Science.gov

Sample records for aeruginosa enterobacter aerogenes

  1. A solvent tolerant isolate of Enterobacter aerogenes.

    PubMed

    Gupta, Anshu; Singh, Rajni; Khare, S K; Gupta, M N

    2006-01-01

    A solvent tolerant strain of Enterobacter aerogenes was isolated from soil by cyclohexane enrichment. Presence of cyclohexane (20%) in culture media prolonged the lag phase and caused reduction in biomass. Transmission electron micrographs showed convoluted cell membrane and accumulation of solvent in case of the cells grown in cyclohexane. The Enterobacter isolate was able to grow in the range of organic solvents having log P above 3.2 and also in presence of mercury, thus showing potential for treatment of solvent rich wastes.

  2. Bioengineering of the Enterobacter aerogenes strain for biohydrogen production.

    PubMed

    Zhang, Chong; Lv, Feng-Xiang; Xing, Xin-Hui

    2011-09-01

    Enterobacter aerogenes is one of the most widely-studied model strains for fermentative hydrogen production. To improve the hydrogen yield of E. aerogenes, the bioengineering on a biomolecular level and metabolic network level is of importance. In this review, the fermentative technology of E. aerogenes for hydrogen production will be first briefly summarized. And then the bioengineering of E. aerogenes for the improvement of hydrogen yield will be thoroughly reviewed, including the anaerobic metabolic networks for hydrogen evolution in E. aerogenes, metabolic engineering for improving hydrogen production in E. aerogenes and mixed culture of E. aerogenes with other hydrogen-producing bacteria to enhance the overall yield in anaerobic cultivation. Finally, a perspective on E. aerogenes as a hydrogen producer including systems bioengineering approach for improving the hydrogen yield and application of the engineered E. aerogenes in mixed culture will be presented.

  3. [Outbreak of Enterobacter aerogenes in paediatric unit].

    PubMed

    Burnichon, G; Le Floch, M F; Virmaux, M; Baron, R; Tandé, D; Lejeune, B

    2004-04-01

    Within the framework of breast milk control the hygiene laboratory of Brest hospital isolates, on 3 January 1996 a strain of Enterobacter aerogenes secretory of cephalosporinase in the breast milk of a mother whose child was hospitalized in neonatalogy. On 15 April 1996 a new strain of E. aerogenes is isolated from another mother's breast milk. Until 18 August 1997, 21 samples of breast milk were tested positive to this bacteria. During the same period, E. aerogenes was isolated in 26 children under 1 year of age, 11 of which were infected and 15 colonized. The breast milk did not correspond to those of the mothers of the infected or colonized children. All the strains presented the same antibioresistance. The pulsed-field gel electrophoresis showed that the children's strains, those colonized or infected as well as those isolated in breast milk had the same restriction profile. The epidemiological study concerned the biberonnery-lactarium. The biberonnery's staff is the same as the staff of the lactarium. A portage was searched for among the members of the staff of these units, but without success. The search for E. aerogenes in the environment and in baby-food, others than breast milk was negative. Finally, we did not find any source for these contagions. The only hypothesis we have retained is that of a common source from the biberonnery-lactarium, but without being able to bring any proof to it. Following this epidemic, we have revised all the working modalities and practices with the staff of the biberonnery-lactarium.

  4. Complete genome sequence of Enterobacter aerogenes KCTC 2190.

    PubMed

    Shin, Sang Heum; Kim, Sewhan; Kim, Jae Young; Lee, Soojin; Um, Youngsoon; Oh, Min-Kyu; Kim, Young-Rok; Lee, Jinwon; Yang, Kap-Seok

    2012-05-01

    This is the first complete genome sequence of the Enterobacter aerogenes species. Here we present the genome sequence of E. aerogenes KCTC 2190, which contains 5,280,350 bp with a G + C content of 54.8 mol%, 4,912 protein-coding genes, and 109 structural RNAs.

  5. Purification and antibiofilm activity of AHL-lactonase from endophytic Enterobacter aerogenes VT66.

    PubMed

    Rajesh, P S; Rai, V Ravishankar

    2015-11-01

    The opportunistic pathogen Pseudomonas aeruginosa uses biofilm lifestyle to resist antibiotic treatment. In our study, endophytic bacterium Enterobacter aerogenes VT66 quenched the N-acyl homoserine lactone (AHL) molecules produced by P. aeruginosa PAO1. The quorum quenching activity was attributed to the presence of AHL-lactonase. The AHL-lactonase was purified using column chromatography and purified AHL-lactonase was applied for the control of biofilm formation in P. aeruginosa PAO1. The results showed that purified AHL-lactonase obtained with a molecular weight about 30kDa was able to inhibit more than 70% of biofilm in P. aeruginosa PAO1 (P<0.001). Antibiofilm activity of AHL-lactonase was correlated well with results from staining technique used to determine inhibition of biomass and viable cell activity. Therefore, results unambiguously confirm that the AHL-lactonase from E. aerogenes VT66 could be used as antibiofilm therapeutics in P. aeruginosa associated biomedical applications.

  6. Transmission of Enterobacter aerogenes septicemia in healthcare workers.

    PubMed

    Jha, Piyush; Kim, Choon-Mee; Kim, Dong-Min; Chung, Jong-Hoon; Yoon, Na-Ra; Jha, Babita; Kim, Seok Won; Jang, Sook Jin; Ahn, Young-Joon; Chung, Jae Keun; Jeon, Doo Young

    2016-01-01

    Enterobacter aerogenes is recognized as an important bacterial pathogen in hospital-acquired infections. This report describes two unusual cases of septicemia caused by E. aerogenes in immunocompetent healthcare workers. E. aerogenes was isolated from blood cultures of the two patients experiencing septicemia. The clinical isolates were initially identified as E. aerogenes using a VITEK II automated system and 16S rRNA sequence analysis, and; both isolates involved in the outbreak shared a common pulse-field gel electrophoresis pattern. The similarities between the two cases included the simultaneous development of gastroenteritis symptoms, severe sepsis and thrombocytopenia after taking intravenous injections of ketorolac tromethamine. A common source of normal saline, a 100 mL bottle, was used for diluting the analgesic in both cases. In addition to the general population, healthcare workers, especially those who are also intravenous drug abusers, should be considered subjects that could cause a transmission of Enterobacter infection.

  7. Single-cell protein from methanol with Enterobacter aerogenes

    SciTech Connect

    Gnan, S.O.; Abodreheba, A.O.

    1987-02-20

    An identified Enterobacter aerogenes utilizing methanol as a sole carbon source was studied for the optimization of biomass production and the reduction of its nucleic acid content. Results indicated that the highest yield and conversion were obtained at 0.5% methanol. The addition of seawater as a source of trace elements has an adverse effect. However, the addition of urea as source of nitrogen enhanced the growth of E. aerogenes. Heat shock at 60 degrees C for one minute followed by incubation at 50 degrees C for 2 hours caused 72.6% reduction in the nucleic acid. 12 references.

  8. Comparison of the clinical and microbiologic characteristics of patients with Enterobacter cloacae and Enterobacter aerogenes bacteremia: a prospective observation study.

    PubMed

    Song, Eun Hee; Park, Ki-Ho; Jang, Eun-Young; Lee, Eun Jung; Chong, Yong Pil; Cho, Oh-Hyun; Kim, Sung-Han; Lee, Sang-Oh; Sung, Heungsup; Kim, Mi-Na; Jeong, Jin-Yong; Kim, Yang Soo; Woo, Jun Hee; Choi, Sang-Ho

    2010-04-01

    We compared the characteristics and outcomes of 172 Enterobacter cloacae bacteremia and 67 Enterobacter aerogenes bacteremia (EAB) cases. Antimicrobial resistance rates to E. cloacae were higher than those to E. aerogenes. However, EAB more frequently presented as septic shock and was associated with poorer outcomes.

  9. Enhanced hydrogen production of Enterobacter aerogenes mutated by nuclear irradiation.

    PubMed

    Cheng, Jun; Liu, Min; Song, Wenlu; Ding, Lingkan; Liu, Jianzhong; Zhang, Li; Cen, Kefa

    2017-03-01

    Nuclear irradiation was used for the first time to generate efficient mutants of hydrogen-producing bacteria Enterobacter aerogenes, which were screened with larger colour circles of more fermentative acid by-products. E. aerogenes cells were mutated by nuclear irradiation of (60)Co γ-rays. The screened E. aerogenes ZJU1 mutant with larger colour circles enhanced the hydrogenase activity from 89.8 of the wild strain to 157.4mLH2/(gDWh). The hereditary stability of the E. aerogenes ZJU1 mutant was certified after over ten generations of cultivation. The hydrogen yield of 301mLH2/gglucose with the mutant was higher by 81.8% than that of 166mL/gglucose with the wild strain. The peak hydrogen production rate of 27.2mL/(L·h) with the mutant was higher by 40.9% compared with that of 19.3mL/(L·h) with the wild strain. The mutant produced more acetate and butyrate but less ethanol compared with the wild strain during hydrogen fermentation.

  10. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment.

    PubMed

    Davin-Regli, Anne; Pagès, Jean-Marie

    2015-01-01

    Enterobacter aerogenes and E. cloacae have been reported as important opportunistic and multiresistant bacterial pathogens for humans during the last three decades in hospital wards. These Gram-negative bacteria have been largely described during several outbreaks of hospital-acquired infections in Europe and particularly in France. The dissemination of Enterobacter sp. is associated with the presence of redundant regulatory cascades that efficiently control the membrane permeability ensuring the bacterial protection and the expression of detoxifying enzymes involved in antibiotic degradation/inactivation. In addition, these bacterial species are able to acquire numerous genetic mobile elements that strongly contribute to antibiotic resistance. Moreover, this particular fitness help them to colonize several environments and hosts and rapidly and efficiently adapt their metabolism and physiology to external conditions and environmental stresses. Enterobacter is a versatile bacterium able to promptly respond to the antibiotic treatment in the colonized patient. The balance of the prevalence, E. aerogenes versus E. cloacae, in the reported hospital infections during the last period, questions about the horizontal transmission of mobile elements containing antibiotic resistance genes, e.g., the efficacy of the exchange of resistance genes Klebsiella pneumoniae to Enterobacter sp. It is also important to mention the possible role of antibiotic use in the treatment of bacterial infectious diseases in this E. aerogenes/E. cloacae evolution.

  11. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment

    PubMed Central

    Davin-Regli, Anne; Pagès, Jean-Marie

    2015-01-01

    Enterobacter aerogenes and E. cloacae have been reported as important opportunistic and multiresistant bacterial pathogens for humans during the last three decades in hospital wards. These Gram-negative bacteria have been largely described during several outbreaks of hospital-acquired infections in Europe and particularly in France. The dissemination of Enterobacter sp. is associated with the presence of redundant regulatory cascades that efficiently control the membrane permeability ensuring the bacterial protection and the expression of detoxifying enzymes involved in antibiotic degradation/inactivation. In addition, these bacterial species are able to acquire numerous genetic mobile elements that strongly contribute to antibiotic resistance. Moreover, this particular fitness help them to colonize several environments and hosts and rapidly and efficiently adapt their metabolism and physiology to external conditions and environmental stresses. Enterobacter is a versatile bacterium able to promptly respond to the antibiotic treatment in the colonized patient. The balance of the prevalence, E. aerogenes versus E. cloacae, in the reported hospital infections during the last period, questions about the horizontal transmission of mobile elements containing antibiotic resistance genes, e.g., the efficacy of the exchange of resistance genes Klebsiella pneumoniae to Enterobacter sp. It is also important to mention the possible role of antibiotic use in the treatment of bacterial infectious diseases in this E. aerogenes/E. cloacae evolution. PMID:26042091

  12. Chloramphenicol and expression of multidrug efflux pump in Enterobacter aerogenes.

    PubMed

    Ghisalberti, Didier; Masi, Muriel; Pagès, Jean-Marie; Chevalier, Jacqueline

    2005-03-25

    Chloramphenicol has been reported to act as an inducer of the multidrug resistance in Escherichia coli. A resistant variant able to grow on plates containing 64 microg/ml chloramphenicol was obtained from the Enterobacter aerogenes ATCC 13048-type strain. Chloramphenicol resistance was due to an active efflux of this antibiotic and it was associated with resistance to fluoroquinolones and tetracycline, but not to aminoglycoside or beta-lactam antibiotics. MDR in the chloramphenicol-resistant variant is linked to the overexpression of the major AcrAB-TolC efflux system. This overexpression seems unrelated to the global Mar and the local AcrR regulatory pathways.

  13. Biological Conversion of Glycerol to Ethanol by Enterobacter aerogenes

    NASA Astrophysics Data System (ADS)

    Nwachukwu, Raymond E. S.

    In a search to turn the economically and environmentally non-valuable "waste" streams of biodiesel production into a profitable byproduct, a mutant strain of Enterobacter aerogenes ATCC 13048 was developed by six-tube subculturing technique. This technique is based on the principle of adaptive evolution, and involved subculturing the bacterium in a tryptic soy broth without dextrose (TSB) containing specific glycerol and ethanol concentration for six consecutive times. Then, the six consecutive subculturing was repeated in a fresh TSB of higher glycerol and ethanol concentrations. A new mutant strain, E. aerogenes S012, which could withstand a combination of 200 g/l glycerol and 30 g/l ethanol concentrations, was developed. The wild and mutant strains were used for the fermentation of pure (P-) and recovered (R-) glycerol. Taguchi and full factorial methods of design of experiments were used to screen and optimize the important process factors that influence the microbial production of ethanol. A statistically sound regression model was used to establish the mathematical relationship between the process variables and ethanol production. Temperature of 38°C, agitation speed of 200 rpm, pH of 6.3-6.6, and microaerobic condition were the optimum process conditions. Different pretreatment methods to recover glycerol from the crude glycerol and the subsequent fermentation method showed that direct acidification using 85% H3PO4 was the best. The R-glycerol contained 51% pure glycerol and 21% methanol. The wild strain, E. aerogenes ATCC 13048, produced only 12 g/l and 12.8 g/l ethanol from 20 g/l P- and R-glycerol respectively, and could not utilize higher glycerol concentrations. The mutant, E. aerogenes S012, produced ethanol amount and yield of 43 g/l and 1.12 mol/mol-glycerol from P-glycerol, respectively within 96 h. It also produced ethanol amount and yield of 26.8 g/l and 1.07 mol/mol-glycerol, respectively, from R-glycerol within the same duration. In a

  14. Vitreoscilla hemoglobin renders Enterobacter aerogenes highly susceptible to heavy metals.

    PubMed

    Geckil, Hikmet; Arman, Ahmet; Gencer, Salih; Ates, Burhan; Yilmaz, H Ramazan

    2004-12-01

    When expressed in heterologous microorganisms Vitreoscilla hemoglobin (VHb) acts as oxygen storage and causes a higher oxygen uptake. In this study, the effect of this protein on growth, sensitivity and antioxidant properties of Enterobacter aerogenes exposed to metal stress was investigated. The strain expressing VHb was more sensitive to mercury and cadmium as the minimal inhibitory concentration (MIC) for these metals was up to 2-fold lower in this strain than the host and the recombinant strain carrying a comparable plasmid. At lower concentrations than MIC, the metals partially limited growth and caused an inhibition proportional to metal concentration applied. The growth pattern of VHb expressing strain was also distinctly different from other two non-hemoglobin strains. The hemoglobin containing strain showed substantially higher superoxide dismuates (SOD) activity than the non-hemoglobin strains, while catalase levels were similar in all strains. All strains exposed to copper, however, showed similar MIC values, growth patterns, and SOD and catalase levels.

  15. Hydrogen production from biodiesel byproduct by immobilized Enterobacter aerogenes.

    PubMed

    Han, Jinmi; Lee, Dohoon; Cho, Jinku; Lee, Jeewon; Kim, Sangyong

    2012-01-01

    The recent rapid growth of the biodiesel industry has generated a significant amount of glycerol as a byproduct. As a result, the price of glycerol is currently relatively low, making it an attractive starting material for the production of chemicals with higher values. Crude glycerol can be directly converted through microbial fermentation into various chemicals such as hydrogen. In this study, we optimized immobilization of a facultative hydrogen producing microorganism, Enterobacter aerogenes, with the goal of developing biocatalysts that was appropriate for the continuous hydrogen production from glycerol. Several carriers were tested and agar was found to be the most effective. In addition, it was clearly shown that variables such as the carrier content and cell loading should be controlled for the immobilization of biocatalysts with high hydrogen productivity, stability, and reusability. After optimization of these variables, we were able to obtain reusable biocatalysts that could directly convert the byproduct stream from biodiesel processes into hydrogen in continuous processes.

  16. Effects of formate on fermentative hydrogen production by Enterobacter aerogenes.

    PubMed

    Kurokawa, Tatsuo; Tanisho, Shigeharu

    2005-01-01

    This paper describes the effects of formate on fermentative hydrogen production by Enterobacter aerogenes by way of batch culture. When 20 mM formate was added to pH 6.3 and pH 5.8 E. aerogenes glucose cultures (formate culture) at the beginning of cultivation, hydrogen evolution through both glucose consumption and decomposition of the extrinsic formate occurred together, while hydrogen evolution occurred only through glucose consumption in the control cultures. The hydrogen evolution rates in the formate cultures were faster than in the control cultures, although cell growth and glucose consumption rates in the formate cultures were slower than the control cultures'. The decomposition rate of the extrinsic formate in the pH 5.8 formate culture was faster than in the pH 6.3 formate culture. The hydrogen yield from glucose in the pH 6.3 formate culture increased due to the increasing amount of the nicotinamide adenine dinucleotide for hydrogen production.

  17. Bioconversion of glycerol to ethanol by a mutant Enterobacter aerogenes.

    PubMed

    Nwachukwu, Res; Shahbazi, A; Wang, L; Ibrahim, S; Worku, M; Schimmel, K

    2012-03-29

    The main objective of this research is to develop, by adaptive evolution, mutant strains of Enterobacter aerogenes ATCC 13048 that are capable of withstanding high glycerol concentration as well as resisting ethanol-inhibition. The mutant will be used for high ethanol fermentation from glycerol feedstock. Ethanol production from pure (P-) and recovered (R-) glycerol using the stock was evaluated. A six-tube-subculture-generations method was used for developing the mutant. This involved subculturing the organism six consecutive times in tubes containing the same glycerol and ethanol concentrations at the same culture conditions. Then, the glycerol and/or ethanol concentration was increased and the six subculture generations were repeated. A strain capable of growing in 200 g/L glycerol and 30 g/L ethanol was obtained. The ability of this mutant, vis-à-vis the original strain, in utilizing glycerol in a high glycerol containing medium, with the concomitant ethanol yield, was assessed. Tryptic soy broth without dextrose (TSB) was used as the fermentation medium. Fermentation products were analyzed using HPLC.In a 20 g/L glycerol TSB, E. aerogenes ATCC 13048 converted 18.5 g/L P-glycerol and 17.8 g/L R-glycerol into 12 and 12.8 g/L ethanol, respectively. In a 50 g/L P-glycerol TSB, it utilized only 15.6 g/L glycerol; but the new strain used up 39 g/L, yielding 20 g/L ethanol after 120 h, an equivalence of 1.02 mol ethanol/mol-glycerol. This is the highest ethanol yield reported from glycerol bioconversion. The result of this P-glycerol fermentation can be duplicated using the R-glycerol from biodiesel production.

  18. Irreproducible and uninterpretable Polymyxin B MICs for Enterobacter cloacae and Enterobacter aerogenes.

    PubMed

    Landman, David; Salamera, Julius; Quale, John

    2013-12-01

    Carbapenem-resistant Enterobacter species are emerging nosocomial pathogens. As with most multidrug-resistant Gram-negative pathogens, the polymyxins are often the only therapeutic option. In this study involving clinical isolates of E. cloacae and E. aerogenes, susceptibility testing methods with polymyxin B were analyzed. All isolates underwent testing by the broth microdilution (in duplicate) and agar dilution (in duplicate) methods, and select isolates were examined by the Etest method. Selected isolates were also examined for heteroresistance by population analysis profiling. Using a susceptibility breakpoint of ≤2 μg/ml, categorical agreement by all four dilution tests (two broth microdilution and two agar dilution) was achieved in only 76/114 (67%) of E. cloacae isolates (65 susceptible, 11 resistant). Thirty-eight (33%) had either conflicting or uninterpretable results (multiple skip wells, i.e., wells that exhibit no growth although growth does occur at higher concentrations). Of the 11 consistently resistant isolates, five had susceptible MICs as determined by Etest. Heteroresistant subpopulations were detected in eight of eight isolates tested, with greater percentages in isolates with uninterpretable MICs. For E. aerogenes, categorical agreement between the four dilution tests was obtained in 48/56 (86%), with conflicting and/or uninterpretable results in 8/56 (14%). For polymyxin susceptibility testing of Enterobacter species, close attention must be paid to the presence of multiple skip wells, leading to uninterpretable results. Susceptibility also should not be assumed based on the results of a single test. Until the clinical relevance of skip wells is defined, interpretation of polymyxin susceptibility tests for Enterobacter species should be undertaken with extreme caution.

  19. Irreproducible and Uninterpretable Polymyxin B MICs for Enterobacter cloacae and Enterobacter aerogenes

    PubMed Central

    Landman, David; Salamera, Julius

    2013-01-01

    Carbapenem-resistant Enterobacter species are emerging nosocomial pathogens. As with most multidrug-resistant Gram-negative pathogens, the polymyxins are often the only therapeutic option. In this study involving clinical isolates of E. cloacae and E. aerogenes, susceptibility testing methods with polymyxin B were analyzed. All isolates underwent testing by the broth microdilution (in duplicate) and agar dilution (in duplicate) methods, and select isolates were examined by the Etest method. Selected isolates were also examined for heteroresistance by population analysis profiling. Using a susceptibility breakpoint of ≤2 μg/ml, categorical agreement by all four dilution tests (two broth microdilution and two agar dilution) was achieved in only 76/114 (67%) of E. cloacae isolates (65 susceptible, 11 resistant). Thirty-eight (33%) had either conflicting or uninterpretable results (multiple skip wells, i.e., wells that exhibit no growth although growth does occur at higher concentrations). Of the 11 consistently resistant isolates, five had susceptible MICs as determined by Etest. Heteroresistant subpopulations were detected in eight of eight isolates tested, with greater percentages in isolates with uninterpretable MICs. For E. aerogenes, categorical agreement between the four dilution tests was obtained in 48/56 (86%), with conflicting and/or uninterpretable results in 8/56 (14%). For polymyxin susceptibility testing of Enterobacter species, close attention must be paid to the presence of multiple skip wells, leading to uninterpretable results. Susceptibility also should not be assumed based on the results of a single test. Until the clinical relevance of skip wells is defined, interpretation of polymyxin susceptibility tests for Enterobacter species should be undertaken with extreme caution. PMID:24088860

  20. An efficient ribitol-specific dehydrogenase from Enterobacter aerogenes.

    PubMed

    Singh, Ranjitha; Singh, Raushan; Kim, In-Won; Sigdel, Sujan; Kalia, Vipin C; Kang, Yun Chan; Lee, Jung-Kul

    2015-05-01

    An NAD(+)-dependent ribitol dehydrogenase from Enterobacter aerogenes KCTC 2190 (EaRDH) was cloned and successfully expressed in Escherichia coli. The complete 729-bp gene was amplified, cloned, expressed, and subsequently purified in an active soluble form using nickel affinity chromatography. The enzyme had an optimal pH and temperature of 11.0 and 45°C, respectively. Among various polyols, EaRDH exhibited activity only toward ribitol, with Km, Vmax, and kcat/Km values of 10.3mM, 185Umg(-1), and 30.9s(-1)mM(-1), respectively. The enzyme showed strong preference for NAD(+) and displayed no detectable activity with NADP(+). Homology modeling and sequence analysis of EaRDH, along with its biochemical properties, confirmed that EaRDH belongs to the family of NAD(+)-dependent ribitol dehydrogenases, a member of short-chain dehydrogenase/reductase (SCOR) family. EaRDH showed the highest activity and unique substrate specificity among all known RDHs. Homology modeling and docking analysis shed light on the molecular basis of its unusually high activity and substrate specificity.

  1. Resistance to imipenem, cefepime, and cefpirome associated with mutation in Omp36 osmoporin of Enterobacter aerogenes.

    PubMed

    Thiolas, Aurélie; Bornet, Charléric; Davin-Régli, Anne; Pagès, Jean-Marie; Bollet, Claude

    2004-05-07

    Enterobacter aerogenes develops increased multidrug resistance via a functional alteration of outer-membrane permeability associated with a decrease in porin function. We have sequenced the gene coding the major porin of Enterobacter aerogenes, omp36. The sequence shows a high similarity with the Klebsiella pneumoniae ompK36 gene and is closely related to the enterobacterial OmpC family. Sequence analysis of several Omp36 issued from clinical strains indicated variability in putative cell-surface exposed domains. Interestingly, substitution Gly112Asp was observed in the conserved eyelet L3 region of the porin produced by two strains, C and 3. This substitution is associated with a high general beta-lactam resistance observed in these isolates and with alteration of pore properties previously described in strain 3 porin [Mol. Microbiol. 41 (2001) 189]. This is the first genetic identification of impermeability-mediated resistance to beta-lactams in various clinical E. aerogenes strains.

  2. Isolation and characterization of a bacteriophage phiEap-2 infecting multidrug resistant Enterobacter aerogenes.

    PubMed

    Li, Erna; Wei, Xiao; Ma, Yanyan; Yin, Zhe; Li, Huan; Lin, Weishi; Wang, Xuesong; Li, Chao; Shen, Zhiqiang; Zhao, Ruixiang; Yang, Huiying; Jiang, Aimin; Yang, Wenhui; Yuan, Jing; Zhao, Xiangna

    2016-06-20

    Enterobacter aerogenes (Enterobacteriaceae) is an important opportunistic pathogen that causes hospital-acquired pneumonia, bacteremia, and urinary tract infections. Recently, multidrug-resistant E. aerogenes have been a public health problem. To develop an effective antimicrobial agent, bacteriophage phiEap-2 was isolated from sewage and its genome was sequenced because of its ability to lyse the multidrug-resistant clinical E. aerogenes strain 3-SP. Morphological observations suggested that the phage belongs to the Siphoviridae family. Comparative genome analysis revealed that phage phiEap-2 is related to the Salmonella phage FSL SP-031 (KC139518). All of the structural gene products (except capsid protein) encoded by phiEap-2 had orthologous gene products in FSL SP-031 and Serratia phage Eta (KC460990). Here, we report the complete genome sequence of phiEap-2 and major findings from the genomic analysis. Knowledge of this phage might be helpful for developing therapeutic strategies against E. aerogenes.

  3. DNA analysis of nosocomial infection by Enterobacter aerogenes in three cases of septicaemia in Japan.

    PubMed

    Goshi, S; Taneike, I; Nakagawa, S; Kojio, S; Tamura, Y; Ohara, T; Ozaki, K; Tsukada, H; Aoki, Y; Asakura, H; Gejyo, F; Itoh, M; Yamamoto, T

    2002-07-01

    Ceftazidime-resistant Enterobacter aerogenes was isolated from blood cultures of three patients with fever. DNA analysis using pulsed-field gel electrophoresis and ribosomal RNA gene restriction digest pattern analysis revealed that the strains were clonally similar to each other with a 79.3-96.0% homology. The same strain of E. aerogenes was isolated from a three-way stopcock connected to the indwelling catheter in one of the patients at a concentration of 45 cfu/mL. A similar strain was also isolated from the urine of one other patient on the same floor. The data suggest that E. aerogenes caused septicaemia via low bacterial contamination of a three-way stopcock in a peripheral drip intravenous infusion system in at least one patient, and that the outbreak of E. aerogenes infections was due to clonally-related strains.

  4. Isolation and characterization of a bacteriophage phiEap-2 infecting multidrug resistant Enterobacter aerogenes

    PubMed Central

    Li, Erna; Wei, Xiao; Ma, Yanyan; Yin, Zhe; Li, Huan; Lin, Weishi; Wang, Xuesong; Li, Chao; Shen, Zhiqiang; Zhao, Ruixiang; Yang, Huiying; Jiang, Aimin; Yang, Wenhui; Yuan, Jing; Zhao, Xiangna

    2016-01-01

    Enterobacter aerogenes (Enterobacteriaceae) is an important opportunistic pathogen that causes hospital-acquired pneumonia, bacteremia, and urinary tract infections. Recently, multidrug-resistant E. aerogenes have been a public health problem. To develop an effective antimicrobial agent, bacteriophage phiEap-2 was isolated from sewage and its genome was sequenced because of its ability to lyse the multidrug-resistant clinical E. aerogenes strain 3-SP. Morphological observations suggested that the phage belongs to the Siphoviridae family. Comparative genome analysis revealed that phage phiEap-2 is related to the Salmonella phage FSL SP-031 (KC139518). All of the structural gene products (except capsid protein) encoded by phiEap-2 had orthologous gene products in FSL SP-031 and Serratia phage Eta (KC460990). Here, we report the complete genome sequence of phiEap-2 and major findings from the genomic analysis. Knowledge of this phage might be helpful for developing therapeutic strategies against E. aerogenes. PMID:27320081

  5. Successive Emergence of Enterobacter aerogenes Strains Resistant to Imipenem and Colistin in a Patient

    PubMed Central

    Thiolas, Aurélie; Bollet, Claude; La Scola, Bernard; Raoult, Didier; Pagès, Jean-Marie

    2005-01-01

    Enterobacter aerogenes is an agent of hospital-acquired infection that exhibits a remarkable resistance to β-lactam antibiotics during therapy. Five successive isolates of E. aerogenes infecting a patient and exhibiting a multiresistance phenotype to β-lactam antibiotics and fluoroquinolones were investigated. Among these clinical strains, four presented resistant phenotypes during successive imipenem and colistin treatments. The involved resistance mechanisms exhibited by the successive isolates were associated with alterations of the outer membrane that caused a porin decrease and lipopolysaccharide modifications. PMID:15793111

  6. Successive emergence of Enterobacter aerogenes strains resistant to imipenem and colistin in a patient.

    PubMed

    Thiolas, Aurélie; Bollet, Claude; La Scola, Bernard; Raoult, Didier; Pagès, Jean-Marie

    2005-04-01

    Enterobacter aerogenes is an agent of hospital-acquired infection that exhibits a remarkable resistance to beta-lactam antibiotics during therapy. Five successive isolates of E. aerogenes infecting a patient and exhibiting a multiresistance phenotype to beta-lactam antibiotics and fluoroquinolones were investigated. Among these clinical strains, four presented resistant phenotypes during successive imipenem and colistin treatments. The involved resistance mechanisms exhibited by the successive isolates were associated with alterations of the outer membrane that caused a porin decrease and lipopolysaccharide modifications.

  7. Chloroquinolines block antibiotic efflux pumps in antibiotic-resistant Enterobacter aerogenes isolates.

    PubMed

    Ghisalberti, Didier; Mahamoud, Abdallah; Chevalier, Jacqueline; Baitiche, Milad; Martino, Michèle; Pagès, Jean-Marie; Barbe, Jacques

    2006-06-01

    Efflux mechanisms protect bacterial cells by pumping out toxic compounds and actively contribute to bacterial multidrug resistance. Agents inhibiting efflux pumps are of interest for the control of multidrug-resistant bacterial infections. Herein we report the effects of new chloroquinoline derivatives that render resistant Enterobacter aerogenes isolates noticeably more susceptible to structurally unrelated antibiotics. In addition, some of these chloroquinolines increase the intracellular concentration of chloramphenicol. Some of the molecules tested in this work are able to inhibit the main efflux pump (AcrAB-TolC), which is involved in E. aerogenes antibiotic resistance.

  8. The differential importance of mutations within AmpD in cephalosporin resistance of Enterobacter aerogenes and Enterobacter cloacae.

    PubMed

    Babouee Flury, Baharak; Ellington, Matthew J; Hopkins, Katie L; Turton, Jane F; Doumith, Michel; Woodford, Neil

    2016-11-01

    Mechanisms leading to carbapenem and cephalosporin resistance were sought in Enterobacter aerogenes isolates that were highly resistant to carbapenems but had no known carbapenemase. Results were compared with recent work examining carbapenem-resistant Enterobacter cloacae. Eighteen carbapenem-resistant E. aerogenes were screened for known β-lactamase and carbapenemase genes, and novel carbapenemases were sought in whole-genome sequencing (WGS) data of the three most resistant isolates. For all isolates, ampC, ampR, ampD and the porin genes omp35 and omp36 were investigated by Sanger sequencing or from available WGS data. Expression of ampC and porin genes was measured in comparison with cephalosporin- and carbapenem-susceptible control strains by reverse transcriptase PCR, with porin translation also detected by SDS-PAGE. Loss of Omp35, primarily due to decreased transcription (up to 250×), was observed in ertapenem-resistant isolates (MICs ≥ 2 mg/L), whereas meropenem resistance (MICs ≥ 4 mg/L) was observed in those isolates also showing decreased or no production of Omp36. Loss of Omp36 was due to combinations of premature translation termination or reduced transcription. In contrast to E. cloacae, cephalosporin resistance in E. aerogenes was not associated with lesions in AmpD. High-level cefepime resistance (MIC = 32 mg/L) was caused by a novel modification in the H-10 helix of AmpC in one isolate. The differential importance of AmpD lesions in cephalosporin resistance in E. cloacae and E. aerogenes underlines the differences between these contrasting members of the Enterobacter genus. Porin loss resulted in high-level carbapenem resistance with gradual loss of Omp36, which led to high-level meropenem resistance.

  9. Abdominal aortitis due to Streptococcus pneumoniae and Enterobacter aerogenes: a case report and review.

    PubMed

    Rondina, Matthew T; Raphael, Kalani; Pendleton, Robert; Sande, Merle A

    2006-07-01

    Endovascular infections are 1 cause of fever of unknown origin. We describe a diagnostically challenging case of cryptogenic abdominal aortitis from Streptococcus pneumoniae and Enterobacter aerogenes. A 72-year-old male presented with epigastric pain, fevers, and chills. A computed tomography scan demonstrated enlargement and ulceration of the distal abdominal aorta, prompting urgent vascular surgery. Intraoperative tissue cultures grew S. pneumoniae and E. aerogenes and gatifloxacin was administered for 6 weeks. Spontaneous abdominal aortitis is uncommon and usually due to a single pathogen. This is the second reported case of polymicrobial infectious aortitis and to date, Enterobacter has only been reported in infected aortic grafts. Clinicians should maintain a high index of suspicion for infectious aortitis as the mortality, if only treated medically, approaches 100%.

  10. Induction of nucleoside phosphorylase in Enterobacter aerogenes and enzymatic synthesis of adenine arabinoside.

    PubMed

    Wei, Xiao-Kun; Ding, Qing-Bao; Zhang, Lu; Guo, Yong-Li; Ou, Lin; Wang, Chang-Lu

    2008-07-01

    Nucleoside phosphorylases (NPases) were found to be induced in Enterobacter aerogenes DGO-04, and cytidine and cytidine 5'-monophosphate (CMP) were the best inducers. Five mmol/L to fifteen mmol/L cytidine or CMP could distinctly increase the activities of purine nucleoside phosphorylase (PNPase), uridine phosphorylase (UPase) and thymidine phosphorylase (TPase) when they were added into medium from 0 to 8 h. In the process of enzymatic synthesis of adenine arabinoside from adenine and uracil arabinoside with wet cells of Enterobacter aerogenes DGO-04 induced by cytidine or CMP, the reaction time could be shortened from 36 to 6 h. After enzymatic reaction the activity of NPase in the cells induced remained higher than that in the cells uninduced.

  11. Rapid detection of a gfp-marked Enterobacter aerogenes under anaerobic conditions by aerobic fluorescence recovery.

    PubMed

    Zhang, Chong; Xing, Xin-Hui; Lou, Kai

    2005-08-15

    A gfp- and kanamycin-resistance gene-containing plasmid pUCGK was successfully constructed and transformed into Enterobacter aerogenes to develop a rapid GFP-based method for quantifying the bacterial concentration under anaerobic conditions for production of biohydrogen. Since the use of GFP as a molecular reporter is restricted by its requirement for oxygen in the development of the fluorophore, fluorescence detection for the fluorescent E. aerogenes grown anaerobically for hydrogen production was performed by developing a method of aerobic fluorescence recovery (AFR) of the anaerobically expressed GFP. By using this AFR method, rapid and non-disruptive cell quantification of E. aerogenes by fluorescence density was achieved for analyzing the hydrogen production process.

  12. The melatonin-sensitive circadian clock of the enteric bacterium Enterobacter aerogenes.

    PubMed

    Paulose, Jiffin K; Cassone, Vincent M

    2016-09-02

    Circadian clocks are fundamental properties of all eukaryotic organisms and at least some prokaryotic organisms. Recent studies in our laboratory have shown that the gastrointestinal system contains a circadian clock that controls many, if not all, aspects of gastrointestinal function. We now report that at least one species of intestinal bacteria, Enterobacter aerogenes, responds to the pineal and gastrointestinal hormone melatonin by an increase in swarming activity. This swarming behavior is expressed rhythmically, with a period of approximately 24 hrs. Transformation of E. aerogenes to express luciferase with a MotA promoter reveals circadian patterns of bioluminescence that are synchronized by melatonin and whose periods are temperature compensated from 26°C to 40°C. Bioinformatics suggest similarities between the E. aerogenes and cyanobacterial clocks, suggesting the circadian clock may have evolved very early in the evolution of life. They also point to a coordination of host circadian clocks with those residing in the microbiota themselves.

  13. Enterobacter aerogenes OmpX, a cation-selective channel mar- and osmo-regulated.

    PubMed

    Dupont, Myrielle; Dé, Emmanuelle; Chollet, Renaud; Chevalier, Jacqueline; Pagès, Jean-Marie

    2004-07-02

    The ompX gene of Enterobacter aerogenes was cloned. Its overexpression induced a decrease in the major porin Omp36 production and consequently a beta-lactam resistance was noted. Purified outer membrane protein X (OmpX) was reconstituted into artificial membranes and formed ion channels with a conductance of 20 pS in 1 M NaCl and a cationic selectivity. Both MarA expression and high osmolarity induced a noticeable increase of the OmpX synthesis in the E. aerogenes ATCC 13048 strain. In addition, OmpX synthesis increased under conditions in which the expression of the E. aerogenes major non-specific porins, Omp36 and Omp35, decreased.

  14. Enterobacter aerogenes Needle Stick Leads to Improved Biological Management System

    SciTech Connect

    Johanson, Richard E.

    2004-08-01

    A laboratory worker who received a needle stick from a contaminated needle while working with a culture containing Enterobactor aerogenes developed a laboratory acquired infection. Although this organism has been shown to cause community and nosocomial infections, there have been no documented cases of a laboratory acquired infections. Lessons learned from the event led to corrective actions which included modification of lab procedures, development of a biological inventory tracking and risk identification system and the establishment of an effective biological safety program.

  15. Characterization of a novel qepA3 variant in Enterobacter aerogenes.

    PubMed

    Wang, Dongguo; Huang, Xitian; Chen, Jiayu; Mou, Yonghua; Qi, Yongxiao

    2016-02-10

    Five isolates harboring qepA were studied by polymerase chain reaction (PCR) amplification and relevant methods. One was determined to be a novel qepA3 from Enterobacter aerogenes, and four involved three qepA1 and one qepA2 determinants from Escherichia coli; the qepA3 changed five amino acids. These results characterized genetic structures A, B, C, D, and E.

  16. Genome analysis and identification of gelatinase encoded gene in Enterobacter aerogenes

    NASA Astrophysics Data System (ADS)

    Shahimi, Safiyyah; Mutalib, Sahilah Abdul; Khalid, Rozida Abdul; Repin, Rul Aisyah Mat; Lamri, Mohd Fadly; Bakar, Mohd Faizal Abu; Isa, Mohd Noor Mat

    2016-11-01

    In this study, bioinformatic analysis towards genome sequence of E. aerogenes was done to determine gene encoded for gelatinase. Enterobacter aerogenes was isolated from hot spring water and gelatinase species-specific bacterium to porcine and fish gelatin. This bacterium offers the possibility of enzymes production which is specific to both species gelatine, respectively. Enterobacter aerogenes was partially genome sequenced resulting in 5.0 mega basepair (Mbp) total size of sequence. From pre-process pipeline, 87.6 Mbp of total reads, 68.8 Mbp of total high quality reads and 78.58 percent of high quality percentage was determined. Genome assembly produced 120 contigs with 67.5% of contigs over 1 kilo base pair (kbp), 124856 bp of N50 contig length and 55.17 % of GC base content percentage. About 4705 protein gene was identified from protein prediction analysis. Two candidate genes selected have highest similarity identity percentage against gelatinase enzyme available in Swiss-Prot and NCBI online database. They were NODE_9_length_26866_cov_148.013245_12 containing 1029 base pair (bp) sequence with 342 amino acid sequence and NODE_24_length_155103_cov_177.082458_62 which containing 717 bp sequence with 238 amino acid sequence, respectively. Thus, two paired of primers (forward and reverse) were designed, based on the open reading frame (ORF) of selected genes. Genome analysis of E. aerogenes resulting genes encoded gelatinase were identified.

  17. RamA is an alternate activator of the multidrug resistance cascade in Enterobacter aerogenes.

    PubMed

    Chollet, Renaud; Chevalier, Jacqueline; Bollet, Claude; Pages, Jean-Marie; Davin-Regli, Anne

    2004-07-01

    Multidrug resistance (MDR) in Enterobacter aerogenes can be mediated by induction of MarA, which is triggered by certain antibiotics and phenolic compounds. In this study, we identified the gene encoding RamA, a 113-amino-acid regulatory protein belonging to the AraC-XylS transcriptional activator family, in the Enterobacter aerogenes ATCC 13048 type strain and in a clinical multiresistant isolate. Overexpression of RamA induced an MDR phenotype in drug-susceptible Escherichia coli JM109 and E. aerogenes ATCC 13048, as demonstrated by 2- to 16-fold-increased resistance to beta-lactams, tetracycline, chloramphenicol, and quinolones, a decrease in porin production, and increased production of AcrA, a component of the AcrAB-TolC drug efflux pump. We show that RamA enhances the transcription of the marRAB operon but is also able to induce an MDR phenotype in a mar-deleted strain. We demonstrate here that RamA is a transcriptional activator of the Mar regulon and is also a self-governing activator of the MDR cascade.

  18. Partial purification and characterization of a novel histidine decarboxylase from Enterobacter aerogenes DL-1.

    PubMed

    Zou, Yu; Hu, Wenzhong; Jiang, Aili; Tian, Mixia

    2015-08-18

    Histidine decarboxylase (HDC) from Enterobacter aerogenes DL-1 was purified in a three-step procedure involving ammonium sulfate precipitation, Sephadex G-100, and DEAE-Sepharose column chromatography. The partially purified enzyme showed a single protein band of 52.4 kD on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH for HDC activity was 6.5, and the enzyme was stable between pH 4 and 8. Enterobacter aerogenes HDC had optimal activity at 40°C and retained most of its activity between 4 and 50°C. HDC activity was reduced in the presence of numerous tested compounds. Particularly with SDS, it significantly (p < 0.01) inhibited enzyme activity. Conversely, Ca(2+) and Mn(2+) showed prominent activation effects (p < 0.01) with activity increasing to 117.20% and 123.42%, respectively. The Lineweaver-Burk plot showed that K m and V max values of the enzyme for L-histidine were 0.21 mM and 71.39 µmol/min, respectively. In comparison with most HDCs from other microorganisms and animals, HDC from E. aerogenes DL-1 displayed higher affinity and greater reaction velocity toward L-histidine.

  19. Use of flow cytometry for analysis of phage-mediated killing of Enterobacter aerogenes.

    PubMed

    Verthé, Kristof; Verstraete, Willy

    2006-09-01

    In this study, the use of flow cytometry to analyze phage-mediated killing of Enterobacter aerogenes under varying conditions of temperature and nutrient availability was assessed. Bacteriophage UZ1, specific for an E. aerogenes strain, was applied at a multiplicity of infection (MOI) of 1 and 1000 to a Teflon surface, artificially infected with its host at a level of 4.5 log cells. After incubation for 20 h, bacteriophages were quantified using the soft agar layer method. For the quantification of bacterial cells, plate counting and flow cytometric analysis of live/dead stained cells were performed in parallel. At an MOI of 1, phage treatment was successful only after incubation under nutrient-rich conditions at 37 degrees C: E. aerogenes cells were not detected and a tenfold increase in phage UZ1 was observed. At a MOI of 1000, no E. aerogenes cells could be cultured after incubation at 37 and 4 degrees C. However, flow cytometric analysis revealed that lysis did not occur at 4 degrees C but was achieved during subsequent plate culture. In conclusion, the use of flow cytometry enabled identification of culture-based bias during plate culture. The flow cytometric assay used in this study proved to be rapid, as this culture-independent method does not require lengthy incubation periods post-sampling. The bacteriophage-mediated killing of E. aerogenes cells on Teflon surfaces indicated that disinfection of E. aerogenes with bacteriophage UZ1 can be successful when high MOIs are achieved, while at low multiplicities of infection conditions favorable for phage replication are required.

  20. National epidemiologic surveys of Enterobacter aerogenes in Belgian hospitals from 1996 to 1998.

    PubMed

    De Gheldre, Y; Struelens, M J; Glupczynski, Y; De Mol, P; Maes, N; Nonhoff, C; Chetoui, H; Sion, C; Ronveaux, O; Vaneechoutte, M

    2001-03-01

    Two national surveys were conducted to describe the incidence and prevalence of Enterobacter aerogenes in 21 Belgian hospitals in 1996 and 1997 and to characterize the genotypic diversity and the antimicrobial resistance profiles of clinical strains of E. aerogenes isolated from hospitalized patients in Belgium in 1997 and 1998. Twenty-nine hospitals collected 10 isolates of E. aerogenes, which were typed by arbitrarily primed PCR (AP-PCR) using two primers and pulsed-field gel electrophoresis. MICs of 10 antimicrobial agents were determined by the agar dilution method. Beta-lactamases were detected by the double-disk diffusion test and characterized by isoelectric point. The median incidence of E. aerogenes colonization or infection increased from 3.3 per 1,000 admissions in 1996 to 4.2 per 1000 admissions in the first half of 1997 (P < 0.01). E. aerogenes strains (n = 260) clustered in 25 AP-PCR types. Two major types, BE1 and BE2, included 36 and 38% of strains and were found in 21 and 25 hospitals, respectively. The BE1 type was indistinguishable from a previously described epidemic strain in France. Half of the strains produced an extended-spectrum beta-lactamase, either TEM-24 (in 86% of the strains) or TEM-3 (in 14% of the strains). Over 75% of the isolates were resistant to ceftazidime, piperacillin-tazobactam, and ciprofloxacin. Over 90% of the strains were susceptible to cefepime, carbapenems, and aminoglycosides. In conclusion, these data suggest a nationwide dissemination of two epidemic multiresistant E. aerogenes strains in Belgian hospitals. TEM-24 beta-lactamase was frequently harbored by one of these epidemic strains, which appeared to be genotypically related to a TEM-24-producing epidemic strain from France, suggesting international dissemination.

  1. An adaptive response of Enterobacter aerogenes to imipenem: regulation of porin balance in clinical isolates.

    PubMed

    Lavigne, Jean-Philippe; Sotto, Albert; Nicolas-Chanoine, Marie-Hélène; Bouziges, Nicole; Pagès, Jean-Marie; Davin-Regli, Anne

    2013-02-01

    Imipenem (IPM) is a carbapenem antibiotic frequently used in severe hospital infections. Several reports have mentioned the emergence of resistant isolates exhibiting membrane modifications. A study was conducted between September 2005 and August 2007 to survey infections due to Enterobacter aerogenes in patients hospitalised in a French university hospital. Resistant E. aerogenes clinical isolates obtained from patients treated with IPM and collected during the 3 months following initiation of treatment were phenotypically and molecularly characterised for β-lactamases, efflux pumps activity and outer membrane proteins. Among the 339 patients infected with E. aerogenes during the study period, 41 isolates (12.1%) were resistant to extended-spectrum cephalosporins and 17 patients (5.0%) were treated with IPM. The isolates from these 17 patients presented TEM-24 and basal efflux expression. Following IPM treatment, an IPM-intermediate-susceptible (IPM-I) isolate emerged in 11 patients and an IPM-resistant (IPM-R) isolate in 6 patients. A change in the porin balance (Omp35/Omp36) was observed in IPM-I isolates exhibiting ertapenem resistance. Finally, a porin deficiency (Omp35 and Omp36 absence) was detected in IPM-R isolates associated with efflux pump expression. This study indicates that the alteration in porin expression, including the shift of porin expression and lack of porins, contribute to the E. aerogenes adaptive response to IPM treatment.

  2. Development of Enterobacter aerogenes fuel cells: from in situ biohydrogen oxidization to direct electroactive biofilm.

    PubMed

    Zhuang, Li; Zhou, Shungui; Yuan, Yong; Liu, Tinglin; Wu, Zhifeng; Cheng, Jiong

    2011-01-01

    This study described an Enterobacter aerogenes-catalyzed microbial fuel cell (MFC) with a carbon-based anode that exhibited a maximum power density of 2.51 W/m(3) in the absence of artificial electron mediators. The MFC was started up rapidly, within hours, and the current generation in the early stage was demonstrated to result from in situ oxidation of biohydrogen produced by E. aerogenes during glucose fermentation. Over periodic replacement of substrate, both planktonic biomass in the culture liquid and hydrogen productivity decreased, while increased power density and coulombic efficiency and decreased internal resistance were unexpectedly observed. Using scanning electron microscopy and cyclic voltammetry, it was found that the enhanced MFC performance was associated with the development of electroactive biofilm on the anodic surface, proposed to involve an acclimation and selection process of E. aerogenes cells under electrochemical tension. The significant advantage of rapid start-up and the ability to develop an electroactive biofilm identifies E. aerogenes as a suitable biocatalyst for MFC applications.

  3. Effect of Some nitrosative agents on the growth of vgb-bearing Enterobacter aerogenes strains.

    PubMed

    Khleifat, Khaled M; Al-Mustafa, Ahmed H

    2007-07-01

    The effect of transnitrosation intermediate between S-nitroso-N-acetylcysteine (NACysNO) and cysteine on the growth of vgb-bearing Enterobacter aerogenes was investigated using three parameters: the ratio of the specific growth rates, the inhibition zone, and alpha-amylase synthesis for the culture exposed to stressors to that of the same stressor-free cultures. The effect of NACysNO/cysteine on the growth of Enterobacter strains was distinctive as compared with the CysNO, NACysNO, and their combination. At a higher concentration (2 mM), the extents of inhibition based on the mu(NACysNO/cysteine)/mu(no stress) ratio for these cultures were 57%, 62%, and 68% for VHb-expressing, parental, and pUC9-harboring cells, respectively. The inhibition caused by 2 mM: NACysNO in the presence of 1 mM cysteine in all bacterial strains was almost twofold that achieved by NACysNO alone. Based on the diameter of the inhibition zone and alpha-amylase productivity, the four compounds (NACysNO/Cysteine, CysNO, NACysNO, and their combinations) affected the E. aerogenes strains in a concentration-dependent and negative manner. This negative effect was lower in vgb-bearing than vgb-lacking strains. Thus, sulfur-to-sulfur transnitrosation was an efficient NO release and significantly (P < 0.05) affects the growth of Enterobacter strains, to a lesser extent in vgb-bearing strains.

  4. Outbreak of TEM-24-producing Enterobacter aerogenes in a Spanish hospital.

    PubMed

    Salso, S; Culebras, E; Andrade, R; Picazo, J J

    2003-01-01

    Organisms encoding multidrug resistance genes are becoming increasingly prevalent. During a 2-month period (December, 2000, to January, 2001), 83 consecutive isolates of Enterobacter spp. were collected in our microbiology department. Antibiotic susceptibility was determined using the Vitek II automatic system. We selected strains with decreased susceptibility to extended-spectrum cephalosporins. The double-disk potentiation test was positive in 10 of these strains, indicating the presence of extended-spectrum beta-lactamases (ESBLs). Polymerase chain reaction (PCR), isoelectric focusing (IEF), and sequencing identified TEM 24 beta-lactamase in the 10 selected E. aerogenes. Random amplification of polymorphic DNA (RAPD-PCR) revealed the same clonal origin for all the strains tested and strongly suggest an outbreak of multidrug-resistant E. aerogenes. To follow up the trends in ESBLs-producing Enterobacter infections in the hospital over time, we repeated the study 1 year later (December, 2001, to February, 2002). Only three ESBLs-producing Enterobacter were found. All of them corresponded to the previously characterized clone.

  5. Optimization of key process variables for enhanced hydrogen production by Enterobacter aerogenes using statistical methods.

    PubMed

    Jo, Ji Hye; Lee, Dae Sung; Park, Donghee; Choe, Woo-Seok; Park, Jong Moon

    2008-04-01

    The individual and mutual effects of glucose concentration, temperature and pH on the hydrogen production by Enterobacter aerogenes were investigated in a batch system. A Box-Behnken design and response surface methodology (RSM) were employed to determine the optimum condition for enhanced hydrogen production. The hydrogen production rate was investigated by simultaneously changing the three independent variables, which all had significant influences on the hydrogen production rate. The maximum hydrogen production rate of 425.8 ml H(2)(g dry cell h)(-1) was obtained under the optimum condition of glucose concentration 118.06 mM, temperature 38 degrees C and pH 6.13. The experimental results showed that the RSM with the Box-Behnken design was a useful tool for achieving high rate of hydrogen production by E. aerogenes.

  6. Engineered Enterobacter aerogenes for efficient utilization of sugarcane molasses in 2,3-butanediol production.

    PubMed

    Jung, Moo-Young; Park, Bu-Soo; Lee, Jinwon; Oh, Min-Kyu

    2013-07-01

    Sugarcane molasses is considered to be a good carbon source for biorefinery due to its high sugar content and low price. Sucrose occupies more than half of the sugar in the molasses. Enterobacter aerogenes is a good host strain for 2,3-butanediol production, but its utilization of sucrose is not very efficient. To improve sucrose utilization in E. aerogenes, a sucrose regulator (ScrR) was disrupted from the genomic DNA. The deletion mutation increased the sucrose consumption rate significantly when sucrose or sugarcane molasses was used as a carbon source. The 2,3-butanediol production from sugarcane molasses by the mutant was enhanced by 60% in batch fermentation compared to that by the wild type strain. In fed-batch fermentation, 98.69 g/L of 2,3-butanediol production was achieved at 36 h.

  7. Enhanced dark hydrogen fermentation by addition of ferric oxide nanoparticles using Enterobacter aerogenes.

    PubMed

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Liu, Min; Zhou, Junhu; Cen, Kefa

    2016-05-01

    Ferric oxide nanoparticles (FONPs) were used to facilitate dark hydrogen fermentation using Enterobacter aerogenes. The hydrogen yield of glucose increased from 164.5±2.29 to 192.4±1.14mL/g when FONPs concentration increased from 0 to 200mg/L. SEM images of E. aerogenes demonstrated the existence of bacterial nanowire among cells, suggesting FONPs served as electron conduits to enhance electron transfer. TEM showed cellular internalization of FONPs, indicating hydrogenase synthesis and activity was potentially promoted due to the released iron element. When further increasing FONPs concentration to 400mg/L, the hydrogen yield of glucose decreased to 147.2±2.54mL/g. Soluble metabolic products revealed FONPs enhanced acetate pathway of hydrogen production, but weakened ethanol pathway. This shift of metabolic pathways allowed more nicotinamide adenine dinucleotide for reducing proton to hydrogen.

  8. Direct production of L-tagatose from L-psicose by Enterobacter aerogenes 230S.

    PubMed

    Rao, Devendar; Gullapalli, Pushpakiran; Yoshihara, Akihide; Jenkinson, Sarah F; Morimoto, Kenji; Takata, Goro; Akimitsu, Kazuya; Tajima, Shigeyuki; Fleet, George W J; Izumori, Ken

    2008-11-01

    L-tagatose was produced directly from L-psicose by subjecting the same biomass suspension to microbial reduction followed by oxidation using a newly isolated bacteria Enterobacter aerogenes 230S. After various optimizations, it was observed that cells grown on xylitol have the best conversion potential. Moreover, E. aerogenes 230S converted L-psicose to L-tagatose at a faster rate in the presence of polyols such as glycerol, D-sorbitol, ribitol, L-arabitol, D-mannitol and xylitol. At 5% substrate concentration, the conversion ratio of L-psicose to L-tagatose was above 60% in the presence of glycerol. Identity of crystalline L-tagatose was confirmed by HPLC analysis, (13)C-NMR spectra, and optical rotation.

  9. Biotransformation of ferulic acid to 4-vinylguaiacol by Enterobacter soli and E. aerogenes.

    PubMed

    Hunter, William J; Manter, Daniel K; van der Lelie, Daniel

    2012-12-01

    We investigated the conversion of ferulic acid to 4-vinylguaiacol (4-VG), vanillin, vanillyl alcohol, and vanillic acid by five Enterobacter strains. These high-value chemicals are usually synthesized by chemical methods but biological synthesis adds market value. Ferulic acid, a relatively inexpensive component of agricultural crops, is plentiful in corn hulls, cereal bran, and sugar-beet pulp. Two Enterobacter strains, E. soli, and E. aerogenes, accumulated 550-600 ppm amounts of 4-VG when grown in media containing 1,000 ppm ferulic acid; no accumulations were observed with the other strains. Decreasing the amount of ferulic acid present in the media increased the conversion efficiency. When ferulic acid was supplied in 500, 250, or 125 ppm amounts E. aerogenes converted ~72 % of the ferulic acid present to 4-VG while E. soli converted ~100 % of the ferulic acid to 4-VG when supplied with 250 or 125 ppm amounts of ferulic acid. Also, lowering the pH improved the conversion efficiency. At pH 5.0 E. aerogenes converted ~84 % and E. soli converted ~100 % of 1,000 ppm ferulic acid to 4-VG. Only small, 1-5 ppm, accumulations of vanillin, vanillyl alcohol, and vanillic acid were observed. E. soli has a putative phenolic acid decarboxylase (PAD) that is 168 amino acids long and is similar to PADs in other enterobacteriales; this protein is likely involved in the bioconversion of ferulic acid to 4-VG. E. soli or E. aerogenes might be useful as a means of biotransforming ferulic acid to 4-VG.

  10. Isolation of KPC 3-producing Enterobacter aerogenes in a patient colonized by MDR Klebsiella pneumoniae.

    PubMed

    Venditti, Carolina; Villa, Laura; Capone, Alessandro; Fortini, Daniela; D'Arezzo, Silvia; Nisii, Carla; Bordi, Eugenio; Puro, Vincenzo; Antonini, Mario; Carattoli, Alessandra; Cataldo, Maria Adriana; Petrosillo, Nicola; Di Caro, Antonino

    2016-10-01

    We describe the interspecies transmission of the plasmid-mediated blaKPC-3 gene, which confers carbapenem resistance, between clinically relevant gram-negative bacteria in a single patient. A KPC-3 producing Enterobacter aerogenes was isolated from a hospitalized patient previously colonized and then infected by a Klebsiella pneumoniae ST101 carrying the blaKPC-3 gene. The strains showed identical plasmids. Since intense horizontal exchanges among bacteria can occur in the gut, clinicians should be aware that patients colonized by carbapenem-resistant K. pneumoniae could become carriers of other carbapenem-resistant Enterobacteriaceae.

  11. The eefABC multidrug efflux pump operon is repressed by H-NS in Enterobacter aerogenes.

    PubMed

    Masi, Muriel; Pagès, Jean-Marie; Villard, Claude; Pradel, Elizabeth

    2005-06-01

    The Enterobacter aerogenes eefABC locus, which encodes a tripartite efflux pump, was cloned by complementation of an Escherichia coli tolC mutant. E. aerogenes deltaacrA expressing EefABC became less susceptible to a wide range of antibiotics. Data from eef::lacZ fusions showed that eefABC was not transcribed in the various laboratory conditions tested. However, increased transcription from Peef was observed in an E. coli hns mutant. In addition, EefA was detected in E. aerogenes expressing a dominant negative E. coli hns allele.

  12. Detection of extended-spectrum beta-lactamases in clinical isolates of Enterobacter cloacae and Enterobacter aerogenes.

    PubMed

    Tzelepi, E; Giakkoupi, P; Sofianou, D; Loukova, V; Kemeroglou, A; Tsakris, A

    2000-02-01

    The aim of the present study was to investigate the frequency of extended-spectrum beta-lactamases (ESBLs) in a consecutive collection of clinical isolates of Enterobacter spp. The abilities of various screening methods to detect ESBLs in enterobacters were simultaneously tested. Among the 68 consecutive isolates (56 Enterobacter cloacae and 12 Enterobacter aerogenes isolates) that were analyzed for beta-lactamase content, 21 (25 and 58%, respectively) possessed transferable ESBLs with pIs of 8.2 and phenotypic characteristics of SHV-type enzymes, 8 (14.3%) of the E. cloacae isolates produced a previously nondescribed, clavulanate-susceptible ESBL that exhibited a pI of 6.9 and that conferred a ceftazidime resistance phenotype on Escherichia coli transconjugants, and 2 E. cloacae isolates produced both of these enzymes. Among the total of 31 isolates that were considered ESBL producers, the Vitek ESBL detection test was positive for 2 (6.5%) strains, and the conventional double-disk synergy test (DDST) with amoxicillin-clavulanate and with expanded-spectrum cephalosporins and aztreonam was positive for 5 (16%) strains. Modifications of the DDST consisting of closer application of the disks (at 20 instead of 30 mm), the use of cefepime, and the use of both modifications increased the sensitivity of this test to 71, 61, and 90%, respectively. Of the 37 isolates for which isoelectric focusing failed to determine ESBLs, the Vitek test was false positive for 1 isolate and the various forms of DDSTs were false-positive for 3 isolates.

  13. [Isolation and identification of degradation bacteria Enterobacter aerogenes for pyrethriods pesticide residues and its degradation characteristics].

    PubMed

    Liao, Min; Zhang, Hai-jun; Xie, Xiao-mei

    2009-08-15

    By incubation experiment, the bacterial strain labeled as M6R9 was isolated from the tame sludge in water course of Pesticide Factory of Hangzhou, and was identified as Enterobacter aerogenes, which had highly efficient degradation for Bifenthrin, Fenpropathrin and Cypermethrin. By investigating the physiological characteristics of the strain, the results show that the bacterium is a gram-negative aerobe bacilli, size is (0.8-1.9) microm x (0.5-1.0) microm, and is capable of utilizing Bifenthrin, Fenpropathrin and Cypermethrin as sole carbon source. Under the condition of ventilation, (25-30) degrees C, inoculated amount at D(415 nm) 0.2, pH 7.0, pesticide concentration 100 mg x L(-1) and vibrational speed 180 r x min(-1), the degradation efficiencies to Bifenthrin, Fenpropathrin and Cypermethrin are the highest by strain M6R9. Under such condition, in the mixture culture medium with 100 mg x L(-1) Bifenthrin, Fenpropathrin and Cypermethrin, the degradation ratios are 55.74%, 55.11% and 55.96% after culturing 3 d, respectively, the degradation processes are fitted for first-order kinetic equation and the half lives (t(1/2)) are 65.4,70.7 and 68.6 h respectively. The degradation ability of Enterobacter aerogenes M6R9 on Bifenthrin, Fenpropathrin and Cypermethrin is positively correlated to inoculated amount,vibrational speed and ventilation.

  14. Most Enterobacter aerogenes strains in France belong to a prevalent clone.

    PubMed

    Bosi, C; Davin-Regli, A; Bornet, C; Mallea, M; Pages, J M; Bollet, C

    1999-07-01

    The aim of this study was to determine the distribution in France of the Enterobacter aerogenes prevalent clone isolated in the hospitals of the Marseille area (A. Davin-Regli, D. Monnet, P. Saux, C. Bosi, R. Charrel, A. Barthelemy, and C. Bollet, J. Clin. Microbiol. 34:1474-1480, 1996). A total of 123 E. aerogenes isolates were collected from 23 hospital laboratories and analyzed by random amplification of polymorphic DNA and enterobacterial repetitive intergenic consensus-PCR to determine their epidemiological relatedness. Molecular typing revealed that 21 of the 23 laboratories had isolated this prevalent clone harboring the plasmid encoding for extended-spectrum beta-lactamase of the TEM-24 type. Most isolates were susceptible only to imipenem and gentamicin. Their dissemination seems to be clonal and was probably the result of the general use of broad-spectrum cephalosporins and quinolones. Four isolates showed an alteration of their outer membrane proteins, causing decrease of susceptibility to third-generation cephalosporins and imipenem and leading to the critical situation of having no alternative therapeutic. The large dissemination of the E. aerogenes prevalent clone probably results from its good adaptation to the antibiotics administered in France and the hospital environment, particularly in intensive care units.

  15. Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production.

    PubMed

    Jung, Moo-Young; Ng, Chiam Yu; Song, Hyohak; Lee, Jinwon; Oh, Min-Kyu

    2012-07-01

    2,3-Butanediol is an important bio-based chemical product, because it can be converted into several C4 industrial chemicals. In this study, a lactate dehydrogenase-deleted mutant was constructed to improve 2,3-butanediol productivity in Enterobacter aerogenes. To delete the gene encoding lactate dehydrogenase, λ Red recombination method was successfully adapted for E. aerogenes. The resulting strain produced a very small amount of lactate and 16.7% more 2,3-butanediol than that of the wild-type strain in batch fermentation. The mutant and its parental strain were then cultured with six different carbon sources, and the mutant showed higher carbon source consumption and microbial growth rates in all media. The 2,3-butanediol titer reached 69.5 g/l in 54 h during fed-batch fermentation with the mutant,which was 27.4% higher than that with the parental strain.With further optimization of the medium and aeration conditions,118.05 g/l 2,3-butanediol was produced in 54 h during fed-batch fermentation with the mutant. This is by far the highest titer of 2,3-butanediol with E. aerogenes achieved by metabolic pathway engineering.

  16. Regulation of glycerol metabolism in Enterobacter aerogenes NBRC12010 under electrochemical conditions.

    PubMed

    Hatayama, Kouta; Yagishita, Tatsuo

    2009-06-01

    Enterobacter aerogenes NBRC12010 was able to ferment glycerol to ethanol and hydrogen gas. Fermentation of glycerol ceased in the stationary phase of growth, and it was activated by electrochemical reactions using thionine as an electron transfer mediator from bacterial cells to an electrode. Using resting cells of E. aerogenes NBRC12010 in only citrate buffer solution, the cells did not consume glycerol at all, but they could metabolize glucose. These results suggest that the regulation of glycerol metabolism occurred at enzymatic steps before glycolysis. In E. aerogenes NBRC12010, glycerol was metabolized via glycerol dehydrogenase (GDH) and then dehydroxyacetone kinase. The GDH-catalyzed reaction mainly depended on the ratio of NAD(+)/NADH. At a NAD(+)/NADH ratio of nearly 1 or less, it was substantially suppressed and glycerol metabolism stopped. When the ratio was higher than 1, GDH was activated and glycerol was metabolized. Thus, the reaction of glycerol metabolism depended on the balance of cellular NAD(+)/NADH. Exogenous NADH was oxidized to NAD(+) by electrochemical reactions with thionine. We proposed the activation mechanism of glycerol metabolism under electrochemical conditions.

  17. Inactivation of Enterobacter aerogenes in reconstituted skim milk by high- and low-frequency ultrasound.

    PubMed

    Gao, Shengpu; Hemar, Yacine; Lewis, Gillian D; Ashokkumar, Muthupandian

    2014-11-01

    The inactivation of Enterobacter aerogenes in skim milk using low-frequency (20kHz) and high-frequency (850kHz) ultrasonication was investigated. It was found that low-frequency acoustic cavitation resulted in lethal damage to E. aerogenes. The bacteria were more sensitive to ultrasound in water than in reconstituted skim milk having different protein concentrations. However, high-frequency ultrasound was not able to inactivate E. aerogenes in milk even when powers as high as 50W for 60min were used. This study also showed that high-frequency ultrasonication had no influence on the viscosity and particle size of skim milk, whereas low-frequency ultrasonication resulted in the decrease in viscosity and particle size of milk. The decrease in particle size is believed to be due to the breakup of the fat globules, and possibly to the cleavage of the κ-casein present at the surface of the casein micelles. Whey proteins were also found to be slightly affected by low-frequency ultrasound, with the amounts of α-lactalbumin and β-lactoglobulin slightly decreasing.

  18. Characteristics of the melibiose transporter and its primary structure in Enterobacter aerogenes.

    PubMed

    Okazaki, N; Kuroda, M; Shimamoto, T; Shimamoto, T; Tsuchiya, T

    1997-05-22

    Cells of Enterobacter aerogenes can grow on melibiose as a sole source of carbon. This suggests the presence of melibiose operon in this organism. We found that E. aerogenes cells possess both alpha-galactosidase activity and melibiose transport activity, which were induced by melibiose. Neither Na+ nor Li+ stimulated the melibiose transport. However, transport of methyl-beta-thiogalactoside (TMG) was stimulated by Li+ but not by Na+. These findings suggest that the major coupling cation for the melibiose transporter in E. aerogenes is H+. In fact, we observed H+ entry into cells caused by an influx of melibiose and some of its analogs. We cloned the melB gene which encodes the melibiose transporter, and sequenced it. Deduced amino acid sequence of the transporter revealed that the melibiose transporter consists of 471 amino acid residues and the molecular weight was calculated to be 52214 Da. The sequence showed high homology with the sequences of the melibiose transporters of Escherichia coli, Salmonella typhimurium and Klebsiella pneumoniae. Higher homology was found with the melibiose transporter of K. pneumoniae than with that of E. coli and S. typhimurium.

  19. Biodegradation of 2-methylquinoline by Enterobacter aerogenes TJ-D isolated from activated sludge.

    PubMed

    Wang, Lin; Li, Yongmei; Duan, Jingyuan

    2013-07-01

    Bacterial strain Enterobacter aerogenes TJ-D capable of utilizing 2-methylquinoline as the sole carbon and energy source was isolated from acclimated activated sludge under denitrifying conditions. The ability to degrade 2-methylquinoline by E. aerogenes TJ-D was investigated under denitrifying conditions. Under optimal conditions of temperature (35 degrees C) and initial pH 7, 2-methylquinoline of 100 mg/L was degraded within 176 hr. The degradation of 2-methylquinoline by E. aerogenes TJ-D could be well described by the Haldane model (R2 > 0.91). During the degradation period of 2-methylquinoline (initial concentration 100 mg/L), nitrate was almost completely consumed (the removal efficiency was 98.5%), while nitrite remained at low concentration (< 0.62 mg/L) during the whole denitrification period. 1,2,3,4-Tetrahydro-2-methylquinoline, 4-ethyl-benzenamine, N-butyl-benzenamine, N-ethyl-benzenamine and 2,6-diethyl-benzenamine were metabolites produced during the degradation. The degradation pathway of 2-methylquinoline by E. aerogenes TJ-D was proposed. 2-Methylquinoline is initially hydroxylated at C-4 to form 2-methyl-4-hydroxy-quinoline, and then forms 2-methyl-4-quinolinol as a result of tautomerism. Hydrogenation of the heterocyclic ring at positions 2 and 3 produces 2,3-dihydro-2-methyl-4-quinolinol. The carbon-carbon bond at position 2 and 3 in the heterocyclic ring may cleave and form 2-ethyl-N-ethyl-benzenamine. Tautomerism may result in the formation of 2,6-diethyl-benzenamine and N-butyl-benzenamine. 4-Ethyl-benzenamine and N-ethyl-benzenamine were produced as a result of losing one ethyl group from the above molecules.

  20. Stability and activity of an Enterobacter aerogenes-specific bacteriophage under simulated gastro-intestinal conditions.

    PubMed

    Verthé, K; Possemiers, S; Boon, N; Vaneechoutte, M; Verstraete, W

    2004-09-01

    A bacteriophage, designated UZ1 and showing lytic activity against a clinically important strain (BE1) of Enterobacter aerogenes was isolated from hospital sewage. The stability and lytic activity against this strain under simulated gastro-intestinal conditions was evaluated. After addition of bacteriophage UZ1 to a liquid feed at gastric pH 2, the phage was immediately inactivated and could not be recovered. However, by use of an antacid to neutralize stomach acidity, no significant changes in phage titer were observed after 2 h incubation at 37 degrees C. After supplementing pancreatic juice and further incubation for 4 h, the phage titer remained stable. The persistence of UZ1 in a mixed microbial ecosystem that was representative for the large intestine was monitored using an in vitro simulation of the human intestinal microbial ecosystem. A pulse administration of bacteriophage UZ1 at a concentration of 10(5) plaque-forming units (PFU)/ml to reactor 3 (which simulates the ascending colon) showed that, in the absence of the host, bacteriophage UZ1 persisted for 13 days in the simulated colon, while the theoretical washout was calculated at 16 days. To assess its lytic activity in an intestinal microbial ecosystem, a green fluorescent protein (gfp)-labeled E. aerogenes BE1 strain was constructed and gfp-specific primers were designed in order to quantify the host strain using real-time PCR. It was observed that bacteriophage UZ1 was able to replicate and showed lytic activity against E. aerogenes BE1/ gfp in an intestinal microbial ecosystem. Indeed, after 17 h a 2 log unit reduction of E. aerogenes BE1/ gfp was measured as compared with the assay without bacteriophage UZ1, while the phage titer increased by 2 log units at an initial multiplicity of infection of 0.07 PFU/colony-forming unit. This is the first report of an in vitro model to study bacteriophage activity in the complex intestinal microbial community.

  1. The effects of cyanide on the growth and respiration of Enterobacter aerogenes in continuous culture.

    PubMed

    Porter, N; Drozd, J W; Linton, J D

    1983-01-01

    The effect of cyanide on the physiology of lactate- and oxygen-limited Enterobacter aerogenes NCTC 10336 was studied in chemostat culture (D = 0.1 h-1). In the absence of cyanide, the molar growth yield from oxygen (YO2) under oxygen limitation was 60% of the carbon-limited value. A similar decrease in yield was observed in a lactate-limited culture (excess oxygen) which was continuously fed low concentrations of potassium cyanide. The cultures with the lower growth yields possessed respiratory systems less sensitive to inhibition by cyanide. This was particularly marked in cultures grown in the presence of cyanide. Increased cyanide resistance was associated with an increase in the concentration of a cytochrome oxidase tentatively identified as a d-type and the appearance of additional cytochromes tentatively identified as b-type.

  2. Blood infection with Enterobacter aerogenes--an unusual cause of portal vein gas.

    PubMed

    Fayyaz, Afshan

    2011-01-01

    Portal vein gas was once thought of as an invariably fatal condition. Now, with the availability of better equipment and expertise, the condition is more frequently diagnosed. A case of fever with rigors is presented and on ultrasound and CT examination was found to have portal venous gas which resolved with adequate antibiotic treatment. Blood culture revealed growth of gram negative bacillus; Enterobacter aerogenes. Patient was investigated further for portal vein gas, and although no other cause for the development of portal vein gas was found, she was treated with antibiotics and showed an immediate response. The aim of this case report is to highlight the benign causes of portal vein gas as well as to discuss the causes which warrant immediate surgery. Portal vein gas may herald a more ominous condition, which if intercepted in its course may result in complete cure.

  3. Pathological fracture of the right distal radius caused by Enterobacter aerogenes osteomyelitis in an adult.

    PubMed

    Lin, Te-Yu; Chi, Hung-Wei; Wang, Ning-Chi

    2010-05-01

    A pathological fracture is a break in a diseased bone caused by weakening of the bone structure by a pathological process with no identifiable trauma. Acute bacterial osteomyelitis that results in pathological fractures in the extremities is rare in adults. To our knowledge, we report the first case of Enterobacter aerogenes osteomyelitis of the right distal radius, complicated with a pathological fracture, in a 79-year-old man with diabetes, which was diagnosed by radiological, microbiological, and histopathological examinations. He recovered well after an 8-week course of antibiotics and surgical debridement. This highlights the fact that radial osteomyelitis should be included in the differential diagnosis when an elderly diabetic patient with no history of trauma presents with pain in the forearm.

  4. Polygalacturonase production by calcium alginate immobilized Enterobacter aerogenes NBO2 cells.

    PubMed

    Darah, I; Nisha, M; Lim, Sheh-Hong

    2015-03-01

    Bacterial cells of Enterobacter aerogenes NBO2 were entrapped in calcium alginate beads in order to enhance polygalacturonase production compared to free cells. The optimized condition of 5 % (w/v) sodium alginate concentration, agitation speed of 250 rpm, and 15 beads of calcium alginate with inoculum size of 4 % (v/v; 5.4 × 10(7) cells/ml) produced 23.48 U/mL of polygalacturonase compared to free cells of 18.54 U/ml. There was about 26.6 % increment in polygalaturonase production. However, in this study, there was 296.6 % of increment in polygalacturonase production after improvement parameters compared to before improvement parameters of calcium alginate bead immobilization cells (5.92 U/ml). This research has indicated that optimized physical parameters of calcium alginate bead immobilization cells have significantly enhanced the production of polygalacturonase.

  5. Hospital clonal dissemination of Enterobacter aerogenes producing carbapenemase KPC-2 in a Chinese teaching hospital.

    PubMed

    Qin, Xiaohua; Yang, Yang; Hu, Fupin; Zhu, Demei

    2014-02-01

    Carbapenems are first-line agents for the treatment of serious nosocomial infections caused by multidrug-resistant Enterobacteriaceae. However, resistance to carbapenems has increased dramatically among Enterobacteriaceae in our hospital. In this study, we report clonal dissemination caused by carbapenem-resistant Enterobacter aerogenes (CREA). In 2011, CREA was identified from 12 patients admitted to the neurosurgical ward. All 12 clinical isolates were non-susceptible to cefotaxime, ceftazidime, cefoxitin, ertapenem, imipenem or meropenem. All isolates carried the gene encoding Klebsiella pneumoniae carbapenemase-2 (KPC-2), except for the isolate E4. However, a remarkably lower expression level of the porin OmpF was detected in the non-KPC-2-producing isolate E4 on SDS-PAGE compared with the carbapenem-susceptible isolate. Epidemiological and molecular investigations showed that a single E. aerogenes strain (PFGE type A), including seven KPC-2-producing clinical isolates, was primarily responsible for the first isolation and subsequent dissemination. In a case-control study, we identified risk factors for infection/colonization with CREA. Mechanical ventilation, the changing of sickbeds and previous use of broad-spectrum antibiotics were identified as potential risk factors. Our findings suggest that further studies should focus on judicious use of available antibiotics, implementation of active antibiotic resistance surveillance and strict implementation of infection-control measures to avoid the rapid spread or clonal dissemination caused by carbapenem-resistant Enterobacteriaceae in healthcare facilities.

  6. Study of the role of anaerobic metabolism in succinate production by Enterobacter aerogenes.

    PubMed

    Tajima, Yoshinori; Kaida, Kenichi; Hayakawa, Atsushi; Fukui, Keita; Nishio, Yousuke; Hashiguchi, Kenichi; Fudou, Ryosuke; Matsui, Kazuhiko; Usuda, Yoshihiro; Sode, Koji

    2014-09-01

    Succinate is a core biochemical building block; optimizing succinate production from biomass by microbial fermentation is a focus of basic and applied biotechnology research. Lowering pH in anaerobic succinate fermentation culture is a cost-effective and environmentally friendly approach to reducing the use of sub-raw materials such as alkali, which are needed for neutralization. To evaluate the potential of bacteria-based succinate fermentation under weak acidic (pH <6.2) and anaerobic conditions, we characterized the anaerobic metabolism of Enterobacter aerogenes AJ110637, which rapidly assimilates glucose at pH 5.0. Based on the profile of anaerobic products, we constructed single-gene knockout mutants to eliminate the main anaerobic metabolic pathways involved in NADH re-oxidation. These single-gene knockout studies showed that the ethanol synthesis pathway serves as the dominant NADH re-oxidation pathway in this organism. To generate a metabolically engineered strain for succinate production, we eliminated ethanol formation and introduced a heterogeneous carboxylation enzyme, yielding E. aerogenes strain ΔadhE/PCK. The strain produced succinate from glucose with a 60.5% yield (grams of succinate produced per gram of glucose consumed) at pH <6.2 and anaerobic conditions. Thus, we showed the potential of bacteria-based succinate fermentation under weak acidic conditions.

  7. Enhancing hydrogen production of Enterobacter aerogenes by heterologous expression of hydrogenase genes originated from Synechocystis sp.

    PubMed

    Song, Wenlu; Cheng, Jun; Zhao, Jinfang; Zhang, Chuanxi; Zhou, Junhu; Cen, Kefa

    2016-09-01

    The hydrogenase genes (hoxEFUYH) of Synechocystis sp. PCC 6803 were cloned and heterologously expressed in Enterobacter aerogenes ATCC13408 for the first time in this study, and the hydrogen yield was significantly enhanced using the recombinant strain. A recombinant plasmid containing the gene in-frame with Glutathione-S-Transferase (GST) gene was transformed into E. aerogenes ATCC13408 to produce a GST-fusion protein. SDS-PAGE and western blot analysis confirm the successful expression of the hox genes. The hydrogenase activity of the recombinant strain is 237.6±9.3ml/(g-DW·h), which is 152% higher than the wild strain. The hydrogen yield of the recombinant strain is 298.3ml/g-glucose, which is 88% higher than the wild strain. During hydrogen fermentation, the recombinant strain produces more acetate and butyrate, but less ethanol. This is corresponding to the NADH metabolism in the cell due to the higher hydrogenase activity with the heterologous expression of hox genes.

  8. Histamine production by Enterobacter aerogenes in sailfish and milkfish at various storage temperatures.

    PubMed

    Tsai, Yung-Hsiang; Chang, Shiou-Chung; Kung, Hsien-Feng; Wei, Cheng-I; Hwang, Deng-Fwu

    2005-08-01

    Enterobacter aerogenes was studied for its growth and ability to promote the formation of total volatile base nitrogen (TVBN) and histamine in sailfish (Istiophorus platypterus) and milkfish (Chanos chanos) stored at various temperatures from -20 to 37 degrees C. The optimal temperature for bacterial growth in both fish species was 25 degrees C, whereas the optimal temperature for histamine formation was 37 degrees C. The two fish species inoculated with E. aerogenes, when not properly stored at low temperatures such as 15 degrees C for 36 h, formed histamine at above the U.S. Food and Drug Administration hazardous guideline level of 50 mg/100 g. Milkfish was a better substrate than sailfish for histamine formation by bacterial histidine decarboxylation at elevated temperatures (> 15 degrees C). Although higher contents of TVBN were detected in the spiked sailfish than milkfish during the same storage time at temperatures above 15 degrees C, the use of the 30-mg/100 g level of TVBN as a determination index for fish quality and decomposition was not a good criterion for assessing potential histamine hazard for both fish species. Bacterial growth was controlled by cold storage of the fish at 4 degrees C or below, but histamine formation was stopped only by frozen storage. Once the frozen fish samples were thawed and stored at 25 degrees C, histamine started to accumulate rapidly and reached levels greater than the hazardous action level in 36 h.

  9. Thanatin activity on multidrug resistant clinical isolates of Enterobacter aerogenes and Klebsiella pneumoniae.

    PubMed

    Pagès, Jean-Marie; Dimarcq, Jean-Luc; Quenin, Solange; Hetru, Charles

    2003-09-01

    Efflux pumps protect bacterial cells by ejecting intracellular toxic molecules such as antibiotics, detergents and defensins that have penetrated the cell envelope. Some of these efflux pumps recognise structurally unrelated compounds (mdr pump) and account for the resistance of some organisms to two or more agents. It would be of interest to identify molecules that are able to circumvent the problems created by multidrug resistance phenotypes during antibiotic therapy. We have studied the activity of thanatin, a 21-residue cationic antimicrobial peptide produced by an insect, against three bacterial species. The antibacterial effect depended on the size of lipopolysaccharide side chains. In clinically resistant isolates of Enterobacter aerogenes and Klebsiella pneumoniae, the biological activity of thanatin is independent of the membrane permeability, possibly controlled by one or more porins, and/or the expression of drug efflux pumps, two mechanisms which confer high level antibiotic resistance. In addition, thanatin was able to improve the activity of structurally unrelated antibiotics (norfloxacin, chloramphenicol, tetracycline) on a multidrug- resistant E. aerogenes clinical isolate.

  10. Effect of nanocomposite packaging containing ZnO on growth of Bacillus subtilis and Enterobacter aerogenes.

    PubMed

    Esmailzadeh, Hakimeh; Sangpour, Parvaneh; Shahraz, Farzaneh; Hejazi, Jalal; Khaksar, Ramin

    2016-01-01

    Recent advances in nanotechnology have opened new windows in active food packaging. Nano-sized ZnO is an inexpensive material with potential antimicrobial properties. The aim of the present study is to evaluate the antibacterial effect of low density Polyethylene (LDPE) containing ZnO nanoparticles on Bacillus subtilis and Enterobacter aerogenes. ZnO nanoparticles have been synthesized by facil molten salt method and have been characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM). Nanocomposite films containing 2 and 4 wt.% ZnO nanoparticles were prepared by melt mixing in a twin-screw extruder. The growth of both microorganisms has decreased in the presence of ZnO containing nanocomposites compared with controls. Nanocomposites with 4 wt.% ZnO nanoparticles had stronger antibacterial effect against both bacteria in comparison with the 2 wt.% ZnO containing nanocomposites. B. subtilis as Gram-positive bacteria were more sensitive to ZnO containing nanocomposite films compared with E. aerogenes as Gram-negative bacteria. There were no significant differences between the migration of Zn ions from 2 and 4 wt.% ZnO containing nanocomposites and the released Zn ions were not significantly increased in both groups after 14 days compared with the first. Regarding the considerable antibacterial effects of ZnO nanoparticles, their application in active food packaging can be a suitable solution for extending the shelf life of food.

  11. The purification, crystallization and preliminary diffraction of a glycerophosphodiesterase from Enterobacter aerogenes

    SciTech Connect

    Jackson, Colin J.; Carr, Paul D.; Kim, Hye-Kyung; Liu, Jian-Wei; Ollis, David L.

    2006-07-01

    The metallo-glycerophosphodiesterase from E. aerogenes (GpdQ) has been cloned, expressed in E. coli and purified. Initial screening of crystallization conditions for this enzyme resulted in the identification of needles from one condition in a sodium malonate grid screen. Removal of the metals from the enzyme and subsequent optimization of these conditions led to crystals. The metallo-glycerophosphodiesterase from Enterobacter aerogenes (GpdQ) has been cloned, expressed in Escherichia coli and purified. Initial screening of crystallization conditions for this enzyme resulted in the identification of needles from one condition in a sodium malonate grid screen. Removal of the metals from the enzyme and subsequent optimization of these conditions led to crystals that diffracted to 2.9 Å and belonged to space group P2{sub 1}3, with unit-cell parameter a = 164.1 Å. Self-rotation function analysis and V{sub M} calculations indicated that the asymmetric unit contains two copies of the monomeric enzyme, corresponding to a solvent content of 79%. It is intended to determine the structure of this protein utilizing SAD phasing from transition metals or molecular replacement.

  12. Isolation and characterization of a bacteriophage F20 virulent to Enterobacter aerogenes.

    PubMed

    Mishra, Charitra Kumar; Choi, Tae Jin; Kang, Sun Chul

    2012-10-01

    An aquatic phage, designated F20, was characterized and its physico-chemical characteristics studied. F20 was specifically virulent to only two strains of Enterobacter aerogenes (ATCC 13048 and the multi-drug-resistant strain K113) among other species tested (n = 15). It was classified in the family Siphoviridae of T1-like viruses and contained a linear dsDNA genome estimated to be 51.5 kbp enclosed by an isometric capsid of 50±2 nm in diameter and a tail of 150±3 nm in length. F20 was able to survive in a broad pH range between 4 and 11, showed potential for future animal trials using oral solution and resisted chloroform and ethanol. It exhibited remarkable stability between room temperature and 70 °C for up to 150 min, and even up to 6 months at room temperature. Knowledge of this phage belonging to the widespread T1-like viruses might be helpful for adopting therapeutic strategies against E. aerogenes.

  13. The AcrAB-TolC pump is involved in macrolide resistance but not in telithromycin efflux in Enterobacter aerogenes and Escherichia coli.

    PubMed

    Chollet, Renaud; Chevalier, Jacqueline; Bryskier, André; Pagès, Jean-Marie

    2004-09-01

    The role of the AcrAB-TolC pump in macrolide and ketolide susceptibility in Escherichia coli and Enterobacter aerogenes was studied. Efflux pump inhibitor restored erythromycin, clarithromycin, and telithromycin susceptibilities to multidrug-resistant isolates. No modification of telithromycin accumulation was detected in E. aerogenes acrAB or tolC derivatives compared to that in the parental strain. Two independent efflux pumps, inhibited by phenylalanine arginine beta-naphthylamide, expel macrolides and telithromycin in E. aerogenes.

  14. Draft Genome Assemblies of Enterobacter aerogenes CDC 6003-71, Enterobacter cloacae CDC 442-68, and Pantoea agglomerans UA 0804-01.

    PubMed

    Minogue, T D; Daligault, H E; Davenport, K W; Bishop-Lilly, K A; Bruce, D C; Chain, P S; Coyne, S R; Chertkov, O; Freitas, T; Frey, K G; Jaissle, J; Koroleva, G I; Ladner, J T; Palacios, G F; Redden, C L; Xu, Y; Johnson, S L

    2014-10-23

    The Enterobacteriaceae are environmental and enteric microbes. We sequenced the genomes of two Enterobacter reference strains, E. aerogenes CDC 6003-71 and E. cloacae CDC 442-68, as well as one near neighbor used as an exclusionary reference for diagnostics, Pantoea agglomerans CDC UA0804-01. The genome sizes range from 4.72 to 5.55 Mbp and have G+C contents from 54.6 to 55.1%.

  15. Draft Genome Assemblies of Enterobacter aerogenes CDC 6003-71, Enterobacter cloacae CDC 442-68, and Pantoea agglomerans UA 0804-01

    PubMed Central

    Minogue, T. D.; Daligault, H. E.; Davenport, K. W.; Bishop-Lilly, K. A.; Bruce, D. C.; Chain, P. S.; Coyne, S. R.; Chertkov, O.; Freitas, T.; Frey, K. G.; Jaissle, J.; Koroleva, G. I.; Ladner, J. T.; Palacios, G. F.; Redden, C. L.; Xu, Y.

    2014-01-01

    The Enterobacteriaceae are environmental and enteric microbes. We sequenced the genomes of two Enterobacter reference strains, E. aerogenes CDC 6003-71 and E. cloacae CDC 442-68, as well as one near neighbor used as an exclusionary reference for diagnostics, Pantoea agglomerans CDC UA0804-01. The genome sizes range from 4.72 to 5.55 Mbp and have G+C contents from 54.6 to 55.1%. PMID:25342683

  16. KPC-2 carbapenemase and DHA-1 AmpC determinants carried on the same plasmid in Enterobacter aerogenes.

    PubMed

    Kuai, Shougang; Shao, Haifeng; Huang, Lihua; Pei, Hao; Lu, Zhonghua; Wang, Weiping; Liu, Jun

    2014-03-01

    This study was conducted to analyse the presence of a plasmid-mediated carbapenem resistance mechanism in a clinical Enterobacter aerogenes isolate from a patient from Jiangsu province, People's Republic of China. PCR and sequencing confirmed that the isolate harboured Klebsiella pneumoniae carbapenemase (KPC)-2, DHA-1 and TEM-1 β-lactamase genes. Both the KPC-2 and DHA-1 genes were transferred to Escherichia coli C600 by transconjugation, and Southern blotting confirmed that these two genes were located on the same plasmid, which was of approximately 56 kb in size. The Enterobacter aerogenes isolate was resistant to carbapenems and other tested antimicrobial agents. The Escherichia coli transconjugant showed reduced susceptibility but not resistance to carbapenems and other β-lactams, indicating the presence of another, possibly permeability-related, resistance mechanism in the clinical isolate.

  17. Occurrence of efflux mechanism and cephalosporinase variant in a population of Enterobacter aerogenes and Klebsiella pneumoniae isolates producing extended-spectrum beta-lactamases.

    PubMed

    Tran, Que-Tien; Dupont, Myrielle; Lavigne, Jean-Philippe; Chevalier, Jacqueline; Pagès, Jean-Marie; Sotto, Albert; Davin-Regli, Anne

    2009-04-01

    We investigated the occurrence of multidrug resistance in 44 Enterobacter aerogenes and Klebsiella pneumoniae clinical isolates. Efflux was involved in resistance in E. aerogenes isolates more frequently than in K. pneumoniae isolates (100 versus 38% of isolates) and was associated with the expression of phenylalanine arginine beta-naphthylamide-susceptible active efflux. AcrA-TolC overproduction in E. aerogenes isolates was noted. An analysis of four E. aerogenes isolates for which cefepime MICs were high revealed no modification in porin expression but a new specific mutation in the AmpC beta-lactamase.

  18. Biosensing and bioremediation of Cr(VI) by cell free extract of Enterobacter aerogenes T2.

    PubMed

    Panda, Jigisha; Sarkar, Priyabrata

    2014-01-01

    Hexavalent chromium or Cr(VI) enters the environment through several anthropogenic activities and it is highly toxic and carcinogenic. Hence it is required to be detected and remediated from the environment. In this study, low-cost and environment-friendly methods of biosensing and bioremediation of Cr(VI) have been proposed. Crude cell free extract (CFE) of previously isolated Enterobacter aerogenes T2 (GU265554; NII 1111) was prepared and exploited to develop a stable biosensor for direct estimation of Cr(VI) in waste water, by using three electrodes via cyclic voltammetry. For bioremediation studies, a homogeneous solution of commercially available sodium alginate and CFE was added dropwise in a continuously stirred calcium chloride solution. Biologically modified calcium alginate beads were produced and these were further utilized for bioremediation studies. The proposed sensor showed linear response in the range of 10-40 μg L(-1) Cr(VI) and the limit of detection was found to be 6.6 μg L(-1) Cr(VI). No interference was observed in presence of metal ions, e.g., lead, cadmium, arsenic, tin etc., except for insignificant interference with molybdenum and manganese. In bioremediation studies, modified calcium alginate beads showed encouraging removal rate 900 mg Cr(VI)/m(3) water per day with a removal efficiency of 90%, much above than reported in literature. The proposed sensing system could be a viable alternative to costly measurement procedures. Calcium alginate beads, modified with CFE of E. aerogenes, could be used in bioremediation of Cr(VI) since it could work in real conditions with extraordinarily high capacity.

  19. Effect of crude glycerol-derived inhibitors on ethanol production by Enterobacter aerogenes.

    PubMed

    Lee, Sang Jun; Kim, Sung Bong; Kang, Seong Woo; Han, Sung Ok; Park, Chulhwan; Kim, Seung Wook

    2012-01-01

    In this study, ethanol production from pure and crude glycerol using Enterobacter aerogenes ATCC 29007 was evaluated under anaerobic culture conditions. Inhibitory effects of substrate concentrations, pH, and salt concentrations were investigated based on crude glycerol components. Ethanol production was performed with pure glycerol concentrations ranging from 5 to 30 g/L to evaluate the effects of substrate concentration and osmotic pressure. The consumed glycerol was 5-14.33 g/L, and the yield of ethanol was higher than 0.75 mol ethanol/mol glycerol after 24 h of cultivation. To evaluate the inhibitory effects of salts (NaCl and KCl), experiments were performed with 0-20 g/L of each salt. Inhibitory effects of salts were strongest at high salt concentrations. The inhibitory effect of pH was performed in the pH range 4-10, and cell growth and ethanol production were highest at pH 5-6. Also, ethanol production was slightly inhibited at low concentration of crude glycerol comparison with pure glycerol. However, significant inhibitory effects were not observed at 1.5 and 2% crude glycerol which showed higher ethanol production compared to pure glycerol.

  20. Nucleotide sequence and expression of the Enterobacter aerogenes alpha-acetolactate decarboxylase gene in brewer's yeast.

    PubMed Central

    Sone, H; Fujii, T; Kondo, K; Shimizu, F; Tanaka, J; Inoue, T

    1988-01-01

    The nucleotide sequence of a 1.4-kilobase DNA fragment containing the alpha-acetolactate decarboxylase gene of Enterobacter aerogenes was determined. The sequence contains an entire protein-coding region of 780 nucleotides which encodes an alpha-acetolactate decarboxylase of 260 amino acids. The DNA sequence coding for alpha-acetolactate decarboxylase was placed under the control of the alcohol dehydrogenase I promoter of the yeast Saccharomyces cerevisiae in a plasmid capable of autonomous replication in both S. cerevisiae and Escherichia coli. Brewer's yeast cells transformed by this plasmid showed alpha-acetolactate decarboxylase activity and were used in laboratory-scale fermentation experiments. These experiments revealed that the diacetyl concentration in wort fermented by the plasmid-containing yeast strain was significantly lower than that in wort fermented by the parental strain. These results indicated that the alpha-acetolactate decarboxylase activity produced by brewer's yeast cells degraded alpha-acetolactate and that this degradation caused a decrease in diacetyl production. PMID:3278689

  1. Biodegradation of acrylamide by Enterobacter aerogenes isolated from wastewater in Thailand.

    PubMed

    Buranasilp, Kanokhathai; Charoenpanich, Jittima

    2011-01-01

    A widespread use of acrylamide, probably a neurotoxicant and carcinogen, in various industrial processes has led to environmental contamination. Fortunately, some microorganisms are able to derive energy from acrylamide. In the present work, we reported the isolation and characterization of a novel acrylamide-degrading bacterium from domestic wastewater in Chonburi, Thailand. The strain grew well in the presence of acrylamide as 0.5% (W/V), at pH 6.0 to 9.0 and 25 degrees C. Identification based on biochemical characteristics and 16S rRNA gene sequence identified the strain as Enterobacter aerogenes. Degradation of acrylamide to acrylic acid started in the late logarithmic growth phase as a biomass-dependent pattern. Specificity of cell-free supernatant towards amides completely degraded butyramide and urea and 86% of lactamide. Moderate degradation took place in other amides with that by formamide > benzamide > acetamide > cyanoacetamide > propionamide. No degradation was detected in the reactions of N,N-methylene bisacrylamide, sodium azide, thioacetamide, and iodoacetamide. These results highlighted the potential of this bacterium in the cleanup of acrylamide/amide in the environment.

  2. Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenes.

    PubMed

    Asadi, Nooshin; Zilouei, Hamid

    2017-03-01

    Ethanol organosolv pretreated rice straw was used to produce biohydrogen using Enterobacter aerogenes. The effect of temperature (120-180°C), residence time (30-90min), and ethanol concentration (45-75%v/v) on the hydrogen yield, residual biomass, and lignin recovery was investigated using RSM. In contrast to the residual solid and lignin recovery, no considerable trend could be observed for the changes in the hydrogen yield at different treatment severities. The maximum hydrogen yield of 19.73mlg(-1) straw was obtained at the ethanol concentration of 45%v/v and 180°C for 30min. Furthermore, the potential amount of biohydrogen was estimated in the top ten rice producing nations using the experimental results. Approximately 355.8kt of hydrogen and 11.3Mt of lignin could globally be produced. Based on a Monte Carlo analysis, the production of biohydrogen from rice straw has the lowest risk in China and the highest in Japan.

  3. Optimization of cultural conditions for conversion of glycerol to ethanol by Enterobacter aerogenes S012

    PubMed Central

    2013-01-01

    The aim of this research is to optimize the cultural conditions for the conversion of glycerol to ethanol by Enterobacter aerogenes S012. Taguchi method was used to screen the cultural conditions based on their signal to noise ratio (SN). Temperature (°C), agitation speed (rpm) and time (h) were found to have the highest influence on both glycerol utilization and ethanol production by the organism while pH had the lowest. Full factorial design, statistical analysis, and regression model equation were used to optimize the selected cultural parameters for maximum ethanol production. The result showed that fermentation at 38°C and 200 rpm for 48 h would be ideal for the bacteria to produce maximum amount of ethanol from glycerol. At these optimum conditions, ethanol production, yield and productivity were 25.4 g/l, 0.53 g/l/h, and 1.12 mol/mol-glycerol, repectively. Ethanol production increased to 26.5 g/l while yield and productivity decreased to 1.04 mol/mol-glycerol and 0.37 g/l/h, respectively, after 72 h. Analysis of the fermentation products was performed using HPLC, while anaerobic condition was created by purging the fermentation vessel with nitrogen gas. PMID:23388539

  4. Improved hydrogen production under microaerophilic conditions by overexpression of polyphosphate kinase in Enterobacter aerogenes.

    PubMed

    Lu, Yuan; Zhang, Chong; Lai, Qiheng; Zhao, Hongxin; Xing, Xin-Hui

    2011-02-08

    Effects of different microaerophilic conditions on cell growth, glucose consumption, hydrogen production and cellular metabolism of wild Enterobacter aerogenes strain and polyphosphate kinase (PPK) overexpressing strain were systematically studied in this paper, using NaH(2)PO(4) as the phosphate sources. Under different microaerophilic conditions, PPK-overexpressing strain showed better cell growth, glucose consumption and hydrogen production than the wild strain. In the presence of limited oxygen (2.1%) and by PPK overexpression, the hydrogen production per liter of culture, the hydrogen production per cell and the hydrogen yield per mol of glucose increased by 20.1%, 12.3% and 10.8%, respectively, compared with the wild strain under strict anaerobic conditions. Metabolic analysis showed that the increase of the total hydrogen yield was attributed to the improvement of NADH pathway. The result of more reductive cellular oxidation state balance also further demonstrated that, under proper initial microaerophilic conditions and by PPK overexpression, the cell could adjust the cellular redox states and make more energy flow into hydrogen production pathways.

  5. [Mechanisms of bioelectricity generation in Enterobacter aerogenes-based microbial fuel cells].

    PubMed

    Zhang, Jin-Tao; Zhou, Shun-Gui; Zhang, Li-Xia; Lu, Na; Deng, Li-Fang; Ni, Jin-Ren

    2009-04-15

    Microbial fuel cells (MFCs) using hydrogen-producing bacteria (HPB) could utilize a large number of substrates to generate power. However, the coulombic efficiency is limited by the fact that only suspended cells are used as biocatalyst in anodic medium. MFCs using Fe (III)-reducing bacteria have high energy recovery efficiency, but can only utilize some simple organic matters. In this study, Enterobacter aerogenes XM02, a hydrogen-producing strain with Fe(III)-reducing activity, was selected as biocatalyst for MFCs, which could produce electricity by digesting lots of carbohydrates even starch. Graphite felt, a material with high specific surface area and hydrogen catalysis, instead of carbon paper supported platinum, was used as anode material. The coulombic efficiency had been substantially improved from 1.68% to 42.49%, higher than other HPB-based MFCs previously reported. The SEM image proved the ability of XM02 strain to colonize on the anode surface. Power generation of MFCs could restore quickly when anodic medium was completely replaced with non-growth medium containing glucose. This suggested that the attached cells contributed to electricity production because planktonic cells had been removed during the medium replacement. This study proposed the mechanism of power generated from in situ oxidation of hydrogen produced by the XM02 strain biofilm.

  6. Detecting the form of selection in the outer membrane protein C of Enterobacter aerogenes strains and Salmonella species.

    PubMed

    Padhi, Abinash; Verghese, Bindhu; Otta, Subhendu K

    2009-01-01

    The types of selective pressure operating on the outer membrane protein C (ompC) of Enterobacter aerogenes strains, the causative agent for nosocomial infections, and Salmonella sp., the hazardous pathogen are investigated using the maximum likelihood-based codon substitution models. Although the rate of amino acid replacement to the silent substitution (omega) across the entire codon sites of ompC of E. aerogenes (omega=0.3194) and Salmonella sp. (omega=0.2047) indicate that the gene is subjected to purifying selection (i.e. omega<1), approximately 3.7% of ompC codon sites in E. aerogenes (omega=21.52) are under the influence of positive Darwinian selection (i.e. omega>1). Such contrast in the intensity of selective pressures in both pathogens could be associated with the differential response to the adverse environmental changes. In E. aerogenes, majority of the positively selected sites are located in the hypervariable cell-surface-exposed domains whereas the trans-membrane domains are functionally highly constrained.

  7. Longer Contact Times Increase Cross-Contamination of Enterobacter aerogenes from Surfaces to Food.

    PubMed

    Miranda, Robyn C; Schaffner, Donald W

    2016-11-01

    Bacterial cross-contamination from surfaces to food can contribute to foodborne disease. The cross-contamination rate of Enterobacter aerogenes on household surfaces was evaluated by using scenarios that differed by surface type, food type, contact time (<1, 5, 30, and 300 s), and inoculum matrix (tryptic soy broth or peptone buffer). The surfaces used were stainless steel, tile, wood, and carpet. The food types were watermelon, bread, bread with butter, and gummy candy. Surfaces (25 cm(2)) were spot inoculated with 1 ml of inoculum and allowed to dry for 5 h, yielding an approximate concentration of 10(7) CFU/surface. Foods (with a 16-cm(2) contact area) were dropped onto the surfaces from a height of 12.5 cm and left to rest as appropriate. Posttransfer, surfaces and foods were placed in sterile filter bags and homogenized or massaged, diluted, and plated on tryptic soy agar. The transfer rate was quantified as the log percent transfer from the surface to the food. Contact time, food, and surface type all had highly significant effects (P < 0.000001) on the log percent transfer of bacteria. The inoculum matrix (tryptic soy broth or peptone buffer) also had a significant effect on transfer (P = 0.013), and most interaction terms were significant. More bacteria transferred to watermelon (∼0.2 to 97%) than to any other food, while the least bacteria transferred to gummy candy (∼0.1 to 62%). Transfer of bacteria to bread (∼0.02 to 94%) was similar to transfer of bacteria to bread with butter (∼0.02 to 82%), and these transfer rates under a given set of conditions were more variable than with watermelon and gummy candy.

  8. Bioproduction of D-psicose from allitol with Enterobacter aerogenes IK7: a new frontier in rare ketose production.

    PubMed

    Gullapalli, Pushpakiran; Takata, Goro; Poonperm, Wayoon; Rao, Devendar; Morimoto, Kenji; Akimitsu, Kazuya; Tajima, Shigeyuki; Izumori, Ken

    2007-12-01

    D-psicose, a new alternative sweetener, was produced from allitol by microbial oxidation of the newly isolated strain Enterobacter aerogenes IK7. Cells grown in tryptic soy broth medium (TSB) supplemented with D-mannitol at 37 degrees C were found to have the best oxidation potential. The cells, owing to broad substrate specificity, oxidized various polyols (tetritol, pentitol, and hexitol) to corresponding rare ketoses. By a resting cell reaction, 10% of allitol was completely transformed to the product D-psicose, which thus becomes economically feasible for the mass production of D-psicose. Finally, the product was crystallized and confirmed to be D-psicose by analytical methods.

  9. Expression of NAD+-dependent formate dehydrogenase in Enterobacter aerogenes and its involvement in anaerobic metabolism and H2 production.

    PubMed

    Lu, Yuan; Zhao, Hongxin; Zhang, Chong; Lai, Qiheng; Wu, Xi; Xing, Xin-Hui

    2009-10-01

    An expression system for NAD(+)-dependent formate dehydrogenase gene (fdh1), from Candida boidinii, was constructed and cloned into Enterobacter aerogenes IAM1183. With the fdh1 expression, the total H(2) yield was attributed to a decrease in activity of the lactate pathway and an increase of the formate pathway flux due to the NADH regeneration. Analysis of the redox state balance and ethanol-to-acetate ratio in the fdhl-expressed strain showed that increased reducing power arose from the reconstruction of NADH regeneration pathway from formate thereby contributing to the improved H(2) production.

  10. Investigation and control of an outbreak of Enterobacter aerogenes bloodstream infection in a neonatal intensive care unit in Fiji.

    PubMed

    Narayan, Swastika A; Kool, Jacob L; Vakololoma, Miriama; Steer, Andrew C; Mejia, Amelita; Drake, Anne; Jenney, Adam; Turton, Jane F; Kado, Joseph; Tikoduadua, Lisi

    2009-08-01

    Ten neonates developed blood stream infection with extended-spectrum beta-lactamase-producing Enterobacter aerogenes in a neonatal intensive care unit in Fiji. The source of the outbreak was traced to a bag of contaminated normal saline in the ward, which was used for multiple patients. All isolates recovered from patients were indistinguishable from the bacteria recovered from the normal saline by pulsed-field gel electrophoresis. The outbreak was controlled using simple infection control practices such as reinforcement of strict hand hygiene policy, provision of single use vials of normal saline, and strict aseptic technique for injections.

  11. Effects of carbon source and Vitreoscilla hemoglobin (VHb) on the production of beta-galactosidase in Enterobacter aerogenes.

    PubMed

    Khleifat, Khaled M; Abboud, Muayad M; Al-Mustafa, Ahmed H; Al-Sharafa, Khalid Y

    2006-10-01

    At fixed concentration (0.5%), lactose and galactose acted as inducers while glucose and other tested carbon sugars showed repression effects on beta-galactosidase production in Enterobacter aerogenes strain. The expression of Vitreoscilla hemoglobin gene (vgb) in this bacterial strain managed to overcome the repression effects as well as improving the induction of beta-galactosidase formation by carbon sources. In parallel, the bacterial O(2) consumption was increased correspondingly to the vgb induction of beta-galactosidase synthesis. When Enterobacter aerogenes strains were grown at the incubation temperature 42 degrees C, about 5-fold higher enzyme productivity was obtained than with a similar incubation at 37 degrees C. The bacterial growth expressed as biomass yield had a different optimum temperature and was not influenced to the same extent by variations in the carbon sources. These data are discussed in terms of proposed enhancement in beta-galactosidase productivity by vgb expression as well as its significance to improve the technology of whey processing.

  12. 4-alkoxy and 4-thioalkoxyquinoline derivatives as chemosensitizers for the chloramphenicol-resistant clinical Enterobacter aerogenes 27 strain.

    PubMed

    Gallo, Sandrine; Chevalier, Jacqueline; Mahamoud, Abdallah; Eyraud, Annie; Pagès, Jean-Marie; Barbe, Jacques

    2003-09-01

    Enterobacter aerogenes is a Gram-negative bacteria frequently responsible for nosocomial respiratory tract infections. Strains resistant to chloramphenicol are frequently isolated. Alkoxy and thio-alkoxyquinolines have a potential to act as chemosensitizers that would render multi-drug-resistant (MDR) bacterial infections susceptible to antibiotics to which they were originally resistant. Several new quinoline derivatives have been prepared, characterized and studied for their ability to increase chloramphenicol sensitivity of E. aerogenes 27, a clinical strain that exhibits the MDR phenotype. Drugs investigated were either quinoline ethers or quinoline thio-ethers. Thio-ethers are much more efficient in increasing chloramphenicol sensitivity than other corresponding ethers. In particular, 4-piperidinoethylthio-quinoline increases the strain sensitivity to chloramphenicol by about 20 times at 2 mM concentration. Similarly, sensitivity to quinolone antibiotics dramatically increases. Because these quinoline derivatives act as inhibitors of the drug efflux pump responsible for bacterial resistance to chloramphenicol, they may serve as adjunct to conventional therapy of E. aerogenes infections.

  13. Quantitative analysis of the growth of Salmonella stanley during alfalfa sprouting and evaluation of Enterobacter aerogenes as its surrogate.

    PubMed

    Liu, Bin; Schaffner, Donald W

    2007-02-01

    Raw seed sprouts have been implicated in several food poisoning outbreaks in the last 10 years. Few studies have included investigations of factors influencing the effectiveness of testing spent irrigation water, and in no studies to date has a nonpathogenic surrogate been identified as suitable for large-scale irrigation water testing trials. Alfalfa seeds were inoculated with Salmonella Stanley or its presumptive surrogate (nalidixic acid-resistant Enterobacter aerogenes) at three concentrations (-3, -30, and -300 CFU/g) and were then transferred into either flasks or a bench top-scale sprouting chamber. Microbial concentrations were determined in seeds, sprouts, and irrigation water at various times during a 4-day sprouting process. Data were fit to logistic regression models, and growth rates and maximum concentrations were compared using the generalized linear model procedure of SAS. No significant differences in growth rates were observed among samples taken from flasks or the chamber. Microbial concentrations in irrigation water were not significantly different from concentrations in sprout samples obtaihed at the same time. E. aerogenes concentrations were similar to those of Salmonella Stanley at corresponding time points for all three inoculum concentrations. Growth rates were also constant regardless of inoculum concentration or strain, except that lower inoculum concentrations resulted in lower final concentrations proportional to their initial concentrations. This research demonstrated that a nonpathogenic easy-to-isolate surrogate (nalidixic acid-resistant E. aerogenes) provides results similar to those obtained with Salmonella Stanley, supporting the use of this surrogate in future large-scale experiments.

  14. Failure of the MicroScan WalkAway system to detect heteroresistance to carbapenems in a patient with Enterobacter aerogenes bacteremia.

    PubMed

    Gordon, N C; Wareham, D W

    2009-09-01

    We report the failure of the automated MicroScan WalkAway system to detect carbapenem heteroresistance in Enterobacter aerogenes. Carbapenem resistance has become an increasing concern in recent years, and robust surveillance is required to prevent dissemination of resistant strains. Reliance on automated systems may delay the detection of emerging resistance.

  15. Co-fermentation of carbon sources by Enterobacter aerogenes ATCC 29007 to enhance the production of bioethanol.

    PubMed

    Thapa, Laxmi Prasad; Lee, Sang Jun; Yang, Xiao Guang; Yoo, Hah Young; Kim, Sung Bong; Park, Chulhwan; Kim, Seung Wook

    2014-06-01

    We investigated the enhancement of bioethanol production in Enterobacter aerogenes ATCC 29007 by co-fermentation of carbon sources such as glycerol, glucose, galactose, sucrose, fructose, xylose, starch, mannitol and citric acid. Biofuel production increases with increasing growth rate of microorganisms; that is why we investigated the optimal growth rate of E. aerogenes ATCC 29007, using mixtures of different carbon sources with glycerol. E. aerogenes ATCC 29007 was incubated in media containing each carbon source and glycerol; growth rate and bioethanol production improved in all cases compared to those in medium containing glycerol alone. The growth rate and bioethanol production were highest with mannitol. Fermentation was carried out at 37 °C for 18 h, pH 7, using 50 mL defined production medium in 100 mL serum bottles at 200 rpm. Bioethanol production under optimized conditions in medium containing 16 g/L mannitol and 20 g/L glycerol increased sixfold (32.10 g/L) than that containing glycerol alone (5.23 g/L) as the carbon source in anaerobic conditions. Similarly, bioethanol production using free cells in continuous co-fermentation also improved (27.28 g/L) when 90.37 % of 16 g/L mannitol and 67.15 % of 20 g/L glycerol were used. Although naturally existing or engineered microorganisms can ferment mixed sugars sequentially, the preferential utilization of glucose to non-glucose sugars often results in lower overall yield and productivity of ethanol. Here, we present new findings in E. aerogenes ATCC 29007 that can be used to improve bioethanol production by simultaneous co-fermentation of glycerol and mannitol.

  16. Characterization of KPC-2-producing Escherichia coli, Citrobacter freundii, Enterobacter cloacae, Enterobacter aerogenes, and Klebsiella oxytoca isolates from a Chinese Hospital.

    PubMed

    Luo, Yanping; Yang, Jiyong; Ye, Liyan; Guo, Lin; Zhao, Qiang; Chen, Rong; Chen, Yong; Han, Xuelin; Zhao, Jingya; Tian, Shuguang; Han, Li

    2014-08-01

    Twelve nonduplicated KPC-2-producing enterobacterial isolates, including three Escherichia coli, two Citrobacter freundii, two Enterobacter cloacae, four Enterobacter aerogenes, and one Klebsiella oxytoca, were collected from various clinical samples within 18 months (March 2011 to September 2012). Two of the 12 patients died from infections caused by KPC-2-producing pathogens, while the rest of the patients with KPC-2-producing pathogens improved or were cured. The majority of the clinical isolates exhibited a high-level of resistance to oxyimino-cephalosporins and carbapenems, and possessed self-transferable bla(KPC-2)-carrying plasmids with sizes ranging from 20 to 120 kb. Most isolates carried bla(CTX-M) and plasmid-mediated quinolone resistance genes, while some isolates produced 16S rRNA methylases (ArmA or RmtB). The genetic environment of bla(KPC-2) of most clinical strains was consistent with the genetic structure surrounding bla(KPC-2) on the plasmid pKP048, which contains an integration structure of a Tn3-based transposon and partial Tn4401 segment. Inserted fragments (truncated bla(TEM)) were detected upstream of the bla(KPC-2) gene for two E. aerogenes strains. In conclusion, the enterobacterial isolates exhibited sporadic emergence and did not arise by clonal spread at our hospital. The outcome of infections caused by KPC-producing enterobacterial isolates and their mortality were closely associated with the baseline condition of patients. The spread of bla(KPC-2) gene between different enterobacterial species in China was mainly mediated by horizontal transfer of the Tn3-based transposons and not the bla(KPC-2)-carrying plasmids.

  17. Biohydrogen and Bioethanol Production from Biodiesel-Based Glycerol by Enterobacter aerogenes in a Continuous Stir Tank Reactor.

    PubMed

    Jitrwung, Rujira; Yargeau, Viviane

    2015-05-11

    Crude glycerol from the biodiesel manufacturing process is being produced in increasing quantities due to the expanding number of biodiesel plants. It has been previously shown that, in batch mode, semi-anaerobic fermentation of crude glycerol by Enterobacter aerogenes can produce biohydrogen and bioethanol simultaneously. The present study demonstrated the possible scaling-up of this process from small batches performed in small bottles to a 3.6-L continuous stir tank reactor (CSTR). Fresh feed rate, liquid recycling, pH, mixing speed, glycerol concentration, and waste recycling were optimized for biohydrogen and bioethanol production. Results confirmed that E. aerogenes uses small amounts of oxygen under semi-anaerobic conditions for growth before using oxygen from decomposable salts, mainly NH4NO3, under anaerobic condition to produce hydrogen and ethanol. The optimal conditions were determined to be 500 rpm, pH 6.4, 18.5 g/L crude glycerol (15 g/L glycerol) and 33% liquid recycling for a fresh feed rate of 0.44 mL/min. Using these optimized conditions, the process ran at a lower media cost than previous studies, was stable after 7 days without further inoculation and resulted in yields of 0.86 mol H2/mol glycerol and 0.75 mol ethanol/mole glycerol.

  18. Physiological characterisation of the efflux pump system of antibiotic-susceptible and multidrug-resistant Enterobacter aerogenes.

    PubMed

    Martins, A; Spengler, G; Martins, M; Rodrigues, L; Viveiros, M; Davin-Regli, A; Chevalier, J; Couto, I; Pagès, J M; Amaral, L

    2010-10-01

    Enterobacter aerogenes predominates amongst Enterobacteriaceae species that are increasingly reported as producers of extended-spectrum beta-lactamases. Although this mechanism of resistance to beta-lactams is important, other mechanisms bestowing a multidrug-resistant (MDR) phenotype in this species are now well documented. Amongst these mechanisms is the overexpression of efflux pumps that extrude structurally unrelated antibiotics prior to their reaching their targets. Interestingly, although knowledge of the genetic background behind efflux pumps is rapidly advancing, few studies assess the physiological nature of the overall efflux pump system of this, or for that matter any other, bacterium. The study reported here evaluates physiologically the efflux pump system of an E. aerogenes ATCC reference as well as two strains whose MDR phenotypes are mediated by overexpressed efflux pumps. The activities of the efflux pumps in these strains are modulated by pH and glucose, although the effects of the latter are essentially restricted to pH 8, suggesting the presence of two general efflux pump systems, i.e. proton-motive force-dependent and ABC transporter types, respectively.

  19. Biohydrogen and Bioethanol Production from Biodiesel-Based Glycerol by Enterobacter aerogenes in a Continuous Stir Tank Reactor

    PubMed Central

    Jitrwung, Rujira; Yargeau, Viviane

    2015-01-01

    Crude glycerol from the biodiesel manufacturing process is being produced in increasing quantities due to the expanding number of biodiesel plants. It has been previously shown that, in batch mode, semi-anaerobic fermentation of crude glycerol by Enterobacter aerogenes can produce biohydrogen and bioethanol simultaneously. The present study demonstrated the possible scaling-up of this process from small batches performed in small bottles to a 3.6-L continuous stir tank reactor (CSTR). Fresh feed rate, liquid recycling, pH, mixing speed, glycerol concentration, and waste recycling were optimized for biohydrogen and bioethanol production. Results confirmed that E. aerogenes uses small amounts of oxygen under semi-anaerobic conditions for growth before using oxygen from decomposable salts, mainly NH4NO3, under anaerobic condition to produce hydrogen and ethanol. The optimal conditions were determined to be 500 rpm, pH 6.4, 18.5 g/L crude glycerol (15 g/L glycerol) and 33% liquid recycling for a fresh feed rate of 0.44 mL/min. Using these optimized conditions, the process ran at a lower media cost than previous studies, was stable after 7 days without further inoculation and resulted in yields of 0.86 mol H2/mol glycerol and 0.75 mol ethanol/mole glycerol. PMID:25970750

  20. Biohydrogen and polyhydroxyalkanoate co-production by Enterobacter aerogenes and Rhodobacter sphaeroides from Calophyllum inophyllum oil cake.

    PubMed

    Arumugam, A; Sandhya, M; Ponnusami, V

    2014-07-01

    The feasibility of coupled biohydrogen and polyhydroxyalkanoate production by Enterobacter aerogenes and Rhodobacter sphaeroides using Calophyllum inophyllum oil cake was studied under dark and photo fermentation conditions. The utilization of a non-edible acidic oil cake (C. inophyllum), and exploitation of a modified minimal salt media led to reduction in the cost of media. Cost of fermentation is reduced by implementation of alternate dark-photo fermentative periods and through the use of a co-culture consisting of a dark fermentative (E. aerogenes) and a photo fermentative (R. sphaeroides) bacterium. The biohydrogen and polyhydroxyalkanoate produced were 7.95 L H2/L media and 10.73 g/L media, respectively, under alternate dark and photo fermentation and were 3.23 L H2/L media and 5.6g/L media, respectively under complete dark fermentation. The characteristics of the oil cake and alternate dark (16 h) and photo (8h) fermentative conditions were found to be supportive in producing high biohydrogen and polyhydroxyalkanoate (PHA) yield.

  1. Selection during cefepime treatment of a new cephalosporinase variant with extended-spectrum resistance to cefepime in an Enterobacter aerogenes clinical isolate.

    PubMed

    Barnaud, G; Benzerara, Y; Gravisse, J; Raskine, L; Sanson-Le Pors, M J; Labia, R; Arlet, G

    2004-03-01

    Enterobacter aerogenes resistant to cefepime (MIC, 32 microg/ml) was isolated from a patient treated with cefepime for an infection caused by a strain of E. aerogenes overproducing its AmpC beta-lactamase (MIC of cefepime, 0.5 microg/ml). The AmpC beta-lactamase of the resistant strain had an L-293-P amino acid substitution and a high k(cat)/K(m) ratio for cefepime. Both of these modifications were necessary for resistance to cefepime.

  2. Membrane permeability, a pivotal function involved in antibiotic resistance and virulence in Enterobacter aerogenes clinical isolates.

    PubMed

    Lavigne, J-P; Sotto, A; Nicolas-Chanoine, M-H; Bouziges, N; Bourg, G; Davin-Regli, A; Pagès, J-M

    2012-06-01

    Imipenem-susceptible E. aerogenes isolates exhibiting extended spectrum β-lactamases, target mutations and a basal efflux expression, were identified in five patients. After imipenem treatment, imipenem-intermediate susceptible (IMI-I) or resistant (IMI-R) isolates emerged in these patients. Alteration in porin synthesis and increase in efflux expression were observed in the IMI-I isolates whereas complete loss of the porins, LPS alteration and efflux overexpression were observed in the IMI-R isolates. Bacterial virulence of the strains was investigated by the Caenorhabditis elegans model. The IMI-R isolates were shown to be significantly less virulent than the IMI-susceptible or IMI-I isolates. The pleiotropic membrane alteration and its associated fitness burden exhibited by E. aerogenes isolates influence their antibiotic resistance and their virulence behaviour. These findings highlight the balance between the low permeability-related resistance and virulence and their relationships with the treatment of resistant pathogens.

  3. Changes in ciprofloxacin resistance levels in Enterobacter aerogenes isolates associated with variable expression of the aac(6')-Ib-cr gene.

    PubMed

    Ruiz, Elena; Ocampo-Sosa, Alain A; Alcoba-Flórez, Julia; Román, Elena; Arlet, Guillaume; Torres, Carmen; Martínez-Martínez, Luis

    2012-02-01

    Two closely related Enterobacter aerogenes isolates presented a new identical aac(6')-Ib-cr genetic environment, including IS26. One isolate showed lower MICs of ciprofloxacin, norfloxacin, tobramycin, and amikacin and decreased expression of aac(6')-Ib-cr, which might be related to a 12-bp deletion causing a displacement of the -10 box upstream of the aac(6')-Ib-cr gene.

  4. Biotransformation of Ferulic acid to 4-Vinylguaiacol by Enterobacter soli and E. aerogenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated the conversion of ferulic acid to 4-vinylguaiacol (4-VG), vanillin, vanillyl alcohol and vanillic acid by five Enterobacter strains. These high-value chemicals are usually synthesized using chemical methods but biological synthesis adds value. Ferulic acid, a relatively inexpensive...

  5. Mutational analysis of the hyc-operon determining the relationship between hydrogenase-3 and NADH pathway in Enterobacter aerogenes.

    PubMed

    Pi, Jian; Jawed, Muhammad; Wang, Jun; Xu, Li; Yan, Yunjun

    2016-01-01

    In this study, the hydrogenase-3 gene cluster (hycDEFGH) was isolated and identified from Enterobacter aerogenes CCTCC AB91102. All gene products were highly homologous to the reported bacterial hydrogenase-3 (Hyd-3) proteins. The genes hycE, hycF, hycG encoding the subunits of hydrogenase-3 were targeted for genetic knockout to inhibit the FHL hydrogen production pathway via the Red recombination system, generating three mutant strains AB91102-E (ΔhycE), AB91102-F (ΔhycF) and AB91102-G (ΔhycG). Deletion of the three genes affected the integrity of hydrogenase-3. The hydrogen production experiments with the mutant strains showed that no hydrogen was detected compared with the wild type (0.886 mol/mol glucose), demonstrating that knocking out any of the three genes could inhibit NADH hydrogen production pathway. Meanwhile, the metabolites of the mutant strains were significantly changed in comparison with the wild type, indicating corresponding changes in metabolic flux by mutation. Additionally, the activity of NADH-mediated hydrogenase was found to be nil in the mutant strains. The chemostat experiments showed that the NADH/NAD(+) ratio of the mutant strains increased nearly 1.4-fold compared with the wild type. The NADH-mediated hydrogenase activity and NADH/NAD(+) ratio analysis both suggested that NADH pathway required the involvement of the electron transport chain of hydrogenase-3.

  6. Substrate-promoted formation of a catalytically competent binuclear center and regulation of reactivity in a glycerophosphodiesterase from Enterobacter aerogenes.

    PubMed

    Hadler, Kieran S; Tanifum, Eric A; Yip, Sylvia Hsu-Chen; Mitić, Natasa; Guddat, Luke W; Jackson, Colin J; Gahan, Lawrence R; Nguyen, Kelly; Carr, Paul D; Ollis, David L; Hengge, Alvan C; Larrabee, James A; Schenk, Gerhard

    2008-10-29

    The glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes is a promiscuous binuclear metallohydrolase that catalyzes the hydrolysis of mono-, di-, and triester substrates, including some organophosphate pesticides and products of the degradation of nerve agents. GpdQ has attracted recent attention as a promising enzymatic bioremediator. Here, we have investigated the catalytic mechanism of this versatile enzyme using a range of techniques. An improved crystal structure (1.9 A resolution) illustrates the presence of (i) an extended hydrogen bond network in the active site, and (ii) two possible nucleophiles, i.e., water/hydroxide ligands, coordinated to one or both metal ions. While it is at present not possible to unambiguously distinguish between these two possibilities, a reaction mechanism is proposed whereby the terminally bound H2O/OH(-) acts as the nucleophile, activated via hydrogen bonding by the bridging water molecule. Furthermore, the presence of substrate promotes the formation of a catalytically competent binuclear center by significantly enhancing the binding affinity of one of the metal ions in the active site. Asn80 appears to display coordination flexibility that may modulate enzyme activity. Kinetic data suggest that the rate-limiting step occurs after hydrolysis, i.e., the release of the phosphate moiety and the concomitant dissociation of one of the metal ions and/or associated conformational changes. Thus, it is proposed that GpdQ employs an intricate regulatory mechanism for catalysis, where coordination flexibility in one of the two metal binding sites is essential for optimal activity.

  7. Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes.

    PubMed Central

    Blomqvist, K; Nikkola, M; Lehtovaara, P; Suihko, M L; Airaksinen, U; Stråby, K B; Knowles, J K; Penttilä, M E

    1993-01-01

    The genes involved in the 2,3-butanediol pathway coding for alpha-acetolactate decarboxylase, alpha-acetolactate synthase (alpha-ALS), and acetoin (diacetyl) reductase were isolated from Klebsiella terrigena and shown to be located in one operon. This operon was also shown to exist in Enterobacter aerogenes. The budA gene, coding for alpha-acetolactate decarboxylase, gives in both organisms a protein of 259 amino acids. The amino acid similarity between these proteins is 87%. The K. terrigena genes budB and budC, coding for alpha-ALS and acetoin reductase, respectively, were sequenced. The 559-amino-acid-long alpha-ALS enzyme shows similarities to the large subunits of the Escherichia coli anabolic alpha-ALS enzymes encoded by the genes ilvB, ilvG, and ilvI. The K. terrigena alpha-ALS is also shown to complement an anabolic alpha-ALS-deficient E. coli strain for valine synthesis. The 243-amino-acid-long acetoin reductase has the consensus amino acid sequence for the insect-type alcohol dehydrogenase/ribitol dehydrogenase family and has extensive similarities with the N-terminal and internal regions of three known dehydrogenases and one oxidoreductase. Images PMID:8444801

  8. Disruption of lactate dehydrogenase and alcohol dehydrogenase for increased hydrogen production and its effect on metabolic flux in Enterobacter aerogenes.

    PubMed

    Zhao, Hongxin; Lu, Yuan; Wang, Liyan; Zhang, Chong; Yang, Cheng; Xing, Xinhui

    2015-10-01

    Hydrogen production by Enterobacter aerogenes from glucose was enhanced by deleting the targeted ldhA and adh genes responsible for two NADH-consuming pathways which consume most NADH generated from glycolysis. Compared with the wild-type, the hydrogen yield of IAM1183-ΔldhA increased 1.5 fold. Metabolic flux analysis showed both IAM1183-ΔldhA and IAM1183-Δadh exhibited significant changes in flux, including enhanced flux towards the hydrogen generation. The lactate production of IAM1183-ΔldhA significantly decreased by 91.42%, while the alcohol yield of IAM1183-Δadh decreased to 30%. The mutant IAM1183-ΔldhA with better hydrogen-producing performance was selected for further investigation in a 5-L fermentor. The hydrogen production of IAM1183-ΔldhA was 2.3 times higher than the wild-type. Further results from the fermentation process showed that the pH decreased to 5.39 levels, then gradually increased to 5.96, indicating that some acidic metabolites might be degraded or uptaken by cells.

  9. Phenolic compounds: Strong inhibitors derived from lignocellulosic hydrolysate for 2,3-butanediol production by Enterobacter aerogenes.

    PubMed

    Lee, Sang Jun; Lee, Ju Hun; Yang, Xiaoguang; Kim, Sung Bong; Lee, Ja Hyun; Yoo, Hah Young; Park, Chulhwan; Kim, Seung Wook

    2015-12-01

    Lignocellulosic biomass are attractive feedstocks for 2,3-butanediol production due to their abundant supply and low price. During the hydrolysis of lignocellulosic biomass, various byproducts are formed and their effects on 2,3-butanediol production were not sufficiently studied compared to ethanol production. Therefore, the effects of compounds derived from lignocellulosic biomass (weak acids, furan derivatives and phenolics) on the cell growth, the 2,3-butanediol production and the enzymes activity involved in 2,3-butanediol production were evaluated using Enterobacter aerogenes ATCC 29007. The phenolic compounds showed the most toxic effects on cell growth, 2,3-butanediol production and enzyme activity, followed by furan derivatives and weak acids. The significant effects were not observed in the presence of acetic acid and formic acid. Also, feasibility of 2,3-butanediol production from lignocellulosic biomass was evaluated using Miscanthus as a feedstock. In the fermentation of Miscanthus hydrolysate, 11.00 g/L of 2,3-butanediol was obtained from 34.62 g/L of reducing sugar. However, 2,3-butanediol was not produced when the concentration of total phenolic compounds in the hydrolysate increased to more than 1.5 g/L. The present study provides useful information to develop strategies for biological production of 2,3-butanediol and to establish biorefinery for biochemicals from lignocellulosic biomass.

  10. Alteration of hydrogen metabolism of ldh-deleted Enterobacter aerogenes by overexpression of NAD+-dependent formate dehydrogenase.

    PubMed

    Lu, Yuan; Zhao, Hongxin; Zhang, Chong; Lai, Qiheng; Wu, Xi; Xing, Xin-Hui

    2010-03-01

    The NAD+-dependent formate dehydrogenase FDH1 gene (fdh1), cloned from Candida boidinii, was expressed in the ldh-deleted mutant of Enterobacter aerogenes IAM1183 strain. The plasmid of pCom10 driven by the PalkB promoter was used to construct the fdh1 expression system and thus introduce a new dihydronicotinamide adenine dinucleotide (NADH) regeneration pathway from formate in the ldh-deleted mutant. The knockout of NADH-consuming lactate pathway affected the whole cellular metabolism, and the hydrogen yield increased by 11.4% compared with the wild strain. Expression of fdh1 in the ldh-deleted mutant caused lower final cell concentration and final pH after 16 h cultivation, and finally resulted in 86.8% of increase in hydrogen yield per mole consumed glucose. The analysis of cellular metabolites and estimated redox state balance in the fdhl-expressed strain showed that more excess of reducing power was formed by the rewired NADH regeneration pathway, changing the metabolic distribution and promoting the hydrogen production.

  11. Clonal spread and accumulation of β-lactam resistance determinants in Enterobacter aerogenes and Enterobacter cloacae complex isolates from infection and colonization in patients at a public hospital in Recife, Pernambuco, Brazil.

    PubMed

    Cabral, Adriane Borges; Maciel, Maria Amélia Vieira; Barros, Josineide Ferreira; Antunes, Marcelo Maranhão; Barbosa de Castro, Célia Maria Machado; Lopes, Ana Catarina Souza

    2017-01-01

    Enterobacter aerogenes and Enterobacter cloacae complex are the two species of this genus most involved in healthcare-associated infections that are ESBL and carbapenemase producers. This study characterized, phenotypically and genotypically, 51 isolates of E. aerogenes and E. cloacae complex originating from infection or colonization in patients admitted to a public hospital in Recife, Pernambuco, Brazil, by antimicrobial susceptibility profile, analysis of β-lactamase genes (blaTEM, blaSHV, blaCTX-M, blaKPC, blaVIM, blaIMP and blaSPM), PCR and DNA sequencing, plasmid profile and ERIC-PCR. In both species, the genes blaTEM, blaCTX-M and blaKPC were detected. The DNA sequencing confirmed the variants blaTEM-1, blaCTX-M-15 and blaKPC-2 in isolates. More than one gene conferring resistance in the isolates, including the detection of the three previously cited genes in strains isolated from infection sites, was observed. The detection of blaCTX-M was more frequent in isolates from infection sites than from colonization. The gene blaKPC predominated in E. cloacae complex isolates obtained from infections; however, in E. aerogenes isolates, it predominated in samples obtained from colonization. A clonal relationship among all of E. aerogenes isolates was detected by ERIC-PCR. The majority of E. cloacae complex isolates presented the same ERIC-PCR pattern. Despite the clonal relation presented by the isolates using ERIC-PCR, different plasmid and resistance profiles and several resistance genes were observed. The clonal dissemination and the accumulation of β-lactam resistance determinants presented by the isolates demonstrated the ability of E. aerogenes and E. cloacae complex, obtained from colonization and infection, to acquire and maintain different resistance genes.

  12. Isolation of Enterobacter aerogenes carrying blaTEM-1 and blaKPC-3 genes recovered from a hospital Intensive Care Unit.

    PubMed

    Pulcrano, Giovanna; Pignanelli, Salvatore; Vollaro, Adriana; Esposito, Matilde; Iula, Vita Dora; Roscetto, Emanuela; Soriano, Amata Amy; Catania, Maria Rosaria

    2016-06-01

    Enterobacter aerogenes has recently emerged as an important hospital pathogen. In this study, we showed the emergence of E. aerogenes isolates carrying the blaKPC gene in patients colonized by carbapenem-resistant Klebsiella pneumoniae strains. Two multiresistant E. aerogenes isolates were recovered from bronchial aspirates of two patients hospitalized in the Intensive Care Unit at the "Santa Maria della Scaletta" Hospital, Imola. The antimicrobial susceptibility test showed the high resistance to carbapenems and double-disk synergy test confirmed the phenotype of KPC and AmpC production. Other investigation revealed that ESBL and blaKPC genes were carried on the conjugative pKpQIL plasmid. This is a relevant report in Italy that describes a nosocomial infection due to the production of KPC beta-lactamases by an E. aerogenes isolate in patients previously colonized by K. pneumoniae carbapenem-resistant. In conclusion, it's necessary a continuous monitoring of multidrug-resistant strains for the detection of any KPC-producing bacteria that could expand the circulation of carbapenem-resistant pathogens.

  13. Effects of Eliminating Pyruvate Node Pathways and of Coexpression of Heterogeneous Carboxylation Enzymes on Succinate Production by Enterobacter aerogenes

    PubMed Central

    Yamamoto, Yoko; Fukui, Keita; Nishio, Yousuke; Hashiguchi, Kenichi; Usuda, Yoshihiro; Sode, Koji

    2014-01-01

    Lowering the pH in bacterium-based succinate fermentation is considered a feasible approach to reduce total production costs. Newly isolated Enterobacter aerogenes strain AJ110637, a rapid carbon source assimilator under weakly acidic (pH 5.0) conditions, was selected as a platform for succinate production. Our previous work showed that the ΔadhE/PCK strain, developed from AJ110637 with inactivated ethanol dehydrogenase and introduced Actinobacillus succinogenes phosphoenolpyruvate carboxykinase (PCK), generated succinate as a major product of anaerobic mixed-acid fermentation from glucose under weakly acidic conditions (pH <6.2). To further improve the production of succinate by the ΔadhE/PCK strain, metabolically engineered strains were designed based on the elimination of pathways that produced undesirable products and the introduction of two carboxylation pathways from phosphoenolpyruvate and pyruvate to oxaloacetate. The highest production of succinate was observed with strain ES04/PCK+PYC, which had inactivated ethanol, lactate, acetate, and 2,3-butanediol pathways and coexpressed PCK and Corynebacterium glutamicum pyruvate carboxylase (PYC). This strain produced succinate from glucose with over 70% yield (gram per gram) without any measurable formation of ethanol, lactate, or 2,3-butanediol under weakly acidic conditions. The impact of lowering the pH from 7.0 to 5.5 on succinate production in this strain was evaluated under pH-controlled batch culture conditions and showed that the lower pH decreased the succinate titer but increased its yield. These findings can be applied to identify additional engineering targets to increase succinate production. PMID:25416770

  14. Effects of eliminating pyruvate node pathways and of coexpression of heterogeneous carboxylation enzymes on succinate production by Enterobacter aerogenes.

    PubMed

    Tajima, Yoshinori; Yamamoto, Yoko; Fukui, Keita; Nishio, Yousuke; Hashiguchi, Kenichi; Usuda, Yoshihiro; Sode, Koji

    2015-02-01

    Lowering the pH in bacterium-based succinate fermentation is considered a feasible approach to reduce total production costs. Newly isolated Enterobacter aerogenes strain AJ110637, a rapid carbon source assimilator under weakly acidic (pH 5.0) conditions, was selected as a platform for succinate production. Our previous work showed that the ΔadhE/PCK strain, developed from AJ110637 with inactivated ethanol dehydrogenase and introduced Actinobacillus succinogenes phosphoenolpyruvate carboxykinase (PCK), generated succinate as a major product of anaerobic mixed-acid fermentation from glucose under weakly acidic conditions (pH <6.2). To further improve the production of succinate by the ΔadhE/PCK strain, metabolically engineered strains were designed based on the elimination of pathways that produced undesirable products and the introduction of two carboxylation pathways from phosphoenolpyruvate and pyruvate to oxaloacetate. The highest production of succinate was observed with strain ES04/PCK+PYC, which had inactivated ethanol, lactate, acetate, and 2,3-butanediol pathways and coexpressed PCK and Corynebacterium glutamicum pyruvate carboxylase (PYC). This strain produced succinate from glucose with over 70% yield (gram per gram) without any measurable formation of ethanol, lactate, or 2,3-butanediol under weakly acidic conditions. The impact of lowering the pH from 7.0 to 5.5 on succinate production in this strain was evaluated under pH-controlled batch culture conditions and showed that the lower pH decreased the succinate titer but increased its yield. These findings can be applied to identify additional engineering targets to increase succinate production.

  15. In Vivo Evolution of Bacterial Resistance in Two Cases of Enterobacter aerogenes Infections during Treatment with Imipenem.

    PubMed

    Philippe, Nadège; Maigre, Laure; Santini, Sébastien; Pinet, Elizabeth; Claverie, Jean-Michel; Davin-Régli, Anne-Véronique; Pagès, Jean-Marie; Masi, Muriel

    2015-01-01

    Infections caused by multidrug resistant (MDR) bacteria are a major concern worldwide. Changes in membrane permeability, including decreased influx and/or increased efflux of antibiotics, are known as key contributors of bacterial MDR. Therefore, it is of critical importance to understand molecular mechanisms that link membrane permeability to MDR in order to design new antimicrobial strategies. In this work, we describe genotype-phenotype correlations in Enterobacter aerogenes, a clinically problematic and antibiotic resistant bacterium. To do this, series of clinical isolates have been periodically collected from two patients during chemotherapy with imipenem. The isolates exhibited different levels of resistance towards multiple classes of antibiotics, consistently with the presence or the absence of porins and efflux pumps. Transport assays were used to characterize membrane permeability defects. Simultaneous genome-wide analysis allowed the identification of putative mutations responsible for MDR. The genome of the imipenem-susceptible isolate G7 was sequenced to closure and used as a reference for comparative genomics. This approach uncovered several loci that were specifically mutated in MDR isolates and whose products are known to control membrane permeability. These were omp35 and omp36, encoding the two major porins; rob, encoding a global AraC-type transcriptional activator; cpxA, phoQ and pmrB, encoding sensor kinases of the CpxRA, PhoPQ and PmrAB two-component regulatory systems, respectively. This report provides a comprehensive analysis of membrane alterations relative to mutational steps in the evolution of MDR of a recognized nosocomial pathogen.

  16. In vivo development of carbapenem resistance in clinical isolates of Enterobacter aerogenes producing multiple beta-lactamases.

    PubMed

    Chen, Ya-Gang; Zhang, Ying; Yu, Yun-Song; Qu, Ting-Ting; Wei, Ze-Qing; Shen, Ping; Li, Lan-Juan

    2008-10-01

    Four clinical strains of extended-spectrum beta-lactamase- and AmpC-producing Enterobacter aerogenes were isolated successively from a liver transplantation patient. Isolates C(1) and C(2) were isolated prior to carbapenem therapy, whilst isolates C(3) and C(4) were recovered after 40 days of carbapenem therapy. The homology of these strains was analysed by pulsed-field gel electrophoresis (PFGE). beta-Lactamases were analysed by isoelectric focusing, polymerase chain reaction (PCR) and sequencing. Outer membrane proteins were analysed by PCR, sequencing, sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blot. Disruption of OmpE36 in C(1) in vitro was also performed by homologous gene recombination. The isolates demonstrated an indistinguishable PFGE pattern. Molecular characterisation revealed that, in addition to the pre-existing multiple beta-lactamases (DHA-1, TEM-1, SHV-5, CTX-M-3 and CTX-M-14) found in C(1) and C(2), isolates C(3) and C(4) failed to express OmpE36 owing to insertional inactivation by an IS903-like insertion sequence. Other resistance mechanisms, such as production of carbapenem-hydrolysing enzymes or expression of chromosomal efflux, were apparently not involved. Completely replacing OmpE36 by the kanamycin resistance gene (kan) resulted in a significant increase in carbapenem minimum inhibitory concentrations of an ompE36 mutant. Thus, C(3) and C(4) were apparently derived from the previously imipenem-susceptible isolates C(1) and C(2). Following carbapenem exposure, depletion of OmpE36 expression resulted in the collateral effect of carbapenem resistance.

  17. Electronic structure analysis of the dinuclear metal center in the bioremediator glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes.

    PubMed

    Hadler, Kieran S; Mitić, Natasa; Yip, Sylvia Hsu-Chen; Gahan, Lawrence R; Ollis, David L; Schenk, Gerhard; Larrabee, James A

    2010-03-15

    The glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes is a promiscuous, dinuclear metallohydrolase that has potential application in the remediation of organophosphate nerve agents and pesticides. GpdQ employs an unusual reaction mechanism in which the enzyme is predominantly mononuclear in the resting state, and substrate binding induces the formation of the catalytically competent dinuclear center (Hadler et al. J. Am. Chem. Soc. 2008, 130, 14129). Reactivity is further modulated by the coordination flexibility of Asn80, a ligand that binds to the second, loosely bound metal ion (Hadler et al. J. Am. Chem. Soc. 2009, 131, 11900). It is proposed that hydrolysis is initiated by a terminal, metal-bound hydroxide molecule which is activated at unusually low pH by electrostatic/hydrogen bonding interactions with a bridging hydroxide species. In this study, electronic structure analysis of the dinuclear center is employed to study the coordination environment of the dinuclear center at the resting and product-bound stage of catalysis. This is achieved through the use of variable temperature, variable field magnetic circular dichroism experiments involving the Co(II)-substituted wild type enzyme and its Asn80Asp variant. The data support the above model for the catalytic mechanism whereby the metal ion-bridging hydroxide molecule activates a terminally bound hydroxide nucleophile. Replacement of Asn80 by an aspartate residue does prevent coordination flexibility but also leads to cleavage of the mu-hydroxide bridge and reduced reactivity. This is the first study to investigate the electronic structure of an enzyme with a mu-1,1-carboxylate bridged dicobalt(II) center.

  18. Occurrence and regulation of the ferric citrate transport system in Escherichia coli B, Klebsiella pneumoniae, Enterobacter aerogenes, and Photorhabdus luminescens.

    PubMed

    Mahren, Susanne; Schnell, Heidrun; Braun, Volkmar

    2005-11-01

    In Escherichia coli K-12, transcription of the ferric citrate transport genes fecABCDE is initiated by binding of diferric dicitrate to the outer membrane protein FecA which elicits a signaling cascade from the cell surface to the cytoplasm. The FecI sigma factor is only active in the presence of FecR, which transfers the signal across the cytoplasmic membrane. In other bacteria, fecIRA homologues control iron transport gene transcription by siderophores other than citrate. However, in most cases, the FecI homologues are active in the absence of the FecR homologues, which might function as anti-sigma factors. Since not all E. coli strains contain a fec system, we determined the occurrence of fec genes in selected Enterobacteriaceae and the dependence of FecI activity on FecR. Incomplete FecIRA systems were chromosomally encoded in Enterobacter aerogenes strains and plasmid-encoded in K. pneumoniae. E. coli B, Photorhabdus luminescens and one of three Klebsiella pneumoniae strains had a functional FecIRA regulatory system as in E. coli K-12. The cytoplasmic N-terminal FecR fragments caused constitutive FecI activity in the absence of ferric citrate. The PCR-generated mutant FecI(D40G) was inactive and FecI(S15P) was partially active. FecR of E. coli K-12 activated FecI of all tested strains except FecI encoded on the virulence plasmid pLVPK of K. pneumoniae, which differed from E. coli K-12 FecI by having mutations in region 4, which is important for interaction with FecR. The C-terminally truncated FecR homologue of pLVPK was inactive. pLVPK-encoded FecA contains a 38-residue sequence in front of the signal sequence that did not prevent processing and proper integration of FecA into the outer membrane of E. coli and lacks the signaling sequence required for transcription initiation of the fec transport genes, making it induction-incompetent but transport-competent. The evidence indicates that fecIRABCDE genes are acquired by horizontal DNA transfer and can undergo

  19. Drug Resistance of Pseudomonas aeruginosa and Enterobacter cloacae Isolated from ICU, Babol, Northern Iran

    PubMed Central

    Bayani, Masoomeh; Siadati, Sepideh; Rajabnia, Ramzan; Taher, Ali Asghar

    2013-01-01

    Multidrug resistant (MDR) bacteria are spread throughout the world which causes nosocomial infections, especially in Intensive Care Unit (ICU). This study aimed to investigate the resistance pattern of Pseudomonas aeruginosa and Enterobacter cloacae isolated from patients in the ICU. During 2011-2012, 30 isolates for each P. aeruginosa and E. cloacae were collected from the patients who acquired nosocomial infection after admition to the ICU at the hospitals affiliated to Babol University of Medical Sciences, Babol, northern Iran. Antimicrobial susceptibility test was performed for five category antibiotics by microdilution method. The data were analyzed by SPSS version 20 and p<0.05 was considered statistically significant. The highest resistance rate of P. aeruginosa was seen to amikacin (53.3%) followed by ceftazidime (43.3%). Also, 16.7% of E. cloacae was resistant to ceftazidime. Among P. aeruginosa isolates,18 (60%) were MDR while no E. cloacae isolates were MDR. The significant correlation was only demonstrated between MDR P. aeruginosa and the reason of hospitalization (P=0.004). In conclusion, there was alarming amount of P. aeruginosa MDR in patients in the ICU which could lead to a hazardous outcome for the patients. Therefore, new prevention policies regarding to hospital infection should be established. Also, the periodical assessment of bacterial resistance pattern particularly in ICUs should be performed. PMID:24551814

  20. Evaluation of Phoenix Automated Microbiology System for detecting extended-spectrum beta-lactamases among chromosomal AmpC-producing Enterobacter cloacae, Enterobacter aerogenes, Citrobacter freundii, and Serratia marcescens.

    PubMed

    Park, Yeon-Joon; Yu, Jin Kyung; Lee, Seungok; Park, Jung-Jun; Oh, Eun-Jee

    2007-01-01

    We evaluated the BD Phoenix Extended-Spectrum beta-Lactamase (ESBL) detection test among chromosomal AmpC-producing Enterobacter cloacae, Enterobacter aerogenes, Citrobacter freundii, and Serratia marcescens. The study was conducted on 72 non-repetitive ESBL producers (33 E. cloacae, 13 E. aerogenes, 14 C. freundii, and 12 S. marcescens) and 77 ESBL non-producers (33 E. cloacae, 9 E. aerogenes, 6 C. freundii, and 29 S. marcescens). The organisms were selected as suspected ESBL-producers based on the double disk synergy test and confirmed by PCR amplification of blaTEM-1, blaSHV-1, blaCTX-M-1, blaCTX-M-2, and blaCTX-M-9. The Phoenix ESBL test, using a 5-well confirmatory test and the BDXpert system, was evaluated. Of the 72 isolates identified as ESBL-producers based on the DDST, 46 isolates harbored CTX-M-type enzymes, 21 harbored TEM type enzymes, and 31 harbored SHV enzymes. The Phoenix system identified ESBL only in 15 isolates. Of the 77 ESBL non-producers, ths Phoenix system identified ESBL in 4 isolates, 3 of which were confirmed to be ESBL-producers. In this study, the Phoenix system was highly specific (76/77, 98.7%), and it identified 3 additional ESBL-producers that were not detected by DDST. However, the Phoenix system's sensitivity was very low (15/72, 20.8%). Considering the increasing prevalence of ESBL production among AmpC-producers, the BD Phoenix system could not be considered a reliable stand-alone ESBL detection method for the strains tested in our study.

  1. High-dose cefepime as an alternative treatment for infections caused by TEM-24 ESBL-producing Enterobacter aerogenes in severely-ill patients.

    PubMed

    Goethaert, K; Van Looveren, M; Lammens, C; Jansens, H; Baraniak, A; Gniadkowski, M; Van Herck, K; Jorens, P G; Demey, H E; Ieven, M; Bossaert, L; Goossens, H

    2006-01-01

    This study evaluated retrospectively the efficacy of treatment with cefepime vs. a carbapenem, in combination with amikacin or ciprofloxacin, for seriously-ill patients infected with ESBL-producing Enterobacter aerogenes who were admitted to an intensive care unit. Forty-four episodes of infection were investigated in 43 patients: 21 treated with cefepime; 23 with a carbapenem. The two treatment groups did not differ statistically in terms of age, APACHE II scores, and infection sites, but the average duration of antibiotic exposure was significantly shorter in the cefepime group (8.5 days vs. 11.4 days; p 0.04). Clinical improvement was seen in 62% of patients receiving cefepime vs. 70% of patients receiving a carbapenem (p 0.59). Bacteriological eradication was achieved in 14% of patients receiving cefepime vs. 22% of patients receiving a carbapenem (p 0.76). The 30-day mortality rates related to infection were 33% in the cefepime group and 26% in the carbapenem group (p 0.44). Thus, outcome parameters did not differ significantly between the two groups. Nevertheless, a statistically significant increase in failure to eradicate ESBL-producing E. aerogenes was observed as the MICs of cefepime rose (p 0.017). Pulsed-field gel electrophoresis revealed three distinct clones, but one predominant clone harbouring the bla(TEM-24) gene was associated with most (42/44) of the episodes of infection. It was concluded that cefepime may be an alternative agent for therapy of severe infections caused by TEM-24 ESBL-producing E. aerogenes, although further studies are required to confirm these observations.

  2. A comparative study on phosphotransferase activity of acid phosphatases from Raoultella planticola and Enterobacter aerogenes on nucleosides, sugars, and related compounds.

    PubMed

    Médici, Rosario; Garaycoechea, Juan I; Valino, Ana L; Pereira, Claudio A; Lewkowicz, Elizabeth S; Iribarren, Adolfo M

    2014-04-01

    Natural and modified nucleoside-5'-monophosphates and their precursors are valuable compounds widely used in biochemical studies. Bacterial nonspecific acid phosphatases (NSAPs) are a group of enzymes involved in the hydrolysis of phosphoester bonds, and some of them exhibit phosphotransferase activity. NSAP containing Enterobacter aerogenes and Raoultella planticola whole cells were evaluated in the phosphorylation of a wide range of nucleosides and nucleoside precursors using pyrophosphate as phosphate donor. To increase the productivity of the process, we developed two genetically modified strains of Escherichia coli which overexpressed NSAPs of E. aerogenes and R. planticola. These new recombinant microorganisms (E. coli BL21 pET22b-phoEa and E. coli BL21 pET22b-phoRp) showed higher activity than the corresponding wild-type strains. Reductions in the reaction times from 21 h to 60 min, from 4 h to 15 min, and from 24 h to 40 min in cases of dihydroxyacetone, inosine, and fludarabine, respectively, were obtained.

  3. Susceptibility of the multi-drug resistant strain of Enterobacter aerogenes EA289 to the terpene alcohols from Cistus ladaniferus essential oil.

    PubMed

    Guinoiseau, Elodie; Lorenzi, Vannina; Luciani, Anne; Tomi, Félix; Casanova, Joseph; Berti, Liliane

    2011-08-01

    The essential oil (EO) of Cistus ladaniferus was separated into non polar, moderately polar and polar fractions by column chromatography. The EO and its fractions were analysed by gas chromatography in combination with retention indices [GC-(RI)] and 13C nuclear magnetic resonance (13C NMR) spectroscopy. A minimum inhibitory concentration (MIC) assay was used to evaluate their antibacterial activity against Gram-positive and Gram-negative pathogens of clinical relevance, including a multi-drug resistant (MDR) strain. The most polar fraction, constituted by mono- and sesquiterpene alcohols, strongly inhibited the growth of all tested bacteria with MIC values ranging from 0.05 to 0.8 mg/mL. More importantly, this fraction displayed high activity against the MDR strain of Enterobacter aerogenes EA289. Transmission electron microscopy (TEM) observations of the MDR bacteria treated with the terpene alcohol-rich fraction revealed cell wall distortion with an outer cytoplasmic membrane detachment. The susceptibility of the MDR strain of E. aerogenes EA289 to the polar fraction of C. ladaniferus oil suggests the possible use of these natural products to treat infections caused by highly resistant bacteria.

  4. Quantifying the effect of hand wash duration, soap use, ground beef debris, and drying methods on the removal of Enterobacter aerogenes on hands.

    PubMed

    Jensen, Dane A; Danyluk, Michelle D; Harris, Linda J; Schaffner, Donald W

    2015-04-01

    Hand washing is recognized as a crucial step in preventing foodborne disease transmission by mitigating crosscontamination among hands, surfaces, and foods. This research was undertaken to establish the importance of several keys factors (soap, soil, time, and drying method) in reducing microorganisms during hand washing. A nonpathogenic nalidixic acid-resistant Enterobacter aerogenes surrogate for Salmonella was used to assess the efficacy of using soap or no soap for 5 or 20 s on hands with or without ground beef debris and drying with paper towel or air. Each experiment consisted of 20 replicates, each from a different individual with ∼ 6 log CFU/ml E. aerogenes on their hands. A reduction of 1.0 ± 0.4 and 1.7 ± 0.8 log CFU of E. aerogenes was observed for a 5-s wash with no soap and a 20-s wash with soap, respectively. When there was no debris on the hands, there was no significant difference between washing with and without soap for 20 s (P > 0.05). Likewise, there was no significant difference in the reductions achieved when washing without soap, whether or not debris was on the hands (P > 0.05). A significantly greater reduction (P < 0.05) in E. aerogenes (0.5 log CFU greater reduction) was observed with soap when there was ground beef debris on the hands. The greatest difference (1.1 log CFU greater average reduction) in effectiveness occurred when ground beef debris was on the hands and a 20-s wash with water was compared with a 20-s wash with soap. Significantly greater (P < 0.05) reductions were observed with paper towel drying compared with air (0.5 log CFU greater reductions). Used paper towels may contain high bacterial levels (>4.0 log CFU per towel) when hands are highly contaminated. Our results support future quantitative microbial risk assessments needed to effectively manage risks of foodborne illness in which food workers' hands are a primary cause.

  5. The rhizome of the multidrug-resistant Enterobacter aerogenes genome reveals how new "killer bugs" are created because of a sympatric lifestyle.

    PubMed

    Diene, Seydina M; Merhej, Vicky; Henry, Mireille; El Filali, Adil; Roux, Véronique; Robert, Catherine; Azza, Saïd; Gavory, Frederick; Barbe, Valérie; La Scola, Bernard; Raoult, Didier; Rolain, Jean-Marc

    2013-02-01

    Here, we sequenced the 5,419,609 bp circular genome of an Enterobacter aerogenes clinical isolate that killed a patient and was resistant to almost all current antibiotics (except gentamicin) commonly used to treat Enterobacterial infections, including colistin. Genomic and phylogenetic analyses explain the discrepancies of this bacterium and show that its core genome originates from another genus, Klebsiella. Atypical characteristics of this bacterium (i.e., motility, presence of ornithine decarboxylase, and lack of urease activity) are attributed to genomic mosaicism, by acquisition of additional genes, such as the complete 60,582 bp flagellar assembly operon acquired "en bloc" from the genus Serratia. The genealogic tree of the 162,202 bp multidrug-resistant conjugative plasmid shows that it is a chimera of transposons and integrative conjugative elements from various bacterial origins, resembling a rhizome. Moreover, we demonstrate biologically that a G53S mutation in the pmrA gene results in colistin resistance. E. aerogenes has a large RNA population comprising 8 rRNA operons and 87 cognate tRNAs that have the ability to translate transferred genes that use different codons, as exemplified by the significantly different codon usage between genes from the core genome and the "mobilome." On the basis of our findings, the evolution of this bacterium to become a "killer bug" with new genomic repertoires was from three criteria that are "opportunity, power, and usage" to indicate a sympatric lifestyle: "opportunity" to meet other bacteria and exchange foreign sequences since this bacteria was similar to sympatric bacteria; "power" to integrate these foreign sequences such as the acquisition of several mobile genetic elements (plasmids, integrative conjugative element, prophages, transposons, flagellar assembly system, etc.) found in his genome; and "usage" to have the ability to translate these sequences including those from rare codons to serve as a translator of

  6. Successive emergence of extended-spectrum beta-lactamase-producing and carbapenemase-producing Enterobacter aerogenes isolates in a university hospital.

    PubMed

    Biendo, M; Canarelli, B; Thomas, D; Rousseau, F; Hamdad, F; Adjide, C; Laurans, G; Eb, F

    2008-03-01

    Sixty-two clinical isolates of Enterobacter aerogenes resistant to expanded-spectrum cephalosporins were collected between July 2003 and May 2005. Among these isolates, 23 (37.1%) were imipenem (IPM) susceptible, and 39 (62.9%) were IPM insusceptible, of which 89.7% (35/39) were resistant and 10.3% (4/39) were intermediate. Isolate genotypes were compared by pulsed-field gel electrophoresis. Of 62 isolates, 48 belonged to epidemic pulsotype A (77.4%). This pulsotype included 37.5% and 58.4% of beta-lactam phenotypes b and a, respectively. Nine isolates (14.5%) belonged to pulsotype E, which included 22.3% and 77.7% of phenotypes b and a, respectively. The beta-lactamases with pIs of 5.4, 6.5, 8.2, and 8.2 corresponded to extended-spectrum beta-lactamases (ESBLs) TEM-20, TEM-24, SHV-5, and SHV-12, respectively. Of 39 IPM-insusceptible E. aerogenes isolates, 26 (66.6%) were determined to be metallo-beta-lactamase producers, by using a phenotypic method. Of these isolates, 24 harbored a bla(IMP-1) gene encoding a protein with a pI of >9.5, and two carried the bla(VIM-2) gene encoding a protein with a pI of 5.3, corresponding to beta-lactamases IMP-1 and VIM-2, respectively. The remaining 13 (33.4%) isolates were negative for the bla(IMP-1) and bla(VIM-2) genes but showed an alteration of their outer membrane proteins (OMPs). Ten of these isolates produced the two possible OMPs (32 and 42 kDa), with IPM MICs between 8 and 32 microg/ml, and three others produced only a 32-kDa OMP with IPM MICs >32 microg/ml. This work demonstrates that, in addition to resistance to expanded-spectrum cephalosporins, IPM resistance can occur in ESBL-producing E. aerogenes isolates by carbapenemase production or by the loss of porin in the outer membrane.

  7. Overexpression and purification of the three components of the Enterobacter aerogenes AcrA-AcrB-TolC multidrug efflux pump.

    PubMed

    Masi, Muriel; Pagès, Jean-Marie; Pradel, Elizabeth

    2003-03-25

    The tripartite AcrA-AcrB-TolC system is the major efflux pump of the nosocomial pathogen Enterobacter aerogenes. AcrA is a trimeric periplasmic lipoprotein anchored in the inner membrane, AcrB is an inner membrane transporter and TolC is a trimeric outer membrane channel. In order to reconstitute the AcrA-AcrB-TolC system of E. aerogenes in artificial membranes, we overexpressed and purified the three proteins. The E. aerogenes acrA, acrB and tolC open reading frames were individually inserted in the expression vector pET24a(+), in frame with a sequence coding a C-terminal hexahistidine tag to allow purification by INAC (Immobilized Nickel Affinity Chromatography). The mature AcrA-6His was overproduced in a soluble form in the cytoplasm of Escherichia coli BL21(DE3). AcrA-6His was purified under native conditions in two steps using INAC and gel permeation chromatography. We obtained about 25 mg of 97% pure AcrA-6His per liter of culture. AcrB-6His was solubilized from the membrane fraction of E. coli C43(DE3) in 300 mM NaCl, 5% Triton X-100 and purified in one step by INAC. The AcrB-6His enriched fraction was eluted with 100 mM imidazole. The final yield was 1-2 mg of 95% pure AcrB-6His per liter of culture. The membrane fraction of E. coli BL21(DE3)pLysS containing TolC-6His was first treated with 2% Triton X-100, 30 mM MgCl(2) to solubilize the inner membrane proteins. After ultracentrifugation, the pellet was treated with 5% Triton X-100, 5 mM EDTA to solubilize the outer membrane proteins. Approximately 5 mg of 95% pure TolC-6His trimers per liter of culture was purified by INAC.

  8. Carbapenem resistance in a clinical isolate of Enterobacter aerogenes is associated with decreased expression of OmpF and OmpC porin analogs.

    PubMed

    Yigit, Hesna; Anderson, Gregory J; Biddle, James W; Steward, Christine D; Rasheed, J Kamile; Valera, Lourdes L; McGowan, John E; Tenover, Fred C

    2002-12-01

    We investigated the mechanism of imipenem resistance in Enterobacter aerogenes strain 810, a clinical isolate from the United States for which the imipenem MIC was 16 micro g/ml and the meropenem MIC was 8 micro g/ml. An imipenem-susceptible revertant, strain 810-REV, was obtained after multiple passages of the strain on nonselective media. For the revertant, the imipenem MIC was /=128 micro g/ml), cefoxitin (>/=32 micro g/ml), and cefotaxime (>/=64 micro g/ml) remained the same. The beta-lactamase and porin profiles of the parent, the revertant, and carbapenem-susceptible type strain E. aerogenes ATCC 13048 were determined. Strains 810 and 810-REV each produced two beta-lactamases with pIs of 8.2 and 5.4. The beta-lactamase activities of the parent and revertant were similar, even after induction with subinhibitory concentrations of imipenem. While 810-REV produced two major outer membrane proteins of 42 and 39 kDa that corresponded to Escherichia coli porins OmpC and OmpF, respectively, the parent strain appeared to produce similar quantities of the 39-kDa protein (OmpF) but decreased amounts of the 42-kDa protein (OmpC). When the parent strain was grown in the presence of imipenem, the 42-kDa protein was not detectable by gel electrophoresis. However, Western blot analysis of the outer membrane proteins of the parent and revertant with polyclonal antisera raised to the OmpC and OmpF analogs of Klebsiella pneumoniae (anti-OmpK36 and anti-OmpK35, respectively) showed that strain 810 expressed only the 42-kDa OmpC analog in the absence of imipenem (the 39-kDa protein was not recognized by the anti-OmpF antisera) and neither the OmpC nor the OmpF analog in the presence of imipenem. The OmpC analog is apparently down-regulated in the presence of imipenem; however, 810-REV expressed both OmpC and OmpF analogs. These data

  9. Hydrogen evolution of Enterobacter aerogenes depending on culture pH: mechanism of hydrogen evolution from NADH by means of membrane-bound hydrogenase.

    PubMed

    Tanisho, S; Kamiya, N; Wakao, N

    1989-01-26

    The pH dependency of cell mass productivity, the hydrogen evolution rate and the yield of hydrogen from glucose was measured by controlling the pH of the culture automatically. The cell mass productivity of Enterobacter aerogenes increased in a linear fashion up to a pH value of approx. 7.0. In contrast, both the evolution rate and the yield of hydrogen showed convex relationships up to a pH value of 7.0, both having maximum values at a pH of approx. 5.8. The maximum evolution rate was approx. 11.3 mmol H2 per g dry cell per h at 38 degrees C. A hypothetical mechanism for hydrogen evolution was proposed by taking our results and other research work into consideration. The proposed mechanism of hydrogen evolution was that NADH was oxidized on the inside surface of the cell membrane and protons were reduced on the outside surface by means of membrane-bound hydrogenase. This mechanism explains in a thermodynamic context the relation between the activity of the hydrogen evolution and the pH of the culture.

  10. A biological method for in-situ synthesis of hydroxyapatite-coated magnetite nanoparticles using Enterobacter aerogenes: Characterization and acute toxicity assessments.

    PubMed

    Ahmadzadeh, Elham; Talebnia Rowshan, Farid; Hosseini, Morteza

    2017-04-01

    Hydroxyapatite (HA)-coated magnetite nanoparticles (MNPs) are being widely investigated for various applications in medical engineering and wastewater treatment. In this work, the MNPs were thoroughly coated by bacterial synthesized HA nanoparticles during biomineralization process using Enterobacter aerogenes. The resulting bacterial-induced precipitate was then calcined at 600°C and investigated with respect to structural characteristics, particle size and magnetic strength by XRD, FT-IR, SEM, EDS, TEM and VSM analyses. The effects of MNPs and HA-coated MNPs (HA-MNPs) on the viability of human MCF-7 cell lines were also investigated via mitochondrial activity test (MTT) and lactate dehydrogenase (LDH) assays. The powder characterization results showed appropriate structural properties for HA-MNPs samples. The particles diameter size of the MNPs and HA-MNPs were in the range of 3-25nm and 20-80nm, respectively. The biologically-synthesized HA-MNPs formed a stable suspension in water while keeping their magnetic property. The saturation magnetization (Ms) of HA-MNPs was measured at ~10emug(-1) which was in good agreement with the structural composition of this sample. Finally, the results of the cell lines viability indicated that coating of toxic MNPs via biomineralization was a promising approach in order to synthesize bio-compatible magnetic nanoparticles with suitable physical and chemical structural characteristics. The toxicity level of MNPs was reduced by 10 fold when coated by bacterial-synthesized HA.

  11. NDM-1 encoded by a pNDM-BJ01-like plasmid p3SP-NDM in clinical Enterobacter aerogenes

    PubMed Central

    Chen, Zhenhong; Li, Hongxia; Feng, Jiao; Li, Yuxue; Chen, Xin; Guo, Xuemin; Chen, Weijun; Wang, Li; Lin, Lei; Yang, Huiying; Yang, Wenhui; Wang, Jie; Zhou, Dongsheng; Liu, Changting; Yin, Zhe

    2015-01-01

    A carbapenem-nonsusceptible Enterobacter aerogenes strain named 3-SP was isolated from a human case of pneumonia in a Chinese teaching hospital. NDM-1 carbapenemase is produced by a pNDM-BJ01-like conjugative plasmid designated p3SP-NDM to account for carbapenem resistance of 3-SP. p3SP-NDM was fully sequenced and compared with all publically available pNDM-BJ01-like plasmids. The genetic differences between p3SP-NDM and pNDM-BJ01 include only 18 single nucleotide polymorphisms, a 1 bp deletion and a 706 bp deletion. p3SP-NDM and pNDM-BJ01 harbor an identical Tn125 element organized as ISAba125, blaNDM−1, bleMBL, ΔtrpF, dsbC, cutA, ΔgroES, groEL, ISCR27, and ISAba125. The blaNDM−1 surrounding regions in these pNDM-BJ01-like plasmids have a conserved linear organization ISAba14-aphA6-Tn125-unknown IS, with considerable genetic differences identified within or immediately downstream of Tn125. All reported pNDM-BJ01-like plasmids are exclusively found in Acinetobacter, whereas this is the first report of identification of a pNDM-BJ01-like plasmid in Enterobacteriaceae. PMID:25926823

  12. Malonate-bound structure of the glycerophosphodiesterase from Enterobacter aerogenes (GpdQ) and characterization of the native Fe[supscript 2+] metal-ion preference

    SciTech Connect

    Jackson, Colin J.; Hadler, Kieran S.; Carr, Paul D.; Oakley, Aaron J.; Yip, Sylvia; Schenk, Gerhard; Ollis, David L.

    2010-09-20

    The structure of a malonate-bound form of the glycerophosphodiesterase from Enterobacter aerogenes, GpdQ, has been refined at a resolution of 2.2 {angstrom} to a final R factor of 17.1%. The structure was originally solved to 2.9 {angstrom} resolution using SAD phases from Zn{sup 2+} metal ions introduced into the active site of the apoenzyme [Jackson et al. (2007), J. Mol. Biol. 367, 1047-1062]. However, the 2.9 {angstrom} resolution was insufficient to discern significant details of the architecture of the binuclear metal centre that constitutes the active site. Furthermore, kinetic analysis revealed that the enzyme lost a significant amount of activity in the presence of Zn{sup 2+}, suggesting that it is unlikely to be a catalytically relevant metal ion. In this communication, a higher resolution structure of GpdQ is presented in which malonate is visibly coordinated in the active site and analysis of the native metal-ion preference is presented using atomic absorption spectroscopy and anomalous scattering. Catalytic implications of the structure and its Fe{sup 2+} metal-ion preference are discussed.

  13. Malonate-bound structure of the glycerophosphodiesterase from Enterobacter aerogenes (GpdQ) and characterization of the native Fe[superscript 2+] metal-ion preference

    SciTech Connect

    Jackson, Colin J.; Hadler, Kieran S.; Carr, Paul D.; Oakley, Aaron J.; Yip, Sylvia; Schenk, Gerhard; Ollis, David L.

    2011-09-28

    The structure of a malonate-bound form of the glycerophosphodiesterase from Enterobacter aerogenes, GpdQ, has been refined at a resolution of 2.2 {angstrom} to a final R factor of 17.1%. The structure was originally solved to 2.9 {angstrom} resolution using SAD phases from Zn{sup 2+} metal ions introduced into the active site of the apoenzyme [Jackson et al. (2007), J. Mol. Biol. 367, 1047-1062]. However, the 2.9 {angstrom} resolution was insufficient to discern significant details of the architecture of the binuclear metal centre that constitutes the active site. Furthermore, kinetic analysis revealed that the enzyme lost a significant amount of activity in the presence of Zn2+, suggesting that it is unlikely to be a catalytically relevant metal ion. In this communication, a higher resolution structure of GpdQ is presented in which malonate is visibly coordinated in the active site and analysis of the native metal-ion preference is presented using atomic absorption spectroscopy and anomalous scattering. Catalytic implications of the structure and its Fe{sup 2+} metal-ion preference are discussed.

  14. Malonate-bound structure of the glycerophosphodiesterase from Enterobacter aerogenes (GpdQ) and characterization of the native Fe2+ metal-ion preference.

    PubMed

    Jackson, Colin J; Hadler, Kieran S; Carr, Paul D; Oakley, Aaron J; Yip, Sylvia; Schenk, Gerhard; Ollis, David L

    2008-08-01

    The structure of a malonate-bound form of the glycerophosphodiesterase from Enterobacter aerogenes, GpdQ, has been refined at a resolution of 2.2 A to a final R factor of 17.1%. The structure was originally solved to 2.9 A resolution using SAD phases from Zn2+ metal ions introduced into the active site of the apoenzyme [Jackson et al. (2007), J. Mol. Biol. 367, 1047-1062]. However, the 2.9 A resolution was insufficient to discern significant details of the architecture of the binuclear metal centre that constitutes the active site. Furthermore, kinetic analysis revealed that the enzyme lost a significant amount of activity in the presence of Zn2+, suggesting that it is unlikely to be a catalytically relevant metal ion. In this communication, a higher resolution structure of GpdQ is presented in which malonate is visibly coordinated in the active site and analysis of the native metal-ion preference is presented using atomic absorption spectroscopy and anomalous scattering. Catalytic implications of the structure and its Fe2+ metal-ion preference are discussed.

  15. NDM-1 encoded by a pNDM-BJ01-like plasmid p3SP-NDM in clinical Enterobacter aerogenes.

    PubMed

    Chen, Zhenhong; Li, Hongxia; Feng, Jiao; Li, Yuxue; Chen, Xin; Guo, Xuemin; Chen, Weijun; Wang, Li; Lin, Lei; Yang, Huiying; Yang, Wenhui; Wang, Jie; Zhou, Dongsheng; Liu, Changting; Yin, Zhe

    2015-01-01

    A carbapenem-nonsusceptible Enterobacter aerogenes strain named 3-SP was isolated from a human case of pneumonia in a Chinese teaching hospital. NDM-1 carbapenemase is produced by a pNDM-BJ01-like conjugative plasmid designated p3SP-NDM to account for carbapenem resistance of 3-SP. p3SP-NDM was fully sequenced and compared with all publically available pNDM-BJ01-like plasmids. The genetic differences between p3SP-NDM and pNDM-BJ01 include only 18 single nucleotide polymorphisms, a 1 bp deletion and a 706 bp deletion. p3SP-NDM and pNDM-BJ01 harbor an identical Tn125 element organized as ISAba125, bla NDM-1, ble MBL, ΔtrpF, dsbC, cutA, ΔgroES, groEL, ISCR27, and ISAba125. The bla NDM-1 surrounding regions in these pNDM-BJ01-like plasmids have a conserved linear organization ISAba14-aphA6-Tn125-unknown IS, with considerable genetic differences identified within or immediately downstream of Tn125. All reported pNDM-BJ01-like plasmids are exclusively found in Acinetobacter, whereas this is the first report of identification of a pNDM-BJ01-like plasmid in Enterobacteriaceae.

  16. The Role of Newly Discovered Exotoxin (S Toxin) in Pseudomonas aeruginosa Infections

    DTIC Science & Technology

    1981-08-01

    Pseudomonas aeruginosa and Enterobacter aerogenes and bilirubin and SGOT of 280 units. On the third day after his initial procedure he was begun on...Some characteristics of th.. outer membrane material released by growing enterotoxigenic Escherichia cali. Infect. Immun. 29:704-713, 1980.

  17. Quinazoline derivatives are efficient chemosensitizers of antibiotic activity in Enterobacter aerogenes, Klebsiella pneumoniae and Pseudomonas aeruginosa resistant strains.

    PubMed

    Chevalier, Jacqueline; Mahamoud, Abdallah; Baitiche, Milad; Adam, Elissavet; Viveiros, Miguel; Smarandache, Adriana; Militaru, Andra; Pascu, Mihail L; Amaral, Leonard; Pagès, Jean-Marie

    2010-08-01

    Amongst the three series of quinazoline derivatives synthesised and studied in this work, some molecules increase the antibiotic susceptibility of Gram-negative bacteria presenting multidrug-resistant phenotypes. N-alkyl compounds induced an increase in the activity of chloramphenicol, nalidixic acid and sparfloxacin, which are substrates of the AcrAB-TolC and MexAB-OprM efflux pumps in clinical isolates. These molecules are able to increase the intracellular concentration of chloramphenicol in efflux pump-overproducing strains. Their activity depends on the antibiotic structure, suggesting that different sites may be involved for the recognition of substrates by a given efflux pump. Quinazoline molecules exhibiting a nitro functional group are more active, and structure-activity relationship studies may be undertaken to identify the pharmacophoric group involved in the AcrB and MexB affinity sites.

  18. Trapping of nonhydrolyzable cephalosporins by cephalosporinases in Enterobacter cloacae and Pseudomonas aeruginosa as a possible resistance mechanism.

    PubMed Central

    Then, R L; Angehrn, P

    1982-01-01

    Resistance to cefotaxime (CTA) and ceftriaxone (CTR) in Enterobacter cloacae and Pseudomonas aeruginosa was investigated in several strains which are susceptible or resistant to these agents. All strains produced a chromosomally mediated cephalosporinase of the Richmond type 1. beta-Lactamases in susceptible strains were inducible, whereas resistant strains produced the enzymes constitutively. CTA and CTR were very poor substrates but potent inhibitors of all enzymes. Binding to, rather than hydrolysis by, beta-lactamases was assumed to be a major reason for resistance, and combination experiments supported this assumption. Dicloxacillin, which did not inhibit the growth and which was a poor inducer but a strong inhibitor of these beta-lactamases, exerted strong synergistic activity when combined with CTA or CTR in strains which produced large amounts of beta-lactamase constitutively. Cefoxitin, on the other hand, poorly active alone, but a good inducer, strongly antagonized CTA or CTR in susceptible strains producing inducible enzymes. In marked contrast to CTA and CTR were the findings with cefsulodin. Cefsulodin was active against CTA- and CTR-resistant Pseudomonas, and its activity was hardly influenced by dicloxacillin or cefoxitin. Since cefsulodin was found to have a very low affinity for all cephalosporinases, these findings corroborate the assumption that binding of nonhydrolyzable cephalosporins, rather than hydrolysis by cephalosporinases, may play an important role in resistance to these agents and other newer cephalosporins in Enterobacteriaceae, as well as in other gram-negative bacteria. PMID:6808912

  19. Mathematical modeling and assessment of microbial migration during the sprouting of alfalfa in trays in a nonuniformly contaminated seed batch using Enterobacter aerogenes as a surrogate for Salmonella Stanley.

    PubMed

    Liu, Bin; Schaffner, Donald W

    2007-11-01

    Raw seed sprouts have been implicated in several food poisoning outbreaks in the past 10 years. The U.S. Food and Drug Administration recommends that sprout growers use interventions (such as testing of spent irrigation water) to control the presence of pathogens in the finished product. During the sprouting process, initially low concentrations of pathogen may increase, and contamination may spread within a batch of sprouting seeds. A model of pathogen growth as a function of time and distance from the contamination spot during the sprouting of alfalfa in trays has been developed with Enterobacter aerogenes. The probability of detecting contamination was assessed by logistic regression at various time points and distances by sampling from sprouts or irrigation water. Our results demonstrate that microbial populations and possibility of detection were greatly reduced at distances of > or = 20 cm from the point of contamination in a seed batch during tray sprouting; however, the probability of detecting microbial contamination at distances less than 10 cm from the point of inoculation was almost 100% at the end of the sprouting process. Our results also show that sampling irrigation water, especially large volumes of water, is highly effective at detecting contamination: by collecting 100 ml of irrigation water for membrane filtration, the probability of detection was increased by three to four times during the first 6 h of seed germination. Our findings have quantified the degree to which a small level of contamination will spread throughout a tray of sprouting alfalfa seeds and subsequently be detected by either sprout or irrigation water sampling.

  20. In vivo selection of Enterobacter aerogenes with reduced susceptibility to cefepime and carbapenems associated with decreased expression of a 40 kDa outer membrane protein and hyperproduction of AmpC beta-lactamase.

    PubMed

    Fernández-Cuenca, Felipe; Rodríguez-Martínez, Jose Manuel; Martínez-Martínez, Luis; Pascual, Alvaro

    2006-06-01

    The mechanism(s) of resistance or decreased susceptibility to cefepime (FEP) and/or imipenem (IMP) in three consecutive isolates of Enterobacter aerogenes (Ea1, Ea2 and Ea3) cultured from bronchial aspirates of the same patient after treatment with ceftriaxone and FEP were studied. Identification was performed with the VITEK 2 system. All three isolates showed identical pulsed-field gel electrophoresis patterns and were resistant (minimum inhibitory concentrations (MICs)) to cefoxitin (MIC, >1024 mg/L), cefotaxime (CTX; MIC, 32-128 mg/L) and ceftazidime (CAZ; MIC, 32-128 mg/L) but susceptible to meropenem (MIC, aerogenes strain deposited in GenBank (accession no.). For Ea3, however, a point mutation in position 311 of ampC caused a change of Val-->Glu. Three outer membrane proteins (OMPs) of 51 k

  1. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus.

    PubMed

    Brown, Ashley N; Smith, Kathryn; Samuels, Tova A; Lu, Jiangrui; Obare, Sherine O; Scott, Maria E

    2012-04-01

    We show here that silver nanoparticles (AgNP) were intrinsically antibacterial, whereas gold nanoparticles (AuNP) were antimicrobial only when ampicillin was bound to their surfaces. Both AuNP and AgNP functionalized with ampicillin were effective broad-spectrum bactericides against Gram-negative and Gram-positive bacteria. Most importantly, when AuNP and AgNP were functionalized with ampicillin they became potent bactericidal agents with unique properties that subverted antibiotic resistance mechanisms of multiple-drug-resistant bacteria.

  2. Enterobacter aerogenes Hormaeche and Edwards 1960 (Approved Lists 1980) and Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980) share the same nomenclatural type (ATCC 13048) on the Approved Lists and are homotypic synonyms, with consequences for the name Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980).

    PubMed

    Tindall, B J; Sutton, G; Garrity, G M

    2017-02-01

    Enterobacter aerogenes Hormaeche and Edwards 1960 (Approved Lists 1980) and Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980) were placed on the Approved Lists of Bacterial Names and were based on the same nomenclatural type, ATCC 13048. Consequently they are to be treated as homotypic synonyms. However, the names of homotypic synonyms at the rank of species normally are based on the same epithet. Examination of the Rules of the International Code of Nomenclature of Bacteria in force at the time indicates that the epithet mobilis in Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980) was illegitimate at the time the Approved Lists were published and according to the Rules of the current International Code of Nomenclature of Prokaryotes continues to be illegitimate.

  3. Accumulation of plasmid-mediated fluoroquinolone resistance genes, qepA and qnrS1, in Enterobacter aerogenes co-producing RmtB and class A beta-lactamase LAP-1.

    PubMed

    Park, Yeon-Joon; Yu, Jin Kyung; Kim, Sang-Il; Lee, Kyungwon; Arakawa, Yoshichika

    2009-01-01

    A new plasmid-mediated fluoroquinolone efflux pump gene, qepA, is known to be associated with the rmtB gene, which confers high-level resistance to aminoglycosides. We investigated the qepA gene in 573 AmpC-producing Enterobacteriaceae including one Citrobacter freundii known to harbor rmtB. Of them, two clonally unrelated E. aerogenes harbored qepA. Both isolates co-harbored rmtB, qnrS1, qepA, and bla(LAP-1) on an IncFI type plasmid. The qepA was flanked by two copies of IS26 containing ISCR3C, tnpA, tnpR, bla(TEM), and rmtB. The qnrS1 and bla(LAP-1) were located upstream of qepA. All the resistance determinants (qepA, qnrS1, rmtB, and bla(LAP-1)) were co-transferred to E. coli J53 by filter mating from both isolates. Although the prevalence of qepA is currently low, considering the presence of ISCR3C and the possibility of co-selection and co-transferability of plasmids, more active surveillance for these multi-drug resistant bacteria and prudent use of antimicrobials are needed.

  4. Angiosarcoma of the Eyelid With Superimposed Enterobacter Infection.

    PubMed

    Hamill, Eric B; Agrawal, Megha; Diwan, A Hafeez; Winthrop, Kevin L; Marx, Douglas P

    2016-01-01

    Angiosarcoma is a rare, aggressive, malignant endothelial neoplasm with a variable clinical presentation. The authors describe a case of angiosarcoma involving the eyelid that was complicated by a superimposed Enterobacter infection. Following positive cultures for E. aerogenes and multiple biopsies suspicious but not definitive for angiosarcoma, a final biopsy was consistent with angiosarcoma.

  5. A comparison of serial plate agar dilution, Bauer-Kirby disk diffusion, and the Vitek AutoMicrobic system for the determination of susceptibilities of Klebsiella spp., Enterobacter spp., and Pseudomonas aeruginosa to ten antimicrobial agents.

    PubMed

    Fekete, T; Tumah, H; Woodwell, J; Truant, A; Satishchandran, V; Axelrod, P; Kreter, B

    1994-04-01

    The use of rapid, automated technologies for assessment of antimicrobial susceptibility and determination of minimum inhibitory concentrations has been evolving for over a decade. We compared the Vitek AutoMicrobic system and Bauer-Kirby disk diffusion with the National Committee for Clinical Laboratory Standards methods of serial plate agar dilution for qualitative and quantitative susceptibilities of 301 hospital isolates of Klebsiella spp., Enterobacter spp., and Pseudomonas aeruginosa. Antibiotics tested were aztreonam, cefoperazone, ceftazidime, ceftriaxone, ciprofloxacin, gentamicin, imipenem, piperacillin, ticarcillin-clavulanic acid, and tobramycin. Agar dilution and Bauer-Kirby results were more strongly correlated for all three genera than were the results for agar dilution and Vitek. If agar dilution is presumed to be the "gold standard," Bauer-Kirby disk diffusion had only half the number of false susceptibles as did the Vitek. Thus, the Vitek AutoMicrobic system seems to be somewhat less reliable for both qualitative and quantitative measurement of susceptibility and resistance than is Bauer-Kirby disk diffusion.

  6. Aerogenic Dissemination of Aphtae Epizooticae

    DTIC Science & Technology

    1980-03-14

    FTD-ID(RS)T-0112-80 FOREIGN TECHNOLOGY DIVISION AEROGENIC DISSEMINATION OF APHTAE EPIZOOTICAE by Jerzy Wisniewski DTIC A Approved for public release...0112-8o Date14 Mar 19.80 AEROGENIC DISSEMINATION oF APHTAE EPIZOOTICAE Jerzy Wisniewski During aphtae epizooticae the principal cause of the virus...8217 e saliva foam assists in spreading the virus nn the air. The aerosol containing the virus can also be found in evaporation from wet floors, as well

  7. Vaccination against Klebsiella aerogenes.

    PubMed Central

    Roe, E. A.; Jones, R. J.

    1984-01-01

    Klebsiella vaccine was prepared from strains of Klebsiella aerogenes with capsular types K1, K36, K44 and K Cross (a type which cross-reacts in vitro with sera from many klebsiella capsular types). The vaccine was extracted by dialysis and ultrafiltration from capsular material released during growth of the bacteria in a five-day batch culture. Mice given one dose of vaccine from K1a (1.0 microgram/mouse) survived lethal intraperitoneal challenge of 11/11 homologous klebsiella strains four days after vaccination; 14 days after vaccination protection against the same challenge strains had declined to 5/11 strains. Vaccines from K1a, b, c, K36, K44 and K Cross induced homologous protection and protected mice against different ranges of heterologous klebsiella capsular types. The protective response of the mice was greatly enhanced by administering three doses of the vaccines. Vaccines from K1, K36, K44 and K Cross protected mice against 14/20, 11/20, 10/20 and 9/20 homologous and heterologous klebsiella challenge strains respectively. None of the klebsiella vaccines was toxic for mice at the immunizing dose (1.0 microgram/mouse). Vaccine from K36 was the most lethal, killing mice at 10(3) immunizing doses. The least toxic vaccine was from K44, which killed mice at 10(4) immunizing doses. PMID:6389699

  8. Risk factors for Enterobacter septicemia in a neonatal unit: case-control study.

    PubMed

    Fok, T F; Lee, C H; Wong, E M; Lyon, D J; Wong, W; Ng, P C; Cheung, K L; Cheng, A F

    1998-11-01

    Thirty cases of Enterobacter aerogenes or Enterobacter cloacae septicemia diagnosed over a 32-month period in a tertiary care neonatal unit were enrolled in a case-control study. Each case patient was matched with two controls (patients occupying the cots nearest the case patient when the latter developed septicemia). Of the 32 perinatal characteristics evaluated, 11 were identified by univariate analysis to be significantly associated with the infection. These included parents being residents of the Vietnamese refugee camps, respiratory distress syndrome, necrotizing enterocolitis, umbilical arterial catheterization, umbilical venous catheterization, bladder catheterization, mechanical ventilation, antibiotic treatment, peripheral venous catheterization, nasogastric intubation, and parenteral nutrition. Multivariate analysis, however, showed that preceding bladder catheterization and ongoing parenteral nutrition were the only independent risk factors for enterobacter septicemia. Strict aseptic technique in the preparation of parenteral nutrition fluid and avoidance of bladder catheterization are measures that may reduce the risk of enterobacter sepsis for newborns.

  9. Carbapenem Resistance among Enterobacter Species in a Tertiary Care Hospital in Central India

    PubMed Central

    Khajuria, Atul; Praharaj, Ashok Kumar; Kumar, Mahadevan; Grover, Naveen

    2014-01-01

    Objective. To detect genes encoding carbapenem resistance among Enterobacter species in a tertiary care hospital in central India. Methods. Bacterial identification of Enterobacter spp. isolates from various clinical specimens in patients admitted to intensive care units was performed by routine conventional microbial culture and biochemical tests using standard recommended techniques. Antibiotic sensitivity test was performed by standard Kirby Bauer disc diffusion technique. PCR amplification and automated sequencing was carried out. Transfer of resistance genes was determined by conjugation. Results. A total of 70/130 (53.84%) isolates of Enterobacter spp. were found to exhibit reduced susceptibility to imipenem (diameter of zones of inhibition ≤13 mm) by disc diffusion method. Among 70 isolates tested, 48 (68.57%) isolates showed MIC values for imipenem and meropenem ranging from 32 to 64 mg/L as per CLSI breakpoints. All of these 70 isolates were found susceptible to colistin in vitro as per MIC breakpoints (<0.5 mg/L). PCR carried out on these 48 MBL (IP/IPI) E-test positive isolates (12 Enterobacter aerogenes, 31 Enterobacter cloacae, and 05 Enterobacter cloacae complex) was validated by sequencing for beta-lactam resistance genes and result was interpreted accordingly. Conclusion. The study showed MBL production as an important mechanism in carbapenem resistance in Enterobacter spp. and interspecies transfer of these genes through plasmids suggesting early detection by molecular methods. PMID:25180095

  10. Aerogen Bonding Interaction: A New Supramolecular Force?

    PubMed

    Bauzá, Antonio; Frontera, Antonio

    2015-06-15

    We report evidence of the favorable noncovalent interaction between a covalently bonded atom of Group 18 (known as noble gases or aerogens) and a negative site, for example, a lone pair of a Lewis base or an anion. It involves a region of positive electrostatic potential (σ-hole), therefore it is a totally new and unexplored σ-hole-based interaction, namely aerogen bonding. We demonstrate for the first time the existence of σ-hole regions in aerogen derivatives by means of high-level ab initio calculations. In addition, several crystal structures retrieved from the Cambridge Structural Database (CSD) give reliability to the calculations. Energetically, aerogen bonds are comparable to hydrogen bonds and other σ-hole-based interactions but less directional. They are expected to be important in xenon chemistry.

  11. Molecular identification of aiiA homologous gene from endophytic Enterobacter species and in silico analysis of putative tertiary structure of AHL-lactonase.

    PubMed

    Rajesh, P S; Rai, V Ravishankar

    2014-01-03

    The aiiA homologous gene known to encode AHL- lactonase enzyme which hydrolyze the N-acylhomoserine lactone (AHL) quorum sensing signaling molecules produced by Gram negative bacteria. In this study, the degradation of AHL molecules was determined by cell-free lysate of endophytic Enterobacter species. The percentage of quorum quenching was confirmed and quantified by HPLC method (p<0.0001). Amplification and sequence BLAST analysis showed the presence of aiiA homologous gene in endophytic Enterobacter asburiae VT65, Enterobacter aerogenes VT66 and Enterobacter ludwigii VT70 strains. Sequence alignment analysis revealed the presence of two zinc binding sites, "HXHXDH" motif as well as tyrosine residue at the position 194. Based on known template available at Swiss-Model, putative tertiary structure of AHL-lactonase was constructed. The result showed that novel endophytic strains of Enterobacter genera encode the novel aiiA homologous gene and its structural importance for future study.

  12. Risk factors and treatment outcomes of bloodstream infection caused by extended-spectrum cephalosporin-resistant Enterobacter species in adults with cancer.

    PubMed

    Huh, Kyungmin; Kang, Cheol-In; Kim, Jungok; Cho, Sun Young; Ha, Young Eun; Joo, Eun-Jeong; Chung, Doo Ryeon; Lee, Nam Yong; Peck, Kyong Ran; Song, Jae-Hoon

    2014-02-01

    Treatment of Enterobacter infection is complicated due to its intrinsic resistance to cephalosporins. Medical records of 192 adults with cancer who had Enterobacter bacteremia were analyzed retrospectively to evaluate the risk factors for and the treatment outcomes in extended-spectrum cephalosporin (ESC)-resistant Enterobacter bacteremia in adults with cancer. The main outcome measure was 30-day mortality. Of the 192 patients, 53 (27.6%) had bloodstream infections caused by ESC-resistant Enterobacter species. Recent use of a third-generation cephalosporin, older age, tumor progression at last evaluation, recent surgery, and nosocomial acquisition were associated with ESC-resistant Enterobacter bacteremia. The 30-day mortality rate was significantly higher in the resistant group. Multivariate analysis showed that respiratory tract infection, tumor progression, septic shock at presentation, Enterobacter aerogenes as the culprit pathogen, and diabetes mellitus were independent risk factors for mortality. ESC resistance was significantly associated with mortality in patients with E. aerogenes bacteremia, although not in the overall patient population.

  13. [Profiles of the utilization of 20 amino acids as the only source of nitrogen and carbon in bacteria of the genera Klebsiella, Enterobacter, Serratia, Escherichia].

    PubMed

    Sivolodskiĭ, E P

    2005-01-01

    The profiles of the utilization of 20 protein amino acids in 118 Klebsiella pneumoniae sub- sp. pneumoniae, K. oxytoca, K. planticola, K. mobilis, Enterobacter cloacae, Serratia marscescens, S. liquefaciens, Escherichia coli strains isolated from clinical material were studied. The utilization of amino acids was determined on minimal saline agar containing amino acid as the only source of nitrogen and carbon; the results were evaluated after 72-hour incubation at 37 degrees C. 17 profiles of amino-acid utilization were thus determined, most of them genus-specific in enterobacteria: Klebsiella (profiles No. 1--6, 9, 10), Enterobacter (No. 11--13), Serratia (No. 14--16), Escherichia (No. 17). The full coincidence of amino-acid utilization profiles in bacteria of K. mobilis (No. 1, 6) and K. pneumoniae subsp. pneumoniae with out of such profiles in bacteria of the genera Enterobacter, Serratia, Escherichia was established, which confirmed that K. mobilis (formerly Enterobacter aerogenes) belonged to the genus Klebsiella.

  14. Molecular characteristics of extended-spectrum beta-lactamases and qnr determinants in Enterobacter species from Japan.

    PubMed

    Kanamori, Hajime; Yano, Hisakazu; Hirakata, Yoichi; Hirotani, Ayako; Arai, Kazuaki; Endo, Shiro; Ichimura, Sadahiro; Ogawa, Miho; Shimojima, Masahiro; Aoyagi, Tetsuji; Hatta, Masumitsu; Yamada, Mitsuhiro; Gu, Yoshiaki; Tokuda, Koichi; Kunishima, Hiroyuki; Kitagawa, Miho; Kaku, Mitsuo

    2012-01-01

    The incidence of extended-spectrum β-lactamases (ESBLs) has been increasing worldwide, but screening criteria for detection of ESBLs are not standardized for AmpC-producing Enterobacteriaceae such as Enterobacter species. In this study, we investigated the prevalence of ESBLs and/or AmpC β-lactamases in Japanese clinical isolates of Enterobacter spp. and the association of plasmid-mediated quinolone resistance (PMQR) determinants with ESBL producers. A total of 364 clinical isolates of Enterobacter spp. collected throughout Japan between November 2009 and January 2010 were studied. ESBL-producing strains were assessed by the CLSI confirmatory test and the boronic acid disk test. PCR and sequencing were performed to detect CTX-M, TEM, and SHV type ESBLs and PMQR determinants. For ESBL-producing Enterobacter spp., pulsed-field gel electrophoresis (PFGE) was performed using XbaI restriction enzyme. Of the 364 isolates, 22 (6.0%) were ESBL producers. Seven isolates of Enterobacter cloacae produced CTX-M-3, followed by two isolates producing SHV-12. Two isolates of Enterobacter aerogenes produced CTX-M-2. Of the 22 ESBL producers, 21 had the AmpC enzyme, and six met the criteria for ESBL production in the boronic acid test. We found a significant association of qnrS with CTX-M-3-producing E. cloacae. The 11 ESBL-producing Enterobacter spp. possessing bla(CTX-M), bla(SHV), or bla(TEM) were divided into six unique PFGE types. This is the first report about the prevalence of qnr determinants among ESBL-producing Enterobacter spp. from Japan. Our results suggest that ESBL-producing Enterobacter spp. with qnr determinants are spreading in Japan.

  15. First report of metallo-β-lactamases producing Enterobacter spp. strains from Venezuela.

    PubMed

    Martínez, Dianny; Rodulfo, Hectorina E; Rodríguez, Lucy; Caña, Luisa E; Medina, Belkis; Guzman, Militza; Carreño, Numirin; Marcano, Daniel; De Donato, Marcos

    2014-01-01

    Clinical strains of Enterobacter were isolated from Cumana's Central Hospital in Venezuela, and classified as E. cloacae (21), E. aerogenes (7), E. intermedium (1), E. sakazakii (1) and three unclassified. The strains showed high levels of resistance, especially to SXT (58.1%), CRO (48.8%), CAZ (46.6%), PIP (46.4%), CIP (45.2%) and ATM (43.3%). This is the first report for South America of blaVIM-2 in two E. cloacae and one Enterobacter sp., which also showed multiple mechanisms of resistance. Both E. cloacae showed blaTEM-1, but only one showed blaCTX-M-15 gene, while no blaSHV was detected.

  16. Yersiniabactin and other siderophores produced by clinical isolates of Enterobacter spp. and Citrobacter spp.

    PubMed

    Mokracka, Joanna; Koczura, Ryszard; Kaznowski, Adam

    2004-01-15

    We analyzed the ability of extraintestinal strains of Enterobacter spp. and Citrobacter spp. to employ different siderophore-mediated strategies of iron acquisition. All strains produced iron-chelating compounds. Cross-feeding assays indicated that most isolates of both Enterobacter spp. and Citrobacter spp. excreted catecholate siderophore enterobactin, less produced aerobactin, and single strains excreted hydroxamates different from aerobactin. Besides, we analyzed if the strains had the ability to produce the siderophore yersiniabactin coded by the Yersinia high-pathogenicity island (HPI). The presence of HPI genes was observed in single isolates of three species: E. cloaceae, E. aerogenes and C. koseri. A detailed polymerase chain reaction analysis revealed differences in the genetic organization of the HPIs; however, in a cross-feeding test we proved that yersiniabactin was produced and the island was functional.

  17. Epidemiology and molecular characterization of extended-spectrum beta-lactamase-producing Enterobacter spp., Pantoea agglomerans, and Serratia marcescens isolates from a Bulgarian hospital.

    PubMed

    Markovska, Rumyana Donkova; Stoeva, Temenuga Jekova; Bojkova, Kalina Dineva; Mitov, Ivan Gergov

    2014-04-01

    Forty-two extended-spectrum beta-lactamase (ESBL)-producing isolates of Enterobacter aerogenes, Enterobacter cloacae, Pantoea agglomerans, and Serratia marcescens, collected consecutively during the period January-November 2011 from the University Hospital in Varna, Bulgaria, were studied to characterize their ESBLs by isoelectric focusing, group-specific PCR, and sequencing. The epidemiological relationship was evaluated by random amplified polymorphic DNA analysis (RAPD). Transferability of ESBL genes was determined by conjugation experiments. Plasmid analysis was done by replicon typing and PstI fingerprinting. The overall rate of ESBL production was 20%. The most widespread enzyme was CTX-M-3, found in 64%. It was dominant in E. aerogenes (100%) and S. marcescens (83%). SHV-12, CTX-M-3, and CTX-M-15 were found among E. cloacae isolates in 50%, 35%, and 45%, respectively. Three main CTX-M-3-producing epidemic clones of E. aerogenes and S. marcescens have been detected. Among E. cloacae isolates, six different RAPD profiles were discerned. The plasmids harboring blaCTX-M-3 belonged to IncL/M type and demonstrated similar PstI fingerprinting profiles. IncFII plasmids were detected in two CTX-M-15-producing E. cloacae isolates. Our results demonstrate wide intrahospital dissemination of clonal E. aerogenes and S. marcescens isolates, carrying IncL/M conjugative plasmids.

  18. π-Hole aerogen bonding interactions.

    PubMed

    Bauzá, Antonio; Frontera, Antonio

    2015-10-14

    In this manuscript we combine high level ab initio calculations (RI-MP2/aug-cc-pVTZ) and the analysis of several crystal structures to demonstrate the existence of π-hole aerogen bonding interactions in Xe(iv) compounds. The ability of XeF4 and Xe(OMe)4 to interact with electron rich molecules is rationalized using several computational tools, including molecular electrostatic potential surfaces, energetic and geometric features of the complexes and "atoms in molecules" (AIM) and Natural Bond Orbital (NBO) analyses. We have found support for the π-hole interaction involving the xenon atom from the solid state architecture of several X-ray structures retrieved from the crystal structural depot. Particularly, π-hole aerogen bonding interactions are quite common in the solid state of Xe(IV) compounds.

  19. Draft Genome Sequences of Pseudomonas aeruginosa Isolates from Wounded Military Personnel.

    PubMed

    Arivett, Brock A; Ream, Dave C; Fiester, Steven E; Kidane, Destaalem; Actis, Luis A

    2016-08-11

    Pseudomonas aeruginosa, a Gram-negative bacterium that causes severe hospital-acquired infections, is grouped as an ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogen because of its extensive drug resistance phenotypes and effects on human health worldwide. Five multidrug resistant P. aeruginosa strains isolated from wounded military personnel were sequenced and annotated in this work.

  20. Comprehensive Genome Analysis of Carbapenemase-Producing Enterobacter spp.: New Insights into Phylogeny, Population Structure, and Resistance Mechanisms

    PubMed Central

    Chavda, Kalyan D.; Chen, Liang; Fouts, Derrick E.; Sutton, Granger; Brinkac, Lauren; Jenkins, Stephen G.; Bonomo, Robert A.

    2016-01-01

    ABSTRACT Knowledge regarding the genomic structure of Enterobacter spp., the second most prevalent carbapenemase-producing Enterobacteriaceae, remains limited. Here we sequenced 97 clinical Enterobacter species isolates that were both carbapenem susceptible and resistant from various geographic regions to decipher the molecular origins of carbapenem resistance and to understand the changing phylogeny of these emerging and drug-resistant pathogens. Of the carbapenem-resistant isolates, 30 possessed blaKPC-2, 40 had blaKPC-3, 2 had blaKPC-4, and 2 had blaNDM-1. Twenty-three isolates were carbapenem susceptible. Six genomes were sequenced to completion, and their sizes ranged from 4.6 to 5.1 Mbp. Phylogenomic analysis placed 96 of these genomes, 351 additional Enterobacter genomes downloaded from NCBI GenBank, and six newly sequenced type strains into 19 phylogenomic groups—18 groups (A to R) in the Enterobacter cloacae complex and Enterobacter aerogenes. Diverse mechanisms underlying the molecular evolutionary trajectory of these drug-resistant Enterobacter spp. were revealed, including the acquisition of an antibiotic resistance plasmid, followed by clonal spread, horizontal transfer of blaKPC-harboring plasmids between different phylogenomic groups, and repeated transposition of the blaKPC gene among different plasmid backbones. Group A, which comprises multilocus sequence type 171 (ST171), was the most commonly identified (23% of isolates). Genomic analysis showed that ST171 isolates evolved from a common ancestor and formed two different major clusters; each acquiring unique blaKPC-harboring plasmids, followed by clonal expansion. The data presented here represent the first comprehensive study of phylogenomic interrogation and the relationship between antibiotic resistance and plasmid discrimination among carbapenem-resistant Enterobacter spp., demonstrating the genetic diversity and complexity of the molecular mechanisms driving antibiotic resistance in this

  1. A Field-expedient Method for Detection of Leptospirosis Causative Agents in Rodents

    DTIC Science & Technology

    2012-01-01

    Negative Shigella sonnei Negative Pseudomonas aeruginosa Negative Klebsiella pneumoniae Negative Enterobacter aerogenes Negative Staphylococcus aureus...Negative Staphylococcus typhimurium Negative Streptococcus pyogenes Negative Bartonella doshiae Negative Plasmodium falciparum Negative Plasmodium

  2. Relationship Between β-Lactamase Activity and Resistance of Enterobacter to Cephalothin

    PubMed Central

    Farrar, W. Edmund; Krause, Jane M.

    1970-01-01

    The relationship between cephalosporin β-lactamase activity and resistance to cephalothin was investigated in strains of Enterobacter cloacae and E. aerogenes. β-Lactamase activity was detected in all strains, but a quantitative correlation between amount of β-lactamase activity and level of resistance to cephalothin was not observed. Permeability barriers to cephalothin were observed and varied from strain to strain. β-Lactamase activity was increased by growing organisms in the presence of penicillin G. These enzymes hydrolyzed cephalosporins more rapidly than penicillins. Penicillinase-resistant penicillins, especially those of the isoxazolyl series, effectively inhibited Enterobacter β-lactamase. A synergistic antibacterial effect was observed when organisms were exposed to cephalothin and oxacillin in combination, and the resistance of even very small inocula to cephalothin was reduced by addition of oxacillin. Oxacillin probably exerts its effect by inhibiting β-lactamase at an intracellular site. Intracellular β-lactamase may make an important contribution to the resistance of even small inocula of gram-negative bacilli to cephalosporin and penicillin antibiotics. Although β-lactamase plays a significant role in the resistance of Enterobacter to cephalothin, other factors, such as permeability barriers, also participate in determining the level of resistance. PMID:16557885

  3. Spondylodiscitis Caused by Enterobacter agglomerans

    PubMed Central

    Kothalawala, Mahen; Devakanthan, Balachandran; Arunan, Sinnappoo; Galgamuwa, Dinithi; Rathnayake, Manori

    2016-01-01

    All over the globe, the incidence of vertebral infection is rising. Nowadays, compared to tuberculous variety, pyogenic spondylodiscitis incidence is high. The increase in the susceptible population and improved diagnostics summatively contributed to this. In clinical grounds, differentiation of pyogenic and tuberculous spondylodiscitis is well defined. Enterobacter agglomerans is a hospital contaminant and associated with infections in immunocompromised individuals and intravenous lines. It causes a wide array of infections. Enterobacter agglomerans spondylodiscitis is unusual and there are, around the globe, only less than 31 suspected cases that have been previously reported. Enterobacter agglomerans histology mimics tuberculous rather than pyogenic spondylodiscitis. A 65-year-old farming lady, while being in hospital, developed sudden onset spastic paraparesis with hyperreflexia. Later blood culture revealed Enterobacter agglomerans with 41-hour incubation in 99.9% probability from Ramel identification system. Her initial ESR was 120 mm/first hour. Isolate was susceptible to ciprofloxacin and intravenous followed with oral therapy shows a drastic ESR fall and improved clinical response. Differentiation of tuberculous and pyogenic spondylodiscitis is very much important in management point of view. Therefore, blood culture has a role in diagnosis of spondylodiscitis. ESR can be used as important inflammatory marker in monitoring the response to treatment. Retrospectively, ESR would aid in reaching a definitive diagnosis. PMID:28127480

  4. Partial hydrolysis of dieldrin by Aerobacter aerogenes

    USGS Publications Warehouse

    Wedemeyer, Gary

    1968-01-01

    Although dieldrin (1,2,3,4,10,10-hexachloro- 6,7-epoxy-1 ,4 ,4a ,5 ,6 ,7 ,8, 8a-octahydro-1 ,4-endo, exo-5, 8-dimethanonaphthalene) metabolism by mammals (F. Korte and H. Arent, Life Sci. 4:2017, 1965) and insects (D. F. Heath and M. Vanderkar, Brit. J. Ind. Med. 21:269, 1964) has been reported, little is known about the degradation of this important pesticide by microorganisms. Korte et al. (Ann. Chem. Liebigs 656:135, 1962) and Chacko et al. (Science 154: 893, 1966) reported that a number of ubiquitous microorganisms were incapable of degrading dieldrin; however, more recently Matsumura and Boush (Science 156:959, 1967) isolated several species of Pseudomonas and Bacillus which could degrade dieldrin, from a number of soil samples having similar activity. They did not specifically attempt to identify the dieldrin metabolites formed, but they did suggest, on the basis of an identical RF value with an authentic control that 6,7-trans-dihydroxydihydroaldrin (aldrin diol) might be a major product. Work carried out concurrently in this laboratory has shown that another ubiquitous bacterium, Aerobacter aerogenes, converts dieldrin in vitro to a compound chromatographically similar to 6,7-trans-dihydroxydihydroaldrin.

  5. Partial hydrolysis of dieldrin by Aerobacter aerogenes

    USGS Publications Warehouse

    Wedemeyer, G.

    1968-01-01

    Although dieldrin (1,2,3 ,4,10,10-hexachloro- 6,7-epoxy-1 ,4 ,4a ,5 ,6 ,7 ,8, 8a-octahydro-1 ,4-endo, exo-5, 8-dimethanonaphthalene) metabolism by mammals (F. Korte and H. Arent, Life Sci. 4:2017, 1965) and insects (D. F. Heath and M. Vanderkar, Brit. J. Ind. Med. 21:269, 1964) has been reported, little is known about the degradation of this important pesticide by microorganisms. Korte et al. (Ann. Chem. Liebigs 656:135, 1962) and Chacko et al. (Science 154: 893, 1966) reported that a number of ubiquitous microorganisms were incapable of degrading dieldrin; however, more recently Matsumura and Boush (Science 156:959, 1967) isolated several species of Pseudomonas and Bacillus which could degrade dieldrin, from a number of soil samples having similar activity. They did not specifically attempt to identify the dieldrin metabolites formed, but they did suggest, on the basis of an identical RF value with an authentic control that 6,7-trans-dihydroxydihydroaldrin (aldrin diol) might be a major product. Work carried out concurrently in this laboratory has shown that another ubiquitous bacterium, Aerobacter aerogenes, converts dieldrin in vitro to a compound chromatographically

  6. Infectious discitis caused by Enterobacter cloacae.

    PubMed Central

    Solans, R; Simeon, P; Cuenca, R; Fonollosa, V; Bago, J; Vilardell, M

    1992-01-01

    The case is reported of a patient who developed a vertebral osteomyelitis caused by Enterobacter cloacae. The organism was isolated in cultures of blood and vertebral puncture biopsy samples. The patient was satisfactorily treated with trimethroprim and sulphamethoxazole. Enterobacter cloacae, a Gram negative organism, has been confirmed as the cause of bacteremia in patients with burns, urinary infections, in adults with pneumonia, and in children with joint infections. Spondylodiscitis caused by Enterobacter cloacae has not previously been described. Images PMID:1632668

  7. An ab initio study on anionic aerogen bonds

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Mohammadian-Sabet, Fariba

    2017-01-01

    An ab initio study is carried out to investigate the anionic aerogen bonds in complexes of KrO3, XeO3 and XeOF2 with F-, Cl-, Br-, CN-, NC-, N3-, SH-, SCN-, NCS-, OH- and OCH3- anions. All of the anionic aerogen bonds analyzed here have a partial covalent character. Charge transfer from the anion to the Kr-O or Xe-O σ∗ orbital stabilizes these complexes and leads to a sizable redshift in the corresponding stretching frequencies. The J(Kr-O) or J(Xe-O) spin-spin coupling constants can be regarded as a useful tool for the characterization of strength of the anionic aerogen-bonded complexes.

  8. Enterobacter soli sp. nov.: a lignin-degrading γ-proteobacteria isolated from soil.

    PubMed

    Manter, Daniel K; Hunter, William J; Vivanco, Jorge M

    2011-03-01

    A Gram-negative bacterium that formed cream-colored colonies designated strain LF7 was isolated from soil collected in the Tambopata National Reserve in Madre de Dios, Peru. 16S rRNA sequence comparisons indicate that LF7 is a novel Enterobacter sp. closely related to E. asburiae JCM 6051(T) [AB004744] and E. aerogenes JCM 1235(T) [AB004750] based on their sequence homologies (p-distance: 1.06 and 1.19%, respectively). DNA G + C content was 52.8 mol% which is within the range reported for E. asburiae (55-57 mol%). The major cellular fatty acids present in the LF7 strain were C(16:0) (27.3%), C(16:1) ω7c and/or C(16:1) ω6c (16.3%), C(18:1) ω7c (16.1%), C(17:0) cyclo (12.4%), C(14:0) 3-OH and/or C(16:1) iso-I (8.9%), C(14:0) (7.6%), C(12:0) (3.9%), C(17:0) (2.4%), C(13:0) 3-OH and/or C(15:1) iso-H (1.7%), C(13:0) (1.1%), and C(18:2) ω6,9c and/or C(18:0) ante (0.5%). The cellular fatty acid profile, G + C content, phenotypic and biochemical characteristics were consistent with its placement in the genus Enterobacter. The name Enterobacter soli is proposed for this bacterium.

  9. Relation of β-Lactamase Activity and Cellular Location to Resistance of Enterobacter to Penicillins and Cephalosporins

    PubMed Central

    Neu, Harold C.; Winshell, Elaine B.

    1972-01-01

    The Enterobacter species E. aerogenes, E. cloacae, and E. hafnia were examined for resistance to penicillin and cephalosporin derivatives. All were resistant to benzyl penicillin, ampicillin, 6 [d(−)α-amino-p-hydroxyphenylacetamido] penicillanic acid, cephaloridine, cephalothin, and cephalexin. A significant number were sensitive to carbenicillin and 6 [d(−)α-carboxy-3-thienylacetamido] penicillanic acid. No differences among the three species were noted. The β-lactamase activity was cell-bound, and was not released by osmotic shock, toluene treatment, or diphenylamine treatment. It was rarely released into the growth medium. The β-lactamase activity was primarily directed against cephalosporin derivatives. Synthesis of β-lactamase was chromosomally mediated. Resistance to ampicillin seemed to be partly related to entry of the molecule into the bacteria since exposure to ethylenediaminetetraacetate lowered the minimal inhibitory concentration. PMID:4218941

  10. Enterobacter Strains Might Promote Colon Cancer.

    PubMed

    Yurdakul, Dilşad; Yazgan-Karataş, Ayten; Şahin, Fikrettin

    2015-09-01

    Many studies have been performed to determine the interaction between bacterial species and cancer. However, there has been no attempts to demonstrate a possible relationship between Enterobacter spp. and colon cancer so far. Therefore, in the present study, it is aimed to investigate the effects of Enterobacter strains on colon cancer. Bacterial proteins were isolated from 11 Enterobacter spp., one Morganella morganii, and one Escherichia coli strains, and applied onto NCM460 (Incell) and CRL1790 (ATCC) cell lines. Cell viability and proliferation were determined in MTS assay. Flow Cytometry was used to detect CD24 level and apoptosis. Real-Time PCR studies were performed to determine NFKB and Bcl2 expression. Graphpad Software was used for statistical analysis. The results showed that proteins, isolated from the Enterobacter spp., have significantly increased cell viability and proliferation, while decreasing the apoptosis of the cell lines tested. The data in the present study indicated that Enterobacter strains might promote colon cancer. Moreover, Enterobacter spp. could be a clinically important factor for colon cancer initiation and progression. Studies can be extended on animal models in order to develop new strategies for treatment.

  11. Single-electron aerogen bonds: Do they exist?

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Mohammadian-Sabet, Fariba; Solimannejad, Mohammad

    2016-08-01

    A novel type of σ-hole interaction is characterized between some noble gas containing molecules (KrOF2, KrO3, XeOF2 and XeO3) and methyl (CH3) or ethyl (C2H5) radical by means of ab initio calculations. This interaction is named as single-electron aerogen bond (SEAB), in view of the concepts of aerogen bond and single-electron bond interactions. The properties of SEABs are studied by molecular electrostatic potential, quantum theory of atom in molecules, natural bonding orbital and noncovalent interaction index analyses. The formation of an O⋯H interaction tends to increase the strength of the SEAB, when they coexist in a ternary complex.

  12. Biochemical parameters of glutamine synthetase from Klebsiella aerogenes.

    PubMed Central

    Bender, R A; Janssen, K A; Resnick, A D; Blumenberg, M; Foor, F; Magasanik, B

    1977-01-01

    The glutamine synthetase (GS) from Klebsiella aerogenes is similar to that from Escherichia coli in several respects: (i) it is repressed by high levels of ammonia in the growth medium; (ii) its biosynthetic activity is greatly reduced by adenylylation; and (iii) adenylylation lowers the pH optimum and alters the response of the enzymes to various inhibitors in the gamma-glutamyl transferase (gammaGT) assay. There are, however, several important differences: (i) the isoactivity point for the adenylylated and non-adenylylated forms in the gammaGT assay occurs at pH 7.55 in K. aerogenes and at pH 7.15 in E. coli; (ii) the non-adenylylated form of the GS from K. aerogenes is stimulated by 60 mM MgCl2 in the gammaGT assay at pH 7.15. A biosynthetic reaction assay that correlates well with number of non-adenylylated enzyme subunits, as determined by the method of Mg2+ inhibition of the gammaGT assay, is described. Finally, we have found that it is necessary to use special methods to harvest growing cells to prevent changes in the adenylylation state of GS from occurring during harvesting. PMID:14104

  13. Molecular Analysis of Tetracycline Resistance in Pasteurella aerogenes

    PubMed Central

    Kehrenberg, Corinna; Schwarz, Stefan

    2001-01-01

    Tetracycline-resistant Pasteurella aerogenes isolates obtained from the intestinal tract of swine were investigated for their tet genes by PCR analysis and hybridization experiments. In contrast to Pasteurella isolates from the respiratory tract, tet(H) genes were detected in the chromosomal DNA of only 2 of the 24 isolates, one of which also carried two copies of a tet(B) gene. All other P. aerogenes isolates carried tet(B) genes, which are the predominant tet genes among Enterobacteriaceae. A single isolate harbored a tet(B) gene as part of a truncated Tn10 element on the 4.8-kb plasmid pPAT2. Comparative analysis of the pPAT2 sequence suggested that the Tn10 relic on plasmid pPAT2 is the result of several illegitimate recombination events. The remaining 21 P. aerogenes isolates carried one or two copies of the tet(B) gene in their chromosomal DNA. In the majority of the cases, these tet(B) genes were associated with copies of Tn10 as confirmed by their SfuI and BamHI hybridization patterns. No correlation between the number of tet gene copies and the MICs of tetracycline, doxycyline and minocycline was observed. PMID:11557485

  14. Description of Enterobacter ludwigii sp. nov., a novel Enterobacter species of clinical relevance.

    PubMed

    Hoffmann, Harald; Stindl, Sibylle; Stumpf, Anita; Mehlen, Andre; Monget, Daniel; Heesemann, Jürgen; Schleifer, Karl H; Roggenkamp, Andreas

    2005-04-01

    A new species, Enterobacter ludwigii, is presented on the basis of the characteristics of 16 strains, which were isolated from clinical specimens. These bacteria form a distinct genetic cluster in phylogenetic analyses of the population structure of the Enterobacter cloacae complex. As determined by DNA-DNA cross-hybridization experiments in microplates, this genetic cluster can be delineated from the other species of the E. cloacae complex with deltaTm values equal to or above 5 degrees C with Enterobacter hormaechei being the closest relative. The bacteria are gram-negative, fermentative, motile rods with the general characteristics of the genus Enterobacter and the E. cloacae complex in particular. E. ludwigii can be differentiated from the other Enterobacter species by its growth on myo-inositol and 3-0-methyl-D-glucopyranose. The type strain is EN-119 (= DSM 16688T = CIP 108491T).

  15. Phenotypic and molecular characterization of antimicrobial resistance in Enterobacter spp. isolates from companion animals in Japan

    PubMed Central

    Harada, Kazuki; Shimizu, Takae; Mukai, Yujiro; Kuwajima, Ken; Sato, Tomomi; Kajino, Akari; Usui, Masaru; Tamura, Yutaka; Kimura, Yui; Miyamoto, Tadashi; Tsuyuki, Yuzo; Ohki, Asami; Kataoka, Yasushi

    2017-01-01

    The emergence of antimicrobial resistance among Enterobacter spp., including resistance to extended-spectrum cephalosporins (ESC), is of great concern in both human and veterinary medicine. In this study, we investigated the prevalence of antimicrobial resistance among 60 isolates of Enterobacter spp., including E. cloacae (n = 44), E. aerogenes (n = 10), and E. asburiae (n = 6), from clinical specimens of dogs and cats from 15 prefectures in Japan. Furthermore, we characterized the resistance mechanisms harbored by these isolates, including extended-spectrum β-lactamases (ESBLs) and plasmid-mediated quinolone resistance (PMQR); and assessed the genetic relatedness of ESC-resistant Enterobacter spp. strains by multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Antimicrobial susceptibility testing demonstrated the resistance rates to ampicillin (93.3%), amoxicillin-clavulanic acid (93.3%), cefmetazole (93.3%), chloramphenicol (46.7%), ciprofloxacin (43.3%), tetracycline (40.0%), ceftazidime (33.3%), cefotaxime (33.3%), trimethoprim/sulfamethoxazole (28.3%), gentamicin (23.3%), and meropenem (0%). Phenotypic testing detected ESBLs in 16 of 18 ESC-resistant E. cloacae isolates but not in the other species. The most frequent ESBL was CTX-M-15 (n = 8), followed by SHV-12 (n = 7), and CTX-M-3 (n = 1). As for AmpC β-lactamases, CMY-2 (n = 2) and DHA-1 (n = 2) were identified in ESC-resistant E. cloacae strains with or without ESBLs. All of the ESC-resistant E. cloacae strains also harbored one or two PMQRs, including qnrB (n = 15), aac(6’)-Ib-cr (n = 8), and qnrS (n = 2). Based on MLST and PFGE analysis, E. cloacae clones of ST591-SHV-12, ST171-CTX-M-15, and ST121-CTX-M-15 were detected in one or several hospitals. These results suggested intra- and inter-hospital dissemination of E. cloacae clones co-harboring ESBLs and PMQRs among companion animals. This is the first report on the large-scale monitoring of antimicrobial-resistant isolates

  16. Phenotypic and molecular characterization of antimicrobial resistance in Enterobacter spp. isolates from companion animals in Japan.

    PubMed

    Harada, Kazuki; Shimizu, Takae; Mukai, Yujiro; Kuwajima, Ken; Sato, Tomomi; Kajino, Akari; Usui, Masaru; Tamura, Yutaka; Kimura, Yui; Miyamoto, Tadashi; Tsuyuki, Yuzo; Ohki, Asami; Kataoka, Yasushi

    2017-01-01

    The emergence of antimicrobial resistance among Enterobacter spp., including resistance to extended-spectrum cephalosporins (ESC), is of great concern in both human and veterinary medicine. In this study, we investigated the prevalence of antimicrobial resistance among 60 isolates of Enterobacter spp., including E. cloacae (n = 44), E. aerogenes (n = 10), and E. asburiae (n = 6), from clinical specimens of dogs and cats from 15 prefectures in Japan. Furthermore, we characterized the resistance mechanisms harbored by these isolates, including extended-spectrum β-lactamases (ESBLs) and plasmid-mediated quinolone resistance (PMQR); and assessed the genetic relatedness of ESC-resistant Enterobacter spp. strains by multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Antimicrobial susceptibility testing demonstrated the resistance rates to ampicillin (93.3%), amoxicillin-clavulanic acid (93.3%), cefmetazole (93.3%), chloramphenicol (46.7%), ciprofloxacin (43.3%), tetracycline (40.0%), ceftazidime (33.3%), cefotaxime (33.3%), trimethoprim/sulfamethoxazole (28.3%), gentamicin (23.3%), and meropenem (0%). Phenotypic testing detected ESBLs in 16 of 18 ESC-resistant E. cloacae isolates but not in the other species. The most frequent ESBL was CTX-M-15 (n = 8), followed by SHV-12 (n = 7), and CTX-M-3 (n = 1). As for AmpC β-lactamases, CMY-2 (n = 2) and DHA-1 (n = 2) were identified in ESC-resistant E. cloacae strains with or without ESBLs. All of the ESC-resistant E. cloacae strains also harbored one or two PMQRs, including qnrB (n = 15), aac(6')-Ib-cr (n = 8), and qnrS (n = 2). Based on MLST and PFGE analysis, E. cloacae clones of ST591-SHV-12, ST171-CTX-M-15, and ST121-CTX-M-15 were detected in one or several hospitals. These results suggested intra- and inter-hospital dissemination of E. cloacae clones co-harboring ESBLs and PMQRs among companion animals. This is the first report on the large-scale monitoring of antimicrobial-resistant isolates

  17. Population genetics of the nomenspecies Enterobacter cloacae.

    PubMed

    Hoffmann, Harald; Roggenkamp, Andreas

    2003-09-01

    The genetic heterogeneity of the nomenspecies Enterobacter cloacae is well known. Enterobacter asburiae, Enterobacter cancerogenus, Enterobacter dissolvens, Enterobacter hormaechei, Enterobacter kobei, and Enterobacter nimipressuralis are closely related to it and are subsumed in the so-called E. cloacae complex. DNA-DNA hybridization studies performed previously identified at least five DNA-relatedness groups of this complex. In order to analyze the genetic structure and the phylogenetic relationships between the clusters of the nomenspecies E. cloacae, 206 strains collected from 22 hospitals, a veterinarian, and an agricultural center in 11 countries plus all 13 type strains of the genus and reference strain CDC 1347-71(R) were examined with a combination of sequence and PCR-restriction fragment length polymorphism (PCR-RFLP) analyses of the three housekeeping genes hsp60, rpoB, and hemB as well as ampC, the gene of a class C beta-lactamase. Based on the neighbor-joining tree of the hsp60 sequences, 12 genetic clusters (I to XII) and an unstable sequence crowd (xiii) were identified. The robustness of the genetic clusters was confirmed by analyses of rpoB and hemB sequences and ampC PCR-RFLPs. Sequence crowd xiii split into two groups after rpoB analysis. Only three strains formed a cluster with the type strain of E. cloacae, indicating that the minority of isolates identified as E. cloacae truly belong to the species; 13% of strains grouped with other type strains of the genus, suggesting that the phenotypes of these species seem to be more heterogeneous than so far believed. Three clusters represented 70% of strains, but none of them included a type or reference strain. The genetic clustering presented in this study might serve as a framework for future studies dealing with taxonomic, evolutionary, epidemiological, or pathogenetic characteristics of bacteria belonging to the E. cloacae complex.

  18. Population Genetics of the Nomenspecies Enterobacter cloacae

    PubMed Central

    Hoffmann, Harald; Roggenkamp, Andreas

    2003-01-01

    The genetic heterogeneity of the nomenspecies Enterobacter cloacae is well known. Enterobacter asburiae, Enterobacter cancerogenus, Enterobacter dissolvens, Enterobacter hormaechei, Enterobacter kobei, and Enterobacter nimipressuralis are closely related to it and are subsumed in the so-called E. cloacae complex. DNA-DNA hybridization studies performed previously identified at least five DNA-relatedness groups of this complex. In order to analyze the genetic structure and the phylogenetic relationships between the clusters of the nomenspecies E. cloacae, 206 strains collected from 22 hospitals, a veterinarian, and an agricultural center in 11 countries plus all 13 type strains of the genus and reference strain CDC 1347-71R were examined with a combination of sequence and PCR-restriction fragment length polymorphism (PCR-RFLP) analyses of the three housekeeping genes hsp60, rpoB, and hemB as well as ampC, the gene of a class C β-lactamase. Based on the neighbor-joining tree of the hsp60 sequences, 12 genetic clusters (I to XII) and an unstable sequence crowd (xiii) were identified. The robustness of the genetic clusters was confirmed by analyses of rpoB and hemB sequences and ampC PCR-RFLPs. Sequence crowd xiii split into two groups after rpoB analysis. Only three strains formed a cluster with the type strain of E. cloacae, indicating that the minority of isolates identified as E. cloacae truly belong to the species; 13% of strains grouped with other type strains of the genus, suggesting that the phenotypes of these species seem to be more heterogeneous than so far believed. Three clusters represented 70% of strains, but none of them included a type or reference strain. The genetic clustering presented in this study might serve as a framework for future studies dealing with taxonomic, evolutionary, epidemiological, or pathogenetic characteristics of bacteria belonging to the E. cloacae complex. PMID:12957918

  19. Probable Interspecies Transfer of the bla(VIM-4) Gene between Enterobacter cloacae and Klebsiella pneumoniae in a Single Infant Patient.

    PubMed

    Piekarska, Katarzyna; Zacharczuk, Katarzyna; Rzeczkowska, Magdalena; Wołkowicz, Tomasz; Januszkiewicz, Aleksandra; Podsiadły, Edyta; Demkow, Urszula; Gierczyński, Rafał

    2015-01-01

    We report the interspecies transfer of the bla(VLM-4) gene in MBL-producing Enterobacter cloacae and Klebsiella pneumoniae isolates from a newborn patient who had received meropenem therapy. We show evidence that gene bla(VIM-4) was transmitted as a part of the class-1 integron on a ca. -90 kb conjugative plasmid. High homology of nucleotide sequence was observed between the integron found in VIM-4 producing E. cloacae and K. pneumoniae strains tested and class-1 integrons previously reporteded in Pseudomonas aeruginosa from Hungary and Poland. This finding may suggest P. aeruginosa as a potential source of acquired VIM-4 in Enterobacteriaceae.

  20. Pneumonia due to Enterobacter cancerogenus infection.

    PubMed

    Demir, Tülin; Baran, Gamze; Buyukguclu, Tuncay; Sezgin, Fikriye Milletli; Kaymaz, Haci

    2014-11-01

    Enterobacter cancerogenus (formerly known as CDC Enteric Group 19; synonym with Enterobacter taylorae) has rarely been associated with human infections, and little is known regarding the epidemiology and clinical significance of this organism. We describe a community-acquired pneumonia case in a 44-year-old female due to E. cancerogenus. Identification and antimicrobial susceptibility of the microorganism was performed by the automatized VITEK 2 Compact system (bioMerieux, France). The clinical case suggests that E. cancerogenus is a potentially pathogenic microorganism in determined circumstances; underlying diseases such as bronchial asthma, empiric antibiotic treatment, wounds, diagnostic, or therapeutic instruments.

  1. Spore germination promoter of Dictyostelium discoideum excreted by Aerobacter aerogenes.

    PubMed

    Hashimoto, Y; Tanaka, Y; Yamada, T

    1976-07-01

    The nutrient medium in which Aerobacter aerogenes was grown, contains a spore germination promoter (SGP) for the cellular slime mould Dictyostelium discoideum. SGP can cuase synchronous spore germination in a short time, and triggers the germination process in just a few minutes. Germination-promoting capacity of SGP decreases as it comes in contact with increasing number of spores. When spores activated by SGP are stored at 4 degrees C, they gradually return to the dormant state. SGP is comparatively heat-stable, but is unstable at pH above 10 or under 3.

  2. Thermobacteriological characterization of Enterobacter sakazakii.

    PubMed

    Arroyo, C; Condón, S; Pagán, R

    2009-11-30

    In the present study the influence of various environmental and physiological factors on the heat resistance of Enterobacter sakazakii (Cronobacter) have been investigated. Our results demonstrated that the heat resistance of E. sakazakii depended on the strain studied, the growth conditions - phase and temperature - the characteristics of treatment medium and the recovery conditions. The strain STCC 858 (ATCC type strain 29544) showed maximum heat resistance among the strains tested and it was selected for the further study. Stationary-phase cells grown between 20 and 37 degrees C (mean D(60)=0.9 min) resulted to be more resistant than cells grown at 10 degrees C (D(60)=0.2 min). Resistance decreased when the treatment medium pH was lower than pH 6.0, and it increased with decreasing water activity of the treatment medium, with a 32-fold increase in resistance when lowering water activity to 0.96. z value at pH 4.0 (z=4.79 degrees C) was significantly higher than at pH 7.0 (z=4.06 degrees C), although E. sakazakii cells were approximately 10 times more heat resistant at pH 7.0 than at pH 4.0 within the range of temperatures tested. Contrary to pH, the magnitude of the influence of a(w) on heat resistance did not significantly change with treatment temperature. The proportion of sublethally damaged cells was similar regardless of the treatment medium pH, but it decreased when lowering the water activity. Nevertheless, increasing treatment temperature would not result in a decreased proportion of sublethally injured E. sakazakii cells within the surviving population. Thus, the design of a theoretical combined process that could take advantage of the occurrence of sublethally injured cells would be similarly effective at low and high temperatures. E. sakazakii proved to be more heat resistant in four different liquid food matrixes than in buffers at the same pH, and this disagreement was especially higher in orange juice, which resulted to be the product that induced

  3. Enterobacter and Klebsiella species isolated from fresh vegetables marketed in Valencia (Spain) and their clinically relevant resistances to chemotherapeutic agents.

    PubMed

    Falomir, María Pilar; Rico, Hortensia; Gozalbo, Daniel

    2013-12-01

    Occurrence of antibiotic-resistant pathogenic or commensal enterobacteria in marketed agricultural foodstuffs may contribute to their incorporation into the food chain and constitutes an additional food safety concern. In this work, we have determined the clinically relevant resistances to 11 common chemotherapeutic agents in Enterobacter and Klebsiella isolates from fresh vegetables from various sources (supermarkets and greengrocers' shops in Valencia, Spain). A total of 96 isolates were obtained from 160 vegetables analyzed (50% positive samples): 68 Enterobacter isolates (59 E. cloacae, two E. aerogenes, two E. cancerogenus, one E. gergoviae, and four E. sakazakii, currently Cronobacter spp.), and 28 Klebsiella isolates (19 K. oxytoca and 9 K. pneumoniae). Only seven isolates were susceptible to all agents tested, and no resistances to ceftazidime, ciprofloxacin, gentamicin, and chloramphenicol were detected. Most isolates were resistant to amoxicillin/clavulanic acid (74 [58 Enterobacter and 16 Klebsiella]) or to ampicillin (80 [55/25]). Other resistances were less frequent: nitrofurantoin (13 isolates [12/1]), tetracycline (6 [5/1]), co-trimoxazole (3 [3/0]), cefotaxime (1 [1/0]), and streptomycin (2 [1/1]). Multiresistant isolates to two (56 [41/15]), three (10 E. cloacae isolates), four (one E. cloacae and one K. pneumoniae isolate), and five (two E. cloacae isolates) chemotherapeutic agents were also detected. The presence of potential pathogens points to marketed fresh produce, which often is eaten raw, as a risk factor for consumer health. In addition, these results support the usefulness of these bacterial species as indicators of the spreading of antibiotic resistances into the environment, particularly in the food chain, and suggest their role as carriers of resistance determinants from farms to consumers, which may constitute an additional "silent" food safety concern. Therefore, there is a need to improve the hygienic quality of marketed fresh

  4. Identification and phylogeny of Enterobacter sakazakii relative to Enterobacter and Citrobacter Species.

    PubMed

    Iversen, Carol; Waddington, Michael; On, Stephen L W; Forsythe, Stephen

    2004-11-01

    The phylogenetic relationships of Enterobacter sakazakii strains were investigated using 16S ribosomal DNA (rDNA) and hsp60 sequencing. Each analysis distributed E. sakazakii strains among four clusters, indicating substantial taxonomic heterogeneity. The E. sakazakii type strain 16S rDNA sequence was 97.8% similar to that of Citrobacter koseri but 97.0% similar to that of Enterobacter cloacae.

  5. Enterobacter turicensis sp. nov. and Enterobacter helveticus sp. nov., isolated from fruit powder.

    PubMed

    Stephan, Roger; Van Trappen, Stefanie; Cleenwerck, Ilse; Vancanneyt, Marc; De Vos, Paul; Lehner, Angelika

    2007-04-01

    Four Gram-negative, facultatively anaerobic, non-spore-forming isolates of coccoid rods were obtained from fruit powder and investigated in a polyphasic taxonomic study. Comparative 16S rRNA gene sequence analysis allocated the isolates to the family Enterobacteriaceae. Their phylogenetic position within the family Enterobacteriaceae was confirmed by rpoB sequence analysis and as the highest rpoB sequence similarities were obtained with Enterobacter radicincitans, Enterobacter cowanii and Enterobacter sakazakii, the isolates clearly belong to the genus Enterobacter. Biochemical data revealed that the isolates can be separated into two distinct groups that represent two novel species, as confirmed by DNA-DNA hybridizations. The two novel species can be differentiated from their nearest neighbours by the following characteristics: the utilization of sucrose, D-sorbitol, putrescine and mucate, the hydrolysis of aesculin and a negative result in the Voges-Proskauer reaction. It is therefore proposed that these novel isolates are classified as Enterobacter turicensis sp. nov. (type strain 508/05(T)=LMG 23730(T)=DSM 18397(T)) and Enterobacter helveticus sp. nov. (type strain 513/05(T)=LMG 23732(T)=DSM 18396(T)).

  6. Klebsiella and Enterobacter organisms isolated from horses.

    PubMed

    Platt, H; Atherton, J G; Orskov, I

    1976-12-01

    An account is given of K. pneumoniae capsule types occurring in horses, with particular reference to strains originating from the genital tract in the mare and the external genitalia of the stallion. A survey of the prevalence of K. pneumoniae and E. aerogenes strains in the preputial flora of healthy stallions is described. The majority of horses were found to be carriers of these organisms. The cultural characteristics of these preputial strains are described and compared with those of K. pneumoniae strains associated with epidemic metritis in mares. The epidemiological significance of certain K. pneumoniae capsule types is discussed.

  7. Enterobacter Meningitis and Challenges in Treatment

    PubMed Central

    Noor, Jawad; Yegneswaran, Balaji; Kodali, Hanish

    2016-01-01

    Neurosurgical interventions are rarely associated with meningitis with a very low incidence rate ranging from 1.1% to 2.5%. Gram negative bacillary meningitis first described in the 1940’s, previously uncommon has been increasing in the recent past associated with advanced age, immunosuppression and neurosurgery. Enterobacter meningitis though relatively uncommon is recently increasing in incidence and treatment is frequently complicated due to resistance to antibiotics making this a challenging, difficult to treat infection that may be associated with adverse clinical outcomes. Here, we describe a case of a 27-year-old patient diagnosed with brain sarcoma at the age of four years, who presented with Enterobacter meningitis following a neurosurgical intervention for resection of a recurrent brain tumor (meningioma on pathology) and had a prolonged hospital stay with a difficult to treat infection. PMID:28208914

  8. d-Apiose Reductase from Aerobacter aerogenes1

    PubMed Central

    Neal, Donna L.; Kindel, Paul K.

    1970-01-01

    A strain of Aerobacter aerogenes PRL-R3 has been isolated which utilizes d-apiose as its sole source of carbon. A new enzyme, d-apiose reductase, was discovered in this strain. The enzyme was not present when the strain was grown on d-glucose. d-Apiose reductase catalyzes the nicotinamide adenine dinucleotide-dependent interconversion of d-apiose and d-apiitol. The enzyme is specific for d-apiose and d-apiitol, with a few possible exceptions. The Km for d-apiose is 0.02 m. The Km for d-apiitol is 0.01 m. The enzyme is almost completely specific for the reduced and oxidized forms of nicotinamide adenine dinucleotide. When cell-free extracts were centrifuged at 100,000 × g for 1 hr, the enzyme remained in solution. Optimal activity for the reduction of d-apiose was obtained at pH 7.5 in glycylglycine buffer, whereas for the oxidation of d-apiitol it was obtained at pH 10.5 in glycine buffer. Enzymatic reduction of d-apiose was not appreciably affected by the presence of 0.02 m ethylenediaminetetraacetate. Paper chromatography and specific spray reagents were used to identify d-apiitol and d-apiose as the products of this reversible reaction. d-Apiose and d-apiitol did not serve as substrates for ribitol dehydrogenase and d-arabitol dehydrogenase from A. aerogenes PRL-R3. PMID:4314545

  9. A new oxolane from Enterobacter cloacae.

    PubMed

    Yap, Ann-Chee; Chan, Kok-Gan; Sim, Kae-Shin; Choo, Yeun-Mun

    2016-01-01

    Enterobacter cloacae is a highly pathogenic Gram-negative proteobacterium which is responsible for a wide array of infections. In the present study, the fermentation culture of E. cloacae has yielded one new oxolane compound, Rimboxo (1) in addition to three known compounds, i.e. Maculosine (2), phenylacetic acid (3) and methyl myristate (4). These compounds were isolated and characterised using extensive chromatographic and spectroscopic methods, and were subjected to cytotoxicity evaluations.

  10. Enterobacter morus sp. nov., a novel Enterobacter species associated with bacterial wilt on mulberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A mulberry pathogenetic bacterial strain R18-2T isolated from the diseased mulberry root was analyzed by a polyphasic taxonomic study. Comparative 16S rRNA gene sequence analysis combined with rpoB gene sequence analysis allocated the strain R18-2T to the genus Enterobacter. The strain was Gram nega...

  11. Methionine-to-Cysteine Recycling in Klebsiella aerogenes

    PubMed Central

    Seiflein, Thomas A.; Lawrence, Jeffrey G.

    2001-01-01

    In the enteric bacteria Escherichia coli and Salmonella enterica, sulfate is reduced to sulfide and assimilated into the amino acid cysteine; in turn, cysteine provides the sulfur atom for other sulfur-bearing molecules in the cell, including methionine. These organisms cannot use methionine as a sole source of sulfur. Here we report that this constraint is not shared by many other enteric bacteria, which can use either cysteine or methionine as the sole source of sulfur. The enteric bacterium Klebsiella aerogenes appears to use at least two pathways to allow the reduced sulfur of methionine to be recycled into cysteine. In addition, the ability to recycle methionine on solid media, where cys mutants cannot use methionine as a sulfur source, appears to be different from that in liquid media, where they can. One pathway likely uses a cystathionine intermediate to convert homocysteine to cysteine and is induced under conditions of sulfur starvation, which is likely sensed by low levels of the sulfate reduction intermediate adenosine-5′-phosphosulfate. The CysB regulatory proteins appear to control activation of this pathway. A second pathway may use a methanesulfonate intermediate to convert methionine-derived methanethiol to sulfite. While the transsulfurylation pathway may be directed to recovery of methionine, the methanethiol pathway likely represents a general salvage mechanism for recovery of alkane sulfide and alkane sulfonates. Therefore, the relatively distinct biosyntheses of cysteine and methionine in E. coli and Salmonella appear to be more intertwined in Klebsiella. PMID:11114934

  12. Phenotypic characterization of ESBL producing Enterobacter cloacae among children

    PubMed Central

    Amin, Hafsa; Zafar, Aizza; Ejaz, Hasan; Jameel, Noor-ul-Ain

    2013-01-01

    Objective: The emergence of ESBL producing Enterobacter cloacae in clinical isolates is posing a serious threat for treating nosocomial infections. The aim of the study was to determine the frequency of extended spectrum β-lactamase (ESBL) producing Enterobacter cloacae and to compare the phenotypic methods used for the characterization of ESBL producing strains. Methodology: This cross sectional observational study was conducted during April 2011 to March 2012 at Microbiology department of The Children’s Hospital and Institute of Child Health, Lahore. A total number of 20,257 various clinical samples were analyzed during the study period. Enterobacter cloacae were identified using API 20E system and ESBL detection was carried out using double-disk synergy test (DDST) and CLSI confirmatory test. Results: Enterobacter cloacae were isolated from 221 samples, out of which 33 (14.93%) were ESBL producers and 188 (85.07%) were non-ESBL producers. The gender distribution of ESBL producing Enterobacter cloacae was 21 (63.6%) in males and 12 (36.4%) in females. Highest frequency (63%) of ESBL producing Enterobacter cloacae was detected in blood samples. Comparison of DDST and CLSI confirmatory test showed that 25 (75.75%) isolates were characterized by DDST and 33 (100%) using CLSI confirmatory test. Conclusion: The present study shows moderately high frequency of ESBL producing Enterobacter cloacae among children. DDST was found to be less efficient in ESBL detection as compared to CLSI confirmatory test. PMID:24353527

  13. Use of aiiA gene amplification for AHL-lactonase production from endophytic bacterium Enterobacter species.

    PubMed

    Rajesh, P S; Rai, V Ravishankar

    2015-01-01

    AHL-lactonase has gained renewed interest due to biotechnological applications such as antiquorum sensing, antibiofilm strategies, biofouling, etc. In our study, the production of AHL-lactonase from endophytic bacteria Enterobacter aerogenes VT66 was optimized by response surface methodology (RSM) using central composite design (CCD) for four different cultural conditions. The relative activity of AHL-lactonase was correlated with amplification of aiiA homologous gene amplification with respect to cultural conditions. Statistical analysis by ANOVA of the quadratic regression model showed that the RSM model constructed is highly significant, as indicated by F-test with a low probability value (p(model) < 0.0001) and high regression coefficient (0.9997) as well as lower coefficient of variation (1.86%) indicate that suitability of variable parameters. The quadratic regression model of AHL-lactonase production in terms of relative activity was built and the optimal cultural conditions for maximum enzyme production were determined as 32.5 °C temperature, pH 7.0, 350 μM of substrate concentration and 33 h of incubation time. The enhanced AHL-lactonase yielded 1.33 fold increases in relative activity and it positively correlated with the amplification of aiiA gene.

  14. The nac (nitrogen assimilation control) gene from Klebsiella aerogenes.

    PubMed Central

    Schwacha, A; Bender, R A

    1993-01-01

    The Klebsiella aerogenes nac gene, whose product is necessary for nitrogen regulation of a number of operons, was identified and its DNA sequence determined. The nac sequence predicted a protein a 305 amino acids with a strong similarity to members of the LysR family of regulatory proteins, especially OxyR from Escherichia coli. Analysis of proteins expressed in minicells showed that nac is a single-gene operon whose product has an apparent molecular weight of about 32 kDa as measured in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immediately downstream from nac is a two-gene operon, the first gene of which encodes another member of the LysR family. Upstream from nac is a tRNAAsn gene transcribed divergently from nac. About 60 bp upstream from the nac open reading frame lies a sequence nearly identical to the consensus for sigma 54-dependent promoters, with the conserved GG and GC nucleotides at -26 and -14 relative to the start of transcription. About 130 bp farther upstream (at -153 relative to the start of transcription) is a sequence nearly identical to the transcriptional activator NTRC-responsive enhancer consensus. Another weaker NTRC-binding site is located adjacent to this site (at -133 relative to the start of transcription). Thus, we propose that nac is transcribed by RNA polymerase carrying sigma 54 in response to the nitrogen regulatory (NTR) system. A transposon located between the promoter and the nac ORF prevented NTR-mediated expression of nac, supporting this identification of the promoter sequence. The insertion of over 5 kb of transposon DNA between the enhancer and its target promoter had only a weak effect on enhancer-mediated regulation, suggesting that enhancers may be able to act at a considerable distance on the bacterial chromosome. Images PMID:8458853

  15. Geraniol Restores Antibiotic Activities against Multidrug-Resistant Isolates from Gram-Negative Species▿ †

    PubMed Central

    Lorenzi, Vannina; Muselli, Alain; Bernardini, Antoine François; Berti, Liliane; Pagès, Jean-Marie; Amaral, Leonard; Bolla, Jean-Michel

    2009-01-01

    The essential oil of Helichrysum italicum significantly reduces the multidrug resistance of Enterobacter aerogenes, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Combinations of the two most active fractions of the essential oil with each other or with phenylalanine arginine β-naphthylamide yield synergistic activity. Geraniol, a component of one fraction, significantly increased the efficacy of β-lactams, quinolones, and chloramphenicol. PMID:19258278

  16. Pre-Clinical Testing of a Real-Time PCR Assay for Diahhreal Disease Agent Cryptosporidium

    DTIC Science & Technology

    2014-05-16

    tests on freeze-dried Shigella ipaH, enterotoxigenic E . coli (ETEC) ST1b, ETEC LT, ETEC ST1a, Cryptosporidium, and Leptospira (Idaho Technologies, Salt...Citrobacter freundii 1 Negative EHEC 1 Negative Enterobacter aerogenes 1 Negative Enterobacter cloacae 1 Negative Enterotoxigenic E . coli (ETEC...2 Negative Enteroinvasive E . coli (EIEC) 1 Negative Escherichia coli 1 Negative K. pneumoniae 1 Negative P. aeruginosa 1 Negative Proteus

  17. Construction of intergeneric hybrids using bacteriophage P1CM: transfer of the Klebsiella aerogenes ribitol dehydrogenase gene to Escherichia coli.

    PubMed

    Rigby, P W; Gething, M J; Hartley, B S

    1976-02-01

    Study of many of the interesting properties of Klebsiella aerogenes is limited by the lack of a well-characterized genetic system for this organism. Our investigations of the evolution of the enzyme ribitol dehydrogenase (EC 1.1.1.56) in K. aerogenes would be greatly facilitated by the availability of such a system, and we here report two approaches to developing one. We have isolated mutants sensitive to the coliphage P1, which will efficiently tranduce genetic markers between such sensitive strains and which will thus make detailed mapping studies possible. Derivatives of K. aerogenes lysogenic for P1 can be readily isolated by using the specialized transducing particle P1CMclr100. Bacteria lysogenic for this phage are chloramphenicol resistant and temperature sensitive. Phage particles produced by temperature induction of such lysogens can be used to transfer K. aerogenes genes to the natural host of P1 phage. Escherichia coli. We have used this method to prepare derivatives of E. coli K-12 carrying the K. aerogenes genes conferring the ability to metabolize the pentitols ribitol and D-arabitol. We have shown that these E. coli-K. aerogenes hybrids synthesize a ribitol dehydrogenase with the properties of the K. aerogenes enzyme and have mapped the position of the transferred gene on the E. coli chromosome. The ramifications of this methodology are discussed.

  18. Enterobacter bugandensis sp. nov., from a neonatal unit in Tanzania.

    PubMed

    Doijad, Swapnil; Imirzalioglu, Can; Yao, Yancheng; Pati, Niladri Bhusan; Falgenhauer, Linda; Hain, Torsten; Foesel, Bärbel U; Abt, Birte; Overmann, Jorg; Mirambo, Mariam M; Mshana, Stephen E; Chakraborty, Trinad

    2015-12-04

    A total of 17 'Enterobacter-like' isolates obtained from a septicemic outbreak from a neonatal unit, Tanzania, that could not be assigned based on phenotypic tests to any existing Enterobacter species. Eight representative outbreak isolates were investigated in detail. Fermentation characteristics, biochemical assays and fatty acid profiles for taxonomic analysis were determined and supplemented with information derived from whole genome sequences. Phenotypic and morphological tests revealed that these isolates are Gram-negative, rod-shaped, highly motile and facultatively anaerobic. The fatty acid profile was similar to all other Enterobacter type strains, with quantitative differences in C17:0, C18:1 ω7c and C17:0 cyclo fatty acids. We performed whole genome sequencing and examined it for taxonomically relevant characteristics i.e. 16S rDNA, multi-locus sequence analysis (MLSA), in silico DNA-DNA hybridisation (isDDH) and average nucleotide identity (ANI). Draft genomes were approximately 4.9 Mb in size with a G+C content of 56.0%. The 16S rDNA sequence of these eight isolates showed > 97% similarity to all the Enterobacter species, while MLSA clustered them closely with type strains of E. xiangfangensis and E. hormaechei, respectively. These eight strains showed less than 70% isDDH identity with type strains of the Enterobacter species. In addition, less than 95% ANI to type strains of Enterobacter species was observed. From these results, we conclude that these isolates possess sufficient characteristics that different them from all known Enterobacter species, and should therefore be considered as a novel species. The name Enterobacter bugandensis sp. nov. is proposed with EB-247T as the type strain (=DSM 29888T=NCCB 100573T).

  19. Induction by Klebsiella aerogenes of a melanin-like pigment in Cryptococcus neoformans.

    PubMed

    Frases, Susana; Chaskes, Stuart; Dadachova, Ekaterina; Casadevall, Arturo

    2006-02-01

    While studying the interaction of Cryptococcus neoformans with Dictyostelium discoideum, we noticed that yeast colonies in agar with a feeder lawn of Klebsiella aerogenes were brown. This finding was intriguing because C. neoformans colonies are not pigmented unless they are provided with precursors for melanization. Strains of all C. neoformans serotypes produced brown pigment in response to K. aerogenes at 22, 30, and 37 degrees C. Pigment production required fungal laccase and was suppressed by high concentrations of glucose. Treatment of brown cells with guanidinium isothiocyanate and hot concentrated HCl yielded particulate material that had the physical and chemical characteristics of melanins. No pigment formation was observed when C. neoformans was exposed to live Escherichia coli or heat-killed K. aerogenes. Analysis of K. aerogenes supernatants revealed the presence of dopamine, which can be a substrate for melanin synthesis by C. neoformans. Our findings illustrate a remarkable interaction between a pathogenic fungus and a gram-negative bacterium, in which the bacterium produces a substrate that promotes fungal melanization. This observation provides a precedent that could explain the source of a substrate for C. neoformans melanization in the environment.

  20. The new species Enterobacter oryziphilus sp. nov. and Enterobacter oryzendophyticus sp. nov. are key inhabitants of the endosphere of rice

    PubMed Central

    2013-01-01

    Background Six independent Gram-negative, facultatively anaerobic, non-spore-forming, nitrogen-fixing rod-shaped isolates were obtained from the root endosphere of rice grown at the International Rice Research Institute (IRRI) and investigated in a polyphasic taxonomic study. Results The strains produced fatty acid patterns typical for members of the family Enterobacteriaceae. Comparative sequence analyses of the 16S rRNA as well as rpoB genes allocated the strains to two well-defined groups within the genus Enterobacter, family Enterobacteriaceae. The analyses indicated Enterobacter radicincitans, Enterobacter arachidis and Enterobacter oryzae to be the closest related species. An RpoB (translated) protein comparison supported the placement in the genus Enterobacter and the relatedness of our isolates to the aforementioned species. Genomic DNA:DNA hybridization analyses and biochemical analyses provided further evidence that the novel strains belong to two new species within the genus Enterobacter. The two species can be differentiated from each other and from existing enteric species by acid production from L-rhamnose and D-melibiose, decarboxylation of ornithine and utilization of D-alanine, D-raffinose L-proline and L-aspartic acid, among other characteristics. Members of both species revealed capacities to colonise rice roots, including plant-growth-promoting capabilities such as an active supply of fixed nitrogen to the plant and solubilisation of inorganic phosphorus, next to traits allowing adaptation to the plant. Conclusions Two novel proposed enterobacterial species, denominated Enterobacter oryziphilus sp. nov. (type strain REICA_142T=LMG 26429T=NCCB 100393T) and Enterobacter oryzendophyticus sp. nov. (type strain REICA_082T=LMG 26432T =NCCB 100390T) were isolated from rice roots. Both species are capable of promoting rice growth by supplying nitrogen and phosphorus. PMID:23865888

  1. Enterobacter tabaci sp. nov., a novel member of the genus Enterobacter isolated from a tobacco stem.

    PubMed

    Duan, Yan-Qing; Zhou, Xing-Kui; Di-Yan, Li; Li, Qing-Qing; Dang, Li-Zhi; Zhang, Yong-Guang; Qiu, Li-Hong; Nimaichand, Salam; Li, Wen-Jun

    2015-11-01

    A Gram-stain negative, motile, rod-shaped bacterium, designated strain YIM Hb-3(T), was isolated from the stem of a tobacco plant. The strain was observed to form convex, circular and yellow-colored colonies. The predominant respiratory quinone was identified as Q-8. The major fatty acids (>5%) detected were C(16:1)ω7c and/or C(16:1)ω6c (summed feature 3), C(16:0), C(17:0)cyclo, C(18:1)ω7c and/or C(18:1)ω6c (summed feature 8), C(14:0)3-OH and/or iso-C(16:1)I (summed feature 2), C(14:0) and C(12:0). The genomic DNA G+C content was determined to be 54.8 mol%. Phylogenetic trees based on 16S rRNA gene sequences and multilocus sequence analysis showed that strain YIM Hb-3(T) had the closest phylogenetic relationship with Enterobacter mori LMG 25706(T). DNA-DNA relatedness value between strain YIM Hb-3(T) and E. mori LMG 25706(T) was 46.9 ± 3.8%. On the basis of phenotypic and chemotaxonomic data, phylogenetic analysis, and DNA-DNA relatedness value, strain YIM Hb-3(T) is considered to represent a novel species of the genus Enterobacter, for which the name Enterobacter tabaci sp. nov. is proposed. The type strain is YIM Hb-3(T) (=KACC 17832(T) =KCTC 42694(T)).

  2. Comparative Genome Analysis of Enterobacter cloacae

    PubMed Central

    Liu, Wing-Yee; Wong, Chi-Fat; Chung, Karl Ming-Kar; Jiang, Jing-Wei; Leung, Frederick Chi-Ching

    2013-01-01

    The Enterobacter cloacae species includes an extremely diverse group of bacteria that are associated with plants, soil and humans. Publication of the complete genome sequence of the plant growth-promoting endophytic E. cloacae subsp. cloacae ENHKU01 provided an opportunity to perform the first comparative genome analysis between strains of this dynamic species. Examination of the pan-genome of E. cloacae showed that the conserved core genome retains the general physiological and survival genes of the species, while genomic factors in plasmids and variable regions determine the virulence of the human pathogenic E. cloacae strain; additionally, the diversity of fimbriae contributes to variation in colonization and host determination of different E. cloacae strains. Comparative genome analysis further illustrated that E. cloacae strains possess multiple mechanisms for antagonistic action against other microorganisms, which involve the production of siderophores and various antimicrobial compounds, such as bacteriocins, chitinases and antibiotic resistance proteins. The presence of Type VI secretion systems is expected to provide further fitness advantages for E. cloacae in microbial competition, thus allowing it to survive in different environments. Competition assays were performed to support our observations in genomic analysis, where E. cloacae subsp. cloacae ENHKU01 demonstrated antagonistic activities against a wide range of plant pathogenic fungal and bacterial species. PMID:24069314

  3. Complex Regulation Pathways of AmpC-Mediated β-Lactam Resistance in Enterobacter cloacae Complex.

    PubMed

    Guérin, François; Isnard, Christophe; Cattoir, Vincent; Giard, Jean Christophe

    2015-12-01

    Enterobacter cloacae complex (ECC), an opportunistic pathogen causing numerous infections in hospitalized patients worldwide, is able to resist β-lactams mainly by producing the AmpC β-lactamase enzyme. AmpC expression is highly inducible in the presence of some β-lactams, but the underlying genetic regulation, which is intricately linked to peptidoglycan recycling, is still poorly understood. In this study, we constructed different mutant strains that were affected in genes encoding enzymes suspected to be involved in this pathway. As expected, the inactivation of ampC, ampR (which encodes the regulator protein of ampC), and ampG (encoding a permease) abolished β-lactam resistance. Reverse transcription-quantitative PCR (qRT-PCR) experiments combined with phenotypic studies showed that cefotaxime (at high concentrations) and cefoxitin induced the expression of ampC in different ways: one involving NagZ (a N-acetyl-β-D-glucosaminidase) and another independent of NagZ. Unlike the model established for Pseudomonas aeruginosa, inactivation of DacB (also known as PBP4) was not responsible for a constitutive ampC overexpression in ECC, whereas it caused AmpC-mediated high-level β-lactam resistance, suggesting a post-transcriptional regulation mechanism. Global transcriptomic analysis by transcriptome sequencing (RNA-seq) of a dacB deletion mutant confirmed these results. Lastly, analysis of 37 ECC clinical isolates showed that amino acid changes in the AmpD sequence were likely the most crucial event involved in the development of high-level β-lactam resistance in vivo as opposed to P. aeruginosa where dacB mutations have been commonly found. These findings bring new elements for a better understanding of β-lactam resistance in ECC, which is essential for the identification of novel potential drug targets.

  4. Complex Regulation Pathways of AmpC-Mediated β-Lactam Resistance in Enterobacter cloacae Complex

    PubMed Central

    Guérin, François; Isnard, Christophe; Giard, Jean Christophe

    2015-01-01

    Enterobacter cloacae complex (ECC), an opportunistic pathogen causing numerous infections in hospitalized patients worldwide, is able to resist β-lactams mainly by producing the AmpC β-lactamase enzyme. AmpC expression is highly inducible in the presence of some β-lactams, but the underlying genetic regulation, which is intricately linked to peptidoglycan recycling, is still poorly understood. In this study, we constructed different mutant strains that were affected in genes encoding enzymes suspected to be involved in this pathway. As expected, the inactivation of ampC, ampR (which encodes the regulator protein of ampC), and ampG (encoding a permease) abolished β-lactam resistance. Reverse transcription-quantitative PCR (qRT-PCR) experiments combined with phenotypic studies showed that cefotaxime (at high concentrations) and cefoxitin induced the expression of ampC in different ways: one involving NagZ (a N-acetyl-β-d-glucosaminidase) and another independent of NagZ. Unlike the model established for Pseudomonas aeruginosa, inactivation of DacB (also known as PBP4) was not responsible for a constitutive ampC overexpression in ECC, whereas it caused AmpC-mediated high-level β-lactam resistance, suggesting a post-transcriptional regulation mechanism. Global transcriptomic analysis by transcriptome sequencing (RNA-seq) of a dacB deletion mutant confirmed these results. Lastly, analysis of 37 ECC clinical isolates showed that amino acid changes in the AmpD sequence were likely the most crucial event involved in the development of high-level β-lactam resistance in vivo as opposed to P. aeruginosa where dacB mutations have been commonly found. These findings bring new elements for a better understanding of β-lactam resistance in ECC, which is essential for the identification of novel potential drug targets. PMID:26438498

  5. Biohydrogen production by co-fermentation of crude glycerol and apple pomace hydrolysate using co-culture of Enterobacter aerogenes and Clostridium butyricum.

    PubMed

    Pachapur, Vinayak Laxman; Sarma, Saurabh Jyoti; Brar, Satinder Kaur; Le Bihan, Yann; Buelna, Gerardo; Verma, Mausam

    2015-10-01

    Co-substrate utilization of various wastes with complementary characteristics can provide a complete medium for higher hydrogen production. This study evaluated potential of apple pomace hydrolysate (APH) co-fermented with crude glycerol (CG) for increased H2 production and decreased by-products formation. The central composite design (CCD) along with response surface methodology (RSM) was used as tool for optimization and 15 g/L of CG, 5 g/L of APH and 15% (v/v) inoculum were found to be optimum to produce as high as 26.07 ± 1.57 mmol H2/L of medium. The p-value of 0.0017 indicated that APH at lower concentration had a significant effect on H2 production. By using CG as sole carbon source, reductive pathway of glycerol metabolism was favored with 19.46 mmol H2/L. However, with APH, oxidative pathway was favored with higher H2 production (26.07 ± 1.57 mmol/L) and decrease in reduced by-products (1,3-propanediol and ethanol) formation. APH inclusion enhanced H2 production, and decreased substrate inhibition.

  6. Cloning, Nucleotide Sequencing, and Analysis of the AcrAB-TolC Efflux Pump of Enterobacter cloacae and Determination of Its Involvement in Antibiotic Resistance in a Clinical Isolate▿

    PubMed Central

    Pérez, Astrid; Canle, Delia; Latasa, Cristina; Poza, Margarita; Beceiro, Alejandro; del Mar Tomás, María; Fernández, Ana; Mallo, Susana; Pérez, Sonia; Molina, Francisca; Villanueva, Rosa; Lasa, Iñigo; Bou, Germán

    2007-01-01

    Enterobacter cloacae is an emerging clinical pathogen that may be responsible for nosocomial infections. Management of these infections is often difficult, owing to the high frequency of strains that are resistant to disinfectants and antimicrobial agents in the clinical setting. Multidrug efflux pumps, especially those belonging to the resistance-nodulation-division family, play a major role as a mechanism of antimicrobial resistance in gram-negative pathogens. In the present study, we cloned and sequenced the genes encoding an AcrAcB-TolC-like efflux pump from an E. cloacae clinical isolate (isolate EcDC64) showing a broad antibiotic resistance profile. Sequence analysis showed that the acrR, acrA, acrB, and tolC genes encode proteins that display 79.8%, 84%, 88%, and 82% amino acid identities with the respective homologues of Enterobacter aerogenes and are arranged in a similar pattern. Deletion of the acrA gene to yield an AcrA-deficient EcDC64 mutant (EcΔacrA) showed the involvement of AcrAB-TolC in multidrug resistance in E. cloacae. However, experiments with an efflux pump inhibitor suggested that additional efflux systems also play a role in antibiotic resistance. Investigation of several unrelated isolates of E. cloacae by PCR analysis revealed that the AcrAB system is apparently ubiquitous in this species. PMID:17638702

  7. Kinetic model for microbial growth and desulphurisation with Enterobacter sp.

    PubMed

    Liu, Long; Guo, Zhiguo; Lu, Jianjiang; Xu, Xiaolin

    2015-02-01

    Biodesulphurisation was investigated by using Enterobacter sp. D4, which can selectively desulphurise and convert dibenzothiophene into 2-hydroxybiphenyl (2-HBP). The experimental values of growth, substrate consumption and product generation were obtained at 95 % confidence level of the fitted values using three models: Hinshelwood equation, Luedeking-Piret and Luedeking-Piret-like equations. The average error values between experimental values and fitted values were less than 10 %. These kinetic models describe all the experimental data with good statistical parameters. The production of 2-HBP in Enterobacter sp. was by "coupled growth".

  8. Non-Mucinous Lepidic Predominant Adenocarcinoma Presenting with Extensive Aerogenous Spread

    PubMed Central

    Takanashi, Yusuke; Tsukui, Masaru; Shinmura, Kazuya; Hayakawa, Takamitsu; Takahashi, Tsuyoshi; Neyatani, Hiroshi; Funai, Kazuhito

    2016-01-01

    An extremely rare case of non-mucinous lepidic-predominant invasive adenocarcinoma (LPA) showing extensive aerogenous spread with a pneumonic presentation is reported. A 73-year-old woman was referred to our hospital because of an infiltrative shadow on chest xray. Chest computed tomography revealed extensive ground glass opacities in the right lower lobe, which was accompanied by infiltrative shadow with a pneumonic presentation. Invasive mucinous adenocarcinoma was presumed, and a partial resection of the right lower lobe was done. Histopathological examination revealed lepidic growth-predominant invasive adenocarcinoma with Clara type tumor cells, and there were innumerable aerogenous metastases also consisting of Clara cells. Because Alcian Blue and periodic acid-Schiff staining disclosed no mucus, the tumor was diagnosed as a non-mucinous LPA. The patient showed a poor response to 5 courses of pemetrexed, and she died one year after the diagnosis due to cancer progression. Nonmucinous LPA showed a rare presentation characterized by extensive aerogenous spread followed by a poor prognosis. PMID:28058100

  9. Draft Genome Sequence of Enterobacter cloacae Strain JD6301

    PubMed Central

    Wilson, Jessica G.; French, William T.; Lipzen, Anna; Martin, Joel; Schackwitz, Wendy; Woyke, Tanja; Shapiro, Nicole; Bullard, James W.; Champlin, Franklin R.

    2014-01-01

    Enterobacter cloacae strain JD6301 was isolated from a mixed culture with wastewater collected from a municipal treatment facility and oleaginous microorganisms. A draft genome sequence of this organism indicates that it has a genome size of 4,772,910 bp, an average G+C content of 53%, and 4,509 protein-coding genes. PMID:24874669

  10. Draft Genome Sequence of Enterobacter cloacae Strain S611

    PubMed Central

    Han, Cliff S.; Dichosa, Armand E. K.; Gleasner, Cheryl D.; Johnson, Shannon L.; Daligault, Hajnalka E.; Davenport, Karen W.; Li, Po-E; Pierson, Elizabeth A.; Pierson, Leland S.

    2014-01-01

    We report draft genomes of Enterobacter cloacae strain S611, an endophytic bacterium isolated from surface-sterilized germinating wheat seeds. We present the assembly and annotation of its genome, which may provide insights into the metabolic pathways involved in adaptation. PMID:25502660

  11. [Pneumonia due to Pseudomonas aeruginosa].

    PubMed

    Vallés, Jordi; Mariscal, Dolors

    2005-12-01

    Pseudomonas aeruginosa is one of the leading causes of Gram-negative nosocomial pneumonia. It is the most common cause of ventilator-associated pneumonia and carries the highest mortality among hospital-acquired infections. P. aeruginosa produces a large number of toxins and surface components that make it especially virulent compared with other microorganisms. These include pili, flagella, membrane bound lipopolysaccharide, and secreted products such as exotoxins A, S and U, elastase, alkaline protease, cytotoxins and phospholipases. The most common mechanism of infection in mechanically ventilated patients is through aspiration of upper respiratory tract secretions previously colonized in the process of routine nursing care or via contaminated hands of hospital personnel. Intravenous therapy with an antipseudomonal regimen should be started immediately when P. aeruginosa pneumonia is suspected or confirmed. Empiric therapy with drugs active against P. aeruginosa should be started, especially in patients who have received previous antibiotics or present late-onset pneumonia.

  12. Chronic Pseudomonas aeruginosa cervical osteomyelitis

    PubMed Central

    Meher, Sujeet Kumar; Jain, Harsh; Tripathy, Laxmi Narayan; Basu, Sunandan

    2016-01-01

    Pseudomonas aeruginosa is a rare cause of osteomyelitis of the cervical spine and is usually seen in the background of intravenous drug use and immunocompromised state. Very few cases of osteomyelitis of the cervical spine caused by pseudomonas aeruginosa have been reported in otherwise healthy patients. This is a case presentation of a young female, who in the absence of known risk factors for cervical osteomyelitis presented with progressively worsening neurological signs and symptoms. PMID:27891039

  13. Mineral nutrition of Aerobacter aerogenes for valine production in a synthetic medium.

    PubMed

    Mukhopadhyay, A K; Majumdar, S K

    1985-01-01

    The effect of a number of mineral salts, like dipotassium hydrogen phosphate, magnesium sulphate, and sodium chloride, and of some trace elements including iron, copper, cobalt, nickel, molybdenum, and calcium, on the production of valine by Aerobacter aerogenes in a synthetic medium was investigated. It was found that all the mineral salts were necessary for valine formation. Among the trace elements, iron and molybdenum were found to be necessary in minute concentrations for the optimum yield of the amino acid, while all the others had an adverse effect on valine production, even at lower levels.

  14. Ribitol dehydrogenase of Klebsiella aerogenes. Sequence and properties of wild-type and mutant strains.

    PubMed Central

    Dothie, J M; Giglio, J R; Moore, C B; Taylor, S S; Hartley, B S

    1985-01-01

    Evidence is presented for the sequence of 249 amino acids in ribitol dehydrogenase-A from Klebsiella aerogenes. Continuous culture on xylitol yields strains that superproduce 'wild-type' enzyme but mutations appear to have arisen in this process. Other strains selected by such continuous culture produce enzymes with increased specific activity for xylitol but without loss of ribitol activity. One such enzyme, ribitol dehydrogenase-D, has Pro-196 for Gly-196. Another, ribitol dehydrogenase-B, has a different mutation. PMID:3904726

  15. Multilocus Sequence Typing (MLST) for Characterization of Enterobacter cloacae

    PubMed Central

    Miyoshi-Akiyama, Tohru; Hayakawa, Kayoko; Ohmagari, Norio; Shimojima, Masahiro; Kirikae, Teruo

    2013-01-01

    Enterobacter cloacae is an important emerging pathogen, which sometime causes respiratory infection, surgical site infection, urinary infection, sepsis, and outbreaks at neonatal units. We have developed a multilocus sequence typing (MLST) scheme utilizing seven housekeeping genes and evaluated the performance in 101 clinical isolates. The MLST scheme yielded 83 sequence types (ST) including 78 novel STs found in the clinical isolates. These findings supported the robustness of the MLST scheme developed in this study. PMID:23776664

  16. Urease of Klebsiella aerogenes: control of its synthesis by glutamine synthetase.

    PubMed Central

    Friedrich, B; Magasanik, B

    1977-01-01

    Urease was purified 24-fold from extracts of Klebsiella aerogenes. The enzyme has a molecular weight of 230,000 as determined by gel filtration, is highly substrate specific, and has a Km for urea of 0.7 mM. A mutant strain lacking urease was isolated; it failed to grow with urea as the sole source of nitrogen but did grow on media containing other nitrogen sources such as ammonia, histidine, or arginine. Urease was present at a high level when the cells were starved for nitrogen; its synthesis was repressed when the external ammonia concentration was high. Formation of urease did not require induction by urea and was not subject to catabolite repression. Its synthesis was controlled by glutamine synthetase. Mutants lacking glutamine synthetase failed to produce urease, and mutants forming glutamine synthetase at a high constitutive level also formed urease constitutively. Thus, the formation of urease is regulated like that of other enzymes of K. aerogenes capable of supplying the cell with ammonia or glutamate. PMID:18438

  17. Pseudomonas aeruginosa: breaking down barriers.

    PubMed

    Berube, Bryan J; Rangel, Stephanie M; Hauser, Alan R

    2016-02-01

    Many bacterial pathogens have evolved ingenious ways to escape from the lung during pneumonia to cause bacteremia. Unfortunately, the clinical consequences of this spread to the bloodstream are frequently dire. It is therefore important to understand the molecular mechanisms used by pathogens to breach the lung barrier. We have recently shown that Pseudomonas aeruginosa, one of the leading causes of hospital-acquired pneumonia, utilizes the type III secretion system effector ExoS to intoxicate pulmonary epithelial cells. Injection of these cells leads to localized disruption of the pulmonary-vascular barrier and dissemination of P. aeruginosa to the bloodstream. We put these data in the context of previous studies to provide a holistic model of P. aeruginosa dissemination from the lung. Finally, we compare P. aeruginosa dissemination to that of other bacteria to highlight the complexity of bacterial pneumonia. Although respiratory pathogens use distinct and intricate strategies to escape from the lungs, a thorough understanding of these processes can lay the foundation for new therapeutic approaches for bacterial pneumonia.

  18. Characterization of PaxA and Its Operon: a Cohemolytic RTX Toxin Determinant from Pathogenic Pasteurella aerogenes

    PubMed Central

    Kuhnert, Peter; Heyberger-Meyer, Bénédicte; Nicolet, Jacques; Frey, Joachim

    2000-01-01

    Pasteurella aerogenes is known as a commensal bacterium or as an opportunistic pathogen, as well as a primary pathogen found to be involved in abortion cases of humans, swine, and other mammals. Using broad-range DNA probes for bacterial RTX toxin genes, we cloned and subsequently sequenced a new operon named paxCABD encoding the RTX toxin PaxA in P. aerogenes. The pax operon is organized analogous to the classical RTX operons containing the activator gene paxC upstream of the structural toxin gene paxA, which is followed by the secretion protein genes paxB and paxD. The highest sequence similarity of paxA with known RTX toxin genes is found with apxIIIA (82%). PaxA is structurally similar to ApxIIIA and also shows functional analogy to ApxIIIA, since it shows cohemolytic activity with the sphingomyelinase of Staphylococcus aureus, known as the CAMP effect, but is devoid of direct hemolytic activity. In addition, it shows to some extent immunological cross-reactions with ApxIIIA. P. aerogenes isolated from various specimens showed that the pax operon was present in about one-third of the strains. All of the pax-positive strains were specifically related to swine abortion cases or septicemia of newborn piglets. These strains were also shown to produce the PaxA toxin as determined by the CAMP phenomenon, whereas none of the pax-negative strains did. This indicated that the PaxA toxin is involved in the pathogenic potential of P. aerogenes. The examined P. aerogenes isolates were phylogenetically analyzed by 16S rRNA gene (rrs) sequencing in order to confirm their species. Only a small heterogeneity (<0.5%) was observed between the rrs genes of the strains originating from geographically distant farms and isolated at different times. PMID:10603361

  19. Complete Genome Sequence of Enterobacter cloacae B2-DHA, a Chromium-Resistant Bacterium

    PubMed Central

    Rahman, Aminur; Nahar, Noor; Olsson, Björn

    2016-01-01

    Previously, we reported a chromium-resistant bacterium, Enterobacter cloacae B2-DHA, isolated from the landfills of tannery industries in Bangladesh. Here, we investigated its genetic composition using massively parallel sequencing and comparative analysis with other known Enterobacter genomes. Assembly of the sequencing reads revealed a genome of ~4.21 Mb in size. PMID:27257201

  20. Complete Genome Sequence of Enterobacter cloacae B2-DHA, a Chromium-Resistant Bacterium.

    PubMed

    Rahman, Aminur; Nahar, Noor; Olsson, Björn; Mandal, Abul

    2016-06-02

    Previously, we reported a chromium-resistant bacterium, Enterobacter cloacae B2-DHA, isolated from the landfills of tannery industries in Bangladesh. Here, we investigated its genetic composition using massively parallel sequencing and comparative analysis with other known Enterobacter genomes. Assembly of the sequencing reads revealed a genome of ~4.21 Mb in size.

  1. Genome Sequence of Enterobacter radicincitans DSM16656T, a Plant Growth-Promoting Endophyte

    PubMed Central

    Witzel, Katja; Gwinn-Giglio, Michelle; Nadendla, Suvarna; Shefchek, Kent

    2012-01-01

    Enterobacter radicincitans sp. nov. DSM16656T represents a new species of the genus Enterobacter which is a biological nitrogen-fixing endophytic bacterium with growth-promoting effects on a variety of crop and model plant species. The presence of genes for nitrogen fixation, phosphorous mobilization, and phytohormone production reflects this microbe's potential plant growth-promoting activity. PMID:22965092

  2. Genome sequence of Enterobacter radicincitans DSM16656(T), a plant growth-promoting endophyte.

    PubMed

    Witzel, Katja; Gwinn-Giglio, Michelle; Nadendla, Suvarna; Shefchek, Kent; Ruppel, Silke

    2012-10-01

    Enterobacter radicincitans sp. nov. DSM16656(T) represents a new species of the genus Enterobacter which is a biological nitrogen-fixing endophytic bacterium with growth-promoting effects on a variety of crop and model plant species. The presence of genes for nitrogen fixation, phosphorous mobilization, and phytohormone production reflects this microbe's potential plant growth-promoting activity.

  3. High-Quality Draft Whole-Genome Sequences of Three Strains of Enterobacter Isolated from Jamaican Dioscorea cayenensis (Yellow Yam).

    PubMed

    Gan, Han Ming; Triassi, Alexander J; Wheatley, Matthew S; Savka, Michael A; Hudson, André O

    2014-03-13

    Here we report the whole-genome sequences of three endophytic bacteria, Enterobacter sp. strain DC1, Enterobacter sp. strain DC3, and Enterobacter sp. strain DC4, from root tubers of the yellow yam plant, Dioscorea cayenensis. Preliminary analyses suggest that the genomes of the three bacteria contain genes involved in acetoin and indole-3-acetic acid metabolism.

  4. High-Quality Draft Whole-Genome Sequences of Three Strains of Enterobacter Isolated from Jamaican Dioscorea cayenensis (Yellow Yam)

    PubMed Central

    Gan, Han Ming; Triassi, Alexander J.; Wheatley, Matthew S.; Savka, Michael A.

    2014-01-01

    Here we report the whole-genome sequences of three endophytic bacteria, Enterobacter sp. strain DC1, Enterobacter sp. strain DC3, and Enterobacter sp. strain DC4, from root tubers of the yellow yam plant, Dioscorea cayenensis. Preliminary analyses suggest that the genomes of the three bacteria contain genes involved in acetoin and indole-3-acetic acid metabolism. PMID:24625871

  5. Microbiological features of KPC-producing Enterobacter isolates identified in a U.S. hospital system.

    PubMed

    Ahn, Chulsoo; Syed, Alveena; Hu, Fupin; O'Hara, Jessica A; Rivera, Jesabel I; Doi, Yohei

    2014-10-01

    Microbiological data regarding Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacter spp. are scarce. In this study, 11 unique KPC-producing Enterobacter isolates were identified among 44 ertapenem-nonsusceptible Enterobacter isolates collected between 2009 and 2013 at a hospital system in Western Pennsylvania. All cases were healthcare-associated and occurred in medically complex patients. While pulsed-field gel electrophoresis showed diverse restriction patterns overall, multilocus sequence typing identified Enterobacter cloacae isolates with sequence types 93 and 171 from 2 hospitals each. The levels of carbapenem minimum inhibitory concentrations were highly variable. All isolates remained susceptible to colistin and tigecycline, and the majority, to amikacin and doxycycline. A blaKPC-carrying IncN plasmid conferring trimethoprim-sulfamethoxazole resistance was identified in 3 of the isolates. Spread of blaKPC in Enterobacter spp. appears to be due to a combination of plasmid-mediated and clonal processes.

  6. Susceptibility of Austrian Clinical Klebsiella and Enterobacter Isolates Linked to Patient-Related Data

    PubMed Central

    Badura, Alexandra; Pregartner, Gudrun; Holzer, Judith C.; Feierl, Gebhard; Grisold, Andrea J.

    2016-01-01

    The aim of the study was to analyze the antimicrobial susceptibility of Austrian clinical Klebsiella sp. and Enterobacter sp. isolates linked to patient-related data over a time period from 1998 to 2014. The main findings of this study were (i) a marked difference of antibiotic susceptibility rates between different infection sites for both Klebsiella sp. and Enterobacter sp., (ii) significantly greater percentages of resistant isolates among both Klebsiella sp. and Enterobacter sp. in male patients compared to female patients and (iii) significantly greater percentages of resistant isolates among both Klebsiella sp. and Enterobacter sp. from hospital-derived samples compared to samples from the community. In conclusion, our statistical data analysis clearly indicated a strong association of patient-related data and Klebsiella sp. and Enterobacter sp. susceptibility profiles. PMID:26903953

  7. Microbiological Features of KPC-Producing Enterobacter Isolates Identified in a U.S. Hospital System

    PubMed Central

    Ahn, Chulsoo; Syed, Alveena; Hu, Fupin; O’Hara, Jessica A.; Rivera, Jesabel I.; Doi, Yohei

    2014-01-01

    Microbiological data regarding KPC-producing Enterobacter spp. are scarce. In this study, 11 unique KPC-producing Enterobacter isolates were identified among 44 ertapenem-non-susceptible Enterobacter isolates collected between 2009 and 2013 at a hospital system in Western Pennsylvania. All cases were healthcare-associated and occurred in medically complex patients. While pulsed-field gel electrophoresis (PFGE) showed diverse restriction patterns overall, multilocus sequence typing (MLST) identified Enterobacter cloacae isolates with sequence types (STs) 93 and 171 from two hospitals each. The levels of carbapenem minimum inhibitory concentrations were highly variable. All isolates remained susceptible to colistin, tigecycline, and the majority to amikacin and doxycycline. A blaKPC-carrying IncN plasmid conferring trimethoprim-sulfamethoxazole resistance was identified in three of the isolates. Spread of blaKPC in Enterobacter spp. appears to be due to a combination of plasmid-mediated and clonal processes. PMID:25053203

  8. Complete genome of the switchgrass endophyte Enterobacter clocace P101

    PubMed Central

    Humann, Jodi L.; Wildung, Mark; Pouchnik, Derek; Bates, Austin A.; Drew, Jennifer C.; Zipperer, Ursula N.; Triplett, Eric W.; Main, Dorrie; Schroeder, Brenda K.

    2014-01-01

    The Enterobacter cloacae complex is genetically very diverse. The increasing number of complete genomic sequences of E. cloacae is helping to determine the exact relationship among members of the complex. E. cloacae P101 is an endophyte of switchgrass (Panicum virgatum) and is closely related to other E. cloacae strains isolated from plants. The P101 genome consists of a 5,369,929 bp chromosome. The chromosome has 5,164 protein-coding regions, 100 tRNA sequences, and 8 rRNA operons. PMID:25197457

  9. Clonal distribution of multidrug-resistant Enterobacter cloacae.

    PubMed

    Girlich, Delphine; Poirel, Laurent; Nordmann, Patrice

    2015-04-01

    A multilocus sequence typing (MLST) scheme including 7 housekeeping genes was used to evaluate whether the current spread of multidrug-resistant Enterobacter cloacae isolates worldwide might be associated to specific successful clones. Fifty E. cloacae clinical isolates of worldwide origin, with various β-lactamase content, and recovered at different periods of time were studied. Forty-four sequence types were identified, highlighting a high clonal diversity with 3 main lineages. This study revealed that a precise identification of the isolates by sequencing of the chromosomal ampC gene of E. cloacae would provide a significant added value to improve the reliability of the MLST scheme.

  10. Cronobacter ('Enterobacter sakazakii'): current status and future prospects.

    PubMed

    Chenu, J W; Cox, J M

    2009-08-01

    The genus Cronobacter accommodates the 16 biogroups of the emerging opportunistic pathogen known formerly as Enterobacter sakazakii. Cronobacter spp. are occasional contaminants of milk powder and, consequently, powdered infant formula and represent a significant health risk to neonates. This review presents current knowledge of the food safety aspects of Cronobacter, particularly in infant formula milk powder. Sources of contamination, ecology, disease characteristics and risk management strategies are discussed. Future directions for research are indicated, with a particular focus on the management of this increasingly important bacterium in the production environment.

  11. Biodegradation of dichlorodiphenyltrichloroethane: intermediates in dichlorodiphenylacetic acid metabolism by aerobacter aerogenes

    USGS Publications Warehouse

    Wedemeyer, Gary

    1967-01-01

    The final product of dichlorodiphenyltrichloroethane (DDT) degradation by vertebrates is commonly considered to be dichlorodiphenylacetic acid, DDA. Recently, certain organisms have been found to degrade further DDA to dichlorobenzophenone (DBP), but the possibility that such degradation was due to microbial action could not be excluded. Significantly, dichlorobenzhydrol (DBH), dichlorophenylmethane (DPM), and dichlorodiphenylethylene (DDE) have been tentatively identified in rats fed DDA. Since DDA as well as DDT is degraded by the ubiquitous microorganism Aerobacter aerogenes, it seemed reasonable that the intestinal microflora might be involved in DBP formation, DPM and DBH being intermediates in its pathway from DDA. Since DDA is a (3,y-unsaturated acid, ketone formation via an alkene and an alcohol would be expected.

  12. Phosphate taxis in Pseudomonas aeruginosa.

    PubMed

    Kato, J; Ito, A; Nikata, T; Ohtake, H

    1992-08-01

    Pseudomonas aeruginosa was shown to be attracted to phosphate. The chemotactic response was induced by phosphate starvation. The specificity of chemoreceptors for phosphate was high so that no other tested phosphorus compounds elicited a chemotactic response as strong as that elicited by phosphate. Competition experiments showed that the chemoreceptors for phosphate appeared to be different from those for the common amino acids. Mutants constitutive for alkaline phosphatase showed the chemotactic response to phosphate regardless of whether the cells were starved for phosphate.

  13. Carbenicillin resistance of Pseudomonas aeruginosa.

    PubMed Central

    Rodríguez-Tebar, A; Rojo, F; Dámaso, D; Vázquez, D

    1982-01-01

    Four strains of Pseudomonas aeruginosa obtained from clinical isolates which are carbenicillin resistant were studied to find the cause(s) of resistance to this beta-lactam antibiotic. The electrophoresis patterns of the four strains (PH20610, PH20815, PH4011, and PH4301) were found to be different from those of a wild-type strain, P. aeruginosa NCTC 10662, and appeared to lack penicillin-binding protein 2. Affinity of other penicillin-binding proteins from strains PH20610 and PH20815 for carbenicillin seemed to be normal or slightly diminished. Electrophoretic patterns of penicillin-binding proteins from strains PH4011 and PH4301 had more profound differences, since the affinities of their penicillin-binding proteins 1a, 1b, and 4 for carbenicillin were decreased by nearly two orders of magnitude relative to the preparations from the wild-type strain. Kinetic studies on binding of carbenicillin to penicillin-binding proteins both in isolated membrane preparations and in intact cells revealed that carbenicillin penetration into resistant cells was a much slower process than in susceptible cells, suggesting that the outer envelope structures serve as an efficient barrier against carbenicillin entry into our P. aeruginosa strains from clinical isolates. PMID:6821456

  14. Enterobacter asburiae and Aeromonas hydrophila: soft tissue infection requiring debridement.

    PubMed

    Koth, Kevin; Boniface, James; Chance, Elisha A; Hanes, Marina C

    2012-06-01

    Enterobacter asburiae and Aeromonas hydrophila are gram-negative bacilli that have been isolated in soil and water. Enterobacter asburiae can cause an array of diseases, and exposure to A hydrophila can cause soft tissue infections, including necrotizing faciitis.A healthy-appearing 22-year-old man presented with an innocuous soft tissue injury to his leg due to an all-terrain vehicle crash. He received intravenous antibiotics and was discharged with prophylactic oral antibiotics. After the rapid onset of high fevers (102°F-103°F) <24 hours postinjury, he returned to the emergency department. Emergent surgical debridement was performed, and broad-spectrum intravenous antibiotics were started. Fevers persisted, and the patient underwent repeat extensive surgical debridement and antibiotic bead placement <30 hours after the initial surgical debridement and broad-spectrum antibiotics. Intraoperative cultures found E asburiae and A hydrophila in the wound. Following a long course of antibiotics and a skin graft, he fully recovered and had no functional deficits 1 year postoperatively.Extensive research revealed that these organisms are rare in soft tissue infections. E asburiae is opportunistic but has not been reported as a primary wound organism, and A hydrophila infections have been reported following motor vehicle crashes involving wound contamination. At presentation, it is challenging to determine rare organisms in a timely fashion; however, emergent extensive surgical intervention of an accelerated aberrant disease process should be considered to avoid catastrophic outcomes.

  15. Pseudomonas aeruginosa Population Structure Revisited

    PubMed Central

    Pirnay, Jean-Paul; Bilocq, Florence; Pot, Bruno; Cornelis, Pierre; Zizi, Martin; Van Eldere, Johan; Deschaght, Pieter; Vaneechoutte, Mario; Jennes, Serge; Pitt, Tyrone; De Vos, Daniel

    2009-01-01

    At present there are strong indications that Pseudomonas aeruginosa exhibits an epidemic population structure; clinical isolates are indistinguishable from environmental isolates, and they do not exhibit a specific (disease) habitat selection. However, some important issues, such as the worldwide emergence of highly transmissible P. aeruginosa clones among cystic fibrosis (CF) patients and the spread and persistence of multidrug resistant (MDR) strains in hospital wards with high antibiotic pressure, remain contentious. To further investigate the population structure of P. aeruginosa, eight parameters were analyzed and combined for 328 unrelated isolates, collected over the last 125 years from 69 localities in 30 countries on five continents, from diverse clinical (human and animal) and environmental habitats. The analysed parameters were: i) O serotype, ii) Fluorescent Amplified-Fragment Length Polymorphism (FALFP) pattern, nucleotide sequences of outer membrane protein genes, iii) oprI, iv) oprL, v) oprD, vi) pyoverdine receptor gene profile (fpvA type and fpvB prevalence), and prevalence of vii) exoenzyme genes exoS and exoU and viii) group I pilin glycosyltransferase gene tfpO. These traits were combined and analysed using biological data analysis software and visualized in the form of a minimum spanning tree (MST). We revealed a network of relationships between all analyzed parameters and non-congruence between experiments. At the same time we observed several conserved clones, characterized by an almost identical data set. These observations confirm the nonclonal epidemic population structure of P. aeruginosa, a superficially clonal structure with frequent recombinations, in which occasionally highly successful epidemic clones arise. One of these clones is the renown and widespread MDR serotype O12 clone. On the other hand, we found no evidence for a widespread CF transmissible clone. All but one of the 43 analysed CF strains belonged to a ubiquitous P

  16. Exploring "aerogen-hydride" interactions between ZOF2 (Z = Kr, Xe) and metal hydrides: An ab initio study

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Mohammadian-Sabet, Fariba

    2016-06-01

    In this work, a new σ-hole interaction formed between ZOF2 (Z = Kr and Xe) as the Lewis acid and a series of metal-hydrides HMX (M = Be, Mg, Zn and X = H, F, CN, CH3) is reported. The nature of this interaction, called "aerogen-hydride" interaction, is unveiled by molecular electrostatic potential, non-covalent interaction, quantum theory of atoms in molecules and natural bond orbital analyses. Our results indicate that the aerogen-hydride interactions are quite strong and can be comparable in strength to other σ-hole bonds. An important charge-transfer interaction is also associated with the formation of OF2Z⋯HMX complexes.

  17. Enterobacter xiangfangensis sp. nov., isolated from Chinese traditional sourdough, and reclassification of Enterobacter sacchari Zhu et al. 2013 as Kosakonia sacchari comb. nov.

    PubMed

    Gu, Chun Tao; Li, Chun Yan; Yang, Li Jie; Huo, Gui Cheng

    2014-08-01

    A Gram-stain-negative bacterial strain, 10-17(T), was isolated from traditional sourdough in Heilongjiang Province, China. The bacterium was characterized by a polyphasic approach, including 16S rRNA gene sequence analysis, RNA polymerase β subunit (rpoB) gene sequence analysis, DNA gyrase (gyrB) gene sequence analysis, initiation translation factor 2 (infB) gene sequence analysis, ATP synthase β subunit (atpD) gene sequence analysis, fatty acid methyl ester analysis, determination of DNA G+C content, DNA-DNA hybridization and an analysis of phenotypic features. Strain 10-17(T) was phylogenetically related to Enterobacter hormaechei CIP 103441(T), Enterobacter cancerogenus LMG 2693(T), Enterobacter asburiae JCM 6051(T), Enterobacter mori LMG 25706(T), Enterobacter ludwigii EN-119(T) and Leclercia adecarboxylata LMG 2803(T), having 99.5%, 99.3%, 98.7%, 98.5%, 98.4% and 98.4% 16S rRNA gene sequence similarity, respectively. On the basis of polyphasic characterization data obtained in the present study, a novel species, Enterobacter xiangfangensis sp. nov., is proposed and the type strain is 10-17(T) ( = LMG 27195(T) = NCIMB 14836(T) = CCUG 62994(T)). Enterobacter sacchari Zhu et al. 2013 was reclassified as Kosakonia sacchari comb. nov. on the basis of 16S rRNA, rpoB, gyrB, infB and atpD gene sequence analysis and the type strain is strain SP1(T)( = CGMCC 1.12102(T) = LMG 26783(T)).

  18. [Characteristics of selected virulence factors of Enterobacter cloacae strains isolated from clinical specimens].

    PubMed

    Nieradko, Józef; Kurlenda, Juliana

    2004-01-01

    We demonstrated that Enterobacter cloacae possesses a selective haemolytic activity on sheep erythrocytes. All the screened strains showed a haemolytic activity on sheep erythrocytes when cultures were preincubated with beta-mercaptoethanol. The investigation circulation of the genes encoding extended spectrum beta-lactamases (ESBL) shows that beta-lactamase producers can be ascribed to specific patterns of plasmids. We also demonstrated that genetic material from E. coli can be transferred and established in selected Enterobacter cloacae strains. In a survival tests we demonstrated that similarly to Salmonella or Vibrio clinical isolates Enterobacter cloacae doesn't demonstrate acid tolerance.

  19. Enterobacter cloacae Postsurgical Endophthalmitis: Report of a Positive Outcome

    PubMed Central

    Butikofer, Scott; Dettori, Jason M.; Vemulakonda, G. Atma; Slabaugh, Mark

    2013-01-01

    We report a positive outcome of postcataract endophthalmitis caused by Enterobacter cloacae, which has previously resulted in poor outcomes in endophthalmitis. A 67-year-old man underwent uncomplicated cataract surgery. On the morning of postoperative day (POD) #1, he had significant anterior chamber inflammation without pain, hypopyon, or vitritis but then rapidly developed hypopyon and worsening visual acuity. He underwent a tap and inject with vancomycin and ceftazidime and was prescribed topical steroids and antibiotics as well as oral levofloxacin. On POD #3, cultures of the vitreous and aqueous returned positive for E. cloacae. By POD #6, his hypopyon had resolved with improved vitritis, decreased inflammation, and visual acuity of 20/200. Two weeks after surgery, his best-corrected visual acuity was 20/60. Contrary to prior reports, we demonstrate that it is possible to achieve a good outcome in cases of E. cloacae endophthalmitis treated early with appropriate antibiotics and anti-inflammatory agents. PMID:23626573

  20. Enterobacter cloacae pericardial effusion in a frail elderly patient

    PubMed Central

    Blundell, H J; Mason, C A

    2015-01-01

    We report a case of a frail 82-year-old man with seronegative rheumatoid arthritis and a recent pacemaker insertion, admitted with pulmonary oedema and a symptomatic pericardial effusion. He was treated with diuretics and an urgent pericardiocentesis, a sample from which cultured Enterobacter cloacae. A subsequent abdominal CT scan revealed faecal loading, an abnormal anorectal canal and sigmoid colon and a bowel perforation. Endoscopy, biopsies and histopathology confirmed a diagnosis of cytomegalovirus (CMV) colitis with coexistent fungal infection. The E. cloacae infection was successfully treated with 6 weeks of intravenous meropenem, while the CMV and fungal infections were treated with a combination of valganciclovir and fluconazole. We postulate that the bowel perforation resulted from a combination of CMV colitis, faecal loading and steroid therapy and led to bacterial translocation of E. cloacae and the development of the pericardial effusion. This case represents an unusual pathophysiology for the development of an E. cloacae pericardial effusion. PMID:25697299

  1. Complete genome sequence of “Enterobacter lignolyticus” SCF1

    PubMed Central

    D’Haeseleer, Patrik; Chivian, Dylan; Fortney, Julian L.; Khudyakov, Jane; Simmons, Blake; Woo, Hannah; Arkin, Adam P.; Davenport, Karen Walston; Goodwin, Lynne; Chen, Amy; Ivanova, Natalia; Kyrpides, Nikos C.; Mavromatis, Konstantinos; Woyke, Tanja; Hazen, Terry C.

    2011-01-01

    In an effort to discover anaerobic bacteria capable of lignin degradation, we isolated “Enterobacter lignolyticus” SCF1 on minimal media with alkali lignin as the sole source of carbon. This organism was isolated anaerobically from tropical forest soils collected from the Short Cloud Forest site in the El Yunque National Forest in Puerto Rico, USA, part of the Luquillo Long-Term Ecological Research Station. At this site, the soils experience strong fluctuations in redox potential and are net methane producers. Because of its ability to grow on lignin anaerobically, we sequenced the genome. The genome of “E. lignolyticus” SCF1 is 4.81 Mbp with no detected plasmids, and includes a relatively small arsenal of lignocellulolytic carbohydrate active enzymes. Lignin degradation was observed in culture, and the genome revealed two putative laccases, a putative peroxidase, and a complete 4-hydroxyphenylacetate degradation pathway encoded in a single gene cluster. PMID:22180812

  2. Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae.

    PubMed

    Band, Victor I; Crispell, Emily K; Napier, Brooke A; Herrera, Carmen M; Tharp, Greg K; Vavikolanu, Kranthi; Pohl, Jan; Read, Timothy D; Bosinger, Steven E; Trent, M Stephen; Burd, Eileen M; Weiss, David S

    2016-05-09

    Antibiotic resistance is a major public health threat, further complicated by unexplained treatment failures caused by bacteria that appear antibiotic susceptible. We describe an Enterobacter cloacae isolate harbouring a minor subpopulation that is highly resistant to the last-line antibiotic colistin. This subpopulation was distinct from persisters, became predominant in colistin, returned to baseline after colistin removal and was dependent on the histidine kinase PhoQ. During murine infection, but in the absence of colistin, innate immune defences led to an increased frequency of the resistant subpopulation, leading to inefficacy of subsequent colistin therapy. An isolate with a lower-frequency colistin-resistant subpopulation similarly caused treatment failure but was misclassified as susceptible by current diagnostics once cultured outside the host. These data demonstrate the ability of low-frequency bacterial subpopulations to contribute to clinically relevant antibiotic resistance, elucidating an enigmatic cause of antibiotic treatment failure and highlighting the critical need for more sensitive diagnostics.

  3. The Accessory Genome of Pseudomonas aeruginosa

    PubMed Central

    Kung, Vanderlene L.; Ozer, Egon A.; Hauser, Alan R.

    2010-01-01

    Summary: Pseudomonas aeruginosa strains exhibit significant variability in pathogenicity and ecological flexibility. Such interstrain differences reflect the dynamic nature of the P. aeruginosa genome, which is composed of a relatively invariable “core genome” and a highly variable “accessory genome.” Here we review the major classes of genetic elements comprising the P. aeruginosa accessory genome and highlight emerging themes in the acquisition and functional importance of these elements. Although the precise phenotypes endowed by the majority of the P. aeruginosa accessory genome have yet to be determined, rapid progress is being made, and a clearer understanding of the role of the P. aeruginosa accessory genome in ecology and infection is emerging. PMID:21119020

  4. Kinetic characterization of a novel acid ectophosphatase from Enterobacter asburiae.

    PubMed

    Sato, Vanessa Sayuri; Galdiano Júnior, Renato F; Rodrigues, Gisele Regina; Lemos, Eliana G M; Pizauro Junior, João Martins

    2016-02-01

    Expression of acid ectophosphatase by Enterobacter asburiae, isolated from Cattleya walkeriana (Orchidaceae) roots and identified by the 16S rRNA gene sequencing analysis, was strictly regulated by phosphorus ions, with its optimal activity being observed at an inorganic phosphate concentration of 7 mM. At the optimum pH 3.5, intact cells released p-nitrophenol at a rate of 350.76 ± 13.53 nmol of p-nitrophenolate (pNP)/min/10(8) cells. The membrane-bound enzyme was obtained by centrifugation at 100,000 × g for 1 h at 4 °C. p-Nitrophenylphosphate (pNPP) hydrolysis by the enzyme follows "Michaelis-Menten" kinetics with V = 61.2 U/mg and K0.5 = 60 μM, while ATP hydrolysis showed V = 19.7 U/mg, K0.5 = 110 μM, and nH = 1.6 and pyrophosphate hydrolysis showed V = 29.7 U/mg, K0.5 = 84 μM, and nH = 2.3. Arsenate and phosphate were competitive inhibitors with K i = 0.6 mM and K i = 1.8 mM, respectively. p-Nitrophenyl phosphatase (pNPPase) activity was inhibited by vanadate, while p-hydroxymercuribenzoate, EDTA, calcium, copper, and cobalt had no inhibitory effects. Magnesium ions were stimulatory (K0.5 = 2.2 mM and nH = 0.5). Production of an acid ectophosphatase can be a mechanism for the solubilization of mineral phosphates by microorganisms such as Enterobacter asburiae that are versatile in the solubilization of insoluble minerals, which, in turn, increases the availability of nutrients for plants, particularly in soils that are poor in phosphorus.

  5. Generation of Enterobacter sp. YSU auxotrophs using transposon mutagenesis.

    PubMed

    Caguiat, Jonathan James

    2014-10-31

    Prototrophic bacteria grow on M-9 minimal salts medium supplemented with glucose (M-9 medium), which is used as a carbon and energy source. Auxotrophs can be generated using a transposome. The commercially available, Tn5-derived transposome used in this protocol consists of a linear segment of DNA containing an R6Kγ replication origin, a gene for kanamycin resistance and two mosaic sequence ends, which serve as transposase binding sites. The transposome, provided as a DNA/transposase protein complex, is introduced by electroporation into the prototrophic strain, Enterobacter sp. YSU, and randomly incorporates itself into this host's genome. Transformants are replica plated onto Luria-Bertani agar plates containing kanamycin, (LB-kan) and onto M-9 medium agar plates containing kanamycin (M-9-kan). The transformants that grow on LB-kan plates but not on M-9-kan plates are considered to be auxotrophs. Purified genomic DNA from an auxotroph is partially digested, ligated and transformed into a pir+ Escherichia coli (E. coli) strain. The R6Kγ replication origin allows the plasmid to replicate in pir+ E. coli strains, and the kanamycin resistance marker allows for plasmid selection. Each transformant possesses a new plasmid containing the transposon flanked by the interrupted chromosomal region. Sanger sequencing and the Basic Local Alignment Search Tool (BLAST) suggest a putative identity of the interrupted gene. There are three advantages to using this transposome mutagenesis strategy. First, it does not rely on the expression of a transposase gene by the host. Second, the transposome is introduced into the target host by electroporation, rather than by conjugation or by transduction and therefore is more efficient. Third, the R6Kγ replication origin makes it easy to identify the mutated gene which is partially recovered in a recombinant plasmid. This technique can be used to investigate the genes involved in other characteristics of Enterobacter sp. YSU or of a

  6. Isolation of Cronobacter spp. (Enterobacter Sakazakii) from Artisanal Mozzarella

    PubMed Central

    Rippa, Paola; Battaglia, Luciana; Parisi, Nicola

    2014-01-01

    Cronobacter spp. (Enterobacter sakazakii) is an opportunistic bacterial pathogen capable of causing disease and even fatalities in newborn infants within the first weeks of life if consumed as part of the diet. Premature and immunocompromised newborn infants are at particular risk. The microorganism has been isolated from a variety of foods including contaminated infant milk formula powder and milk powder substitute. The study aimed to evaluate the level of microbiological contamination in 47 samples of mozzarella cheese made with cow’s milk collected from artisan cheese producers in Southern Italy. Samples were collected from commercial sales points and underwent qualitative and quantitative microbiological analyses to test for the bacterial contaminants most commonly found in milk and cheese products. The 47 samples underwent qualitative and quantitative microbiological tests according to ISO UNI EN standards. Analyses focused on Staphylococcus aures, Salmonella spp., Listeria monocytogenes, Pseudomonas spp., E. coli, Yersinia spp., total coliforms and Cronobacter sakazakii. The ISO/TS 22964:2006 method was used to investigate possible contamination by C. sakazakii. Biochemical identification was carried out using an automated system for identification and susceptibility tests. None of the samples examined resulted positive for Salmonella spp. or Listeria spp. Only one sample resulted positive for Staphylococcus aureus. Pseudomonas spp. was isolated in 10 (21%) of 47 samples. High levels of total coliforms were found in 10 of 47 samples. Cronobacter spp. (Enterobacter sakazakii) was isolated in one sample. This is the first study to confirm isolation of C. sakazakii in artisan mozzarella cheese made from cow’s milk. The presence of C. sakazakii could be related to external contamination during the phases of production or to the use of contaminated milk. Since mozzarella is recommended in the diet of children and adults of all ages, this present study helps

  7. Isolation, identification, characterization, and evaluation of cadmium removal capacity of Enterobacter species.

    PubMed

    Abbas, Syed Zaghum; Rafatullah, Mohd; Ismail, Norli; Lalung, Japareng

    2014-12-01

    This study focused on the isolation and characterization of high cadmium-resistant bacterial strains, possible exploitation of its cadmium-accumulation and cadmium-induced proteins. Cadmium-resistant bacterial strains designated as RZ1 and RZ2 were isolated from industrial wastewater of Penang, Malaysia. These isolates were identified as Enterobacter mori and Enterobacter sp. WS12 on the basis of phenotypic, biochemical and 16S rDNA sequence based molecular phylogenetic characteristics. Both isolates were Gram negative, cocci, and growing well in Lauria-Bertani broth medium at 35 °C temperature and pH 7.0. Results also indicated that Enterobacter mori and Enterobacter sp. WS12are capable to remove 87.75 and 85.11% of the cadmium from 100 µg ml(-1) concentration, respectively. This study indicates that these strains can be useful as an inexpensive and efficient bioremediation technology to remove and recover the cadmium from wastewater.

  8. Long Chain N-acyl Homoserine Lactone Production by Enterobacter sp. Isolated from Human Tongue Surfaces

    PubMed Central

    Yin, Wai-Fong; Purmal, Kathiravan; Chin, Shenyang; Chan, Xin-Yue; Chan, Kok-Gan

    2012-01-01

    We report the isolation of N-acyl homoserine lactone-producing Enterobacter sp. isolate T1-1 from the posterior dorsal surfaces of the tongue of a healthy individual. Spent supernatants extract from Enterobacter sp. isolate T1-1 activated the biosensor Agrobacterium tumefaciens NTL4(pZLR4), suggesting production of long chain AHLs by these isolates. High resolution mass spectrometry analysis of these extracts confirmed that Enterobacter sp. isolate T1-1 produced a long chain N-acyl homoserine lactone, namely N-dodecanoyl-homoserine lactone (C12-HSL). To the best of our knowledge, this is the first isolation of Enterobacter sp., strain T1-1 from the posterior dorsal surface of the human tongue and N-acyl homoserine lactones production by this bacterium. PMID:23202161

  9. Eight-Year Surveillance of Antimicrobial Resistance among Enterobacter Cloacae Isolated in the First Bethune Hospital

    NASA Astrophysics Data System (ADS)

    Zhou, Qi; Zhang, Man; Wang, Ailin; Xu, Jiancheng; Yuan, Ye

    This study was to investigate the antimicrobial resistance of Enterobacter cloacae isolated in 8 consecutive years in the First Bethune Hospital. Disk diffusion test was used to study the antimicrobial resistance. The data were analyzed by WHONET 5 software according to Clinical and Laboratory Standards Institute (CLSI). Most of 683 strains of Enterobacter cloacae were collected from sputum 410 (60.0%), secretions and pus 105 (15.4%), urine 69 (10.1%) during the past 8 years. No Enterobacter cloacae was resistant to imipenem and meropenem in the First Bethune Hospital. The antimicrobial resistance of Enterobacter cloacae had increased in recent 8 years. The change of the antimicrobial resistance should be investigated in order to direct rational drug usage in the clinic and prevent bacterial strain of drug resistance from b eing transmitted.

  10. First report of IMI-1-producing colistin-resistant Enterobacter clinical isolate in Ireland, March 2013.

    PubMed

    Boo, T W; O'Connell, N; Power, L; O'Connor, M; King, J; McGrath, E; Hill, R; Hopkins, K L; Woodford, N

    2013-08-01

    We report the first case in Ireland of an IMI-1 carbapenemase-producing Enterobacter asburiae, which was resistant to both colistin and fosfomycin. The circumstances under which this isolate was acquired were unclear. Several reports of IMI-producing Enterobacter spp. have emerged in recent years, and colistin resistance in Enterobacteriaceae is also increasingly reported. Laboratories should be aware of the unusual antibiograms of IMI-producing isolates.

  11. Effects of Selected Hydrazines on the Early Death Rates of Enterobacter cloacae

    DTIC Science & Technology

    1983-01-01

    Early Death Rates of Enterobacter cloacae S. A. London, C. R. Mantel, J. D. Robinson, and S. Luking Toxic Hazards Division, Air Force Aerospace Medical...A. enumerate cell death rate at low culture concentrations. C.3 MATERIALS AID 1ETHODS The organism used in this study - Enterobacter cloacae strain D...response to "transfer shock" than exposed cells. The effects of hydrazines on the duration of the lag phase of growth of E. cloacae str D-31 provide a

  12. Laminin 5 expression protects against anoikis at aerogenous spread and lepidic growth of human lung adenocarcinoma.

    PubMed

    Kodama, Keiji; Ishii, Gen'ichiro; Miyamoto, Shin'ichi; Goya, Masato; Zhang, Shi-Chuan; Sangai, Takafumi; Yoshikawa, Takeshi; Hasebe, Takahiro; Hitomi, Yoshiaki; Izumi, Keisuke; Ochiai, Atsushi

    2005-10-10

    Adenocarcinoma of the lung is characterized by frequent aerogenous spread (AE) and advancement along the alveolar wall (BAC growth). To elucidate the mechanism of AE metastasis and BAC growth in human lung adenocarcinoma, we established an in vivo orthotopic animal model and an in vitro culture. Investigation of expression levels of integrins, laminins and Type IV collagens, which are the major regulating molecules for cell attachment and anoikis was carried out and a clear correlation between the expression level of laminin 5 (LN5) and the BAC growth was observed using an orthotopic animal model. Introduction of LN5 cDNA to A549 cells increased anoikis resistance in an expression dependent manner. Cells with LN5 overexpression resisted with anoikis after treatment with PI3K-Akt and ERK inhibitors. The amount of phosphorylated focal adhesion kinase (FAK) was also higher in LN5 overexpressing cells. Major tyrosine residues of the EGF receptor at 1068, 1086 and 1173, except at 1148, remained phosphorylated only in the LN5 overexpressing cells even without EGF stimulation, that indicates the ligand independent activation of EGF receptor. BAC growth ratio and AE was confirmed to be significantly correlated with LN5 expression in surgically resected human lung adenocarcinomas by immunohistochemistry. Our results indicate that the activation of the EGF receptor by overexpressing LN5-integrin-FAK signaling pathway may play a crucial role in BAC growth and AE metastasis in human lung adenocarcinoma.

  13. [A case of poorly differentiated lung adenocarcinoma showing air-space consolidation caused by aerogenic metastasis].

    PubMed

    Fujita, Kazue; Kurihara, Takeyuki; Ohba, Hideo; Nakamura, Junichi; Okimoto, Niro

    2004-05-01

    A 78-year-old woman was admitted to our hospital because of dyspnea. A chest radiograph and a computed tomogram on admission showed air-space consolidation in the left upper lung field, and so pneumonia was diagnosed. Although antibiotics were administered, the air-space consolidation did not improve. A transbronchial lung biopsy was performed, yielding a pathologic diagnosis of poorly differentiated lung adenocarcinoma. Despite combination chemotherapy with docetaxel and UFT, the air-space consolidation expanded, and the patient finally died of respiratory failure 3 months after diagnosis. Autopsy revealed air-space consolidation due to poorly differentiated lung adenocarcinoma, with large atypical cells diffusely floating in the alveolar spaces. It has been recognized that bronchiolo-alveolar carcinoma and well-differentiated lung adenocarcinoma present with air-space consolidation, reflecting the cancer cells lining the alveolar walls. However, in this case, the air-space consolidation was due to cancer cells diffusely floating in the alveolar spaces in aerogenic metastasis. It was considered that this is a rare case, which presented with a very interesting development pattern.

  14. Structural and kinetic studies on beta-lactamase K1 from Klebsiella aerogenes.

    PubMed Central

    Emanuel, E L; Gagnon, J; Waley, S G

    1986-01-01

    beta-Lactamase K1 from Klebsiella aerogenes 1082E hydrolyses both penicillins and cephalosporins comparably and is inhibited by mercurials but not by cloxacillin. These properties distinguish it from those other beta-lactamases that have been allotted to classes on the basis of their amino sequences. beta-Lactamase K1 has been isolated by affinity chromatography; its composition shows resemblances to class A beta-lactamases. Moreover, the N-terminal sequence is similar to those of class A beta-lactamases: there is about 30% identity over the first 32 residues. Furthermore, a putative active-site octapeptide has been isolated and its sequence is similar to the region around the active-site serine residue in class A beta-lactamases. There is one thiol group in beta-lactamase K1; it is not essential for activity. The pH-dependence of kcat. and kcat./Km for the hydrolysis of benzylpenicillin by beta-lactamase K1 were closely similar, suggesting that the rate-determining step is cleavage of the beta-lactam ring. PMID:3521585

  15. Part of respiratory nitrate reductase of Klebsiella aerogenes is intimately associated with the peptidoglycan.

    PubMed

    Abraham, P R; Wientjes, F B; Nanninga, N; Van't Riet, J

    1987-02-01

    Lysozyme digestion and sonication of sodium dodecyl sulfate (SDS)-purified Klebsiella aerogenes murein sacculi resulted in the quantitative release of both subunits of nitrate reductase, as well as a number of other cytoplasmic membrane polypeptides (5.2%, by weight, of the total membrane proteins). Similar results were obtained after lysozyme digestion of SDS-prepared peptidoglycan fragments, which excluded the phenomenon of simple trapping of the polypeptides by the surrounding peptidoglycan matrix. About 28% of membrane-bound nitrate reductase appears to be tightly associated with the peptidoglycan. Additional evidence for this association was demonstrated by positive immunogold labeling of SDS-murein sacculi and thin sections of plasmolyzed bacteria. Qualitative amino acid analysis of trypsin-treated sacculi, a tryptic product of holo-nitrate reductase, and amino- and carboxypeptidase digests of both nitrate reductase subunits indicated the possible existence of a terminal anchoring peptide containing the following amino acids: (Gly)n, Trp, Ser, Pro, Ile, Leu, Phe, Cys, Tyr, Asp, and Lys.

  16. Biodegradation of ichlorodiphenyltrichloroe-thane: Intermediates in dichlorodiphenylacetic acid metabolism by Aerobacter aerogenes

    USGS Publications Warehouse

    1967-01-01

    The final product of dichlorodiphenyltrichloroethane (DDT) degradation by vertebrates is commonly considered to be dichlorodiphenylacetic acid, DDA (J. E. Peterson and W. H. Robison, Toxicol. Appl. Pharmacol. 6:321, 1964). Recently, certain organisms (A. S. Perry, S. Miller, and A. J. Buckner. J. Agr. Food Chem. 11:457, 1963; J. D. Pinto, M. N. Comien, and M. S. Dunn. J. Biol. Chem. 240:2148, 1965) have been found to degrade further DDA to dichlorobenzophenone (DBP), but the possibility that such degradation was due to microbial action could not be excluded. Significantly, dichlorobenzhydrol (DBH), dichlorophenylmethane (DPM), and dichlorodiphenylethylene (DDE) have been tentatively identified in rats fed DDA (Pinto et al., J. Biol. Chem. 240:2148, 1965). Since DDA as well as DDT is degraded by the ubiquitous microorganism Aerobacter aerogenes (G. Wedemeyer, Appl. Microbiol. 15:569, 1967; J. L. Mendel, and M. S. Walton, Science 151:1527, 1966), it seemed reasonable that the intestinal microflora might be involved in DBP formation, DPM and DBH being intermediates in its pathway from DDA. Since DDA is a (3,y-unsaturated acid, ketone formation via an alkene and an alcohol would be expected (S. G. Waley, Mechanisms of Organic and Enzymatic Reactions, Oxford University Press, London, England 1962).

  17. The beta-glucoside genes of Klebsiella aerogenes: conservation and divergence in relation to the cryptic bgl genes of Escherichia coli.

    PubMed

    Raghunand, Tirumalai R; Mahadevan, S

    2003-06-27

    The ability to metabolize aromatic beta-glucosides such as salicin and arbutin varies among members of the Enterobacteriaceae. The ability of Escherichia coli to degrade salicin and arbutin appears to be cryptic, subject to activation of the bgl genes, whereas many members of the Klebsiella genus can metabolize these sugars. We have examined the genetic basis for beta-glucoside utilization in Klebsiella aerogenes. The Klebsiella equivalents of bglG, bglB and bglR have been cloned using the genome sequence database of Klebsiella pneumoniae. Nucleotide sequencing shows that the K. aerogenes bgl genes show substantial similarities to the E. coli counterparts. The K. aerogenes bgl genes in multiple copies can also complement E. coli mutants deficient in bglG encoding the antiterminator and bglB encoding the phospho-beta-glucosidase, suggesting that they are functional homologues. The regulatory region bglR of K. aerogenes shows a high degree of similarity of the sequences involved in BglG-mediated regulation. Interestingly, the regions corresponding to the negative elements present in the E. coli regulatory region show substantial divergence in K. aerogenes. The possible evolutionary implications of the results are discussed.

  18. Biochemical basis of mercury remediation and bioaccumulation by Enterobacter sp. EMB21.

    PubMed

    Sinha, Arvind; Kumar, Sumit; Khare, Sunil Kumar

    2013-01-01

    The aims of this study were to isolate metal bioaccumulating bacterial strains and to study their applications in removal of environmental problematic heavy metals like mercury. Five bacterial strains belonging to genera Enterobacter, Bacillus, and Pseudomonas were isolated from oil-spilled soil. Among these, one of the strains Enterobacter sp. EMB21 showed mercury bioaccumulation inside the cells simultaneous to its bioremediation. The bioaccumulation of remediated mercury was confirmed by transmission electron microscopy and energy dispersive X-ray. The mercury-resistant loci in the Enterobacter sp. EMB21 cells were plasmid-mediated as confirmed by transformation of mercury-sensitive Escherichia coli DH5α by Enterobacter sp. EMB21 plasmid. Effect of different culture parameters viz-a-viz inoculum size, pH, carbon, and nitrogen source revealed that alkaline pH and presence of dextrose and yeast extract favored better remediation. The results indicated the usefulness of Enterobacter sp. EMB21 for the effective remediation of mercury in bioaccumulated form. The Enterobacter sp. EMB21 seems promising for heavy metal remediation wherein the remediated metal can be trapped inside the cells. The process can further be developed for the synthesis of valuable high-end functional alloy, nanoparticles, or metal conjugates from the metal being remediated.

  19. Enterobacter siamensis sp. nov., a transglutaminase-producing bacterium isolated from seafood processing wastewater in Thailand.

    PubMed

    Khunthongpan, Suwannee; Bourneow, Chaiwut; H-Kittikun, Aran; Tanasupawat, Somboon; Benjakul, Soottawat; Sumpavapol, Punnanee

    2013-01-01

    A novel strain of Enterobacter, C2361(T), a Gram-negative, non-spore-forming, rod-shaped and facultative anaerobic bacterium with the capability to produce transglutaminase, was isolated from seafood processing wastewater collected from a treatment pond of a seafood factory in Songkhla Province, Thailand. Phylogenetic analyses and phenotypic characteristics, including chemotaxonomic characteristics, showed that the strain was a member of the genus Enterobacter. The 16S rRNA gene sequence similarities between strain C2361(T) and Enterobacter cloacae subsp. cloacae ATCC 13047(T) and Enterobacter cloacae subsp. dissolvens LMG 2683(T) were 97.5 and 97.5%, respectively. Strain C2361(T) showed a low DNA-DNA relatedness with the above-mentioned species. The major fatty acids were C16:0, C17:0cyclo and C14:0. The DNA G+C content was 53.0 mol%. On the basis of the polyphasic evidence gathered in this study, it should be classified as a novel species of the genus Enterobacter for which the name Enterobacter siamensis sp. nov. is proposed. The type strain is C2361(T) (= KCTC 23282(T) = NBRC 107138(T)).

  20. Enterobacter pulveris sp. nov., isolated from fruit powder, infant formula and an infant formula production environment.

    PubMed

    Stephan, Roger; Van Trappen, Stefanie; Cleenwerck, Ilse; Iversen, Carol; Joosten, Han; De Vos, Paul; Lehner, Angelika

    2008-01-01

    Six Gram-negative, facultatively anaerobic, non-spore-forming, coccoid rod-shaped isolates were obtained from fruit powder (n=3), infant formula (n=2) and an infant formula production environment (n=1) and investigated in a polyphasic taxonomic study. Comparative 16S rRNA gene sequence analysis combined with rpoB gene sequence analysis allocated the isolates to the family Enterobacteriaceae. The highest rpoB gene sequence similarities (91.2-95.8%) were obtained with Enterobacter helveticus, Enterobacter radicincitans, Enterobacter turicensis and Enterobacter sakazakii and the phylogenetic branch formed by these species was supported by a high bootstrap value. Biochemical data revealed that the isolates could be differentiated from their nearest neighbours by their ability to utilize melibiose, sucrose, D-arabitol, mucate and 1-O-methyl-alpha-galactopyranoside and their negative reactions for D-sorbitol utilization and the Voges-Proskauer test. On the basis of the phylogenetic analyses, DNA-DNA hybridization data, and unique physiological and biochemical characteristics, it is proposed that the isolates represent a novel species of the genus Enterobacter, Enterobacter pulveris sp. nov. The type strain is 601/05(T) (=LMG 24057(T)=DSM 19144(T)).

  1. Biohydrogen production by dark fermentation of glycerol using Enterobacter and Citrobacter Sp.

    PubMed

    Maru, Biniam T; Constanti, Magda; Stchigel, Alberto M; Medina, Francesc; Sueiras, Jesus E

    2013-01-01

    Glycerol is an attractive substrate for biohydrogen production because, in theory, it can produce 3 mol of hydrogen per mol of glycerol. Moreover, glycerol is produced in substantial amounts as a byproduct of producing biodiesel, the demand for which has increased in recent years. Therefore, hydrogen production from glycerol was studied by dark fermentation using three strains of bacteria: namely, Enterobacter spH1, Enterobacter spH2, and Citrobacter freundii H3 and a mixture thereof (1:1:1). It was found that, when an initial concentration of 20 g/L of glycerol was used, all three strains and their mixture produced substantial amounts of hydrogen ranging from 2400 to 3500 mL/L, being highest for C. freundii H3 (3547 mL/L) and Enterobacter spH1 (3506 mL/L). The main nongaseous fermentation products were ethanol and acetate, albeit in different ratios. For Enterobacter spH1, Enterobacter spH2, C. freundii H3, and the mixture (1:1:1), the ethanol yields (in mol EtOH/mol glycerol consumed) were 0.96, 0.67, 0.31, and 0.66, respectively. Compared to the individual strains, the mixture (1:1:1) did not show a significantly higher hydrogen level, indicating that there was no synergistic effect. Enterobacter spH1 was selected for further investigation because of its higher yield of hydrogen and ethanol.

  2. Pseudomonas aeruginosa AlgG is a polymer level alginate C5-mannuronan epimerase.

    PubMed Central

    Franklin, M J; Chitnis, C E; Gacesa, P; Sonesson, A; White, D C; Ohman, D E

    1994-01-01

    Alginate is a viscous extracellular polymer produced by mucoid strains of Pseudomonas aeruginosa that cause chronic pulmonary infections in patients with cystic fibrosis. Alginate is polymerized from GDP-mannuronate to a linear polymer of beta-1-4-linked residues of D-mannuronate and its C5-epimer, L-guluronate. We previously identified a gene called algG in the alginate biosynthetic operon that is required for incorporation of L-guluronate residues into alginate. In this study, we tested the hypothesis that the product of algG is a C5-epimerase that directly converts D-mannuronate to L-guluronate. The DNA sequence of algG was determined, and an open reading frame encoding a protein (AlgG) of approximately 60 kDa was identified. The inferred amino terminus of AlgG protein contained a putative signal sequence of 35 amino acids. Expression of algG in Escherichia coli demonstrated both 60-kDa pre-AlgG and 55-kDa mature AlgG proteins, the latter of which was localized to the periplasm. An N-terminal analysis of AlgG showed that the signal sequence was removed in the mature form. Pulse-chase experiments in both E. coli and P. aeruginosa provided evidence for conversion of the 60- to the 55-kDa size in vivo. Expression of algG from a plasmid inan algG (i.e., polymannuronate-producing) mutant of P. aeruginosa restored production of an alginate containing L-guluronate residues. The observation that AlgG is apparently processed and exported from the cytoplasm suggested that it may act as a polymer-level mannuronan C5-epimerase. An in vitro assay for mannuronan C5 epimerization was developed wherein extracts of E. coli expressing high levels of AlgG were incubated with polymannuronate. Epimerization of D-mannuronate to L-guluronate residues in the polymer was detected enzymatically, using a L-guluronate-specific alginate lyase of Klebsiella aerogenes. Epimerization was also detected in the in vitro reaction between recombinant AlgG and poly-D-mannuronate, using high

  3. Theoretical Study on the Dual Behavior of XeO3 and XeF4 toward Aromatic Rings: Lone Pair-π versus Aerogen-π Interactions.

    PubMed

    Bauzá, Antonio; Frontera, Antonio

    2015-12-01

    In this study, several lone pair-π and aerogen-π complexes between XeO3 and XeF4 and aromatic rings with different electronic natures (benzene, trifluorobenzene, and hexafluorobenzene) are optimized at the RI-MP2/aug-cc-pVTZ level of theory. All complexes are characterized as true minima by frequency analysis calculations. The donor/acceptor role of the ring in the complexes is analyzed using the natural bond orbital computational tool, showing a remarkable contribution of orbital interactions to the global stabilization of the aerogen-π complexes. Finally, Bader's AIM analysis of several complexes is performed to further characterize the lone pair-π and aerogen-π interactions.

  4. Quality Control for β-Lactam Susceptibility Testing with a Well-Defined Collection of Enterobacteriaceae and Pseudomonas aeruginosa Strains in Spain

    PubMed Central

    Cantón, Rafael; Loza, Elena; Del Carmen Conejo, María; Baquero, Fernando; Martínez-Martínez, Luis

    2003-01-01

    Eighteen Enterobacteriaceae and Pseudomonas aeruginosa strains, 16 of them with well-defined β-lactam re sistance mechanisms, were sent to 52 Spanish microbiology laboratories. Interpretative categories for 8 extended-spectrum β-lactams were collected. Participating laboratories used their own routine susceptibility testing procedures (88% automatic systems, 10% disk diffusion, and 2% agar dilution). Control results were established by two independent reference laboratories by applying the NCCLS microdilution method and interpretative criteria. Interpretative discrepancies were observed in 16% of the results (4.4% for cefepime, 3.0% for aztreonam, 2.8% for piperacillin-tazobactam, 1.7% for cefotaxime [CTX] and ceftazidime, 1.1% for ceftriaxone, 0.9% for meropenem, and 0.3% for imipenem). High consistency with reference values (<5% of major plus very major errors) was observed with (i) American Type Culture Collection quality control strains; (ii) strains with low-efficiency mechanisms inactivating extended-spectrum β-lactams, such as OXA-1-producing Escherichiacoli or SHV-1-hyperproducing Klebsiella pneumoniae; (iii) strains with highly efficient mechanisms, such as SHV-5 porin-deficient K. pneumoniae, CTX-M-10 in Enterobacter cloacae hyperproducing AmpC, and P. aeruginosa with the MexAB OprM efflux phenotype or hyperproducing AmpC. Low consistency (>30% major plus very major errors) was detected in K1-producing Klebsiella oxytoca, CTX-M-9-producing E. coli, and in OprD− P. aeruginosa strains. Extended-spectrum β-lactamase (ESBL)-producing strains accounted for 86% of very major errors. Recognition of the ESBL phenotype was particularly low in Enterobacter cloacae strains (<35%), due to the lack of NCCLS-specific rules in this genus. A K1-producing K. oxytoca was misidentified by 10% of laboratories as an ESBL producer. The use of well-defined resistant strains is useful for improving proficiency in susceptibility testing in clinical laboratories. PMID

  5. Antibiotic Conditioned Growth Medium of Pseudomonas Aeruginosa

    ERIC Educational Resources Information Center

    Benathen, Isaiah A.; Cazeau, Barbara; Joseph, Njeri

    2004-01-01

    A simple method to study the consequences of bacterial antibiosis after interspecific competition between microorganisms is presented. Common microorganisms are used as the test organisms and Pseudomonas aeruginosa are used as the source of the inhibitor agents.

  6. Occurrence of Pseudomonas aeruginosa in Kuwait soil.

    PubMed

    Al-Saleh, Esmaeil; Akbar, Abrar

    2015-02-01

    Environmentally ubiquitous bacteria such as Pseudomonas aeruginosa evolved mechanisms to adapt and prevail under diverse conditions. In the current investigation, strains of P. aeruginosa demonstrating high rates of crude oil utilization and tolerance to high concentrations of heavy metals were found in both crude oil-contaminated and uncontaminated sites in Kuwait, and were dominant in the contaminated sites. The incidence of P. aeruginosa in tested soils implies the definitive pattern of crude oil contamination in the selection of the bacterial population in petroleum-contaminated sites in Kuwait. Surprisingly, the unculturable P. aeruginosa in different soil samples showed significant high similarity coefficients based on 16S-RFLP analyses, implying that the unculturable fraction of existing bacterial population in environmental samples is more stable and, hence, reliable for phylogenetic studies compared to the culturable bacteria.

  7. Osmoregulation in Pseudomonas aeruginosa under hyperosmotic shock.

    PubMed

    Velasco, R; Burgoa, R; Flores, E; Hernández, E; Villa, A; Vaca, S

    1995-01-01

    Pseudomonas aeruginosa PAO1 strain was found to be able to tolerate 700 mM NaCl. 0.5 mM of the osmoprotectant betaine restablished the growth of this strain in 1200 mM NaCl. Intracellular K+ and glutamate concentrations of P. aeruginosa PAO1 after an hyperosmotic shock (400 mM NaCl) showed a permanent increase. Adition of betaine (0.5 mM) to the medium with NaCl had an inhibitory effect on the intracellular accumulation of glutamate. The results indicate that P. aeruginosa PAO1 resists high NaCl concentrations, K+ accumulation and glutamate synthesis probably being the first mechanisms involved in adaptation to osmotic stress. Also is is demonstrated that betaine modulates intracellular glutamate levels in osmotically stressed P. aeruginosa PAO1.

  8. Prevalence and characterization of multidrug-resistant zoonotic Enterobacter spp. in poultry of Bangladesh.

    PubMed

    Nandi, Shuvro Prokash; Sultana, Munawar; Hossain, M Anwar

    2013-05-01

    Poultry and poultry products are major contributors of zoonotic pathogens. Limited data are available on Enterobacter spp. as a potent zoonotic pathogen in poultry. The present study is a first endeavor on the emergence of multidrug-resistant zoonotic Enterobacter spp. and its prevalence arising from poultry in Bangladesh. Cloacal swabs from poultry samples of five different farms at Savar, Dhaka, Bangladesh were collected and from 106 isolates, 18 presumptive Enterobacter spp. were obtained. Antibiogram using 19 used antibiotics belonging to 15 major groups revealed that all of the 18 isolates were completely resistant to penicillin and rifampicin, but differed in their drug resistance pattern against ampicillin (94.4%), clindamycin (94.4%), erythromycin (94.4%), vancomycin (88.9%), sulfonamides (72.2%), imipenem (66.6%), streptomycin (55.6%), nitrofurantoin (33.3%), doxycycline (33.3%), tetracyclines (33.3%), cefepime (11.1%), and gentamicin (5.6%). All Enterobacter spp. were found to be plasmid free, implying that multidrug-resistant properties are chromosomal borne. The vanA and sulI were detected by polymerase chain reaction assay in 17 and 13 isolates, respectively. Amplified ribosomal DNA restriction analysis and randomly amplified polymorphic DNA distributed the 18 multidrug-resistant Enterobacter spp. into three genotypes. Phylogenetic analysis of the representatives of the three genotypes using partial 16S rRNA gene sequence (approximately 900 bp) showed that the genotypically diverse groups belonged to Enterobacter hormaechei, E. cloacae, and E. cancerogenus, respectively. The clinical significance of the close relative Enterobacter spp. is indicative of their zoonotic potential. Therefore, urgent intervention is required to limit the emergence and spread of these bacteria in poultry feed as well as prudent use of antibiotics among poultry farmers in Bangladesh.

  9. Re-examination of the taxonomic status of Enterobacter helveticus, Enterobacter pulveris and Enterobacter turicensis as members of the genus Cronobacter and their reclassification in the genera Franconibacter gen. nov. and Siccibacter gen. nov. as Franconibacter helveticus comb. nov., Franconibacter pulveris comb. nov. and Siccibacter turicensis comb. nov., respectively.

    PubMed

    Stephan, Roger; Grim, Christopher J; Gopinath, Gopal R; Mammel, Mark K; Sathyamoorthy, Venugopal; Trach, Larisa H; Chase, Hannah R; Fanning, Séamus; Tall, Ben D

    2014-10-01

    Recently, a taxonomical re-evaluation of the genus Enterobacter, based on multi-locus sequence typing (MLST) analysis, has led to the proposal that the species Enterobacter pulveris, Enterobacter helveticus and Enterobacter turicensis should be reclassified as novel species of the genus Cronobacter. In the present work, new genome-scale analyses, including average nucleotide identity, genome-scale phylogeny and k-mer analysis, coupled with previously reported DNA-DNA hybridization values and biochemical characterization strongly indicate that these three species of the genus Enterobacter are not members of the genus Cronobacter, nor do they belong to the re-evaluated genus Enterobacter. Furthermore, data from this polyphasic study indicated that all three species constitute two new genera. We propose reclassifying Enterobacter pulveris and Enterobacter helveticus in the genus Franconibacter gen. nov. as Franconibacter pulveris comb. nov. (type strain 601/05(T) = LMG 24057(T) = DSM 19144(T)) and Franconibacter helveticus comb. nov. (type strain 513/05(T) = LMG 23732(T) = DSM 18396(T)), respectively, and Enterobacter turicensis in the genus Siccibacter gen. nov. as Siccibacter turicensis comb. nov. (type strain 508/05(T) = LMG 23730(T) = DSM 18397(T)).

  10. Degradation of pentaerythritol tetranitrate by Enterobacter cloacae PB2.

    PubMed Central

    Binks, P R; French, C E; Nicklin, S; Bruce, N C

    1996-01-01

    A mixed microbial culture capable of metabolizing the explosive pentaerythritol tetranitrate (PETN) was obtained from soil enrichments under aerobic and nitrogen-limiting conditions. A strain of Enterobacter cloacae, designated PB2, was isolated from this culture and was found to use PETN as a sole source of nitrogen for growth. Growth yields suggested that 2 to 3 mol of nitrogen was utilized per mol of PETN. The metabolites pentaerythritol dinitrate, 3-hydroxy-2,2-bis-[(nitrooxy)methyl]propanal, and 2,2-bis-[(nitrooxy)methyl]-propanedial were identified by mass spectrometry and 1H-nuclear magnetic resonance. An NADPH-dependent PETN reductase was isolated from cell extracts and shown to liberate nitrite from PETN, producing pentaerythritol tri- and dinitrates which were identified by mass spectrometry. PETN reductase was purified to apparent homogeneity by ion-exchange and affinity chromatography. The purified enzyme was found to be a monomeric flavoprotein with a M(r) of approximately 40,000, binding flavin mononucleotide noncovalently. PMID:8919782

  11. Enterobacter sakazakii: An Emerging Pathogen in Infants and Neonates

    PubMed Central

    Petrosyan, Mikael; Ford, Henri R.; Prasadarao, Nemani V.

    2008-01-01

    Abstract Background Enterobacter sakazakii (ES) is an emerging pathogen associated with the ingestion of contaminated reconstituted formula that causes necrotizing enterocolitis, sepsis, and meningitis in low-birth-weight preterm neonatal infants. Necrotizing enterocolitis remains the most common gastrointestinal surgical emergency in these infants. In recent years, the International Commission on Microbiological Specifications for Foods has ranked ES a “severe hazard for restricted populations.” Because of its resistance to certain antibiotics, better understanding of ES pathogenesis is needed to aid in the development of new preventive strategies. Methods Review of pertinent English-language literature. Results Neonatal and older infants appear to be at the highest risk, although adult ES infections have been reported. We discuss the origins of ES, the detection and pathogenesis of the disease, and potential prevention strategies. Conclusions The precise pathogenesis of ES remains a mystery. Appropriate measures by parents, infant formula manufacturers, and health care providers, as well as understanding of the pathogenesis, are important in the prevention of ES-related infections. PMID:18687047

  12. Enterobacter cloacae inhibits human norovirus infectivity in gnotobiotic pigs

    PubMed Central

    Lei, Shaohua; Samuel, Helen; Twitchell, Erica; Bui, Tammy; Ramesh, Ashwin; Wen, Ke; Weiss, Mariah; Li, Guohua; Yang, Xingdong; Jiang, Xi; Yuan, Lijuan

    2016-01-01

    Human noroviruses (HuNoVs) are the leading cause of epidemic gastroenteritis worldwide. Study of HuNoV biology has been hampered by the lack of an efficient cell culture system. Recently, enteric commensal bacteria Enterobacter cloacae has been recognized as a helper in HuNoV infection of B cells in vitro. To test the influences of E. cloacae on HuNoV infectivity and to determine whether HuNoV infects B cells in vivo, we colonized gnotobiotic pigs with E. cloacae and inoculated pigs with 2.74 × 104 genome copies of HuNoV. Compared to control pigs, reduced HuNoV shedding was observed in E. cloacae colonized pigs, characterized by significantly shorter duration of shedding in post-inoculation day 10 subgroup and lower cumulative shedding and peak shedding in individual pigs. Colonization of E. cloacae also reduced HuNoV titers in intestinal tissues and in blood. In both control and E. cloacae colonized pigs, HuNoV infection of enterocytes was confirmed, however infection of B cells was not observed in ileum, and the entire lamina propria in sections of duodenum, jejunum, and ileum were HuNoV-negative. In summary, E. cloacae inhibited HuNoV infectivity, and B cells were not a target cell type for HuNoV in gnotobiotic pigs, with or without E. cloacae colonization. PMID:27113278

  13. Powder infant formula milk contaminated with Enterobacter sakazakii.

    PubMed

    Oonaka, Kenji; Furuhata, Katsunori; Hara, Motonobu; Fukuyama, Masafumi

    2010-03-01

    To clarify the route and source of Enterobacter sakazakii infection in a basic study, we analyzed powder infant formula milk (PIF), which may be an important source of infantile infection, regarding contamination with Enterobacteriaceae including this type of bacteria, and conducted drug sensitivity tests with various antimicrobial agents. Enterobacteriaceae was isolated 36 (24.2%) of 149 PIF samples. These comprised of 12 (19.7%) of 61 domestically produced samples and 24 (27.3%) of 88 imported samples. E. sakazakii was isolated in 9 (6.6%) of the 149 PIF samples. These comprised 4 (6.6%) of 61 domestically produced samples and 5 (5.7%) of 88 imported samples. In 8 of the 9 samples in which E. sakazakii was isolated, the bacterial levels were estimated to be 0.36 MPN/100 g. However, one imported sample showed a bacterial level of 0.91 MPN/100 g. In the drug sensitivity tests of E. sakazakii isolated from PIF, we compared the MIC(90) values. E. sakazakii was highly sensitive to 9 agents: cefotaxime, ceftriaxone, cefoperazone, ceftazidime, cefpirome, cefozopran, gentamicin, meropenem, and ciprofloxacin, and moderately sensitive to 5 agents: piperacillin, erythromycin, minocycline, chloramphenicol, and rifampicin. However, it was resistant to 2 agents, ampicillin and lincomycin.

  14. Isolation and identification of Enterobacter sakazakii in infant milk formulas.

    PubMed

    Torres-Chavolla, Edith; Ramírez-Cerda, Elsa; Gutiérrez-Rojo, Rosalba

    2007-01-01

    Enterobacter sakazakii is a pathogen of increasing medical concern, due to it being implicated in cases of meningitis, sepis, and necrotizing enterocolitis associated with the consumption of contaminated infant milk formula. At present, the method adopted by the Mexican food industry for the isolation and identification of E. sakazakii is based on the methodology of the United States Food and Drug Administration (FDA). However, this procedure is laborious and requires 7 days to obtain a confirmative result. The objective of this study was to determine the presence of E. sakazakii in two types of powdered infant milk formula, using an alternative method that requires less time and a smaller sample size than the FDA protocol. We adapted Leuschner's procedure by eliminating violet red bile glucose agar (VRBG) plates and instead adopting white light incubation to stimulate yellow pigment development. This allowed for isolation of E. sakazakii from powdered infant milk formula using a smaller sample and requiring only 5 days for analysis. Results showed that 92% of formula 1 and 32% of formula 2 was positive for E. sakazakii. The high contamination level of E. sakazakii suggests the need for monitoring hygienic conditions in the manufacturing plant and to assess the prevalence of E. sakazakii in powdered infant milk formulas sold in México.

  15. Production of diacetyl by metabolically engineered Enterobacter cloacae

    PubMed Central

    Zhang, Lijie; Zhang, Yingxin; Liu, Qiuyuan; Meng, Liying; Hu, Mandong; Lv, Min; Li, Kun; Gao, Chao; Xu, Ping; Ma, Cuiqing

    2015-01-01

    Diacetyl, a high value product that can be extensively used as a food ingredient, could be produced from the non-enzymatic oxidative decarboxylation of α-acetolactate during 2,3-butanediol fermentation. In this study, the 2,3-butanediol biosynthetic pathway in Enterobacter cloacae subsp. dissolvens strain SDM, a good candidate for microbial 2,3-butanediol production, was reconstructed for diacetyl production. To enhance the accumulation of the precursor of diacetyl, the α-acetolactate decarboxylase encoding gene (budA) was knocked out in strain SDM. Subsequently, the two diacetyl reductases DR-I (gdh) and DR-II (budC) encoding genes were inactivated in strain SDM individually or in combination to decrease the reduction of diacetyl. Although the engineered strain E. cloacae SDM (ΔbudAΔbudC) was found to have a good ability for diacetyl production, more α-acetolactate than diacetyl was produced simultaneously. In order to enhance the nonenzymatic oxidative decarboxylation of α-acetolactate to diacetyl, 20 mM Fe3+ was added to the fermentation broth at the optimal time. In the end, by using the metabolically engineered strain E. cloacae SDM (ΔbudAΔbudC), diacetyl at a concentration of 1.45 g/L was obtained with a high productivity (0.13 g/(L·h)). The method developed here may be a promising process for biotechnological production of diacetyl. PMID:25761989

  16. Kinetics and modeling of hexavalent chromium reduction in Enterobacter cloacae

    SciTech Connect

    Yamamoto, Koji; Kato, Junichi; Yano, Takuo; Ohtake, Hisao )

    1993-01-05

    Kinetics of bacterial reduction of toxic hexavalent chromium (chromate: CrO[sub 4][sup [minus]2]) was investigated using batch and fed-batch cultures of Enterobacter cloacae strain HO1. In fed-batch cultures, the CrO[sub 4][sup [minus]2] feed was controlled on the basis of the rate of pH change. This control strategy has proven to be useful for avoiding toxic CrO[sub 3][sup [minus]2] overload. A simple mathematical model was developed to describe the bacterial process of CrO[sub 4][sup [minus]2] reduction. In this model, two types of bacterial cells were considered: induced, CrO[sub 4][sup [minus]2]-resistant cells and uninduced, sensitive ones. Only resistant cells were assumed to be able to reduce CrO[sub 4][sup [minus]2]. These fundamental ideas were supported by the model predictions which well approximated all experimental data. In a simulation study, the model was also used to optimize fed-batch cultures, instead of lengthy and expensive laboratory experiments.

  17. Enterobacter cloacae inhibits human norovirus infectivity in gnotobiotic pigs.

    PubMed

    Lei, Shaohua; Samuel, Helen; Twitchell, Erica; Bui, Tammy; Ramesh, Ashwin; Wen, Ke; Weiss, Mariah; Li, Guohua; Yang, Xingdong; Jiang, Xi; Yuan, Lijuan

    2016-04-26

    Human noroviruses (HuNoVs) are the leading cause of epidemic gastroenteritis worldwide. Study of HuNoV biology has been hampered by the lack of an efficient cell culture system. Recently, enteric commensal bacteria Enterobacter cloacae has been recognized as a helper in HuNoV infection of B cells in vitro. To test the influences of E. cloacae on HuNoV infectivity and to determine whether HuNoV infects B cells in vivo, we colonized gnotobiotic pigs with E. cloacae and inoculated pigs with 2.74 × 10(4) genome copies of HuNoV. Compared to control pigs, reduced HuNoV shedding was observed in E. cloacae colonized pigs, characterized by significantly shorter duration of shedding in post-inoculation day 10 subgroup and lower cumulative shedding and peak shedding in individual pigs. Colonization of E. cloacae also reduced HuNoV titers in intestinal tissues and in blood. In both control and E. cloacae colonized pigs, HuNoV infection of enterocytes was confirmed, however infection of B cells was not observed in ileum, and the entire lamina propria in sections of duodenum, jejunum, and ileum were HuNoV-negative. In summary, E. cloacae inhibited HuNoV infectivity, and B cells were not a target cell type for HuNoV in gnotobiotic pigs, with or without E. cloacae colonization.

  18. Antibiotic combinations for controlling colistin-resistant Enterobacter cloacae.

    PubMed

    Lima, Thais Bergamin; Silva, Osmar Nascimento; de Almeida, Keyla Caroline; Ribeiro, Suzana Meira; Motta, Dielle de Oliveira; Maria-Neto, Simone; Lara, Michelle Brizolla; Filho, Carlos Roberto Souza; Ombredane, Alicia Simalie; de Faria Junior, Celio; Parachin, Nadia Skorupa; Magalhães, Beatriz Simas; Franco, Octávio Luiz

    2017-02-01

    Enterobacter cloacae is a Gram-negative bacterium associated with high morbidity and mortality in intensive care patients due to its resistance to multiple antibiotics. Currently, therapy against multi-resistant bacteria consists of using colistin, in spite of its toxic effects at higher concentrations. In this context, colistin-resistant E. cloacae strains were challenged with lower levels of colistin combined with other antibiotics to reduce colistin-associated side effects. Colistin-resistant E. cloacae (ATCC 49141) strains were generated by serial propagation in subinhibitory colistin concentrations. After this, three colistin-resistant and three nonresistant replicates were isolated. The identity of all the strains was confirmed by MALDI-TOF MS, VITEK 2 and MicroScan analysis. Furthermore, cross-resistance to other antibiotics was checked by disk diffusion and automated systems. The synergistic effects of the combined use of colistin and chloramphenicol were observed via the broth microdilution checkerboard method. First, data here reported showed that all strains presented intrinsic resistance to penicillin, cephalosporin (except fourth generation), monobactam, and some associations of penicillin and β-lactamase inhibitors. Moreover, a chloramphenicol and colistin combination was capable of inhibiting the induced colistin-resistant strains as well as two colistin-resistant clinical strains. Furthermore, no cytotoxic effect was observed by using such concentrations. In summary, the data reported here showed for the first time the possible therapeutic use of colistin-chloramphenicol for infections caused by colistin-resistant E. cloacae.

  19. Plant growth promoting bacteria Enterobacter asburiae JAS5 and Enterobacter cloacae JAS7 in mineralization of endosulfan.

    PubMed

    Abraham, Jayanthi; Silambarasan, Sivagnanam

    2015-04-01

    Endosulfan and their metabolites can be detected in soils with a history of endosulfan application. Microbial degradation offers an effective approach to remove toxicants, and in this study, Enterobacter asburiae JAS5 and Enterobacter cloacae JAS7 were isolated through enrichment technique. The biodegradation of endosulfan and its metabolites rate constant (k) and DT50 were determined through first-order kinetic models. E. asburiae JAS5 degraded the endosulfan, and its metabolites in liquid medium was characterized by the k which was 0.382 day(-1) (α-endosulfan), 0.284 day(-1) (β-endosulfan) and 0.228 day(-1) (endosulfan sulphate), and DT50 was 1.8 day (α-endosulfan), 2.4 days (β-endosulfan) and 3.0 days (endosulfan sulphate). The α-endosulfan, β-endosulfan and endosulfan sulphate metabolites were present in the liquid medium that was degraded by E. cloacae JAS7 which was characterized by the k of 0.391, 0.297 day(-1) and 0.273 day(-1), and DT50 was 1.7, 2.3 and 2.5 days, respectively. The infrared spectrum of endosulfan degraded sample in the aqueous medium by E. asburiae JAS5 and E. cloacae JAS7 showed a band at 1402 cm(-1) which is the characteristics of COOH group. E. asburiae JAS5 and E. cloacae JAS7 strains also showed the ability of plant growth promoting traits such as indole-3-acetic acid (IAA) production, organic acids production and solubilization of various inorganic phosphates. E. asburiae JAS5 solubilized 324 ± 2 μg ml(-1) of tricalcium phosphate, 296 ± 6 μg ml(-1) of dicalcium phosphate and 248 ± 5 μg ml(-1) of zinc phosphate, whereas E. cloacae JAS7 solubilized 338 ± 5, 306 ± 4 and 268 ± 3 μg ml(-1) of tricalcium phosphate, dicalcium phosphate and zinc phosphate, respectively. The IAA production by JAS5 and JAS7 strains were estimated to be 38.6 ± 0.3 and 46.6 ± 0.5 μg ml(-1), respectively. These bacterial strains form a potential candidate for bioremediation of pesticide-contaminated agricultural

  20. Enterobacter radicincitans sp. nov., a plant growth promoting species of the family Enterobacteriaceae.

    PubMed

    Kämpfer, Peter; Ruppel, Silke; Remus, Rainer

    2005-04-01

    A plant growth promoting bacterial isolate (D5/23T) from the phyllosphere of winter wheat, able to fix atmospheric nitrogen and to produce auxines and cytokinins was investigated in a polyphasic taxonomy approach. Phylogenetic analyses using the 16S rRNA gene sequence of the strain clearly indicated that the strain belonged to the family Enterobacteriaceae, most closely related to Enterobacter cloacae with 99.0% and Enterobacter dissolvens with 98.5% sequence similarity. Phylogenetic analysis derived from the sequence of the rpoB gene showed the highest sequence similarities to Enterobacter cowanii (93.0%) but supported the distinct position of strain D5/23T. The isolate produced a fatty acid pattern typical for members of the family Enterobacteriaceae. On the basis of the phylogenetic analyses, DNA-DNA hybridizations, and the unique physiological and biochemical characteristics, we propose that strain D5/23T represents a new species of the genus Enterobacter for which we propose the name Enterobacter radicincitans sp. nov.

  1. The effects of temperature and growth rate on the proportion of unsaturated fatty acids in bacterial lipids.

    PubMed

    Gill, C O; Suisted, J R

    1978-01-01

    The effects of temperature and growth rate on the fatty acid composition of the extractable lipids of four mesophilic and three psychotrophic bacteria were examined. Two of the mesophiles (Escherichia coli and Pseudomonas aeruginosa) increased the proportion of unsaturated fatty acids in their lipids with decreasing temperature over their whole growth temperature range. The other mesophiles (Enterobacter aerogenes and Lactobacillus casei) increased the proportion of unsaturated fatty acids with decreasing temperature only over the lower half of their growth temperature ranges. The psychrotrophs Pseudomonas fluorescens and Enterobacter sp. had a constant proportion of unsaturated acids over the lower half of their growth temperature range, while the psychotrophic Lactobacillus sp. showed no consistent change in its unsaturated fatty acid composition with temperature. All species showed some variation of unsaturated fatty acid composition with growth rate at the highest and lowest growth temperatures, although such variations were small in some species (Ent. aerogenes and Lactobacillus sp.).

  2. Whole-genome sequence of Enterobacter sp. strain SST3, an endophyte isolated from Jamaican sugarcane (Saccharum sp.) stalk tissue.

    PubMed

    Gan, Han Ming; McGroty, Sean E; Chew, Teong Han; Chan, Kok Gan; Buckley, Larry J; Savka, Michael A; Hudson, André O

    2012-11-01

    Enterobacter sp. strain SST3 is an endophytic bacterium isolated from Saccharum spp. Here we present its annotated draft genome that may shed light on its role as a bacterial endophyte of sugarcane. To our knowledge, this is the first genome announcement of a sugarcane-associated bacterium from the genus Enterobacter.

  3. Draft Genome Sequence of Enterobacter cloacae subsp. cloacae Strain 08XA1, a Fecal Bacterium of Giant Pandas

    PubMed Central

    Yan, Yue; Zhao, Chuan-Wu; Zhang, Yi-Zheng; Zhang, Zhi-He; Pan, Guang-Lin; Liu, Wen-Wang; Ma, Qing-Yi; Hou, Rong

    2012-01-01

    Enterobacter cloacae, a common pathogenic bacterium, is a Gram-negative bacillus. We analyzed the draft genome of Enterobacter cloacae subsp. cloacae strain 08XA1 from the feces of a giant panda in China. Genes encoding a β-lactamase and efflux pumps, as well as other factors, have been found in the genome. PMID:23209197

  4. Evidence that a DEGS homologue in Enterobacter clocae is important for colonization and disease suppression on cucumber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enterobacter cloacae 501R3 shows promise as a biocontrol agent for damping-off of cucumber caused by Pythium ultimum. Enterobacter cloacae C10 is a mini-Tn5 Km transposon mutant of 501R3 that was reduced in colonization of cucumber roots and in suppression of damping-off of cucumber. Molecular char...

  5. Bioadsorption and biostabilization of cadmium by Enterobacter cloacae TU.

    PubMed

    Xu, Canran; He, Shengbao; Liu, Yongmin; Zhang, Wei; Lu, Diannan

    2017-04-01

    Biostabilization of cadmium, a hazardous chemical found widely in China, was attempted using Enterobacter cloacae TU (E.cloacae TU). A cadmium (Cd)-tolerant E.cloacae TU was obtained by mutagenesis using an atmosphere pressure glow discharge plasma system, and it displayed regular growth behavior in the presence of 250 mg/L Cd in solution. The maximum stabilization capacity of E.cloacae TU toward Cd reached 67.0 ± 3.5 mg/g dry cell weight at an initial Cd concentration of 200 mg/L. The percentage of Cd removal by E.cloacae TU reached 97.4± 0.3% at an initial Cd concentration of 20 mg/L. A desorption experiment confirmed both extracellular adsorption and intracellular uptake contribute to biostabilization, although Cd was mainly distributed on the surface of E.cloacae TU cells due to over-secretion of extracellular polysaccharides under Cd stimulus. The changes in morphology and functional groups of the E.cloacae TU cell surface in the presence of Cd were analyzed using X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and Fourier Transform Infrared Spectoscopy (FT-IR). The feasibility of using E.cloacae TU for this purpose was further confirmed by on site remediation, in which the application of E.cloacae TU reduced the bioavailability and moreover the accumulation of Cd in tobacco plants without affecting the quality of flue-cured tobacco.

  6. Enterobacter spp.: pathogens poised to flourish at the turn of the century.

    PubMed Central

    Sanders, W E; Sanders, C C

    1997-01-01

    Knowledge of the genus Enterobacter and its role in human disease has expanded exponentially in recent years. The incidence of infection in the hospital and the community has increased. New clinical syndromes have been recognized. Enterobacter spp. have also been implicated as causes of other syndromes that traditionally have been associated almost exclusively with more easily treatable pathogens, such as group A streptococci and staphylococci. Rapid emergence of multiple-drug resistance has been documented in individual patients during therapy and in populations and environments with strong selective pressure from antimicrobial agents, especially the cephalosporins. Therapeutic options for patients infected with multiply resistant strains have become severely limited. Carbapenems or, alternatively, fluoroquinolones are the most predictively active options, although resistance to both classes has been observed on rare occasions. Enterobacter spp. appear well adapted for survival and even proliferation as the turn of the century approaches. PMID:9105752

  7. Comparison of two multimetal resistant bacterial strains: Enterobacter sp. YSU and Stenotrophomonas maltophilia ORO2.

    PubMed

    Holmes, Andrew; Vinayak, Anubhav; Benton, Cherise; Esbenshade, Aaron; Heinselman, Carlisle; Frankland, Daniel; Kulkarni, Samatha; Kurtanich, Adrienne; Caguiat, Jonathan

    2009-11-01

    The Y-12 plant in Oak Ridge, TN, which manufactured nuclear weapons during World War II and the Cold War, contaminated East Fork Poplar Creek with heavy metals. The multimetal resistant bacterial strain, Stenotrophomonas maltophilia Oak Ridge strain O2 (S. maltophilia O2), was isolated from East Fork Poplar Creek. Sequence analysis of 16s rDNA suggested that our working strain of S. maltophilia O2 was a strain of Enterobacter. Phylogenetic tree analysis and biochemical tests confirmed that it belonged to an Enterobacter species. This new strain was named Enterobacter sp. YSU. Using a modified R3A growth medium, R3A-Tris, the Hg(II), Cd(II), Zn(II), Cu(II), Au(III), Cr(VI), Ag(I), As(III), and Se(IV) MICs for a confirmed strain of S. maltophilia O2 were 0.24, 0.33, 5, 5, 0.25, 7, 0.03, 14, and 40 mM, respectively, compared to 0.07, 0.24, 0.8, 3, 0.05, 0.4, 0.08, 14, and 40 mM, respectively, for Enterobacter sp. YSU. Although S. maltophilia O2 was generally more metal resistant than Enterobacter sp. YSU, in comparison to Escherichia coli strain HB101, Enterobacter sp. YSU was resistant to Hg(II), Cd(II), Zn(II), Au(III), Ag(I), As(III), and Se(IV). By studying metal resistances in these two strains, it may be possible to understand what makes one microorganism more metal resistant than another microorganism. This work also provided benchmark MICs that can be used to evaluate the metal resistance properties of other bacterial isolates from East Fork Poplar Creek and other metal contaminated sites.

  8. Developing an international Pseudomonas aeruginosa reference panel.

    PubMed

    De Soyza, Anthony; Hall, Amanda J; Mahenthiralingam, Eshwar; Drevinek, Pavel; Kaca, Wieslaw; Drulis-Kawa, Zuzanna; Stoitsova, Stoyanka R; Toth, Veronika; Coenye, Tom; Zlosnik, James E A; Burns, Jane L; Sá-Correia, Isabel; De Vos, Daniel; Pirnay, Jean-Paul; Kidd, Timothy J; Reid, David; Manos, Jim; Klockgether, Jens; Wiehlmann, Lutz; Tümmler, Burkhard; McClean, Siobhán; Winstanley, Craig

    2013-12-01

    Pseudomonas aeruginosa is a major opportunistic pathogen in cystic fibrosis (CF) patients and causes a wide range of infections among other susceptible populations. Its inherent resistance to many antimicrobials also makes it difficult to treat infections with this pathogen. Recent evidence has highlighted the diversity of this species, yet despite this, the majority of studies on virulence and pathogenesis focus on a small number of strains. There is a pressing need for a P. aeruginosa reference panel to harmonize and coordinate the collective efforts of the P. aeruginosa research community. We have collated a panel of 43 P. aeruginosa strains that reflects the organism's diversity. In addition to the commonly studied clones, this panel includes transmissible strains, sequential CF isolates, strains with specific virulence characteristics, and strains that represent serotype, genotype or geographic diversity. This focussed panel of P. aeruginosa isolates will help accelerate and consolidate the discovery of virulence determinants, improve our understanding of the pathogenesis of infections caused by this pathogen, and provide the community with a valuable resource for the testing of novel therapeutic agents.

  9. Pseudomonas aeruginosa Dose-Response and Bathing Water Infection

    EPA Science Inventory

    Pseudomonas aeruginosa is the most commonly identified opportunistic pathogen associated with pool acquired bather disease. To better understand why this microorganism poses this protracted problem we recently appraised P. aeruginosa pool risk management. Much is known about the ...

  10. [Taxonomy of Enterobacter sakazakii and the biological characteristics of the new species and genus].

    PubMed

    Zhao, Guiming; Yuan, Fei; Yang, Hairong; Zhao, Yongsheng; Chen, Ying

    2010-03-01

    Enterobacter sakazakii, one of the major pathogens affecting the safety of infant formula powder was defined as a species in 1980. However, the new names and new combinations about Enterobacter sakazakii notified in volume 58, part 6, of the International Journal of Systematic and Evolutionary Microbiology (IJSB). The taxonomic relationship of strains described as E. sakazakii, biological characteristics of its new genus and species, the development related to its isolation and identification were reviewed in this paper, in order to facilitate the related personnel to keep in touch with the latest developments on E. sakazakii. It's also conducive to unify and standardize the Chinese name for E. sakazakii.

  11. Multiyear, Multinational Survey of the Incidence and Global Distribution of Metallo-β-Lactamase-Producing Enterobacteriaceae and Pseudomonas aeruginosa

    PubMed Central

    Rabine, Sharon; Hackel, Meredith; McLaughlin, Robert E.; Biedenbach, Douglas J.; Bouchillon, Samuel K.; Sahm, Daniel F.; Bradford, Patricia A.

    2015-01-01

    Metallo-β-lactamases (MBLs) hydrolyze all classes of β-lactams except monobactams and are not inhibited by classic serine β-lactamase inhibitors. Gram-negative pathogens isolated from patient infections were collected from 202 medical centers in 40 countries as part of a global surveillance study from 2012 to 2014. Carbapenem-nonsusceptible Enterobacteriaceae and Pseudomonas aeruginosa were characterized for bla genes encoding VIM, IMP, NDM, SPM, and GIM variants using PCR and sequencing. A total of 471 MBL-positive isolates included the following species (numbers of isolates are in parentheses): P. aeruginosa (308), Klebsiella spp. (85), Enterobacter spp. (39), Proteeae (16), Citrobacter freundii (12), Escherichia coli (6), and Serratia marcescens (5) and were submitted by sites from 34 countries. Of these, 69.6% were collected in 9 countries (numbers of isolates are in parentheses): Russia (72), Greece (61), Philippines (54), Venezuela (29), and Kuwait, Nigeria, Romania, South Africa, and Thailand (20 to 25 isolates each). Thirty-two different MBL variants were detected (14 VIM, 14 IMP, and 4 NDM enzymes). Seven novel MBL variants were encountered in the study, each differing from a previously reported variant by one amino acid substitution: VIM-42 (VIM-1 [V223I]), VIM-43 (VIM-4 [A24V]), VIM-44 (VIM-2 [K257N]), VIM-45 (VIM-2 [T35I]), IMP-48 (IMP-14 [I69T]), IMP-49 (IMP-18 [V49F]), and NDM-16 (NDM-1 [R264H]). The in vitro activities of all tested antibiotics against MBL-positive Enterobacteriaceae were significantly reduced with the exception of that of aztreonam-avibactam (MIC90, 0.5 to 1 μg/ml), whereas colistin was the most effective agent against MBL-positive P. aeruginosa isolates (>97% susceptible). Although the global percentage of isolates encoding MBLs remains relatively low, their detection in 12 species, 34 countries, and all regions participating in this surveillance study is concerning. PMID:26643349

  12. Multiyear, Multinational Survey of the Incidence and Global Distribution of Metallo-β-Lactamase-Producing Enterobacteriaceae and Pseudomonas aeruginosa.

    PubMed

    Kazmierczak, Krystyna M; Rabine, Sharon; Hackel, Meredith; McLaughlin, Robert E; Biedenbach, Douglas J; Bouchillon, Samuel K; Sahm, Daniel F; Bradford, Patricia A

    2016-02-01

    Metallo-β-lactamases (MBLs) hydrolyze all classes of β-lactams except monobactams and are not inhibited by classic serine β-lactamase inhibitors. Gram-negative pathogens isolated from patient infections were collected from 202 medical centers in 40 countries as part of a global surveillance study from 2012 to 2014. Carbapenem-nonsusceptible Enterobacteriaceae and Pseudomonas aeruginosa were characterized for bla genes encoding VIM, IMP, NDM, SPM, and GIM variants using PCR and sequencing. A total of 471 MBL-positive isolates included the following species (numbers of isolates are in parentheses): P. aeruginosa (308), Klebsiella spp. (85), Enterobacter spp. (39), Proteeae (16), Citrobacter freundii (12), Escherichia coli (6), and Serratia marcescens (5) and were submitted by sites from 34 countries. Of these, 69.6% were collected in 9 countries (numbers of isolates are in parentheses): Russia (72), Greece (61), Philippines (54), Venezuela (29), and Kuwait, Nigeria, Romania, South Africa, and Thailand (20 to 25 isolates each). Thirty-two different MBL variants were detected (14 VIM, 14 IMP, and 4 NDM enzymes). Seven novel MBL variants were encountered in the study, each differing from a previously reported variant by one amino acid substitution: VIM-42 (VIM-1 [V223I]), VIM-43 (VIM-4 [A24V]), VIM-44 (VIM-2 [K257N]), VIM-45 (VIM-2 [T35I]), IMP-48 (IMP-14 [I69T]), IMP-49 (IMP-18 [V49F]), and NDM-16 (NDM-1 [R264H]). The in vitro activities of all tested antibiotics against MBL-positive Enterobacteriaceae were significantly reduced with the exception of that of aztreonam-avibactam (MIC90, 0.5 to 1 μg/ml), whereas colistin was the most effective agent against MBL-positive P. aeruginosa isolates (>97% susceptible). Although the global percentage of isolates encoding MBLs remains relatively low, their detection in 12 species, 34 countries, and all regions participating in this surveillance study is concerning.

  13. Iron-stimulated toxin production in Microcystis aeruginosa.

    PubMed Central

    Utkilen, H; Gjølme, N

    1995-01-01

    Nitrate- and phosphate-limited conditions had no effect on toxin production by Microcystis aeruginosa. In contrast, iron-limited conditions influenced toxin production by M. aeruginosa, and iron uptake was light dependent. A model for production of toxin by M. aeruginosa is proposed. PMID:7574617

  14. E240V substitution increases catalytic efficiency toward ceftazidime in a new natural TEM-type extended-spectrum beta-lactamase, TEM-149, from Enterobacter aerogenes and Serratia marcescens clinical isolates.

    PubMed

    Perilli, Mariagrazia; Celenza, Giuseppe; De Santis, Francesca; Pellegrini, Cristina; Forcella, Chiara; Rossolini, Gian Maria; Stefani, Stefania; Amicosante, Gianfranco

    2008-03-01

    The aim of this study was to characterize a novel extended-spectrum beta-lactamase that belongs to the TEM family, the TEM-149 enzyme, and that was isolated from the urine of two hospitalized patients from different hospitals in southern Italy. The peculiarity of this enzyme was the finding of a valine residue at position 240. The array of amino acid substitutions found in TEM-149 was as follows: E104K, R164S, M182T, and E240V. A reversion of a threonine residue at position 182 was also performed to create a new mutant, TEM-149 T182M, in order to assess the contribution of this substitution on the kinetic profile and the stability of TEM-149. The bla TEM-149 and bla TEM-149/T182M genes were cloned into pBC-SK, and the corresponding enzymes were purified from recombinant Escherichia coli HB101 by the same procedure. Both enzymes hydrolyzed all beta-lactams tested, with a preference for ceftazidime, which was found to be the best substrate. By comparison of the kinetic parameters of the TEM-149 and the TEM-149 T182M enzymes, a reduction of the catalytic efficiency for the TEM-149 T182M mutant was observed against all substrates tested except benzylpenicillin, cefotaxime, and aztreonam. Tazobactam, clavulanic acid, and sulbactam were good inhibitors of the TEM-149 beta-lactamase.

  15. Risk assessment of Pseudomonas aeruginosa in water.

    PubMed

    Mena, Kristina D; Gerba, Charles P

    2009-01-01

    P. aeruginosa is part of a large group of free-living bacteria that are ubiquitous in the environment. This organism is often found in natural waters such as lakes and rivers in concentrations of 10/100 mL to >1,000/100 mL. However, it is not often found in drinking water. Usually it is found in 2% of samples, or less, and at concentrations up to 2,300 mL(-1) (Allen and Geldreich 1975) or more often at 3-4 CFU/mL. Its occurrence in drinking water is probably related more to its ability to colonize biofilms in plumbing fixtures (i.e., faucets, showerheads, etc.) than its presence in the distribution system or treated drinking water. P. aeruginosa can survive in deionized or distilled water (van der Jooij et al. 1982; Warburton et al. 1994). Hence, it may be found in low nutrient or oligotrophic environments, as well as in high nutrient environments such as in sewage and in the human body. P. aeruginosa can cause a wide range of infections, and is a leading cause of illness in immunocompromised individuals. In particular, it can be a serious pathogen in hospitals (Dembry et al. 1998). It can cause endocarditis, osteomyelitis, pneumonia, urinary tract infections, gastrointestinal infections, and meningitis, and is a leading cause of septicemia. P. aeruginosa is also a major cause of folliculitis and ear infections acquired by exposure to recreational waters containing the bacterium. In addition, it has been recognized as a serious cause of keratitis, especially in patients wearing contact lenses. P. aeruginosa is also a major pathogen in burn and cystic fibrosis (CF) patients and causes a high mortality rate in both populations (MOlina et al. 1991; Pollack 1995). P. aeruginosa is frequently found in whirlpools and hot tubs, sometimes in 94-100% of those tested at concenrations of <1 to 2,400 CFU/mL. The high concentrations found probably result from the relatively high temperatures of whirlpools, which favor the growth of P. aeruginosa, and the aeration which also

  16. Complete Genome Sequence of Enterobacter sp. Strain ODB01, a Bacterium That Degrades Crude Oil

    PubMed Central

    Lan, Hui; Yang, Hui; Li, Peiwang; Wang, Chong; Zhou, Haiyan; Zhou, Hui; Pan, Hu; Yu, Ye

    2017-01-01

    ABSTRACT Enterobacter sp. strain ODB01, which was isolated from the Changqing oil field, can degrade crude oil efficiently and use crude oil as its sole source of carbon and energy. We report the complete genome sequence of ODB01. The results promote its application in the remediation of petroleum contaminants. PMID:28280034

  17. Draft Genome Sequence of Enterobacter ludwigii NCR3, a Heavy Metal–Resistant Rhizobacterium

    PubMed Central

    Egidi, Eleonora; Wood, Jennifer L.; Aracic, Sanja; Kannan, Ruban; McDonald, Lachlan; Bell, Carolyn A.; Fox, Edward M.; Liu, Wuxing

    2016-01-01

    We report here the draft genome of Enterobacter ludwigii NCR3, a Gram-negative bacterium isolated from the Carpobrotus rossii (Haw.) Schwantes rhizosphere. The analysis of the ~4.8-Mb draft genome shows that this strain harbors several genes associated with heavy metal resistance and plant growth–promoting activity, suggesting its potential application in microbe-assisted phytoremediation. PMID:27795247

  18. The status of the species Enterobacter siamensisKhunthongpan et al. 2014. Request for an Opinion.

    PubMed

    Kämpfer, Peter; Doijad, Swapnil; Chakraborty, Trinad; Glaeser, Stefanie P

    2016-01-01

    In the course of a taxonomic study describing novel species of the genus Enterobacter it was found that the 16S rRNA gene sequence of the type strain of Enterobacter siamensis, obtained both directly from the authors of the publication on Enterobacter siamensis and from the Korean Collection for Type Cultures (C2361T and KCTC 23282T, respectively), was not congruent with the 16S rRNA gene sequence deposited in the GenBank database under the accession number HQ888848, which was applied for phylogenetic analysis in the species proposal. The remaining deposit in the Japanese type culture collection, NBRC 107138T, showed an identical 16S rRNA gene sequence to the other two cultures and overall, this sequence differed at 35 positions in comparison with the 1429 bp sequence published under the accession number HQ888848.Therefore, the type strain of this species cannot be included in any further scientific comparative study. It is proposed that the Judicial Commission of the International Committee on Systematics of Prokaryotes place the name Enterobacter siamensis on the list of rejected names, if a suitable replacement for the type strain is not found or a neotype strain is not proposed within two years following the publication of this Request for an Opinion.

  19. Bacterial cellulose synthesis mechanism of facultative anaerobe Enterobacter sp. FY-07.

    PubMed

    Ji, Kaihua; Wang, Wei; Zeng, Bing; Chen, Sibin; Zhao, Qianqian; Chen, Yueqing; Li, Guoqiang; Ma, Ting

    2016-02-25

    Enterobacter sp. FY-07 can produce bacterial cellulose (BC) under aerobic and anaerobic conditions. Three potential BC synthesis gene clusters (bcsI, bcsII and bcsIII) of Enterobacter sp. FY-07 have been predicted using genome sequencing and comparative genome analysis, in which bcsIII was confirmed as the main contributor to BC synthesis by gene knockout and functional reconstitution methods. Protein homology, gene arrangement and gene constitution analysis indicated that bcsIII had high identity to the bcsI operon of Enterobacter sp. 638; however, its arrangement and composition were same as those of BC synthesizing operon of G. xylinum ATCC53582 except for the flanking sequences. According to the BC biosynthesizing process, oxygen is not directly involved in the reactions of BC synthesis, however, energy is required to activate intermediate metabolites and synthesize the activator, c-di-GMP. Comparative transcriptome and metabolite quantitative analysis demonstrated that under anaerobic conditions genes involved in the TCA cycle were downregulated, however, genes in the nitrate reduction and gluconeogenesis pathways were upregulated, especially, genes in three pyruvate metabolism pathways. These results suggested that Enterobacter sp. FY-07 could produce energy efficiently under anaerobic conditions to meet the requirement of BC biosynthesis.

  20. Bacterial cellulose synthesis mechanism of facultative anaerobe Enterobacter sp. FY-07

    PubMed Central

    Ji, Kaihua; Wang, Wei; Zeng, Bing; Chen, Sibin; Zhao, Qianqian; Chen, Yueqing; Li, Guoqiang; Ma, Ting

    2016-01-01

    Enterobacter sp. FY-07 can produce bacterial cellulose (BC) under aerobic and anaerobic conditions. Three potential BC synthesis gene clusters (bcsI, bcsII and bcsIII) of Enterobacter sp. FY-07 have been predicted using genome sequencing and comparative genome analysis, in which bcsIII was confirmed as the main contributor to BC synthesis by gene knockout and functional reconstitution methods. Protein homology, gene arrangement and gene constitution analysis indicated that bcsIII had high identity to the bcsI operon of Enterobacter sp. 638; however, its arrangement and composition were same as those of BC synthesizing operon of G. xylinum ATCC53582 except for the flanking sequences. According to the BC biosynthesizing process, oxygen is not directly involved in the reactions of BC synthesis, however, energy is required to activate intermediate metabolites and synthesize the activator, c-di-GMP. Comparative transcriptome and metabolite quantitative analysis demonstrated that under anaerobic conditions genes involved in the TCA cycle were downregulated, however, genes in the nitrate reduction and gluconeogenesis pathways were upregulated, especially, genes in three pyruvate metabolism pathways. These results suggested that Enterobacter sp. FY-07 could produce energy efficiently under anaerobic conditions to meet the requirement of BC biosynthesis. PMID:26911736

  1. Microarray-based Comparative Genomic Indexing of the Cronobacter genus (Enterobacter sakazakii)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cronobacter is a recently defined genus synonymous with Enterobacter sakazakii. This new genus currently comprises 6 genomospecies. To extend our understanding of the genetic relationship between Cronobacter sakazakii BAA-894 and the other species of this genus, microarray-based comparative genomi...

  2. Genome Sequence of the Plant Growth-Promoting Bacterium Enterobacter cloacae GS1

    PubMed Central

    Shankar, Manoharan; Ponraj, Paramasivan; Ilakiam, Devaraj; Rajendhran, Jeyaprakash

    2012-01-01

    Here, we present the genome sequence of Enterobacter cloacae GS1. This strain proficiently colonizes rice roots and promotes plant growth by improving plant nutrition. Analyses of the E. cloacae GS1 genome will throw light on the genetic factors involved in root colonization, growth promotion, and ecological success of this rhizobacterium. PMID:22843603

  3. Atypical internal yellowing of papaya fruit in Hawaii caused by Enterobacter sakazakii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Internal yellowing (IY), characterized by yellow discolored tissue around the papaya (Carica papaya) seed cavity, diffuse margins and the presence of a distinctly rotten odor, was first reported in 1987. These symptoms were associated with the causal agent Enterobacter cloacae. Here we report the fo...

  4. Complete Genome Sequence of the Endophytic Enterobacter cloacae subsp. cloacae Strain ENHKU01

    PubMed Central

    Liu, Wing-Yee; Chung, Karl Ming-Kar; Wong, Chi-Fat; Jiang, Jing-Wei; Hui, Raymond Kin-Hi

    2012-01-01

    Enterobacter cloacae subsp. cloacae strain ENHKU01 is a Gram-negative endophyte isolated from a diseased pepper (Capsicum annuum) plant in Hong Kong. This is the first complete genome sequence report of a plant-endophytic strain of E. cloacae subsp. cloacae. PMID:23045485

  5. Evaluating Hawaii-Grown Papaya for Resistance to Internal Yellowing Disease Caused by Enterobacter cloacae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Papaya (Carica papaya L.) cultivars and breeding lines were evaluated for resistance to Enterobacter cloacae (Jordan) Hormaeche & Edwards, the bacterial causal agent of internal yellowing disease (IY), using a range of concentrations of the bacterium. Linear regression analysis was performed and IY ...

  6. Treatment of KPC-2 Enterobacter cloacae empyema with cefepime and levofloxacin.

    PubMed

    Cardile, Anthony P; Briggs, Heather; Burguete, S Rodrigo; Herrera, Monica; Wickes, Brian L; Jorgensen, James H

    2014-02-01

    Carbapenem-resistant Enterobacteriaceae infections are becoming more common, are associated with high mortality rates, and are difficult to treat due to multiple mechanisms of resistance. We describe the successful treatment of Klebsiella pneumoniae carbapenemase-expressing Enterobacter cloacae empyema in a lung transplant recipient with cefepime and levofloxacin.

  7. Plant growth promoting potential and phylogenetic characteristics of a lichenized nitrogen fixing bacterium, Enterobacter cloacae.

    PubMed

    Swamy, Chidanandamurthy Thippeswamy; Gayathri, Devaraja; Devaraja, Thimmalapura Neelakantaiah; Bandekar, Mandar; D'Souza, Stecy Elvira; Meena, Ram Murti; Ramaiah, Nagappa

    2016-12-01

    Lichens are complex symbiotic association of mycobionts, photobionts, and bacteriobionts, including chemolithotropic bacteria. In the present study, 46 lichenized bacteria were isolated by conventional and enrichment culture methods on nitrogen-free bromothymol blue (NFb) medium. Only 11 of the 46 isolates fixed nitrogen on NFb and had reduced acetylene. All these 11 isolates had also produced siderophore and 10 of them the IAA. Further, ammonia production was recorded from nine of these nitrogen fixers (NF). On molecular characterization, 16 S rRNA sequencing recorded that, nine NF belonged to Proteobacteria, within Gammaproteobacteria, and were closely related to Enterobacter sp. with a maximum similarity to Enterobacter cloacae. Each one of our NF isolates was aligned closely to Enterobacter pulveris strain E443, Cronobacter sakazakii strain PNP8 and Providencia rettgeri strain ALK058. Notably, a few strains we examined found to possess plant growth promoting properties. This is the first report of Enterobacter sp. from lichens which may be inhabit lichen thalli extrinsically or intrinsically.

  8. Alterations in the response of pigs to Salmonella typhimurium when provided Enterobacter cloacae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weanling pigs are at risk of succumbing to illness due to an immature immune system and insufficient supply of available energy at the time of weaning. Recent evidence has suggested that providing pigs with Enterobacter cloacae can increase the concentration of circulating triglycerides (TAGs) and t...

  9. Enterobacter soli sp. nov.: a lignin-degrading y-Proteobacteria isolated from soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A Gram-negative bacterium that formed cream colored colonies designated strain LF7 was isolated from soil collected in the Tambopata National Reserve in Madre de Dios, Peru. 16S rRNA sequence comparisons indicate that LF7 is a novel Enterobacter sp. closely related to E. asburiae AB004744T and E. a...

  10. Inactivation of Enterobacter sakazakii by Water-soluble Muscadine Seed Extracts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hot and cold water-soluble muscadine (Vitis rotundifolia) seed extracts and their polar and polyphenol fractions from two Muscadine cultivars (‘Ison’, purple and ‘Carlos’, bronze) were investigated for their inhibition of Enterobacter sakazakii. The heat treatment on each seed extract not only incre...

  11. Carbapenem resistance via the blaKPC-2 gene in Enterobacter cloacae blood culture isolate.

    PubMed

    Lo, Andy; Verrall, Rosemary; Williams, John; Stratton, Charles; Della-Latta, Phyllis; Tang, Yi-Wei

    2010-05-01

    An Enterobacter cloacae blood culture isolate expressing carbapenem resistance via the Klebsiella pneumoniae carbapenemase KPC-2 gene is reported. To our knowledge, this is the first report of a nosocomial isolate with carbapenemase-mediated resistance causing infection in a patient from Tennessee.

  12. Copper as an antimicrobial agent against opportunistic pathogenic and multidrug resistant Enterobacter bacteria.

    PubMed

    Tian, Wen-Xiao; Yu, Shi; Ibrahim, Muhammad; Almonaofy, Abdul Wareth; He, Liu; Hui, Qiu; Bo, Zhu; Li, Bin; Xie, Guan-Lin

    2012-08-01

    Infections by Enterobacter species are common and are multidrug resistant. The use of bactericidal surface materials such as copper has lately gained attention as an effective antimicrobial agent due to its deadly effects on bacteria, yeast, and viruses. The aim of the current study was to assess the antibacterial activity of copper surfaces against Enterobacter species. The antibacterial activity of copper surfaces was tested by overlying 5×10(6) CFU/ml suspensions of representative Enterobacter strains and comparing bacterial survival counts on copper surfaces at room temperature. Iron, stainless steel, and polyvinylchloride (PVC) were used as controls. The mechanisms responsible for bacterial killing on copper surfaces were investigated by a mutagenicity assay of the D-cycloserin (cyclA gene), single cell gel electrophoresis, a staining technique, and inductively coupled plasma mass spectroscopy. Copper yielded a significant decrease in the viable bacterial counts at 2 h exposure and a highly significant decrease at 4 h. Loss of cell integrity and a significantly higher influx of copper into bacterial cells exposed to copper surfaces, as compared to those exposed to the controls, were documented. There was no increase in mutation rate and DNA damage indicating that copper contributes to bacterial killing by adversely affecting cellular structure without directly targeting the genomic DNA. These findings suggest that copper's antibacterial activity against Enterobacter species could be utilized in health care facilities and in food processing plants to reduce the bioburden, which would increase protection for susceptible members of the community.

  13. Pseudomonas Aeruginosa: Resistance to the Max

    PubMed Central

    Poole, Keith

    2011-01-01

    Pseudomonas aeruginosa is intrinsically resistant to a variety of antimicrobials and can develop resistance during anti-pseudomonal chemotherapy both of which compromise treatment of infections caused by this organism. Resistance to multiple classes of antimicrobials (multidrug resistance) in particular is increasingly common in P. aeruginosa, with a number of reports of pan-resistant isolates treatable with a single agent, colistin. Acquired resistance in this organism is multifactorial and attributable to chromosomal mutations and the acquisition of resistance genes via horizontal gene transfer. Mutational changes impacting resistance include upregulation of multidrug efflux systems to promote antimicrobial expulsion, derepression of ampC, AmpC alterations that expand the enzyme's substrate specificity (i.e., extended-spectrum AmpC), alterations to outer membrane permeability to limit antimicrobial entry and alterations to antimicrobial targets. Acquired mechanisms contributing to resistance in P. aeruginosa include β-lactamases, notably the extended-spectrum β-lactamases and the carbapenemases that hydrolyze most β-lactams, aminoglycoside-modifying enzymes, and 16S rRNA methylases that provide high-level pan-aminoglycoside resistance. The organism's propensity to grow in vivo as antimicrobial-tolerant biofilms and the occurrence of hypermutator strains that yield antimicrobial resistant mutants at higher frequency also compromise anti-pseudomonal chemotherapy. With limited therapeutic options and increasing resistance will the untreatable P. aeruginosa infection soon be upon us? PMID:21747788

  14. Spaceflight Effects on Virulence of Pseudomonas Aeruginosa

    NASA Astrophysics Data System (ADS)

    Broadway, S.; Goins, T.; Crandell, C.; Richards, C.; Patel, M.; Pyle, B.

    2008-06-01

    Pseudomonas aeruginosa is an opportunistic pathogen found in the environment. It is known to infect the immunocompromised. The organism has about 25 virulence genes that play different roles in disease processes. Several exotoxin proteins may be produced, including ExoA, ExoS, ExoT and ExoY, and other virulence factors. In spaceflight, possible increased expression of P. aeruginosa virulence proteins could increase health risks for spaceflight crews who experience decreased immunity. Cultures of P. aeruginosa strains PA01 and PA103 grown on orbit on Shuttle Endeavour flight STS-123 vs. static ground controls were used for analysis. The production of ETA was quantitated using an ELISA procedure. Results showed that while flight cultures of PA103 produced slightly more ETA than corresponding ground controls, the opposite was found for PA01. While it appears that spaceflight has little effect on ETA, stimulation of other virulence factors could cause increased virulence of this organism in space flight. Similar increased virulence in spaceflight has been observed for other bacteria. This is important because astronauts may be more susceptible to opportunistic pathogens including P. aeruginosa.

  15. Integrated evaluation of aerogenic pollution by air-transported heavy metals (Pb, Cd, Ni, Zn, Mn and Cu) in the analysis of the main deposit media.

    PubMed

    Baltrėnaitė, Edita; Baltrėnas, Pranas; Lietuvninkas, Arvydas; Serevičienė, Vaida; Zuokaitė, Eglė

    2014-01-01

    The composition of the ambient air is constantly changing; therefore, the monitoring of ambient air quality to detect the changes caused by aerogenic pollutants makes the essential part of general environmental monitoring. To achieve more effective improvement of the ambient air quality, the Directive 2008/50/EC on 'Ambient Air Quality and Cleaner Air for Europe' was adopted by the European Parliament and the European Council. It informed the public and enterprises about a negative effect of pollution on humans, animals and plants, as well as about the need for monitoring aerogenic pollutants not only at the continuous monitoring stations but also by using indicator methods, i.e. by analysing natural deposit media. The problem of determining the relationship between the accumulation level of pollutants by a deposit medium and the level of air pollution and its risks is constantly growing in importance. The paper presents a comprehensive analysis of the response of the main four deposit media, i.e. snow cover, soil, pine bark and epigeic mosses, to the long-term pollution by aerogenic pollutants which can be observed in the area of oil refinery influence. Based on the quantitative expressions of the amounts of the accumulated pollutants in the deposit media, the territory of the oil refinery investigated in this paper has been referred to the areas of mild or moderate pollution.

  16. Pseudomonas aeruginosa ventilator-associated pneumonia management.

    PubMed

    Ramírez-Estrada, Sergio; Borgatta, Bárbara; Rello, Jordi

    2016-01-01

    Ventilator-associated pneumonia is the most common infection in intensive care unit patients associated with high morbidity rates and elevated economic costs; Pseudomonas aeruginosa is one of the most frequent bacteria linked with this entity, with a high attributable mortality despite adequate treatment that is increased in the presence of multiresistant strains, a situation that is becoming more common in intensive care units. In this manuscript, we review the current management of ventilator-associated pneumonia due to P. aeruginosa, the most recent antipseudomonal agents, and new adjunctive therapies that are shifting the way we treat these infections. We support early initiation of broad-spectrum antipseudomonal antibiotics in present, followed by culture-guided monotherapy de-escalation when susceptibilities are available. Future management should be directed at blocking virulence; the role of alternative strategies such as new antibiotics, nebulized treatments, and vaccines is promising.

  17. Pseudomonas aeruginosa ventilator-associated pneumonia management

    PubMed Central

    Ramírez-Estrada, Sergio; Borgatta, Bárbara; Rello, Jordi

    2016-01-01

    Ventilator-associated pneumonia is the most common infection in intensive care unit patients associated with high morbidity rates and elevated economic costs; Pseudomonas aeruginosa is one of the most frequent bacteria linked with this entity, with a high attributable mortality despite adequate treatment that is increased in the presence of multiresistant strains, a situation that is becoming more common in intensive care units. In this manuscript, we review the current management of ventilator-associated pneumonia due to P. aeruginosa, the most recent antipseudomonal agents, and new adjunctive therapies that are shifting the way we treat these infections. We support early initiation of broad-spectrum antipseudomonal antibiotics in present, followed by culture-guided monotherapy de-escalation when susceptibilities are available. Future management should be directed at blocking virulence; the role of alternative strategies such as new antibiotics, nebulized treatments, and vaccines is promising. PMID:26855594

  18. Cryptic transposable phages of Pseudomonas aeruginosa

    SciTech Connect

    Krylov, V.N.; Mit`kina, L.N.; Pleteneva, E.A.; Aleshin, V.V.

    1995-11-01

    Frequencies of nucleotide sequences homologous to phage transposons (PT) of two species, D3112 and B3, were assessed in genomes of natural Pseudomonas aeruginosa strains by the dot-blot hybridization method. These strains were incapable of liberating viable phages on a lawn of the PA01 standard indicator strain of P. aeruginosa. It was shown that the homologies detected belong to two groups, high and intermediate, with respect to homology level. Homology patterns were classified as high when they provided signals comparable to those for hybridization in a positive control; patterns were classified as intermediate when the hybridization level was higher than the background level, but lower than in the positive control. Homologous PT sequences were designated as cryptic PT. Intact cryptic PT prophages were shown to exist in genomes of particular natural strains manifesting a higher level of hybridization. However, the growth of these phages was limited by the restriction system of strain PA01. It is possible to isolate strains maintaining the growth of some cryptic PT. These strains differed from P. aeruginosa with respect to the specificity of the restriction and modification system. Nevertheless, in most cases, the attempt to identify a novel host capable of maintaining growth of a cryptic PT failed. Natural strains often carry cryptic PT related to both known PT species, D3112 and B3. The frequency of cryptic PT is extremely high, reaching 30% in strains with a high level of homology only and up to 50% in all strains exhibiting homology. This high PT frequency is assumed to be associated with the considerable variation of P. aeruginosa. 15 refs., 1 fig., 2 tabs.

  19. Pseudomonas aeruginosa essentials: an update on investigation of essential genes.

    PubMed

    Juhas, Mario

    2015-11-01

    Pseudomonas aeruginosa is the leading cause of nosocomial infections, particularly in immunocompromised, cancer, burn and cystic fibrosis patients. Development of novel antimicrobials against P. aeruginosa is therefore of the highest importance. Although the first reports on P. aeruginosa essential genes date back to the early 2000s, a number of more sensitive genomic approaches have been used recently to better define essential genes in this organism. These analyses highlight the evolution of the definition of an 'essential' gene from the traditional to the context-dependent. Essential genes, particularly those indispensable under the clinically relevant conditions, are considered to be promising targets of novel antibiotics against P. aeruginosa. This review provides an update on the investigation of P. aeruginosa essential genes. Special focus is on recently identified P. aeruginosa essential genes and their exploitation for the development of antimicrobials.

  20. Glycerol metabolism promotes biofilm formation by Pseudomonas aeruginosa.

    PubMed

    Scoffield, Jessica; Silo-Suh, Laura

    2016-08-01

    Pseudomonas aeruginosa causes persistent infections in the airways of cystic fibrosis (CF) patients. Airway sputum contains various host-derived nutrients that can be utilized by P. aeruginosa, including phosphotidylcholine, a major component of host cell membranes. Phosphotidylcholine can be degraded by P. aeruginosa to glycerol and fatty acids to increase the availability of glycerol in the CF lung. In this study, we explored the role that glycerol metabolism plays in biofilm formation by P. aeruginosa. We report that glycerol metabolism promotes biofilm formation by both a chronic CF isolate (FRD1) and a wound isolate (PAO1) of P. aeruginosa. Moreover, loss of the GlpR regulator, which represses the expression of genes involved in glycerol metabolism, enhances biofilm formation in FRD1 through the upregulation of Pel polysaccharide. Taken together, our results suggest that glycerol metabolism may be a key factor that contributes to P. aeruginosa persistence by promoting biofilm formation.

  1. Bioethanol production from mannitol by a newly isolated bacterium, Enterobacter sp. JMP3.

    PubMed

    Wang, Jing; Kim, Young Mi; Rhee, Hong Soon; Lee, Min Woo; Park, Jong Moon

    2013-05-01

    In this study a new bacterium capable of growing on brown seaweed Laminaria japonica, Enterobacter sp. JMP3 was isolated from the gut of turban shell, Batillus cornutus. In anaerobic condition, it produced high yields of ethanol (1.15 mol-EtOH mol-mannitol(-1)) as well as organic acids from mannitol, the major carbohydrate component of L. japonica. Based on carbon distribution and metabolic flux analysis, it was revealed that mannitol was more favorable than glucose for ethanol production due to their different redox states. This indicates that L. japonica is one of the promising feedstock for bioethanol production. Additionally, the mannitol dehydrogenation pathway in Enterobacter sp. JMP3 was examined and verified. Finally, an attempt was made to explore the possibility of controlling ethanol production by altering the redox potential via addition of external NADH in mannitol fermentation.

  2. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638

    SciTech Connect

    Taghavi, S.; van der Lelie, D.; Hoffman, A.; Zhang, Y.-B.; Walla, M. D.; Vangronsveld, J.; Newman, L.; Monchy, S.

    2010-05-13

    Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpa x deltoides cv. H11-11), a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1). Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plant roots), root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis), colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase), plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol), and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT-PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further exploited to

  3. Growth response of maize plantlets inoculated with Enterobacter spp., as a model for alternative agriculture.

    PubMed

    Morales-García, Yolanda E; Juárez-Hernández, Dalia; Aragón-Hernández, Celia; Mascarua-Esparza, Miguel A; Bustillos-Cristales, María R; Fuentes-Ramírez, Luis E; Martinez-Contreras, Rebeca D; Munoz-Rojas, Jesus

    2011-01-01

    A maize rhizosphere isolate was phenotypically and genotypically characterized and identified as Enterobacter spp. bacterium. Germinated seeds were inoculated, the plantlets were sown in vermiculite and in soil and grown under laboratory and field conditions, respectively. The adherence, colonization and plant growth promotion capability of Enterobacter sp. UAPS03001 was evaluated in "Rojo-Criollo" maize under laboratory conditions. Twenty days after inoculation, the treated plantlets showed larger biomass than non-inoculated ones. In field grown plants, the kernel biomass was also greater in inoculated than in non-inoculated plants. The inoculation of maize sprouts with plant growth- promoting bacteria before their sowing in the field would be an alternative practice for achieving successful yield in temporal agriculture.

  4. KPC and VIM producing Enterobacter cloacae strain from a hospital in northeastern Venezuela.

    PubMed

    Martínez, Dianny; Marcano, Daniel; Rodulfo, Hectorina; Salgado, Nurys; Cuaical, Nirvia; Rodriguez, Lucy; Caña, Luisa; Medina, Belkis; Guzman, Militza; De Donato, Marcos

    2015-06-01

    An 83-year-old male patient is admitted to the central hospital in Cumana, Venezuela with severe urinary infection, history of hospitalizaions and prolonged antimicrobial treatments. A strain of Enterobacter cloacae was isolated showing resistance to multiple types of antibiotics (only sensitive to gentamicin), with phenotype of serine- and metallo-carbapenemases. Both, bla(VIM-2) and bla(KPC) genes were detected in the isolate. This is the first report of an Enterobacteriaceae species producing both KPC carbapenemase and VIM metallo carbapenemase in Venezuela. This finding has a great clinical and epidemiological impact in the region, because of the feasibility of transferring these genes, through mobile elements to other strains of Enterobacter and to other infection-causing species of bacteria.

  5. Colistin heteroresistance in Enterobacter cloacae is associated with cross-resistance to the host antimicrobial lysozyme.

    PubMed

    Napier, Brooke A; Band, Victor; Burd, Eileen M; Weiss, David S

    2014-09-01

    Here, we describe the first identification of colistin-heteroresistant Enterobacter cloacae in the United States. Treatment of this isolate with colistin increased the frequency of the resistant subpopulation and induced cross-resistance to the host antimicrobial lysozyme. This is the first description of heteroresistance conferring cross-resistance to a host antimicrobial and suggests that clinical treatment with colistin may inadvertently select for bacteria that are resistant to components of the host innate immune system.

  6. Colistin Heteroresistance in Enterobacter cloacae Is Associated with Cross-Resistance to the Host Antimicrobial Lysozyme

    PubMed Central

    Napier, Brooke A.; Band, Victor

    2014-01-01

    Here, we describe the first identification of colistin-heteroresistant Enterobacter cloacae in the United States. Treatment of this isolate with colistin increased the frequency of the resistant subpopulation and induced cross-resistance to the host antimicrobial lysozyme. This is the first description of heteroresistance conferring cross-resistance to a host antimicrobial and suggests that clinical treatment with colistin may inadvertently select for bacteria that are resistant to components of the host innate immune system. PMID:24982068

  7. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638

    PubMed Central

    Taghavi, Safiyh; van der Lelie, Daniel; Hoffman, Adam; Zhang, Yian-Biao; Walla, Michael D.; Vangronsveld, Jaco; Newman, Lee; Monchy, Sébastien

    2010-01-01

    Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpa×deltoides cv. H11-11), a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1). Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plant roots), root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis), colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase), plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol), and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT–PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further exploited to

  8. An Enterobacter Plasmid as a New Genetic Background for the Transposon Tn1331

    DTIC Science & Technology

    2011-11-25

    resolvase gene (tnpR′). Although Tn1331-related sequences and partial components have also been detected in Serratia marcescens, Salmonella serovars...member or employee of the US Government as part of that person’s official duties. References 1. Sanders WE Jr, Sanders CC. Enterobacter spp ...antimicrobial resistance in different Salmonella serovars. Int J Antimicrob Agents. 1995;5(3): 199–202. 22. Orman BE, Pineiro SA, Arduino S, et al

  9. Autophagy enhances bacterial clearance during P. aeruginosa lung infection.

    PubMed

    Junkins, Robert D; Shen, Ann; Rosen, Kirill; McCormick, Craig; Lin, Tong-Jun

    2013-01-01

    Pseudomonas aeruginosa is an opportunistic bacterial pathogen which is the leading cause of morbidity and mortality among cystic fibrosis patients. Although P. aeruginosa is primarily considered an extacellular pathogen, recent reports have demonstrated that throughout the course of infection the bacterium acquires the ability to enter and reside within host cells. Normally intracellular pathogens are cleared through a process called autophagy which sequesters and degrades portions of the cytosol, including invading bacteria. However the role of autophagy in host defense against P. aeruginosa in vivo remains unknown. Understanding the role of autophagy during P. aeruginosa infection is of particular importance as mutations leading to cystic fibrosis have recently been shown to cause a blockade in the autophagy pathway, which could increase susceptibility to infection. Here we demonstrate that P. aeruginosa induces autophagy in mast cells, which have been recognized as sentinels in the host defense against bacterial infection. We further demonstrate that inhibition of autophagy through pharmacological means or protein knockdown inhibits clearance of intracellular P. aeruginosa in vitro, while pharmacologic induction of autophagy significantly increased bacterial clearance. Finally we find that pharmacological manipulation of autophagy in vivo effectively regulates bacterial clearance of P. aeruginosa from the lung. Together our results demonstrate that autophagy is required for an effective immune response against P. aeruginosa infection in vivo, and suggest that pharmacological interventions targeting the autophagy pathway could have considerable therapeutic potential in the treatment of P. aeruginosa lung infection.

  10. Mechanism of resistance to benzalkonium chloride by Pseudomonas aeruginosa.

    PubMed

    Sakagami, Y; Yokoyama, H; Nishimura, H; Ose, Y; Tashima, T

    1989-08-01

    The mechanisms of resistance of Pseudomonas aeruginosa to benzalkonium chloride (BC) were studied. The effluence of cell components was observed in susceptible P. aeruginosa by electron microscopy, but resistant P. aeruginosa seemed to be undamaged. No marked changes in cell surface potential between Escherichia coli NIHJC-2 and a spheroplast strain were found. The contents of phospholipids (PL) and fatty and neutral lipids (FNL) in the cell walls of resistant P. aeruginosa were higher than those in the cell walls of susceptible P. aeruginosa. The amounts of BC adsorbed to PL and FNL of cell walls of BC-resistant P. aeruginosa were lower than those for BC-susceptible P. aeruginosa. Fifteen species of cellular fatty acids were identified by capillary gas chromatography and gas chromatography-mass spectrometry. The ability of BC to permeate the cell wall was reduced because of the increase in cellular fatty acids. These results suggested that the resistance of P. aeruginosa to BC is mainly a result of increased in the contents of PL and FNL. In resistant P. aeruginosa, the decrease in the amount of BC adsorbed is likely to be the result of increases in the contents of PL and FNL.

  11. Mechanism of resistance to benzalkonium chloride by Pseudomonas aeruginosa.

    PubMed Central

    Sakagami, Y; Yokoyama, H; Nishimura, H; Ose, Y; Tashima, T

    1989-01-01

    The mechanisms of resistance of Pseudomonas aeruginosa to benzalkonium chloride (BC) were studied. The effluence of cell components was observed in susceptible P. aeruginosa by electron microscopy, but resistant P. aeruginosa seemed to be undamaged. No marked changes in cell surface potential between Escherichia coli NIHJC-2 and a spheroplast strain were found. The contents of phospholipids (PL) and fatty and neutral lipids (FNL) in the cell walls of resistant P. aeruginosa were higher than those in the cell walls of susceptible P. aeruginosa. The amounts of BC adsorbed to PL and FNL of cell walls of BC-resistant P. aeruginosa were lower than those for BC-susceptible P. aeruginosa. Fifteen species of cellular fatty acids were identified by capillary gas chromatography and gas chromatography-mass spectrometry. The ability of BC to permeate the cell wall was reduced because of the increase in cellular fatty acids. These results suggested that the resistance of P. aeruginosa to BC is mainly a result of increased in the contents of PL and FNL. In resistant P. aeruginosa, the decrease in the amount of BC adsorbed is likely to be the result of increases in the contents of PL and FNL. Images PMID:2506813

  12. Enhanced phytoremediation of toxic metals by inoculating endophytic Enterobacter sp. CBSB1 expressing bifunctional glutathione synthase.

    PubMed

    Qiu, Zhiqi; Tan, Hongming; Zhou, Shining; Cao, Lixiang

    2014-02-28

    To engineer plant-bacteria symbionts for remediating complex sites contaminated with multiple metals, the bifunctional glutathione (GSH) synthase gene gcsgs was introduced into endophytic Enterobacter sp. CBSB1 to improve phytoremediation efficiency of host plant Brassica juncea. The GSH contents of shoots inoculated with CBSB1 is 0.4μMg(-1) fresh weight. However, the GSH concentration of shoots with engineered CBSB1-GCSGS increased to 0.7μMg(-1) fresh weight. The shoot length, fresh weight and dry weight of seedlings inoculated with CBSB1-GCSGS increased 67%, 123%, and 160%, compared with seedlings without inoculation, respectively. The Cd and Pb concentration in shoots with CBSB1-GCSGS increased 48% and 59% compared with seedlings without inoculation, respectively. The inoculation of CBSB1 and CBSB1-GCSGS could increase the Cd and Pb extraction amounts of seedlings significantly compared with those without inoculation (P<0.05), the seedlings inoculated with CBSB1-GCSGS showed the highest Cd and Pb extraction amounts. It was concluded that the gcsgs gene introduced into Enterobacter sp. CBSB1 upgraded the phytoremediation efficacy of B. juncea. So the engineered Enterobacter sp. CBSB1-GCSGS showed potentials in remediation sites contaminated with complex contaminants by inoculating into remediating plants.

  13. Reduction of selenite to elemental selenium by Enterobacter cloacae SLD1a-1

    SciTech Connect

    Dungan, R.S.; Frankenberger, W.T. Jr.

    1998-11-01

    The facultative anaerobic bacterium Enterobacter cloacae strain SLD1a-1 was studied in washed cell suspensions to assess optimal conditions required for the reduction of selenite (SeO{sub 3}{sup 2{minus}}) to elemental selenium (Se{sup 0}). Enterobacter cloacae using glucose (1.4 mM) as an electron donor removed 79% of the added SeO{sub 3}{sup 2{minus}} from solution in 2.5 h. Optimal SeO{sub 3}{sup 2{minus}} reduction occurred at a pH of 6.5 and a temperature of 40 C. Carbohydrate sources arabinose, xylose, and sorbose were found to significantly enhance SeO{sub 3}{sup 2{minus}} reduction over that of glucose. The reduction of SeO{sub 3}{sup 2{minus}} at 7.9 {micro}M was inhibited by nitrate of levels 1 to 100 times greater, nitrite at levels 5 and 10 times greater, while sulfite at levels of two to four times greater was found to stimulate the reduction of SeO{sub 3}{sup 2{minus}}. Enterobacter cloacae grows on anaerobically incubated plates containing NO{sub 3}{sup {minus}} as the sole terminal electron acceptor and acetate as the electron donor. Use of SeO{sub 3}{sup 2{minus}} as the terminal electron acceptor during anaerobic respiration did not support growth and could only be reduced to Se{sup 0} when NO{sub 3}{sup {minus}} was present.

  14. Impact of glycerol and nitrogen concentration on Enterobacter A47 growth and exopolysaccharide production.

    PubMed

    Torres, Cristiana A V; Marques, Rodolfo; Ferreira, Ana R V; Antunes, Sílvia; Grandfils, Christian; Freitas, Filomena; Reis, Maria A M

    2014-11-01

    Enterobacter A47 produces a fucose-containing exopolysaccharide (EPS) by cultivation in mineral medium supplemented with glycerol. EPS synthesis by Enterobacter A47 was shown to be influenced by both the initial glycerol and nitrogen concentrations and by the nutrients' feeding rate during the fed-batch phase. Initial nitrogen concentrations above 1.05g/L were detrimental for EPS synthesis: the productivity was reduced to 0.35-0.62g/Ld (compared to 1.89-2.04g/Ld under lower nitrogen concentrations) and the polymer had lower fucose content (14-17%mol, compared to 36-38%mol under lower nitrogen concentrations). On the other hand, EPS productivity was improved to 5.66g/Ld by increasing the glycerol and nitrogen feeding rates during the fed-batch phase. However, the EPS thus obtained had lower fucose (26%mol) and higher galactose (34%mol) contents, as well as lower average molecular weight (7.2×10(5)). The ability of Enterobacter A47 to synthesize EPS with different physico-chemical characteristics may be useful for the generation of biopolymers with distinct functional properties suitable for different applications.

  15. Inoculation of hybrid poplar with the endophytic bacterium Enterobacter sp. 638 increases biomass but does not impact leaf level physiology

    SciTech Connect

    Rogers, A.; McDonald, K.; Muehlbauer, M. F.; Hoffman, A.; Koenig, K.; Newman, L.; Taghavi, S.; Van Der Lelie, D.

    2011-01-01

    Endophytic bacteria have been shown to provide several advantages to their host, including enhanced growth. Inoculating biofuel species with endophytic bacteria is therefore an attractive option to increase the productivity of biofuel feedstocks. Here, we investigated the effect of inoculating hard wood cuttings of Populus deltoides Bartr. x Populus. nigra L. clone OP367 with Enterobacter sp. 638. After 17 weeks, plants inoculated with Enterobacter sp. 638 had 55% greater total biomass than un-inoculated control plants. Study of gas exchange and fluorescence in developing and mature leaves over a diurnal cycle and over a 5 week measurement campaign revealed no effects of inoculation on photosynthesis, stomatal conductance, photosynthetic water use efficiency or the maximum and operating efficiency of photosystem II. However, plants inoculated with Enterobacter sp. 638 had a canopy that was 39% larger than control plants indicating that the enhanced growth was fueled by increased leaf area, not by improved physiology. Leaf nitrogen content was determined at two stages over the 5 week measurement period. No effect of Enterobacter sp. 638 on leaf nitrogen content was found indicating that the larger plants were acquiring sufficient nitrogen. Enterobacter sp. 638 lacks the genes for N{sub 2} fixation, therefore the increased availability of nitrogen likely resulted from enhanced nitrogen acquisition by the 84% larger root system. These data show that Enterobacter sp. 638 has the potential to dramatically increase productivity in poplar. If fully realized in the production environment, these results indicate that an increase in the environmental and economic viability of poplar as a biofuel feedstock is possible when inoculated with endophytic bacteria like Enterobacter sp. 638.

  16. Host-pathogen interactions in specific pathogen-free chickens following aerogenous infection with Chlamydia psittaci and Chlamydia abortus.

    PubMed

    Kalmar, Isabelle; Berndt, Angela; Yin, Lizi; Chiers, Koen; Sachse, Konrad; Vanrompay, Daisy

    2015-03-15

    Although Chlamydia (C.) psittaci infections are recognized as an important factor causing economic losses and impairing animal welfare in poultry production, the specific mechanisms leading to severe clinical outcomes are poorly understood. In the present study, we comparatively investigated pathology and host immune response, as well as systemic dissemination and expression of essential chlamydial genes in the course of experimental aerogeneous infection with C. psittaci and the closely related C. abortus, respectively, in specific pathogen-free chicks. Clinical signs appeared sooner and were more severe in the C. psittaci-infected group. Compared to C. abortus infection, more intense systemic dissemination of C. psittaci correlated with higher and faster infiltration of immune cells, as well as more macroscopic lesions and epithelial pathology, such as hyperplasia and erosion. In thoracic air sac tissue, mRNA expression of immunologically relevant factors, such as IFN-γ, IL-1β, IL-6, IL-17, IL-22, LITAF and iNOS was significantly stronger up-regulated in C. psittaci- than in C. abortus-infected birds between 3 and 14 days post-infection. Likewise, transcription rates of the chlamydial genes groEL, cpaf and ftsW were consistently higher in C. psittaci during the acute phase. These findings illustrate that the stronger replication of C. psittaci in its natural host also evoked a more intense immune response than in the case of C. abortus infection.

  17. Factors affecting phosphate uptake by Aerobacter aerogenes in a system relating cell numbers to 32P uptake.

    PubMed

    White, L A; MacLeod, R A

    1971-03-01

    The uptake of phosphate, from media limited in this ion, by resting cells of Aerobacter aerogenes has been investigated and shown to be dependent upon several factors. An incubation medium composed of 10(-2)m K(+), 5 x 10(-3)m Mg(2+), 1 mg of glucose per ml, and 1 muCi of (32)PO(4) (3-) per ml, buffered at pH 6.55 with 0.05 mN-2-hydroxyethyl-piperazine-N'-2-ethanesulfonic acid (HEPES), was found to stimulate optimum accumulation of (32)P-orthophosphate. The temperature of incubation, incubation time, the concentration of unlabeled orthophosphate, as well as arsenate, and several metabolic inhibitors were found to affect the accumulation. The labeled cells were collected on a membrane filter, which had been previously boiled in glass-distilled water, for measurement of the radioactivity accumulated. Under optimum conditions, as few as 20,000 cells were capable of accumulating detectable amounts of (32)P-orthophosphate in 1 hr of incubation.

  18. Dechlorination of 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane by Aerobacter aerogenes

    USGS Publications Warehouse

    Wedemeyer, Gary

    1967-01-01

    Whole cells or cell-free extracts of Aerobacter aerogenes catalyze the degradation of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) in vitro to at least seven metabolites: 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE); 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (DDD); 1-chloro-2,2-bis(p-chlorophenyl)ethylene (DDMU); 1-chloro-2,2-bis(p-chlorophenyl)ethane (DDMS); unsym-bis(p-chlorophenyl)ethylene (DDNU); 2,2-bis(p-chlorophenyl)acetate (DDA); and 4,4′-dichlorobenzophenone (DBP). The use of metabolic inhibitors together with pH and temperature studies indicated that discrete enzymes are involved. By use of the technique of sequential analysis, the metabolic pathway was shown to be: DDT → DDD →DDMU →DDMS → DDNU → DDA → DBP, or DDT → DDE. Dechlorination was marginally enhanced by light-activated flavin mononucleotide.

  19. Social cheating in Pseudomonas aeruginosa quorum sensing.

    PubMed

    Sandoz, Kelsi M; Mitzimberg, Shelby M; Schuster, Martin

    2007-10-02

    In a process termed quorum sensing, bacteria use diffusible chemical signals to coordinate cell density-dependent gene expression. In the human pathogen Pseudomonas aeruginosa, quorum sensing controls hundreds of genes, many of which encode extracellular virulence factors. Quorum sensing is required for P. aeruginosa virulence in animal models. Curiously, quorum sensing-deficient variants, most of which carry a mutation in the gene encoding the central quorum sensing regulator lasR, are frequently isolated from acute and chronic infections. The mechanism for their emergence is not known. Here we provide experimental evidence suggesting that these lasR mutants are social cheaters that cease production of quorum-controlled factors and take advantage of their production by the group. We detected an emerging subpopulation of lasR mutants after approximately 100 generations of in vitro evolution of the P. aeruginosa wild-type strain under culture conditions that require quorum sensing for growth. Under such conditions, quorum sensing appears to impose a metabolic burden on the proliferating bacterial cell, because quorum-controlled genes not normally induced until cessation of growth were highly expressed early in growth, and a defined lasR mutant showed a growth advantage when cocultured with the parent strain. The emergence of quorum-sensing-deficient variants in certain environments is therefore an indicator of high quorum sensing activity of the bacterial population as a whole. It does not necessarily indicate that quorum sensing is insignificant, as has previously been suggested. Thus, novel antivirulence strategies aimed at disrupting bacterial communication may be particularly effective in such clinical settings.

  20. First report of NDM-1-producing Pseudomonas aeruginosa in Egypt.

    PubMed

    Zafer, Mai Mahmoud; Amin, Mady; El Mahallawy, Hadir; Ashour, Mohammed Seif El-Din; Al Agamy, Mohamed

    2014-12-01

    This work reports the occurrence of New Delhi metallo-beta-lactamase 1 (NDM-1) in metallo-beta-lactamase-producing Pseudomonas aeruginosa in Egypt for the first time, and the presence of more than one blaMBL gene in carbapenem-resistant P. aeruginosa.

  1. Oxidation of 1-Tetradecene by Pseudomonas aeruginosa

    PubMed Central

    Markovetz, A. J.; Klug, M. J.; Forney, F. W.

    1967-01-01

    Pseudomonas aeruginosa strain Sol 20 was grown on 1-tetradecene as sole carbon source, and a vinyl-unsaturated 14-carbon monocarboxylic acid, 13-tetradecenoic acid, was identified from culture fluid. This acid was not produced when n-tetradecane served as substrate for growth. Oxidation of the methyl group represents one method of attack on the 1-alkene by this organism. Tentative identification of 2-tetradecanol indicates that an attack on the double bond is also occurring. α, ω-Dienes would not support growth. PMID:4962057

  2. Evaluation of phytochemical and antibacterial potential of Helicteres isora L. fruits against enteric bacterial pathogens.

    PubMed

    Tambekar, D H; Khante, B S; Panzade, B K; Dahikar, Sb; Banginwar, Ys

    2008-04-10

    Antibacterial activities of aqueous, acetone, ethanol and methanol extracts of fruits of Helicteres isora (Mororphali) were studied. The fruit aqueous extracts of H. isora showed prominent antibacterial activities against E. coli, Staphylococcus epidermidis, Salmonella typhimurium and Proteus vulgaris; moderate activity against Enterobacter aerogenes, Staphylococcus aureus, Salmonella typhi and least activity against Pseudomonas aeruginosa. The aqueous extract showed maximal, the ethanol and methanol extract moderate and acetone extracts least antibacterial activities. Phytochemical screening revealed the presence of carbohydrates, anthraquinon glycosides, proteins, tannin and phenolic compounds and steroids These antibacterial properties supports its traditional use of fruits of H. isora in the treatment of enteric or diarrhoeal infections.

  3. Antimicrobial activity of essential oil from Schinus molle Linn.

    PubMed

    Gundidza, M

    1993-11-01

    The essential oil from the fresh leaves of Schinus molle isolated by hydrodistillation was tested for antibacterial activity using the hole plate diffusion method and for antifungal activity using the mycelium or single cell growth inhibition method. Results obtained showed that the volatile oil exhibited significant activity against the following bacterial species: Klebsiella pneumoniae, Alcaligenes faecalis, Pseudomonas aeruginosa, Leuconostoc cremoris, Enterobacter aerogenes, Proteus vulgaris, Clostridium sporogenes, Acinetobacter calcoacetica, Escherichia coli, Beneckea natriegens, Citrobacter freundii, Serratia marcescens, Bacillus subtilis and Brochothrix thermosphacata. The fungal species Aspergillus ochraceus, Aspergillus parasiticus, Fusarium culmorum and Alternaria alternata exhibited significant sensitivity to the volatile oil.

  4. Molecular epidemiology of Pseudomonas aeruginosa in an intensive care unit.

    PubMed Central

    Döring, G.; Hörz, M.; Ortelt, J.; Grupp, H.; Wolz, C.

    1993-01-01

    Genotyping was used to analyse Pseudomonas aeruginosa isolates from sink drains and 15 intubated patients as part of a 3-month prospective study of strain transmission in a medical-surgical intensive care unit. Ninety percent of all washbasin drains were persistently contaminated with several P. aeruginosa genotypes. In 60% (9/15) of the patients, P. aeruginosa colonization or infection was hospital-acquired: P. aeruginosa strains isolated from these patients were present in hospital sinks or in other patients before their admission. Since all patients were immobile, personnel were the probable route of transmission of P. aeruginosa in the hospital. The mechanism of strain transmission from sinks to hands during hand washing was investigated in a children's hospital. When P. aeruginosa was present at densities of > 10(5)/c.f.u. per ml in sink drains, hand washing resulted in hand contamination with P. aeruginosa via aerosol generation in the majority of experiments or P. aeruginosa was detected using an air sampler above the washing basin. High P. aeruginosa cfu were present at 4.30 h in the eight sinks (5.4 x 10(5)-7.0 x 10(10) c.f.u./ml), whereas at 13.00 h P. aeruginosa c.f.u. were significantly lower (3.1 x 10(2)-8.0 x 10(5) c.f.u./ml). These data reveal that the danger of bacterial contamination of hands during hand washing is highest in the morning. The identified transmission routes demand more effective hygienic measures in hospital settings particularly concerning personnel hands and sink drains. Images Fig. 1 PMID:8519308

  5. Imported PER-1 producing Pseudomonas aeruginosa, PER-1 producing Acinetobacter baumanii and VIM-2-producing Pseudomonas aeruginosa strains in Hungary

    PubMed Central

    Szabó, Dora; Szentandrássy, Julia; Juhász, Zsuzsa; Katona, Katalin; Nagy, Károly; Rókusz, László

    2008-01-01

    Introduction Pseudomonas aeruginosa and Acinetobacter baumanii are important nosocomial pathogens with wide intrinsic resistance. However, due to the dissemination of the acquired resistance mechanisms, such as extended-spectrum beta-lactamase (ESBL) and metallo beta-lactamase (MBL) production, multidrug resistant strains have been isolated more often. Case presentation We report a case of a Hungarian tourist, who was initially hospitalized in Egypt and later transferred to Hungary. On the day of admission PER-1-producing P. aeruginosa, PER-1 producing A. baumannii, SHV-5-producing Klebsiella pneumoniae and VIM-2-producing P. aeruginosa isolates were subcultured from the patient's samples in Hungary. Comparing the pulsed-field gel electrophoresis (PFGE) patterns of the P. aeruginosa strains from the patient to the P. aeruginosa strains occurring in this hospital, we can state that the PER-1-producing P. aeruginosa and VIM-2-producing P. aeruginosa had external origin. Conclusion This is the first report of PER-1-producing P. aeruginosa,and PER-1-producing A. baumanii strains in Hungary. This case highlights the importance of spreading of the beta-lactamase-mediated resistance mechanisms between countries and continents, showing the importance of careful screening and the isolation of patients arriving from a different country. PMID:18513394

  6. Molecular epidemiological survey of Citrobacter freundii misidentified as Cronobacter spp. (Enterobacter sakazakii) and Enterobacter hormaechei isolated from powdered infant milk formula.

    PubMed

    Giammanco, Giovanni M; Aleo, Aurora; Guida, Ivana; Mammina, Caterina

    2011-04-01

    A total of 75 powdered infant milk formula (PIF) samples collected from pharmacies and drugstores in Western Sicily, Italy, and representative of 12 different brands were analyzed in this study to evaluate their microbiological quality. According to the U.S. Food and Drug Administration protocol, 32 samples out of 75 were contaminated by enterobacteria. Commercial biochemical API(r) 20E-system identification method indicated that six PIF samples were presumptively contaminated by Cronobacter spp., but further characterization by alpha-glucosidase based polymerase chain reaction (PCR) assay identification strongly suggested that these strains did not belong to the genus Cronobacter. Phylogenetic analysis of partial 16S rRNA (rrs) sequences combined with the results of biochemical tests allowed to identify the six strains as Citrobacter freundii. Similarly, rrs sequence analysis identified as Enterobacter hormaechei 23 strains originally ascribed to Enterobacter cloacae by the API 20E system. Characterization of C. freundii and E. hormaechei PIF isolates by the DiversiLab(r) repetitive sequence-based PCR (rep-PCR) typing method revealed a variety of amplification patterns, but the recovery of the same rep-PCR genotype in several products might indicate a special adaptation of genetic clones to this food or cross-contamination through common ingredients. Antibiotic-resistance profiles were also determined, but none of the strains tested was resistant to third-generation cephalosporins or fluoroquinolones and extended-spectrum beta-lactamase activity was not detected. Our results confirm that E. hormaechei contamination of PIF is widespread, thus making it a cause for concern. Similarly to what was demonstrated for E. hormaechei, we suggest that C. freundii also may be an under-reported cause of bacterial infection, especially in high-risk neonates, due to misidentification.

  7. Biotransformation of myrcene by Pseudomonas aeruginosa

    PubMed Central

    2011-01-01

    Background Dihydrolinalool and terpineol are sources of fragrances that provide a unique volatile terpenoid alcohol of low toxicity and thus are widely used in the perfumery industry, in folk medicine, and in aromatherapy. They are important chemical constituents of the essential oil of many plants. Previous studies have concerned the biotransformation of limonene by Pseudomonas putida. The objective of this research was to study biotransformation of myrcene by Pseudomonas aeruginosa. The culture preparation was done using such variables as different microbial methods and incubation periods to obtain maximum cells of P. aeruginosa for myrcene biotransformation. Results It was found that myrcene was converted to dihydrolinalool and 2,6-dimethyloctane in high percentages. The biotransformation products were identified by Fourier-transform infrared spectroscopy (FT-IR), ultraviolet (UV) analysis, gas chromatography (GC), and gas chromatography-mass spectroscopy (GC-MS). Comparison of the different incubation times showed that 3 days was more effective, the major products being 2,6-dimethyloctane (90.0%) and α-terpineol (7.7%) and comprising 97.7%. In contrast, the main compounds derived for an incubation time of 1.5 days were dihydrolinalool (79.5%) and 2,6-dimethyloctane (9.3%), with a total yield of 88.8%. PMID:21609445

  8. Purification of extracellular lipase from Pseudomonas aeruginosa.

    PubMed Central

    Stuer, W; Jaeger, K E; Winkler, U K

    1986-01-01

    Lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) was excreted by Pseudomonas aeruginosa PAC1R during the late logarithmic growth phase. Characterization of cell-free culture supernatants by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of significant amounts of lipopolysaccharide, part of which seemed to be tightly bound to lipase. After concentration of culture supernatants by ultrafiltration, lipase-lipopolysaccharide complexes were dissociated by treatment with EDTA-Tris buffer and subsequent sonication in the presence of the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. The solubilized lipase was purified by isoelectric focusing in an agarose gel containing the same detergent; the lipase activity appeared in a single peak corresponding to a distinct band in the silver-stained gel. The isoelectric point was 5.8. Analysis of purified lipase by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and scanning revealed an apparent molecular weight of 29,000 and a specific activity of 760 mu kat/mg of protein. Estimations based on these data showed that a single P. aeruginosa cell excreted about 200 molecules of lipase, each having a molecular activity of 2.2 X 10(4) per s. Images PMID:3096967

  9. Genome Sequence of Enterobacter cloacae Strain SENG-6, a Bacterium Producing Histo-Blood Group Antigen-Like Substances That Can Bind with Human Noroviruses

    PubMed Central

    Amarasiri, Mohan; Hashiba, Satoshi; Yang, Peiyi; Okabe, Satoshi

    2016-01-01

    Enterobacter sp. strain SENG-6, isolated from healthy human feces, produces histo-blood group antigen (HBGA)-like substances that can bind with human noroviruses. Based on the genome sequence analysis, strain SENG-6 belongs to the species Enterobacter cloacae. The genome sequence of this strain should help identify genes associated with the production of HBGA-like substances. PMID:27563051

  10. Genome Sequence of Enterobacter cloacae Strain SENG-6, a Bacterium Producing Histo-Blood Group Antigen-Like Substances That Can Bind with Human Noroviruses.

    PubMed

    Ishii, Satoshi; Amarasiri, Mohan; Hashiba, Satoshi; Yang, Peiyi; Okabe, Satoshi; Sano, Daisuke

    2016-08-25

    Enterobacter sp. strain SENG-6, isolated from healthy human feces, produces histo-blood group antigen (HBGA)-like substances that can bind with human noroviruses. Based on the genome sequence analysis, strain SENG-6 belongs to the species Enterobacter cloacae The genome sequence of this strain should help identify genes associated with the production of HBGA-like substances.

  11. Aerobic and heterotrophic nitrogen removal by Enterobacter cloacae CF-S27 with efficient utilization of hydroxylamine.

    PubMed

    Padhi, Soumesh Kumar; Tripathy, Swetaleena; Mohanty, Sriprakash; Maiti, Nikhil Kumar

    2017-05-01

    Heterotrophic bacterium, Enterobacter cloacae CF-S27 exhibited simultaneous nitrification and aerobic denitrification in presence of high concentration of hydroxylamine. With the initial nitrogen concentration of 100mgL(-1)h(-1), ammonium, nitrate and nitrite removal efficiencies were 81%, 99.9% and 92.8%, while the corresponding maximum removal rates reached as high as 11.6, 15.1 and 11.2mgL(-1)h(-1) respectively. Quantitative amplification by real time PCR and enzyme assay demonstrated that hydroxylamine reductase gene (hao) is actively involved in hetrotrophic nitrification and aerobic denitrification process of Enterobacter cloacae CF-S27. PCR primers were designed targeting amplification of hao gene from diversified environmental soil DNA. The strain Enterobacter cloacae CF-S27 significantly maintained the undetectable amount of dissolved nitrogen throughout 60days of zero water exchange fish culture experiment in domestic wastewater.

  12. Enterobacter sp. LU1 as a novel succinic acid producer - co-utilization of glycerol and lactose.

    PubMed

    Podleśny, Marcin; Jarocki, Piotr; Wyrostek, Jakub; Czernecki, Tomasz; Kucharska, Jagoda; Nowak, Anna; Targoński, Zdzisław

    2017-03-01

    Succinic acid is an important C4-building chemical platform for many applications. A novel succinic acid-producing bacterial strain was isolated from goat rumen. Phylogenetic analysis based on the 16S rRNA sequence and physiological analysis indicated that the strain belongs to the genus Enterobacter. This is the first report of a wild bacterial strain from the genus Enterobacter that is capable of efficient succinic acid production. Co-fermentation of glycerol and lactose significantly improved glycerol utilization under anaerobic conditions, debottlenecking the utilization pathway of this valuable biodiesel waste product. Succinic acid production reached 35 g l(-1) when Enterobacter sp. LU1 was cultured in medium containing 50 g l(-1) of glycerol and 25 g l(-1) of lactose as carbon sources.

  13. Production of hydrogen and volatile fatty acid by Enterobacter sp. T4384 using organic waste materials.

    PubMed

    Kim, Byung-Chun; Deshpande, Tushar R; Chun, Jongsik; Yi, Sung Chul; Kim, Hyunook; Um, Youngsoon; Sang, Byoung-In

    2013-02-01

    In a study of hydrogen-producing bacteria, strain T4384 was isolated from rice field samples in the Republic of Korea. The isolate was identified as Enterobacter sp. T4384 by phylogenetic analysis of 16S rRNA and rpoB gene sequences. Enterobacter sp. T4384 grew at a temperature range of 10-45 degrees C and at an initial pH range of 4.5-9.5. Strain T4384 produced hydrogen at 0-6% NaCl by using glucose, fructose, and mannose. In serum bottle cultures using a complete medium, Enterobacter sp. T4384 produced 1,098 ml/l H2, 4.0 g/l ethanol, and 1.0 g/l acetic acid. In a pH-regulated jar fermenter culture with the biogas removed, 2,202 ml/l H2, 6.2 g/l ethanol, and 1.0 g/l acetic acid were produced, and the lag-phase time was 4.8 h. Strain T4384 metabolized the hydrolysate of organic waste for the production of hydrogen and volatile fatty acid. The strain T4384 produced 947 ml/l H2, 3.2 g/l ethanol, and 0.2 g/l acetic acid from 6% (w/v) food waste hydrolysate; 738 ml/l H2, 4.2 g/l ethanol, and 0.8 g/l acetic acid from Miscanthus sinensis hydrolysate; and 805 ml/l H2, 5.0 g/l ethanol, and 0.7 g/l acetic acid from Sorghum bicolor hydrolysate.

  14. Proteomic profiling of L-cysteine induced selenite resistance in Enterobacter sp. YSU

    PubMed Central

    Jasenec, Ashley; Barasa, Nathaniel; Kulkarni, Samatha; Shaik, Nabeel; Moparthi, Swarnalatha; Konda, Venkataramana; Caguiat, Jonathan

    2009-01-01

    Background Enterobacter sp. YSU is resistant to several different heavy metal salts, including selenite. A previous study using M-9 minimal medium showed that when the selenite concentration was 100,000 times higher than the sulfate concentration, selenite entered Escherichia coli cells using two pathways: a specific and a non-specific pathway. In the specific pathway, selenite entered the cells through a yet to be characterized channel dedicated for selenite. In the non-specific pathway, selenite entered the cells through a sulfate permease channel. Addition of L-cystine, an L-cysteine dimer, appeared to indirectly decrease selenite import into the cell through the non-specific pathway. However, it did not affect the level of selenite transport into the cell through the specific pathway. Results Growth curves using M-9 minimal medium containing 40 mM selenite and 1 mM sulfate showed that Enterobacter sp. YSU grew when L-cysteine was present but died when it was absent. Differential protein expression analysis by two dimensional gel electrophoresis showed that CysK was present in cultures containing selenite and lacking L-cysteine but absent in cultures containing both selenite and L-cysteine. Additional RT-PCR studies demonstrated that transcripts for the sulfate permease genes, cysA, cysT and cysW, were down-regulated in the presence of L-cysteine. Conclusion L-cysteine appeared to confer selenite resistance upon Enterobacter sp. YSU by decreasing the level of selenite transport into the cell through the non-specific pathway. PMID:19715574

  15. Extended-Spectrum Beta-Lactamases among Enterobacter Isolates Obtained in Tel Aviv, Israel

    PubMed Central

    Schlesinger, Jacob; Navon-Venezia, Shiri; Chmelnitsky, Inna; Hammer-Münz, Orly; Leavitt, Azita; Gold, Howard S.; Schwaber, Mitchell J.; Carmeli, Yehuda

    2005-01-01

    The extended-spectrum beta-lactamase (ESBL)-producing phenotype is frequent among Enterobacter isolates at the Tel Aviv Sourasky Medical Center, Tel Aviv, Israel. We examined the clonal relatedness and characterized the ESBLs of a collection of these strains. Clonal relatedness was determined by pulsed-field gel electrophoresis. Isoelectric focusing (IEF) and transconjugation experiments were performed. ESBL gene families were screened by colony hybridization and PCR for blaTEM, blaSHV, blaCTX-M, blaIBC, blaPER, blaOXA, blaVEB, and blaSFO; and the PCR products were sequenced. The 17 Enterobacter isolates studied comprised 15 distinct genotypes. All isolates showed at least one IEF band (range, one to five bands) whose appearance was suppressed by addition of clavulanate; pIs ranged from 5.4 to ≥8.2. Colony hybridization identified at least one family of beta-lactamase genes in 11 isolates: 10 harbored blaTEM and 9 harbored blaSHV. PCR screening and sequence analysis of the PCR products for blaTEM, blaSHV, and blaCTX-M identified TEM-1 in 11 isolates, SHV-12 in 7 isolates, SHV-1 in 1 isolate, a CTX-M-2-like gene in 2 isolates, and CTX-M-26 in 1 isolate. In transconjugation experiments with four isolates harboring blaTEM-1 and blaSHV-12, both genes were simultaneously transferred to the recipient strain Escherichia coli HB101. Plasmid mapping, PCR, and Southern analysis with TEM- and SHV-specific probes demonstrated that a single transferred plasmid carried both the TEM-1 and the SHV-12 genes. The widespread presence of ESBLs among Enterobacter isolates in Tel Aviv is likely due not to clonal spread but, rather, to plasmid-mediated transfer, at times simultaneously, of genes encoding several types of enzymes. The dominant ESBL identified was SHV-12. PMID:15728917

  16. Whole genome sequence of Enterobacter ludwigii type strain EN-119T, isolated from clinical specimens.

    PubMed

    Li, Gengmi; Hu, Zonghai; Zeng, Ping; Zhu, Bing; Wu, Lijuan

    2015-04-01

    Enterobacter ludwigii strain EN-119(T) is the type strain of E. ludwigii, which belongs to the E. cloacae complex (Ecc). This strain was first reported and nominated in 2005 and later been found in many hospitals. In this paper, the whole genome sequencing of this strain was carried out. The total genome size of EN-119(T) is 4952,770 bp with 4578 coding sequences, 88 tRNAs and 10 rRNAs. The genome sequence of EN-119(T) is the first whole genome sequence of E. ludwigii, which will further our understanding of Ecc.

  17. Carbapenem- and Colistin-Resistant Enterobacter cloacae from Delta, Colorado, in 2015

    PubMed Central

    Norgan, Andrew P.; Freese, Jarred M.; Tuin, Patricia M.; Cunningham, Scott A.

    2016-01-01

    Resistance to carbapenems in Enterobacteriaceae is a clinical problem of growing significance. Difficulty in treating multidrug-resistant Gram-negative organisms with conventional antibiotics has led to a renewed and increasing use of polymyxin compounds, such as colistin. Here, we report the isolation of carbapenem- and colistin-resistant Enterobacter cloacae from a polymicrobial lower extremity wound in an ambulatory patient. Whole-genome sequencing demonstrated the presence of chromosomal blaIMI-1 and blaAmpC, as well as numerous efflux pump genes. PMID:26883705

  18. Carbapenem- and Colistin-Resistant Enterobacter cloacae from Delta, Colorado, in 2015.

    PubMed

    Norgan, Andrew P; Freese, Jarred M; Tuin, Patricia M; Cunningham, Scott A; Jeraldo, Patricio R; Patel, Robin

    2016-05-01

    Resistance to carbapenems in Enterobacteriaceae is a clinical problem of growing significance. Difficulty in treating multidrug-resistant Gram-negative organisms with conventional antibiotics has led to a renewed and increasing use of polymyxin compounds, such as colistin. Here, we report the isolation of carbapenem- and colistin-resistant Enterobacter cloacae from a polymicrobial lower extremity wound in an ambulatory patient. Whole-genome sequencing demonstrated the presence of chromosomal blaIMI-1 and blaAmpC, as well as numerous efflux pump genes.

  19. Infective endocarditis due to Enterobacter cloacae resistant to third- and fourth-generation cephalosporins.

    PubMed

    Yoshino, Yusuke; Okugawa, Shu; Kimura, Satoshi; Makita, Eiko; Seo, Kazunori; Koga, Ichiro; Matsunaga, Naohisa; Kitazawa, Takatoshi; Ota, Yasuo

    2015-04-01

    We report the case of using a long-term combination of meropenem and amikacin to treat infective endocarditis caused by Enterobacter cloacae resistant to third- and fourth-generation cephalosporins. Multi-drug resistant Gram-negative bacilli, such as the E. cloacae in our study, may become possible pathogens of infective endocarditis. Our experience with this case indicates that long-term use of a combination of β-lactam and aminoglycosides might represent a suitable management option for future infective endocarditis cases due to non-Haemophilus, Actinobacillus, Cardiobacterium, Eikenella, Kingella spp. (HACEK group) Gram-negative bacilli such as ours.

  20. Effect of cefoxitin and clindamycin on selection of derepressed mutants in Enterobacter cloacae.

    PubMed

    Saverino, D; Milintenda-Floriani, F; Medeiros, A A

    2004-07-01

    The characteristics of an antibiotic that favor its ability to select for resistant bacteria are not completely understood. Otherwise, by the common use of broad-spectrum cephalosporins, resistant strains of several gram-negative species, especially Enterobacter cloacae, have been more frequently isolated. During our studies on beta-lactam resistance in E. cloacae, we observed that the addition of an inhibitor (clindamycin) to a potent inducer (cefoxitin) leads to an enhanced selection of resistant mutants. This could explain the emergence of beta-lactam resistant strains during antibiotic therapy.

  1. Byelyankacin: a novel melanogenesis inhibitor produced by Enterobacter sp. B20.

    PubMed

    Takahashi, Senji; Iwai, Hiroki; Kosaka, Kunio; Miyazaki, Toshitsugu; Osanai, Yuko; Arao, Nakako; Tanaka, Kouichi; Nagai, Koji; Nakagawa, Akira

    2007-11-01

    A novel melanogenesis inhibitor, byelyankacin (1), was isolated from the fermentation broth of a bacterial strain. The producing organism, designated B20, was identified as a member of the genus Enterobacter based on taxonomic characteristics. 1 was obtained as a white powder from the culture medium by solvent extraction and serial chromatographic purification. The structure of 1 was determined as (E)-4-(2-isocyanovinyl)phenyl alpha-L-rhamnopyranoside on the basis of spectroscopic data. 1 potently inhibited mushroom tyrosinase and melanogenesis of B16-2D2 melanoma cells with IC50 value of 2.1 nM and 30 nM, respectively.

  2. Genomic Characterization of Enterobacter cloacae Isolates from China That Coproduce KPC-3 and NDM-1 Carbapenemases.

    PubMed

    Du, Hong; Chen, Liang; Chavda, Kalyan D; Pandey, Ruchi; Zhang, Haifang; Xie, Xiaofang; Tang, Yi-Wei; Kreiswirth, Barry N

    2016-04-01

    Here, we report twoEnterobacter cloacaesequence type 231 isolates coproducing KPC-3 and NDM-1 that have caused lethal infections in a tertiary hospital in China. TheblaNDM-1-harboring plasmids carry IncA/C2and IncR replicons, showing a mosaic plasmid structure, and theblaNDM-1is harbored on a novel class I integron-like element.blaKPC-3is located on a Tn3-ΔblaTEM-1-blaKPC-3-ΔTn1722element, flanked by two 9-bp direct-repeat sequences and harbored on an IncX6 plasmid.

  3. Genomic Characterization of Enterobacter cloacae Isolates from China That Coproduce KPC-3 and NDM-1 Carbapenemases

    PubMed Central

    Chen, Liang; Chavda, Kalyan D.; Pandey, Ruchi; Zhang, Haifang; Xie, Xiaofang

    2016-01-01

    Here, we report two Enterobacter cloacae sequence type 231 isolates coproducing KPC-3 and NDM-1 that have caused lethal infections in a tertiary hospital in China. The blaNDM-1-harboring plasmids carry IncA/C2 and IncR replicons, showing a mosaic plasmid structure, and the blaNDM-1 is harbored on a novel class I integron-like element. blaKPC-3 is located on a Tn3-ΔblaTEM-1-blaKPC-3-ΔTn1722 element, flanked by two 9-bp direct-repeat sequences and harbored on an IncX6 plasmid. PMID:26787700

  4. Subinhibitory bismuth-thiols reduce virulence of Pseudomonas aeruginosa.

    PubMed

    Wu, Chieh-Liang; Domenico, Philip; Hassett, Daniel J; Beveridge, Terry J; Hauser, Alan R; Kazzaz, Jeffrey A

    2002-06-01

    Pseudomonas aeruginosa is a common pathogen in mechanically ventilated patients and produces a wide array of virulence factors. Bismuth-thiols (BTs) are active in vitro against all bacterial lung pathogens, including P. aeruginosa. The objective of these studies was to examine the biochemical and morphologic effects of sublethal BT concentrations on P. aeruginosa and to evaluate virulence in cell culture. Bismuth-dimercaprol, at a fraction of the minimal inhibitory concentration, reduced alginate expression by 67% in P. aeruginosa, whereas subinhibitory bismuth-ethanedithiol (BisEDT) reduced alginate by 92% in P. syringae. BisEDT effects on lipopolysaccharide content and type III secreted cytoxins were examined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Subinhibitory BisEDT reduced cell-associated lipopolysaccharide, and inhibited processing of the secreted cytotoxic protein ExoU. BisEDT-induced outer membrane blebbing and aggregation of cytoplasmic material was noted in electron microscopy. Virulence of P. aeruginosa was assessed by adherence to epithelial cells and sensitivity to serum killing. BisEDT inhibited adherence of P. aeruginosa to 16HBE14o- cells by 28% and to a collagen matrix by 53%. BisEDT-treated bacteria were also 100-fold more sensitive to serum bactericidal activity. In summary, low BT concentrations affect P. aeruginosa in a variety of ways, the combination of which may help prevent or resolve respiratory tract infection.

  5. Dynorphin Activates Quorum Sensing Quinolone Signaling in Pseudomonas aeruginosa

    PubMed Central

    Zaborina, Olga; Lepine, Francois; Xiao, Gaoping; Valuckaite, Vesta; Chen, Yimei; Li, Terry; Ciancio, Mae; Zaborin, Alex; Petroff, Elaine; Turner, Jerrold R; Rahme, Laurence G; Chang, Eugene; Alverdy, John C

    2007-01-01

    There is now substantial evidence that compounds released during host stress directly activate the virulence of certain opportunistic pathogens. Here, we considered that endogenous opioids might function as such compounds, given that they are among the first signals to be released at multiple tissue sites during host stress. We tested the ability of various opioid compounds to enhance the virulence of Pseudomonas aeruginosa using pyocyanin production as a biological readout, and demonstrated enhanced virulence when P. aeruginosa was exposed to synthetic (U-50,488) and endogenous (dynorphin) κ-agonists. Using various mutants and reporter strains of P. aeruginosa, we identified involvement of key elements of the quorum sensing circuitry such as the global transcriptional regulator MvfR and the quorum sensing-related quinolone signaling molecules PQS, HHQ, and HQNO that respond to κ-opioids. The in vivo significance of κ-opioid signaling of P. aeruginosa was demonstrated in mice by showing that dynorphin is released from the intestinal mucosa following ischemia/reperfusion injury, activates quinolone signaling in P. aeruginosa, and enhances the virulence of P. aeruginosa against Lactobacillus spp. and Caenorhabditis elegans. Taken together, these data demonstrate that P. aeruginosa can intercept opioid compounds released during host stress and integrate them into core elements of quorum sensing circuitry leading to enhanced virulence. PMID:17367209

  6. Otopathogenic Pseudomonas aeruginosa Enters and Survives Inside Macrophages

    PubMed Central

    Mittal, Rahul; Lisi, Christopher V.; Kumari, Hansi; Grati, M’hamed; Blackwelder, Patricia; Yan, Denise; Jain, Chaitanya; Mathee, Kalai; Weckwerth, Paulo H.; Liu, Xue Z.

    2016-01-01

    Otitis media (OM) is a broad term describing a group of infectious and inflammatory disorders of the middle ear. Despite antibiotic therapy, acute OM can progress to chronic suppurative otitis media (CSOM) characterized by ear drum perforation and purulent discharge. Pseudomonas aeruginosa is the most common pathogen associated with CSOM. Although, macrophages play an important role in innate immune responses but their role in the pathogenesis of P. aeruginosa-induced CSOM is not known. The objective of this study is to examine the interaction of P. aeruginosa with primary macrophages. We observed that P. aeruginosa enters and multiplies inside human and mouse primary macrophages. This bacterial entry in macrophages requires both microtubule and actin dependent processes. Transmission electron microscopy demonstrated that P. aeruginosa was present in membrane bound vesicles inside macrophages. Interestingly, deletion of oprF expression in P. aeruginosa abrogates its ability to survive inside macrophages. Our results suggest that otopathogenic P. aeruginosa entry and survival inside macrophages is OprF-dependent. The survival of bacteria inside macrophages will lead to evasion of killing and this lack of pathogen clearance by phagocytes contributes to the persistence of infection in CSOM. Understanding host–pathogen interaction will provide novel avenues to design effective treatment modalities against OM. PMID:27917157

  7. Interactions between Neutrophils and Pseudomonas aeruginosa in Cystic Fibrosis

    PubMed Central

    Rada, Balázs

    2017-01-01

    Cystic fibrosis (CF) affects 70,000 patients worldwide. Morbidity and mortality in CF is largely caused by lung complications due to the triad of impaired mucociliary clearance, microbial infections and chronic inflammation. Cystic fibrosis airway inflammation is mediated by robust infiltration of polymorphonuclear neutrophil granulocytes (PMNs, neutrophils). Neutrophils are not capable of clearing lung infections and contribute to tissue damage by releasing their dangerous cargo. Pseudomonas aeruginosa is an opportunistic pathogen causing infections in immunocompromised individuals. P. aeruginosa is a main respiratory pathogen in CF infecting most patients. Although PMNs are key to attack and clear P. aeruginosa in immunocompetent individuals, PMNs fail to do so in CF. Understanding why neutrophils cannot clear P. aeruginosa in CF is essential to design novel therapies. This review provides an overview of the antimicrobial mechanisms by which PMNs attack and eliminate P. aeruginosa. It also summarizes current advances in our understanding of why PMNs are incapable of clearing P. aeruginosa and how this bacterium adapts to and resists PMN-mediated killing in the airways of CF patients chronically infected with P. aeruginosa. PMID:28282951

  8. Mast cells protect against Pseudomonas aeruginosa-induced lung injury.

    PubMed

    Junkins, Robert D; Carrigan, Svetlana O; Wu, Zhengli; Stadnyk, Andrew W; Cowley, Elizabeth; Issekutz, Thomas; Berman, Jason; Lin, Tong-Jun

    2014-08-01

    Pseudomonas aeruginosa, an opportunistic pathogen, is the leading cause of morbidity and mortality in immune-compromised individuals. Maintaining the integrity of the respiratory epithelium is critical for an effective host response to P. aeruginosa. Given the close spatial relationship between mast cells and the respiratory epithelium, and the importance of tightly regulated epithelial permeability during lung infections, we examined whether mast cells influence airway epithelial integrity during P. aeruginosa lung infection in a mouse model. We found that mast cell-deficient Kit(W-sh)/Kit(W-sh) mice displayed greatly increased epithelial permeability, bacterial dissemination, and neutrophil accumulation compared with wild-type animals after P. aeruginosa infection; these defects were corrected on reconstitution with mast cells. An in vitro Transwell co-culture model further demonstrated that a secreted mast cell factor decreased epithelial cell apoptosis and tumor necrosis factor production after P. aeruginosa infection. Together, our data demonstrate a previously unrecognized role for mast cells in the maintenance of epithelial integrity during P. aeruginosa infection, through a mechanism that likely involves prevention of epithelial apoptosis and tumor necrosis factor production. Our understanding of mechanisms of the host response to P. aeruginosa will open new avenues for the development of successful preventative and treatment strategies.

  9. Environmental Pseudomonads Inhibit Cystic Fibrosis Patient-Derived Pseudomonas aeruginosa.

    PubMed

    Chatterjee, Payel; Davis, Elizabeth; Yu, Fengan; James, Sarah; Wildschutte, Julia H; Wiegmann, Daniel D; Sherman, David H; McKay, Robert M; LiPuma, John J; Wildschutte, Hans

    2017-01-15

    Pseudomonas aeruginosa is an opportunistic pathogen which is evolving resistance to many currently used antibiotics. While much research has been devoted to the roles of pathogenic P. aeruginosa in cystic fibrosis (CF) patients, less is known of its ecological properties. P. aeruginosa dominates the lungs during chronic infection in CF patients, yet its abundance in some environments is less than that of other diverse groups of pseudomonads. Here, we sought to determine if clinical isolates of P. aeruginosa are vulnerable to environmental pseudomonads that dominate soil and water habitats in one-to-one competitions which may provide a source of inhibitory factors. We isolated a total of 330 pseudomonads from diverse habitats of soil and freshwater ecosystems and competed these strains against one another to determine their capacity for antagonistic activity. Over 900 individual inhibitory events were observed. Extending the analysis to P. aeruginosa isolates revealed that clinical isolates, including ones with increased alginate production, were susceptible to competition by multiple environmental strains. We performed transposon mutagenesis on one isolate and identified an ∼14.8-kb locus involved in antagonistic activity. Only two other environmental isolates were observed to carry the locus, suggesting the presence of additional unique compounds or interactions among other isolates involved in outcompeting P. aeruginosa This collection of strains represents a source of compounds that are active against multiple pathogenic strains. With the evolution of resistance of P. aeruginosa to currently used antibiotics, these environmental strains provide opportunities for novel compound discovery against drug-resistant clinical strains.

  10. Comparison of UVB and UVC irradiation disinfection efficacies on Pseudomonas Aeruginosa (P. aeruginosa) biofilm

    NASA Astrophysics Data System (ADS)

    Argyraki, A.; Markvart, M.; Nielsen, Anne; Bjarnsholt, T.; Bjørndal, L.; Petersen, P. M.

    2016-04-01

    Disinfection routines are important in all clinical applications. The uprising problem of antibiotic resistance has driven major research efforts towards alternative disinfection approaches, involving light-based solutions. Pseudomonas aeruginosa (P. aeruginosa) is a common bacterium that can cause skin, soft tissue, lungs, kidney and urinary tract infections. Moreover, it can be found on and in medical equipment causing often cross infections in hospitals. The objective of this study was to test the efficiency, of two different light-based disinfection treatments, namely UVB and UVC irradiation, on P. aeruginosa biofilms at different growth stages. In our experiments a new type of UV light emitting diodes (LEDs) were used to deliver UV irradiation on the biofilms, in the UVB (296nm) and UVC (266nm) region. The killing rate was studied as a function of dose for 24h grown biofilms. The dose was ramped from 72J/m2 to 10000J/m2. It was shown that UVB irradiation was more effective than UVC irradiation in inactivating P. aeruginosa biofilms. No colony forming units (CFU) were observed for the UVB treated biofilms when the dose was 10000 J/m2 (CFU in control sample: 7.5 x 104). UVB irradiation at a dose of 20000J/m2 on mature biofilms (72h grown) resulted in a 3.9 log killing efficacy. The fact that the wavelength of 296nm exists in daylight and has such disinfection ability on biofilms gives new perspectives for applications within disinfection at hospitals.

  11. Thermal mitigation of Pseudomonas aeruginosa biofilms

    PubMed Central

    O’Toole, Ann; Ricker, Erica B.; Nuxoll, Eric

    2015-01-01

    Bacterial biofilms infect 2 – 4 % of medical devices upon implantation, resulting in multiple surgeries and increased recovery time due to the very great increase in antibiotic resistance in the biofilm phenotype. This work investigates the feasibility of thermal mitigation of biofilms at physiologically accessible temperatures. Pseudomonas aeruginosa biofilms were cultured to high bacterial density (1.7 × 109 CFU cm−2) and subjected to thermal shocks ranging from 50 °C to 80 °C for durations of 1 to 30 min. The decrease in viable bacteria was closely correlated with an Arrhenius temperature dependence and Weibull-style time dependence, demonstrating up to six orders of magnitude reduction in bacterial load. The bacterial load for films with more conventional initial bacterial densities dropped below quantifiable levels, indicating thermal mitigation as a viable approach to biofilm control. PMID:26371591

  12. Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1

    SciTech Connect

    DeAngelis, Kristen M.; Sharma, Deepak; Varney, Rebecca; Simmons, Blake A.; Isern, Nancy G.; Markillie, Lye Meng; Nicora, Carrie D.; Norbeck, Angela D.; Taylor, Ronald C.; Aldrich, Joshua T.; Robinson, Errol W.

    2013-08-29

    The anaerobic isolate Enterobacter lignolyticus SCF1 was initially cultivated based on anaerobic growth on lignin as sole carbon source. The source of the isolated bacteria was from tropical forest soils that decompose litter rapidly with low and fluctuating redox potentials, making it likely that bacteria using oxygen-independent enzymes play an important role in decomposition. We have examined differential expression of the anaerobic isolate Enterobacter lignolyticus SCF1 during growth on lignin. After 48 hours of growth, we used transcriptomics and proteomics to define the enzymes and other regulatory machinery that these organisms use to degrade lignin, as well as metabolomics to measure lignin degradation and monitor the use of lignin and iron as terminal electron acceptors that facilitate more efficient use of carbon. Proteomics revealed accelerated xylose uptake and metabolism under lignin-amended growth, and lignin degradation via the 4-hydroxyphenylacetate degradation pathway, catalase/peroxidase enzymes, and the glutathione biosynthesis and glutathione S-transferase proteins. We also observed increased production of NADH-quinone oxidoreductase, other electron transport chain proteins, and ATP synthase and ATP-binding cassette (ABC) transporters. Our data shows the advantages of a multi-omics approach, where incomplete pathways identified by genomics were completed, and new observations made on coping with poor carbon availability. The fast growth, high efficiency and specificity of enzymes employed in bacterial anaerobic litter deconstruction makes these soils useful templates for improving biofuel production.

  13. Hybrid modeling of microbial exopolysaccharide (EPS) production: The case of Enterobacter A47.

    PubMed

    Marques, Rodolfo; von Stosch, Moritz; Portela, Rui M C; Torres, Cristiana A V; Antunes, Sílvia; Freitas, Filomena; Reis, Maria A M; Oliveira, Rui

    2017-03-20

    Enterobacter A47 is a bacterium that produces high amounts of a fucose-rich exopolysaccharide (EPS) from glycerol residue of the biodiesel industry. The fed-batch process is characterized by complex non-linear dynamics with highly viscous pseudo-plastic rheology due to the accumulation of EPS in the culture medium. In this paper, we study hybrid modeling as a methodology to increase the predictive power of models for EPS production optimization. We compare six hybrid structures that explore different levels of knowledge-based and machine-learning model components. Knowledge-based components consist of macroscopic material balances, Monod type kinetics, cardinal temperature and pH (CTP) dependency and power-law viscosity models. Unknown dependencies are set to be identified by a feedforward artificial neural network (ANN). A semiparametric identification schema is applied resorting to a data set of 13 independent fed-batch experiments. A parsimonious hybrid model was identified that describes the dynamics of the 13 experiments with the same parameterization. The final model is specific to Enterobacter A47 but can be easily extended to other microbial EPS processes.

  14. Exopolysaccharide produced by Enterobacter sp. YG4 reduces uranium induced nephrotoxicity.

    PubMed

    K, Nagaraj; Devasya, Rekha Punchapady; Bhagwath, Arun Ananthapadmanabha

    2016-01-01

    Uranium nephrotoxicity is a health concern with very few treatment options. Bacterial exopolysaccharides (EPS) possess multiple biological activities and appear as prospective candidates for treating uranium nephrotoxicity. This study focuses on the ability of an EPS produced by a bacterial strain Enterobacter sp. YG4 to reduce uranium nephrotoxicity in vivo. This bacterium was isolated from the gut contents of a slug Laevicaulis alte (Férussac). Based on the aniline blue staining reaction and infrared spectral analysis, the EPS was identified as β-glucan and its molecular weight was 11.99×10(6)Da. The EPS showed hydroxyl radical scavenging ability and total antioxidant capacity in vitro. To assess the protection provided by the EPS against uranium nephrotoxicity, a single dose of 2mg/kg uranyl nitrate was injected intraperitoneally to albino Wistar rats. As intervention, the EPS was administered orally (100mg/kg/day) for 4 consecutive days. The rats were sacrificed on the fifth day and analyses were conducted. Increased serum creatinine and urea nitrogen levels and histopathological alterations in kidneys were observed in uranyl nitrate treated animals. All these alterations were reduced with the administration of Enterobacter sp. YG4 EPS, emphasizing a novel approach in treating uranium nephrotoxicity.

  15. Biotransformation of indole and its derivatives by a newly isolated Enterobacter sp. M9Z.

    PubMed

    Qu, Yuanyuan; Zhang, Zhaojing; Ma, Qiao; Shen, E; Shen, Wenli; Wang, Jingwei; Cong, Longchao; Li, Duanxing; Liu, Ziyan; Li, Huijie; Zhou, Jiti

    2015-04-01

    In this study, a novel bacterial strain M9Z with the ability of producing indigoids from indole and its derivatives was isolated from activated sludge and identified as Enterobacter sp. according to 16S ribosomal RNA (rRNA) sequence analysis. UV-vis spectrometry and high-performance liquid chromatography-mass spectrometry analysis indicated that the products produced from indole, 5-methylindole, 7-methylindole, and 5-methoxyindole were indigo with different substituent groups, and the possible biotransformation pathways of indole derivatives, i.e., indole(s)-cis-indole-2,3-dihydrodiol(s)-indoxyl(s)-indigoids, were proposed. The conditions of indole transformation and indigo biosynthesis by strain M9Z were optimized, and the maximal indigo yield (68.1 mg/L) was obtained when using 150 mg/L indole, 200 mg/L naphthalene, and 5 g/L yeast extract. The transformation rates of 5-methylindole, 7-methylindole, and 5-methoxyindole by strain M9Z were all close to 100 % under certain conditions, making strain M9Z an efficient indigoid producer. This is the first study of indole biotransformation and indigoid biosynthesis by genus Enterobacter.

  16. Enterobacter cloacae Sacroiliitis with Acute Respiratory Distress Syndrome in an Adolescent.

    PubMed

    Kim, Jin Soo; Ko, Jeong Hee; Lee, Seunghun; Jeon, Seok Chol; Oh, Sung Hee

    2015-06-01

    Enterobacter cloacae has emerged as an important nosocomial pathogen, but is rarely a cause of sacroiliitis. Herein, we present the first reported case of Enterobacter cloacae sacroiliitis associated with sepsis and acute respiratory distress syndrome (ARDS). A previously healthy 14-year-old boy presented with low-grade fever and pain in the left side of the hip that was aggravated by walking. Pelvic computed tomography (CT) showed normal findings, and the patient received supportive care for transient synovitis with no antibiotics. However, there was no clinical improvement. On the third day of hospitalization, magnetic resonance imaging of the hip revealed findings compatible with sacroiliitis, for which vancomycin and ceftriaxone were administered. The patient suddenly developed high fever with dyspnea. Chest radiography and CT findings and a PaO2/FiO2 ratio <200 mmHg were suggestive of ARDS; the patient subsequently received ventilatory support and low-dose methylprednisolone infusions. Within one week, defervescence occurred, and the patient was able to breathe on his own. Following the timely recognition of, and therapeutic challenge to, ARDS, and after 6 weeks of parenteral antimicrobial therapy, the patient was discharged in good health with no complications.

  17. Association of antibiotic resistance with SHV-12 extended-spectrum β-lactamase in Enterobacter cloacae

    PubMed Central

    LIU, JUN; LI, GUO-MING; LIN, LI-YAO; WU, XIA-LEI; HUANG, SHAO-LONG; ZHOU, YONG; ZHAO, ZU-GUO

    2016-01-01

    The association between antibiotic resistance and SHV-12 extended-spectrum β-lactamase (ESBL) in Enterobacter cloacae remains unknown. The aim of the present study was to investigate the prevalence of both chromosome- and plasmid-borne SHV-12 ESBL genes in Enterobacter cloacae. Transmission of the SHV-12 ESBL gene was explored, and the risk factors for antibiotic resistance in E. cloacae were analyzed. Polymerase chain reaction (PCR) results showed that 58 out of the 100 isolates carried the SHV-12 ESBL gene: 34.48% of them occurred in the chromosome, 48.28% were plasmid-borne and 17.24% appeared in both. Enterobacterial repetitive intergenic consensus-PCR tests detected 82 chromosomal genotypes. Conjugation assays showed that 70.00% of plasmid-borne SHV-12 ESBL genes were successfully transconjugated into E. coli C600 and that the antibiotic resistance phenotype of E. cloacae was partially (84%) or completely (10%) transferred. A significantly higher SHV-12 ESBL detection rate was found in patients with underlying conditions and/or complications compared with those without (P<0.05). The detection of SHV-12 ESBL-producing E. cloacae from vertical transmission varied significantly across clinical departments and age groups (P<0.05), with the highest rates in the intensive care unit and the group of patients aged ≥60 years. The present results indicate that the location and transmission efficiency of SHV-12 ESBL are closely correlated with the antibiotic resistance of E. cloacae. PMID:26889253

  18. Association of antibiotic resistance with SHV-12 extended-spectrum β-lactamase in Enterobacter cloacae.

    PubMed

    Liu, Jun; Li, Guo-Ming; Lin, Li-Yao; Wu, Xia-Lei; Huang, Shao-Long; Zhou, Yong; Zhao, Zu-Guo

    2016-01-01

    The association between antibiotic resistance and SHV-12 extended-spectrum β-lactamase (ESBL) in Enterobacter cloacae remains unknown. The aim of the present study was to investigate the prevalence of both chromosome- and plasmid-borne SHV-12 ESBL genes in Enterobacter cloacae. Transmission of the SHV-12 ESBL gene was explored, and the risk factors for antibiotic resistance in E. cloacae were analyzed. Polymerase chain reaction (PCR) results showed that 58 out of the 100 isolates carried the SHV-12 ESBL gene: 34.48% of them occurred in the chromosome, 48.28% were plasmid-borne and 17.24% appeared in both. Enterobacterial repetitive intergenic consensus-PCR tests detected 82 chromosomal genotypes. Conjugation assays showed that 70.00% of plasmid-borne SHV-12 ESBL genes were successfully transconjugated into E. coli C600 and that the antibiotic resistance phenotype of E. cloacae was partially (84%) or completely (10%) transferred. A significantly higher SHV-12 ESBL detection rate was found in patients with underlying conditions and/or complications compared with those without (P<0.05). The detection of SHV-12 ESBL-producing E. cloacae from vertical transmission varied significantly across clinical departments and age groups (P<0.05), with the highest rates in the intensive care unit and the group of patients aged ≥60 years. The present results indicate that the location and transmission efficiency of SHV-12 ESBL are closely correlated with the antibiotic resistance of E. cloacae.

  19. Identification of sdiA-regulated genes in a mouse commensal strain of Enterobacter cloacae

    PubMed Central

    Sabag-Daigle, Anice; Dyszel, Jessica L.; Gonzalez, Juan F.; Ali, Mohamed M.; Ahmer, Brian M. M.

    2015-01-01

    Many bacteria determine their population density using quorum sensing. The most intensively studied mechanism of quorum sensing utilizes proteins of the LuxI family to synthesize a signaling molecule of the acylhomoserine lactone (AHL) type, and a protein of the LuxR family to bind AHL and regulate transcription. Genes regulated by quorum sensing often encode functions that are most effective when a group of bacteria are working cooperatively (e.g., luminescence, biofilm formation, host interactions). Bacteria in the Escherichia, Salmonella, Klebsiella, and Enterobacter genera do not encode an AHL synthase but they do encode an AHL receptor of the LuxR family, SdiA. Instead of detecting their own AHL synthesis, these organisms use SdiA to detect the AHLs synthesized by other bacterial species. In this study, we used a genetic screen to identify AHL-responsive genes in a commensal Enterobacter cloacae strain that was isolated from a laboratory mouse. The genes include a putative type VI secretion system, copA (a copper transporter), and fepE (extends O-antigen chain length). A new transposon mutagenesis strategy and suicide vectors were used to construct an sdiA mutant of E. cloacae. The AHL-responsiveness of all fusions was entirely sdiA-dependent, although some genes were regulated by sdiA in the absence of AHL. PMID:26075189

  20. Identification of sdiA-regulated genes in a mouse commensal strain of Enterobacter cloacae.

    PubMed

    Sabag-Daigle, Anice; Dyszel, Jessica L; Gonzalez, Juan F; Ali, Mohamed M; Ahmer, Brian M M

    2015-01-01

    Many bacteria determine their population density using quorum sensing. The most intensively studied mechanism of quorum sensing utilizes proteins of the LuxI family to synthesize a signaling molecule of the acylhomoserine lactone (AHL) type, and a protein of the LuxR family to bind AHL and regulate transcription. Genes regulated by quorum sensing often encode functions that are most effective when a group of bacteria are working cooperatively (e.g., luminescence, biofilm formation, host interactions). Bacteria in the Escherichia, Salmonella, Klebsiella, and Enterobacter genera do not encode an AHL synthase but they do encode an AHL receptor of the LuxR family, SdiA. Instead of detecting their own AHL synthesis, these organisms use SdiA to detect the AHLs synthesized by other bacterial species. In this study, we used a genetic screen to identify AHL-responsive genes in a commensal Enterobacter cloacae strain that was isolated from a laboratory mouse. The genes include a putative type VI secretion system, copA (a copper transporter), and fepE (extends O-antigen chain length). A new transposon mutagenesis strategy and suicide vectors were used to construct an sdiA mutant of E. cloacae. The AHL-responsiveness of all fusions was entirely sdiA-dependent, although some genes were regulated by sdiA in the absence of AHL.

  1. Enterobacter cloacae Sacroiliitis with Acute Respiratory Distress Syndrome in an Adolescent

    PubMed Central

    Kim, Jin Soo; Ko, Jeong Hee; Lee, Seunghun; Jeon, Seok Chol

    2015-01-01

    Enterobacter cloacae has emerged as an important nosocomial pathogen, but is rarely a cause of sacroiliitis. Herein, we present the first reported case of Enterobacter cloacae sacroiliitis associated with sepsis and acute respiratory distress syndrome (ARDS). A previously healthy 14-year-old boy presented with low-grade fever and pain in the left side of the hip that was aggravated by walking. Pelvic computed tomography (CT) showed normal findings, and the patient received supportive care for transient synovitis with no antibiotics. However, there was no clinical improvement. On the third day of hospitalization, magnetic resonance imaging of the hip revealed findings compatible with sacroiliitis, for which vancomycin and ceftriaxone were administered. The patient suddenly developed high fever with dyspnea. Chest radiography and CT findings and a PaO2/FiO2 ratio <200 mmHg were suggestive of ARDS; the patient subsequently received ventilatory support and low-dose methylprednisolone infusions. Within one week, defervescence occurred, and the patient was able to breathe on his own. Following the timely recognition of, and therapeutic challenge to, ARDS, and after 6 weeks of parenteral antimicrobial therapy, the patient was discharged in good health with no complications. PMID:26157593

  2. Study of bio-degradation and bio-decolourization of azo dye by Enterobacter sp. SXCR.

    PubMed

    Prasad, Shiv Shankar; Aikat, Kaustav

    2014-01-01

    The objective of this study was to evaluate the decolourization potential of textile dyes by a relatively newly identified bacteria species, Enterobacter sp. SXCR which was isolated from the petroleum polluted soil samples. The bacterial strain was identified by 16S rRNA gene sequence analysis. The effects of operational conditions like initial dye concentration, pH, and temperature were optimized to develop an economically feasible decolourization process. The isolate was able to decolourize sulphonated azo dye (Congo red) over a wide range (0.1-1 gl(-1)), pH 5-9, and temperature 22-40 degrees C in static condition. Anaerobic condition with minimal salt medium supplemented with 2 gl(-1) glucose, pH 7 and 34 degrees C were considered to be the optimum decolourizing condition. The bacterial isolate SXCR showed a strong ability to decolourize dye (0.2 gl(-1)) within 93 h. The biodegradation was monitored by UV-vis, fourier transform infra-red spectroscopy (FTIR) spectroscopy and high performance liquid chromatography (HPLC). Furthermore, the involvement of azoreductase in the decolourization process was identified in this strain. Cells of Enterobacter cloacae were immobilized by entrapment in calcium-alginate beads. Immobilized bacterial cells were able to reduced azo bonds enzymatically and used as a biocatalyst for decolourization of azo dye Congo red. Michaelis-Menten kinetics was used to describe the correlation between the decolourization rate and the dye concentration.

  3. The Regulatory Network of Pseudomonas aeruginosa

    PubMed Central

    2011-01-01

    Background Pseudomonas aeruginosa is an important bacterial model due to its metabolic and pathogenic abilities, which allow it to interact and colonize a wide range of hosts, including plants and animals. In this work we compile and analyze the structure and organization of an experimentally supported regulatory network in this bacterium. Results The regulatory network consists of 690 genes and 1020 regulatory interactions between their products (12% of total genes: 54% sigma and 16% of transcription factors). This complex interplay makes the third largest regulatory network of those reported in bacteria. The entire network is enriched for activating interactions and, peculiarly, self-activation seems to occur more prominent for transcription factors (TFs), which contrasts with other biological networks where self-repression is dominant. The network contains a giant component of 650 genes organized into 11 hierarchies, encompassing important biological processes, such as, biofilms formation, production of exopolysaccharide alginate and several virulence factors, and of the so-called quorum sensing regulons. Conclusions The study of gene regulation in P. aeruginosa is biased towards pathogenesis and virulence processes, all of which are interconnected. The network shows power-law distribution -input degree -, and we identified the top ten global regulators, six two-element cycles, the longest paths have ten steps, six biological modules and the main motifs containing three and four elements. We think this work can provide insights for the design of further studies to cover the many gaps in knowledge of this important bacterial model, and for the design of systems strategies to combat this bacterium. PMID:22587778

  4. Ambroxol interferes with Pseudomonas aeruginosa quorum sensing.

    PubMed

    Lu, Qi; Yu, Jialin; Yang, Xiqiang; Wang, Jiarong; Wang, Lijia; Lin, Yayin; Lin, Lihua

    2010-09-01

    The mucolytic agent ambroxol has been reported to interfere with the formation of Pseudomonas aeruginosa-derived biofilms in addition to reducing alginate production by undefined mechanisms. Since quorum sensing is a key regulator of virulence and biofilm formation, we examined the effects of ambroxol on P. aeruginosa PAO1 wild-type bacterial clearance rates, adhesion profiles and biofilm formation compared with the quorum sensing-deficient, double-mutant strains DeltalasR DeltarhlR and DeltalasI DeltarhlI. Data presented in this report demonstrated that ambroxol treatment reduced survival rates of the double-mutant strains compared with the wild-type strain in a dose-dependent manner even though the double-mutants had increased adhesion in the presence of ambroxol compared with the wild-type strain. The PAO1 wild-type strain produced a significantly thicker biofilm (21.64+/-0.57 microm) compared with the biofilms produced by the DeltalasR DeltarhlR (7.36+/-0.2 microm) and DeltalasI DeltarhlI (6.62+/-0.31 microm) isolates. Ambroxol treatment reduced biofilm thickness, increased areal porosity, and decreased the average diffusion distance and textual entropy of wild-type and double-mutant strains. However, compared with the double-mutant strains, the changes observed for the wild-type strain were more clearly defined. Finally, ambroxol exhibited significant antagonistic quorum-sensing properties, suggesting that it could be adapted for use clinically in the treatment of cystic fibrosis and to reduce biofilm formation and in the colonisation of indwelling devices.

  5. Isolation of oxidase-negative Pseudomonas aeruginosa from sputum culture.

    PubMed

    Hampton, K D; Wasilauskas, B L

    1979-05-01

    Two isolates of Pseudomonas aeruginosa lacking characteristic indophenol oxidase were recovered from a sputum specimen. A discussion of the characteristic biochemical tests and antibiograms along with a possible explanation for this phenomenon is presented.

  6. Electrochemically monitoring the antibiotic susceptibility of Pseudomonas aeruginosa biofilms.

    PubMed

    Webster, Thaddaeus A; Sismaet, Hunter J; Chan, I-ping J; Goluch, Edgar D

    2015-11-07

    The condition of cells in Pseudomonas aeruginosa biofilms was monitored via the electrochemical detection of the electro-active virulence factor pyocyanin in a fabricated microfluidic growth chamber coupled with a disposable three electrode cell. Cells were exposed to 4, 16, and 100 mg L(-1) colistin sulfate after overnight growth. At the end of testing, the measured maximum peak current (and therefore pyocyanin concentration) was reduced by approximately 68% and 82% in P. aeruginosa exposed to 16 and 100 mg L(-1) colistin sulfate, respectively. Samples were removed from the microfluidic chamber, analyzed for viability using staining, and streaked onto culture plates to confirm that the P. aeruginosa cells were affected by the antibiotics. The correlation between electrical signal drop and the viability of P. aeruginosa cells after antibiotic exposure highlights the usefulness of this approach for future low cost antibiotic screening applications.

  7. Acquisition and Role of Molybdate in Pseudomonas aeruginosa

    PubMed Central

    Pederick, Victoria G.; Eijkelkamp, Bart A.; Ween, Miranda P.; Begg, Stephanie L.; Paton, James C.

    2014-01-01

    In microaerophilic or anaerobic environments, Pseudomonas aeruginosa utilizes nitrate reduction for energy production, a process dependent on the availability of the oxyanionic form of molybdenum, molybdate (MoO42−). Here, we show that molybdate acquisition in P. aeruginosa occurs via a high-affinity ATP-binding cassette permease (ModABC). ModA is a cluster D-III solute binding protein capable of interacting with molybdate or tungstate oxyanions. Deletion of the modA gene reduces cellular molybdate concentrations and results in inhibition of anaerobic growth and nitrate reduction. Further, we show that conditions that permit nitrate reduction also cause inhibition of biofilm formation and an alteration in fatty acid composition of P. aeruginosa. Collectively, these data highlight the importance of molybdate for anaerobic growth of P. aeruginosa and reveal novel consequences of nitrate reduction on biofilm formation and cell membrane composition. PMID:25172858

  8. Oxylipins produced by Pseudomonas aeruginosa promote biofilm formation and virulence

    PubMed Central

    Martínez, Eriel; Campos-Gómez, Javier

    2016-01-01

    The oxygenation of unsaturated fatty acids by dioxygenases occurs in all kingdoms of life and produces physiologically important lipids called oxylipins. The biological roles of oxylipins have been extensively studied in animals, plants, algae and fungi, but remain largely unidentified in prokaryotes. The bacterium Pseudomonas aeruginosa displays a diol synthase activity that transforms several monounsaturated fatty acids into mono- and di-hydroxylated derivatives. Here we show that oxylipins derived from this activity inhibit flagellum-driven motility and upregulate type IV pilus-dependent twitching motility of P. aeruginosa. Consequently, these oxylipins promote bacterial organization in microcolonies, increasing the ability of P. aeruginosa to form biofilms in vitro and in vivo (in Drosophila flies). We also demonstrate that oxylipins produced by P. aeruginosa promote virulence in Drosophila flies and lettuce. Our study thus uncovers a role for prokaryotic oxylipins in the physiology and pathogenicity of bacteria. PMID:27929111

  9. Acquisition and role of molybdate in Pseudomonas aeruginosa.

    PubMed

    Pederick, Victoria G; Eijkelkamp, Bart A; Ween, Miranda P; Begg, Stephanie L; Paton, James C; McDevitt, Christopher A

    2014-11-01

    In microaerophilic or anaerobic environments, Pseudomonas aeruginosa utilizes nitrate reduction for energy production, a process dependent on the availability of the oxyanionic form of molybdenum, molybdate (MoO4 (2-)). Here, we show that molybdate acquisition in P. aeruginosa occurs via a high-affinity ATP-binding cassette permease (ModABC). ModA is a cluster D-III solute binding protein capable of interacting with molybdate or tungstate oxyanions. Deletion of the modA gene reduces cellular molybdate concentrations and results in inhibition of anaerobic growth and nitrate reduction. Further, we show that conditions that permit nitrate reduction also cause inhibition of biofilm formation and an alteration in fatty acid composition of P. aeruginosa. Collectively, these data highlight the importance of molybdate for anaerobic growth of P. aeruginosa and reveal novel consequences of nitrate reduction on biofilm formation and cell membrane composition.

  10. Complete Genome Sequence of Enterobacter cloacae UW5, a Rhizobacterium Capable of High Levels of Indole-3-Acetic Acid Production.

    PubMed

    Coulson, Thomas J D; Patten, Cheryl L

    2015-08-06

    We report the complete genome sequence of Enterobacter cloacae UW5, an indole-3-acetic acid-producing rhizobacterium originally isolated from the rhizosphere of grass. The 4.9-Mbp genome has a G+C content of 54% and contains 4,496 protein-coding sequences.

  11. Draft Genome Sequence of Enterobacter sp. Sa187, an Endophytic Bacterium Isolated from the Desert Plant Indigofera argentea

    PubMed Central

    Lafi, Feras F.; Alam, Intikhab; Geurts, Rene; Bisseling, Ton; Bajic, Vladimir B.

    2017-01-01

    ABSTRACT Enterobacter sp. Sa187 is a plant endophytic bacterium, isolated from root nodules of the desert plant Indigofera argentea, collected from the Jizan region of Saudi Arabia. Here, we report the genome sequence of Sa187, highlighting several genes involved in plant growth–promoting activity and environmental adaption. PMID:28209831

  12. Complete Genome Sequence of Enterobacter cloacae UW5, a Rhizobacterium Capable of High Levels of Indole-3-Acetic Acid Production

    PubMed Central

    Coulson, Thomas J. D.

    2015-01-01

    We report the complete genome sequence of Enterobacter cloacae UW5, an indole-3-acetic acid-producing rhizobacterium originally isolated from the rhizosphere of grass. The 4.9-Mbp genome has a G+C content of 54% and contains 4,496 protein-coding sequences. PMID:26251488

  13. Association of Enterobacter cloacae and other bacteria with onion bulb rot in the Columbia Basin of Washington and Oregon, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Approximately 1.6 million metric tons of onion bulbs are produced annually in the Pacific Northwest USA. Bulb decay can be a major problem and is caused by a variety of plant pathogens. Onion bulbs exhibiting symptoms of bacterial rot were sampled to determine the causal agents. Enterobacter cloacae...

  14. Production of Internal Yellowing Symptoms on Resistant and Susceptible Papaya Cultivars by Enterobacter cloacae at Varying Inoculum Concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Internal yellowing (IY) is a bacterial disease of ripening papaya flesh caused by Enterobacter cloacae and characterized by yellow softening tissue. IY restricts food safety of value-added products like fresh or frozen papaya cubes. The incidence of E. cloacae presumably differs in resistant (R) a...

  15. Plant growth promotion and root colonization by EPS producing Enterobacter sp. RZS5 under heavy metal contaminated soil.

    PubMed

    Sayyed, R Z; Patel, P R; Shaikh, S S

    2015-02-01

    The heavy metal resistant bacterium isolated from field soil and identified as Enterobacter sp. RZS5 tolerates a high concentration (100-2000 μM) of various heavy metal ions such as Mn2+, Ni2+, Zn2+, Cu2+, CO2+ and Fe2+ when grown in such environment and produces exopolysaccharides (EPS). Here, we have demonstrated EPS production by Enterobacter sp. RZS5 during 60 h of growth in yeast extract mannitol broth (YEMB). The yield increased by two fold after the addition of 60 μM of Ca2+; 50 μM of Fe2+ and 60 μM of Mg2+ ions in YEMB, and the optimization of physico-chemical parameters. EPS was extracted with 30% (v/v) of isopropanol as against the commonly used 50% (v/v) isopropanol method. EPS-rich broth promoted seed germination, shoot height, root length, number of leaves and chlorophyll content of wheat (Triticum aestivum) seed and peanut (Arachis hypogaea) seed. The higher colony-forming unit of Enterobacter sp. in soil inoculated with EPS rich broth of Enterobacter sp. indicated the root colonizing potential and rhizosphere competence of the isolate. The FTIR spectra of the EPS extract confirmed the presence of the functional group characteristics of EPS known to exhibit a high binding affinity towards certain metal ions. This overall growth and vigour in plants along with the effective root colonization, reflected the potential of the isolate as an efficient bio-inoculant in bioremediation.

  16. Enterobacter arachidis sp. nov., a plant-growth-promoting diazotrophic bacterium isolated from rhizosphere soil of groundnut.

    PubMed

    Madhaiyan, Munusamy; Poonguzhali, Selvaraj; Lee, Jung-Sook; Saravanan, Venkatakrishnan Sivaraj; Lee, Keun-Chul; Santhanakrishnan, Palani

    2010-07-01

    A methylotrophic nitrogen-fixing bacterial strain, Ah-143(T), isolated from the rhizosphere soil of field-grown groundnut was analysed by a polyphasic taxonomic approach. Comparative 16S rRNA gene sequence analysis combined with rpoB gene sequence analysis allocated strain Ah-143(T) to the family Enterobacteriaceae, with Enterobacter radicincitans and Enterobacter cowanii as the closest relatives. The strain is Gram-stain-negative, non-spore-forming, aerobic and motile, having straight rod-shaped cells with a DNA G+C content of approximately 53.2 mol%. The strain utilizes methanol as a carbon source and the mxaF gene was closely related to the mxaF gene of members of the genus Methylobacterium. The fatty acid profile consisted of C(16 : 0), C(17 : 0) cyclo, C(18 : 1)omega7c, summed feature 2 (iso-C(16 : 1) I and/or C(14 : 0) 3-OH) and summed feature 3 (iso-C(15 : 0) 2-OH and/or C(16 : 1)omega7c) as the major components. DNA-DNA relatedness of strain Ah-143(T) with its close relatives was less than 20 %. On the basis of the phylogenetic analyses, DNA-DNA hybridization data, and unique physiological and biochemical characteristics, it is proposed that the strain represents a novel species of the genus Enterobacter and should be named Enterobacter arachidis sp. nov. The type strain is Ah-143(T) (=NCIMB 14469(T) =KCTC 22375(T)).

  17. Infections with VIM-1 Metallo-β-Lactamase-Producing Enterobacter cloacae and Their Correlation with Clinical Outcome▿

    PubMed Central

    Falcone, Marco; Mezzatesta, Maria Lina; Perilli, Mariagrazia; Forcella, Chiara; Giordano, Alessandra; Cafiso, Viviana; Amicosante, Gianfranco; Stefani, Stefania; Venditti, Mario

    2009-01-01

    The aim of this study was to ascertain the incidence and clinical significance of metallo-β-lactamases among Enterobacter strains isolated from patients with nosocomial infections. We prospectively collected data on patients with Enterobacter infection during a 13-month period. All of the strains were investigated for antibiotic susceptibility, the presence and expression of metallo-β-lactamases, and clonality. Of 29 infections (11 involving the urinary tract, 7 pneumonias, 3 skin/soft tissue infections, 3 intra-abdominal infections, 3 bacteremias, and 2 other infections), 7 (24%) were caused by Enterobacter cloacae strains harboring a blaVIM-1 gene associated or not with a blaSHV12 gene. Infections caused by VIM-1-producing strains were more frequently associated with a recent prior hospitalization (P = 0.006), cirrhosis (P = 0.03), relapse of infection (P < 0.001), and more prolonged duration of antibiotic therapy (P = 0.01) than were other infections. All of the isolates were susceptible to imipenem and meropenem and had blaVIM-1 preceded by a weak P1 promoter and inactivated P2 promoters. Most VIM-1-producing Enterobacter isolates belonged to a main clone, but four different clones were found. Multiclonal VIM-1-producing E. cloacae infections are difficult to diagnose due to an apparent susceptibility to various beta-lactams, including carbapenems, and are associated with a high relapse rate and a more prolonged duration of antibiotic therapy. PMID:19741074

  18. The blaSHV-5 gene is encoded in a compound transposon duplicated in tandem in Enterobacter cloacae.

    PubMed

    Garza-Ramos, U; Davila, G; Gonzalez, V; Alpuche-Aranda, C; López-Collada, V R; Alcantar-Curiel, D; Newton, O; Silva-Sanchez, J

    2009-09-01

    The presence of bla(SHV-5) is described in a compound transposon, duplicated in tandem and flanked by IS26 copies on a 70-kb conjugative plasmid (pHNM1), in an Enterobacter cloacae strain associated with a nosocomial outbreak that occurred in Mexico.

  19. New amphiphilic neamine conjugates bearing a metal binding motif active against MDR E. aerogenes Gram-negative bacteria.

    PubMed

    Allam, Anas; Maigre, Laure; Alves de Sousa, Rodolphe; Dumont, Estelle; Vergalli, Julia; Pagès, Jean-Marie; Artaud, Isabelle

    2017-02-15

    Structure of bacterial envelope is one of the major factors contributing to Gram negative bacterial resistance. To develop new agents that target the bacterial membranes, we synthesized, by analogy with our previous peptide conjugates, new amphiphilic 3',4',6-trinaphthylmethylene neamines functionalized at position 5 through a short spacer by a chelating group, tris(2-pyridylmethyl)amine (TPA) and di-(picolyl)amine (DPA) and tetraazacyclotetradecane (Cyclam). ESI(+) mass spectrometry analyses showed that neither Zn(II)(NeaDPA) nor Cu(II)(NeaCyclam) were stable in the Mueller Hinton (MH) medium used for antibacterial assays. In contrast Zn(NeaTPA) was stable in the MH medium. Interestingly, in MH, the free ligand NeaTPA was found bound to zinc, the zinc salt being the most abundant salt in this medium. Thus, the antibacterial activities of all compounds were evaluated as free ligands against E. coli strains, wild type AG100 and E. aerogenes EA289 (a clinical MDR strain that overexpresses AcrAB-TolC efflux pump), as well as AG100A an AcrAB- E. coli strain and EA298 a TolC- derivative. NeaCyclam and Zn(NeaTPA) were by far the most efficient compounds active against resistant isolate EA289 with MICs in the range 16-4 and 4 μM, respectively, while usual antibiotics such as β-lactams and phenicols were inactive (MICs > 128) and ciprofloxacin was at 64 μM. Zn(NeaTPA) and NeaCyclam were shown to target and permeabilize the outer membrane of EA289 by promoting the cleavage of nitrocefin by periplasmic β-lactamase. Moreover, all the neamine conjugates were able to block the efflux of 1,2'-dinaphthylamine in EA289, by acting on the efflux transporter located in the inner membrane. These membranotropic properties contribute to explain the activities of these neamine conjugates toward the MDR EA289 strain.

  20. Characterization of the Klebsiella aerogenes urease accessory protein UreD in fusion with the maltose binding protein.

    PubMed

    Carter, Eric L; Hausinger, Robert P

    2010-05-01

    Assembly of the Klebsiella aerogenes urease metallocenter requires four accessory proteins, UreD, UreE, UreF, and UreG, to effectively deliver and incorporate two Ni2+ ions into the nascent active site of the urease apoprotein (UreABC). Each accessory protein has been purified and characterized with the exception of UreD due to its insolubility when it is overproduced in recombinant cells. In this study, a translational fusion was made between the maltose binding protein (MBP) and UreD, with the resulting MBP-UreD found to be soluble in Escherichia coli cell extracts and able to complement a DeltaureD-urease cluster in this host microorganism. MBP-UreD was purified as a large multimer (> 670 kDa) that bound approximately 2.5 Ni2+ ions (K(d) of approximately 50 microM, where K(d) is the dissociation constant) per UreD protomer according to equilibrium dialysis measurements. Zn2+ directly competes with 10-fold higher affinity (approximately 4 Zn2+ ions per protomer; K(d) of 5 microM) for the Ni2+ binding sites. MBP pulldown experiments demonstrated that the UreD domain of MBP-UreD formed in vivo complexes with UreF, UreG, UreF plus UreG, or UreABC when these proteins were overproduced in the same E. coli cells. In addition, a UreABC-(MBP-UreD)-UreFG complex was observed in cells producing all urease components. Comparative in vitro binding experiments with purified proteins demonstrated an approximate 1:1 binding ratio between the UreD domain of MBP-UreD and the UreF domain of the UreEF fusion, only weak or transient interaction between MBP-UreD and UreG, and no binding with UreABC. These studies are the first to describe the properties of purified UreD, and they extend our understanding of its binding partners both in vitro and in the cell.

  1. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa.

    PubMed

    Lovewell, Rustin R; Patankar, Yash R; Berwin, Brent

    2014-04-01

    Pseudomonas aeruginosa is an opportunistic bacterial pathogen responsible for a high incidence of acute and chronic pulmonary infection. These infections are particularly prevalent in patients with chronic obstructive pulmonary disease and cystic fibrosis: much of the morbidity and pathophysiology associated with these diseases is due to a hypersusceptibility to bacterial infection. Innate immunity, primarily through inflammatory cytokine production, cellular recruitment, and phagocytic clearance by neutrophils and macrophages, is the key to endogenous control of P. aeruginosa infection. In this review, we highlight recent advances toward understanding the innate immune response to P. aeruginosa, with a focus on the role of phagocytes in control of P. aeruginosa infection. Specifically, we summarize the cellular and molecular mechanisms of phagocytic recognition and uptake of P. aeruginosa, and how current animal models of P. aeruginosa infection reflect clinical observations in the context of phagocytic clearance of the bacteria. Several notable phenotypic changes to the bacteria are consistently observed during chronic pulmonary infections, including changes to mucoidy and flagellar motility, that likely enable or reflect their ability to persist. These traits are likewise examined in the context of how the bacteria avoid phagocytic clearance, inflammation, and sterilizing immunity.

  2. Tracking the immunopathological response to Pseudomonas aeruginosa during respiratory infections

    PubMed Central

    Cigana, Cristina; Lorè, Nicola Ivan; Riva, Camilla; De Fino, Ida; Spagnuolo, Lorenza; Sipione, Barbara; Rossi, Giacomo; Nonis, Alessandro; Cabrini, Giulio; Bragonzi, Alessandra

    2016-01-01

    Repeated cycles of infections, caused mainly by Pseudomonas aeruginosa, combined with a robust host immune response and tissue injury, determine the course and outcome of cystic fibrosis (CF) lung disease. As the disease progresses, P. aeruginosa adapts to the host modifying dramatically its phenotype; however, it remains unclear whether and how bacterial adaptive variants and their persistence influence the pathogenesis and disease development. Using in vitro and murine models of infection, we showed that P. aeruginosa CF-adaptive variants shaped the innate immune response favoring their persistence. Next, we refined a murine model of chronic pneumonia extending P. aeruginosa infection up to three months. In this model, including CFTR-deficient mice, we unveil that the P. aeruginosa persistence lead to CF hallmarks of airway remodelling and fibrosis, including epithelial hyperplasia and structure degeneration, goblet cell metaplasia, collagen deposition, elastin degradation and several additional markers of tissue damage. This murine model of P. aeruginosa chronic infection, reproducing CF lung pathology, will be instrumental to identify novel molecular targets and test newly tailored molecules inhibiting chronic inflammation and tissue damage processes in pre-clinical studies. PMID:26883959

  3. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa

    PubMed Central

    Lovewell, Rustin R.; Patankar, Yash R.

    2014-01-01

    Pseudomonas aeruginosa is an opportunistic bacterial pathogen responsible for a high incidence of acute and chronic pulmonary infection. These infections are particularly prevalent in patients with chronic obstructive pulmonary disease and cystic fibrosis: much of the morbidity and pathophysiology associated with these diseases is due to a hypersusceptibility to bacterial infection. Innate immunity, primarily through inflammatory cytokine production, cellular recruitment, and phagocytic clearance by neutrophils and macrophages, is the key to endogenous control of P. aeruginosa infection. In this review, we highlight recent advances toward understanding the innate immune response to P. aeruginosa, with a focus on the role of phagocytes in control of P. aeruginosa infection. Specifically, we summarize the cellular and molecular mechanisms of phagocytic recognition and uptake of P. aeruginosa, and how current animal models of P. aeruginosa infection reflect clinical observations in the context of phagocytic clearance of the bacteria. Several notable phenotypic changes to the bacteria are consistently observed during chronic pulmonary infections, including changes to mucoidy and flagellar motility, that likely enable or reflect their ability to persist. These traits are likewise examined in the context of how the bacteria avoid phagocytic clearance, inflammation, and sterilizing immunity. PMID:24464809

  4. The combination Enterobacter agglomerans is to be cited as Enterobacter agglomerans (Beijerinck 1888) Ewing and Fife 1972 and the combination Pantoea agglomerans is to be cited as Pantoea agglomerans (Beijerinck 1888) Gavini et al. 1989. Opinion 90. Judicial Commission of the International Committee on Systematics of Prokaryotes.

    PubMed

    Tindall, B J

    2014-10-01

    The Judicial Commission affirms that, according to information presented to it, the combination Enterobacter agglomerans is to be cited as Enterobacter agglomerans (Beijerinck 1888) Ewing and Fife 1972 and the combination Pantoea agglomerans is to be cited as Pantoea agglomerans (Beijerinck 1888) Gavini et al. 1989.

  5. Resistance to pefloxacin in Pseudomonas aeruginosa.

    PubMed Central

    Michea-Hamzehpour, M; Lucain, C; Pechere, J C

    1991-01-01

    Mechanisms of resistance to pefloxacin were investigated in four isogenic Pseudomonas aeruginosa strains: S (parent isolate; MIC, 2 micrograms/ml), PT1 and PT2 (posttherapy isolates obtained in animals; MICs, 32 and 128 micrograms/ml, respectively), and PT2-r (posttherapy isolate obtained after six in vitro subpassages of PT2; MIC, 32 micrograms/ml). [2-3H]adenine incorporation (indirect evidence of DNA gyrase activity) in EDTA-permeabilized cells was less affected by pefloxacin in PT2 and PT2-r (50% inhibitory concentration, 0.27 and 0.26 microgram/ml, respectively) than it was in S and PT1 (50% inhibitory concentration, 0.04 and 0.05 microgram/ml, respectively). Reduced [14C]pefloxacin labeling of intact cells in strains PT1 and PT2 correlated with more susceptibility to EDTA and the presence of more calcium (P less than 0.05) and phosphorus in the outer membrane fractions. Outer membrane protein analysis showed reduced expression of protein D2 (47 kDa) in strains PT1 and PT2. Other proteins were apparently similar in all strains. The addition of calcium chloride (2 mM) to the sodium dodecyl sulfate-solubilized samples of outer membrane proteins, before heating and Western blotting, probed with monoclonal antibody anti-OmpF showed electrophoretic mobility changes of OmpF in strains PT1 and PT2 which were not seen in strain S. Calcium-induced changes were reversed with ethyleneglycoltetraacetate. Decreased [14C]pefloxacin labeling was further correlated with an altered lipopolysaccharide pattern and increased 3-deoxy-D-mannooctulosonic acid concentration (P less than 0.01). These findings suggested that resistance to pefloxacin is associated with altered DNA gyrase in strain PT2-r, with altered permeability in PT1, and with both mechanisms in PT2. The decreased expression of protein D2 and the higher calcium and lipopolysaccharide contents of the outer membrane could be responsible for the permeability deficiency in P. aeruginosa. Images PMID:1645509

  6. Environmental Pseudomonads Inhibit Cystic Fibrosis Patient-Derived Pseudomonas aeruginosa

    PubMed Central

    Chatterjee, Payel; Davis, Elizabeth; Yu, Fengan; James, Sarah; Wildschutte, Julia H.; Wiegmann, Daniel D.; Sherman, David H.; McKay, Robert M.; LiPuma, John J.

    2016-01-01

    ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen which is evolving resistance to many currently used antibiotics. While much research has been devoted to the roles of pathogenic P. aeruginosa in cystic fibrosis (CF) patients, less is known of its ecological properties. P. aeruginosa dominates the lungs during chronic infection in CF patients, yet its abundance in some environments is less than that of other diverse groups of pseudomonads. Here, we sought to determine if clinical isolates of P. aeruginosa are vulnerable to environmental pseudomonads that dominate soil and water habitats in one-to-one competitions which may provide a source of inhibitory factors. We isolated a total of 330 pseudomonads from diverse habitats of soil and freshwater ecosystems and competed these strains against one another to determine their capacity for antagonistic activity. Over 900 individual inhibitory events were observed. Extending the analysis to P. aeruginosa isolates revealed that clinical isolates, including ones with increased alginate production, were susceptible to competition by multiple environmental strains. We performed transposon mutagenesis on one isolate and identified an ∼14.8-kb locus involved in antagonistic activity. Only two other environmental isolates were observed to carry the locus, suggesting the presence of additional unique compounds or interactions among other isolates involved in outcompeting P. aeruginosa. This collection of strains represents a source of compounds that are active against multiple pathogenic strains. With the evolution of resistance of P. aeruginosa to currently used antibiotics, these environmental strains provide opportunities for novel compound discovery against drug-resistant clinical strains. IMPORTANCE We demonstrate that clinical CF-derived isolates of P. aeruginosa are susceptible to competition in the presence of environmental pseudomonads. We observed that many diverse environmental strains exhibited varied

  7. Assessment of Environmental Effects of Ordnance Compounds and their Transformation Products in Coastal Ecosystems

    DTIC Science & Technology

    2003-12-01

    common sediment bacteria Enterobacter aerogenes, Pseudomonas fluorescens, Escherichia coli, Klebsiella sp. and Aeromonas sp. before and after... Pseudomonas fluorescens, Enterobacter aerogenes, Escherichia coli, Klebsiella sp. and Aeromonas sp. are known important decomposers in sediments and...including some compounds of environmental concern such as substituted azobenzenes or phenazines (Haderlein and Schwarzenbach 1995). Aminonitrotoluenes

  8. Once-Daily Amikacin Dosing in Burn Patients Treated with Continuous Venovenous Hemofiltration

    DTIC Science & Technology

    2011-10-01

    Stenotrophomonas maltophilia (11 isolates), Enterobacter aerogenes (9 isolates), Aeromonas hydro- philia (6 isolates), Serratia marcescens (4 isolates), Escherichia...64 Acinetobacter baumannii (35) 39.1% 23 64/64 Other Enterobacteriaciae (43) Stenotrophomonas maltophilia (11), Enterobacter aerogenes (9...Patient and infection characteristics . Sixty patients received amikacin and had sufficient dosing and postinfusion data to calculate pharmacokinetic

  9. Enterobacter cloacae, an obligatory endophyte of pollen grains of Mediterranean pines.

    PubMed

    Madmony, A; Chernin, L; Pleban, S; Peleg, E; Riov, J

    2005-01-01

    Enterobacter cloacae was found to be associated with the pollen of several Mediterranean pines. The bacterium was detected only in mature pollen of Pinus halepensis, P. brutia, and P. pinea. E. cloacae is considered to be an obligatory endophyte based on its occurrence in disinfected male cones and the successful inoculation of seedlings of the above 3 species with E. cloacae AS1 isolated from pollen of P. halepensis used as a model strain. Strain AS1 was able to produce indolyl-3-acetic acid (IAA) from L-tryptophan in culture, and this was probably the source of the increased IAA content in the germination medium of pollen. In addition, strain AS1 promoted adventitious root formation in mung bean (Vigna radiata) cuttings. However, it was not possible to obtain bacterium-free pollen to elucidate its role in pollen germination.

  10. An unusual cause of necrosis and nasal septum perforation after septoplasty: Enterobacter cloacae.

    PubMed

    Binar, M; Arslan, F; Tasli, H; Karakoc, O; Kilic, A; Aydin, U

    2015-11-01

    A 20-year-old man with nasal obstruction underwent septoplasty due to nasal septal deviation. Nasal packs were inserted at the end of surgery and removed 48 hours after surgery. Twenty-four hours after removal of nasal packs, there was necrosis in both sides of septal mucosa and in bilateral inferior turbinates. Nasal swab culture was performed from both nasal cavities. Enterobacter cloacae was isolated from samples. Two weeks after surgery, nasal septum perforation was unavoidable. To our knowledge, this is the first case in literature describing septal mucosal necrosis caused by this pathogen after septoplasty. Mucosal necrosis and perforation as septoplasty complications should be kept in mind, the result of causes both common and, as in the present case, unusual.

  11. Sulphation can enhance the antioxidant activity of polysaccharides produced by Enterobacter cloacae Z0206.

    PubMed

    Jin, Mingliang; Wang, Youming; Huang, Ming; Lu, Zeqing; Wang, Yizhen

    2014-01-01

    The protective effects of sulfated polysaccharide derivatives produced by Enterobacter cloacae Z0206 against H₂O₂-induced oxidative damage in RAW264.7 murine macrophages as well as the possible mechanisms governing the protective effects were studied. Sulfated polysaccharides protected RAW264.7 cells from oxidative damage and apoptosis induced by H₂O₂ by protecting the cellular structure; improving the activity of antioxidant enzymes, such as superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px); and inhibiting caspase-3 activation and DNA fragmentation. In addition, the sulfated polysaccharides conferred higher levels of protection from H₂O₂-induced oxidative damage in RAW264.7 murine macrophages compared to the native polysaccharide lacking sulfation. These results indicated that sulfated modifications might be an effective approach to enhance the antioxidant activity of polysaccharides produced by E. cloacae Z0206, and the sulfated derivatives of these polysaccharides may act as potent antioxidant agents.

  12. Production of bioemulsifier by Bacillus subtilis, Alcaligenes faecalis and Enterobacter species in liquid culture.

    PubMed

    Toledo, F L; Gonzalez-Lopez, J; Calvo, C

    2008-11-01

    Three bacterial strains isolated from waste crude oil were selected due to their capacity of growing in the presence of hydrocarbons and production of bioemulsifier. The genetic identification (PCR of the 16S rDNA gene using fD1 and rD1 primers) of these strains showed their affiliation to Bacillus subtilis, Alcaligenes faecalis and Enterobacter sp. These strains were able to emulsify n-octane, toluene, xylene, mineral oils and crude oil, look promising for bioremediation application. Finally, chemical composition, emulsifying activity and surfactant activity of the biopolymers produced by the selected strains were studies under different culture conditions. Our results showed that chemical and functional properties of the bioemulsifiers were affected by the carbon source added to the growth media.

  13. Enterobacter asburiae KUNi5, a Nickel Resistant Bacterium for Possible Bioremediation of Nickel Contaminated Sites.

    PubMed

    Paul, Anirudha; Mukherjee, Samir Kumar

    2016-01-01

    Nickel resistant bacterial strain Enterobacter asburiae KUNi5 was isolated and showed resistance up to 15 mM and could remove Ni optimally better at 37 degrees C and pH 7. Maximum removal was found at initial concentration of 0.5 to 2 mM, however, growth and Ni removal were affected by other heavy metals. Major amount of the metal was accumulated in the membrane fractions and certain negatively charged groups were found responsible for Ni binding. KUNi5 could also produce 1-aminocyclopropane-1-carboxylate deaminase, indole-acetic acid and siderophore. It seems that KUNi5 could be a possible candidate for Ni detoxification and plant growth promotion in Ni-contaminated field.

  14. Structure characterization of a fucose-containing exopolysaccharide produced by Enterobacter cloacae Z0206.

    PubMed

    Wang, Fengqin; Yang, Hangxian; Wang, Yizhen

    2013-01-30

    A novel high molecular weight (1.1 × 10(6)Da) exopolysaccharide (EPS) produced by Enterobacter cloacae Z0206 strain was isolated by column chromatography. Complete hydrolysis of the EPS followed by gas chromatography mass spectrometry (GC-MS) and high performance liquid chromatography (HPLC) analyses showed that the EPS is composed of L-fucose, D-glucose, D-galactose, D-glucuronic acid and pyruvic acid in the approximate molar ratio of 2:1:3:1:1. Partial acid hydrolysis of the purified EPS followed by gel permeation chromatography (GPC) yielded a hexasaccharide. A combination of chemical analysis coupled with mass spectrometry and 1D and 2D NMR spectroscopy applied to the oligosaccharide showed that the EPS comprises a heptasaccharide repeating unit.

  15. Structure and gene cluster of the O-antigen of Enterobacter cloacae G3421.

    PubMed

    Perepelov, Andrei V; Filatov, Andrei V; Wang, Min; Shashkov, Alexander S; Wang, Lei; Knirel, Yuriy A

    2016-06-02

    The O-polysaccharide was isolated by mild acid degradation of the lipopolysaccharide of Enterobacter cloacae G3421 and studied by sugar analysis along with 1D and 2D (1)H and (13)C NMR spectroscopy. In addition, partial solvolysis with anhydrous trifluoroacetic acid was applied, which cleaved selectively the α-l-rhamnopyranosidic linkages. The following structure of the branched hexasaccharide repeating unit was established. The O-polysaccharide studied shares the β-l-Rhap-(1→4)-α-l-Rhap-(1→2)-α-l-Rhap trisaccharide fragment with the O-polysaccharide of Shigella boydii type 18. The O-antigen gene cluster of E. cloacae G3421 was sequenced. Functions of genes in the cluster, including those for glycosyltransferases, were tentatively assigned by a comparison with sequences in the available databases and found to be consistent with the O-polysaccharide structure.

  16. A Multiple Antibiotic-Resistant Enterobacter cloacae Strain Isolated from a Bioethanol Fermentation Facility

    PubMed Central

    Murphree, Colin A.; Li, Qing; Heist, E. Patrick; Moe, Luke A.

    2014-01-01

    An Enterobacter cloacae strain (E. cloacae F3S3) that was collected as part of a project to assess antibiotic resistance among bacteria isolated from bioethanol fermentation facilities demonstrated high levels of resistance to antibiotics added prophylactically to bioethanol fermentors. PCR assays revealed the presence of canonical genes encoding resistance to penicillin (ampC) and erythromycin (ermG). Assays measuring biofilm formation under antibiotic stress indicated that erythromycin induced biofilm formation in E. cloacae F3S3. Planktonic growth and biofilm formation were observed at a high ethanol content, indicating E. cloacae F3S3 can persist in a bioethanol fermentor under the highly variable environmental conditions found in fermentors. PMID:24941895

  17. The dissemination of multidrug-resistant Enterobacter cloacae throughout the UK and Ireland.

    PubMed

    Moradigaravand, Danesh; Reuter, Sandra; Martin, Veronique; Peacock, Sharon J; Parkhill, Julian

    2016-09-26

    Enterobacter cloacae is a clinically important Gram-negative member of the Enterobacteriaceae, which has increasingly been recognized as a major pathogen in nosocomial infections. Despite this, knowledge about the population structure and the distribution of virulence factors and antibiotic-resistance determinants of this species is scarce. In this study, we analysed a systematic collection of multidrug-resistant E. cloacae isolated between 2001 and 2011 from bloodstream infections across hospitals in the UK and Ireland. We found that the population is characterized by the presence of multiple clones formed at widely different time periods in the past. The clones exhibit a high degree of geographical heterogeneity, which indicates extensive dissemination of these E. cloacae clones across the UK and Ireland. These findings suggest that a diverse, community-based, commensal population underlies multidrug-resistant E. cloacae infections within hospitals.

  18. VIM-4 carbapenemase-producing Enterobacter cloacae in the United Arab Emirates.

    PubMed

    Sonnevend, Á; Ghazawi, A; Yahfoufi, N; Al-Baloushi, A; Hashmey, R; Mathew, M; Tariq, W Z; Pál, T

    2012-12-01

    Screening 34 carbapenem non-susceptible Enterobacteriaceae recovered in Abu Dhabi hospitals identified an Enterobacter cloacae strain carrying bla(VIM-4) , bla(CMY-4) and bla(CTX-M-15) . It was isolated from the urine of an Egyptian patient repeatedly hospitalized and treated with broad-spectrum antibiotics, including carbapenems, in the United Arab Emirates. The bla(VIM-4) coding class I integron, highly similar to In416, was carried on a 175-kilobase non-conjugative incA/C type plasmid also hybridizing with the bla(CMY-4) probe. This is the first detailed report on the isolation of a Verona integron-encoded metallo-β-lactamase (VIM) -producing enteric bacterium in the Arabian Peninsula with characteristics suggestive of spreading from the Mediterranean region.

  19. Biochemical characteristics of Enterobacter agglomerans and related strains found in buckwheat seeds.

    PubMed

    Iimura, K; Hosono, A

    1996-07-01

    Thirty strains of bacteria were randomly isolated and identified from buckwheat seeds. The phenotypic characteristics of these strains agree well with those of the Enterobacter agglomerans-Erwinia herbicola complex. On the basis of the difference in indole production and gas production from D-glucose, the isolates were divided into 3 phenotypic groups, viz. I, II and III. Twenty two strains were in phenotypic group 1, which is negative for indole production and gas production from D-glucose, and resembles Pantoea agglomerans. All six strains in phenotypic group II, which is positive for indole production and negative for gas production from D-glucose, were identified as Erwinia ananas. Two strains in phenotypic group III, which is negative for indole production and positive for gas production from D-glucose, were identified as Rahnella aquatilis.

  20. Exopolysaccharide production by a genetically engineered Enterobacter cloacae strain for microbial enhanced oil recovery.

    PubMed

    Sun, Shanshan; Zhang, Zhongzhi; Luo, Yijing; Zhong, Weizhang; Xiao, Meng; Yi, Wenjing; Yu, Li; Fu, Pengcheng

    2011-05-01

    Microbial enhanced oil recovery (MEOR) is a petroleum biotechnology for manipulating function and/or structure of microbial environments existing in oil reservoirs for prolonged exploitation of the largest source of energy. In this study, an Enterobacter cloacae which is capable of producing water-insoluble biopolymers at 37°C and a thermophilic Geobacillus strain were used to construct an engineered strain for exopolysaccharide production at higher temperature. The resultant transformants, GW3-3.0, could produce exopolysaccharide up to 8.83 g l(-1) in molasses medium at 54°C. This elevated temperature was within the same temperature range as that for many oil reservoirs. The transformants had stable genetic phenotype which was genetically fingerprinted by RAPD analysis. Core flooding experiments were carried out to ensure effective controlled profile for the simulation of oil recovery. The results have demonstrated that this approach has a promising application potential in MEOR.

  1. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence

    PubMed Central

    Moradali, M. Fata; Ghods, Shirin; Rehm, Bernd H. A.

    2017-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen affecting immunocompromised patients. It is known as the leading cause of morbidity and mortality in cystic fibrosis (CF) patients and as one of the leading causes of nosocomial infections. Due to a range of mechanisms for adaptation, survival and resistance to multiple classes of antibiotics, infections by P. aeruginosa strains can be life-threatening and it is emerging worldwide as public health threat. This review highlights the diversity of mechanisms by which P. aeruginosa promotes its survival and persistence in various environments and particularly at different stages of pathogenesis. We will review the importance and complexity of regulatory networks and genotypic-phenotypic variations known as adaptive radiation by which P. aeruginosa adjusts physiological processes for adaptation and survival in response to environmental cues and stresses. Accordingly, we will review the central regulatory role of quorum sensing and signaling systems by nucleotide-based second messengers resulting in different lifestyles of P. aeruginosa. Furthermore, various regulatory proteins will be discussed which form a plethora of controlling systems acting at transcriptional level for timely expression of genes enabling rapid responses to external stimuli and unfavorable conditions. Antibiotic resistance is a natural trait for P. aeruginosa and multiple mechanisms underlying different forms of antibiotic resistance will be discussed here. The importance of each mechanism in conferring resistance to various antipseudomonal antibiotics and their prevalence in clinical strains will be described. The underlying principles for acquiring resistance leading pan-drug resistant strains will be summarized. A future outlook emphasizes the need for collaborative international multidisciplinary efforts to translate current knowledge into strategies to prevent and treat P. aeruginosa infections while reducing the rate of antibiotic resistance

  2. Why Does the Healthy Cornea Resist Pseudomonas aeruginosa Infection?

    PubMed Central

    Evans, David J.; Fleiszig, Suzanne M. J.

    2013-01-01

    Purpose To provide our perspective on why the cornea is resistant to infection based on our research results with Pseudomonas aeruginosa. Perspective We focus on our current understanding of the interplay between bacteria, tear fluid and the corneal epithelium that determine health as the usual outcome, and propose a theoretical model for how contact lens wear might change those interactions to enable susceptibility to P. aeruginosa infection. Methods Use of “null-infection” in vivo models, cultured human corneal epithelial cells, contact lens-wearing animal models, and bacterial genetics help to elucidate mechanisms by which P. aeruginosa survive at the ocular surface, adheres, and traverses multilayered corneal epithelia. These models also help elucidate the molecular mechanisms of corneal epithelial innate defense. Results and Discussion Tear fluid and the corneal epithelium combine to make a formidable defense against P. aeruginosa infection of the cornea. Part of that defense involves the expression of antimicrobials such as β-defensins, the cathelicidin LL-37, cytokeratin-derived antimicrobial peptides, and RNase7. Immunomodulators such as SP-D and ST2 also contribute. Innate defenses of the cornea depend in part on MyD88, a key adaptor protein of TLR and IL-1R signaling, but the basal lamina represents the final barrier to bacterial penetration. Overcoming these defenses involves P. aeruginosa adaptation, expression of the type three secretion system, proteases, and P. aeruginosa biofilm formation on contact lenses. Conclusion After more than two decades of research focused on understanding how contact lens wear predisposes to P. aeruginosa infection, our working hypothesis places blame for microbial keratitis on bacterial adaptation to ocular surface defenses, combined with changes to the biochemistry of the corneal surface caused by trapping bacteria and tear fluid against the cornea under the lens. PMID:23601656

  3. Evaluation of flagella and flagellin of Pseudomonas aeruginosa as vaccines.

    PubMed

    Campodónico, Victoria L; Llosa, Nicolás J; Grout, Martha; Döring, Gerd; Maira-Litrán, Tomás; Pier, Gerald B

    2010-02-01

    Pseudomonas aeruginosa is a serious pathogen in hospitalized, immunocompromised, and cystic fibrosis (CF) patients. P. aeruginosa is motile via a single polar flagellum made of polymerized flagellin proteins differentiated into two major serotypes: a and b. Antibodies to flagella delay onset of infection in CF patients, but whether immunity to polymeric flagella and that to monomeric flagellin are comparable has not been addressed, nor has the question of whether such antibodies might negatively impact Toll-like receptor 5 (TLR5) activation, an important component of innate immunity to P. aeruginosa. We compared immunization with flagella and that with flagellin for in vitro effects on motility, opsonic killing, and protective efficacy using a mouse pneumonia model. Antibodies to flagella were superior to antibodies to flagellin at inhibiting motility, promoting opsonic killing, and mediating protection against P. aeruginosa pneumonia in mice. Protection against the flagellar type strains PAK and PA01 was maximal, but it was only marginal against motile clinical isolates from flagellum-immunized CF patients who nonetheless became colonized with P. aeruginosa. Purified flagellin was a more potent activator of TLR5 than were flagella and also elicited higher TLR5-neutralizing antibodies than did immunization with flagella. Antibody to type a but not type b flagella or flagellin inhibited TLR5 activation by whole bacterial cells. Overall, intact flagella appear to be superior for generating immunity to P. aeruginosa, and flagellin monomers might induce antibodies capable of neutralizing innate immunity due to TLR5 activation, but solid immunity to P. aeruginosa based on flagellar antigens may require additional components beyond type a and type b proteins from prototype strains.

  4. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence.

    PubMed

    Moradali, M Fata; Ghods, Shirin; Rehm, Bernd H A

    2017-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen affecting immunocompromised patients. It is known as the leading cause of morbidity and mortality in cystic fibrosis (CF) patients and as one of the leading causes of nosocomial infections. Due to a range of mechanisms for adaptation, survival and resistance to multiple classes of antibiotics, infections by P. aeruginosa strains can be life-threatening and it is emerging worldwide as public health threat. This review highlights the diversity of mechanisms by which P. aeruginosa promotes its survival and persistence in various environments and particularly at different stages of pathogenesis. We will review the importance and complexity of regulatory networks and genotypic-phenotypic variations known as adaptive radiation by which P. aeruginosa adjusts physiological processes for adaptation and survival in response to environmental cues and stresses. Accordingly, we will review the central regulatory role of quorum sensing and signaling systems by nucleotide-based second messengers resulting in different lifestyles of P. aeruginosa. Furthermore, various regulatory proteins will be discussed which form a plethora of controlling systems acting at transcriptional level for timely expression of genes enabling rapid responses to external stimuli and unfavorable conditions. Antibiotic resistance is a natural trait for P. aeruginosa and multiple mechanisms underlying different forms of antibiotic resistance will be discussed here. The importance of each mechanism in conferring resistance to various antipseudomonal antibiotics and their prevalence in clinical strains will be described. The underlying principles for acquiring resistance leading pan-drug resistant strains will be summarized. A future outlook emphasizes the need for collaborative international multidisciplinary efforts to translate current knowledge into strategies to prevent and treat P. aeruginosa infections while reducing the rate of antibiotic resistance

  5. Secretion of phospholipase C by Pseudomonas aeruginosa.

    PubMed Central

    Stinson, M W; Hayden, C

    1979-01-01

    The conditions necessary for the secretion of phospholipase C (phosphatidylcholine cholinephosphohydrolase) by Pseudomonas aeruginosa were studied. Enzyme secretion by washed cell suspensions required a carbon source and ammonium, potassium, and calcium ions. The calcium requirement could be substituted by magnesium and strontium but not by copper, manganese, cobalt, or zinc. During growth in liquid medium, cells secreted phospholipase C during late logarithmic and early stationary phases. Secretion was repressed by the addition of inorganic phosphate but not by organic phosphates, glucose, or sodium succinate. Studies with tetracycline indicated that de novo protein synthesis was necessary for the secretion of phospholipase C and that the exoenzyme was not released from a preformed periplasmic pool. Similarly, extraction of actively secreting cells with 0.2 M MgCl2 at pH 8.4 solubilized large quantities of the periplasmic enzyme alkaline phosphatase but insignificant amounts of phospholipase C. Bacteria continued to secrete enzyme for nearly 45 min after the addition of inorganic phosphate or rifampin. Images PMID:114487

  6. Comprehensive transposon mutant library of Pseudomonas aeruginosa

    PubMed Central

    Jacobs, Michael A.; Alwood, Ashley; Thaipisuttikul, Iyarit; Spencer, David; Haugen, Eric; Ernst, Stephen; Will, Oliver; Kaul, Rajinder; Raymond, Christopher; Levy, Ruth; Chun-Rong, Liu; Guenthner, Donald; Bovee, Donald; Olson, Maynard V.; Manoil, Colin

    2003-01-01

    We have developed technologies for creating saturating libraries of sequence-defined transposon insertion mutants in which each strain is maintained. Phenotypic analysis of such libraries should provide a virtually complete identification of nonessential genes required for any process for which a suitable screen can be devised. The approach was applied to Pseudomonas aeruginosa, an opportunistic pathogen with a 6.3-Mbp genome. The library that was generated consists of 30,100 sequence-defined mutants, corresponding to an average of five insertions per gene. About 12% of the predicted genes of this organism lacked insertions; many of these genes are likely to be essential for growth on rich media. Based on statistical analyses and bioinformatic comparison to known essential genes in E. coli, we estimate that the actual number of essential genes is 300-400. Screening the collection for strains defective in two defined multigenic processes (twitching motility and prototrophic growth) identified mutants corresponding to nearly all genes expected from earlier studies. Thus, phenotypic analysis of the collection may produce essentially complete lists of genes required for diverse biological activities. The transposons used to generate the mutant collection have added features that should facilitate downstream studies of gene expression, protein localization, epistasis, and chromosome engineering. PMID:14617778

  7. Comprehensive transposon mutant library of Pseudomonas aeruginosa.

    PubMed

    Jacobs, Michael A; Alwood, Ashley; Thaipisuttikul, Iyarit; Spencer, David; Haugen, Eric; Ernst, Stephen; Will, Oliver; Kaul, Rajinder; Raymond, Christopher; Levy, Ruth; Chun-Rong, Liu; Guenthner, Donald; Bovee, Donald; Olson, Maynard V; Manoil, Colin

    2003-11-25

    We have developed technologies for creating saturating libraries of sequence-defined transposon insertion mutants in which each strain is maintained. Phenotypic analysis of such libraries should provide a virtually complete identification of nonessential genes required for any process for which a suitable screen can be devised. The approach was applied to Pseudomonas aeruginosa, an opportunistic pathogen with a 6.3-Mbp genome. The library that was generated consists of 30,100 sequence-defined mutants, corresponding to an average of five insertions per gene. About 12% of the predicted genes of this organism lacked insertions; many of these genes are likely to be essential for growth on rich media. Based on statistical analyses and bioinformatic comparison to known essential genes in E. coli, we estimate that the actual number of essential genes is 300-400. Screening the collection for strains defective in two defined multigenic processes (twitching motility and prototrophic growth) identified mutants corresponding to nearly all genes expected from earlier studies. Thus, phenotypic analysis of the collection may produce essentially complete lists of genes required for diverse biological activities. The transposons used to generate the mutant collection have added features that should facilitate downstream studies of gene expression, protein localization, epistasis, and chromosome engineering.

  8. Adherence of Pseudomonas aeruginosa to contact lenses

    SciTech Connect

    Miller, M.J.

    1988-01-01

    The purpose of this research was to examined the interactions of P. aeruginosa with hydrogel contact lenses and other substrata, and characterize adherence to lenses under various physiological and physicochemical conditions. Isolates adhered to polystyrene, glass, and hydrogel lenses. With certain lens types, radiolabeled cells showed decreased adherence with increasing water content of the lenses, however, this correlation with not found for all lenses. Adherence to rigid gas permeable lenses was markedly greater than adherence to hydrogels. Best adherence occurred near pH 7 and at a sodium chloride concentration of 50 mM. Passive adhesion of heat-killed cells to hydrogels was lower than the adherence obtained of viable cells. Adherence to hydrogels was enhanced by mucin, lactoferrin, lysozyme, IgA, bovine serum albumin, and a mixture of these macromolecules. Adherence to coated and uncoated lenses was greater with a daily-wear hydrogel when compared with an extended-wear hydrogel of similar polymer composition. Greater adherence was attributed to a higher concentration of adsorbed macromolecules on the 45% water-content lens in comparison to the 55% water-content lens.

  9. Quorum quenching activity in cell-free lysate of endophytic bacteria isolated from Pterocarpus santalinus Linn., and its effect on quorum sensing regulated biofilm in Pseudomonas aeruginosa PAO1.

    PubMed

    Rajesh, P S; Ravishankar Rai, V

    2014-01-01

    Quorum sensing mechanism allows the microorganisms to resist the antibiotic treatment by forming biofilms. Quorum quenching is one of the mechanisms to control the development of drug resistance in microbes. Endophyte bacteria are beneficial to plant growth as they support the immune system against the pathogen attack. The endophytic bacteria present in Pterocarpus santalinus were screened for the presence of N-acyl homoserine lactones (AHLs) degrading bacteria using biosensor strains and further confirmed by quantifying the violacein production. Cell-free lysate of endophytic bacteria, Bacillus firmus PT18 and Enterobacter asburiae PT39 exhibited potent AHL degrading ability by inhibiting about 80% violacein production in biosensor strain. Furthermore, when the cell-free lysate was applied to Pseudomonas aeruginosa PAO1 and PAO1-JP2 biofilm it resulted in significant (p<0.01) inhibition of biofilm formation. The biofilm inhibition was confirmed by visualization of biofilm slides under fluorescence microscopy, which showed decrease in total biomass formation in treated slides. Isolation and amplification of the gene (aiiA) indicated that the presence of AHL lactonase in cell-free lysate and sequence alignment indicated that AiiA contains a "HXHXDH" zinc-binding motif that is being conserved in several groups of metallohydrolases. Therefore, the study shows the potential of AHLs degradation by AHL lactonase present in cell-free lysate of isolated endophytic bacteria and inhibition of quorum sensing regulated biofilm formation in P. aeruginosa PAO1.

  10. Isolation and characterization of diverse antimicrobial lipopeptides produced by Citrobacter and Enterobacter

    PubMed Central

    2013-01-01

    Background Increasing multidrug-resistance in bacteria resulted in a greater need to find alternative antimicrobial substances that can be used for clinical applications or preservation of food and dairy products. Research on antimicrobial peptides including lipopeptides exhibiting both narrow and broad spectrum inhibition activities is increasing in the recent past. Therefore, the present study was aimed at isolation and characterization of antimicrobial lipopeptide producing bacterial strains from fecal contaminated soil sample. Results The phenotypic and 16S rRNA gene sequence analysis of all isolates identified them as different species of Gram-negative genera Citrobacter and Enterobacter. They exhibited common phenotypic traits like citrate utilization, oxidase negative and facultative anaerobic growth. The HPLC analysis of solvent extracts obtained from cell free fermented broth revealed the presence of multiple antimicrobial lipopeptides. The comprehensive mass spectral analysis (MALDI-TOF MS and GC-MS) of HPLC purified fractions of different isolates revealed that the lipopeptides varied in their molecular weight between (m/z) 607.21 to 1536.16 Da. Isomers of mass ion m/z 984/985 Da was produced by all strains. The 1495 Da lipopeptides produced by strains S-3 and S-11 were fengycin analogues and most active against all strains. While amino acid analysis of lipopeptides suggested most of them had similar composition as in iturins, fengycins, kurstakins and surfactins, differences in their β-hydroxy fatty acid content proposed them to be isoforms of these lipopeptides. Conclusion Although antimicrobial producing strains can be used as biocontrol agents in food preservation, strains with ability to produce multiple antimicrobial lipopeptides have potential applications in biotechnology sectors such as pharmaceutical and cosmetic industry. This is the first report on antibacterial lipopeptides production by strains of Citrobacter and Enterobacter. PMID

  11. Enterobacter sacchari sp. nov., a nitrogen-fixing bacterium associated with sugar cane (Saccharum officinarum L.).

    PubMed

    Zhu, Bo; Zhou, Qing; Lin, Li; Hu, Chunjin; Shen, Ping; Yang, Litao; An, Qianli; Xie, Guanlin; Li, Yangrui

    2013-07-01

    Five nitrogen-fixing bacterial strains (SP1(T), NN143, NN144, NN208 and HX148) were isolated from stem, root or rhizosphere soil of sugar cane (Saccharum officinarum L.) plants. Cells were Gram-negative, motile, rods with peritrichous flagella. DNA G+C content was 55.0 ± 0.5 mol%. Sequence determinations and phylogenetic analysis of 16S rRNA gene and rpoB indicated that the strains were affiliated with the genus Enterobacter and most closely related to E. radicincitans DSM 16656(T) and E. oryzae LMG 24251(T). Fluorimetric determination of thermal denaturation temperatures after DNA-DNA hybridization, enterobacterial repetitive intergenic consensus PCR and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry differentiated the whole-genome, genotype and protein profiles from those of E. radicincitans and E. oryzae. The strains' cell fatty acid composition differentiated them from E. radicincitans and E. oryzae by containing a higher level of summed feature 2 (C16 : 1ω7c and/or C16 : 1ω6c) and a lower level of C17 : 0 cyclo. Their physiological and biochemical profiles differentiated them from E. radicincitans by being positive for methyl red test, ornithine decarboxylase and utilization of putrescine, D-arabitol, L-fucose and methyl α-D-glucoside and being negative for arginine dihydrolase, and differentiated them from E. oryzae by being positive for aesculin hydrolysis and utilization of putrescine, D-arabitol and L-rhamnose and being negative for arginine dihydrolase, lysine decarboxylase and utilization of mucate. The five strains therefore represent a novel species, for which the name Enterobacter sacchari sp. nov. is proposed, with the type strain SP1(T) ( = CGMCC 1.12102(T) = LMG 26783(T)).

  12. Cloning and characterization of newly isolated lipase from Enterobacter sp. Bn12.

    PubMed

    Farrokh, Parisa; Yakhchali, Bagher; Karkhane, Ali Asghar

    2014-01-01

    A mesophilic Enterobacter sp. Bn12 producing an alkaline thermostable lipase was isolated from soil in Tehran, Iran. The lipase gene (ELBn12) was identified from a genomic library. Sequence analysis of the DNA fragment revealed an open reading frame of 879 bp encoding a lipase with a molecular mass of 31.3 kDa. The deduced amino acid sequence showed 96% identity with a lipase of Enterobacter sp. Ag1 and the identity of their DNA sequences was 88.9%. ELBn12 belongs to the lipase subfamily I.1 and its catalytic triad consists of Ser82, Asp237 and His259. The lipase was expressed in Escherichia coli (BL21) pLysS and partially purified by anion exchange chromatography. The maximum activity of ELBn12 was obtained at temperature of 60 °C and pH 8.0 towards tricaprylin (C8) and its specific activity was around 2900 U/mg. ELBn12 was stable within a broad pH range from 6.0 to 11.0. The enzyme showed high stability in both polar and nonpolar organic solvents at 50% (v/v). The lipase activity was enhanced in the presence of 10 mM of Ca(2+), Mg(2+) and K(+), while heavy metals (Fe(3+) and Zn(2+)) had strong inhibitory effect. ELBn12 showed high activity in the presence of 1% (w/v) nonionic surfactants, however ionic surfactants inhibited the lipolytic activity. ELBn12 characteristics show that it has a potential to be used in various industrial processes.

  13. International Life Science Institute North America Cronobacter (Formerly Enterobacter sakazakii) isolate set.

    PubMed

    Ivy, Reid A; Farber, Jeffrey M; Pagotto, Franco; Wiedmann, Martin

    2013-01-01

    Foodborne pathogen isolate collections are important for the development of detection methods, for validation of intervention strategies, and to develop an understanding of pathogenesis and virulence. We have assembled a publicly available Cronobacter (formerly Enterobacter sakazakii) isolate set that consists of (i) 25 Cronobacter sakazakii isolates, (ii) two Cronobacter malonaticus isolates, (iii) one Cronobacter muytjensii isolate, which displays some atypical phenotypic characteristics, biochemical profiles, and colony color on selected differential media, and (iv) two nonclinical Enterobacter asburiae isolates, which show some phenotypic characteristics similar to those of Cronobacter spp. The set consists of human (n = 10), food (n = 11), and environmental (n = 9) isolates. Analysis of partial 16S rDNA sequence and seven-gene multilocus sequence typing data allowed for reliable identification of these isolates to species and identification of 14 isolates as sequence type 4, which had previously been shown to be the most common C. sakazakii sequence type associated with neonatal meningitis. Phenotypic characterization was carried out with API 20E and API 32E test strips and streaking on two selective chromogenic agars; isolates were also assessed for sorbitol fermentation and growth at 45°C. Although these strategies typically produced the same classification as sequence-based strategies, based on a panel of four biochemical tests, one C. sakazakii isolate yielded inconclusive data and one was classified as C. malonaticus. EcoRI automated ribotyping and pulsed-field gel electrophoresis (PFGE) with XbaI separated the set into 23 unique ribotypes and 30 unique PFGE types, respectively, indicating subtype diversity within the set. Subtype and source data for the collection are publicly available in the PathogenTracker database (www. pathogentracker. net), which allows for continuous updating of information on the set, including links to publications that include

  14. Cloning and characterization of newly isolated lipase from Enterobacter sp. Bn12

    PubMed Central

    Farrokh, Parisa; Yakhchali, Bagher; Karkhane, Ali Asghar

    2014-01-01

    A mesophilic Enterobacter sp. Bn12 producing an alkaline thermostable lipase was isolated from soil in Tehran, Iran. The lipase gene (ELBn12) was identified from a genomic library. Sequence analysis of the DNA fragment revealed an open reading frame of 879 bp encoding a lipase with a molecular mass of 31.3 kDa. The deduced amino acid sequence showed 96% identity with a lipase of Enterobacter sp. Ag1 and the identity of their DNA sequences was 88.9%. ELBn12 belongs to the lipase subfamily I.1 and its catalytic triad consists of Ser82, Asp237 and His259. The lipase was expressed in Escherichia coli (BL21) pLysS and partially purified by anion exchange chromatography. The maximum activity of ELBn12 was obtained at temperature of 60 °C and pH 8.0 towards tricaprylin (C8) and its specific activity was around 2900 U/mg. ELBn12 was stable within a broad pH range from 6.0 to 11.0. The enzyme showed high stability in both polar and nonpolar organic solvents at 50% (v/v). The lipase activity was enhanced in the presence of 10 mM of Ca2+, Mg2+ and K+, while heavy metals (Fe3+ and Zn2+) had strong inhibitory effect. ELBn12 showed high activity in the presence of 1% (w/v) nonionic surfactants, however ionic surfactants inhibited the lipolytic activity. ELBn12 characteristics show that it has a potential to be used in various industrial processes. PMID:25242958

  15. Specific gonadotropin binding to Pseudomonas maltophilia.

    PubMed

    Richert, N D; Ryan, R J

    1977-03-01

    Binding of 125I-labeled human chorionic gonadotropin to Pseudomonas maltophilia is dependent on time, temperature, and pH and the binding to this procaryotic species is hormone-specific and saturable. The equilibrium dissociation constant is 2.3 X 10(-9) M. There are no cooperative interactions between binding sites (Hill coefficient, 1.05). The number of sites is estimaated as 240 fmol/100 mug of protein. NaCl and KCl, at concentrations from 1 to 10 mM, have no effect on binding. Divalent cations (Mg2+ and Ca2+) and 1 mM EDTA inhibit hormone binding. Binding is destroyed by heat or by treatment with Pronase of alpha-chymotrypsin and is increased by phospholipase C. Binding of the labeled gonadotropin is not observed with other gram-negative organisms--e.g., Escherichia coli, Pseudomonas testosteroni, Pseudomonas aeruginosa, Enterobacter aerogenes, or Enterobacter cloacae.

  16. High-quality draft genome sequence of Enterobacter sp. Bisph2, a glyphosate-degrading bacterium isolated from a sandy soil of Biskra, Algeria.

    PubMed

    Benslama, Ouided; Boulahrouf, Abderrahmane

    2016-06-01

    Enterobacter sp. strain Bisph2 was isolated from a sandy soil from Biskra, Algeria and exhibits glyphosate-degrading activity. Multilocus sequence analysis of the 16S rRNA, rpoB, hsp60, gyrB and dnaJ genes demonstrated that Bisph2 might be a member of a new species of the genus Enterobacter. Genomic sequencing of Bisph2 was used to better clarify the relationships among Enterobacter species. Annotation and analysis of the genome sequence showed that the 5.535.656 bp genome of Enterobacter sp. Bisph2 consists in one chromosome and no detectable plasmid, has a 53.19% GC content and 78% of genes were assigned a putative function. The genome contains four prophages of which 3 regions are intact and no CRISPER was detected. The nucleotide sequence of this genome was deposited into DDBJ/EMBL/GenBank under the accession JXAF00000000.

  17. Kinetics of biological decolorisation of anthraquinone based Reactive Blue 19 using an isolated strain of Enterobacter sp.F NCIM 5545.

    PubMed

    Holkar, Chandrakant R; Pandit, Aniruddha B; Pinjari, Dipak V

    2014-12-01

    In the present study, an attempt was made to evaluate the bacterial decolorisation of Reactive Blue 19 by an Enterobacter sp.F which was isolated from a mixed culture from anaerobic digester for biogas production. Phenotypic characterization and phylogenetic analysis based on DNA sequencing comparisons indicate that Enterobacter sp.F was 99.7% similar to Enterobacter cloacae ATCC13047. The kinetics of Reactive Blue 19 dye decolorisation by bacterium had been estimated. Effects of substrate concentration, oxygen, temperature, pH, glucose and glucose to microbe weight ratio on the rate of decolorisation were investigated to understand key factor that determines the performance of dye decolorisation. The maximum decolorisation efficiency of Reactive Blue 19 was 90% over period of 24 h for optimized parameter. To the best of our knowledge, this research study is the report where Enterobacter sp.F has been reported with about 90% decolorizing ability against anthraquinone based Reactive Blue 19 dye.

  18. Iron Depletion Enhances Production of Antimicrobials by Pseudomonas aeruginosa

    PubMed Central

    Nguyen, Angela T.; Jones, Jace W.; Ruge, Max A.; Kane, Maureen A.

    2015-01-01

    ABSTRACT Cystic fibrosis (CF) is a heritable disease characterized by chronic, polymicrobial lung infections. While Staphylococcus aureus is the dominant lung pathogen in young CF patients, Pseudomonas aeruginosa becomes predominant by adulthood. P. aeruginosa produces a variety of antimicrobials that likely contribute to this shift in microbial populations. In particular, secretion of 2-alkyl-4(1H)-quinolones (AQs) contributes to lysis of S. aureus in coculture, providing an iron source to P. aeruginosa both in vitro and in vivo. We previously showed that production of one such AQ, the Pseudomonas quinolone signal (PQS), is enhanced by iron depletion and that this induction is dependent upon the iron-responsive PrrF small RNAs (sRNAs). Here, we demonstrate that antimicrobial activity against S. aureus during coculture is also enhanced by iron depletion, and we provide evidence that multiple AQs contribute to this activity. Strikingly, a P. aeruginosa ΔprrF mutant, which produces very little PQS in monoculture, was capable of mediating iron-regulated growth suppression of S. aureus. We show that the presence of S. aureus suppresses the ΔprrF1,2 mutant's defect in iron-regulated PQS production, indicating that a PrrF-independent iron regulatory pathway mediates AQ production in coculture. We further demonstrate that iron-regulated antimicrobial production is conserved in multiple P. aeruginosa strains, including clinical isolates from CF patients. These results demonstrate that iron plays a central role in modulating interactions of P. aeruginosa with S. aureus. Moreover, our studies suggest that established iron regulatory pathways of these pathogens are significantly altered during polymicrobial infections. IMPORTANCE Chronic polymicrobial infections involving Pseudomonas aeruginosa and Staphylococcus aureus are a significant cause of morbidity and mortality, as the interplay between these two organisms exacerbates infection. This is in part due to enhanced

  19. A network biology approach to denitrification in Pseudomonas aeruginosa

    DOE PAGES

    Arat, Seda; Bullerjahn, George S.; Laubenbacher, Reinhard

    2015-02-23

    Pseudomonas aeruginosa is a metabolically flexible member of the Gammaproteobacteria. Under anaerobic conditions and the presence of nitrate, P. aeruginosa can perform (complete) denitrification, a respiratory process of dissimilatory nitrate reduction to nitrogen gas via nitrite (NO₂), nitric oxide (NO) and nitrous oxide (N₂O). This study focuses on understanding the influence of environmental conditions on bacterial denitrification performance, using a mathematical model of a metabolic network in P. aeruginosa. To our knowledge, this is the first mathematical model of denitrification for this bacterium. Analysis of the long-term behavior of the network under changing concentration levels of oxygen (O₂), nitrate (NO₃),more » and phosphate (PO₄) suggests that PO₄ concentration strongly affects denitrification performance. The model provides three predictions on denitrification activity of P. aeruginosa under various environmental conditions, and these predictions are either experimentally validated or supported by pertinent biological literature. One motivation for this study is to capture the effect of PO₄ on a denitrification metabolic network of P. aeruginosa in order to shed light on mechanisms for greenhouse gas N₂O accumulation during seasonal oxygen depletion in aquatic environments such as Lake Erie (Laurentian Great Lakes, USA). Simulating the microbial production of greenhouse gases in anaerobic aquatic systems such as Lake Erie allows a deeper understanding of the contributing environmental effects that will inform studies on, and remediation strategies for, other hypoxic sites worldwide.« less

  20. Influence of Pseudomonas Aeruginosa on Exacerbation in Patients with Bronchiectasis

    PubMed Central

    Chawla, Kiran; Vishwanath, Shashidhar; Manu, Mohan K; Lazer, Bernaitis

    2015-01-01

    Background: A majority of the studies done on the western population have shown that Pseudomonas aeruginosa causes many severe infections in patients with bronchiectasis as compared to other pathogens. There is scarcity of similar data from the Asian population. Materials and Methods: A prospective study was undertaken to identify the various pathogens isolated from the respiratory samples of 117 patients with bronchiectasis from south India and to compare the clinicomicrobiological profile of infections caused by P. aeruginosa and other respiratory pathogens. Results: The respiratory pathogens were isolated from 63 (53.8%) patients. P. aeruginosa was the most common isolate (46.0%) followed by Klebsiella pneumoniae (14.3%) and other pathogenic bacteria. Patients included in the P. aeruginosa group had a higher number of exacerbations (p: 0.008), greater number of hospital admissions (p: 0.007), a prolonged hospital stay (p: 0.03), and poor lung function, compared to the patients infected with the non-Pseudomonas group. Conclusion: It is necessary to investigate the etiology of respiratory tract infections among bronchiectasis patients followed by the prompt management of cases diagnosed with P. aeruginosa infections, so as to lower the morbidity and have a better prognosis. PMID:25722615

  1. Pseudomonas aeruginosa Virulence and Therapy: Evolving Translational Strategies

    PubMed Central

    Veesenmeyer, Jeffrey L.; Lisboa, Thiago; Rello, Jordi

    2009-01-01

    Structured abstract Objective Although most reviews of Pseudomonas aeruginosa therapeutics focus on antibiotics currently in use or in the pipeline, we review evolving translational strategies aimed at using virulence factor antagonists as adjuvant therapies. Data Source Current literature regarding P. aeruginosa virulence determinants and approaches that target them, with an emphasis on type III secretion, quorum-sensing, biofilms, and flagella. Data Extraction and Synthesis P. aeruginosa remains one of the most important pathogens in nosocomial infections, with high associated morbidity and mortality. Its predilection to develop resistance to antibiotics and expression of multiple virulence factors contributes to the frequent ineffectiveness of current therapies. Among the many P. aeruginosa virulence determinants that impact infections, type III secretion, quorum sensing, biofilm formation, and flagella have been the focus of much recent investigation. Here we review how increased understanding of these important bacterial structures and processes has enabled the development of novel approaches to inhibit each. These promising translational strategies may lead to the development of adjuvant therapies capable of improving outcomes. Conclusions Adjuvant therapies directed against virulence factors have the potential to improve outcomes in P. aeruginosa infections. PMID:19325463

  2. [Resistance to antibiotics in Pseudomonas aeruginosa in Colombian hospitals].

    PubMed

    Villa, Lina M; Cortés, Jorge A; Leal, Aura L; Meneses, Andrés; Meléndez, Martha P

    2013-12-01

    Pseudomonas aeruginosa infections cause high morbidity and mortality. We performed a descriptive analysis of the rates of antibiotic resistance in isolates of P. aeruginosa in 33 hospitals enrolled in a surveillance network in Colombia. The study was conducted between January 2005 and December 2009 .9905 isolates of P. aeruginosa were identified, (4.9% of all strains). In intensive care units (ICU) P. aeruginosa showed an overall resistance to aztreonam, cefepime , ceftazidime, imipenem, meropenem , and piperacillin / tazobactam of 31.8% , 23.9% , 24.8%, 22.5%, 20.3% and 22.3%, respectively. Resistance rates increased for piperacillin/tazobactam, cefepime, and imipenem; remained unchanged for meropenem; and decreased for aminoglycosides, quinolones and ceftazidime. Resistance to one, two and three or more families of antibiotics was found in 17%, 12.5%, and 32.1%, respectively. In samples collected from the wards, the resistance rate was lower but usually over 10%. Antibiotic resistance in P. aeruginosa isolates in hospitalized patients and particularly in those admitted to ICUs in Colombia is high.

  3. Gold-functionalized magnetic nanoparticles restrict growth of Pseudomonas aeruginosa.

    PubMed

    Niemirowicz, Katarzyna; Swiecicka, Izabela; Wilczewska, Agnieszka Z; Misztalewska, Iwona; Kalska-Szostko, Beata; Bienias, Kamil; Bucki, Robert; Car, Halina

    2014-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) and their derivatives (aminosilane and gold-coated) have been widely investigated in numerous medical applications, including their potential to act as antibacterial drug carriers that may penetrate into bacteria cells and biofilm mass. Pseudomonas aeruginosa is a frequent cause of infection in hospitalized patients, and significant numbers of currently isolated clinical strains are resistant to standard antibiotic therapy. Here we describe the impact of three types of SPIONs on the growth of P. aeruginosa during long-term bacterial culture. Their size, structure, and physicochemical properties were determined using transmission electron microscopy, X-ray diffraction analysis, and Fourier transform infrared spectroscopy. We observed significant inhibition of P. aeruginosa growth in bacterial cultures continued over 96 hours in the presence of gold-functionalized nanoparticles (Fe₃O₄@Au). At the 48-hour time point, growth of P. aeruginosa, as assessed by the number of colonies grown from treated samples, showed the highest inhibition (decreased by 40%). These data provide strong evidence that Fe₃O₄@Au can dramatically reduce growth of P. aeruginosa and provide a platform for further study of the antibacterial activity of this nanomaterial.

  4. The Genomic Basis of Evolutionary Innovation in Pseudomonas aeruginosa

    PubMed Central

    Wagner, Andreas; MacLean, R. Craig

    2016-01-01

    Novel traits play a key role in evolution, but their origins remain poorly understood. Here we address this problem by using experimental evolution to study bacterial innovation in real time. We allowed 380 populations of Pseudomonas aeruginosa to adapt to 95 different carbon sources that challenged bacteria with either evolving novel metabolic traits or optimizing existing traits. Whole genome sequencing of more than 80 clones revealed profound differences in the genetic basis of innovation and optimization. Innovation was associated with the rapid acquisition of mutations in genes involved in transcription and metabolism. Mutations in pre-existing duplicate genes in the P. aeruginosa genome were common during innovation, but not optimization. These duplicate genes may have been acquired by P. aeruginosa due to either spontaneous gene amplification or horizontal gene transfer. High throughput phenotype assays revealed that novelty was associated with increased pleiotropic costs that are likely to constrain innovation. However, mutations in duplicate genes with close homologs in the P. aeruginosa genome were associated with low pleiotropic costs compared to mutations in duplicate genes with distant homologs in the P. aeruginosa genome, suggesting that functional redundancy between duplicates facilitates innovation by buffering pleiotropic costs. PMID:27149698

  5. The Genomic Basis of Evolutionary Innovation in Pseudomonas aeruginosa.

    PubMed

    Toll-Riera, Macarena; San Millan, Alvaro; Wagner, Andreas; MacLean, R Craig

    2016-05-01

    Novel traits play a key role in evolution, but their origins remain poorly understood. Here we address this problem by using experimental evolution to study bacterial innovation in real time. We allowed 380 populations of Pseudomonas aeruginosa to adapt to 95 different carbon sources that challenged bacteria with either evolving novel metabolic traits or optimizing existing traits. Whole genome sequencing of more than 80 clones revealed profound differences in the genetic basis of innovation and optimization. Innovation was associated with the rapid acquisition of mutations in genes involved in transcription and metabolism. Mutations in pre-existing duplicate genes in the P. aeruginosa genome were common during innovation, but not optimization. These duplicate genes may have been acquired by P. aeruginosa due to either spontaneous gene amplification or horizontal gene transfer. High throughput phenotype assays revealed that novelty was associated with increased pleiotropic costs that are likely to constrain innovation. However, mutations in duplicate genes with close homologs in the P. aeruginosa genome were associated with low pleiotropic costs compared to mutations in duplicate genes with distant homologs in the P. aeruginosa genome, suggesting that functional redundancy between duplicates facilitates innovation by buffering pleiotropic costs.

  6. Use of an ultraviolet light at point-of-dispense faucet to eliminate Pseudomonas aeruginosa.

    PubMed

    Gerba, Charles P

    2015-05-01

    Tap water is believed to be a significant source of Pseudomonas aeruginosa in health care environments. This study evaluated an ultraviolet (UV) light point-of-dispense water treatment system for control of P aeruginosa. No P aeruginosa was detected in 30 different water dispensers in which the UV light device had been operating for 1-34 months. In comparison, P aeruginosa was found in other taps that did not feature this UV light system.

  7. Effect of vitreoscilla hemoglobin and culture conditions on production of bacterial L-asparaginase, an oncolytic enzyme.

    PubMed

    Erenler, Sebnem O; Geckil, Hikmet

    2014-08-01

    L-asparaginase is a widely used cancer chemotherapy enzyme. The source for the enzyme with this property is mainly bacterial and its synthesis is strongly regulated by oxygen. In this study, we utilized two recombinant systems: one carried the gene (vgb) for the Vitreoscilla hemoglobin (VHb), a protein of prokaryotic origin which confers a highly efficient oxygen uptake to its host and the other carried the L-asparaginase gene (ansB). The host bacteria were Escherichia coli, Enterobacter aerogenes, and Pseudomonas aeruginosa. Of these three bacteria, all gram-negative, E. coli and its recombinant strain showed up to sevenfold higher L-asparaginase activity in lactose than in other carbon sources. Although, in this bacterium glycerol was the poorest source for L-asparaginase synthesis, it supported the highest biomass production. In glucose medium, L-asparaginase activity of E. aerogenes was about threefold higher than its vgb and ansB recombinants. ansB recombinant showed significantly higher enzyme levels than both host and vgb recombinants in glycerol and lactose media. In this bacterium, VHb/vgb clearly caused a decrease in the enzyme synthesis under all conditions. As seen for E. aerogens, glycerol was the most favorable carbon source for P. aeruginosa and its vgb strain in terms of both L-asparaginase synthesis and biomass production. The cultures grown in glycerol had more than two- and threefold biomass than in glucose and lactose, respectively, and up to elevenfold than in mannitol. Indeed, the highest biomass production for all bacteria and their recombinants was in glycerol. The VHb/vgb system is clearly advantageous for production of L-asparaginase in P. aeruginosa. The same, however, does not hold true for E. aerogenes.

  8. Ambroxol inhibits mucoid conversion of Pseudomonas aeruginosa and contributes to the bactericidal activity of ciprofloxacin against mucoid P. aeruginosa biofilms.

    PubMed

    Wang, Wenlei; Yu, Jialin; He, Yu; Wang, Zhengli; Li, Fang

    2016-07-01

    Pseudomonas aeruginosa is an opportunistic human pathogen that can cause severe infections in immunocompromised individuals. Because it forms biofilms, which protect against host immune attack and increase resistance to conventional antibiotics, mucoid P. aeruginosa is nearly impossible to eradicate. Moreover, mucoid conversion of P. aeruginosa in cystic fibrosis (CF) patients leads to poor outcomes. This conversion is mainly due to mucA gene mutation, which is thought to be induced by polymorphonuclear leukocytes (PMNs) and the reactive oxygen species they release. Ambroxol, a mucolytic agent with antioxidant characteristics, is used clinically, and this compound has recently been demonstrated to possess anti-biofilm properties. In this study, we found that ambroxol inhibits the H2 O2 -mediated conversion of P. aeruginosa from a non-mucoid to a mucoid phenotype, an effect that is due to its antioxidant property against H2 O2 . Furthermore, the bactericidal activity of ciprofloxacin against mucoid P. aeruginosa biofilms was increased in vitro when used in combination with ambroxol.

  9. Subtilase SprP exerts pleiotropic effects in Pseudomonas aeruginosa

    PubMed Central

    Pelzer, Alexander; Polen, Tino; Funken, Horst; Rosenau, Frank; Wilhelm, Susanne; Bott, Michael; Jaeger, Karl-Erich

    2014-01-01

    The open reading frame PA1242 in the genome of Pseudomonas aeruginosa PAO1 encodes a putative protease belonging to the peptidase S8 family of subtilases. The respective enzyme termed SprP consists of an N-terminal signal peptide and a so-called S8 domain linked by a domain of unknown function (DUF). Presumably, this DUF domain defines a discrete class of Pseudomonas proteins as homologous domains can be identified almost exclusively in proteins of the genus Pseudomonas. The sprP gene was expressed in Escherichia coli and proteolytic activity was demonstrated. A P. aeruginosa ΔsprP mutant was constructed and its gene expression pattern compared to the wild-type strain by genome microarray analysis revealing altered expression levels of 218 genes. Apparently, SprP is involved in regulation of a variety of different cellular processes in P. aeruginosa including pyoverdine synthesis, denitrification, the formation of cell aggregates, and of biofilms. PMID:24376018

  10. Sphingoid long chain bases prevent lung infection by Pseudomonas aeruginosa

    PubMed Central

    Pewzner-Jung, Yael; Tavakoli Tabazavareh, Shaghayegh; Grassmé, Heike; Becker, Katrin Anne; Japtok, Lukasz; Steinmann, Jörg; Joseph, Tammar; Lang, Stephan; Tuemmler, Burkhard; Schuchman, Edward H; Lentsch, Alex B; Kleuser, Burkhard; Edwards, Michael J; Futerman, Anthony H; Gulbins, Erich

    2014-01-01

    Cystic fibrosis patients and patients with chronic obstructive pulmonary disease, trauma, burn wound, or patients requiring ventilation are susceptible to severe pulmonary infection by Pseudomonas aeruginosa. Physiological innate defense mechanisms against this pathogen, and their alterations in lung diseases, are for the most part unknown. We now demonstrate a role for the sphingoid long chain base, sphingosine, in determining susceptibility to lung infection by P. aeruginosa. Tracheal and bronchial sphingosine levels were significantly reduced in tissues from cystic fibrosis patients and from cystic fibrosis mouse models due to reduced activity of acid ceramidase, which generates sphingosine from ceramide. Inhalation of mice with sphingosine, with a sphingosine analog, FTY720, or with acid ceramidase rescued susceptible mice from infection. Our data suggest that luminal sphingosine in tracheal and bronchial epithelial cells prevents pulmonary P. aeruginosa infection in normal individuals, paving the way for novel therapeutic paradigms based on inhalation of acid ceramidase or of sphingoid long chain bases in lung infection. PMID:25085879

  11. Subtilase SprP exerts pleiotropic effects in Pseudomonas aeruginosa.

    PubMed

    Pelzer, Alexander; Polen, Tino; Funken, Horst; Rosenau, Frank; Wilhelm, Susanne; Bott, Michael; Jaeger, Karl-Erich

    2014-02-01

    The open reading frame PA1242 in the genome of Pseudomonas aeruginosa PAO1 encodes a putative protease belonging to the peptidase S8 family of subtilases. The respective enzyme termed SprP consists of an N-terminal signal peptide and a so-called S8 domain linked by a domain of unknown function (DUF). Presumably, this DUF domain defines a discrete class of Pseudomonas proteins as homologous domains can be identified almost exclusively in proteins of the genus Pseudomonas. The sprP gene was expressed in Escherichia coli and proteolytic activity was demonstrated. A P. aeruginosa ∆sprP mutant was constructed and its gene expression pattern compared to the wild-type strain by genome microarray analysis revealing altered expression levels of 218 genes. Apparently, SprP is involved in regulation of a variety of different cellular processes in P. aeruginosa including pyoverdine synthesis, denitrification, the formation of cell aggregates, and of biofilms.

  12. Pseudomonas aeruginosa biofilm, a programmed bacterial life for fitness.

    PubMed

    Lee, Keehoon; Yoon, Sang Sun

    2017-03-17

    Biofilm is a community of microbes that typically inhabits on surfaces and is encased in an extracellular matrix. Biofilms display very dissimilar characteristics to their planktonic counterparts. Biofilms are ubiquitous in the environments and influence our life tremendously in both positive and negative ways. Pseudomonas aeruginosa is a bacterium, known to produce robust biofilms. P. aeruginosa biofilms cause severe problems in immunocompromised patients including those with cystic fibrosis or wound infection. Moreover, the unique biofilm properties further complicates the eradication of the biofilm infection and leading to the development of chronic infections. In this review, we discuss a history of biofilm research and general characteristics of bacterial biofilms. Then, distinct features pertaining to each stage of P. aeruginosa biofilm development are highlighted. Furthermore, infections caused by biofilms of its own or in association with other bacterial species (i.e., multi-species biofilms) are discussed in detail.

  13. My 40-Year History with Cronobacter/Enterobacter sakazakii – Lessons Learned, Myths Debunked, and Recommendations

    PubMed Central

    Farmer, John J.

    2015-01-01

    Much has been learned about organism in the Cronobacter/Enterobacter sakazakii complex since I first named and described Enterobacter sakazakii in 1980. However, there are still wide knowledge gaps. One of the most serious is that are still many uncertainties associated with assessing the public health risk posed by these bacteria, particularly in neonatal meningitis. Over the last few decades, Cronobacter contamination of commercial powdered infant formula products has apparently been reduced, but it is still an ongoing problem. The powdered infant formula industry still cannot produce powdered formula that is free of bacterial contamination with Cronobacter, other Enterobacteriaceae, other pathogenic bacteria, and other microorganisms. Until this happens, infants and other will be at risk of becoming infected when they ingest contaminated formula. PMID:26640778

  14. A toxaphene-degrading bacterium related to Enterobacter cloacae, strain D1 isolated from aged contaminated soil in Nicaragua.

    PubMed

    Lacayo-Romero, Martha; Quillaguamán, Jorge; van Bavel, Bert; Mattiasson, Bo

    2005-09-01

    Enterobacter sp. strain D1 is a facultative anaerobic, Gram-negative heterotrophic bacterium isolated from toxaphene-contaminated soil. This organism was identified and characterized through phylogenetic and taxonomic studies. Based on 16S rDNA analysis, the strain D1 was clustered closely with the species Enterobacter cloacae subsp. dissolvens (LMG 2683) and E. cloacae (ATCC 13047T). Strain D1 resembled these E. cloacae strains with respect to various biochemical and nutritional characteristics, but also exhibited differences. Moreover, strain D1 is able to grow and survive with toxaphene supplied in the medium in the range 3-96 mg/L. Amongst the chemical components of toxaphene, octachlorocamphenes, nonachlorobornanes and decachlorobornanes were seen to be rapidly metabolized, although levels of hexachlorocamphenes and heptachlorobornanes were found to be slowly degraded, and subsequently accumulated during the last stage of the cultivation.

  15. Draft Genome Sequence of a High-Level Colistin-Resistant Clinical Strain of the Enterobacter cloacae Complex

    PubMed Central

    Lin, Ji; Zhao, Feifei; Feng, Yu

    2017-01-01

    ABSTRACT Strain WCHECl-C4 of the Enterobacter cloacae complex, recovered from the blood of a patient with peritonitis, was high-level resistant to colistin. Here, we report its 5.1-Mb draft genome sequence, comprising 92 contigs with an average 55.74% G+C content. The genome contained 4,783 coding sequences and 68 tRNA genes. PMID:28385849

  16. Transcriptional responses to sucrose mimic the plant-associated life style of the plant growth promoting endophyte Enterobacter sp. 638.

    PubMed

    Taghavi, Safiyh; Wu, Xiao; Ouyang, Liming; Zhang, Yian Biao; Stadler, Andrea; McCorkle, Sean; Zhu, Wei; Maslov, Sergei; van der Lelie, Daniel

    2015-01-01

    Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involved in motility (e.g., flagella biosynthesis) and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability.

  17. Draft Whole-Genome Sequence of VIM-1-Producing Multidrug-Resistant Enterobacter cloacae EC_38VIM1

    PubMed Central

    Villa, Jennifer; Viedma, Esther; Otero, Joaquín R.

    2013-01-01

    The VIM-1-producing multidrug-resistant strain Enterobacter cloacae was isolated from blood culture. The strain showed multiple resistances to clinically used antibiotics, including all β-lactams, fluoroquinolones, aminoglycosides, and sulfonamides. Sequence analysis showed the presence of 14 genes associated with resistance to antibiotics, including the metallo-β-lactamase VIM-1 gene, which was located in a class 1 integron. PMID:24009122

  18. Complete Sequence of a blaOXA-48-Harboring IncL Plasmid from an Enterobacter cloacae Clinical Isolate.

    PubMed

    Manageiro, Vera; Pinto, Margarida; Caniça, Manuela

    2015-09-17

    We report a 63,584-bp conjugative IncL plasmid (pUR17313-1) from an Enterobacter cloacae clinical isolate, containing a blaOXA-48 gene. The plasmid sequence also carried important mobile genetic elements involved in the spread of antibiotic resistance, namely, the Tn1999.2 composite transposon, which enclosed blaOXA-48-, integrase-, and transposase-encoding genes.

  19. Complete Sequence of a blaOXA-48-Harboring IncL Plasmid from an Enterobacter cloacae Clinical Isolate

    PubMed Central

    Pinto, Margarida

    2015-01-01

    We report a 63,584-bp conjugative IncL plasmid (pUR17313-1) from an Enterobacter cloacae clinical isolate, containing a blaOXA-48 gene. The plasmid sequence also carried important mobile genetic elements involved in the spread of antibiotic resistance, namely, the Tn1999.2 composite transposon, which enclosed blaOXA-48-, integrase-, and transposase-encoding genes. PMID:26383652

  20. Transcriptional Responses to Sucrose Mimic the Plant-Associated Life Style of the Plant Growth Promoting Endophyte Enterobacter sp. 638

    DOE PAGES

    Taghavi, Safiyh; Wu, Xiao; Ouyang, Liming; ...

    2015-01-21

    Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involvedmore » in motility (e.g. flagella biosynthesis) and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Lastly, targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability.« less

  1. Transcriptional Responses to Sucrose Mimic the Plant-Associated Life Style of the Plant Growth Promoting Endophyte Enterobacter sp. 638

    SciTech Connect

    Taghavi, Safiyh; Wu, Xiao; Ouyang, Liming; Zhang, Yian Biao; Stadler, Andrea; McCorkle, Sean; Zhu, Wei; Maslov, Sergei; van der Lelie, Daniel

    2015-01-21

    Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involved in motility (e.g. flagella biosynthesis) and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Lastly, targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability.

  2. Transcriptional Responses to Sucrose Mimic the Plant-Associated Life Style of the Plant Growth Promoting Endophyte Enterobacter sp. 638

    PubMed Central

    Taghavi, Safiyh; Wu, Xiao; Ouyang, Liming; Stadler, Andrea; McCorkle, Sean; Zhu, Wei; Maslov, Sergei; van der Lelie, Daniel

    2015-01-01

    Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involved in motility (e.g. flagella biosynthesis) and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability. PMID:25607953

  3. Anionic fluoroquinolones as antibacterials against biofilm-producing Pseudomonas aeruginosa.

    PubMed

    Long, Timothy E; Keding, Lexie C; Lewis, Demetria D; Anstead, Michael I; Withers, T Ryan; Yu, Hongwei D

    2016-02-15

    Pseudomonas aeruginosa is a common biofilm-forming bacterial pathogen implicated in diseases of the lungs. The extracellular polymeric substances (EPS) of respiratory Pseudomonas biofilms are largely comprised of anionic molecules such as rhamnolipids and alginate that promote a mucoid phenotype. In this Letter, we examine the ability of negatively-charged fluoroquinolones to transverse the EPS and inhibit the growth of mucoid P. aeruginosa. Anionic fluoroquinolones were further compared with standard antibiotics via a novel microdiffusion assay to evaluate drug penetration through pseudomonal alginate and respiratory mucus from a patient with cystic fibrosis.

  4. A case of Pseudomonas Aeruginosa commercial tattoo infection.

    PubMed

    Maloberti, A; Betelli, M; Perego, M R; Foresti, S; Scarabelli, G; Grassi, G

    2015-11-18

    Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium that can cause disease in immunocompromised patients but also burn wounds and other cutaneous infections. We report the case of a 31 years old woman with a P. Aeruginosa commercial tattoo infection treated with intravenous antibiotic therapy. Today tattooing is increasingly common and despite specific regulations many cases of tattoo site infection are reported in the literature. Principal actual tattoo infective epidemiology includes Streptococcus pyogenes, Staphylococcus aureus and mycosis infections and parenteral transmission of HIV, HBV and HCV but also recently published cases of Methicillin-Resistant Staphylococcus aureus and non tuberculous mycobacterium tattoo infection.

  5. Stimulation of the growth of Jatropha curcas by the plant growth promoting bacterium Enterobacter cancerogenus MSA2.

    PubMed

    Jha, Chaitanya Kumar; Patel, Baldev; Saraf, Meenu

    2012-03-01

    A novel Enterobacter cancerogenus MSA2 is a plant growth promoting gamma-proteobacterium that was isolated from the rhizosphere of Jatropha cucas a potentially important biofuel feed stock plant. Based on phenotypic, physiological, biochemical and phylogenetic studies, strain MSA2 could be classified as a member of E. cancerogenus. However, comparisons of characteristics with other known species of the genus Enterobacter suggested that strain MSA2 could be a novel PGPB strain. In vitro studies were carried for the plant growth promoting attribute of this culture. It tested positive for ACC (1-aminocyclopropane-1-carboxylic acid) deaminase production, phytase, phosphate solubilization, IAA (Indole acetic acid) production, siderophore, and ammonia production. The isolate was then used as a inoculant for the vegetative study of Jatropha curcas plant. Enterobacter cancerogenus MSA2 supplemented with 1% carboxymethylcellulose showed overall plant growth promotion effect resulting in enhanced root length (124.14%), fresh root mass (81%), fresh shoot mass (120.02%), dry root mass (124%), dry shoot mass (105.54%), number of leaf (30.72%), chlorophyll content (50.41%), and biomass (87.20%) over control under the days of experimental observation. This study was designed for 120 days and was in triplicate and the data was collected at every 30 days.

  6. Multicenter laboratory evaluation of the bioMérieux Vitek antimicrobial susceptibility testing system with 11 antimicrobial agents versus members of the family Enterobacteriaceae and Pseudomonas aeruginosa.

    PubMed Central

    Doern, G V; Brueggemann, A B; Perla, R; Daly, J; Halkias, D; Jones, R N; Saubolle, M A

    1997-01-01

    A four-center study in which a total of 1,082 recent clinical isolates of members of the family Enterobacteriaceae and Pseudomonas aeruginosa were examined versus 11 antimicrobial agents with the bioMérieux Vitek susceptibility test system (Hazelwood, Mo.) and the GNS-F6 card was conducted. In addition, a challenge set consisting of the same 200 organisms was examined in each of the four participating laboratories. Results obtained with the Vitek system were compared to MICs determined by a standardized broth microdilution method. For purposes of comparison, susceptibility categories (susceptible, intermediate, or resistant) were assigned on the basis of the results of both methods. The result of the broth microdilution test was considered definitive. The total category error rate with the Vitek system and the recent clinical isolates (11,902 organism-antimicrobial comparisons) was 4.5%, i.e., 1.7% very major errors, 0.9% major errors, and 1.9% minor errors. The total category error rate calculated from tests performed with the challenge set (i.e., 8,800 organism-antimicrobial comparisons) was 5.9%, i.e., 2.2% very major errors, 1.1% major errors, and 2.6% minor errors. Very major error rates higher than the totals were noted with Enterobacter cloacae versus ampicillin-sulbactam, aztreonam, ticarcillin, and ticarcillin-clavulanate and with P. aeruginosa versus mezlocillin, ticarcillin, and ticarcillin-clavulanate. Major error rates higher than the averages were observed with Proteus mirabilis versus imipenem and with Klebsiella pneumoniae versus ofloxacin. Excellent overall interlaboratory reproducibility was observed with the Vitek system. The importance of inoculum size as a primary determinant in the accuracy of susceptibility test results with the Vitek system was clearly demonstrated in this study. Specifically, when an inoculum density fourfold higher than that recommended by the manufacturer was used, high rates of false resistance results were obtained

  7. Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm.

    PubMed

    Xu, Dake; Xia, Jin; Zhou, Enze; Zhang, Dawei; Li, Huabing; Yang, Chunguang; Li, Qi; Lin, Hai; Li, Xiaogang; Yang, Ke

    2017-02-01

    Microbiologically influenced corrosion (MIC) of 2205 duplex stainless steel (DSS) in the presence of Pseudomonas aeruginosa was investigated through electrochemical and surface analyses. The electrochemical results showed that P. aeruginosa significantly reduced the corrosion resistance of 2205 DSS. Confocal laser scanning microscopy (CLSM) images showed that the depths of the largest pits on 2205 DSS with and without P. aeruginosa were 14.0 and 4.9μm, respectively, indicating that the pitting corrosion was accelerated by P. aeruginosa. X-ray photoelectron spectroscopy (XPS) results revealed that CrO3 and CrN formed on the 2205 DSS surface in the presence of P. aeruginosa.

  8. Microbial Fouling and its Effect on Power Generation.

    DTIC Science & Technology

    1981-09-01

    atlanticus, T6C Pseudomonas alcaligenes Flavobacterium species Vibrio alginolyticus Desulfovibrio desulfuricans Sphaerotilus natans Enterobacter aerogenes ... Enterobacter aerogenes , and Sphaerotilus natans were used to study the influence of temperature on biofilm formation. 5 - Pseudomonas atlanticus...2 yr 2-3 yr >30 yr >30 yr Corynebacterium 1-2 no 1 yr 1-2 yr >30 yr >30 yr Enterobacter 1-2 no 12 yr >30 yr >30 yr Escherichia 1-4 mo 1-2 yr >30 yr

  9. Phagocytic and chemiluminescent responses of mouse peritoneal macrophages to living and killed Salmonella typhimurium and other bacteria

    SciTech Connect

    Tomita, T.; Blumenstock, E.; Kanegasaki, S.

    1981-06-01

    In the presence of luminol, resident as well as thioglycolate-induced and immunized macrophages emitted chemiluminescence more efficiently when the cells were exposed to living Salmonella typhimurium than when they were exposed to the same bacterium killed by ultraviolet light or heat. This phenomenon was observed whether or not the bacterium was opsonized. The different response to living and killed bacteria was also found with Escherichia coli, Pseudomonas aeruginosa, Proteus morganii, and Enterobacter aerogenes, but not with Shigella sonnei, Klebsiella pneumoniae, and Propionibacterium acnes. The results suggest that macrophages respond better to living, motile bacteria than to nonmotile or killed bacteria. The experimental results obtained with motility mutants of S. typhimurium, E. coli, and P. aeruginosa confirm that macrophages exposed to the motile bacteria emit chemiluminescence more efficiently and ingest the motile bacteria at a much faster rate than the nonmotile bacteria.

  10. Pseudomonas aeruginosa facilitates Campylobacter jejuni growth in biofilms under oxic flow conditions.

    PubMed

    Culotti, Alessandro; Packman, Aaron I

    2015-12-01

    We investigated the growth of Campylobacter jejuni in biofilms with Pseudomonas aeruginosa under oxic flow conditions. We observed the growth of C. jejuni in mono-culture, deposited on pre-established P. aeruginosa biofilms, and co-inoculated with P. aeruginosa. In mono-culture, C. jejuni was unable to form biofilms. However, deposited C. jejuni continuously grew on pre-established P. aeruginosa biofilms for a period of 3 days. The growth of scattered C. jejuni clusters was strictly limited to the P. aeruginosa biofilm surface, and no intergrowth was observed. Co-culturing of C. jejuni and P. aeruginosa also enabled the growth of both organisms in biofilms, with C. jejuni clusters developing on the surface of the P. aeruginosa biofilm. Dissolved oxygen (DO) measurements in the medium showed that P. aeruginosa biofilms depleted the effluent DO from 9.0 to 0.5 mg L(-1) 24 hours after inoculation. The localized microaerophilic environment generated by P. aeruginosa promoted the persistence and growth of C. jejuni. Our findings show that P. aeruginosa not only prolongs the survival of C. jejuni under oxic conditions, but also enables the growth of C. jejuni on the surface of P. aeruginosa biofilms.

  11. Pseudomonas Aeruginosa Endocarditis in Acute Myeloid Leukemia: A Rare Complication

    PubMed Central

    J, Barshay; A, Nemets; A, Ducach; G, Lugassy

    2008-01-01

    Infectious endocarditis is a rarely encountered complication among leukemia patient during induction therapy. We describe a young patient who developed prolonged high fever after aggressive chemotherapy for Acute Myeloid Leukemia. Pseudomonas Aeruginosa endocarditis was found to be the etiology for the febrile state. Our purpose is to emphasize the need for an early diagnosis of this rare, albeit treatable complication. PMID:23675106

  12. [Hospital infections caused by Pseudomonas aeruginosa. Significance in intensive therapy].

    PubMed

    Sidorenko, S V; Gel'fand, E B; Mamontova, O A

    1999-01-01

    The significance of P. aeruginosa as an agent of hospital infections in intensive care departments is determined by high prevalence of this microorganism, its natural and acquired resistance to antibiotics of various groups, and severity of the infection it induces. The resistance of P. aeruginosa to antibiotics is different in different regions. Among the strains isolated in Moscow in intensive care wards for newborns 9% were resistant to meropenem, 10% to amicacine, 15% to imipramine, 16% to cefepime, 37% to ceftasidime, 45% to piperacylline/tasobactam, 45% to ciprofloxacine, and 60% to gentamicin; 1.5% of these strains were resistant to all tested antibiotics. High prevalence of antibiotic resistance among P. aeruginosa impedes the choice of drugs for empirical antibiotic therapy and increases the significance of microbiological diagnosis. Even if an agent is sensitive to such antibiotics as semisynthetic penicillines and aminoglycosides, their use as monotherapy in infections caused by P. aeruginosa is ineffective. Carbapenemes, III- IV generations cefalosporines, and fluoroquinolones can be used as mono therapy.

  13. Inhibition of Pseudomonas aeruginosa biofilm formation on wound dressings

    PubMed Central

    Brandenburg, Kenneth S.; Calderon, Diego F.; Kierski, Patricia R.; Brown, Amanda L.; Shah, Nihar M.; Abbott, Nicholas L.; Schurr, Michael J.; Murphy, Christopher J.; McAnulty, Jonathan F.; Czuprynski, Charles J.

    2016-01-01

    Chronic non-healing skin wounds often contain bacterial biofilms that prevent normal wound healing and closure and present challenges to the use of conventional wound dressings. We investigated inhibition of Pseudomonas aeruginosa biofilm formation, a common pathogen of chronic skin wounds, on a commercially available biological wound dressing. Building upon prior reports, we examined whether the amino acid tryptophan would inhibit P. aeruginosa biofilm formation on the 3-dimensional surface of the biological dressing. Bacterial biomass and biofilm polysaccharides were quantified using crystal violet staining or an enzyme linked lectin, respectively. Bacterial cells and biofilm matrix adherent to the wound dressing were visualized through scanning electron microscopy. D-/L-tryptophan inhibited P. aeruginosa biofilm formation on the wound dressing in a dose dependent manner and was not directly cytotoxic to immortalized human keratinocytes although there was some reduction in cellular metabolism or enzymatic activity. More importantly, D-/L-tryptophan did not impair wound healing in a splinted skin wound murine model. Furthermore, wound closure was improved when D-/L-tryptophan treated wound dressing with P. aeruginosa biofilms were compared with untreated dressings. These findings indicate that tryptophan may prove useful for integration into wound dressings to inhibit biofilm formation and promote wound healing. PMID:26342168

  14. Genetic characterization of Microcystis aeruginosa isolates from Portuguese freshwater systems.

    PubMed

    Moreira, Cristiana; Vasconcelos, Vitor; Antunes, Agostinho

    2016-07-01

    Cyanobacteria are microorganisms that pose a serious threat to the aquatic waterways through the production of dense blooms under eutrophic conditions and the release of toxic secondary metabolites-cyanotoxins. Within cyanobacteria, the colonial planktonic Microcystis aeruginosa is widely distributed in both fresh and brackish aquatic environments throughout the world being frequently observed in the Portuguese water systems. Apart from the well-established distribution of M. aeruginosa in Portugal, knowledge of its genetic diversity and population structure is unknown. Therefore, in this study twenty-seven strains were obtained from the North, Centre and South regions of Portugal and were subjected to extensive phylogenetic analyses using simultaneously four distinct genetic markers (16S rRNA, 16S-23S ITS, DNA gyrase subunit ß and cell division protein (ftsZ)) encompassing in total 2834 bp. With this work we characterized the phylogenetic relationship among the Portuguese strains, with the southern strains showing higher genetic structure relatively to the North and Centre strains. A total of fifteen genotypes were determined for M. aeruginosa in Portuguese water systems revealing a high genetic diversity. This is also the first study to report geographic variation on the population structure of the Portuguese M. aeruginosa.

  15. Pseudomonas aeruginosa sepsis in stem cell transplantation patients.

    PubMed

    Fanci, Rosa; Pecile, Patrizia; Casalone, Enrico; Mengoni, Alessio; Tamburini, Elena; Guidi, Stefano; Cecconi, Daniela; Bosi, Alberto; Nicoletti, Pierluigi; Mastromei, Giorgio

    2006-07-01

    We report the epidemiological investigation of an outbreak of Pseudomonas aeruginosa infection in 6 patients who shared, during different periods, the same 2 rooms of a bone marrow transplantation unit. Phenotypic and molecular analysis of isolates from patients and from the environment strongly suggested a single, environmental source of infection.

  16. 7-fluoroindole as an antivirulence compound against Pseudomonas aeruginosa.

    PubMed

    Lee, Jin-Hyung; Kim, Yong-Guy; Cho, Moo Hwan; Kim, Jung-Ae; Lee, Jintae

    2012-04-01

    The emergence of antibiotic resistance has necessitated new therapeutic approaches for combating persistent bacterial infection. An alternative approach is regulation of bacterial virulence instead of growth suppression, which can readily lead to drug resistance. The virulence of the opportunistic human pathogen Pseudomonas aeruginosa depends on a large number of extracellular factors and biofilm formation. Thirty-one natural and synthetic indole derivatives were screened. 7-fluoroindole (7FI) was identified as a compound that inhibits biofilm formation and blood hemolysis without inhibiting the growth of planktonic P. aeruginosa cells. Moreover, 7FI markedly reduced the production of quorum-sensing (QS)-regulated virulence factors 2-heptyl-3-hydroxy-4(1H)-quinolone, pyocyanin, rhamnolipid, two siderophores, pyoverdine and pyochelin. 7FI clearly suppressed swarming motility, protease activity and the production of a polymeric matrix in P. aeruginosa. However, unlike natural indole compounds, synthetic 7FI did not increase antibiotic resistance. Therefore, 7FI is a potential candidate for use in an antivirulence approach against persistent P. aeruginosa infection.

  17. Removal of Microcystis aeruginosa using cationic starch modified soils.

    PubMed

    Shi, Wenqing; Tan, Wanqiao; Wang, Lijing; Pan, Gang

    2016-06-15

    A cheap and biodegradable modifier, cationic starch (CS), was used to turn local soils into effective flocculants for Microcystis aeruginosa (M. aeruginosa) removal. The isoelectric point of soil particles was remarkably increased from pH 0.5 to 11.8 after modification with CS, which made CS modified soil particles positively charged and obtain algal flocculation ability. At the soil concentration of 100 mg/L, when the CS modifier was 10 mg/L, 86% of M. aeruginosa cells were removed within 30 min. Lower or higher CS dosage led to limited algal removal. About 71% and 45% of M. aeruginosa cells were removed within 30 min when CS was 5 mg/L and 80 mg/L, respectively. This is because only part of algal cells combined with CS modified soil particles through charge neutralization at low dosage, while flocs formed at high CS dosage were positively charged which prevents further aggregation among the flocs. The floc stability was quantified by a floc breakage index under applied shear force. Algal flocs formed at acid and alkaline conditions were more prone to be broken than those at the neutral condition. The cost and biodegradability concerns may be largely reduced through the use of CS modified local soils. For field applications, other practical issues (e.g., re-suspension) should be further studied by jointly using other methods.

  18. Production of mucoid exopolysaccharide during development of Pseudomonas aeruginosa biofilms.

    PubMed Central

    Hoyle, B D; Williams, L J; Costerton, J W

    1993-01-01

    Production of mucoid exopolysaccharide by planktonic, chemostat-derived, and adherent Pseudomonas aeruginosa 579 bacteria was separately monitored for 7 days by using a lacZ-algD promoter-reporter gene and assays of total carbohydrate and metabolic activity. Mucoid exopolysaccharide production was transiently elevated following adherence but declined to planktonic levels by day 7. PMID:8423105

  19. Full Virulence of Pseudomonas aeruginosa Requires OprF▿

    PubMed Central

    Fito-Boncompte, Laurène; Chapalain, Annelise; Bouffartigues, Emeline; Chaker, Hichem; Lesouhaitier, Olivier; Gicquel, Gwendoline; Bazire, Alexis; Madi, Amar; Connil, Nathalie; Véron, Wilfried; Taupin, Laure; Toussaint, Bertrand; Cornelis, Pierre; Wei, Qing; Shioya, Koki; Déziel, Eric; Feuilloley, Marc G. J.; Orange, Nicole; Dufour, Alain; Chevalier, Sylvie

    2011-01-01

    OprF is a general outer membrane porin of Pseudomonas aeruginosa, a well-known human opportunistic pathogen associated with severe hospital-acquired sepsis and chronic lung infections of cystic fibrosis patients. A multiphenotypic approach, based on the comparative study of a wild-type strain of P. aeruginosa, its isogenic oprF mutant, and an oprF-complemented strain, showed that OprF is required for P. aeruginosa virulence. The absence of OprF results in impaired adhesion to animal cells, secretion of ExoT and ExoS toxins through the type III secretion system (T3SS), and production of the quorum-sensing-dependent virulence factors pyocyanin, elastase, lectin PA-1L, and exotoxin A. Accordingly, in the oprF mutant, production of the signal molecules N-(3-oxododecanoyl)-l-homoserine lactone and N-butanoyl-l-homoserine lactone was found to be reduced and delayed, respectively. Pseudomonas quinolone signal (PQS) production was decreased, while its precursor, 4-hydroxy-2-heptylquinoline (HHQ), accumulated in the cells. Taken together, these results show the involvement of OprF in P. aeruginosa virulence, at least partly through modulation of the quorum-sensing network. This is the first study showing a link between OprF, PQS synthesis, T3SS, and virulence factor production, providing novel insights into virulence expression. PMID:21189321

  20. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA.

    PubMed

    Teixeira, Bertinellys; Rodulfo, Hectorina; Carreño, Numirin; Guzmán, Militza; Salazar, Elsa; De Donato, Marcos

    2016-01-01

    The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC), aminoglycoside-adenyltransferases (AAD), and aminoglycoside-phosphotransferases (APH), is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA) were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137) were identified from the Intensive Care Unit (ICU), mainly from discharges (96/137). The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively). Phenotype VI, resistant to these antibiotics, was the most frequent (14/49), followed by phenotype I, resistant to all the aminoglycosides tested (12/49). The aac(6´)-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´)-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America.

  1. Identification, cloning, and expression of Pseudomonas aeruginosa phosphorylcholine phosphatase gene.

    PubMed

    Massimelli, María J; Beassoni, Paola R; Forrellad, Marina A; Barra, José L; Garrido, Mónica N; Domenech, Carlos E; Lisa, Angela T

    2005-05-01

    Pseudomonas aeruginosa phosphorylcholine phosphatase (PChP) is a periplasmic enzyme produced simultaneously with the hemolytic phospholipase C (PLc-H) when the bacteria are grown in the presence of choline, betaine, dimethylglycine or carnitine. Molecular analysis of the P. aeruginosa mutant JUF8-00, after Tn5-751 mutagenesis, revealed that the PA5292 gene in the P. aeruginosa PAO1 genome was responsible for the synthesis of PChP. The enzyme expressed in E. coli, rPChP-Ec, purified by a chitin-binding column (IMPACT-CN system, New England BioLabs) was homogeneous after SDS-PAGE analysis. PChP was also expressed in P. aeruginosa PAO1-LAC, rPChP-Pa. Both recombinant enzymes exhibited a molecular mass of approximately 40 kDa, as expected for the size of the PA5292 gene, and catalyzed the hydrolysis of phosphorylcholine, phosphorylethanolamine, and p-nitrophenylphosphate. The saturation curve of rPChP-Ec and rPChP-Pa by phosphorylcholine revealed that these recombinant enzymes, like the purified native PChP, also contained the high- and low-affinity sites for phosphorylcholine and that the enzyme activity was inhibited by high substrate concentration.

  2. Effects of azithromycin in Pseudomonas aeruginosa burn wound infection

    PubMed Central

    Nichols, DP; Caceres, S; Caverly, L; Fratelli, C; Kim, SH; Malcolm, KC; Poch, KR; Saavedra, M; Solomon, G; Taylor-Cousar, J; Moskowitz, SM; Nick, JA

    2013-01-01

    Background Cutaneous thermal injuries (i.e. burns) remain a common form of debilitating trauma and outcomes are often worsened by wound infection with environmental bacteria, chiefly Pseudomonas aeruginosa. Materials and Methods We tested the effects of early administration of a single dose of azithromycin, with or without subsequent anti-pseudomonal antibiotics, in a mouse model of standardized thermal injury infected with P. aeruginosa on both wound site and systemic infection. We also tested the antimicrobial effects of these antibiotics alone or combined in comparative biofilm and planktonic cultures in vitro. Results In our model, early azithromycin administration significantly reduced wound and systemic infection without altering wound site or circulating neutrophil activity. The antimicrobial effect of azithromycin was additive with ciprofloxacin but significantly reduced the antimicrobial effect of tobramycin. This pattern was reproduced in biofilm cultures and not observed in planktonic cultures of P. aeruginosa. Conclusion these data suggest that early administration of azithromycin following burn-related trauma and infection may reduce P. aeruginosa infection and potential interactions with other antibiotics should be considered when designing future studies. PMID:23478086

  3. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA

    PubMed Central

    TEIXEIRA, Bertinellys; RODULFO, Hectorina; CARREÑO, Numirin; GUZMÁN, Militza; SALAZAR, Elsa; DONATO, Marcos DE

    2016-01-01

    The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC), aminoglycoside-adenyltransferases (AAD), and aminoglycoside-phosphotransferases (APH), is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA) were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137) were identified from the Intensive Care Unit (ICU), mainly from discharges (96/137). The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively). Phenotype VI, resistant to these antibiotics, was the most frequent (14/49), followed by phenotype I, resistant to all the aminoglycosides tested (12/49). The aac(6´)-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´)-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America. PMID:27007556

  4. Comparative studies on growth and physiological responses of unicellular and colonial Microcystis aeruginosa to Acorus calamus.

    PubMed

    Zhang, S-H; Chang, J-J; Cao, J-Y; Yang, C-L

    2015-02-01

    In order to explore the growth inhibition and physiological responses of unicellular and colonial Microcystis aeruginosa during coexistence with Acorus calamus, algal densities, chlorophyll a contents, exopolysaccharide (EPS) concentrations, malondialdehyde (MDA) contents, catalase (CAT) activities, and peroxidase (POD) activities of the two algae strains were analyzed. Although the unicellular and colonial strains of M. aeruginosa were both inhibited by A. calamus, unicellular algae were more sensitive than the colonial algae. The measurement results for EPS, MDA, CAT, and POD showed that unicellular M. aeruginosa had higher levels of stress related damage than colonial strains when they were exposed to the same density of A. calamus, and the cellular defense system of colonial M. aeruginosa was stronger than that of unicellular M. aeruginosa. Natural blooms of Microcystis are typically composed of colonial forms of M. aeruginosa, therefore future efforts to control such blooms, possibly through the development of new algicides, should focus on the unique characteristics of colonial M. aeruginosa strains.

  5. Dissecting the Machinery That Introduces Disulfide Bonds in Pseudomonas aeruginosa

    PubMed Central

    Arts, Isabelle S.; Ball, Geneviève; Leverrier, Pauline; Garvis, Steven; Nicolaes, Valérie; Vertommen, Didier; Ize, Bérengère; Tamu Dufe, Veronica; Messens, Joris; Voulhoux, Romé; Collet, Jean-François

    2013-01-01

    ABSTRACT Disulfide bond formation is required for the folding of many bacterial virulence factors. However, whereas the Escherichia coli disulfide bond-forming system is well characterized, not much is known on the pathways that oxidatively fold proteins in pathogenic bacteria. Here, we report the detailed unraveling of the pathway that introduces disulfide bonds in the periplasm of the human pathogen Pseudomonas aeruginosa. The genome of P. aeruginosa uniquely encodes two DsbA proteins (P. aeruginosa DsbA1 [PaDsbA1] and PaDsbA2) and two DsbB proteins (PaDsbB1 and PaDsbB2). We found that PaDsbA1, the primary donor of disulfide bonds to secreted proteins, is maintained oxidized in vivo by both PaDsbB1 and PaDsbB2. In vitro reconstitution of the pathway confirms that both PaDsbB1 and PaDsbB2 shuttle electrons from PaDsbA1 to membrane-bound quinones. Accordingly, deletion of both P. aeruginosa dsbB1 (PadsbB1) and PadsbB2 is required to prevent the folding of several P. aeruginosa virulence factors and to lead to a significant decrease in pathogenicity. Using a high-throughput proteomic approach, we also analyzed the impact of PadsbA1 deletion on the global periplasmic proteome of P. aeruginosa, which allowed us to identify more than 20 new potential substrates of this major oxidoreductase. Finally, we report the biochemical and structural characterization of PaDsbA2, a highly oxidizing oxidoreductase, which seems to be expressed under specific conditions. By fully dissecting the machinery that introduces disulfide bonds in P. aeruginosa, our work opens the way to the design of novel antibacterial molecules able to disarm this pathogen by preventing the proper assembly of its arsenal of virulence factors. PMID:24327342

  6. Molecular Characteristics of Carbapenem-Resistant Enterobacter cloacae in Ningxia Province, China

    PubMed Central

    Shi, Zhiyun; Zhao, Huizheng; Li, Gang; Jia, Wei

    2017-01-01

    The emergence of carbapenem-resistant Enterobacteriaceae (CRE) has become a major public health concern worldwide and a new challenge in the treatment of infectious diseases. The molecular characteristics of Enterobacter cloacae in Ningxia China are unknown. In this study, we reported 10 carbapenem-resistant E. cloacae isolates from the General Hospital of Ningxia Medical University, the largest university hospital in Ningxia between January 2012 and December 2013. Bacteria isolates were identified by Vitek2 compact and the identity of non-duplicate E. cloacae isolates was further confirmed by PCR and sequencing. The drug susceptibility and phenotype identification of these isolates were analyzed by agar dilution method, modified Hodge test (MHT), and EDTA synergy test. Beta-lactamase (bla) genes blaNDM−1 was found in 8 out of 10 isolates. Most isolates harbored multiple resistance genes including blaESBL, blaAmpC, quinolones, aminoglycosides, and disinfectant resistance genes. Pulsed field gel electrophoresis (PFGE) showed that these E. cloacae isolates were grouped into 6 clusters based on a cutoff of 80% genetic similarity. In conjugative assay, 9 out of 10 isolates transferred carbapenem-resistant genes to Escherichia coli. Our study has revealed that NDM-1-producing isolates are the most prevalent carbapenem-resistant E. cloacae in Ningxia. These isolates also carry several other carbapenem-resistant genes and can transfer these genes to other bacteria through conjugation. These findings highlight an urgent need to monitor these isolates to prevent their further spread in this region. PMID:28197140

  7. Multidrug efflux systems in Escherichia coli and Enterobacter cloacae obtained from wholesome broiler carcasses

    PubMed Central

    Moreira, Maria Aparecida S.; Rodrigues, Patrícia P.C.F.; Tomaz, Rafael S.; de Moraes, Célia A.

    2009-01-01

    Members of the Enterobacteriaceae family are present in the intestines of man and animals as commensals or are important disease causing agents. Bacteria bearing multidrug efflux systems (MDR) are able to survive adverse ecological niches. Multiresistant Escherichia coli and Enterobacter cloacae isolates from wholesome broiler carcasses were investigated for the presence of MDR. Lowering of Minimal Inhibitory Concentration for antimicrobials in the presence of a proton-motive force (PMF) uncoupler was tested as a potential display of the MDR phenotype. PCR amplification of the genes encoding AcrA and AcrB, components of a MDR system was performed. Diversity of each species was ascertained by Pulsed-Field Gel Electrophoresis (PFGE) of DNA digested with endonuclease XbaI. For all the isolates, except E. coli 1 and E. cloacae 9, lowering of MIC or of the growth rate in the presence of antimicrobials was observed, indicating a PMF dependent resistance mechanism. Expected products of DNA amplification with acrAB derived primers was obtained with all E. coli strains and with two of the five E. cloacae strains. Dendrogram generated shows diverse pulsetypes, confirming the genetic diversity among the strains. An important issue and related public health is the fact that different models and mechanisms of antimicrobial resistance are present in a small number of non-pathogenic strains and isolated from the same origin. These may be sources of resistance genes to others microorganisms, among them, pathogenic strains. PMID:24031352

  8. Inactivation of Enterobacter sakazakii of dehydrated infant formula by gamma-irradiation

    NASA Astrophysics Data System (ADS)

    Lee, Ju-Woon; Oh, Sang-Hee; Byun, Eui-Baek; Kim, Jae-Hun; Kim, Jang-Ho; Woon, Jae-Ho; Byun, Myung-Woo

    2007-11-01

    Enterobacter sakazakii has been implicated as a causal organism in a severe form of neonatal meningitis, with reported mortality rates of 20%. The population at greatest risk is immunocompromised infants of any age. Dried infant formula has been identified as a potential source of the organism in both outbreaks and sporadic cases. The objective of this study was to investigate theirradiation effect of the inactivation on E. sakazakii (ATCC 29544) of a dehydrated infant formula. The D10-values were 0.22-0.27 and 0.76 kGy for broth and dehydrated infant formula, respectively. The irradiation at 5.0 kGy was able to completely eliminate the E. sakazakii inoculated at 8.0 to 9.0 log CFU g -1 onto a dehydrated infant formula. There was no regrowth for all samples during the time they were stored at 10 °C for 6 h after rehydration. The present results indicated that a gamma-irradiation could potentially be used to inactivate E. sakazakii in a dehydrated powdered infant formula.

  9. Genetically engineered termite gut bacteria (Enterobacter cloacae) deliver and spread foreign genes in termite colonies.

    PubMed

    Husseneder, Claudia; Grace, J Kenneth

    2005-08-01

    Indigenous gut bacteria of the Formosan subterranean termite (Coptotermes formosanus Shiraki, Isoptera: Rhinotermitidae) were used as shuttle systems to deliver, express and spread foreign genes in termite colonies. The gut bacterium Enterobacter cloacae was transformed with a recombinant plasmid (pEGFP) containing genes encoding ampicillin resistance and green fluorescent protein (GFP). In laboratory experiments, termite workers and soldiers from three colonies were fed with filter paper inoculated with transformed bacteria. Transformed bacteria were detected in termite guts by growing the entire gut flora under selective conditions and checking the cultures visually for fluorescence. We demonstrated that (1) transformed bacteria were ingested within a few hours and the GFP gene was expressed in the termite gut; (2) transformed bacteria established a persistent population in the termite gut for up to 11 weeks; (3) transformed bacteria were efficiently transferred throughout a laboratory colony, even when the donor (termites initially fed with transformed bacteria) to recipient (not fed) ratio was low; (4) transformed E. cloacae were transferred into soil; however, they did not accumulate over time and the GFP plasmid was not transferred to other soil bacteria. In the future, transgenic bacteria may be used to shuttle detrimental genes into termite colonies for improved pest control.

  10. Subtractive Hybridization Yields a Silver Resistance Determinant Unique to Nosocomial Pathogens in the Enterobacter cloacae Complex

    PubMed Central

    Hoffmann, Harald

    2012-01-01

    The heterogeneity and the increasing clinical importance of the Enterobacter cloacae complex have often been discussed. However, little is known about molecular factors causing pathogenicity within this nomenspecies. Here, we analyzed the genetic differences between an avirulent plant isolate and a pathogenic strain causing an outbreak with septicemia in three patients. We identified an IncHI-2 plasmid as a major difference between these two strains. Besides resistance to several antibiotics, this plasmid encoded a silver resistance determinant. We further showed that this sil determinant was present not only in the analyzed outbreak strain but also in the vast majority of clinical isolates of the E. cloacae complex, predominantly in (sub)species that frequently cause nosocomial infections. The identified sil determinant was highly conserved within the E. cloacae complex and mediated resistance to up to 600 μM silver nitrate. As silver is often used as a disinfectant and treatment for burn wounds, we present here an important fitness factor within the clinically most prevalent subspecies of the E. cloacae complex. This provides a possible explanation for their unequal involvement in nosocomial and especially burn wound infections. PMID:22837330

  11. Pentachlorophenol remediation by Enterobacter sp. SG1 isolated from industrial dump site.

    PubMed

    Karn, Santosh Kumar; Geetanjali

    2014-02-01

    Chlorophenols contamination is serious concern to the environment due toxicity to all forms of life. Among all the chlorophenols, pentachlorophenol (PCP) is more detrimental to the environment. Pentachlorophenol used as pesticide, herbicide, antifungal agent and wood preservative which causes environmental pollution. In the present research a PCP degrading bacterium was isolated and characterized from industrial dump site. This isolate used PCP as its sole source of carbon and energy and was capable of degrading this compound, as indicated by stoichiometric release of chloride, ring cleavage activity and biomass formation. Based on morphological, biochemical and 16S rRNA gene sequence analysis this strain was identified as Enterobacter sp. SG1. Gas Chromatography (GC) analysis revealed that this strain was able to degrade PCP up to a concentration of 2 mM. This study showed that the removal efficiency of PCP by SG1 was found to be very effective and can be used in degradation of PCP contaminated site or waste in the environment.

  12. Bioremediation of hexavalent chromium (VI) by a soil-borne bacterium, Enterobacter cloacae B2-DHA.

    PubMed

    Rahman, Aminur; Nahar, Noor; Nawani, Neelu N; Jass, Jana; Hossain, Khaled; Saud, Zahangir Alam; Saha, Ananda K; Ghosh, Sibdas; Olsson, Björn; Mandal, Abul

    2015-01-01

    Chromium and chromium containing compounds are discharged into the nature as waste from anthropogenic activities, such as industries, agriculture, forest farming, mining and metallurgy. Continued disposal of these compounds to the environment leads to development of various lethal diseases in both humans and animals. In this paper, we report a soil borne bacterium, B2-DHA that can be used as a vehicle to effectively remove chromium from the contaminated sources. B2-DHA is resistant to chromium with a MIC value of 1000 µg mL(-1) potassium chromate. The bacterium has been identified as a Gram negative, Enterobacter cloacae based on biochemical characteristics and 16S rRNA gene analysis. TOF-SIMS and ICP-MS analyses confirmed intracellular accumulation of chromium and thus its removal from the contaminated liquid medium. Chromium accumulation in cells was 320 µg/g of cells dry biomass after 120-h exposure, and thus it reduced the chromium concentration in the liquid medium by as much as 81%. Environmental scanning electron micrograph revealed the effect of metals on cellular morphology of the isolates. Altogether, our results indicate that B2-DHA has the potential to reduce chromium significantly to safe levels from the contaminated environments and suggest the potential use of this bacterium in reducing human exposure to chromium, hence avoiding poisoning.

  13. Isolation of Enterobacter sakazakii from ass' milk in Sicily: case report, safety and legal issues.

    PubMed

    Conte, F; Passantino, A

    2008-07-01

    Enterobacter sakazakii (Es) infections are likely to involve newborns and infants, causing meningitis and necrotizing enterocolitis and sepsis. Contamination of infant formulae milk during factory production or bottle preparation is implicated. Es has been isolated from environmental sources and from food other than infant formula and milk powder, but why it is associated only with the consumption of infant formulae, is unclear. According to Regulation (EC) No. 2073/2005 on the microbiological criteria for foodstuffs, Es is considered a microorganisms of greatest concern in infant formulae and follow-on formulae. Es is included between "safety criteria". The isolation of two strains of Es from 50 samples of ass' milk in Sicily is described. The antibiotic resistance profile of the isolates revealed a multiple resistance profile, including fluoroquinolones, commonly used to treat the infections. The authors underline the importance of survey because in Italy ass' milk is considered one of the solutions for infants suffering from hypersensitivity to milk protein of some animal species. There is scarce information about the ecology and the uncertainty concerning the source of infection in the children and adults; the authors are concerned that ass' milk could become a high-risk food.

  14. Long-term arsenic monitoring with an Enterobacter cloacae microbial fuel cell.

    PubMed

    Rasmussen, Michelle; Minteer, Shelley D

    2015-12-01

    A microbial fuel cell was constructed with biofilms of Enterobacter cloacae grown on the anode. Bioelectrocatalysis was observed when the biofilm was grown in media containing sucrose as the carbon source and methylene blue as the mediator. The presence of arsenic caused a decrease in bioelectrocatalytic current. Biofilm growth in the presence of arsenic resulted in lower power outputs whereas addition of arsenic showed no immediate result in power output due to the short term arsenic resistance of the bacteria and slow transport of arsenic across cellular membranes to metabolic enzymes. Calibration curves plotted from the maximum current and maximum power of power curves after growth show that this system is able to quantify both arsenate and arsenate with low detection limits (46 μM for arsenate and 4.4 μM for arsenite). This system could be implemented as a method for long-term monitoring of arsenic concentration in environments where arsenic contamination could occur and alter the metabolism of the organisms resulting in a decrease in power output of the self-powered sensor.

  15. A Snapshot of Co-Resistance to Carbapenems and Tigecycline in Clinical Isolates of Enterobacter cloacae.

    PubMed

    Huang, Ling-Fu; Lee, Chao-Tai; Su, Lin-Hui; Chang, Chin-Lu

    2017-01-01

    Enterobacter cloacae is one of the most common carbapenem-resistant Enterobacteriaceae (CRE) global wide. Resistance to tigecycline, one of the few therapeutic options for CRE infections, in carbapenem-resistant E. cloacae is of clinical significance. Fourteen E. cloacae clinical isolates (EC1-EC14) co-resistant to tigecycline and carbapenems were studied. Two tigecycline-susceptible/carbapenem-resistant isolates (TS1-TS2) were used for comparison. Genotyping by pulsed-field gel electrophoresis and multilocus sequence typing identified seven pulsotypes and three sequence types (STs). All three STs belonged to the published international clones. Polymerase chain reaction (PCR) and sequence analysis revealed the coexistence of blaSHV-12 and blaIMP-8 in 11 EC isolates from five pulsotypes/two STs. Reverse transcription PCR demonstrated overexpression of the chromosomal AmpC-like β-lactamase in seven EC isolates (four pulsotypes/two STs) and TS1 (pulsotype F/ST78). Reduced expression of outer membrane protein C (OmpC) was found in three EC isolates (all pulsotype C/ST204), whereas reduced expression of OmpF was found in nine EC isolates (three pulsotypes/two STs) and TS2 (pulsotype G/ST114). Overexpression of the efflux pump AcrB was found in all EC isolates although three showed borderline significance. Multiple mechanisms jointly contributed to the observed co-resistance to tigecycline and carbapenems. Some international clones have infiltrated into Taiwan and acquired various resistance traits independently.

  16. Proteomic response of β-lactamases-producing Enterobacter cloacae complex strain to cefotaxime-induced stress.

    PubMed

    Maravić, Ana; Cvjetan, Svjetlana; Konta, Marina; Ladouce, Romain; Martín, Fernando A

    2016-07-01

    Bacteria of the Enterobacter cloacae complex are among the ten most common pathogens causing nosocomial infections in the USA. Consequently, increased resistance to β-lactam antibiotics, particularly expanded-spectrum cephalosporins like cefotaxime (CTX), poses a serious threat. Differential In-Gel Electrophoresis (DIGE), followed by LC-MS/MS analysis and bioinformatics tools, was employed to investigate the survival mechanisms of a multidrug-resistant E. hormaechei subsp. steigerwaltii 51 carrying several β-lactamase-encoding genes, including the 'pandemic' blaCTX-M-15 After exposing the strain with sub-minimal inhibitory concentration (MIC) of CTX, a total of 1072 spots from the whole-cell proteome were detected, out of which 35 were differentially expressed (P ≤ 0.05, fold change ≥1.5). Almost 50% of these proteins were involved in cell metabolism and energy production, and then cell wall organization/virulence, stress response and transport. This is the first study investigating the whole-cell proteomic response related to the survival of β-lactamases-producing strain, belonging to the E. cloacae complex when exposed to β-lactam antibiotic. Our data support the theory of a multifactorial synergistic effect of diverse proteomic changes occurring in bacterial cells during antibiotic exposure, depicting the complexity of β-lactam resistance and giving us an insight in the key pathways mediating the antibiotic resistance in this emerging opportunistic pathogen.

  17. Optimization of Enterobacter cloacae (KU923381) for diesel oil degradation using response surface methodology (RSM).

    PubMed

    Ramasamy, Sugumar; Arumugam, Arumugam; Chandran, Preethy

    2017-02-01

    Efficiency of Enterobacter cloacae KU923381 isolated from petroleum hydrocarbon contaminated soil was evaluated in batch culture and bioreactor mode. The isolate were screened for biofilm formation using qualitative and quantitative assays. Response surface methodology (RSM) was used to study the effect of pH, temperature, glucose concentration, and sodium chloride on diesel degradation. The predicted values for diesel oil degradation efficiency by the statistical designs are in a close agreement with experimental data (R (2) = 99.66%). Degradation efficiency is increased by 36.78% at pH = 7, temperature = 35°C, glucose = 5%, and sodium chloride concentration = 5%. Under the optimized conditions, the experiments were performed for diesel oil degradation by gas chromatographic mass spectrometric analysis (GC-MS). GC-MS analysis confirmed that E. cloacae had highly degrade hexadecane, heptadecane, tridecane, and docosane by 99.71%, 99.23%, 99.66%, and 98.34% respectively. This study shows that rapid bioremoval of hydrocarbons in diesel oil is acheived by E. cloacae with abet of biofilm formation. The potential use of the biofilms for preparing trickling filters (gravel particles) for the degradation of hydrocarbons from petroleum wastes before their disposal in the open environment is highly suggested. This is the first successful attempt for artificially establishing petroleum hydrocarbon degrading bacterial biofilm on solid substrates in bioreactor.

  18. Determination for Enterobacter cloacae based on a europium ternary complex labeled DNA probe

    NASA Astrophysics Data System (ADS)

    He, Hui; Niu, Cheng-Gang; Zeng, Guang-Ming; Ruan, Min; Qin, Pin-Zhu; Liu, Jing

    2011-11-01

    The fast detection and accurate diagnosis of the prevalent pathogenic bacteria is very important for the treatment of disease. Nowadays, fluorescence techniques are important tools for diagnosis. A two-probe tandem DNA hybridization assay was designed for the detection of Enterobacter cloacae based on time-resolved fluorescence. In this work, the authors synthesized a novel europium ternary complex Eu(TTA) 3(5-NH 2-phen) with intense luminescence, high fluorescence quantum yield and long lifetime before. We developed a method based on this europium complex for the specific detection of original extracted DNA from E. cloacae. In the hybridization assay format, the reporter probe was labeled with Eu(TTA) 3(5-NH 2-phen) on the 5'-terminus, and the capture probe capture probe was covalent immobilized on the surface of the glutaraldehyde treated glass slides. The original extracted DNA of samples was directly used without any DNA purification and amplification. The detection was conducted by monitoring the fluorescence intensity from the glass surface after DNA hybridization. The detection limit of the DNA was 5 × 10 -10 mol L -1. The results of the present work proved that this new approach was easy to operate with high sensitivity and specificity. It could be conducted as a powerful tool for the detection of pathogen microorganisms in the environment.

  19. CdiA from Enterobacter cloacae delivers a toxic ribosomal RNase into target bacteria

    PubMed Central

    Beck, Christina M.; Morse, Robert P.; Cunningham, David A.; Iniguez, Angelina; Low, David A.; Goulding, Celia W.; Hayes, Christopher S.

    2014-01-01

    Summary Contact-dependent growth inhibition (CDI) is one mechanism of inter-bacterial competition. CDI+ cells export large CdiA effector proteins, which carry a variety of C-terminal toxin domains (CdiA-CT). CdiA-CT toxins are specifically neutralized by cognate CdiI immunity proteins to protect toxin-producing cells from auto-inhibition. Here, we use structure determination to elucidate the activity of a unique CDI toxin from Enterobacter cloacae (ECL). The structure of CdiA-CTECL resembles the C-terminal nuclease domain of colicin E3, which cleaves 16S ribosomal RNA to disrupt protein synthesis. In accord with this structural homology, we show that CdiA-CTECL uses the same nuclease activity to inhibit bacterial growth. Surprisingly, although colicin E3 and CdiAECL carry equivalent toxin domains, the corresponding immunity proteins are unrelated in sequence, structure and toxin-binding site. Together, these findings reveal unexpected diversity amongst 16S rRNases and suggest that these nucleases are robust and versatile payloads for a variety of toxin-delivery platforms. PMID:24657090

  20. Particular Distribution of Enterobacter cloacae Strains Isolated from Urinary Tract Infection within Clonal Complexes

    PubMed Central

    Akbari, Majid; Bakhshi, Bita; Najar Peerayeh, Shahin

    2016-01-01

    Background: Based on biochemical properties, Enterobacter cloacae represents a large complex of at least 13 variant species, subspecies, and genotypes that progressively identified as the most species causing hospital-acquired infections. The aim of this study was to determine the relevance between phylogenetically related strains within the E. cloacae complex and the frequency of urinary tract infection caused by them. Methods: A 268-bp fragment was obtained from hsp60 gene for 50 clinical E. cloacae isolates from urine cultures of inpatients that admitted to six hospitals in Tehran, Iran during December 2012 to November 2013. The 107 nucleotide sequences were analyzed and the evolutionary distances of sequences were computed and neighbor-joining tree was calculated. Results: It showed that all of the genetic clusters have not an equal involvement in pathogenesis of urinary tract infections. Three superior clusters were found, together representing more than two third (80%) of the isolates (cluster VI with 25 members; clusters III and VIII with 9 and 6 members, respectively) and some genetic clusters were absent (IV, X, XII, and xiii), some of which are supposed to be associated with plants and no human infection has been reported. Conclusions: This study, for the first time, reports the unequal contribution of E. cloacae complex subspecies and clusters in urinary tract infections in Iran and together with studies from other countries suggest that the subspecies of E.hormaechei subsp. Oharae is the most prevalent E. cloacae complex subspecies regardless of country under study. PMID:26498349