of pan-resistant isolates treatable with a single agent, colistin. Acquired resistance in this organism is multifactorial and attributable to chromosomal mutations and the acquisition of resistance genes via horizontal gene transfer. Mutational changes impacting resistance include upregulation of multidrug efflux systems to promote antimicrobial expulsion, derepression of ampC, AmpC alterations that expand the enzyme's substrate specificity (i.e., extended-spectrum AmpC), alterations to outer membrane permeability to limit antimicrobial entry and alterations to antimicrobial targets. Acquired mechanisms contributing to resistance in P. aeruginosa include β-lactamases, notably the extended-spectrum β-lactamases and the carbapenemases that hydrolyze most β-lactams, aminoglycoside-modifying enzymes, and 16S rRNA methylases that provide high-level pan-aminoglycoside resistance. The organism's propensity to grow in vivo as antimicrobial-tolerant biofilms and the occurrence of hypermutator strains that yield antimicrobial resistant mutants at higher frequency also compromise anti-pseudomonal chemotherapy. With limited therapeutic options and increasing resistance will the untreatable P. aeruginosa infection soon be upon us? PMID:21747788

  2. Surface attachment induces Pseudomonas aeruginosa virulence

    PubMed Central

    Siryaporn, Albert; Kuchma, Sherry L.; O’Toole, George A.; Gitai, Zemer

    2014-01-01

    Pseudomonas aeruginosa infects every type of host that has been examined by deploying multiple virulence factors. Previous studies of virulence regulation have largely focused on chemical cues, but P. aeruginosa may also respond to mechanical cues. Using a rapid imaging-based virulence assay, we demonstrate that P. aeruginosa activates virulence in response to attachment to a range of chemically distinct surfaces, suggesting that this bacterial species responds to mechanical properties of its substrates. Surface-activated virulence requires quorum sensing, but activating quorum sensing does not induce virulence without surface attachment. The activation of virulence by surfaces also requires the surface-exposed protein PilY1, which has a domain homologous to a eukaryotic mechanosensor. Specific mutation of the putative PilY1 mechanosensory domain is sufficient to induce virulence in non–surface-attached cells, suggesting that PilY1 mediates surface mechanotransduction. Triggering virulence only when cells are both at high density and attached to a surface—two host-nonspecific cues—explains how P. aeruginosa precisely regulates virulence while maintaining broad host specificity. PMID:25385640

  3. Evaluation of a chromogenic medium supplemented with glucose for detecting Enterobacter sakazakii.

    PubMed

    Song, Kwang-Young; Hyeon, Ji-Yeon; Shin, Ho-Chul; Park, Chan-Kyu; Choi, In-Soo; Seo, Kun-Ho

    2008-03-01

    A commercial chromogenic agar medium (DFI) was supplemented with glucose (mDFI) to enhance the specificity of Enterobacter sakazakii (E. sakazakii) detection. Escherichia vulneris (E. vulneris), a putative false-positive strain on the DFI medium, produces alpha-glucosidase. The enzyme alpha- glucosidase hydrolyzes a substrate, 5-bromo-4-chloro-3- indolyl-alpha,D-glucopyranoside (XalphaGlc), producing green colonies. E. sakazakii strains produced green colonies on both DFI and mDFI agar, whereas E. vulneris produced green colonies on DFI agar but small white colonies on mDFI agar. E. sakazakii and E. vulneris were also readily differentiated by colony color when the mixed culture of the two strains was plated on mDFI agar and incubated for 24 h at 37 degrees C. The results indicate that the selectivity of the commercial chromogenic agar medium could be improved by a simple supplementation with glucose. PMID:18388480

  4. Structure and gene cluster of the O-antigen of Enterobacter cloacae G3421.

    PubMed

    Perepelov, Andrei V; Filatov, Andrei V; Wang, Min; Shashkov, Alexander S; Wang, Lei; Knirel, Yuriy A

    2016-06-01

    The O-polysaccharide was isolated by mild acid degradation of the lipopolysaccharide of Enterobacter cloacae G3421 and studied by sugar analysis along with 1D and 2D (1)H and (13)C NMR spectroscopy. In addition, partial solvolysis with anhydrous trifluoroacetic acid was applied, which cleaved selectively the α-l-rhamnopyranosidic linkages. The following structure of the branched hexasaccharide repeating unit was established. The O-polysaccharide studied shares the β-l-Rhap-(1→4)-α-l-Rhap-(1→2)-α-l-Rhap trisaccharide fragment with the O-polysaccharide of Shigella boydii type 18. The O-antigen gene cluster of E. cloacae G3421 was sequenced. Functions of genes in the cluster, including those for glycosyltransferases, were tentatively assigned by a comparison with sequences in the available databases and found to be consistent with the O-polysaccharide structure. PMID:27131290

  5. A Multiple Antibiotic-Resistant Enterobacter cloacae Strain Isolated from a Bioethanol Fermentation Facility

    PubMed Central

    Murphree, Colin A.; Li, Qing; Heist, E. Patrick; Moe, Luke A.

    2014-01-01

    An Enterobacter cloacae strain (E. cloacae F3S3) that was collected as part of a project to assess antibiotic resistance among bacteria isolated from bioethanol fermentation facilities demonstrated high levels of resistance to antibiotics added prophylactically to bioethanol fermentors. PCR assays revealed the presence of canonical genes encoding resistance to penicillin (ampC) and erythromycin (ermG). Assays measuring biofilm formation under antibiotic stress indicated that erythromycin induced biofilm formation in E. cloacae F3S3. Planktonic growth and biofilm formation were observed at a high ethanol content, indicating E. cloacae F3S3 can persist in a bioethanol fermentor under the highly variable environmental conditions found in fermentors. PMID:24941895

  6. Exopolysaccharide production by a genetically engineered Enterobacter cloacae strain for microbial enhanced oil recovery.

    PubMed

    Sun, Shanshan; Zhang, Zhongzhi; Luo, Yijing; Zhong, Weizhang; Xiao, Meng; Yi, Wenjing; Yu, Li; Fu, Pengcheng

    2011-05-01

    Microbial enhanced oil recovery (MEOR) is a petroleum biotechnology for manipulating function and/or structure of microbial environments existing in oil reservoirs for prolonged exploitation of the largest source of energy. In this study, an Enterobacter cloacae which is capable of producing water-insoluble biopolymers at 37°C and a thermophilic Geobacillus strain were used to construct an engineered strain for exopolysaccharide production at higher temperature. The resultant transformants, GW3-3.0, could produce exopolysaccharide up to 8.83 g l(-1) in molasses medium at 54°C. This elevated temperature was within the same temperature range as that for many oil reservoirs. The transformants had stable genetic phenotype which was genetically fingerprinted by RAPD analysis. Core flooding experiments were carried out to ensure effective controlled profile for the simulation of oil recovery. The results have demonstrated that this approach has a promising application potential in MEOR. PMID:21444201

  7. Association and attraction of blueberry maggot fly Curran (Diptera: Tephritidae) to Pantoea (Enterobacter) agglomerans.

    PubMed

    MacCollom, G B; Lauzon, C R; Sjogren, R E; Meyer, W L; Olday, F

    2009-02-01

    The attraction of washed, medium-free cells of Pantoea (Enterobacter) agglomerans to wild, adult Rhagoletis mendax Curran, the blueberry maggot fly, was evaluated in managed blueberry fields in Maine. Attraction was evaluated using Pherocon AM and Ladd traps, each tested with or without washed bacterial cells. Field studies showed significant increases in fly captures on the Pherocon AM traps. Apple volatiles odors on Ladd traps seemed to cancel the effects of bacterial odors. Aerobic heterotrophic bacteria were isolated and identified from alimentary organs within wild R. mendax. Isolates indentified included P. agglomerans. Blueberries collected in the field were surveyed for the presence of P. agglomerans and blueberries containing blueberry maggot larvae and noninfested blueberries were analyzed for amino acid content. Maggot-infested blueberry contained twice the amino acid nitrogen than that of noninfested blueberry. P. agglomerans, like with other pest tephritids, seems to be a cosmopolite with blueberry maggot. PMID:19791604

  8. A multiple antibiotic-resistant enterobacter cloacae strain isolated from a bioethanol fermentation facility.

    PubMed

    Murphree, Colin A; Li, Qing; Heist, E Patrick; Moe, Luke A

    2014-09-17

    An Enterobacter cloacae strain (E. cloacae F3S3) that was collected as part of a project to assess antibiotic resistance among bacteria isolated from bioethanol fermentation facilities demonstrated high levels of resistance to antibiotics added prophylactically to bioethanol fermentors. PCR assays revealed the presence of canonical genes encoding resistance to penicillin (ampC) and erythromycin (ermG). Assays measuring biofilm formation under antibiotic stress indicated that erythromycin induced biofilm formation in E. cloacae F3S3. Planktonic growth and biofilm formation were observed at a high ethanol content, indicating E. cloacae F3S3 can persist in a bioethanol fermentor under the highly variable environmental conditions found in fermentors. PMID:24941895

  9. Cloning and characterization of newly isolated lipase from Enterobacter sp. Bn12

    PubMed Central

    Farrokh, Parisa; Yakhchali, Bagher; Karkhane, Ali Asghar

    2014-01-01

    A mesophilic Enterobacter sp. Bn12 producing an alkaline thermostable lipase was isolated from soil in Tehran, Iran. The lipase gene (ELBn12) was identified from a genomic library. Sequence analysis of the DNA fragment revealed an open reading frame of 879 bp encoding a lipase with a molecular mass of 31.3 kDa. The deduced amino acid sequence showed 96% identity with a lipase of Enterobacter sp. Ag1 and the identity of their DNA sequences was 88.9%. ELBn12 belongs to the lipase subfamily I.1 and its catalytic triad consists of Ser82, Asp237 and His259. The lipase was expressed in Escherichia coli (BL21) pLysS and partially purified by anion exchange chromatography. The maximum activity of ELBn12 was obtained at temperature of 60 °C and pH 8.0 towards tricaprylin (C8) and its specific activity was around 2900 U/mg. ELBn12 was stable within a broad pH range from 6.0 to 11.0. The enzyme showed high stability in both polar and nonpolar organic solvents at 50% (v/v). The lipase activity was enhanced in the presence of 10 mM of Ca2+, Mg2+ and K+, while heavy metals (Fe3+ and Zn2+) had strong inhibitory effect. ELBn12 showed high activity in the presence of 1% (w/v) nonionic surfactants, however ionic surfactants inhibited the lipolytic activity. ELBn12 characteristics show that it has a potential to be used in various industrial processes. PMID:25242958

  10. Isolation and characterization of diverse antimicrobial lipopeptides produced by Citrobacter and Enterobacter

    PubMed Central

    2013-01-01

    Background Increasing multidrug-resistance in bacteria resulted in a greater need to find alternative antimicrobial substances that can be used for clinical applications or preservation of food and dairy products. Research on antimicrobial peptides including lipopeptides exhibiting both narrow and broad spectrum inhibition activities is increasing in the recent past. Therefore, the present study was aimed at isolation and characterization of antimicrobial lipopeptide producing bacterial strains from fecal contaminated soil sample. Results The phenotypic and 16S rRNA gene sequence analysis of all isolates identified them as different species of Gram-negative genera Citrobacter and Enterobacter. They exhibited common phenotypic traits like citrate utilization, oxidase negative and facultative anaerobic growth. The HPLC analysis of solvent extracts obtained from cell free fermented broth revealed the presence of multiple antimicrobial lipopeptides. The comprehensive mass spectral analysis (MALDI-TOF MS and GC-MS) of HPLC purified fractions of different isolates revealed that the lipopeptides varied in their molecular weight between (m/z) 607.21 to 1536.16 Da. Isomers of mass ion m/z 984/985 Da was produced by all strains. The 1495 Da lipopeptides produced by strains S-3 and S-11 were fengycin analogues and most active against all strains. While amino acid analysis of lipopeptides suggested most of them had similar composition as in iturins, fengycins, kurstakins and surfactins, differences in their β-hydroxy fatty acid content proposed them to be isoforms of these lipopeptides. Conclusion Although antimicrobial producing strains can be used as biocontrol agents in food preservation, strains with ability to produce multiple antimicrobial lipopeptides have potential applications in biotechnology sectors such as pharmaceutical and cosmetic industry. This is the first report on antibacterial lipopeptides production by strains of Citrobacter and Enterobacter. PMID

  11. Cloning and characterization of newly isolated lipase from Enterobacter sp. Bn12.

    PubMed

    Farrokh, Parisa; Yakhchali, Bagher; Karkhane, Ali Asghar

    2014-01-01

    A mesophilic Enterobacter sp. Bn12 producing an alkaline thermostable lipase was isolated from soil in Tehran, Iran. The lipase gene (ELBn12) was identified from a genomic library. Sequence analysis of the DNA fragment revealed an open reading frame of 879 bp encoding a lipase with a molecular mass of 31.3 kDa. The deduced amino acid sequence showed 96% identity with a lipase of Enterobacter sp. Ag1 and the identity of their DNA sequences was 88.9%. ELBn12 belongs to the lipase subfamily I.1 and its catalytic triad consists of Ser82, Asp237 and His259. The lipase was expressed in Escherichia coli (BL21) pLysS and partially purified by anion exchange chromatography. The maximum activity of ELBn12 was obtained at temperature of 60 °C and pH 8.0 towards tricaprylin (C8) and its specific activity was around 2900 U/mg. ELBn12 was stable within a broad pH range from 6.0 to 11.0. The enzyme showed high stability in both polar and nonpolar organic solvents at 50% (v/v). The lipase activity was enhanced in the presence of 10 mM of Ca(2+), Mg(2+) and K(+), while heavy metals (Fe(3+) and Zn(2+)) had strong inhibitory effect. ELBn12 showed high activity in the presence of 1% (w/v) nonionic surfactants, however ionic surfactants inhibited the lipolytic activity. ELBn12 characteristics show that it has a potential to be used in various industrial processes. PMID:25242958

  12. Enterobacter sacchari sp. nov., a nitrogen-fixing bacterium associated with sugar cane (Saccharum officinarum L.).

    PubMed

    Zhu, Bo; Zhou, Qing; Lin, Li; Hu, Chunjin; Shen, Ping; Yang, Litao; An, Qianli; Xie, Guanlin; Li, Yangrui

    2013-07-01

    Five nitrogen-fixing bacterial strains (SP1(T), NN143, NN144, NN208 and HX148) were isolated from stem, root or rhizosphere soil of sugar cane (Saccharum officinarum L.) plants. Cells were Gram-negative, motile, rods with peritrichous flagella. DNA G+C content was 55.0 ± 0.5 mol%. Sequence determinations and phylogenetic analysis of 16S rRNA gene and rpoB indicated that the strains were affiliated with the genus Enterobacter and most closely related to E. radicincitans DSM 16656(T) and E. oryzae LMG 24251(T). Fluorimetric determination of thermal denaturation temperatures after DNA-DNA hybridization, enterobacterial repetitive intergenic consensus PCR and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry differentiated the whole-genome, genotype and protein profiles from those of E. radicincitans and E. oryzae. The strains' cell fatty acid composition differentiated them from E. radicincitans and E. oryzae by containing a higher level of summed feature 2 (C16 : 1ω7c and/or C16 : 1ω6c) and a lower level of C17 : 0 cyclo. Their physiological and biochemical profiles differentiated them from E. radicincitans by being positive for methyl red test, ornithine decarboxylase and utilization of putrescine, D-arabitol, L-fucose and methyl α-D-glucoside and being negative for arginine dihydrolase, and differentiated them from E. oryzae by being positive for aesculin hydrolysis and utilization of putrescine, D-arabitol and L-rhamnose and being negative for arginine dihydrolase, lysine decarboxylase and utilization of mucate. The five strains therefore represent a novel species, for which the name Enterobacter sacchari sp. nov. is proposed, with the type strain SP1(T) ( = CGMCC 1.12102(T) = LMG 26783(T)). PMID:23291881

  13. Complete Genome Sequence of Enterobacter sp. Strain R4-368, an Endophytic N-Fixing Gammaproteobacterium Isolated from Surface-Sterilized Roots of Jatropha curcas L.

    PubMed

    Madhaiyan, Munusamy; Peng, Ni; Ji, Lianghui

    2013-01-01

    Enterobacter sp. strain R4-368 is one of the few characterized Jatropha endophytic diazotrophic bacteria and was isolated from surface-sterilized roots. This bacterium shows strong growth-promoting effects, being able to increase plant biomass and seed yields. Enterobacter sp. R4-368 is the second fully sequenced diazotrophic Enterobacter species. The sequence information shall facilitate the elucidation of the molecular mechanisms of plant growth promotion, nitrogen fixation in nonlegume plant species, and evolution of biological nitrogen fixation systems. PMID:23908287

  14. The combination Enterobacter agglomerans is to be cited as Enterobacter agglomerans (Beijerinck 1888) Ewing and Fife 1972 and the combination Pantoea agglomerans is to be cited as Pantoea agglomerans (Beijerinck 1888) Gavini et al. 1989. Opinion 90. Judicial Commission of the International Committee on Systematics of Prokaryotes.

    PubMed

    Tindall, B J

    2014-10-01

    The Judicial Commission affirms that, according to information presented to it, the combination Enterobacter agglomerans is to be cited as Enterobacter agglomerans (Beijerinck 1888) Ewing and Fife 1972 and the combination Pantoea agglomerans is to be cited as Pantoea agglomerans (Beijerinck 1888) Gavini et al. 1989. PMID:25288660

  15. Analysis of a Soluble (UreD:UreF:UreG)2 Accessory Protein Complex and Its Interactions with Klebsiella aerogenes Urease by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Farrugia, Mark A.; Han, Linjie; Zhong, Yueyang; Boer, Jodi L.; Ruotolo, Brandon T.; Hausinger, Robert P.

    2013-09-01

    Maturation of the nickel-containing urease of Klebsiella aerogenes is facilitated by the UreD, UreF, and UreG accessory proteins along with the UreE metallo-chaperone. A fusion of the maltose binding protein and UreD (MBP-UreD) was co-isolated with UreF and UreG in a soluble complex possessing a (MBP-UreD:UreF:UreG)2 quaternary structure. Within this complex a UreF:UreF interaction was identified by chemical cross-linking of the amino termini of its two UreF protomers, as shown by mass spectrometry of tryptic peptides. A pre-activation complex was formed by the interaction of (MBP-UreD:UreF:UreG)2 and urease. Mass spectrometry of intact protein species revealed a pathway for synthesis of the urease pre-activation complex in which individual hetero-trimer units of the (MBP-UreD:UreF:UreG)2 complex bind to urease. Together, these data provide important new insights into the structures of protein complexes associated with urease activation.

  16. Glycerol metabolism promotes biofilm formation by Pseudomonas aeruginosa.

    PubMed

    Scoffield, Jessica; Silo-Suh, Laura

    2016-08-01

    Pseudomonas aeruginosa causes persistent infections in the airways of cystic fibrosis (CF) patients. Airway sputum contains various host-derived nutrients that can be utilized by P. aeruginosa, including phosphotidylcholine, a major component of host cell membranes. Phosphotidylcholine can be degraded by P. aeruginosa to glycerol and fatty acids to increase the availability of glycerol in the CF lung. In this study, we explored the role that glycerol metabolism plays in biofilm formation by P. aeruginosa. We report that glycerol metabolism promotes biofilm formation by both a chronic CF isolate (FRD1) and a wound isolate (PAO1) of P. aeruginosa. Moreover, loss of the GlpR regulator, which represses the expression of genes involved in glycerol metabolism, enhances biofilm formation in FRD1 through the upregulation of Pel polysaccharide. Taken together, our results suggest that glycerol metabolism may be a key factor that contributes to P. aeruginosa persistence by promoting biofilm formation. PMID:27392247

  17. High-quality draft genome sequence of Enterobacter sp. Bisph2, a glyphosate-degrading bacterium isolated from a sandy soil of Biskra, Algeria

    PubMed Central

    Benslama, Ouided; Boulahrouf, Abderrahmane

    2016-01-01

    Enterobacter sp. strain Bisph2 was isolated from a sandy soil from Biskra, Algeria and exhibits glyphosate-degrading activity. Multilocus sequence analysis of the 16S rRNA, rpoB, hsp60, gyrB and dnaJ genes demonstrated that Bisph2 might be a member of a new species of the genus Enterobacter. Genomic sequencing of Bisph2 was used to better clarify the relationships among Enterobacter species. Annotation and analysis of the genome sequence showed that the 5.535.656 bp genome of Enterobacter sp. Bisph2 consists in one chromosome and no detectable plasmid, has a 53.19% GC content and 78% of genes were assigned a putative function. The genome contains four prophages of which 3 regions are intact and no CRISPER was detected. The nucleotide sequence of this genome was deposited into DDBJ/EMBL/GenBank under the accession JXAF00000000. PMID:27222800

  18. High-quality draft genome sequence of Enterobacter sp. Bisph2, a glyphosate-degrading bacterium isolated from a sandy soil of Biskra, Algeria.

    PubMed

    Benslama, Ouided; Boulahrouf, Abderrahmane

    2016-06-01

    Enterobacter sp. strain Bisph2 was isolated from a sandy soil from Biskra, Algeria and exhibits glyphosate-degrading activity. Multilocus sequence analysis of the 16S rRNA, rpoB, hsp60, gyrB and dnaJ genes demonstrated that Bisph2 might be a member of a new species of the genus Enterobacter. Genomic sequencing of Bisph2 was used to better clarify the relationships among Enterobacter species. Annotation and analysis of the genome sequence showed that the 5.535.656 bp genome of Enterobacter sp. Bisph2 consists in one chromosome and no detectable plasmid, has a 53.19% GC content and 78% of genes were assigned a putative function. The genome contains four prophages of which 3 regions are intact and no CRISPER was detected. The nucleotide sequence of this genome was deposited into DDBJ/EMBL/GenBank under the accession JXAF00000000. PMID:27222800

  19. Transferable imipenem resistance in Pseudomonas aeruginosa.

    PubMed Central

    Watanabe, M; Iyobe, S; Inoue, M; Mitsuhashi, S

    1991-01-01

    We isolated an imipenem-resistant strain, GN17203, of Pseudomonas aeruginosa. The strain produced a beta-lactamase that hydrolyzed imipenem. The beta-lactamase was encoded by a 31-MDa plasmid, pMS350, which belongs to incompatibility group P-9. The plasmic conferred resistance to beta-lactams, gentamicin, and sulfonamide and was transferable by conjugation to P. aeruginosa but not to Escherichia coli. The molecular weight of the purified enzyme was estimated to be 28,000, and the isoelectric point was 9.0. The enzyme showed a broad substrate profile, hydrolyzing imipenem, oxyiminocephalosporins, 7-methoxycephalosporins, and penicillins. The enzyme activity was inhibited by EDTA, iodine, p-chloromercuribenzoate, CuSO4, and HgCl2 but not by clavulanic acid or sulbactam. Images PMID:1901695

  20. Pseudomonas aeruginosa ventilator-associated pneumonia management

    PubMed Central

    Ramírez-Estrada, Sergio; Borgatta, Bárbara; Rello, Jordi

    2016-01-01

    Ventilator-associated pneumonia is the most common infection in intensive care unit patients associated with high morbidity rates and elevated economic costs; Pseudomonas aeruginosa is one of the most frequent bacteria linked with this entity, with a high attributable mortality despite adequate treatment that is increased in the presence of multiresistant strains, a situation that is becoming more common in intensive care units. In this manuscript, we review the current management of ventilator-associated pneumonia due to P. aeruginosa, the most recent antipseudomonal agents, and new adjunctive therapies that are shifting the way we treat these infections. We support early initiation of broad-spectrum antipseudomonal antibiotics in present, followed by culture-guided monotherapy de-escalation when susceptibilities are available. Future management should be directed at blocking virulence; the role of alternative strategies such as new antibiotics, nebulized treatments, and vaccines is promising. PMID:26855594

  1. Pseudomonas aeruginosa endophthalmitis masquerading as chronic uveitis

    PubMed Central

    Nagaraj, Kalpana Badami; Jayadev, Chaitra

    2013-01-01

    A 65-year-old male presented with decreased vision in the left eye of 15-day duration after having undergone an uneventful cataract surgery 10 months back. He had been previously treated with systemic steroids for recurrent uveitis postoperatively on three occasions in the same eye. B-scan ultrasonography showed multiple clumplike echoes suggestive of vitreous inflammation. Aqueous tap revealed Pseudomonas aeruginosa sensitive to ciprofloxacin. The patient was treated with intravitreal ciprofloxacin and vancomycin along with systemic ciprofloxacin with good clinical response. Even a virulent organism such as P.aeruginosa can present as a chronic uveitis, which, if missed, can lead to a delay in accurate diagnosis and appropriate management. PMID:23803484

  2. Bacteriological evaluation of pre-cut fruits sold in Kano metropolis, Kano State, Nigeria.

    PubMed

    Chukwu, O O C; Olabode, O A; Chukwuedo, A A; Umoh, E G; Esiekpe, M K

    2009-04-01

    One hundred and fifty (150) pre-cut fruit samples comprising of Pineapples (50), Paw-paw (50) and Watermelon (50) at the point of stand retail outlets were tested by standard bacteriological methods to determine bacterial contamination of the fruits. Out of these 150 examined 136 (90.67%) were contaminated with bacteria. The bacterial distribution were; Escherichia coli 69 (46.00%), Staphylococcus aureus 29 (19.33%), Salmonella species 13 (8.67%), Proteus species 18 (12.00%), Enterobacter aerogenes 3 (2.00%), Klebsiella pneumoniae 2 (1.33%) and Pseudomonas aeruginosa 2 (1.33%). Among the 50 Pineapple pre-cuts, Escherichia coli 26 (17.33%), Staphylococcus aureus 6 (4.00%), Salmonella species 7 (4.67%), Proteus species 9 (6.00%), Pseudomonas aeruginosa 2 (1.33%); the 50 Watermelon had Escherchia coli 22 (14.67%), Staphylococcus aureus 13 (8.67%), Salmonella species 3 (2.00%), Proteus species 5 (3.33%), Enterobacter aerogenes 2 (1.33%), Klebsiella species 2 (1.33%). Of the 50 Paw-paw pre-cuts were: Escherichia coli 21 (14.00%), Staphylococcus aureus 10 (6.67%), Salmonella species 3 (2.00%), Proteus species 4 (2.67%), Enterobacter aerogenes 1 (0.67%) were isolated. The findings in this study have shown that the food vendors failed to adopt adequate hygiene for food handling and thus, suggest that the quality of all the pre-cut fruits sold at the retail outlets were not bacteriologically satisfactory. The public health risks associated with these pre-cut fruits may suggest that these fruits could serve as the vehicles for foodborne illnesses. This study has shown the need to educate the vendors on how to protect utensils and fruits to avoid contamination and spoilage. PMID:20000065

  3. Pseudomonas aeruginosa biofilm: potential therapeutic targets.

    PubMed

    Sharma, Garima; Rao, Saloni; Bansal, Ankiti; Dang, Shweta; Gupta, Sanjay; Gabrani, Reema

    2014-01-01

    Pseudomonas aeruginosa is a gram-negative pathogen that has become an important cause of infection, especially in patients with compromised host defense mechanisms. It is frequently related to nosocomial infections such as pneumonia, urinary tract infections (UTIs) and bacteremia. The biofilm formed by the bacteria allows it to adhere to any surface, living or non-living and thus Pseudomonal infections can involve any part of the body. Further, the adaptive and genetic changes of the micro-organisms within the biofilm make them resistant to all known antimicrobial agents making the Pseudomonal infections complicated and life threatening. Pel, Psl and Alg operons present in P. aeruginosa are responsible for the biosynthesis of extracellular polysaccharide which plays an important role in cell-cell and cell-surface interactions during biofilm formation. Understanding the bacterial virulence which depends on a large number of cell-associated and extracellular factors is essential to know the potential drug targets for future studies. Current novel methods like small molecule based inhibitors, phytochemicals, bacteriophage therapy, photodynamic therapy, antimicrobial peptides, monoclonal antibodies and nanoparticles to curtail the biofilm formed by P. aeruginosa are being discussed in this review. PMID:24309094

  4. Development of a Pseudomonas aeruginosa Agmatine Biosensor.

    PubMed

    Gilbertsen, Adam; Williams, Bryan

    2014-12-01

    Agmatine, decarboxylated arginine, is an important intermediary in polyamine production for many prokaryotes, but serves higher functions in eukaryotes such as nitric oxide inhibition and roles in neurotransmission. Pseudomonas aeruginosa relies on the arginine decarboxylase and agmatine deiminase pathways to convert arginine into putrescine. One of the two known agmatine deiminase operons, aguBA, contains an agmatine sensitive TetR promoter controlled by AguR. We have discovered that this promoter element can produce a titratable induction of its gene products in response to agmatine, and utilized this discovery to make a luminescent agmatine biosensor in P. aeruginosa. The genome of the P. aeruginosa lab strain UCBPP-PA14 was altered to remove both its ability to synthesize or destroy agmatine, and insertion of the luminescent reporter construct allows it to produce light in proportion to the amount of exogenous agmatine applied from ~100 nM to 1mM. Furthermore it does not respond to related compounds including arginine or putrescine. To demonstrate potential applications the biosensor was used to detect agmatine in spent supernatants, to monitor the development of arginine decarboxylase over time, and to detect agmatine in the spinal cords of live mice. PMID:25587430

  5. My 40-Year History with Cronobacter/Enterobacter sakazakii – Lessons Learned, Myths Debunked, and Recommendations

    PubMed Central

    Farmer, John J.

    2015-01-01

    Much has been learned about organism in the Cronobacter/Enterobacter sakazakii complex since I first named and described Enterobacter sakazakii in 1980. However, there are still wide knowledge gaps. One of the most serious is that are still many uncertainties associated with assessing the public health risk posed by these bacteria, particularly in neonatal meningitis. Over the last few decades, Cronobacter contamination of commercial powdered infant formula products has apparently been reduced, but it is still an ongoing problem. The powdered infant formula industry still cannot produce powdered formula that is free of bacterial contamination with Cronobacter, other Enterobacteriaceae, other pathogenic bacteria, and other microorganisms. Until this happens, infants and other will be at risk of becoming infected when they ingest contaminated formula. PMID:26640778

  6. Draft Whole-Genome Sequence of VIM-1-Producing Multidrug-Resistant Enterobacter cloacae EC_38VIM1

    PubMed Central

    Villa, Jennifer; Viedma, Esther; Otero, Joaquín R.

    2013-01-01

    The VIM-1-producing multidrug-resistant strain Enterobacter cloacae was isolated from blood culture. The strain showed multiple resistances to clinically used antibiotics, including all β-lactams, fluoroquinolones, aminoglycosides, and sulfonamides. Sequence analysis showed the presence of 14 genes associated with resistance to antibiotics, including the metallo-β-lactamase VIM-1 gene, which was located in a class 1 integron. PMID:24009122

  7. Transcriptional Responses to Sucrose Mimic the Plant-Associated Life Style of the Plant Growth Promoting Endophyte Enterobacter sp. 638

    SciTech Connect

    Taghavi, Safiyh; Wu, Xiao; Ouyang, Liming; Zhang, Yian Biao; Stadler, Andrea; McCorkle, Sean; Zhu, Wei; Maslov, Sergei; van der Lelie, Daniel

    2015-01-21

    Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involved in motility (e.g. flagella biosynthesis) and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Lastly, targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability.

  8. Transcriptional Responses to Sucrose Mimic the Plant-Associated Life Style of the Plant Growth Promoting Endophyte Enterobacter sp. 638

    DOE PAGESBeta

    Taghavi, Safiyh; Wu, Xiao; Ouyang, Liming; Zhang, Yian Biao; Stadler, Andrea; McCorkle, Sean; Zhu, Wei; Maslov, Sergei; van der Lelie, Daniel

    2015-01-21

    Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involvedmore » in motility (e.g. flagella biosynthesis) and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Lastly, targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability.« less

  9. Transcriptional Responses to Sucrose Mimic the Plant-Associated Life Style of the Plant Growth Promoting Endophyte Enterobacter sp. 638

    PubMed Central

    Taghavi, Safiyh; Wu, Xiao; Ouyang, Liming; Stadler, Andrea; McCorkle, Sean; Zhu, Wei; Maslov, Sergei; van der Lelie, Daniel

    2015-01-01

    Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involved in motility (e.g. flagella biosynthesis) and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability. PMID:25607953

  10. [Epidemiologic study on the prevalence of Enterobacter, Serratia and Pseudomonas strains, producers of cefoxitin-inducible beta-lactamases].

    PubMed

    Marone, P; Concia, E; Perversi, L; Cruciani, M

    1986-01-01

    Resistance of Enterobacter, Serratia and pseudomonas strains to newer cephalosporins is often associated with stable derepression of synthesis of the chromosomal betalactamases. Similar resistance is developed by enzyme inducible strains in response to betalactamases inducers. This finding poses many clinical problems including emergence of resistance during therapy with the drugs. In this study we evaluated the MICs of several new betalactam compounds against 76 Enterobacter, Serratia and Pseudomonas strains before and after cefoxitin-induction of betalactamases. The MICs against several Enterobacter strains (45%) after cefoxitin induction were elevated four fold or more. Serratia strains showed no significant variations of the MICs after cefoxitin induction. The MICs of piperacillin against many Pseudomonas strains (78%) after cefoxitin induction were elevated four fold or more. These data were confirmed using cefoxitin disk approximation test. Outbreaks of nosocominal infection with these multiresistant bacteria and spread of the strains throughout the hospital are already being seen. Control of these problems can only be achieved through the judicious and restricted use of these new antibiotics. PMID:3103651

  11. Mutational and Computational Evidence That a Nickel-Transfer Tunnel in UreD Is Used for Activation of Klebsiella aerogenes Urease.

    PubMed

    Farrugia, Mark A; Wang, Beibei; Feig, Michael; Hausinger, Robert P

    2015-10-20

    Nickel-containing urease from Klebsiella aerogenes requires four accessory proteins for proper active site metalation. The metallochaperone UreE delivers nickel to UreG, a GTPase that forms a UreD/UreF/UreG complex, which binds to urease apoprotein via UreD. Prior in silico analysis of the homologous, structurally characterized UreH/UreF/UreG complex from Helicobacter pylori identified a water tunnel originating at a likely nickel-binding motif in UreG, passing through UreF, and exiting UreH, suggestive of a role for the channel in providing the metal to urease apoprotein for its activation; however, no experimental support was reported for the significance of this tunnel. Here, specific variants were designed to disrupt a comparable 34.6 Å predicted internal tunnel, alternative channels, and surface sites for UreD. Cells producing a set of tunnel-disrupting variants of UreD exhibited greatly reduced urease specific activities, whereas other mutants had no appreciable effect on activity. Affinity pull-down studies of cell-free extracts from tunnel-disrupting mutant cultures showed no loss of UreD interactions with urease or UreF/UreG. The nickel contents of urease samples enriched from activity-deficient cultures were decreased, while zinc and iron incorporation increased. Molecular dynamics simulations revealed size restrictions in the internal channels of the UreD variants. These findings support the role of a molecular tunnel in UreD as a direct facilitator of nickel transfer into urease, illustrating a new paradigm in active site metallocenter assembly. PMID:26401965

  12. Oxidation of d-Malic and β-Alkylmalic Acids by Wild-Type and Mutant Strains of Salmonella typhimurium and by Aerobacter aerogenes

    PubMed Central

    Stern, Joseph R.; O'Brien, R. W.

    1969-01-01

    A mutant strain of Salmonella typhimurium (SL 1634 dml-51) capable of growth on d-malate as sole carbon source was shown to produce d-malic enzyme. This enzyme was absent in the parent wild-type strain which was unable to grow on d-malate. Growth of the mutant on d-malate also resulted in a greatly increased level of β-isopropylmalic enzyme compared with its level in the wild-type strain grown on citrate or l-malate. The d-malic and β-isopropylmalic enzymes, both of which catalyze a nicotinamide adenine dinucleotide- and Mg++-dependent oxidative decarboxylation of their respective substrates, were shown to be distinct enzymes by selective inhibition with erythro-dl-β-hydroxyaspartate and by other methods. Cell extracts of the mutant strain also oxidized dl-β-methyl-, dl-β-ethyl-, dl-β-propyl- and dl-ββ-dimethylmalates, in order of decreasing activity. dl-β-Methyl-malate was shown to be oxidized by both the d-malic and the β-isopropylmalic enzymes, whereas the oxidation of the other β-alkylmalates appeared to be effected exclusively by the β-isopropylmalic enzyme. β-Isopropylmalic enzyme activity was induced by d-malate but not by l-malate, showing that it behaved as a d-malictype enzyme. Growth of Aerobacter aerogenes on d-malate, which caused induction of d malic enzyme, resulted in only a small increase in the activity of β-isopropylmalic enzyme. PMID:4889267

  13. Decolorization of azo dyes with Enterobacter agglomerans immobilized in different supports by using fluidized bed bioreactor.

    PubMed

    Moutaouakkil, Adnane; Zeroual, Youssef; Dzayri, Fatima Zohra; Talbi, Mohamed; Lee, Kangmin; Blaghen, Mohamed

    2004-02-01

    Immobilized cells of Enterobacter agglomerans, able to reduce azo dyes enzymatically, were used as a biocatalyst for the decolorization of synthetic medium containing the toxic azo dye methyl red (MR). This bacterial strain exhibits high ability to completely decolorize 100 mg/L of MR after only 6 h of incubation under aerobic conditions. Cells of E. agglomerans were immobilized in calcium alginate, polyacylamide, cooper beech, and vermiculite, and were used for the decolorization of MR from synthetic water by using a fluidized bed bioreactor. The highest specific decolorization rate was obtained when E. agglomerans was entrapped in calcium alginate beads and was of about 3.04 mg MR/g cell/h with a 50% conversion time ( t(1/2)) of about 1.6 h. Moreover, immobilized cells in calcium alginate continuously decolorized MR even after seven repeated experiments without significant loss of activity, while polyacrylamide-, cooper beech-, and vermiculite-immobilized cells retained only 62, 15, and 13% of their original activity, respectively. PMID:15057480

  14. Molecular cloning, structural analysis, and expression in Escherichia coli of a chitinase gene from Enterobacter agglomerans.

    PubMed Central

    Chernin, L S; De la Fuente, L; Sobolev, V; Haran, S; Vorgias, C E; Oppenheim, A B; Chet, I

    1997-01-01

    The gene chiA, which codes for endochitinase, was cloned from a soilborne Enterobacter agglomerans. Its complete sequence was determined, and the deduced amino acid sequence of the enzyme designated Chia_Entag yielded an open reading frame coding for 562 amino acids of a 61-kDa precursor protein with a putative leader peptide at its N terminus. The nucleotide and polypeptide sequences of Chia_Entag showed 86.8 and 87.7% identity with the corresponding gene and enzyme, Chia_Serma, of Serratia marcescens, respectively. Homology modeling of Chia_Entag's three-dimensional structure demonstrated that most amino acid substitutions are at solvent-accessible sites. Escherichia coli JM109 carrying the E. agglomerans chiA gene produced and secreted Chia_Entag. The antifungal activity of the secreted endochitinase was demonstrated in vitro by inhibition of Fusarium oxysporum spore germination. The transformed strain inhibited Rhizoctonia solani growth on plates and the root rot disease caused by this fungus in cotton seedlings under greenhouse conditions. PMID:9055404

  15. Protective effect of amdinocillin against emergence of resistance to ceftazidime in Enterobacter cloacae.

    PubMed Central

    Yourassowsky, E; van der Linden, M P; Lismont, M J; Crokaert, F; Glupczynski, Y

    1988-01-01

    Enterobacter cloacae infections have been shown clinically to respond less reliably to monotherapy with broad-spectrum cephalosporins than was initially expected. Selection of populations producing high levels of beta-lactamase has been shown to be the most frequent reason for treatment failure, and the use of these agents with another active antibiotic is recommended. In this study, E. cloacae strains from clinical specimens susceptible to ceftazidime and amdinocillin by broth dilution and disk tests were examined. In the presence of ceftazidime at 10 micrograms/ml, in vitro selection of resistant organisms was demonstrated for 3 of 11 strains. Selection was prevented when amdinocillin was added in combination. A more rapid killing was also demonstrated with this combination. At inocula of 10(8) CFU/ml, ceftazidime-resistant populations were isolated from 6 of 11 strains in vitro, and the emergence of this resistance was prevented by amdinocillin. The enhanced killing effect noted for amdinocillin with ceftazidime may have resulted in part from complementary activity of the antibiotics on penicillin-binding proteins. The ceftazidime-amdinocillin combination offers an interesting prospect for the therapy of infections caused by E. cloacae strains which are initially susceptible to both antibiotics. PMID:3075433

  16. Genome sequence of Enterobacter sp. ST3, a quorum sensing bacterium associated with marine dinoflagellate

    PubMed Central

    Zhou, Jin; Lao, Yong-Min; Ma, Zhi-Ping; Cai, Zhong-Hua

    2016-01-01

    Phycosphere environment is a typical marine niche, harbor diverse populations of microorganisms, which are thought to play a critical role in algae host and influence mutualistic and competitive interactions. Understanding quorum sensing-based acyl-homoserine lactone (AHL) language may shed light on the interaction between algal-associated microbial communities in the native environment. In this work, we isolated an epidermal bacterium (was tentatively named Enterobacter sp. ST3, and deposited in SOA China, the number is MCCC1K02277-ST3) from the marine dinoflagellate Scrippsiella trochoidea, and found it has the ability to produce short-chain AHL signal. In order to better understand its communication information at molecular level, the genomic map was investigated. The genome size was determined to be 4.81 Mb with a G + C content of 55.59%, comprising 6 scaffolds of 75 contigs containing 4647 protein-coding genes. The functional proteins were predicted, and 3534 proteins were assigned to COG functional categories. An AHL-relating gene, LuxR, was found in upstream position at contig 1. This genome data may provide clues to increase understanding of the chemical characterization and ecological behavior of strain ST3 in the phycosphere microenvironment. PMID:26981407

  17. Modelling the interactions between Lactobacillus curvatus and Enterobacter cloacae. II. Mixed cultures and shelf life predictions.

    PubMed

    Malakar, P K; Martens, D E; Zwietering, M H; Béal, C; van 't Riet, K

    1999-10-01

    The modelling approach presented in this study can be used to predict when interactions between microorganisms in homogenous systems occur. It was tested for the interaction between Lactobacillus curvatus and Enterobacter cloacae. In this binary system, L. curvatus produces lactic acid which decreases the pH in the system. The pH decrease was found to be the main limiting factor of growth of both E. cloacae and L. curvatus. This resulted in E. cloacae reaching its final concentration earlier when compared to its growth in pure culture. The models consisted of a set of first order ordinary differential equations describing the growth, consumption and production rates of both microorganisms. The parameters for these equations were obtained from pure culture studies and from literature. These equations were solved using a combination of analytical and numerical methods. The prediction of growth in mixed culture using parameters from pure culture experiments and literature were close to the experimental data. Both model predictions and experimental validation indicated that interaction occurs when the concentration of L. curvatus reaches 10(8) cfu/ml. At that moment in time, the pH had decreased to inhibiting levels. These concentrations of microorganisms (10(8) cfu/ml) do occur in fermented products where interactions obviously are important. In nonfermented foods however, this level of microorganisms indicate that spoilage has occurred or is about to start. Microbial interactions can therefore be neglected when predicting shelf life or safety of food products in most cases. PMID:10563464

  18. Characteristics of a Novel Aerobic Denitrifying Bacterium, Enterobacter cloacae Strain HNR.

    PubMed

    Guo, Long-Jie; Zhao, Bin; An, Qiang; Tian, Meng

    2016-03-01

    A novel aerobic denitrifier strain HNR, isolated from activated sludge, was identified as Enterobacter cloacae by16S rRNA sequencing analysis. Glucose was considered as the most favorable C-source for strain HNR. The logistic equation well described the bacterial growth, yielding a maximum growth rate (μmax) of 0.283 h(-1) with an initial NO3 (-)-N concentration of 110 mg/L. Almost all NO3 (-)-N was removed aerobically within 30 h with an average removal rate of 4.58 mg N L(-1) h(-1). Nitrogen balance analysis revealed that proximately 70.8 % of NO3 (-)-N was removed as gas products and only 20.7 % was transformed into biomass. GC-MS result indicates that N2 was the end product of aerobic denitrification. The enzyme activities of nitrate reductase and nitrite reductase, which are related to the process of aerobic denitrification, were 0.0688 and 0.0054 U/mg protein, respectively. Thus, the aerobic denitrification of reducing NO3 (-) to N2 by strain HNR was demonstrated. The optimal conditions for nitrate removal were C/N ratio 13, pH value 8, shaking speed 127 rpm and temperature 30 °C. These findings show that E. cloacae strain HNR has a potential application on wastewater treatment to achieve nitrate removal under aerobic conditions. PMID:26573667

  19. Subtractive Hybridization Yields a Silver Resistance Determinant Unique to Nosocomial Pathogens in the Enterobacter cloacae Complex

    PubMed Central

    Hoffmann, Harald

    2012-01-01

    The heterogeneity and the increasing clinical importance of the Enterobacter cloacae complex have often been discussed. However, little is known about molecular factors causing pathogenicity within this nomenspecies. Here, we analyzed the genetic differences between an avirulent plant isolate and a pathogenic strain causing an outbreak with septicemia in three patients. We identified an IncHI-2 plasmid as a major difference between these two strains. Besides resistance to several antibiotics, this plasmid encoded a silver resistance determinant. We further showed that this sil determinant was present not only in the analyzed outbreak strain but also in the vast majority of clinical isolates of the E. cloacae complex, predominantly in (sub)species that frequently cause nosocomial infections. The identified sil determinant was highly conserved within the E. cloacae complex and mediated resistance to up to 600 μM silver nitrate. As silver is often used as a disinfectant and treatment for burn wounds, we present here an important fitness factor within the clinically most prevalent subspecies of the E. cloacae complex. This provides a possible explanation for their unequal involvement in nosocomial and especially burn wound infections. PMID:22837330

  20. Decreasing Enterobacter sakazakii (Cronobacter spp.) food contamination level with bacteriophages: prospects and problems

    PubMed Central

    Zuber, Sophie; Boissin‐Delaporte, Catherine; Michot, Lise; Iversen, Carol; Diep, Benjamin; Brüssow, Harald; Breeuwer, Pieter

    2008-01-01

    Summary Enterobacter sakazakii (Cronobacter spp.) is an opportunistic pathogen, which can cause rare, but life‐threatening infections in neonates and infants through feeding of a contaminated milk formula. We isolated 67 phages from environmental samples and tested their lytic host range on a representative collection of 40 E. sakazakii strains. A cocktail of five phages prevented the outgrowth of 35 out of 40 test strains in artificially contaminated infant formula. Two E. sakazakii phages represented prolate head Myoviridae. Molecular tests identified them as close relatives of Escherichia coli phage T4. The remaining three phages represented isometric head Myoviridae with large genome size of 140 and 200 kb, respectively, which belonged to two different DNA hybridization groups. A high dose of 108 pfu ml−1 of phage could effectively sterilize a broth contaminated with both high and low pathogen counts (106 and 102 cfu ml−1). In contrast, broth inoculated with 104 phage and 102 bacteria per ml first showed normal bacterial growth until reaching a cell titre of 105 cfu ml−1. Only when crossing this threshold, phage replication started, but it could not reduce the contamination level below 100 cfu ml−1. Phages could be produced with titres of 1010 pfu ml−1 in broth culture, but they were not stable upon freeze‐drying. Addition of trehalose or milk formula stabilized the phage preparation, which then showed excellent storage stability even at elevated temperature. PMID:21261874

  1. Production, characteristics and applications of phytase from a rhizosphere isolated Enterobacter sp. ACSS.

    PubMed

    Chanderman, Ashira; Puri, Adarsh Kumar; Permaul, Kugen; Singh, Suren

    2016-10-01

    Optimization of process parameters for phytase production by Enterobacter sp. ACSS led to a 4.6-fold improvement in submerged fermentation, which was enhanced further in fed-batch fermentation. The purified 62 kDa monomeric phytase was optimally active at pH 2.5 and 60 °C and retained activity over a wide range of temperature (40-80 °C) and pH (2.0-6.0) with a half-life of 11.3 min at 80 °C. The kinetic parameters K m, V max, K cat, and K cat/K m of the pure phytase were 0.21 mM, 131.58 nmol mg(-1) s(-1), 1.64 × 10(3) s(-1), and 7.81 × 10(6) M(-1) s(-1), respectively. The enzyme was fairly stable in the presence of pepsin under physiological conditions. It was stimulated by Ca(+2), Mg(+2) and Mn(+2), but inhibited by Zn(+2), Cu(+2), Fe(+2), Pb(+2), Ba(+2) and surfactants. The enzyme can be applied in dephytinizing animal feeds, and the baking industry. PMID:27250653

  2. Extreme furfural tolerance of a soil bacterium Enterobacter cloacae GGT036.

    PubMed

    Choi, Sun Young; Gong, Gyeongtaek; Park, Hong-Sil; Um, Youngsoon; Sim, Sang Jun; Woo, Han Min

    2015-01-10

    Detoxification process of cellular inhibitors including furfural is essential for production of bio-based chemicals from lignocellulosic biomass. Here we isolated an extreme furfural-tolerant bacterium Enterobacter cloacae GGT036 from soil sample collected in Mt. Gwanak, Republic of Korea. Among isolated bacteria, only E. cloacae GGT036 showed cell growth with 35 mM furfural under aerobic culture. Compared to the maximal half inhibitory concentration (IC50) of well-known industrial strains Escherichia coli (24.9 mM furfural) and Corynebacterium glutamicum (10 mM furfural) based on the cell density, IC50 of E. cloacae GGT036 (47.7 mM) was significantly higher after 24 h, compared to E. coli and C. glutamicum. Since bacterial cell growth was exponentially inhibited depending on linearly increased furfural concentrations in the medium, we concluded that E. cloacae GGT036 is an extreme furfural-tolerant bacterium. Recently, the complete genome sequence of E. cloacae GGT036 was announced and this could provide an insight for engineering of E. cloacae GGT036 itself or other industrially relevant bacteria. PMID:25444876

  3. Anaerobic pathways of glycerol dissimilation by Enterobacter agglomerans CNCM 1210: limitations and regulations.

    PubMed

    Barbirato, F; Astruc, S; Soucaille, P; Camarasa, C; Salmon, J M; Bories, A

    1997-07-01

    Continuous cultures of Enterobacter agglomerans CNCM 1210 were performed under regulated pH conditions (pH 7.0) with glycerol or glucose (20 g l-1) as carbon source. Cultures grown on glucose produced mainly acetate, ethanol and formate. In contrast, 1,3-propanediol (PPD) was the main product with glycerol. The carbon flow distribution at branching metabolic points was investigated. Higher PPD yields with increased dilution rate were correlated with an important increase in the relative ratio of glycerol dehydratase to glycerol dehydrogenase. Determination of intracellular triose-phosphate and fructose 1,6-biphosphate concentrations demonstrated that glyceraldehyde-3-phosphate dehydrogenase is the limiting step in glycerol dissimilation. At the pyruvate branching point, pyruvate dehydrogenase (PDH) activity was systematically detected. The pyruvate flow shifted to PDH is suspected to represent up to 22% of the acetyl-CoA formed. In addition, this enzyme pattern combined with the enhanced in vivo lactate dehydrogenase activity at high growth rates, was correlated with a decrease in the pyruvate formate-lyase activity. A regulation of this latter enzyme by the accumulation of triose-phosphate is suspected. PMID:9245823

  4. Global transcriptome response to ionic liquid by a tropical rain forest soil bacterium, Enterobacter lignolyticus.

    PubMed

    Khudyakov, Jane I; D'haeseleer, Patrik; Borglin, Sharon E; Deangelis, Kristen M; Woo, Hannah; Lindquist, Erika A; Hazen, Terry C; Simmons, Blake A; Thelen, Michael P

    2012-08-01

    To process plant-based renewable biofuels, pretreatment of plant feedstock with ionic liquids has significant advantages over current methods for deconstruction of lignocellulosic feedstocks. However, ionic liquids are often toxic to the microorganisms used subsequently for biomass saccharification and fermentation. We previously isolated Enterobacter lignolyticus strain SCF1, a lignocellulolytic bacterium from tropical rain forest soil, and report here that it can grow in the presence of 0.5 M 1-ethyl-3-methylimidazolium chloride, a commonly used ionic liquid. We investigated molecular mechanisms of SCF1 ionic liquid tolerance using a combination of phenotypic growth assays, phospholipid fatty acid analysis, and RNA sequencing technologies. Potential modes of resistance to 1-ethyl-3-methylimidazolium chloride include an increase in cyclopropane fatty acids in the cell membrane, scavenging of compatible solutes, up-regulation of osmoprotectant transporters and drug efflux pumps, and down-regulation of membrane porins. These findings represent an important first step in understanding mechanisms of ionic liquid resistance in bacteria and provide a basis for engineering microbial tolerance. PMID:22586090

  5. Particular Distribution of Enterobacter cloacae Strains Isolated from Urinary Tract Infection within Clonal Complexes

    PubMed Central

    Akbari, Majid; Bakhshi, Bita; Najar Peerayeh, Shahin

    2016-01-01

    Background: Based on biochemical properties, Enterobacter cloacae represents a large complex of at least 13 variant species, subspecies, and genotypes that progressively identified as the most species causing hospital-acquired infections. The aim of this study was to determine the relevance between phylogenetically related strains within the E. cloacae complex and the frequency of urinary tract infection caused by them. Methods: A 268-bp fragment was obtained from hsp60 gene for 50 clinical E. cloacae isolates from urine cultures of inpatients that admitted to six hospitals in Tehran, Iran during December 2012 to November 2013. The 107 nucleotide sequences were analyzed and the evolutionary distances of sequences were computed and neighbor-joining tree was calculated. Results: It showed that all of the genetic clusters have not an equal involvement in pathogenesis of urinary tract infections. Three superior clusters were found, together representing more than two third (80%) of the isolates (cluster VI with 25 members; clusters III and VIII with 9 and 6 members, respectively) and some genetic clusters were absent (IV, X, XII, and xiii), some of which are supposed to be associated with plants and no human infection has been reported. Conclusions: This study, for the first time, reports the unequal contribution of E. cloacae complex subspecies and clusters in urinary tract infections in Iran and together with studies from other countries suggest that the subspecies of E.hormaechei subsp. Oharae is the most prevalent E. cloacae complex subspecies regardless of country under study. PMID:26498349

  6. Reduction of molybdate to molybdenum blue by Enterobacter sp. strain Dr.Y13.

    PubMed

    Shukor, M Y; Rahman, M F; Shamaan, N A; Syed, M A

    2009-09-01

    Extensive use of metals in various industrial applications has caused substantial environmental pollution. Molybdenum-reducing bacteria isolated from soils can be used to remove molybdenum from contaminated environments. In this work we have isolated a local bacterium with the capability to reduce soluble molybdate to the insoluble molybdenum blue. We studied several factors that would optimize molybdate reduction. Electron donor sources such as glucose, sucrose, lactose, maltose and fructose (in decreasing efficiency) supported molybdate reduction after 24 h of incubation with optimum glucose concentration for molybdate reduction at 1.5% (w/v). The optimum pH, phosphate and molybdate concentrations, and temperature for molybdate reduction were pH 6.5, 5.0, 25 to 50 mM and 37 degrees C, respectively. The Mo-blue produced by cellular reduction exhibited a unique absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. Metal ions such as chromium, cadmium, copper, silver and mercury caused approximately 73, 71, 81, 77 and 78% inhibition of the molybdenum-reducing activity, respectively. All of the respiratory inhibitors tested namely rotenone, azide, cyanide and antimycin A did not show any inhibition to the molybdenum-reducing activity suggesting components of the electron transport system are not responsible for the reducing activity. The isolate was tentatively identified as Enterobacter sp. strain Dr.Y13 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. PMID:19455513

  7. Nitrogen-fixing Enterobacter agglomerans isolated from guts of wood-eating termites.

    PubMed Central

    Potrikus, C J; Breznak, J A

    1977-01-01

    Two strains of facultatively anaerobic, N2-fixing bacteria were isolated from guts of Coptotermes formosanus and identified as Enterobacter agglomerans. The deoxyribonucleic acid base composition of isolates was 52.6 and 53.1 mol% guanine plus cytosine. Both isolates and a known strain of E. agglomerans carried out a mixed acid type of glucose fermentation. N2 fixation by E. agglomerans was inhibited by O2; consequently, N2 served as an N source only for cells growing anaerobically in media lacking a major source of combined N. However, peptone, NH4Cl, or KNO3 served as an N source under either aerobic or anaerobic conditions. It was estimated that 2 x 10(2) cells of E. agglomerans were present per termite gut. This value was 100-fold lower than expected, based on N2 fixation, low recoveries of E. agglomerans may be related to the marked decrease in N2 fixation rates observed when intact termites or their extracted guts were manipulated for the isolation of bacteria. It was concluded that the N2-fixing activity of E. agglomerans may be important to the N economy of C. formosanus. PMID:848958

  8. Decreasing Enterobacter sakazakii (Cronobacter spp.) food contamination level with bacteriophages: prospects and problems.

    PubMed

    Zuber, Sophie; Boissin-Delaporte, Catherine; Michot, Lise; Iversen, Carol; Diep, Benjamin; Brüssow, Harald; Breeuwer, Pieter

    2008-11-01

    Enterobacter sakazakii (Cronobacter spp.) is an opportunistic pathogen, which can cause rare, but life-threatening infections in neonates and infants through feeding of a contaminated milk formula. We isolated 67 phages from environmental samples and tested their lytic host range on a representative collection of 40 E. sakazakii strains. A cocktail of five phages prevented the outgrowth of 35 out of 40 test strains in artificially contaminated infant formula. Two E. sakazakii phages represented prolate head Myoviridae. Molecular tests identified them as close relatives of Escherichia coli phage T4. The remaining three phages represented isometric head Myoviridae with large genome size of 140 and 200 kb, respectively, which belonged to two different DNA hybridization groups. A high dose of 10(8) pfu ml(-1) of phage could effectively sterilize a broth contaminated with both high and low pathogen counts (10(6) and 10(2) cfu ml(-1)). In contrast, broth inoculated with 10(4) phage and 10(2) bacteria per ml first showed normal bacterial growth until reaching a cell titre of 10(5) cfu ml(-1). Only when crossing this threshold, phage replication started, but it could not reduce the contamination level below 100 cfu ml(-1). Phages could be produced with titres of 10(10) pfu ml(-1) in broth culture, but they were not stable upon freeze-drying. Addition of trehalose or milk formula stabilized the phage preparation, which then showed excellent storage stability even at elevated temperature. PMID:21261874

  9. A novel beta-galactosidase capable of glycosyl transfer from Enterobacter agglomerans B1.

    PubMed

    Lu, Lili; Xiao, Min; Xu, Xiaodong; Li, Zhengyi; Li, Yumei

    2007-04-27

    A novel transglycosylating beta-galactosidase was purified from Enterobacter agglomerans B1. It was a homodimer of approximately 248 kDa. The optimal pH and temperature for oNPGal hydrolysis were 7.5-8.0 and 37-40 degrees C, respectively. The K(m) values for oNPGal and lactose were 0.06 and 114 mM, respectively. The enzyme produced galacto-oligosaccharides in a 38% yield at the lactose concentration of 12.5% (w/v). When using oNPGal as donor, the enzyme was able to catalyze glycosyl transfer to a series of acceptors, including hexose, pentose, beta- or alpha-disaccharides, hexahydroxy alcohol, cyclitol, and aromatic glycosides. This suggested the enzyme to be a potential synthetic tool for preparing galactose-containing chemicals. The gene encoding this enzyme was cloned by degenerate PCR and TAIL-PCR. It revealed an ORF of 3090 nucleotides encoding a 1029 amino-acid protein, which had been expressed in Escherichia coli. Transferase activities in both recombinant and natural enzymes were similar. PMID:17336932

  10. Retrospective analysis of bacteremia because of Enterobacter cloacae compared with Escherichia coli bacteremia.

    PubMed

    Juanjuan, D; Zhiyong, Z; Xiaoju, L; Yali, X; Xihai, Z; Zhenzhen, L

    2007-04-01

    A total of 52 patients of Enterobacter cloacae bacteremia from a University hospital during the period from January 2000 to June 2005 were analysed and compared with a reference group comprising 52 patients of Escherichia coli bacteremia. Overall, E. cloacae ranked the tenth in all pathogens of bacteremia accounting for 2.8% of the total patients. Although the incidence of E. cloacae bacteremia was low, the attributable mortality rate till achieved 13.5%. Most patients (86.5%) with E. cloacae bacteremia were hospital-acquired. The overwhelming majority of patients (92.3%) were men, while almost half of the patients (48.1%) were from the Department of Urological Surgery with underlying diseases such as urinal obstruction, kidney transplantation and kidney tumours. Possible risks factors associated with E. cloacae bacteremia included immunocompromised status, long-term hospitalisation and invasive procedures or surgeries. E. cloacae bacteremia significantly differed from E. coli bacteremia in a number of clinical aspects, including underlying diseases, portal of entry, infection type, risks factors, laboratory findings and appropriateness of empirical antibiotic therapy. Besides the high prevalence of resistance to cephalosporins, most E. cloacae blood isolates were also resistant to ciprofloxacin (resistance rate, 67.3%), gentamicin (73.1%) and tobramycin (73.1%). Based on the findings of the present study, E. cloacae is probably an important pathogen of bacteremia occurring in male patients with underlying urinal system illnesses. PMID:17394432

  11. Isolation of Enterobacter sakazakii from ass' milk in Sicily: case report, safety and legal issues.

    PubMed

    Conte, F; Passantino, A

    2008-07-01

    Enterobacter sakazakii (Es) infections are likely to involve newborns and infants, causing meningitis and necrotizing enterocolitis and sepsis. Contamination of infant formulae milk during factory production or bottle preparation is implicated. Es has been isolated from environmental sources and from food other than infant formula and milk powder, but why it is associated only with the consumption of infant formulae, is unclear. According to Regulation (EC) No. 2073/2005 on the microbiological criteria for foodstuffs, Es is considered a microorganisms of greatest concern in infant formulae and follow-on formulae. Es is included between "safety criteria". The isolation of two strains of Es from 50 samples of ass' milk in Sicily is described. The antibiotic resistance profile of the isolates revealed a multiple resistance profile, including fluoroquinolones, commonly used to treat the infections. The authors underline the importance of survey because in Italy ass' milk is considered one of the solutions for infants suffering from hypersensitivity to milk protein of some animal species. There is scarce information about the ecology and the uncertainty concerning the source of infection in the children and adults; the authors are concerned that ass' milk could become a high-risk food. PMID:18571118

  12. Long-term arsenic monitoring with an Enterobacter cloacae microbial fuel cell.

    PubMed

    Rasmussen, Michelle; Minteer, Shelley D

    2015-12-01

    A microbial fuel cell was constructed with biofilms of Enterobacter cloacae grown on the anode. Bioelectrocatalysis was observed when the biofilm was grown in media containing sucrose as the carbon source and methylene blue as the mediator. The presence of arsenic caused a decrease in bioelectrocatalytic current. Biofilm growth in the presence of arsenic resulted in lower power outputs whereas addition of arsenic showed no immediate result in power output due to the short term arsenic resistance of the bacteria and slow transport of arsenic across cellular membranes to metabolic enzymes. Calibration curves plotted from the maximum current and maximum power of power curves after growth show that this system is able to quantify both arsenate and arsenate with low detection limits (46 μM for arsenate and 4.4 μM for arsenite). This system could be implemented as a method for long-term monitoring of arsenic concentration in environments where arsenic contamination could occur and alter the metabolism of the organisms resulting in a decrease in power output of the self-powered sensor. PMID:25862430

  13. Physiologic Mechanisms Involved in Accumulation of 3-Hydroxypropionaldehyde during Fermentation of Glycerol by Enterobacter agglomerans

    PubMed Central

    Barbirato, F.; Soucaille, P.; Bories, A.

    1996-01-01

    When grown in 700 mM glycerol within the pH range 6.0 to 7.5, anaerobic pH-regulated cultures of Enterobacter agglomerans exhibited an extracellular accumulation of 3-hydroxypropionaldehyde (3-HPA). This phenomenon, which causes fermentation cessation, occurred earlier when pH was low. In contrast, substrate consumption was complete at pH 8. Levels of glycerol-catabolizing enzymes, i.e., glycerol dehydrogenase and dihydroxyacetone kinase for the oxidative route and glycerol dehydratase and 1,3-propanediol dehydrogenase for the reductive route, as well as the nucleotide pools were determined periodically in the pH 7- and pH 8-regulated cultures. A NAD/NADH ratio of 1.7 was correlated with the beginning of the production of the inhibitory metabolite. Further accumulation was dependent on the ratio of glycerol dehydratase activity to 1,3-propanediol dehydrogenase activity. For a ratio higher than 1, 3-HPA was produced until fermentation ceased, which occurred for the pH 7-regulated culture. At pH 8, a value below 1 was noticed and 3-HPA accumulation was transient, while the NAD/NADH ratio decreased. The low rate of glycerol dissimilation following the appearance of 3-HPA in the culture medium was attributed to the strong inhibitory effect exerted by 3-HPA on glycerol dehydrogenase activity. PMID:16535461

  14. Behavior of Enterobacter pulveris in amorphous and crystalline powder matrices treated with supercritical carbon dioxide.

    PubMed

    Callanan, M; Paes, M; Iversen, C; Kleijn, R; Bravo Almeida, C; Peñaloza, W; Johnson, N; Vuataz, G; Michel, M

    2012-11-01

    The resistance of an Enterobacter pulveris strain to combined heat and supercritical carbon dioxide (scCO(2)) treatments in different powder matrices was examined. The strain proved resistant to scCO(2) treatment up to 50 MPa pressure at temperatures >73 °C for at least 20 min in a commercial infant formula. Water availability was shown to be important for the observed thermotolerance, because introduction of water in the scCO(2) gas flow during treatment resulted in a 1 log(10) cfu/g reduction of the initial inoculum. Interestingly, similar tolerance to heat and scCO(2) treatment was observed in a less complex matrix, a maltodextrin powder. In contrast, the bacterial strain proved sensitive to lower temperatures (55-65 °C) over shorter times (≤10 min) in a dextrose powder composed of crystalline particles. Therefore, the microorganism demonstrates heat sensitivity in the crystalline powder matrix closer to that of nonpowder liquid matrices. These data demonstrate the increased heat tolerance of the bacterium specifically in amorphous powders and indicate that this characteristic is not dependent on fat and other components commonly found in infant formula. The information is important in designing strategies to deal with contamination of powders with Enterobacteriacae, including pathogenic Cronobacter spp. PMID:22959935

  15. Proteomic response of β-lactamases-producing Enterobacter cloacae complex strain to cefotaxime-induced stress.

    PubMed

    Maravić, Ana; Cvjetan, Svjetlana; Konta, Marina; Ladouce, Romain; Martín, Fernando A

    2016-07-01

    Bacteria of the Enterobacter cloacae complex are among the ten most common pathogens causing nosocomial infections in the USA. Consequently, increased resistance to β-lactam antibiotics, particularly expanded-spectrum cephalosporins like cefotaxime (CTX), poses a serious threat. Differential In-Gel Electrophoresis (DIGE), followed by LC-MS/MS analysis and bioinformatics tools, was employed to investigate the survival mechanisms of a multidrug-resistant E. hormaechei subsp. steigerwaltii 51 carrying several β-lactamase-encoding genes, including the 'pandemic' blaCTX-M-15 After exposing the strain with sub-minimal inhibitory concentration (MIC) of CTX, a total of 1072 spots from the whole-cell proteome were detected, out of which 35 were differentially expressed (P ≤ 0.05, fold change ≥1.5). Almost 50% of these proteins were involved in cell metabolism and energy production, and then cell wall organization/virulence, stress response and transport. This is the first study investigating the whole-cell proteomic response related to the survival of β-lactamases-producing strain, belonging to the E. cloacae complex when exposed to β-lactam antibiotic. Our data support the theory of a multifactorial synergistic effect of diverse proteomic changes occurring in bacterial cells during antibiotic exposure, depicting the complexity of β-lactam resistance and giving us an insight in the key pathways mediating the antibiotic resistance in this emerging opportunistic pathogen. PMID:27162211

  16. Inactivation of Enterobacter sakazakii of dehydrated infant formula by gamma-irradiation

    NASA Astrophysics Data System (ADS)

    Lee, Ju-Woon; Oh, Sang-Hee; Byun, Eui-Baek; Kim, Jae-Hun; Kim, Jang-Ho; Woon, Jae-Ho; Byun, Myung-Woo

    2007-11-01

    Enterobacter sakazakii has been implicated as a causal organism in a severe form of neonatal meningitis, with reported mortality rates of 20%. The population at greatest risk is immunocompromised infants of any age. Dried infant formula has been identified as a potential source of the organism in both outbreaks and sporadic cases. The objective of this study was to investigate theirradiation effect of the inactivation on E. sakazakii (ATCC 29544) of a dehydrated infant formula. The D10-values were 0.22-0.27 and 0.76 kGy for broth and dehydrated infant formula, respectively. The irradiation at 5.0 kGy was able to completely eliminate the E. sakazakii inoculated at 8.0 to 9.0 log CFU g -1 onto a dehydrated infant formula. There was no regrowth for all samples during the time they were stored at 10 °C for 6 h after rehydration. The present results indicated that a gamma-irradiation could potentially be used to inactivate E. sakazakii in a dehydrated powdered infant formula.

  17. Evaluation of an automated repetitive sequence-based PCR system for subtyping Enterobacter sakazakii.

    PubMed

    Healy, B; Mullane, N; Collin, V; Mailler, S; Iversen, C; Chatellier, S; Storrs, M; Fanning, S

    2008-07-01

    Enterobacter sakazakii is regarded as a ubiquitous organism that can be isolated from a wide range of foods and environments. Infection in at-risk infants has been epidemiologically linked to the consumption of contaminated powdered infant formula. Preventing the dissemination of this pathogen in a powdered infant formula manufacturing facility is an important step in ensuring consumer confidence in a given brand together with the protection of the health status of a vulnerable population. In this study we report the application of a repetitive sequence-based PCR typing method to subtype a previously well-characterized collection of E. sakazakii isolates of diverse origin. While both methods successfully discriminated between the collection of isolates, repetitive sequence-based PCR identified 65 types, whereas pulsed-field gel electrophoresis identified 110 types showing > or =95% similarity. The method was quick and easy to perform, and our data demonstrated the utility and value of this approach to monitor in-process contamination, which could potentially contribute to a reduction in the transmission of E. sakazakii. PMID:18680935

  18. Chromosomal Organization and Segregation in Pseudomonas aeruginosa

    PubMed Central

    Vallet-Gely, Isabelle; Boccard, Frédéric

    2013-01-01

    The study of chromosomal organization and segregation in a handful of bacteria has revealed surprising variety in the mechanisms mediating such fundamental processes. In this study, we further emphasized this diversity by revealing an original organization of the Pseudomonas aeruginosa chromosome. We analyzed the localization of 20 chromosomal markers and several components of the replication machinery in this important opportunistic γ-proteobacteria pathogen. This technique allowed us to show that the 6.3 Mb unique circular chromosome of P. aeruginosa is globally oriented from the old pole of the cell to the division plane/new pole along the oriC-dif axis. The replication machinery is positioned at mid-cell, and the chromosomal loci from oriC to dif are moved sequentially to mid-cell prior to replication. The two chromosomal copies are subsequently segregated at their final subcellular destination in the two halves of the cell. We identified two regions in which markers localize at similar positions, suggesting a bias in the distribution of chromosomal regions in the cell. The first region encompasses 1.4 Mb surrounding oriC, where loci are positioned around the 0.2/0.8 relative cell length upon segregation. The second region contains at least 800 kb surrounding dif, where loci show an extensive colocalization step following replication. We also showed that disrupting the ParABS system is very detrimental in P. aeruginosa. Possible mechanisms responsible for the coordinated chromosomal segregation process and for the presence of large distinctive regions are discussed. PMID:23658532

  19. Introduction of Pseudomonas aeruginosa into a Hospital via Vegetables

    PubMed Central

    Kominos, Spyros D.; Copeland, Charles E.; Grosiak, Barbara; Postic, Bosko

    1972-01-01

    Pseudomonas aeruginosa was isolated from tomatoes, radishes, celery, carrots, endive, cabbage, cucumbers, onions, and lettuce obtained from the kitchen of a general hospital, with tomatoes yielding both highest frequencies of isolation and highest counts. Presence of P. aeruginosa on the hands of kitchen personnel and cutting boards and knives which they used suggests acquisition of the organism through contact with these vegetables. It is estimated that a patient consuming an average portion of tomato salad might ingest as many as 5 × 103 colony-forming units of P. aeruginosa. Pyocine types of P. aeruginosa isolated from clinical specimens were frequently identical to those recovered from vegetables, thus implicating tomatoes and other vegetables as an important source and vehicle by which P. aeruginosa colonizes the intestinal tract of patients. PMID:4628795

  20. Algal Growth Potential of Microcystis aeruginosa from Reclaimed Water.

    PubMed

    Joo, Jin Chul; Ahn, Chang Hyuk; Lee, Saeromi; Jang, Dae-Gyu; Lee, Woo Hyoung; Ryu, Byong Ro

    2016-01-01

    Algal growth potential (AGP) of the cyanobacterium Microcystis aeruginosa (M. aeruginosa, NIES-298) using reclaimed water from various wastewater reclamation pilot plants was investigated to evaluate the feasibility of the reclaimed water usage for recreational purposes. After completing the coagulation and ultrafiltration processes, the concentrations of most contaminants in the reclaimed water were lower than the reuse guidelines for recreational water. However, M. aeruginosa successfully adapted to low levels of soluble reactive phosphorus (PO(3-)(4)) concentrations. The AGP values of M. aeruginosa decreased with the progression of treatment processes, and with the increases in the dilution volume. Also, both the AGP and chlorophyll-a values can be estimated a priori without conducting the AGP tests. Therefore, aquatic ecosystems in locations prone to environmental conditions favorable for the growth of M. aeruginosa require more rigorous nutrient management plans (e.g., reverse osmosis and dilution with clean water resources) to reduce the nutrient availability. PMID:26803027

  1. Pseudomonas aeruginosa infection mimicking erythema annulare centrifugum.

    PubMed

    Czechowicz, R T; Warren, L J; Moore, L; Saxon, B

    2001-02-01

    A 3-year-old girl receiving chemotherapy for acute lymphocytic leukaemia developed a rapidly expanding red annular plaque on her thigh, initially without signs of systemic toxicity or local pain. Subsequently she developed Pseudomonas aeruginosa sepsis and purpura at the leading edge of the plaque. Skin biopsy showed an extensive necrotizing vasculitis with numerous Gram-negative bacilli in the blood vessel walls. In immunocompromised individuals, skin biopsy and culture of cutaneous lesions for bacteria and fungi should be considered even in the absence of signs of systemic toxicity or multiple lesions. PMID:11233725

  2. The Pseudomonas aeruginosa Proteome during Anaerobic Growth‡

    PubMed Central

    Wu, Manhong; Guina, Tina; Brittnacher, Mitchell; Nguyen, Hai; Eng, Jimmy; Miller, Samuel I.

    2005-01-01

    Isotope-coded affinity tag analysis and two-dimensional gel electrophoresis followed by tandem mass spectrometry were used to identify Pseudomonas aeruginosa proteins expressed during anaerobic growth. Out of the 617 proteins identified, 158 were changed in abundance during anaerobic growth compared to during aerobic growth, including proteins whose increased expression was expected based on their role in anaerobic metabolism. These results form the basis for future analyses of alterations in bacterial protein content during growth in various environments, including the cystic fibrosis airway. PMID:16291692

  3. Biosynthesis of Gold Nanoparticles Using Pseudomonas Aeruginosa

    SciTech Connect

    Abd El-Aziz, M.; Badr, Y.; Mahmoud, M. A.

    2007-02-14

    Pseudomonas aeruginosa were used for extracellular biosynthesis of gold nanoparticles (Au NPs). Consequently, Au NPs were formed due to reduction of gold ion by bacterial cell supernatant of P. aeruginos ATCC 90271, P. aeruginos (2) and P. aeruginos (1). The UV-Vis. and fluorescence spectra of the bacterial as well as chemical prepared Au NPs were recorded. Transmission electron microscopy (TEM) micrograph showed the formation of well-dispersed gold nanoparticles in the range of 15-30 nm. The process of reduction being extracellular and may lead to the development of an easy bioprocess for synthesis of Au NPs.

  4. Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1

    PubMed Central

    DeAngelis, Kristen M.; Sharma, Deepak; Varney, Rebecca; Simmons, Blake; Isern, Nancy G.; Markilllie, Lye Meng; Nicora, Carrie; Norbeck, Angela D.; Taylor, Ronald C.; Aldrich, Joshua T.; Robinson, Errol W.

    2013-01-01

    Lignocellulosic biofuels are promising as sustainable alternative fuels, but lignin inhibits access of enzymes to cellulose, and by-products of lignin degradation can be toxic to cells. The fast growth, high efficiency and specificity of enzymes employed in the anaerobic litter deconstruction carried out by tropical soil bacteria make these organisms useful templates for improving biofuel production. The facultative anaerobe Enterobacter lignolyticus SCF1 was initially cultivated from Cloud Forest soils in the Luquillo Experimental Forest in Puerto Rico, based on anaerobic growth on lignin as sole carbon source. The source of the isolate was tropical forest soils that decompose litter rapidly with low and fluctuating redox potentials, where bacteria using oxygen-independent enzymes likely play an important role in decomposition. We have used transcriptomics and proteomics to examine the observed increased growth of SCF1 grown on media amended with lignin compared to unamended growth. Proteomics suggested accelerated xylose uptake and metabolism under lignin-amended growth, with up-regulation of proteins involved in lignin degradation via the 4-hydroxyphenylacetate degradation pathway, catalase/peroxidase enzymes, and the glutathione biosynthesis and glutathione S-transferase (GST) proteins. We also observed increased production of NADH-quinone oxidoreductase, other electron transport chain proteins, and ATP synthase and ATP-binding cassette (ABC) transporters. This suggested the use of lignin as terminal electron acceptor. We detected significant lignin degradation over time by absorbance, and also used metabolomics to demonstrate moderately significant decreased xylose concentrations as well as increased metabolic products acetate and formate in stationary phase in lignin-amended compared to unamended growth conditions. Our data show the advantages of a multi-omics approach toward providing insights as to how lignin may be used in nature by microorganisms coping

  5. Inactivation of Enterobacter sakazakii in reconstituted infant formula by trans-cinnamaldehyde.

    PubMed

    Amalaradjou, Mary Anne Roshni; Hoagland, Thomas A; Venkitanarayanan, Kumar

    2009-02-15

    Enterobacter sakazakii is an emerging pathogen which causes a life-threatening form of meningitis, necrotizing colitis and meningoencephalitis in neonates and children. Epidemiological studies implicate dried infant formula as the principal source of the pathogen. Trans-cinnamaldehyde is a major component of bark extract of cinnamon. It is classified as generally recognized as safe (GRAS) by the U.S. Food and Drug Administration, and is approved for use in food (21 CFR 182.60). The objective of this study was to determine the antibacterial effect of trans-cinnamaldehyde on E. sakazakii in reconstituted infant formula. A 5-strain mixture of E. sakazakii was inoculated into 10 ml samples of reconstituted infant formula (at 6.0 log CFU/ml) containing 0%, 0.15%, 0.3% or 0.5% trans-cinnamaldehyde. The samples were incubated at 37, 23, 8 or 4 degrees C for 0, 6, 10 and 24 h, and the surviving populations of E. sakazakii at each sampling time were enumerated. In addition, potential cytotoxicity of trans-cinnamaldehyde, if any, was determined on human embryonic intestinal cells (INT-407). The treatments containing trans-cinnamaldehyde significantly reduced (P<0.05) the population of E. sakazakii, compared to the controls. Trans-cinnamaldehyde (0.5%) reduced the pathogen to undetectable levels by 4 h of incubation at 37 or 23 degrees C and 10 h of incubation at 8 or 4 degrees C, respectively. Trans-cinnamaldehyde produced no cytotoxic effects on human embryonic intestinal cells at the tested concentrations. Results indicate that trans-cinnamaldehyde could potentially be used to kill E. sakazakii in reconstituted infant formula, however sensory studies are warranted before recommending its use. PMID:19091435

  6. Survival Strategies of the Plant-Associated Bacterium Enterobacter sp. Strain EG16 under Cadmium Stress

    PubMed Central

    Chen, Yanmei; Li, Yaying; Lin, Qingqi; Bai, Jun; Tang, Lu; Wang, Shizhong; Ying, Rongrong

    2016-01-01

    Plant-associated bacteria are of great interest because of their potential use in phytoremediation. However, their ability to survive and promote plant growth in metal-polluted soils remains unclear. In this study, a soilborne Cd-resistant bacterium was isolated and identified as Enterobacter sp. strain EG16. It tolerates high external Cd concentrations (Cd2+ MIC, >250 mg liter−1) and is able to produce siderophores and the plant hormone indole-3-acetic acid (IAA), both of which contribute to plant growth promotion. Surface biosorption in this strain accounted for 31% of the total Cd accumulated. The potential presence of cadmium sulfide, shown by energy-dispersive X-ray (EDX) analysis, suggested intracellular Cd binding as a Cd response mechanism of the isolate. Cd exposure resulted in global regulation at the transcriptomic level, with the bacterium switching to an energy-conserving mode by inhibiting energy-consuming processes while increasing the production of stress-related proteins. The stress response system included increased import of sulfur and iron, which become deficient under Cd stress, and the redirection of sulfur metabolism to the maintenance of intracellular glutathione levels in response to Cd toxicity. Increased production of siderophores, responding to Cd-induced Fe deficiency, not only is involved in the Cd stress response systems of EG16 but may also play an important role in promoting plant growth as well as alleviating the Cd-induced inhibition of IAA production. The newly isolated strain EG16 may be a suitable candidate for microbially assisted phytoremediation due to its high resistance to Cd and its Cd-induced siderophore production, which is likely to contribute to plant growth promotion. PMID:26729719

  7. Survival Strategies of the Plant-Associated Bacterium Enterobacter sp. Strain EG16 under Cadmium Stress.

    PubMed

    Chen, Yanmei; Chao, Yuanqing; Li, Yaying; Lin, Qingqi; Bai, Jun; Tang, Lu; Wang, Shizhong; Ying, Rongrong; Qiu, Rongliang

    2016-01-01

    Plant-associated bacteria are of great interest because of their potential use in phytoremediation. However, their ability to survive and promote plant growth in metal-polluted soils remains unclear. In this study, a soilborne Cd-resistant bacterium was isolated and identified as Enterobacter sp. strain EG16. It tolerates high external Cd concentrations (Cd(2+) MIC, >250 mg liter(-1)) and is able to produce siderophores and the plant hormone indole-3-acetic acid (IAA), both of which contribute to plant growth promotion. Surface biosorption in this strain accounted for 31% of the total Cd accumulated. The potential presence of cadmium sulfide, shown by energy-dispersive X-ray (EDX) analysis, suggested intracellular Cd binding as a Cd response mechanism of the isolate. Cd exposure resulted in global regulation at the transcriptomic level, with the bacterium switching to an energy-conserving mode by inhibiting energy-consuming processes while increasing the production of stress-related proteins. The stress response system included increased import of sulfur and iron, which become deficient under Cd stress, and the redirection of sulfur metabolism to the maintenance of intracellular glutathione levels in response to Cd toxicity. Increased production of siderophores, responding to Cd-induced Fe deficiency, not only is involved in the Cd stress response systems of EG16 but may also play an important role in promoting plant growth as well as alleviating the Cd-induced inhibition of IAA production. The newly isolated strain EG16 may be a suitable candidate for microbially assisted phytoremediation due to its high resistance to Cd and its Cd-induced siderophore production, which is likely to contribute to plant growth promotion. PMID:26729719

  8. Dominance of IMP-4-Producing Enterobacter cloacae among Carbapenemase-Producing Enterobacteriaceae in Australia

    PubMed Central

    Townell, Nicola; Nimmo, Graeme R.; George, Narelle M.; Robson, Jennifer; Vohra, Renu; Davis, Louise; Heney, Claire; Paterson, David L.

    2015-01-01

    The prevalence of carbapenemase-producing Enterobacteriaceae (CPE) has been increasing worldwide. blaIMP has been reported to be the predominant carbapenemase-encoding gene within Enterobacteriaceae in Australia. However, there are limited data currently available on CPE from Queensland, Australia. A total of 58 CPE isolates were isolated between July 2009 and March 2014 from Queensland hospitals. The clonality of isolates was determined by Diversilab repetitive sequence-based PCR. The isolates were investigated for the resistance mechanisms carbapenemase, extended-spectrum β-lactamase, and AmpC β-lactamase and for aminoglycoside resistance and plasmid-mediated quinolone resistance genes by PCR. The plasmid types associated with carbapenemase-encoding genes were characterized. The majority of the CPE were Enterobacter cloacae (n = 29). The majority of Queensland CPE isolates were IMP producers and comprised 11 species (n = 48). Nine NDM-producing Enterobacteriaceae were identified. One NDM-producing Klebsiella pneumoniae isolate coproduced OXA-48. One K. pneumoniae isolate was an OXA-181 producer. The incidence of IMP producers increased significantly in 2013. blaIMP-4 was found in all IMP-producing isolates. blaTEM, qnrB, and aacA4 were common among IMP-4 producers. The HI2 (67%) and L/M (21%) replicons were associated with blaIMP-4. All HI2 plasmids were of sequence type 1 (ST1). All but one of the NDM producers possessed blaCTX-M-15. The 16S rRNA methylase genes found among NDM producers were armA, rmtB, rmtC, and rmtF. The substantial increase in the prevalence of CPE in Queensland has been associated mainly with the emergence E. cloacae strains possessing HI2 plasmids carrying blaIMP-4 over the past 2 years. The importation of NDM producers and/or OXA-48-like producers in patients also contributed to the increased emergence of CPE. PMID:25918153

  9. Isolation and characterization of a glyphosate-degrading rhizosphere strain, Enterobacter cloacae K7.

    PubMed

    Kryuchkova, Yelena V; Burygin, Gennady L; Gogoleva, Natalia E; Gogolev, Yuri V; Chernyshova, Marina P; Makarov, Oleg E; Fedorov, Evgenii E; Turkovskaya, Olga V

    2014-01-20

    Plant-growth-promoting rhizobacteria exert beneficial effects on plants through their capacity for nitrogen fixation, phytohormone production, phosphate solubilization, and improvement of the water and mineral status of plants. We suggested that these bacteria may also have the potential to express degradative activity toward glyphosate, a commonly used organophosphorus herbicide. In this study, 10 strains resistant to a 10 mM concentration of glyphosate were isolated from the rhizoplane of various plants. Five of these strains--Alcaligenes sp. K1, Comamonas sp. K4, Azomonas sp. K5, Pseudomonas sp. K3, and Enterobacter cloacae K7--possessed a number of associative traits, including fixation of atmospheric nitrogen, solubilization of phosphates, and synthesis of the phytohormone indole-3-acetic acid. One strain, E. cloacae K7, could utilize glyphosate as a source of P. Gas-liquid chromatography showed that E. cloacae growth correlated with a decline in herbicide content in the culture medium (40% of the initial 5mM content), with no glyphosate accumulating inside the cells. Thin-layer chromatography analysis of the intermediate metabolites of glyphosate degradation found that E. cloacae K7 had a C-P lyase activity and degraded glyphosate to give sarcosine, which was then oxidized to glycine. In addition, strain K7 colonized the roots of common sunflower (Helianthus annuus L.) and sugar sorghum (Sorghum saccharatum Pers.), promoting the growth and development of sunflower seedlings. Our findings extend current knowledge of glyphosate-degrading rhizosphere bacteria and may be useful for developing a biotechnology for the cleanup and restoration of glyphosate-polluted soils. PMID:23545355

  10. Attachment of and Biofilm Formation by Enterobacter sakazakii on Stainless Steel and Enteral Feeding Tubes

    PubMed Central

    Kim, Hoikyung; Ryu, Jee-Hoon; Beuchat, Larry R.

    2006-01-01

    Enterobacter sakazakii has been reported to form biofilms, but environmental conditions affecting attachment to and biofilm formation on abiotic surfaces have not been described. We did a study to determine the effects of temperature and nutrient availability on attachment and biofilm formation by E. sakazakii on stainless steel and enteral feeding tubes. Five strains grown to stationary phase in tryptic soy broth (TSB), infant formula broth (IFB), or lettuce juice broth (LJB) at 12 and 25°C were examined for the extent to which they attach to these materials. Higher populations attached at 25°C than at 12°C. Stainless steel coupons and enteral feeding tubes were immersed for 24 h at 4°C in phosphate-buffered saline suspensions (7 log CFU/ml) to facilitate the attachment of 5.33 to 5.51 and 5.03 to 5.12 log CFU/cm2, respectively, before they were immersed in TSB, IFB, or LJB, followed by incubation at 12 or 25°C for up to 10 days. Biofilms were not produced at 12°C. The number of cells of test strains increased by 1.42 to 1.67 log CFU/cm2 and 1.16 to 1.31 log CFU/cm2 in biofilms formed on stainless steel and feeding tubes, respectively, immersed in IFB at 25°C; biofilms were not formed on TSB and LJB at 25°C, indicating that nutrient availability plays a major role in processes leading to biofilm formation on the surfaces of these inert materials. These observations emphasize the importance of temperature control in reconstituted infant formula preparation and storage areas in preventing attachment and biofilm formation by E. sakazakii. PMID:16957203

  11. Clonal Dissemination of Enterobacter cloacae Harboring blaKPC-3 in the Upper Midwestern United States

    PubMed Central

    Hargreaves, Melissa L.; Shaw, Kristin M.; Dobbins, Ginette; Snippes Vagnone, Paula M.; Harper, Jane E.; Boxrud, Dave; Lynfield, Ruth; Aziz, Maliha; Price, Lance B.; Silverstein, Kevin A. T.; Danzeisen, Jessica L.; Youmans, Bonnie; Case, Kyle; Sreevatsan, Srinand

    2015-01-01

    Carbapenemase-producing, carbapenem-resistant Enterobacteriaceae, or CP-CRE, are an emerging threat to human and animal health, because they are resistant to many of the last-line antimicrobials available for disease treatment. Carbapenemase-producing Enterobacter cloacae harboring blaKPC-3 recently was reported in the upper midwestern United States and implicated in a hospital outbreak in Fargo, North Dakota (L. M. Kiedrowski, D. M. Guerrero, F. Perez, R. A. Viau, L. J. Rojas, M. F. Mojica, S. D. Rudin, A. M. Hujer, S. H. Marshall, and R. A. Bonomo, Emerg Infect Dis 20:1583–1585, 2014, http://dx.doi.org/10.3201/eid2009.140344). In early 2009, the Minnesota Department of Health began collecting and screening CP-CRE from patients throughout Minnesota. Here, we analyzed a retrospective group of CP-E. cloacae isolates (n = 34) collected between 2009 and 2013. Whole-genome sequencing and analysis revealed that 32 of the strains were clonal, belonging to the ST171 clonal complex and differing collectively by 211 single-nucleotide polymorphisms, and it revealed a dynamic clone under positive selection. The phylogeography of these strains suggests that this clone existed in eastern North Dakota and western Minnesota prior to 2009 and subsequently was identified in the Minneapolis and St. Paul metropolitan area. All strains harbored identical IncFIA-like plasmids conferring a CP-CRE phenotype and an additional IncX3 plasmid. In a single patient with multiple isolates submitted over several months, we found evidence that these plasmids had transferred from the E. cloacae clone to an Escherichia coli ST131 bacterium, rendering it as a CP-CRE. The spread of this clone throughout the upper midwestern United States is unprecedented for E. cloacae and highlights the importance of continued surveillance to identify such threats to human health. PMID:26438492

  12. Biodegradation of Chlorpyrifos by Enterobacter Strain B-14 and Its Use in Bioremediation of Contaminated Soils

    PubMed Central

    Singh, Brajesh K.; Walker, Allan; Morgan, J. Alun W.; Wright, Denis J.

    2004-01-01

    Six chlorpyrifos-degrading bacteria were isolated from an Australian soil and compared by biochemical and molecular methods. The isolates were indistinguishable, and one (strain B-14) was selected for further analysis. This strain showed greatest similarity to members of the order Enterobacteriales and was closest to members of the Enterobacter asburiae group. The ability of the strain to mineralize chlorpyrifos was investigated under different culture conditions, and the strain utilized chlorpyrifos as the sole source of carbon and phosphorus. Studies with ring or uniformly labeled [14C]chlorpyrifos in liquid culture demonstrated that the isolate hydrolyzed chlorpyrifos to diethylthiophospshate (DETP) and 3, 5, 6-trichloro-2-pyridinol, and utilized DETP for growth and energy. The isolate was found to possess mono- and diphosphatase activities along with a phosphotriesterase activity. Addition of other sources of carbon (glucose and succinate) resulted in slowing down of the initial rate of degradation of chlorpyrifos. The isolate degraded the DETP-containing organophosphates parathion, diazinon, coumaphos, and isazofos when provided as the sole source of carbon and phosphorus, but not fenamiphos, fonofos, ethoprop, and cadusafos, which have different side chains. Studies of the molecular basis of degradation suggested that the degrading ability could be polygenic and chromosome based. Further studies revealed that the strain possessed a novel phosphotriesterase enzyme system, as the gene coding for this enzyme had a different sequence from the widely studied organophosphate-degrading gene (opd). The addition of strain B-14 (106 cells g−1) to soil with a low indigenous population of chlorpyrifos-degrading bacteria treated with 35 mg of chlorpyrifos kg−1 resulted in a higher degradation rate than was observed in noninoculated soils. These results highlight the potential of this bacterium to be used in the cleanup of contaminated pesticide waste in the

  13. Enterobacter sakazakii in food and beverages (other than infant formula and milk powder).

    PubMed

    Friedemann, Miriam

    2007-05-01

    The ubiqitous microorganism Enterobacter sakazakii is a rare contaminant of infant formula and may cause severe systemic infection in neonates. So far, other food is not known to cause E. sakazakii-infections. The scarce information about the ecology of E. sakazakii and the uncertainty concerning the source of infection in children and adults warrant a summary of the current knowledge about the presence of this opportunistic microorganism in food other than infant formula. This review systematizes publications on the presence of E. sakazakii in food and beverages until June 2006. Food other than infant formula has been rarely investigated for the presence of E. sakazakii. Nevertheless, this microorganism could be isolated from a wide spectrum of food and food ingredients. E. sakazakii was isolated from plant food and food ingredients like cereal, fruit and vegetables, legume products, herbs and spices as well as from animal food sources like milk, meat and fish and products made from these foods. The spectrum of E. sakazakii-contaminated food covers both raw and processed food. The kind of processing of E. sakazakii-contaminated food was not restricted to dry products. Fresh, frozen, ready-to-eat, fermented and cooked food products as well as beverages and water suitable for the preparation of food, were found to be contaminated by E. sakazakii. Although E. sakazakii-contaminated food do not have general public health significance, measures for prevention should consider the presence of E. sakazakii in food, food ingredients, their processing and preparation as possible source of contamination, colonization or infection. PMID:17331606

  14. Optimization of biodegradable plastic production on sugar cane molasses in Enterobacter sp. SEL2

    PubMed Central

    Naheed, Nighat; Jamil, Nazia

    2014-01-01

    Contaminated environments have a large number of bacteria which can accumulate PHA as their energy reserves. Out of 54 isolated bacterial strains from three groups of contaminated sites 48 were found PHA positive. The sites were grouped on the basis of the type of carbon sources i.e. sugars, fatty acids and much diverse type. Strains MFD5, MFD11, UML3, USL2, SEL2, SEL3, SEL10 and PFW1 produced 69.9 ± 0.29, 75.27 ± 0.45, 65.43 ± 0.1, 72.54 ± 0.27, 76.61 ± 0.28, 61.81 ± 0.05, 71.16 ± 0.09 and 74.92 ± 0.5 percent of PHA to their constant cell weight (CCW) respectively in PHA detection media supplemented with 2% glucose. Molasses, whey, crumbs hydrolysate and palm oil were checked as inexpensive carbon sources. Molasses alone could supply the required nutrients for growth and PHA production. Strain SEL2 produced 47.36 ± 0.45% PHA using 2% molasses at 37 °C and pH 7.0. Upon production optimization the best accumulation (80.95 ± 0.01%) was observed in PHA detection media with 0.2% nitrogen source, 3% molasses, pH 5.0 and 37 °C by the strain SEL2. The overall effect of the presence of increased molasses concentration in the media was positive it increased the accumulation period till 72 h. Enterobacter sp. SEL2 (JF901810) is first time being reported for PHA production. PMID:25242924

  15. Escherichia fergusonii and Enterobacter taylorae, two new species of Enterobacteriaceae isolated from clinical specimens.

    PubMed Central

    Farmer, J J; Fanning, G R; Davis, B R; O'Hara, C M; Riddle, C; Hickman-Brenner, F W; Asbury, M A; Lowery, V A; Brenner, D J

    1985-01-01

    Escherichia fergusonii (formerly known as Enteric Group 10) and Enterobacter taylorae (formerly known as Enteric Group 19) are proposed as new species in the family Enterobacteriaceae. By DNA hybridization (32P, 60 degrees C, hydroxyapatite), strains of E. fergusonii were 90 to 97% related to the type strain (holotype) ATCC 35469. They were most closely related to Escherichia coli and more distantly related to species in other genera. E. fergusonii strains are positive for indole production, methyl red, lysine decarboxylase, ornithine decarboxylase, and motility. They ferment D-glucose with gas production and also ferment adonitol, L-arabinose, L-rhamnose, maltose, D-xylose, trehalose, cellobiose, and D-arabitol. They are negative for Voges-Proskauer, citrate utilization (17% positive), urea hydrolysis, phenylalanine deamination, arginine dihydrolase, growth in KCN, and fermentation of lactose, sucrose, myo-inositol, D-sorbitol, raffinose, and alpha-methyl-D-glucoside. By DNA hybridization (32P, 60 degrees C, hydroxyapatite), strains of E. taylorae were 84 to 95% related to the type strain (holotype) ATCC 35317. Their nearest relative was E. cloacae, to which they were 61% related. Other named species were more distantly related. Strains of E. taylorae are positive for Voges-Proskauer, citrate utilization, arginine dihydrolase, ornithine decarboxylase, motility, growth in KCN medium, and malonate utilization. They ferment D-glucose with gas production and also ferment D-mannitol, L-arabinose, L-rhamnose, maltose, D-xylose, trehalose, and cellobiose. They are negative for indole production, methyl red, H2S production on triple sugar-iron agar, urea hydrolysis, phenylalanine deamination, lysine decarboxylase, gelatin hydrolysis, and fermentation of adonitol, i-inositol, D-sorbitol, and raffinose. Both new species occur in human clinical specimens. Two strains of E. fergusonii were isolated from blood. Five stains of E. taylorae were isolated from blood, and one was

  16. Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1.

    PubMed

    Deangelis, Kristen M; Sharma, Deepak; Varney, Rebecca; Simmons, Blake; Isern, Nancy G; Markilllie, Lye Meng; Nicora, Carrie; Norbeck, Angela D; Taylor, Ronald C; Aldrich, Joshua T; Robinson, Errol W

    2013-01-01

    Lignocellulosic biofuels are promising as sustainable alternative fuels, but lignin inhibits access of enzymes to cellulose, and by-products of lignin degradation can be toxic to cells. The fast growth, high efficiency and specificity of enzymes employed in the anaerobic litter deconstruction carried out by tropical soil bacteria make these organisms useful templates for improving biofuel production. The facultative anaerobe Enterobacter lignolyticus SCF1 was initially cultivated from Cloud Forest soils in the Luquillo Experimental Forest in Puerto Rico, based on anaerobic growth on lignin as sole carbon source. The source of the isolate was tropical forest soils that decompose litter rapidly with low and fluctuating redox potentials, where bacteria using oxygen-independent enzymes likely play an important role in decomposition. We have used transcriptomics and proteomics to examine the observed increased growth of SCF1 grown on media amended with lignin compared to unamended growth. Proteomics suggested accelerated xylose uptake and metabolism under lignin-amended growth, with up-regulation of proteins involved in lignin degradation via the 4-hydroxyphenylacetate degradation pathway, catalase/peroxidase enzymes, and the glutathione biosynthesis and glutathione S-transferase (GST) proteins. We also observed increased production of NADH-quinone oxidoreductase, other electron transport chain proteins, and ATP synthase and ATP-binding cassette (ABC) transporters. This suggested the use of lignin as terminal electron acceptor. We detected significant lignin degradation over time by absorbance, and also used metabolomics to demonstrate moderately significant decreased xylose concentrations as well as increased metabolic products acetate and formate in stationary phase in lignin-amended compared to unamended growth conditions. Our data show the advantages of a multi-omics approach toward providing insights as to how lignin may be used in nature by microorganisms coping

  17. Optimization of biodegradable plastic production on sugar cane molasses in Enterobacter sp. SEL2.

    PubMed

    Naheed, Nighat; Jamil, Nazia

    2014-01-01

    Contaminated environments have a large number of bacteria which can accumulate PHA as their energy reserves. Out of 54 isolated bacterial strains from three groups of contaminated sites 48 were found PHA positive. The sites were grouped on the basis of the type of carbon sources i.e. sugars, fatty acids and much diverse type. Strains MFD5, MFD11, UML3, USL2, SEL2, SEL3, SEL10 and PFW1 produced 69.9 ± 0.29, 75.27 ± 0.45, 65.43 ± 0.1, 72.54 ± 0.27, 76.61 ± 0.28, 61.81 ± 0.05, 71.16 ± 0.09 and 74.92 ± 0.5 percent of PHA to their constant cell weight (CCW) respectively in PHA detection media supplemented with 2% glucose. Molasses, whey, crumbs hydrolysate and palm oil were checked as inexpensive carbon sources. Molasses alone could supply the required nutrients for growth and PHA production. Strain SEL2 produced 47.36 ± 0.45% PHA using 2% molasses at 37 °C and pH 7.0. Upon production optimization the best accumulation (80.95 ± 0.01%) was observed in PHA detection media with 0.2% nitrogen source, 3% molasses, pH 5.0 and 37 °C by the strain SEL2. The overall effect of the presence of increased molasses concentration in the media was positive it increased the accumulation period till 72 h. Enterobacter sp. SEL2 (JF901810) is first time being reported for PHA production. PMID:25242924

  18. OXIDATIVE ASSIMILATION OF GLUCOSE BY PSEUDOMONAS AERUGINOSA

    PubMed Central

    Duncan, Margaret G.; Campbell, J. J. R.

    1962-01-01

    Duncan, Margaret G. (The University of British Columbia, Vancouver, British Columbia, Canada) and J. J. R. Campbell. Oxidative assimilation of glucose by Pseudomonas aeruginosa. J. Bacteriol. 84:784–792. 1962—Oxidative assimilation of glucose by washed-cell suspensions of Pseudomonas aeruginosa was studied using C14-labeled substrate. At the time of glucose disappearance, only small amounts of radioactivity were present in the cells, and α-ketoglutaric acid accumulated in the supernatant fluid. Most of the material synthesized by the cells during oxidative assimilation was nitrogenous, the ammonia being supplied by the endogenous respiration. The cold trichloroacetic acid-soluble fraction and the lipid fraction appeared to be important during the early stages of oxidative assimilation, and the largest percentage of the incorporated radioactivity was found in the protein fraction. In the presence of added ammonia, assimilation was greatly increased and no α-ketoglutaric acid was found in the supernatant fluid. Sodium azide partially inhibited incorporation into all major cell fractions, and at higher concentrations depressed the rate of glucose oxidation. During oxidative assimilation, chloramphenicol specifically inhibited the synthesis of protein. Oxidative assimilation of glucose by this organism did not appear to involve the synthesis of a primary product such as is found in the majority of bacteria. PMID:16561965

  19. Shear-enhanced adhesion of Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Lecuyer, Sigolene; Rusconi, Roberto; Shen, Yi; Forsyth, Alison; Stone, Howard

    2010-03-01

    Bacterial adhesion is the first step in the development of surface-associated communities known as biofilms, which are the cause of many problems in medical devices and industrial water systems. However the underlying mechanisms of initial bacterial attachment are not fully understood. We have investigated the effects of hydrodynamics on the probability of adsorption and detachment of Pseudomonas aeruginosa strain PA14 on model surfaces under flow, in straight microfluidic channels, and measured the distribution of bacteria residence time as a function of the shear rate. Our main discovery is a counter-intuitive enhanced adhesion as the shear stress is increased over a wide range of shear rates. In order to identify the origin of this phenomenon, we have performed experiments with several mutant strains. Our results show that shear-enhanced adhesion is not regulated by primary surface organelles, and that this process is not specific to a certain type of surface, but rather appears a general feature of the adhesive behavior of P. aeruginosa. These results suggest that shear-induced adhesion could be a very widespread strategy in nature.

  20. The Pseudomonas aeruginosa PA01 Gene Collection

    PubMed Central

    LaBaer, Joshua; Qiu, QingQing; Anumanthan, Anukanth; Mar, Wenhong; Zuo, Dongmei; Murthy, T.V.S.; Taycher, Helen; Halleck, Allison; Hainsworth, Eugenie; Lory, Stephen; Brizuela, Leonardo

    2004-01-01

    Pseudomonas aeruginosa, a common inhabitant of soil and water, is an opportunistic pathogen of growing clinical relevance. Its genome, one of the largest among bacteria [5570 open reading frames (ORFs)] approaches that of simple eukaryotes. We have constructed a comprehensive gene collection for this organism utilizing the annotated genome of P. aeruginosa PA01 and a highly automated and laboratory information management system (LIMS)-supported production line. All the individual ORFs have been successfully PCR-amplified and cloned into a recombination-based cloning system. We have isolated and archived four independent isolates of each individual ORF. Full sequence analysis of the first isolate for one-third of the ORFs in the collection has been completed. We used two sets of genes from this repository for high-throughput expression and purification of recombinant proteins in different systems. The purified proteins have been used to set up biochemical and immunological assays directed towards characterization of histidine kinases and identification of bacterial proteins involved in the immune response of cystic fibrosis patients. This gene repository provides a powerful tool for proteome- and genome-scale research of this organism, and the strategies adopted to generate this repository serve as a model for building clone sets for other bacteria. PMID:15489342

  1. Proteomic analysis of keratitis-associated Pseudomonas aeruginosa

    PubMed Central

    Sewell, Abby; Dunmire, Jeffrey; Wehmann, Michael; Rowe, Theresa

    2014-01-01

    Purpose To compare the proteomic profile of a clinical isolate of Pseudomonas aeruginosa (P. aeruginosa) obtained from an infected cornea of a contact lens wearer and the laboratory strain P. aeruginosa ATCC 10145. Methods Antibiotic sensitivity, motility, biofilm formation, and virulence tests were performed using standard methods. Whole protein lysates were analyzed with liquid chromatography/ tandem mass spectrometry (LC-MS/MS) in triplicate, and relative protein abundances were determined with spectral counting. The G test followed by a post hoc Holm-Sidak adjustment was used for the statistical analyses to determine significance in the differential expression of proteins between the two strains. Results A total of 687 proteins were detected. One-hundred thirty-three (133) proteins were significantly different between the two strains. Among these, 13 were upregulated, and 16 were downregulated in the clinical strain compared to ATCC 10145, whereas 57 were detected only in the clinical strain. The upregulated proteins are associated with virulence and pathogenicity. Conclusions Proteins detected at higher levels in the clinical strain of P. aeruginosa were proteins known to be virulence factors. These results confirm that the keratitis-associated P. aeruginosa strain is pathogenic and expresses a higher number of virulence factors compared to the laboratory strain ATCC 10145. Identification of the protein profile of the corneal strain of P. aeruginosa in this study will aid in elucidating novel intervention strategies for reducing the burden of P. aeruginosa infection in keratitis. PMID:25221424

  2. Pseudomonas aeruginosa colonization in patients with spinal cord injuries.

    PubMed Central

    Gilmore, D S; Bruce, S K; Jimenez, E M; Schick, D G; Morrow, J W; Montgomerie, J Z

    1982-01-01

    The prevalence of Pseudomonas aeruginosa colonization of patients with spinal cord injury was studied annually from 1976 to 1980. The urethra, perineum, rectum, drainage bag, and urine of patients on the spinal cord injury service were cultured. A total of 224 men and 32 women were studied. Most patients were managed with an external urinary collection system or padding, with or without intermittent catheterization. P. aeruginosa was cultured from one or more body sites (urethra, perineum, or rectum) in 65% of men and 18% of women. Drainage bags on the beds were frequently colonized with P. aeruginosa (73%). Significant bacteriuria with P. aeruginosa was present in 19% of the men and 13% of the women. P. aeruginosa colonization of body sites in men was closely associated with the use of an external urinary collection system. Significantly greater urethral and perineal colonization was found in men using an external urinary collection system. P. aeruginosa serotype 11 was the predominant serotype for the first 3 years, and the number of patients colonized with serotype 11 increased with length of hospital stay. The prevalence of serotype 11 significantly decreased in the last 2 years. The antibiotic susceptibility of the strains of P. aeruginosa isolated from these patients did not change in the 5 years, except that there was increasing susceptibility to carbenicillin in later years. This increasing susceptibility to carbenicillin was a reflection of a decreased prevalence of serotype 11 in these patients, since serotype 11 was more resistant than other serotypes to carbenicillin. PMID:6818251

  3. Binding of protegrin-1 to Pseudomonas aeruginosa and Burkholderia cepacia

    PubMed Central

    Albrecht, Mark T; Wang, Wei; Shamova, Olga; Lehrer, Robert I; Schiller, Neal L

    2002-01-01

    Background Pseudomonas aeruginosa and Burkholderia cepacia infections of cystic fibrosis patients' lungs are often resistant to conventional antibiotic therapy. Protegrins are antimicrobial peptides with potent activity against many bacteria, including P. aeruginosa. The present study evaluates the correlation between protegrin-1 (PG-1) sensitivity/resistance and protegrin binding in P. aeruginosa and B. cepacia. Methods The PG-1 sensitivity/resistance and PG-1 binding properties of P. aeruginosa and B. cepacia were assessed using radial diffusion assays, radioiodinated PG-1, and surface plasmon resonance (BiaCore). Results The six P. aeruginosa strains examined were very sensitive to PG-1, exhibiting minimal active concentrations from 0.0625–0.5 μg/ml in radial diffusion assays. In contrast, all five B. cepacia strains examined were greater than 10-fold to 100-fold more resistant, with minimal active concentrations ranging from 6–10 μg/ml. When incubated with a radioiodinated variant of PG-1, a sensitive P. aeruginosa strain bound considerably more protegrin molecules per cell than a resistant B. cepacia strain. Binding/diffusion and surface plasmon resonance assays revealed that isolated lipopolysaccharide (LPS) and lipid A from the sensitive P. aeruginosa strains bound PG-1 more effectively than LPS and lipid A from resistant B. cepacia strains. Conclusion These findings support the hypothesis that the relative resistance of B. cepacia to protegrin is due to a reduced number of PG-1 binding sites on the lipid A moiety of its LPS. PMID:11980587

  4. Characterization of an Enterobacter cloacae Strain Producing both KPC and NDM Carbapenemases by Whole-Genome Sequencing

    PubMed Central

    Wu, Wenjing; Feng, Yu; Carattoli, Alessandra

    2015-01-01

    A carbapenem-resistant Enterobacter cloacae strain, WCHECl-14653, causing a fatal bloodstream infection, was characterized by genome sequencing and conjugation experiments. The strain carried two carbapenemase genes, blaNDM-1 and blaKPC-2, on separate IncF plasmids. The coexistence of blaNDM-1 and blaKPC-2 conferred slightly higher-level carbapenem resistance compared with that of blaNDM-1 or blaKPC-2 alone, and the coexistence of two IncF plasmids may generate new platforms for spreading carbapenemase genes. PMID:26248381

  5. Inactivation of Enterobacter sakazakii, Bacillus cereus, and Salmonella typhimurium in powdered weaning food by electron-beam irradiation

    NASA Astrophysics Data System (ADS)

    Hong, Yun-Hee; Park, Ji-Yong; Park, Jong-Hyun; Chung, Myong-Soo; Kwon, Ki-Sung; Chung, Kyungsook; Won, Misun; Song, Kyung-Bin

    2008-09-01

    Inactivation of Enterobacter sakazakii, Bacillus cereus, and Salmonella typhimurium were evaluated in powdered weaning food using electron-beam irradiation. E. sakazakii, B. cereus, and S. typhimurium were eliminated by irradiation at 16, 8, and 8 kGy, respectively. The D10-vlaues of E. sakazakii, B. cereus, and S. typhimurium inoculated on powdered weaning food were 4.83, 1.22, and 0.98 kGy, respectively. The results suggest that electron-beam irradiation should inhibit the growth of pathogenic bacteria on baby food without impairing qualities.

  6. Production of Neisseria gonorrhoeae pili (fimbriae) in Pseudomonas aeruginosa.

    PubMed Central

    Hoyne, P A; Haas, R; Meyer, T F; Davies, J K; Elleman, T C

    1992-01-01

    Pseudomonas aeruginosa K/2PfS, when transformed with an expression plasmid harboring the pilin gene (pilE1) of Neisseria gonorrhoeae MS11, was able to express and assemble gonococcal pilin monomers into surface-associated pili, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoblotting, and immunoelectron microscopy. Concomitant with the expression of gonococcal pili in P. aeruginosa was the virtual loss of production of P. aeruginosa K/2PfS pili normally associated with the host cell. Images PMID:1358873

  7. Development of potent inhibitors of pyocyanin production in Pseudomonas aeruginosa

    PubMed Central

    Miller, Laura C.; O’Loughlin, Colleen T.; Zhang, Zinan; Siryaporn, Albert; Silpe, Justin E.; Bassler, Bonnie L.; Semmelhack, Martin F.

    2015-01-01

    The development of new approaches for the treatment of antimicrobial-resistant infections is an urgent public health priority. The Pseudomonas aeruginosa pathogen, in particular, is a leading source of infection in hospital settings, with few available treatment options. In the context of an effort to develop antivirulence strategies to combat bacterial infection, we identified a series of highly effective small molecules that inhibit the production of pyocyanin, a redox-active virulence factor produced by P. aeruginosa. Interestingly, these new antagonists appear to suppress P. aeruginosa virulence factor production through a pathway that is independent of LasR and RhlR. PMID:25597392

  8. Comparison of UVB and UVC irradiation disinfection efficacies on Pseudomonas Aeruginosa (P. aeruginosa) biofilm

    NASA Astrophysics Data System (ADS)

    Argyraki, A.; Markvart, M.; Nielsen, Anne; Bjarnsholt, T.; Bjørndal, L.; Petersen, P. M.

    2016-04-01

    Disinfection routines are important in all clinical applications. The uprising problem of antibiotic resistance has driven major research efforts towards alternative disinfection approaches, involving light-based solutions. Pseudomonas aeruginosa (P. aeruginosa) is a common bacterium that can cause skin, soft tissue, lungs, kidney and urinary tract infections. Moreover, it can be found on and in medical equipment causing often cross infections in hospitals. The objective of this study was to test the efficiency, of two different light-based disinfection treatments, namely UVB and UVC irradiation, on P. aeruginosa biofilms at different growth stages. In our experiments a new type of UV light emitting diodes (LEDs) were used to deliver UV irradiation on the biofilms, in the UVB (296nm) and UVC (266nm) region. The killing rate was studied as a function of dose for 24h grown biofilms. The dose was ramped from 72J/m2 to 10000J/m2. It was shown that UVB irradiation was more effective than UVC irradiation in inactivating P. aeruginosa biofilms. No colony forming units (CFU) were observed for the UVB treated biofilms when the dose was 10000 J/m2 (CFU in control sample: 7.5 x 104). UVB irradiation at a dose of 20000J/m2 on mature biofilms (72h grown) resulted in a 3.9 log killing efficacy. The fact that the wavelength of 296nm exists in daylight and has such disinfection ability on biofilms gives new perspectives for applications within disinfection at hospitals.

  9. Dispersal of carbapenemase blaVIM-1 gene associated with different Tn402 variants, mercury transposons, and conjugative plasmids in Enterobacteriaceae and Pseudomonas aeruginosa.

    PubMed

    Tato, Marta; Coque, Teresa M; Baquero, Fernando; Cantón, Rafael

    2010-01-01

    The emergence of bla(VIM-1) within four different genetic platforms from distinct Enterobacteriaceae and Pseudomonas aeruginosa isolates in an area with a low prevalence of metallo-beta-lactamase producers is reported. Forty-three VIM-1-producing isolates (including 19 Enterobacter cloacae, 2 Escherichia coli, and 2 P. aeruginosa isolates, 18 Klebsiella pneumoniae isolate, and 2 Klebsiella oxytoca isolate) recovered from 2005 to 2007 and corresponding to 15 pulsed-field gel electrophoresis types were studied. The Enterobacteriaceae isolates corresponded to a hospital outbreak, and the P. aeruginosa isolates were sporadically recovered. The genetic context of the integrons carrying bla(VIM-1) (arbitrarily designated types A, B, C, and D) was characterized by PCR mapping based on known Tn402 and mercury transposons and further sequencing. Among Enterobacteriaceae isolates, bla(VIM-1) was part of integrons located either in an In2-Tn402 element linked to Tn21 (type A; In110-bla(VIM-1)-aacA4-aadA1) or in a Tn402 transposon lacking the whole tni module [type B; In113-bla(VIM-1)-aacA4-dhfrII (also called dfrB1)-aadA1-catB2] and the transposon was associated with an IncHI2 or IncI1 plasmid, respectively. Among P. aeruginosa isolates, bla(VIM-1) was part of a new gene cassette array located in a defective Tn402 transposon carrying either tniBDelta3 and tniA (type C; bla(VIM-1)-aadA1) or tniC and DeltatniQ (type D; bla(VIM-1)-aadB), and both Tn402 variants were associated with conjugative plasmids of 30 kb. The dissemination of bla(VIM-1) was associated with different genetic structures and bacterial hosts, depicting a complex emergence and evolutionary network scenario in our facility, Ramón y Cajal University Hospital, Madrid, Spain. Knowledge of the complex epidemiology of bla(VIM-1) is necessary to control this emerging threat. PMID:19901094

  10. Vesiculation from Pseudomonas aeruginosa under SOS

    PubMed Central

    Maredia, Reshma; Devineni, Navya; Lentz, Peter; Dallo, Shatha F.; Yu, JiehJuen; Guentzel, Neal; Chambers, James; Arulanandam, Bernard; Haskins, William E.; Weitao, Tao

    2012-01-01

    Bacterial infections can be aggravated by antibiotic treatment that induces SOS response and vesiculation. This leads to a hypothesis concerning association of SOS with vesiculation. To test it, we conducted multiple analyses of outer membrane vesicles (OMVs) produced from the Pseudomonas aeruginosa wild type in which SOS is induced by ciprofloxacin and from the LexA noncleavable (lexAN) strain in which SOS is repressed. The levels of OMV proteins, lipids, and cytotoxicity increased for both the treated strains, demonstrating vesiculation stimulation by the antibiotic treatment. However, the further increase was suppressed in the lexAN strains, suggesting the SOS involvement. Obviously, the stimulated vesiculation is attributed by both SOS-related and unrelated factors. OMV subproteomic analysis was performed to examine these factors, which reflected the OMV-mediated cytotoxicity and the physiology of the vesiculating cells under treatment and SOS. Thus, SOS plays a role in the vesiculation stimulation that contributes to cytotoxicity. PMID:22448133

  11. Human targets of Pseudomonas aeruginosa pyocyanin

    PubMed Central

    Ran, Huimin; Hassett, Daniel J.; Lau, Gee W.

    2003-01-01

    Pseudomonas aeruginosa produces copious amounts of the redoxactive tricyclic compound pyocyanin that kills competing microbes and mammalian cells, especially during cystic fibrosis lung infection. Cross-phylum susceptibility to pyocyanin suggests the existence of evolutionarily conserved physiological targets. We screened a Saccharomyces cerevisiae deletion library to identify presumptive pyocyanin targets with the expectation that similar targets would be conserved in humans. Fifty S. cerevisiae targets were provisionally identified, of which 60% have orthologous human counterparts. These targets encompassed major cellular pathways involved in the cell cycle, electron transport and respiration, epidermal cell growth, protein sorting, vesicle transport, and the vacuolar ATPase. Using cultured human lung epithelial cells, we showed that pyocyanin-mediated reactive oxygen intermediates inactivate human vacuolar ATPase, supporting the validity of the yeast screen. We discuss how the inactivation of VATPase may negatively impact the lung function of cystic fibrosis patients. PMID:14605211

  12. Amino Acid Transport in Pseudomonas aeruginosa

    PubMed Central

    Kay, W. W.; Gronlund, Audrey F.

    1969-01-01

    Properties of the transport systems for amino acids in Pseudomonas aeruginosa were investigated. Exogenous 14C-labeled amino acids were shown to equilibrate with the internal native amino acid pool prior to incorporation into protein. When added at low external concentrations, the majority of the amino acids examined entered the protein of the cell unaltered. The rates of amino acid transport, established at low concentrations with 18 commonly occurring amino acids, varied as much as 40-fold. The transport process became saturated at high external amino acid concentrations, was temperature-sensitive, and was inhibited by sodium azide and iodoacetamide. Intracellular to extracellular amino acid ratios of 100- to 300-fold were maintained during exponential growth of the population in a glucose minimal medium. When the medium became depleted of glucose, neither extracellular nor intracellular amino acids could be detected. PMID:4974392

  13. Impact of probiotic drugs, based on Enterobacter faecium autostrains, on human intestinal microflora in confined habitat

    NASA Astrophysics Data System (ADS)

    Viacheslav, Ilyin; Batov, Alexey; Usanova, Nonna

    The aim of research: Investigation of influence of probiotic drugs based on autostrains of Enter-obacter faecium, selected from the crew in long term isolation experiment in confined habitat. It is known that during long-term presence in confined habitat the risk of infectious diseases increases. One of the main infectious risk occurs during first 20 days of isolation as a result of exchange of strains and stress-mediated disbacterioses. Therefore it is necessary to evaluate activities of probiotics to avoid this risk. Furthermore, in case of super long term autonomous flight there should be possibilities of application of autochthonous microflora strains as pro-biotics to strengthen colonial resistance of crews. Materials and methods: In the experiment there were used probiotic drugs based on autostrains of E. faecium, selected from the crew before the experiment. Probiotic drugs were consumed during 30 days since the beginning of the experiment with the break of consumption between 10th to 19th day. Results: Comparing the state of intestinal microflora of the crew on the baseline and 14th day of experiment re-vealed remarkable changes of microflora: the increasing of concentration of bifidobacteria and E. faecium (approximately 10 times), elimination of hemolytic streptococcus, yeasts, reduction of the rate of S.aureus, hemolytic gramnegative non-fermenting rods, lactobacilli and normal E.coli. On the 45th day of isolation, 15 days after finishing of auto-strains administration, there fere signs of restoration of disbacteriosis: the quantitative decreasing lactobacilli, bifidobacteria and normal E.coli, increasing of the rate of S.aureus, hemolytic gramnegative nonfermentive rods. Conclusion: Thus we managed to avoid risk of pathogenicity potential growth in first 2 decades of isolation. Application of probiotic, based on the autostrains of E. faecium leads to insignificant changes of concentration of lactobacteries, bifidobacteries, normal E. coli and to

  14. Ambroxol interferes with Pseudomonas aeruginosa quorum sensing.

    PubMed

    Lu, Qi; Yu, Jialin; Yang, Xiqiang; Wang, Jiarong; Wang, Lijia; Lin, Yayin; Lin, Lihua

    2010-09-01

    The mucolytic agent ambroxol has been reported to interfere with the formation of Pseudomonas aeruginosa-derived biofilms in addition to reducing alginate production by undefined mechanisms. Since quorum sensing is a key regulator of virulence and biofilm formation, we examined the effects of ambroxol on P. aeruginosa PAO1 wild-type bacterial clearance rates, adhesion profiles and biofilm formation compared with the quorum sensing-deficient, double-mutant strains DeltalasR DeltarhlR and DeltalasI DeltarhlI. Data presented in this report demonstrated that ambroxol treatment reduced survival rates of the double-mutant strains compared with the wild-type strain in a dose-dependent manner even though the double-mutants had increased adhesion in the presence of ambroxol compared with the wild-type strain. The PAO1 wild-type strain produced a significantly thicker biofilm (21.64+/-0.57 microm) compared with the biofilms produced by the DeltalasR DeltarhlR (7.36+/-0.2 microm) and DeltalasI DeltarhlI (6.62+/-0.31 microm) isolates. Ambroxol treatment reduced biofilm thickness, increased areal porosity, and decreased the average diffusion distance and textual entropy of wild-type and double-mutant strains. However, compared with the double-mutant strains, the changes observed for the wild-type strain were more clearly defined. Finally, ambroxol exhibited significant antagonistic quorum-sensing properties, suggesting that it could be adapted for use clinically in the treatment of cystic fibrosis and to reduce biofilm formation and in the colonisation of indwelling devices. PMID:20580207

  15. Phagocytic and chemiluminescent responses of mouse peritoneal macrophages to living and killed Salmonella typhimurium and other bacteria.

    PubMed Central

    Tomita, T; Blumenstock, E; Kanegasaki, S

    1981-01-01

    In the presence of luminol, resident as well as thioglycolate-induced and immunized macrophages emitted chemiluminescence more efficiently when the cells were exposed to living Salmonella typhimurium than when they were exposed to the same bacterium killed by ultraviolet light or heat. This phenomenon was observed whether or not the bacterium was opsonized. The different response to living and killed bacteria was also found with Escherichia coli, Pseudomonas aeruginosa, Proteus morganii, and Enterobacter aerogenes, but not with Shigella sonnei, Klebsiella pneumoniae, and Propionibacterium acnes. The results suggest that macrophages respond better to living, motile bacteria than to nonmotile or killed bacteria. The experimental results obtained with motility mutants of S. typhimurium, E. coli, and P. aeruginosa confirm that macrophages exposed to the motile bacteria emit chemiluminescence more efficiently and ingest the motile bacteria at a much faster rate than the nonmotile bacteria. Images PMID:6788707

  16. Acquisition and Role of Molybdate in Pseudomonas aeruginosa

    PubMed Central

    Pederick, Victoria G.; Eijkelkamp, Bart A.; Ween, Miranda P.; Begg, Stephanie L.; Paton, James C.

    2014-01-01

    In microaerophilic or anaerobic environments, Pseudomonas aeruginosa utilizes nitrate reduction for energy production, a process dependent on the availability of the oxyanionic form of molybdenum, molybdate (MoO42−). Here, we show that molybdate acquisition in P. aeruginosa occurs via a high-affinity ATP-binding cassette permease (ModABC). ModA is a cluster D-III solute binding protein capable of interacting with molybdate or tungstate oxyanions. Deletion of the modA gene reduces cellular molybdate concentrations and results in inhibition of anaerobic growth and nitrate reduction. Further, we show that conditions that permit nitrate reduction also cause inhibition of biofilm formation and an alteration in fatty acid composition of P. aeruginosa. Collectively, these data highlight the importance of molybdate for anaerobic growth of P. aeruginosa and reveal novel consequences of nitrate reduction on biofilm formation and cell membrane composition. PMID:25172858

  17. Acquisition and role of molybdate in Pseudomonas aeruginosa.

    PubMed

    Pederick, Victoria G; Eijkelkamp, Bart A; Ween, Miranda P; Begg, Stephanie L; Paton, James C; McDevitt, Christopher A

    2014-11-01

    In microaerophilic or anaerobic environments, Pseudomonas aeruginosa utilizes nitrate reduction for energy production, a process dependent on the availability of the oxyanionic form of molybdenum, molybdate (MoO4 (2-)). Here, we show that molybdate acquisition in P. aeruginosa occurs via a high-affinity ATP-binding cassette permease (ModABC). ModA is a cluster D-III solute binding protein capable of interacting with molybdate or tungstate oxyanions. Deletion of the modA gene reduces cellular molybdate concentrations and results in inhibition of anaerobic growth and nitrate reduction. Further, we show that conditions that permit nitrate reduction also cause inhibition of biofilm formation and an alteration in fatty acid composition of P. aeruginosa. Collectively, these data highlight the importance of molybdate for anaerobic growth of P. aeruginosa and reveal novel consequences of nitrate reduction on biofilm formation and cell membrane composition. PMID:25172858

  18. Microbial degradation of quinoline and methylquinolines. [Pseudomonas aeruginosa

    SciTech Connect

    Aislabie, J.; Bej, A.K.; Hurst, H.; Rothenburger, S.; Atlas, R.M. )

    1990-02-01

    Several bacterial cultures were isolated that are able to degrade quinoline and to transform or to degrade methylquinolines. The degradation of quinoline by strains of Pseudomonas aeruginosa QP and Pseudomonas. putida QP produced hydroxyquinolines, a transient pink compound, and other undetermined products. The quinoline-degrading strains of P. aeruginosa QP and P. putida QP hydroxylated a limited number of methylquinolines but could not degrade them, nor could they transform 2-methylquinoline, isoquinoline, or pyridine. Another pseudomonad, Pseudomonas sp. strain MQP, was isolated that could degrade 2-methylquinoline. P. aeruginosa QP was able to degrade or to transform quinoline and a few methylquinolines in a complex heterocyclic nitrogen-containing fraction of a shale oil. All of the quinoline- and methylquinoline-degrading strains have multiple plasmids including a common 250-kilobase plasmid. The 225-, 250-, and 320-kilobase plasmids of the P. aeruginosa QP strain all contained genes involved in quinoline metabolism.

  19. Expression of pili from Bacteroides nodosus in Pseudomonas aeruginosa.

    PubMed Central

    Elleman, T C; Hoyne, P A; Stewart, D J; McKern, N M; Peterson, J E

    1986-01-01

    The pili of Bacteroides nodosus, the causative agent of ovine footrot, constitute the major host-protective immunogen against homologous serotypic challenge. The pilin gene from B. nodosus 198 has been cloned and morphologically expressed as extracellular pili in Pseudomonas aeruginosa by using a plasmid-borne, thermoregulated expression system. B. nodosus pilin could not be detected in cultures of P. aeruginosa grown at 32 degrees C, but after induction at 37 degrees C, B. nodosus pili were expressed on the cell surface of P. aeruginosa to the virtual exclusion of the host cell pili. Pili harvested from induced P. aeruginosa cultures were used to immunize sheep against footrot. The serum agglutinating antibody titers of vaccinated sheep were comparable to those of sheep receiving pili from B. nodosus. Subsequent challenge of the sheep with B. nodosus 198 indicated that the recombinant- DNA-derived pili vaccine and the B. nodosus pili vaccine provided similar levels of protection against footrot. Images PMID:2877967

  20. Suppression of fungal growth exhibited by Pseudomonas aeruginosa.

    PubMed Central

    Kerr, J R

    1994-01-01

    Three surgery patients were monitored postoperatively, with particular reference to lung infection. In each case there was a clinical impression that Pseudomonas aeruginosa suppressed the growth of Candida albicans in patients with clinically significant lung infections from whom both of these organisms were isolated from serial sputum samples. Regrowth of C. albicans after P. aeruginosa eradication occurred in two patients, despite fluconazole therapy, to which both C. albicans isolates were susceptible. In all three patients, the strain of P. aeruginosa was found to inhibit the growth of the corresponding C. albicans strain in vitro. Further in vitro susceptibility studies revealed significant inhibition by 10 strains of P. aeruginosa of 11 strains of fungi known to infect humans; these were Candida krusei, Candida keyfr, Candida guillermondii, Candida tropicalis, Candida lusitaniae, Candida parapsilosis, Candida pseudotropicalis, Candida albicans, Torulopsis glabrata, Saccharomyces cerevisiae, and Aspergillus fumigatus. PMID:8150966

  1. Exploring multi-metal biosorption by indigenous metal-hyperresistant Enterobacter sp. J1 using experimental design methodologies.

    PubMed

    Lu, Wei-Bin; Kao, Wei-Chen; Shi, Jun-Ji; Chang, Jo-Shu

    2008-05-01

    A novel experimental design, combining mixture design and response surface methodology (RSM), was developed to investigate the competitive adsorption behavior of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 able to tolerate high concentrations of a variety of heavy metals. Using the proposed combinative experimental design, two different experiment designs in a ternary metal biosorption system can be integrated to a succinct experiment and the number of experimental trials was markedly reduced from 38 to 26 by reusing the mutual experimental data. Triangular contour diagrams and triangular three-dimensional surface plots were generated to describe the ternary metal biosorption equilibrium data in mixture design systems. The results show that the preference of metal sorption of Enterobacter sp. J1 decreased in the order of Pb(2+)>Cu(2+)>Cd(2+). The presence of other metals resulted in a competitive effect. The influence of the other two metals in ternary metal biosorption system can be easily determined by comparing the stray distance from the single metal biosorption. The behavior of competitive biosorption was successfully described and predicted using a combined Langmuir-Freundlich model along with new three-dimensional contour-surface plots. PMID:17913351

  2. Purification and characterization of a GH43 β-xylosidase from Enterobacter sp. identified and cloned from forest soil bacteria.

    PubMed

    Campos, Eleonora; Negro Alvarez, María José; Sabarís di Lorenzo, Gonzalo; Gonzalez, Sergio; Rorig, Marcela; Talia, Paola; Grasso, Daniel H; Sáez, Felicia; Manzanares Secades, Paloma; Ballesteros Perdices, Mercedes; Cataldi, Angel A

    2014-01-01

    The use of lignocellulosic biomass for second generation biofuels requires optimization of enzymatic breakdown of plant cell walls. In this work, cellulolytic bacteria were isolated from a native and two cultivated forest soil samples. Amplification of glycosyl hydrolases was attempted by using a low stringency-degenerate primer PCR strategy, using total soil DNA and bulk DNA pooled from positive colonies as template. A set of primers was designed based on Acidothermus cellulolyticus genome, by search of conserved domains of glycosyl hydrolases (GH) families of interest. Using this approach, a fragment containing an open reading frame (ORF) with 98% identity to a putative GH43 beta-xylosidase coding gene from Enterobacter cloacae was amplified and cloned. The full protein was expressed in Escherichia coli as N-terminal or C-terminal His-tagged fusions and purified under native conditions. Only N-terminal fusion protein, His-Xyl43, presented beta-xylosidase activity. On pNPX, optimal activity was achieved at pH 6 and 40 °C and Km and Kcat values were 2.92 mM and 1.32 seg(-1), respectively. Activity was also demonstrated on xylobiose (X2), with Km 17.8 mM and Kcat 380 s(-1). These results demonstrated that Xyl43 is a functional beta-xylosidase and it is the first evidence of this activity for Enterobacter sp. PMID:23838121

  3. Singly Flagellated Pseudomonas aeruginosa Chemotaxes Efficiently by Unbiased Motor Regulation

    PubMed Central

    Cai, Qiuxian; Li, Zhaojun; Ouyang, Qi

    2016-01-01

    ABSTRACT Pseudomonas aeruginosa is an opportunistic human pathogen that has long been known to chemotax. More recently, it has been established that chemotaxis is an important factor in the ability of P. aeruginosa to make biofilms. Genes that allow P. aeruginosa to chemotax are homologous with genes in the paradigmatic model organism for chemotaxis, Escherichia coli. However, P. aeruginosa is singly flagellated and E. coli has multiple flagella. Therefore, the regulation of counterclockwise/clockwise flagellar motor bias that allows E. coli to efficiently chemotax by runs and tumbles would lead to inefficient chemotaxis by P. aeruginosa, as half of a randomly oriented population would respond to a chemoattractant gradient in the wrong sense. How P. aeruginosa regulates flagellar rotation to achieve chemotaxis is not known. Here, we analyze the swimming trajectories of single cells in microfluidic channels and the rotations of cells tethered by their flagella to the surface of a variable-environment flow cell. We show that P. aeruginosa chemotaxes by symmetrically increasing the durations of both counterclockwise and clockwise flagellar rotations when swimming up the chemoattractant gradient and symmetrically decreasing rotation durations when swimming down the chemoattractant gradient. Unlike the case for E. coli, the counterclockwise/clockwise bias stays constant for P. aeruginosa. We describe P. aeruginosa’s chemotaxis using an analytical model for symmetric motor regulation. We use this model to do simulations that show that, given P. aeruginosa’s physiological constraints on motility, its distinct, symmetric regulation of motor switching optimizes chemotaxis. PMID:27048795

  4. Pyochelin potentiates the inhibitory activity of gallium on Pseudomonas aeruginosa.

    PubMed

    Frangipani, Emanuela; Bonchi, Carlo; Minandri, Fabrizia; Imperi, Francesco; Visca, Paolo

    2014-09-01

    Gallium (Ga) is an iron mimetic that has successfully been repurposed for antibacterial chemotherapy. To improve the antibacterial potency of Ga on Pseudomonas aeruginosa, the effect of complexation with a variety of siderophores and synthetic chelators was tested. Ga complexed with the pyochelin siderophore (at a 1:2 ratio) was more efficient than Ga(NO3)3 in inhibiting P. aeruginosa growth, and its activity was dependent on increased Ga entrance into the cell through the pyochelin translocon. PMID:24957826

  5. Quorum quenching activity in cell-free lysate of endophytic bacteria isolated from Pterocarpus santalinus Linn., and its effect on quorum sensing regulated biofilm in Pseudomonas aeruginosa PAO1.

    PubMed

    Rajesh, P S; Ravishankar Rai, V

    2014-01-01

    Quorum sensing mechanism allows the microorganisms to resist the antibiotic treatment by forming biofilms. Quorum quenching is one of the mechanisms to control the development of drug resistance in microbes. Endophyte bacteria are beneficial to plant growth as they support the immune system against the pathogen attack. The endophytic bacteria present in Pterocarpus santalinus were screened for the presence of N-acyl homoserine lactones (AHLs) degrading bacteria using biosensor strains and further confirmed by quantifying the violacein production. Cell-free lysate of endophytic bacteria, Bacillus firmus PT18 and Enterobacter asburiae PT39 exhibited potent AHL degrading ability by inhibiting about 80% violacein production in biosensor strain. Furthermore, when the cell-free lysate was applied to Pseudomonas aeruginosa PAO1 and PAO1-JP2 biofilm it resulted in significant (p<0.01) inhibition of biofilm formation. The biofilm inhibition was confirmed by visualization of biofilm slides under fluorescence microscopy, which showed decrease in total biomass formation in treated slides. Isolation and amplification of the gene (aiiA) indicated that the presence of AHL lactonase in cell-free lysate and sequence alignment indicated that AiiA contains a "HXHXDH" zinc-binding motif that is being conserved in several groups of metallohydrolases. Therefore, the study shows the potential of AHLs degradation by AHL lactonase present in cell-free lysate of isolated endophytic bacteria and inhibition of quorum sensing regulated biofilm formation in P. aeruginosa PAO1. PMID:24268182

  6. Tracking the immunopathological response to Pseudomonas aeruginosa during respiratory infections

    PubMed Central

    Cigana, Cristina; Lorè, Nicola Ivan; Riva, Camilla; De Fino, Ida; Spagnuolo, Lorenza; Sipione, Barbara; Rossi, Giacomo; Nonis, Alessandro; Cabrini, Giulio; Bragonzi, Alessandra

    2016-01-01

    Repeated cycles of infections, caused mainly by Pseudomonas aeruginosa, combined with a robust host immune response and tissue injury, determine the course and outcome of cystic fibrosis (CF) lung disease. As the disease progresses, P. aeruginosa adapts to the host modifying dramatically its phenotype; however, it remains unclear whether and how bacterial adaptive variants and their persistence influence the pathogenesis and disease development. Using in vitro and murine models of infection, we showed that P. aeruginosa CF-adaptive variants shaped the innate immune response favoring their persistence. Next, we refined a murine model of chronic pneumonia extending P. aeruginosa infection up to three months. In this model, including CFTR-deficient mice, we unveil that the P. aeruginosa persistence lead to CF hallmarks of airway remodelling and fibrosis, including epithelial hyperplasia and structure degeneration, goblet cell metaplasia, collagen deposition, elastin degradation and several additional markers of tissue damage. This murine model of P. aeruginosa chronic infection, reproducing CF lung pathology, will be instrumental to identify novel molecular targets and test newly tailored molecules inhibiting chronic inflammation and tissue damage processes in pre-clinical studies. PMID:26883959

  7. Tracking the immunopathological response to Pseudomonas aeruginosa during respiratory infections.

    PubMed

    Cigana, Cristina; Lorè, Nicola Ivan; Riva, Camilla; De Fino, Ida; Spagnuolo, Lorenza; Sipione, Barbara; Rossi, Giacomo; Nonis, Alessandro; Cabrini, Giulio; Bragonzi, Alessandra

    2016-01-01

    Repeated cycles of infections, caused mainly by Pseudomonas aeruginosa, combined with a robust host immune response and tissue injury, determine the course and outcome of cystic fibrosis (CF) lung disease. As the disease progresses, P. aeruginosa adapts to the host modifying dramatically its phenotype; however, it remains unclear whether and how bacterial adaptive variants and their persistence influence the pathogenesis and disease development. Using in vitro and murine models of infection, we showed that P. aeruginosa CF-adaptive variants shaped the innate immune response favoring their persistence. Next, we refined a murine model of chronic pneumonia extending P. aeruginosa infection up to three months. In this model, including CFTR-deficient mice, we unveil that the P. aeruginosa persistence lead to CF hallmarks of airway remodelling and fibrosis, including epithelial hyperplasia and structure degeneration, goblet cell metaplasia, collagen deposition, elastin degradation and several additional markers of tissue damage. This murine model of P. aeruginosa chronic infection, reproducing CF lung pathology, will be instrumental to identify novel molecular targets and test newly tailored molecules inhibiting chronic inflammation and tissue damage processes in pre-clinical studies. PMID:26883959

  8. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence

    PubMed Central

    Balasubramanian, Deepak; Schneper, Lisa; Kumari, Hansi; Mathee, Kalai

    2013-01-01

    Pseudomonas aeruginosa is a metabolically versatile bacterium that is found in a wide range of biotic and abiotic habitats. It is a major human opportunistic pathogen causing numerous acute and chronic infections. The critical traits contributing to the pathogenic potential of P. aeruginosa are the production of a myriad of virulence factors, formation of biofilms and antibiotic resistance. Expression of these traits is under stringent regulation, and it responds to largely unidentified environmental signals. This review is focused on providing a global picture of virulence gene regulation in P. aeruginosa. In addition to key regulatory pathways that control the transition from acute to chronic infection phenotypes, some regulators have been identified that modulate multiple virulence mechanisms. Despite of a propensity for chaotic behaviour, no chaotic motifs were readily observed in the P. aeruginosa virulence regulatory network. Having a ‘birds-eye’ view of the regulatory cascades provides the forum opportunities to pose questions, formulate hypotheses and evaluate theories in elucidating P. aeruginosa pathogenesis. Understanding the mechanisms involved in making P. aeruginosa a successful pathogen is essential in helping devise control strategies. PMID:23143271

  9. ZnuA and zinc homeostasis in Pseudomonas aeruginosa

    PubMed Central

    Pederick, Victoria G.; Eijkelkamp, Bart A.; Begg, Stephanie L.; Ween, Miranda P.; McAllister, Lauren J.; Paton, James C.; McDevitt, Christopher A.

    2015-01-01

    Pseudomonas aeruginosa is a ubiquitous environmental bacterium and a clinically significant opportunistic human pathogen. Central to the ability of P. aeruginosa to colonise both environmental and host niches is the acquisition of zinc. Here we show that P. aeruginosa PAO1 acquires zinc via an ATP-binding cassette (ABC) permease in which ZnuA is the high affinity, zinc-specific binding protein. Zinc uptake in Gram-negative organisms predominantly occurs via an ABC permease, and consistent with this expectation a P. aeruginosa ΔznuA mutant strain showed an ~60% reduction in cellular zinc accumulation, while other metal ions were essentially unaffected. Despite the major reduction in zinc accumulation, minimal phenotypic differences were observed between the wild-type and ΔznuA mutant strains. However, the effect of zinc limitation on the transcriptome of P. aeruginosa PAO1 revealed significant changes in gene expression that enable adaptation to low-zinc conditions. Genes significantly up-regulated included non-zinc-requiring paralogs of zinc-dependent proteins and a number of novel import pathways associated with zinc acquisition. Collectively, this study provides new insight into the acquisition of zinc by P. aeruginosa PAO1, revealing a hitherto unrecognized complexity in zinc homeostasis that enables the bacterium to survive under zinc limitation. PMID:26290475

  10. Interspecies Interaction between Pseudomonas aeruginosa and Other Microorganisms

    PubMed Central

    Tashiro, Yosuke; Yawata, Yutaka; Toyofuku, Masanori; Uchiyama, Hiroo; Nomura, Nobuhiko

    2013-01-01

    Microbes interact with each other in multicellular communities and this interaction enables certain microorganisms to survive in various environments. Pseudomonas aeruginosa is a highly adaptable bacterium that ubiquitously inhabits diverse environments including soil, marine habitats, plants and animals. Behind this adaptivity, P. aeruginosa has abilities not only to outcompete others but also to communicate with each other to develop a multispecies community. In this review, we focus on how P. aeruginosa interacts with other microorganisms. P. aeruginosa secretes antimicrobial chemicals to compete and signal molecules to cooperate with other organisms. In other cases, it directly conveys antimicrobial enzymes to other bacteria using the Type VI secretion system (T6SS) or membrane vesicles (MVs). Quorum sensing is a central regulatory system used to exert their ability including antimicrobial effects and cooperation with other microbes. At least three quorum sensing systems are found in P. aeruginosa, Las, Rhl and Pseudomonas quinolone signal (PQS) systems. These quorum-sensing systems control the synthesis of extracellular antimicrobial chemicals as well as interaction with other organisms via T6SS or MVs. In addition, we explain the potential of microbial interaction analysis using several micro devices, which would bring fresh sensitivity to the study of interspecies interaction between P. aeruginosa and other organisms. PMID:23363620

  11. Antioxidant enzyme activities of Microcystis aeruginosa in response to nonylphenols and degradation of nonylphenols by M. aeruginosa.

    PubMed

    Wang, Jingxian; Xie, Ping

    2007-10-01

    The aim of this study was to examine the effects of chemical nonylphenols (NPs) on the antioxidant system of Microcystis aeruginosa strains. The degradation and sorption of NPs by M. aeruginosa were also evaluated. High concentrations of NPs (1 and 2 mg/l) were found to cause increases in superoxidase dismutase (SOD) and glutathione-S-transferase (GST) activities and in glutathione (GSH) levels. These results suggest that toxic stress manifested by elevated SOD and GST levels and GSH contents may be responsible for the toxicity of NPs to M. aeruginosa and that the algal cells could improve their antioxidant and detoxification ability through the enhancement of enzymatic and nonenzymatic prevention substances. The observed elevations in GSH levels and GST activities were relatively higher than those in SOD activities, indicating that GSH and GST contributed more in eliminating toxic effects than SOD. Low concentrations of NPs (0.05-0.2 mg/l) enhanced cell growth and decreased GST activity in algal cells of M. aeruginosa, suggesting that NPs may have acted as a protecting factor, such as an antioxidant. The larger portion of the NPs (>60%) disappeared after 12 days of incubation, indicating the strong ability of M. aeruginosa to degrade the moderate persistent NP compounds. The sorption ratio of M. aeruginosa after a 12-day exposure to low nominal concentrations of NPs (0.02-0.5 mg/l) was relatively high (>30%). The fact that M. aeruginosa effectively resisted the toxic effects of NPs and strongly degraded these pollutants indicate that M. aeruginosa cells have a strong ability to adapt to variations in environmental conditions and that low and moderate concentrations of organic compounds may favor its survival. Further studies are needed to provide detailed information on the fate of persistent organic pollutants and the survival of algae and to determine the possible role of organic pollutants in the occurrence of water blooms in eutrophic lakes. PMID:17342429

  12. Growth of bacteria in enteral feeding solutions.

    PubMed

    Anderton, A

    1985-08-01

    Solutions of Clinifeed ISO, Triosorbon, Vivonex Standard (full- and half-strength) and Vivonex HN were experimentally contaminated with two strains each of Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella aerogenes, Escherichia coli and Enterobacter cloacae at concentrations of 10(2)-10(3) organisms/ml. Samples were incubated at 4, 25 or 37 degrees C and viable counts were made at 0, 4, 8 and 24 h. No increase in numbers of any of the organisms was observed in any of the feeds during 24 h at 4 degrees C. All organisms multiplied rapidly in Clinifeed ISO and in Triosorbon at 25 and 37 degrees C. There was less rapid growth in half-strength Vivonex Standard at 25 degrees C, although at 37 degrees C all strains multiplied rapidly except for the two S. aureus strains, the growth of which was inhibited in half-strength Vivonex Standard at both 25 and 37 degrees C. In full-strength Vivonex Standard at 25 degrees C, only P. aeruginosa showed any increase in numbers during 24 h, whereas P. aeruginosa, K. aerogenes and E. cloacae all multiplied at 37 degrees C. None of the test organisms multiplied in full strength Vivonex HN at any of the temperatures studied. The results of the study show that bacteria survive and may multiply even in feeds with low pH and high osmolarity, and emphasise the importance of strict hygiene during the preparation and handling of all enteral feeds. PMID:3927003

  13. Role of sdhA and pfkA and catabolism of reduced carbon during colonization of cucumber roots by Enterobacter cloacae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Strain A-11 of the plant-beneficial bacterium Enterobacter cloacae was used as a tool to determine the importance of pfkA and catabolism of carbohydrates in exudate to the plant-associated activities of root colonization and suppression of damping-off. E . cloacae A-11 is a near-isogenic mutant of ...

  14. Phage-mediated Shiga toxin (Stx) horizontal gene transfer and expression in non-Shiga toxigenic Enterobacter and Escherichia. coli strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    M12X01451, an Enterobacter cloacae strain recently identified from a clinical specimen, produces a new Stx1e that was not neutralized by existing anti-Stx1 monoclonal antibodies. Acquisition of stx by Ent. cloacae is rare and information regarding the origin and stability of the stx1e in M12X01451 i...

  15. Comprehensive approaches for molecular biomarker discovery for the detection and identification of Cronobacter spp. (Enterobacter sakazakii), Salmonella, and other foodborne pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cronobacter spp. (formerly Enterobacter sakazakii) and Salmonella are increasingly implicated as important bacterial contaminants in low-moisture food products, including powdered infant formula. Estimates indicate that 40-80% of infants infected with C. sakazakii and/or Salmonella in the U.S. may ...

  16. Phage-mediated Shiga toxin (Stx) horizontal gene transfer and expression in non-Shiga toxigenic Enterobacter and Escherichia coli strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    M12X01451, an Enterobacter cloacae strain recently identified from a clinical specimen, produces a new Stx1e that was not neutralized by existing anti-Stx1 monoclonal antibodies. Acquisition of stx by Ent. cloacae is rare and information regarding the origin and stability of the stx1e in M12X01451 i...

  17. ANTIFUNGAL AND SPROUT REGULATORY BIOACTIVITIES OF PHENYLACETIC ACID, INDOLE-3-ACETIC ACID, AND TYROSOL ISOLATED FROM THE POTATO DRY ROT SUPPRESSIVE BACTERIUM ENTEROBACTER CLOACAE S11:T:07

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enterobacter cloacae S11:T:07 (NRRL B-21050) is a promising biological control agent which has significantly reduced both fungal dry rot disease and sprouting in lab and pilot potato storages. The metabolites phenylacetic acid (PAA), indole-3-acetic acid (IAA), and tyrosol (TSL) were isolated from ...

  18. Mutation of a degS homologue in Enterobacter cloacae decreases colonization and biological control of damping-off caused by Pythium ultimum on cucumber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have been using a mutational approach to determine how plant-beneficial bacteria, such as Enterobacter cloacae, deal with complex nutritional environments found in association with subterranean plant parts during colonization and disease suppression. E. cloacae C10, a mini-Tn5 Km mutant of E. cl...

  19. Physicochemical, nutritional, and microbial quality of fresh-cut and frozen papaya prepared from cultivars with varying resistance to internal yellowing disease (Enterobacter cloacae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quality, nutritional, and microbial analyses were completed for fresh-cut and frozen papaya cubes prepared from cultivars with varying resistance to internal yellowing disease, caused by the bacterium Enterobacter cloacae. In general, fresh-cut and frozen papaya retained nutritional and microbial qu...

  20. Effect of acetate upon the formation of acetoin in Klebsiella and Enterobacter and it possible practical application in a rapid voges-proskauer test.

    PubMed

    Bryn, K; Ulstrup, J C; Stormer, F C

    1973-03-01

    Acetate stimulates the formation of acetoin during 1-h incubation of Voges-Proskauer-positive strains of Klebsiella and Enterobacter. Of these organisms, 124 of 126 strains were recognized as positive in the presence of acetate, and 106 were recognized as positive in its absence. PMID:4572901

  1. Improvement of plant growth and seed yield in Jatropha curcas by a novel nitrogen-fixing root associated Enterobacter species

    PubMed Central

    2013-01-01

    Background Jatropha curcas L. is an oil seed producing non-leguminous tropical shrub that has good potential to be a fuel plant that can be cultivated on marginal land. Due to the low nutrient content of the targeted plantation area, the requirement for fertilizer is expected to be higher than other plants. This factor severely affects the commercial viability of J. curcas. Results We explored the feasibility to use endophytic nitrogen-fixing bacteria that are native to J. curcas to improve plant growth, biomass and seed productivity. We demonstrated that a novel N-fixing endophyte, Enterobacter sp. R4-368, was able to colonize in root and stem tissues and significantly promoted early plant growth and seed productivity of J. curcas in sterilized and non-sterilized soil. Inoculation of young seedling led to an approximately 57.2% increase in seedling vigour over a six week period. At 90 days after planting, inoculated plants showed an average increase of 25.3%, 77.7%, 27.5%, 45.8% in plant height, leaf number, chlorophyll content and stem volume, respectively. Notably, inoculation of the strain led to a 49.0% increase in the average seed number per plant and 20% increase in the average single seed weight when plants were maintained for 1.5 years in non-sterilized soil in pots in the open air. Enterobacter sp. R4-368 cells were able to colonize root tissues and moved systemically to stem tissues. However, no bacteria were found in leaves. Promotion of plant growth and leaf nitrogen content by the strain was partially lost in nifH, nifD, nifK knockout mutants, suggesting the presence of other growth promoting factors that are associated with this bacterium strain. Conclusion Our results showed that Enterobacter sp. R4-368 significantly promoted growth and seed yield of J. curcas. The application of the strains is likely to significantly improve the commercial viability of J. curcas due to the reduced fertilizer cost and improved oil yield. PMID:24083555

  2. Q-PCR Based Culture-Independent Enumeration and Detection of Enterobacter: An Emerging Environmental Human Pathogen in Riverine Systems and Potable Water.

    PubMed

    Patel, Chandra B; Shanker, Rishi; Gupta, Vijai K; Upadhyay, Ram S

    2016-01-01

    The availability of safe and pristine water is a global challenge when large numbers of natural and anthropogenic water resources are being depleted with faster rate. The remaining water resources are severely contaminated with various kinds of contaminants including microorganisms. Enterobacter is one of the fecal coliform bacteria of family Enterobacteriaceae. Enterobacter was earlier used as an indicator bacterium along with other fecal Coliforms namely Escherichia coli, Citrobacter, and Klebsiella, but it is now known to cause various diseases in human beings. In this study, we have collected 55 samples from potable water and riverine system and proved their presence using their conserved sequences of 16S rRNA and 23S rRNA genes with the help of SYBR green real-time PCR, which showed very high specificity for the detection of Enterobacter. The Enterobacter counts in potable water were found to 1290 ± 32.89 to 1460 ± 39.42 cfu/100 ml. The Enterobacter levels in surface water were 1.76 × 10(4) ± 492, 1.33 × 10(4) ± 334, 1.15 × 10(4) ± 308, 2.56 × 10(4) ± 802, 2.89 × 10(4) ± 962, 8.16 × 10(4) ± 3443 cfu/100 ml; the levels of Enterobacter contamination associated with hydrophytes were 4.80 × 10(4) ± 1804, 3.48 × 10(4) ± 856, 8.50 × 10(4) ± 2074, 8.09 × 10(4) ± 1724, 6.30 × 10(4) ± 1738, 3.68 × 10(4) ± 949 cfu/10 g and the Enterobacter counts in sediments of the river, were 2.36 × 10(4) ± 703, 1.98 × 10(4) ± 530, 9.92 × 10(4) ± 3839, 6.80 × 10(4) ± 2230, 8.76 × 10(4) ± 3066 and 2.34 × 10(4) ± 732 cfu/10 g at the sampling Site #1, Site #2, Site #3, Site #4, Site #5, and Site #6, respectively. The assay could be used for the regular monitoring of potable water and other water reservoirs to check waterborne outbreaks. PMID:26925044

  3. Q-PCR Based Culture-Independent Enumeration and Detection of Enterobacter: An Emerging Environmental Human Pathogen in Riverine Systems and Potable Water

    PubMed Central

    Patel, Chandra B.; Shanker, Rishi; Gupta, Vijai K.; Upadhyay, Ram S.

    2016-01-01

    The availability of safe and pristine water is a global challenge when large numbers of natural and anthropogenic water resources are being depleted with faster rate. The remaining water resources are severely contaminated with various kinds of contaminants including microorganisms. Enterobacter is one of the fecal coliform bacteria of family Enterobacteriaceae. Enterobacter was earlier used as an indicator bacterium along with other fecal Coliforms namely Escherichia coli, Citrobacter, and Klebsiella, but it is now known to cause various diseases in human beings. In this study, we have collected 55 samples from potable water and riverine system and proved their presence using their conserved sequences of 16S rRNA and 23S rRNA genes with the help of SYBR green real-time PCR, which showed very high specificity for the detection of Enterobacter. The Enterobacter counts in potable water were found to 1290 ± 32.89 to 1460 ± 39.42 cfu/100 ml. The Enterobacter levels in surface water were 1.76 × 104 ± 492, 1.33 × 104 ± 334, 1.15 × 104 ± 308, 2.56 × 104 ± 802, 2.89 × 104 ± 962, 8.16 × 104 ± 3443 cfu/100 ml; the levels of Enterobacter contamination associated with hydrophytes were 4.80 × 104 ± 1804, 3.48 × 104 ± 856, 8.50 × 104 ± 2074, 8.09 × 104 ± 1724, 6.30 × 104 ± 1738, 3.68 × 104 ± 949 cfu/10 g and the Enterobacter counts in sediments of the river, were 2.36 × 104 ± 703, 1.98 × 104 ± 530, 9.92 × 104 ± 3839, 6.80 × 104 ± 2230, 8.76 × 104 ± 3066 and 2.34 × 104 ± 732 cfu/10 g at the sampling Site #1, Site #2, Site #3, Site #4, Site #5, and Site #6, respectively. The assay could be used for the regular monitoring of potable water and other water reservoirs to check waterborne outbreaks. PMID:26925044

  4. [Pseudomonas aeruginosa colonisation in bronchiectatic patients and clinical reflections].

    PubMed

    Kömüs, Nuray; Tertemiz, Kemal Can; Akkoçlu, Atila; Gülay, Zeynep; Yilmaz, Erkan

    2006-01-01

    Bronchiectasis is characterized with irreversible dilatation according to destruction of epithelium, elastic and muscular layer. Most important cause of bronchiectasis is chronic bacterial infections. Pseudomonas aeruginosa colonisation is frequently seen in bronchiectatic patients. We aimed to find out P. aeruginosa colonisation frequency and clinical, radiological and spirometric reflections due to colonisation. We analysed 83 cases retrospectively. Mean age was 58.2 and 54.2% of them were female. Bronchiectasis were localised 19.3% in left lung, 19.3% right and 61.4% bilaterally. 29 (35.8%) normal, 28 (34.6%) obstructive, 7 (8.6%) restrictive, 17 (21%) mixed type disorders are detected in spirometric measures. Sputum culture performed in 50 cases. No microorganism colonisation determined in 30 (60%) cases, P. aeruginosa colonisation 16 (32%), Haemophilus influenzae 2 (4%), 1 (2%) Streptococcus pneumoniae and Proteus mirabilis 1 (2%) cases. P. aeruginosa colonisation determined more frequent in males (p<0.05). No significant correlation detected between colonisation and age or smoking habits (p>0.05). In cases with colonisation; clubbing and hemoptysis were significantly frequent (p<0.05). Only peribronchial thickening was significantly correlated with colonisation in radiological findings (p<0.05). In blood gase analysis PaO2, oxygen saturation were lower and PaCO2 higher in cases colonised with P. aeruginosa but it was not statisticaly significant (p>0.05). Hospitalization rate was higher in P. aeruginosa colonised cases (p>0.05). It is an important problem about mortality because of higher hemoptysis and hospitalisation requirement rate in P. aeruginosa colonised cases. PMID:17203422

  5. Why Does the Healthy Cornea Resist Pseudomonas aeruginosa Infection?

    PubMed Central

    Evans, David J.; Fleiszig, Suzanne M. J.

    2013-01-01

    Purpose To provide our perspective on why the cornea is resistant to infection based on our research results with Pseudomonas aeruginosa. Perspective We focus on our current understanding of the interplay between bacteria, tear fluid and the corneal epithelium that determine health as the usual outcome, and propose a theoretical model for how contact lens wear might change those interactions to enable susceptibility to P. aeruginosa infection. Methods Use of “null-infection” in vivo models, cultured human corneal epithelial cells, contact lens-wearing animal models, and bacterial genetics help to elucidate mechanisms by which P. aeruginosa survive at the ocular surface, adheres, and traverses multilayered corneal epithelia. These models also help elucidate the molecular mechanisms of corneal epithelial innate defense. Results and Discussion Tear fluid and the corneal epithelium combine to make a formidable defense against P. aeruginosa infection of the cornea. Part of that defense involves the expression of antimicrobials such as β-defensins, the cathelicidin LL-37, cytokeratin-derived antimicrobial peptides, and RNase7. Immunomodulators such as SP-D and ST2 also contribute. Innate defenses of the cornea depend in part on MyD88, a key adaptor protein of TLR and IL-1R signaling, but the basal lamina represents the final barrier to bacterial penetration. Overcoming these defenses involves P. aeruginosa adaptation, expression of the type three secretion system, proteases, and P. aeruginosa biofilm formation on contact lenses. Conclusion After more than two decades of research focused on understanding how contact lens wear predisposes to P. aeruginosa infection, our working hypothesis places blame for microbial keratitis on bacterial adaptation to ocular surface defenses, combined with changes to the biochemistry of the corneal surface caused by trapping bacteria and tear fluid against the cornea under the lens. PMID:23601656

  6. Genome comparison of Pseudomonas aeruginosa large phages.

    PubMed

    Hertveldt, Kirsten; Lavigne, Rob; Pleteneva, Elena; Sernova, Natalia; Kurochkina, Lidia; Korchevskii, Roman; Robben, Johan; Mesyanzhinov, Vadim; Krylov, Victor N; Volckaert, Guido

    2005-12-01

    Pseudomonas aeruginosa phage EL is a dsDNA phage related to the giant phiKZ-like Myoviridae. The EL genome sequence comprises 211,215 bp and has 201 predicted open reading frames (ORFs). The EL genome does not share DNA sequence homology with other viruses and micro-organisms sequenced to date. However, one-third of the predicted EL gene products (gps) shares similarity (Blast alignments of 17-55% amino acid identity) with phiKZ proteins. Comparative EL and phiKZ genomics reveals that these giant phages are an example of substantially diverged genetic mosaics. Based on the position of similar EL and phiKZ predicted gene products, five genome regions can be delineated in EL, four of which are relatively conserved between EL and phiKZ. Region IV, a 17.7 kb genome region with 28 predicted ORFs, is unique to EL. Fourteen EL ORFs have been assigned a putative function based on protein similarity. Assigned proteins are involved in DNA replication and nucleotide metabolism (NAD+-dependent DNA ligase, ribonuclease HI, helicase, thymidylate kinase), host lysis and particle structure. EL-gp146 is the first chaperonin GroEL sequence identified in a viral genome. Besides a putative transposase, EL harbours predicted mobile endonucleases related to H-N-H and LAGLIDADG homing endonucleases associated with group I intron and intein intervening sequences. PMID:16256135

  7. Spontaneous release of lipopolysaccharide by Pseudomonas aeruginosa.

    PubMed Central

    Cadieux, J E; Kuzio, J; Milazzo, F H; Kropinski, A M

    1983-01-01

    Pseudomonas aeruginosa PAO grown in glucose mineral salts medium released lipopolysaccharide which was chemically and immunologically similar to the cellular lipopolysaccharide. In addition, it possessed identical phage E79-inactivating properties. Through neutralization of phage activity and hemolysis inhibition assays, the organism was found to liberate lipopolysaccharide at a constant rate during log-phase growth equivalent to 1.3 to 2.2 ng/10(8) cells over a growth temperature range of 25 to 42 degrees C. At 19 degrees C, a lipopolysaccharide was released which was deficient in phage-inactivating activity but retained its immunological properties. Chemical analysis of lipopolysaccharide extracted from cells grown at 19 degrees C showed a deficiency in the O-side-chain component fucosamine. Gel exclusion chromatography of the polysaccharide fraction derived from lipopolysaccharide isolated from cells grown at 19 degrees C exhibited a decreased content of side-chain polysaccharide as well as a difference in the hexosamine:hexose ratio. The results of sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis confirmed these results as well as establishing that an essentially normal distribution of side-chain repeating unit lengths were to be found in the 19 degrees C preparation. These results suggest a decrease in the frequency of capping R-form lipopolysaccharide at 19 degrees C. Images PMID:6409883

  8. Spaceflight promotes biofilm formation by Pseudomonas aeruginosa.

    PubMed

    Kim, Wooseong; Tengra, Farah K; Young, Zachary; Shong, Jasmine; Marchand, Nicholas; Chan, Hon Kit; Pangule, Ravindra C; Parra, Macarena; Dordick, Jonathan S; Plawsky, Joel L; Collins, Cynthia H

    2013-01-01

    Understanding the effects of spaceflight on microbial communities is crucial for the success of long-term, manned space missions. Surface-associated bacterial communities, known as biofilms, were abundant on the Mir space station and continue to be a challenge on the International Space Station. The health and safety hazards linked to the development of biofilms are of particular concern due to the suppression of immune function observed during spaceflight. While planktonic cultures of microbes have indicated that spaceflight can lead to increases in growth and virulence, the effects of spaceflight on biofilm development and physiology remain unclear. To address this issue, Pseudomonas aeruginosa was cultured during two Space Shuttle Atlantis missions: STS-132 and STS-135, and the biofilms formed during spaceflight were characterized. Spaceflight was observed to increase the number of viable cells, biofilm biomass, and thickness relative to normal gravity controls. Moreover, the biofilms formed during spaceflight exhibited a column-and-canopy structure that has not been observed on Earth. The increase in the amount of biofilms and the formation of the novel architecture during spaceflight were observed to be independent of carbon source and phosphate concentrations in the media. However, flagella-driven motility was shown to be essential for the formation of this biofilm architecture during spaceflight. These findings represent the first evidence that spaceflight affects community-level behaviors of bacteria and highlight the importance of understanding how both harmful and beneficial human-microbe interactions may be altered during spaceflight. PMID:23658630

  9. Entericidin is required for a probiotic treatment (Enterobacter sp. strain C6-6) to protect trout from cold-water disease challenge.

    PubMed

    Schubiger, Carla B; Orfe, Lisa H; Sudheesh, Ponnerassery S; Cain, Kenneth D; Shah, Devendra H; Call, Douglas R

    2015-01-01

    Flavobacterium psychrophilum causes bacterial cold-water disease in multiple fish species, including salmonids. An autochthonous Enterobacter strain (C6-6) inhibits the in vitro growth of F. psychrophilum, and when ingested as a putative probiotic, it provides protection against injection challenge with F. psychrophilum in rainbow trout. In this study, low-molecular-mass (≤3 kDa) fractions from both Enterobacter C6-6 and Escherichia coli K-12 culture supernatants inhibited the growth of F. psychrophilum. The ≤3-kDa fraction from Enterobacter C6-6 was analyzed by SDS-PAGE, and subsequent tandem mass spectroscopy identified EcnB, which is a small membrane lipoprotein that is a putative pore-forming toxin. Agar plate diffusion assays demonstrated that ecnAB knockout strains of both Enterobacter C6-6 and E. coli K-12 no longer inhibited F. psychrophilum (P < 0.001), while ecnAB-complemented knockout strains recovered the inhibitory phenotype (P < 0.001). In fish experiments, the engineered strains (C6-6 ΔecnAB and C6-6 ΔecnAB) and the wild-type strain (C6-6) were added to the fish diet every day for 38 days. On day 11, the fish were challenged by injection with a virulent strain of F. psychrophilum (CSF 259-93). Fish that were fed C6-6 had significantly longer survival than fish fed the ecnAB knockout strain (P < 0.0001), while fish fed the complemented knockout strain recovered the probiotic phenotype (P = 0.61). This entericidin is responsible for the probiotic activity of Enterobacter C6-6, and it may present new opportunities for therapeutic and prophylactic treatments against similarly susceptible pathogens. PMID:25381243

  10. Activity of Plazomicin (ACHN-490) against MDR clinical isolates of Klebsiella pneumoniae, Escherichia coli, and Enterobacter spp. from Athens, Greece

    PubMed Central

    Galani, Irene; Souli, Maria; Daikos, George L; Chrysouli, Zoi; Poulakou, Garyphalia; Psichogiou, Mina; Panagea, Theofano; Argyropoulou, Athina; Stefanou, Ioanna; Plakias, George; Giamarellou, Helen; Petrikkos, George

    2012-01-01

    The in vitro activity of plazomicin was evaluated against 300 multidrug resistant (MDR) (carbapenemase and/or ESBL-producing) isolates from four hospitals in Athens, an area where carbapenemase-producing organisms are endemic. Most of the isolates were also resistant to the legacy aminoglycosides with the MIC50/MIC90 to tobramycin, amikacin and gentamicin being 32/>32, 32/>32 and 4/>8 μg/ml, respectively. ACHN-490 retained activity (MICs⩽4 μg/ml) against all isolates of Klebsiella pneumoniae, Escherichia coli, and Enterobacter spp. tested with MIC50 and MIC90 of 1 and 2 μg/ml, respectively, irrespective of their MDR phenotype and it represents a promising alternative for the treatment of the most problematic Gram-negative pathogens. PMID:23040681

  11. Development of Multiple-Locus Variable-Number Tandem-Repeat Analysis for the Molecular Subtyping of Enterobacter sakazakii▿

    PubMed Central

    Mullane, N. R.; Ryan, M.; Iversen, C.; Murphy, M.; O'Gaora, P.; Quinn, T.; Whyte, P.; Wall, P. G.; Fanning, S.

    2008-01-01

    The genomic content of Enterobacter sakazakii strain ATCC BAA-894 was analyzed for variable-number tandem repeats (VNTRs). In this study we report the development of a multiple-locus VNTR analysis (MLVA) strategy for the subtyping of E. sakazakii. The method is based on a GeneScan analysis of four VNTR loci labeled with multiple fluorescent dyes. This approach was applied to a collection of 112 isolates representing all 16 of the currently defined E. sakazakii biogroups. MLVA successfully discriminated among these isolates and compared favorably with pulsed-field gel electrophoresis. The method was relatively fast and easy to perform. The potential value of MLVA as an epidemiological tool is discussed. PMID:18083860

  12. Metal Accumulation and Vanadium-Induced Multidrug Resistance by Environmental Isolates of Escherichia hermannii and Enterobacter cloacae

    PubMed Central

    Hernández, Alicia; Mellado, Rafael P.; Martínez, José L.

    1998-01-01

    Contaminated soils from an oil refinery were screened for the presence of microorganisms capable of accumulating either nickel, vanadium, or both metals. Three strains of bacteria that belonged to the family Enterobacteriaceae were selected. Two of them were Escherichia hermannii strains, and outer membrane profile (OMP) analysis showed that they were similar to a strain of clinical origin; the other one was an Enterobacter cloacae strain that differed from clinical isolates. The selected bacteria accumulated both nickel and vanadium. Growth in the presence of vanadium induced multidrug resistance phenotypes in E. hermannii and E. cloacae. Incubation with this metal changed the OMP profile of E. hermannii but did not produce variations in the expression of the major OMPs of E. cloacae. PMID:9797283

  13. Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase

    SciTech Connect

    French, C.E.; Bruce, N.C.; Nicklin, S.

    1998-08-01

    Enterobacter cloacae PB2 was originally isolated on the basis of its ability to utilize nitrate esters, such as pentaerythritol tetranitrate (PETN) and glycerol trinitrate, as the sole nitrogen source for growth. The enzyme responsible is an NADPH-dependent reductase designated PETN reductase. E. cloacae PB2 was found to be capable of slow aerobic growth with 2,4,6-trinitrotoluene (TNT) as the sole nitrogen source. Dinitrotoluenes were not produced and could not be used as nitrogen sources. Purified PETN reductase was found to reduce TNT to its hydride-Meisenheimer complex, which was further reduced to the dihydride-Meisenheimer complex. Purified PETN reductase and recombinant Escherichia coli expressing PETN reductase were able to liberate nitrogen as nitrite from TNT. The ability to remove nitrogen from TNT suggests that PB2 or recombinant organisms expressing PETN reductase may be useful for bioremediation of TNT-contaminated soil and water.

  14. Iron Depletion Enhances Production of Antimicrobials by Pseudomonas aeruginosa

    PubMed Central

    Nguyen, Angela T.; Jones, Jace W.; Ruge, Max A.; Kane, Maureen A.

    2015-01-01

    ABSTRACT Cystic fibrosis (CF) is a heritable disease characterized by chronic, polymicrobial lung infections. While Staphylococcus aureus is the dominant lung pathogen in young CF patients, Pseudomonas aeruginosa becomes predominant by adulthood. P. aeruginosa produces a variety of antimicrobials that likely contribute to this shift in microbial populations. In particular, secretion of 2-alkyl-4(1H)-quinolones (AQs) contributes to lysis of S. aureus in coculture, providing an iron source to P. aeruginosa both in vitro and in vivo. We previously showed that production of one such AQ, the Pseudomonas quinolone signal (PQS), is enhanced by iron depletion and that this induction is dependent upon the iron-responsive PrrF small RNAs (sRNAs). Here, we demonstrate that antimicrobial activity against S. aureus during coculture is also enhanced by iron depletion, and we provide evidence that multiple AQs contribute to this activity. Strikingly, a P. aeruginosa ΔprrF mutant, which produces very little PQS in monoculture, was capable of mediating iron-regulated growth suppression of S. aureus. We show that the presence of S. aureus suppresses the ΔprrF1,2 mutant's defect in iron-regulated PQS production, indicating that a PrrF-independent iron regulatory pathway mediates AQ production in coculture. We further demonstrate that iron-regulated antimicrobial production is conserved in multiple P. aeruginosa strains, including clinical isolates from CF patients. These results demonstrate that iron plays a central role in modulating interactions of P. aeruginosa with S. aureus. Moreover, our studies suggest that established iron regulatory pathways of these pathogens are significantly altered during polymicrobial infections. IMPORTANCE Chronic polymicrobial infections involving Pseudomonas aeruginosa and Staphylococcus aureus are a significant cause of morbidity and mortality, as the interplay between these two organisms exacerbates infection. This is in part due to enhanced

  15. Lagooning of wastewaters favors dissemination of clinically relevant Pseudomonas aeruginosa.

    PubMed

    Petit, Stéphanie M-C; Lavenir, Raphaël; Colinon-Dupuich, Céline; Boukerb, Amine M; Cholley, Pascal; Bertrand, Xavier; Freney, Jean; Doléans-Jordheim, Anne; Nazaret, Sylvie; Laurent, Frédéric; Cournoyer, Benoit

    2013-10-01

    The significance of wastewater treatment lagoons (WWTLs) as point sources of clinically relevant Pseudomonas aeruginosa that can disseminate through rural and peri-urban catchments was investigated. A panel of P. aeruginosa strains collected over three years from WWTLs and community-acquired infections was compared by pulsed field gel electrophoresis (PFGE) DNA fingerprinting and multilocus sequence typing (MLST). Forty-four distantly related PFGE profiles and four clonal complexes were found among the WWTL strains analyzed. Some genotypes were repeatedly detected from different parts of WWTLs, including the influent, suggesting an ability to migrate and persist over time. MLST showed all investigated lineages to match sequence types described in other countries and strains from major clinical clones such as PA14 of ST253 and "C" of ST17 were observed. Some of these genotypes matched isolates from community-acquired infections recorded in the WWTL geographic area. Most WWTL strains harbored the main P. aeruginosa virulence genes; 13% harbored exoU-encoded cytoxins, but on at least six different genomic islands, with some of these showing signs of genomic instability. P. aeruginosa appeared to be highly successful opportunistic colonizers of WWTLs. Lagooning of wastewaters was found to favor dissemination of clinically relevant P. aeruginosa among peri-urban watersheds. PMID:23792168

  16. Anti-PcrV antibody strategies against virulent Pseudomonas aeruginosa.

    PubMed

    Sawa, Teiji; Ito, Emi; Nguyen, Vinh Huu; Haight, Matthew

    2014-01-01

    Pseudomonas aeruginosa is an opportunistic bacterial pathogen that causes fatal acute lung infections in critically ill individuals. Its pathogenesis is associated with bacterial virulence conferred by the type III secretion system (TTSS), through which P. aeruginosa causes necrosis of the lung epithelium and disseminates into the circulation, resulting in bacteremia, sepsis, and mortality. TTSS allows P. aeruginosa to directly translocate cytotoxins into eukaryotic cells, inducing cell death. The P. aeruginosa V-antigen PcrV, a homolog of the Yersinia V-antigen LcrV, is an indispensable contributor to TTS toxin translocation. Vaccination against PcrV ensures the survival of challenged mice and decreases lung inflammation and injury. Both the rabbit polyclonal anti-PcrV antibody and the murine monoclonal anti-PcrV antibody, mAb166, inhibit TTS toxin translocation. mAb166 IgG was cloned, and a molecular engineered humanized anti-PcrV IgG antigen-binding fragment, KB001, was developed for clinical use. KB001 is currently undergoing Phase-II clinical trials for ventilator-associated pneumonia in France and chronic pneumonia in cystic fibrosis in USA. In these studies, KB001 has demonstrated its safety, a favorable pharmacokinetic profile, and promising potential as a nonantibiotic strategy to reduce airway inflammation and damage in P. aeruginosa pneumonia. PMID:25483637

  17. A network biology approach to denitrification in Pseudomonas aeruginosa

    DOE PAGESBeta

    Arat, Seda; Bullerjahn, George S.; Laubenbacher, Reinhard

    2015-02-23

    Pseudomonas aeruginosa is a metabolically flexible member of the Gammaproteobacteria. Under anaerobic conditions and the presence of nitrate, P. aeruginosa can perform (complete) denitrification, a respiratory process of dissimilatory nitrate reduction to nitrogen gas via nitrite (NO₂), nitric oxide (NO) and nitrous oxide (N₂O). This study focuses on understanding the influence of environmental conditions on bacterial denitrification performance, using a mathematical model of a metabolic network in P. aeruginosa. To our knowledge, this is the first mathematical model of denitrification for this bacterium. Analysis of the long-term behavior of the network under changing concentration levels of oxygen (O₂), nitrate (NO₃),more » and phosphate (PO₄) suggests that PO₄ concentration strongly affects denitrification performance. The model provides three predictions on denitrification activity of P. aeruginosa under various environmental conditions, and these predictions are either experimentally validated or supported by pertinent biological literature. One motivation for this study is to capture the effect of PO₄ on a denitrification metabolic network of P. aeruginosa in order to shed light on mechanisms for greenhouse gas N₂O accumulation during seasonal oxygen depletion in aquatic environments such as Lake Erie (Laurentian Great Lakes, USA). Simulating the microbial production of greenhouse gases in anaerobic aquatic systems such as Lake Erie allows a deeper understanding of the contributing environmental effects that will inform studies on, and remediation strategies for, other hypoxic sites worldwide.« less

  18. A Network Biology Approach to Denitrification in Pseudomonas aeruginosa

    PubMed Central

    Arat, Seda; Bullerjahn, George S.; Laubenbacher, Reinhard

    2015-01-01

    Pseudomonas aeruginosa is a metabolically flexible member of the Gammaproteobacteria. Under anaerobic conditions and the presence of nitrate, P. aeruginosa can perform (complete) denitrification, a respiratory process of dissimilatory nitrate reduction to nitrogen gas via nitrite (NO2), nitric oxide (NO) and nitrous oxide (N2O). This study focuses on understanding the influence of environmental conditions on bacterial denitrification performance, using a mathematical model of a metabolic network in P. aeruginosa. To our knowledge, this is the first mathematical model of denitrification for this bacterium. Analysis of the long-term behavior of the network under changing concentration levels of oxygen (O2), nitrate (NO3), and phosphate (PO4) suggests that PO4 concentration strongly affects denitrification performance. The model provides three predictions on denitrification activity of P. aeruginosa under various environmental conditions, and these predictions are either experimentally validated or supported by pertinent biological literature. One motivation for this study is to capture the effect of PO4 on a denitrification metabolic network of P. aeruginosa in order to shed light on mechanisms for greenhouse gas N2O accumulation during seasonal oxygen depletion in aquatic environments such as Lake Erie (Laurentian Great Lakes, USA). Simulating the microbial production of greenhouse gases in anaerobic aquatic systems such as Lake Erie allows a deeper understanding of the contributing environmental effects that will inform studies on, and remediation strategies for, other hypoxic sites worldwide. PMID:25706405

  19. Involvement of Pseudomonas aeruginosa rhodanese in protection from cyanide toxicity.

    PubMed

    Cipollone, Rita; Frangipani, Emanuela; Tiburzi, Federica; Imperi, Francesco; Ascenzi, Paolo; Visca, Paolo

    2007-01-01

    Cyanide is a serious environmental pollutant and a biocontrol metabolite in plant growth-promoting Pseudomonas species. Here we report on the presence of multiple sulfurtransferases in the cyanogenic bacterium Pseudomonas aeruginosa PAO1 and investigate in detail RhdA, a thiosulfate:cyanide sulfurtransferase (rhodanese) which converts cyanide to less toxic thiocyanate. RhdA is a cytoplasmic enzyme acting as the principal rhodanese in P. aeruginosa. The rhdA gene forms a transcriptional unit with the PA4955 and psd genes and is controlled by two promoters located upstream of PA4955 and rhdA. Both promoters direct constitutive RhdA expression and show similar patterns of activity, involving moderate down-regulation at the stationary phase or in the presence of exogenous cyanide. We previously observed that RhdA overproduction protects Escherichia coli against cyanide toxicity, and here we show that physiological RhdA levels contribute to P. aeruginosa survival under cyanogenic conditions. The growth of a DeltarhdA mutant is impaired under cyanogenic conditions and fully restored upon complementation with rhdA. Wild-type P. aeruginosa outcompetes the DeltarhdA mutant in cyanogenic coculture assays. Hence, RhdA could be regarded as an effector of P. aeruginosa intrinsic resistance to cyanide, insofar as it provides the bacterium with a defense mechanism against endogenous cyanide toxicity, in addition to cyanide-resistant respiration. PMID:17098912

  20. Update on the treatment of Pseudomonas aeruginosa pneumonia.

    PubMed

    El Solh, Ali A; Alhajhusain, Ahmad

    2009-08-01

    Pseudomonas aeruginosa is an important cause of nosocomial pneumonia associated with a high morbidity and mortality rate. This bacterium expresses a variety of factors that confer resistance to a broad array of antimicrobial agents. Empirical antibiotic therapy is often inadequate because cultures from initial specimens grow strains that are resistant to initial antibiotics. Surveillance data, hospital antibiogram and individualization of regimens based on prior antibiotic use may reduce the risk of inadequate therapy. The use of combination therapies for P. aeruginosa pneumonia has been a long-advocated practice, but the potential increased value of combination therapy over monotherapy remains controversial. Doripenem and biapenem are new carbapenems that have excellent activity against P. aeruginosa; however, they lack activity against strains that express resistance to the currently available carbapenems. The polymyxins remain the most consistently effective agents against multidrug-resistant P. aeruginosa. Strains that are panantibiotic-resistant are rare, but their incidence is increasing. Antibiotic combinations that yield some degree of susceptibility in vitro are the recourse, although the efficacy of these regimens has yet to be established in clinical studies. Experimental polypeptides may provide a new therapeutic approach. Among these, the anti-PcrV immunoglobulin G antibody that blocks the type III secretion system-mediated virulence of P. aeruginosa has recently entered Phase I/II clinical trials. PMID:19520717

  1. Long Term Chronic Pseudomonas aeruginosa Airway Infection in Mice

    PubMed Central

    Facchini, Marcella; De Fino, Ida; Riva, Camilla; Bragonzi, Alessandra

    2014-01-01

    A mouse model of chronic airway infection is a key asset in cystic fibrosis (CF) research, although there are a number of concerns regarding the model itself. Early phases of inflammation and infection have been widely studied by using the Pseudomonas aeruginosa agar-beads mouse model, while only few reports have focused on the long-term chronic infection in vivo. The main challenge for long term chronic infection remains the low bacterial burden by P. aeruginosa and the low percentage of infected mice weeks after challenge, indicating that bacterial cells are progressively cleared by the host. This paper presents a method for obtaining efficient long-term chronic infection in mice. This method is based on the embedding of the P. aeruginosa clinical strains in the agar-beads in vitro, followed by intratracheal instillation in C57Bl/6NCrl mice. Bilateral lung infection is associated with several measurable read-outs including weight loss, mortality, chronic infection, and inflammatory response. The P. aeruginosa RP73 clinical strain was preferred over the PAO1 reference laboratory strain since it resulted in a comparatively lower mortality, more severe lesions, and higher chronic infection. P. aeruginosa colonization may persist in the lung for over three months. Murine lung pathology resembles that of CF patients with advanced chronic pulmonary disease. This murine model most closely mimics the course of the human disease and can be used both for studies on the pathogenesis and for the evaluation of novel therapies. PMID:24686327

  2. A network biology approach to denitrification in Pseudomonas aeruginosa.

    PubMed

    Arat, Seda; Bullerjahn, George S; Laubenbacher, Reinhard

    2015-01-01

    Pseudomonas aeruginosa is a metabolically flexible member of the Gammaproteobacteria. Under anaerobic conditions and the presence of nitrate, P. aeruginosa can perform (complete) denitrification, a respiratory process of dissimilatory nitrate reduction to nitrogen gas via nitrite (NO2), nitric oxide (NO) and nitrous oxide (N2O). This study focuses on understanding the influence of environmental conditions on bacterial denitrification performance, using a mathematical model of a metabolic network in P. aeruginosa. To our knowledge, this is the first mathematical model of denitrification for this bacterium. Analysis of the long-term behavior of the network under changing concentration levels of oxygen (O2), nitrate (NO3), and phosphate (PO4) suggests that PO4 concentration strongly affects denitrification performance. The model provides three predictions on denitrification activity of P. aeruginosa under various environmental conditions, and these predictions are either experimentally validated or supported by pertinent biological literature. One motivation for this study is to capture the effect of PO4 on a denitrification metabolic network of P. aeruginosa in order to shed light on mechanisms for greenhouse gas N2O accumulation during seasonal oxygen depletion in aquatic environments such as Lake Erie (Laurentian Great Lakes, USA). Simulating the microbial production of greenhouse gases in anaerobic aquatic systems such as Lake Erie allows a deeper understanding of the contributing environmental effects that will inform studies on, and remediation strategies for, other hypoxic sites worldwide. PMID:25706405

  3. Pseudomonas aeruginosa Virulence and Therapy: Evolving Translational Strategies

    PubMed Central

    Veesenmeyer, Jeffrey L.; Lisboa, Thiago; Rello, Jordi

    2009-01-01

    Structured abstract Objective Although most reviews of Pseudomonas aeruginosa therapeutics focus on antibiotics currently in use or in the pipeline, we review evolving translational strategies aimed at using virulence factor antagonists as adjuvant therapies. Data Source Current literature regarding P. aeruginosa virulence determinants and approaches that target them, with an emphasis on type III secretion, quorum-sensing, biofilms, and flagella. Data Extraction and Synthesis P. aeruginosa remains one of the most important pathogens in nosocomial infections, with high associated morbidity and mortality. Its predilection to develop resistance to antibiotics and expression of multiple virulence factors contributes to the frequent ineffectiveness of current therapies. Among the many P. aeruginosa virulence determinants that impact infections, type III secretion, quorum sensing, biofilm formation, and flagella have been the focus of much recent investigation. Here we review how increased understanding of these important bacterial structures and processes has enabled the development of novel approaches to inhibit each. These promising translational strategies may lead to the development of adjuvant therapies capable of improving outcomes. Conclusions Adjuvant therapies directed against virulence factors have the potential to improve outcomes in P. aeruginosa infections. PMID:19325463

  4. The Genomic Basis of Evolutionary Innovation in Pseudomonas aeruginosa

    PubMed Central

    Wagner, Andreas; MacLean, R. Craig

    2016-01-01

    Novel traits play a key role in evolution, but their origins remain poorly understood. Here we address this problem by using experimental evolution to study bacterial innovation in real time. We allowed 380 populations of Pseudomonas aeruginosa to adapt to 95 different carbon sources that challenged bacteria with either evolving novel metabolic traits or optimizing existing traits. Whole genome sequencing of more than 80 clones revealed profound differences in the genetic basis of innovation and optimization. Innovation was associated with the rapid acquisition of mutations in genes involved in transcription and metabolism. Mutations in pre-existing duplicate genes in the P. aeruginosa genome were common during innovation, but not optimization. These duplicate genes may have been acquired by P. aeruginosa due to either spontaneous gene amplification or horizontal gene transfer. High throughput phenotype assays revealed that novelty was associated with increased pleiotropic costs that are likely to constrain innovation. However, mutations in duplicate genes with close homologs in the P. aeruginosa genome were associated with low pleiotropic costs compared to mutations in duplicate genes with distant homologs in the P. aeruginosa genome, suggesting that functional redundancy between duplicates facilitates innovation by buffering pleiotropic costs. PMID:27149698

  5. Ambroxol inhibits mucoid conversion of Pseudomonas aeruginosa and contributes to the bactericidal activity of ciprofloxacin against mucoid P. aeruginosa biofilms.

    PubMed

    Wang, Wenlei; Yu, Jialin; He, Yu; Wang, Zhengli; Li, Fang

    2016-07-01

    Pseudomonas aeruginosa is an opportunistic human pathogen that can cause severe infections in immunocompromised individuals. Because it forms biofilms, which protect against host immune attack and increase resistance to conventional antibiotics, mucoid P. aeruginosa is nearly impossible to eradicate. Moreover, mucoid conversion of P. aeruginosa in cystic fibrosis (CF) patients leads to poor outcomes. This conversion is mainly due to mucA gene mutation, which is thought to be induced by polymorphonuclear leukocytes (PMNs) and the reactive oxygen species they release. Ambroxol, a mucolytic agent with antioxidant characteristics, is used clinically, and this compound has recently been demonstrated to possess anti-biofilm properties. In this study, we found that ambroxol inhibits the H2 O2 -mediated conversion of P. aeruginosa from a non-mucoid to a mucoid phenotype, an effect that is due to its antioxidant property against H2 O2 . Furthermore, the bactericidal activity of ciprofloxacin against mucoid P. aeruginosa biofilms was increased in vitro when used in combination with ambroxol. PMID:27102839

  6. Monoclonal antibodies to Pseudomonas aeruginosa ferripyochelin-binding protein.

    PubMed Central

    Sokol, P A; Woods, D E

    1986-01-01

    Hybridomas secreting specific monoclonal antibodies against the Pseudomonas aeruginosa ferripyochelin-binding protein (FBP) were isolated. These monoclonal antibodies reacted with FBP in immunoblots of outer membrane preparations from all serotypes of P. aeruginosa. Two of the monoclonal antibodies also reacted with FBP in strains of P. putida, P. fluorescens, and P. stutzeri. These antibodies did not react with outer membranes of P. cepacia, "P. multivorans," P. maltophilia, or other gram-negative organisms. The monoclonal antibodies were opsonophagocytic and blocked the binding of [59Fe]ferripyochelin to isolated outer membranes of strain PAO. By indirect immunofluorescence techniques, the monoclonal antibodies were used to demonstrate that FBP is present on the cell surface of P. aeruginosa cells grown in low-iron but not high-iron medium. These observations were confirmed by using 125I in surface-labeling techniques. Images PMID:3091506

  7. Subtilase SprP exerts pleiotropic effects in Pseudomonas aeruginosa.

    PubMed

    Pelzer, Alexander; Polen, Tino; Funken, Horst; Rosenau, Frank; Wilhelm, Susanne; Bott, Michael; Jaeger, Karl-Erich

    2014-02-01

    The open reading frame PA1242 in the genome of Pseudomonas aeruginosa PAO1 encodes a putative protease belonging to the peptidase S8 family of subtilases. The respective enzyme termed SprP consists of an N-terminal signal peptide and a so-called S8 domain linked by a domain of unknown function (DUF). Presumably, this DUF domain defines a discrete class of Pseudomonas proteins as homologous domains can be identified almost exclusively in proteins of the genus Pseudomonas. The sprP gene was expressed in Escherichia coli and proteolytic activity was demonstrated. A P. aeruginosa ∆sprP mutant was constructed and its gene expression pattern compared to the wild-type strain by genome microarray analysis revealing altered expression levels of 218 genes. Apparently, SprP is involved in regulation of a variety of different cellular processes in P. aeruginosa including pyoverdine synthesis, denitrification, the formation of cell aggregates, and of biofilms. PMID:24376018

  8. Agricultural plants and soil as a reservoir for Pseudomonas aeruginosa.

    PubMed

    Green, S K; Schroth, M N; Cho, J J; Kominos, S K; Vitanza-jack, V B

    1974-12-01

    Pseudomonas aeruginosa was detected in 24% of the soil samples but in only 0.13% of the vegetable samples from various agricultural areas of California. The distribution of pyocin types of soil and vegetable isolates was similar to that of clinical strains, and three of the soil isolates were resistant to carbenicillin. Pseudomonas aeruginosa multiplied in lettuce and bean under conditions of high temperature and high relative humidity (27 C and 80-95% relative humidity) but declined when the temperature and humidity were lowered (16 C, 55-75% relative humidity). The results suggest that soil is a reservior for P. aeruginosa and that the bacterium has the capacity to colonize plants during favorable conditions of temperature and moisture. PMID:4217591

  9. Agricultural Plants and Soil as a Reservoir for Pseudomonas aeruginosa

    PubMed Central

    Green, Sylvia K.; Schroth, Milton N.; Cho, John J.; Kominos, Spyros D.; Vitanza-Jack, Vilma B.

    1974-01-01

    Pseudomonas aeruginosa was detected in 24% of the soil samples but in only 0.13% of the vegetable samples from various agricultural areas of California. The distribution of pyocin types of soil and vegetable isolates was similar to that of clinical strains, and three of the soil isolates were resistant to carbenicillin. Pseudomonas aeruginosa multiplied in lettuce and bean under conditions of high temperature and high relative humidity (27 C and 80-95% relative humidity) but declined when the temperature and humidity were lowered (16 C, 55-75% relative humidity). The results suggest that soil is a reservior for P. aeruginosa and that the bacterium has the capacity to colonize plants during favorable conditions of temperature and moisture. PMID:4217591

  10. Sphingoid long chain bases prevent lung infection by Pseudomonas aeruginosa

    PubMed Central

    Pewzner-Jung, Yael; Tavakoli Tabazavareh, Shaghayegh; Grassmé, Heike; Becker, Katrin Anne; Japtok, Lukasz; Steinmann, Jörg; Joseph, Tammar; Lang, Stephan; Tuemmler, Burkhard; Schuchman, Edward H; Lentsch, Alex B; Kleuser, Burkhard; Edwards, Michael J; Futerman, Anthony H; Gulbins, Erich

    2014-01-01

    Cystic fibrosis patients and patients with chronic obstructive pulmonary disease, trauma, burn wound, or patients requiring ventilation are susceptible to severe pulmonary infection by Pseudomonas aeruginosa. Physiological innate defense mechanisms against this pathogen, and their alterations in lung diseases, are for the most part unknown. We now demonstrate a role for the sphingoid long chain base, sphingosine, in determining susceptibility to lung infection by P. aeruginosa. Tracheal and bronchial sphingosine levels were significantly reduced in tissues from cystic fibrosis patients and from cystic fibrosis mouse models due to reduced activity of acid ceramidase, which generates sphingosine from ceramide. Inhalation of mice with sphingosine, with a sphingosine analog, FTY720, or with acid ceramidase rescued susceptible mice from infection. Our data suggest that luminal sphingosine in tracheal and bronchial epithelial cells prevents pulmonary P. aeruginosa infection in normal individuals, paving the way for novel therapeutic paradigms based on inhalation of acid ceramidase or of sphingoid long chain bases in lung infection. PMID:25085879

  11. Surface action of gentamicin on Pseudomonas aeruginosa.

    PubMed Central

    Kadurugamuwa, J L; Clarke, A J; Beveridge, T J

    1993-01-01

    The mode of action of gentamicin has traditionally been considered to be at the 30S ribosomal level. However, the inhibition of bacterial protein synthesis alone appears to be insufficient to entirely explain the bactericidal effects. Bacteriolysis is also mediated through perturbation of the cell surface by gentamicin (J.L. Kadurugamuwa, J.S. Lam, and T.J. Beveridge, Antimicrob. Agents Chemother. 37:715-721, 1993). In order to separate the surface effect from protein synthesis in Pseudomonas aeruginosa PAO1, we chemically conjugated bovine serum albumin (BSA) to gentamicin, making the antibiotic too large to penetrate through the cell envelope to interact with the ribosomes of the cytoplasm. Furthermore, this BSA-gentamicin conjugate was also used to coat colloidal gold particles as a probe for electron microscopy to study the surface effect during antibiotic exposure. High-performance liquid chromatography confirmed the conjugation of the protein to the antibiotic. The conjugated gentamicin and BSA retained bactericidal activity and inhibited protein synthesis on isolated ribosomes in vitro but not on intact cells in vivo because of its exclusion from the cytoplasm. When reacted against the bacteria, numerous gentamicin-BSA-gold particles were clearly seen on the cell surfaces of whole mounts and thin sections of cells, while the cytoplasm was devoid of such particles. Disruption of the cell envelope was also observed since gentamicin-BSA and gentamicin-BSA-gold destabilized the outer membrane, evolved outer membrane blebs and vesicles, and formed holes in the cell surface. The morphological evidence suggests that the initial binding of the antibiotic disrupts the packing order of lipopolysaccharide of the outer membrane, which ultimately forms holes in the cell envelope and can lead to cell lysis. It is apparent that gentamicin has two potentially lethal effects on gram-negative cells, that resulting from inhibition of protein synthesis and that resulting from

  12. Polyclonal and monoclonal antibody therapy for experimental Pseudomonas aeruginosa pneumonia.

    PubMed Central

    Pennington, J E; Small, G J; Lostrom, M E; Pier, G B

    1986-01-01

    A human immunoglobulin G preparation, enriched in antibodies to lipopolysaccharide (LPS) Pseudomonas aeruginosa antigens (PA-IGIV) and murine monoclonal antibodies (MAb) to P. aeruginosa Fisher immunotype-1 (IT-1) LPS antigen and outer membrane protein F (porin), were evaluated for therapeutic efficacy in a guinea pig model of P. aeruginosa pneumonia. The concentration of antibodies to IT-1 LPS was 7.6 micrograms/ml in PA-IGIV and 478 micrograms/ml in the IT-1 MAb preparation. No antibody to IT-1 was detected in MAb to porin. For study, animals were infected by intratracheal instillation of IT-1 P. aeruginosa and then treated 2 h later with intravenous infusions of PA-IGIV, IT-1 MAb, or porin MAb. Control groups received intravenous albumin, and routinely died from pneumonia. Both PA-IGIV (500 mg/kg) and IT-1 MAb (greater than or equal to 2.5 mg/kg) treatment resulted in increased survival (P less than 0.01 to 0.001), and also improved intrapulmonary killing of bacteria. Porin MAb failed to protect from fatal pneumonia. IT-1 MAb treatment produced more survivals than did PA-IGIV treatment but only at dosages of MAb resulting in serum antibody concentrations greater than those achieved with PA-IGIV. PA-IGIV and IT-1 MAb demonstrated in vitro and in vivo (posttreatment guinea pig serum) opsonophagocytic activity for the IT-1 challenge strain. However, the polyclonal preparation required complement, whereas the MAb did not. We conclude that passive immunization with polyclonal hyperimmune P. aeruginosa globulin or with MAb to LPS antigens may be useful in the treatment of acute P. aeruginosa pneumonia. The relative efficacies of such preparations may be limited, however, by their type-specific LPS antibody concentrations. PMID:3093385

  13. Characterisation of Pseudomonas aeruginosa related to bovine mastitis.

    PubMed

    Park, Hye Rim; Hong, Min Ki; Hwang, Sun Young; Park, Young Kyung; Kwon, Ka Hee; Yoon, Jang Won; Shin, Sook; Kim, Jae Hong; Park, Yong Ho

    2014-03-01

    Pseudomonas aeruginosa is one of the causative pathogens of bovine mastitis. Most P. aeruginosa strains possess the type III secretion system (TTSS), which may increase somatic cell counts (SCCs) in milk from mastitis-affected cows. Moreover, most of P. aeruginosa cells can form biofilms, thereby reducing antibiotic efficacy. In this study, the presence and effect of TTSS-related genotypes on increase of SCCs among 122 P. aeruginosa isolates obtained from raw milk samples from mastitis-affected cows and their antibiotic susceptibility at planktonic and biofilm status were investigated. Based on the presence of TTSS-related genes a total of 82.7% of the isolates were found to harbour exoU and/or exoS genes, including the invasive (exoU-/exoS+, 69.4%), cytotoxic (exoU+/exoS-, 8.3%) and cytotoxic/invasive strains (exoU+/ exoS+, 5.0%). Milk containing exoS-positive isolates had higher SCCs than those containing exoS-negative isolates. The majority of isolates showed gentamicin, amikacin, meropenem and ciprofloxacin susceptibility at planktonic status. However, the susceptibility was decreased at the biofilm status. Based on minimum biofilm eradication concentration (MBEC)/minimum inhibitory concentration (MIC) ratios, the range of change in antibiotic susceptibility varied widely depending on the antibiotics (from ≥ 3.1-fold to ≥ 475.0-fold). In conclusion, most P. aeruginosa isolates studied here had a genotype related to increase in SCCs. The efficiency of antibiotic therapy against P. aeruginosa-related bovine mastitis could be improved by analysing both the MBEC and the MIC of isolates. PMID:24334080

  14. [Susceptibility and resistence of Pseudomonas aeruginosa to antimicrobial agents].

    PubMed

    Gamero Delgado, M C; García-Mayorgas, A D; Rodríguez, F; Ibarra, A; Casal, M

    2007-06-01

    Pseudomonas aeruginosa is an opportunistic microorganism that is frequently the cause of nosocomial infections. Multiple mechanisms are involved in its natural and acquired resistance to many of the antimicrobial agents commonly used in clinical practice. The objective of this study was to assess the susceptibility and resistance patterns of P. aeruginosa strains isolated in Hospital Reina Sofia between 2000 and 2005, as well as to analyze the differences between intrahospital and extrahospital isolates in 2005 and to compare the results with those obtained in other studies. A total of 3,019 strains of P. aeruginosa from different hospitals and nonhospital settings were evaluated, taking into consideration their degree of sensitivity to different antibiotics. The MICs were determined by means of the Wider I automated system (Soria Melguizo), taking into consideration the criteria of susceptibility and resistance recommended by MENSURA. Results of the analysis showed that P. aeruginosa maintained similar levels of antimicrobial susceptibility during the period 2000-2005, with increased susceptibility to amikacin, gentamicin and tobramycin. There were also important differences in the degree of susceptibility between intrahospital and extrahospital strains, except for imipenem and fosfomycin. The intrahospital difference in susceptibility was also evaluated, emphasizing the importance of periodically studying susceptibility and resistance patterns of P. aeruginosa in each setting in order to evaluate different therapeutic guidelines, as it is not always advisable to extrapolate data from different regions. These differences can be explained by the different use of antibiotics in each center and the geographic variations of the resistance mechanisms of P. aeruginosa. PMID:17893761

  15. Structural genes for salicylate biosynthesis from chorismate in Pseudomonas aeruginosa.

    PubMed

    Serino, L; Reimmann, C; Baur, H; Beyeler, M; Visca, P; Haas, D

    1995-11-15

    Salicylate is a precursor of pyochelin in Pseudomonas aeruginosa and both compounds display siderophore activity. To elucidate the salicylate biosynthetic pathway, we have cloned and sequenced a chromosomal region of P. aeruginosa PAO1 containing two adjacent genes, designated pchB and pchA, which are necessary for salicylate formation. The pchA gene encodes a protein of 52 kDa with extensive similarity to the chorismate-utilizing enzymes isochorismate synthase, anthranilate synthase (component I) and p-aminobenzoate synthase (component I), whereas the 11 kDa protein encoded by pchB does not show significant similarity with other proteins. The pchB stop codon overlaps the presumed pchA start codon. Expression of the pchA gene in P. aeruginosa appears to depend on the transcription and translation of the upstream pchB gene. The pchBA genes are the first salicylate biosynthetic genes to be reported. Salicylate formation was demonstrated in an Escherichia coli entC mutant lacking isochorismate synthase when this strain expressed both the pchBA genes, but not when it expressed pchB alone. By contrast, an entB mutant of E. coli blocked in the conversion of isochorismate to 2,3-dihydro-2,3-dihydroxybenzoate formed salicylate when transformed with a pchB expression construct. Salicylate formation could also be demonstrated in vitro when chorismate was incubated with a crude extract of P. aeruginosa containing overproduced PchA and PchB proteins; salicylate and pyruvate were formed in equimolar amounts. Furthermore, salicylate-forming activity could be detected in extracts from a P. aeruginosa pyoverdin-negative mutant when grown under iron limitation, but not with iron excess. Our results are consistent with a pathway leading from chorismate to isochorismate and then to salicylate plus pyruvate, catalyzed consecutively by the iron-repressible PchA and PchB proteins in P. aeruginosa. PMID:7500944

  16. Crystal Structure of the Pseudomonas aeruginosa Virulence Factor Regulator

    SciTech Connect

    Cordes, Timothy J.; Worzalla, Gregory A.; Ginster, Aaron M.; Forest, Katrina T.

    2012-09-07

    Virulence factor regulator (Vfr) enhances Pseudomonas aeruginosa pathogenicity through its role as a global transcriptional regulator. The crystal structure of Vfr shows that it is a winged-helix DNA-binding protein like its homologue cyclic AMP receptor protein (CRP). In addition to an expected primary cyclic AMP-binding site, a second ligand-binding site is nestled between the N-terminal domain and the C-terminal helix-turn-helix domain. Unlike CRP, Vfr is a symmetric dimer in the absence of DNA. Removal of seven disordered N-terminal residues of Vfr prvents the growth of P. aeruginosa.

  17. [Structural components and peculiarities of Pseudomonas aeruginosa biofilm organization].

    PubMed

    Balko, O B; Avdieieva, L V

    2010-01-01

    Peculiarities of the structural organization of bacterial biofilm during its formation and disintegration have been investigated on the model of Pseudomonas aeruginosa UCM B-900 (ATCC 9027). It was shown, that development of the biofilm in a stationary system on glass was a two-vector process with changes in time and space. P. aeruginosa UCM B-900 biofilm is formed from single cells, passes through the stages of base components, net structure, islands and comes to the end with integration into a complete monolayer. The biofilm degradation repeats the stages of its formation in the reverse sequence. PMID:20812507

  18. Bioleaching of copper oxide ore by Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Shabani, M. A.; Irannajad, M.; Azadmehr, A. R.; Meshkini, M.

    2013-12-01

    Bioleaching is an environmentally friendly method for extraction of metal from ores. In this study, bioleaching of copper oxide ore by Pseudomonas aeruginosa was investigated. Pseudomonas aeruginosa is a heterotrophic bacterium that can produce various organic acids in an appropriate culture medium, and these acids can operate as leaching agents. The parameters, such as particle size, glucose percentage in the culture medium, bioleaching time, and solid/liquid ratio were optimized. Optimum bioleaching conditions were found as follows: particle size of 150-177 μm, glucose percentage of 6%, bioleaching time of 8 d, and solid/liquid ratio of 1:80. Under these conditions, 53% of copper was extracted.

  19. Cell-to-cell signaling and Pseudomonas aeruginosa infections.

    PubMed Central

    Van Delden, C.; Iglewski, B. H.

    1998-01-01

    Pseudomonas aeruginosa is a bacterium responsible for severe nosocomial infections, life-threatening infections in immunocompromised persons, and chronic infections in cystic fibrosis patients. The bacterium's virulence depends on a large number of cell-associated and extracellular factors. Cell-to-cell signaling systems control the expression and allow a coordinated, cell-density-dependent production of many extracellular virulence factors. We discuss the possible role of cell-to-cell signaling in the pathogenesis of P. aeruginosa infections and present a rationale for targeting cell-to-cell signaling systems in the development of new therapeutic approaches. PMID:9866731

  20. Gene expression in Pseudomonas aeruginosa swarming motility

    PubMed Central

    2010-01-01

    Background The bacterium Pseudomonas aeruginosa is capable of three types of motilities: swimming, twitching and swarming. The latter is characterized by a fast and coordinated group movement over a semi-solid surface resulting from intercellular interactions and morphological differentiation. A striking feature of swarming motility is the complex fractal-like patterns displayed by migrating bacteria while they move away from their inoculation point. This type of group behaviour is still poorly understood and its characterization provides important information on bacterial structured communities such as biofilms. Using GeneChip® Affymetrix microarrays, we obtained the transcriptomic profiles of both bacterial populations located at the tip of migrating tendrils and swarm center of swarming colonies and compared these profiles to that of a bacterial control population grown on the same media but solidified to not allow swarming motility. Results Microarray raw data were corrected for background noise with the RMA algorithm and quantile normalized. Differentially expressed genes between the three conditions were selected using a threshold of 1.5 log2-fold, which gave a total of 378 selected genes (6.3% of the predicted open reading frames of strain PA14). Major shifts in gene expression patterns are observed in each growth conditions, highlighting the presence of distinct bacterial subpopulations within a swarming colony (tendril tips vs. swarm center). Unexpectedly, microarrays expression data reveal that a minority of genes are up-regulated in tendril tip populations. Among them, we found energy metabolism, ribosomal protein and transport of small molecules related genes. On the other hand, many well-known virulence factors genes were globally repressed in tendril tip cells. Swarm center cells are distinct and appear to be under oxidative and copper stress responses. Conclusions Results reported in this study show that, as opposed to swarm center cells, tendril

  1. Pseudomonas aeruginosa Promotes Escherichia coli Biofilm Formation in Nutrient-Limited Medium

    PubMed Central

    Culotti, Alessandro; Packman, Aaron I.

    2014-01-01

    Biofilms have been implicated as an important reservoir for pathogens and commensal enteric bacteria such as Escherichia coli in natural and engineered water systems. However, the processes that regulate the survival of E. coli in aquatic biofilms have not been thoroughly studied. We examined the effects of hydrodynamic shear and nutrient concentrations on E. coli colonization of pre-established Pseudomonas aeruginosa biofilms, co-inoculation of E. coli and P. aeruginosa biofilms, and P. aeruginosa colonization of pre-established E. coli biofilms. In nutritionally-limited R2A medium, E. coli dominated biofilms when co-inoculated with P. aeruginosa, and successfully colonized and overgrew pre-established P. aeruginosa biofilms. In more enriched media, P. aeruginosa formed larger clusters, but E. coli still extensively overgrew and colonized the interior of P. aeruginosa clusters. In mono-culture, E. coli formed sparse and discontinuous biofilms. After P. aeruginosa was introduced to these biofilms, E. coli growth increased substantially, resulting in patterns of biofilm colonization similar to those observed under other sequences of organism introduction, i.e., E. coli overgrew P. aeruginosa and colonized the interior of P. aeruginosa clusters. These results demonstrate that E. coli not only persists in aquatic biofilms under depleted nutritional conditions, but interactions with P. aeruginosa can greatly increase E. coli growth in biofilms under these experimental conditions. PMID:25198725

  2. Pseudomonas aeruginosa facilitates Campylobacter jejuni growth in biofilms under oxic flow conditions.

    PubMed

    Culotti, Alessandro; Packman, Aaron I

    2015-12-01

    We investigated the growth of Campylobacter jejuni in biofilms with Pseudomonas aeruginosa under oxic flow conditions. We observed the growth of C. jejuni in mono-culture, deposited on pre-established P. aeruginosa biofilms, and co-inoculated with P. aeruginosa. In mono-culture, C. jejuni was unable to form biofilms. However, deposited C. jejuni continuously grew on pre-established P. aeruginosa biofilms for a period of 3 days. The growth of scattered C. jejuni clusters was strictly limited to the P. aeruginosa biofilm surface, and no intergrowth was observed. Co-culturing of C. jejuni and P. aeruginosa also enabled the growth of both organisms in biofilms, with C. jejuni clusters developing on the surface of the P. aeruginosa biofilm. Dissolved oxygen (DO) measurements in the medium showed that P. aeruginosa biofilms depleted the effluent DO from 9.0 to 0.5 mg L(-1) 24 hours after inoculation. The localized microaerophilic environment generated by P. aeruginosa promoted the persistence and growth of C. jejuni. Our findings show that P. aeruginosa not only prolongs the survival of C. jejuni under oxic conditions, but also enables the growth of C. jejuni on the surface of P. aeruginosa biofilms. PMID:26610432

  3. Pseudomonas aeruginosa promotes Escherichia coli biofilm formation in nutrient-limited medium.

    PubMed

    Culotti, Alessandro; Packman, Aaron I

    2014-01-01

    Biofilms have been implicated as an important reservoir for pathogens and commensal enteric bacteria such as Escherichia coli in natural and engineered water systems. However, the processes that regulate the survival of E. coli in aquatic biofilms have not been thoroughly studied. We examined the effects of hydrodynamic shear and nutrient concentrations on E. coli colonization of pre-established Pseudomonas aeruginosa biofilms, co-inoculation of E. coli and P. aeruginosa biofilms, and P. aeruginosa colonization of pre-established E. coli biofilms. In nutritionally-limited R2A medium, E. coli dominated biofilms when co-inoculated with P. aeruginosa, and successfully colonized and overgrew pre-established P. aeruginosa biofilms. In more enriched media, P. aeruginosa formed larger clusters, but E. coli still extensively overgrew and colonized the interior of P. aeruginosa clusters. In mono-culture, E. coli formed sparse and discontinuous biofilms. After P. aeruginosa was introduced to these biofilms, E. coli growth increased substantially, resulting in patterns of biofilm colonization similar to those observed under other sequences of organism introduction, i.e., E. coli overgrew P. aeruginosa and colonized the interior of P. aeruginosa clusters. These results demonstrate that E. coli not only persists in aquatic biofilms under depleted nutritional conditions, but interactions with P. aeruginosa can greatly increase E. coli growth in biofilms under these experimental conditions. PMID:25198725

  4. Oral bacteria modulate invasion and induction of apoptosis in HEp-2 cells by Pseudomonas aeruginosa.

    PubMed

    Pan, Yaping; Teng, Di; Burke, Andrew C; Haase, Elaine M; Scannapieco, Frank A

    2009-02-01

    Pseudomonas aeruginosa is an important opportunistic bacterial pathogen, causing infections of the respiratory and other organ systems in susceptible hosts. P. aeruginosa infection is initiated by adhesion to and invasion of mucosal epithelial cells. The failure of host defenses to eliminate P. aeruginosa from mucosal surfaces results in P. aeruginosa proliferation, sometimes followed by overt infection and tissue destruction. There is growing evidence that associates poor oral health and respiratory infection. An in vitro model system for bacterial invasion of respiratory epithelial cells was used to investigate the influence of oral bacteria on P. aeruginosa epithelial cell invasion. Oral pathogens including Porphyromonas gingivalis, Fusobacterium nucleatum and Aggregatibacter (Actinobacillus) actinomycetemcomitans increased invasion of P. aeruginosa into HEp-2 cells from one- to threefold. In contrast, non-pathogenic oral bacteria such as Actinomyces naeslundii and Streptococcus gordonii showed no significant influence on P. aeruginosa invasion. P. aeruginosa together with oral bacteria stimulated greater cytokine production from HEp-2 cells than did P. aeruginosa alone. P. aeruginosa in combination with periodontal pathogens also increased apoptosis of HEp-2 cells and induced elevated caspase-3 activity. These results suggest that oral bacteria, especially periodontal pathogens, may foster P. aeruginosa invasion into respiratory epithelial cells to enhance host cell cytokine release and apoptosis. PMID:19041936

  5. Comparative studies on growth and physiological responses of unicellular and colonial Microcystis aeruginosa to Acorus calamus.

    PubMed

    Zhang, S-H; Chang, J-J; Cao, J-Y; Yang, C-L

    2015-02-01

    In order to explore the growth inhibition and physiological responses of unicellular and colonial Microcystis aeruginosa during coexistence with Acorus calamus, algal densities, chlorophyll a contents, exopolysaccharide (EPS) concentrations, malondialdehyde (MDA) contents, catalase (CAT) activities, and peroxidase (POD) activities of the two algae strains were analyzed. Although the unicellular and colonial strains of M. aeruginosa were both inhibited by A. calamus, unicellular algae were more sensitive than the colonial algae. The measurement results for EPS, MDA, CAT, and POD showed that unicellular M. aeruginosa had higher levels of stress related damage than colonial strains when they were exposed to the same density of A. calamus, and the cellular defense system of colonial M. aeruginosa was stronger than that of unicellular M. aeruginosa. Natural blooms of Microcystis are typically composed of colonial forms of M. aeruginosa, therefore future efforts to control such blooms, possibly through the development of new algicides, should focus on the unique characteristics of colonial M. aeruginosa strains. PMID:25416545

  6. In Vitro Antibacterial Efficacy of 21 Indian Timber-Yielding Plants Against Multidrug-Resistant Bacteria Causing Urinary Tract Infection

    PubMed Central

    Mishra, Monali P.; Padhy, Rabindra N.

    2013-01-01

    Objectives To screen methanolic leaf extracts of 21 timber-yielding plants for antibacterial activity against nine species of uropathogenic bacteria isolated from clinical samples of a hospital (Enterococcus faecalis, Staphylococcus aureus, Acinetobacter baumannii, Citrobacter freundii, Enterobacter aerogenes, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, and Pseudomonas aeruginosa). Methods Bacterial strains were subjected to antibiotic sensitivity tests by the Kirby–Bauer's disc diffusion method. The antibacterial potentiality of leaf extracts was monitored by the agar-well diffusion method with multidrug-resistant (MDR) strains of nine uropathogens. Results Two Gram-positive isolates, E. faecalis and S. aureus, were resistant to 14 of the 18 antibiotics used. Gram-negative isolates A. baumannii, C. freundii, E. aerogenes, E. coli, K. pneumoniae, P. mirabilis, and P. aeruginosa were resistant to 10, 12, 9, 11, 11, 10, and 11 antibiotics, respectively, of the 14 antibiotics used. Methanolic leaf extracts of Anogeissus acuminata had the maximum zone of inhibition size—29 mm against S. aureus and 28 mm against E. faecalis and P. aeruginosa. Cassia tora had 29 mm as the zone of inhibition size for E. faecalis, E. aerogenes, and P. aeruginosa. Based on the minimum inhibitory concentration and minimum bactericidal concentration values, the most effective 10 plants against uropathogens could be arranged in decreasing order as follows: C. tora > A. acuminata > Schleichera oleosa > Pterocarpus santalinus > Eugenia jambolana > Bridelia retusa > Mimusops elengi > Stereospermum kunthianum > Tectona grandis > Anthocephalus cadamba. The following eight plants had moderate control capacity: Artocarpus heterophyllus, Azadirachta indica, Dalbergia latifolia, Eucalyptus citriodora, Gmelina arborea, Pongamia pinnata, Pterocarpus marsupium, and Shorea robusta. E. coli, followed by A. baumannii, C. freundii, E. aerogenes, P. mirabilis, and P

  7. Influence of zinc on Pseudomonas aeruginosa susceptibilities to imipenem.

    PubMed Central

    Cooper, G L; Louie, A; Baltch, A L; Chu, R C; Smith, R P; Ritz, W J; Michelsen, P

    1993-01-01

    Serial dilution susceptibility testing of imipenem against 59 clinical isolates of Pseudomonas aeruginosa, conducted simultaneously on single lots of Difco and BBL Mueller-Hinton agar (MHA), resulted in MICs for 90% of strains tested of 8 and 16 micrograms/ml, respectively. MICs for Escherichia coli, Klebsiella pneumoniae, and Pseudomonas spp. were also higher on BBL MHA. Quantification of the cation content of the two MHAs by atomic absorption spectroscopy demonstrated that the zinc concentration in BBL MHA was 15 times greater than that measured in Difco MHA (2.61 and 0.17 micrograms/ml, respectively). Concentrations of calcium, magnesium, iron, manganese, and copper in the two agars were similar. Addition of zinc to Difco MHA resulted in increases in MICs of imipenem for P. aeruginosa but not in the MICs of ceftazidime or cefpirome for P. aeruginosa (P < 0.01). A lesser zinc effect was seen on the activity of imipenem against E. coli, K. pneumoniae, and Pseudomonas spp. The activities of ceftazidime and cefpirome were similar on both MHAs when tested against all gram-negative organisms in this study. Thus, the effect of zinc in MHA was clearly demonstrated by a significant increase in the MICs of imipenem for P. aeruginosa, and, to a lesser extent, for other gram-negative bacilli. PMID:8408557

  8. MexXY multidrug efflux system of Pseudomonas aeruginosa

    PubMed Central

    Morita, Yuji; Tomida, Junko; Kawamura, Yoshiaki

    2012-01-01

    Anti-pseudomonas aminoglycosides, such as amikacin and tobramycin, are used in the treatment of Pseudomonas aeruginosa infections. However, their use is linked to the development of resistance. During the last decade, the MexXY multidrug efflux system has been comprehensively studied, and numerous reports of laboratory and clinical isolates have been published. This system has been increasingly recognized as one of the primary determinants of aminoglycoside resistance in P. aeruginosa. In P. aeruginosa cystic fibrosis isolates, upregulation of the pump is considered the most common mechanism of aminoglycoside resistance. Non-fermentative Gram-negative pathogens possessing very close MexXY orthologs such as Achromobacter xylosoxidans and various Burkholderia species (e.g., Burkholderia pseudomallei and B. cepacia complexes), but not B. gladioli, are intrinsically resistant to aminoglycosides. Here, we summarize the properties (e.g., discovery, mechanism, gene expression, clinical significance) of the P. aeruginosa MexXY pump and other aminoglycoside efflux pumps such as AcrD of Escherichia coli, AmrAB-OprA of B. pseudomallei, and AdeABC of Acinetobacter baumannii. MexXY inducibility of the PA5471 gene product, which is dependent on ribosome inhibition or oxidative stress, is noteworthy. Moreover, the discovery of the cognate outer membrane component (OprA) of MexXY in the multidrug-resistant clinical isolate PA7, serotype O12 deserves special attention. PMID:23233851

  9. EFFECTS OF CYANOPHAGE SAM-1 UPON 'MICROCYSTIS AERUGINOSA'

    EPA Science Inventory

    Cyanophage SAM-1, which infects Synechoccus cedrorum, Anacystis nidulans and certain strains of Microcystis aeruginosa has been isolated from sewage. The host range of cyanophage SAM-1 differs from those of other reported cyanophages. Phage SAM-1 stocks are rapidly inactivated at...

  10. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA.

    PubMed

    Teixeira, Bertinellys; Rodulfo, Hectorina; Carreño, Numirin; Guzmán, Militza; Salazar, Elsa; De Donato, Marcos

    2016-01-01

    The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC), aminoglycoside-adenyltransferases (AAD), and aminoglycoside-phosphotransferases (APH), is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA) were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137) were identified from the Intensive Care Unit (ICU), mainly from discharges (96/137). The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively). Phenotype VI, resistant to these antibiotics, was the most frequent (14/49), followed by phenotype I, resistant to all the aminoglycosides tested (12/49). The aac(6´)-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´)-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America. PMID:27007556

  11. Reduction of PCN biosynthesis by NO in Pseudomonas aeruginosa.

    PubMed

    Gao, Lei; Zhang, Yuying; Wang, Yan; Qiao, Xinhua; Zi, Jing; Chen, Chang; Wan, Yi

    2016-08-01

    Pyocyanin (PCN), a virulence factor synthesized by Pseudomonas aeruginosa, plays an important role during clinical infections. There is no study of the effect of nitric oxide (NO) on PCN biosynthesis. Here, the effect of NO on PCN levels in Pseudomonas aeruginosa strain PAO1, a common reference strain, was tested. The results showed that the NO donor sodium nitroprusside (SNP) can significantly reduce PCN levels (82.5% reduction at 60μM SNP). Furthermore, the effect of endogenous NO on PCN was tested by constructing PAO1 nor (NO reductase gene) knockout mutants. Compared to the wild-type strain, the Δnor strain had a lower PCN (86% reduction in Δnor). To examine whether the results were universal with other P. aeruginosa strains, we collected 4 clinical strains from a hospital, tested their PCN levels after SNP treatment, and obtained similar results, i.e., PCN biosynthesis was inhibited by NO. These results suggest that NO treatment may be a new strategy to inhibit PCN biosynthesis and could provide novel insights into eliminating P. aeruginosa virulence as a clinical goal. PMID:26874276

  12. Autophagy protects C. elegans against necrosis during Pseudomonas aeruginosa infection

    PubMed Central

    Zou, Cheng-Gang; Ma, Yi-Cheng; Dai, Li-Li; Zhang, Ke-Qin

    2014-01-01

    Autophagy, a conserved pathway that delivers intracellular materials into lysosomes for degradation, is involved in development, aging, and a variety of diseases. Accumulating evidence demonstrates that autophagy plays a protective role against infectious diseases by diminishing intracellular pathogens, including bacteria, viruses, and parasites. However, the mechanism by which autophagy regulates innate immunity remains largely unknown. Here, we show that autophagy is involved in host defense against a pathogenic bacterium Pseudomonas aeruginosa in the metazoan Caenorhabditis elegans. P. aeruginosa infection induces autophagy via a conserved extracellular signal-regulated kinase (ERK). Intriguingly, impairment of autophagy does not influence the intestinal accumulation of P. aeruginosa, but instead induces intestinal necrosis. Inhibition of necrosis results in the survival of autophagy-deficient worms after P. aeruginosa infection. These findings reveal a previously unidentified role for autophagy in protection against necrosis triggered by pathogenic bacteria in C. elegans and implicate that such a function of autophagy may be conserved through the inflammatory response in diverse organisms. PMID:25114220

  13. Full Virulence of Pseudomonas aeruginosa Requires OprF▿

    PubMed Central

    Fito-Boncompte, Laurène; Chapalain, Annelise; Bouffartigues, Emeline; Chaker, Hichem; Lesouhaitier, Olivier; Gicquel, Gwendoline; Bazire, Alexis; Madi, Amar; Connil, Nathalie; Véron, Wilfried; Taupin, Laure; Toussaint, Bertrand; Cornelis, Pierre; Wei, Qing; Shioya, Koki; Déziel, Eric; Feuilloley, Marc G. J.; Orange, Nicole; Dufour, Alain; Chevalier, Sylvie

    2011-01-01

    OprF is a general outer membrane porin of Pseudomonas aeruginosa, a well-known human opportunistic pathogen associated with severe hospital-acquired sepsis and chronic lung infections of cystic fibrosis patients. A multiphenotypic approach, based on the comparative study of a wild-type strain of P. aeruginosa, its isogenic oprF mutant, and an oprF-complemented strain, showed that OprF is required for P. aeruginosa virulence. The absence of OprF results in impaired adhesion to animal cells, secretion of ExoT and ExoS toxins through the type III secretion system (T3SS), and production of the quorum-sensing-dependent virulence factors pyocyanin, elastase, lectin PA-1L, and exotoxin A. Accordingly, in the oprF mutant, production of the signal molecules N-(3-oxododecanoyl)-l-homoserine lactone and N-butanoyl-l-homoserine lactone was found to be reduced and delayed, respectively. Pseudomonas quinolone signal (PQS) production was decreased, while its precursor, 4-hydroxy-2-heptylquinoline (HHQ), accumulated in the cells. Taken together, these results show the involvement of OprF in P. aeruginosa virulence, at least partly through modulation of the quorum-sensing network. This is the first study showing a link between OprF, PQS synthesis, T3SS, and virulence factor production, providing novel insights into virulence expression. PMID:21189321

  14. Full virulence of Pseudomonas aeruginosa requires OprF.

    PubMed

    Fito-Boncompte, Laurène; Chapalain, Annelise; Bouffartigues, Emeline; Chaker, Hichem; Lesouhaitier, Olivier; Gicquel, Gwendoline; Bazire, Alexis; Madi, Amar; Connil, Nathalie; Véron, Wilfried; Taupin, Laure; Toussaint, Bertrand; Cornelis, Pierre; Wei, Qing; Shioya, Koki; Déziel, Eric; Feuilloley, Marc G J; Orange, Nicole; Dufour, Alain; Chevalier, Sylvie

    2011-03-01

    OprF is a general outer membrane porin of Pseudomonas aeruginosa, a well-known human opportunistic pathogen associated with severe hospital-acquired sepsis and chronic lung infections of cystic fibrosis patients. A multiphenotypic approach, based on the comparative study of a wild-type strain of P. aeruginosa, its isogenic oprF mutant, and an oprF-complemented strain, showed that OprF is required for P. aeruginosa virulence. The absence of OprF results in impaired adhesion to animal cells, secretion of ExoT and ExoS toxins through the type III secretion system (T3SS), and production of the quorum-sensing-dependent virulence factors pyocyanin, elastase, lectin PA-1L, and exotoxin A. Accordingly, in the oprF mutant, production of the signal molecules N-(3-oxododecanoyl)-l-homoserine lactone and N-butanoyl-l-homoserine lactone was found to be reduced and delayed, respectively. Pseudomonas quinolone signal (PQS) production was decreased, while its precursor, 4-hydroxy-2-heptylquinoline (HHQ), accumulated in the cells. Taken together, these results show the involvement of OprF in P. aeruginosa virulence, at least partly through modulation of the quorum-sensing network. This is the first study showing a link between OprF, PQS synthesis, T3SS, and virulence factor production, providing novel insights into virulence expression. PMID:21189321

  15. [Sodium houttuyfonate inhibits virulence related motility of Pseudomonas aeruginosa].

    PubMed

    Wu, Da-qiang; Huang, Wei-feng; Duan, Qiang-jun; Cheng, Hui-juan; Wang, Chang-zhong

    2015-04-01

    Sodium houttuyfonate (SH) is a derivative of effective component of a Chinese material medica, Houttuynia cordata, which is applied in anti-infection of microorganism. But, the antimicrobial mechanisms of SH still remain unclear. Here, we firstly discovered that SH effectively inhibits the three types of virulence related motility of.Pseudomonas aeruginosa, i.e., swimming, twitching and swarming. The plate assay results showed that the inhibitory action of SH against swimming and twitching in 24 h and swarming in 48 h is dose-dependent; and bacteria nearly lost all of the motile activities under the concentration of 1 x minimum inhibitory concentration (MIC) (512 mg x L(-1) same as azithromycin positive group (1 x MIC, 16 mg x L(-1)). Furthermore, we found that the expression of structural gene flgB and pilG is down-regulated by SH, which implies that inhibitory mechanism of SH against motility of P. aeruginosa may be due to the inhibition of flagella and pili bioformation of P. aeruginosa by SR Therefore, our presented results firstly demonstrate that SH effectively inhibits the motility activities of P. aeruginosa, and suggest that SH could be a promising antipseudomonas agents in clinic. PMID:26281603

  16. Inhibition of Pseudomonas aeruginosa biofilm formation on wound dressings

    PubMed Central

    Brandenburg, Kenneth S.; Calderon, Diego F.; Kierski, Patricia R.; Brown, Amanda L.; Shah, Nihar M.; Abbott, Nicholas L.; Schurr, Michael J.; Murphy, Christopher J.; McAnulty, Jonathan F.; Czuprynski, Charles J.

    2016-01-01

    Chronic non-healing skin wounds often contain bacterial biofilms that prevent normal wound healing and closure and present challenges to the use of conventional wound dressings. We investigated inhibition of Pseudomonas aeruginosa biofilm formation, a common pathogen of chronic skin wounds, on a commercially available biological wound dressing. Building upon prior reports, we examined whether the amino acid tryptophan would inhibit P. aeruginosa biofilm formation on the 3-dimensional surface of the biological dressing. Bacterial biomass and biofilm polysaccharides were quantified using crystal violet staining or an enzyme linked lectin, respectively. Bacterial cells and biofilm matrix adherent to the wound dressing were visualized through scanning electron microscopy. D-/L-tryptophan inhibited P. aeruginosa biofilm formation on the wound dressing in a dose dependent manner and was not directly cytotoxic to immortalized human keratinocytes although there was some reduction in cellular metabolism or enzymatic activity. More importantly, D-/L-tryptophan did not impair wound healing in a splinted skin wound murine model. Furthermore, wound closure was improved when D-/L-tryptophan treated wound dressing with P. aeruginosa biofilms were compared with untreated dressings. These findings indicate that tryptophan may prove useful for integration into wound dressings to inhibit biofilm formation and promote wound healing. PMID:26342168

  17. Pyoverdine, the Major Siderophore in Pseudomonas aeruginosa, Evades NGAL Recognition

    PubMed Central

    Peek, Mary E.; Bhatnagar, Abhinav; McCarty, Nael A.; Zughaier, Susu M.

    2012-01-01

    Pseudomonas aeruginosa is the most common pathogen that persists in the cystic fibrosis lungs. Bacteria such as P. aeruginosa secrete siderophores (iron-chelating molecules) and the host limits bacterial growth by producing neutrophil-gelatinase-associated lipocalin (NGAL) that specifically scavenges bacterial siderophores, therefore preventing bacteria from establishing infection. P. aeruginosa produces a major siderophore known as pyoverdine, found to be important for bacterial virulence and biofilm development. We report that pyoverdine did not bind to NGAL, as measured by tryptophan fluorescence quenching, while enterobactin bound to NGAL effectively causing a strong response. The experimental data indicate that pyoverdine evades NGAL recognition. We then employed a molecular modeling approach to simulate the binding of pyoverdine to human NGAL using NGAL's published crystal structures. The docking of pyoverdine to NGAL predicted nine different docking positions; however, neither apo- nor ferric forms of pyoverdine docked into the ligand-binding site in the calyx of NGAL where siderophores are known to bind. The molecular modeling results offer structural support that pyoverdine does not bind to NGAL, confirming the results obtained in the tryptophan quenching assay. The data suggest that pyoverdine is a stealth siderophore that evades NGAL recognition allowing P. aeruginosa to establish chronic infections in CF lungs. PMID:22973307

  18. Pyoverdine, the Major Siderophore in Pseudomonas aeruginosa, Evades NGAL Recognition.

    PubMed

    Peek, Mary E; Bhatnagar, Abhinav; McCarty, Nael A; Zughaier, Susu M

    2012-01-01

    Pseudomonas aeruginosa is the most common pathogen that persists in the cystic fibrosis lungs. Bacteria such as P. aeruginosa secrete siderophores (iron-chelating molecules) and the host limits bacterial growth by producing neutrophil-gelatinase-associated lipocalin (NGAL) that specifically scavenges bacterial siderophores, therefore preventing bacteria from establishing infection. P. aeruginosa produces a major siderophore known as pyoverdine, found to be important for bacterial virulence and biofilm development. We report that pyoverdine did not bind to NGAL, as measured by tryptophan fluorescence quenching, while enterobactin bound to NGAL effectively causing a strong response. The experimental data indicate that pyoverdine evades NGAL recognition. We then employed a molecular modeling approach to simulate the binding of pyoverdine to human NGAL using NGAL's published crystal structures. The docking of pyoverdine to NGAL predicted nine different docking positions; however, neither apo- nor ferric forms of pyoverdine docked into the ligand-binding site in the calyx of NGAL where siderophores are known to bind. The molecular modeling results offer structural support that pyoverdine does not bind to NGAL, confirming the results obtained in the tryptophan quenching assay. The data suggest that pyoverdine is a stealth siderophore that evades NGAL recognition allowing P. aeruginosa to establish chronic infections in CF lungs. PMID:22973307

  19. Removal of Microcystis aeruginosa using cationic starch modified soils.

    PubMed

    Shi, Wenqing; Tan, Wanqiao; Wang, Lijing; Pan, Gang

    2016-06-15

    A cheap and biodegradable modifier, cationic starch (CS), was used to turn local soils into effective flocculants for Microcystis aeruginosa (M. aeruginosa) removal. The isoelectric point of soil particles was remarkably increased from pH 0.5 to 11.8 after modification with CS, which made CS modified soil particles positively charged and obtain algal flocculation ability. At the soil concentration of 100 mg/L, when the CS modifier was 10 mg/L, 86% of M. aeruginosa cells were removed within 30 min. Lower or higher CS dosage led to limited algal removal. About 71% and 45% of M. aeruginosa cells were removed within 30 min when CS was 5 mg/L and 80 mg/L, respectively. This is because only part of algal cells combined with CS modified soil particles through charge neutralization at low dosage, while flocs formed at high CS dosage were positively charged which prevents further aggregation among the flocs. The floc stability was quantified by a floc breakage index under applied shear force. Algal flocs formed at acid and alkaline conditions were more prone to be broken than those at the neutral condition. The cost and biodegradability concerns may be largely reduced through the use of CS modified local soils. For field applications, other practical issues (e.g., re-suspension) should be further studied by jointly using other methods. PMID:26143587

  20. 7-fluoroindole as an antivirulence compound against Pseudomonas aeruginosa.

    PubMed

    Lee, Jin-Hyung; Kim, Yong-Guy; Cho, Moo Hwan; Kim, Jung-Ae; Lee, Jintae

    2012-04-01

    The emergence of antibiotic resistance has necessitated new therapeutic approaches for combating persistent bacterial infection. An alternative approach is regulation of bacterial virulence instead of growth suppression, which can readily lead to drug resistance. The virulence of the opportunistic human pathogen Pseudomonas aeruginosa depends on a large number of extracellular factors and biofilm formation. Thirty-one natural and synthetic indole derivatives were screened. 7-fluoroindole (7FI) was identified as a compound that inhibits biofilm formation and blood hemolysis without inhibiting the growth of planktonic P. aeruginosa cells. Moreover, 7FI markedly reduced the production of quorum-sensing (QS)-regulated virulence factors 2-heptyl-3-hydroxy-4(1H)-quinolone, pyocyanin, rhamnolipid, two siderophores, pyoverdine and pyochelin. 7FI clearly suppressed swarming motility, protease activity and the production of a polymeric matrix in P. aeruginosa. However, unlike natural indole compounds, synthetic 7FI did not increase antibiotic resistance. Therefore, 7FI is a potential candidate for use in an antivirulence approach against persistent P. aeruginosa infection. PMID:22251040

  1. Adaptation of aerobically growing Pseudomonas aeruginosa to copper starvation.

    PubMed

    Frangipani, Emanuela; Slaveykova, Vera I; Reimmann, Cornelia; Haas, Dieter

    2008-10-01

    Restricted bioavailability of copper in certain environments can interfere with cellular respiration because copper is an essential cofactor of most terminal oxidases. The global response of the metabolically versatile bacterium and opportunistic pathogen Pseudomonas aeruginosa to copper limitation was assessed under aerobic conditions. Expression of cioAB (encoding an alternative, copper-independent, cyanide-resistant ubiquinol oxidase) was upregulated, whereas numerous iron uptake functions (including the siderophores pyoverdine and pyochelin) were expressed at reduced levels, presumably reflecting a lower demand for iron by respiratory enzymes. Wild-type P. aeruginosa was able to grow aerobically in a defined glucose medium depleted of copper, whereas a cioAB mutant did not grow. Thus, P. aeruginosa relies on the CioAB enzyme to cope with severe copper deprivation. A quadruple cyo cco1 cco2 cox mutant, which was deleted for all known heme-copper terminal oxidases of P. aeruginosa, grew aerobically, albeit more slowly than did the wild type, indicating that the CioAB enzyme is capable of energy conservation. However, the expression of a cioA'-'lacZ fusion was less dependent on the copper status in the quadruple mutant than in the wild type, suggesting that copper availability might affect cioAB expression indirectly, via the function of the heme-copper oxidases. PMID:18708503

  2. Genetic characterization of Microcystis aeruginosa isolates from Portuguese freshwater systems.

    PubMed

    Moreira, Cristiana; Vasconcelos, Vitor; Antunes, Agostinho

    2016-07-01

    Cyanobacteria are microorganisms that pose a serious threat to the aquatic waterways through the production of dense blooms under eutrophic conditions and the release of toxic secondary metabolites-cyanotoxins. Within cyanobacteria, the colonial planktonic Microcystis aeruginosa is widely distributed in both fresh and brackish aquatic environments throughout the world being frequently observed in the Portuguese water systems. Apart from the well-established distribution of M. aeruginosa in Portugal, knowledge of its genetic diversity and population structure is unknown. Therefore, in this study twenty-seven strains were obtained from the North, Centre and South regions of Portugal and were subjected to extensive phylogenetic analyses using simultaneously four distinct genetic markers (16S rRNA, 16S-23S ITS, DNA gyrase subunit ß and cell division protein (ftsZ)) encompassing in total 2834 bp. With this work we characterized the phylogenetic relationship among the Portuguese strains, with the southern strains showing higher genetic structure relatively to the North and Centre strains. A total of fifteen genotypes were determined for M. aeruginosa in Portuguese water systems revealing a high genetic diversity. This is also the first study to report geographic variation on the population structure of the Portuguese M. aeruginosa. PMID:27263013

  3. Elastase Deficiency Phenotype of Pseudomonas aeruginosa Canine Otitis Externa Isolates

    PubMed Central

    Petermann, Shana R.; Doetkott, Curt; Rust, Lynn

    2001-01-01

    Pseudomonas aeruginosa veterinary isolates were assayed for elastase and total matrix protease activity. The elastase activity of canine ear isolates was much less than that of strain PAO1 and that of all other veterinary isolates (P < 0.0001). The results indicate that canine ear isolates have a distinct elastase phenotype. PMID:11329471

  4. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA

    PubMed Central

    TEIXEIRA, Bertinellys; RODULFO, Hectorina; CARREÑO, Numirin; GUZMÁN, Militza; SALAZAR, Elsa; DONATO, Marcos DE

    2016-01-01

    The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC), aminoglycoside-adenyltransferases (AAD), and aminoglycoside-phosphotransferases (APH), is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA) were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137) were identified from the Intensive Care Unit (ICU), mainly from discharges (96/137). The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively). Phenotype VI, resistant to these antibiotics, was the most frequent (14/49), followed by phenotype I, resistant to all the aminoglycosides tested (12/49). The aac(6´)-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´)-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America. PMID:27007556

  5. Comparison of two chromogenic media and evaluation of two molecular based identification systems for Enterobacter sakazakii detection

    PubMed Central

    Lehner, Angelika; Nitzsche, Sabine; Breeuwer, Pieter; Diep, Benjamin; Thelen, Karin; Stephan, Roger

    2006-01-01

    Background Enterobacter sakazakii is a foodborne pathogen that has been associated with sporadic cases and outbreaks causing meningitis, necrotizing enterocolitis and sepsis especially in neonates. The current FDA detection method includes two enrichment steps, the subculturing of the second enrichment broth on a selective agar (VRBG), a further subculturing of selected grown colonies on TSA and the subsequent biochemical identification of yellow-pigmented colonies by API20E. However, there is a strong need for simplified methods for isolation and identification of E. sakazakii. In this study, two chromogenic media, which allow to indicate presumptive E. sakazakii colonies by the alpha glucosidase activity, as well as a newly developed 1,6-alpha-glucosidase based conventional PCR assay and a rRNA oligonucleotide probe based commercial test system for identification of presumptive E. sakazakii were evaluated on 98 target and non-target strains. The methods were compared with respect to specificity aspects. Results A total of 75 presumptive E. sakazakii and 23 non-target strains were analysed by using chromogenic media, alpha-glucosidase based PCR assay, and the VIT assay. For most presumptive E. sakazakii strains on the chromogenic media, the PCR and VIT assay confirmed the identification. However, for a number of presumptive E. sakazakii isolates from fruit powder, the alpha-glucosidase PCR and VIT assay did not correspond to the typical E. sakazakii colonies on DFI and ESIA. Further characterization by API32E identification, phylogenetic analysis of partial 16S rRNA sequences and ribotyping strongly suggested, that these strains did not belong to the species E. sakazakii. The newly developed alpha-glucosidase based PCR assay as well as the commercially available VIT Enterobacter sakazakii identification test showed an excellent correlation with the 16S rRNA data, and are thus well suited for identification of E. sakazakii. Conclusion The results indicate that

  6. Genome Sequence of Enterobacter cloacae subsp. dissolvens SDM, an Efficient Biomass-Utilizing Producer of Platform Chemical 2,3-Butanediol

    PubMed Central

    Xu, Youqiang; Wang, Ailong; Tao, Fei; Su, Fei; Tang, Hongzhi

    2012-01-01

    Enterobacter cloacae subsp. dissolvens SDM has an extraordinary characteristic of biomass utilization for 2,3-butanediol production. Here we present a 4.9-Mb assembly of its genome. The key genes for regulation and metabolism of 2,3-butanediol production were annotated, which could provide further insights into the molecular mechanism of high-yield production of 2,3-butanediol. PMID:22275097

  7. Dissecting the Machinery That Introduces Disulfide Bonds in Pseudomonas aeruginosa

    PubMed Central

    Arts, Isabelle S.; Ball, Geneviève; Leverrier, Pauline; Garvis, Steven; Nicolaes, Valérie; Vertommen, Didier; Ize, Bérengère; Tamu Dufe, Veronica; Messens, Joris; Voulhoux, Romé; Collet, Jean-François

    2013-01-01

    ABSTRACT Disulfide bond formation is required for the folding of many bacterial virulence factors. However, whereas the Escherichia coli disulfide bond-forming system is well characterized, not much is known on the pathways that oxidatively fold proteins in pathogenic bacteria. Here, we report the detailed unraveling of the pathway that introduces disulfide bonds in the periplasm of the human pathogen Pseudomonas aeruginosa. The genome of P. aeruginosa uniquely encodes two DsbA proteins (P. aeruginosa DsbA1 [PaDsbA1] and PaDsbA2) and two DsbB proteins (PaDsbB1 and PaDsbB2). We found that PaDsbA1, the primary donor of disulfide bonds to secreted proteins, is maintained oxidized in vivo by both PaDsbB1 and PaDsbB2. In vitro reconstitution of the pathway confirms that both PaDsbB1 and PaDsbB2 shuttle electrons from PaDsbA1 to membrane-bound quinones. Accordingly, deletion of both P. aeruginosa dsbB1 (PadsbB1) and PadsbB2 is required to prevent the folding of several P. aeruginosa virulence factors and to lead to a significant decrease in pathogenicity. Using a high-throughput proteomic approach, we also analyzed the impact of PadsbA1 deletion on the global periplasmic proteome of P. aeruginosa, which allowed us to identify more than 20 new potential substrates of this major oxidoreductase. Finally, we report the biochemical and structural characterization of PaDsbA2, a highly oxidizing oxidoreductase, which seems to be expressed under specific conditions. By fully dissecting the machinery that introduces disulfide bonds in P. aeruginosa, our work opens the way to the design of novel antibacterial molecules able to disarm this pathogen by preventing the proper assembly of its arsenal of virulence factors. PMID:24327342

  8. Cloning and Sequencing of the ompA Gene of Enterobacter sakazakii and Development of an ompA-Targeted PCR for Rapid Detection of Enterobacter sakazakii in Infant Formula

    PubMed Central

    Mohan Nair, Manoj Kumar; Venkitanarayanan, Kumar S.

    2006-01-01

    Enterobacter sakazakii is an emerging, infant formula-borne pathogen that causes severe meningitis, meningoencephalitis, sepsis, and necrotizing enterocolitis in neonates and infants, with a high fatality rate. Traditional detection methods take up to 7 days to identify E. sakazakii. The outer membrane protein A gene (ompA), along with its flanking sequences from E. sakazakii (ATCC 51329), was cloned in the pGEM-T Easy vector and sequenced. Comparison of the nucleotide and deduced amino acid sequences of the ompA gene with other sequences available in the GenBank database revealed a high degree of homology with ompA genes of other gram-negative bacteria belonging to the Enterobacteriaceae. Based on regions of the ompA gene unique to E. sakazakii, two primers were synthesized to develop and optimize an E. sakazakii-specific PCR. The PCR amplified a 469-bp DNA product from all E. sakazakii strains tested but not from other bacteria. Experiments to determine the sensitivity of the PCR indicated that it could detect as few as 103 CFU/ml of E. sakazakii bacteria in infant formula directly and 10−1 CFU/ml after an 8-h enrichment step. We conclude that this PCR, combined with enrichment culturing, has the potential to be used as a rapid tool for detecting the presence of E. sakazakii in infant formula. PMID:16597955

  9. Enhancement of the catalytic activity of ferulic acid decarboxylase from Enterobacter sp. Px6-4 through random and site-directed mutagenesis.

    PubMed

    Lee, Hyunji; Park, Jiyoung; Jung, Chaewon; Han, Dongfei; Seo, Jiyoung; Ahn, Joong-Hoon; Chong, Youhoon; Hur, Hor-Gil

    2015-11-01

    The enzyme ferulic acid decarboxylase (FADase) from Enterobacter sp. Px6-4 catalyzes the decarboxylation reaction of lignin monomers and phenolic compounds such as p-coumaric acid, caffeic acid, and ferulic acid into their corresponding 4-vinyl derivatives, that is, 4-vinylphenol, 4-vinylcatechol, and 4-vinylguaiacol, respectively. Among various ferulic acid decarboxylase enzymes, we chose the FADase from Enterobacter sp. Px6-4, whose crystal structure is known, and produced mutants to enhance its catalytic activity by random and site-directed mutagenesis. After three rounds of sequential mutations, FADase(F95L/D112N/V151I) showed approximately 34-fold higher catalytic activity than wild-type for the production of 4-vinylguaiacol from ferulic acid. Docking analyses suggested that the increased activity of FADase(F95L/D112N/V151I) could be due to formation of compact active site compared with that of the wild-type FADase. Considering the amount of phenolic compounds such as lignin monomers in the biomass components, successfully bioengineered FADase(F95L/D112N/V151I) from Enterobacter sp. Px6-4 could provide an ecofriendly biocatalytic tool for producing diverse styrene derivatives from biomass. PMID:26059194

  10. Characterization of protease IV expression in Pseudomonas aeruginosa clinical isolates.

    PubMed

    Conibear, Tim C R; Willcox, Mark D P; Flanagan, Judith L; Zhu, Hua

    2012-02-01

    Expression of protease IV by Pseudomonas aeruginosa during ocular infections contributes significantly to tissue damage. However, several P. aeruginosa strains isolated from ocular infections or inflammatory events produce very low levels of protease IV. The aim of the present study was to characterize, genetically and phenotypically, the presence and expression of the protease IV gene in a group of clinical isolates that cause adverse ocular events of varying degrees, and to elucidate the possible control mechanisms of expression associated with this virulence factor. Protease IV gene sequences from seven clinical isolates of P. aeruginosa were determined and compared to P. aeruginosa strains PAO1 and PA103-29. Production and enzyme activity of protease IV were measured in test strains and compared to that of quorum-sensing gene (lasRI) mutants and the expression of other virulence factors. Protease IV gene sequence similarities between the isolates were 97.5-99.5 %. The strains were classified into two distinct phylogenetic groups that correlated with the presence of exo-enzymes from type three secretion systems (TTSS). Protease IV concentrations produced by PAOΔlasRI mutants and the two clinical isolates with a lasRI gene deficiency were restored to levels comparable to strain PAO1 following complementation of the quorum-sensing gene deficiencies. The protease IV gene is highly conserved in P. aeruginosa clinical isolates that cause a range of adverse ocular events. Observed variations within the gene sequence appear to correlate with presence of specific TTSS genes. Protease IV expression was shown to be regulated by the Las quorum-sensing system. PMID:21921113

  11. Antibacterial activity of Lawsonia inermis Linn (Henna) against Pseudomonas aeruginosa

    PubMed Central

    Habbal, O; Hasson, SS; El-Hag, AH; Al-Mahrooqi, Z; Al-Hashmi, N; Al-Bimani, Z; Al-Balushi, MS; Al-Jabri, AA

    2011-01-01

    Objective To investigate the antibacterial activity of henna (Lawsonia inermis Linn) obtained from different regions of Oman against a wide array of micro-organisms. Methods Fresh henna samples were obtained from different regions of Oman as leaves and seeds. 100 g fresh and dry leaves and 50 g of fresh and dry seeds were separately soaked in 500 mL of ethanol for three days, respectively, with frequent agitation. The mixture was filtered, and the crude extract was collected. The crude extract was then heated, at 48 °C in a water bath to evaporate its liquid content. The dry crude henna extract was then tested for its antibacterial activity using well-diffusion antibiotic susceptibility technique. Henna extracts were investigated for their antibacterial activity at different concentrations against a wide array of different micro-organisms including a laboratory standard bacterial strain of Pseudomonas aeruginosa (NCTC 10662) (P. aeruginosa) and eleven fresh clinical isolates of P. aeruginosa obtained from patients attending the Sultan Qaboos University Hospital (SQUH). 2-Hydroxy-p-Nathoqinone-Tech (2-HPNT, MW=174.16, C10H6O3) was included as control (at 50% concentration) along with the henna samples tested. Results Henna samples demonstrated antibacterial activity against all isolates but the highest susceptibility was against P. aeruginosa with henna samples obtained from Al-sharqyia region. Conclusions Omani henna from Al-sharqyia region demonstrates high in vitro anti-P. aeruginosa activity compared with many henna samples from different regions of Oman. PMID:23569753

  12. Ferritin and ferrihydrite nanoparticles as iron sources for Pseudomonas aeruginosa

    PubMed Central

    Dehner, Carolyn; Morales-Soto, Nydia; Behera, Rabindra K.; Shrout, Joshua; Theil, Elizabeth C.; Maurice, Patricia A.

    2013-01-01

    Metabolism of iron derived from insoluble and/ or scarce sources is essential for pathogenic and environmental microbes. The ability of Pseudomonas aeruginosa to acquire iron from exogenous ferritin was assessed; ferritin is an iron-concentrating and antioxidant protein complex composed of a catalytic protein and caged ferrihydrite nanomineral synthesized from Fe(II) and O2 or H2O2. Ferritin and free ferrihydrite supported growth of P. aeruginosa with indistinguishable kinetics and final culture densities. The P. aeruginosa PAO1 mutant (ΔpvdDΔpchEF), which is incapable of siderophore production, grew as well as the wild type when ferritin was the iron source. Such data suggest that P. aeruginosa can acquire iron by siderophore-independent mechanisms, including secretion of small-molecule reductant(s). Protease inhibitors abolished the growth of the siderophore-free strain on ferritins, with only a small effect on growth of the wild type; predictably, protease inhibitors had no effect on growth with free ferrihydrite as the iron source. Proteolytic activity was higher with the siderophore-free strain, suggesting that the role of proteases in the degradation of ferritin is particularly important for iron acquisition in the absence of siderophores. The combined results demonstrate the importance of both free ferrihydrite, a natural environmental form of iron and a model for an insoluble form of partly denatured ferritin called hemosiderin, and caged ferritin iron minerals as bacterial iron sources. Ferritin is also revealed as a growth promoter of opportunistic, pathogenic bacteria such a P. aeruginosa in diseased tissues such as the cystic fibrotic lung, where ferritin concentrations are abnormally high. PMID:23417538

  13. Synergistic bactericidal effects of acrinol and tetracycline against Pseudomonas aeruginosa.

    PubMed

    Saji, M; Fujii, K; Ohkuni, H; Irie, N; Osono, E; Kato, F

    2000-06-01

    Combined treatment of acrinol (Ac) and tetracycline hydrochloride (Tc) against Pseudomonas aeruginosa strains isolated from clinical specimens synergistically increased the bactericidal effect. The minimum bactericidal concentration (MBC) of Ac against P. aeruginosa strain no. 985 was 200 microg/ml, while the MBC of Ac against strains no. 47 and no. 783 was above 800 microg/ml for each. The MBC of Tc was above 400 microg/ml against each of the tested strains. However, simultaneous treatment with 25 microg/ml Ac and 200 microg/ml Tc against P. aeruginosa strain no. 985 decreased the viable cell number from 107 cfu/ml to <10 cfu/ml within 24 h, while a higher concentration of Tc (400 microg/ml) with Ac (25 microg/ml) reduced the viable cell number to <10 cfu/ml within 8 h. A similar synergistic bactericidal effect of Ac and Tc was observed in strains no. 47 and no. 783 by treatment with 200 microg/ml Ac and 200 microg/ml or 400 microg/ml Tc. The degree of bactericidal effect against P. aeruginosa was proportional to the concentration of Tc under the condition of a constant concentration of Ac. Furthermore, Ac-treated cells of strain no. 47 were killed by a following Tc treatment, but cells pretreated with Tc did not show such a sensitivity to Ac. To induce the synergistic effect of Ac and Tc, Ac must be applied to P. aeruginosa before or at the same time as Tc. PMID:11810541

  14. Zingerone silences quorum sensing and attenuates virulence of Pseudomonas aeruginosa.

    PubMed

    Kumar, Lokender; Chhibber, Sanjay; Kumar, Rajnish; Kumar, Manoj; Harjai, Kusum

    2015-04-01

    Quorum sensing in Pseudomonas aeruginosa plays an imperative role in virulence factor, biofilm formation and antimicrobial resistance. Blocking quorum sensing pathways are viewed as viable anti-virulent therapy in association with traditional antimicrobial therapy. Anti-quorum sensing dietary phytochemicals with may prove to be a safe and viable choice as anti-virulent drug candidates. Previously, our lab proved zingerone as potent anti-biofilm agent hence; further its anti-virulent and anti-quorum activities were evaluated. Zingerone, besides decreasing swimming, swarming and twitching phenotypes of P. aeruginosa PAO1, reduced biofilm forming capacity and production of virulence factors including rhamnolipid, elastase, protease, pyocyanin, cell free and cell bound hemolysin (p<0.001) indicating anti-virulent property attributing towards attenuation of virulence of P. aeruginosa. Further zingerone not only had marked effect on the production of quorum sensing signal molecules by clinical isolates of P. aeruginosa but also showed significant interference with the activation of QS reporter strains. To study the mechanism of blocking quorum sensing cascade, in silico analysis was carried out. Anti-QS activity was attributed to interference with the ligand receptor interaction of zingerone with QS receptors (TraR, LasR, RhlR and PqsR). Zingerone showed a good comparative docking score to respective autoinducer molecules which was even higher than that of vanillin, a proven anti-quorum sensing phytochemical. The results of the present study revealed the anti-quorum sensing activity of zingerone targeting ligand-receptor interaction, hence proposing zingerone as a suitable anti-virulent drug candidate against P. aeruginosa infections. PMID:25704369

  15. Prevalence of multidrug resistant uropathogenic bacteria in pediatric patients of a tertiary care hospital in eastern India.

    PubMed

    Mishra, Monali P; Sarangi, Rachita; Padhy, Rabindra N

    2016-01-01

    Today, because systemic infections such as urinary tract infection (UTI) affect even pediatric patients, antibiotic resistant bacteria have become a constant clinical challenge. In the present study, a total of 1054 urine samples were collected from pediatric patients over 18 months. From these samples, 510 isolates of pathogenic bacteria were collected using HiCrome UTI agar. Antibiotic sensitivity tests of isolates were performed using the Kirby-Bauer method. Two Gram-positive bacteria (Enterococcus faecalis and Staphylococcus aureus) and 7 Gram-negative bacteria (Citrobacter freundii, Enterobacter aerogenes, Escherichia coli, Klebsiella oxytoca, K. pneumoniae, Proteus vulgaris and Pseudomonas aeruginosa) were isolated. Antibiograms of isolated bacteria were ascertained using antibiotics of 4 classes: aminoglycosides, β-lactams, fluoroquinolones and 2 stand-alones (co-trimoxazole and nitrofurantoin). Based on percent values of antibiotic resistance, isolated bacteria were (in decreasing order of number of isolated isolates): E. coli (109)>S. aureus (65)>E. faecalis (82)>E. aerogenes (64)>C. freundii (41)>P. aeruginosa (32)>K. pneumoniae (45)>K. oxytoca (50)>P. vulgaris (22). Surveillance results show that MDR isolates of 9 pathogenic bacteria were prevalent in the environment around the hospital. Thus, revisions to the antimicrobial stewardship program in this area of the country are required to increase clinician confidence in empiric therapy, which is often used for UTI cases. PMID:26617250

  16. Characterization of the plant growth promoting bacterium, Enterobacter cloacae MSR1, isolated from roots of non-nodulating Medicago sativa

    PubMed Central

    Khalifa, Ashraf Y.Z.; Alsyeeh, Abdel-Moneium; Almalki, Mohammed A.; Saleh, Farag A.

    2015-01-01

    The aim of the present study was to characterize the endophytic bacterial strain designated MSR1 that was isolated from inside the non-nodulating roots of Medicago sativa after surface-sterilization. MSR1 was identified as Enterobacter cloacae using both 16S rDNA gene sequence analysis and API20E biochemical identification system (Biomerieux, France). Furthermore, this bacterium was characterized using API50CH kit (Biomerieux, France) and tested for antibacterial activities against some food borne pathogens. The results showed that E. cloacae consumed certain carbohydrates such as glycerol, d-xylose, d-maltose and esculin melibiose as a sole carbon source and certain amino acids such as arginine, tryptophan ornithine as nitrogen source. Furthermore, MSR1 possessed multiple plant-growth promoting characteristics; phosphate solubility, production of phytohormones acetoin and bioactive compounds. Inoculation of Pisum sativum with MSR1 significantly improved the growth parameters (the length and dry weight) of this economically important grain legume compared to the non-treated plants. To our knowledge, this is the first report addressing E. cloacae which exist in roots of alfalfa growing in Al-Ahsaa region. The results confirmed that E. cloacae exhibited traits for plant growth promoting and could be developed as an eco-friendly biofertilizer for P. sativum and probably for other important plant species in future. PMID:26858542

  17. Optimization of 2,3-butanediol production by Enterobacter cloacae in simultaneous saccharification and fermentation of corncob residue.

    PubMed

    Zhang, Cui-Ying; Peng, Xiao-Pei; Li, Wei; Guo, Xue-Wu; Xiao, Dong-Guang

    2014-01-01

    Corncob residue, a waste in xylose or xylitol production, was utilized to produce 2,3-butanediol (2,3-BD) via simultaneous saccharification and fermentation (SSF). This study developed the optimal conditions for production of 2,3-BD by using a heat-resistant strain, Enterobacter cloacae UV4, to perform SSF of the corncob residue. Urea, lactic acid, sodium citrate, and MgSO4 , selected by the Plackett-Burman experiment, were determined to be significant independent variables to conduct the response surface experiment. With the optimized medium, a total production of 28.923 g/L for 2,3-BD and acetoin (BA) was obtained at 60 H. Furthermore, 43.162 g/L of BA production and 0.553 g/L/H of productivity were obtained by fed-batch SSF, which was 0.424 g diol/g consumed corncob residue. The results suggest that the waste corncob residue could be used as an available substrate for the production of 2,3-BD by E. cloacae UV4, as well as a potential resource to improve the economics of microbial compound production. PMID:24750278

  18. A robotic DNA purification protocol and real-time PCR for the detection of Enterobacter sakazakii in powdered infant formulae

    PubMed Central

    Derzelle, Sylviane; Dilasser, Françoise

    2006-01-01

    Background Enterobacter sakazakii is the causative agent of rare but severe food-borne infections associated with meningitis, necrotizing enterocolitis and sepsis in infants. Rehydrated powdered infant formulae have been implicated as the source of infection in several outbreaks and sporadic cases. In this work, a real time fluorescence resonance energy transfer PCR assay incorporating an internal amplification control (IAC) was developed for the specific detection of E. sakazakii in foods. Performance of the assay, coupled to an automated DNA extraction system and the E. sakazakii ISO-IDF (TS 22964/RM 210) enrichment procedure, was evaluated on infant formulae and samples from production environment. Results The real-time PCR assay had 100% specificity as assessed using 35 E. sakazakii and 184 non-E. sakazakii strains. According to the E. sakazakii strains tested, the detection limits ranged from 5 to 25 genomic copies. Assays on pure cultures (including real-time PCR and DNA extraction) gave a sensitivity of about 102 to 103 CFU/ml. Out of 41 naturally contaminated infant formulae and environmental samples analysed for the presence of E. sakazakii, 23 were positive by real-time PCR and 22 by the conventional culture method, giving 97.5% concordance with the ISO-IDF reference method. Conclusion This method, combining specific real-time PCR, automated DNA extraction and ISO-IDF standard enrichments, provides a useful tool for rapid screening of E. sakazakii in food and environmental matrices. PMID:17166252

  19. Dissemination of multiresistant Enterobacter cloacae isolates producing OXA-48 and CTX-M-15 in a Spanish hospital.

    PubMed

    Fernández, Javier; Montero, Ignacio; Martínez, Óscar; Fleites, Ana; Poirel, Laurent; Nordmann, Patrice; Rodicio, M Rosario

    2015-10-01

    Twenty-one multiresistant Enterobacter cloacae isolates producing OXA-48 (n=10), CTX-M-15 (n=7) or both (n=4) β-lactamases were detected in a Spanish hospital during a 1-year period (June 2013 to June 2014). The isolates were also resistant to non-β-lactam antimicrobials, further complicating the therapeutic options. Genotyping of the isolates identified two major clones (ST74 and ST66) that caused prolonged outbreaks in different buildings of the hospital as well as some sporadic isolates (ST78, ST45 and ST295). Isolates belonging to clone 1 (n=7) were carbapenem-resistant and carried the bla(OXA-48) gene on a conjugative IncL/M plasmid of ca. 65 kb. Clone 2 isolates (n=11) were resistant to cefepime and harboured the bla(CTX-M-15) gene on an ca. 150-kb, non-conjugative plasmid of the IncF group, co-harbouring the qnrB and aac(6')-Ib-cr genes encoding quinolone resistance. Four clone 2 isolates were also resistant to carbapenems owing to the co-production of OXA-48. Most of the isolates were recovered from critically ill patients and were admitted to intensive care units; a single patient was transferred from another Spanish hospital. Intrahospital and interhospital dissemination of multiresistant E. cloacae isolates is of major clinical concern as it could lead to endemic nosocomial situations. PMID:26307466

  20. Efficient 2,3-Butanediol Production from Cassava Powder by a Crop-Biomass-Utilizer, Enterobacter cloacae subsp. dissolvens SDM

    PubMed Central

    Ma, Cuiqing; Gao, Chao; Li, Lixiang; Wang, Yu; Tao, Fei; Xu, Ping

    2012-01-01

    Background 2,3-Butanediol (BD) is considered as one of the key platform chemicals used in a variety of industrial applications. It is crucial to find an efficient sugar-utilizing strain and feasible carbon source for the economical production of BD. Methodology/Principal Findings Efficient BD production by a newly isolated Enterobacter cloacae subsp. dissolvens SDM was studied using crop-biomass cassava powder as substrate. The culture conditions and fermentation medium for BD production were optimized. Under the optimal conditions, 78.3 g l−1 of BD was produced after 24 h in simultaneous saccharification and fermentation (SSF), with a yield of 0.42 g BD g−1 cassava powder and a specific productivity of 3.3 g l−1 h−1. A higher BD concentration (93.9 g l−1) was produced after 47 h in fed-batch SSF. Conclusions/Significance The results suggest that strain SDM is a good candidate for the BD production, and cassava powder could be used as an alternative substrate for the efficient production of BD. PMID:22792324

  1. Low-temperature-active and salt-tolerant β-mannanase from a newly isolated Enterobacter sp. strain N18.

    PubMed

    You, Jia; Liu, Jin-Feng; Yang, Shi-Zhong; Mu, Bo-Zhong

    2016-02-01

    A low-temperature-active and salt-tolerant β-mannanase produced by a novel mannanase-producer, Enterobacter sp. strain N18, was isolated, purified and then evaluated for its potential application as a gel-breaker in relation to viscosity reduction of guar-based hydraulic fracturing fluids used in oil field. The enzyme could lower the viscosity of guar gum solution by more than 95% within 10 min. The purified β-mannanase with molecular mass of 90 kDa displayed high activity in a broad range of pH and temperature: more than 70% of activity was retained in the pH range of 3.0-8.0 with the optimal pH 7.5, about 50% activity at 20°C with the optimal temperature 50°C. Furthermore, the enzyme retained >70% activity in the presence of 0.5-4.0 M NaCl. These properties implied that the enzyme from strain N18 had potential for serving as a gel-breaker for low temperature oil wells and other industrial fields, where chemical gel breakers were inactive due to low temperature. PMID:26168907

  2. Proteomic and biochemical basis for enhanced growth yield of Enterobacter sp. LCR1 on insoluble phosphate medium.

    PubMed

    Kumar, Arvind; Rai, Lal Chand

    2015-01-01

    Proteomics and biochemical analyses were used to unravel the basis for higher growth yield of Enterobacter sp. LCR1 on insoluble phosphate medium compared to soluble. Proteomic analysis using 2-DE, MALDI-TOF/MS and LC-MS revealed the involvement of nine proteins. Down-regulation of fructose bisphosphate aldolase with decreased concentrations of glucose-6-phosphate and fructose-6-phosphate indicated diminished glycolysis. However, up-regulation of phosphoglycerate mutase, increase in the activities of 6-phosphogluconate dehydratase, 2-keto-3-deoxy-6-phosphogluconate aldolase and 6-phosphogluconate dehydrogenase suggested induction of Entner-Doudoroff and pentose phosphate pathways. These pathways generate sufficient energy from gluconic acid, which is also used for biosynthesis as indicated by up-regulation of elongation factor Tu, elongation factor G and protein disulfide isomerase. Increased reactive oxygen species (ROS) formation resulting from organic acid oxidation leads to overexpressed manganese superoxide dismutase and increased activities of catalase and ascorbate peroxidase. Thus the organism uses gluconate instead of glucose for energy, while alleviating extra ROS formation by oxidative defense enzymes. PMID:25053519

  3. Enterobacter asburiae strain L1: complete genome and whole genome optical mapping analysis of a quorum sensing bacterium.

    PubMed

    Lau, Yin Yin; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    Enterobacter asburiae L1 is a quorum sensing bacterium isolated from lettuce leaves. In this study, for the first time, the complete genome of E. asburiae L1 was sequenced using the single molecule real time sequencer (PacBio RSII) and the whole genome sequence was verified by using optical genome mapping (OpGen) technology. In our previous study, E. asburiae L1 has been reported to produce AHLs, suggesting the possibility of virulence factor regulation which is quorum sensing dependent. This evoked our interest to study the genome of this bacterium and here we present the complete genome of E. asburiae L1, which carries the virulence factor gene virK, the N-acyl homoserine lactone-based QS transcriptional regulator gene luxR and the N-acyl homoserine lactone synthase gene which we firstly named easI. The availability of the whole genome sequence of E. asburiae L1 will pave the way for the study of the QS-mediated gene expression in this bacterium. Hence, the importance and functions of these signaling molecules can be further studied in the hope of elucidating the mechanisms of QS-regulation in E. asburiae. To the best of our knowledge, this is the first documentation of both a complete genome sequence and the establishment of the molecular basis of QS properties of E. asburiae. PMID:25196111

  4. Sulfonamide inhibition studies of the β-carbonic anhydrase from the newly discovered bacterium Enterobacter sp. B13.

    PubMed

    Eminoğlu, Ayşenur; Vullo, Daniela; Aşık, Aycan; Çolak, Dilşat Nigar; Çanakçı, Sabriye; Beldüz, Ali Osman; Supuran, Claudiu T

    2016-04-01

    The genome of the newly identified bacterium Enterobacter sp. B13 encodes for a β-class carbonic anhydrases (CAs, EC 4.2.1.1), EspCA. This enzyme was recently cloned, and characterized kinetically by this group (J. Enzyme Inhib. Med. Chem. 2016, 31). Here we report an inhibition study with sulfonamides and sulfamates of this enzyme. The best EspCA inhibitors were some sulfanylated sulfonamides with elongated molecules, metanilamide, 4-aminoalkyl-benzenesulfonamides, acetazolamide, and deacetylated methazolamide (KIs in the range of 58.7-96.5nM). Clinically used agents such as methazolamide, ethoxzolamide, dorzolamide, brinzolamide, benzolamide, zonisamide, sulthiame, sulpiride, topiramate and valdecoxib were slightly less effective inhibitors (KIs in the range of 103-138nM). Saccharin, celecoxib, dichlorophenamide and many simple benzenesulfonamides were even less effective as EspCA inhibitors, with KIs in the range of 384-938nM. Identification of effective inhibitors of this bacterial enzyme may lead to pharmacological tools useful for understanding the physiological role(s) of the β-class CAs in bacterial pathogenicity/virulence. PMID:26920803

  5. The curli biogenesis genes expression level is unassociated with Enterobacter cloacae hsp60 clusters and PFGE genotypes.

    PubMed

    Akbari, Majid; Bakhshi, Bita; Najar-Peerayeh, Shahin; Behmanesh, Mehrdad

    2016-09-01

    The objective of this study was to determine the correlation between Enterobacter cloacae complex subspecies and clusters involved in UTI infections and specific pulsotypes, and to assess the contribution of major curli biogenesis genes (csgD, csgA) expression level to pathogenesis of clusters and genotypes. Based on the PFGE analysis, 37 different profiles were observed among which 8 profiles were common types. Real time PCR of csgD and csgA genes of 50 E. cloacae complex in relation to PFGE and hsp60 genotypes showed that all the genetic clusters are not equally involved in pathogenesis of urinary tract infections. It was elucidated in this study that isolates with common PFGE genotypes belonged to identical hsp60 clusters, and the foremost clusters (VI, III, and V) mainly comprised within PFGE common types. In our study, no significant correlation was detected between the specific hsp60 clusters or PFGE genotypes and the expression level of csgD and csgA genes (P-value > 0.05). This is the first study describing that unequivalent contribution of E. cloacae genotypes and clusters in pathogenesis of UTI, is not owing to varied curli biogenesis expression potential. The PFGE genotyping showed more discriminatory power than hsp60 genotyping for epidemiological studies and source tracking purpose. PMID:27354208

  6. Enterobacter asburiae Strain L1: Complete Genome and Whole Genome Optical Mapping Analysis of a Quorum Sensing Bacterium

    PubMed Central

    Lau, Yin Yin; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    Enterobacter asburiae L1 is a quorum sensing bacterium isolated from lettuce leaves. In this study, for the first time, the complete genome of E. asburiae L1 was sequenced using the single molecule real time sequencer (PacBio RSII) and the whole genome sequence was verified by using optical genome mapping (OpGen) technology. In our previous study, E. asburiae L1 has been reported to produce AHLs, suggesting the possibility of virulence factor regulation which is quorum sensing dependent. This evoked our interest to study the genome of this bacterium and here we present the complete genome of E. asburiae L1, which carries the virulence factor gene virK, the N-acyl homoserine lactone-based QS transcriptional regulator gene luxR and the N-acyl homoserine lactone synthase gene which we firstly named easI. The availability of the whole genome sequence of E. asburiae L1 will pave the way for the study of the QS-mediated gene expression in this bacterium. Hence, the importance and functions of these signaling molecules can be further studied in the hope of elucidating the mechanisms of QS-regulation in E. asburiae. To the best of our knowledge, this is the first documentation of both a complete genome sequence and the establishment of the molecular basis of QS properties of E. asburiae. PMID:25196111

  7. Characterization of the plant growth promoting bacterium, Enterobacter cloacae MSR1, isolated from roots of non-nodulating Medicago sativa.

    PubMed

    Khalifa, Ashraf Y Z; Alsyeeh, Abdel-Moneium; Almalki, Mohammed A; Saleh, Farag A

    2016-01-01

    The aim of the present study was to characterize the endophytic bacterial strain designated MSR1 that was isolated from inside the non-nodulating roots of Medicago sativa after surface-sterilization. MSR1 was identified as Enterobacter cloacae using both 16S rDNA gene sequence analysis and API20E biochemical identification system (Biomerieux, France). Furthermore, this bacterium was characterized using API50CH kit (Biomerieux, France) and tested for antibacterial activities against some food borne pathogens. The results showed that E. cloacae consumed certain carbohydrates such as glycerol, d-xylose, d-maltose and esculin melibiose as a sole carbon source and certain amino acids such as arginine, tryptophan ornithine as nitrogen source. Furthermore, MSR1 possessed multiple plant-growth promoting characteristics; phosphate solubility, production of phytohormones acetoin and bioactive compounds. Inoculation of Pisum sativum with MSR1 significantly improved the growth parameters (the length and dry weight) of this economically important grain legume compared to the non-treated plants. To our knowledge, this is the first report addressing E. cloacae which exist in roots of alfalfa growing in Al-Ahsaa region. The results confirmed that E. cloacae exhibited traits for plant growth promoting and could be developed as an eco-friendly biofertilizer for P. sativum and probably for other important plant species in future. PMID:26858542

  8. Isolation and Identification Enterobacter asburiae from Consumed Powdered Infant Formula Milk (PIF) in the Neonatal Intensive Care Unit (NICU).

    PubMed

    Mardaneh, Jalal; Soltan Dallal, Mohammad Mehdi

    2016-01-01

    Enterobacter asburiae (E. asburiae) is a facultative anaerobic, non-spore-forming gram-negative rod-shaped bacterium belonging to the family of Enterobacteriaceae. It is an opportunistic pathogen that its strains are isolated from a variety of clinical and environmental specimens. Since powdered infant formula milk (PIF) is not a sterile product, it is an excellent medium for bacterial growth. The aim of this study was to isolate and identify E. asburiae from PIF in the neonatal intensive care unit (NICU) and determine antimicrobial susceptibility patterns of this bacterium. A total 125 PIF samples were purchased from drug stores between June 2011 to March 2012. E. asburiae was isolated according to FDA method. For final confirmation, biochemical tests embedded in the API-20E system were used. The drug susceptibility test was performed using the disc diffusion method according to CLSI recommendations. Out of the 125 PIF samples investigated, 2 (1.6%) samples were positive for E. asburiae. All isolated strains were uniformly susceptible to aztreonam, cefotaxim, amikacin, streptomycin, nalidixic acid, meropenem, tetracycline, ceftazidime, and colistin. Variable susceptibility was seen to the some antimicrobial agents tested. Each country should categorize its own designed guidelines for the preparation and handling of PIF adapted to the local environment. Moreover, the pathogenesis of the E. asburiae in infants hospitalized in NICU and other groups such as immunosuppressed patients and HIV infected individuals is uncertain and requires further study. PMID:26853289

  9. Genetic and Biochemical Characterization of FRI-1, a Carbapenem-Hydrolyzing Class A β-Lactamase from Enterobacter cloacae

    PubMed Central

    Dortet, Laurent; Poirel, Laurent; Abbas, Samia; Oueslati, Saoussen

    2015-01-01

    An Enterobacter cloacae isolate was recovered from a rectal swab from a patient hospitalized in France with previous travel to Switzerland. It was resistant to penicillins, narrow- and broad-spectrum cephalosporins, aztreonam, and carbapenems but remained susceptible to expanded-spectrum cephalosporins. Whereas PCR-based identification of the most common carbapenemase genes failed, the biochemical Carba NP test II identified an Ambler class A carbapenemase. Cloning experiments followed by sequencing identified a gene encoding a totally novel class A carbapenemase, FRI-1, sharing 51 to 55% amino acid sequence identity with the closest carbapenemase sequences. However, it shared conserved residues as a source of carbapenemase activity. Purified β-lactamase FRI-1 hydrolyzed penicillins, aztreonam, and carbapenems but spared expanded-spectrum cephalosporins. The 50% inhibitory concentrations (IC50s) of clavulanic acid and tazobactam were 10-fold higher than those found for Klebsiella pneumoniae carbapenemase (KPC), IMI, and SME, leading to lower sensitivity of FRI-1 activity to β-lactamase inhibitors. The blaFRI-1 gene was located on a ca. 110-kb untypeable, transferable, and non-self-conjugative plasmid. A putative LysR family regulator-encoding gene at the 5′ end of the β-lactamase gene was identified, leading to inducible expression of the blaFRI-1 gene. PMID:26392482

  10. Effect of antimicrobial peptides on colistin-susceptible and colistin-resistant strains of Klebsiella pneumoniae and Enterobacter asburiae.

    PubMed

    Kádár, Béla; Kocsis, Béla; Kristof, Katalin; Tóth, Ákos; Szabó, Dóra

    2015-12-01

    In this study susceptibility to different antimicrobial peptides was investigated on colistin-susceptible and colistin-resistant identical pulsotype strains of KPC-2 producing Klebsiella pneumoniae ST258 as well as colistin-susceptible and colistin-resistant Enterobacter asburiae strains isolated from clinical samples. In our test, bacteria were exposed to 50 mg/ml lactoferrin, lysozyme and protamine - cationic antimicrobial peptides belonging to innate immune system and having structural similarity to polymyxins - in separate reactions. After 18 hours incubation of colonies were counted. 40% of colistin-resistant K. pneumoniae strains and 97% of colistin-susceptible counterpart strains were lysed by protamine whereas 87% and 100% colony forming unit decrease by lysozyme was seen, respectively. In the case of colistin-resistant E. asburiae strains 1 log10 cell count increase were observed after treatment with lysozyme and 1.56 log10 after lactoferrin exposure compared to the initial number whereas the colistin-susceptible showed no relevant cell count increase. Our findings suggest that acquired colistin-resistance in Enterobacteriaceae is associated with tolerance against antimicrobial peptides. PMID:26689883

  11. Genetic and Biochemical Characterization of FRI-1, a Carbapenem-Hydrolyzing Class A β-Lactamase from Enterobacter cloacae.

    PubMed

    Dortet, Laurent; Poirel, Laurent; Abbas, Samia; Oueslati, Saoussen; Nordmann, Patrice

    2015-12-01

    An Enterobacter cloacae isolate was recovered from a rectal swab from a patient hospitalized in France with previous travel to Switzerland. It was resistant to penicillins, narrow- and broad-spectrum cephalosporins, aztreonam, and carbapenems but remained susceptible to expanded-spectrum cephalosporins. Whereas PCR-based identification of the most common carbapenemase genes failed, the biochemical Carba NP test II identified an Ambler class A carbapenemase. Cloning experiments followed by sequencing identified a gene encoding a totally novel class A carbapenemase, FRI-1, sharing 51 to 55% amino acid sequence identity with the closest carbapenemase sequences. However, it shared conserved residues as a source of carbapenemase activity. Purified β-lactamase FRI-1 hydrolyzed penicillins, aztreonam, and carbapenems but spared expanded-spectrum cephalosporins. The 50% inhibitory concentrations (IC50s) of clavulanic acid and tazobactam were 10-fold higher than those found for Klebsiella pneumoniae carbapenemase (KPC), IMI, and SME, leading to lower sensitivity of FRI-1 activity to β-lactamase inhibitors. The blaFRI-1 gene was located on a ca. 110-kb untypeable, transferable, and non-self-conjugative plasmid. A putative LysR family regulator-encoding gene at the 5' end of the β-lactamase gene was identified, leading to inducible expression of the blaFRI-1 gene. PMID:26392482

  12. [Enterobacter agglomerans B1 producing beta-galactosidase with transglycosylation activity: screening, identification, fermentation conditions, and galacto-oligosaccharides synthesis].

    PubMed

    Lu, Lili; Xiao, Min; Xu, Xiaodong

    2008-01-01

    Galacto-oligosaccharides (GOS) are promising non-digestible oligosaccharides recognized as prebiotics. Commercial GOS containing galactose as subunit, are synthesized from lactose using the galactosyl-transferase activity of beta-galactosidase. A strain producing beta-galactosidase with transglycosylation activity was screened from the soil. Phenotypic analysis including morphology and physiology characteristics and 16S rDNA sequence analysis were carried out. Based on taxonomy results, the strain was identified as Enterobacter agglomerans B1. Medium and fermentation conditions were optimized by single factor and orthogonal experiments. The enzyme reached 9.7 U/mL in the medium (pH 7.5) containing 1% lactose, 1% yeast extract, and 0.5% peptone when cultured at 25 degrees C for 26 h. Effects of pH, temperature, lactose concentration, and reaction time on transgalactosylation by whole cells were studied. Yield of GOS reached 40.7% in 30% lactose (pH 7.5) at 50 degrees C for 12 h, as analyzed by HPLC and TLC. The results of an MS analysis showed that GOS were composed of di, tri-, and tetrasaccharides. PMID:18338574

  13. Interaction between plants and bacteria: glucosinolates and phyllospheric colonization of cruciferous vegetables by Enterobacter radicincitans DSM 16656.

    PubMed

    Schreiner, Monika; Krumbein, Angelika; Ruppel, Silke

    2009-01-01

    For determining interactive plant-bacterial effects between glucosinolates and phyllospheric colonization by a plant growth-promoting strain, Enterobacter radicincitans DSM 16656, in cruciferous vegetables, the extent of bacterial colonization was assessed in 5 cruciferous vegetables (Brassica juncea, Brassica campestris, Brassica oleracea var. capitata, Brassica rapa var. alboglabra, Nasturtium officinale) using a species-specific TaqMan probe and quantitative real-time PCR. Colonization ability of inoculated E. radicincitans in the phyllosphere of these species varied from inability to colonize B. rapa up to a very good colonization rate of B. campestris. In addition to morphological factors and other plant compounds, the colonization rate was affected by different individual aromatic and aliphatic glucosinolates and their concentration, revealing that both plant pathogens and plant growth-promoting bacteria were affected by glucosinolates in their colonization behavior. In contrast, after E. radicincitans inoculation neither the total nor the individual glucosinolate concentrations in the phyllosphere of the 5 cruciferous species were affected, indicating that the nonpathogenic E. radicincitans might cause only poor cell damage by metabolizing plant cell components and does not induce a plant defense response and thus subsequently an increased glucosinolate concentration in the phyllosphere. Moreover, E. radicincitans induced no stimulation of indole glucosinolate biosynthesis by additional bacterial auxin supply. PMID:19556746

  14. Structural Basis of Enzymatic Activity for the Ferulic Acid Decarboxylase (FADase) from Enterobacter sp. Px6-4

    PubMed Central

    Liang, Lianming; Sun, Yuna; Huang, Jingwen; Li, Xuemei; Cao, Yi; Meng, Zhaohui; Zhang, Ke-Qin

    2011-01-01

    Microbial ferulic acid decarboxylase (FADase) catalyzes the transformation of ferulic acid to 4-hydroxy-3-methoxystyrene (4-vinylguaiacol) via non-oxidative decarboxylation. Here we report the crystal structures of the Enterobacter sp. Px6-4 FADase and the enzyme in complex with substrate analogues. Our analyses revealed that FADase possessed a half-opened bottom β-barrel with the catalytic pocket located between the middle of the core β-barrel and the helical bottom. Its structure shared a high degree of similarity with members of the phenolic acid decarboxylase (PAD) superfamily. Structural analysis revealed that FADase catalyzed reactions by an “open-closed” mechanism involving a pocket of 8×8×15 Å dimension on the surface of the enzyme. The active pocket could directly contact the solvent and allow the substrate to enter when induced by substrate analogues. Site-directed mutagenesis showed that the E134A mutation decreased the enzyme activity by more than 60%, and Y21A and Y27A mutations abolished the enzyme activity completely. The combined structural and mutagenesis results suggest that during decarboxylation of ferulic acid by FADase, Trp25 and Tyr27 are required for the entering and proper orientation of the substrate while Glu134 and Asn23 participate in proton transfer. PMID:21283705

  15. Hydrolysis of 4-Hydroxybenzoic Acid Esters (Parabens) and Their Aerobic Transformation into Phenol by the Resistant Enterobacter cloacae Strain EM

    PubMed Central

    Valkova, Nelly; Lépine, François; Valeanu, Loredana; Dupont, Maryse; Labrie, Louisette; Bisaillon, Jean-Guy; Beaudet, Réjean; Shareck, François; Villemur, Richard

    2001-01-01

    Enterobacter cloacae strain EM was isolated from a commercial dietary mineral supplement stabilized by a mixture of methylparaben and propylparaben. It harbored a high-molecular-weight plasmid and was resistant to high concentrations of parabens. Strain EM was able to grow in liquid media containing similar amounts of parabens as found in the mineral supplement (1,700 and 180 mg of methyl and propylparaben, respectively, per liter or 11.2 and 1.0 mM) and in very high concentrations of methylparaben (3,000 mg liter−1, or 19.7 mM). This strain was able to hydrolyze approximately 500 mg of methyl-, ethyl-, or propylparaben liter−1 (3 mM) in less than 2 h in liquid culture, and the supernatant of a sonicated culture, after a 30-fold dilution, was able to hydrolyze 1,000 mg of methylparaben liter−1 (6.6 mM) in 15 min. The first step of paraben degradation was the hydrolysis of the ester bond to produce 4-hydroxybenzoic acid, followed by a decarboxylation step to produce phenol under aerobic conditions. The transformation of 4-hydroxybenzoic acid into phenol was stoichiometric. The conversion of approximately 500 mg of parabens liter−1 (3 mM) to phenol in liquid culture was completed within 5 h without significant hindrance to the growth of strain EM, while higher concentrations of parabens partially inhibited its growth. PMID:11375144

  16. Production of calcite nanocrystal by a urease-positive strain of enterobacter ludwigii and study of its structure by SEM.

    PubMed

    Ghashghaei, Sara; Emtiazi, Giti

    2013-10-01

    The present research aimed at evaluating the effects of urease enzyme and increasing pH on calcite nanocrystal formation. Unlike some researches, the results showed that CaCO3 precipitation is not a general phenomenon among the bacteria and if a bacterium has not this ability, it will not be able to produce calcite even with an increase in pH. All urease-positive bacteria had this ability, while only some urease-negative bacteria were able to produce calcite. Production and characterization of nanocrystals on precipitating medium were shown primarily by light microscopy and then confirmed by X-ray diffraction (XRD) analysis. Crystallite particle size was determined using Scherrer formula that was sub-100-nm in all samples. Based on qualitative and quantitative studies, strain C8 was selected as the best calcite-producing strain. Phylogenetic analysis indicated that this isolate has 99 % similarity with Enterobacter ludwigii. 16S rRNA sequence of isolate was deposited in GenBank with accession number JX666242. The morphology and exact composition of nanocrystalline particles were determined using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). According to data obtained by SEM, we suggest that nanocrystals of CaCO3 adhere to bacteria and each other to form small aggregates and then complex crystalline networks to trap bacteria. Many holes are present in these crystalline networks that seem to be due to the aggregation of nanocrystals. PMID:23677144

  17. Complete genome sequence of Enterobacter sp. IIT-BT 08: A potential microbial strain for high rate hydrogen production

    PubMed Central

    Khanna, Namita; Ghosh, Ananta Kumar; Huntemann, Marcel; Deshpande, Shweta; Han, James; Chen, Amy; Kyrpides, Nikos; Mavrommatis, Kostas; Szeto, Ernest; Markowitz, Victor; Ivanova, Natalia; Pagani, Ioanna; Pati, Amrita; Pitluck, Sam; Nolan, Matt; Woyke, Tanja; Teshima, Hazuki; Chertkov, Olga; Daligault, Hajnalka; Davenport, Karen; Gu, Wei; Munk, Christine; Zhang, Xiaojing; Bruce, David; Detter, Chris; Xu, Yan; Quintana, Beverly; Reitenga, Krista; Kunde, Yulia; Green, Lance; Erkkila, Tracy; Han, Cliff; Brambilla, Evelyne-Marie; Lang, Elke; Klenk, Hans-Peter; Goodwin, Lynne; Chain, Patrick; Das, Debabrata

    2013-01-01

    Enterobacter sp. IIT-BT 08 belongs to Phylum: Proteobacteria, Class: Gammaproteobacteria, Order: Enterobacteriales, Family: Enterobacteriaceae. The organism was isolated from the leaves of a local plant near the Kharagpur railway station, Kharagpur, West Bengal, India. It has been extensively studied for fermentative hydrogen production because of its high hydrogen yield. For further enhancement of hydrogen production by strain development, complete genome sequence analysis was carried out. Sequence analysis revealed that the genome was linear, 4.67 Mbp long and had a GC content of 56.01%. The genome properties encode 4,393 protein-coding and 179 RNA genes. Additionally, a putative pathway of hydrogen production was suggested based on the presence of formate hydrogen lyase complex and other related genes identified in the genome. Thus, in the present study we describe the specific properties of the organism and the generation, annotation and analysis of its genome sequence as well as discuss the putative pathway of hydrogen production by this organism. PMID:24976892

  18. Study on biodegradation of Mazut by newly isolated strain Enterobacter cloacae BBRC10061: improving and kinetic investigation

    PubMed Central

    2013-01-01

    Mazut as a source content of various hydrocarbons is hard to be degraded and its cracking could turn mazut into useful materials. Nevertheless degradation of mazut by routine methods is too expensive but application of indigenous microorganisms as biocatalysts could be effective and important to lower the costs and expand its consumption. Mazut biodegradation can be improved using various strategies; Therefore in this study newly isolated strain Enterobacter cloacae BBRC 10061 was used in a method of gradual addition of mazut into medium and its results were compared with simple addition method. To investigate degradation of mazut by BBRC 10061, influence of increase of mazut concentration was assayed based on gradual addition method. Also different kinetic models were used to evaluate kinetics of the process. Results showed that gradual addition method has been a beneficial technique for improvement of mazut degradation because bacterial induction to produce biosurfactant and essential enzymes for cracking mazut was higher during process. Although addition of more mazut increased the rate of biodegradation but percentage of degradation decreased. pH of medium decreased during biodegradation period while electric potential increased. Also the biodegradation kinetics was not fitted with the biokinetic models; therefore kinetics of biodegradation of mazut has to be studied by new models. PMID:23369455

  19. Glycan involvement in the adhesion of Pseudomonas aeruginosa to tears.

    PubMed

    Kautto, Liisa; Nguyen-Khuong, Terry; Everest-Dass, Arun; Leong, Andrea; Zhao, Zhenjun; Willcox, Mark D P; Packer, Nicolle H; Peterson, Robyn

    2016-04-01

    The human eye is constantly bathed by tears, which protect the ocular surface via a variety of mechanisms. The O-linked glycans of tear mucins have long been considered to play a role in binding to pathogens and facilitating their removal in the tear flow. Other conjugated glycans in tears could similarly contribute to pathogen binding and removal but have received less attention. In the work presented here we assessed the contribution of glycan moieties, in particular the protein attached N-glycans, presented by the broad complement of tear proteins to the adhesion of the opportunistic pathogen Pseudomonas aeruginosa, a leading cause of microbial keratitis and ulceration of the cornea. Our adhesion assay involved immobilising the macromolecular components of tears into the wells of a polyvinyl difluoride (PVDF) microtitre filter plate and probing the binding of fluorescently labelled bacteria. Three P. aeruginosa strains were studied: a cytotoxic strain (6206) and an invasive strain (6294) from eye infections, and an invasive strain (320) from a urinary tract infection (UTI). The ocular isolates adhered two to three times more to human tears than to human saliva or porcine gastric mucin, suggesting ocular niche-specific adaptation. Support for the role of the N-glycans carried by human tear proteins in the binding and removal of P. aeruginosa from the eye was shown by: 1) pre-incubation of the bacteria with free component sugars, galactose, mannose, fucose and sialyl lactose (or combination thereof) inhibiting adhesion of all the P. aeruginosa strains to the immobilised tear proteins, with the greatest inhibition of binding of the ocular cytotoxic 6206 and least for the invasive 6294 strain; 2) pre-incubation of the bacteria with N-glycans released from the commercially available human milk lactoferrin, an abundant protein that carries N-linked glycans in tears, inhibiting the adhesion to tears of the ocular bacteria by up to 70%, which was significantly more

  20. Flagellation of Pseudomonas aeruginosa in newly divided cells

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Lee, Calvin; Anda, Jaime; Wong, Gerard

    2015-03-01

    For monotrichous bacteria, Pseudomonas aeruginosa, after cell division, one daughter cell inherits the old flagellum from its mother cell, and the other grows a new flagellum during or after cell division. It had been shown that the new flagellum grows at the distal pole of the dividing cell when the two daughter cells haven't completely separated. However, for those daughter cells who grow new flagella after division, it still remains unknown at which pole the new flagellum will grow. Here, by combining our newly developed bacteria family tree tracking techniques with genetic manipulation method, we showed that for the daughter cell who did not inherit the old flagellum, a new flagellum has about 90% chances to grow at the newly formed pole. We proposed a model for flagellation of P. aeruginosa.

  1. Is levofloxacin as active as ciprofloxacin against Pseudomonas aeruginosa?

    PubMed

    Bonfiglio, G

    2001-01-01

    The in vitro activity of levofloxacin against 300 Pseudomonas aeruginosa isolated from hospitalized patients, with the exception of those recovered in intensive care or hematology units, was compared to ofloxacin, ciprofloxacin, piperacillin, amikacin, ceftazidime and imipenem. Imipenem showed the best activity (81.6%), followed by piperacillin (80.7%). The activity of levofloxacin was equal to that of ciprofloxacin (75.3%) but was more active than ofloxacin (58.1%). Moreover, the MIC values of levofloxacin did not show any statistical difference using two different inocula. Levofloxacin shows an excellent bactericidal activity being generally within one doubling dilution of the MIC. These results were also confirmed by the time-killing studies. In conclusion, according to the in vitro activity, levofloxacin could be considered a good option for the treatment of infections sustained by Pseudomonas aeruginosa, and clinical experiments are required to corroborate our in vitro data. PMID:11399859

  2. Structure of a putative acetyltransferase (PA1377) from Pseudomonas aeruginosa

    SciTech Connect

    Davies, Anna M.; Tata, Renée; Chauviac, François-Xavier; Sutton, Brian J.; Brown, Paul R.

    2008-05-01

    The crystal structure of an acetyltransferase encoded by the gene PA1377 from Pseudomonas aeruginosa has been determined at 2.25 Å resolution. Comparison with a related acetyltransferase revealed a structural difference in the active site that was taken to reflect a difference in substrate binding and/or specificity between the two enzymes. Gene PA1377 from Pseudomonas aeruginosa encodes a 177-amino-acid conserved hypothetical protein of unknown function. The structure of this protein (termed pitax) has been solved in space group I222 to 2.25 Å resolution. Pitax belongs to the GCN5-related N-acetyltransferase family and contains all four sequence motifs conserved among family members. The β-strand structure in one of these motifs (motif A) is disrupted, which is believed to affect binding of the substrate that accepts the acetyl group from acetyl-CoA.

  3. Novel Strategies for the Treatment of Pseudomonas aeruginosa Infections.

    PubMed

    Wagner, Stefanie; Sommer, Roman; Hinsberger, Stefan; Lu, Cenbin; Hartmann, Rolf W; Empting, Martin; Titz, Alexander

    2016-07-14

    Infections with Pseudomonas aeruginosa have become a concerning threat in hospital-acquired infections and for cystic fibrosis patients. The major problem leading to high mortality lies in the appearance of drug-resistant strains. Therefore, a vast number of approaches to develop novel anti-infectives is currently pursued. These diverse strategies span from killing (new antibiotics) to disarming (antivirulence) the pathogen. Particular emphasis lies on the development of compounds that inhibit biofilms formed in chronic infections to restore susceptibility toward antibiotics. Numerous promising results are summarized in this perspective. Antibiotics with a novel mode of action will be needed to avoid cross resistance against currently used therapeutic agents. Importantly, antivirulence drugs are expected to yield a significantly reduced rate of resistance development. Most developments are still far from the application. It can however be expected that combination therapies, also containing antivirulence agents, will pave the way toward novel treatment options against P. aeruginosa. PMID:26804741

  4. Biofilm Matrix and Its Regulation in Pseudomonas aeruginosa

    PubMed Central

    Wei, Qing; Ma, Luyan Z.

    2013-01-01

    Biofilms are communities of microorganisms embedded in extracellular polymeric substances (EPS) matrix. Bacteria in biofilms demonstrate distinct features from their free-living planktonic counterparts, such as different physiology and high resistance to immune system and antibiotics that render biofilm a source of chronic and persistent infections. A deeper understanding of biofilms will ultimately provide insights into the development of alternative treatment for biofilm infections. The opportunistic pathogen Pseudomonas aeruginosa, a model bacterium for biofilm research, is notorious for its ability to cause chronic infections by its high level of drug resistance involving the formation of biofilms. In this review, we summarize recent advances in biofilm formation, focusing on the biofilm matrix and its regulation in P. aeruginosa, aiming to provide resources for the understanding and control of bacterial biofilms. PMID:24145749

  5. Activity of Chitosans in combination with antibiotics in Pseudomonas aeruginosa

    PubMed Central

    Tin, San; Sakharkar, Kishore R.; Lim, Chu Sing; Sakharkar, Meena K.

    2009-01-01

    Chitosan and its derivative water soluble Chitosan oligosaccharide are used in a variety of applications in pharmaceutical preparations. In this study, 2 wild (ATCC 15729 and PAO1) and 2 mutant strains (PT121 and PT149) of P. aeruginosa are investigated for drug-drug interactions in vitro. 10 antimicrobial agents (antibiotics) are combined with different degree of deacetylated Chitosans and Chitosan oligosaccharide. All the chitosans show synergistic activity with sulfamethoxazole, a sulfonamide antimicrobial agent. It is interesting to observe that the MIC value for the MexEF-OprN overexpressing mutant strain of P. aeruginosa is 5 fold higher than the other strains under investigation suggesting a possible role of this efflux pump in Sulfamethoxazole efflux. The findings suggest on the use of chitosans as enhancing agent in combination with antibiotics in pharmaceutical preparations. PMID:19173037

  6. Fatty Acids Synthesized from Hexadecane by Pseudomonas aeruginosa

    PubMed Central

    Romero, Ethel M.; Brenner, Rodolfo R.

    1966-01-01

    Romero, Ethel M. (Universidad Nacional de la Plata, La Plata, Argentina), and Rodolfo M. Brenner. Fatty acids synthesized from hexadecane by Pseudomonas aeruginosa. J. Bacteriol. 91:183–188. 1966.—The lipids extracted from Pseudomonas aeruginosa incubated with hexadecane in a mineral medium were separated into a nonpolar and three polar fractions by thin-layer chromatography. The fatty acid composition of the four cellular fractions and that of the lipids excreted into the medium was studied by gas-liquid chromatography. Saturated fatty acids with 14 to 22 carbons were recognized, together with monoenoic, dienoic, and hydroxylated acids. Hydroxylated fatty acids were principally found in two polar fractions containing rhamnose and glucose; the other polar fraction, containing serine, alanine, ethanolamine, and leucine, was richer in monoenoic fatty acids. Octadecadienoic acid was found in the neutral fraction. PMID:4955247

  7. Morphogenetic expression of Bacteroides nodosus fimbriae in Pseudomonas aeruginosa.

    PubMed Central

    Mattick, J S; Bills, M M; Anderson, B J; Dalrymple, B; Mott, M R; Egerton, J R

    1987-01-01

    Type 4 fimbriae are found in a range of pathogenic bacteria, including Bacteroides nodosus, Moraxella bovis, Neisseria gonorrhoeae, and Pseudomonas aeruginosa. The structural subunits of these fimbriae all contain a highly conserved hydrophobic amino-terminal sequence preceding a variable hydrophilic carboxy-terminal region. We show here that recombinant P. aeruginosa cells containing the B. nodosus fimbrial subunit gene under the control of a strong promoter (pL, from bacteriophage lambda) produced large amounts of fimbriae that were structurally and antigenically indistinguishable from those produced by B. nodosus. This was demonstrated by fimbrial isolation and purification, electrophoretic and Western transfer analyses, and immunogold labeling and electron microscopy. These results suggest that type 4 fimbriated bacteria use a common mechanism for fimbrial assembly and that the structural subunits are interchangeable, thereby providing a basis for the development of multivalent vaccines. Images PMID:2878919

  8. Chlorinated phenol-induced physiological antibiotic resistance in Pseudomonas aeruginosa.

    PubMed

    Muller, Jocelyn Fraga; Ghosh, Sudeshna; Ikuma, Kaoru; Stevens, Ann M; Love, Nancy G

    2015-11-01

    Pseudomonas aeruginosa is a ubiquitous environmental bacterium and an opportunistic pathogen with the ability to rapidly develop multidrug resistance under selective pressure. Previous work demonstrated that upon exposure to the environmental contaminant pentachlorophenol (PCP), P. aeruginosa PAO1 increases expression of multiple multidrug efflux pumps, including the MexAB-OprM pump. The current study describes increases in the antibiotic resistance of PAO1 upon exposure to PCP and other chlorinated organics, including triclosan. Only exposure to chlorinated phenols induced the mexAB-oprM-mediated antibiotic-resistant phenotype. Thus, chlorinated phenols have the potential to contribute to transient phenotypic increases of antibiotic resistance that are relevant when both compounds are present in the environment. PMID:26403431

  9. Biosurfactants production by Pseudomonas aeruginosa FR using palm oil.

    PubMed

    Oliveira, Fernando J S; Vazquez, Leonardo; De Campos, Norberto P; de França, Francisca P

    2006-03-01

    Biosurfactants production by a strain of Pseudomonas aeruginosa using palm oil as a sole carbon source was investigated. The experiments were carried out in 500-mL conical flasks containing 100 mL of mineral media supplemented with palm oil as the sole carbon source. The P. aeruginosa FR strain was able to reduce surface tension of three tested inorganic media. Rotation velocities from 100 to 150 rpm provided free-cell fermented media with the lowest surface tension of approx 33 mN/m. Emulsification index results of even 100% were achieved when diesel was used as oil phase. Eight surface-active compounds produced by the bacterium were identified by mass spectrometry. PMID:18563649

  10. Mass Spectrometry Analysis of Pseudomonas aeruginosa Treated with Azithromycin

    NASA Astrophysics Data System (ADS)

    Phelan, Vanessa V.; Fang, Jinshu; Dorrestein, Pieter C.

    2015-06-01

    In microbiology, changes in specialized metabolite production (cell-to-cell signaling metabolites, virulence factors, and natural products) are measured using phenotypic assays. However, advances in mass spectrometry-based techniques including imaging mass spectrometry (IMS) now allow researchers to directly visualize the production of specialized metabolites from microbial colony biofilms. In this study, a combination of IMS and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to visualize the effect of the macrolide antibiotic azithromycin (AZM) on colony biofilms of Pseudomonas aeruginosa. Although previous research suggested that AZM may inhibit cell-to-cell signaling of P. aeruginosa and thereby reduce pathogenicity, we observed no clear decrease in specialized metabolite production.

  11. The Psl economy in early P. aeruginosa biofilm development

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Tseng, Boo Shan; Jin, Fan; Gibiansky, Max; Harrison, Joe; Parsek, Matthew; Wong, Gerard

    2012-02-01

    Psl from P. aeruginosa (PAO1) is a mannose- and galactose-rich exopolysaccharide (EPS). It has been shown that Psl plays an important role in bacterial surface adhesion. Here, we examine role of Psl in controlling motility and microcolony formation during early biofilm development, by translating video microscopy movies into searchable databases of bacterial trajectories. We use a massively-parallel cell tracking algorithm to extract the full motility history of every cell in a large community. We find that at early stages of growth, P. aeruginosa motility is guided by Psl and self-organize in a manner analogous to a capitalist economic system, resulting in a power law bacterial distribution where a small number of bacteria are extremely ``rich'' in communally produced Psl. By comparing overproducers and underproducers of Psl, we find that local Psl levels determine post-division cell fates: High local Psl levels drive the formation of sessile microcolonies that grow exponentially.

  12. Mass Spectrometry Analysis of Pseudomonas aeruginosa Treated With Azithromycin

    PubMed Central

    Phelan, Vanessa V.; Fang, Jinshu; Dorrestein, Pieter C.

    2015-01-01

    In microbiology, changes in specialized metabolite production (cell-to-cell signaling metabolites, virulence factors and natural products) are measured using phenotypic assays. However, advances in mass spectrometry based techniques including imaging mass spectrometry (IMS) now allow researchers to directly visualize the production of specialized metabolites from microbial colony biofilms. In this study, a combination of IMS and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to visualize the effect of the macrolide antibiotic azithromycin (AZM) on colony biofilms of Pseudomonas aeruginosa. While previous research suggested that AZM may inhibit cell-to-cell signaling of P. aeruginosa and thereby reducing pathogenicity, we observed no clear decrease in specialized metabolite production. PMID:25801585

  13. Necrotizing stomatitis: report of 3 Pseudomonas aeruginosa-positive patients.

    PubMed

    Barasch, Andrei; Gordon, Sara; Geist, Rose Y; Geist, James R

    2003-08-01

    Necrotizing oral lesions have been described in immunosuppressed patients, usually in association with gingival and periodontal pathoses. The etiology of these lesions has not been completely elucidated. We present 3 patients with a type of necrotizing stomatitis in which clinical patterns appear distinct from the periodontal forms of the disease. The lesions yielded bacterial cultures positive for Pseudomonas aeruginosa and reverted to no growth in 2 patients after proper antibiotic therapy. We propose that P aeruginosa may be responsible for selected necrotizing oral lesions with a clinical presentation lacking typical necrotizing periodontal disease and that this condition may represent the intraoral counterpart of ecthyma gangrenosum. In such cases, bacterial culture of the lesion becomes imperative because the disease does not respond to typical periodontal and antimicrobial therapy. PMID:12931084

  14. Membrane proteomes of Pseudomonas aeruginosa and Acinetobacter baumannii.

    PubMed

    Dé, E; Cosette, P; Coquet, L; Siroy, A; Alexandre, S; Duncan, A; Naudin, B; Rihouey, C; Schaumann, A; Junter, G A; Jouenne, T

    2011-12-01

    Acinetobacter baumannii and Pseudomonas aeruginosa are known for their intrinsic resistance to antibiotics. Between mechanisms involved in this resistance, diminished expression of outer membrane proteins and up-regulation of efflux pumps play an important role. The characterization of membrane proteins is consequently necessary because of their importance in the antibiotic resistance but also in virulence. This review presents proteomic investigations aiming to describe the protein content of the membranes of these two bacterial species. PMID:19942379

  15. Outbreak of hot-foot syndrome - caused by Pseudomonas aeruginosa.

    PubMed

    Michl, R K; Rusche, T; Grimm, S; Limpert, E; Beck, J F; Dost, A

    2012-07-01

    Infections with Pseudomonas aeruginosa can cause the hot-foot syndrome, presenting with painful plantar erythematous nodules. Particularly, the mechanically stressed areas of the foot are affected after contact with contaminated water from saunas, swimming pools, hot tubs, etc. We report an outbreak of hot-foot syndrome caused by Pseudomonas in 10 patients. The therapeutic regimens applied reached from local antiseptic therapy to systemic antibiotics. PMID:22187332

  16. Characterization of a rhodanese from the cyanogenic bacterium Pseudomonas aeruginosa.

    PubMed

    Cipollone, Rita; Bigotti, Maria Giulia; Frangipani, Emanuela; Ascenzi, Paolo; Visca, Paolo

    2004-12-01

    Pseudomonas aeruginosa, the rRNA group I type species of genus Pseudomonas, is a Gram-negative, aerobic bacterium responsible for serious infection in humans. P. aeruginosa pathogenicity has been associated with the production of several virulence factors, including cyanide. Here, the biochemical characterization of recombinant P. aeruginosa rhodanese (Pa RhdA), catalyzing the sulfur transfer from thiosulfate to a thiophilic acceptor, e.g., cyanide, is reported. Sequence homology analysis of Pa RhdA predicts the sulfur-transfer reaction to occur through persulfuration of the conserved catalytic Cys230 residue. Accordingly, the titration of active Pa RhdA with cyanide indicates the presence of one extra sulfur bound to the Cys230 Sgamma atom per active enzyme molecule. Values of K(m) for thiosulfate binding to Pa RhdA are 1.0 and 7.4mM at pH 7.3 and 8.6, respectively, and 25 degrees C. However, the value of K(m) for cyanide binding to Pa RhdA (=14 mM, at 25 degrees C) and the value of V(max) (=750 micromol min(-1)mg(-1), at 25 degrees C) for the Pa RhdA-catalyzed sulfur-transfer reaction are essentially pH- and substrate-independent. Therefore, the thiosulfate-dependent Pa RhdA persulfuration is favored at pH 7.3 (i.e., the cytosolic pH of the bacterial cell) rather than pH 8.6 (i.e., the standard pH for rhodanese activity assay). Within this pH range, conformational change(s) occur at the Pa RhdA active site during the catalytic cycle. As a whole, rhodanese may participate in multiple detoxification mechanisms protecting P. aeruginosa from endogenous and environmental cyanide. PMID:15522204

  17. [Phlegmonous gastritis. Report of a case induced by Pseudomonas aeruginosa].

    PubMed

    Ramos Jiménez, F A; Arocena Cedrón, M G; Goikoetxea Artola, J M; Lázaro Aramburu, S; Múgica Barreiros, P

    1992-06-01

    The authors present a case of phlegmonous gastritis in a 65 year old patient. The diagnosis was made in the operating room and the treatment was conservative; no gastric resection was done. This clinical entity is interesting because it is a least frequent pathology, the pathogenic bacteria which was the cause (Pseudomona aeruginosa) has at this time not been reported in the literature, including the favorable outcome of the patient without gastric resection. PMID:1633018

  18. Effect of tannin extract against Pseudomonas aeruginosa producing metallo beta-lactamase.

    PubMed

    Ghafourian, S; Mohebi, R; Sekawi, Z; Raftari, M; Neela, V; Ghafourian, E; Aboualigalehdari, E; Rahbar, M; Sadeghifard, N

    2012-01-01

    Carbapenems are the most potent beta-lactam agents with a broad-spectrum activity against Gram-negative and Gram-positive bacteria. They are stable in the presence of penicillinases and cephalosporinases. This study was focused on frequency of metallo beta- lactamase (MBL) among Pesudomonas aeruginosa strains isolated in patients with urinary tract infection, effect of tannin against PA positive strains which produced blaVIM or blaIMP and both of these genes (Species). Detection of MBL was performed by phonotypic and genotypic methods. Tannin extract was tested against P. aeruginosa producing MBL. During the study period, 240 P. aeruginosa isolates were identified. Among them 64 (26.6 percent) isolates were imipenem non-susceptible and confirmed by imipenem/EDTA. Our results revealed that the growth of blaVIM positive P. aeruginosa inhibited at 15 microg/ml concentration. The experiment repeated for blaIMP-positive P. aeruginosa and P. aeruginosa which harbored blaIMP and blaVIM, the results showed 35 microg/ml was the best concentration for inhibition of P. aeruginosa-positive blaIMP and also P. aeruginosa blaIMP and blaVIM. In conclusion, tannin was effective against P. aeruginosa producing blaVIM and blaIMP and both of them so it can be substituted with common antibiotics. The result showed significantly P. aeruginosa-harbored blaIMP was more responsible for imipenem resistance than P. aeruginosa-positive blaVIM. Interestingly, tannin was more effective against MBL-P. aeruginosa in comparison with current antibiotics. PMID:22824750

  19. Inquisition of Microcystis aeruginosa and Synechocystis nanowires: characterization and modelling.

    PubMed

    Sure, Sandeep; Torriero, Angel A J; Gaur, Aditya; Li, Lu Hua; Chen, Ying; Tripathi, Chandrakant; Adholeya, Alok; Ackland, M Leigh; Kochar, Mandira

    2015-11-01

    Identification of extracellular conductive pilus-like structures (PLS) i.e. microbial nanowires has spurred great interest among scientists due to their potential applications in the fields of biogeochemistry, bioelectronics, bioremediation etc. Using conductive atomic force microscopy, we identified microbial nanowires in Microcystis aeruginosa PCC 7806 which is an aerobic, photosynthetic microorganism. We also confirmed the earlier finding that Synechocystis sp. PCC 6803 produces microbial nanowires. In contrast to the use of highly instrumented continuous flow reactors for Synechocystis reported earlier, we identified simple and optimum culture conditions which allow increased production of nanowires in both test cyanobacteria. Production of these nanowires in Synechocystis and Microcystis were found to be sensitive to the availability of carbon source and light intensity. These structures seem to be proteinaceous in nature and their diameter was found to be 4.5-7 and 8.5-11 nm in Synechocystis and M. aeruginosa, respectively. Characterization of Synechocystis nanowires by transmission electron microscopy and biochemical techniques confirmed that they are type IV pili (TFP) while nanowires in M. aeruginosa were found to be similar to an unnamed protein (GenBank : CAO90693.1). Modelling studies of the Synechocystis TFP subunit i.e. PilA1 indicated that strategically placed aromatic amino acids may be involved in electron transfer through these nanowires. This study identifies PLS from Microcystis which can act as nanowires and supports the earlier hypothesis that microbial nanowires are widespread in nature and play diverse roles. PMID:26319534

  20. Impact of quorum sensing on fitness of Pseudomonas aeruginosa.

    PubMed

    Heurlier, Karin; Dénervaud, Valérie; Haas, Dieter

    2006-04-01

    In Pseudomonas aeruginosa, cell-cell communication based on N-acyl-homoserine lactone (AHL) signal molecules (termed quorum sensing) is known to control the production of extracellular virulence factors. Hence, in pathogenic interactions with host organisms, the quorum-sensing (QS) machinery can confer a selective advantage on P. aeruginosa. However, as shown by transcriptomic and proteomic studies, many intracellular metabolic functions are also regulated by quorum sensing. Some of these serve to regenerate the AHL precursors methionine and S-adenosyl-methionine and to degrade adenosine via inosine and hypoxanthine. The fact that a significant percentage of clinical and environmental isolates of P. aeruginosa is defective for QS because of mutation in the major QS regulatory gene lasR, raises the question of whether the QS machinery can have a negative impact on the organism's fitness. In vitro, lasR mutants have a higher probability to escape lytic death in stationary phase under alkaline conditions than has the QS-proficient wild type. Similar selective forces might also operate in natural environments. PMID:16503417

  1. PA3297 Counteracts Antimicrobial Effects of Azithromycin in Pseudomonas aeruginosa

    PubMed Central

    Tan, Hao; Zhang, Lu; Weng, Yuding; Chen, Ronghao; Zhu, Feng; Jin, Yongxin; Cheng, Zhihui; Jin, Shouguang; Wu, Weihui

    2016-01-01

    Pseudomonas aeruginosa causes acute and chronic infections in human. Its increasing resistance to antibiotics requires alternative treatments that are more effective than available strategies. Among the alternatives is the unconventional usage of conventional antibiotics, of which the macrolide antibiotic azithromycin (AZM) provides a paradigmatic example. AZM therapy is associated with a small but consistent improvement in respiratory function of cystic fibrosis patients suffering from chronic P. aeruginosa infection. Besides immunomodulating activities, AZM represses bacterial genes involved in virulence, quorum sensing, biofilm formation, and motility, all of which are due to stalling of ribosome and depletion of cellular tRNA pool. However, how P. aeruginosa responds to and counteracts the effects of AZM remain elusive. Here, we found that deficiency of PA3297, a gene encoding a DEAH-box helicase, intensified AZM-mediated bacterial killing, suppression of pyocyanin production and swarming motility, and hypersusceptibility to hydrogen peroxide. We demonstrated that expression of PA3297 is induced by the interaction between AZM and ribosome. Importantly, mutation of PA3297 resulted in elevated levels of unprocessed 23S-5S rRNA in the presence of AZM, which might lead to increased susceptibility to AZM-mediated effects. Our results revealed one of the bacterial responses in counteracting the detrimental effects of AZM. PMID:27014238

  2. Genotypic analysis of Pseudomonas aeruginosa isolated from ocular infection.

    PubMed

    Yamaguchi, Satoshi; Suzuki, Takashi; Kobayashi, Takeshi; Oka, Naoko; Ishikawa, Eri; Shinomiya, Hiroto; Ohashi, Yuichi

    2014-07-01

    Pseudomonas aeruginosa is the causative pathogen of keratitis, conjunctivitis, and dacryocystitis. However little is known about their clinical epidemiology in Japan. In this study we investigated the genotypic characterization and serotype of P. aeruginosa isolates from ocular infections. Thirty-four clinical P. aeruginosa isolates were characterized according to infection type, the type III secretion system (TTSS), serotype, and multilocus sequence typing (MLST). We divided the isolates into four clinical infection types as follows: Contact lens (CL)-related keratitis (CL-keratitis; 15 isolates), non CL-related keratitis (non CL-keratitis; 8 isolates), conjunctivitis (7 isolates), and dacryocystitis (4 isolates). Regarding the TTSS classification and serotyping classification, no significant differences were found among the infection types. Two clusters (I, II) and three subclusters (A, B, C) were classified according to MLST. CL-keratitis isolates with exoU positivity were clustered in II-B, and conjunctivitis was clustered in cluster I. Some linkage was found between the genetic background and CL-keratitis or conjunctivitis. PMID:24746897

  3. Pseudomonas aeruginosa bacteriophage phi PLS27-lipopolysaccharide interactions.

    PubMed Central

    Jarrell, K F; Kropinski, A M

    1981-01-01

    We investigated the phi PLS27 receptor in Pseudomonas aeruginosa strain PAO lipopolysaccharide (LPS) by analyzing a resistant mutant. This mutant, which was designated AK1282, had the most defective LPS yet reported for a P. aeruginosa rough mutant; this LPS contained only lipid A, 2-keto-3-deoxyoctonate, heptose, and alanine as major components. In addition, this LPS lacked galactosamine, which is present in the inner core of the LPS of other rough mutants. The loss of galactosamine but only a small decrease in the alanine content indicated that the core of strain PAO LPS differed from the core structure which has been suggested for the LPS of other well-characterized P. aeruginosa strains. Our analysis also indicated that galactosamine residues may be crucial for phi PLS27 receptor activity of the LPS. Electrodialysis of LPS and conversion to salt forms (sodium or triethylamine) influenced the phage-inactivating capacity of the LPS, as did the medium in which the inactivation occurred; experiments performed in 1/10-strength broth resulted in much lower PhI50 (concentration of LPS causing a 50% decrease in the titer of phage during 1 h of incubation at 37 degrees C) values than experiments performed in regular-strength broth. Sonication of the LPS also increased the phage-inactivating capacities of the LPS preparations. PMID:6798225

  4. Nosocomial outbreak of OXA-18-producing Pseudomonas aeruginosa in Tunisia.

    PubMed

    Kalai Blagui, S; Achour, W; Abbassi, M S; Bejaoui, M; Abdeladhim, A; Ben Hassen, A

    2007-08-01

    Following systematic screening for ceftazidime-resistant (CAZ-R) Pseudomonas aeruginosa, 24 isolates producing extended-spectrum beta-lactamase (ESBL) were recovered during a 24-month period at the National Bone Marrow Transplant Centre of Tunisia. These isolates were from seven immunocompromised patients and from environmental swabs. ESBLs inhibited by clavulanic acid were detected by double-disk diffusion tests. Isoelectric focusing revealed that these isolates produced two to four beta-lactamases with pIs of 5.5, 6.1, 6.4, 7.6 or 8.2, and PCR detected the presence of bla(OXA-18), bla(SHV) and bla(TEM) genes in 24, 21 and two isolates, respectively. Pulsed-field gel electrophoresis defined two dominant genotypic groups: group A (16 isolates) and group B (four isolates). Sequencing of PCR products from representative isolates identified the bla(OXA-18) gene and revealed nucleotide sequences belonging to the bla(SHV-1) and bla(TEM-1) genes. Isolates producing OXA-18 belonged to genomic group A and were isolated from four immunocompromised patients in the haematology and graft units, and from two wash-basins in the graft unit. No immunocompromised patient harboured the clonal epidemic strain upon admission. This is the first report of the OXA-18-type ESBL in P. aeruginosa in Tunisia, and the first description of an outbreak caused by an OXA-18-producing strain of P. aeruginosa. PMID:17610599

  5. Antimicrobial activities of Saudi honey against Pseudomonas aeruginosa

    PubMed Central

    Al-Nahari, Alaa A.M.; Almasaudi, Saad B.; Abd El-Ghany, El Sayed M.; Barbour, Elie; Al Jaouni, Soad K.; Harakeh, Steve

    2015-01-01

    Five types of imported and local honey were screened for both their bacteriocidal/bacteriostatic activities against both Imipenem resistant and sensitive Pseudomonas aeruginosa in both Brain Heart infusion broth and Mueller–Hinton agar. The results indicated that the effect was concentration and type of honey dependant. All types of honey tested exerted a full inhibition of bacterial growth at the highest concentration tested of 50% at 24 h of contact. The inhibitory effect of honey on bacterial growth was clear with concentrations of 20% and 10% and this effect was most evident in the case of Manuka honey as compared to Nigella sativa honey and Seder honey. Manuka honey UMF +20 showed a bacteriocidal activity on both Imipenem resistant and sensitive P. aeruginosa, while Seder honey and N. sativa honey exerted only a bacteriostatic effect. Manuka honey UMF +10 showed most effect on antimicrobial resistance. Manuka honey UMF +10 had an effect on modulation of Imipenem resistant P. aeruginosa. Conclusion: The results indicated that various types of honey affected the test organisms differently. Modulation of antimicrobial resistance was seen in the case Manuka honey UMF +10. PMID:26288553

  6. Strategies for improved rhamnolipid production by Pseudomonas aeruginosa PA1

    PubMed Central

    Pereira Jr, Nei; Freire, Denise M.G.

    2016-01-01

    Rhamnolipids are biosurfactants with potential for diversified industrial and environmental uses. The present study evaluated three strategies for increasing the production of rhamnolipid-type biosurfactants produced by Pseudomonas aeruginosa strain PA1. The influence of pH, the addition of P. aeruginosa spent culture medium and the use of a fed-batch process were examined. The culture medium adjusted to pH 7.0 was the most productive. Furthermore, the pH of the culture medium had a measurable effect on the ratio of synthesized mono- and dirhamnolipids. At pH values below 7.3, the proportion of monorhamnolipids decreased from 45 to 24%. The recycling of 20% of the spent culture medium in where P. aeruginosa was grown up to the later stationary phase was responsible for a 100% increase in rhamnolipid volumetric productivity in the new culture medium. Finally, the use of fed-batch operation under conditions of limited nitrogen resulted in a 3.8-fold increase in the amount of rhamnolipids produced (2.9 g L−1–10.9 g L−1). These results offer promising pathways for the optimization of processes for the production of rhamnolipids. PMID:27257553

  7. Distinct synergistic action of piperacillin and methylglyoxal against Pseudomonas aeruginosa.

    PubMed

    Mukherjee, Sayanti; Chaki, Shaswati; Das, Sukhen; Sen, Saswati; Dutta, Samir Kr; Dastidar, Sujata G

    2011-07-01

    The dicarbonyl compound methylglyoxal is a natural constituent of Manuka honey produced from Manuka flowers in New Zealand. It is known to possess both anticancer and antibacterial activity. Such observations prompted to investigate the ability of methylglyoxal as a potent drug against multidrug resistant Pseudomonas aeruginosa. A total of 12 test P. aeruginosa strains isolated from various hospitals were tested for their resistances against many antibiotics, most of which are applied in the treatment of P. aeruginosa infections. Results revealed that the strains were resistant to many drugs at high levels, only piperacillin, carbenicillin, amikacin and ciprofloxacin showed resistances at comparatively lower levels. Following multiple experimentations it was observed that methylglyoxal was also antimicrobic against all the strains at comparable levels. Distinct and statistically significant synergism was observed between methylglyoxal and piperacillin by disc diffusion tests when compared with their individual effects. The fractional inhibitory concentration index of this combination evaluated by checkerboard analysis, was 0.5, which confirmed synergism between the pair. Synergism was also noted when methylglyoxal was combined with carbenicillin and amikacin. PMID:21800506

  8. Mechanism of azithromycin inhibition of HSL synthesis in Pseudomonas aeruginosa.

    PubMed

    Zeng, Jianming; Zhang, Ni; Huang, Bin; Cai, Renxin; Wu, Binning; E, Shunmei; Fang, Chengcai; Chen, Cha

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen and a leading cause of nosocomial infections. Unfortunately, P. aeruginosa has low antibiotic susceptibility due to several chromosomally encoded antibiotic resistance genes. Hence, we carried out mechanistic studies to determine how azithromycin affects quorum sensing and virulence in P. aeruginosa. lasI and rhlI single and double mutants were constructed. We then undertook a quantitative approach to determine the optimal concentration of azithromycin and culture time that can affect the expression of HSLs. Furthermore, based on the above results, the effect on quorum sensing was analyzed at a transcriptional level. It was found that 2 μg/mL azithromycin caused a 79% decrease in 3-oxo-C12-HSL secretion during cultivation, while C4-HSL secretion was strongly repressed in the early stages. Azithromycin acts on ribosomes; to determine whether this can elicit alternative modes of gene expression, transcriptional regulation of representative virulence genes was analyzed. We propose a new relationship for lasI and rhlI: lasI acts as a cell density sensor, and rhlI functions as a fine-tuning mechanism for coordination between different quorum sensing systems. PMID:27075730

  9. Pseudomonas aeruginosa Displays Multiple Phenotypes during Development as a Biofilm

    PubMed Central

    Sauer, Karin; Camper, Anne K.; Ehrlich, Garth D.; Costerton, J. William; Davies, David G.

    2002-01-01

    Complementary approaches were employed to characterize transitional episodes in Pseudomonas aeruginosa biofilm development using direct observation and whole-cell protein analysis. Microscopy and in situ reporter gene analysis were used to directly observe changes in biofilm physiology and to act as signposts to standardize protein collection for two-dimensional electrophoretic analysis and protein identification in chemostat and continuous-culture biofilm-grown populations. Using these approaches, we characterized five stages of biofilm development: (i) reversible attachment, (ii) irreversible attachment, (iii) maturation-1, (iv) maturation-2, and (v) dispersion. Biofilm cells were shown to change regulation of motility, alginate production, and quorum sensing during the process of development. The average difference in detectable protein regulation between each of the five stages of development was 35% (approximately 525 proteins). When planktonic cells were compared with maturation-2 stage biofilm cells, more than 800 proteins were shown to have a sixfold or greater change in expression level (over 50% of the proteome). This difference was higher than when planktonic P. aeruginosa were compared with planktonic cultures of Pseudomonas putida. Las quorum sensing was shown to play no role in early biofilm development but was important in later stages. Biofilm cells in the dispersion stage were more similar to planktonic bacteria than to maturation-2 stage bacteria. These results demonstrate that P. aeruginosa displays multiple phenotypes during biofilm development and that knowledge of stage-specific physiology may be important in detecting and controlling biofilm growth. PMID:11807075

  10. Pseudomonas aeruginosa immunotype 5 polysaccharide-toxin A conjugate vaccine.

    PubMed Central

    Cryz, S J; Furer, E; Sadoff, J C; Germanier, R

    1986-01-01

    Polysaccharide (PS) derived from Pseudomonas aeruginosa immunotype 5 lipopolysaccharide was covalently coupled to toxin A by reductive amination with adipic acid dihydrazide as a spacer molecule. The resulting PS-toxin A conjugate was composed of 27.5% PS and 72.5% toxin A. The conjugate was composed of heterogeneous high-molecular-weight species, all of which possessed an Mr greater than 670,000. The conjugate was nontoxic for mice and nonpyrogenic at a dose of 50 micrograms/kg of body weight when intravenously administered to rabbits. Immunization of rabbits with the conjugate evoked both an antilipopolysaccharide immunoglobulin G (IgG) and an anti-toxin A IgG response. Anticonjugate IgG was capable of neutralizing the cytotoxic effect of toxin A. Immunization of mice with the conjugate increased the mean lethal dose from 4.5 X 10(1) P. aeruginosa for control mice to 9.6 X 10(5) P. aeruginosa for vaccinated mice. Similarly, immunization raised the mean lethal dose for toxin A from 0.2 to 4.67 micrograms per mouse. PMID:3082756

  11. Mechanism of azithromycin inhibition of HSL synthesis in Pseudomonas aeruginosa

    PubMed Central

    Zeng, Jianming; Zhang, Ni; Huang, Bin; Cai, Renxin; Wu, Binning; E, Shunmei; Fang, Chengcai; Chen, Cha

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen and a leading cause of nosocomial infections. Unfortunately, P. aeruginosa has low antibiotic susceptibility due to several chromosomally encoded antibiotic resistance genes. Hence, we carried out mechanistic studies to determine how azithromycin affects quorum sensing and virulence in P. aeruginosa. lasI and rhlI single and double mutants were constructed. We then undertook a quantitative approach to determine the optimal concentration of azithromycin and culture time that can affect the expression of HSLs. Furthermore, based on the above results, the effect on quorum sensing was analyzed at a transcriptional level. It was found that 2 μg/mL azithromycin caused a 79% decrease in 3-oxo-C12-HSL secretion during cultivation, while C4-HSL secretion was strongly repressed in the early stages. Azithromycin acts on ribosomes; to determine whether this can elicit alternative modes of gene expression, transcriptional regulation of representative virulence genes was analyzed. We propose a new relationship for lasI and rhlI: lasI acts as a cell density sensor, and rhlI functions as a fine-tuning mechanism for coordination between different quorum sensing systems. PMID:27075730

  12. Origin and Impact of Nitric Oxide in Pseudomonas aeruginosa Biofilms.

    PubMed

    Cutruzzolà, Francesca; Frankenberg-Dinkel, Nicole

    2016-01-01

    The formation of the organized bacterial community called biofilm is a crucial event in bacterial physiology. Given that biofilms are often refractory to antibiotics and disinfectants to which planktonic bacteria are susceptible, their formation is also an industrially and medically relevant issue. Pseudomonas aeruginosa, a well-known human pathogen causing acute and chronic infections, is considered a model organism to study biofilms. A large number of environmental cues control biofilm dynamics in bacterial cells. In particular, the dispersal of individual cells from the biofilm requires metabolic and morphological reprogramming in which the second messenger bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP) plays a central role. The diatomic gas nitric oxide (NO), a well-known signaling molecule in both prokaryotes and eukaryotes, is able to induce the dispersal of P. aeruginosa and other bacterial biofilms by lowering c-di-GMP levels. In this review, we summarize the current knowledge on the molecular mechanisms connecting NO sensing to the activation of c-di-GMP-specific phosphodiesterases in P. aeruginosa, ultimately leading to c-di-GMP decrease and biofilm dispersal. PMID:26260455

  13. Arsenic Efflux from Microcystis aeruginosa under Different Phosphate Regimes

    PubMed Central

    Yan, Changzhou; Wang, Zhenhong; Luo, Zhuanxi

    2014-01-01

    Phytoplankton plays an important role in arsenic speciation, distribution, and cycling in freshwater environments. Little information, however, is available on arsenic efflux from the cyanobacteria Microcystis aeruginosa under different phosphate regimes. This study investigated M. aeruginosa arsenic efflux and speciation by pre-exposing it to 10 µM arsenate or arsenite for 24 h during limited (12 h) and extended (13 d) depuration periods under phosphate enriched (+P) and phosphate depleted (−P) treatments. Arsenate was the predominant species detected in algal cells throughout the depuration period while arsenite only accounted for no greater than 45% of intracellular arsenic. During the limited depuration period, arsenic efflux occurred rapidly and only arsenate was detected in solutions. During the extended depuration period, however, arsenate and dimethylarsinic acid (DMA) were found to be the two predominant arsenic species detected in solutions under −P treatments, but arsenate was the only species detected under +P treatments. Experimental results also suggest that phosphorus has a significant effect in accelerating arsenic efflux and promoting arsenite bio-oxidation in M. aeruginosa. Furthermore, phosphorus depletion can reduce arsenic efflux from algal cells as well as accelerate arsenic reduction and methylation. These findings can contribute to our understanding of arsenic biogeochemistry in aquatic environments and its potential environmental risks under different phosphorus levels. PMID:25549253

  14. Rhamnolipids Modulate Swarming Motility Patterns of Pseudomonas aeruginosa

    PubMed Central

    Caiazza, Nicky C.; Shanks, Robert M. Q.; O'Toole, G. A.

    2005-01-01

    Pseudomonas aeruginosa is capable of twitching, swimming, and swarming motility. The latter form of translocation occurs on semisolid surfaces, requires functional flagella and biosurfactant production, and results in complex motility patterns. From the point of inoculation, bacteria migrate as defined groups, referred to as tendrils, moving in a coordinated manner capable of sensing and responding to other groups of cells. We were able to show that P. aeruginosa produces extracellular factors capable of modulating tendril movement, and genetic analysis revealed that modulation of these movements was dependent on rhamnolipid biosynthesis. An rhlB mutant (deficient in mono- and dirhamnolipid production) and an rhlC mutant (deficient in dirhamnolipid production) exhibited altered swarming patterns characterized by irregularly shaped tendrils. In addition, agar supplemented with rhamnolipid-containing spent supernatant inhibited wild-type (WT) swarming, whereas agar supplemented with spent supernatant from mutants that do not make rhamnolipids had no effect on WT P. aeruginosa swarming. Addition of purified rhamnolipids to swarming medium also inhibited swarming motility of the WT strain. We also show that a sadB mutant does not sense and/or respond to other groups of swarming cells and this mutant was capable of swarming on media supplemented with rhamnolipid-containing spent supernatant or purified rhamnolipids. The abilities to produce and respond to rhamnolipids in the context of group behavior are discussed. PMID:16237018

  15. Light intensity adaptation and phycobilisome composition of Microcystis aeruginosa

    SciTech Connect

    Raps, S.; Kycia, J.H.; Ledbetter, M.C.; Siegelman, H.W.

    1985-12-01

    Phycobilisomes isolated from Microcystis aeruginosa grown to midlog at high light (270 microeinsteins per square meter per second) or at low light intensities (40 microeinsteins per square meter per second) were found to be identical. Electron micrographs established that they have a triangular central core apparently consisting of three allophycocyanin trimers surrounded by six rods, each composed of two hexameric phycocyanin molecules. The apparent mass of a phycobilisome obtained by gel filtration is 2.96 x 10/sup 6/ daltons. The molar ratio of the phycobiliproteins per phycobilisome is 12 phycocyanin hexamers:9 allophycocyanin trimers. The electron microscopic observations combined with the phycobilisome apparent mass and the phycobiliprotein stoichiometry data indicate that M. aeruginosa phycobilisomes are composed of a triangular central core of three stacks of three allophycocyanin trimers and six rods each containing two phycocyanin hexamers. Adaptation of M. aeruginosa to high light intensity results in a decrease in the number of phycobilisomes per cell with no alteration in phycobilisome composition or structure.

  16. Indole and 7-hydroxyindole diminish Pseudomonas aeruginosa virulence.

    PubMed

    Lee, Jintae; Attila, Can; Cirillo, Suat L G; Cirillo, Jeffrey D; Wood, Thomas K

    2009-01-01

    Indole is an extracellular biofilm signal for Escherichia coli, and many bacterial oxygenases readily convert indole to various oxidized compounds including 7-hydroxyindole (7HI). Here we investigate the impact of indole and 7HI on Pseudomonas aeruginosa PAO1 virulence and quorum sensing (QS)-regulated phenotypes; this strain does not synthesize these compounds but degrades them rapidly. Indole and 7HI both altered extensively gene expression in a manner opposite that of acylhomoserine lactones; the most repressed genes encode the mexGHI-opmD multidrug efflux pump and genes involved in the synthesis of QS-regulated virulence factors including pyocyanin (phz operon), 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) signal (pqs operon), pyochelin (pch operon) and pyoverdine (pvd operon). Corroborating these microarray results, indole and 7HI decreased production of pyocyanin, rhamnolipid, PQS and pyoverdine and enhanced antibiotic resistance. In addition, indole affected the utilization of carbon, nitrogen and phosphorus, and 7HI abolished swarming motility. Furthermore, 7HI reduced pulmonary colonization of P. aeruginosa in guinea pigs and increased clearance in lungs. Hence, indole-related compounds have potential as a novel antivirulence approach for the recalcitrant pathogen P. aeruginosa. PMID:21261883

  17. Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems.

    PubMed

    Singh, Braj R; Singh, Brahma N; Singh, Akanksha; Khan, Wasi; Naqvi, Alim H; Singh, Harikesh B

    2015-01-01

    Quorum sensing (QS) is a chemical communication process that Pseudomonas aeruginosa uses to regulate virulence and biofilm formation. Disabling of QS is an emerging approach for combating its pathogenicity. Silver nanoparticles (AgNPs) have been widely applied as antimicrobial agents against human pathogenic bacteria and fungi, but not for the attenuation of bacterial QS. Here we mycofabricated AgNPs (mfAgNPs) using metabolites of soil fungus Rhizopus arrhizus BRS-07 and tested their effect on QS-regulated virulence and biofilm formation of P. aeruginosa. Transcriptional studies demonstrated that mfAgNPs reduced the levels of LasIR-RhlIR. Treatment of mfAgNPs inhibited biofilm formation, production of several virulence factors (e.g. LasA protease, LasB elastrase, pyocyanin, pyoverdin, pyochelin, rhamnolipid, and alginate) and reduced AHLs production. Further genes quantification analyses revealed that mfAgNPs significantly down-regulated QS-regulated genes, specifically those encoded to the secretion of virulence factors. The results clearly indicated the anti-virulence property of mfAgNPs by inhibiting P. aeruginosa QS signaling. PMID:26347993

  18. Gallium induces the production of virulence factors in Pseudomonas aeruginosa.

    PubMed

    García-Contreras, Rodolfo; Pérez-Eretza, Berenice; Lira-Silva, Elizabeth; Jasso-Chávez, Ricardo; Coria-Jiménez, Rafael; Rangel-Vega, Adrián; Maeda, Toshinari; Wood, Thomas K

    2014-02-01

    The novel antimicrobial gallium is a nonredox iron III analogue with bacteriostatic and bactericidal properties, effective for the treatment of Pseudomonas aeruginosa in vitro and in vivo in mouse and rabbit infection models. It interferes with iron metabolism, transport, and presumably its homeostasis. As gallium exerts its antimicrobial effects by competing with iron, we hypothesized that it ultimately will lead cells to an iron deficiency status. As iron deficiency promotes the expression of virulence factors in vitro and promotes the pathogenicity of P. aeruginosa in animal models, it is anticipated that treatment with gallium will also promote the production of virulence factors. To test this hypothesis, the reference strain PA14 and two clinical isolates from patients with cystic fibrosis were exposed to gallium, and their production of pyocyanin, rhamnolipids, elastase, alkaline protease, alginate, pyoverdine, and biofilm was determined. Gallium treatment induced the production of all the virulence factors tested in the three strains except for pyoverdine. In addition, as the Ga-induced virulence factors are quorum sensing controlled, co-administration of Ga and the quorum quencher brominated furanone C-30 was assayed, and it was found that C-30 alleviated growth inhibition from gallium. Hence, adding both C-30 and gallium may be more effective in the treatment of P. aeruginosa infections. PMID:24151196

  19. Origin and Impact of Nitric Oxide in Pseudomonas aeruginosa Biofilms

    PubMed Central

    2015-01-01

    The formation of the organized bacterial community called biofilm is a crucial event in bacterial physiology. Given that biofilms are often refractory to antibiotics and disinfectants to which planktonic bacteria are susceptible, their formation is also an industrially and medically relevant issue. Pseudomonas aeruginosa, a well-known human pathogen causing acute and chronic infections, is considered a model organism to study biofilms. A large number of environmental cues control biofilm dynamics in bacterial cells. In particular, the dispersal of individual cells from the biofilm requires metabolic and morphological reprogramming in which the second messenger bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP) plays a central role. The diatomic gas nitric oxide (NO), a well-known signaling molecule in both prokaryotes and eukaryotes, is able to induce the dispersal of P. aeruginosa and other bacterial biofilms by lowering c-di-GMP levels. In this review, we summarize the current knowledge on the molecular mechanisms connecting NO sensing to the activation of c-di-GMP-specific phosphodiesterases in P. aeruginosa, ultimately leading to c-di-GMP decrease and biofilm dispersal. PMID:26260455

  20. Morphogenetic expression of Moraxella bovis fimbriae (pili) in Pseudomonas aeruginosa.

    PubMed Central

    Beard, M K; Mattick, J S; Moore, L J; Mott, M R; Marrs, C F; Egerton, J R

    1990-01-01

    Type 4 fimbriae (pili) are found in a wide variety of gram-negative bacteria and are composed of small structural subunits which share significant sequence homology among different species, especially at their amino-terminal ends. Previous studies demonstrating morphogenetic expression of Bacteroides nodosus fimbriae from cloned subunit genes in Pseudomonas aeruginosa suggested that there is a common mechanism for type 4 fimbriae assembly and that the structural subunits are interchangeable (J. S. Mattick et al., J. Bacteriol. 169:33-41, 1987). Here we have examined the expression of Moraxella bovis fimbrial subunits in P. aeruginosa. M. bovis subunits were assembled into extracellular fimbriae in this host, in some cases as a homopolymer but in others as a mosaic with the indigenous subunit, indicating structural equivalence. This result contrasts with other studies in which recombinant P. aeruginosa expressing different subunits produced fimbriae composed almost exclusively of one subunit or the other (T. C. Elleman and J. E. Peterson, Mol. Microbiol. 1:377-380, 1987). Both observations can be explained by reversibility of subunit-subunit interactions at the site of assembly, with the forward equilibrium favoring chain extension between compatible subunits. Images PMID:1970564

  1. INHIBITION OF VIRULENCE FACTORS OF PSEUDOMONAS AERUGINOSA BY DICLOFENAC SODIUM.

    PubMed

    Abbas, Hisham A

    2015-01-01

    Resistance of Pseudomonas aeruginosa to antibiotics is a major problem. Targeting virulence factors is an alternative option to avoid the emergence of resistance to antibiotics. The effect of sub-inhibitory concentration of diclofenac sodium on the production of virulence factors of P. aeruginosa was investigated. The virulence factors included protease, haemolysin, pyocyanin and pyoverdin, in addition to pathogenic behaviors such as swimming and twitching motilities and biofilm formation. Diclofenac sodium showed significant inhibition of virulence factors as compared to the control. Diclofenac sodium decreased twitching and swimming motilities by 29.27% and 45.36%, respectively. The percentage of inhibition of pyocyanin by diclofenac sodium was 42.32%. On the other hand, pyoverdin was inhibited to a lesser extent (36.72%). Diclofenac sodium reduced protease by 52.58% and biofilm formation by 58.37%. Moreover, haemolytic activity in the presence of diclofenac sodium was 15.64% as compared to the control (100% haemolytic activity). The inhibitory activities may be due to inhibition of quorum sensing that regulates the expression of virulence factors. This study suggests the potential for the use of diclofenac sodium as an anti-virulence agent in the treatment of Pseudomonas aeruginosa infections. PMID:27328521

  2. PA3297 Counteracts Antimicrobial Effects of Azithromycin in Pseudomonas aeruginosa.

    PubMed

    Tan, Hao; Zhang, Lu; Weng, Yuding; Chen, Ronghao; Zhu, Feng; Jin, Yongxin; Cheng, Zhihui; Jin, Shouguang; Wu, Weihui

    2016-01-01

    Pseudomonas aeruginosa causes acute and chronic infections in human. Its increasing resistance to antibiotics requires alternative treatments that are more effective than available strategies. Among the alternatives is the unconventional usage of conventional antibiotics, of which the macrolide antibiotic azithromycin (AZM) provides a paradigmatic example. AZM therapy is associated with a small but consistent improvement in respiratory function of cystic fibrosis patients suffering from chronic P. aeruginosa infection. Besides immunomodulating activities, AZM represses bacterial genes involved in virulence, quorum sensing, biofilm formation, and motility, all of which are due to stalling of ribosome and depletion of cellular tRNA pool. However, how P. aeruginosa responds to and counteracts the effects of AZM remain elusive. Here, we found that deficiency of PA3297, a gene encoding a DEAH-box helicase, intensified AZM-mediated bacterial killing, suppression of pyocyanin production and swarming motility, and hypersusceptibility to hydrogen peroxide. We demonstrated that expression of PA3297 is induced by the interaction between AZM and ribosome. Importantly, mutation of PA3297 resulted in elevated levels of unprocessed 23S-5S rRNA in the presence of AZM, which might lead to increased susceptibility to AZM-mediated effects. Our results revealed one of the bacterial responses in counteracting the detrimental effects of AZM. PMID:27014238

  3. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation

    PubMed Central

    Laverty, Garry; Gorman, Sean P.; Gilmore, Brendan F.

    2014-01-01

    Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl), pellicle Formation (Pel) and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides) that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation. PMID:25438014

  4. Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems

    PubMed Central

    Singh, Braj R.; Singh, Brahma N.; Singh, Akanksha; Khan, Wasi; Naqvi, Alim H.; Singh, Harikesh B.

    2015-01-01

    Quorum sensing (QS) is a chemical communication process that Pseudomonas aeruginosa uses to regulate virulence and biofilm formation. Disabling of QS is an emerging approach for combating its pathogenicity. Silver nanoparticles (AgNPs) have been widely applied as antimicrobial agents against human pathogenic bacteria and fungi, but not for the attenuation of bacterial QS. Here we mycofabricated AgNPs (mfAgNPs) using metabolites of soil fungus Rhizopus arrhizus BRS-07 and tested their effect on QS-regulated virulence and biofilm formation of P. aeruginosa. Transcriptional studies demonstrated that mfAgNPs reduced the levels of LasIR-RhlIR. Treatment of mfAgNPs inhibited biofilm formation, production of several virulence factors (e.g. LasA protease, LasB elastrase, pyocyanin, pyoverdin, pyochelin, rhamnolipid, and alginate) and reduced AHLs production. Further genes quantification analyses revealed that mfAgNPs significantly down-regulated QS-regulated genes, specifically those encoded to the secretion of virulence factors. The results clearly indicated the anti-virulence property of mfAgNPs by inhibiting P. aeruginosa QS signaling. PMID:26347993

  5. Epidemiology of Pseudomonas aeruginosa in a tertiary referral teaching hospital.

    PubMed

    Bradbury, R S; Champion, A C; Reid, D W

    2009-10-01

    A genotypically indistinguishable strain of Pseudomonas aeruginosa (Australian epidemic strain III: AES III) has previously been found in a proportion of adults with cystic fibrosis (CF) in Tasmania, Australia. The aim of this study was to identify a source of these infections within the major tertiary referral hospital for the State of Tasmania, and to determine if this strain could be isolated from settings other than the CF lung. A total of 120 isolates of P. aeruginosa were collected from clinical and environmental sources within the hospital and from environmental locations in the hospital vicinity. These isolates were genotyped by random amplification of polymorphic DNA (RAPD)-polymerase chain reaction (PCR) and antimicrobial susceptibility testing was performed using the Clinical and Laboratory Standards Institute method. Confirmation of similar genotypes identified by RAPD-PCR was performed using pulsed-field gel electrophoresis with restriction enzyme SpeI. AES III was not recovered from any source other than the respiratory secretions of CF patients. P. aeruginosa in the non-CF settings was found to be panmictic, and no cross-infection or acquisition of hospital environment strains by patients was observed. PMID:19699556

  6. Screening of antibacterial potentials of some medicinal plants from Melghat forest in India.

    PubMed

    Tambekar, D H; Khante, B S; Chandak, B R; Titare, A S; Boralkar, S S; Aghadte, S N

    2009-01-01

    Cyperus rotundus, Caesalpinia bonducella, Tinospora cordifolia, Gardenia gummifera, Ailanthus excelsa, Acacia arabica, Embelia ribes and Ventilago maderspatana from Melghat forest were screened for their antibacterial potential against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Proteus vulgaris, Salmonella typhi, Shigella flexneri, Salmonella paratyphi, Salmonella typhimurium, Pseudomonas aeruginosa, Enterobacter aerogenes by disc diffusion method. Out of these medicinal plants Caesalpinia bonducella, Gardenia gummifera and Acacia arabica showed remarkable antibacterial potential. The phytochemical analysis had showed the presence of Cardiac glycosides in all extracts (aqueous, acetone, ethanol and methanol) of Acacia arabica, Gardenia gummifera and ethanol, methanol extracts of Caesalpinia bonducella. Flavonoids were present in Gardenia gummifera, Ailanthus excelsa and acetone, methanol extracts of Acacia Arabica. Tannins and phenolic were present in Cyperus rotundus, Embelia ribes, and organic extracts of Ventilago maderspatana. PMID:20448847

  7. Antimicrobial activity of honokiol and magnolol isolated from Magnolia officinalis.

    PubMed

    Ho, K Y; Tsai, C C; Chen, C P; Huang, J S; Lin, C C

    2001-03-01

    The antimicrobial activity of honokiol and magnolol, the main constituents of Magnolia officinalis was investigated. The antimicrobial activity was assayed by the agar dilution method using brain heart infusion medium and the minimum inhibitory concentration (MIC) were determined for each compound using a twofold serial dilution assay. The results showed that honokiol and magnolol have a marked antimicrobial effect (MIC = 25 microg/mL) against Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, Micrococcus luteus and Bacillus subtilis, but did not show antimicrobial activity (MIC > or = 100 microg/mL) for Shigella flexneii, Staphylococcus epidermidis, Enterobacter aerogenes, Proteus vulgaris, Escherichia coli and Pseudomonas aeruginosa. Our results indicate that honokiol and magnolol, although less potent than tetracycline, show a significant antimicrobial activity for periodontal pathogens. Hence we suggest that honokiol and magnolol might have the potential to be an adjunct in the treatment of periodontitis. PMID:11268114

  8. Potential for detection of microorganisms and heavy metals in potable water using electronic nose technology.

    PubMed

    Canhoto, Olinda F; Magan, Naresh

    2003-05-01

    Studies have been carried out to determine the potential for the detection of different microbial species (Enterobacter aerogenes, Escherichia coli, Pseudomonas aeruginosa), alone and in the presence of low concentrations of different heavy metals (As, Cd, Pb and Zn) in bottled, reverse osmosis (RO) and tap water, using an electronic nose. Studies show that it is possible to discriminate control water samples from water contaminated with 0.5 ppm of a mixture of metals. The presence of heavy metals may modify the activity of microorganisms and thus the volatile production patterns. Bacterial species at 10(2)-10(4) colony forming units (CFUs) ml(-1) could be detected after 24 h of incubation. Work is in progress to identify the limits of detection for a range of other microorganisms, including, fungi and cyanobacteria, and chlorinated phenols using electronic nose technology. PMID:12706588

  9. Biological properties of the Chilean native moss Sphagnum magellanicum.

    PubMed

    Montenegro, Gloria; Portaluppi, Mariana C; Salas, Francisco A; Díaz, María F

    2009-01-01

    An ethanol extract prepared from the gametophyte Chilean native moss Sphagnum magellanicum was dried out, weighed and dissolved in distilled water. This extract was then assayed for its antibacterial activity against the G(-) bacteria Azotobacter vinelandii, Erwinia carotovora subsp. carotovora, Enterobacter aerogenes, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Vibrio cholerae, and the G(+) bacteria Staphylococcus aureus subsp. aureus, and Streptococcus type beta. The growth of the cultures of E. carotovora subsp. carotovora, and V. cholerae was inhibited at a concentration of 581 microg/ml of extract, while the cultures of E. coli, S. typhi and Streptococcus type beta were inhibited at a concentration of 1.16 microg/mL of extract. The concentration of phenolic compounds was 4.294 mg/mL; the presence of vanillic, chlorogenic, syringic, caffeic, gallic, 3-4 hydrozybenzoic, p-coumaric and salicylic acids was identified using RP- High Pressure Liquid Chromatography. PMID:19746269

  10. Decoction, infusion and hydroalcoholic extract of cultivated thyme: antioxidant and antibacterial activities, and phenolic characterisation.

    PubMed

    Martins, Natália; Barros, Lillian; Santos-Buelga, Celestino; Silva, Sónia; Henriques, Mariana; Ferreira, Isabel C F R

    2015-01-15

    Bioactivity of thyme has been described, but mostly related to its essential oils, while studies with aqueous extracts are scarce. Herein, the antioxidant and antibacterial properties of decoction, infusion and hydroalcoholic extract, as also their phenolic compounds, were evaluated and compared. Decoction showed the highest concentration of phenolic compounds (either phenolic acids or flavonoids), followed by infusion and hydroalcoholic extract. In general, the samples were effective against gram-positive (Staphylococcus aureus and Staphylococcus epidermidis) and gram-negative (Escherichia coli, Klebsiella spp., Pseudomonas aeruginosa, Enterococcus aerogenes, Proteus vulgaris and Enterobacter sakazakii) bacteria, with decoction presenting the most pronounced effect. This sample also displayed the highest radical scavenging activity and reducing power. Data obtained support the idea that compounds with strong antioxidant and antibacterial activities are also water-soluble. Furthermore, the use of thyme infusion and decoction, by both internal and external use, at recommended doses, is safe and no adverse reactions have been described. PMID:25148969

  11. Comprehensive Approaches to Molecular Biomarker Discovery for Detection and Identification of Cronobacter spp. (Enterobacter sakazakii) and Salmonella spp. ▿

    PubMed Central

    Yan, Xianghe; Gurtler, Joshua; Fratamico, Pina; Hu, Jing; Gunther, Nereus W.; Juneja, Vijay; Huang, Lihan

    2011-01-01

    Cronobacter spp. (formerly Enterobacter sakazakii) and Salmonella spp. are increasingly implicated internationally as important microbiological contaminants in low-moisture food products, including powdered infant formula. Estimates indicate that 40 to 80% of infants infected with Cronobacter sakazakii and/or Salmonella in the United States may not survive the illness. A systematic approach, combining literature-based data mining, comparative genome analysis, and the direct sequencing of PCR products of specific biomarker genes, was used to construct an initial collection of genes to be targeted. These targeted genes, particularly genes encoding virulence factors and genes responsible for unique phenotypes, have the potential to function as biomarker genes for the identification and differentiation of Cronobacter spp. and Salmonella from other food-borne pathogens in low-moisture food products. In this paper, a total of 58 unique Salmonella gene clusters and 126 unique potential Cronobacter biomarkers and putative virulence factors were identified. A chitinase gene, a well-studied virulence factor in fungi, plants, and bacteria, was used to confirm this approach. We found that the chitinase gene has very low sequence variability and/or polymorphism among Cronobacter, Citrobacter, and Salmonella, while differing significantly in other food-borne pathogens, either by sequence blasting or experimental testing, including PCR amplification and direct sequencing. This computational analysis for Cronobacter and Salmonella biomarker identification and the preliminary laboratory studies are only a starting point; thus, PCR and array-based biomarker verification studies of these and other food-borne pathogens are currently being conducted. PMID:21239552

  12. Characterization of Exoelectrogenic Bacteria Enterobacter Strains Isolated from a Microbial Fuel Cell Exposed to Copper Shock Load

    PubMed Central

    Feng, Cuijie; Li, Jiangwei; Qin, Dan; Chen, Lixiang; Zhao, Feng; Chen, Shaohua; Hu, Hongbo; Yu, Chang-Ping

    2014-01-01

    Microorganisms capable of generating electricity in microbial fuel cells (MFCs) have gained increasing interest. Here fourteen exoelectrogenic bacterial strains were isolated from the anodic biofilm in an MFC before and after copper (Cu) shock load by Hungate roll-tube technique with solid ferric (III) oxide as an electron acceptor and acetate as an electron donor. Phylogenetic analysis of the 16S rRNA gene sequences revealed that they were all closely related to Enterobacter ludwigii DSM 16688T within the Enterobacteriaceae family, although these isolated bacteria showed slightly different morphology before and after Cu shock load. Two representative strains R2B1 (before Cu shock load) and B4B2 (after Cu shock load) were chosen for further analysis. B4B2 is resistant to 200 mg L−1 of Cu(II) while R2B1 is not, which indicated the potential selection of the Cu shock load. Raman analysis revealed that both R2B1 and B4B2 contained c-type cytochromes. Cyclic voltammetry measurements revealed that strain R2B1 had the capacity to transfer electrons to electrodes. The experimental results demonstrated that strain R2B1 was capable of utilizing a wide range of substrates, including Luria-Bertani (LB) broth, cellulose, acetate, citrate, glucose, sucrose, glycerol and lactose to generate electricity, with the highest current density of 440 mA·m−2 generated from LB-fed MFC. Further experiments indicated that the bacterial cell density had potential correlation with the current density. PMID:25412475

  13. Enterobacter sakazakii targets DC-SIGN to induce immunosuppressive responses in dendritic cells by modulating MAP kinases

    PubMed Central

    Mittal, Rahul; Bulgheresi, Silvia; Emami, Claudia; Prasadarao, Nemani V.

    2009-01-01

    Enterobacter sakazakii (ES) is an emerging pathogen that causes meningitis and necrotizing enterocolitis in infants. Dendritic cells (DCs) are professional phagocytic cells that play an essential role in host defense against invading pathogens, however, the interaction of ES with DCs is not known. Here, we demonstrate that ES targets DC-SIGN to survive in myeloid DCs for which outer membrane protein A (OmpA) expression in ES is critical, although it is not required for uptake. In addition, DC-SIGN expression was sufficient to cause a significant invasion by ES in HeLa cells and intestinal epithelial cells, which are normally not invaded by ES. OmpA+ ES prevented the maturation of DCs by triggering the production of high levels of IL-10 and TGF-β and by suppressing the activation of MAP kinases. Pretreatment of DCs with antibodies to IL-10 and TGF-β or of bacteria with anti-OmpA antibodies significantly enhanced the maturation markers on DCs. Furthermore, DCs pretreated with various inhibitors of MAP kinases prohibited the increased production of pro-inflammatory cytokines stimulated by LPS or OmpA− ES. LPS pretreatment followed by OmpA+ ES infection of DCs failed to induce maturation of DCs, indicating that OmpA+ ES renders the cells in immunosuppressive state to external stimuli. Similarly, OmpA+ ES infected DCs failed to present antigen to T cells as indicated by the inability of T cells to proliferate in mixed lymphocyte reaction. We conclude that ES interacts with DC-SIGN to subvert the host immune responses by disarming MAP kinase pathway in DCs. PMID:19846880

  14. Fatty acid competition as a mechanism by which Enterobacter cloacae suppresses Pythium ultimum sporangium germination and damping-off.

    PubMed

    van Dijk, K; Nelson, E B

    2000-12-01

    Interactions between plant-associated microorganisms play important roles in suppressing plant diseases and enhancing plant growth and development. While competition between plant-associated bacteria and plant pathogens has long been thought to be an important means of suppressing plant diseases microbiologically, unequivocal evidence supporting such a mechanism has been lacking. We present evidence here that competition for plant-derived unsaturated long-chain fatty acids between the biological control bacterium Enterobacter cloacae and the seed-rotting oomycete, Pythium ultimum, results in disease suppression. Since fatty acids from seeds and roots are required to elicit germination responses of P. ultimum, we generated mutants of E. cloacae to evaluate the role of E. cloacae fatty acid metabolism on the suppression of Pythium sporangium germination and subsequent plant infection. Two mutants of E. cloacae EcCT-501R3, Ec31 (fadB) and EcL1 (fadL), were reduced in beta-oxidation and fatty acid uptake, respectively. Both strains failed to metabolize linoleic acid, to inactivate the germination-stimulating activity of cottonseed exudate and linoleic acid, and to suppress Pythium seed rot in cotton seedling bioassays. Subclones containing fadBA or fadL complemented each of these phenotypes in Ec31 and EcL1, respectively. These data provide strong evidence for a competitive exclusion mechanism for the biological control of P. ultimum-incited seed infections by E. cloacae where E. cloacae prevents the germination of P. ultimum sporangia by the efficient metabolism of fatty acid components of seed exudate and thus prevents seed infections. PMID:11097912

  15. Fluoroquinolone Resistance Mechanisms and population structure of Enterobacter cloacae non-susceptible to Ertapenem in North-Eastern France

    PubMed Central

    Guillard, Thomas; Cholley, Pascal; Limelette, Anne; Hocquet, Didier; Matton, Lucie; Guyeux, Christophe; Lebreil, Anne-Laure; Bajolet, Odile; Brasme, Lucien; Madoux, Janick; Vernet-Garnier, Véronique; Barbe, Coralie; Bertrand, Xavier; de Champs on behalf of CarbaFrEst Group, Christophe

    2015-01-01

    Fluoroquinolone (FQ) agents are a potential resort to treat infection due to Enterobacteriaceae producing extended spectrum β-lactamase and susceptible to FQ. In a context of increase of non-susceptibility to carbapenems among Enterobacteriaceae, we characterized FQ resistance mechanisms in 75 Enterobacter cloacae isolates non-susceptible to ertapenem in North-Eastern France in 2012 and describe the population structure by pulsed field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). Among them, 14.7% (12/75) carried a carbapenemase-encoding gene. Except one isolate producing VIM-1, the carbapenemase-producing isolates carried the well-known IncL/M pOXA48a plasmid. Most of the isolates (59/75) harbored at least a FQ-R determinant. qnr genes were predominant (40%, 30/75). The MLST study revealed that E. cloacae isolates’ clonality was wide [24 different sequence types (STs)]. The more widespread STs were ST74, ST101, ST110, ST114, and ST133. Carbapenem MICs were higher for E. cloacae ST74 than for other E. cloacae isolates. Plasmid-mediated quinolone resistance determinants were more often observed in E. cloacae ST74 isolates. These findings showed that (i) pOXA-48a is spreading in North-Eastern France, (ii) qnr is preponderant in E. cloacae, (iii) E. cloacae comprised a large amount of lineages spreading in North-Eastern France, and (iv) FQ as an alternative to β-lactams to treat ertapenem non-susceptible Enterobacteriaceae are compromised. PMID:26557115

  16. Partial purification and characterization of an inducible indole-3-acetyl-L-aspartic acid hydrolase from Enterobacter agglomerans

    SciTech Connect

    Chou, Jyh-Ching |; Cohen, J.D.; Mulbry, W.W.

    1996-11-01

    Indole-3-acetyl-amino acid conjugate hydrolases are believed to be important in the regulation of indole-3-acetic acid (IAA) metabolism in plants and therefore have potential uses for the alteration of plant IAA metabolism. To isolate bacterial strains exhibiting significant indole-3-acetyl-aspartate (IAA-Asp) hydrolase activity, a sewage sludge inoculation was cultured under conditions in which IAA-Asp served as the sole source of carbon and nitrogen. One isolate, Enterobacter agglomerans, showed hydrolase activity inducible by IAA-L-Asp or N-acetyl-L-Asp but not by IAA, (NH{sub 4}){sub 2}SO{sub 4}, urea, or indoleacetamide. Among a total of 17 IAA conjugates tested as potential substrates, the enzyme had an exclusively high substrate specificity for IAA-L-Asp of 13.5 mM. The optimal pH for this enzyme was between 8.0 and 8.5. In extraction buffer containing 0.8 mM Mg{sup 2+} the hydrolase activity was inhibited to 80% by 1 mM dithiothreitol and to 60% by 1 mm CuSO{sub 4}; the activity was increased by 40% with 1mM MnSO{sub 4}. However, in extraction buffer with no trace elements, the hydrolase activity was inhibited to 50% by either 1 mM dithiothreitol or 1% Triton X-100 (Sigma). These results suggest that disulfide bonding might be essential for enzyme activity. Purification of the hydrolase by hydroxyapatite and TSK-phenyl (HP-Genenchem, South San Francisco, CA) preparative high-performance liquid chromatography yielded a major 45-kD polypeptide as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. 45 refs., 5 figs., 3 tabs.

  17. Effects of Preculturing Conditions on Lag Time and Specific Growth Rate of Enterobacter sakazakii in Reconstituted Powdered Infant Formula

    PubMed Central

    Kandhai, M. C.; Reij, M. W.; Grognou, C.; van Schothorst, M.; Gorris, L. G. M.; Zwietering, M. H.

    2006-01-01

    Enterobacter sakazakii can be present, although in low levels, in dry powdered infant formulae, and it has been linked to cases of meningitis in neonates, especially those born prematurely. In order to prevent illness, product contamination at manufacture and during preparation, as well as growth after reconstitution, must be minimized by appropriate control measures. In this publication, several determinants of the growth of E. sakazakii in reconstituted infant formula are reported. The following key growth parameters were determined: lag time, specific growth rate, and maximum population density. Cells were harvested at different phases of growth and spiked into powdered infant formula. After reconstitution in sterile water, E. sakazakii was able to grow at temperatures between 8 and 47°C. The estimated optimal growth temperature was 39.4°C, whereas the optimal specific growth rate was 2.31 h−1. The effect of temperature on the specific growth rate was described with two secondary growth models. The resulting minimum and maximum temperatures estimated with the secondary Rosso equation were 3.6°C and 47.6°C, respectively. The estimated lag time varied from 83.3 ± 18.7 h at 10°C to 1.73 ± 0.43 h at 37°C and could be described with the hyperbolic model and reciprocal square root relation. Cells harvested at different phases of growth did not exhibit significant differences in either specific growth rate or lag time. Strains did not have different lag times, and lag times were short given that the cells had spent several (3 to 10) days in dry powdered infant formula. The growth rates and lag times at various temperatures obtained in this study may help in calculations of the period for which reconstituted infant formula can be stored at a specific temperature without detrimental impact on health. PMID:16597976

  18. Continued transmission of Pseudomonas aeruginosa from a wash hand basin tap in a critical care unit.

    PubMed

    Garvey, M I; Bradley, C W; Tracey, J; Oppenheim, B

    2016-09-01

    Pseudomonas aeruginosa is an important nosocomial pathogen, colonizing hospital water supplies including taps and sinks. We report a cluster of P. aeruginosa acquisitions during a period of five months from tap water to patients occupying the same burns single room in a critical care unit. Pseudomonas aeruginosa cultured from clinical isolates from four different patients was indistinguishable from water strains by pulsed-field gel electrophoresis. Water outlets in critical care may be a source of P. aeruginosa despite following the national guidance, and updated guidance and improved control measures are needed to reduce the risks of transmission to patients. PMID:27249962

  19. Quorum-sensing-regulated virulence factors in Pseudomonas aeruginosa are toxic to Lucilia sericata maggots

    PubMed Central

    Andersen, A. S.; Joergensen, B.; Bjarnsholt, T.; Johansen, H.; Karlsmark, T.; Givskov, M.; Krogfelt, K. A.

    2010-01-01

    Maggot debridement therapy (MDT) is widely used for debridement of chronic infected wounds; however, for wounds harbouring specific bacteria limited effect or failure of the treatment has been described. Here we studied the survival of Lucilia sericata maggots encountering Pseudomonas aeruginosa PAO1 in a simple assay with emphasis on the quorum-sensing (QS)-regulated virulence. The maggots were challenged with GFP-tagged P. aeruginosa wild-type (WT) PAO1 and a GFP-tagged P. aeruginosa ΔlasR rhlR (ΔRR) QS-deficient mutant in different concentrations. Maggots were killed in the presence of WT PAO1 whereas the challenge with the QS mutant showed a survival reduction of ∼25 % compared to negative controls. Furthermore, bacterial intake by the maggots was lower in the presence of WT PAO1 compared to the PAO1 ΔRR mutant. Maggot excretions/secretions (ES) were assayed for the presence of QS inhibitors; only high doses of ES showed inhibition of QS in P. aeruginosa. Thus P. aeruginosa was shown to be toxic to L. sericata maggots. This, coupled to the preferential feeding by the maggots and reduced ingestion of P. aeruginosa, could explain MDT failure in wounds colonized by P. aeruginosa. Wounds heavily colonized with P. aeruginosa should be a counterindication for MDT unless used in combination with a pre-treatment with other topical therapeutics targeting P. aeruginosa. PMID:19892758

  20. Inactivation of Microcystis aeruginosa using dielectric barrier discharge low-temperature plasma

    NASA Astrophysics Data System (ADS)

    Pu, Sichuan; Chen, Jierong; Wang, Gang; Li, Xiaoyong; Ma, Yun

    2013-05-01

    The efficiency of Microcystis aeruginosa plasma inactivation was investigated using dielectric barrier discharge low-temperature plasma. The inactivation efficiency was characterized in terms of optical density. The influence of electrical and physicochemical parameters on M. aeruginosa inactivation was studied to determine the optimal experimental conditions. The influence of active species was studied. The proliferation of the M. aeruginosa cells was significantly decreased under plasma exposure. The morphologic changes in M. aeruginosa were characterized under scanning electron microscopy. These results suggest that the low-temperature plasma technology is a promising method for water pollution control.

  1. Functional characterization of macrophage receptors for in vitro phagocytosis of unopsonized Pseudomonas aeruginosa.

    PubMed Central

    Speert, D P; Wright, S D; Silverstein, S C; Mah, B

    1988-01-01

    The phagocytic receptor for unopsonized Pseudomonas aeruginosa was characterized functionally using human monocyte-derived macrophages. Freshly isolated human peripheral blood monocytes were unable to ingest unopsonized P. aeruginosa; ingestion did not occur until the cells had been in culture for 2 d and it became maximal after 4 d. Macrophages plated on coverslips derivatized with anti-BSA IgG or with human gamma-globulin lost the capacity to phagocytose unopsonized P. aeruginosa, unopsonized zymosan, and EIgG but bound C3bi-coated erythrocytes normally. Each of the four human IgG subclasses and Fc fragments of anti-BSA IgG inhibited phagocytosis of both unopsonized P. aeruginosa and EIgG. Phagocytosis of P. aeruginosa and zymosan was markedly impaired and EIgG minimally inhibited if macrophages were plated on coverslips derivatized with mannan or when mannan was added to the phagocytosis buffer. Phagocytosis of P. aeruginosa and zymosan, and binding of EC3bi was dependent on the presence of divalent cations, but phagocytosis of EIgG was not. The macrophage phagocytic receptor for unopsonized P. aeruginosa was inactivated by proteolytic enzymes. Phagocytosis of P. aeruginosa was inhibited by D-mannose, L-fucose, and alpha methyl mannoside, but not by L-mannose, D-fucose, or D-glucose. The same sugars inhibited phagocytosis of unopsonized zymosan. We conclude that phagocytosis of unopsonized P. aeruginosa by human monocyte-derived macrophages is facilitated by mannose receptors. Images PMID:3138287

  2. Inactivation of Microcystis aeruginosa using dielectric barrier discharge low-temperature plasma

    SciTech Connect

    Pu, Sichuan; Chen, Jierong; Wang, Gang; Li, Xiaoyong; Ma, Yun

    2013-05-13

    The efficiency of Microcystis aeruginosa plasma inactivation was investigated using dielectric barrier discharge low-temperature plasma. The inactivation efficiency was characterized in terms of optical density. The influence of electrical and physicochemical parameters on M. aeruginosa inactivation was studied to determine the optimal experimental conditions. The influence of active species was studied. The proliferation of the M. aeruginosa cells was significantly decreased under plasma exposure. The morphologic changes in M. aeruginosa were characterized under scanning electron microscopy. These results suggest that the low-temperature plasma technology is a promising method for water pollution control.

  3. Pseudomonas aeruginosa forms Biofilms in Acute InfectionIndependent of Cell-to-Cell Signaling

    SciTech Connect

    Schaber, J. Andy; Triffo, W.J.; Suh, Sang J.; Oliver, Jeffrey W.; Hastert, Mary C.; Griswold, John A.; Auer, Manfred; Hamood, Abdul N.; Rumbaugh, Kendra P.

    2006-09-20

    Biofilms are bacterial communities residing within a polysaccharide matrix that are associated with persistence and antibiotic resistance in chronic infections. We show that the opportunistic pathogen Pseudomonas aeruginosa forms biofilms within 8 hours of infection in thermally-injured mice, demonstrating that biofilms contribute to bacterial colonization in acute infections. P. aeruginosa biofilms were visualized within burned tissue surrounding blood vessels and adipose cells. Although quorum sensing (QS), a bacterial signaling mechanism, coordinates differentiation of biofilms in vitro, wild type and QS-deficient P. aeruginosa formed similar biofilms in vivo. Our findings demonstrate that P. aeruginosa forms biofilms on specific host tissues independent of QS.

  4. Antibiofilm activity of Streptomyces sp. BFI 230 and Kribbella sp. BFI 1562 against Pseudomonas aeruginosa.

    PubMed

    Kim, Yong-Guy; Lee, Jin-Hyung; Kim, Chang-Jin; Lee, Jae-Chan; Ju, Yoon Jung; Cho, Moo Hwan; Lee, Jintae

    2012-12-01

    Members of the actinomycetes family are a rich source of bioactive compounds including diverse antibiotics. This study sought to identify novel and non-toxic biofilm inhibitors from the actinomycetes library for reducing the biofilm formation of Pseudomonas aeruginosa PAO1. After the screening of 4104 actinomycetes strains, we found that the culture spent medium (1 %, v/v) of Streptomyces sp. BFI 230 and Kribbella sp. BFI 1562 inhibited P. aeruginosa biofilm formation by 90 % without affecting the growth of planktonic P. aeruginosa cells, while the spent media enhanced the swarming motility of P. aeruginosa. Global transcriptome analyses revealed that the spent medium of Streptomyces sp. BFI 230 induced expression of phenazine, pyoverdine, pyochelin synthesis genes, and iron uptake genes in P. aeruginosa. The addition of exogenous iron restored the biofilm formation and swarming motility of P. aeruginosa in the presence of the spent medium of Streptomyces sp. BFI 230, which suggests that the Streptomyces sp. BFI 230 strain interfered iron acquisition in P. aeruginosa. Experiments on solvent extraction, heat treatment, and proteinase K treatment suggested that hydrophilic compound(s), possibly extracellular peptides or proteins from Streptomyces sp. BFI 230 cause the biofilm reduction of P. aeruginosa. Together, this study indicates that actinomycetes strains have an ability to control the biofilm of P. aeruginosa. PMID:22722911

  5. Evolutionary insight from whole-genome sequencing of Pseudomonas aeruginosa from cystic fibrosis patients.

    PubMed

    Marvig, Rasmus Lykke; Sommer, Lea M; Jelsbak, Lars; Molin, Søren; Johansen, Helle Krogh

    2015-01-01

    The opportunistic pathogen Pseudomonas aeruginosa causes chronic airway infections in patients with cystic fibrosis (CF), and it is directly associated with the morbidity and mortality connected with this disease. The ability of P. aeruginosa to establish chronic infections in CF patients is suggested to be due to the large genetic repertoire of P. aeruginosa and its ability to genetically adapt to the host environment. Here, we review the recent work that has applied whole-genome sequencing to understand P. aeruginosa population genomics, within-host microevolution and diversity, mutational mechanisms, genetic adaptation and transmission events. Finally, we summarize the advances in relation to medical applications and laboratory evolution experiments. PMID:25865196

  6. Sustained activity and spectrum of selected extended-spectrum beta-lactams (carbapenems and cefepime) against Enterobacter spp. and ESBL-producing Klebsiella spp.: report from the SENTRY antimicrobial surveillance program (USA, 1997-2000).

    PubMed

    Jones, Ronald N; Biedenbach, Douglas J; Gales, Ana C

    2003-01-01

    Enterobacter spp. and Klebsiella spp. are important clinical pathogens that frequently exhibit resistance to third-generation cephalosporins. In Enterobacter spp. strains, resistance is usually due to derepression of the Amp C locus, whereas plasmid-encoded extended-spectrum beta-lactamases (ESBLs) are primarily responsible for resistance in Klebsiella spp. Here we report the results from the SENTRY Antimicrobial Surveillance Program concerning the rates and trends of resistance to extended-spectrum beta-lactams and other antimicrobial agents in Enterobacter spp. and Klebsiella spp. isolated between 1997 and 2000 in participating hospitals in the United States. Among Enterobacter spp., resistance (MIC>or=32 mg/l) to aztreonam, ceftazidime and ceftriaxone ranged from 12.3 to 21.2% over the 4 years, whereas resistance in Klebsiella (MIC>or=2 mg/l) ranged from 5.9 to 6.8%. There was no trend toward increased resistance to these beta-lactam agents over the monitored period. Carbapenems (imipenem, meropenem) and cefepime had excellent activity against both ceftazidime-susceptible and -resistant Enterobacter spp. and Klebsiella spp. (>99% susceptible), although the minimum inhibitory concentration values of cefepime were higher in ceftazidime-resistant isolates compared with ceftazidime-susceptible isolates. Co-resistance to other antimicrobial agents was common in both tested genus groups. PMID:12507831

  7. Effect of Human Burn Wound Exudate on Pseudomonas aeruginosa Virulence.

    PubMed

    Gonzalez, Manuel R; Fleuchot, Betty; Lauciello, Leonardo; Jafari, Paris; Applegate, Lee Ann; Raffoul, Wassim; Que, Yok-Ai; Perron, Karl

    2016-01-01

    Burn wound sepsis is currently the main cause of morbidity and mortality after burn trauma. Infections by notorious pathogens such as Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii impair patient recovery and can even lead to fatality. In this study, we investigated the effect of burn wound exudates (BWEs) on the virulence of those pathogens. BWEs were collected within 7 days after burn trauma from 5 burn patients. We first monitored their effect on pathogen growth. In contrast to A. baumannii and S. aureus, P. aeruginosa was the only pathogen able to grow within these human fluids. Expression of typical virulence factors such as pyocyanin and pyoverdine was even enhanced compared the levels seen with standard laboratory medium. A detailed chemical composition analysis of BWE was performed, which enabled us to determine the major components of BWE and underline the metabolic modifications induced by burn trauma. These data are essential for the development of an artificial medium mimicking the burn wound environment and the establishment of an in vitro system to analyze the initial steps of burn wound infections. IMPORTANCE Microbial infection of severe burn wounds is currently a major medical challenge. Of the infections by bacteria able to colonize such injuries, those by Pseudomonas aeruginosa are among the most severe, causing major delays in burn patient recovery or leading to fatal issues. In this study, we investigated the growth properties of several burn wound pathogens in biological fluids secreted from human burn wounds. We found that P. aeruginosa strains were able to proliferate but not those of the other pathogens tested. In addition, burn wound exudates (BWEs) stimulate the expression of virulence factors in P. aeruginosa. The chemical composition analysis of BWEs enabled us to determine the major components of these fluids. These data are essential for the development of an artificial medium mimicking the burn wound

  8. Effect of Human Burn Wound Exudate on Pseudomonas aeruginosa Virulence

    PubMed Central

    Gonzalez, Manuel R.; Fleuchot, Betty; Lauciello, Leonardo; Jafari, Paris; Applegate, Lee Ann; Raffoul, Wassim; Que, Yok-Ai

    2016-01-01

    ABSTRACT Burn wound sepsis is currently the main cause of morbidity and mortality after burn trauma. Infections by notorious pathogens such as Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii impair patient recovery and can even lead to fatality. In this study, we investigated the effect of burn wound exudates (BWEs) on the virulence of those pathogens. BWEs were collected within 7 days after burn trauma from 5 burn patients. We first monitored their effect on pathogen growth. In contrast to A. baumannii and S. aureus, P. aeruginosa was the only pathogen able to grow within these human fluids. Expression of typical virulence factors such as pyocyanin and pyoverdine was even enhanced compared the levels seen with standard laboratory medium. A detailed chemical composition analysis of BWE was performed, which enabled us to determine the major components of BWE and underline the metabolic modifications induced by burn trauma. These data are essential for the development of an artificial medium mimicking the burn wound environment and the establishment of an in vitro system to analyze the initial steps of burn wound infections. IMPORTANCE Microbial infection of severe burn wounds is currently a major medical challenge. Of the infections by bacteria able to colonize such injuries, those by Pseudomonas aeruginosa are among the most severe, causing major delays in burn patient recovery or leading to fatal issues. In this study, we investigated the growth properties of several burn wound pathogens in biological fluids secreted from human burn wounds. We found that P. aeruginosa strains were able to proliferate but not those of the other pathogens tested. In addition, burn wound exudates (BWEs) stimulate the expression of virulence factors in P. aeruginosa. The chemical composition analysis of BWEs enabled us to determine the major components of these fluids. These data are essential for the development of an artificial medium mimicking the

  9. Tigemonam, an oral monobactam.

    PubMed Central

    Chin, N X; Neu, H C

    1988-01-01

    Tigemonam is an orally administered monobactam. At less than or equal to 1 microgram/ml it inhibited the majority of strains of Escherichia coli, Klebsiella spp., Enterobacter aerogenes, Citrobacter diversus, Proteus spp., Providencia spp., Aeromonas hydrophila, Salmonella spp., Shigella spp., Serratia marcescens, and Yersinia enterocolitica. At less than or equal to 0.25 microgram/ml it inhibited Haemophilus spp., Neisseria spp., and Branhamella catarrhalis. It did not inhibit Pseudomonas spp. or Acinetobacter spp. Tigemonam was more active than cephalexin and amoxicillin-clavulanate and inhibited many members of the family Enterobacteriaceae resistant to trimethoprim-sulfamethoxazole and gentamicin. Some Enterobacter cloacae and Citrobacter freundii strains resistant to aminothiazole iminomethoxy cephalosporins and aztreonam were resistant to tigemonam. The MIC for 90% of hemolytic streptococci of groups A, B, and C and for Streptococcus pneumoniae was 16 micrograms/ml, but the MIC for 90% of enterococci, Listeria spp., Bacteroides spp., and viridans group streptococci was greater than 64 micrograms/ml. Tigemonam was not hydrolyzed by the common plasmid beta-lactamases such as TEM-1 and SHV-1 or by the chromosomal beta-lactamases of Enterobacter, Morganella, Pseudomonas, and Bacteroides spp. Tigemonam inhibited beta-lactamases of E. cloacae and Pseudomonas aeruginosa but did not induce beta-lactamases. The growth medium had a minimal effect on the in vitro activity of tigemonam, and there was a close agreement between the MICs and MBCs. PMID:3279906

  10. [Utility of pyrrolidonyl-arylamidase detection for typing Enterobacteriaceae and non-fermenting Gram-negative bacteria].

    PubMed

    Nicola, F; Centorbi, H; Bantar, C; Smayevsky, J; Bianchini, H

    1995-01-01

    Detection of pyrrolidonyl-aryl-amidase activity (PYR) is an important tool to identify gram-positive cocci, such as staphylococci, enterococci, streptococci, and other related genera. However, only few studies evaluating its usefulness with gram-negative rods have been published. Thus, a prospective study including 542 and 215 unique clinical isolates of Enterobacteriaceae and non-fermentative gram-negative rods, respectively, was undertaken. Strains were identified by conventional methods. PYR test was performed using a commercial kit, according to the manufacturer recommendations. Positive results were uniformly obtained for the PYR test with the following species: Citrobacter spp, Klebsiella spp, Enterobacter aerogenes, Enterobacter agglomerans group, Serratia marcescens and S. odorifera. On the other hand, negative results were uniformly displayed by E. coli (including inactive E. coli), Protease group, Salmonellia spp, Shigella spp, Acinetobacter spp, Burkholderia (Pseudomonas) cepacia and Flavobacterium spp. Variable results were shown in Pseudomonas aeruginosa, Stenotrophomonas (xanthomonas) malthophilia, Kluyvera cryocrescens, and Enterobacter cloacae. PYR test proved to be a reliable and simple tool to rapidly distinguish certain species belonging to Enterobacteriaceae (ie. Citrobacter freundii from Salmonella spp, and inactive E. coli from K. ozaenae). Further studies, including a wide diversity of species, are required to assess usefulness of the PYR test for the identification of non-fermentative gram-negative rods. PMID:8850133

  11. Klebsiella aerogenes urease gene cluster: sequence of ureD and demonstration that four accessory genes (ureD, ureE, ureF, and ureG) are involved in nickel metallocenter biosynthesis.

    PubMed

    Lee, M H; Mulrooney, S B; Renner, M J; Markowicz, Y; Hausinger, R P

    1992-07-01

    The region located immediately upstream from the Klebsiella aerogenes urease structural genes was sequenced and shown to possess an open reading frame capable of encoding a 29.8-kDa peptide. Deletions were generated in this gene, denoted ureD, and in each of the genes (ureE, ureF, and ureG) located immediately downstream of the three structural genes. Transformation of the mutated plasmids into Escherichia coli resulted in high levels of urease expression, but the enzyme was inactive (deletions in ureD, ureF, or ureG) or only partially active (deletions in ureE). Ureases were purified from the recombinant cells and shown to be identical to control enzyme when analyzed by gel filtration chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis; however, in every case the activity levels correlated to nickel contents as analyzed by atomic absorption analysis. UreD, UreE, UreF, and UreG peptides were tentatively identified by gel electrophoretic comparison of mutant and control cell extracts, by in vivo expression of separately cloned genes, or by in vitro transcription-translation analyses; the assignments were confirmed for UreE and UreG by amino-terminal sequencing. The latter peptides (apparent M(r)s, 23,900 and 28,500) were present at high levels comparable to those of the urease subunits, whereas the amounts of UreF (apparent M(r), 27,000) and UreD (apparent M(r), 29,300) were greatly reduced, perhaps because of the lack of good ribosome binding sites in the regions upstream of these open reading frames. These results demonstrate that all four accessory genes are necessary for the functional incorporation of the urease metallocenter. PMID:1624427

  12. IAA Producing Enterobacter sp. I-3 as a Potent Bio-herbicide Candidate for Weed Control: A Special Reference with Lettuce Growth Inhibition.

    PubMed

    Park, Jae-Man; Radhakrishnan, Ramalingam; Kang, Sang-Mo; Lee, In-Jung

    2015-06-01

    Development of bio-herbicides is an emerging method to weed management in agricultural field. Very few studies were conducted on identification of microbial bio-herbicides to weed control. The present study was aimed to isolate and identify the effective bio-herbicide potential bacterium from soil and assess their role on plant growth inhibition. Three-hundred and one rhizobacteria were isolated from agriculture field soil samples collected from various parts of Republic of Korea. Two bacterial strains, I-4-5 and I-3 were significantly reduced the seedling growth of radish when compared to their controls. The highest rate of seedling growth inhibition was observed in I-3 bacterial isolate treatment in lettuce and radish. The mechanism of an effective bio-herbicide I-3 to plant growth inhibition was determined by analyzing IAA in their culture medium. IAA biosynthesis pathway of Enterobacter sp. I-3 was identified as tryptophan-dependent pathway and its production was increased due to addition of tryptophan in culture medium as quantified by using GC-MS SIM. In an in vitro study revealed that I-3 bacterial culture exudate combined with tryptophan significantly decreased leaf length, leaf width, root length and increased the number of lateral roots of lettuce. Indeed, the genomic DNA of I-3 bacterium was isolated and 16S rDNA was sequenced to find out the name of the bacterium. Based on phylogenetic analysis, I-3 isolate was identified and named into Enterobacter sp. I-3. The results of this study suggest that the utilization of Enterobacter sp. I-3 to crop field can be act as a potential bio-herbicide against weed growth. PMID:25805908

  13. [Yearly changes in antibacterial activities of cefozopran against various clinical isolates between 1996 and 2001--II. Gram-negative bacteria].

    PubMed

    Suzuki, Yumiko; Nishinari, Chisato; Endo, Harumi; Hiramatsu, Nobuyoshi; Akiyama, Kazumitsu; Koyama, Tsuneo

    2003-08-01

    The in vitro antibacterial activities of cefozopran (CZOP), an agent of cephems, against various clinical isolates obtained between 1996 and 2001 were yearly evaluated and compared with those of other cephems, oxacephems and carbapenems. A total of 3,245 strains in 32 species of Gram-negative bacteria were isolated from the clinical materials annually collected from January to December, and consisted of Moraxella subgenus Branhamella catarrhalis, Escherichia coli, Citrobacter freundii, Citrobacter koseri, Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter aerogenes, Enterobacter cloacae, Serratia marcescens, Proteus mirabillis, Proteus vulgaris, Morganella morganii, Providencia spp. (P. alcalifaciens, P. rettgeri, P. stuartii), Pseudomonas aeruginosa, Pseudomonas putida, Burkholderia cepacia, Stenotrophomonas maltophilia, Haemophilus influenzae, Acinetobactor baumannii, Acinetobactor lwoffii, Bacteroides fragilis group (B. fragilis, B. vulgatus, B. distasonis, B. ovatus, B. thetaiotaomicron), and Prevotella spp. (P. melaninogenica, P. intermedia, P. bivia, P. oralis, P. denticola). CZOP possessed stable antibacterial activities against M. (B.) catarrhalis, E. coli, C. freundii, C. koseri, K. pneumoniae, K. oxytoca, E. aerogenes, E. cloacae, S. marcescens, P. mirabilis, P. vulgaris, M. morganii, Providencia spp., P. aeruginosa, and A. lwoffii throughout 6 years. The MIC90 of CZOP against those strains were consistent with those obtained from the studies performed until the new drug application approval. On the other hand, the MIC90 of CZOP against H. influenzae yearly obviously increased with approximately 64-time difference during the study period. The MIC90 of cefpirome, cefepime, and flomoxef against H. influenzae also yearly tended to rise. The present results demonstrated that CZOP had maintained the antibacterial activity against almost Gram-negative strains tested. However, the decrease in antibacterial activities of CZOP against B. cepacia, and H

  14. Detection and Characterization of VIM-31, a New Variant of VIM-2 with Tyr224His and His252Arg Mutations, in a Clinical Isolate of Enterobacter cloacae

    PubMed Central

    Bebrone, Carine; Huang, Te-Din; Bouchahrouf, Warda; DeGheldre, Yves; Deplano, Ariane; Hoffmann, Kurt; Glupczynski, Youri

    2012-01-01

    We report the first description of the metallo-β-lactamase VIM-31, a new variant of VIM-2 with Tyr224His and His252Arg mutations, in Enterobacter cloacae 11236, which was isolated from blood specimens of a patient with colonic adenocarcinoma in Belgium. blaVIM-31 was found on a class 1 integron located on a self-transferable but not typeable 42-kb plasmid. Compared to values published elsewhere for VIM-2, the purified VIM-31 enzyme showed weaker catalytic efficiency against all the tested beta-lactam agents (except for ertapenem), resulting from lower kcat (except for ertapenem) and higher Km values for VIM-31. PMID:22391550

  15. Tuberculose de l’épaule masquée par une infection concomitante à enterobacter cloacae: à propos d'un cas

    PubMed Central

    Gbané-Koné, Mariam; Koné, Samba; Ouali, Boubacar; Djaha, Kouassi Jean-Mermoz; Diomandé, Mohamed; Eti, Edmond; Touré, Stanislas André; Kouakou, N'zué Marcel

    2015-01-01

    La tuberculose de l’épaule est une localisation rare de même que l'arthrite septique à Enterobacter cloacae, les auteurs rapportent un cas d'ostéoarthrite de l’épaule à Bacille de Koch et à E. Cloacae chez une patiente de 36 ans avec un terrain particulier (drépanocytose SC et infection à VIH). Le diagnostic a été possible grâce aux prélèvements chirurgicaux effectués lors de l'arthrotomie PMID:26401203

  16. Coproduction of KPC-18 and VIM-1 Carbapenemases by Enterobacter cloacae: Implications for Newer β-Lactam-β-Lactamase Inhibitor Combinations.

    PubMed

    Thomson, Gina K; Snyder, James W; McElheny, Christi L; Thomson, Kenneth S; Doi, Yohei

    2016-03-01

    Enterobacter cloacae strain G6809 with reduced susceptibility to carbapenems was identified from a patient in a long-term acute care hospital in Kentucky. G6809 belonged to sequence type (ST) 88 and carried two carbapenemase genes, bla(KPC-18) and bla(VIM-1). Whole-genome sequencing localized bla(KPC-18) to the chromosome and bla(VIM-1) to a 58-kb plasmid. The strain was highly resistant to ceftazidime-avibactam. Insidious coproduction of metallo-β-lactamase with KPC-type carbapenemase has implications for the use of next-generation β-lactam-β-lactamase inhibitor combinations. PMID:26719440

  17. Pseudomonas aeruginosa acquisition on an intensive care unit: relationship between antibiotic selective pressure and patients' environment

    PubMed Central

    2011-01-01

    Introduction The purpose of this study was to investigate the relationship among Pseudomonas aeruginosa acquisition on the intensive care unit (ICU), environmental contamination and antibiotic selective pressure against P. aeruginosa. Methods An open, prospective cohort study was carried out in a 16-bed medical ICU where P. aeruginosa was endemic. Over a six-month period, all patients without P. aeruginosa on admission and with a length of stay >72 h were included. Throat, nasal, rectal, sputum and urine samples were taken on admission and at weekly intervals and screened for P. aeruginosa. All antibiotic treatments were recorded daily. Environmental analysis included weekly tap water specimen culture and the presence of other patients colonized with P. aeruginosa. Results A total of 126 patients were included, comprising 1,345 patient-days. Antibiotics were given to 106 patients (antibiotic selective pressure for P. aeruginosa in 39). P. aeruginosa was acquired by 20 patients (16%) and was isolated from 164/536 environmental samples (31%). Two conditions were independently associated with P. aeruginosa acquisition by multivariate analysis: (i) patients receiving ≥3 days of antibiotic selective pressure together with at least one colonized patient on the same ward on the previous day (odds ratio (OR) = 10.3 ((% confidence interval (CI): 1.8 to 57.4); P = 0.01); and (ii) presence of an invasive device (OR = 7.7 (95% CI: 2.3 to 25.7); P = 0.001). Conclusions Specific interaction between both patient colonization pressure and selective antibiotic pressure is the most relevant factor for P. aeruginosa acquisition on an ICU. This suggests that combined efforts are needed against both factors to decrease colonization with P. aeruginosa. PMID:21306623

  18. Cooperative pathogenicity in cystic fibrosis: Stenotrophomonas maltophilia modulates Pseudomonas aeruginosa virulence in mixed biofilm

    PubMed Central

    Pompilio, Arianna; Crocetta, Valentina; De Nicola, Serena; Verginelli, Fabio; Fiscarelli, Ersilia; Di Bonaventura, Giovanni

    2015-01-01

    The present study was undertaken in order to understand more about the interaction occurring between S. maltophilia and P. aeruginosa, which are frequently co-isolated from CF airways. For this purpose, S. maltophilia RR7 and P. aeruginosa RR8 strains, co-isolated from the lung of a chronically infected CF patient during a pulmonary exacerbation episode, were evaluated for reciprocal effect during planktonic growth, adhesion and biofilm formation onto both polystyrene and CF bronchial cell monolayer, motility, as well as for gene expression in mixed biofilms. P. aeruginosa significantly affected S. maltophilia growth in both planktonic and biofilm cultures, due to an inhibitory activity probably requiring direct contact. Conversely, no effect was observed on P. aeruginosa by S. maltophilia. Compared with monocultures, the adhesiveness of P. aeruginosa on CFBE41o- cells was significantly reduced by S. maltophilia, which probably acts by reducing P. aeruginosa's swimming motility. An opposite trend was observed for biofilm formation, confirming the findings obtained using polystyrene. When grown in mixed biofilm with S. maltophilia, P. aeruginosa significantly over-expressed aprA, and algD—codifying for protease and alginate, respectively—while the quorum sensing related rhlR and lasI genes were down-regulated. The induced alginate expression by P. aeruginosa might be responsible for the protection of S. maltophilia against tobramycin activity we observed in mixed biofilms. Taken together, our results suggest that the existence of reciprocal interference of S. maltophilia and P. aeruginosa in CF lung is plausible. In particular, S. maltophilia might confer some selective “fitness advantage” to P. aeruginosa under the specific conditions of chronic infection or, alternatively, increase the virulence of P. aeruginosa thus leading to pulmonary exacerbation. PMID:26441885

  19. Candida albicans Inhibits Pseudomonas aeruginosa Virulence through Suppression of Pyochelin and Pyoverdine Biosynthesis.

    PubMed

    Lopez-Medina, Eduardo; Fan, Di; Coughlin, Laura A; Ho, Evi X; Lamont, Iain L; Reimmann, Cornelia; Hooper, Lora V; Koh, Andrew Y

    2015-08-01

    Bacterial-fungal interactions have important physiologic and medical ramifications, but the mechanisms of these interactions are poorly understood. The gut is host to trillions of microorganisms, and bacterial-fungal interactions are likely to be important. Using a neutropenic mouse model of microbial gastrointestinal colonization and dissemination, we show that the fungus Candida albicans inhibits the virulence of the bacterium Pseudomonas aeruginosa by inhibiting P. aeruginosa pyochelin and pyoverdine gene expression, which plays a critical role in iron acquisition and virulence. Accordingly, deletion of both P. aeruginosa pyochelin and pyoverdine genes attenuates P. aeruginosa virulence. Heat-killed C. albicans has no effect on P. aeruginosa, whereas C. albicans secreted proteins directly suppress P. aeruginosa pyoverdine and pyochelin expression and inhibit P. aeruginosa virulence in mice. Interestingly, suppression or deletion of pyochelin and pyoverdine genes has no effect on P. aeruginosa's ability to colonize the GI tract but does decrease P. aeruginosa's cytotoxic effect on cultured colonocytes. Finally, oral iron supplementation restores P. aeruginosa virulence in P. aeruginosa and C. albicans colonized mice. Together, our findings provide insight into how a bacterial-fungal interaction can modulate bacterial virulence in the intestine. Previously described bacterial-fungal antagonistic interactions have focused on growth inhibition or colonization inhibition/modulation, yet here we describe a novel observation of fungal-inhibition of bacterial effectors critical for virulence but not important for colonization. These findings validate the use of a mammalian model system to explore the complexities of polymicrobial, polykingdom infections in order to identify new therapeutic targets for preventing microbial disease. PMID:26313907

  20. [Susceptibilities of clinical bacterial isolates to antimicrobial agents. A study mainly focused on imipenem. Reported by the Research Group for Testing Imipenem Susceptibility on Clinical Isolates].

    PubMed

    Igari, J

    1990-11-01

    This study was conducted to investigate susceptibilities of clinical bacterial isolates to imipenem (IPM) and other antibacterial agents at 64 hospital laboratories throughout Japan from September to December of 1988. In this study, identification and susceptibility testing were carried out at each laboratory and the tests were performed according to the disk dilution method recommended by NCCLS in which susceptibilities are classified into "S", "MS", "I" and "R". IPM showed markedly high in vitro activities against Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus agalactiae, Enterococcus faecalis, Haemophilus influenzae, Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter aerogenes, Enterobacter cloacae, Serratia marcescens, Salmonella spp., Citrobacter freundii, Proteus mirabilis, Proteus vulgaris, Morganella morganii, Providencia rettgeri, Providencia stuartii, Acinetobacter calcoaceticus, Moraxella (Branhamella) catarrhalis, Alcaligenes spp., Peptococcus spp./Peptostreptococcus spp., Bacteroides fragilis and Bacteroides spp. IPM also had strong activities against Achromobacter xylosoxidans and Pseudomonas aeruginosa, but less active against Flavobacterium spp., E. faecium, coagulase-negative staphylococci (CNS), Staphylococcus aureus and Pseudomonas cepacia. In a study in which activities of IPM against bacteria isolated from different clinical sources were compared, differences in susceptibilities were observed among S. aureus, CNS, A. calcoaceticus and P. aeruginosa, but such differences were not apparent among S. pneumoniae, E. faecalis, H. influenzae, E. coli, K. pneumoniae, E. cloacae, C. freundii, S. marcescens or P. mirabilis. PMID:2287060

  1. [Susceptibilities of clinical bacterial isolates to antimicrobial agents. A study mainly focused on imipenem. Research Group for Testing Imipenem Susceptibility on Clinical Isolates].

    PubMed

    Igari, J

    1990-10-01

    We investigated susceptibilities of clinical bacterial isolates to imipenem (IPM) and other antimicrobial agents at 459 hospital laboratories throughout Japan from September to December of 1988. In this study, identification and susceptibility testing were performed at each hospital laboratory and the tests were carried out according to the 1-dilution or 3-dilution disc technique in which susceptibilities are classified into 4 grades: , ++, + and -. IPM had significantly high activity against Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus agalactiae, Neisseria gonorrhoeae, Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter aerogenes, Enterobacter cloacae, Salmonella spp., Citrobacter freundii, Proteus mirabilis, Providencia rettgeri, Acinetobacter calcoaceticus, Moraxella catarrhalis, Alcaligenes spp., Peptococcus spp./Peptostreptococcus spp., Bacteroides fragilis and Bacteroides spp. and should slightly lower activities on coagulase-negative staphylococci (CNS), Enterococcus faecalis, Haemophilus influenzae, Serratia marcescens, Proteus vulgaris, Providencia stuartii and Pseudomonas aeruginosa than on the above mentioned bacteria. In a comparative study on activities of IPM against bacteria from different clinical sources, no remarkable differences were found due to different sources among S. pneumoniae, E. faecalis, H. influenzae, E. coli, K. pneumoniae, E. cloacae, C. freundii, P. mirabilis or A. calcoaceticus, whereas slight differences were found among Staphylococcus aureus, CNS, S. marcescens and P. aeruginosa. PMID:2086814

  2. Enterobacter sakazakii in dried infant formulas and milk kitchens of maternity wards in São Paulo, Brazil.

    PubMed

    Palcich, Gabriela; Gillio, Cintia de Moraes; Aragon-Alegro, Lina Casale; Pagotto, Franco J; Farber, Jeffrey M; Landgraf, Mariza; Destro, Maria Teresa

    2009-01-01

    This study was the first conducted in Brazil to evaluate the presence of Enterobacter sakazakii in milk-based powdered infant formula manufactured for infants 0 to 6 months of age and to examine the conditions of formula preparation and service in three hospitals in São Paulo State, Brazil. Samples of dried and rehydrated infant formula, environments of milk kitchens, water, bottles and nipples, utensils, and hands of personnel were analyzed, and E. sakazakii and Enterobacteriaceae populations were determined. All samples of powdered infant formula purchased at retail contained E. sakazakii at <0.3 [corrected] most probable number (MPN)/100 g. In hospital samples, E. sakazakii was found in one unopened formula can (0.3 MPN/100 g) and in the residue from one nursing bottle from hospital A. All other cans of formula from the same lot bought at a retail store contained E. sakazakii at <0.3 [corrected] MPN/100 g. The pathogen also was found in one cleaning sponge from hospital B. Enterobacteriaceae populations ranged from 10(1) to 10(5) CFU/g in cleaning aids and <5 CFU/g in all formula types (dry or rehydrated), except for the sample that contained E. sakazakii, which also was contaminated with Enterobacteriaceae at 5 CFU/g. E. sakazakii isolates were not genetically related. In an experiment in which rehydrated formula was used as the growth medium, the temperature was that of the neonatal intensive care unit (25 degrees C), and the incubation time was the average time that formula is left at room temperature while feeding the babies (up to 4 h), a 2-log increase in levels of E. sakazakii was found in the formula. Visual inspection of the facilities revealed that the hygienic conditions in the milk kitchens needed improvement. The length of time that formula is left at room temperature in the different hospitals while the babies in the neonatal intensive care unit are being fed (up to 4 h) may allow for the multiplication of E. sakazakii and thus may lead to an

  3. Expression of Zinc Transporter Genes in Rice as Influenced by Zinc-Solubilizing Enterobacter cloacae Strain ZSB14.

    PubMed

    Krithika, Selvaraj; Balachandar, Dananjeyan

    2016-01-01

    Zinc (Zn) deficiency in major food crops has been considered as an important factor affecting the crop production and subsequently the human health. Rice (Oryza sativa) is sensitive to Zn deficiency and thereby causes malnutrition to most of the rice-eating Asian populations. Application of zinc solubilizing bacteria (ZSB) could be a sustainable agronomic approach to increase the soil available Zn which can mitigate the yield loss and consequently the nutritional quality of rice. Understanding the molecular interactions between rice and unexplored ZSB is useful for overcoming Zn deficiency problems. In the present study, the role of zinc solubilizing bacterial strain Enterobacter cloacae strain ZSB14 on regulation of Zn-regulated transporters and iron (Fe)-regulated transporter-like protein (ZIP) genes in rice under iron sufficient and deficient conditions was assessed by quantitative real-time reverse transcription PCR. The expression patterns of OsZIP1, OsZIP4, and OsZIP5 in root and shoot of rice were altered due to the Zn availability as dictated by Zn sources and ZSB inoculation. Fe sufficiency significantly reduced the root and shoot OsZIP1 expression, but not the OsZIP4 and OsZIP5 levels. Zinc oxide in the growth medium up-regulated all the assessed ZIP genes in root and shoot of rice seedlings. When ZSB was inoculated to rice seedlings grown with insoluble zinc oxide in the growth medium, the expression of root and shoot OsZIP1, OsZIP4, and OsZIP5 was reduced. In the absence of zinc oxide, ZSB inoculation up-regulated OsZIP1 and OsZIP5 expressions. Zinc nutrition provided to the rice seedling through ZSB-bound zinc oxide solubilization was comparable to the soluble zinc sulfate application which was evident through the ZIP genes' expression and the Zn accumulation in root and shoot of rice seedlings. These results demonstrate that ZSB could play a crucial role in zinc fertilization and fortification of rice. PMID:27092162

  4. Expression of Zinc Transporter Genes in Rice as Influenced by Zinc-Solubilizing Enterobacter cloacae Strain ZSB14

    PubMed Central

    Krithika, Selvaraj; Balachandar, Dananjeyan

    2016-01-01

    Zinc (Zn) deficiency in major food crops has been considered as an important factor affecting the crop production and subsequently the human health. Rice (Oryza sativa) is sensitive to Zn deficiency and thereby causes malnutrition to most of the rice-eating Asian populations. Application of zinc solubilizing bacteria (ZSB) could be a sustainable agronomic approach to increase the soil available Zn which can mitigate the yield loss and consequently the nutritional quality of rice. Understanding the molecular interactions between rice and unexplored ZSB is useful for overcoming Zn deficiency problems. In the present study, the role of zinc solubilizing bacterial strain Enterobacter cloacae strain ZSB14 on regulation of Zn-regulated transporters and iron (Fe)-regulated transporter-like protein (ZIP) genes in rice under iron sufficient and deficient conditions was assessed by quantitative real-time reverse transcription PCR. The expression patterns of OsZIP1, OsZIP4, and OsZIP5 in root and shoot of rice were altered due to the Zn availability as dictated by Zn sources and ZSB inoculation. Fe sufficiency significantly reduced the root and shoot OsZIP1 expression, but not the OsZIP4 and OsZIP5 levels. Zinc oxide in the growth medium up-regulated all the assessed ZIP genes in root and shoot of rice seedlings. When ZSB was inoculated to rice seedlings grown with insoluble zinc oxide in the growth medium, the expression of root and shoot OsZIP1, OsZIP4, and OsZIP5 was reduced. In the absence of zinc oxide, ZSB inoculation up-regulated OsZIP1 and OsZIP5 expressions. Zinc nutrition provided to the rice seedling through ZSB-bound zinc oxide solubilization was comparable to the soluble zinc sulfate application which was evident through the ZIP genes’ expression and the Zn accumulation in root and shoot of rice seedlings. These results demonstrate that ZSB could play a crucial role in zinc fertilization and fortification of rice. PMID:27092162

  5. Paerucumarin, a new metabolite produced by the pvc gene cluster from Pseudomonas aeruginosa.

    PubMed

    Clarke-Pearson, Michael F; Brady, Sean F

    2008-10-01

    The pvc gene cluster from Pseudomonas aeruginosa has been linked to the biosynthesis of both the pyoverdine chromophore and pseudoverdine. Our reinvestigation of the role this gene cluster plays in P. aeruginosa secondary metabolite biosynthesis shows that its major product is actually paerucumarin, a novel isonitrile functionalized cumarin. PMID:18689486

  6. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa

    PubMed Central

    Hwang, Sohyun; Kim, Chan Yeong; Ji, Sun-Gou; Go, Junhyeok; Kim, Hanhae; Yang, Sunmo; Kim, Hye Jin; Cho, Ara; Yoon, Sang Sun; Lee, Insuk

    2016-01-01

    Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa. PMID:27194047

  7. Effects of Microcystis aeruginosa on life history of water flea Daphnia magna

    NASA Astrophysics Data System (ADS)

    Liu, Liping; Li, Kang; Chen, Taoying; Dai, Xilin; Jiang, Min; Diana, James S.

    2011-07-01

    Cyanobacterial blooms in eutrophic freshwater systems are a worldwide problem, creating adverse effects for many aquatic organisms by producing toxic microcystins and deteriorating water quality. In this study, microcystins (MCs) in Microcystis aeruginosa, and Daphnia magna exposed to M. aeruginosa, were analyzed by HPLC-MS, and the effects of M. aeruginosa on D. magna were investigated. When D. magna was exposed to M. aeruginosa for more than 2 h, Microcystin-LR (MC-LR) was detected. When exposed to 1.5 × 106, 3 × 106, 0.75 × 107, and 1.5 × 107 cell/mL of M. aeruginosa for 96 h, average survival of D. magna for treatments were 23.33%, 33.33%, 13.33%, 16.67%, respectively, which were significantly lower than the average 100% survival in the control group ( P < 0.05). The adverse effects of M. aeruginosa on body length, time for the first brood, brood numbers, gross fecundity, lifespan, and population growth of D. magna were density-dependent. These results suggest that the occurrence of M. aeruginosa blooms could strongly inhibit the population growth of D. magna through depression of survival, individual growth and gross fecundity. In the most serious situations, M. aeruginosa blooms could undermine the food web by eliminating filter-feeding zooplankton, which would destroy the ecological balance of aquaculture water bodies.

  8. Differential effects of Pseudomonas aeruginosa on biofilm formation by different strains of Staphylococcus epidermidis.

    PubMed

    Pihl, Maria; Davies, Julia R; Chávez de Paz, Luis E; Svensäter, Gunnel

    2010-08-01

    Pseudomonas aeruginosa and Staphylococcus epidermidis are common opportunistic pathogens associated with medical device-related biofilm infections. 16S rRNA-FISH and confocal laser scanning microscopy were used to study these two bacteria in dual-species biofilms. Two of the four S. epidermidis strains used were shown to form biofilms more avidly on polymer surfaces than the other two strains. In dual-species biofilms, the presence of P. aeruginosa reduced biofilm formation by S. epidermidis, although different clinical isolates differed in their susceptibility to this effect. The most resistant isolate coexisted with P. aeruginosa for up to 18 h and was also resistant to the effects of the culture supernatant from P. aeruginosa biofilms, which caused dispersal from established biofilms of other S. epidermidis strains. Thus, different strains of S. epidermidis differed in their capacity to withstand the action of P. aeruginosa, with some being better equipped than others to coexist in biofilms with P. aeruginosa. Our data suggest that where S. epidermidis and P. aeruginosa are present on abiotic surfaces such as medical devices, S. epidermidis biofilm formation can be inhibited by P. aeruginosa through two mechanisms: disruption by extracellular products, possibly polysaccharides, and, in the later stages, by cell lysis. PMID:20528934

  9. The Pseudomonas aeruginosa Pathogenicity Island PAPI-1 is transferred via a novel Type IV pilus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas aeruginosa is a major cause of nosocomial infections, particularly in immunocompromised patients or in individuals with cystic fibrosis. The notable ability of P. aeruginosa to inhabit a broad range of environments including humans is in part due to its large and diverse genomic repertoi...

  10. Effects of sulfate on microcystin production, photosynthesis, and oxidative stress in Microcystis aeruginosa.

    PubMed

    Chen, Lei; Gin, Karina Y H; He, Yiliang

    2016-02-01

    Increasing sulfate in freshwater systems, caused by human activities and climate change, may have negative effects on aquatic organisms. Microcystis aeruginosa (M. aeruginosa) is both a major primary producer and a common toxic cyanobacterium, playing an important role in the aquatic environment. This study first investigated the effects of sulfate on M. aeruginosa. The experiment presented here aims at analyzing the effects of sulfate on physiological indices, molecular levels, and its influencing mechanism. The results of our experiment showed that sulfate (at 40, 80, and 300 mg L(-1)) inhibited M. aeruginosa growth, increased both intracellular and extracellular toxin contents, and enhanced the mcyD transcript level. Sulfate inhibited the photosynthesis of M. aeruginosa, based on the decrease in pigment content and the down-regulation of photosynthesis-related genes after sulfate exposure. Furthermore, sulfate decreased the maximum electron transport rate, causing the cell to accumulate surplus electrons and form reactive oxygen species (ROS). Sulfate also increased the malondialdehyde (MDA) content, which showed that sulfate damaged the cytomembrane. This damage contributed to the release of intracellular toxin to the culture medium. Although sulfate increased superoxide dismutase (SOD) activities, expression of sod, and total antioxidant capacity in M. aeruginosa, it still overwhelmed the antioxidant system since the ROS level simultaneously increased, and finally caused oxidative stress. Our results indicate that sulfate has direct effects on M. aeruginosa, inhibits photosynthesis, causes oxidative stress, increases toxin production, and affects the related genes expression in M. aeruginosa. PMID:26490939

  11. Draft Genome Sequence of a Klebsiella pneumoniae Carbapenemase-Positive Sequence Type 111 Pseudomonas aeruginosa Strain

    PubMed Central

    Dotson, Gabrielle A.; Dekker, John P.; Palmore, Tara N.; Segre, Julia A.

    2016-01-01

    Here, we report the draft genome sequence of a sequence type 111 Pseudomonas aeruginosa strain isolated in 2014 from a patient at the NIH Clinical Center. This P. aeruginosa strain exhibits pan-drug resistance and harbors the blaKPC-2 gene, encoding the Klebsiella pneumoniae carbapenemase enzyme, on a plasmid. PMID:26868386

  12. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa.

    PubMed

    Hwang, Sohyun; Kim, Chan Yeong; Ji, Sun-Gou; Go, Junhyeok; Kim, Hanhae; Yang, Sunmo; Kim, Hye Jin; Cho, Ara; Yoon, Sang Sun; Lee, Insuk

    2016-01-01

    Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa. PMID:27194047

  13. Targeting iron uptake to control Pseudomonas aeruginosa infections in cystic fibrosis.

    PubMed

    Smith, Daniel J; Lamont, Iain L; Anderson, Greg J; Reid, David W

    2013-12-01

    The aerobic Gram-negative bacterium Pseudomonas aeruginosa is an opportunistic pathogen responsible for life-threatening acute and chronic infections in humans. As part of chronic infection P. aeruginosa forms biofilms, which shield the encased bacteria from host immune clearance and provide an impermeable and protective barrier against currently available antimicrobial agents. P. aeruginosa has an absolute requirement for iron for infection success. By influencing cell-cell communication (quorum sensing) and virulence factor expression, iron is a powerful regulator of P. aeruginosa behaviour. Consequently, the imposed perturbation of iron acquisition systems has been proposed as a novel therapeutic approach to the treatment of P. aeruginosa biofilm infection. In this review, we explore the influence of iron availability on P. aeruginosa infection in the lungs of the people with the autosomal recessive condition cystic fibrosis as an archetypal model of chronic P. aeruginosa biofilm infection. Novel therapeutics aimed at disrupting P. aeruginosa are discussed, with an emphasis placed on identifying the barriers that need to be overcome in order to translate these promising in vitro agents into effective therapies in human pulmonary infections. PMID:23143541

  14. The periplasmic protein TolB as a potential drug target in Pseudomonas aeruginosa.

    PubMed

    Lo Sciuto, Alessandra; Fernández-Piñar, Regina; Bertuccini, Lucia; Iosi, Francesca; Superti, Fabiana; Imperi, Francesco

    2014-01-01

    The Gram-negative bacterium Pseudomonas aeruginosa is one of the most dreaded pathogens in the hospital setting, and represents a prototype of multi-drug resistant "superbug" for which effective therapeutic options are very limited. The identification and characterization of new cellular functions that are essential for P. aeruginosa viability and/or virulence could drive the development of anti-Pseudomonas compounds with novel mechanisms of action. In this study we investigated whether TolB, the periplasmic component of the Tol-Pal trans-envelope protein complex of Gram-negative bacteria, represents a potential drug target in P. aeruginosa. By combining conditional mutagenesis with the analysis of specific pathogenicity-related phenotypes, we demonstrated that TolB is essential for P. aeruginosa growth, both in laboratory and clinical strains, and that TolB-depleted P. aeruginosa cells are strongly defective in cell-envelope integrity, resistance to human serum and several antibiotics, as well as in the ability to cause infection and persist in an insect model of P. aeruginosa infection. The essentiality of TolB for P. aeruginosa growth, resistance and pathogenicity highlights the potential of TolB as a novel molecular target for anti-P. aeruginosa drug discovery. PMID:25093328

  15. Inhalation with Fucose and Galactose for Treatment of Pseudomonas Aeruginosa in Cystic Fibrosis Patients

    PubMed Central

    Hauber, Hans-Peter; Schulz, Maria; Pforte, Almuth; Mack, Dietrich; Zabel, Peter; Schumacher, Udo

    2008-01-01

    Background: Colonisation of cystic fibrosis (CF) lungs with Pseudomonas aeruginosa is facilitated by two lectins, which bind to the sugar coat of the surface lining epithelia and stop the cilia beating. Objectives: We hypothesized that P. aeruginosa lung infection should be cleared by inhalation of fucose and galactose, which compete for the sugar binding site of the two lectins and thus inhibit the binding of P. aeruginosa. Methods: 11 adult CF patients with chronic infection with P. aeruginosa were treated twice daily with inhalation of a fucose/galactose solution for 21 days (4 patients only received inhalation, 7 patients received inhalation and intravenous antibiotics). Microbial counts of P. aeruginosa, lung function measurements, and inflammatory markers were determined before and after treatment. Results: The sugar inhalation was well tolerated and no adverse side effects were observed. Inhalation alone as well as combined therapy (inhalation and antibiotics) significantly decreased P. aeruginosa in sputum (P < 0.05). Both therapies also significantly reduced TNFα expression in sputum and peripheral blood cells (P < 0.05). No change in lung function measurements was observed. Conclusions: Inhalation of simple sugars is a safe and effective measure to reduce the P. aeruginosa counts in CF patients. This may provide an alternative therapeutical approach to treat infection with P. aeruginosa. PMID:19043609

  16. PSEUDOMONAS AERUGINOSA-FECAL COLIFORM RELATIONSHIPS IN ESTUARINE AND FRESH RECREATIONAL WATERS

    EPA Science Inventory

    This study has shown that Pseudomonas aeruginosa cannot be used as the basis of water standards for the prevention of enteric disease during the recreational use of surface waters. However, P. aeruginosa determinations, when used in conjunction with the assay of fecal coliforms o...

  17. Genome macrorestriction analysis of sequential Pseudomonas aeruginosa isolates from bronchiectasis patients without cystic fibrosis.

    PubMed Central

    Hla, S W; Hui, K P; Tan, W C; Ho, B

    1996-01-01

    The respiratory tracts of bronchiectasis patients may be persistently colonized with Pseudomonas aeruginosa, despite intensive chemotherapy. The organism may undergo phenotypic changes in these patients, providing misleading typing results by conventional methods. We prospectively studied eight bronchiectasis patients without cystic fibrosis over a period of 1 year. A high microbial load of P. aeruginosa was found in 70% of sputum samples collected. Of these, 55 sequential P. aeruginosa isolates were characterized by a genotyping method, pulsed-field gel electrophoresis, to overcome the problem of differentiating the P. aeruginosa strains during chemotherapy. Genome macrorestriction fingerprinting patterns were analyzed after digestion with XbaI restriction endonuclease. Of the eight patients, six harbored a single dominant strain of P. aeruginosa, with an intrapatient macrorestriction similarity pattern range of 96 to 100%. The other two patients were infected with mixed bacterial isolates including P. aeruginosa. However, diversity was observed in the P. aeruginosa isolates from all eight patients, with a relatedness of only 55 to 65%. The study further strengthens the fact that pulsed-field gel electrophoresis can be used efficiently and effectively to differentiate P. aeruginosa strains in bronchiectasis patients without cystic fibrosis. PMID:8904417

  18. MOLECULAR CHARACTERIZATION OF 'PSEUDOMONAS AERUGINOSA' BACTERIOPHAGES: IDENTIFICATION AND CHARACTERIZATION OF THE NOVEL VIRUS B86

    EPA Science Inventory

    The authors have characterized a new phage, B86, of Pseudomonas aeruginosa isolated from nature. It is a temperate, uv-inducible, generalized transducing phage. To determine the relatedness of his phage to other characterized P. aeruginosa phages, DNA homology studies were carrie...

  19. Effects of clinical isolates of Pseudomonas aeruginosa on Staphylococcus epidermidis biofilm formation.

    PubMed

    Pihl, Maria; Chávez de Paz, Luis E; Schmidtchen, Artur; Svensäter, Gunnel; Davies, Julia R

    2010-08-01

    Pseudomonas aeruginosa is often found in chronic infections, including cystic fibrosis lung infections and those related to chronic wounds and venous ulcers. At the latter sites, P. aeruginosa can be isolated together with Staphylococcus epidermidis, and we have therefore explored the effect of clinical isolates and laboratory strains of P. aeruginosa strains on colonization by S. epidermidis in dual-species biofilms. Biofilm formation was assayed using 16S rRNA FISH and confocal laser scanning microscopy. Among the six P. aeruginosa strains tested, one particular strain, denoted 14:2, exerted a significant inhibitory effect, and even after 6 h, S. epidermidis levels in dual-species biofilms were reduced by >85% compared with those without P. aeruginosa. Interestingly, strain 14:2 was found to be negative for classical virulence determinants including pyocyanin, elastase and alkaline protease. Therefore, we suggest that less virulent phenotypes of P. aeruginosa, which may develop over time in chronic infections, could counteract colonization by S. epidermidis, ensuring persistence and dominance by P. aeruginosa in the host micro-habitat. Further studies are required to explain the inhibitory effect on S. epidermidis, although extracellular polysaccharides produced by P. aeruginosa might play a role in this phenomenon. PMID:20579097

  20. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Hwang, Sohyun; Kim, Chan Yeong; Ji, Sun-Gou; Go, Junhyeok; Kim, Hanhae; Yang, Sunmo; Kim, Hye Jin; Cho, Ara; Yoon, Sang Sun; Lee, Insuk

    2016-05-01

    Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa.