Science.gov

Sample records for aeruginosa extracellular products

  1. Phenazine production enhances extracellular DNA release via hydrogen peroxide generation in Pseudomonas aeruginosa

    PubMed Central

    Das, Theerthankar; Manefield, Mike

    2013-01-01

    In Pseudomonas aeruginosa eDNA is a crucial component essential for biofilm formation and stability. In this study we report that release of eDNA is influenced by the production of phenazine in P. aeruginosa. A ∆phzA-G mutant of P. aeruginosa PA14 deficient in phenazine production generated significantly less eDNA in comparison with the phenazine producing strains. The relationship between eDNA release and phenazine production is bridged via hydrogen peroxide (H2O2) generation and subsequent H2O2 mediated cell lysis and ultimately release of chromosomal DNA into the extracellular environment as eDNA. PMID:23710274

  2. Production and properties of heat-stable extracellular hemolysin from Pseudomonas aeruginosa.

    PubMed Central

    Johnson, M K; Boese-Marrazzo, D

    1980-01-01

    Of 12 strains of Pseudomonas aeruginosa, 10 were found to produce heat-stable extracellular hemolysin in highly aerated peptone broth supplemented with glycerol, fructose, or mannitol. Glucose supported good hemolysin production only in medium that was highly buffered. The yield of both cells and hemolysin was lower with organic acids as supplement. Growth-limiting phosphate concentrations produced maximum hemolysin levels. Purified hemolysin preparations contained two hemolytic glycolipids. The kinetics of hemolysis at various levels of purified lysin and the effects of variation in lysin and erythrocyte concentration are described. Images Fig. 3 PMID:6776058

  3. Effects of lead(II) on the extracellular polysaccharide (EPS) production and colony formation of cultured Microcystis aeruginosa.

    PubMed

    Bi, Xiang-dong; Zhang, Shu-lin; Dai, Wei; Xing, Ke-zhing; Yang, Fan

    2013-01-01

    To investigate the effects of lead(II) on the production of extracellular polysaccharides (EPS), including bound extracellular polysaccharides (bEPS) and soluble extracellular polysaccharides (sEPS), and the colony formation of Microcystis aeruginosa, cultures of M. aeruginosa were exposed to four concentrations (5.0, 10.0, 20.0 and 40.0 mg/L) of lead(II) for 10 d under controlled laboratory conditions. The results showed that 5.0 and 10.0 mg/L lead(II) stimulated M. aeruginosa growth throughout the experiment while 20.0 and 40.0 mg/L lead(II) inhibited M. aeruginosa growth in the first 2 d exposure and then stimulated it. As compared to the control group, significant increases in the bEPS and sEPS production were observed in 20.0 and 40.0 mg/L lead(II) treatments (P < 0.05). Large colony formations were not observed throughout the experiment. However, four tested concentrations of lead(II) could significantly promote the formation of small and middle colonies after 10 d exposure (P < 0.05), and 40.0 mg/L lead(II) had the best stimulatory effect. Lead(II) could stimulate bEPS production, which conversely promoted colony formation, suggesting that heavy metals might be contributing to the bloom-forming of M. aeruginosa in natural conditions.

  4. Abiotic factors in colony formation: effects of nutrition and light on extracellular polysaccharide production and cell aggregates of Microcystis aeruginosa

    NASA Astrophysics Data System (ADS)

    Yang, Zhen; Kong, Fanxiang

    2013-07-01

    Colony morphology is important for Microcystis to sustain a competitive advantage in eutrophic lakes. The mechanism of colony formation in Microcystis is currently unclear. Extracellular polysaccharide (EPS) has been reported to play an important role in cell aggregate formation of some phytoplankton. Microcystis aeruginosa was cultivated under varied abiotic conditions, including different nutrient, light, and temperature conditions, to investigate their effects on EPS production and morphological change. The results show that nutrient concentration and light intensity have great effects on EPS productionin M. aeruginosa. There was a considerable increase in EPS production after M. aeruginosa was cultivated in adjusted culture conditions similar to those present in the field (28.9 mg C/L, 1.98 mg N/L, 0.65 mg P/L, light intensity: 100 μmol/(m2 · s)). These results indicate that abiotic factors might be one of the triggers for colony formation in Microcystis.

  5. A novel extracellular protease from Pseudomonas aeruginosa MCM B-327: enzyme production and its partial characterization.

    PubMed

    Zambare, Vasudeo; Nilegaonkar, Smita; Kanekar, Pradnya

    2011-02-28

    The focus of this study was on production, purification and characterization of dehairing protease from Pseudomonas aeruginosa MCM B-327, isolated from vermicompost pit soil. Optimum protease activity, 395 U mL(-1), was observed in the medium containing soybean meal and tryptone, at pH 7 and 30 °C. The crude enzyme exhibited dehairing activity. As compared to chemical method, enzymatic method of dehairing showed reduction in COD, TDS and TSS by 34.28%, 37.32% and 51.58%, respectively. Zymogram of crude enzyme on native-PAGE presented two bands with protease activity of molecular weights of 56 and 67 kDa. Both proteases showed dehairing activity. Out of these, 56kDa protease (PA02) was purified 3.05-folds with 2.71% recovery. The enzyme was active in pH range 7-9 and temperature 20-50 °C with optimum pH of 8 and temperature 35°C. Moreover, the enzyme activity of PA02 protease was not strongly inhibited by specific inhibitor showing the novel nature of enzyme compared to serine, cysteine, aspartyl and metalloproteases. Kinetic studies indicated that substrate specificity of PA02 protease was towards various natural and synthetic proteolytic substrates but inactive against collagen and keratin. These findings suggest protease secreted by P. aeruginosa MCM B-327 may have application in dehairing for environment-friendly leather processing.

  6. Effects of iron on growth, antioxidant enzyme activity, bound extracellular polymeric substances and microcystin production of Microcystis aeruginosa FACHB-905.

    PubMed

    Wang, Chao; Wang, Xun; Wang, Peifang; Chen, Bin; Hou, Jun; Qian, Jin; Yang, Yangyang

    2016-10-01

    Toxic cyanobacterial blooms have occurred in various water bodies during recent decades and made serious health hazards to plants, animals and humans. Iron is an important micronutrient for algal growth and recently, the concentration of which has increased remarkably in freshwaters. In this paper, the cyanobacterium Microcystis aeruginosa FACHB-905 was cultivated under non-iron (0μM), iron-limited (10μM) and iron-replete (100μM) conditions to investigate the effects of iron on growth, antioxidant enzyme activity, EPS and microcystin production. The results showed that algal cell density and chlorophyll-a content were maximal at the highest iron concentration. Antioxidant enzymes activity increased notably under all three conditions in the early stage of experiment, of which the SOD activity recovered soon from oxidative stress in 10μM group. The productions of some protein-like substances and humic acid-like substances of bound EPS were inhibited in iron-containing groups in the early stage of experiment while promoted after the adaptation period of Microcystis aeruginosa. Iron addition is a factor affecting the formation of cyanobacterial blooms through its impact on the content of LB-EPS and the composition of TB-EPS. The intracellular MC-LR concentration and the productivity potential of MC-LR were the lowest in 0μM group and highest in 10μM group. No obvious extracellular release of MC-LR was observed during the cultivation time. Therefore, iron addition can promote the physiological activities of M. aeruginosa, but a greater harm could be brought into environment under iron-limited (10μM) condition than under iron-replete (100μM) condition.

  7. Biofilm formation by Staphylococcus epidermidis on peritoneal dialysis catheters and the effects of extracellular products from Pseudomonas aeruginosa.

    PubMed

    Pihl, Maria; Arvidsson, Anna; Skepö, Marie; Nilsson, Martin; Givskov, Michael; Tolker-Nielsen, Tim; Svensäter, Gunnel; Davies, Julia R

    2013-04-01

    Biofilm formation by Staphylococcus epidermidis is a cause of infections related to peritoneal dialysis (PD). We have used a PD catheter flow-cell model in combination with confocal scanning laser microscopy and atomic force microscopy to study biofilm formation by S. epidermidis. Adherence to serum-coated catheters was four times greater than to uncoated ones, suggesting that S. epidermidis binds to serum proteins on the catheter surface. Pseudomonas aeruginosa biofilm supernatant interfered with the formation of a serum protein coat thereby reducing the capacity for biofilm formation in S. epidermidis. Supernatants from ΔpelA, ΔpslBCD and ΔrhlAB strains of P. aeruginosa showed no differences from the wild-type supernatant indicating that the effect on serum coat formation was not due to rhamnolipids or the PelA and PslBCD polysaccharides. Supernatant from P. aeruginosa also dispersed established S. epidermidis biofilms. Supernatants lacking PelA or PslBCD showed no differences from the wild type but that from a ΔrhlAB strain, showed reduced, but not abolished, capacity for dispersal. This suggests that rhamnolipids are involved but not wholly responsible for the effect. Thus, supernatants from P. aeruginosa contain promising substances for the prevention and treatment of biofilm infections, although further work is required to identity more active components. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  8. The Pseudomonas aeruginosa extracellular secondary metabolite, Paerucumarin, chelates iron and is not localized to extracellular membrane vesicles.

    PubMed

    Qaisar, Uzma; Kruczek, Cassandra J; Azeem, Muhammed; Javaid, Nasir; Colmer-Hamood, Jane A; Hamood, Abdul N

    2016-08-01

    Proteins encoded by the Pseudomonas aeruginosa pvcA-D operon synthesize a novel isonitrile functionalized cumarin termed paerucumarin. The pvcA-D operon enhances the expression of the P. aeruginosa fimbrial chaperone/usher pathway (cup) genes and this effect is mediated through paerucumarin. Whether pvcA-D and/or paerucumarin affect the expression of other P. aeruginosa genes is not known. In this study, we examined the effect of a mutation in pvcA-D operon the global transcriptome of the P. aeruginosa strain PAO1-UW. The mutation reduced the expression of several ironcontrolled genes including pvdS, which is essential for the expression of the pyoverdine genes. Additional transcriptional studies showed that the pvcA-D operon is not regulated by iron. Exogenously added paerucumarin enhanced pyoverdine production and pvdS expression in PAO1-UW. Iron-chelation experiments revealed that purified paerucumarin chelates iron. However, exogenously added paerucumarin significantly reduced the growth of a P. aeruginosa mutant defective in pyoverdine and pyochelin production. In contrast to other secondary metabolite, Pseudomonas quinolone signal (PQS), paerucumarin is not localized to the P. aeruginosa membrane vesicles. These results suggest that paerucumarin enhances the expression of iron-controlled genes by chelating iron within the P. aeruginosa extracellular environment. Although paerucumarin chelates iron, it does not function as a siderophore. Unlike PQS, paerucumarin is not associated with the P. aeruginosa cell envelope.

  9. Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation

    PubMed Central

    Das, Theerthankar; Kutty, Samuel K.; Tavallaie, Roya; Ibugo, Amaye I.; Panchompoo, Janjira; Sehar, Shama; Aldous, Leigh; Yeung, Amanda W. S.; Thomas, Shane R.; Kumar, Naresh; Gooding, J. Justin; Manefield, Mike

    2015-01-01

    Bacterial resistance to conventional antibiotics necessitates the identification of novel leads for infection control. Interference with extracellular phenomena, such as quorum sensing, extracellular DNA integrity and redox active metabolite release, represents a new frontier to control human pathogens such as Pseudomonas aeruginosa and hence reduce mortality. Here we reveal that the extracellular redox active virulence factor pyocyanin produced by P. aeruginosa binds directly to the deoxyribose-phosphate backbone of DNA and intercalates with DNA nitrogenous base pair regions. Binding results in local perturbations of the DNA double helix structure and enhanced electron transfer along the nucleic acid polymer. Pyocyanin binding to DNA also increases DNA solution viscosity. In contrast, antioxidants interacting with DNA and pyocyanin decrease DNA solution viscosity. Biofilms deficient in pyocyanin production and biofilms lacking extracellular DNA show similar architecture indicating the interaction is important in P. aeruginosa biofilm formation. PMID:25669133

  10. Extracellular enzymes affect biofilm formation of mucoid Pseudomonas aeruginosa.

    PubMed

    Tielen, Petra; Rosenau, Frank; Wilhelm, Susanne; Jaeger, Karl-Erich; Flemming, Hans-Curt; Wingender, Jost

    2010-07-01

    Pseudomonas aeruginosa secretes a variety of hydrolases, many of which contribute to virulence or are thought to play a role in the nutrition of the bacterium. As most studies concerning extracellular enzymes have been performed on planktonic cultures of non-mucoid P. aeruginosa strains, knowledge of the potential role of these enzymes in biofilm formation in mucoid (alginate-producing) P. aeruginosa remains limited. Here we show that mucoid P. aeruginosa produces extracellular hydrolases during biofilm growth. Overexpression of the extracellular lipases LipA and LipC, the esterase EstA and the proteolytic elastase LasB from plasmids revealed that some of these hydrolases affected the composition and physicochemical properties of the extracellular polymeric substances (EPS). While no influence of LipA was observed, the overexpression of estA and lasB led to increased concentrations of extracellular rhamnolipids with enhanced levels of mono-rhamnolipids, elevated amounts of total carbohydrates and decreased alginate concentrations, resulting in increased EPS hydrophobicity and viscosity. Moreover, we observed an influence of the enzymes on cellular motility. Overexpression of estA resulted in a loss of twitching motility, although it enhanced the ability to swim and swarm. The lasB-overexpression strain showed an overall enhanced motility compared with the parent strain. Moreover, the EstA- and LasB-overproduction strains completely lost the ability to form 3D biofilms, whereas the overproduction of LipC increased cell aggregation and the heterogeneity of the biofilms formed. Overall, these findings indicate that directly or indirectly, the secreted enzymes EstA, LasB and LipC can influence the formation and architecture of mucoid P. aeruginosa biofilms as a result of changes in EPS composition and properties, as well as the motility of the cells.

  11. Purification of extracellular lipase from Pseudomonas aeruginosa.

    PubMed Central

    Stuer, W; Jaeger, K E; Winkler, U K

    1986-01-01

    Lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) was excreted by Pseudomonas aeruginosa PAC1R during the late logarithmic growth phase. Characterization of cell-free culture supernatants by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of significant amounts of lipopolysaccharide, part of which seemed to be tightly bound to lipase. After concentration of culture supernatants by ultrafiltration, lipase-lipopolysaccharide complexes were dissociated by treatment with EDTA-Tris buffer and subsequent sonication in the presence of the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. The solubilized lipase was purified by isoelectric focusing in an agarose gel containing the same detergent; the lipase activity appeared in a single peak corresponding to a distinct band in the silver-stained gel. The isoelectric point was 5.8. Analysis of purified lipase by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and scanning revealed an apparent molecular weight of 29,000 and a specific activity of 760 mu kat/mg of protein. Estimations based on these data showed that a single P. aeruginosa cell excreted about 200 molecules of lipase, each having a molecular activity of 2.2 X 10(4) per s. Images PMID:3096967

  12. Extracellular DNA Acidifies Biofilms and Induces Aminoglycoside Resistance in Pseudomonas aeruginosa.

    PubMed

    Wilton, Mike; Charron-Mazenod, Laetitia; Moore, Richard; Lewenza, Shawn

    2015-11-09

    Biofilms consist of surface-adhered bacterial communities encased in an extracellular matrix composed of DNA, exopolysaccharides, and proteins. Extracellular DNA (eDNA) has a structural role in the formation of biofilms, can bind and shield biofilms from aminoglycosides, and induces antimicrobial peptide resistance mechanisms. Here, we provide evidence that eDNA is responsible for the acidification of Pseudomonas aeruginosa planktonic cultures and biofilms. Further, we show that acidic pH and acidification via eDNA constitute a signal that is perceived by P. aeruginosa to induce the expression of genes regulated by the PhoPQ and PmrAB two-component regulatory systems. Planktonic P. aeruginosa cultured in exogenous 0.2% DNA or under acidic conditions demonstrates a 2- to 8-fold increase in aminoglycoside resistance. This resistance phenotype requires the aminoarabinose modification of lipid A and the production of spermidine on the bacterial outer membrane, which likely reduce the entry of aminoglycosides. Interestingly, the additions of the basic amino acid L-arginine and sodium bicarbonate neutralize the pH and restore P. aeruginosa susceptibility to aminoglycosides, even in the presence of eDNA. These data illustrate that the accumulation of eDNA in biofilms and infection sites can acidify the local environment and that acidic pH promotes the P. aeruginosa antibiotic resistance phenotype.

  13. Extracellular biogenic nanomaterials inhibit pyoverdine production in Pseudomonas aeruginosa: a novel insight into impacts of metal(loid)s on environmental bacteria.

    PubMed

    Mohanty, Anee; Liu, Yang; Yang, Liang; Cao, Bin

    2015-02-01

    Anthropogenic activities such as mining, smelting, and industrial use have caused serious problems of metal(loid) pollution in nearly every country in the world. A wide range of environmental microorganisms are capable of transforming metal(loid)s into nanomaterials, i.e., biogenic nanomaterials (bio-NMs), in the environment. Although the impacts of various metal(loid)s on the ecosystems have been extensively studied, the potential influence of the bio-NMs generated in the environment to environmental organisms is largely unexplored. Using tellurium nanomaterials transformed from tellurite by a metal-reducing bacterium as model bio-NMs, we demonstrated that the bio-NMs significantly decreased siderophore production in an environmental bacterium Pseudomonas aeruginosa in both planktonic cultures and biofilms. Transcriptomic analysis revealed that the bio-NMs inhibited the expression of genes involved in biosynthesis and transport of siderophores. Siderophores secreted by certain bacteria in microbial communities can be considered as public goods that can be exploited by local communities, playing an important role in shaping microbial communities. The inhibition of siderophore production by the bio-NMs implies that bio-NMs may have an important influence on the ecosystems through altering specific functions of environmental bacteria. Taken together, this study provides a novel insight into the environmental impacts of metal(loid)s.

  14. Swimming Motility Mediates the Formation of Neutrophil Extracellular Traps Induced by Flagellated Pseudomonas aeruginosa

    PubMed Central

    Sil, Payel; Chassaing, Benoit; Yoo, Dae-goon; Gewirtz, Andrew T.; Goldberg, Joanna B.; McCarter, Linda L.; Rada, Balázs

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen causing severe infections often characterized by robust neutrophilic infiltration. Neutrophils provide the first line of defense against P. aeruginosa. Aside from their defense conferred by phagocytic activity, neutrophils also release neutrophil extracellular traps (NETs) to immobilize bacteria. Although NET formation is an important antimicrobial process, the details of its mechanism are largely unknown. The identity of the main components of P. aeruginosa responsible for triggering NET formation is unclear. In this study, our focus was to identify the main bacterial factors mediating NET formation and to gain insight into the underlying mechanism. We found that P. aeruginosa in its exponential growth phase promoted strong NET formation in human neutrophils while its NET-inducing ability dramatically decreased at later stages of bacterial growth. We identified the flagellum as the primary component of P. aeruginosa responsible for inducing NET extrusion as flagellum-deficient bacteria remained seriously impaired in triggering NET formation. Purified P. aeruginosa flagellin, the monomeric component of the flagellum, does not stimulate NET formation in human neutrophils. P. aeruginosa-induced NET formation is independent of the flagellum-sensing receptors TLR5 and NLRC4 in both human and mouse neutrophils. Interestingly, we found that flagellar motility, not flagellum binding to neutrophils per se, mediates NET release induced by flagellated bacteria. Immotile, flagellar motor-deficient bacterial strains producing paralyzed flagella did not induce NET formation. Forced contact between immotile P. aeruginosa and neutrophils restored their NET-inducing ability. Both the motAB and motCD genetic loci encoding flagellar motor genes contribute to maximal NET release; however the motCD genes play a more important role. Phagocytosis of P. aeruginosa and superoxide production by neutrophils were also largely dependent upon

  15. Capsule production by Pseudomonas aeruginosa

    SciTech Connect

    Lynn, A.R.

    1984-01-01

    Mucoid strains of Pseudomonas aeruginosa, associated almost exclusively with chronic respiratory infections in patients with cystic fibrosis, possess a capsule composed of alginic acid similar to one produced by Azotobacter vinelandii. Recent reports have provided evidence that the biosynthetic pathway for alginate in P. aeruginosa may differ from the pathway proposed for A. vinelandii in that synthesis in P. aeruginosa may occur by way of the Entner-Doudoroff pathway. Incorporation of isotope from (6-/sup 14/C)glucose into alginate by both P. aueroginosa and A. vinelandii was 10-fold greater than that from either (1-/sup 14/C)/sup -/ or (2-/sup 14/C)glucose, indicating preferential utilization of the bottom half of the glucose molecule for alginate biosynthesis. These data strongly suggest that the Entner-Doudoroff pathway plays a major role in alginate synthesis in both P. aeruginosa and A. vinelandii. The enzymes of carbohydrate metabolism in mucoid strains of P. aeruginosa appear to be unchanged whether alignate is actively produced or not and activities do not differ significantly from nonmucoid strain PAO.

  16. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix.

    PubMed

    Borlee, Bradley R; Goldman, Aaron D; Murakami, Keiji; Samudrala, Ram; Wozniak, Daniel J; Parsek, Matthew R

    2010-02-01

    Pseudomonas aeruginosa, the principal pathogen of cystic fibrosis patients, forms antibiotic-resistant biofilms promoting chronic colonization of the airways. The extracellular (EPS) matrix is a crucial component of biofilms that provides the community multiple benefits. Recent work suggests that the secondary messenger, cyclic-di-GMP, promotes biofilm formation. An analysis of factors specifically expressed in P. aeruginosa under conditions of elevated c-di-GMP, revealed functions involved in the production and maintenance of the biofilm extracellular matrix. We have characterized one of these components, encoded by the PA4625 gene, as a putative adhesin and designated it cdrA. CdrA shares structural similarities to extracellular adhesins that belong to two-partner secretion systems. The cdrA gene is in a two gene operon that also encodes a putative outer membrane transporter, CdrB. The cdrA gene encodes a 220 KDa protein that is predicted to be rod-shaped protein harbouring a beta-helix structural motif. Western analysis indicates that the CdrA is produced as a 220 kDa proprotein and processed to 150 kDa before secretion into the extracellular medium. We demonstrated that cdrAB expression is minimal in liquid culture, but is elevated in biofilm cultures. CdrAB expression was found to promote biofilm formation and auto-aggregation in liquid culture. Aggregation mediated by CdrA is dependent on the Psl polysaccharide and can be disrupted by adding mannose, a key structural component of Psl. Immunoprecipitation of Psl present in culture supernatants resulted in co-immunoprecipitation of CdrA, providing additional evidence that CdrA directly binds to Psl. A mutation in cdrA caused a decrease in biofilm biomass and resulted in the formation of biofilms exhibiting decreased structural integrity. Psl-specific lectin staining suggests that CdrA either cross-links Psl polysaccharide polymers and/or tethers Psl to the cells, resulting in increased biofilm structural

  17. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix

    PubMed Central

    Borlee, Bradley R; Goldman, Aaron D; Murakami, Keiji; Samudrala, Ram; Wozniak, Daniel J; Parsek, Matthew R

    2010-01-01

    Pseudomonas aeruginosa, the principal pathogen of cystic fibrosis patients, forms antibiotic-resistant biofilms promoting chronic colonization of the airways. The extracellular (EPS) matrix is a crucial component of biofilms that provides the community multiple benefits. Recent work suggests that the secondary messenger, cyclic-di-GMP, promotes biofilm formation. An analysis of factors specifically expressed in P. aeruginosa under conditions of elevated c-di-GMP, revealed functions involved in the production and maintenance of the biofilm extracellular matrix. We have characterized one of these components, encoded by the PA4625 gene, as a putative adhesin and designated it cdrA. CdrA shares structural similarities to extracellular adhesins that belong to two-partner secretion systems. The cdrA gene is in a two gene operon that also encodes a putative outer membrane transporter, CdrB. The cdrA gene encodes a 220 KDa protein that is predicted to be rod-shaped protein harbouring a β-helix structural motif. Western analysis indicates that the CdrA is produced as a 220 kDa proprotein and processed to 150 kDa before secretion into the extracellular medium. We demonstrated that cdrAB expression is minimal in liquid culture, but is elevated in biofilm cultures. CdrAB expression was found to promote biofilm formation and auto-aggregation in liquid culture. Aggregation mediated by CdrA is dependent on the Psl polysaccharide and can be disrupted by adding mannose, a key structural component of Psl. Immunoprecipitation of Psl present in culture supernatants resulted in co-immunoprecipitation of CdrA, providing additional evidence that CdrA directly binds to Psl. A mutation in cdrA caused a decrease in biofilm biomass and resulted in the formation of biofilms exhibiting decreased structural integrity. Psl-specific lectin staining suggests that CdrA either cross-links Psl polysaccharide polymers and/or tethers Psl to the cells, resulting in increased biofilm structural

  18. Self-produced extracellular stimuli modulate the Pseudomonas aeruginosa swarming motility behaviour.

    PubMed

    Tremblay, Julien; Richardson, Anne-Pascale; Lépine, François; Déziel, Eric

    2007-10-01

    Pseudomonas aeruginosa presents three types of motilities: swimming, twitching and swarming. The latter is characterized by rapid and coordinated group movement over a semisolid surface resulting from morphological differentiation and intercellular interactions. A striking feature of P. aeruginosa swarming motility is the formation of migrating tendrils producing colonies with complex fractal-like patterns. Previous studies have shown that normal swarming motility is intimately related to the production of extracellular surface-active molecules: rhamnolipids (RLs), composed of monorhamnolipids (mono-RLs) and dirhamnolipids (di-RLs), and 3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs). Here, we report that (i) di-RLs attract active swarming cells while HAAs behave as strong repellents, (ii) di-RLs promote and HAAs inhibit tendril formation and migration, (iii) di-RLs and HAAs display different diffusion kinetics on a surface as di-RLs spread faster than HAAs in agar, (iv) di-RLs and HAAs have no effect on swimming cells, suggesting that swarming cells are different from swimming cells not only in morphology but also at the regulatory level and (v) mono-RLs act as wetting agents. We propose a model explaining how HAAs and di-RLs together modulate the behaviour of swarming migrating cells by acting as self-produced negative and positive chemotactic-like stimuli.

  19. Pseudomonas aeruginosa binds to extracellular matrix deposited by human corneal epithelial cells.

    PubMed

    Esco, Miechia A; Hazlett, Linda D; Kurpakus-Wheater, Michelle

    2002-12-01

    To measure the effect of extracellular matrix substrate, pH, and O(2) on Pseudomonas aeruginosa binding. Extracellular matrix substrates were prepared from human corneal epithelial cells cultured in 2% or 20% O(2). P. aeruginosa strains ATCC 19660 or PAO1 (suspended in pH 7.0 or 7.5 buffer) were cultured on extracellular matrix substrates in 2% or 20% O(2). The mean number of adherent bacteria per counted per field +/- SEM (n = 15) was determined for combinations of bacteria, extracellular matrix substrate, pH, and O(2). Binding in the presence of antibodies directed against laminin-5 was also measured. Extracellular matrix substrates produced by cells cultured in 20% O(2), combined with an environment of pH 7.0, provided the least favorable conditions for binding of strain 19660. In contrast, extracellular matrix substrates produced by cells cultured in 2% O(2), combined with an environment of pH 7.0, provided the most favorable conditions for binding of strain 19660. Binding of PAO1, however, as a function of extracellular matrix substrate and pH, did not similarly compare with binding of strain 19660. Antibodies against laminin-5 chains served to increase the number of strain 19660 bacteria bound to extracellular matrix substrates compared with the control. The extracellular matrix secreted by hypoxic corneal epithelial cells is a substrate for binding of P. aeruginosa. Results in previous studies have shown that hypoxic extracellular matrix contains less laminin-5 protein than normoxic matrix. The antibody studies in this report suggest that the decrease in laminin-5 content in hypoxic matrix, relative to matrix secreted by normoxic corneal epithelium, may be responsible for increased bacterial adhesion.

  20. Alginate Lyase Promotes Diffusion of Aminoglycosides through the Extracellular Polysaccharide of Mucoid Pseudomonas aeruginosa

    PubMed Central

    Hatch, Richard A.; Schiller, Neal L.

    1998-01-01

    We demonstrated that a 2% suspension of Pseudomonas aeruginosa alginate completely blocked the diffusion of gentamicin and tobramycin, but not that of carbenicillin, illustrating how alginate production can help protect P. aeruginosa growing within alginate microcolonies in patients with cystic fibrosis (CF) from the effects of aminoglycosides. This aminoglycoside diffusion barrier was degraded with a semipurified preparation of P. aeruginosa alginate lyase, suggesting that this enzyme deserves consideration as an adjunctive agent for CF patients colonized by mucoid strains of P. aeruginosa. PMID:9559826

  1. Iron-stimulated toxin production in Microcystis aeruginosa.

    PubMed Central

    Utkilen, H; Gjølme, N

    1995-01-01

    Nitrate- and phosphate-limited conditions had no effect on toxin production by Microcystis aeruginosa. In contrast, iron-limited conditions influenced toxin production by M. aeruginosa, and iron uptake was light dependent. A model for production of toxin by M. aeruginosa is proposed. PMID:7574617

  2. Extracellular matrix metalloproteinase inducer enhances host resistance against pseudomonas aeruginosa infection through MAPK signaling pathway

    PubMed Central

    Li, Yongwei; Chen, Lu; Wang, Chunxia; Chen, Jianshe; Zhang, Xiaoqian; Hu, Yue; Niu, Xiaobin; Pei, Dongxu; He, Zhiqiang; Bi, Yongyi

    2016-01-01

    This study aims to explore the role of extra-cellular matrix metalloproteinase inducer (EMMPRIN) in the drug resistance of the pseudomonas aeruginosa (PA). The BALB/c mice were transfected with PA, then the mice were infected with the siRNA of EMMPRIN to silence the EMMPRIN gene. The EMMPRIN mRNA and protein were detected by using RT-PCR and western blot, respectively. In order to examine the function of EMMPRIN in drug resistance of PA, the BALB/c and C57BL/6 mice were treated with EMMPRIN siRNA. The cytokines, EMMPRIN and MMP9 were examined by the RP-PCR and ELISA, respectively, undergoing the silence of EMMPRIN siRNA. Moreover, the western blot assay was also used to test the phosphorylated MAPK in the murine macrophages after silenced by the EMMPRIN siRNA. The EMMPRIN was activated, with lipopolysaccharide stimulation and treated with the MAPK inhibitor, to evaluate whether the MAPK participates in the EMMPRIN-triggered drug resistance. The results indicated that the EMMPRIN expression was elevated in the infected BALB/c at 3 or 5 days post-infection. Silence of EMMPRIN Enhanced the Production of pro-inflammatory cytokines in PA keratitis. Silence of EMMPRIN significantly up-regulated Th1-type cytokines IFN-γ, IL-12, and IL-18, but down-regulated Th2-type cytokines IL-4, IL-5, and IL-10. MMP9 was increased in the cells with rEMMPRIN treatment. EMMPRIN inhibits pro-inflammatory cytokine production via a MAPK signaling pathway. In conclusion, EMMPRIN promotes host resistance against pseudomonas aeruginosa infection via MAPK signaling pathway. PMID:28078032

  3. Genetic mapping and characterization of Pseudomonas aeruginosa mutants defective in the formation of extracellular proteins.

    PubMed Central

    Wretlind, B; Pavlovskis, O R

    1984-01-01

    We isolated 15 mutants of Pseudomonas aeruginosa PAO which were defective in the formation of certain extracellular proteins, such as elastase, staphylolytic enzyme, and lipase ( Xcp mutants). The mutations were mapped on the chromosome by conjugation and transduction. The locations were xcp -1 near 0', with the gene order cys-59- xcp -1- proB , and loci xcp -2, xcp -3, and xcp -31 at 35', with the gene order trpC , D- xcp -3/ xcp -31- xcp -2- argC . Loci xcp -4 and xcp -41 through xcp -44 were cotransducible with proA at 40'; loci xcp -5, xcp -51, xcp -52, and xcp53 were located at 55', with the gene order leu-10- trpF -met-9010- xcp -53- xcp -5/ xcp -51/ xcp+ ++-52, and xcp -6 was located at 65' to 70', between catA and mtu-9002. Nine mutations ( xcp -2, xcp -3, xcp -31, xcp -4, and xcp -41 through xcp -45) caused decreased production of extracellular enzymes. Six strains with mutations xcp -1, xcp -5, xcp -51, xcp -52, xcp -53, and xcp -6 produced cell-bound exoproteins and had defective release mechanisms. The regulation of production of alkaline phosphatase and phospholipase C is different from other exoproteins , such as elastase, but they all seem to share a common release mechanism. Alkaline protease had separate mechanisms for regulation and release, since this protease was found in culture supernatants of all but one of the mutants, and none of the strains had cell-bound enzyme. PMID:6427194

  4. Production of extracellular nucleic acids by genetically altered bacteria in aquatic-environment microcosms

    SciTech Connect

    Paul, J.H.; David, A.W.

    1989-01-01

    Factors which affect the production of extracellular DNA by genetically altered strains of Escherichia coli, Pseudomonas aeruginosa, Pseudomonas cepacia, and Bradyrhizobium japonicum in aquatic environments were investigated. The presence or absence of the ambient microbial community had little effect on the production of extracellular DNA. Results indicate the extracellular-DNA production by genetically altered bacteria released into aquatic environments is more strongly influenced by physiochemical factors than biotic factors; extracellular-DNA production rates are usually greater for organisms released in freshwater than marine environments; and ambient microbial populations can readily utilize materials released by these organisms.

  5. Effects of sulfate on microcystin production, photosynthesis, and oxidative stress in Microcystis aeruginosa.

    PubMed

    Chen, Lei; Gin, Karina Y H; He, Yiliang

    2016-02-01

    Increasing sulfate in freshwater systems, caused by human activities and climate change, may have negative effects on aquatic organisms. Microcystis aeruginosa (M. aeruginosa) is both a major primary producer and a common toxic cyanobacterium, playing an important role in the aquatic environment. This study first investigated the effects of sulfate on M. aeruginosa. The experiment presented here aims at analyzing the effects of sulfate on physiological indices, molecular levels, and its influencing mechanism. The results of our experiment showed that sulfate (at 40, 80, and 300 mg L(-1)) inhibited M. aeruginosa growth, increased both intracellular and extracellular toxin contents, and enhanced the mcyD transcript level. Sulfate inhibited the photosynthesis of M. aeruginosa, based on the decrease in pigment content and the down-regulation of photosynthesis-related genes after sulfate exposure. Furthermore, sulfate decreased the maximum electron transport rate, causing the cell to accumulate surplus electrons and form reactive oxygen species (ROS). Sulfate also increased the malondialdehyde (MDA) content, which showed that sulfate damaged the cytomembrane. This damage contributed to the release of intracellular toxin to the culture medium. Although sulfate increased superoxide dismutase (SOD) activities, expression of sod, and total antioxidant capacity in M. aeruginosa, it still overwhelmed the antioxidant system since the ROS level simultaneously increased, and finally caused oxidative stress. Our results indicate that sulfate has direct effects on M. aeruginosa, inhibits photosynthesis, causes oxidative stress, increases toxin production, and affects the related genes expression in M. aeruginosa.

  6. Tyrosine Phosphatase TpbA of Pseudomonas aeruginosa Controls Extracellular DNA via Cyclic Diguanylic Acid Concentrations

    PubMed Central

    Ueda, Akihiro; Wood, Thomas K.

    2010-01-01

    SUMMARY Inactivating the tyrosine phosphatase TpbA of Pseudomonas aeruginosa PA14 induces biofilm formation by 150-fold via increased production of the second messenger cyclic diguanylic acid (c-di-GMP). Here, we show the tpbA mutation reduces extracellular DNA (eDNA) and that increased expression of tpbA increases eDNA; hence, eDNA is inversely proportional to c-di-GMP concentrations. Mutations in diguanylate cyclases PA0169, PA4959, and PA5487 and phosphodiesterase PA4781 corroborate this trend. The tpbA mutation also decreases cell lysis while overexpression of tpbA increases cell lysis. To further link c-di-GMP concentrations and eDNA, the gene encoding phosphodiesterase PA2133 was overexpressed which increased eDNA and decreased biofilm formation by decreasing c-di-GMP. Furthermore, the effect of the tpbB mutation along with the tpbA mutation was examined because loss of TpbB restored the phenotypes controlled by enhanced c-di-GMP in the tpbA mutant. The tpbA tpbB double mutations restored eDNA to that of the PA14 wild-type level. These findings suggest that c-di-GMP, rather than TpbA, controls eDNA. Hence, TpbA acts as a positive regulator of eDNA and cell lysis by reducing c-di-GMP concentrations. PMID:21552365

  7. Pseudomonas aeruginosa inactivation mechanism is affected by capsular extracellular polymeric substances reactivity with chlorine and monochloramine.

    PubMed

    Xue, Zheng; Hessler, Christopher M; Panmanee, Warunya; Hassett, Daniel J; Seo, Youngwoo

    2013-01-01

    The reactivity of capsular extracellular polymeric substances (EPS) to chlorine and monochloramine was assessed and compared in this study. The impact of capsular EPS on Gram-negative bacteria Pseudomonas aeruginosa inactivation mechanisms was investigated both qualitatively and quantitatively using a combination of batch experiments, viability tests with LIVE/DEAD staining, and Fourier transform infrared spectroscopy (FTIR). Both wild-type and isogenic mutant strains with different alginate EPS production capabilities were used to evaluate their susceptibility to chlorine and monochloramine. The mucA22 mutant strain, which overproduces the EPS composed largely of acidic polysaccharide alginate, exhibited high resistance and prolonged inactivation time to both chlorine and monochloramine relative to PAO1 (wild-type) and algT(U) mutant strains (alginate EPS deficient). Multiple analyses were combined to better understand the mechanistic role of EPS against chlorine-based disinfectants. The extracted EPS exhibited high reactivity with chlorine and very low reactivity with monochloramine, suggesting different mechanism of protection against disinfectants. Moreover, capsular EPS on cell membrane appeared to reduce membrane permeabilization by disinfectants as suggested by deformation of key functional groups in EPS and cell membrane (the C-O-C stretching of carbohydrate and the C=O stretching of ester group). The combined results supported that capsular EPS, acting either as a disinfectant consumer (for chlorine inactivation) or limiting access to reactive sites on cell membrane (for monochloramine inactivation), provide a protective role for bacterial cells against regulatory residual disinfectants by reducing membrane permeabilization.

  8. Extracellular DNA-induced antimicrobial peptide resistance mechanisms in Pseudomonas aeruginosa.

    PubMed

    Lewenza, Shawn

    2013-01-01

    Extracellular DNA (eDNA) is in the environment, bodily fluids, in the matrix of biofilms, and accumulates at infection sites. eDNA can function as a nutrient source, a universal biofilm matrix component, and an innate immune effector in eDNA traps. In biofilms, eDNA is required for attachment, aggregation, and stabilization of microcolonies. We have recently shown that eDNA can sequester divalent metal cations, which has interesting implications on antibiotic resistance. eDNA binds metal cations and thus activates the Mg(2+)-responsive PhoPQ and PmrAB two-component systems. In Pseudomonas aeruginosa and many other Gram-negative bacteria, the PhoPQ/PmrAB systems control various genes required for virulence and resisting killing by antimicrobial peptides (APs), including the pmr genes (PA3552-PA3559) that are responsible for the addition of aminoarabinose to lipid A. The PA4773-PA4775 genes are a second DNA-induced cluster and are required for the production of spermidine on the outer surface, which protects the outer membrane from AP treatment. Both modifications mask the negative surface charges and limit membrane damage by APs. DNA-enriched biofilms or planktonic cultures have increased antibiotic resistance phenotypes to APs and aminoglycosides. These dual antibiotic resistance and immune evasion strategies may be expressed in DNA-rich environments and contribute to long-term survival.

  9. Physicochemical Fractionation of Extracellular Cornea-Damaging Proteases of Pseudomonas aeruginosa

    PubMed Central

    Kreger, Arnold S.; Griffin, Olwen K.

    1974-01-01

    Fractionation of the culture supernatant fluids of a cornea-virulent strain of Pseudomonas aeruginosa by ammonium sulfate precipitation, diafiltration, isoelectric focusing, ion-exchange chromatography, gel filtration, and sucrose density gradient centrifugation failed to separate the rabbit cornea-damaging activity and the in vitro protease activity of the preparations. Three proteases having similar molecular weights (approximately 20,000) and isoelectric points of approximately 4.6, 5.8, and 8.8 were obtained free of detectable amounts of other known extracellular pseudomonal enzymes. Heating a mixture of the three proteases for 15 min at 80 C resulted in complete loss of protease and cornea-damaging activities. The sterile culture filtrate of a nonproteolytic but lethal toxin-producing strain of P. aeruginosa did not contain cornea-damaging activity. Cultivation of the proteolytic strain in broth containing 4.7% ammonium sulfate yielded a culture supernatant fluid free of protease and cornea-damaging activities. The results obtained support the conclusion that a cornea-virulent strain of P. aeruginosa can produce, in vitro, at least three different extracellular proteases capable of eliciting rapid and extensive damage to rabbit corneas. Images PMID:4363232

  10. Protective role of extracellular catalase (KatA) against UVA radiation in Pseudomonas aeruginosa biofilms.

    PubMed

    Pezzoni, Magdalena; Pizarro, Ramón A; Costa, Cristina S

    2014-02-05

    One of the more stressful factors that Pseudomonas aeruginosa must face in nature is solar UVA radiation. In this study, the protective role of KatA catalase in both planktonic cells and biofilms of P. aeruginosa against UVA radiation was determined by using the wild-type (PAO1) and an isogenic catalase deficient strain (katA). The katA strain was more sensitive than the wild-type, especially in the case of biofilms. Moreover, the wild-type biofilm was more resistant than its planktonic counterpart, but this was not observed in the katA strain. Striking KatA activity was detected in the matrix of katA(+) strains, and to our knowledge, this is the first report of this activity in the matrix of P. aeruginosa biofilms. Provision of bovine catalase or KatA to the matrix of a katA biofilm significantly increased its UVA tolerance, demonstrating that extracellular KatA is essential to optimal defense against UVA in P. aeruginosa biofilms. Efficiency of photocatalytic treatments using TiO2 and UVA was lower in biofilms than in planktonic cells, but KatA and KatB catalases seem not to be responsible for the higher resistance of the sessile cells to this treatment.

  11. Variation in assimilable organic carbon formation during chlorination of Microcystis aeruginosa extracellular organic matter solutions.

    PubMed

    Sun, Xingbin; Yuan, Ting; Ni, Huishan; Li, Yanpeng; Hu, Yang

    2016-07-01

    This study investigated the chlorination of Microcystis aeruginosa extracellular organic matter (EOM) solutions under different conditions, to determine how the metabolites produced by these organisms affect water safety and the formation of assimilable organic carbon (AOC). The effects of chlorine dosages, coagulant dosage, reaction time and temperature on the formation of AOC were investigated during the disinfection of M.aeruginosa metabolite solutions. The concentration of AOC followed a decreasing and then increasing pattern with increasing temperature and reaction time. The concentration of AOC decreased and then increased with increasing chlorination dosage, followed by a slight decrease at the highest level of chlorination. However, the concentration of AOC decreased continuously with increasing coagulant dosage. The formation of AOC can be suppressed under appropriate conditions. In this study, chlorination at 4mg/L, combined with a coagulant dose of 40mg/L at 20°C over a reaction time of 12hr, produced the minimum AOC.

  12. Optimization of process parameters influencing the submerged fermentation of extracellular lipases from Pseudomonas aeruginosa, candida albicans and Aspergillus flavus.

    PubMed

    Padhiar, Jigita; Das, Arijit; Bhattacharya, Sourav

    2011-11-15

    The present study was aimed at optimization, production and partial purification of lipases from Pseudomonas aeruginosa, Candida albicans and Aspergillus flavus. Various nutritional and physical parameters affecting lipase production such as carbon and nitrogen supplements, pH, temperature, agitation speed and incubation time were studied. Refined sunflower oil (1% v/v) and tryptone at a pH of 6.2 favored maximum lipase production in Pseudomonas at 30 degrees C and 150 rpm, when incubated for 5 days. In C. albicans refined sunflower oil (3% v/v) and peptone resulted in maximum lipase production at pH 5.2, 30 degrees C and 150 rpm, when incubated for 5 days. In A. flavus coconut oil (3% v/v) and peptone yielded maximum lipase at pH 6.2, 37 degrees C, 200 rpm after an incubation period of 5 days. The lipases were partially purified by ammonium sulphate precipitation and dialysis. In P. aeruginosa enzyme activity of the dialyzed fraction was found to be 400 U mL-' and for C. albicans 410 U mL(-1). The dialysed lipase fraction from A. flavus demonstrated an activity of 460 U mL(-1). The apparent molecular weights of the dialyzed lipases were determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The dialyzed lipase fraction obtained from P. aeruginosa revealed molecular weights of 47, 49 and 51 kDa, whereas, lipases from C. albicans and A. flavus demonstrated 3 bands (16.5, 27 and 51 kDa) and one band (47 kDa), respectively. These extracellular lipases may find wide industrial applications.

  13. Heterologous production of Escherichia coli penicillin G acylase in Pseudomonas aeruginosa.

    PubMed

    Krzeslak, Joanna; Braun, Peter; Voulhoux, Rome; Cool, Robbert H; Quax, Wim J

    2009-07-15

    Penicillin G acylase (PGA) is a widely studied bacterial enzyme of great industrial importance. Since its overproduction in the original organisms is mostly limited to the intracellular bacterial spaces which may lead to aggregation and cell toxicity, we have set out to explore the host organism Pseudomonas aeruginosa that possesses the Xcp machinery for secretion of folded proteins to the extracellular medium. We have made fusion proteins, consisting of Pseudomonas Sec- or Tat-specific signal peptides, the elastase propeptide and the mature penicillin G acylase. With all constructs we obtained production of PGA in P. aeruginosa, but we observed that processing of the PGA was temperature dependent and that the active enzyme could only be found after growth at 25 degrees C or lower temperatures. Remarkably, the mature protein, expressed from a TatProPGA hybrid, was not only found in the extracellular medium and the periplasm, but also in the cytoplasm as assessed by comparison to the reporter beta-lactamase protein. The unusual cytoplasmic localization of the mature protein strongly suggests that processing of PGA can also occur in the cytoplasm of P. aeruginosa. The extracellular localization of the TatProPGA hybrid was found not to be dependent on the tatABC-genes. The elastase signal sequence/propeptide combination appeared to be an inadequate carrier for transporting penicillin G acylase across the outer membrane of P. aeruginosa.

  14. Biosynthesis of the Pseudomonas aeruginosa Extracellular Polysaccharides, Alginate, Pel, and Psl

    PubMed Central

    Franklin, Michael J.; Nivens, David E.; Weadge, Joel T.; Howell, P. Lynne

    2011-01-01

    Pseudomonas aeruginosa thrives in many aqueous environments and is an opportunistic pathogen that can cause both acute and chronic infections. Environmental conditions and host defenses cause differing stresses on the bacteria, and to survive in vastly different environments, P. aeruginosa must be able to adapt to its surroundings. One strategy for bacterial adaptation is to self-encapsulate with matrix material, primarily composed of secreted extracellular polysaccharides. P. aeruginosa has the genetic capacity to produce at least three secreted polysaccharides; alginate, Psl, and Pel. These polysaccharides differ in chemical structure and in their biosynthetic mechanisms. Since alginate is often associated with chronic pulmonary infections, its biosynthetic pathway is the best characterized. However, alginate is only produced by a subset of P. aeruginosa strains. Most environmental and other clinical isolates secrete either Pel or Psl. Little information is available on the biosynthesis of these polysaccharides. Here, we review the literature on the alginate biosynthetic pathway, with emphasis on recent findings describing the structure of alginate biosynthetic proteins. This information combined with the characterization of the domain architecture of proteins encoded on the Psl and Pel operons allowed us to make predictive models for the biosynthesis of these two polysaccharides. The results indicate that alginate and Pel share certain features, including some biosynthetic proteins with structurally or functionally similar properties. In contrast, Psl biosynthesis resembles the EPS/CPS capsular biosynthesis pathway of Escherichia coli, where the Psl pentameric subunits are assembled in association with an isoprenoid lipid carrier. These models and the environmental cues that cause the cells to produce predominantly one polysaccharide over the others are subjects of current investigation. PMID:21991261

  15. Pyocyanin Facilitates Extracellular DNA Binding to Pseudomonas aeruginosa Influencing Cell Surface Properties and Aggregation

    PubMed Central

    Das, Theerthankar; Kutty, Samuel K.; Kumar, Naresh; Manefield, Mike

    2013-01-01

    Pyocyanin is an electrochemically active metabolite produced by the human pathogen Pseudomonas aeruginosa. It is a recognized virulence factor and is involved in a variety of significant biological activities including gene expression, maintaining fitness of bacterial cells and biofilm formation. It is also recognized as an electron shuttle for bacterial respiration and as an antibacterial and antifungal agent. eDNA has also been demonstrated to be a major component in establishing P. aeruginosa biofilms. In this study we discovered that production of pyocyanin influences the binding of eDNA to P. aeruginosa PA14 cells, mediated through intercalation of pyocyanin with eDNA. P. aeruginosa cell surface properties including cell size (hydrodynamic diameter), hydrophobicity and attractive surface energies were influenced by eDNA in the presence of pyocyanin, affecting physico-chemical interactions and promoting aggregation. A ΔphzA-G PA14 mutant, deficient in pyocynain production, could not bind with eDNA resulting in a reduction in hydrodynamic diameter, a decrease in hydrophobicity, repulsive physico-chemical interactions and reduction in aggregation in comparison to the wildtype strain. Removal of eDNA by DNase I treatment on the PA14 wildtype strain resulted in significant reduction in aggregation, cell surface hydrophobicity and size and an increase in repulsive physico-chemical interactions, similar to the level of the ΔphzA-G mutant. The cell surface properties of the ΔphzA-G mutant were not affected by DNase I treatment. Based on these findings we propose that pyocyanin intercalation with eDNA promotes cell-to-cell interactions in P. aeruginosa cells by influencing their cell surface properties and physico-chemical interactions. PMID:23505483

  16. Pyocyanin facilitates extracellular DNA binding to Pseudomonas aeruginosa influencing cell surface properties and aggregation.

    PubMed

    Das, Theerthankar; Kutty, Samuel K; Kumar, Naresh; Manefield, Mike

    2013-01-01

    Pyocyanin is an electrochemically active metabolite produced by the human pathogen Pseudomonas aeruginosa. It is a recognized virulence factor and is involved in a variety of significant biological activities including gene expression, maintaining fitness of bacterial cells and biofilm formation. It is also recognized as an electron shuttle for bacterial respiration and as an antibacterial and antifungal agent. eDNA has also been demonstrated to be a major component in establishing P. aeruginosa biofilms. In this study we discovered that production of pyocyanin influences the binding of eDNA to P. aeruginosa PA14 cells, mediated through intercalation of pyocyanin with eDNA. P. aeruginosa cell surface properties including cell size (hydrodynamic diameter), hydrophobicity and attractive surface energies were influenced by eDNA in the presence of pyocyanin, affecting physico-chemical interactions and promoting aggregation. A ΔphzA-G PA14 mutant, deficient in pyocynain production, could not bind with eDNA resulting in a reduction in hydrodynamic diameter, a decrease in hydrophobicity, repulsive physico-chemical interactions and reduction in aggregation in comparison to the wildtype strain. Removal of eDNA by DNase I treatment on the PA14 wildtype strain resulted in significant reduction in aggregation, cell surface hydrophobicity and size and an increase in repulsive physico-chemical interactions, similar to the level of the ΔphzA-G mutant. The cell surface properties of the ΔphzA-G mutant were not affected by DNase I treatment. Based on these findings we propose that pyocyanin intercalation with eDNA promotes cell-to-cell interactions in P. aeruginosa cells by influencing their cell surface properties and physico-chemical interactions.

  17. Investigation of extracellular polymeric substances (EPS) properties of P. aeruginosa and B. subtilis and their role in bacterial adhesion.

    PubMed

    Harimawan, Ardiyan; Ting, Yen-Peng

    2016-10-01

    Extracellular polymeric substances (EPS) matrix in biofilm poses important functions such as a diffusion barrier to antimicrobial agents so that biofilm cells are more difficult to completely eliminate. Therefore, biofilm cells exhibit enhanced resilience unlike planktonic cells, and are more difficult to completely eliminate. In order to obtain a comprehensive understanding of bacterial adhesion to surfaces, knowledge of the composition and conformational properties of EPS produced during growth and biofilm formation is required, since their adhesive and conformational properties remain poorly understood at molecular level. Present study has provided further insights into identifying compositional and conformational properties of EPS produced by planktonic and biofilm cells of B. subtilis and P. aeruginosa. Various spectroscopy analyses showed that EPS produced by the two different species were chemically dissimilar. More proteinaceous compounds were present in EPS from B. subtilis, while EPS from P. aeruginosa were characterized by greater carbohydrate components. However, relative proportions of polysaccharides and/or proteins constituents varied with the growth mode of the bacteria. AFM was then used to probe the adhesive nature of EPS produced by the bacteria by using Single Molecule Force Spectroscopy (SMFS). Comparison of the two bacterial species indicated that the presence of polysaccharides promoted the adhesion strength of the EPS while proteins had lesser adherence effects. Comparison of the two growth modes for the same bacterial strain also indicated that greater EPS production and enhanced cellular adhesion are associated with biofilm growth.

  18. PqsD Is Responsible for the Synthesis of 2,4-Dihydroxyquinoline, an Extracellular Metabolite Produced by Pseudomonas aeruginosa*

    PubMed Central

    Zhang, Yong-Mei; Frank, Matthew W.; Zhu, Kun; Mayasundari, Anand; Rock, Charles O.

    2008-01-01

    2,4-Dihydroxyquinoline (DHQ) is an abundant extracellular metabolite of the opportunistic pathogen Pseudomonas aeruginosa that is secreted into growth medium in stationary phase to concentrations comparable with those of the Pseudomonas quinolone signal. Using a combination of biochemical and genetic approaches, we show that PqsD, a condensing enzyme in the pqs operon that is essential for Pseudomonas quinolone signal synthesis, accounts for DHQ formation in vivo. First, the anthraniloyl moiety is transferred to the active-site Cys of PqsD to form an anthraniloyl-PqsD intermediate, which then condenses with either malonyl-CoA or malonyl-acyl carrier protein to produce 3-(2-aminophenyl)-3-oxopropanoyl-CoA. This short-lived intermediate undergoes an intramolecular rearrangement to form DHQ. DHQ was produced by Escherichia coli coexpressing PqsA and PqsD, illustrating that these two proteins are the only factors necessary for DHQ synthesis. Thus, PqsD is responsible for the production of DHQ in P. aeruginosa. PMID:18728009

  19. Chelation of Membrane-Bound Cations by Extracellular DNA Activates the Type VI Secretion System in Pseudomonas aeruginosa

    PubMed Central

    Wilton, Mike; Wong, Megan J. Q.; Tang, Le; Liang, Xiaoye; Moore, Richard; Parkins, Michael D.; Lewenza, Shawn

    2016-01-01

    Pseudomonas aeruginosa employs its type VI secretion system (T6SS) as a highly effective and tightly regulated weapon to deliver toxic molecules to target cells. T6SS-secreted proteins of P. aeruginosa can be detected in the sputum of cystic fibrosis (CF) patients, who typically present a chronic and polymicrobial lung infection. However, the mechanism of T6SS activation in the CF lung is not fully understood. Here we demonstrate that extracellular DNA (eDNA), abundant within the CF airways, stimulates the dynamics of the H1-T6SS cluster apparatus in Pseudomonas aeruginosa PAO1. Addition of Mg2+ or DNase with eDNA abolished such activation, while treatment with EDTA mimicked the eDNA effect, suggesting that the eDNA-mediated effect is due to chelation of outer membrane-bound cations. DNA-activated H1-T6SS enables P. aeruginosa to nonselectively attack neighboring species regardless of whether or not it was provoked. Because of the importance of the T6SS in interspecies interactions and the prevalence of eDNA in the environments that P. aeruginosa inhabits, our report reveals an important adaptation strategy that likely contributes to the competitive fitness of P. aeruginosa in polymicrobial communities. PMID:27271742

  20. Chelation of Membrane-Bound Cations by Extracellular DNA Activates the Type VI Secretion System in Pseudomonas aeruginosa.

    PubMed

    Wilton, Mike; Wong, Megan J Q; Tang, Le; Liang, Xiaoye; Moore, Richard; Parkins, Michael D; Lewenza, Shawn; Dong, Tao G

    2016-08-01

    Pseudomonas aeruginosa employs its type VI secretion system (T6SS) as a highly effective and tightly regulated weapon to deliver toxic molecules to target cells. T6SS-secreted proteins of P. aeruginosa can be detected in the sputum of cystic fibrosis (CF) patients, who typically present a chronic and polymicrobial lung infection. However, the mechanism of T6SS activation in the CF lung is not fully understood. Here we demonstrate that extracellular DNA (eDNA), abundant within the CF airways, stimulates the dynamics of the H1-T6SS cluster apparatus in Pseudomonas aeruginosa PAO1. Addition of Mg(2+) or DNase with eDNA abolished such activation, while treatment with EDTA mimicked the eDNA effect, suggesting that the eDNA-mediated effect is due to chelation of outer membrane-bound cations. DNA-activated H1-T6SS enables P. aeruginosa to nonselectively attack neighboring species regardless of whether or not it was provoked. Because of the importance of the T6SS in interspecies interactions and the prevalence of eDNA in the environments that P. aeruginosa inhabits, our report reveals an important adaptation strategy that likely contributes to the competitive fitness of P. aeruginosa in polymicrobial communities.

  1. Influence of Deletions within Domain II of Exotoxin A on Its Extracellular Secretion from Pseudomonas aeruginosa

    PubMed Central

    Voulhoux, Romé; Taupiac, Marie-Pierre; Czjzek, Mirjam; Beaumelle, Bruno; Filloux, Alain

    2000-01-01

    Pseudomonas aeruginosa is a gram-negative bacterium that secretes many proteins into the extracellular medium via the Xcp machinery. This pathway, conserved in gram-negative bacteria, is called the type II pathway. The exoproteins contain information in their amino acid sequence to allow targeting to their secretion machinery. This information may be present within a conformational motif. The nature of this signal has been examined for P. aeruginosa exotoxin A (PE). Previous studies failed to identify a common minimal motif required for Xcp-dependent recognition and secretion of PE. One study identified a motif at the N terminus of the protein, whereas another one found additional information at the C terminus. In this study, we assess the role of the central PE domain II composed of six α-helices (A to F). The secretion behavior of PE derivatives, individually deleted for each helix, was analyzed. Helix E deletion has a drastic effect on secretion of PE, which accumulates within the periplasm. The conformational rearrangement induced in this variant is predicted from the three-dimensional PE structure, and the molecular modification is confirmed by gel filtration experiments. Helix E is in the core of the molecule and creates close contact with other domains (I and III). Deletion of the surface-exposed helix F has no effect on secretion, indicating that no secretion information is contained in this helix. Finally, we concluded that disruption of a structured domain II yields an extended form of the molecule and prevents formation of the conformational secretion motif. PMID:10869085

  2. Extracellular recombinant protein production from Escherichia coli.

    PubMed

    Ni, Ye; Chen, Rachel

    2009-11-01

    Escherichia coli is the most commonly used host for recombinant protein production and metabolic engineering. Extracellular production of enzymes and proteins is advantageous as it could greatly reduce the complexity of a bioprocess and improve product quality. Extracellular production of proteins is necessary for metabolic engineering applications in which substrates are polymers such as lignocelluloses or xenobiotics since adequate uptake of these substrates is often an issue. The dogma that E. coli secretes no protein has been challenged by the recognition of both its natural ability to secrete protein in common laboratory strains and increased ability to secrete proteins in engineered cells. The very existence of this review dedicated to extracellular production is a testimony for outstanding achievements made collectively by the community in this regard. Four strategies have emerged to engineer E. coli cells to secrete recombinant proteins. In some cases, impressive secretion levels, several grams per liter, were reached. This secretion level is on par with other eukaryotic expression systems. Amid the optimism, it is important to recognize that significant challenges remain, especially when considering the success cannot be predicted a priori and involves much trials and errors. This review provides an overview of recent developments in engineering E. coli for extracellular production of recombinant proteins and an analysis of pros and cons of each strategy.

  3. Tracking the Dynamic Relationship between Cellular Systems and Extracellular Subproteomes in Pseudomonas aeruginosa Biofilms.

    PubMed

    Park, Amber J; Murphy, Kathleen; Surette, Matthew D; Bandoro, Christopher; Krieger, Jonathan R; Taylor, Paul; Khursigara, Cezar M

    2015-11-06

    The transition of the opportunistic pathogen Pseudomonas aeruginosa from free-living bacteria into surface-associated biofilm communities represents a viable target for the prevention and treatment of chronic infectious disease. We have established a proteomics platform that identified 2443 and 1142 high-confidence proteins in P. aeruginosa whole cells and outer-membrane vesicles (OMVs), respectively, at three time points during biofilm development (ProteomeXchange identifier PXD002605). The analysis of cellular systems, specifically the phenazine biosynthetic pathway, demonstrates that whole-cell protein abundance correlates to end product (i.e., pyocyanin) concentrations in biofilm but not in planktonic cultures. Furthermore, increased cellular protein abundance in this pathway results in quantifiable pyocyanin in early biofilm OMVs and OMVs from both growth modes isolated at later time points. Overall, our data indicate that the OMVs being released from the surface of the biofilm whole cells have unique proteomes in comparison to their planktonic counterparts. The relative abundance of OMV proteins from various subcellular sources showed considerable differences between the two growth modes over time, supporting the existence and preferential activation of multiple OMV biogenesis mechanisms under different conditions. The consistent detection of cytoplasmic proteins in all of the OMV subproteomes challenges the notion that OMVs are composed of outer membrane and periplasmic proteins alone. Direct comparisons of outer-membrane protein abundance levels between OMVs and whole cells shows ratios that vary greatly from 1:1 and supports previous studies that advocate the specific inclusion, or "packaging", of proteins into OMVs. The quantitative analysis of packaged protein groups suggests biogenesis mechanisms that involve untethered, rather than absent, peptidoglycan-binding proteins. Collectively, individual protein and biological system analyses of biofilm OMVs

  4. Iron Depletion Enhances Production of Antimicrobials by Pseudomonas aeruginosa

    PubMed Central

    Nguyen, Angela T.; Jones, Jace W.; Ruge, Max A.; Kane, Maureen A.

    2015-01-01

    ABSTRACT Cystic fibrosis (CF) is a heritable disease characterized by chronic, polymicrobial lung infections. While Staphylococcus aureus is the dominant lung pathogen in young CF patients, Pseudomonas aeruginosa becomes predominant by adulthood. P. aeruginosa produces a variety of antimicrobials that likely contribute to this shift in microbial populations. In particular, secretion of 2-alkyl-4(1H)-quinolones (AQs) contributes to lysis of S. aureus in coculture, providing an iron source to P. aeruginosa both in vitro and in vivo. We previously showed that production of one such AQ, the Pseudomonas quinolone signal (PQS), is enhanced by iron depletion and that this induction is dependent upon the iron-responsive PrrF small RNAs (sRNAs). Here, we demonstrate that antimicrobial activity against S. aureus during coculture is also enhanced by iron depletion, and we provide evidence that multiple AQs contribute to this activity. Strikingly, a P. aeruginosa ΔprrF mutant, which produces very little PQS in monoculture, was capable of mediating iron-regulated growth suppression of S. aureus. We show that the presence of S. aureus suppresses the ΔprrF1,2 mutant's defect in iron-regulated PQS production, indicating that a PrrF-independent iron regulatory pathway mediates AQ production in coculture. We further demonstrate that iron-regulated antimicrobial production is conserved in multiple P. aeruginosa strains, including clinical isolates from CF patients. These results demonstrate that iron plays a central role in modulating interactions of P. aeruginosa with S. aureus. Moreover, our studies suggest that established iron regulatory pathways of these pathogens are significantly altered during polymicrobial infections. IMPORTANCE Chronic polymicrobial infections involving Pseudomonas aeruginosa and Staphylococcus aureus are a significant cause of morbidity and mortality, as the interplay between these two organisms exacerbates infection. This is in part due to enhanced

  5. Production of mucoid exopolysaccharide during development of Pseudomonas aeruginosa biofilms.

    PubMed Central

    Hoyle, B D; Williams, L J; Costerton, J W

    1993-01-01

    Production of mucoid exopolysaccharide by planktonic, chemostat-derived, and adherent Pseudomonas aeruginosa 579 bacteria was separately monitored for 7 days by using a lacZ-algD promoter-reporter gene and assays of total carbohydrate and metabolic activity. Mucoid exopolysaccharide production was transiently elevated following adherence but declined to planktonic levels by day 7. PMID:8423105

  6. Extracellular matrix-associated proteins form an integral and dynamic system during Pseudomonas aeruginosa biofilm development

    PubMed Central

    Zhang, Weipeng; Sun, Jin; Ding, Wei; Lin, Jinshui; Tian, Renmao; Lu, Liang; Liu, Xiaofen; Shen, Xihui; Qian, Pei-Yuan

    2015-01-01

    Though the essential role of extracellular matrix in biofilm development has been extensively documented, the function of matrix-associated proteins is elusive. Determining the dynamics of matrix-associated proteins would be a useful way to reveal their functions in biofilm development. Therefore, we applied iTRAQ-based quantitative proteomics to evaluate matrix-associated proteins isolated from different phases of Pseudomonas aeruginosa ATCC27853 biofilms. Among the identified 389 proteins, 54 changed their abundance significantly. The increased abundance of stress resistance and nutrient metabolism-related proteins over the period of biofilm development was consistent with the hypothesis that biofilm matrix forms micro-environments in which cells are optimally organized to resist stress and use available nutrients. Secreted proteins, including novel putative effectors of the type III secretion system were identified, suggesting that the dynamics of pathogenesis-related proteins in the matrix are associated with biofilm development. Interestingly, there was a good correlation between the abundance changes of matrix-associated proteins and their expression. Further analysis revealed complex interactions among these modulated proteins, and the mutation of selected proteins attenuated biofilm development. Collectively, this work presents the first dynamic picture of matrix-associated proteins during biofilm development, and provides evidences that the matrix-associated proteins may form an integral and well regulated system that contributes to stress resistance, nutrient acquisition, pathogenesis and the stability of the biofilm. PMID:26029669

  7. The Extracellular Matrix Component Psl Provides Fast-Acting Antibiotic Defense in Pseudomonas aeruginosa Biofilms

    PubMed Central

    Billings, Nicole; Ramirez Millan, Maria; Caldara, Marina; Rusconi, Roberto; Tarasova, Yekaterina; Stocker, Roman; Ribbeck, Katharina

    2013-01-01

    Bacteria within biofilms secrete and surround themselves with an extracellular matrix, which serves as a first line of defense against antibiotic attack. Polysaccharides constitute major elements of the biofilm matrix and are implied in surface adhesion and biofilm organization, but their contributions to the resistance properties of biofilms remain largely elusive. Using a combination of static and continuous-flow biofilm experiments we show that Psl, one major polysaccharide in the Pseudomonas aeruginosa biofilm matrix, provides a generic first line of defense toward antibiotics with diverse biochemical properties during the initial stages of biofilm development. Furthermore, we show with mixed-strain experiments that antibiotic-sensitive “non-producing” cells lacking Psl can gain tolerance by integrating into Psl-containing biofilms. However, non-producers dilute the protective capacity of the matrix and hence, excessive incorporation can result in the collapse of resistance of the entire community. Our data also reveal that Psl mediated protection is extendible to E. coli and S. aureus in co-culture biofilms. Together, our study shows that Psl represents a critical first bottleneck to the antibiotic attack of a biofilm community early in biofilm development. PMID:23950711

  8. Stress-induced outer membrane vesicle production by Pseudomonas aeruginosa.

    PubMed

    Macdonald, Ian A; Kuehn, Meta J

    2013-07-01

    As an opportunistic Gram-negative pathogen, Pseudomonas aeruginosa must be able to adapt and survive changes and stressors in its environment during the course of infection. To aid survival in the hostile host environment, P. aeruginosa has evolved defense mechanisms, including the production of an exopolysaccharide capsule and the secretion of a myriad of degradative proteases and lipases. The production of outer membrane-derived vesicles (OMVs) serves as a secretion mechanism for virulence factors as well as a general bacterial response to envelope-acting stressors. This study investigated the effect of sublethal physiological stressors on OMV production by P. aeruginosa and whether the Pseudomonas quinolone signal (PQS) and the MucD periplasmic protease are critical mechanistic factors in this response. Exposure to some environmental stressors was determined to increase the level of OMV production as well as the activity of AlgU, the sigma factor that controls MucD expression. Overexpression of AlgU was shown to be sufficient to induce OMV production; however, stress-induced OMV production was not dependent on activation of AlgU, since stress caused increased vesiculation in strains lacking algU. We further determined that MucD levels were not an indicator of OMV production under acute stress, and PQS was not required for OMV production under stress or unstressed conditions. Finally, an investigation of the response of P. aeruginosa to oxidative stress revealed that peroxide-induced OMV production requires the presence of B-band but not A-band lipopolysaccharide. Together, these results demonstrate that distinct mechanisms exist for stress-induced OMV production in P. aeruginosa.

  9. Stress-Induced Outer Membrane Vesicle Production by Pseudomonas aeruginosa

    PubMed Central

    MacDonald, Ian A.

    2013-01-01

    As an opportunistic Gram-negative pathogen, Pseudomonas aeruginosa must be able to adapt and survive changes and stressors in its environment during the course of infection. To aid survival in the hostile host environment, P. aeruginosa has evolved defense mechanisms, including the production of an exopolysaccharide capsule and the secretion of a myriad of degradative proteases and lipases. The production of outer membrane-derived vesicles (OMVs) serves as a secretion mechanism for virulence factors as well as a general bacterial response to envelope-acting stressors. This study investigated the effect of sublethal physiological stressors on OMV production by P. aeruginosa and whether the Pseudomonas quinolone signal (PQS) and the MucD periplasmic protease are critical mechanistic factors in this response. Exposure to some environmental stressors was determined to increase the level of OMV production as well as the activity of AlgU, the sigma factor that controls MucD expression. Overexpression of AlgU was shown to be sufficient to induce OMV production; however, stress-induced OMV production was not dependent on activation of AlgU, since stress caused increased vesiculation in strains lacking algU. We further determined that MucD levels were not an indicator of OMV production under acute stress, and PQS was not required for OMV production under stress or unstressed conditions. Finally, an investigation of the response of P. aeruginosa to oxidative stress revealed that peroxide-induced OMV production requires the presence of B-band but not A-band lipopolysaccharide. Together, these results demonstrate that distinct mechanisms exist for stress-induced OMV production in P. aeruginosa. PMID:23625841

  10. Biogenic tellurium nanorods as a novel antivirulence agent inhibiting pyoverdine production in Pseudomonas aeruginosa.

    PubMed

    Mohanty, Anee; Kathawala, Mustafa Hussain; Zhang, Jianhua; Chen, Wei Ning; Loo, Joachim Say Chye; Kjelleberg, Staffan; Yang, Liang; Cao, Bin

    2014-05-01

    While antibiotic resistance in bacteria is rapidly increasing, the development of new antibiotics has decreased in recent years. Antivirulence drugs disarming rather than killing pathogens have been proposed to alleviate the problem of resistance inherent to existing biocidal antibiotics. Here, we report a nontoxic biogenic nanomaterial as a novel antivirulence agent to combat bacterial infections caused by Pseudomonas aeruginosa. We synthesized, in an environmentally benign fashion, tellurium nanorods (TeNRs) using the metal-reducing bacterium Shewanella oneidensis, and found that the biogenic TeNRs could effectively inhibit the production of pyoverdine, one of the most important virulence factors in P. aeruginosa. Our results suggest that amyloids and extracellular polysaccharides Pel and Psl are not involved in the interactions between P. aeruginosa and the biogenic TeNRs, while flagellar movement plays an important role in the cell-TeNRs interaction. We further showed that the TeNRs (up to 100 µg/mL) did not exhibit cytotoxicity to human bronchial epithelial cells and murine macrophages. Thus, biogenic TeNRs hold promise as a novel antivirulence agent against P. aeruginosa.

  11. Chemical Analysis of Cellular and Extracellular Carbohydrates of a Biofilm-Forming Strain Pseudomonas aeruginosa PA14

    PubMed Central

    Coulon, Charlène; Vinogradov, Evgeny; Filloux, Alain; Sadovskaya, Irina

    2010-01-01

    Background Pseudomonas aeruginosa is a Gram-negative bacterium and an opportunistic pathogen, which causes persisting life-threatening infections in cystic fibrosis (CF) patients. Biofilm mode of growth facilitates its survival in a variety of environments. Most P. aeruginosa isolates, including the non-mucoid laboratory strain PA14, are able to form a thick pellicle, which results in a surface-associated biofilm at the air-liquid (A–L) interface in standing liquid cultures. Exopolysaccharides (EPS) are considered as key components in the formation of this biofilm pellicle. In the non-mucoid P. aeruginosa strain PA14, the “scaffolding” polysaccharides of the biofilm matrix, and the molecules responsible for the structural integrity of rigid A–L biofilm have not been identified. Moreover, the role of LPS in this process is unclear, and the chemical structure of the LPS O-antigen of PA14 has not yet been elucidated. Principal Findings In the present work we carried out a systematic analysis of cellular and extracellular (EC) carbohydrates of P. aeruginosa PA14. We also elucidated the chemical structure of the LPS O-antigen by chemical methods and 2-D NMR spectroscopy. Our results showed that it is composed of linear trisaccharide repeating units, identical to those described for P. aeruginosa Lanýi type O:2a,c (Lanýi-Bergman O-serogroup 10a, 10c; IATS serotype 19) and having the following structure: -4)-α-L-GalNAcA-(1–3)-α-D-QuiNAc-(1–3)- α-L-Rha-(1-. Furthermore, an EC O-antigen polysaccharide (EC O-PS) and the glycerol-phosphorylated cyclic β-(1,3)-glucans were identified in the culture supernatant of PA14, grown statically in minimal medium. Finally, the extracellular matrix of the thick biofilm formed at the A-L interface contained, in addition to eDNA, important quantities (at least ∼20% of dry weight) of LPS-like material. Conclusions We characterized the chemical structure of the LPS O-antigen and showed that the O-antigen polysaccharide is

  12. Effective extracellular trehalose production by Cellulosimicrobium cellulans.

    PubMed

    Seto, A; Yoshijima, H; Toyomasu, K; Ogawa, H-O; Kakuta, H; Hosono, K; Ueda, K; Beppu, T

    2004-06-01

    A bacterium isolated from a petal of Casa Blanca Lily (ST26 strain) produced a marked amount of extracellular trehalose (alpha- d-glucopyranosyl-[1,1]-alpha- d-glucopyranose) in culture medium containing glucose. 16S rDNA-based phylogeny showed that ST26 belongs to, or is related to, Cellulosimicrobium cellulans, a close relative of Cellulomonas spp. Various Cellulomonas strains obtained from culture collections also showed extracellular trehalose productivity, suggesting that trehalose production is a common property of this bacterial genus. ST26 accumulated trehalose in medium supplied with glucose but not with sucrose, glycerol or maltose. Effective extracellular trehalose production by ST26 was achieved by supplying 0.5-1% ammonium sulfate and 0.5-1% CaCO(3). The addition of CaCO(3) adjusted the pH of the culture to around 5.0. The optimized culture conditions yielded trehalose from glucose at a conversion rate of 61%. The addition of ammonium sulfate greatly reduced the dry cell weight of ST26 and intracellular content of trehalose, which suggests that the addition of ammonium sulfate makes ST26 cells leak trehalose into the medium. ST26 effectively propagated in minimal medium containing trehalose as a sole carbon source, which suggests that trehalose serves as a carbohydrate reserve of this organism.

  13. [Effects of allelochemical EMA from reed on the production and release of cyanotoxins in Microcystis aeruginosa].

    PubMed

    Men, Yu-jie; Hu, Hong-ying

    2007-09-01

    The growth inhibition of ethyl-2-methylacetoacetate (EMA) isolated from common reed (Phragmites australis Trin. or Phragmites communis Trin.) on the growth of Microcystis aeruginosa PCC7806 was investigated and the intracellular and extracellular concentration of cyanotoxin (MC-LR) after treatment of EMA were tested. The experimental results indicated that EMA has significant inhibitory effect on the growth of M. aeruginosa PCC7806, and the value of EC(50,7d) was 2.0 mg x L(-1). However, the inhibition declined with the cultivation time. During the whole cultivation period, EMA showed no significant effect on the release of MC-LR from cells to the culture. After 7 days, the amount of intracellular MC-LR per cell unit increased with the increasing of EMA concentration. The amount of MC-LR per cell unit was 25 ng x (10(6) cells)(-1) after the treatment with 1.5 mg x L(-1) EMA, which was increased by 39% compared with the control. The total MC-LR production (including intracellular and extracellular MC-LR) first slightly increased and then decreased significantly with the increase of EMA concentration. After the treatment with 3 mg x L(-1) EMA, the total MC-LR production was 28 microg x L(-1) (only half of that in the control). After 16 days, EMA showed no significant effect on both the amount of MC-LR per cell and the total MC-LR production.

  14. Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix.

    PubMed

    Jennings, Laura K; Storek, Kelly M; Ledvina, Hannah E; Coulon, Charlène; Marmont, Lindsey S; Sadovskaya, Irina; Secor, Patrick R; Tseng, Boo Shan; Scian, Michele; Filloux, Alain; Wozniak, Daniel J; Howell, P Lynne; Parsek, Matthew R

    2015-09-08

    Biofilm formation is a complex, ordered process. In the opportunistic pathogen Pseudomonas aeruginosa, Psl and Pel exopolysaccharides and extracellular DNA (eDNA) serve as structural components of the biofilm matrix. Despite intensive study, Pel's chemical structure and spatial localization within mature biofilms remain unknown. Using specialized carbohydrate chemical analyses, we unexpectedly found that Pel is a positively charged exopolysaccharide composed of partially acetylated 1→4 glycosidic linkages of N-acetylgalactosamine and N-acetylglucosamine. Guided by the knowledge of Pel's sugar composition, we developed a tool for the direct visualization of Pel in biofilms by combining Pel-specific Wisteria floribunda lectin staining with confocal microscopy. The results indicate that Pel cross-links eDNA in the biofilm stalk via ionic interactions. Our data demonstrate that the cationic charge of Pel is distinct from that of other known P. aeruginosa exopolysaccharides and is instrumental in its ability to interact with other key biofilm matrix components.

  15. Effects of Dihydroartemisinin and Artemether on the Growth, Chlorophyll Fluorescence, and Extracellular Alkaline Phosphatase Activity of the Cyanobacterium Microcystis aeruginosa.

    PubMed

    Wang, Shoubing; Xu, Ziran

    2016-01-01

    Increased eutrophication in the recent years has resulted in considerable research focus on identification of methods for preventing cyanobacterial blooms that are rapid and efficient. The objectives of this study were to investigate the effects of dihydroartemisinin and artemether on the growth of Microcystis aeruginosa and to elucidate its mode of action. Variations in cell density, chlorophyll a, soluble protein, malondialdehyde, extracellular alkaline phosphatase activity (APA), and chlorophyll fluorescence parameters (Fv/Fm, ΦPSII, ETR, rapid light curves, fast chlorophyll fluorescence curves on fluorescence intensity, and relative variable fluorescence) were evaluated by lab-cultured experiments. Our results demonstrated that both dihydroartemisinin and artemether inhibited the growth of M.aeruginosa by impairing the photosynthetic center in photosystem II and reducing extracellular APA, with a higher sensitivity exhibited toward artemether. The inhibitory effects of dihydroartemisinin on M.aeruginosa increased with concentration, and the maximum growth inhibitory rate was 42.17% at 24 mg·L-1 after 120h exposure, whereas it was 55.72% at 6 mg·L-1 artemetherafter 120h exposure. Moreover, the chlorophyll fluorescence was significantly inhibited (p<0.05) after 120h exposure to 12 and 24 mg·L-1 dihydroartemisinin. Furthermore, after 120h exposure to 6 mg·L-1 artemether, Fv/Fm, ΦPSII, ETR and rETRmax showed a significant decrease (p<0.01) from initial values of 0.490, 0.516, 17.333, and 104.800, respectively, to 0. One-way analysis of variance showed that 6 mg·L-1 artemether and 24 mg·L-1 dihydroartemisinin had significant inhibitory effects on extracellular APA (p<0.01). The results of this study would be useful to further studies to validate the feasibility of dihydroartemisinin and artemether treatment to inhibit overall cyanobacterial growth in water bodies, before this can be put into practice.

  16. Effects of Dihydroartemisinin and Artemether on the Growth, Chlorophyll Fluorescence, and Extracellular Alkaline Phosphatase Activity of the Cyanobacterium Microcystis aeruginosa

    PubMed Central

    Wang, Shoubing; Xu, Ziran

    2016-01-01

    Increased eutrophication in the recent years has resulted in considerable research focus on identification of methods for preventing cyanobacterial blooms that are rapid and efficient. The objectives of this study were to investigate the effects of dihydroartemisinin and artemether on the growth of Microcystis aeruginosa and to elucidate its mode of action. Variations in cell density, chlorophyll a, soluble protein, malondialdehyde, extracellular alkaline phosphatase activity (APA), and chlorophyll fluorescence parameters (Fv/Fm, ΦPSII, ETR, rapid light curves, fast chlorophyll fluorescence curves on fluorescence intensity, and relative variable fluorescence) were evaluated by lab-cultured experiments. Our results demonstrated that both dihydroartemisinin and artemether inhibited the growth of M.aeruginosa by impairing the photosynthetic center in photosystem II and reducing extracellular APA, with a higher sensitivity exhibited toward artemether. The inhibitory effects of dihydroartemisinin on M.aeruginosa increased with concentration, and the maximum growth inhibitory rate was 42.17% at 24 mg·L-1 after 120h exposure, whereas it was 55.72% at 6 mg·L-1 artemetherafter 120h exposure. Moreover, the chlorophyll fluorescence was significantly inhibited (p<0.05) after 120h exposure to 12 and 24 mg·L-1 dihydroartemisinin. Furthermore, after 120h exposure to 6 mg·L-1 artemether, Fv/Fm, ΦPSII, ETR and rETRmax showed a significant decrease (p<0.01) from initial values of 0.490, 0.516, 17.333, and 104.800, respectively, to 0. One-way analysis of variance showed that 6 mg·L-1 artemether and 24 mg·L-1 dihydroartemisinin had significant inhibitory effects on extracellular APA (p<0.01). The results of this study would be useful to further studies to validate the feasibility of dihydroartemisinin and artemether treatment to inhibit overall cyanobacterial growth in water bodies, before this can be put into practice. PMID:27755566

  17. Pseudomonas aeruginosa KUN2, extracellular toxins-A potential source for the control of dengue vector.

    PubMed

    Lalithambika, B; Vani, C

    2016-01-01

    Dengue fever is one of the serious health disease transmitted by Aedes spp mosquitoes. The incidence of dengue has increased dramatically around the world in recent decades. Vector control is one of the important strategies practiced for the control of dengue fever. The emergence of resistance among vectors against the existing insecticides has raised new challenges. The aim of the present study was to identify the larvicidal activity of extracellular toxins from Pseudomonas spp for the control of dengue vector, Aedes aegypti. Bacterial isolates KUN1, KUN2, KUN3, KUN4, and KUBS were isolated from rhizosphere soil of the agricultural fields in Coimbatore, Tamil Nadu. Lyophilized culture supernatant of KUN2 (24, 48, and 72 h culture) and the solvent extracts from the diethyl ether, petroleum ether, chloroform and ethyl acetate were tested against the IV instar larvae of Ae. aegypti. Morphological and biochemical characterization of KUN2 showed its resemblance to Pseudomonas spp. Further, characterization by molecular methods confirmed it as Pseudomonas aeruginosa. Lyophilized culture supernatant of KUN2 showed more toxicity towards the larvae of Ae. aegypti when grown in the modified medium. Secondary metabolite from the petroleum ether extract was found more toxic to the Ae. aegypti larvae even at low concentration (50 μg/ml). The supernatant of 48 h culture of KUN2 recorded 100% larvicidal activity when compared to other isolates. Further, the rate of mortality was 100% at 24 h when treated with 100 μg/ml of petroleum ether extract of KUN2. Among the isolates used for the control of Ae. aegypti, the isolate KUN2 showed increased larvicidal activity when grown in the modified medium. The maximum larval mortality was observed in the solvent extract of petroleum ether. The mortality of the larvae might be due to the effect of the toxic compound present in the extract which would have entered the larvae through its cuticle damaging its whole system and obstructing

  18. Strategies for improved rhamnolipid production by Pseudomonas aeruginosa PA1

    PubMed Central

    Pereira Jr, Nei; Freire, Denise M.G.

    2016-01-01

    Rhamnolipids are biosurfactants with potential for diversified industrial and environmental uses. The present study evaluated three strategies for increasing the production of rhamnolipid-type biosurfactants produced by Pseudomonas aeruginosa strain PA1. The influence of pH, the addition of P. aeruginosa spent culture medium and the use of a fed-batch process were examined. The culture medium adjusted to pH 7.0 was the most productive. Furthermore, the pH of the culture medium had a measurable effect on the ratio of synthesized mono- and dirhamnolipids. At pH values below 7.3, the proportion of monorhamnolipids decreased from 45 to 24%. The recycling of 20% of the spent culture medium in where P. aeruginosa was grown up to the later stationary phase was responsible for a 100% increase in rhamnolipid volumetric productivity in the new culture medium. Finally, the use of fed-batch operation under conditions of limited nitrogen resulted in a 3.8-fold increase in the amount of rhamnolipids produced (2.9 g L−1–10.9 g L−1). These results offer promising pathways for the optimization of processes for the production of rhamnolipids. PMID:27257553

  19. Strategies for improved rhamnolipid production by Pseudomonas aeruginosa PA1.

    PubMed

    Soares Dos Santos, Alexandre; Pereira, Nei; Freire, Denise M G

    2016-01-01

    Rhamnolipids are biosurfactants with potential for diversified industrial and environmental uses. The present study evaluated three strategies for increasing the production of rhamnolipid-type biosurfactants produced by Pseudomonas aeruginosa strain PA1. The influence of pH, the addition of P. aeruginosa spent culture medium and the use of a fed-batch process were examined. The culture medium adjusted to pH 7.0 was the most productive. Furthermore, the pH of the culture medium had a measurable effect on the ratio of synthesized mono- and dirhamnolipids. At pH values below 7.3, the proportion of monorhamnolipids decreased from 45 to 24%. The recycling of 20% of the spent culture medium in where P. aeruginosa was grown up to the later stationary phase was responsible for a 100% increase in rhamnolipid volumetric productivity in the new culture medium. Finally, the use of fed-batch operation under conditions of limited nitrogen resulted in a 3.8-fold increase in the amount of rhamnolipids produced (2.9 g L(-1)-10.9 g L(-1)). These results offer promising pathways for the optimization of processes for the production of rhamnolipids.

  20. Effects of glyphosate at environmentally relevant concentrations on the growth of and microcystin production by Microcystis aeruginosa.

    PubMed

    Zhang, Quan; Zhou, Hang; Li, Zhe; Zhu, Jianqiang; Zhou, Cong; Zhao, Meirong

    2016-11-01

    The use of glyphosate, which is a well-known sterilant herbicide, has been growing rapidly because the area under the cultivation of genetically modified crops that are tolerant to this herbicide has increased. Glyphosate can enter into aquatic systems through many different ways. However, information on the potential risks of glyphosate at environmentally relevant levels to aquatic systems is still limited. In this study, we selected the cyanobacterium Microcystis aeruginosa FACHB-905 (M. aeruginosa) as a model organism to evaluate the effects of glyphosate at environmentally relevant concentrations on the former's growth and microcystin (MC) production. Our results show that low levels of glyphosate stimulate the growth of M. aeruginosa. Subsequently, there was significant increase in the total MC-LR and intracellular MC-LR, but not in extracellular MC-LR, after exposure to 0.1-2 mg/L of glyphosate. The increase in total MC-LR is mainly due to the effects of glyphosate on the cell density of M. aeruginosa. The data provided here show that low level of glyphosate in a water body is a potential environmental risk factor that stimulates the growth and enhances MC production in M. aeruginosa, which should arouse great concern.

  1. Gallium induces the production of virulence factors in Pseudomonas aeruginosa.

    PubMed

    García-Contreras, Rodolfo; Pérez-Eretza, Berenice; Lira-Silva, Elizabeth; Jasso-Chávez, Ricardo; Coria-Jiménez, Rafael; Rangel-Vega, Adrián; Maeda, Toshinari; Wood, Thomas K

    2014-02-01

    The novel antimicrobial gallium is a nonredox iron III analogue with bacteriostatic and bactericidal properties, effective for the treatment of Pseudomonas aeruginosa in vitro and in vivo in mouse and rabbit infection models. It interferes with iron metabolism, transport, and presumably its homeostasis. As gallium exerts its antimicrobial effects by competing with iron, we hypothesized that it ultimately will lead cells to an iron deficiency status. As iron deficiency promotes the expression of virulence factors in vitro and promotes the pathogenicity of P. aeruginosa in animal models, it is anticipated that treatment with gallium will also promote the production of virulence factors. To test this hypothesis, the reference strain PA14 and two clinical isolates from patients with cystic fibrosis were exposed to gallium, and their production of pyocyanin, rhamnolipids, elastase, alkaline protease, alginate, pyoverdine, and biofilm was determined. Gallium treatment induced the production of all the virulence factors tested in the three strains except for pyoverdine. In addition, as the Ga-induced virulence factors are quorum sensing controlled, co-administration of Ga and the quorum quencher brominated furanone C-30 was assayed, and it was found that C-30 alleviated growth inhibition from gallium. Hence, adding both C-30 and gallium may be more effective in the treatment of P. aeruginosa infections. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa.

    PubMed

    Evans, L R; Linker, A

    1973-11-01

    The slime polysaccharides produced by Pseudomonas aeruginosa isolated from a variety of human infections were investigated. Slime production in culture seemed optimal when adequate amounts of carbohydrate were present and under conditions of either high osmotic pressure or inadequate protein supply. The polysaccharides produced by the organisms were similar to each other, to the slime of Azotobacter vinelandii, and to seaweed alginic acids. They were composed of beta-1,4-linked d-mannuronic acid residues and variable amounts of its 5-epimer l-guluronic acid. All bacterial polymers contained o-acetyl groups which are absent in the alginates. The polysaccharides differed considerably in the ratio of mannuronic to guluronic acid content and in the number of o-acetyl groups. The particular composition of the slime was not found to be characteristic for the disease process from which the mucoid variants of P. aeruginosa were obtained.

  3. Antimicrobial targets localize to the extracellular vesicle-associated proteome of Pseudomonas aeruginosa grown in a biofilm

    PubMed Central

    Park, Amber J.; Surette, Matthew D.; Khursigara, Cezar M.

    2014-01-01

    Microbial biofilms are particularly resistant to antimicrobial therapies. These surface-attached communities are protected against host defenses and pharmacotherapy by a self-produced matrix that surrounds and fortifies them. Recent proteomic evidence also suggests that some bacteria, including the opportunistic pathogen Pseudomonas aeruginosa, undergo modifications within a biofilm that make them uniquely resistant compared to their planktonic (free-living) counterparts. This study examines 50 proteins in the resistance subproteome of both surface-associated and free-living P. aeruginosa PAO1 over three time points. Proteins were grouped into categories based on their roles in antimicrobial: (i) binding, (ii) efflux, (iii) resistance, and (iv) susceptibility. In addition, the extracellular outer membrane vesicle-associated proteome is examined and compared between the two growth modes. We show that in whole cells between 12–24% of the proteins are present at significantly different abundance levels over time, with some proteins being unique to a specific growth mode; however, the total abundance levels in the four categories remain consistent. In contrast, marked differences are seen in the protein content of the outer membrane vesicles, which contain a greater number of drug-binding proteins in vesicles purified from late-stage biofilms. These results show how the method of analysis can impact the interpretation of proteomic data (i.e., individual proteins vs. systems), and highlight the advantage of using protein-based methods to identify potential antimicrobial resistance mechanisms in extracellular sample components. Furthermore, this information has the potential to inform the development of specific antipseudomonal therapies that quench possible drug-sequestering vesicle proteins. This strategy could serve as a novel approach for combating the high-level of antimicrobial resistance in P. aeruginosa biofilms. PMID:25232353

  4. Endogenous Phenazine Antibiotics Promote Anaerobic Survival of Pseudomonas aeruginosa via Extracellular Electron Transfer ▿

    PubMed Central

    Wang, Yun; Kern, Suzanne E.; Newman, Dianne K.

    2010-01-01

    Antibiotics are increasingly recognized as having other, important physiological functions for the cells that produce them. An example of this is the effect that phenazines have on signaling and community development for Pseudomonas aeruginosa (L. E. Dietrich, T. K. Teal, A. Price-Whelan, and D. K. Newman, Science 321:1203-1206, 2008). Here we show that phenazine-facilitated electron transfer to poised-potential electrodes promotes anaerobic survival but not growth of Pseudomonas aeruginosa PA14 under conditions of oxidant limitation. Other electron shuttles that are reduced but not made by PA14 do not facilitate survival, suggesting that the survival effect is specific to endogenous phenazines. PMID:19880596

  5. Production and characterization of polyhydroxyalkanoates in Pseudomonas aeruginosa ATCC 9027 from glucose, an unrelated carbon source.

    PubMed

    Rojas-Rosas, Oscar; Villafaña-Rojas, Juan; López-Dellamary, Fernando A; Nungaray-Arellano, Jesús; González-Reynoso, Orfil

    2007-07-01

    The production and characterization of polyhydroxyalkanoic acids (PHAs) from glucose in Pseudomonas aeruginosa ATCC 9027 is described. We determined that the synthesis of PHAs was not due to a complete lack of nitrogen source, as previously reported for other microorganisms. The synthesis of PHAs was observed during exponential growth and it depended on the carbon/nitrogen ratio in the culture. More significantly, the specific PHA accumulation rate in this phase was higher than that observed in the storage phase. This phenomenon was a consequence of higher extracellular production rates of gluconate and 2-ketogluconate detected during the storage phase. Therefore, the production of those acids decreased the synthesis of PHAs in P. aeruginosa. The maximum percentage of PHA accumulation obtained was 10.8% of the cell dry matter when all the glucose was consumed. The monomer composition of this PHA consisted only of saturated 3-hydroxy fatty acids (octanoic, decanoic, and dodecanoic acids) as shown by gas chromatography - mass spectroscopy and nuclear magnetic resonance analyses, where 3-hydroxydecanoic acid was the main component because of the high affinity of its PhaC synthase for this monomer. The physical properties of this PHA were determined by differential scanning calorimetry and gel permeation chromatography.

  6. Effects of allicin on the formation of Pseudomonas aeruginosa biofinm and the production of quorum-sensing controlled virulence factors.

    PubMed

    Lihua, Lin; Jianhuit, Wang; Jialini, Yu; Yayin, Li; Guanxin, Liu

    2013-01-01

    The Gram-negative Pseudomonas aeruginosa bacterial pathogen is reputed for its resistance to multiple antibiotics, and this property is strongly associated with the development of biofilms. Bacterial biofilms form by aggregation of microorganisms on a solid surface and secretion of an extracellular polysaccharide substances that acts as a physical protection barrier for the encased bacteria. In addition, the P aeruginosa quorum-sensing system contributes to antibiotic resistance by regulating the expression of several virulence factors, including exotoxin A, elastase, pyoverdin and rhamnolipid. The organosulfur compound allicin, derived from garlic, has been shown to inhibit both surface-adherence of bacteria and production of virulence factors. In this study, the effects of allicin on P aeruginosa biofilm formation and the production of quorum-sensing controlled virulence factors were investigated. The results demonstrated that allicin could inhibit early bacterial adhesion, reduce EPS secretion, and down-regulate virulence factors' production. Collectively, these findings suggest the potential of allicin as a therapeutic agent for controlling P aeruginosa biofilm.

  7. Production of proteinase on noncarbohydrate carbon sources by Pseudomonas aeruginosa.

    PubMed

    Morihara, K

    1965-09-01

    Proteinase production by Pseudomonas aeruginosa was studied in medium containing noncarbohydrate materials, especially various hydrocarbons, as the sole carbon source. On heavy oil, kerosene, n-paraffinic hydrocarbon of C(12), C(14), or C(16), and propylene glycol, the bacteria grew well and high protinase production was observed. However, production on paraffinic hydrocarbon differed remarkably with strains of varied origins. The elastase-positive strain, IFO 3455, showed abundant growth and high proteinase production on medium containing a paraffin of C(12), C(14), or C(16), whereas the elastase-negative strain, IFO 3080, showed little growth on the same medium. Neither elastase-positive nor elastase-negative strains, however, utilized n-paraffins of C(5) to C(10), or various aromatic hydrocarbons such as benzene, naphthalene, phenanthrene, and anthracene. The proteinases produced on the noncarbohydrate medium were identical with those produced in glucose medium.

  8. Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix.

    PubMed

    Toyofuku, Masanori; Roschitzki, Bernd; Riedel, Katharina; Eberl, Leo

    2012-10-05

    Biofilms are surface-associated bacteria that are embedded in a matrix of self-produced polymeric substances (EPSs). The EPS is composed of nucleic acids, polysaccharides, lipids, and proteins. While polysaccharide components have been well studied, the protein content of the matrix is largely unknown. Here we conducted a comprehensive proteomic study to identify proteins associated with the biofilm matrix of Pseudomonas aeruginosa PAO1 (the matrix proteome). This analysis revealed that approximately 30% of the identified matrix proteins were outer membrane proteins, which are also typically found in outer membrane vesicles (OMVs). Electron microscopic inspection confirmed the presence of large amounts of OMVs within the biofilm matrix, supporting previous notions that OMVs are abundant constituents of P. aeruginosa biofilms. Our results demonstrate that while some proteins associated with the P. aeruginosa matrix are derived from secreted proteins and lysed cells, the large majority of the matrix proteins originate from OMVs. Furthermore, we demonstrate that the protein content of planktonic and biofilm OMVs is surprisingly different and may reflect the different physiological states of planktonic and sessile cells.

  9. Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa.

    PubMed Central

    Askeland, R A; Morrison, S M

    1983-01-01

    Of 200 water isolates screened, five strains of Pseudomonas fluorescens and one strain of Pseudomonas aeruginosa were cyanogenic. Maximum cyanogenesis by two strains of P. fluorescens in a defined growth medium occurred at 25 to 30 degrees C over a pH range of 6.6 to 8.9. Cyanide production per cell was optimum at 300 mM phosphate. A linear relationship was observed between cyanogenesis and the log of iron concentration over a range of 3 to 300 microM. The maximum rate of cyanide production occurred during the transition from exponential to stationary growth phase. Radioactive tracer experiments with [1-14C]glycine and [2-14C]glycine demonstrated that the cyanide carbon originates from the number 2 carbon of glycine for both P. fluorescens and P. aeruginosa. Cyanide production was not observed in raw industrial wastewater or in sterile wastewater inoculated with pure cultures of cyanogenic Pseudomonas strains. Cyanide was produced when wastewater was amended by the addition of components of the defined growth medium. PMID:6410989

  10. Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa.

    PubMed

    Askeland, R A; Morrison, S M

    1983-06-01

    Of 200 water isolates screened, five strains of Pseudomonas fluorescens and one strain of Pseudomonas aeruginosa were cyanogenic. Maximum cyanogenesis by two strains of P. fluorescens in a defined growth medium occurred at 25 to 30 degrees C over a pH range of 6.6 to 8.9. Cyanide production per cell was optimum at 300 mM phosphate. A linear relationship was observed between cyanogenesis and the log of iron concentration over a range of 3 to 300 microM. The maximum rate of cyanide production occurred during the transition from exponential to stationary growth phase. Radioactive tracer experiments with [1-14C]glycine and [2-14C]glycine demonstrated that the cyanide carbon originates from the number 2 carbon of glycine for both P. fluorescens and P. aeruginosa. Cyanide production was not observed in raw industrial wastewater or in sterile wastewater inoculated with pure cultures of cyanogenic Pseudomonas strains. Cyanide was produced when wastewater was amended by the addition of components of the defined growth medium.

  11. Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix

    PubMed Central

    Jennings, Laura K.; Storek, Kelly M.; Ledvina, Hannah E.; Coulon, Charlène; Marmont, Lindsey S.; Sadovskaya, Irina; Secor, Patrick R.; Tseng, Boo Shan; Scian, Michele; Filloux, Alain; Wozniak, Daniel J.; Howell, P. Lynne; Parsek, Matthew R.

    2015-01-01

    Biofilm formation is a complex, ordered process. In the opportunistic pathogen Pseudomonas aeruginosa, Psl and Pel exopolysaccharides and extracellular DNA (eDNA) serve as structural components of the biofilm matrix. Despite intensive study, Pel’s chemical structure and spatial localization within mature biofilms remain unknown. Using specialized carbohydrate chemical analyses, we unexpectedly found that Pel is a positively charged exopolysaccharide composed of partially acetylated 1→4 glycosidic linkages of N-acetylgalactosamine and N-acetylglucosamine. Guided by the knowledge of Pel’s sugar composition, we developed a tool for the direct visualization of Pel in biofilms by combining Pel-specific Wisteria floribunda lectin staining with confocal microscopy. The results indicate that Pel cross-links eDNA in the biofilm stalk via ionic interactions. Our data demonstrate that the cationic charge of Pel is distinct from that of other known P. aeruginosa exopolysaccharides and is instrumental in its ability to interact with other key biofilm matrix components. PMID:26311845

  12. Effects of selenite on Microcystis aeruginosa: Growth, microcystin production and its relationship to toxicity under hypersalinity and copper sulfate stresses.

    PubMed

    Zhou, Chuanqi; Huang, Jung-Chen; Liu, Fang; He, Shengbing; Zhou, Weili

    2017-04-01

    Se laden freshwater algae that enter the Salton Sea with river water pose ecorisks to wildlife in the lake by transferring selenium (Se) to higher trophic levels. The aim of this study was to investigate impacts of Se on Microcystis aeruginosa, widely distributed in freshwater bodies, and its relationship with toxicity, such as microcystins and Se residues. When supplied with selenite, the 96 h-IC50 was calculated 2.60 mg Se/L. However, these inhibitory effects did not extend to microcystin production, and the extracellular fraction significantly increased with selenite as well as sulfate. As M. aeruginosa assimilated selenite very efficiently, 97% of the removed Se was through accumulation, compared to 3% via volatilization, raising a concern about ecotoxicity caused by the remaining Se in the algae. The XAS analysis suggests the dominant Se species accumulated in the algal cells was elemental Se (81%), which is relatively nonbioavailable to aquatic organisms. We further investigated the potential fate of Se carried into the Salton Sea by M. aeruginosa with river water. Under hypersalinity stress, the biomass Se and intracellular microcystins were released and reduced by 47% and 74%, respectively, resulting in the increasing levels of Se and microcystins in the water column. CuSO4 was then applied as an algaecide to prevent M. aeruginosa from entering the lake. The results indicate a similar response to that under hypersalinity stress: the volatilization process was blocked and the Se and microcystins were released from the damaged algal cells in the presence of CuSO4, further raising toxicity levels by 8% and 60%, respectively, in the water column within 24 h. Overall, the coexistence of selenite and M. aeruginosa in river waters might negatively impact aquatic ecosystems of the Salton Sea and further research is required on how to harvest Se from M. aeruginosa to protect local wildlife. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Transcriptomics-Aided Dissection of the Intracellular and Extracellular Roles of Microcystin in Microcystis aeruginosa PCC 7806

    PubMed Central

    Makower, A. Katharina; Schuurmans, J. Merijn; Groth, Detlef; Zilliges, Yvonne; Matthijs, Hans C. P.

    2014-01-01

    Recent studies have provided evidence for both intracellular and extracellular roles of the potent hepatotoxin microcystin (MC) in the bloom-forming cyanobacterium Microcystis. Here, we surveyed transcriptomes of the wild-type strain M. aeruginosa PCC 7806 and the microcystin-deficient ΔmcyB mutant under low light conditions with and without the addition of external MC of the LR variant (MC-LR). Transcriptomic data acquired by microarray and quantitative PCR revealed substantial differences in the relative expression of genes of the central intermediary metabolism, photosynthesis, and energy metabolism. In particular, the data provide evidence for a lower photosystem I (PSI)-to-photosystem II (PSII) ratio and a more pronounced carbon limitation in the microcystin-deficient mutant. Interestingly, only 6% of the transcriptional differences could be complemented by external microcystin-LR addition. This MC signaling effect was seen exclusively for genes of the secondary metabolism category. The orphan polyketide synthase gene cluster IPF38-51 was specifically downregulated in response to external MC-LR under low light. Our data suggest a hierarchical and light-dependent cross talk of secondary metabolites and support both an intracellular and an extracellular role of MC in Microcystis. PMID:25381232

  14. Transcriptomics-aided dissection of the intracellular and extracellular roles of microcystin in Microcystis aeruginosa PCC 7806.

    PubMed

    Makower, A Katharina; Schuurmans, J Merijn; Groth, Detlef; Zilliges, Yvonne; Matthijs, Hans C P; Dittmann, Elke

    2015-01-01

    Recent studies have provided evidence for both intracellular and extracellular roles of the potent hepatotoxin microcystin (MC) in the bloom-forming cyanobacterium Microcystis. Here, we surveyed transcriptomes of the wild-type strain M. aeruginosa PCC 7806 and the microcystin-deficient ΔmcyB mutant under low light conditions with and without the addition of external MC of the LR variant (MC-LR). Transcriptomic data acquired by microarray and quantitative PCR revealed substantial differences in the relative expression of genes of the central intermediary metabolism, photosynthesis, and energy metabolism. In particular, the data provide evidence for a lower photosystem I (PSI)-to-photosystem II (PSII) ratio and a more pronounced carbon limitation in the microcystin-deficient mutant. Interestingly, only 6% of the transcriptional differences could be complemented by external microcystin-LR addition. This MC signaling effect was seen exclusively for genes of the secondary metabolism category. The orphan polyketide synthase gene cluster IPF38-51 was specifically downregulated in response to external MC-LR under low light. Our data suggest a hierarchical and light-dependent cross talk of secondary metabolites and support both an intracellular and an extracellular role of MC in Microcystis.

  15. Alkaline protease contributes to pyocyanin production in Pseudomonas aeruginosa.

    PubMed

    Iiyama, Kazuhiro; Takahashi, Eigo; Lee, Jae Man; Mon, Hiroaki; Morishita, Mai; Kusakabe, Takahiro; Yasunaga-Aoki, Chisa

    2017-04-01

    The role of the alkaline protease (AprA) in pyocyanin production in Pseudomonas aeruginosa was investigated. AprA was overproduced when a plasmid carrying the aprA gene was introduced to an aprA-deletion mutant strain, EG03; thus, aprA-complemented EG03 was used as an overproducing strain. The complemented strain produced higher pyocyanin than the mutant strain in all commercially available media evaluated. Particularly, pyocyanin production was higher in the complemented than in the parental strain in brain-heart infusion and tryptic soy broths. These results suggested that protein degradation products by AprA were utilized for pyocyanin production. Protein-rich media were used in subsequent validation studies. Similar results were obtained when the basal medium was supplemented with casein or skim milk as the sole organic nitrogen source. However, gelatin failed to induce abundant pyocyanin production in the complemented strain, despite the presence of protein degradation products by AprA as assessed by SDS-PAGE. Thus, gelatin degradation products may not be suitable for pyocyanin synthesis. In conclusion, AprA could contribute to pyocyanin production in the presence of several proteins or peptides. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Microcystis aeruginosa-laden surface water treatment using ultrafiltration: Membrane fouling, cell integrity and extracellular organic matter rejection.

    PubMed

    Liu, Bin; Qu, Fangshu; Liang, Heng; Van der Bruggen, Bart; Cheng, Xiaoxiang; Yu, Huarong; Xu, Guoren; Li, Guibai

    2017-04-01

    Despite its superb separation performance, ultrafiltration (UF) still faces challenges in treating the Microcystis aeruginosa-laden water of lakes or reservoirs, due to membrane fouling and poor rejection of soluble organics. In this work, to better understand the mechanisms of membrane fouling, cell breakage and organic rejection and their mutual influence, a comparative UF experiment was conducted under a variety of transmembrane pressures (TMPs, 50-250 kPa) with lab-cultured Microcystis aeruginosa. Membrane fouling was characterized with respect to flux decline and fouling reversibility, and cell breakage during UF filtration was evaluated using a flow cytometer. Moreover, the rejection of extracellular organic matter (EOM) by UF was investigated with respect to the dissolved organic carbon (DOC), ultraviolet absorbance at 254 nm (UV254) and microcystin-LR (MCLR). The results indicated that the accumulation of Microcystis cells and EOM on the membrane surface caused serious reversible fouling that substantially aggravated with the increasing TMP and was successively governed by pore blocking and cake filtration. The cell breakage during filtration was less than 5% and mainly occurred in the cake layer due to hydraulic shear, but the breakage did not substantially vary with increasing TMP. EOM removal by UF ranged from 40% to 70% (in terms of DOC removal), and the removal performance increased with the reversible resistance, implying a trade-off between organic removal and permeability. Regarding soluble and small organics such as MCLR, a higher degree of removal was also found at higher TMP, despite of some variations over the duration of the filtration tests, and the cake layer retention proved to be the principle removal mechanism, especially during steady filtration stages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Biosurfactant production by Pseudomonas aeruginosa grown in residual soybean oil.

    PubMed

    de Lima, C J B; Ribeiro, E J; Sérvulo, E F C; Resende, M M; Cardoso, V L

    2009-01-01

    Pseudomonas aeruginosa PACL strain, isolated from oil-contaminated soil taken from a lagoon, was used to investigate the efficiency and magnitude of biosurfactant production, using different waste frying soybean oils, by submerged fermentation in stirred tank reactors of 6 and 10 l capacities. A complete factorial experimental design was used, with the goal of optimizing the aeration rate (0.5, 1.0, and 1.5 vvm) and agitation speed (300, 550, and 800 rpm). Aeration was identified as the primary variable affecting the process, with a maximum rhamnose concentration occurring at an aeration rate of 0.5 vvm. At optimum levels, a maximum rhamnose concentration of 3.3 g/l, an emulsification index of 100%, and a minimum surface tension of 26.0 dynes/cm were achieved. Under these conditions, the biosurfactant production derived from using a mixture of waste frying soybean oil (WFSO) as a carbon source was compared to production when non-used soybean oil (NUSO), or waste soybean oils used to fry specific foods, were used. NUSO produced the highest level of rhamnolipids, although the waste soybean oils also resulted in biosurfactant production of 75-90% of the maximum value. Under ideal conditions, the kinetic behavior and the modeling of the rhamnose production, nutrient consumption, and cellular growth were established. The resulting model predicted data points that corresponded well to the empirical information.

  18. A Complex Extracellular Sphingomyelinase of Pseudomonas aeruginosa Inhibits Angiogenesis by Selective Cytotoxicity to Endothelial Cells

    PubMed Central

    Vasil, Michael L.; Stonehouse, Martin J.; Vasil, Adriana I.; Wadsworth, Sandra J.; Goldfine, Howard; Bolcome, Robert E.; Chan, Joanne

    2009-01-01

    The hemolytic phospholipase C (PlcHR) expressed by Pseudomonas aeruginosa is the original member of a Phosphoesterase Superfamily, which includes phosphorylcholine-specific phospholipases C (PC-PLC) produced by frank and opportunistic pathogens. PlcHR, but not all its family members, is also a potent sphingomyelinase (SMase). Data presented herein indicate that picomolar (pM) concentrations of PlcHR are selectively lethal to endothelial cells (EC). An RGD motif of PlcHR contributes to this selectivity. Peptides containing an RGD motif (i.e., GRGDS), but not control peptides (i.e., GDGRS), block the effects of PlcHR on calcium signaling and cytotoxicity to EC. Moreover, RGD variants of PlcHR (e.g., RGE, KGD) are significantly reduced in their binding and toxicity, but retain the enzymatic activity of the wild type PlcHR. PlcHR also inhibits several EC-dependent in vitro assays (i.e., EC migration, EC invasion, and EC tubule formation), which represent key processes involved in angiogenesis (i.e., formation of new blood vessels from existing vasculature). Finally, the impact of PlcHR in an in vivo model of angiogenesis in transgenic zebrafish, and ones treated with an antisense morpholino to knock down a key blood cell regulator, were evaluated because in vitro assays cannot fully represent the complex processes of angiogenesis. As little as 2 ng/embryo of PlcHR was lethal to ∼50% of EGFP-labeled EC at 6 h after injection of embryos at 48 hpf (hours post-fertilization). An active site mutant of PlcHR (Thr178Ala) exhibited 120-fold reduced inhibitory activity in the EC invasion assay, and 20 ng/embryo elicited no detectable inhibitory activity in the zebrafish model. Taken together, these observations are pertinent to the distinctive vasculitis and poor wound healing associated with P. aeruginosa sepsis and suggest that the potent antiangiogenic properties of PlcHR are worthy of further investigation for the treatment of diseases where angiogenesis contributes

  19. Biosurfactant Production by Pseudomonas aeruginosa from Renewable Resources.

    PubMed

    Thavasi, R; Subramanyam Nambaru, V R M; Jayalakshmi, S; Balasubramanian, T; Banat, Ibrahim M

    2011-01-01

    This study deals with production and characterization of biosurfactant from renewable resources by Pseudomonas aeruginosa. Biosurfactant production was carried out in 3L fermentor using waste motor lubricant oil and peanut oil cake. Maximum biomass (11.6 mg/ml) and biosurfactant production (8.6 mg/ml) occurred with peanut oil cake at 120 and 132 h respectively. Characterization of the biosurfactant revealed that, it is a lipopeptide with chemical composition of protein (50.2%) and lipid (49.8%). The biosurfactant (1 mg/ml) was able to emulsify waste motor lubricant oil, crude oil, peanut oil, kerosene, diesel, xylene, naphthalene and anthracene, comparatively the emulsification activity was higher than the activity found with Triton X-100 (1 mg/ml). Results obtained in the present study showed the possibility of biosurfactant production using renewable, relatively inexpensive and easily available resources. Emulsification activity found with the biosurfactant against different hydrocarbons showed its possible application in bioremediation of environments polluted with various hydrocarbons.

  20. Pyocyanin Production by Pseudomonas aeruginosa Confers Resistance to Ionic Silver

    PubMed Central

    Merrett, Neil D.

    2014-01-01

    Silver in its ionic form (Ag+), but not the bulk metal (Ag0), is toxic to microbial life forms and has been used for many years in the treatment of wound infections. The prevalence of bacterial resistance to silver is considered low due to the nonspecific nature of its toxicity. However, the recent increased use of silver as an antimicrobial agent for medical, consumer, and industrial products has raised concern that widespread silver resistance may emerge. Pseudomonas aeruginosa is a common pathogen that produces pyocyanin, a redox toxin and a reductant for molecular oxygen and ferric (Fe3+) ions. The objective of this study was to determine whether pyocyanin reduces Ag+ to Ag0, which may contribute to silver resistance due to lower bioavailability of the cation. Using surface plasmon resonance spectroscopy and scanning electron microscopy, pyocyanin was confirmed to be a reductant for Ag+, forming Ag0 nanoparticles and reducing the bioavailability of free Ag+ by >95% within minutes. Similarly, a pyocyanin-producing strain of P. aeruginosa (PA14) reduced Ag+ but not a pyocyanin-deficient (ΔphzM) strain of the bacterium. Challenge of each strain with Ag+ (as AgNO3) gave MICs of 20 and 5 μg/ml for the PA14 and ΔphzM strains, respectively. Removal of pyocyanin from the medium strain PA14 was grown in or its addition to the medium that ΔphzM mutant was grown in gave MICs of 5 and 20 μg/ml, respectively. Clinical isolates demonstrated similar pyocyanin-dependent resistance to Ag+. We conclude that pseudomonal silver resistance exists independently of previously recognized intracellular mechanisms and may be more prevalent than previously considered. PMID:25001302

  1. The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin

    PubMed Central

    Tseng, Boo Shan; Zhang, Wei; Harrison, Joe J.; Quach, Tam P.; Song, Jisun Lee; Penterman, Jon; Singh, Pradeep K.; Chopp, David L.; Packman, Aaron I.; Parsek, Matthew R.

    2013-01-01

    SUMMARY Biofilm cells are less susceptible to antimicrobials than their planktonic counterparts. While this phenomenon is multifactorial, the ability of the biofilm matrix to reduce antibiotic penetration into the biofilm is thought to be of limited importance, as previous studies suggest that antibiotics move fairly rapidly through biofilms. In this study, we monitored the transport of two clinically relevant antibiotics, tobramycin and ciprofloxacin, into non-mucoid P. aeruginosa biofilms. To our surprise, we showed that the positively charged antibiotic tobramycin is sequestered to the biofilm periphery, while the neutral antibiotic ciprofloxacin readily penetrated. We provide evidence that tobramycin in the biofilm periphery both stimulated a localized stress response and killed bacteria in these regions, but not in the underlying biofilm. Although it is unclear which matrix component binds tobramycin, its penetration was increased by the addition of cations in a dose-dependent manner, which led to increased biofilm death. These data suggest that ionic interactions of tobramycin with the biofilm matrix limit its penetration. We propose that tobramycin sequestration at the biofilm periphery is an important mechanism in protecting metabolically active cells that lie just below the zone of sequestration. PMID:23751003

  2. Evaluation of the siderophores production by Pseudomonas aeruginosa PSS.

    PubMed

    Díaz de Villegas, María Elena; Villa, Pilar; Frías, Alina

    2002-01-01

    Siderophores are compounds secreted under low iron stress, that act as a specific ferric iron chelate agents and due to their potentialities in the biological control of phytopathogenic fungi and bacteria, their study has been stimulated in recent years. Siderophores produced by different Pseudomonas species have been widely studied as biological agents and it is an alternative to take into account in the control of phytopathogenic microorganisms in agriculture. The purpose of this paper was to study the influence of some culture medium, and the iron concentration in the production of this metabolite. The experiments were carried out in a conventional batch system in succinate, glucose and glutamate medium. The highest metabolite concentration was obtained in glucose and glutamate medium. The increase of Fe(III) concentration, had a negative effect in siderophores production, especially above 10 microM. The evaluation of the studied media led to the conclusion that it is possible to increase the production of this metabolite by the strain of Pseudomonas aeruginosa PSS, in a glutamate medium without iron addition.

  3. Influence of hydrophobic/hydrophilic fractions of extracellular organic matters of Microcystis aeruginosa on ultrafiltration membrane fouling.

    PubMed

    Zhou, Shiqing; Shao, Yisheng; Gao, Naiyun; Li, Lei; Deng, Jing; Tan, Chaoqun; Zhu, Mingqiu

    2014-02-01

    Fouling is a major obstacle to maintain the efficiency of ultrafiltration-based drinking water treatment process. Algal extracellular organic matters (EOMs) are currently considered as one of the major sources of membrane fouling. The objective of this study was to investigate the influence of different hydrophobic/hydrophilic fractions of EOM extracted from Microcystis aeruginosa on ultrafiltration membrane fouling at lab scale. The experimental data indicated that EOM exhibited similar flux decline trends on polyethersulfone (PES) and regenerated cellulose (RC) membranes but caused greater irreversible fouling on PES membrane than RC membrane due to its hydrophobic property. It was also observed that charged hydrophilic (CHPI) and neutral hydrophilic (NHPI) fractions caused greater flux decline over hydrophobic (HPO) and transphilic (TPI) fractions. For PES membrane, the order of the irreversible fouling potentials for the four fractions was HPO>TPI>CHPI>NHPI, while the irreversible fouling potentials of RC membrane were tiny and could be ignored. Fluorescence excitation-emission matrix (EEM) spectra and Fourier transform infrared (FTIR) spectra suggested that protein-like, polysaccharide-like and humic-like substances were the major components responsible for membrane fouling. The results also indicated that the irreversible fouling increased as the pH decreased. The addition of calcium to feed solutions led to more severe flux decline and irreversible fouling. © 2013.

  4. L-form-like colonies of Staphylococcus aureus induced by an extracellular lytic enzyme from Pseudomonas aeruginosa.

    PubMed Central

    Falcon, M A; Mansito, T B; Carnicero, A; Gutierrez-Navarro, A M

    1989-01-01

    An extracellular enzyme produced by Pseudomonas aeruginosa had a lytic effect on lyophilized Staphylococcus aureus cells. It was purified from the culture supernatant by ammonium sulfate fractionation followed by column chromatography with P cellulose and Sephadex G-50. The molecular weight of the enzyme was estimated to be 19,000 +/- 1,750 with sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The pI of the enzyme was estimated to be 8.5 with isoelectric focusing. The enzyme was inactive in 4% NaC1-40 mM sodium phosphate buffer or at pH values lower than 6.0 or higher than 11.0; however, it was not affected by 1 M sucrose or 0.25% heat-denatured horse serum. The action of the enzyme on cultures of S. aureus resulted in the presence of many cells lacking cell walls. In addition, when cultivation was carried out on osmotically stabilized solid media, these cell wall-deficient cell developed in L-form colonies. Images PMID:2504772

  5. The contributions of respiration and glycolysis to extracellular acid production.

    PubMed

    Mookerjee, Shona A; Goncalves, Renata L S; Gerencser, Akos A; Nicholls, David G; Brand, Martin D

    2015-02-01

    The rate at which cells acidify the extracellular medium is frequently used to report glycolytic rate, with the implicit assumption that conversion of uncharged glucose or glycogen to lactate(-)+H(+) is the only significant source of acidification. However, another potential source of extracellular protons is the production of CO2 during substrate oxidation: CO2 is hydrated to H2CO3, which then dissociates to HCO3(-)+H(+). O2 consumption and pH were monitored in a popular platform for measuring extracellular acidification (the Seahorse XF Analyzer). We found that CO2 produced during respiration caused almost stoichiometric release of H(+) into the medium. With C2C12 myoblasts given glucose, respiration-derived CO2 contributed 34% of the total extracellular acidification. When glucose was omitted or replaced by palmitate or pyruvate, this value was 67-100%. Analysis of primary cells, cancer cell lines, stem cell lines, and isolated synaptosomes revealed contributions of CO2-produced acidification that were usually substantial, ranging from 3% to 100% of the total acidification rate. Measurement of glycolytic rate using extracellular acidification requires differentiation between respiratory and glycolytic acid production. The data presented here demonstrate the importance of this correction when extracellular acidification is used for quantitative measurement of glycolytic flux to lactate. We describe a simple way to correct the measured extracellular acidification rate for respiratory acid production, using simultaneous measurement of oxygen consumption rate. Extracellular acidification is often assumed to result solely from glycolytic lactate production, but respiratory CO2 also contributes. We demonstrate that extracellular acidification by myoblasts given glucose is 66% glycolytic and 34% respiratory and describe a method to differentiate these sources. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Positive Control of Swarming, Rhamnolipid Synthesis, and Lipase Production by the Posttranscriptional RsmA/RsmZ System in Pseudomonas aeruginosa PAO1†

    PubMed Central

    Heurlier, Karin; Williams, Faye; Heeb, Stephan; Dormond, Corinne; Pessi, Gabriella; Singer, Dustin; Cámara, Miguel; Williams, Paul; Haas, Dieter

    2004-01-01

    In Pseudomonas aeruginosa, the small RNA-binding, regulatory protein RsmA is a negative control element in the formation of several extracellular products (e.g., pyocyanin, hydrogen cyanide, PA-IL lectin) as well as in the production of N-acylhomoserine lactone quorum-sensing signal molecules. RsmA was found to control positively the ability to swarm and to produce extracellular rhamnolipids and lipase, i.e., functions contributing to niche colonization by P. aeruginosa. An rsmA null mutant was entirely devoid of swarming but produced detectable amounts of rhamnolipids, suggesting that factors in addition to rhamnolipids influence the swarming ability of P. aeruginosa. A small regulatory RNA, rsmZ, which antagonized the effects of RsmA, was identified in P. aeruginosa. Expression of the rsmZ gene was dependent on both the global regulator GacA and RsmA, increased with cell density, and was subject to negative autoregulation. Overexpression of rsmZ and a null mutation in rsmA resulted in quantitatively similar, negative or positive effects on target genes, in agreement with a model that postulates titration of RsmA protein by RsmZ RNA. PMID:15126453

  7. Production of extracellular fatty acid using engineered Escherichia coli.

    PubMed

    Liu, Hui; Yu, Chao; Feng, Dexin; Cheng, Tao; Meng, Xin; Liu, Wei; Zou, Huibin; Xian, Mo

    2012-04-03

    As an alternative for economic biodiesel production, the microbial production of extracellular fatty acid from renewable resources is receiving more concerns recently, since the separation of fatty acid from microorganism cells is normally involved in a series of energy-intensive steps. Many attempts have been made to construct fatty acid producing strains by targeting genes in the fatty acid biosynthetic pathway, while few studies focused on the cultivation process and the mass transfer kinetics. In this study, both strain improvements and cultivation process strategies were applied to increase extracellular fatty acid production by engineered Escherichia coli. Our results showed overexpressing 'TesA and the deletion of fadL in E. coli BL21 (DE3) improved extracellular fatty acid production, while deletion of fadD didn't strengthen the extracellular fatty acid production for an undetermined mechanism. Moreover, the cultivation process controls contributed greatly to extracellular fatty acid production with respect to titer, cell growth and productivity by adjusting the temperature, adding ampicillin and employing on-line extraction. Under optimal conditions, the E. coli strain (pACY-'tesA-ΔfadL) produced 4.8 g L⁻¹ extracellular fatty acid, with the specific productivity of 0.02 g h⁻¹ g⁻¹ dry cell mass, and the yield of 4.4% on glucose, while the ratios of cell-associated fatty acid versus extracellular fatty acid were kept below 0.5 after 15 h of cultivation. The fatty acids included C12:1, C12:0, C14:1, C14:0, C16:1, C16:0, C18:1, C18:0. The composition was dominated by C14 and C16 saturated and unsaturated fatty acids. Using the strain pACY-'tesA, similar results appeared under the same culture conditions and the titer was also much higher than that ever reported previously, which suggested that the supposedly superior strain did not necessarily perform best for the efficient production of desired product. The strain pACY-'tesA could also be chosen as

  8. Enzymatic Production of Extracellular Reactive Oxygen Species by Marine Microorganisms

    NASA Astrophysics Data System (ADS)

    Diaz, J. M.; Andeer, P. F.; Hansel, C. M.

    2014-12-01

    Reactive oxygen species (ROS) serve as intermediates in a myriad of biogeochemically important processes, including cell signaling pathways, cellular oxidative stress responses, and the transformation of both nutrient and toxic metals such as iron and mercury. Abiotic reactions involving the photo-oxidation of organic matter were once considered the only important sources of ROS in the environment. However, the recent discovery of substantial biological ROS production in marine systems has fundamentally shifted this paradigm. Within the last few decades, marine phytoplankton, including diatoms of the genus Thalassiosira, were discovered to produce ample extracellular quantities of the ROS superoxide. Even more recently, we discovered widespread production of extracellular superoxide by phylogenetically and ecologically diverse heterotrophic bacteria at environmentally significant levels (up to 20 amol cell-1 hr-1), which has introduced the revolutionary potential for substantial "dark" cycling of ROS. Despite the profound biogeochemical importance of extracellular biogenic ROS, the cellular mechanisms underlying the production of this ROS have remained elusive. Through the development of a gel-based assay to identify extracellular ROS-producing proteins, we have recently found that enzymes typically involved in antioxidant activity also produce superoxide when molecular oxygen is the only available electron acceptor. For example, large (~3600 amino acids) heme peroxidases are involved in extracellular superoxide production by a bacterium within the widespread Roseobacter clade. In Thalassiosira spp., extracellular superoxide is produced by flavoproteins such as glutathione reductase and ferredoxin NADP+ reductase. Thus, extracellular ROS production may occur via secreted and/or cell surface enzymes that modulate between producing and degrading ROS depending on prevailing geochemical and/or ecological conditions.

  9. Characterization of temporal protein production in Pseudomonas aeruginosa biofilms.

    PubMed

    Southey-Pillig, Christopher J; Davies, David G; Sauer, Karin

    2005-12-01

    Phenotypic and genetic evidence supporting the notion of biofilm formation as a developmental process is growing. In the present work, we provide additional support for this hypothesis by identifying the onset of accumulation of biofilm-stage specific proteins during Pseudomonas aeruginosa biofilm maturation and by tracking the abundance of these proteins in planktonic and three biofilm developmental stages. The onset of protein production was found to correlate with the progression of biofilms in developmental stages. Protein identification revealed that proteins with similar function grouped within similar protein abundance patterns. Metabolic and housekeeping proteins were found to group within a pattern separate from virulence, antibiotic resistance, and quorum-sensing-related proteins. The latter were produced in a progressive manner, indicating that attendant features that are characteristic of biofilms such as antibiotic resistance and virulence may be part of the biofilm developmental process. Mutations in genes for selected proteins from several protein production patterns were made, and the impact of these mutations on biofilm development was evaluated. The proteins cytochrome c oxidase, a probable chemotaxis transducer, a two-component response regulator, and MexH were produced only in mature and late-stage biofilms. Mutations in the genes encoding these proteins did not confer defects in growth, initial attachment, early biofilm formation, or twitching motility but were observed to arrest biofilm development at the stage of cell cluster formation we call the maturation-1 stage. The results indicated that expression of theses genes was required for the progression of biofilms into three-dimensional structures on abiotic surfaces and the completion of the biofilm developmental cycle. Reverse transcription-PCR analysis confirmed the detectable change in expression of the respective genes ccoO, PA4101, and PA4208. We propose a possible mechanism for the

  10. Genome-Wide Survey of Pseudomonas aeruginosa PA14 Reveals a Role for the Glyoxylate Pathway and Extracellular Proteases in the Utilization of Mucin.

    PubMed

    Flynn, Jeffrey M; Phan, Chi; Hunter, Ryan C

    2017-08-01

    Chronic airway infections by the opportunistic pathogen Pseudomonas aeruginosa are a major cause of mortality in cystic fibrosis (CF) patients. Although this bacterium has been extensively studied for its virulence determinants, biofilm growth, and immune evasion mechanisms, comparatively little is known about the nutrient sources that sustain its growth in vivo Respiratory mucins represent a potentially abundant bioavailable nutrient source, although we have recently shown that canonical pathogens inefficiently use these host glycoproteins as a growth substrate. However, given that P. aeruginosa, particularly in its biofilm mode of growth, is thought to grow slowly in vivo, the inefficient use of mucin glycoproteins may be relevant to its persistence within the CF airways. To this end, we used whole-genome fitness analysis, combining transposon mutagenesis with high-throughput sequencing, to identify genetic determinants required for P. aeruginosa growth using intact purified mucins as a sole carbon source. Our analysis reveals a biphasic growth phenotype, during which the glyoxylate pathway and amino acid biosynthetic machinery are required for mucin utilization. Secondary analyses confirmed the simultaneous liberation and consumption of acetate during mucin degradation and revealed a central role for the extracellular proteases LasB and AprA. Together, these studies describe a molecular basis for mucin-based nutrient acquisition by P. aeruginosa and reveal a host-pathogen dynamic that may contribute to its persistence within the CF airways. Copyright © 2017 American Society for Microbiology.

  11. Production of extracellular nucleic acids by genetically altered bacteria in aquatic-environment microcosms. [Escherichia coli, Pseudomonas aeroginosa, Pseudomonas cepacia, Bradyrhizobium japonicum

    SciTech Connect

    Paul, J.H.; David, A.W. )

    1989-08-01

    The factors which affect the production of extracellular DNA by genetically altered strains of Escherichia coli, Pseudomonas aeruginosa, Pseudomonas cepacia, and Bradyrhizobium japonicum in aquatic environments were investigated. Cellular nucleic acids were labeled in vivo by incubation with ({sup 3}H)thymidine or ({sup 3}H)adenine, and production of extracellular DNA in marine waters, artificial seawater, or minimal salts media was determined by detecting radiolabeled macromolecules in incubation filtrates. The presence or absence of the ambient microbial community had little effect on the production of extracellular DNA. Three of four organisms produced the greatest amounts of extracellular nucleic acids when incubated in low-salinity media (2% artificial seawater) rather than high-salinity media (10 to 50% artificial seawater). The greatest production of extracellular nucleic acids by P. cepacia occurred at pH 7 and 37{degree}C, suggesting that extracellular-DNA production may be a normal physiologic function of the cell. Incubation of labeled P. cepacia cells in water from Bimini Harbor, Bahamas, resulted in labeling of macromolecules of the ambient microbial population. Collectively these results indicate that (i) extracellular-DNA production by genetically altered bacteria released into aquatic environments is more strongly influenced by physicochemical factors than biotic factors, (ii) extracellular-DNA production rates are usually greater for organisms released in freshwater than marine environments, and (iii) ambient microbial populations can readily utilize materials released by these organisms.

  12. Indole production promotes Escherichia coli mixed-culture growth with Pseudomonas aeruginosa by inhibiting quorum signaling.

    PubMed

    Chu, Weihua; Zere, Tesfalem R; Weber, Mary M; Wood, Thomas K; Whiteley, Marvin; Hidalgo-Romano, Benjamin; Valenzuela, Ernesto; McLean, Robert J C

    2012-01-01

    Indole production by Escherichia coli, discovered in the early 20th century, has been used as a diagnostic marker for distinguishing E. coli from other enteric bacteria. By using transcriptional profiling and competition studies with defined mutants, we show that cyclic AMP (cAMP)-regulated indole formation is a major factor that enables E. coli growth in mixed biofilm and planktonic populations with Pseudomonas aeruginosa. Mutants deficient in cAMP production (cyaA) or the cAMP receptor gene (crp), as well as indole production (tnaA), were not competitive in coculture with P. aeruginosa but could be restored to wild-type competitiveness by supplementation with a physiologically relevant indole concentration. E. coli sdiA mutants, which lacked the receptor for both indole and N-acyl-homoserine lactones (AHLs), showed no change in competitive fitness, suggesting that indole acted directly on P. aeruginosa. An E. coli tnaA mutant strain regained wild-type competiveness if grown with P. aeruginosa AHL synthase (rhlI and rhlI lasI) mutants. In contrast to the wild type, P. aeruginosa AHL synthase mutants were unable to degrade indole. Indole produced during mixed-culture growth inhibited pyocyanin production and other AHL-regulated virulence factors in P. aeruginosa. Mixed-culture growth with P. aeruginosa stimulated indole formation in E. coli cpdA, which is unable to regulate cAMP levels, suggesting the potential for mixed-culture gene activation via cAMP. These findings illustrate how indole, an early described feature of E. coli central metabolism, can play a significant role in mixed-culture survival by inhibiting quorum-regulated competition factors in P. aeruginosa.

  13. The macrophage chemotactic activity of Edwardsiella tarda extracellular products

    USDA-ARS?s Scientific Manuscript database

    The chemoattractant capabilities of Edwardsiella tarda extracellular products (ECP) were investigated from two isolates, the virulent FL6-60 parent and less virulent RET-04 mutant. Chemotaxis and chemokinesis were assayed in vitro using blind well chambers with peritoneal macrophages obtained from ...

  14. LRP4 induces extracellular matrix productions and facilitates chondrocyte differentiation.

    PubMed

    Asai, Nobuyuki; Ohkawara, Bisei; Ito, Mikako; Masuda, Akio; Ishiguro, Naoki; Ohno, Kinji

    2014-08-22

    Endochondral ossification is an essential step for skeletal development, which requires chondrocyte differentiation in growth cartilage. The low-density lipoprotein receptor-related protein 4 (LRP4), a member of LDLR family, is an inhibitor for Wnt signaling, but its roles in chondrocyte differentiation remain to be investigated. Here we found by laser capture microdissection that LRP4 expression was induced during chondrocyte differentiation in growth plate. In order to address the roles, we overexpressed recombinant human LRP4 or knocked down endogenous LRP4 by lentivirus in mouse ATDC5 chondrocyte cells. We found that LRP4 induced gene expressions of extracellular matrix proteins of type II collagen (Col2a1), aggrecan (Acan), and type X collagen (Col10a1), as well as production of total proteoglycans in ATDC5 cells, whereas LRP4 knockdown had opposite effects. Interestingly, LRP4-knockdown reduced mRNA expression of Sox9, a master regulator for chondrogenesis, as well as Dkk1, an extracellular Wnt inhibitor. Analysis of Wnt signaling revealed that LRP4 blocked the Wnt/β-catenin signaling activity in ATDC5 cells. Finally, the reduction of these extracellular matrix productions by LRP4-knockdown was rescued by a β-catenin/TCF inhibitor, suggesting that LRP4 is an important regulator for extracellular matrix productions and chondrocyte differentiation by suppressing Wnt/β-catenin signaling. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Pseudomonas aeruginosa contamination of mouth swabs during production causing a major outbreak

    PubMed Central

    Iversen, Bjørn G; Eriksen, Hanne-Merete; Bø, Gjermund; Hagestad, Kristian; Jacobsen, Trond; Engeset, Eva; Lassen, Jørgen; Aavitsland, Preben

    2007-01-01

    Background In 2002 we investigated an outbreak comprising 231 patients in Norway, caused by Pseudomonas aeruginosa and linked to the use of contaminated mouth swabs called Dent-O-Sept. Here we describe the extent of contamination of the swabs, and identify critical points in the production process that made the contamination possible, in order to prevent future outbreaks. Methods Environmental investigation with microbiological examination of production, ingredients and product, molecular typing of bacteria and a system audit of production. Results Of the 1565 swabs examined from 149 different production batches the outbreak strain of P. aeruginosa was detected in 76 swabs from 12 batches produced in 2001 and 2002. In total more than 250 swabs were contaminated with one or more microbial species. P. aeruginosa was detected from different spots along the production line. The audit revealed serious breeches of production regulations. Health care institutions reported non-proper use of the swabs and weaknesses in their purchasing systems. Conclusion Biofilm formation in the wet part of the production is the most plausible explanation for the continuous contamination of the swabs with P. aeruginosa over a period of at least 30 weeks. When not abiding to production regulations fatal consequences for the users may ensue. For the most vulnerable patient groups only documented quality-controlled, high-level disinfected products and items should be used in the oropharynx. PMID:17355630

  16. Extracellular Production of Reactive Oxygen Species by Marine Microbiota

    NASA Astrophysics Data System (ADS)

    Schneider, R. J.; Roe, K. L.; Voelker, B. M.; Hansel, C. M.

    2016-02-01

    The reactive oxygen species (ROS) superoxide (O2-) and hydrogen peroxide (H2O2) are important to the cycling of trace metals and carbon in marine systems. Previous studies have shown that biological ROS production in the ocean may be significant. We examined the ability of five common species of diatoms to produce and break down ROS in the presence and absence of light by suspending cells on filters and measuring downstream ROS concentrations using chemiluminescence probes. Results show a wide range of rates (undetectable to 7.3 x 10-16 mol cell-1 hr-1) and suggest that extracellular ROS production occurs through a variety of pathways. H2O2 decay appears to be mediated primarily by active cell processes, while O2- appears to occur through a combination of active and passive cell processes. Extracellular H2O2 production and decay were also determined for twelve species of heterotrophic bacteria using two different methodologies. Measured decay rates were consistent despite methodological differences. By contrast, large variability of production rates was observed could vary significantly even among between replicates of the same species measured using the same methodology. Although production rates cannot be stated with certainty, it is likely that extracellular H2O2 production occurs in most bacterial species.

  17. Evaluation of phytochemicals from medicinal plants of Myrtaceae family on virulence factor production by Pseudomonas aeruginosa.

    PubMed

    Musthafa, Khadar Syed; Sianglum, Wipawadee; Saising, Jongkon; Lethongkam, Sakkarin; Voravuthikunchai, Supayang Piyawan

    2017-03-15

    Virulence factors regulated by quorum sensing (QS) play a critical role in the pathogenesis of an opportunistic human pathogen, Pseudomonas aeruginosa in causing infections to the host. Hence, in the present work, the anti-virulence potential of the medicinal plant extracts and their derived phytochemicals from Myrtaceae family was evaluated against P. aeruginosa. In the preliminary screening of the tested medicinal plant extracts, Syzygium jambos and Syzygium antisepticum demonstrated a maximum inhibition in QS-dependent violacein pigment production by Chromobacterium violaceum DMST 21761. These extracts demonstrated an inhibitory activity over a virulence factor, pyoverdin, production by P. aeruginosa ATCC 27853. Gas chromatography-mass spectrometric (GC-MS) analysis revealed the presence of 23 and 12 phytochemicals from the extracts of S. jambos and S. antisepticum respectively. Three top-ranking phytochemicals, including phytol, ethyl linoleate and methyl linolenate, selected on the basis of docking score in molecular docking studies lowered virulence factors such as pyoverdin production, protease and haemolytic activities of P. aeruginosa to a significant level. In addition, the phytochemicals reduced rhamnolipid production by the organism. The work demonstrated an importance of plant-derived compounds as anti-virulence drugs to conquer P. aeruginosa virulence towards the host.

  18. Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS).

    PubMed

    McGrath, Stephen; Wade, Dana S; Pesci, Everett C

    2004-01-15

    The opportunistic human pathogen Pseudomonas aeruginosa regulates the production of numerous virulence factors via the action of two separate but coordinated quorum sensing systems, las and rhl. These systems control the transcription of genes in response to population density through the intercellular signals N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C(12)-HSL) and N-(butanoyl)-L-homoserine lactone (C(4)-HSL). A third P. aeruginosa signal, 2-heptyl-3-hydroxy-4-quinolone [Pseudomonas quinolone signal (PQS)], also plays a significant role in the transcription of multiple P. aeruginosa virulence genes. PQS is intertwined in the P. aeruginosa quorum sensing hierarchy with its production and bioactivity requiring the las and rhl quorum sensing systems, respectively. This report presents a preliminary transcriptional analysis of pqsA, the first gene of the recently discovered PQS biosynthetic gene cluster. We show that pqsA transcription required pqsR, a transcriptional activator protein encoded within the PQS biosynthetic gene cluster. It was also found that the transcription of pqsA and subsequent production of PQS was induced by the las quorum sensing system and repressed by the rhl quorum sensing system. In addition, PQS production was dependent on the ratio of 3-oxo-C(12)-HSL to C(4)-HSL, suggesting a regulatory balance between quorum sensing systems. These data are an important early step toward understanding the regulation of PQS synthesis and the role of PQS in P. aeruginosa intercellular signaling.

  19. Outer membrane machinery and alginate synthesis regulators control membrane vesicle production in Pseudomonas aeruginosa.

    PubMed

    Tashiro, Yosuke; Sakai, Ryosuke; Toyofuku, Masanori; Sawada, Isao; Nakajima-Kambe, Toshiaki; Uchiyama, Hiroo; Nomura, Nobuhiko

    2009-12-01

    The opportunistic human bacterial pathogen Pseudomonas aeruginosa produces membrane vesicles (MVs) in its surrounding environment. Several features of the P. aeruginosa MV production mechanism are still unknown. We previously observed that depletion of Opr86, which has a role in outer membrane protein (OMP) assembly, resulted in hypervesiculation. In this study, we showed that the outer membrane machinery and alginate synthesis regulatory machinery are closely related to MV production in P. aeruginosa. Depletion of Opr86 resulted in increased expression of the periplasmic serine protease MucD, suggesting that the accumulation of misfolded OMPs in the periplasm is related to MV production. Indeed, the mucD mutant showed a mucoid phenotype and the mucD mutation caused increased MV production. Strains with the gene encoding alginate synthetic regulator AlgU, MucA, or MucB deleted also caused altered MV production. Overexpression of either MucD or AlgW serine proteases resulted in decreased MV production, suggesting that proteases localized in the periplasm repress MV production in P. aeruginosa. Deletion of mucD resulted in increased MV proteins, even in strains with mutations in the Pseudomonas quinolone signal (PQS), which serves as a positive regulator of MV production. This study suggests that misfolded OMPs may be important for MV production, in addition to PQS, and that these regulators act in independent pathways.

  20. Electrochemical Potential Influences Phenazine Production, Electron Transfer and Consequently Electric Current Generation by Pseudomonas aeruginosa

    PubMed Central

    Bosire, Erick M.; Rosenbaum, Miriam A.

    2017-01-01

    Pseudomonas aeruginosa has gained interest as a redox mediator (phenazines) producer in bioelectrochemical systems. Several biotic and abiotic factors influence the production of phenazines in synergy with the central virulence factors production regulation. It is, however, not clear how the electrochemical environment may influence the production and usage of phenazines by P. aeruginosa. We here determined the influence of the electrochemical potential on phenazine production and phenazine electron transfer capacity at selected applied potentials from -0.4 to +0.4 V (vs. Ag/AgClsat) using P. aeruginosa strain PA14. Our study reveals a profound influence of the electrochemical potential on the amount of phenazine-1-carboxylate production, whereby applied potentials that were more positive than the formal potential of this dominating phenazine (E° ′PCA = -0.24 V vs. Ag/AgClsat) stimulated more PCA production (94, 84, 128, and 140 μg mL-1 for -0.1, 0.1, 0.2, and 0.3 V, respectively) compared to more reduced potentials (38, 75, and 7 μg mL-1 for -0.4, -0.3, and -0.24 V, respectively). Interestingly, P. aeruginosa seems to produce an additional redox mediator (with E° ′ ∼ 0.052 V) at applied potentials below 0 V, which is most likely adsorbed to the electrode or present on the cells forming the biofilm around electrodes. At fairly negative applied electrode potentials, both PCA and the unknown redox compound mediate cathodic current generation. This study provides important insights applicable in optimizing the BES conditions and cultures for effective production and utilization of P. aeruginosa phenazines. It further stimulates investigations into the physiological impacts of the electrochemical environment, which might be decisive in the application of phenazines for electron transfer with P. aeruginosa pure- or microbial mixed cultures. PMID:28572797

  1. Production of Biosurfactant by Pseudomonas aeruginosa Grown on Cashew Apple Juice

    NASA Astrophysics Data System (ADS)

    Rocha, Maria V. P.; Souza, Maria C. M.; Benedicto, Sofia C. L.; Bezerra, Márcio S.; Macedo, Gorete R.; Saavedra Pinto, Gustavo A.; Gonçalves, Luciana R. B.

    In this work, the ability of biosurfactant production by Pseudomonas aeruginosa in batch cultivation using cashew apple juice (CAJ) and mineral media was evaluated. P. aeruginosa was cultivated in CAJ, which was supplemented with peptone (5.0 g/L) and nutritive broth. All fermentation assays were performed in Erlenmeyer flasks containing 300 mL, incubated at 30°C and 150 rpm. Cell growth (biomass and cell density), pH, and superficial tension were monitored vs time. Surface tension was reduced by 10.58 and 41% when P. aeruginosa was cultivated in nutrient broth and CAJ supplemented with peptone, respectively. These results indicated that CAJ is an adequate medium for growth and biosurfactant production. Best results of biosurfactant production were obtained when CAJ was supplemented with peptone.

  2. Electrophoretic and antigenic characterisation of Dermatophilus congolensis extracellular products.

    PubMed

    Ambrose, N C; el Jack, M A; McOrist, S; Boid, R

    1997-12-01

    Dermatophilus congolensis is the causative agent of bovine dermatophilosis and lumpy wool in sheep. Two field isolates of D. congolensis, one each from a cow in Ghana and a sheep in Scotland, were cultured for 24-72 h in a synthetic medium based on RPMI-1640. Culture filtrates were examined by SDS-PAGE and considered to contain extracellular products released by growing hyphae and filaments. Electrophoretic profiles of culture filtrates of the two isolates contained common bands and bands that were unique to each isolate. The composition of extracellular products altered with increasing culture periods indicating that specific products were released at different stages of growth. Culture filtrate prepared in the presence of serine protease and metalloprotease inhibitors contained more and better defined bands than that prepared without protease inhibitors indicating the presence of proteases in culture filtrates. Western blot analysis of extracellular products using a panel of sera showed that the two isolates from different host species and distant geographical locations contained cross-reactive antigens. Natural and experimental infections stimulated antibody responses to antigens in culture filtrates, sera from animals that were disease free but in-contact with dermatophilosis-infected animals also contained antibodies to extracellular antigens. The antigens recognised by most sera had molecular weights of 200 kDa in the bovine isolate, 170 kDa in the ovine isolate and 67, 27 and 52-55 kDa in both isolates. The number of antigenic bands of both isolates was positively correlated with the intensity of challenge and the severity of infection: antibodies in sera from disease-free cattle in Ghana recognised more antigens than sera from disease-free sheep in Scotland and more antigens were recognised by sera from chronically-infected Ghanaian cattle than by sera from experimentally-infected calves and sheep. The latter developed antibodies to antigens of 27 and 24 k

  3. Simultaneous production of rhamnolipids, 2-alkyl-4-hydroxyquinolines, and phenazines by clinical isolates of Pseudomonas aeruginosa.

    PubMed Central

    Smeal, B C; Bender, L; Jungkind, D L; Hastie, A T

    1987-01-01

    Of 72 clinical isolates of Pseudomonas aeruginosa examined for simultaneous production of secondary metabolites, 86% produced 2-alkyl-4-hydroxyquinolines, 75% produced rhamnolipids, and 58% produced phenazines, including pyocyanin. Whereas isolates producing two or one constituted smaller groups, 39% released all three metabolites. Metabolite production did not appear to influence site of infection. PMID:3112182

  4. Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI.

    PubMed

    Nitschke, Marcia; Costa, Siddhartha G V A O; Haddad, Renato; Gonçalves, Lireny A G; Eberlin, Marcos N; Contiero, Jonas

    2005-01-01

    Oil wastes were evaluated as alternative low-cost substrates for the production of rhamnolipids by Pseudomonas aeruginosa LBI strain. Wastes obtained from soybean, cottonseed, babassu, palm, and corn oil refinery were tested. The soybean soapstock waste was the best substrate, generating 11.7 g/L of rhamnolipids with a surface tension of 26.9 mN/m, a critical micelle concentration of 51.5 mg/L, and a production yield of 75%. The monorhamnolipid RhaC(10)C(10) predominates when P. aeruginosa LBI was cultivated on hydrophobic substrates, whereas hydrophilic carbon sources form the dirhamnolipid Rha(2)C(10)C(10) predominantly.

  5. Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa

    PubMed Central

    Bosire, Erick M.; Blank, Lars M.

    2016-01-01

    ABSTRACT Pseudomonas aeruginosa is an important, thriving member of microbial communities of microbial bioelectrochemical systems (BES) through the production of versatile phenazine redox mediators. Pure culture experiments with a model strain revealed synergistic interactions of P. aeruginosa with fermenting microorganisms whereby the synergism was mediated through the shared fermentation product 2,3-butanediol. Our work here shows that the behavior and efficiency of P. aeruginosa in mediated current production is strongly dependent on the strain of P. aeruginosa. We compared levels of phenazine production by the previously investigated model strain P. aeruginosa PA14, the alternative model strain P. aeruginosa PAO1, and the BES isolate Pseudomonas sp. strain KRP1 with glucose and the fermentation products 2,3-butanediol and ethanol as carbon substrates. We found significant differences in substrate-dependent phenazine production and resulting anodic current generation for the three strains, with the BES isolate KRP1 being overall the best current producer and showing the highest electrochemical activity with glucose as a substrate (19 μA cm−2 with ∼150 μg ml−1 phenazine carboxylic acid as a redox mediator). Surprisingly, P. aeruginosa PAO1 showed very low phenazine production and electrochemical activity under all tested conditions. IMPORTANCE Microbial fuel cells and other microbial bioelectrochemical systems hold great promise for environmental technologies such as wastewater treatment and bioremediation. While there is much emphasis on the development of materials and devices to realize such systems, the investigation and a deeper understanding of the underlying microbiology and ecology are lagging behind. Physiological investigations focus on microorganisms exhibiting direct electron transfer in pure culture systems. Meanwhile, mediated electron transfer with natural redox compounds produced by, for example, Pseudomonas aeruginosa might enable an

  6. Effect of urea on growth and microcystins production of Microcystis aeruginosa.

    PubMed

    Wu, Xuanhao; Yan, Yangwei; Wang, Pinfei; Ni, Lanqi; Gao, Jiayi; Dai, Ruihua

    2015-04-01

    The effects of urea on the growth and toxin content of Microcystis aeruginosa isolated from Dianchi Lake in China were investigated. Experiments were carried out in lab using (15)N isotopic technique to characterize urea-N biosynthesis to microcystins. High urea concentration (3.6 mmol-N L(-1)) would restrict the growth of M.aeruginosa and the production of microcystin-LR, while low urea concentration (0.4-1.4 mmol-N L(-1)) would promote the growth of M.aeruginosa and the production of microcystin-LR. The (15)N labeling experiment further demonstrated that there existed selectivity when M.aeruginosa assimilated urea to form its structure. The majority of M.aeruginosa assimilated 1 urea molecule at first which was biosynthesized into the Ala or Leu residue. On day 18, The m/z=1004 parent ion assimilated 9 (15)N except that the Mdha residue did not assimilate any urea-(15)N. The results give deeper insight to the biosynthesis of urea into microcystins.

  7. Pseudomonas aeruginosa induces pigment production and enhances virulence in a white phenotypic variant of Staphylococcus aureus

    PubMed Central

    Antonic, Vlado; Stojadinovic, Alexander; Zhang, Binxue; Izadjoo, Mina J; Alavi, Mohammad

    2013-01-01

    Staphyloxanthin is a virulence factor which protects Staphylococcus aureus in stress conditions. We isolated two pigment variants of S. aureus and one strain of Pseudomonas aeruginosa from a single wound infection. S. aureus variants displayed white and yellow colony phenotypes. The sequence of the operons for staphyloxanthin synthesis indicated that coding and promoter regions were identical between the two pigment variants. Quorum sensing controls pigment synthesis in some bacteria. It is also shown that P. aeruginosa quorum-sensing molecules affect S. aureus transcription. We explored whether the co-infecting P. aeruginosa can affect pigment production in the white S. aureus variant. In co-culture experiments between the white variants and a selected number of Gram-positive and Gram-negative bacteria, only P. aeruginosa induced pigment production in the white variant. Gene expression analysis of the white variant did not indicate upregulation of the crtM and other genes known to be involved in pigment production (sigB, sarA, farnesyl pyrophosphate synthase gene [FPP-synthase], hfq). In contrast, transcription of the catalase gene was significantly upregulated after co-culture. P. aeruginosa-induced pigment synthesis and catalase upregulation correlated with increased resistance to polymyxin B, hydrogen peroxide, and the intracellular environment of macrophages. Our data indicate the presence of silent but functional staphyloxanthin synthesis machinery in a white phenotypic variant of S. aureus which is activated by a co-infecting P. aeruginosa via inter-species communication. Another S. aureus virulence factor, catalase is also induced by this co-infecting bacterium. The resulting phenotypic changes are directly correlated with resistance of the white variant to stressful conditions. PMID:24232573

  8. Production of extracellular polysaccharide matrix by Zoogloea ramigera.

    PubMed

    Parsons, A B; Dugan, P R

    1971-04-01

    Zoogloea ramigera 115 synthesized large amounts of matrix polymer from fructose, galactose, glucose, lactose, mannose, soluble starch, and sucrose when these carbohydrates were used as supplements to a chemically defined medium. All of them supported polymer synthesis to the extent that cultures thickened to a gel. Concentration of carbohydrate nutrients in the range 0.5 to 2.0% was not a critical factor in determining eventual total thickening to a gel, except in relation to the incubation time required. Glucose disappeared from the growth medium rapidly and correlated with increasing cell growth and poly-beta-hydroxybutyrate (PHB) accumulation. PHB concentration decreased as extracellular polymer was synthesized, suggesting a link between PHB and extracellular polymer production.

  9. Production of Extracellular Polysaccharide Matrix by Zoogloea ramigera

    PubMed Central

    Parsons, Alice B.; Dugan, Patrick R.

    1971-01-01

    Zoogloea ramigera 115 synthesized large amounts of matrix polymer from fructose, galactose, glucose, lactose, mannose, soluble starch, and sucrose when these carbohydrates were used as supplements to a chemically defined medium. All of them supported polymer synthesis to the extent that cultures thickened to a gel. Concentration of carbohydrate nutrients in the range 0.5 to 2.0% was not a critical factor in determining eventual total thickening to a gel, except in relation to the incubation time required. Glucose disappeared from the growth medium rapidly and correlated with increasing cell growth and poly-β-hydroxybutyrate (PHB) accumulation. PHB concentration decreased as extracellular polymer was synthesized, suggesting a link between PHB and extracellular polymer production. PMID:5575568

  10. Simulated microgravity alters growth and microcystin production in Microcystis aeruginosa (cyanophyta).

    PubMed

    Xiao, Yuan; Liu, Yongding; Wang, Gaohong; Hao, Zongjie; An, Yanjun

    2010-08-01

    Recent researches indicated that microgravity can increase pathogenic bacteria virulence. We presumed that microgravity might affect the toxin production of toxic cyanobacteria too. Microcystis aeruginosa PCC7806 was chosen as the model organism to investigate the effects of simulated microgravity (SMG) on the growth and toxin production of toxic cyanobacteria. SMG could inhibit the growth of M. aeruginosa, which resulted in decreased cell number and lower specific growth rate after 20-day treatment. M. aeruginosa sensed the reduced gravity very quickly and immediately up-regulated its microcystin (MC) synthesis and exudation in 2 days. Subsequently, the intracellular MC content fell back since the 8(th) day and was stable around the initial level in the following days, suggesting a quick adaptation to the reduced gravity. SMG had negative effects on the photochemical system and the absorption of phosphorus in most time. However, the photosynthetic pigment concentrations and nitrogen absorption used to be transitorily stimulated upwards by SMG. It was assumed that SMG inhibited cell growth by interfering its photosynthesis and phosphorus uptake, while the enhanced MC production was related with pigment and nitrogen metabolisms. This study reveals that SMG is a novel environmental signal which inhibits growth and enhances MC production of M. aeruginosa.

  11. Production of extracellular fructans by Gluconobacter nephelii P1464.

    PubMed

    Semjonovs, P; Shakirova, L; Treimane, R; Shvirksts, K; Auzina, L; Cleenwerck, I; Zikmanis, P

    2016-02-01

    Bacterial extracellular fructans, known as levans, have potential applications in food, pharmaceutical and cosmetic industries and high fructan producing strains could contribute into the cost reduction and more extensive commercial usage of them. An acetic acid bacteria (AAB) isolate P1464 was obtained from the Microbial Strain Collection of Institute of Microbiology and Biotechnology, University of Latvia and identified as Gluconobacter nephelii by DNA-DNA hybridization and the formation of extracellular fructans by this strain was confirmed. Isolated extracellular fructose polymers were characterized using FT-IR spectroscopy and the structural features of fructan appeared as similar to the reference sample of bacterial levan. Molecular mass estimates showed that the isolated G. nephelii P1464 fructose polymer has a relatively small molecular weight (Mw 1122·939 ± 153·453 kDa) and a sizeable polydispersity (Mw/Mn = 21·57 ± 1·60), as compared with other AAB, which could promote their physiological activity, including the prebiotic effects. Obtained at different cultivation conditions characteristics of fructan production, including the biotechnological indices such as the productivity (Qp) and yield (Yp/s) ranging from 0·774 to 1·244 g l(-1)  h and from 0·181 to 0·436 g g(-1) , respectively, confirmed, that G. nephelii P1464 could be used as promising strain for commercial production of levan. Bacterial fructans, known as levans, have extensive options for practical usage, however, actually limited due to high production costs. Therefore, the searches for efficient producer strains should be an urgent task to reduce costs. This study is the first report on the formation of fructans by a novel strain of acetic acid bacteria (AAB) Gluconobacter nephelii P1464. Characteristics obtained at different cultivation conditions confirmed the operation of a competitive and perspective producer strain. Isolated extracellular fructans are characterized

  12. Effects of gibberellin A(3) on growth and microcystin production in Microcystis aeruginosa (cyanophyta).

    PubMed

    Pan, Xiaojie; Chang, Fengyi; Kang, Lijuan; Liu, Yongding; Li, Genbao; Li, Dunhai

    2008-11-01

    Environmental factors that affect the growth and microcystin production of microcystis have received worldwide attention because of the hazards microcystin poses to environmental safety and public health. Nevertheless, the effects of organic anthropogenic pollution on microcystis are rarely discussed. Gibberellin A(3) (GA(3)) is a vegetable hormone widely used in agriculture and horticulture that can contaminate water as an anthropogenic pollutant. Because of its common occurrence, we studied the effects of GA(3) on growth and microcystin production of Microcystis aeruginosa (M. aeruginosa) PCC7806 with different concentrations (0.001-25mg/L) in batch culture. The control was obtained without gibberellin under the same culture conditions. Growth, estimated by dry weight and cell number, increased after the GA(3) treatment. GA(3) increased the amounts of chlorophyll a, phycocyanin and cellular-soluble protein in the cells of M. aeruginosa PCC7806, but decreased the accumulation of water-soluble carbohydrates. In addition, GA(3) was observed to affect nitrogen absorption of the test algae, but to have no effect on the absorption of phosphorus. The amount of microcystin measured by enzyme-linked immunosorbent assay (ELISA) increased in GA(3) treatment groups, but the stimulatory effects were different in different culture phases. It is suggested that GA(3) increases M. aeruginosa growth by stimulating its absorbance of nitrogen and increasing its ability to use carbohydrates, accordingly increasing cellular pigments and thus finally inducing accumulation of protein and microcystin.

  13. Valuable ingredients and feed toxicity evaluation of Microcystis aeruginosa acidolysis product in mice

    PubMed Central

    Zhou, Qing; Xu, Yudi; Vanogtrop, Floris; Guo, Qijin; Liu, Guofeng; Yan, Shaohua

    2015-01-01

    This research studied the extraction from Microcystis aeruginosa using hydrochloric acid method as a potentially valuable protein resource from eutrophic lakes. Amino acid composition, residual algal toxins, and heavy metals of the acidolysis product were studied. After 18 h of hydrochloric acid treatment, the product of M. aeruginosa contained 17 amino acids, 51.34% of total amino acid requirements, and 30.25% of the livestock and poultry essential amino acid (Eaa). The residual microcystin-LR (MC-LR) was 0.94 µg kg−1, which was less than WHO drinking water limit of microcystins. The removal ratio of microcystins was higher than 99.99% during the process of hydrolysis. The concentration of heavy metals of the product was in compliance with feed standards. Furthermore, using Horn’s method, Mouse Micronucleus Test and Sperm Shape Abnormality Test were conducted to study the forage safety of the product. Half lethal dose (LD50) of acidolysis product in mice was >9.09 g kg−1 body weight, actually belonging to non-toxic grade. Every dose treatment did not significantly increase activities of alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and γ-glutamyltransferase (γ-GT). The results of both micronucleus test and sperm shape abnormality test were negative, which suggested the product with no mutagenicity and sperm malformation effects. This study indicated that the acidolysis product of M. aeruginosa was safe to be used as a feed ingredient. PMID:25649189

  14. Extracellular matrix production in vitro in cartilage tissue engineering.

    PubMed

    Chen, Jie-Lin; Duan, Li; Zhu, Weimin; Xiong, Jianyi; Wang, Daping

    2014-04-05

    Cartilage tissue engineering is arising as a technique for the repair of cartilage lesions in clinical applications. However, fibrocartilage formation weakened the mechanical functions of the articular, which compromises the clinical outcomes. Due to the low proliferation ability, dedifferentiation property and low production of cartilage-specific extracellular matrix (ECM) of the chondrocytes, the cartilage synthesis in vitro has been one of the major limitations for obtaining high-quality engineered cartilage constructs. This review discusses cells, biomaterial scaffolds and stimulating factors that can facilitate the cartilage-specific ECM production and accumulation in the in vitro culture system. Special emphasis has been put on the factors that affect the production of ECM macromolecules such as collagen type II and proteoglycans in the review, aiming at providing new strategies to improve the quality of tissue-engineered cartilage.

  15. Enhanced rhamnolipid production by Pseudomonas aeruginosa overexpressing estA in a simple medium.

    PubMed

    Dobler, Leticia; de Carvalho, Bruna Rocha; Alves, Wilber de Sousa; Neves, Bianca Cruz; Freire, Denise Maria Guimarães; Almeida, Rodrigo Volcan

    2017-01-01

    A modified Pseudomonas aeruginosa strain capable of overexpressing the estA gene, an encoding gene for a membrane-bound esterase, was constructed and its rhamnolipid (RML) production was studied. Fermentations using wild-type (WT) and modified P. aeruginosa strains were conducted until exhaustion of glycerol in Medium Salt Production, using two different C/N ratios. At a C/N of 83.2, the modified strain produced up to 3.9 times more RMLs than the WT, yielding a maximum concentration of 14.62 g/L RML when measured by HPLC and 22 g/L by the orcinol assay. Cell-free supernatant from the modified strain reduced surface tension to 29.4 mN/m and had a CMC of 240 mg/L and CMD of 56.05. This is the first report on the construction of an estA-based recombinant strain for RML production.

  16. Rhamnolipid production by Pseudomonas aeruginosa OG1 using waste frying oil and ram horn peptone

    NASA Astrophysics Data System (ADS)

    Özdal, Murat; Gürkök, Sümeyra; Özdal, Özlem Gür; Kurbanoǧlu, Esabi Başaran

    2017-04-01

    Agro-industrial by-products are being explored as alternative low-cost nutrients for various bioprocesses. In this work, the applicability of ram horn peptone (RHP) and waste frying oil were investigated for rhamnolipid production by Pseudomonas aeruginosa as the sole nitrogen and carbon sources, respectively. The rhamnolipid yield was considerably influenced by the type of organic nitrogen source. Among the tested organic nitrogen sources, RHP proved to be the best nitrogen source for both biomass and rhamnolipid production. RHP was also tested at different concentrations and 10 g/L RHP resulted in the greatest yield of rhamnolipid (12.1 g/L) in the presence of waste frying oil as the sole carbon source. These results revealed that rhamnolipid could be produced efficiently and cost effectively by P. aeruginosa OG1 using RHP and waste frying oil.

  17. Enhanced rhamnolipid production by Pseudomonas aeruginosa overexpressing estA in a simple medium

    PubMed Central

    Dobler, Leticia; de Carvalho, Bruna Rocha; Alves, Wilber de Sousa; Neves, Bianca Cruz; Freire, Denise Maria Guimarães

    2017-01-01

    A modified Pseudomonas aeruginosa strain capable of overexpressing the estA gene, an encoding gene for a membrane-bound esterase, was constructed and its rhamnolipid (RML) production was studied. Fermentations using wild-type (WT) and modified P. aeruginosa strains were conducted until exhaustion of glycerol in Medium Salt Production, using two different C/N ratios. At a C/N of 83.2, the modified strain produced up to 3.9 times more RMLs than the WT, yielding a maximum concentration of 14.62 g/L RML when measured by HPLC and 22 g/L by the orcinol assay. Cell-free supernatant from the modified strain reduced surface tension to 29.4 mN/m and had a CMC of 240 mg/L and CMD of 56.05. This is the first report on the construction of an estA-based recombinant strain for RML production. PMID:28837648

  18. The role of two Pseudomonas aeruginosa anthranilate synthases in tryptophan and quorum signal production

    PubMed Central

    Palmer, Gregory C.; Jorth, Peter A.

    2013-01-01

    Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen that causes infections in the lungs of individuals with the genetic disease cystic fibrosis. Density-dependent production of toxic factors regulated by the Pseudomonas quinolone signal (2-heptyl-3-hydroxy-4-quinolone; PQS) have been proposed to be involved in P. aeruginosa virulence. PQS biosynthesis requires conversion of the central metabolite chorismate to anthranilate by anthranilate synthase. This reaction is also the first step in tryptophan biosynthesis. P. aeruginosa possesses two functional anthranilate synthases, TrpEG and PhnAB, and these enzymes are not functionally redundant, as trpEG mutants are tryptophan auxotrophs but produce PQS while mutants in phnAB are tryptophan prototrophs but do not produce PQS in minimal media. The goal of the work described in this paper was to determine the mechanism for this lack of functional complementation of TrpEG and PhnAB. Our results reveal that overexpression of either enzyme compensates for tryptophan auxotrophy and PQS production in the trpEG and phnAB mutants respectively, leading to the hypothesis that differential regulation of these genes is responsible for the lack of functional complementation. In support of this hypothesis, trpEG was shown to be expressed primarily during low-density growth while phnAB was expressed primarily at high density. Furthermore, dysregulation of phnAB expression eliminated tryptophan auxotrophy in the P. aeruginosa trpEG mutant. Based on these data, we propose a model for anthranilate sequestration by differential transcriptional regulation of the two P. aeruginosa anthranilate synthase enzymes. PMID:23449919

  19. Optimization of extracellular fungal peroxidase production by 2 Coprinus species.

    PubMed

    Ikehata, Keisuke; Pickard, Michael A; Buchanan, Ian D; Smith, Daniel W

    2004-12-01

    Optimum culture conditions for the batch production of extracellular peroxidase by Coprinus cinereus UAMH 4103 and Coprinus sp. UAMH 10067 were explored using 2 statistical experimental designs, including 2-level, 7-factor fractional factorial design and 2-factor central composite design. Of the 7 factors examined in the screening study, the concentrations of carbon (glucose) and nitrogen (peptone or casitone) sources showed significant effects on the peroxidase production by Coprinus sp. UAMH 10067. The optimum glucose and peptone concentrations were determined as 2.7% and 0.8% for Coprinus sp. UAMH 10067, and 2.9% and 1.4% for C. cinereus UAMH 4103, respectively. Under the optimized culture condition the maximum peroxidase activity achieved in this study was 34.5 U x mL(-1) for Coprinus sp. UAMH 10067 and 68.0 U x mL(-1) for C. cinereus UAMH 4103, more than 2-fold higher than the results of previous studies.

  20. Production of extracellular water-insoluble polysaccharide from Pseudomonas sp.

    PubMed

    Cui, Jian-Dong; Qiu, Ji Qing

    2012-05-16

    Curdlan is a microbial polysaccharide composed exclusively of β-(1,3)-linked glucose residues. Until now only bacteria belonging to the Alcaligenes and Agrobacterium species have been reported to produce Curdlan. In this study, a bacterium capable of producing extracellular Curdlan, identified as Pseudomonas sp. on the basis of 16S rDNA gene sequencing, was isolated from soil samples. From the HPLC, permethylation linkage analysis, (13)C NMR, and FT-IR analytical data, the polysaccharide consisted exclusively of glucose; the most prominent sugar was 1,3-linked glucose, and most glycosidic bonds joining these sugar residues were of the β-type. This also supported that the exopolysaccharide produced by Pseudomonas sp. was actually Curdlan. In addition, the Pseudomonas sp. was studied for the production of Curdlan by conventional "one-factor-at-a-time technique" and response surface methodology (RSM). It was observed that glucose and yeast extract were the most suitable carbon source and nitrogen source for Curdlan production, respectively. By using RSM, Curdlan production was increased significantly by 188%, from 1.25 to 2.35 g/L, when the strain was cultivated in the optimal condition developed by RSM, and the highest Curdlan production rate of 0.81 g/(L h) was obtained. To the best of the authors' knowledge, this is the first report on Curdlan production by Pseudomonas sp.

  1. Evaluation of interleukin-10 production in Pseudomonas aeruginosa induced acute pyelonephritis.

    PubMed

    Mittal, Rahul; Sharma, Saroj; Chhibber, Sanjay; Harjai, Kusum

    2009-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen of immunocompromised hosts. This pathogen has a tendency to form biofilms on the surface of indwelling catheters leading to acute and chronic urinary tract infections that result in significant morbidity and mortality. In the present study, kinetics of interleukin-10 (IL-10) production in mouse renal tissue was studied employing experimental mouse model of acute pyelonephritis induced with planktonic and biofilm cells of P. aeruginosa. IL-10 production was found to be significantly lower in biofilm cell instilled mice compared to planktonic cell infected animals, which corroborated with higher bacterial load and tissue damage. The data suggests that downregulation of IL-10 production may be novel strategy employed by biofilm cells to cause tissue damage and hence bacterial persistence. The results of the present study may open up avenues of research that will ultimately provide the foundation for the development of preventative measures and therapeutic strategies to successfully treat P. aeruginosa biofilm infections based on the administration of anti-inflammatory agents.

  2. Evaluation of disinfection by-product formation potential (DBPFP) during chlorination of two algae species--Blue-green Microcystis aeruginosa and diatom Cyclotella meneghiniana.

    PubMed

    Liao, Xiaobin; Liu, Jinjin; Yang, Mingli; Ma, Hongfang; Yuan, Baoling; Huang, Ching-Hua

    2015-11-01

    Microcystis aeruginosa (blue-green alga) commonly blooms in summer and Cyclotella meneghiniana (diatom) outbreaks in fall in the reservoirs that serve as drinking water sources in Southeast China. Herein, an evaluation of disinfection by-product formation potential (DBPFP) from them during chlorination should be conducted. Five DBPs including trichloromethane (TCM), trichloronitromethane (TCNM), dichloroacetonitrile (DCAN), 1,1-dichloropropanone (1,1-DCP) and 1,1,1-trichloropropanone (1,1,1-TCP) were monitored. The formation potential of TCM and TCNM was enhanced with the increase of reaction time and chlorine dosage, whereas that of DCAN, 1,1-DCP and 1,1,1-TCP increased first and then fell with continuing reaction time. M. aeruginosa showed higher DBPFP than C. meneghiniana, the yield of DBPs varied with components of algal cells. The DBPFP order from components of M. aeruginosa was cell suspension (CS) ≈ intracellular organic matter (IOM) > extracellular organic matter (EOM) > cell debris (CD), which indicated that IOM was the main DBP precursors for M. aeruginosa. The yields of DBPs from components of C. meneghiniana were in the order of CS>IOM≈ CD ≈ EOM, suggesting that three components made similar contributions to the total DBP formation. The amount of IOM with higher DBPFP leaked from both algae species increased with the chlorine dosage, indicating that chlorine dosage should be considered carefully in the treatment of eutrophic water for less destroying of the cell integrity. Though fluorescence substances contained in both algae species varied significantly, the soluble microbial products (SMPs) and aromatic protein-like substances were the main cellular components that contributed to DBP formation for both algae.

  3. Production and characterization of an extracellular lipase from Candida guilliermondii

    PubMed Central

    Oliveira, Anne Caroline Defranceschi; Fernandes, Maria Luiza; Mariano, André Bellin

    2014-01-01

    Extracellular lipases from the endophytic yeast Candida guilliermondii isolated from castor leaves (Ricinus communis L.) were produced using low-cost raw materials such as agro-industrial residues and applying them in the esterification of oleic acid for evaluating their potential use in biodiesel production. After partial purification using ammonium sulfate, the enzyme was characterized and presented higher activity (26.8 ± 1.5 U mL−1) in the presence of 5 mmol L−1 NaCl at 30 °C and pH 6.5. The production through submerged fermentation was formerly performed in 150 mL erlenmeyer flasks and, once the enzyme production was verified, assays in a 14 L bioreactor were conducted, obtaining 18 ± 1.4 U mL−1. The produced enzyme was applied in the oleic acid esterification under different solvents: hexane, cyclohexane or cyclohexanone) and different acid:alcohol molar ratios. Higher ester conversion rate (81%) was obtained using hexane and the molar ratio of 1:9 was the best conditions using methanol. The results suggest the potential for development of endophytic yeast in the production of biocatalyst through submerged fermentation using agroindustrial residues as culture medium. PMID:25763060

  4. Production and characterization of an extracellular lipase from Candida guilliermondii.

    PubMed

    Oliveira, Anne Caroline Defranceschi; Fernandes, Maria Luiza; Mariano, André Bellin

    2014-01-01

    Extracellular lipases from the endophytic yeast Candida guilliermondii isolated from castor leaves (Ricinus communis L.) were produced using low-cost raw materials such as agro-industrial residues and applying them in the esterification of oleic acid for evaluating their potential use in biodiesel production. After partial purification using ammonium sulfate, the enzyme was characterized and presented higher activity (26.8 ± 1.5 U mL(-1)) in the presence of 5 mmol L(-1) NaCl at 30 °C and pH 6.5. The production through submerged fermentation was formerly performed in 150 mL erlenmeyer flasks and, once the enzyme production was verified, assays in a 14 L bioreactor were conducted, obtaining 18 ± 1.4 U mL(-1). The produced enzyme was applied in the oleic acid esterification under different solvents: hexane, cyclohexane or cyclohexanone) and different acid:alcohol molar ratios. Higher ester conversion rate (81%) was obtained using hexane and the molar ratio of 1:9 was the best conditions using methanol. The results suggest the potential for development of endophytic yeast in the production of biocatalyst through submerged fermentation using agroindustrial residues as culture medium.

  5. Extracellular zinc induces phosphoethanolamine addition to Pseudomonas aeruginosa lipid A via the ColRS two-component system.

    PubMed

    Nowicki, Emily M; O'Brien, John P; Brodbelt, Jennifer S; Trent, M Stephen

    2015-07-01

    Gram-negative bacteria survive harmful environmental stressors by modifying their outer membrane. Much of this protection is afforded upon remodeling of the lipid A region of the major surface molecule lipopolysaccharide (LPS). For example, the addition of cationic substituents, such as 4-amino-4-deoxy-L-arabinose (L-Ara4N) and phosphoehthanolamine (pEtN) at the lipid A phosphate groups, is often induced in response to specific environmental flux stabilizing the outer membrane. The work herein represents the first report of pEtN addition to Pseudomonas aeruginosa lipid A. We have identified the key pEtN transferase which we named EptAPa and characterized its strict activity on only one position of lipid A, contrasting from previously studied EptA enzymes. We further show that transcription of eptAP a is regulated by zinc via the ColRS two-component system instead of the PmrAB system responsible for eptA regulation in E. coli and Salmonella enterica. Further, although L-Ara4N is readily added to the same position of lipid A as pEtN under certain environmental conditions, ColR specifically induces pEtN addition to lipid A in lieu of L-Ara4N when Zn2+ is present. The unique, specific regulation of eptAP a transcription and enzymatic activity described in this work demonstrates the tight yet inducible control over LPS modification in P. aeruginosa. © 2015 John Wiley & Sons Ltd.

  6. Extracellular zinc induces phosphoethanolamine addition to Pseudomonas aeruginosa lipid A via the ColRS two-component system

    PubMed Central

    Nowicki, Emily M.; O'Brien, John P.; Brodbelt, Jennifer S.; Trent, M. Stephen

    2015-01-01

    Summary Gram-negative bacteria survive harmful environmental stressors by modifying their outer membrane. Much of this protection is afforded upon remodeling of the lipid A region of the major surface molecule lipopolysaccharide (LPS). For example, the addition of cationic substituents, such as 4-amino-4-deoxy-L-arabinose (L-Ara4N) and phosphoehthanolamine (pEtN) at the lipid A phosphate groups is often induced in response to specific environmental flux stabilizing the outer membrane. The work herein represents the first report of pEtN addition to P. aeruginosa lipid A. We have identified the key pEtN transferase which we named EptAPa and characterized its strict activity on only one position of lipid A, contrasting from previously studied EptA enzymes. We further show that transcription of eptAPa is regulated by zinc via the ColRS two-component system instead of the PmrAB system responsible for eptA regulation in E. coli and S. enterica. Further, although L-Ara4N is readily added to the same position of lipid A as pEtN under certain environmental conditions, ColR specifically induces pEtN addition to lipid A in lieu of L-Ara4N when Zn2+ is present. The unique, specific regulation of eptAPa transcription and enzymatic activity described in this work demonstrates the tight yet inducible control over LPS modification in P. aeruginosa. PMID:25846400

  7. High yield production of extracellular recombinant levansucrase by Bacillus megaterium.

    PubMed

    Korneli, Claudia; Biedendieck, Rebekka; David, Florian; Jahn, Dieter; Wittmann, Christoph

    2013-04-01

    In this study, a high yield production bioprocess with recombinant Bacillus megaterium for the production of the extracellular enzyme levansucrase (SacB) was developed. For basic optimization of culture parameters and nutrients, a recombinant B. megaterium reporter strain that produced green fluorescent protein under control of a vector-based xylose-inducible promoter was used. It enabled efficient microtiter plate-based screening via fluorescence analysis. A pH value of pH 6, 20 % of dissolved oxygen, 37 °C, and elevated levels of biotin (100 μg L(-1)) were found optimal with regard to high protein yield and reduced overflow metabolism. Among the different compounds tested, fructose and glycerol were identified as the preferred source of carbon. Subsequently, the settings were transferred to a B. megaterium strain recombinantly producing levansucrase SacB based on the plasmid-located xylose-inducible expression system. In shake flask culture under the optimized conditions, the novel strain already secreted the target enzyme in high amounts (14 U mL(-1) on fructose and 17.2 U mL(-1) on glycerol). This was further increased in high cell density fed-batch processes up to 55 U mL(-1), reflecting a levansucrase concentration of 0.52 g L(-1). This is 100-fold more than previous efforts for this enzyme in B. megaterium and more than 10-fold higher than reported values of other extracellular protein produced in this microorganism so far. The recombinant strain could also handle raw glycerol from biodiesel industry which provided the same amount and quality of the recombinant protein and suggests future implementation into existing biorefinery concepts.

  8. Production of biosurfactant from a new and promising strain of Pseudomonas aeruginosa PA1.

    PubMed

    Santa Anna, L M; Sebastian, G V; Pereira, N; Alves, T L; Menezes, E P; Freire, D M

    2001-01-01

    The Pseudomonas aeruginosa PA1 strain, isolated from the water of oil production in Sergipe, Northeast Brazil, was evaluated as a potential rhamnolipid type of biosurfactant producer. The production of biosurfactants was investigated using different carbon sources (n-hexadecane, paraffin oil, glycerol, and babassu oil) and inoculum concentrations (0.0016-0.008 g/L). The best results were obtained with glycerol as the substrate and an initial cell concentration of 0.004 g/L. A C:N ratio of 22.8 led to the greatest production of rhamnolipids (1700 mg/L) and efficiency (1.18 g of rhamnolipid/g of dry wt).

  9. Substrate dependent production of extracellular biosurfactant by a marine bacterium.

    PubMed

    Das, Palashpriya; Mukherjee, Soumen; Sen, Ramkrishna

    2009-01-01

    The potential of a marine microorganism to utilize different carbon substrates for the production of an extracellular biosurfactant was evaluated. Among the several carbon substrates tested for this purpose, production of the crude biosurfactant was found to be highest with glycerol (2.9+/-0.11 g L(-1)) followed by starch (2.5+/-0.11 g L(-1)), glucose (1.16+/-0.11 g L(-1)) and sucrose (0.94+/-0.07 g L(-1)). The crude biosurfactant obtained from glycerol, starch and sucrose media had significantly higher antimicrobial action than those obtained from glucose containing medium. RP-HPLC resolved the crude biosurfactants into several fractions one of which had significant antimicrobial action. The antimicrobial fraction was found in higher concentrations in biosurfactant obtained using glycerol, starch and sucrose as compared to the biosurfactants from glucose medium, thereby explaining higher antimicrobial activity. The carbon substrate was thus found to affect biosurfactant production both in a qualitative and quantitative manner.

  10. Complex marine natural products as potential epigenetic and production regulators of antibiotics from a marine Pseudomonas aeruginosa

    PubMed Central

    Wang, Bin; Waters, Amanda L.; Sims, James W.; Fullmer, Alexis; Ellison, Serena; Hamann, Mark T.

    2013-01-01

    Marine microbes are capable of producing secondary metabolites for defense and competition. Factors exerting an impact on secondary metabolite production of microbial communities included bioactive natural products and co-culturing. These external influences may have practical applications such as increased yields or the generation of new metabolites from otherwise silent genes in addition to reducing or limiting the production of undesirable metabolites. In this paper, we discuss the metabolic profiles of a marine Pseudomonas aeruginosa in the presence of a number of potential chemical epigenetic regulators, adjusting carbon sources and co-culturing with other microbes to induce a competitive response. As a result of these stressors certain groups of antibiotics or antimalarial agents were increased most notably when treating P. aeruginosa with sceptrin and co-culturing with another Pseudomonas sp. An interesting cross-talking event between these two Pseudomonas species when cultured together and exposed to sceptrin was observed. PMID:23563743

  11. Complex marine natural products as potential epigenetic and production regulators of antibiotics from a marine Pseudomonas aeruginosa.

    PubMed

    Wang, Bin; Waters, Amanda L; Sims, James W; Fullmer, Alexis; Ellison, Serena; Hamann, Mark T

    2013-05-01

    Marine microbes are capable of producing secondary metabolites for defense and competition. Factors exerting an impact on secondary metabolite production of microbial communities included bioactive natural products and co-culturing. These external influences may have practical applications such as increased yields or the generation of new metabolites from otherwise silent genes in addition to reducing or limiting the production of undesirable metabolites. In this paper, we discuss the metabolic profiles of a marine Pseudomonas aeruginosa in the presence of a number of potential chemical epigenetic regulators, adjusting carbon sources and co-culturing with other microbes to induce a competitive response. As a result of these stressors certain groups of antibiotics or antimalarial agents were increased most notably when treating P. aeruginosa with sceptrin and co-culturing with another Pseudomonas sp. An interesting cross-talking event between these two Pseudomonas species when cultured together and exposed to sceptrin was observed.

  12. Valuable ingredients and feed toxicity evaluation of Microcystis aeruginosa acidolysis product in mice.

    PubMed

    Han, Shiqun; Zhou, Qing; Xu, Yudi; Vanogtrop, Floris; Guo, Qijin; Liu, Guofeng; Yan, Shaohua

    2015-10-01

    This research studied the extraction from Microcystis aeruginosa using hydrochloric acid method as a potentially valuable protein resource from eutrophic lakes. Amino acid composition, residual algal toxins, and heavy metals of the acidolysis product were studied. After 18 h of hydrochloric acid treatment, the product of M. aeruginosa contained 17 amino acids, 51.34% of total amino acid requirements, and 30.25% of the livestock and poultry essential amino acid (Eaa). The residual microcystin-LR (MC-LR) was 0.94 µg kg(-1), which was less than WHO drinking water limit of microcystins. The removal ratio of microcystins was higher than 99.99% during the process of hydrolysis. The concentration of heavy metals of the product was in compliance with feed standards. Furthermore, using Horn's method, Mouse Micronucleus Test and Sperm Shape Abnormality Test were conducted to study the forage safety of the product. Half lethal dose (LD50) of acidolysis product in mice was >9.09 g kg(-1) body weight, actually belonging to non-toxic grade. Every dose treatment did not significantly increase activities of alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and γ-glutamyltransferase (γ-GT). The results of both micronucleus test and sperm shape abnormality test were negative, which suggested the product with no mutagenicity and sperm malformation effects. This study indicated that the acidolysis product of M. aeruginosa was safe to be used as a feed ingredient. © 2015 by the Society for Experimental Biology and Medicine.

  13. Transient heterogeneity in extracellular protease production by Bacillus subtilis.

    PubMed

    Veening, Jan-Willem; Igoshin, Oleg A; Eijlander, Robyn T; Nijland, Reindert; Hamoen, Leendert W; Kuipers, Oscar P

    2008-01-01

    The most sophisticated survival strategy Bacillus subtilis employs is the differentiation of a subpopulation of cells into highly resistant endospores. To examine the expression patterns of non-sporulating cells within heterogeneous populations, we used buoyant density centrifugation to separate vegetative cells from endospore-containing cells and compared the transcriptome profiles of both subpopulations. This demonstrated the differential expression of various regulons. Subsequent single-cell analyses using promoter-gfp fusions confirmed our microarray results. Surprisingly, only part of the vegetative subpopulation highly and transiently expresses genes encoding the extracellular proteases Bpr (bacillopeptidase) and AprE (subtilisin), both of which are under the control of the DegU transcriptional regulator. As these proteases and their degradation products freely diffuse within the liquid growth medium, all cells within the clonal population are expected to benefit from their activities, suggesting that B. subtilis employs cooperative or even altruistic behavior. To unravel the mechanisms by which protease production heterogeneity within the non-sporulating subpopulation is established, we performed a series of genetic experiments combined with mathematical modeling. Simulations with our model yield valuable insights into how population heterogeneity may arise by the relatively long and variable response times within the DegU autoactivating pathway.

  14. Transient heterogeneity in extracellular protease production by Bacillus subtilis

    PubMed Central

    Veening, Jan-Willem; Igoshin, Oleg A; Eijlander, Robyn T; Nijland, Reindert; Hamoen, Leendert W; Kuipers, Oscar P

    2008-01-01

    The most sophisticated survival strategy Bacillus subtilis employs is the differentiation of a subpopulation of cells into highly resistant endospores. To examine the expression patterns of non-sporulating cells within heterogeneous populations, we used buoyant density centrifugation to separate vegetative cells from endospore-containing cells and compared the transcriptome profiles of both subpopulations. This demonstrated the differential expression of various regulons. Subsequent single-cell analyses using promoter-gfp fusions confirmed our microarray results. Surprisingly, only part of the vegetative subpopulation highly and transiently expresses genes encoding the extracellular proteases Bpr (bacillopeptidase) and AprE (subtilisin), both of which are under the control of the DegU transcriptional regulator. As these proteases and their degradation products freely diffuse within the liquid growth medium, all cells within the clonal population are expected to benefit from their activities, suggesting that B. subtilis employs cooperative or even altruistic behavior. To unravel the mechanisms by which protease production heterogeneity within the non-sporulating subpopulation is established, we performed a series of genetic experiments combined with mathematical modeling. Simulations with our model yield valuable insights into how population heterogeneity may arise by the relatively long and variable response times within the DegU autoactivating pathway. PMID:18414485

  15. Antigenicity of Streptococcus agalactiae extracellular products and vaccine efficacy.

    PubMed

    Pasnik, D J; Evans, J J; Panangala, V S; Klesius, P H; Shelby, R A; Shoemaker, C A

    2005-04-01

    Streptococcus agalactiae is a major bacterial pathogen that is the cause of serious economic losses in many species of freshwater, marine and estuarine fish worldwide. A highly efficacious S. agalactiae vaccine was developed using extracellular products (ECP) and formalin-killed whole cells of S. agalactiae. The vaccine efficacy following storage of S. agalactiae ECP and formalin-killed S. agalactiae cells at 4 degrees C for 1 year was determined. The stored ECP containing S. agalactiae formalin-killed cells failed to prevent morbidity and mortality among the vaccinated fish, and the relative percentage survival was 29. Serum antibody responses of the stored ECP and freshly prepared ECP against soluble whole cell extract of S. agalactiae indicated that significantly less antibody was produced in fish immunized with stored ECP and S. agalactiae cells than in those fish immunized with freshly prepared ECP and S. agalactiae cells at day 31 post-vaccination. Silver staining of sodium dodecyl sulphate-polyacrylamide gels and immunostaining of Western blots with tilapia antiserum to S. agalactiae revealed that predominant 54 and 55 kDa bands were present in the freshly prepared ECP fraction. The 55 kDa band was absent from the stored ECP and new bands below 54 kDa appeared on the Western blot. The results of this study on S. agalactiae ECP provide evidence for a correlation between protection and antibody production to ECP and for the importance of the 55 kDa ECP antigen for vaccine efficacy.

  16. Pseudomonas aeruginosa ATCC 9027 is a non-virulent strain suitable for mono-rhamnolipids production.

    PubMed

    Grosso-Becerra, María-Victoria; González-Valdez, Abigail; Granados-Martínez, María-Jessica; Morales, Estefanía; Servín-González, Luis; Méndez, José-Luis; Delgado, Gabriela; Morales-Espinosa, Rosario; Ponce-Soto, Gabriel-Yaxal; Cocotl-Yañez, Miguel; Soberón-Chávez, Gloria

    2016-12-01

    Rhamnolipids produced by Pseudomonas aeruginosa are biosurfactants with a high biotechnological potential, but their extensive commercialization is limited by the potential virulence of P. aeruginosa and by restrictions in producing these surfactants in heterologous hosts. In this work, we report the characterization of P. aeruginosa strain ATCC 9027 in terms of its genome-sequence, virulence, antibiotic resistance, and its ability to produce mono-rhamnolipids when carrying plasmids with different cloned genes from the type strain PAO1. The genes that were expressed from the plasmids are those coding for enzymes involved in the synthesis of this biosurfactant (rhlA and rhlB), as well as the gene that codes for the RhlR transcriptional regulator. We confirm that strain ATCC 9027 forms part of the PA7 clade, but contrary to strain PA7, it is sensitive to antibiotics and is completely avirulent in a mouse model. We also report that strain ATCC 9027 mono-rhamnolipid synthesis is limited by the expression of the rhlAB-R operon. Thus, this strain carrying the rhlAB-R operon produces similar rhamnolipids levels as PAO1 strain. We determined that strain ATCC 9027 with rhlAB-R operon was not virulent to mice. These results show that strain ATCC 9027, expressing PAO1 rhlAB-R operon, has a high biotechnological potential for industrial mono-rhamnolipid production.

  17. Production of exotoxin A by Pseudomonas aeruginosa in a chemically defined medium.

    PubMed

    DeBell, R M

    1979-04-01

    A defined medium was developed in which easily measured quantities of exotoxin A (PE) were produced by Pseudomonas aeruginosa PA-103. The medium contained three L-amino acids (arginine, aspartic acid, and alanine), basal and trace salts including 14 mM K2HPO4, 14 mM glucose, and 140 mM glycerol. The concentrations of amino acids which yielded most satisfactory results were 6 mM alanine, 13 mM aspartic acid, and 16 mM arginine. The identity of PE in the culture supernatant fluid was demonstrated by adenosine diphosphate-ribosyl transferase activity and by immunodiffusion with sheep antitoxin elicited with purified PE and with PE produced in Trypticase soy broth dialysate and pure PE as controls. PE production was also demonstrated by mouse lethality and passive hemagglutination. As compared to Trypticase soy broth dialysate, P. aeruginosa produced 25 to 50% PE in the defined medium. Different strains of P. aeruginosa produced PE in the defined medium in proportions relative to those in Trypticase soy broth dialysate.

  18. Kinetic modeling of rhamnolipid production by Pseudomonas aeruginosa PAO1 including cell density-dependent regulation.

    PubMed

    Henkel, Marius; Schmidberger, Anke; Vogelbacher, Markus; Kühnert, Christian; Beuker, Janina; Bernard, Thomas; Schwartz, Thomas; Syldatk, Christoph; Hausmann, Rudolf

    2014-08-01

    The production of rhamnolipid biosurfactants by Pseudomonas aeruginosa is under complex control of a quorum sensing-dependent regulatory network. Due to a lack of understanding of the kinetics applicable to the process and relevant interrelations of variables, current processes for rhamnolipid production are based on heuristic approaches. To systematically establish a knowledge-based process for rhamnolipid production, a deeper understanding of the time-course and coupling of process variables is required. By combining reaction kinetics, stoichiometry, and experimental data, a process model for rhamnolipid production with P. aeruginosa PAO1 on sunflower oil was developed as a system of coupled ordinary differential equations (ODEs). In addition, cell density-based quorum sensing dynamics were included in the model. The model comprises a total of 36 parameters, 14 of which are yield coefficients and 7 of which are substrate affinity and inhibition constants. Of all 36 parameters, 30 were derived from dedicated experimental results, literature, and databases and 6 of them were used as fitting parameters. The model is able to describe data on biomass growth, substrates, and products obtained from a reference batch process and other validation scenarios. The model presented describes the time-course and interrelation of biomass, relevant substrates, and products on a process level while including a kinetic representation of cell density-dependent regulatory mechanisms.

  19. Coordination of swarming motility, biosurfactant synthesis, and biofilm matrix exopolysaccharide production in Pseudomonas aeruginosa.

    PubMed

    Wang, Shiwei; Yu, Shan; Zhang, Zhenyin; Wei, Qing; Yan, Lu; Ai, Guomin; Liu, Hongsheng; Ma, Luyan Z

    2014-11-01

    Biofilm formation is a complex process in which many factors are involved. Bacterial swarming motility and exopolysaccharides both contribute to biofilm formation, yet it is unclear how bacteria coordinate swarming motility and exopolysaccharide production. Psl and Pel are two key biofilm matrix exopolysaccharides in Pseudomonas aeruginosa. This opportunistic pathogen has three types of motility, swimming, twitching, and swarming. In this study, we found that elevated Psl and/or Pel production reduced the swarming motility of P. aeruginosa but had little effect on swimming and twitching. The reduction was due to decreased rhamnolipid production with no relation to the transcription of rhlAB, two key genes involved in the biosynthesis of rhamnolipids. Rhamnolipid-negative rhlR and rhlAB mutants synthesized more Psl, whereas exopolysaccharide-deficient strains exhibited a hyperswarming phenotype. These results suggest that competition for common sugar precursors catalyzed by AlgC could be a tactic for P. aeruginosa to balance the synthesis of exopolysaccharides and rhamnolipids and to control bacterial motility and biofilm formation inversely because the biosynthesis of rhamnolipids, Psl, and Pel requires AlgC to provide the sugar precursors and an additional algC gene enhances the biosynthesis of Psl and rhamnolipids. In addition, our data indicate that the increase in RhlI/RhlR expression attenuated Psl production. This implied that the quorum-sensing signals could regulate exopolysaccharide biosynthesis indirectly in bacterial communities. In summary, this study represents a mechanism that bacteria utilize to coordinate swarming motility, biosurfactant synthesis, and biofilm matrix exopolysaccharide production, which is critical for biofilm formation and bacterial survival in the environment.

  20. Contribution of the production of quormones to some phenotypic characteristics of Pseudomonas aeruginosa clinical strains.

    PubMed

    Nagant, C; Seil, M; Nachtergael, A; Dulanto, S; Dehaye, J P

    2013-07-01

    The contribution of quorum sensing in some phenotypic and pathogenic characteristics of Pseudomonas aeruginosa was studied. The production of acylhomoserine lactones (AHL) by planktonic cultures of eight clinical and reference strains of P. aeruginosa was evaluated using two biosensors. The adhesion of the bacteria on a surface (Biofilm Ring Test ®, BFRT), their capacity to develop a biofilm (crystal violet staining method, CVSM), their sensitivity to tobramycin and their secretion of proteases or of rhamnolipids were also measured. The production and the release of AHL widely varied among the eight strains. An analysis of the extracts by TLC showed that 3-oxo-C8-HSL, 3-oxo-C10-HSL and 3-oxo-C12-HSL were released by the five strains producing the highest amount of Cn≥6-HSL. The genes lasI and lasR involved in the synthesis and response to 3-oxo-C12-HSL were detected in the genomes of all strains. Two clinical strains had deletions in the lasR gene leading to truncation of the protein. One subpopulation of the PAO1 strain had a major deletion (98 bp) of the lasR gene. Strains with significant mutations of lasR secreted the lowest amount of AHL, probably due to deficiencies in the self-induction and amplification of the synthesis of the lactone. These strains formed a biofilm with low biomass. C4-HSL production also differed among the strains and was correlated with rhamnolipid production and biofilm formation. Whereas the production of AHL varied among P. aeruginosa strains, few correlations were observed with their phenotypic properties except with their ability to form a biofilm.

  1. OprG Harnesses the Dynamics of its Extracellular Loops to Transport Small Amino Acids across the Outer Membrane of Pseudomonas aeruginosa.

    PubMed

    Kucharska, Iga; Seelheim, Patrick; Edrington, Thomas; Liang, Binyong; Tamm, Lukas K

    2015-12-01

    OprG is an outer membrane protein of Pseudomonas aeruginosa whose function as an antibiotic-sensitive porin has been controversial and not well defined. Circumstantial evidence led to the proposal that OprG might transport hydrophobic compounds by using a lateral gate in the barrel wall thought to be lined by three conserved prolines. To test this hypothesis and to find the physiological substrates of OprG, we reconstituted the purified protein into liposomes and found it to facilitate the transport of small amino acids such as glycine, alanine, valine, and serine, which was confirmed by Pseudomonas growth assays. The structures of wild-type and a critical proline mutant were determined by nuclear magnetic resonance in dihexanoyl-phosphatidylcholine micellar solutions. Both proteins formed eight-stranded β-barrels with flexible extracellular loops. The interfacial prolines did not form a lateral gate in these structures, but loop 3 exhibited restricted motions in the inactive P92A mutant but not in wild-type OprG.

  2. Ultrafiltration membrane fouling by extracellular organic matters (EOM) of Microcystis aeruginosa in stationary phase: influences of interfacial characteristics of foulants and fouling mechanisms.

    PubMed

    Qu, Fangshu; Liang, Heng; Wang, Zhaozhi; Wang, Hui; Yu, Huarong; Li, Guibai

    2012-04-01

    This paper focused on the membrane fouling caused by extracellular organic matters (EOM) which was extracted from lab-cultured Microcystis aeruginosa in stationary phase. The characteristics of EOM such as molecular weight distribution, hydrophobicity and fluorescence were measured. It was found that high molecular weight (MW) and hydrophilic organics accounted for the major parts of algal EOM which was comprised of protein-like, polysaccharide-like and humic-like substances. Ultrafiltration (UF) experiments were carried out in a stirring cell and hydrophobic polyethersulfone (PES) membranes which carried negative charge were used. Prefiltration, calcium addition and XAD fractionation were employed to change the interfacial characteristics of EOM. Then the effects of these interfacial characteristics on flux decline, reversibility and mass balance of organics were compared. Algal EOM proved to cause serious membrane fouling during UF. The fraction of algal EOM between 0.45 μm and 100 kDa contributed a significant portion of the fouling. Hydrophobic organics in EOM tended to adhere to membrane surface causing irreversible fouling, while the cake layer formed by hydrophilic organics caused greater resistance to water flow due to hydrophilic interaction such as hydrogen bond and led to faster flux decline during UF. The results also indicated that the algal EOM was negatively charged and the electrostatic repulsion could prevent organics from adhering to membrane surface. In term of fouling mechanisms, cake layer formation, hydrophobic adhesion and pore plugging were the main mechanisms for membrane fouling caused by algal EOM.

  3. A novel technique using potassium permanganate and reflectance confocal microscopy to image biofilm extracellular polymeric matrix reveals non-eDNA networks in Pseudomonas aeruginosa biofilms

    PubMed Central

    Swearingen, Matthew C.; Mehta, Ajeet; Mehta, Amar; Nistico, Laura; Hill, Preston J.; Falzarano, Anthony R.; Wozniak, Daniel J.; Hall-Stoodley, Luanne; Stoodley, Paul

    2015-01-01

    Biofilms are etiologically important in the development of chronic medical and dental infections. The biofilm extracellular polymeric substance (EPS) determines biofilm structure and allows bacteria in biofilms to adapt to changes in mechanical loads such as fluid shear. However, EPS components are difficult to visualize microscopically because of their low density and molecular complexity. Here, we tested potassium permanganate, KMnO4, for use as a non-specific EPS contrast-enhancing stain using confocal laser scanning microscopy in reflectance mode. We demonstrate that KMnO4 reacted with EPS components of various strains of Pseudomonas, Staphylococcus and Streptococcus, yielding brown MnO2 precipitate deposition on the EPS, which was quantifiable using data from the laser reflection detector. Furthermore, the MnO2 signal could be quantified in combination with fluorescent nucleic acid staining. COMSTAT image analysis indicated that KMnO4 staining increased the estimated biovolume over that determined by nucleic acid staining alone for all strains tested, and revealed non-eDNA EPS networks in Pseudomonas aeruginosa biofilm. In vitro and in vivo testing indicated that KMnO4 reacted with poly-N-acetylglucosamine and Pseudomonas Pel polysaccharide, but did not react strongly with DNA or alginate. KMnO4 staining may have application as a research tool and for diagnostic potential for biofilms in clinical samples. PMID:26536894

  4. Purification and characterization of two bifunctional chitinases/lysozymes extracellularly produced by Pseudomonas aeruginosa K-187 in a shrimp and crab shell powder medium.

    PubMed Central

    Wang, S L; Chang, W T

    1997-01-01

    Two extracellular chitinases (FI and FII) were purified from the culture supernatant of Pseudomonas aeruginosa K-187. The molecular weights of FI and FII were 30,000 and 32,000, respectively, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 60,000 and 30,000, respectively, by gel filtration. The pIs for FI and FII were 5.2 and 4.8, respectively. The optimum pH, optimum temperature, pH stability, and thermal stability of FI were pH 8, 50 degrees C, pH 6 to 9, and 50 degrees C; those of FII were pH 7, 40 degrees C, pH 5 to 10, and 60 degrees C. The activities of both enzymes were activated by Cu2+; strongly inhibited by Mn2+, Mg2+, and Zn2+; and completely inhibited by glutathione, dithiothreitol, and 2-mercaptoethanol. Both chitinases showed lysozyme activity. The purified enzymes had antibacterial and cell lysis activities with many kinds of bacteria. This is the first report of a bifunctional chitinase/lysozyme from a prokaryote. PMID:9023918

  5. A novel technique using potassium permanganate and reflectance confocal microscopy to image biofilm extracellular polymeric matrix reveals non-eDNA networks in Pseudomonas aeruginosa biofilms.

    PubMed

    Swearingen, Matthew C; Mehta, Ajeet; Mehta, Amar; Nistico, Laura; Hill, Preston J; Falzarano, Anthony R; Wozniak, Daniel J; Hall-Stoodley, Luanne; Stoodley, Paul

    2016-02-01

    Biofilms are etiologically important in the development of chronic medical and dental infections. The biofilm extracellular polymeric substance (EPS) determines biofilm structure and allows bacteria in biofilms to adapt to changes in mechanical loads such as fluid shear. However, EPS components are difficult to visualize microscopically because of their low density and molecular complexity. Here, we tested potassium permanganate, KMnO4, for use as a non-specific EPS contrast-enhancing stain using confocal laser scanning microscopy in reflectance mode. We demonstrate that KMnO4 reacted with EPS components of various strains of Pseudomonas, Staphylococcus and Streptococcus, yielding brown MnO2 precipitate deposition on the EPS, which was quantifiable using data from the laser reflection detector. Furthermore, the MnO2 signal could be quantified in combination with fluorescent nucleic acid staining. COMSTAT image analysis indicated that KMnO4 staining increased the estimated biovolume over that determined by nucleic acid staining alone for all strains tested, and revealed non-eDNA EPS networks in Pseudomonas aeruginosa biofilm. In vitro and in vivo testing indicated that KMnO4 reacted with poly-N-acetylglucosamine and Pseudomonas Pel polysaccharide, but did not react strongly with DNA or alginate. KMnO4 staining may have application as a research tool and for diagnostic potential for biofilms in clinical samples. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Continuous rhamnolipid production using denitrifying Pseudomonas aeruginosa cells in hollow-fiber bioreactor.

    PubMed

    Pinzon, Neissa M; Cook, Aaron G; Ju, Lu-Kwang

    2013-01-01

    Rhamnolipids are high-value effective biosurfactants produced by Pseudomonas aeruginosa. Large-scale production of rhamnolipids is still challenging especially under free-cell aerobic conditions in which the highly foaming nature of the culture broth reduces the productivity of the process. Immobilized systems relying on oxygen as electron acceptor have been previously investigated but oxygen transfer limitation presents difficulties for continuous rhamnolipid production. A coupled system using immobilized cells and nitrate instead of oxygen as electron acceptor taking advantage of the ability of P. aeruginosa to perform nitrate respiration was evaluated. This denitrification-based immobilized approach based on a hollow-fiber setup eliminated the transfer limitation problems and was found suitable for continuous rhamnolipid production in a period longer than 1,500 h. It completely eliminated the foaming difficulties related to aerobic systems with a comparable specific productivity of 0.017 g/(g dry cells)-h and allowed easy recovery of rhamnolipids from the cell-free medium.

  7. C-type natriuretic peptide modulates quorum sensing molecule and toxin production in Pseudomonas aeruginosa.

    PubMed

    Blier, Anne-Sophie; Veron, Wilfried; Bazire, Alexis; Gerault, Eloïse; Taupin, Laure; Vieillard, Julien; Rehel, Karine; Dufour, Alain; Le Derf, Franck; Orange, Nicole; Hulen, Christian; Feuilloley, Marc G J; Lesouhaitier, Olivier

    2011-07-01

    Pseudomonas aeruginosa coordinates its virulence expression and establishment in the host in response to modification of its environment. During the infectious process, bacteria are exposed to and can detect eukaryotic products including hormones. It has been shown that P. aeruginosa is sensitive to natriuretic peptides, a family of eukaryotic hormones, through a cyclic nucleotide-dependent sensor system that modulates its cytotoxicity. We observed that pre-treatment of P. aeruginosa PAO1 with C-type natriuretic peptide (CNP) increases the capacity of the bacteria to kill Caenorhabditis elegans through diffusive toxin production. In contrast, brain natriuretic peptide (BNP) did not affect the capacity of the bacteria to kill C. elegans. The bacterial production of hydrogen cyanide (HCN) was enhanced by both BNP and CNP whereas the production of phenazine pyocyanin was strongly inhibited by CNP. The amount of 2-heptyl-4-quinolone (HHQ), a precursor to 2-heptyl-3-hydroxyl-4-quinolone (Pseudomonas quinolone signal; PQS), decreased after CNP treatment. The quantity of 2-nonyl-4-quinolone (HNQ), another quinolone which is synthesized from HHQ, was also reduced after CNP treatment. Conversely, both BNP and CNP significantly enhanced bacterial production of acylhomoserine lactone (AHL) [e.g. 3-oxo-dodecanoyl-homoserine lactone (3OC12-HSL) and butanoylhomoserine lactone (C4-HSL)]. These results correlate with an induction of lasI transcription 1 h after bacterial exposure to BNP or CNP. Concurrently, pre-treatment of P. aeruginosa PAO1 with either BNP or CNP enhanced PAO1 exotoxin A production, via a higher toxA mRNA level. At the same time, CNP led to elevated amounts of algC mRNA, indicating that algC is involved in C. elegans killing. Finally, we observed that in PAO1, Vfr protein is essential to the pro-virulent effect of CNP whereas the regulator PtxR supports only a part of the CNP pro-virulent activity. Taken together, these data reinforce the hypothesis that during

  8. Quercetin Attenuates Lactate Production and Extracellular Matrix Secretion in Keratoconus

    PubMed Central

    McKay, T. B.; Lyon, D.; Sarker-Nag, A.; Priyadarsini, S.; Asara, J. M.; Karamichos, D.

    2015-01-01

    Keratoconus(KC) is an ecstatic corneal disease leading to corneal-thinning and the formation of a cone-like cornea. Elevated lactate levels, increased oxidative stress, and myofibroblast formation have all been previously reported. In the current study, we assess the role of Quercetin on collagen secretion and myofibroblast formation in KC in vitro. Human corneal fibroblasts(HCFs) and human keratoconus cells(HKCs) were treated with a stable Vitamin C derivative and cultured for 4 weeks, stimulating formation of a self-assembled extracellular matrix. All samples were analyzed using Western blots and targeted tandem mass spectrometry. Our data showed that Quercetin significantly down regulates myofibroblast differentiation and fibrotic markers, such as α-smooth muscle actin (α-SMA) and Collagen III (Col III), in both HCFs and HKCs. Collagen III secretion was reduced 80% in both HCFs and HKCs following Quercetin treatment. Furthermore, Quercetin reduced lactate production by HKCs to normal HCF levels. Quercetin down regulated TGF-βR2 and TGF-β2 expression in HKCs suggesting a significant link to the TGF-β pathway. These results assert that Quercetin is a key regulator of fibrotic markers and ECM assembly by modulating cellular metabolism and TGF-β signaling. Our study suggests that Quercetin is a potential therapeutic for treatment of corneal dystrophies, such as KC. PMID:25758533

  9. Effect of macrophage secretory products on elaboration of virulence factors by planktonic and biofilm cells of Pseudomonas aeruginosa.

    PubMed

    Mittal, Rahul; Sharma, Saroj; Chhibber, Sanjay; Harjai, Kusum

    2006-01-01

    Macrophages, which constitute the first line of defense, pour their secretions in the mileu following stimulation with pathogens. These secretory products, referred to as macrophage secretory products (MSPs), can influence ultimate outcome of an infection. In the present investigation, it was observed that different strains of Pseudomonas aeruginosa vary in their ability to stimulate macrophages leading to variability in generation of macrophage secretory products. Cytokine levels, reactive nitrogen intermediates and protein content of macrophage secretory products generated with biofilm cells of P. aeruginosa was found to be more as compared to their planktonic counterparts. The effect of macrophage secretory products produced in response to interaction of macrophages with P. aeruginosa on elaboration of virulence factors produced by planktonic and biofilm cell forms of this pathogen was assessed. Significant enhancement in growth and elaboration of all the virulence determinants by both the cell forms was observed when P. aeruginosa was grown in presence of supernatants with macrophage secretory products. Implications of these findings in relation to urinary tract infections induced by P. aeruginosa have been discussed.

  10. Pseudomonas aeruginosa Biofilm Formation and Persistence, along with the Production of Quorum Sensing-Dependent Virulence Factors, Are Disrupted by a Triterpenoid Coumarate Ester Isolated from Dalbergia trichocarpa, a Tropical Legume

    PubMed Central

    Pottier, Laurent; Huet, Joelle; Rabemanantsoa, Christian; Kiendrebeogo, Martin; Andriantsimahavandy, Abel; Rasamindrakotroka, Andry; Stévigny, Caroline; Duez, Pierre; El Jaziri, Mondher

    2015-01-01

    Recently, extracts of Dalbergia trichocarpa bark have been shown to disrupt P. aeruginosa PAO1 quorum sensing (QS) mechanisms, which are key regulators of virulence factor expression and implicated in biofilm formation. One of the active compounds has been isolated and identified as oleanolic aldehyde coumarate (OALC), a novel bioactive compound that inhibits the formation of P. aeruginosa PAO1 biofilm and its maintenance as well as the expression of the las and rhl QS systems. Consequently, the production of QS-controlled virulence factors including, rhamnolipids, pyocyanin, elastase and extracellular polysaccharides as well as twitching and swarming motilities is reduced. Native acylhomoserine lactones (AHLs) production is inhibited by OALC but exogenous supply of AHLs does not restore the production of virulence factors by OALC-treated cultures, indicating that OALC exerts its effect beyond AHLs synthesis in the QS pathways. Further experiments provided a significant inhibition of the global virulence factor activator gacA by OALC. OALC disorganizes established biofilm structure and improves the bactericidal activity of tobramycin against biofilm-encapsulated PAO1 cells. Finally, a significant reduction of Caenorhabditis elegans paralysis was recorded when the worms were infected with OALC-pre-treated P. aeruginosa. Taken together, these results show that triterpenoid coumarate esters are suitable chemical backbones to target P. aeruginosa virulence mechanisms. PMID:26186595

  11. Pseudomonas aeruginosa Biofilm Formation and Persistence, along with the Production of Quorum Sensing-Dependent Virulence Factors, Are Disrupted by a Triterpenoid Coumarate Ester Isolated from Dalbergia trichocarpa, a Tropical Legume.

    PubMed

    Rasamiravaka, Tsiry; Vandeputte, Olivier M; Pottier, Laurent; Huet, Joelle; Rabemanantsoa, Christian; Kiendrebeogo, Martin; Andriantsimahavandy, Abel; Rasamindrakotroka, Andry; Stévigny, Caroline; Duez, Pierre; El Jaziri, Mondher

    2015-01-01

    Recently, extracts of Dalbergia trichocarpa bark have been shown to disrupt P. aeruginosa PAO1 quorum sensing (QS) mechanisms, which are key regulators of virulence factor expression and implicated in biofilm formation. One of the active compounds has been isolated and identified as oleanolic aldehyde coumarate (OALC), a novel bioactive compound that inhibits the formation of P. aeruginosa PAO1 biofilm and its maintenance as well as the expression of the las and rhl QS systems. Consequently, the production of QS-controlled virulence factors including, rhamnolipids, pyocyanin, elastase and extracellular polysaccharides as well as twitching and swarming motilities is reduced. Native acylhomoserine lactones (AHLs) production is inhibited by OALC but exogenous supply of AHLs does not restore the production of virulence factors by OALC-treated cultures, indicating that OALC exerts its effect beyond AHLs synthesis in the QS pathways. Further experiments provided a significant inhibition of the global virulence factor activator gacA by OALC. OALC disorganizes established biofilm structure and improves the bactericidal activity of tobramycin against biofilm-encapsulated PAO1 cells. Finally, a significant reduction of Caenorhabditis elegans paralysis was recorded when the worms were infected with OALC-pre-treated P. aeruginosa. Taken together, these results show that triterpenoid coumarate esters are suitable chemical backbones to target P. aeruginosa virulence mechanisms.

  12. Clinico-microbiological study of Pseudomonas aeruginosa in wound infections and the detection of metallo-β-lactamase production.

    PubMed

    Bangera, Divya; Shenoy, Suchitra M; Saldanha, Dominic Rm

    2016-12-01

    Pseudomonas aeruginosa is a common opportunistic pathogen of humans among the Gram-negative bacilli. Clinically, it is associated with nosocomial infections like burns and surgical-site wound infections and remains a major health concern, especially among critically ill and immunocompromised patients. This is a prospective laboratory-based 2 year study conducted to isolate P. aeruginosa from wound specimens and the antimicrobial susceptibility pattern with reference to metallo-β-lactamase (MBL) production. Two hundred and twenty-four samples of P. aeruginosa isolated from wound specimens were included in the study. Antimicrobial susceptibility was done as per Clinical Laboratory Standard Institute (CLSI) guidelines. MBL-producing P. aeruginosa was detected using the EDTA disk diffusion synergy test. Statistical analysis was done using the SPSS 11 package (SPSS Inc., Chicago, IL). Out of the 224 P. aeruginosa isolates, 100% were susceptible to polymyxin B and colistin, 92·8% were sensitive to imipenem, 38% showed resistance to gentamicin followed by ceftazidime (31·69%) and meropenem (33·03). Sixteen (7·14%) isolates showed MBL production. Infection caused by drug-resistant P. aeruginosa is important to identify as it poses a therapeutic problem and is also a serious concern for infection control management. The acquired resistance genes can be horizontally transferred to other pathogens or commensals if aseptic procedures are not followed. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  13. Biofilm Formation and β-Lactamase Production in Burn Isolates of Pseudomonas aeruginosa

    PubMed Central

    Heydari, Samira; Eftekhar, Fereshteh

    2015-01-01

    Background: Pseudomonas aeruginosa is an important nosocomial pathogen characterized by its innate resistance to multiple antimicrobial agents. Plasmid-mediated drug resistance also occurs by the production of extended-spectrum β-lactamases (ESBL), metallo β-lactamases (MBL), and AmpC β-lactamases. Another important factor for establishment of chronic infections by P. aeruginosa is biofilm formation mediated by the psl gene cluster. Objectives: The aim of this study was to evaluate biofilm formation and presence of the pslA gene in burn isolates of P. aeruginosa as well as the association of antibiotic resistance, MBL, ESBL and AmpC β-lactamase production with biofilm formation among the isolates. Materials and Methods: Sixty-two burn isolates of P. aeruginosa were obtained from Shahid Motahari Hospital in Tehran from August to October 2011. Antibiotic susceptibility was determined by the disc diffusion assay. MBL, AmpC and ESBL production were screened using the double disc synergy test, AmpC disc test and combined disc diffusion assay, respectively. The potential to form biofilm was measured using the microtiter plate assay and pslA gene was detected using specific primers and PCR. Results: Biofilm formation was observed in 43.5% of the isolates, of which 66.7% produced strong and 33.3% formed weak biofilms. All biofilm-positive and 14.2% of biofilm-negative isolates harbored the pslA gene. MBL, AmpC and ESBL production were significantly higher in the biofilm-positive isolates (70.3%, 62.9% and 33.3%, respectively) compared to the biofilm-negative strains (31.4%, 34.2% and 20%, respectively). Overall, 19 isolates (30.6%) co-produced MBL and AmpC, among which the majority were biofilm-positive (63.1%). Finally, four isolates (6.4%) had all three enzymes, of which 3 (75%) produced biofilm. Conclusions: Biofilm formation (both strong and weak) strongly correlated with pslA gene carriage. Biofilm formation also correlated with MBL and AmpC

  14. Production of chitinase from shellfish waste by Pseudomonas aeruginosa K-187.

    PubMed

    Wang, S L; Chiou, S H; Chang, W T

    1997-04-01

    The production of chitinolytic enzyme by Pseudomonas aeruginosa K-187, using shrimp and crab shell powder (SCSP) as the carbon source, was studied. It was observed that chemically treated SCSP induced a significant increase of enzyme production, as compared with untreated SCSP. Spent HCl and NaOH from the chitin production industry was used to process SCSP. Various strategies of SCSP processing are examined and compared in terms of chitinolytic enzyme production. A three-and-one-half-fold increase of enzyme production (0.68 U/ml to 2.4 U/ml) was attained using HCl/NaOH treated SCSP. The microorganism (K-187) was isolated from soil in Taiwan and has been characterized and reported in a previous paper.

  15. Rhamnolipid production by pseudomonas aeruginosa GIM 32 using different substrates including molasses distillery wastewater.

    PubMed

    Li, An-hua; Xu, Mei-ying; Sun, Wei; Sun, Guo-ping

    2011-03-01

    A rhamnolipid production strain newly isolated from oil-contaminated soil was identified as Pseudomonas aeruginosa GIM32 by its morphology and 16S rDNA sequence analysis. The effect of carbon source and carbon to nitrogen (C/N) ratio on rhamnolipids production was investigated. Palm oil was favorable as a carbon source for rhamnolipid production. The maximum biomass and rhamnolipid concentration were 8.24 g/L and 30.4 g/L, respectively, with an optimization medium containing 50 g/L palm oil and 5 g/L sodium nitrate. Molasses distillery wastewater as an unconventional substrate for rhamnolipid production was investigated. It was found that 2.6 g/L of rhamnolipids was produced; this amount was higher than that of past reports using wastewater as a substrate. In addition, 44% of the chemical oxygen demand of wastewater was removed at the same time under the optimization condition. Eleven kinds of different molecular weight rhamnolipid homologues were identified in the rhamnolipids obtained from molasses distillery wastewater by P. aeruginosa GIM32 by LC-MS analysis.

  16. Comparative effects of inorganic and organic nitrogen on the growth and microcystin production of Microcystis aeruginosa.

    PubMed

    Yan, YangWei; Dai, RuiHua; Liu, Yan; Gao, JiaYi; Wu, XuanHao

    2015-05-01

    Nitrogen causes the frequent occurrence of harmful algal blooms and possible microcystin production. The effects of ammonia and alanine (Ala) on the growth and microcystin production of Microcystis aeruginosa were investigated using an isotope tracer ((15)N). The results indicated that Ala was directly used by M. aeruginosa and contributed to biomass formation amounting to 2.1 × 10(7) cells mL(-1) on day 48, compared with only 6.2 × 10(6) cells mL(-1) from ammonia alone. Microcystin-LR production with Ala was less than that of ammonia, which peaked at 50.2 fg cell(-1) on day 6. Liquid chromatographic analysis with tandem mass spectrometry of (15)N-microcystin-LR suggested that (15)N from ammonia was probably synthesized into the arginine residue. By contrast, (15)N from Ala was assimilated into the Ala, leucine, the iso-linked (2R,3S)-3-methylaspartic acid, arginine, and certain unusual C20 amino acid residues. The results represent the forward steps in the determination of the nitrogen forms that fuel toxin production and blooms.

  17. Production of metallo-β-lactamase among Pseudomonas aeruginosa strains isolated in the State of Sergipe, Brazil.

    PubMed

    Costa, Lívia Maria do Amorim; Fleming, Maria Emília de Castro Kling; Paula, Geraldo Renato de; Teixeira, Lenise Arneiro; Mondino, Pedro Juan José; de Mondino, Sílvia Susana Bona; Mendonça-Souza, Cláudia Rezende de Vieira

    2015-01-01

    Acquired production of metallo-β-lactamases is an important mechanism of resistance in Pseudomonas aeruginosa. The objective of this study was to investigate the production of metallo-β-lactamase and the genetic diversity among ceftazidime-resistant P. aeruginosa isolates from State of Sergipe, Brazil. Metallo-β-lactamase was investigated using the disk approximation test and polymerase chain reaction (PCR). Genetic diversity was evaluated by pulsed-field gel electrophoresis (PFGE). A total of 48 (51.6%) isolates were resistant to ceftazidime. Six (12.2%) of these were positive for metallo-β-lactamase production. Only two (4.1%) of the ceftazidime-resistant isolates carried the bla SPM-1 gene. Production of metallo-β-lactamases was not the main mechanism of resistance to ceftazidime and carbapenems among P. aeruginosa strains in Sergipe, Brazil.

  18. Enhancing the Feasibility of Microcystis aeruginosa as a Feedstock for Bioethanol Production under the Influence of Various Factors

    PubMed Central

    Lee, Moon Geon; Seo, Hyo Jin; Shin, Jin Hyuk; Shin, Tai Sun; Kim, Min Yong; Choi, Jong Il

    2016-01-01

    Microcystis aeruginosa, a freshwater microalga, is capable of producing and accumulating different types of sugars in its biomass which make it a good feedstock for bioethanol production. Present study aims to investigate the effect of different factors increasing growth rate and carbohydrates productivity of M. aeruginosa. MF media (modified BG11 media) and additional ingredients such as aminolevulinic acid (2 mM), lysine (2.28 mM), alanine (1 mM), and Naphthalene acetic acid (1 mM) as cytokine promoted M. aeruginosa growth and sugar contents. Salmonella showed growth-assisting effect on M. aeruginosa. Enhanced growth rate and carbohydrates contents were observed in M. aeruginosa culture grown at 25°C under red LED light of 90 μmolm−2s−1 intensity. More greenish and carbohydrates rich M. aeruginosa biomass was prepared (final OD660 nm = 2.21 and sugar contents 10.39 mM/mL) as compared to control (maximum OD660 nm = 1.4 and sugar contents 3 mM/mL). The final algae biomass was converted to algae juice through a specific pretreatment method. The resulted algae Juice was used as a substrate in fermentation process. Highest yield of bioethanol (50 mM/mL) was detected when Brettanomyces custersainus, Saccharomyces cerevisiae, and Pichia stipitis were used in combinations for fermentation process as compared to their individual fermentation. The results indicated the influence of different factors on the growth rate and carbohydrates productivity of M. aeruginosa and its feasibility as a feedstock for fermentative ethanol production. PMID:27556034

  19. Enhancing the Feasibility of Microcystis aeruginosa as a Feedstock for Bioethanol Production under the Influence of Various Factors.

    PubMed

    Khan, Muhammad Imran; Lee, Moon Geon; Seo, Hyo Jin; Shin, Jin Hyuk; Shin, Tai Sun; Yoon, Yang Ho; Kim, Min Yong; Choi, Jong Il; Kim, Jong Deog

    2016-01-01

    Microcystis aeruginosa, a freshwater microalga, is capable of producing and accumulating different types of sugars in its biomass which make it a good feedstock for bioethanol production. Present study aims to investigate the effect of different factors increasing growth rate and carbohydrates productivity of M. aeruginosa. MF media (modified BG11 media) and additional ingredients such as aminolevulinic acid (2 mM), lysine (2.28 mM), alanine (1 mM), and Naphthalene acetic acid (1 mM) as cytokine promoted M. aeruginosa growth and sugar contents. Salmonella showed growth-assisting effect on M. aeruginosa. Enhanced growth rate and carbohydrates contents were observed in M. aeruginosa culture grown at 25°C under red LED light of 90 μmolm(-2)s(-1) intensity. More greenish and carbohydrates rich M. aeruginosa biomass was prepared (final OD660 nm = 2.21 and sugar contents 10.39 mM/mL) as compared to control (maximum OD660 nm = 1.4 and sugar contents 3 mM/mL). The final algae biomass was converted to algae juice through a specific pretreatment method. The resulted algae Juice was used as a substrate in fermentation process. Highest yield of bioethanol (50 mM/mL) was detected when Brettanomyces custersainus, Saccharomyces cerevisiae, and Pichia stipitis were used in combinations for fermentation process as compared to their individual fermentation. The results indicated the influence of different factors on the growth rate and carbohydrates productivity of M. aeruginosa and its feasibility as a feedstock for fermentative ethanol production.

  20. Natural Product Anacardic Acid from Cashew Nut Shells Stimulates Neutrophil Extracellular Trap Production and Bactericidal Activity.

    PubMed

    Hollands, Andrew; Corriden, Ross; Gysler, Gabriela; Dahesh, Samira; Olson, Joshua; Raza Ali, Syed; Kunkel, Maya T; Lin, Ann E; Forli, Stefano; Newton, Alexandra C; Kumar, Geetha B; Nair, Bipin G; Perry, J Jefferson P; Nizet, Victor

    2016-07-01

    Emerging antibiotic resistance among pathogenic bacteria is an issue of great clinical importance, and new approaches to therapy are urgently needed. Anacardic acid, the primary active component of cashew nut shell extract, is a natural product used in the treatment of a variety of medical conditions, including infectious abscesses. Here, we investigate the effects of this natural product on the function of human neutrophils. We find that anacardic acid stimulates the production of reactive oxygen species and neutrophil extracellular traps, two mechanisms utilized by neutrophils to kill invading bacteria. Molecular modeling and pharmacological inhibitor studies suggest anacardic acid stimulation of neutrophils occurs in a PI3K-dependent manner through activation of surface-expressed G protein-coupled sphingosine-1-phosphate receptors. Neutrophil extracellular traps produced in response to anacardic acid are bactericidal and complement select direct antimicrobial activities of the compound.

  1. Natural Product Anacardic Acid from Cashew Nut Shells Stimulates Neutrophil Extracellular Trap Production and Bactericidal Activity*

    PubMed Central

    Hollands, Andrew; Corriden, Ross; Gysler, Gabriela; Dahesh, Samira; Olson, Joshua; Raza Ali, Syed; Kunkel, Maya T.; Lin, Ann E.; Forli, Stefano; Newton, Alexandra C.; Kumar, Geetha B.; Nair, Bipin G.; Perry, J. Jefferson P.; Nizet, Victor

    2016-01-01

    Emerging antibiotic resistance among pathogenic bacteria is an issue of great clinical importance, and new approaches to therapy are urgently needed. Anacardic acid, the primary active component of cashew nut shell extract, is a natural product used in the treatment of a variety of medical conditions, including infectious abscesses. Here, we investigate the effects of this natural product on the function of human neutrophils. We find that anacardic acid stimulates the production of reactive oxygen species and neutrophil extracellular traps, two mechanisms utilized by neutrophils to kill invading bacteria. Molecular modeling and pharmacological inhibitor studies suggest anacardic acid stimulation of neutrophils occurs in a PI3K-dependent manner through activation of surface-expressed G protein-coupled sphingosine-1-phosphate receptors. Neutrophil extracellular traps produced in response to anacardic acid are bactericidal and complement select direct antimicrobial activities of the compound. PMID:27226531

  2. Simultaneous production of alkaline lipase and protease by antibiotic and heavy metal tolerant Pseudomonas aeruginosa.

    PubMed

    Bisht, Deepali; Yadav, Santosh Kumar; Gautam, Pallavi; Darmwal, Nandan Singh

    2013-09-01

    An efficient bacterial strain capable of simultaneous production of lipase and protease in a single production medium was isolated. Thirty six bacterial strains, isolated from diverse habitats, were screened for their lipolytic and proteolytic activity. Of these, only one bacterial strain was found to be lipase and protease producer. The 16S rDNA sequencing and phylogenetic analyses revealed that strain (NSD-09) was in close identity to Pseudomonas aeruginosa. The maximum lipase (221.4 U/ml) and protease (187.9 U/ml) activities were obtained after 28 and 24 h of incubation, respectively at pH 9.0 and 37 °C. Castor oil and wheat bran were found to be the best substrate for lipase and protease production, respectively. The strain also exhibited high tolerance to lead (1450 µg/ml) and chromium (1000 µg/ml) in agar plates. It also showed tolerance to other heavy metals, such as Co(+2) , Zn(+2) , Hg(+2) , Ni(+2) and Cd(+2) . Therefore, this strain has scope for tailing bioremediation. Presumably, this is the first attempt on P. aeruginosa to explore its potential for both industrial and environmental applications.

  3. Human host defense peptide LL-37 stimulates virulence factor production and adaptive resistance in Pseudomonas aeruginosa.

    PubMed

    Strempel, Nikola; Neidig, Anke; Nusser, Michael; Geffers, Robert; Vieillard, Julien; Lesouhaitier, Olivier; Brenner-Weiss, Gerald; Overhage, Joerg

    2013-01-01

    A multitude of different virulence factors as well as the ability to rapidly adapt to adverse environmental conditions are important features for the high pathogenicity of Pseudomonas aeruginosa. Both virulence and adaptive resistance are tightly controlled by a complex regulatory network and respond to external stimuli, such as host signals or antibiotic stress, in a highly specific manner. Here, we demonstrate that physiological concentrations of the human host defense peptide LL-37 promote virulence factor production as well as an adaptive resistance against fluoroquinolone and aminoglycoside antibiotics in P. aeruginosa PAO1. Microarray analyses of P. aeruginosa cells exposed to LL-37 revealed an upregulation of gene clusters involved in the production of quorum sensing molecules and secreted virulence factors (PQS, phenazine, hydrogen cyanide (HCN), elastase and rhamnolipids) and in lipopolysaccharide (LPS) modification as well as an induction of genes encoding multidrug efflux pumps MexCD-OprJ and MexGHI-OpmD. Accordingly, we detected significantly elevated levels of toxic metabolites and proteases in bacterial supernatants after LL-37 treatment. Pre-incubation of bacteria with LL-37 for 2 h led to a decreased susceptibility towards gentamicin and ciprofloxacin. Quantitative Realtime PCR results using a PAO1-pqsE mutant strain present evidence that the quinolone response protein and virulence regulator PqsE may be implicated in the regulation of the observed phenotype in response to LL-37. Further experiments with synthetic cationic antimicrobial peptides IDR-1018, 1037 and HHC-36 showed no induction of pqsE expression, suggesting a new role of PqsE as highly specific host stress sensor.

  4. Human Host Defense Peptide LL-37 Stimulates Virulence Factor Production and Adaptive Resistance in Pseudomonas aeruginosa

    PubMed Central

    Strempel, Nikola; Neidig, Anke; Nusser, Michael; Geffers, Robert; Vieillard, Julien; Lesouhaitier, Olivier; Brenner-Weiss, Gerald; Overhage, Joerg

    2013-01-01

    A multitude of different virulence factors as well as the ability to rapidly adapt to adverse environmental conditions are important features for the high pathogenicity of Pseudomonas aeruginosa. Both virulence and adaptive resistance are tightly controlled by a complex regulatory network and respond to external stimuli, such as host signals or antibiotic stress, in a highly specific manner. Here, we demonstrate that physiological concentrations of the human host defense peptide LL-37 promote virulence factor production as well as an adaptive resistance against fluoroquinolone and aminoglycoside antibiotics in P. aeruginosa PAO1. Microarray analyses of P. aeruginosa cells exposed to LL-37 revealed an upregulation of gene clusters involved in the production of quorum sensing molecules and secreted virulence factors (PQS, phenazine, hydrogen cyanide (HCN), elastase and rhamnolipids) and in lipopolysaccharide (LPS) modification as well as an induction of genes encoding multidrug efflux pumps MexCD-OprJ and MexGHI-OpmD. Accordingly, we detected significantly elevated levels of toxic metabolites and proteases in bacterial supernatants after LL-37 treatment. Pre-incubation of bacteria with LL-37 for 2 h led to a decreased susceptibility towards gentamicin and ciprofloxacin. Quantitative Realtime PCR results using a PAO1-pqsE mutant strain present evidence that the quinolone response protein and virulence regulator PqsE may be implicated in the regulation of the observed phenotype in response to LL-37. Further experiments with synthetic cationic antimicrobial peptides IDR-1018, 1037 and HHC-36 showed no induction of pqsE expression, suggesting a new role of PqsE as highly specific host stress sensor. PMID:24349231

  5. Salt stress represses production of extracellular proteases in Bacillus pumilus.

    PubMed

    Liu, R F; Huang, C L; Feng, H

    2015-05-11

    Bacillus pumilus is able to secrete subtilisin-like prote-ases, one of which has been purified and characterized biochemically, demonstrating great potential for use in industrial applications. In the current study, the biosynthesis and transcription of extracellular pro-teases in B. pumilus (BA06) under salt stress were investigated using various methods, including a proteolytic assay, zymogram analysis, and real-time PCR. Our results showed that total extracellular proteolytic activity, both in fermentation broth and on milk-containing agar plates, was considerably repressed by salt in a dosage-dependent manner. As Bacillus species usually secret multiple extracellular proteases, a vari-ety of individual extracellular protease encoding genes were selected for real-time PCR analysis. It was shown that proteases encoded by the aprE and aprX genes were the major proteases in the fermentation broth in terms of their transcripts in B. pumilus. Further, transcription of aprE, aprX, and epr genes was indeed repressed by salt stress. In con-trast, transcription of other genes (e.g., vpr and wprA) was not repressed or significantly affected by the salt. Conclusively, salt stress represses total extracellular proteolytic activity in B. pumilus, which can largely be ascribed to suppression of the major protease-encoding genes (aprE, aprX) at the transcriptional level. In contrast, transcription of other pro-tease-encoding genes (e.g., vpr, wprA) was not repressed by salt stress.

  6. Discovery of an inhibitor of the production of the Pseudomonas aeruginosa virulence factor pyocyanin in wild-type cells

    PubMed Central

    Morkunas, Bernardas; Gal, Balint; Galloway, Warren R J D; Hodgkinson, James T; Ibbeson, Brett M; Sing Tan, Yaw; Welch, Martin

    2016-01-01

    Summary Pyocyanin is a small molecule produced by Pseudomonas aeruginosa that plays a crucial role in the pathogenesis of infections by this notorious opportunistic pathogen. The inhibition of pyocyanin production has been identified as an attractive antivirulence strategy for the treatment of P. aeruginosa infections. Herein, we report the discovery of an inhibitor of pyocyanin production in cultures of wild-type P. aeruginosa which is based around a 4-alkylquinolin-2(1H)-one scaffold. To the best of our knowledge, this is the first reported example of pyocyanin inhibition by a compound based around this molecular framework. The compound may therefore be representative of a new structural sub-class of pyocyanin inhibitors, which could potentially be exploited in in a therapeutic context for the development of critically needed new antipseudomonal agents. In this context, the use of wild-type cells in this study is notable, since the data obtained are of direct relevance to native situations. The compound could also be of value in better elucidating the role of pyocyanin in P. aeruginosa infections. Evidence suggests that the active compound reduces the level of pyocyanin production by inhibiting the cell–cell signalling mechanism known as quorum sensing. This could have interesting implications; quorum sensing regulates a range of additional elements associated with the pathogenicity of P. aeruginosa and there is a wide range of other potential applications where the inhibition of quorum sensing is desirable. PMID:27559393

  7. Discovery of an inhibitor of the production of the Pseudomonas aeruginosa virulence factor pyocyanin in wild-type cells.

    PubMed

    Morkunas, Bernardas; Gal, Balint; Galloway, Warren R J D; Hodgkinson, James T; Ibbeson, Brett M; Tan, Yaw Sing; Welch, Martin; Spring, David R

    2016-01-01

    Pyocyanin is a small molecule produced by Pseudomonas aeruginosa that plays a crucial role in the pathogenesis of infections by this notorious opportunistic pathogen. The inhibition of pyocyanin production has been identified as an attractive antivirulence strategy for the treatment of P. aeruginosa infections. Herein, we report the discovery of an inhibitor of pyocyanin production in cultures of wild-type P. aeruginosa which is based around a 4-alkylquinolin-2(1H)-one scaffold. To the best of our knowledge, this is the first reported example of pyocyanin inhibition by a compound based around this molecular framework. The compound may therefore be representative of a new structural sub-class of pyocyanin inhibitors, which could potentially be exploited in in a therapeutic context for the development of critically needed new antipseudomonal agents. In this context, the use of wild-type cells in this study is notable, since the data obtained are of direct relevance to native situations. The compound could also be of value in better elucidating the role of pyocyanin in P. aeruginosa infections. Evidence suggests that the active compound reduces the level of pyocyanin production by inhibiting the cell-cell signalling mechanism known as quorum sensing. This could have interesting implications; quorum sensing regulates a range of additional elements associated with the pathogenicity of P. aeruginosa and there is a wide range of other potential applications where the inhibition of quorum sensing is desirable.

  8. Effects of fertilizer-urea on growth, photosynthetic activity and microcystins production of Microcystis aeruginosa isolated from Dianchi Lake.

    PubMed

    Huang, Wenmin; Bi, Yonghong; Hu, Zhengyu

    2014-05-01

    Urea is the most frequently applied nitrogen (N) fertilizer in agriculture, while its loss is assumed triggering algal blooms in adjacent water bodies. In this context the present study assessed the growth, photosynthetic activity as well as toxin production of Microcystis aeruginosa at different urea concentrations (0.125, 1.25, 12.5, 250 and 2,500 mg/L) using BG11 (containing 250 mg/L NO3(-)-N) as control. The results showed for all endpoints that M. aeruginosa is capable of using urea as N source: the two highest urea treatments delivered comparable values like the control. Low urea concentrations (0.125 and 1.25 mg/L), which were comparable to environmental urea levels, did not sustainably promote the growth, photosynthesis and toxin production of the test species. While, in certain microenvironments urea might potentially reach the concentrations that may affect M. aeruginosa.

  9. Salicylic acid reduces the production of several potential virulence factors of Pseudomonas aeruginosa associated with microbial keratitis.

    PubMed

    Bandara, Mahesh B K; Zhu, Hua; Sankaridurg, Padmaja R; Willcox, Mark D P

    2006-10-01

    Pseudomonas aeruginosa is a common cause of contact-lens-related microbial keratitis. This bacterium is becoming increasingly resistant to antibiotics, and even if the infection can be treated with antibiotics, damage to the cornea resulting from the combined effect of bacteria and host factors can lead to loss of vision. The purpose of this study was to test the effect of salicylic acid on the production of potential virulence factors during the growth of P. aeruginosa. Bacterial cells were grown in a subinhibitory concentration of salicylic acid, and supernatants were collected and analyzed for presence of proteases by using zymography and hydrolysis of chromogenic substrates. The supernatants were also analyzed for the amount of acetylated homoserine lactones by using bacterial reporter strains. Pseudomonas cells from salicylic acid cultures were analyzed for their twitching and swimming motility as well as their ability to invade or cause the death of corneal epithelial cells. Growth in a subinhibitory concentration of salicylic acid resulted in a significant reduction in the number of bacterial cells and a reduction in the rate of the number of bacteria increasing during logarithmic growth, but the time to reach the stationary phase of growth was unchanged. These changes in growth pattern affected the amount of acylated homoserine lactones produced by P. aeruginosa 6294. Also affected by growth in salicylic acid was the ability of strain 6294 to show twitching or swimming motility. Salicylic acid also reduced the invasion of strain 6294 into corneal epithelial cells and the epithelial cell death caused by strain 6206. Furthermore, production of proteases by P. aeruginosa was significantly reduced by growth in salicylic acid. The results of this study clearly demonstrate that salicylic acid has a significant impact on several potential virulence factors of P. aeruginosa that may be involved in the production of microbial keratitis. These effects were probably

  10. New Insights about Antibiotic Production by Pseudomonas aeruginosa: A Gene Expression Analysis

    PubMed Central

    Gionco, Bárbara; Tavares, Eliandro R.; de Oliveira, Admilton G.; Yamada-Ogatta, Sueli F.; do Carmo, Anderson O.; Pereira, Ulisses de Pádua; Chideroli, Roberta T.; Simionato, Ane S.; Navarro, Miguel O. P.; Chryssafidis, Andreas L.; Andrade, Galdino

    2017-01-01

    The bacterial resistance for antibiotics is one of the most important problems in public health and only a small number of new products are in development. Antagonistic microorganisms from soil are a promising source of new candidate molecules. Products of secondary metabolism confer adaptive advantages for their producer, in the competition for nutrients in the microbial community. The biosynthesis process of compounds with antibiotic activity is the key to optimize their production and the transcriptomic study of microorganisms is of great benefit for the discovery of these metabolic pathways. Pseudomonas aeruginosa LV strain growing in the presence of copper chloride produces a bioactive organometallic compound, which has a potent antimicrobial activity against various microorganisms. The objective of this study was to verify overexpressed genes and evaluate their relation to the organometallic biosynthesis in this microorganism. P. aeruginosa LV strain was cultured in presence and absence of copper chloride. Two methods were used for transcriptomic analysis, genome reference-guided assembly and de novo assembly. The genome referenced analysis identified nine upregulated genes when bacteria were exposed to copper chloride, while the De Novo Assembly identified 12 upregulated genes. Nineteen genes can be related to an increased microbial metabolism for the extrusion process of exceeding intracellular copper. Two important genes are related to the biosynthesis of phenazine and tetrapyrroles compounds, which can be involved in the bioremediation of intracellular copper and we suggesting that may involve in the biosynthesis of the organometallic compound. Additional studies are being carried out to further prove the function of the described genes and relate them to the biosynthetic pathway of the organometallic compound. PMID:28966922

  11. Extracellular polymeric substances buffer against the biocidal effect of H2O2 on the bloom-forming cyanobacterium Microcystis aeruginosa.

    PubMed

    Gao, Lei; Pan, Xiangliang; Zhang, Daoyong; Mu, Shuyong; Lee, Duu-Jong; Halik, Umut

    2015-02-01

    H2O2 is an emerging biocide for bloom-forming cyanobacteria. It is important to investigate the H2O2 scavenging ability of extracellular polymeric substances (EPS) of cyanobacteria because EPS with strong antioxidant activity may "waste" considerable amounts of H2O2 before it kills the cells. In this study, the buffering capacity against H2O2 of EPS from the bloom-forming cyanobacterium Microcystis aeruginosa was investigated. IC50 values for the ability of EPS and vitamin C (VC) to scavenge 50% of the initial H2O2 concentration were 0.097 and 0.28 mg mL(-1), respectively, indicating the higher H2O2 scavenging activity of EPS than VC. Both proteins and polysaccharides are significantly decomposed by H2O2 and the polysaccharides were more readily decomposed than proteins. H2O2 consumed by the EPS accounted for 50% of the total amount of H2O2 consumed by the cells. Cell growth and photosynthesis were reduced more for EPS-free cells than EPS coated cells when the cells were treated with 0.1 or 0.2 mg mL(-1) H2O2, and the maximum photochemical efficiency Fv/Fm of EPS coated cells recovered to higher values than EPS-free cells. Concentrations of H2O2 above 0.3 mg mL(-1) completely inhibited photosynthesis and no recovery was observed for both EPS-free and EPS coated cells. This shows that EPS has some buffering capacity against the killing effect of H2O2 on cyanobacterial cells. Such a strong H2O2 scavenging ability of EPS is not favorable for killing bloom-forming cyanobacteria. The high H2O2 scavenging capacity means considerable amounts of H2O2 have to be used to break through the EPS barrier before H2O2 exerts any killing effects on the cells. It is therefore necessary to determine the H2O2 scavenging capacity of the EPS of various bloom-forming cyanobacteria so that the cost-effective amount of H2O2 needed to be used for killing the cyanobacteria can be estimated.

  12. Heterologous production of death ligands' and death receptors' extracellular domains: structural features and efficient systems.

    PubMed

    Muraki, Michiro

    2012-08-01

    The extracellular domains of death ligands and those of death receptors are closely related to many serious human diseases through the initiation of apoptosis. Recombinant production of the extracellular domains has been investigated due to demand for a large amount of purified samples, which are a prerequisite for their biochemical characterization and constitute the fundamentals of medical applications. This review focuses on the recombinant production of extracellular domains of the major members of death ligand and death receptor families using non-mammalian expression systems with an emphasis on Fas ligand and Fas receptor. In contrast to the efficient production of the functional extracellular domains of TRAIL, TNFα and LTα by intracellular expression systems using Escherichia coli or Pichia pastoris, that of Fas ligand requires the secretory expression systems using P. pastoris or Dictyostelium discoideum, and the productivity in P. pastoris was largely dependent on tag sequence, potential N-glycosylation site and expressed protein region. On the other hand, the exploitation of insect cell systems is generally useful for the preparation of functional extracellular domains of death receptors containing many disulfide bridges in the absence of extended secondary structure, and a Bombyx mori larvae secretion system presented a superior productivity for human Fas receptor extracellular domain. Based on the results obtained so far, further efforts should be devoted to the artificial control of death ligand - death receptor interactions in order to make a contribution to medicine, represented by the development of novel biopharmaceuticals.

  13. Extracellular production of reactive oxygen species during seed germination and early seedling growth in Pisum sativum.

    PubMed

    Kranner, Ilse; Roach, Thomas; Beckett, Richard P; Whitaker, Claire; Minibayeva, Farida V

    2010-07-01

    Extracellularly produced reactive oxygen species (ROS) play key roles in plant development, but their significance for seed germination and seedling establishment is poorly understood. Here we report on the characteristics of extracellular ROS production during seed germination and early seedling development in Pisum sativum. Extracellular superoxide (O2(.-)) and hydrogen peroxide (H2O2) production and the activity of extracellular peroxidases (ECPOX) were determined spectrophotometrically, and O2(.-) was identified by electron paramagnetic resonance. Cell wall fractionation of cotyledons, seed coats and radicles was used in conjunction with polyacrylamide gel electrophoresis to investigate substrate specificity and molecular masses of O2(.-)-producing enzymes, and the forces that bind them to the cell wall. Seed imbibition was accompanied by an immediate, transient burst of redox activity that involved O2(.-) and other substances capable of oxidizing epinephrine, and also H2O2. At the final stages of germination, coinciding with radicle elongation, a second increase in O2(.-) but not H2O2 production occurred and was correlated with an increase in extracellular ECPOX activity. Electrophoretic analyses of cell wall fractions demonstrated the presence of enzymes capable of O2(.-) production. The significance of extracellular ROS production during seed germination and early seedling development, and also during seed aging, is discussed.

  14. Inhibition of Biofilm Formation, Quorum Sensing and Infection in Pseudomonas aeruginosa by Natural Products-Inspired Organosulfur Compounds

    PubMed Central

    Cady, Nathaniel C.; McKean, Kurt A.; Behnke, Jason; Kubec, Roman; Mosier, Aaron P.; Kasper, Stephen H.; Burz, David S.; Musah, Rabi A.

    2012-01-01

    Using a microplate-based screening assay, the effects on Pseudomonas aeruginosa PAO1 biofilm formation of several S-substituted cysteine sulfoxides and their corresponding disulfide derivatives were evaluated. From our library of compounds, S-phenyl-L-cysteine sulfoxide and its breakdown product, diphenyl disulfide, significantly reduced the amount of biofilm formation by P. aeruginosa at levels equivalent to the active concentration of 4-nitropyridine-N-oxide (NPO) (1 mM). Unlike NPO, which is an established inhibitor of bacterial biofilms, our active compounds did not reduce planktonic cell growth and only affected biofilm formation. When used in a Drosophila-based infection model, both S-phenyl-L-cysteine sulfoxide and diphenyl disulfide significantly reduced the P. aeruginosa recovered 18 h post infection (relative to the control), and were non-lethal to the fly hosts. The possibility that the observed biofilm inhibitory effects were related to quorum sensing inhibition (QSI) was investigated using Escherichia coli-based reporters expressing P. aeruginosa lasR or rhIR response proteins, as well as an endogenous P. aeruginosa reporter from the lasI/lasR QS system. Inhibition of quorum sensing by S-phenyl-L-cysteine sulfoxide was observed in all of the reporter systems tested, whereas diphenyl disulfide did not exhibit QSI in either of the E. coli reporters, and showed very limited inhibition in the P. aeruginosa reporter. Since both compounds inhibit biofilm formation but do not show similar QSI activity, it is concluded that they may be functioning by different pathways. The hypothesis that biofilm inhibition by the two active compounds discovered in this work occurs through QSI is discussed. PMID:22715388

  15. Inhibition of biofilm formation, quorum sensing and infection in Pseudomonas aeruginosa by natural products-inspired organosulfur compounds.

    PubMed

    Cady, Nathaniel C; McKean, Kurt A; Behnke, Jason; Kubec, Roman; Mosier, Aaron P; Kasper, Stephen H; Burz, David S; Musah, Rabi A

    2012-01-01

    Using a microplate-based screening assay, the effects on Pseudomonas aeruginosa PAO1 biofilm formation of several S-substituted cysteine sulfoxides and their corresponding disulfide derivatives were evaluated. From our library of compounds, S-phenyl-L-cysteine sulfoxide and its breakdown product, diphenyl disulfide, significantly reduced the amount of biofilm formation by P. aeruginosa at levels equivalent to the active concentration of 4-nitropyridine-N-oxide (NPO) (1 mM). Unlike NPO, which is an established inhibitor of bacterial biofilms, our active compounds did not reduce planktonic cell growth and only affected biofilm formation. When used in a Drosophila-based infection model, both S-phenyl-L-cysteine sulfoxide and diphenyl disulfide significantly reduced the P. aeruginosa recovered 18 h post infection (relative to the control), and were non-lethal to the fly hosts. The possibility that the observed biofilm inhibitory effects were related to quorum sensing inhibition (QSI) was investigated using Escherichia coli-based reporters expressing P. aeruginosa lasR or rhIR response proteins, as well as an endogenous P. aeruginosa reporter from the lasI/lasR QS system. Inhibition of quorum sensing by S-phenyl-L-cysteine sulfoxide was observed in all of the reporter systems tested, whereas diphenyl disulfide did not exhibit QSI in either of the E. coli reporters, and showed very limited inhibition in the P. aeruginosa reporter. Since both compounds inhibit biofilm formation but do not show similar QSI activity, it is concluded that they may be functioning by different pathways. The hypothesis that biofilm inhibition by the two active compounds discovered in this work occurs through QSI is discussed.

  16. Facultative control of matrix production optimizes competitive fitness in Pseudomonas aeruginosa PA14 biofilm models.

    PubMed

    Madsen, Jonas S; Lin, Yu-Cheng; Squyres, Georgia R; Price-Whelan, Alexa; de Santiago Torio, Ana; Song, Angela; Cornell, William C; Sørensen, Søren J; Xavier, Joao B; Dietrich, Lars E P

    2015-12-01

    As biofilms grow, resident cells inevitably face the challenge of resource limitation. In the opportunistic pathogen Pseudomonas aeruginosa PA14, electron acceptor availability affects matrix production and, as a result, biofilm morphogenesis. The secreted matrix polysaccharide Pel is required for pellicle formation and for colony wrinkling, two activities that promote access to O2. We examined the exploitability and evolvability of Pel production at the air-liquid interface (during pellicle formation) and on solid surfaces (during colony formation). Although Pel contributes to the developmental response to electron acceptor limitation in both biofilm formation regimes, we found variation in the exploitability of its production and necessity for competitive fitness between the two systems. The wild type showed a competitive advantage against a non-Pel-producing mutant in pellicles but no advantage in colonies. Adaptation to the pellicle environment selected for mutants with a competitive advantage against the wild type in pellicles but also caused a severe disadvantage in colonies, even in wrinkled colony centers. Evolution in the colony center produced divergent phenotypes, while adaptation to the colony edge produced mutants with clear competitive advantages against the wild type in this O2-replete niche. In general, the structurally heterogeneous colony environment promoted more diversification than the more homogeneous pellicle. These results suggest that the role of Pel in community structure formation in response to electron acceptor limitation is unique to specific biofilm models and that the facultative control of Pel production is required for PA14 to maintain optimum benefit in different types of communities.

  17. N-acetylcysteine inhibit biofilms produced by Pseudomonas aeruginosa

    PubMed Central

    2010-01-01

    Background Pseudomonas aeruginosa is a common pathogen in chronic respiratory tract infections. It typically makes a biofilm, which makes treatment of these infections difficult. In this study, we investigated the inhibitory effects of N-acetylcysteine (NAC) on biofilms produced by P. aeruginosa. Results We found that minimum inhibitory concentrations (MICs) of NAC for most isolates of P. aeruginosa were 10 to 40 mg/ml, the combination of NAC and ciprofloxacin (CIP) demonstrated either synergy (50%) or no interaction (50%) against the P. aeruginosa strains. NAC at 0.5 mg/ml could detach mature P. aeruginosa biofilms. Disruption was proportional to NAC concentrations, and biofilms were completely disrupted at 10 mg/ml NAC. Analysis using COMSTAT software also showed that PAO1 biofilm biomass decreased and its heterogeneity increased as NAC concentration increased. NAC and ciprofloxacin showed significant killing of P. aeruginosa in biofilms at 2.5 mg/ml and > 2 MIC, respectively (p < 0.01). NAC-ciprofloxacin combinations consistently decreased viable biofilm-associated bacteria relative to the control; this combination was synergistic at NAC of 0.5 mg/ml and CIP at 1/2MIC (p < 0.01). Extracellular polysaccharides (EPS) production by P. aeruginosa also decreased by 27.64% and 44.59% at NAC concentrations of 0.5 mg/ml and 1 mg/ml. Conclusions NAC has anti-bacterial properties against P. aeruginosa and may detach P. aeruginosa biofilms. Use of NAC may be a new strategy for the treatment of biofilm-associated chronic respiratory infections due to P. aeruginosa, although it would be appropriate to conduct clinical studies to confirm this. PMID:20462423

  18. Furoxan Nitric Oxide Donors Disperse Pseudomonas aeruginosa Biofilms, Accelerate Growth, and Repress Pyoverdine Production.

    PubMed

    Poh, Wee Han; Barraud, Nicolas; Guglielmo, Stefano; Lazzarato, Loretta; Rolando, Barbara; Fruttero, Roberta; Rice, Scott A

    2017-08-18

    The use of nitric oxide (NO) as a signal for biofilm dispersal has been shown to increase the susceptibility of many biofilms to antibiotics, promoting their eradication. The delivery of NO to biofilms can be achieved by using NO donors with different kinetics and properties of NO release that can influence their efficacy as biofilm control agents. In this study, the kinetics of three furoxan derivatives were evaluated. The effects of these NO donors, which have an advantageous pharmacological profile of slower onset with an extended duration of action, on Pseudomonas aeruginosa growth, biofilm development, and dispersal were also characterized. Compound LL4254, which showed a fast rate of NO release, induced biofilm dispersal at approximately 200 μM. While LL4212 and LL4216 have a slower rate of NO release, both compounds could induce biofilm dispersal, under the same treatment conditions, when used at higher concentrations. In addition, LL4212 and LL4216 were found to promote P. aeruginosa growth in iron-limited minimal medium, leading to a faster rate of biofilm formation and glucose utilization, and ultimately resulted in early dispersal of biofilm cells through carbon starvation. High concentrations of LL4216 also repressed production of the siderophore pyoverdine by more than 50-fold, via both NOx-dependent and NOx-independent mechanisms. The effects on growth and pyoverdine levels exerted by the furoxans appeared to be mediated by NO-independent mechanisms, suggesting functional activities of furoxans in addition to their release of NO and nitrite. Overall, this study reveals that secondary effects of furoxans are important considerations for their use as NO-releasing dispersal agents and that these compounds could be potentially redesigned as pyoverdine inhibitors.

  19. Production and characteristics of a heavy metals removing bioflocculant produced by Pseudomonas aeruginosa.

    PubMed

    Eman Zakaria, Gomaa

    2012-01-01

    TIhe flocculating activity ofa bioflocculant produced by Pseudomonas aeruginosa ATCC-10145 using kaolin clay was assayed. The influence of carbon, nitrogen sources, pH and culture temperature on bioflocculant production was investigated. The effects of cationic compounds, bioflocculant dosage, pH and temperature on flocculating activity were also determined. Of the cations tested, Ca2+, K+, Na+, Zn2+, Mg2+ and Cu2+ improved flocculating activity whereas Fe3+ and Al3+ caused its inhibition. The highest flocculating activity was observed at pH 7.0.The bioflocculant had a good flocculating activity of 80.50% for kaolin suspension with a dosage of only 1%. The bioflocculant was heat-stable and its activity was only decreased to 60.16% after heating at 100 degrees C for 60 min. Chemical analyses of the purified bioflocculant indicated that it was a sugar-protein derivative, composed of protein (27%, w/w) and carbohydrate (89%,w/w) including neutral sugar, uronic acid and amino sugar as the principal constituents in the relative weight proportions of 30.6%, 2.35% and 0.78%, respectively. The elemental analysis of the bioflocculant revealed the mass proportion of C, H and N was 19.06, 3.88 and 4.32 (%), correspondingly. Fourier transform infrared analysis showed that the exopolymers consisted of carboxyl, hydroxyl, amino and sugar derivative groups. The heavy metal adsorption by the bioflocculant of Pseudomonas aeruginosa was found to be influenced by the initial metal concentration, bioflocculant concentration and pH of the biosorption solution. This study demonstrates that microbial bioflocculant has potential to be used as an alternative bioremedial tool for industrial effluents and wastewater treatments which are co-contaminated with heavy metals.

  20. Biosurfactant production by Pseudomonas aeruginosa DSVP20 isolated from petroleum hydrocarbon-contaminated soil and its physicochemical characterization.

    PubMed

    Sharma, Deepak; Ansari, Mohammad Javed; Al-Ghamdi, Ahmad; Adgaba, Nuru; Khan, Khalid Ali; Pruthi, Vikas; Al-Waili, Noori

    2015-11-01

    Among 348 microbial strains isolated from petroleum hydrocarbon-contaminated soil, five were selected for their ability to produce biosurfactant based on battery of screening assay including hemolytic activity, surface tension reduction, drop collapse assay, emulsification activity, and cell surface hydrophobicity studies. Of these, bacterial isolate DSVP20 was identified as Pseudomonas aeruginosa (NCBI GenBank accession no. GQ865644) based on biochemical characterization and the 16S rDNA analysis, and it was found to be a potential candidate for biosurfactant production. Maximum biosurfactant production recorded by P. aeruginosa DSVP20 was 6.7 g/l after 72 h at 150 rpm and at a temperature of 30 °C. Chromatographic analysis and high-performance liquid chromatography-mass spectrometry (HPLC-MS) revealed that it was a glycolipid in nature which was further confirmed by nuclear magnetic resonance (NMR) spectroscopy. Bioremediation studies using purified biosurfactant showed that P. aeruginosa DSVP20 has the ability to degrade eicosane (97%), pristane (75%), and fluoranthene (47%) when studied at different time intervals for a total of 7 days. The results of this study showed that the P. aeruginosa DSVP20 and/or biosurfactant produced by this isolate have the potential role in bioremediation of petroleum hydrocarbon-contaminated soil.

  1. Heterologous production of Pseudomonas aeruginosa rhamnolipid under anaerobic conditions for microbial enhanced oil recovery.

    PubMed

    Zhao, F; Shi, R; Zhao, J; Li, G; Bai, X; Han, S; Zhang, Y

    2015-02-01

    The ex situ application of rhamnolipid to enhance oil recovery is costly and complex in terms of rhamnolipid production and transportation, while in situ production of rhamnolipid is restricted by the oxygen-deficient environments of oil reservoirs. To overcome the oxygen-limiting conditions and to circumvent the complex regulation of rhamnolipid biosynthesis in Pseudomonas aeruginosa, an engineered strain Pseudomonas stutzeri Rhl was constructed for heterologous production of rhamnolipid under anaerobic conditions. The rhlABRI genes for rhamnolipid biosynthesis were cloned into a facultative anaerobic strain Ps. stutzeri DQ1 to construct the engineered strain Rhl. Anaerobic production of rhamnolipid was confirmed by thin layer chromatography and Fourier transform infrared analysis. Rhamnolipid product reduced the air-water surface tension to 30.3 mN m(-1) and the oil-water interfacial tension to 0.169 mN m(-1). Rhl produced rhamnolipid of 1.61 g l(-1) using glycerol as the carbon source. Rhl anaerobic culture emulsified crude oil up to EI24 ≈ 74. An extra 9.8% of original crude oil was displaced by Rhl in the core flooding test. Strain Rhl achieved anaerobic production of rhamnolipid and worked well for enhanced oil recovery in the core flooding model. The rhamnolipid produced by Rhl was similar to that of the donor strain SQ6. This is the first study to achieve anaerobic and heterologous production of rhamnolipid. Results demonstrated the potential feasibility of Rhl as a promising strain to enhance oil recovery through anaerobic production of rhamnolipid. © 2014 The Society for Applied Microbiology.

  2. UV-B Exposure Affects the Biosynthesis of Microcystin in Toxic Microcystis aeruginosa Cells and Its Degradation in the Extracellular Space.

    PubMed

    Yang, Zhen; Kong, Fanxiang

    2015-10-20

    Microcystins (MCs) are cyclic hepatotoxic heptapeptides produced by cyanobacteria that can be toxic to aquatic and terrestrial organisms. MC synthesis and degradation are thought to be influenced by several different physical and environmental parameters. In this study, the effects of different intensities of UV-B radiation on MC biosynthesis in Microcystis cells and on its extracellular degradation were investigated by mRNA analysis and degradation experiments. Exposure to UV-B at intensities of 1.02 and 1.45 W/m² not only remarkably inhibited the growth of Microcystis, but also led to a decrease in the MC concentration. In addition, mcyD transcription was decreased under the same UV-B intensities. These results demonstrated that the effects of UV-B exposure on the biosynthesis of MCs in Microcystis cells could be attributed to the regulation of mcy gene transcription. Moreover, the MC concentration was decreased significantly after exposure to different intensities of UV-B radiation. Of the three MC variants (MC-LR, -RR and -YR, L, R and Y are abbreviations of leucine, arginine and tyrosine), MC-LR and MC-YR were sensitive to UV-B radiation, whereas MC-RR was not. In summary, our results showed that UV-B radiation had a negative effect on MC production in Microcystis cells and MC persistence in the extracellular space.

  3. UV-B Exposure Affects the Biosynthesis of Microcystin in Toxic Microcystis aeruginosa Cells and Its Degradation in the Extracellular Space

    PubMed Central

    Yang, Zhen; Kong, Fanxiang

    2015-01-01

    Microcystins (MCs) are cyclic hepatotoxic heptapeptides produced by cyanobacteria that can be toxic to aquatic and terrestrial organisms. MC synthesis and degradation are thought to be influenced by several different physical and environmental parameters. In this study, the effects of different intensities of UV-B radiation on MC biosynthesis in Microcystis cells and on its extracellular degradation were investigated by mRNA analysis and degradation experiments. Exposure to UV-B at intensities of 1.02 and 1.45 W/m2 not only remarkably inhibited the growth of Microcystis, but also led to a decrease in the MC concentration. In addition, mcyD transcription was decreased under the same UV-B intensities. These results demonstrated that the effects of UV-B exposure on the biosynthesis of MCs in Microcystis cells could be attributed to the regulation of mcy gene transcription. Moreover, the MC concentration was decreased significantly after exposure to different intensities of UV-B radiation. Of the three MC variants (MC-LR, -RR and -YR, L, R and Y are abbreviations of leucine, arginine and tyrosine), MC-LR and MC-YR were sensitive to UV-B radiation, whereas MC-RR was not. In summary, our results showed that UV-B radiation had a negative effect on MC production in Microcystis cells and MC persistence in the extracellular space. PMID:26492272

  4. Specific cleavage of human type III and IV collagens by Pseudomonas aeruginosa elastase.

    PubMed Central

    Heck, L W; Morihara, K; McRae, W B; Miller, E J

    1986-01-01

    Purified Pseudomonas aeruginosa elastase cleaved human type III and IV collagens with the formation of specific cleavage products. Furthermore, type I collagen appeared to be slowly cleaved by both P. aeruginosa elastase and alkaline protease. These cleavage fragments from type III and IV collagens were separated from the intact collagen chains by SDS polyacrylamide gradient gel electrophoresis run under reducing conditions, and they were detected by their characteristic Coomassie blue staining pattern. The results of these studies suggest that the pathogenesis of tissue invasion and hemorrhagic tissue necrosis observed in P. aeruginosa infections may be related to the degradation of these collagen types by bacterial extracellular proteases. Images PMID:3079727

  5. Investigation of the physiological relationship between the cyanide-insensitive oxidase and cyanide production in Pseudomonas aeruginosa.

    PubMed

    Zlosnik, James E A; Tavankar, Gholam Reza; Bundy, Jacob G; Mossialos, Dimitris; O'Toole, Ronan; Williams, Huw D

    2006-05-01

    Pseudomonas aeruginosa is an opportunistic pathogen which demonstrates considerable respiratory versatility, possessing up to five terminal oxidases. One oxidase, the cyanide-insensitive oxidase (CIO), has been previously shown to be resistant to the potent respiratory inhibitor cyanide, a toxin that is synthesized by this bacterium. This study investigated the physiological relationship between hydrogen cyanide production and the CIO. It was found that cyanide is produced in P. aeruginosa at similar levels irrespective of its complement of CIO, indicating that the CIO is not an obligatory electron sink for cyanide synthesis. However, MICs for cyanide and growth in its presence demonstrated that the CIO provides P. aeruginosa with protection against the effects of exogenous cyanide. Nevertheless, the presence of cyanide did not affect the viability of cio mutant strains compared to the wild-type during prolonged incubation in stationary phase. The detection of the fermentation end products acetate and succinate in stationary-phase culture supernatants suggests that P. aeruginosa, irrespective of its CIO complement, may in part rely upon fermentation for energy generation in stationary phase. Furthermore, the decrease in cyanide levels during incubation in sealed flasks suggested that active breakdown of HCN by the culture was taking place. To investigate the possibility that the CIO may play a role in pathogenicity, wild-type and cio mutant strains were tested in the paralytic killing model of Caenorhabditis elegans, a model in which cyanide is the principal toxic agent leading to nematode death. The CIO mutant had delayed killing kinetics, demonstrating that the CIO is required for full pathogenicity of P. aeruginosa in this animal model.

  6. Enhanced in vitro formation and antibiotic resistance of nonattached Pseudomonas aeruginosa aggregates through incorporation of neutrophil products.

    PubMed

    Caceres, Silvia M; Malcolm, Kenneth C; Taylor-Cousar, Jennifer L; Nichols, David P; Saavedra, Milene T; Bratton, Donna L; Moskowitz, Samuel M; Burns, Jane L; Nick, Jerry A

    2014-11-01

    Pseudomonas aeruginosa is a major pathogen in cystic fibrosis (CF) lung disease. Children with CF are routinely exposed to P. aeruginosa from the natural environment, and by adulthood, 80% of patients are chronically infected. P. aeruginosa in the CF airway exhibits a unique biofilm-like structure, where it grows in small clusters or aggregates of bacteria in association with abundant polymers of neutrophil-derived components F-actin and DNA, among other components. These aggregates differ substantially in size and appearance compared to surface-attached in vitro biofilm models classically utilized for studies but are believed to share properties of surface-attached biofilms, including antibiotic resistance. However, little is known about the formation and function of surface-independent modes of biofilm growth, how they might be eradicated, and quorum sensing communication. To address these issues, we developed a novel in vitro model of P. aeruginosa aggregates incorporating human neutrophil-derived products. Aggregates grown in vitro and those found in CF patients' sputum samples were morphologically similar; viable bacteria were distributed in small pockets throughout the aggregate. The lasA quorum sensing gene was differentially expressed in the presence of neutrophil products. Importantly, aggregates formed in the presence of neutrophils acquired resistance to tobramycin, which was lost when the aggregates were dispersed with DNase, and antagonism of tobramycin and azithromycin was observed. This novel yet simple in vitro system advances our ability to model infection of the CF airway and will be an important tool to study virulence and test alternative eradication strategies against P. aeruginosa.

  7. Enhanced In Vitro Formation and Antibiotic Resistance of Nonattached Pseudomonas aeruginosa Aggregates through Incorporation of Neutrophil Products

    PubMed Central

    Caceres, Silvia M.; Taylor-Cousar, Jennifer L.; Nichols, David P.; Saavedra, Milene T.; Bratton, Donna L.; Moskowitz, Samuel M.; Burns, Jane L.; Nick, Jerry A.

    2014-01-01

    Pseudomonas aeruginosa is a major pathogen in cystic fibrosis (CF) lung disease. Children with CF are routinely exposed to P. aeruginosa from the natural environment, and by adulthood, 80% of patients are chronically infected. P. aeruginosa in the CF airway exhibits a unique biofilm-like structure, where it grows in small clusters or aggregates of bacteria in association with abundant polymers of neutrophil-derived components F-actin and DNA, among other components. These aggregates differ substantially in size and appearance compared to surface-attached in vitro biofilm models classically utilized for studies but are believed to share properties of surface-attached biofilms, including antibiotic resistance. However, little is known about the formation and function of surface-independent modes of biofilm growth, how they might be eradicated, and quorum sensing communication. To address these issues, we developed a novel in vitro model of P. aeruginosa aggregates incorporating human neutrophil-derived products. Aggregates grown in vitro and those found in CF patients' sputum samples were morphologically similar; viable bacteria were distributed in small pockets throughout the aggregate. The lasA quorum sensing gene was differentially expressed in the presence of neutrophil products. Importantly, aggregates formed in the presence of neutrophils acquired resistance to tobramycin, which was lost when the aggregates were dispersed with DNase, and antagonism of tobramycin and azithromycin was observed. This novel yet simple in vitro system advances our ability to model infection of the CF airway and will be an important tool to study virulence and test alternative eradication strategies against P. aeruginosa. PMID:25182651

  8. Evaluation of Metallo-β-Lactamase-Production and Carriage of bla-VIM Genes in Pseudomonas aeruginosa Isolated from Burn Wound Infections in Isfahan

    PubMed Central

    Saffari, Mahmood; Firoozeh, Farzaneh; Pourbabaee, Mohammad; Zibaei, Mohammad

    2016-01-01

    Background Metallo-β-lactamase-production among Gram-negative bacteria, including Pseudomonas aeruginosa, has become a challenge for treatment of infections due to these resistant bacteria. Objectives The aim of the current study was to evaluate the metallo-β-lactamase-production and carriage of bla-VIM genes among carbapenem-resistant P. aeruginosa isolated from burn wound infections. Patients and Methods A cross-sectional study was conducted from September 2014 to July 2015. One hundred and fifty P. aeruginosa isolates were recovered from 600 patients with burn wound infections treated at Imam-Musa-Kazem Hospital in Isfahan city, Iran. Carbapenem-resistant P. aeruginosa isolates were screened by disk diffusion using CLSI guidelines. Metallo-β-lactamase-producing P. aeruginosa isolates were identified using an imipenem-EDTA double disk synergy test (EDTA-IMP DDST). For detection of MBL genes including bla-VIM-1 and bla-VIM-2, polymerase chain reaction (PCR) methods and sequencing were used. Results Among the 150 P. aeruginosa isolates, 144 (96%) were resistant to imipenem by the disk diffusion method, all of which were identified as metallo-β-lactamase-producing P. aeruginosa isolates by EDTA-IMP DDST. Twenty-seven (18%) and 8 (5.5%) MBL-producing P. aeruginosa isolates harbored bla-VIM-1 and bla-VIM-2 genes, respectively. Conclusions Our findings showed a high occurrence of metallo-β-lactamase production among P. aeruginosa isolates in burn patient infections in our region. Also, there are P. aeruginosa isolates carrying the bla-VIM-1 and bla-VIM-2 genes in Isfahan province. PMID:28144604

  9. Enhancement of Rhamnolipid Production in Residual Soybean Oil by an Isolated Strain of Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    de Lima, C. J. B.; França, F. P.; Sérvulo, E. F. C.; Resende, M. M.; Cardoso, V. L.

    In the present work, the production of rhamnolipid from residual soybean oil (RSO) from food frying facilities was studied using a strain of Pseudomonas aeruginosa of contaminated lagoon, isolated from a hydrocarbon contaminated soil. The optimization of RSO, amonium nitrate, and brewery residual yeast concentrations was accomplished by a central composite experimental design and surface response analysis. The experiments were performed in 500-mL Erlenmeyer flasks containing 50mL of mineral medium, at 170 rpm and 30±1°C, for a 48-h fermentation period. Rhamnolipid production has been monitored by measurements of surface tension, rhamnose concentration, and emulsifying activity. The best-planned results, located on the central point, have corresponded to 22g/L of RSO, 5.625 g/ L of NH4NO3' and 11.5 g/L of brewery yeast. At the maximum point the values for rhamnose and emulsifying index were 2.2g/L and 100%, respectively.

  10. Extracellular Enzyme Production and Synthetic Lignin Mineralization by Ceriporiopsis subvermispora

    PubMed Central

    Rüttimann-Johnson, Carmen; Salas, Loreto; Vicuña, Rafael; Kirk, T. Kent

    1993-01-01

    The ability of the white rot fungus Ceriporiopsis subvermispora to mineralize 14C-synthetic lignin was studied under different culture conditions, and the levels of two extracellular enzymes were monitored. The highest mineralization rates (28% after 28 days) were obtained in cultures containing a growth-limiting amount of nitrogen source (1.0 mM ammonium tartrate); under this condition, the levels of manganese peroxidase (MnP) and laccase present in the culture supernatant solutions were very low compared with cultures containing 10 mM of the nitrogen source. In contrast, cultures containing a limiting concentration of the carbon source (0.1% glucose) showed low levels of both enzymes and also very low mineralization rates compared with cultures containing 1% glucose. Cultures containing 11 ppm of Mn(II) showed a higher rate of mineralization than those containing 0.3 or 40 ppm of this cation. Levels of MnP and laccase were higher when 40 ppm of Mn(II) was used. Mineralization rates were slightly higher in cultures flushed daily with oxygen, whereas laccase levels were lower and MnP levels were approximately the same as in cultures maintained under an air atmosphere. The presence of 0.4 mM veratryl alcohol reduced both mineralization rates and MnP levels, without affecting laccase levels. Lignin peroxidase activity was not detected under any condition. Addition of purified lignin peroxidase to the cultures in the presence or absence of veratryl alcohol did not enhance mineralization rates significantly. PMID:16348955

  11. In situ magnetic separation for extracellular protein production.

    PubMed

    Käppler, Tobias; Cerff, Martin; Ottow, Kim; Hobley, Timothy; Posten, Clemens

    2009-02-01

    A new approach for in situ product removal from bioreactors is presented in which high-gradient magnetic separation is used. This separation process was used for the adsorptive removal of proteases secreted by Bacillus licheniformis. Small, non-porous bacitracin linked magnetic adsorbents were employed directly in the broth during the fermentation, followed by in situ magnetic separation. Proof of the concept was first demonstrated in shake flask culture, then scaled up and applied during a fed batch cultivation in a 3.7 L bioreactor. It could be demonstrated that growth of B. licheniformis was not influenced by the in situ product removal step. Protease production also remained the same after the separation step. Furthermore, degradation of the protease, which followed first order kinetics, was reduced by using the method. Using a theoretical modeling approach, we could show that protease yield in total was enhanced by using in situ magnetic separation. The process described here is a promising technique to improve overall yield in bio production processes which are often limited due to weak downstream operations. Potential limitations encountered during a bioprocess can be overcome such as product inhibition or degradation. We also discuss the key points where research is needed to implement in situ magnetic separation in industrial production.

  12. Analysis of biofilm production by clinical isolates of Pseudomonas aeruginosa from patients with ventilator-associated pneumonia.

    PubMed

    Lima, Jailton Lobo da Costa; Alves, Lilian Rodrigues; Paz, Jussyêgles Niedja Pereira da; Rabelo, Marcelle Aquino; Maciel, Maria Amélia Vieira; Morais, Marcia Maria Camargo de

    2017-09-04

    To phenotypically evaluate biofilm production by Pseudomonas aeruginosa clinically isolated from patients with ventilator-associated pneumonia. Twenty clinical isolates of P. aeruginosa were analyzed, 19 of which were from clinical samples of tracheal aspirate, and one was from a bronchoalveolar lavage sample. The evaluation of the capacity of P. aeruginosa to produce biofilm was verified using two techniques, one qualitative and the other quantitative. The qualitative technique showed that only 15% of the isolates were considered biofilm producers, while the quantitative technique showed that 75% of the isolates were biofilm producers. The biofilm isolates presented the following susceptibility profile: 53.3% were multidrug-resistant, and 46.7% were multidrug-sensitive. The quantitative technique was more effective than the qualitative technique for the detection of biofilm production. For the bacterial population analyzed, biofilm production was independent of the susceptibility profile of the bacteria, demonstrating that the therapeutic failure could be related to biofilm production, as it prevented the destruction of the bacteria present in this structure, causing complications of pneumonia associated with mechanical ventilation, including extrapulmonary infections, and making it difficult to treat the infection.

  13. Synthesis and electrochemical detection of a thiazolyl-indole natural product isolated from the nosocomial pathogen Pseudomonas aeruginosa.

    PubMed

    Buzid, Alyah; Muimhneacháin, Eoin Ó; Reen, F Jerry; Hayes, Phyllis E; Pardo, Leticia M; Shang, Fengjun; O'Gara, Fergal; Sperry, Jonathan; Luong, John H T; Glennon, Jeremy D; McGlacken, Gerard P

    2016-09-01

    Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen, capable of surviving in a broad range of natural environments and quickly acquiring resistance. It is associated with hospital-acquired infections, particularly in patients with compromised immunity, and is the primary cause of morbidity and mortality in cystic fibrosis (CF) patients. P. aeruginosa is also of nosocomial importance on dairy farms and veterinary hospitals, where it is a key morbidity factor in bovine mastitis. P. aeruginosa uses a cell-cell communication system consisting of signalling molecules to coordinate bacterial secondary metabolites, biofilm formation, and virulence. Simple and sensitive methods for the detection of biomolecules as indicators of P. aeruginosa infection would be of great clinical importance. Here, we report the synthesis of the P. aeruginosa natural product, barakacin, which was recently isolated from the bovine ruminal strain ZIO. A simple and sensitive electrochemical method was used for barakacin detection using a boron-doped diamond (BDD) and glassy carbon (GC) electrodes, based on cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The influence of electrolyte pH on the peak potential and peak currents was also investigated. At pH 2.0, the peak current was linearly dependent on barakacin concentration (in the range used, 1-10 μM), with correlation coefficients greater than 0.98 on both electrodes. The detection limit (S/N = 3) on the BDD electrode was 100-fold lower than that obtained on the GC electrode. The optimized method using the BDD electrode was extended to bovine (cow feces) and human (sputum of a CF patient) samples. Spiked barakacin was easily detected in these matrices at a limit of 0.5 and 0.05 μM, respectively. Graphical abstract Electrochemical detection of barakacin.

  14. Facultative Control of Matrix Production Optimizes Competitive Fitness in Pseudomonas aeruginosa PA14 Biofilm Models

    PubMed Central

    Madsen, Jonas S.; Lin, Yu-Cheng; Squyres, Georgia R.; Price-Whelan, Alexa; de Santiago Torio, Ana; Song, Angela; Cornell, William C.; Sørensen, Søren J.

    2015-01-01

    As biofilms grow, resident cells inevitably face the challenge of resource limitation. In the opportunistic pathogen Pseudomonas aeruginosa PA14, electron acceptor availability affects matrix production and, as a result, biofilm morphogenesis. The secreted matrix polysaccharide Pel is required for pellicle formation and for colony wrinkling, two activities that promote access to O2. We examined the exploitability and evolvability of Pel production at the air-liquid interface (during pellicle formation) and on solid surfaces (during colony formation). Although Pel contributes to the developmental response to electron acceptor limitation in both biofilm formation regimes, we found variation in the exploitability of its production and necessity for competitive fitness between the two systems. The wild type showed a competitive advantage against a non-Pel-producing mutant in pellicles but no advantage in colonies. Adaptation to the pellicle environment selected for mutants with a competitive advantage against the wild type in pellicles but also caused a severe disadvantage in colonies, even in wrinkled colony centers. Evolution in the colony center produced divergent phenotypes, while adaptation to the colony edge produced mutants with clear competitive advantages against the wild type in this O2-replete niche. In general, the structurally heterogeneous colony environment promoted more diversification than the more homogeneous pellicle. These results suggest that the role of Pel in community structure formation in response to electron acceptor limitation is unique to specific biofilm models and that the facultative control of Pel production is required for PA14 to maintain optimum benefit in different types of communities. PMID:26431965

  15. Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection.

    PubMed

    Korgaonkar, Aishwarya; Trivedi, Urvish; Rumbaugh, Kendra P; Whiteley, Marvin

    2013-01-15

    Most infections result from colonization by more than one microbe. Within such polymicrobial infections, microbes often display synergistic interactions that result in increased disease severity. Although many clinical studies have documented the occurrence of synergy in polymicrobial infections, little is known about the underlying molecular mechanisms. A prominent pathogen in many polymicrobial infections is Pseudomonas aeruginosa, a Gram-negative bacterium that displays enhanced virulence during coculture with Gram-positive bacteria. In this study we discovered that during coinfection, P. aeruginosa uses peptidoglycan shed by Gram-positive bacteria as a cue to stimulate production of multiple extracellular factors that possess lytic activity against prokaryotic and eukaryotic cells. Consequently, P. aeruginosa displays enhanced virulence in a Drosophila model of infection when cocultured with Gram-positive bacteria. Inactivation of a gene (PA0601) required for peptidoglycan sensing mitigated this phenotype. Using Drosophila and murine models of infection, we also show that peptidoglycan sensing results in P. aeruginosa-mediated reduction in the Gram-positive flora in the infection site. Our data suggest that P. aeruginosa has evolved a mechanism to survey the microbial community and respond to Gram-positive produced peptidoglycan through production of antimicrobials and toxins that not only modify the composition of the community but also enhance host killing. Additionally, our results suggest that therapeutic strategies targeting Gram-positive bacteria might be a viable approach for reducing the severity of P. aeruginosa polymicrobial infections.

  16. A new extracellular von Willebrand A domain-containing protein is involved in silver uptake in Microcystis aeruginosa exposed to silver nanoparticles.

    PubMed

    Chen, Si; Jin, Yujian; Lavoie, Michel; Lu, Haiping; Zhu, Kun; Fu, Zhengwei; Qian, Haifeng

    2016-10-01

    Silver nanoparticles (AgNPs) can be toxic for cyanobacteria when present at low nanomolar concentrations, but the molecular mechanisms whereby AgNPs (or free Ag(+) released from AgNPs) interact with these prokaryotic algal cells remain elusive. Here, we studied Ag uptake mechanisms in the prokaryotic cyanobacterium Microcystis aeruginosa exposed to AgNPs by measuring growth inhibition in the absence or presence of high-affinity Ag-binding ligands and by genetic transformation of E. coli with a protein predicted to be involved in Ag uptake. We discovered a new von Willebrand A (vWA) domain-containing protein in M. aeruginosa that mediates Ag uptake from AgNPs when expressed in E. coli. This new Ag transport protein, which is absent in eukaryotic algae, is a potential candidate explaining the higher AgNPs toxicity in cyanobacteria such as M. aeruginosa than that in eukaryotic algae. The present study provides new insights on Ag uptake mechanisms in the prokaryotic algae M. aeruginosa.

  17. CysB Negatively Affects the Transcription of pqsR and Pseudomonas Quinolone Signal Production in Pseudomonas aeruginosa

    PubMed Central

    Farrow, John M.; Hudson, L. Lynn; Wells, Greg; Coleman, James P.

    2015-01-01

    ABSTRACT Pseudomonas aeruginosa is a Gram-negative bacterium that is ubiquitous in the environment, and it is an opportunistic pathogen that can infect a variety of hosts, including humans. During the process of infection, P. aeruginosa coordinates the expression of numerous virulence factors through the production of multiple cell-to-cell signaling molecules. The production of these signaling molecules is linked through a regulatory network, with the signal N-(3-oxododecanoyl) homoserine lactone and its receptor LasR controlling the induction of a second acyl-homoserine lactone signal and the Pseudomonas quinolone signal (PQS). LasR-mediated control of PQS occurs partly by activating the transcription of pqsR, a gene that encodes the PQS receptor and is necessary for PQS production. We show that LasR interacts with a single binding site in the pqsR promoter region and that it does not influence the transcription of the divergently transcribed gene, nadA. Using DNA affinity chromatography, we identified additional proteins that interact with the pqsR-nadA intergenic region. These include the H-NS family members MvaT and MvaU, and CysB, a transcriptional regulator that controls sulfur uptake and cysteine biosynthesis. We show that CysB interacts with the pqsR promoter and that CysB represses pqsR transcription and PQS production. Additionally, we provide evidence that CysB can interfere with the activation of pqsR transcription by LasR. However, as seen with other CysB-regulated genes, pqsR expression was not differentially regulated in response to cysteine levels. These findings demonstrate a novel role for CysB in influencing cell-to-cell signal production by P. aeruginosa. IMPORTANCE The production of PQS and other 4-hydroxy-2-alkylquinolone (HAQs) compounds is a key component of the P. aeruginosa cell-to-cell signaling network, impacts multiple physiological functions, and is required for virulence. PqsR directly regulates the genes necessary for HAQ production

  18. Effect of exogenous phenols on superoxide production by extracellular peroxidase from wheat seedling roots.

    PubMed

    Chasov, A V; Minibayeva, F V

    2009-07-01

    Competitive and complimentary relationships of various peroxidase substrates were studied to elucidate the enzymatic mechanisms underlying production of reactive oxygen species in plant cell apoplast. Dianisidine peroxidase released from wheat seedling roots was inhibited by ferulate and coniferol, while ferulic and coniferyl peroxidases were activated by o-dianisidine. Both ferulate and coniferol, when added together with hydrogen peroxide, stimulated superoxide production by extracellular peroxidase. We suggest that substrate-substrate activation of extracellular peroxidases is important for stress-induced oxidative burst in plant cells.

  19. Extracellular superoxide anion production contributes to the virulence of Xanthomonas oryzae pv. oryzae.

    PubMed

    Li, Xin; Pang, Xinyue; Zhi, Dejuan; Wang, Jinsheng; Li, Minquan; Li, Hongyu

    2009-02-01

    Endogenous superoxide anion production was determined by electron spin resonance in wild-type strains and avrXa7 mutants of Xanthomonas oryzae pv. oryzae. The localization of superoxide anion was carried out in the intra- and extra-cellular fractions. Results showed the presence of superoxide anion in multi-locations of X. oryzae pv. oryzae cells. The extracellular fraction was the major location of superoxide anion production. Furthermore, a positive relationship was shown between the levels of endogenous superoxide anion and the virulence of strains. These indubitable results suggested that the superoxide anion contributes to the virulence of X. oryzae pv. oryzae.

  20. Production of biosurfactant using different hydrocarbons by Pseudomonas aeruginosa EBN-8 mutant.

    PubMed

    Raza, Zulfiqar Ali; Khan, Muhammad Saleem; Khalid, Zafar M; Rehman, Asma

    2006-01-01

    The present investigation dealt with the use of previously isolated and studied gamma-ray mutant strain Pseudomonas aeruginosa EBN-8 for the production of biosurfactant by using different hydrocarbon substrates viz. n-hexadecane, paraffin oil and kerosene oil, provided in minimal medium, as the sole carbon and energy sources. The batch experiments were conducted in 250 mL Erlenmeyer flasks, containing 50 mL minimal salt media supplemented with 1% (w/v) hydrocarbon substrate, inoculated by EBN-8 and incubated at 37 degrees C and 100 rpm in an orbital shaker. The sampling was done on 24 h basis for 10 d. The surface tension of cell-free culture broth decreased from 53 to 29 mN/m after 3 and 4 d of incubation when the carbon sources were paraffin oil and n-hexadecane, respectively. The largest reduction in interfacial tension from 26 to 0.4 mN/m was observed with n-hexadecane, while critical micelle dilution was obtained as 50 x CMC for paraffin oil as carbon source. When grown on n-hexadecane and paraffin oil, the EBN-8 mutant strain gave 4.1 and 6.3 g of the rhamnolipids/L, respectively. These surface-active substances subsequently allowed the hydrocarbon substrates to disperse readily as emulsion in aqueous phase.

  1. SCL-LCL-PHA copolymer production by a local isolate, Pseudomonas aeruginosa MTCC 7925.

    PubMed

    Singh, Akhilesh Kumar; Mallick, Nirupama

    2009-05-01

    A five-level-four-factor central composite rotary design (CCRD) was employed in combination with response surface methodology (RSM) to optimize the process variables for the production of a novel copolymer consisting of short-chain-length (SCL) and long-chain-length (LCL) PHA units, i.e., P(3HB-3HV-3HHD-3HOD) copolymer in Pseudomonas aeruginosa MTCC 7925. The four variables involved in this study were ethanol, glucose, ammonium nitrate (NH(4)NO(3)), and potassium dihydrogen phosphate (KH(2)PO(4)). A second-order polynomial equation was obtained by multiple regression analysis using RSM. The statistical analyses of the results showed that all the four variables had significant impact on the copolymer yield. The model predicted a maximum yield of 81.1% of dry cell weight (dcw) on setting the concentrations of ethanol and glucose at 1.5 and 1.1%, and KH(2)PO(4) and NH(4)NO(3) at 2.79 and 1.86 g/L, respectively. Verification of the predicted value resulted into a yield of 77.6% (dcw). This novel copolymer exhibited comparable material properties with polypropylene (PP) and low density polyethylene (LDPE), thus advocating its potential applications in various fields.

  2. Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site.

    PubMed

    Wu, Jane-Yii; Yeh, Kuei-Ling; Lu, Wei-Bin; Lin, Chung-Liang; Chang, Jo-Shu

    2008-03-01

    Rhamnolipid is one of the most effective and commonly used biosurfactant with wide industrial applications. Systematic strategies were applied to improve rhamnolipid (RL) production with a newly isolated indigenous strain Pseudomonas aeruginosa EM1 originating from an oil-contaminated site located in southern Taiwan. Seven carbon substrates and four nitrogen sources were examined for their effects on RL production. In addition, the effect of carbon to nitrogen (C/N) ratio on RL production was also studied. Single-factor experiments show that the most favorable carbon sources for RL production were glucose and glycerol (both at 40 g/L), giving a RL yield of 7.5 and 4.9 g/L, respectively. Meanwhile, sodium nitrate appeared to be the preferable nitrogen source, resulting in a RL production of 8.6g/L. Using NaNO(3) as the nitrogen source, an optimal C/N ratio of 26 and 52 was obtained for glucose- and glycerol-based culture, respectively. To further optimize the composition of fermentation medium, twenty experiments were designed by response surface methodology (RSM) to explore the favorable concentration of three critical components in the medium (i.e., glucose, glycerol, and NaNO(3)). The RSM analysis gave an optimal concentration of 30.5, 18.1, and 4.9 g/L for glucose, glycerol, and NaNO(3), respectively, predicting a maximum RL yield of 12.6 g/L, which is 47% higher than the best yield (8.6 g/L) obtained from preliminary selection tests and single factor experiments (glucose and NaNO(3) as the carbon and nitrogen source). The NMR and mass spectrometry analysis show that the purified RL product contained L-rhamnosyl-beta-hydroxydecanoyl-beta-hydroxydecanoate (RL1) and L-rhamnosyl L-rhamnosyl-beta-hydroxydecanoyl-beta-hydroxydecanoate (RL2). Meanwhile, HPLC analysis indicates that the molar ratio of RL1 and RL2 in the purified rhamnolipid product was ca. 1:1.

  3. Extracellular superoxide production, viability and redox poise in response to desiccation in recalcitrant Castanea sativa seeds.

    PubMed

    Roach, Thomas; Beckett, Richard P; Minibayeva, Farida V; Colville, Louise; Whitaker, Claire; Chen, Hongying; Bailly, Christophe; Kranner, Ilse

    2010-01-01

    Reactive oxygen species (ROS) are implicated in seed death following dehydration in desiccation-intolerant 'recalcitrant' seeds. However, it is unknown if and how ROS are produced in the apoplast and if they play a role in stress signalling during desiccation. We studied intracellular damage and extracellular superoxide (O(2)(.-)) production upon desiccation in Castanea sativa seeds, mechanisms of O(2)(.-) production and the effect of exogenously supplied ROS. A transient increase in extracellular O(2)(.-) production by the embryonic axes preceded significant desiccation-induced viability loss. Thereafter, progressively more oxidizing intracellular conditions, as indicated by a significant shift in glutathione half-cell reduction potential, accompanied cell and axis death, coinciding with the disruption of nuclear membranes. Most hydrogen peroxide (H(2)O(2))-dependent O(2)(.-) production was found in a cell wall fraction that contained extracellular peroxidases (ECPOX) with molecular masses of approximately 50 kDa. Cinnamic acid was identified as a potential reductant required for ECPOX-mediated O(2)(.-) production. H(2)O(2), applied exogenously to mimic the transient ROS burst at the onset of desiccation, counteracted viability loss of sub-lethally desiccation-stressed seeds and of excised embryonic axes grown in tissue culture. Hence, extracellular ROS produced by embryonic axes appear to be important signalling components involved in wound response, regeneration and growth.

  4. Dimeric c-di-GMP is required for post-translational regulation of alginate production in Pseudomonas aeruginosa

    SciTech Connect

    Whitney, John C.; Robinson, Howard; Whitfield, Gregory B.; Marmont, Lindsey S.; Yip, Patrick; Neculai, A. Mirela; Lobsanov, Yuri D.; Ohman, Dennis E.; Howell, P. Lynne

    2015-05-15

    Pseudomonas aeruginosa is an opportunistic human pathogen that secretes the exopolysaccharide alginate during infection of the respiratory tract of individuals afflicted with cystic fibrosis and chronic obstructive pulmonary disease. Among the proteins required for alginate production, Alg44 has been identified as an inner membrane protein whose bis-(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP) binding activity post-translationally regulates alginate secretion. In this study, we report the 1.8 Å crystal structure of the cytoplasmic region of Alg44 in complex with dimeric self-intercalated c-di-GMP and characterize its dinucleotide-binding site using mutational analysis. The structure shows that the c-di-GMP binding region of Alg44 adopts a PilZ domain fold with a dimerization mode not previously observed for this family of proteins. Moreover, calorimetric binding analysis of residues in the c-di-GMP binding site demonstrate that mutation of Arg-17 and Arg-95 alters the binding stoichiometry between c-di-GMP and Alg44 from 2:1 to 1:1. Introduction of these mutant alleles on the P. aeruginosa chromosome show that the residues required for binding of dimeric c-di-GMP in vitro are also required for efficient alginate production in vivo. Our results suggest that the dimeric form of c-di-GMP represents the biologically active signaling molecule needed for the secretion of an important virulence factor produced by P. aeruginosa.

  5. Dimeric c-di-GMP is required for post-translational regulation of alginate production in Pseudomonas aeruginosa

    DOE PAGES

    Whitney, John C.; Robinson, Howard; Whitfield, Gregory B.; ...

    2015-05-15

    Pseudomonas aeruginosa is an opportunistic human pathogen that secretes the exopolysaccharide alginate during infection of the respiratory tract of individuals afflicted with cystic fibrosis and chronic obstructive pulmonary disease. Among the proteins required for alginate production, Alg44 has been identified as an inner membrane protein whose bis-(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP) binding activity post-translationally regulates alginate secretion. In this study, we report the 1.8 Å crystal structure of the cytoplasmic region of Alg44 in complex with dimeric self-intercalated c-di-GMP and characterize its dinucleotide-binding site using mutational analysis. The structure shows that the c-di-GMP binding region of Alg44 adopts a PilZmore » domain fold with a dimerization mode not previously observed for this family of proteins. Moreover, calorimetric binding analysis of residues in the c-di-GMP binding site demonstrate that mutation of Arg-17 and Arg-95 alters the binding stoichiometry between c-di-GMP and Alg44 from 2:1 to 1:1. Introduction of these mutant alleles on the P. aeruginosa chromosome show that the residues required for binding of dimeric c-di-GMP in vitro are also required for efficient alginate production in vivo. Our results suggest that the dimeric form of c-di-GMP represents the biologically active signaling molecule needed for the secretion of an important virulence factor produced by P. aeruginosa.« less

  6. Growth, microcystin-production and proteomic responses of Microcystis aeruginosa under long-term exposure to amoxicillin.

    PubMed

    Liu, Ying; Chen, Shi; Zhang, Jian; Gao, Baoyu

    2016-04-15

    Ecological risk of antibiotics due to the induction of antibiotic-resistant bacteria has been widely investigated, while studies on the hazard of antibiotic contaminants via the regulation of cyanobacteria were still limited. This study focused on the long-term action effect and mechanism of amoxicillin (a broadly used antibiotic) in Microcystis aeruginosa at environmentally relevant concentrations through 30 days of semi-continuous culture. Amoxicillin stimulated the photosynthesis activity and the production of microcystins, and interaction of differential proteins under amoxicillin exposure further manifested the close correlation between the two processes. D1 protein, ATP synthase subunits alpha and beta, enolase, triosephosphate isomerase and phosphoglycerate kinase were candidate target positions of amoxicillin in M. aeruginosa under long-term exposure. Amoxicillin affected the cellular biosynthesis process and the metabolism of carbohydrate and nucleoside phosphate according to the proteomic responses. Under exposure to amoxicillin, stimulated growth rate at the beginning phase and increased production and release of microcystins during the whole exposure period would lead to a higher contamination of M. aeruginosa cells and microcystins, indicating that amoxicillin was harmful to aquatic environments through the promotion of cyanobacterial bloom.

  7. Growing Menace of Antibacterial Resistance in Clinical Isolates of Pseudomonas aeruginosa in Nepal: An Insight of Beta-Lactamase Production

    PubMed Central

    Dhital, Rabindra; Puri, Ram; Chaudhary, Niraj; Khatiwada, Suresh

    2016-01-01

    Introduction. Pseudomonas aeruginosa is the most frequently isolated organism as it acts as the opportunistic pathogen and can cause infections in immunosuppressed patients. The production of different types of beta-lactamases renders this organism resistant to many commonly used antimicrobials. Therefore, the aim of this study was to document the antibiotic resistance rate in Pseudomonas aeruginosa isolated from different clinical specimens. Methods. Pseudomonas aeruginosa recovered was identified by standard microbiological methods. Antibiotic susceptibility testing was performed by modified Kirby-Bauer disc diffusion method following Clinical and Laboratory Standard Institute (CLSI) guidelines and all the suspected isolates were tested for the production of ESBLs, MBLs, and AmpC. Results. Out of total (178) isolates, 83.1% were recovered from the inpatient department (IPD). Majority of the isolates mediated resistance towards the beta-lactam antibiotics, while nearly half of the isolates were resistant to ciprofloxacin. Most of the aminoglycosides used showed resistance rate up to 75% but amikacin proved to be better option. No resistance to polymyxin was observed. ESBLs, MBLs, and AmpC mediated resistance was seen in 33.1%, 30.9%, and 15.7% isolates, respectively. Conclusions. Antibiotic resistance rate and beta-lactamase mediated resistance were high. Thus, regular surveillance of drug resistance is of utmost importance. PMID:27642599

  8. Dimeric c-di-GMP Is Required for Post-translational Regulation of Alginate Production in Pseudomonas aeruginosa*

    PubMed Central

    Whitney, John C.; Whitfield, Gregory B.; Marmont, Lindsey S.; Yip, Patrick; Neculai, A. Mirela; Lobsanov, Yuri D.; Robinson, Howard; Ohman, Dennis E.; Howell, P. Lynne

    2015-01-01

    Pseudomonas aeruginosa is an opportunistic human pathogen that secretes the exopolysaccharide alginate during infection of the respiratory tract of individuals afflicted with cystic fibrosis and chronic obstructive pulmonary disease. Among the proteins required for alginate production, Alg44 has been identified as an inner membrane protein whose bis-(3′,5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) binding activity post-translationally regulates alginate secretion. In this study, we report the 1.8 Å crystal structure of the cytoplasmic region of Alg44 in complex with dimeric self-intercalated c-di-GMP and characterize its dinucleotide-binding site using mutational analysis. The structure shows that the c-di-GMP binding region of Alg44 adopts a PilZ domain fold with a dimerization mode not previously observed for this family of proteins. Calorimetric binding analysis of residues in the c-di-GMP binding site demonstrate that mutation of Arg-17 and Arg-95 alters the binding stoichiometry between c-di-GMP and Alg44 from 2:1 to 1:1. Introduction of these mutant alleles on the P. aeruginosa chromosome show that the residues required for binding of dimeric c-di-GMP in vitro are also required for efficient alginate production in vivo. These results suggest that the dimeric form of c-di-GMP represents the biologically active signaling molecule needed for the secretion of an important virulence factor produced by P. aeruginosa. PMID:25817996

  9. Evolutionary dynamics of interlinked public goods traits: an experimental study of siderophore production in Pseudomonas aeruginosa.

    PubMed

    Ross-Gillespie, A; Dumas, Z; Kümmerli, R

    2015-01-01

    Public goods cooperation is common in microbes, and there is much interest in understanding how such traits evolve. Research in recent years has identified several important factors that shape the evolutionary dynamics of such systems, yet few studies have investigated scenarios involving interactions between multiple public goods. Here, we offer general predictions about the evolutionary trajectories of two public goods traits having positive, negative or neutral regulatory influence on one another's expression, and we report on a test of some of our predictions in the context of Pseudomonas aeruginosa's production of two interlinked iron-scavenging siderophores. First, we confirmed that both pyoverdine and pyochelin siderophores do operate as public goods under appropriate environmental conditions. We then tracked their production in lines experimentally evolved under different iron-limitation regimes known to favour different siderophore expression profiles. Under strong iron limitation, where pyoverdine represses pyochelin, we saw a decline in pyoverdine and a concomitant increase in pyochelin - consistent with expansion of pyoverdine-defective cheats derepressed for pyochelin. Under moderate iron limitation, pyochelin declined - again consistent with an expected cheat invasion scenario - but there was no concomitant shift in pyoverdine because cross-suppression between the traits is unidirectional only. Alternating exposure to strong and moderate iron limitation caused qualitatively similar though lesser shifts compared to the constant-environment regimes. Our results confirm that the regulatory interconnections between public goods traits can significantly modulate the course of evolution, yet also suggest how we can start to predict the impacts such complexities will have on phenotypic divergence and community stability.

  10. Extracellular ligninolytic enzymes production by Pleurotus eryngii on agroindustrial wastes.

    PubMed

    Akpinar, Merve; Urek, Raziye Ozturk

    2014-01-01

    Pleurotus eryngii (DC.) Gillet (MCC58) was investigated for its ligninolytic ability to produce laccase (Lac), manganese peroxidase (MnP), aryl alcohol oxidase (AAO), and lignin peroxidase (LiP) enzymes through solid-state fermentation using apricot and pomegranate agroindustrial wastes. The reducing sugar, protein, lignin, and cellulose levels in these were studied. Also, the production of these ligninolytic enzymes was researched over the growth of the microorganism throughout 20 days, and the reducing sugar, protein, and nitrogen levels were recorded during the stationary cultivation at 28 ± 0.5°C. The highest Lac activity was obtained as 1618.5 ± 25 U/L on day 12 of cultivation using apricot. The highest MnP activity was attained as 570.82 ± 15 U/L on day 17 in pomegranate culture and about the same as apricot culture. There were low LiP activities in both cultures. The maximum LiP value detected was 16.13 ± 0.8 U/L in apricot cultures. In addition, AAO activities in both cultures showed similar trends up to day 17 of cultivation, with the highest AAO activity determined as 105.99 ± 6.3 U/L on day 10 in apricot cultures. Decolorization of the azo dye methyl orange was also achieved with produced ligninolytic enzymes by P. eryngii using apricot and pomegranate wastes.

  11. UV mutagenesis of Cupriavidus necator for extracellular production of (R)-3-hydroxybutyric acid.

    PubMed

    Ugwu, C U; Tokiwa, Y; Aoyagi, H; Uchiyama, H; Tanaka, H

    2008-07-01

    Ultraviolet (UV) mutagenesis was carried out to obtain mutant strains of Cupriavidus necator that could produce (R)-3-hydroxybutyric acid [(R)-3-HB] in the culture supernatant. C. necator (formerly known as Ralstonia eutropha) was subjected to UV radiation to generate mutants that are capable of producing (R)-3-HB in the culture supernatant. Results indicated that UV mutagen disrupted the phbB (phbB knock-out) and thus, promoted production of (R)-3-HB in mutant strains. Inclusion of acetoacetate esters (carbonyl compounds) in the culture broth led to increased production of (R)-3-HB. Thus, acetoacetyl-CoA (an intermediate of the PHB synthetic pathway) might have been converted to acetoacetate, which in the presence of (R)-3-HB dehydrogenase and NADPH/NADP(+), resulted in extracellular production of (R)-3-HB. UV mutagenesis proved to be a satisfactory method in generating interesting mutants for extracellular production of (R)-3-HB. Extracellular production of (R)-3-HB upon addition of acetoacetate esters would suggest a likely (R)-3-HB biosynthetic pathway in C. necator. Mutants obtained in this study are very useful for production of (R)-3-HB. For the first time, the production of (R)-3-HB by C. necator via acetoacetate is reported.

  12. Engineering PQS Biosynthesis Pathway for Enhancement of Bioelectricity Production in Pseudomonas aeruginosa Microbial Fuel Cells

    PubMed Central

    Cao, Bin; Seviour, Thomas; Nesatyy, Victor J.; Marsili, Enrico; Kjelleberg, Staffan; Givskov, Michael; Tolker-Nielsen, Tim; Song, Hao; Loo, Joachim Say Chye; Yang, Liang

    2013-01-01

    The biosynthesis of the redox shuttle, phenazines, in Pseudomonas aeruginosa, an ubiquitous microorganism in wastewater microflora, is regulated by the 2-heptyl-3,4-dihydroxyquinoline (PQS) quorum-sensing system. However, PQS inhibits anaerobic growth of P. aeruginosa. We constructed a P. aeruginosa strain that produces higher concentrations of phenazines under anaerobic conditions by over-expressing the PqsE effector in a PQS negative ΔpqsC mutant. The engineered strain exhibited an improved electrical performance in microbial fuel cells (MFCs) and potentiostat-controlled electrochemical cells with an approximate five-fold increase of maximum current density relative to the parent strain. Electrochemical analysis showed that the current increase correlates with an over-synthesis of phenazines. These results therefore demonstrate that targeting microbial cell-to-cell communication by genetic engineering is a suitable technique to improve power output of bioelectrochemical systems. PMID:23700414

  13. Bioresources inner-recycling between bioflocculation of Microcystis aeruginosa and its reutilization as a substrate for bioflocculant production

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Huo, Mingxin; Sun, Caiyun; Cui, Xiaochun; Zhou, Dandan; Crittenden, John C.; Yang, Wu

    2017-03-01

    Bioflocculation, being environmental-friendly and highly efficient, is considered to be a promising method to harvest microalgae. However, one limitation of this technology is high expense on substrates for bioflocculant bacteria cultivation. In this regard, we developed an innovative method for the inner-recycling of biomass that could harvest the typical microalgae, Microcystis aeruginosa, using a bioflocculant produced by Citrobacter sp. AzoR-1. In turn, the flocculated algal biomass could be reutilized as a substrate for Citrobacter sp. AzoR-1 cultivation and bioflocculant production. The experimental results showed that 3.4 ± 0.1 g of bioflocculant (hereafter called MBF-12) was produced by 10 g/L of wet biomass of M. aeruginosa (high-pressure steam sterilized) with an additional 10 g/L of glucose as an extra carbon source. The efficiency of MBF-12 for M. aeruginosa harvesting could reach ~95% under the optimized condition. Further analysis showed that MBF-12, dominated by ~270 kDa biopolymers, contributed the bioflocculation mechanisms of interparticle bridging and biosorption process. Bioflocculant synthesis by Citrobacter sp. AzoR-1 using microalga as a substrate, including the polyketide sugar unit, lipopolysaccharide, peptidoglycan and terpenoid backbone pathways. Our research provides the first evidence that harvested algae can be reutilized as a substrate to grow a bioflocculant using Citrobacter sp. AzoR-1.

  14. Bioresources inner-recycling between bioflocculation of Microcystis aeruginosa and its reutilization as a substrate for bioflocculant production

    PubMed Central

    Xu, Liang; Huo, Mingxin; Sun, Caiyun; Cui, Xiaochun; Zhou, Dandan; Crittenden, John C.; Yang, Wu

    2017-01-01

    Bioflocculation, being environmental-friendly and highly efficient, is considered to be a promising method to harvest microalgae. However, one limitation of this technology is high expense on substrates for bioflocculant bacteria cultivation. In this regard, we developed an innovative method for the inner-recycling of biomass that could harvest the typical microalgae, Microcystis aeruginosa, using a bioflocculant produced by Citrobacter sp. AzoR-1. In turn, the flocculated algal biomass could be reutilized as a substrate for Citrobacter sp. AzoR-1 cultivation and bioflocculant production. The experimental results showed that 3.4 ± 0.1 g of bioflocculant (hereafter called MBF-12) was produced by 10 g/L of wet biomass of M. aeruginosa (high-pressure steam sterilized) with an additional 10 g/L of glucose as an extra carbon source. The efficiency of MBF-12 for M. aeruginosa harvesting could reach ~95% under the optimized condition. Further analysis showed that MBF-12, dominated by ~270 kDa biopolymers, contributed the bioflocculation mechanisms of interparticle bridging and biosorption process. Bioflocculant synthesis by Citrobacter sp. AzoR-1 using microalga as a substrate, including the polyketide sugar unit, lipopolysaccharide, peptidoglycan and terpenoid backbone pathways. Our research provides the first evidence that harvested algae can be reutilized as a substrate to grow a bioflocculant using Citrobacter sp. AzoR-1. PMID:28252111

  15. Membrane Distribution of the Pseudomonas Quinolone Signal Modulates Outer Membrane Vesicle Production in Pseudomonas aeruginosa

    PubMed Central

    Florez, Catalina; Raab, Julie E.; Cooke, Adam C.

    2017-01-01

    ABSTRACT The Pseudomonas quinolone signal (PQS) is an important quorum-sensing molecule in Pseudomonas aeruginosa that also mediates its own packaging and transport by stimulating outer membrane vesicle (OMV) formation. Because OMVs have been implicated in many virulence-associated behaviors, it is critical that we understand how they are formed. Our group proposed the bilayer-couple model for OMV biogenesis, where PQS intercalates into the outer membrane, causing expansion of the outer leaflet and consequently inducing curvature. In accordance with the model, we hypothesized that PQS must be transported from the cytoplasm to the outer membrane before it can initiate OMV formation. We initially examined two laboratory strains of P. aeruginosa and found significant strain-dependent differences. PQS export correlated strongly with OMV production, even though equivalent amounts of total PQS were produced by both strains. Interestingly, we discovered that poor OMV producers sequestered the majority of PQS in the inner membrane, which appeared to be the result of early saturation of the export pathway. Further analysis showed that strain-specific PQS export and OMV biogenesis patterns were stable once established but could be significantly altered by changing the growth medium. Finally, we demonstrated that the associations described for laboratory strains also held for three clinical strains. These results suggest that factors controlling the export of PQS dictate OMV biogenesis. This work provides new insight into PQS-controlled virulence in P. aeruginosa and provides important tools to further study signal export and OMV biogenesis. PMID:28790210

  16. Bioresources inner-recycling between bioflocculation of Microcystis aeruginosa and its reutilization as a substrate for bioflocculant production.

    PubMed

    Xu, Liang; Huo, Mingxin; Sun, Caiyun; Cui, Xiaochun; Zhou, Dandan; Crittenden, John C; Yang, Wu

    2017-03-02

    Bioflocculation, being environmental-friendly and highly efficient, is considered to be a promising method to harvest microalgae. However, one limitation of this technology is high expense on substrates for bioflocculant bacteria cultivation. In this regard, we developed an innovative method for the inner-recycling of biomass that could harvest the typical microalgae, Microcystis aeruginosa, using a bioflocculant produced by Citrobacter sp. AzoR-1. In turn, the flocculated algal biomass could be reutilized as a substrate for Citrobacter sp. AzoR-1 cultivation and bioflocculant production. The experimental results showed that 3.4 ± 0.1 g of bioflocculant (hereafter called MBF-12) was produced by 10 g/L of wet biomass of M. aeruginosa (high-pressure steam sterilized) with an additional 10 g/L of glucose as an extra carbon source. The efficiency of MBF-12 for M. aeruginosa harvesting could reach ~95% under the optimized condition. Further analysis showed that MBF-12, dominated by ~270 kDa biopolymers, contributed the bioflocculation mechanisms of interparticle bridging and biosorption process. Bioflocculant synthesis by Citrobacter sp. AzoR-1 using microalga as a substrate, including the polyketide sugar unit, lipopolysaccharide, peptidoglycan and terpenoid backbone pathways. Our research provides the first evidence that harvested algae can be reutilized as a substrate to grow a bioflocculant using Citrobacter sp. AzoR-1.

  17. Tasco®: a product of Ascophyllum nodosum enhances immune response of Caenorhabditis elegans against Pseudomonas aeruginosa infection.

    PubMed

    Kandasamy, Saveetha; Khan, Wajahatullah; Evans, Franklin; Critchley, Alan T; Prithiviraj, Balakrishnan

    2012-01-01

    The effects of Tasco®, a product made from the brown seaweed (Ascophyllum nodosum) were tested for the ability to protect Caenorhabditis elegans against Pseudomonas aeruginosa infection. A water extract of Tasco® (TWE) reduced P. aeruginosa inflicted mortality in the nematode. The TWE, at a concentration of 300 µg/mL, offered the maximum protection and induced the expression of innate immune response genes viz.; zk6.7 (Lypases), lys-1 (Lysozyme), spp-1 (Saponin like protein), f28d1.3 (Thaumatin like protein), t20g5.7 (Matridin SK domain protein), abf-1 (Antibacterial protein) and f38a1.5 (Lectin family protein). Further, TWE treatment also affected a number of virulence components of the P. aeuroginosa and reduced its secreted virulence factors such as lipase, proteases and toxic metabolites; hydrogen cyanide and pyocyanin. Decreased virulence factors were associated with a significant reduction in expression of regulatory genes involved in quorum sensing, lasI, lasR, rhlI and rhlR. In conclusion, the TWE-treatment protected the C. elegans against P. aeruginosa infection by a combination of effects on the innate immunity of the worms and direct effects on the bacterial quorum sensing and virulence factors.

  18. Tasco®: A Product of Ascophyllum nodosum Enhances Immune Response of Caenorhabditis elegans Against Pseudomonas aeruginosa Infection

    PubMed Central

    Kandasamy, Saveetha; Khan, Wajahatullah; Evans, Franklin; Critchley, Alan T.; Prithiviraj, Balakrishnan

    2012-01-01

    The effects of Tasco®, a product made from the brown seaweed (Ascophyllum nodosum) were tested for the ability to protect Caenorhabditis elegans against Pseudomonas aeruginosa infection. A water extract of Tasco® (TWE) reduced P. aeruginosa inflicted mortality in the nematode. The TWE, at a concentration of 300 µg/mL, offered the maximum protection and induced the expression of innate immune response genes viz.; zk6.7 (Lypases), lys-1 (Lysozyme), spp-1 (Saponin like protein), f28d1.3 (Thaumatin like protein), t20g5.7 (Matridin SK domain protein), abf-1 (Antibacterial protein) and f38a1.5 (Lectin family protein). Further, TWE treatment also affected a number of virulence components of the P. aeuroginosa and reduced its secreted virulence factors such as lipase, proteases and toxic metabolites; hydrogen cyanide and pyocyanin. Decreased virulence factors were associated with a significant reduction in expression of regulatory genes involved in quorum sensing, lasI, lasR, rhlI and rhlR. In conclusion, the TWE-treatment protected the C. elegans against P. aeruginosa infection by a combination of effects on the innate immunity of the worms and direct effects on the bacterial quorum sensing and virulence factors. PMID:22363222

  19. Comparative in vitro exoenzyme-suppressing activities of azithromycin and other macrolide antibiotics against Pseudomonas aeruginosa.

    PubMed Central

    Mizukane, R; Hirakata, Y; Kaku, M; Ishii, Y; Furuya, N; Ishida, K; Koga, H; Kohno, S; Yamaguchi, K

    1994-01-01

    The inhibitory effects of azithromycin (AZM), a new 15-membered macrolide antibiotic, on the production of exotoxin A, total protease, elastase, and phospholipase C by Pseudomonas aeruginosa were determined, and the virulence-suppressing effects of AZM were compared with those of erythromycin (EM), roxithromycin (RXM), and rokitamycin (RKM). The effect of exposure of P. aeruginosa PA103 or B16 in cultures to sub-MICs of these macrolide antibiotics on the production of exoenzymes was determined. AZM suppressed the in vitro production of extracellular and intracellular exotoxin A by P. aeruginosa PA103 more than did EM, even at a concentration of only 2 micrograms/ml. At concentrations of between 4 and 32 micrograms/ml, AZM also inhibited total protease, elastase, and phospholipase C production by P. aeruginosa B16 more than did EM, RXM, and RKM. AZM was effective in suppressing exotoxin A and total protease production through 24 h of incubation in the presence of drug at sub-MICs, but it had no significant effect on either the growth of P. aeruginosa or its total protein production. Moreover, at a concentration of 4 micrograms/ml, AZM suppressed exoenzyme production by other strains of P. aeruginosa more than did EM. These findings indicate that AZM, EM, RXM, and RKM each has an inhibitory effect on exoenzyme production separate from the antimicrobial effect and that, of these macrolides, AZM has the strongest virulence-suppressing effect. PMID:8203850

  20. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery.

    PubMed

    Amani, Hossein; Müller, Markus Michael; Syldatk, Christoph; Hausmann, Rudolf

    2013-07-01

    Recently, several investigations have been carried out on the in situ bacteria flooding, but the ex situ biosurfactant production and addition to the sand pack as agents for microbial enhanced oil recovery (MEOR) has little been studied. In order to develop suitable technology for ex situ MEOR processes, it is essential to carry out tests about it. Therefore, this work tries to fill the gap. The intention of this study was to investigate whether the rhamnolipid mix could be produced in high enough quantities for enhanced oil recovery in the laboratory scale and prove its potential use as an effective material for field application. In this work, the ability of Pseudomonas aeruginosa MM1011 to grow and produce rhamnolipid on sunflower as sole carbon source under nitrogen limitation was shown. The production of Rha-C10-C10 and Rha2-C10-C10 was confirmed by thin-layer chromatography and high-performance liquid chromatography analysis. The rhamnolipid mixture obtained was able to reduce the surface and interfacial tension of water to 26 and 2 mN/m, respectively. The critical micelle concentration was 120 mg/L. Maximum rhamnolipid production reached to about 0.7 g/L in a shake flask. The yield of rhamnolipid per biomass (Y RL/x ), rhamnolipid per sunflower oil (Y RL/s ), and the biomass per sunflower oil (Y x/s ) for shake flask were obtained about 0.01, 0.0035, and 0.035 g g(-1), respectively. The stability of the rhamnolipid at different salinities, pH and temperature, and also, its emulsifying activity has been investigated. It is an effective surfactant at very low concentrations over a wide range of temperatures, pHs, and salt concentrations, and it also has the ability to emulsify oil, which is essential for enhanced oil recovery. With 120 mg/L rhamnolipid, 27 % of original oil in place was recovered after water flooding from a sand pack. This result not only suggests rhamnolipids as appropriate model biosurfactants for MEOR, but it even shows the potential as a

  1. Differences in production of several extracellular virulence factors in clinical and food Aeromonas spp. strains.

    PubMed

    Pin, C; Marín, M L; Selgas, D; García, M L; Tormo, J; Casas, C

    1995-02-01

    Production of several extracellular virulence factors (lipase, protease and haemolysin) was compared in 15 Aeromonas spp. isolated from faeces of patients with Aeromonas-associated gastroenteritis and 81 strains isolated from food. Strains from food did not show differences in production of these factors when compared with strains isolated from faeces. However, if strains were considered in relation to autoagglutination (AA) character, the AA+ differed from AA- strains in lipase and protease production. Supernatant fluids of AA+ food and human strains showed 2.5-fold more protease production than that observed in AA- strains. These two characteristics of certain Aeromonas strains could be related with the more virulent capacity.

  2. Promotion of extracellular lignocellulolytic enzymes production by restraining the intracellular β-glucosidase in Penicillium decumbens.

    PubMed

    Chen, Mei; Qin, Yuqi; Cao, Qing; Liu, Guodong; Li, Jie; Li, Zhonghai; Zhao, Jian; Qu, Yinbo

    2013-06-01

    In this study, the functions of β-glucosidases in regulation of the lignocellulolytic enzymes production in Penicillium decumbens 114-2 were investigated. The major extracellular β-glucosidase gene bgl1 and the major intracellular β-glucosidase gene bgl2 were deleted in P. decumbens 114-2 respectively. In Δbgl2, the production of extracellular lignocellulolytic enzymes (including endoglucanases, cellobiohydrolases and xylanases) on insoluble cellulose was significantly promoted, while in Δbgl1 there was no any difference compared with that of 114-2. The enhancement of the production of lignocellulolytic enzymes in Δbgl2 was likely attributed to the accumulation of intracellular cellobiose. Induction experiment in Δbgl1Δbgl2 showed that cellobiose was an inducer of lignocellulolytic enzymes expression in P. decumbens 114-2, and the induction was unrelated to the formation, if any, of gentiobiose or sophorose from cellobiose.

  3. Oxygen-dependent regulation of c-di-GMP synthesis by SadC controls alginate production in Pseudomonas aeruginosa.

    PubMed

    Schmidt, Annika; Hammerbacher, Anna Silke; Bastian, Mike; Nieken, Karen Jule; Klockgether, Jens; Merighi, Massimo; Lapouge, Karine; Poschgan, Claudia; Kölle, Julia; Acharya, K Ravi; Ulrich, Martina; Tümmler, Burkhard; Unden, Gottfried; Kaever, Volkhard; Lory, Stephen; Haas, Dieter; Schwarz, Sandra; Döring, Gerd

    2016-10-01

    Pseudomonas aeruginosa produces increased levels of alginate in response to oxygen-deprived conditions. The regulatory pathway(s) that links oxygen limitation to increased synthesis of alginate has remained elusive. In the present study, using immunofluorescence microscopy, we show that anaerobiosis-induced alginate production by planktonic PAO1 requires the diguanylate cyclase (DGC) SadC, previously identified as a regulator of surface-associated lifestyles. Furthermore, we found that the gene products of PA4330 and PA4331, located in a predicted operon with sadC, have a major impact on alginate production: deletion of PA4330 (odaA, for oxygen-dependent alginate synthesis activator) caused an alginate production defect under anaerobic conditions, whereas a PA4331 (odaI, for oxygen-dependent alginate synthesis inhibitor) deletion mutant produced alginate also in the presence of oxygen, which would normally inhibit alginate synthesis. Based on their sequence, OdaA and OdaI have predicted hydratase and dioxygenase reductase activities, respectively. Enzymatic assays using purified protein showed that unlike OdaA, which did not significantly affect DGC activity of SadC, OdaI inhibited c-di-GMP production by SadC. Our data indicate that SadC, OdaA and OdaI are components of a novel response pathway of P. aeruginosa that regulates alginate synthesis in an oxygen-dependent manner.

  4. Disruption of the Zymomonas mobilis extracellular sucrase gene (sacC) improves levan production.

    PubMed

    Senthilkumar, V; Rameshkumar, N; Busby, S J W; Gunasekaran, P

    2004-01-01

    Disruption of the extracellular Zymomonas mobilis sucrase gene (sacC) to improve levan production. A PCR-amplified tetracycline resistance cassette was inserted within the cloned sacC gene in pZS2811. The recombinant construct was transferred to Z. mobilis by electroporation. The Z. mobilis sacC gene, encoding an efficient extracellular sucrase, was inactivated. A sacC defective mutant of Z. mobilis, which resulted from homologous recombination, was selected and the sacC gene disruption was confirmed by PCR. Fermentation trials with this mutant were conducted, and levansucrase activity and levan production were measured. In sucrose medium, the sacC mutant strain produced threefold higher levansucrase (SacB) than the parent strain. This resulted in higher levels of levan production, whilst ethanol production was considerably decreased. Zymomonas mobilis sacC gene encoding an extracellular sucrase was inactivated by gene disruption. This sacC mutant strain produced higher level of levan in sucrose medium because of the improved levansucrase (SacB) than the parent strain. The Z. mobilis CT2, sacC mutant produces high level of levansucrase (SacB) and can be used for the production of levan.

  5. Antimicrobial potential of bioconverted products of omega-3 fatty acids by Pseudomonas aeruginosa PR3

    USDA-ARS?s Scientific Manuscript database

    Bioconverted omega-3 fatty acids, eicosapentaenoic acid (bEPA) and docosahexanoic acid (bDHA), obtained from the microbial conversion of non-bioconverted eicosapentaenoic and docosahexaenoic acids by Pseudomonas aeruginosa PR3 were evaluated for their antimicrobial potential. bEPA and bDHA at 5 µl/...

  6. Optimization of extracellular endoxylanase, endoglucanase and peroxidase production by Streptomyces sp. F2621 isolated in Turkey.

    PubMed

    Tuncer, M; Kuru, A; Isikli, M; Sahin, N; Celenk, F G

    2004-01-01

    To determine the effect of environmental conditions on the production of extracellular lignocellulose-degrading enzymes by Streptomyces sp. F2621 and to assess the potential use of these enzymes in the hydrolysis of lignocellulose material. The production of extracellular lignocellulose-degrading enzymes, endoxylanase, endoglucanase and peroxidase during the growth of Streptomyces sp. F2621 in basal salts-yeast extract medium containing different carbon sources and the effect of a number of environmental parameters (e.g. carbon sources and concentrations, pH and temperature) were investigated. The highest endoxylanase (22.41 U ml(-1)) and peroxidase (0.58 U ml(-1)) activities were obtained after 2-4 days of incubation at 30 degrees C in a basal salts medium containing 0.4% (w/v) oat spelt xylan and 0.6% (w/v) yeast extract, corresponding to C : N ratio of 6 : 1. Cell-free extracellular enzyme preparations from the strain were capable of releasing both sugar and aromatic compounds during incubation with eucalyptus paper pulp, straw and xylan. Overall, 9.3% hydrolysis of xylan occurred after 24-h incubation. However the rates of hydrolysis of paper pulp and straw were approximately twofold less than xylan hydrolysis, although the total percentage hydrolysis of available substrate (24.5% and 16.3%, respectively) was greater than xylan hydrolysis. The high levels of enzyme production achieved under batch cultivation conditions, coupled with no significant production of endoglucanase during the growth phase of organism and the release of both sugar and aromatic compounds from paper pulp and straw signify the suitability for these enzymes for industrial applications such as pulp and paper production. The results highlight the environmental conditions for the production of extracellular lignocellulose-degrading enzymes by Streptomyces sp. F2621 and suggest the use of streptomycetes and/or their enzymes in industrial processes.

  7. Optimization of environmental factors for improved production of rhamnolipid biosurfactant by Pseudomonas aeruginosa RS29 on glycerol.

    PubMed

    Saikia, Rashmi Rekha; Deka, Suresh; Deka, Manab; Sarma, Hemen

    2012-08-01

    A biosurfactant producing Pseudomonas aeruginosa RS29 (identified on the basis of 16S rDNA analysis) with good foaming and emulsification properties has been isolated from crude oil contaminated sites. Optimization of different environmental factors was carried out with an objective to achieve maximum production of biosurfactant. Production of biosurfactant was estimated in terms of surface tension reduction and emulsification (E24) index. It was recorded that the isolated strain produced highest biosurfactant after 48 h of incubation at 37.5 °C, with a pH range of 7-8 and at salinity <0.8% (w/v). Ammonium nitrate used in the experiment was the best nitrogen source for the growth of biomass of P. aeruginosa RS29. On the other hand sodium and potassium nitrate enhanced the production of biosurfactant (Surface tension, 26.3 and 26.4 mN/m and E24 index, 80 and 79% respectively). The CMC of the biosurfactant was 90 mg/l. Maximum biomass (6.30 g/l) and biosurfactant production (0.80 g/l) were recorded at an optimal C/N ratio of 12.5. Biochemical analysis and FTIR spectra confirmed that the biosurfactant was rhamnolipid in nature. GC-MS analysis revealed the presence of C(8) and C(10) fatty acid components in the purified biosurfactant.

  8. Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L

    PubMed Central

    Rodríguez, AA; Stella, AM; Storni, MM; Zulpa, G; Zaccaro, MC

    2006-01-01

    Salt stress is one of the most serious factors limiting the productivity of rice, the staple diet in many countries. Gibberellic acid has been reported to reduce NaCl-induced growth inhibition in some plants including rice. Most paddy soils have a natural population of Cyanobacteria, prokaryotic photosynthethic microorganisms, which synthesize and liberate plant growth regulators such as gibberellins that could exert a natural beneficial effect on salt stressed rice plants. The aim of this work was to evaluate the effect of the cyanobacterium Scytonema hofmanni extracellular products on the growth of rice seedlings inhibited by NaCl and to compare it with the effect of the gibberellic acid in the same stress condition. Growth (length and weight of the seedlings) and biochemical parameters (5-aminolevulinate dehydratase activity, total free porphyrin and pigments content) were evaluated. Salt exposure negatively affected all parameters measured, with the exception of chlorophyll. Chlrorophyll concentrations nearly doubled upon exposure to high salt. Gibberellic acid counteracted the effect of salt on the length and dry weight of the shoot, and on carotenoid and chlorophyll b contents. Extracellular products nullified the salt effect on shoot dry weight and carotenoid content; partially counteracted the effect on shoot length (from 54% to 38% decrease), root dry weight (from 59% to 41% decrease) and total free porphyrin (from 31 to 13% decrease); reduced by 35% the salt increase of chlorophyll a; had no effect on root length and chlorophyll b. Gibberellic acid and extracellular products increased 5-aminolevulinate dehydratase activity over the control without salt. When coincident with high salinity, exposure to either EP or GA3, resulted in a reversal of shoot-related responses to salt stress. We propose that Scytonema hofmanni extracellular products may counteract altered hormone homeostasis of rice seedlings under salt stress by producing gibberellin-like plant

  9. High-level production of extracellular lipase by Yarrowia lipolytica mutants from methyl oleate.

    PubMed

    Darvishi, Farshad; Destain, Jacqueline; Nahvi, Iraj; Thonart, Philippe; Zarkesh-Esfahani, Hamid

    2011-10-01

    The yeast Yarrowia lipolytica degrades efficiently low-cost hydrophobic substrates for the production of various added-value products such as lipases. To obtain yeast strains producing high levels of extracellular lipase, Y. lipolytica DSM3286 was subjected to mutation using ethyl methanesulfonate (EMS) and ultraviolet (UV) light. Twenty mutants were selected out of 1600 mutants of Y. lipolytica treated with EMS and UV based on lipase production ability on selective medium. A new industrial medium containing methyl oleate was optimized for lipase production. In the 20 L bioreactor containing new industrial medium, one UV mutant (U6) produced 356 U/mL of lipase after 24h, which is about 10.5-fold higher than that produced by the wild type strain. The properties of the mutant lipase were the same as those of the wild type: molecular weight 38 kDa, optimum temperature 37°C and optimum pH 7. Furthermore, the nucleotide sequences of extracellular lipase gene (LIP2) in wild type and mutant strains were determined. Only two silent substitutions at 362 and 385 positions were observed in the ORF region of LIP2. Two single substitutions and two duplications of the T nucleotide were also detected in the promoter region. LIP2 sequence comparison of the Y. lipolytica DSM3286 and U6 strains shows good targets to effective DNA recombinant for extracellular lipase of Y. lipolytica. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Human cecum content modulates production of extracellular proteins by food and probiotic bacteria.

    PubMed

    Sánchez, Borja; Ruiz, Lorena; Suárez, Adolfo; de Los Reyes-Gavilán, Clara G; Margolles, Abelardo

    2011-11-01

    Lactic acid bacteria (LAB) are responsible for different types of food fermentations that provide humans with many different classes of fermented products. During the 20th century, some LAB strains as well as several members of the genus Bifidobacterium started to be extensively used in human nutrition as probiotics because of their health-promoting effects. Nowadays, the subset of extracellular proteins is being investigated as potential mediators of the process known as bacteria-host molecular crosstalk. Inclusion of human cecum extracts in laboratory culture medium modified the production of extracellular proteins by food and probiotic microorganisms. By proteomic and genetic means, the specific overproduction of two proteins was revealed to occur at transcriptional level. This work sheds light on the potential molecular effectors that food bacteria could use for interacting with the human gut and revealed that they may be produced under very specific environmental conditions.

  11. Production of extracellular material by streptococci associated with subacute bacterial endocarditis.

    PubMed Central

    Straus, D C; Mattingly, S J; Milligan, T W

    1977-01-01

    Six strains of viridans streptococci isolated from confirmed cases of subacute bacterial endocarditis were studied for production of extracellular material. All six strains, when grown to the exponential phase, produced exoproducts that had similar elution profiles on a G-100 Sephadex column. Since essential nutrients, such as amino acids, may be periodically growth limiting to streptococci in the fibrin-covered lesions on heart valves, the potential to elaborate extracellular protein and other material by streptococci that were deprived of essential amino acids was studied. Examination of supernatant fluids from cultures of Streptococcus MG intermedius deprived of glutamate and cystine revealed the presence of a complex mixture of extracellular materials in amounts comparable to those produced by normallly growing cells, Although only a slight (21 to 24%) increase in total protein occurred during amino acid deprivation of 12 h, the extracellular material contained numerous protein components, several of which demonstrated proteolytic activity. On a cell dry weight basis, the amino acid-deprived cells produced four-to eightfold more protease(s) than did exponential cells grown in complete medium. These results demonstrate that viridans streptococci are capable of elaborating potentially damaging compounds even when their multiplication has been arrested by nutritional deprivation. Images PMID:885611

  12. Extracellular Nucleotide Hydrolysis in Dermal and Limbal Mesenchymal Stem Cells: a Source of Adenosine Production.

    PubMed

    Naasani, Liliana I Sous; Rodrigues, Cristiano; de Campos, Rafael Paschoal; Beckenkamp, Liziane Raquel; Iser, Isabele C; Bertoni, Ana Paula Santin; Wink, Márcia R

    2017-01-24

    Human Limbal (L-MSCs) and Dermal Mesenchymal Stem Cell (D-MSCs) possess many properties that increase their therapeutic potential in ophthalmology and dermatology. It is known that purinergic signaling plays a role in many aspects of mesenchymal stem cells physiology. They release and respond to purinergic ligands, altering proliferation, migration, differentiation and apoptosis. Therefore, more information on these processes would be crucial for establishing future clinical applications using their differentiation potential, but without undesirable side effects. This study evaluated and compared the expression of ecto-nucleotidases, the enzymatic activity of degradation of extracellular nucleotides and the metabolism of extracellular ATP in D-MSCs and L-MSCs, isolated from discard tissues of human skin and sclerocorneal rims. The D-MSCs and L-MSCs showed a differentiation potential into osteogenic, adipogenic and chondrogenic lineages and the expression of markers CD105(+) , CD44(+) , CD14(-) , CD34(-) , CD45(-) , as expected. Both cells hydrolyzed low levels of extracellular ATP and high levels of AMP, leading to adenosine accumulation that can regulate inflammation and tissue repair. These cells expressed mRNA for ENTPD1, 2, 3, 5 and 6 and CD73 that corresponded to the observed enzymatic activities. Thus, considering the degradation of ATP and adenosine production, limbal MSCs are very similar to dermal MSCs, indicating that from the aspect of extracellular nucleotide metabolism L-MSCs are very similar to the characterized D-MSCs. This article is protected by copyright. All rights reserved.

  13. Optimization of rhamnolipid production by Pseudomonas aeruginosa OG1 using waste frying oil and chicken feather peptone.

    PubMed

    Ozdal, Murat; Gurkok, Sumeyra; Ozdal, Ozlem Gur

    2017-06-01

    In the present study, production of rhamnolipid biosurfactant by Pseudomonas aeruginosa OG1 was statistically optimized by response surface methodology. Box-Behnken design was applied to determine the optimal concentrations of 52, 9.2, and 4.5 g/L for carbon source (waste frying oil), nitrogen source (chicken feather peptone), and KH2PO4, respectively, in production medium. Under the optimized cultivation conditions, rhamnolipid production reached up to 13.31 g/L (with an emulsification activity of 80%), which is approximately twofold higher than the yield obtained from preliminary cultivations. Hence, rhamnolipid production, noteworthy in the literature, was achieved with the use of statistical optimization on inexpensive waste materials for the first time in the present study.

  14. Lead-enhanced siderophore production and alteration in cell morphology in a Pb-resistant Pseudomonas aeruginosa strain 4EA.

    PubMed

    Naik, Milind Mohan; Dubey, Santosh Kumar

    2011-02-01

    A lead-resistant bacterial strain 4EA from soil contaminated with car battery waste from Goa, India was isolated and identified as Pseudomonas aeruginosa. This lead-resistant bacterial isolate interestingly revealed lead-enhanced siderophore (pyochelin and pyoverdine) production up to 0.5 mM lead nitrate whereas cells exhibit a significant decline in siderophore production above 0.5 mM lead nitrate. The bacterial cells also revealed significant alteration in cell morphology as size reduction when exposed to 0.8 mM lead nitrate. Enhanced production of siderophore was evidently detected by chrome azurol S agar diffusion (CASAD) assay as increase in diameter of orange halo, and reduction in bacterial size along with significant biosorption of lead was recorded by scanning electron microscopy coupled with energy dispersive X-ray spectrometry (SEM-EDX). Pseudomonas aeruginosa strain 4EA also exhibits cross tolerance to other toxic metals viz. cadmium, mercury, and zinc besides resistance to multiple antibiotics such as ampicillin, erythromycin, amikacin, cephalexin, co-trimoxazole, mecillinam, lincomycin, ciphaloridine, oleondamycin, and nalidixic acid.

  15. Dimeric c-di-GMP is required for post-translational regulation of alginate production in Pseudomonas aeruginosa.

    PubMed

    Whitney, John C; Whitfield, Gregory B; Marmont, Lindsey S; Yip, Patrick; Neculai, A Mirela; Lobsanov, Yuri D; Robinson, Howard; Ohman, Dennis E; Howell, P Lynne

    2015-05-15

    Pseudomonas aeruginosa is an opportunistic human pathogen that secretes the exopolysaccharide alginate during infection of the respiratory tract of individuals afflicted with cystic fibrosis and chronic obstructive pulmonary disease. Among the proteins required for alginate production, Alg44 has been identified as an inner membrane protein whose bis-(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP) binding activity post-translationally regulates alginate secretion. In this study, we report the 1.8 Å crystal structure of the cytoplasmic region of Alg44 in complex with dimeric self-intercalated c-di-GMP and characterize its dinucleotide-binding site using mutational analysis. The structure shows that the c-di-GMP binding region of Alg44 adopts a PilZ domain fold with a dimerization mode not previously observed for this family of proteins. Calorimetric binding analysis of residues in the c-di-GMP binding site demonstrate that mutation of Arg-17 and Arg-95 alters the binding stoichiometry between c-di-GMP and Alg44 from 2:1 to 1:1. Introduction of these mutant alleles on the P. aeruginosa chromosome show that the residues required for binding of dimeric c-di-GMP in vitro are also required for efficient alginate production in vivo. These results suggest that the dimeric form of c-di-GMP represents the biologically active signaling molecule needed for the secretion of an important virulence factor produced by P. aeruginosa. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Disinfection by-product formation during chlor(am)ination of algal organic matters (AOM) extracted from Microcystis aeruginosa: effect of growth phases, AOM and bromide concentration.

    PubMed

    Chen, Juxiang; Gao, Naiyun; Li, Lei; Zhu, Mingqiu; Yang, Jing; Lu, Xian; Zhang, Yansen

    2017-03-01

    Algae organic matter (AOM), including extracellular organic matter (EOM) and intracellular organic matter (IOM), has caused a series of problems to the water quality, among which formation of disinfection by-products (DBPs) during subsequent chlor(am)ination process was especially serious and concerned. This study characterized physicochemical properties of the EOM and IOM solution extracted from different growth phases of Microcystis aeruginosa and investigated the corresponding formation potential of DBPs during chlor(am)ination process. Besides, the effects of initial concentration of xEOM, IOM, and Br(-) on the yields of disinfection by-product formation potential were studied. The results indicated that the specific UV absorbance (SUVA254) values of IOM and EOM (1.09 and 2.66 L/mg m) were considerably lower than that of natural organic matter (NOM) (4.79 L/mg m). Fluorescence dates showed the soluble microbial by-product was dominant in both EOM and IOM, and the tryptophan was the main component of AOM. From the excitation-emission matrix figure of EOM and IOM, we found that the content of the high molecular weight protein substance in IOM was higher than EOM. During chlorination of EOM and IOM, the yields of four kinds of DBPs followed the order trichloroethene (TCM) > 1,1-DCP > dichloride acetonitrile (DCAN) > trichloronitromethane (TCNM), while the order was TCM > DCAN > TCNM > 1,1-DCP during chloramination process. The bromine substitution factor (BSF) value increased with the increasing of the concentration of Br(-). When the concentration of Br(-) was 500 μg/L, the BSF values of chlorination EOM and IOM were 51.1 and 68.4%, respectively. As the concentration of Br(-) increased, the formation of Cl-DBPs was inhibited and the formation of Br-DBPs was promoted. Graphical abstract ᅟ.

  17. Efficient extracellular production of κ-carrageenase in Escherichia coli: effects of wild-type signal sequence and process conditions on extracellular secretion.

    PubMed

    Liu, Zhemin; Tian, Lin; Chen, Yulin; Mou, Haijin

    2014-09-20

    Signal peptides direct proteins to translocate across the bacterial cytoplasmic membrane. This study aimed to improve the level of extracellular secretion of recombinant carrageenase by recombining the gene encoding wild-type signal peptide (OmpZ) of Zobellia sp. ZM-2 κ-carrageenase into the expression vector pProEX-HTa-cgkZ. The recombinant strain BL21-HTa-cgkZ achieved extracellular secretion of κ-carrageenase. The effects of induction, culture conditions, and additives were investigated to further promote the extracellular secretion of the enzyme. Results showed that the wild-type signal sequence secreted recombinant κ-carrageenase out of the cytoplasmic membrane. Low temperature (23 °C) and optimum isopropyl-β-thiogalactoside concentration (0.9 mM) favored soluble protein expression. Moreover, additives such as lactose, glycine, Tween-80, and TritonX-100 promoted the release of intracellular enzymes. The existence of OmpZ resulted in 51% of the total κ-carrageenase accumulation secreted into culture medium, and 33% accumulated in the periplasmic space. High extracellular secretion of recombinant κ-carrageenase under the optimum conditions showed promising applications of the process for extracellular protein production. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Modulation of Type III Secretion System in Pseudomonas aeruginosa: Involvement of the PA4857 Gene Product

    PubMed Central

    Zhu, Miao; Zhao, Jingru; Kang, Huaping; Kong, Weina; Zhao, Yuanyu; Wu, Min; Liang, Haihua

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes serious acute or chronic infections in humans. Acute infections typically involve the type III secretion systems (T3SSs) and bacterial motility, whereas chronic infections are often associated with biofilm formation and the type VI secretion system. To identify new genes required for pathogenesis, a transposon mutagenesis library was constructed and the gene PA4857, named tspR, was found to modulate T3SS gene expression. Deletion of P. aeruginosa tspR reduced the virulence in a mouse acute lung infection model and diminished cytotoxicity. Suppression of T3SS gene expression in the tspR mutant resulted from compromised translation of the T3SS master regulator ExsA. TspR negatively regulated two small RNAs, RsmY and RsmZ, which control RsmA. Our data demonstrated that defects in T3SS expression and biofilm formation in retS mutant could be partially restored by overexpression of tspR. Taken together, our results demonstrated that the newly identified retS-tspR pathway is coordinated with the retS-gacS system, which regulates the genes associated with acute and chronic infections and controls the lifestyle choice of P. aeruginosa. PMID:26858696

  19. Cedrol Enhances Extracellular Matrix Production in Dermal Fibroblasts in a MAPK-Dependent Manner

    PubMed Central

    Jin, Mu Hyun; Park, Sun Gyoo; Hwang, Yul-Lye; Lee, Min-Ho; Jeong, Nam-Ji; Roh, Seok-Seon; Lee, Young; Kim, Chang Deok

    2012-01-01

    Background The extracellular matrix (ECM) produced by dermal fibroblasts supports skin structure, and degradation and/or reduced production of ECM are the main causes of wrinkle formation. Objective The aim of this study was to identify the active ingredient that enhances ECM production in dermal fibroblasts. Methods Polarity-based fractionation was used to isolate the active ingredient from natural extracts, and the effects of cedrol (isolated from Pterocarpus indicusirginia) on ECM production in cultured human dermal fibroblasts was investigated by reverse transcription-polymerase chain reaction, enzyme linked immunosorbent assay, and Western blot analysis. Results Cedrol accelerated fibroblast growth in a dose-dependent manner and increased the production of type 1 collagen and elastin. Phosphorylation of p42/44 extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and Akt was markedly increased by cedrol, indicating that enhanced ECM production is linked to activation of intracellular signaling cascades. Conclusion These results indicate that cedrol stimulates ECM production, with possible applications to the maintenance of skin texture. PMID:22363150

  20. Membrane Distribution of the Pseudomonas Quinolone Signal Modulates Outer Membrane Vesicle Production in Pseudomonas aeruginosa.

    PubMed

    Florez, Catalina; Raab, Julie E; Cooke, Adam C; Schertzer, Jeffrey W

    2017-08-08

    The Pseudomonas quinolone signal (PQS) is an important quorum-sensing molecule in Pseudomonas aeruginosa that also mediates its own packaging and transport by stimulating outer membrane vesicle (OMV) formation. Because OMVs have been implicated in many virulence-associated behaviors, it is critical that we understand how they are formed. Our group proposed the bilayer-couple model for OMV biogenesis, where PQS intercalates into the outer membrane, causing expansion of the outer leaflet and consequently inducing curvature. In accordance with the model, we hypothesized that PQS must be transported from the cytoplasm to the outer membrane before it can initiate OMV formation. We initially examined two laboratory strains of P. aeruginosa and found significant strain-dependent differences. PQS export correlated strongly with OMV production, even though equivalent amounts of total PQS were produced by both strains. Interestingly, we discovered that poor OMV producers sequestered the majority of PQS in the inner membrane, which appeared to be the result of early saturation of the export pathway. Further analysis showed that strain-specific PQS export and OMV biogenesis patterns were stable once established but could be significantly altered by changing the growth medium. Finally, we demonstrated that the associations described for laboratory strains also held for three clinical strains. These results suggest that factors controlling the export of PQS dictate OMV biogenesis. This work provides new insight into PQS-controlled virulence in P. aeruginosa and provides important tools to further study signal export and OMV biogenesis.IMPORTANCE Bacterial secretion has been recognized as an essential facet of microbial pathogenesis and human disease. Numerous virulence factors have been found to be transported within outer membrane vesicles (OMVs), and delivery using these biological nanoparticles often results in increased potency. OMV biogenesis is an important but poorly

  1. Effects of light wavelengths on extracellular and capsular polysaccharide production by Nostoc flagelliforme.

    PubMed

    Han, Pei-pei; Sun, Ying; Jia, Shi-ru; Zhong, Cheng; Tan, Zhi-lei

    2014-05-25

    The influences of different wavelengths of light (red 660nm, yellow 590nm, green 520nm, blue 460nm, purple 400nm) and white light on extracellular polysaccharide (EPS) and capsular polysaccharide (CPS) production by Nostoc flagelliforme in liquid culture were demonstrated in this study. The results showed that, compared with white light, red and blue lights significantly increased both EPS and CPS production while yellow light reduced their production; purple and green lights stimulated EPS production but inhibited CPS formation. Nine constituent monosaccharides and one uronic acid were detected in both EPS and CPS, and their ratios showed significant differences among treatment with different light wavelengths. However, the advanced structure of EPS and CPS from various light conditions did not present obvious difference through Fourier transform infrared spectroscopy and X-ray diffraction characterization. These findings establish a basis for development of high-yielding polysaccharide production process and understanding their regulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. N-cadherin enhances APP dimerization at the extracellular domain and modulates Aβ production.

    PubMed

    Asada-Utsugi, Megumi; Uemura, Kengo; Noda, Yasuha; Kuzuya, Akira; Maesako, Masato; Ando, Koichi; Kubota, Masakazu; Watanabe, Kiwamu; Takahashi, Makio; Kihara, Takeshi; Shimohama, Shun; Takahashi, Ryosuke; Berezovska, Oksana; Kinoshita, Ayae

    2011-10-01

    Sequential processing of amyloid precursor protein (APP) by β- and γ-secretase leads to the generation of amyloid-β (Aβ) peptides, which plays a central role in Alzheimer's disease pathogenesis. APP is capable of forming a homodimer through its extracellular domain as well as transmembrane GXXXG motifs. A number of reports have shown that dimerization of APP modulates Aβ production. On the other hand, we have previously reported that N-cadherin-based synaptic contact is tightly linked to Aβ production. In the present report, we investigated the effect of N-cadherin expression on APP dimerization and metabolism. Here, we demonstrate that N-cadherin expression facilitates cis-dimerization of APP. Moreover, N-cadherin expression led to increased production of Aβ as well as soluble APPβ, indicating that β-secretase-mediated cleavage of APP is enhanced. Interestingly, N-cadherin expression affected neither dimerization of C99 nor Aβ production from C99, suggesting that the effect of N-cadherin on APP metabolism is mediated through APP extracellular domain. We confirmed that N-cadherin enhances APP dimerization by a novel luciferase-complementation assay, which could be a platform for drug screening on a high-throughput basis. Taken together, our results suggest that modulation of APP dimerization state could be one of mechanisms, which links synaptic contact and Aβ production. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  3. High-Throughput Genetic Screen Reveals that Early Attachment and Biofilm Formation Are Necessary for Full Pyoverdine Production by Pseudomonas aeruginosa.

    PubMed

    Kang, Donghoon; Kirienko, Natalia V

    2017-01-01

    Pseudomonas aeruginosa is a re-emerging, multidrug-resistant, opportunistic pathogen that threatens the lives of immunocompromised patients, patients with cystic fibrosis, and those in critical care units. One of the most important virulence factors in this pathogen is the siderophore pyoverdine. Pyoverdine serves several critical roles during infection. Due to its extremely high affinity for ferric iron, pyoverdine gives the pathogen a significant advantage over the host in their competition for iron. In addition, pyoverdine can regulate the production of multiple bacterial virulence factors and perturb host mitochondrial homeostasis. Inhibition of pyoverdine biosynthesis decreases P. aeruginosa pathogenicity in multiple host models. To better understand the regulation of pyoverdine production, we developed a high-throughput genetic screen that uses the innate fluorescence of pyoverdine to identify genes necessary for its biosynthesis. A substantial number of hits showing severe impairment of pyoverdine production were in genes responsible for early attachment and biofilm formation. In addition to genetic disruption of biofilm, both physical and chemical perturbations also attenuated pyoverdine production. This regulatory relationship between pyoverdine and biofilm is particularly significant in the context of P. aeruginosa multidrug resistance, where the formation of biofilm is a key mechanism preventing access to antimicrobials and the immune system. Furthermore, we demonstrate that the biofilm inhibitor 2-amino-5,6-dimethylbenzimidazole effectively attenuates pyoverdine production and rescues Caenorhabditis elegans from P. aeruginosa-mediated pathogenesis. Our findings suggest that targeting biofilm formation in P. aeruginosa infections may have multiple therapeutic benefits and that employing an unbiased, systems biology-based approach may be useful for understanding the regulation of specific virulence factors and identifying novel anti-virulence therapeutics

  4. Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D.

    PubMed

    George, S; Jayachandran, K

    2013-02-01

    To improve biosurfactant production economics by the utilization of potential low-cost materials. In an attempt to utilize cost-effective carbon sources in the fermentative production of biosurfactants, various pure and waste frying oils were screened by a standard biosurfactant producing strain. Considering the regional significance, easy availability and the economical advantages, waste frying coconut oil was selected as the substrate for further studies. On isolation of more competent strains that could use waste frying coconut oil efficiently as a carbon source, six bacterial strains were isolated on cetyltrimethyl ammonium bromide-methylene blue agar plate, from a soil sample collected from the premises of a coconut oil mill. Among these, Pseudomonas aeruginosa D was selected as the potential producer of rhamnolipid. Spectrophotometric method, TLC, methylene blue active substance assay, drop collapse technique, surface tension measurement by Du Nouy ring method and emulsifying test confirmed the rhamnolipid producing ability of the selected strain and various process parameters were optimized for the production of maximum amount of biosurfactant. Rhamnolipid components purified and separated by ethyl acetate extraction, preparative silica gel column chromatography, HPLC and TLC were characterized by fast atom bombardment mass spectrometry as a mixture of dirhamnolipids and monorhamnolipids. The rhamnolipid homologues detected were Rha-Rha-C(10) -C(10) , Rha-C(12) -C(10) and Rha-C(10) -C(8) /Rha-C(8) -C(10) . These results indicated the possibility of waste frying coconut oil to be used as a very effective alternate substrate for the economic production of rhamnolipid by a newly isolated Ps. aeruginosa D. Results of this study throws light on the alternate use of already used cooking oil as high-energy source for producing a high value product like rhamnolipid. This would provide options for the food industry other than the recycling and reuse of waste frying

  5. Extracellular Production and Degradation of Superoxide in the Coral Stylophora pistillata and Cultured Symbiodinium

    PubMed Central

    Saragosti, Eldad; Tchernov, Dan; Katsir, Adi; Shaked, Yeala

    2010-01-01

    Background Reactive oxygen species (ROS) are thought to play a major role in cell death pathways and bleaching in scleractinian corals. Direct measurements of ROS in corals are conspicuously in short supply, partly due to inherent problems with ROS quantification in cellular systems. Methodology/Principal Findings In this study we characterized the dynamics of the reactive oxygen species superoxide anion radical (O2−) in the external milieu of the coral Stylophora pistillata. Using a sensitive, rapid and selective chemiluminesence-based technique, we measured extracellular superoxide production and detoxification activity of symbiont (non-bleached) and aposymbiont (bleached) corals, and of cultured Symbiodinium (from clades A and C). Bleached and non-bleached Stylophora fragments were found to produce superoxide at comparable rates of 10−11–10−9 mol O2− mg protein−1 min−1 in the dark. In the light, a two-fold enhancement in O2− production rates was observed in non-bleached corals, but not in bleached corals. Cultured Symbiodinium produced superoxide in the dark at a rate of . Light was found to markedly enhance O2− production. The NADPH Oxidase inhibitor Diphenyleneiodonium chloride (DPI) strongly inhibited O2− production by corals (and more moderately by algae), possibly suggesting an involvement of NADPH Oxidase in the process. An extracellular O2− detoxifying activity was found for bleached and non-bleached Stylophora but not for Symbiodinium. The O2− detoxifying activity was partially characterized and found to resemble that of the enzyme superoxide dismutase (SOD). Conclusions/Significance The findings of substantial extracellular O2− production as well as extracellular O2− detoxifying activity may shed light on the chemical interactions between the symbiont and its host and between the coral and its environment. Superoxide production by Symbiodinium possibly implies that algal bearing corals are more susceptible to an internal

  6. Discovery and Analysis of Natural-Product Compounds Inhibiting Protein Synthesis in Pseudomonas aeruginosa

    PubMed Central

    Hu, Yanmei; Keniry, Megan; Palmer, Stephanie O.

    2016-01-01

    Bacterial protein synthesis is the target for numerous natural and synthetic antibacterial agents. We have developed a poly(U) mRNA-directed aminoacylation/translation (A/T) protein synthesis system composed of phenylalanyl-tRNA synthetases (PheRS), ribosomes, and ribosomal factors from Pseudomonas aeruginosa. This system has been used for high-throughput screening of a natural-compound library. Assays were developed for each component of the system to ascertain the specific target of inhibitory compounds. In high-throughput screens, 13 compounds were identified that inhibit protein synthesis with 50% inhibitory concentrations ranging from 0.3 to >80 μM. MICs were determined for the compounds against the growth of a panel of pathogenic organisms, including Enterococcus faecalis, Escherichia coli, Haemophilus influenzae, Moraxella catarrhalis, P. aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae. Three of the compounds were observed to have broad-spectrum activity and inhibited a hypersensitive strain of P. aeruginosa with MICs of 8 to 16 μg/ml. The molecular target of each of the three compounds was determined to be PheRS. One compound was found to be bacteriostatic, and one compound was bactericidal against both Gram-positive and Gram-negative pathogens. The third compound was observed to be bacteriostatic against Gram-positive and bactericidal against Gram-negative bacteria. All three compounds were competitive with the substrate ATP; however, one compound was competitive, one was uncompetitive, and one noncompetitive with the amino acid substrate. Macromolecular synthesis assays confirm the compounds inhibit protein synthesis. The compounds were shown to be more than 25,000-fold less active than the control staurosporine in cytotoxicity MTT testing in human cell lines. PMID:27246774

  7. Discovery and Analysis of Natural-Product Compounds Inhibiting Protein Synthesis in Pseudomonas aeruginosa.

    PubMed

    Hu, Yanmei; Keniry, Megan; Palmer, Stephanie O; Bullard, James M

    2016-08-01

    Bacterial protein synthesis is the target for numerous natural and synthetic antibacterial agents. We have developed a poly(U) mRNA-directed aminoacylation/translation (A/T) protein synthesis system composed of phenylalanyl-tRNA synthetases (PheRS), ribosomes, and ribosomal factors from Pseudomonas aeruginosa This system has been used for high-throughput screening of a natural-compound library. Assays were developed for each component of the system to ascertain the specific target of inhibitory compounds. In high-throughput screens, 13 compounds were identified that inhibit protein synthesis with 50% inhibitory concentrations ranging from 0.3 to >80 μM. MICs were determined for the compounds against the growth of a panel of pathogenic organisms, including Enterococcus faecalis, Escherichia coli, Haemophilus influenzae, Moraxella catarrhalis, P. aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae Three of the compounds were observed to have broad-spectrum activity and inhibited a hypersensitive strain of P. aeruginosa with MICs of 8 to 16 μg/ml. The molecular target of each of the three compounds was determined to be PheRS. One compound was found to be bacteriostatic, and one compound was bactericidal against both Gram-positive and Gram-negative pathogens. The third compound was observed to be bacteriostatic against Gram-positive and bactericidal against Gram-negative bacteria. All three compounds were competitive with the substrate ATP; however, one compound was competitive, one was uncompetitive, and one noncompetitive with the amino acid substrate. Macromolecular synthesis assays confirm the compounds inhibit protein synthesis. The compounds were shown to be more than 25,000-fold less active than the control staurosporine in cytotoxicity MTT testing in human cell lines.

  8. Preliminary study : optimization of pH and salinity for biosurfactant production from Pseudomonas aeruginosa in diesel fuel and crude oil medium

    NASA Astrophysics Data System (ADS)

    Ikhwani, A. Z. N.; Nurlaila, H. S.; Ferdinand, F. D. K.; Fachria, R.; Hasan, A. E. Z.; Yani, M.; Setyawati, I.; Suryani

    2017-03-01

    Biosurfactant is secondary metabolite surface active compound produced by microorganisms which is nontoxic and eco-friendly. Microorganism producing biosurfactant that is quite potential to use in many applications is from Pseudomonas aeruginosa strains. Good quality of biosurfactant production from microbes is supported by the suitable nutrients and environmental factors. The aim of this research was to obtain preliminary o data upon the optimum pH and salinity for the production of biosurfactant from Pseudomonas aeruginosa ATCC 15442 in diesel fuel and crude oil medium. P. aeruginosa ATCC 15442 cultured in diesel fuel and crude oil as carbon source showed biosurfactant activity. P.aeruginosa-derived biosurfactant was capable to form stable emulsion for 24 hours (EI24) in hydrocarbons n-hexane solutions. The particular biosurfactant showed EI24 highest value at pH 7 (31.02%) and 1% NaCl (24.00%) when P. aeruginosa was grown in 10% diesel fuel medium in mineral salt solution. As for the media crude oil, the highest EI24 value was at pH 6 (52.16%) and 1% NaCl (33.30%).

  9. Inhibitors of Serine Proteases in Regulating the Production and Function of Neutrophil Extracellular Traps.

    PubMed

    Majewski, Pawel; Majchrzak-Gorecka, Monika; Grygier, Beata; Skrzeczynska-Moncznik, Joanna; Osiecka, Oktawia; Cichy, Joanna

    2016-01-01

    Neutrophil extracellular traps (NETs), DNA webs released into the extracellular environment by activated neutrophils, are thought to play a key role in the entrapment and eradication of microbes. However, NETs are highly cytotoxic and a likely source of autoantigens, suggesting that NET release is tightly regulated. NET formation involves the activity of neutrophil elastase (NE), which cleaves histones, leading to chromatin decondensation. We and others have recently demonstrated that inhibitors of NE, such as secretory leukocyte protease inhibitor (SLPI) and SerpinB1, restrict NET production in vitro and in vivo. SLPI was also identified as a NET component in the lesional skin of patients suffering from the autoinflammatory skin disease psoriasis. SLPI-competent NET-like structures (a mixture of SLPI with neutrophil DNA and NE) stimulated the synthesis of interferon type I (IFNI) in plasmacytoid dendritic cells (pDCs) in vitro. pDCs uniquely respond to viral or microbial DNA/RNA but also to nucleic acids of "self" origin with the production of IFNI. Although IFNIs are critical in activating the antiviral/antimicrobial functions of many cells, IFNIs also play a role in inducing autoimmunity. Thus, NETs decorated by SLPI may regulate skin immunity through enhancing IFNI production in pDCs. Here, we review key aspects of how SLPI and SerpinB1 can control NET production and immunogenic function.

  10. Inhibitors of Serine Proteases in Regulating the Production and Function of Neutrophil Extracellular Traps

    PubMed Central

    Majewski, Pawel; Majchrzak-Gorecka, Monika; Grygier, Beata; Skrzeczynska-Moncznik, Joanna; Osiecka, Oktawia; Cichy, Joanna

    2016-01-01

    Neutrophil extracellular traps (NETs), DNA webs released into the extracellular environment by activated neutrophils, are thought to play a key role in the entrapment and eradication of microbes. However, NETs are highly cytotoxic and a likely source of autoantigens, suggesting that NET release is tightly regulated. NET formation involves the activity of neutrophil elastase (NE), which cleaves histones, leading to chromatin decondensation. We and others have recently demonstrated that inhibitors of NE, such as secretory leukocyte protease inhibitor (SLPI) and SerpinB1, restrict NET production in vitro and in vivo. SLPI was also identified as a NET component in the lesional skin of patients suffering from the autoinflammatory skin disease psoriasis. SLPI-competent NET-like structures (a mixture of SLPI with neutrophil DNA and NE) stimulated the synthesis of interferon type I (IFNI) in plasmacytoid dendritic cells (pDCs) in vitro. pDCs uniquely respond to viral or microbial DNA/RNA but also to nucleic acids of “self” origin with the production of IFNI. Although IFNIs are critical in activating the antiviral/antimicrobial functions of many cells, IFNIs also play a role in inducing autoimmunity. Thus, NETs decorated by SLPI may regulate skin immunity through enhancing IFNI production in pDCs. Here, we review key aspects of how SLPI and SerpinB1 can control NET production and immunogenic function. PMID:27446090

  11. Extracellular matrix production and calcium carbonate precipitation by coral cells in vitro

    PubMed Central

    Helman, Yael; Natale, Frank; Sherrell, Robert M.; LaVigne, Michèle; Starovoytov, Valentin; Gorbunov, Maxim Y.; Falkowski, Paul G.

    2008-01-01

    The evolution of multicellularity in animals required the production of extracellular matrices that serve to spatially organize cells according to function. In corals, three matrices are involved in spatial organization: (i) an organic ECM, which facilitates cell–cell and cell–substrate adhesion; (ii) a skeletal organic matrix (SOM), which facilitates controlled deposition of a calcium carbonate skeleton; and (iii) the calcium carbonate skeleton itself, which provides the structural support for the 3D organization of coral colonies. In this report, we examine the production of these three matrices by using an in vitro culturing system for coral cells. In this system, which significantly facilitates studies of coral cell physiology, we demonstrate in vitro excretion of ECM by primary (nondividing) tissue cultures of both soft (Xenia elongata) and hard (Montipora digitata) corals. There are structural differences between the ECM produced by X. elongata cell cultures and that of M. digitata, and ascorbic acid, a critical cofactor for proline hydroxylation, significantly increased the production of collagen in the ECM of the latter species. We further demonstrate in vitro production of SOM and extracellular mineralized particles in cell cultures of M. digitata. Inductively coupled plasma mass spectrometry analysis of Sr/Ca ratios revealed the particles to be aragonite. De novo calcification was confirmed by following the incorporation of 45Ca into acid labile macromolecules. Our results demonstrate the ability of isolated, differentiated coral cells to undergo fundamental processes required for multicellular organization. PMID:18162537

  12. Production of medium-chain-length polyhydroxyalkanoates by Pseudomonas aeruginosa with fatty acids and alternative carbon sources.

    PubMed

    Chan, Pui-Ling; Yu, Vincent; Wai, Lam; Yu, Hoi-Fu

    2006-01-01

    In this study, medium-chain-length polyhydroxyalkanoates (mcl-PHAs) were produced by Pseudomonas aeruginosa using different carbon sources. Decanoic acid induced the highest (9.71% [+/- 0.7]) mcl-PHAs accumulation in bacterial cells at 47 h. The cells preferred to accumulate and degrade the polyhydroxyoctanoate than polyhydroxydecanoate (PHD) during early stage and final stage of the growth, respectively. The production cost of mcl-PHAs can be reduced by using edible oils as the carbon source. The bacteria accumulated 6% (+/- 0.7) of mcl-PHAs in the presence of olive oil. Besides, reused oil was another potential carbon source for the reduction of the production cost of mcl-PHAs. Overall, PHD was the major constituent in the accumulated mcl-PHAs.

  13. Evidence of the Cost of the Production of Microcystins by Microcystis aeruginosa under Differing Light and Nitrate Environmental Conditions

    PubMed Central

    Briand, Enora; Bormans, Myriam; Quiblier, Catherine; Salençon, Marie-José; Humbert, Jean-François

    2012-01-01

    The cyanobacterium Microcystis aeruginosa is known to proliferate in freshwater ecosystems and to produce microcystins. It is now well established that much of the variability of bloom toxicity is due to differences in the relative proportions of microcystin-producing and non-microcystin-producing cells in cyanobacterial populations. In an attempt to elucidate changes in their relative proportions during cyanobacterial blooms, we compared the fitness of the microcystin-producing M. aeruginosa PCC 7806 strain (WT) to that of its non-microcystin-producing mutant (MT). We investigated the effects of two light intensities and of limiting and non-limiting nitrate concentrations on the growth of these strains in monoculture and co-culture experiments. We also monitored various physiological parameters, and microcystin production by the WT strain. In monoculture experiments, no significant difference was found between the growth rates or physiological characteristics of the two strains during the exponential growth phase. In contrast, the MT strain was found to dominate the WT strain in co-culture experiments under favorable growth conditions. Moreover, we also found an increase in the growth rate of the MT strain and in the cellular MC content of the WT strain. Our findings suggest that differences in the fitness of these two strains under optimum growth conditions were attributable to the cost to microcystin-producing cells of producing microcystins, and to the putative existence of cooperation processes involving direct interactions between these strains. PMID:22276137

  14. Glycine metabolism by Pseudomonas aeruginosa: hydrogen cyanide biosynthesis.

    PubMed Central

    Castric, P A

    1977-01-01

    Hydrogen cyanide (HCN) production by Pseudomonas aeruginosa in a synthetic medium is stimulated by the presence of glycine. Methionine enhances this stimulation but will not substitute for glycine as a stimulator of cyanogenesis. Threonine and phenylalanine are effective substitutes for glycine in the stimulation of HCN production. Glycine, threonine, and serine are good radioisotope precursors of HCN, but methionine and phenylalanine are not. Cell extracts of P. aeruginosa convert [14C]threonine to [14C]glycine. H14CN is produced with low dilution of label from either [1-14C]glycine or [2-14C]glycine, indicating a randomization of label either in the primary or secondary metabolism of glycine. When whole cells were fed [1,2-14C]glycine, cyanide and bicarbonate were the only radioactive extracellular products observed. PMID:233722

  15. Vanadate and triclosan synergistically induce alginate production by Pseudomonas aeruginosa strain PAO1

    PubMed Central

    Damron, F. Heath; Davis, Michael R.; Withers, T. Ryan; Ernst, Robert K.; Goldberg, Joanna B.; Yu, Guangli; Yu, Hongwei D.

    2011-01-01

    Summary Alginate overproduction by P. aeruginosa strains, also known as mucoidy, is associated with chronic lung infections in cystic fibrosis (CF). It is not clear how alginate induction occurs in the wild type (wt) mucA strains. When grown on Pseudomonas isolation agar (PIA), P. aeruginosa strains PAO1 and PA14 are nonmucoid producing minimal amounts of alginate. Here we report the addition of ammonium metavanadate (AMV), a phosphatase inhibitor, to PIA (PIA-AMV) induced mucoidy in both these laboratory strains and early lung colonizing nonmucoid isolates with a wt mucA. This phenotypic switch was reversible depending on the availability of vanadate salts and triclosan, a component of PIA. Alginate induction in PAO1 on PIA-AMV was correlated with increased proteolytic degradation of MucA, and required envelope proteases AlgW or MucP, and a two-component phosphate regulator, PhoP. Other changes included the addition of palmitate to lipid A, a phenotype also observed in chronic CF isolates. Proteomic analysis revealed the upregulation of stress chaperones, which was confirmed by increased expression of the chaperone/protease MucD. Altogether, these findings suggest a model of alginate induction and the PIA-AMV medium may be suitable for examining early lung colonization phenotypes in CF before the selection of the mucA mutants. PMID:21631603

  16. Antimicrobial activity of neutralized extracellular culture filtrates of lactic acid bacteria isolated from a cultured Indian milk product ('dahi').

    PubMed

    Varadaraj, M C; Devi, N; Keshava, N; Manjrekar, S P

    1993-12-01

    Neutralized extracellular culture filtrate obtained from isolates of Lactobacillus acidophilus, Lactobacillus delbruecki ssp. bulgaricus, Lactobacillus salivarius and Lactococcus lactis ssp. lactis from 'dahi' showed weak to moderate inhibition of Staphylococcus aureus, Bacillus cereus, Escherichia coli, Bacillus brevis, Bacillus circulans, Bacillus coagulans, Bacillus laterosporus, Bacillus subtilis and Pseudomonas aeruginosa when tested by the diffusion agar well assay method. The effective minimum quantity of lactic culture filtrates required to obtain complete inhibition of an inoculum of 10(3) cfu/ml of the bacteria tested was between 20 and 26% (vol/vol), as determined by the agar incorporation method. Neutralized extracellular culture filtrate of these lactic cultures added at a level of 10% in sterile, 10% reconstituted non-fat dry milk was able to either suppress or retard growth of selected bacterial cultures when incubated at 37 degrees C for 24 h. This study indicated the antimicrobial activity of dahi and the potential of using neutralized extracellular culture filtrate of lactic acid bacteria in the biopreservation of foods.

  17. Neutrophil Extracellular Traps of Cynoglossus semilaevis: Production Characteristics and Antibacterial Effect

    PubMed Central

    Zhao, Ming-li; Chi, Heng; Sun, Li

    2017-01-01

    Neutrophil extracellular traps (NETs) are structures released by neutrophils as a cellular immune defense against microbial invasion. The process of NETs generation, netosis (NETosis), can take place via either a suicidal mechanism, during which the NETs-releasing cells became dead, or a “live” mechanism, during which the NETs-releasing cells remain vital. NETosis has been studied intensively in mammals in recent years, but very little is known about the NETosis in fish. In this study, we examined NETosis in tongue sole (Cynoglossus semilaevis), a species of teleost with important economic values. We found that following stimulation with phorbol 12-myristate 13-acetate (PMA) and three common fish bacterial pathogens, abundant NETs structures were released by neutrophils that were most likely in a live state. The released NETs captured, but did not kill, the bacterial pathogens; however, the replication of extracellular, but not intracellular, pathogens was inhibited by NETs to significant extents. Reactive oxygen species (ROS), nitric oxide (NO), and myeloperoxidase (MPO) production were observed to be enhanced in NETosing neutrophils, and blocking the production of these factors by inhibitors significantly decreased NETs production induced by PMA and all three bacteria. Taken together, these results indicate for the first time that in teleost there exists a non-cell death pathway of NETosis that produces NETs with antibacterial effects in a ROS-, NO-, and MPO-dependent manner. PMID:28382034

  18. Improvement in extracellular protease production by the marine antarctic yeast Rhodotorula mucilaginosa L7.

    PubMed

    Chaud, Luciana C S; Lario, Luciana D; Bonugli-Santos, Rafaella C; Sette, Lara D; Pessoa Junior, Adalberto; Felipe, Maria das Graças de A

    2016-12-25

    Microorganisms from extreme and restrictive eco systems, such as the Antarctic continent, are of great interest due to their ability to synthesize products of commercial value. Among these, enzymes from psychrotolerant and psychrophilic microorganisms offer potential economical benefits due to their high activity at low and moderate temperatures. The cold adapted yeast Rhodotorula mucilaginosa L7 was selected out of 97 yeasts isolated from Antarctica as having the highest extracellular proteolytic activity in preliminary tests. The present study was aimed at evaluating the effects of nutrient composition (peptone, rice bran extract, ammonium sulfate, sodium chloride) and physicochemical parameters (temperature and pH) on its proteolytic activity. A 2(6-2) fractional factorial design experiment followed by a central composite design (CCD 2(3)) was performed to optimize the culture conditions and improve the extracellular proteolytic activity. The results indicated that the presence of peptone in the medium was the most influential factor in protease production. Enzymatic activity was enhanced by the interaction between low glucose and peptone concentrations. The optimization of culture conditions with the aid of mathematical modeling enabled a c. 45% increase in proteolytic activity and at the same time reduced the amount of glucose and peptone required for the culture. Thus culture conditions established in this work may be employed in the biotechnological production of this protease.

  19. Single cell responses to spatially controlled photosensitized production of extracellular singlet oxygen.

    PubMed

    Pedersen, Brian W; Sinks, Louise E; Breitenbach, Thomas; Schack, Nickolass B; Vinogradov, Sergei A; Ogilby, Peter R

    2011-01-01

    The response of individual HeLa cells to extracellularly produced singlet oxygen was examined. The spatial domain of singlet oxygen production was controlled using the combination of a membrane-impermeable Pd porphyrin-dendrimer, which served as a photosensitizer, and a focused laser, which served to localize the sensitized production of singlet oxygen. Cells in close proximity to the domain of singlet oxygen production showed morphological changes commonly associated with necrotic cell death. The elapsed postirradiation "waiting period" before necrosis became apparent depended on: (1) the distance between the cell membrane and the domain irradiated, (2) the incident laser fluence and, as such, the initial concentration of singlet oxygen produced and (3) the lifetime of singlet oxygen. The data imply that singlet oxygen plays a key role in this process of light-induced cell death. The approach of using extracellularly generated singlet oxygen to induce cell death can provide a solution to a problem that often limits mechanistic studies of intracellularly photosensitized cell death: it can be difficult to quantify the effective light dose, and hence singlet oxygen concentration, when using an intracellular photosensitizer. © 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.

  20. Membrane-anchored MucR mediates nitrate-dependent regulation of alginate production in Pseudomonas aeruginosa.

    PubMed

    Wang, Yajie; Hay, Iain D; Rehman, Zahid U; Rehm, Bernd H A

    2015-09-01

    Alginates exhibit unique material properties suitable for medical and industrial applications. However, if produced by Pseudomonas aeruginosa, it is an important virulence factor in infection of cystic fibrosis patients. The alginate biosynthesis machinery is activated by c-di-GMP imparted by the inner membrane protein, MucR. Here, it was shown that MucR impairs alginate production in response to nitrate in P. aeruginosa. Subsequent site-specific mutagenesis of MucR revealed that the second MHYT sensor motif (MHYT II, amino acids 121-124) of MucR sensor domain was involved in nitrate sensing. We also showed that both c-di-GMP synthesizing and degrading active sites of MucR were important for alginate production. Although nitrate and deletion of MucR impaired alginate promoter activity and global c-di-GMP levels, alginate yields were not directly correlated with alginate promoter activity or c-di-GMP levels, suggesting that nitrate and MucR modulate alginate production at a post-translational level through a localized pool of c-di-GMP. Nitrate increased pel promoter activity in the mucR mutant while in the same mutant the psl promoter activity was independent of nitrate. Nitrate and deletion of mucR did not impact on swarming motility but impaired attachment to solid surfaces. Nitrate and deletion of mucR promoted the formation of biofilms with increased thickness, cell density, and survival. Overall, this study provided insight into the functional role of MucR with respect to nitrate-mediated regulation of alginate biosynthesis.

  1. Intraspecific protoplast fusion of Brettanomyces anomalus for improved production of an extracellular β-glucosidase

    PubMed Central

    Wu, Peng; Zhao, Xihong; Pan, Siyi

    2014-01-01

    Improvement of production of an extracellular β-glucosidase with high activity by Brettanomyces anomalus PSY-001 was performed by using recursive protoplast fusion in a genome-shuffling format. The initial population was generated by ultraviolet irradiation, ultrasonic mutagenesis and, then, subjected to recursive protoplast fusion. Mutant strains exhibiting significantly higher β-glucosidase activities in liquid media were isolated. The best mutant strain showed increased cell growth in a flask culture, as well as increased β-glucosidase production. A recombinant strain, F3-25, was obtained after three rounds of genome shuffling and its production of β-glucosidase activity reached 4790 U L−1, which was a nearly eightfold increase compared to the original strain B. anomalus PSY-001. The subculture experiments indicated that F3-25 was genetically stable. PMID:26019572

  2. Extracellular production of an intact and biologically active human growth hormone by the Bacillus brevis system.

    PubMed

    Kajino, T; Saito, Y; Asami, O; Yamada, Y; Hirai, M; Udata, S

    1997-10-01

    The characteristic features of the Bacillus brevis system are very high productivity of heterologous proteins and very low extracellular protease activity. However, degradation of some heterologous proteins, especially mammalian proteins, can be observed and resulted in a lowering of protein productivity. By using a mutant expressing low levels of proteases and the addition of EDTA to the medium, intact human growth hormone (hGH) was successfully produced with the B. brevis system. Signal peptide modification with higher basicity in the amino terminal region and higher hydrophobicity in the middle region brought about a twelve-fold increase in hGH production. The hGH yield was further elevated to 240 mg L-1 by optimization of culture conditions. Thus, biologically active and mature hGH can be efficiently produced directly in the medium with the B. brevis system.

  3. [Prevalence of Acinetobacter baumannii and Pseudomonas aeruginosa isolates resistant to imipenem by production of metallo-β-lactamases in Rabat Military Teaching Hospital Mohammed V].

    PubMed

    Gildas Comlan Zohoun, Alban; Moket, Danièle; El Hamzaoui, Sakina

    2013-01-01

    We studied the production of metallo-β-lactamases (MBL) in Acinetobacter baumannii and Pseudomonas aeruginosa strains resistant to imipenem at the Rabat Mohammed V military teaching hospital, according to Yong et al.'s method, using a sterilized solution of EDTA 0.5 M pH 8. One hundred and five bacterial strains (48 A. baumannii and 57 P. aeruginosa) were identified. 45 (42.9%) with 34 A. baumannii and 11 P. aeruginosa were resistant to imipenem. The prevalence of MBL producing strains was 22.2% (10/45). The existence of this isolates resistant to imipenem by producing metallo-β-lactamases is an emerging public health problem. It is necessary to implemente infection control programs to avoid spreading of multidrug resistant bacteria.

  4. Quorum sensing systems differentially regulate the production of phenazine-1-carboxylic acid in the rhizobacterium Pseudomonas aeruginosa PA1201

    PubMed Central

    Sun, Shuang; Zhou, Lian; Jin, Kaiming; Jiang, Haixia; He, Ya-Wen

    2016-01-01

    Pseudomonas aeruginosa strain PA1201 is a newly identified rhizobacterium that produces high levels of the secondary metabolite phenazine-1-carboxylic acid (PCA), the newly registered biopesticide Shenqinmycin. PCA production in liquid batch cultures utilizing a specialized PCA-promoting medium (PPM) typically occurs after the period of most rapid growth, and production is regulated in a quorum sensing (QS)-dependent manner. PA1201 contains two PCA biosynthetic gene clusters phz1 and phz2; both clusters contribute to PCA production, with phz2 making a greater contribution. PA1201 also contains a complete set of genes for four QS systems (LasI/LasR, RhlI/RhlR, PQS/MvfR, and IQS). By using several methods including gene deletion, the construction of promoter-lacZ fusion reporter strains, and RNA-Seq analysis, this study investigated the effects of the four QS systems on bacterial growth, QS signal production, the expression of phz1 and phz2, and PCA production. The possible mechanisms for the strain- and condition-dependent expression of phz1 and phz2 were discussed, and a schematic model was proposed. These findings provide a basis for further genetic engineering of the QS systems to improve PCA production. PMID:27456813

  5. Production of high hydroxytyrosol yields via tyrosol conversion by Pseudomonas aeruginosa immobilized resting cells.

    PubMed

    Bouallagui, Zouhaier; Sayadi, Sami

    2006-12-27

    An immobilized whole cell system was successfully performed to produce the most powerful antioxidant, hydroxytyrosol. Bioconversion of tyrosol into hydroxytyrosol was achieved via the immobilization of Pseudomonas aeruginosa resting cells in calcium alginate beads. Immobilization was advantageous as it allows immobilized cells to tolerate a greater tyrosol concentration than free cells. The bioconversion yield reached 86% in the presence of 5 g L-1 of tyrosol when cells immobilized in alginate beads were carried out in single batches. Evaluation of kinetic parameters showed the maintenance of the same catalytic efficiency expressed as Kcat/Km for both free and immobilized cells. The use of immobilized cells in repeated batches demonstrated a notable activity stabilization since the biocatalyst reusability was extended for at least four batches with a molar yield greater than 85%.

  6. Three-dimensional culture of human meniscal cells: Extracellular matrix and proteoglycan production

    PubMed Central

    Gruber, Helen E; Mauerhan, David; Chow, Yin; Ingram, Jane A; Norton, H James; Hanley, Edward N; Sun, Yubo

    2008-01-01

    Background The meniscus is a complex tissue whose cell biology has only recently begun to be explored. Published models rely upon initial culture in the presence of added growth factors. The aim of this study was to test a three-dimensional (3D) collagen sponge microenvironment (without added growth factors) for its ability to provide a microenvironment supportive for meniscal cell extracellular matrix (ECM) production, and to test the responsiveness of cells cultured in this manner to transforming growth factor-β (TGF-β). Methods Experimental studies were approved prospectively by the authors' Human Subjects Institutional Review Board. Human meniscal cells were isolated from surgical specimens, established in monolayer culture, seeded into a 3D scaffold, and cell morphology and extracellular matrix components (ECM) evaluated either under control condition or with addition of TGF-β. Outcome variables were evaluation of cultured cell morphology, quantitative measurement of total sulfated proteoglycan production, and immunohistochemical study of the ECM components chondroitin sulfate, keratan sulfate, and types I and II collagen. Result and Conclusion Meniscal cells attached well within the 3D microenvironment and expanded with culture time. The 3D microenvironment was permissive for production of chondroitin sulfate, types I and II collagen, and to a lesser degree keratan sulfate. This microenvironment was also permissive for growth factor responsiveness, as indicated by a significant increase in proteoglycan production when cells were exposed to TGF-β (2.48 μg/ml ± 1.00, mean ± S.D., vs control levels of 1.58 ± 0.79, p < 0.0001). Knowledge of how culture microenvironments influence meniscal cell ECM production is important; the collagen sponge culture methodology provides a useful in vitro tool for study of meniscal cell biology. PMID:18582376

  7. Cloning of a Phosphate-Regulated Hemolysin Gene (Phospholipase C) from Pseudomonas aeruginosa

    PubMed Central

    Vasil, Michael L.; Berka, Randy M.; Gray, Gregory L.; Nakai, Hiroshi

    1982-01-01

    Phospholipase C (heat-labile hemolysin) of Pseudomonas aeruginosa is a phosphate (Pi)-regulated extracellular protein which may be a significant virulence factor of this organism. The gene for this hemolytic enzyme was cloned on a 4.1-megadalton (Mdal) fragment from a BamHI digest of P. aeruginosa PAO1 genomic DNA and was inserted into the BamHI sites of the multicopy Escherichia coli(pBR322) and P. aeruginosa(pMW79) vectors. The E. coli and P. aeruginosa recombinant plasmids were designated pGV26 and pVB81, respectively. A restriction map of the 4.1-Mdal fragment from pGV26 was constructed, using double and single digestions with BamHI and EcoRI and several different restriction enzymes. Based on information from this map, a 2.4-Mdal BamHI/BglII fragment containing the gene for phospholipase C was subcloned to pBR322. The hybrid plasmids pGV26 and pVB81 direct the synthesis of enzymatically active phospholipase C, which is also hemolytic. The plasmid-directed synthesis of phospholipase C in E. coli or P. aeruginosa is not repressible by Pi as is the chromosomally directed synthesis in P. aeruginosa. Data are presented which suggest that the synthesis of phospholipase C from pGV26 and pVB81 is directed from the tetracycline resistance gene promoter. The level of enzyme activity produced by E. coli(pGV26) is slightly higher than the levels produced by P. aeruginosa(pMW79) under repressed conditions. In contrast, the levels produced by P. aeruginosa(pVB81) are at least 600-fold higher than the levels produced by P. aeruginosa(pMW79) under repressed conditions and approximately 20-fold higher than those produced by P. aeruginosa(pMW79) under derepressed conditions. The majority (85%) of the enzyme produced by E. coli(pGV26) remained cell associated, whereas >95% of the enzyme produced by P. aeruginosa(pVB81) was extracellular. Analysis of extracellular proteins from cultures of P. aeruginosa(pMW79) and P. aeruginosa(pVB81) by high-performance liquid chromotography and

  8. Growth, toxin production, active oxygen species and catalase activity of Microcystis aeruginosa (Cyanophyceae) exposed to temperature stress.

    PubMed

    Giannuzzi, Leda; Krock, Bernd; Minaglia, Melina Celeste Crettaz; Rosso, Lorena; Houghton, Christian; Sedan, Daniela; Malanga, Gabriela; Espinosa, Mariela; Andrinolo, Darío; Hernando, Marcelo

    2016-11-01

    Microcystis are known for their potential ability to synthesize toxins, mainly microcystins (MCs). In order to evaluate the effects of temperature on chlorophyll a (Chl a), growth, physiological responses and toxin production of a native Microcystis aeruginosa, we exposed the cells to low (23°C) and high (29°C) temperature in addition to a 26°C control treatment. Exponential growth rate was significantly higher at 29°C compared to 23°C and control, reaching 0.43, 0.32 and 0.33day(-)(1) respectively. In addition, there was a delay of the start of exponential growth at 23°C. However, the intracellular concentration of Chl a decreased significantly due to temperature change. A significant increase in intracellular ROS was observed in coincidence with the activation of enzymatic antioxidant catalase (CAT) during the first two days of exposure to 23° and 29°C in comparison to the control experiment, decreasing thereafter to nearly initial values. Five MCs were determined by LC-MS/MS analysis. In the experiments, the highest MC concentration, 205fg [Leu(1)] MC-LR.cell(-1) expressed as MC-LR equivalent was measured in the beginning of the experiment and subsequently declined to 160fg.cell(-1) on day 2 and 70fg.cell(-1) on day 4 in cells exposed to 29°C. The same trend was observed for all other MCs except for the least abundant MC-LR which showed a continuous increase during exposure time. Our results suggest a high ability of M. aeruginosa to perceive ROS and to rapidly initiate antioxidant defenses with a differential response on MC production.

  9. Medium factors on anaerobic production of rhamnolipids by Pseudomonas aeruginosa SG and a simplifying medium for in situ microbial enhanced oil recovery applications.

    PubMed

    Zhao, Feng; Zhou, Jidong; Han, Siqin; Ma, Fang; Zhang, Ying; Zhang, Jie

    2016-04-01

    Aerobic production of rhamnolipid by Pseudomonas aeruginosa was extensively studied. But effect of medium composition on anaerobic production of rhamnolipid by P. aeruginosa was unknown. A simplifying medium facilitating anaerobic production of rhamnolipid is urgently needed for in situ microbial enhanced oil recovery (MEOR). Medium factors affecting anaerobic production of rhamnolipid were investigated using P. aeruginosa SG (Genbank accession number KJ995745). Medium composition for anaerobic production of rhamnolipid by P. aeruginosa is different from that for aerobic production of rhamnolipid. Both hydrophobic substrate and organic nitrogen inhibited rhamnolipid production under anaerobic conditions. Glycerol and nitrate were the best carbon and nitrogen source. The commonly used N limitation under aerobic conditions was not conducive to rhamnolipid production under anaerobic conditions because the initial cell growth demanded enough nitrate for anaerobic respiration. But rhamnolipid was also fast accumulated under nitrogen starvation conditions. Sufficient phosphate was needed for anaerobic production of rhamnolipid. SO4(2-) and Mg(2+) are required for anaerobic production of rhamnolipid. Results will contribute to isolation bacteria strains which can anaerobically produce rhamnolipid and medium optimization for anaerobic production of rhamnolipid. Based on medium optimization by response surface methodology and ions composition of reservoir formation water, a simplifying medium containing 70.3 g/l glycerol, 5.25 g/l NaNO3, 5.49 g/l KH2PO4, 6.9 g/l K2HPO4·3H2O and 0.40 g/l MgSO4 was designed. Using the simplifying medium, 630 mg/l of rhamnolipid was produced by SG, and the anaerobic culture emulsified crude oil to EI24 = 82.5 %. The simplifying medium was promising for in situ MEOR applications.

  10. Influences of environmental factors on bacterial extracellular polymeric substances production in porous media

    NASA Astrophysics Data System (ADS)

    Xia, Lu; Zheng, Xilai; Shao, Haibing; Xin, Jia; Peng, Tao

    2014-11-01

    Bioclogging of natural porous media occurs frequently under a wide range of conditions. It may influence the performance of permeable reactive barrier and constructed wetland. It is also one of the factors that determine the effect of artificial groundwater recharge and in situ bioremediation process. In this study, a series of percolation column experiments were conducted to simulate bioclogging process in porous media. The predominant bacteria in porous media which induced clogging were identified to be Methylobacterium, Janthinobacterium, Yersinia, Staphylococcus and Acidovorax, most of which had been shown to effectively produce viscous extracellular polymeric substances (EPS). The column in which EPS production was maximized also coincided with the largest reduction in saturated hydraulic conductivity of porous media. In addition, carbon concentration was the most significant factor to affect polysaccharide, protein and EPS secretion, followed by phosphorus concentration and temperature. The coupled effect of carbon and phosphorus concentration was also very important to stimulate polysaccharide and EPS production.

  11. Extracellular superoxide production associated with secondary root growth following desiccation of Pisum sativum seedlings.

    PubMed

    Roach, Thomas; Kranner, Ilse

    2011-10-15

    The seedling stage is arguably the most vulnerable phase in the plant life cycle, where the young establishing plant is extremely sensitive to environmental stresses such as drought. Here, the production of superoxide (O(2)(-)), a molecule involved in stress signaling, was measured in response to desiccation of Pisum sativum L. seedlings. Following desiccation that was sufficient to kill the radicle meristem, viability could be retained by seedlings that grew secondary roots. Upon rehydration, secondary roots formed in a region that had displayed intense extracellular O(2)(-)production on desiccation. Treating partially desiccated seedlings with hydrogen peroxide (H(2)O(2)) prevented viability loss. In summary, reactive oxygen species (ROS) appear to participate in the signaling required for secondary root formation following desiccation stress of P. sativum seedlings.

  12. 7-fluoroindole as an antivirulence compound against Pseudomonas aeruginosa.

    PubMed

    Lee, Jin-Hyung; Kim, Yong-Guy; Cho, Moo Hwan; Kim, Jung-Ae; Lee, Jintae

    2012-04-01

    The emergence of antibiotic resistance has necessitated new therapeutic approaches for combating persistent bacterial infection. An alternative approach is regulation of bacterial virulence instead of growth suppression, which can readily lead to drug resistance. The virulence of the opportunistic human pathogen Pseudomonas aeruginosa depends on a large number of extracellular factors and biofilm formation. Thirty-one natural and synthetic indole derivatives were screened. 7-fluoroindole (7FI) was identified as a compound that inhibits biofilm formation and blood hemolysis without inhibiting the growth of planktonic P. aeruginosa cells. Moreover, 7FI markedly reduced the production of quorum-sensing (QS)-regulated virulence factors 2-heptyl-3-hydroxy-4(1H)-quinolone, pyocyanin, rhamnolipid, two siderophores, pyoverdine and pyochelin. 7FI clearly suppressed swarming motility, protease activity and the production of a polymeric matrix in P. aeruginosa. However, unlike natural indole compounds, synthetic 7FI did not increase antibiotic resistance. Therefore, 7FI is a potential candidate for use in an antivirulence approach against persistent P. aeruginosa infection.

  13. Species-Level Variability in Extracellular Production Rates of Reactive Oxygen Species by Diatoms

    PubMed Central

    Schneider, Robin J.; Roe, Kelly L.; Hansel, Colleen M.; Voelker, Bettina M.

    2016-01-01

    Biological production and decay of the reactive oxygen species (ROS) hydrogen peroxide (H2O2) and superoxide (O2-) likely have significant effects on the cycling of trace metals and carbon in marine systems. In this study, extracellular production rates of H2O2 and O2- were determined for five species of marine diatoms in the presence and absence of light. Production of both ROS was measured in parallel by suspending cells on filters and measuring the ROS downstream using chemiluminescence probes. In addition, the ability of these organisms to break down O2- and H2O2 was examined by measuring recovery of O2- and H2O2 added to the influent medium. O2- production rates ranged from undetectable to 7.3 × 10−16 mol cell−1 h−1, while H2O2 production rates ranged from undetectable to 3.4 × 10−16 mol cell−1 h−1. Results suggest that extracellular ROS production occurs through a variety of pathways even amongst organisms of the same genus. Thalassiosira spp. produced more O2- in light than dark, even when the organisms were killed, indicating that O2- is produced via a passive photochemical process on the cell surface. The ratio of H2O2 to O2- production rates was consistent with production of H2O2 solely through dismutation of O2- for T. oceanica, while T. pseudonana made much more H2O2 than O2-. T. weissflogii only produced H2O2 when stressed or killed. P. tricornutum cells did not make cell-associated ROS, but did secrete H2O2-producing substances into the growth medium. In all organisms, recovery rates for killed cultures (94–100% H2O2; 10–80% O2-) were consistently higher than those for live cultures (65–95% H2O2; 10–50% O2-). While recovery rates for killed cultures in H2O2 indicate that nearly all H2O2 was degraded by active cell processes, O2- decay appeared to occur via a combination of active and passive processes. Overall, this study shows that the rates and pathways for ROS production and decay vary greatly among diatom species, even

  14. Species-level variability in extracellular production rates of reactive oxygen species by diatoms

    NASA Astrophysics Data System (ADS)

    Schneider, Robin; Roe, Kelly; Hansel, Colleen; Voelker, Bettina

    2016-03-01

    Biological production and decay of the reactive oxygen species (ROS) hydrogen peroxide (H2O2) and superoxide (O2-) likely have significant effects on the cycling of trace metals and carbon in marine systems. In this study, extracellular production rates of H2O2 and O2- were determined for five species of marine diatoms in the presence and absence of light. Production of both ROS was measured in parallel by suspending cells on filters and measuring the ROS downstream using chemiluminescence probes. In addition, the ability of these organisms to break down O2- and H2O2 was examined by measuring recovery of O2- and H2O2 added to the influent medium. O2- production rates ranged from undetectable to 7.3 x 10-16 mol cell-1 hr-1, while H2O2 production rates ranged from undetectable to 3.4 x 10-16 mol cell-1 hr-1. Results suggest that extracellular ROS production occurs through a variety of pathways even amongst organisms of the same genus. Thalassiosira spp. produced more O2- in light than dark, even when the organisms were killed, indicating that O2- is produced via a passive photochemical process on the cell surface. The ratio of H2O¬2 to O2- production rates was consistent with production of H2O2 solely through dismutation of O2- for T. oceanica, while T. pseudonana made much more H2O2 than O2 . T. weissflogii only produced H2O2 when stressed or killed. P. tricornutum cells did not make cell-associated ROS, but did secrete H2O2-producing substances into the growth medium. In all organisms, recovery rates for killed cultures (94-100% H2O2; 10-80% O2-) were consistently higher than those for live cultures (65-95% H2O2; 10-50% O2-). While recovery rates for killed cultures in H2O2 indicate that nearly all H2O2 was degraded by active cell processes, O2- decay appeared to occur via a combination of active and passive processes. Overall, this study shows that the rates and pathways for ROS production and decay vary greatly among diatom species, even between those that are

  15. Enhancement of extracellular pullulanase production from recombinant Escherichia coli by combined strategy involving auto-induction and temperature control.

    PubMed

    Chen, Wen-Bo; Nie, Yao; Xu, Yan; Xiao, Rong

    2014-04-01

    Pullulanase was extracellularly produced with an engineered Escherichia coli with a combined strategy. When auto-induction instead of isopropyl β-D-1-thiogalactopyranoside (IPTG) induction method was implemented, we observed increased extracellular activity (4.2 U ml(-1)) and cell biomass (7.95 g DCW l(-1)). Subsequent investigation of temperature effect on fermentation showed cultivation performed at 25 °C presented the highest extracellular titer and cell biomass. In order to reduce the extended production period, we developed a two-stage temperature control strategy. Its application not only reduced the production period from 72 to 36 h, but also further enhanced the yield of extracellular pullulanase. Finally, with a view to releasing more intracellular pullulanase, we altered cell membrane permeability with various medium additives. As a result, extracellular titer was elevated to 68.23 U ml(-1), nearly 35-fold higher than that with IPTG induction method. The combined strategy developed here may be useful for the production of other extracellular proteins by recombinant E. coli.

  16. Enhanced rhamnolipids production by Pseudomonas aeruginosa based on a pH stage-controlled fed-batch fermentation process.

    PubMed

    Zhu, Lingqing; Yang, Xue; Xue, Chaoyou; Chen, Yu; Qu, Liang; Lu, Wenyu

    2012-08-01

    Rhamnolipids find broad applications as natural surfactants, emulsifiers, and antibiotics because of their low toxicity, high biodegradability and environmental soundness. In this study, a pH stage-controlled process of fermentation of rhamnolipids by Pseudomonas aeruginosa O-2-2 was established. A yield of 24.06 g/L in batch fermentation was achieved in a 5-L fermentor via the optimization of stirring speed. By controlling pH, rhamnolipid production was increased to 28.8 g/L, an improvement of 19.7%, and more substrate was converted to rhamnolipids rather than to biomass. Fermentation kinetics models for cell growth, product synthesis and substrate consumption based on the pH stage-controlled fermentation indicated that rhamnolipid production could be further improved by fed-batch fermentation. Rhamnolipid production reached 70.56 g/L, an improvement of 193%, in the pH stage-controlled fed-batch fermentation when the stirring speeds was controlled at 500 rpm and the fermentation temperature was maintained at 30 °C. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Inhibition and Dispersal of Pseudomonas aeruginosa Biofilms by Combination Treatment with Escapin Intermediate Products and Hydrogen Peroxide

    PubMed Central

    Ahmed, Marwa N. A.; Wang, Shu-Lin; Damera, Krishna; Wang, Binghe; Tai, Phang C.; Derby, Charles D.

    2016-01-01

    Escapin is an l-amino acid oxidase that acts on lysine to produce hydrogen peroxide (H2O2), ammonia, and equilibrium mixtures of several organic acids collectively called escapin intermediate products (EIP). Previous work showed that the combination of synthetic EIP and H2O2 functions synergistically as an antimicrobial toward diverse planktonic bacteria. We initiated the present study to investigate how the combination of EIP and H2O2 affected bacterial biofilms, using Pseudomonas aeruginosa as a model. Specifically, we examined concentrations of EIP and H2O2 that inhibited biofilm formation or fostered disruption of established biofilms. High-throughput assays of biofilm formation using microtiter plates and crystal violet staining showed a significant effect from pairing EIP and H2O2, resulting in inhibition of biofilm formation relative to biofilm formation in untreated controls or with EIP or H2O2 alone. Similarly, flow cell analysis and confocal laser scanning microscopy revealed that the EIP and H2O2 combination reduced the biomass of established biofilms relative to that of the controls. Area layer analysis of biofilms posttreatment indicated that disruption of biomass occurs down to the substratum. Only nanomolar to micromolar concentrations of EIP and H2O2 were required to impact biofilm formation or disruption, and these concentrations are significantly lower than those causing bactericidal effects on planktonic bacteria. Micromolar concentrations of EIP and H2O2 combined enhanced P. aeruginosa swimming motility compared to the effect of either EIP or H2O2 alone. Collectively, our results suggest that the combination of EIP and H2O2 may affect biofilms by interfering with bacterial attachment and destabilizing the biofilm matrix. PMID:27401562

  18. Effects of calcium levels on colonial aggregation and buoyancy of Microcystis aeruginosa.

    PubMed

    Wang, Yu-Wen; Zhao, Jie; Li, Jian-Hong; Li, Shan-Shan; Zhang, Li-Hua; Wu, Min

    2011-02-01

    Colonial aggregation of Microcystis plays a key role in bloom formation. Limited studies have been reported about effects of environmental factors on the aggregation of Microcystis. Calcium is an important chemical element in water system. In this study, we investigated the effects of a low- (0.015 g l⁻¹) and a high-concentration of calcium (0.100 g l⁻¹) on the aggregation and buoyancy of a colonial strain M. aeruginosa XW01. Results show that compared to the low concentration of calcium, the high-calcium condition results in bigger colonial size, higher level of buoyancy and increased production of extracellular polysaccharides (EPS) of M. aeruginosa XW01. Increased production of EPS induced by the high-calcium concentration should contribute to the colonial aggregation and buoyancy of M. aeruginosa XW01. These results suggest that an increase in calcium concentration may be beneficial for Microcystis blooms occurring in a soft water lake.

  19. Baicalin Down-Regulates IL-1β-Stimulated Extracellular Matrix Production in Nasal Fibroblasts

    PubMed Central

    Shin, Jae-Min; Kang, Ju-Hyung; Lee, Seoung-Ae; Park, Il-Ho; Lee, Heung-Man

    2016-01-01

    Purpose Baicalin, a Chinese herbal medicine, has anti-fibrotic and anti-inflammatory effects. The aims of present study were to investigate the effects of baicalin on the myofibroblast differentiation, extracellular matrix production, migration, and collagen contraction of interleukin (IL)-1β-stimulated nasal fibroblasts and to determine the molecular mechanism of baicalin in nasal fibroblasts. Methods Nasal fibroblasts were isolated from the inferior turbinate of patients. Baicalin was used to treat IL-1β-stimulated nasal fibroblasts. To evaluate cytotoxicity, a 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay was used. The expression levels of α-smooth muscle actin (SMA), fibronectin, phospho-mitogen-activated protein kinase (p-MAPK), p-Akt, p-p50, p-p65, and p-IκBα were measured by western blotting, reverse transcription-polymerase chain reaction (RT—PCR),or immunofluorescence staining. Fibroblast migration was analyzed with scratch assays and transwell migration assays. Total collagen was evaluated with the Sircol collagen assay. Contractile activity was measured with a collagen gel contraction assay. Results Baicalin (0–50 μM) had no significant cytotoxic effects in nasal fibroblasts. The expression of α–SMA and fibronectin were significantly down-regulated in baicalin-treated nasal fibroblasts. Migration, collagen production, and contraction of IL-1β-stimulated nasal fibroblasts were significantly inhibited by baicalin treatment. Baicalin also significantly down-regulated p-MAPK, p-Akt, p-p50, p-p65, and p-IκBα in IL-1β-stimulated nasal fibroblasts. Conclusions We showed that baicalin down-regulated myofibroblast differentiation, extracellular matrix production, migration, and collagen contraction via the MAPK and Akt/ NF-κB pathways in IL-1β-stimulated nasal fibroblasts. PMID:28002421

  20. Baicalin Down-Regulates IL-1β-Stimulated Extracellular Matrix Production in Nasal Fibroblasts.

    PubMed

    Shin, Jae-Min; Kang, Ju-Hyung; Lee, Seoung-Ae; Park, Il-Ho; Lee, Heung-Man

    2016-01-01

    Baicalin, a Chinese herbal medicine, has anti-fibrotic and anti-inflammatory effects. The aims of present study were to investigate the effects of baicalin on the myofibroblast differentiation, extracellular matrix production, migration, and collagen contraction of interleukin (IL)-1β-stimulated nasal fibroblasts and to determine the molecular mechanism of baicalin in nasal fibroblasts. Nasal fibroblasts were isolated from the inferior turbinate of patients. Baicalin was used to treat IL-1β-stimulated nasal fibroblasts. To evaluate cytotoxicity, a 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay was used. The expression levels of α-smooth muscle actin (SMA), fibronectin, phospho-mitogen-activated protein kinase (p-MAPK), p-Akt, p-p50, p-p65, and p-IκBα were measured by western blotting, reverse transcription-polymerase chain reaction (RT-PCR),or immunofluorescence staining. Fibroblast migration was analyzed with scratch assays and transwell migration assays. Total collagen was evaluated with the Sircol collagen assay. Contractile activity was measured with a collagen gel contraction assay. Baicalin (0-50 μM) had no significant cytotoxic effects in nasal fibroblasts. The expression of α-SMA and fibronectin were significantly down-regulated in baicalin-treated nasal fibroblasts. Migration, collagen production, and contraction of IL-1β-stimulated nasal fibroblasts were significantly inhibited by baicalin treatment. Baicalin also significantly down-regulated p-MAPK, p-Akt, p-p50, p-p65, and p-IκBα in IL-1β-stimulated nasal fibroblasts. We showed that baicalin down-regulated myofibroblast differentiation, extracellular matrix production, migration, and collagen contraction via the MAPK and Akt/ NF-κB pathways in IL-1β-stimulated nasal fibroblasts.

  1. Extracellular production of Pseudozyma (Candida) antarctica lipase B with genuine primary sequence in recombinant Escherichia coli.

    PubMed

    Ujiie, Ayana; Nakano, Hideo; Iwasaki, Yugo

    2016-03-01

    An Escherichia coli expression system was established to produce recombinant extracellular Pseudozyma (Candida) antarctica lipase B (CALB). With the aim of producing the genuine CALB without additional amino acid residues, the mature portion of the CALB gene was fused seamlessly to a pelB signal sequence and expressed in E. coli BL21(DE3) using the pET system. Inducing gene expression at low temperature (20°C) was crucial for the production of active CALB; higher temperatures caused inclusion body formation. Prolonged induction for 48 h at 20°C allowed for the enzyme to be released into the culture medium, with more than half of the activity detected in the culture supernatant. A catalytically inactive CALB mutant (S105A) protein was similarly released, suggesting that the lipid-hydrolyzing activity of the enzyme was not the reason for the release. The CALB production level was further improved by optimizing the culture medium. Under the optimized conditions, the CALB in the culture supernatant amounted to 550 mg/L. The recombinant CALB was purified from the culture supernatant, yielding 5.67 mg of purified CALB from 50 mL of culture. N-terminal sequencing and ESI-MS analyses showed proper removal of the pelB signal sequence and the correct molecular weight of the protein, respectively, confirming the structural integrity of the recombinant CALB. The kinetic parameters towards p-nitrophenylbutyrate and the enantiomeric selectivity on rac-1-phenylethylacetate of the recombinant CALB were consistent with those of the authentic CALB. This is the first example of E. coli-based extracellular production of a CALB enzyme without extra amino acid residues. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Spatiotemporal Dynamics of Complement C5a Production within Bacterial Extracellular Polymeric Substance

    PubMed Central

    Conrad, Erin C.; Hsu, Yueh-Ya; Bortz, David M.; Younger, John G.

    2013-01-01

    Opsonization and anaphylatoxin production are early events in innate response to bacterial pathogens. Opsonization alone is frequently not lethal and production of anaphylatoxins, especially C5a, allows for recruitment of cellular defenses. Complement biochemistry is extensively studied and computational models have been previously reported. However, a critical feature of complement mediated attack is its spatial dependence: diffusion of mediators into and away from a bacterium is central to understanding C5a generation. Spatial dependence is especially important in biofilms, where diffusion limitation is crucial to bacterial counterdefense. Here we develop a model of opsonization and C5a production in the presence of a common blood borne pathogen, Staphylococcus epidermidis. Our results indicate that when complement attacks a single cell, diffusion into the extracellular polymeric substance (EPS) is complete within 10 msec and that production of C5a peaks over the next 15 minutes. When longer diffusion lengths (as in an EPS-rich biofilm) are incorporated, diffusion limitation appears such that the intensity and duration of C5a production is increased. However, the amount of C5a produced under several likely clinical scenarios where single cells or sparse biofilms are present is below the kD of the C5a receptor suggesting that complement activation by a single bacterium may be difficult to detect when diffusion is taken into account. PMID:23328643

  3. Enhanced extracellular production of recombinant proteins in Escherichia coli by co-expression with Bacillus cereus phospholipase C.

    PubMed

    Su, Lingqia; Jiang, Qi; Yu, Lingang; Wu, Jing

    2017-02-08

    Our laboratory has reported a strategy for improving the extracellular production of recombinant proteins through co-expression with Thermobifida fusca cutinase, which increases membrane permeability via its phospholipid hydrolysis activity. However, the foam generated by the lysophospholipid product makes the fermentation process difficult to control in a fermentor. Phospholipase C (PLC) catalyzes the hydrolysis of phospholipids to produce sn1,2-diacylglycerides and organic phosphate, which do not induce foam formation. Therefore, co-expression with Bacillus cereus PLC was investigated as a method to improve the extracellular production of recombinant proteins. When B. cereus PLC was expressed in Escherichia coli without its signal peptide, 95.3% of the total PLC activity was detected in the culture supernatant. PLC expression enhanced membrane permeability without obvious cell lysis. Then, six test enzymes, three secretory and three cytosolic, were co-expressed with B. cereus PLC. The enhancement of extracellular production correlated strongly with the molecular mass of the test enzyme. Extracellular production of Streptomyces sp. FA1 xylanase (43 kDa), which had the lowest molecular mass among the secretory enzymes, was 4.0-fold that of its individual expression control. Extracellular production of glutamate decarboxylase (51 kDa), which had the lowest molecular mass among the cytosolic enzymes, reached 26.7 U/mL; 88.3% of the total activity produced. This strategy was effectively scaled up using a 3-L fermentor. No obvious foam was generated during this fermentation process. This is the first study to detail the enhanced extracellular production of recombinant proteins through co-expression with PLC. This new strategy, which is especially appropriate for lower molecular mass proteins, allows large-scale protein production in an easily controlled fermentation process.

  4. The entomopathogenic fungus Metarhizium anisopliae alters ambient pH, allowing extracellular protease production and activity.

    PubMed

    St Leger, R J; Nelson, J O; Screen, S E

    1999-10-01

    Ambient pH regulates the expression of virulence genes of Metarhizium anisopliae, but it was unknown if M. anisopliae can regulate ambient pH. Mutants of M. anisopliae altered in production of oxalic acid were evaluated for the interrelationship of ambient pH, buffering capacity added to media, growth, and generation of extracellular proteases and ammonia. Wild-type and acid-overproducing mutants [Acid(+)] grew almost as well at pH 8 as at pH 6, but acid-non-producing [Acid(-)] mutants showed limited growth at pH 8, indicating that acid production is linked to the ability to grow at higher pH. Production of ammonia by M. anisopliae was strongly stimulated by low levels of amino acids in the medium when cells were derepressed for nitrogen and carbon. Likewise, although Aspergillus fumigatus and Neurospora crassa produced some ammonia in minimal media, addition of low levels of amino acids enhanced production. Ammonia production by A. fumigatus, N. crassa and M. anisopliae increased the pH of the medium and allowed production of subtilisin proteases, whose activities are observed only at basic pH. In contrast, protease production by the Acid(+) mutants of M. anisopliae was greatly reduced because of the acidification of the medium. This suggests that alkalinization by ammonia production is adaptive by facilitating the utilization of proteinaceous nutrients. Collectively, the data imply that ammonia may have functions related to regulation of the microenvironment and that it represents a previously unconsidered virulence factor in diverse fungi with the potential to harm tissues and disturb the host's immune system.

  5. Membrane biofouling by extracellular polymeric substances or soluble microbial products from membrane bioreactor sludge.

    PubMed

    Ramesh, A; Lee, D J; Lai, J Y

    2007-03-01

    This study extracted the soluble microbial products and loosely bound and tightly bound extracellular polymeric substances (EPS) from suspended sludge from a membrane bioreactor, original and aerobically/anaerobically digested, and compared their fouling potentials on a microfiltration membrane. The resistance of cake layer accounts for 95-98% of the total filtration resistances when filtering the whole sludges, with anaerobically digested sludge presenting the highest resistance among the three tested sludges. The tightly bound EPS has the highest potential to foul the membrane; however, the loosely bound EPS contribute most of the filtration resistances of the whole sludges. The foulants corresponding to the irreversible fouling have chemical fingerprints similar to those from loosely bound EPS, which have a greater predilection to proteins and humic substances than to polysaccharides.

  6. Production, purification and application of extracellular chitinase from Cellulosimicrobium cellulans 191

    PubMed Central

    Fleuri, Luciana F.; Kawaguti, Haroldo Y.; Sato, Hélia H.

    2009-01-01

    This study concerned the production, purification and application of extracellular chitinase from Cellulosimicrobium cellulans strain 191. In shaken flasks the maximum yield of chitinase was 6.9 U/mL after 72 h of cultivation at 25°C and 200 rpm. In a 5 L fermenter with 1.5 vvm aeration, the highest yield obtained was 4.19 U/mL after 168 h of fermentation at 25°C and 200 rpm, and using 3 vvm, it was 4.38 U/mL after 144 h of fermentation. The chitinase (61 KDa) was purified about 6.65 times by Sepharose CL 4B 200 gel filtration with a yield of 46.61%. The purified enzyme was able to lyse the cell walls of some fungi and to form protoplasts. PMID:24031407

  7. NG2 proteoglycan increases mesangial cell proliferation and extracellular matrix production

    SciTech Connect

    Xiong Jing; Wang Yang; Zhu, Zhonghua; Liu Jianshe; Wang Yumei; Zhang Chun; Hammes, Hans-Peter; Lang, Florian; Feng Yuxi

    2007-10-05

    As a membrane-spanning protein, NG2 chondroitin sulfate proteoglycan interacts with molecules on both sides of plasma membrane. The present study explored the role of NG2 in the pathogenesis of diabetic nephropathy. In the normal kidneys, NG2 was observed predominantly in glomerular mesangium, Bowman's capsule and interstitial vessels. Both mRNA and protein expression in kidneys was significantly higher in strepozotocin-induced diabetic rats than that in normal rats. In the cultured rat mesangial cell line HBZY-1, overexpression of NG2 promoted mesangial cell proliferation and extracellular matrix (ECM) production, such as type VI collagen and laminin. Furthermore, target knockdown of NG2 resulted in decreased cell proliferation and ECM formation. The observations suggest that NG2 is up-regulated in diabetic nephropathy. It actively participates in the development and progression of glomerulosclerosis by stimulating proliferation of mesangial cells and deposition of ECM.

  8. A protein disulfide isomerase gene fusion expression system that increases the extracellular productivity of Bacillus brevis.

    PubMed

    Kajino, T; Ohto, C; Muramatsu, M; Obata, S; Udaka, S; Yamada, Y; Takahashi, H

    2000-02-01

    We have developed a versatile Bacillus brevis expression and secretion system based on the use of fungal protein disulfide isomerase (PDI) as a gene fusion partner. Fusion with PDI increased the extracellular production of heterologous proteins (light chain of immunoglobulin G, 8-fold; geranylgeranyl pyrophosphate synthase, 12-fold). Linkage to PDI prevented the aggregation of the secreted proteins, resulting in high-level accumulation of fusion proteins in soluble and biologically active forms. We also show that the disulfide isomerase activity of PDI in a fusion protein is responsible for the suppression of the aggregation of the protein with intradisulfide, whereas aggregation of the protein without intradisulfide was prevented even when the protein was fused to a mutant PDI whose two active sites were disrupted, suggesting that another PDI function, such as chaperone-like activity, synergistically prevented the aggregation of heterologous proteins in the PDI fusion expression system.

  9. Optimization of Fermentation Medium for Extracellular Lipase Production from Aspergillus niger Using Response Surface Methodology

    PubMed Central

    Jia, Jia; Yang, Xiaofeng; Wu, Zhiliang; Zhang, Qian; Lin, Zhi; Guo, Hongtao; Lin, Carol Sze Ki; Wang, Jianying; Wang, Yunshan

    2015-01-01

    Lipase produced by Aspergillus niger is widely used in various industries. In this study, extracellular lipase production from an industrial producing strain of A. niger was improved by medium optimization. The secondary carbon source, nitrogen source, and lipid were found to be the three most influential factors for lipase production by single-factor experiments. According to the statistical approach, the optimum values of three most influential parameters were determined: 10.5 g/L corn starch, 35.4 g/L soybean meal, and 10.9 g/L soybean oil. Using this optimum medium, the best lipase activity was obtained at 2,171 U/mL, which was 16.4% higher than using the initial medium. All these results confirmed the validity of the model. Furthermore, results of the Box-Behnken Design and quadratic models analysis indicated that the carbon to nitrogen (C/N) ratio significantly influenced the enzyme production, which also suggested that more attention should be paid to the C/N ratio for the optimization of enzyme production. PMID:26366414

  10. Optimization of Fermentation Medium for Extracellular Lipase Production from Aspergillus niger Using Response Surface Methodology.

    PubMed

    Jia, Jia; Yang, Xiaofeng; Wu, Zhiliang; Zhang, Qian; Lin, Zhi; Guo, Hongtao; Lin, Carol Sze Ki; Wang, Jianying; Wang, Yunshan

    2015-01-01

    Lipase produced by Aspergillus niger is widely used in various industries. In this study, extracellular lipase production from an industrial producing strain of A. niger was improved by medium optimization. The secondary carbon source, nitrogen source, and lipid were found to be the three most influential factors for lipase production by single-factor experiments. According to the statistical approach, the optimum values of three most influential parameters were determined: 10.5 g/L corn starch, 35.4 g/L soybean meal, and 10.9 g/L soybean oil. Using this optimum medium, the best lipase activity was obtained at 2,171 U/mL, which was 16.4% higher than using the initial medium. All these results confirmed the validity of the model. Furthermore, results of the Box-Behnken Design and quadratic models analysis indicated that the carbon to nitrogen (C/N) ratio significantly influenced the enzyme production, which also suggested that more attention should be paid to the C/N ratio for the optimization of enzyme production.

  11. Effect of herbizid and touchdown herbicides on soil fungi and on production of some extracellular enzymes.

    PubMed

    El-Said, A H M; Abdel-Hafez, S I I; Saleem, A

    2005-01-01

    Glucophilic and cellulose-decomposing fungi were significantly reduced in soil samples treated with 0.019-0.152 mg a.i./kg soil of the herbicides Herbizid and Touchdown. The decrease was regularly correlated with the doses of the two herbicides and persisted till the end of the experiment (12 weeks). The isolated fungi were found to be able to produce hydrolytic extracellular enzymes in solid media but with variable capabilities. The ability to produce enzymes was adversily affected by the incorporation of herbicides in culture media. Lower doses of herbicides were occasionally promotive to enzyme production and mycelial growth of some fungi. Incorporation of 50 ppm of Herbizid and Touchdown significantly activated amylase production and mycelial dry weight in cultures of Fusarium oxysporum, Mucor hiemalis and Penicillium chrysogenum. There was a significant increase in C1-cellulase produced by F. oxysporum and P. aurantiogriseum when cultures were treated with 50, 100 and 200 ppm of Herbizid which induced also more Cx-cellulase production by P. chrysogenum. Lipase and protease production was always lower in treated than in control fungal cultures.

  12. Two Genetic Loci Produce Distinct Carbohydrate-Rich Structural Components of the Pseudomonas aeruginosa Biofilm Matrix

    PubMed Central

    Friedman, Lisa; Kolter, Roberto

    2004-01-01

    Pseudomonas aeruginosa forms biofilms, which are cellular aggregates encased in an extracellular matrix. Molecular genetics studies of three common autoaggregative phenotypes, namely wrinkled colonies, pellicles, and solid-surface-associated biofilms, led to the identification of two loci, pel and psl, that are involved in the production of carbohydrate-rich components of the biofilm matrix. The pel gene cluster is involved in the production of a glucose-rich matrix material in P. aeruginosa strain PA14 (L. Friedman and R. Kolter, Mol. Microbiol. 51:675-690, 2004). Here we investigate the role of the pel gene cluster in P. aeruginosa strain ZK2870 and identify a second genetic locus, termed psl, involved in the production of a mannose-rich matrix material. The 11 predicted protein products of the psl genes are homologous to proteins involved in carbohydrate processing. P. aeruginosa is thus able to produce two distinct carbohydrate-rich matrix materials. Either carbohydrate-rich matrix component appears to be sufficient for mature biofilm formation, and at least one of them is required for mature biofilm formation in P. aeruginosa strains PA14 and ZK2870. PMID:15231777

  13. Influence of O polysaccharides on biofilm development and outer membrane vesicle biogenesis in Pseudomonas aeruginosa PAO1.

    PubMed

    Murphy, Kathleen; Park, Amber J; Hao, Youai; Brewer, Dyanne; Lam, Joseph S; Khursigara, Cezar M

    2014-04-01

    Pseudomonas aeruginosa is a common opportunistic human pathogen known for its ability to adapt to changes in its environment during the course of infection. These adaptations include changes in the expression of cell surface lipopolysaccharide (LPS), biofilm development, and the production of a protective extracellular exopolysaccharide matrix. Outer membrane vesicles (OMVs) have been identified as an important component of the extracellular matrix of P. aeruginosa biofilms and are thought to contribute to the development and fitness of these bacterial communities. The goal of this study was to examine the relationships between changes in the cell surface expression of LPS O polysaccharides, biofilm development, and OMV biogenesis in P. aeruginosa. We compared wild-type P. aeruginosa PAO1 with three chromosomal knockouts. These knockouts have deletions in the rmd, wbpM, and wbpL genes that produce changes in the expression of common polysaccharide antigen (CPA), O-specific antigen (OSA), or both. Our results demonstrate that changes in O polysaccharide expression do not significantly influence OMV production but do affect the size and protein content of OMVs derived from both CPA(-) and OSA(-) cells; these mutant cells also exhibited different physical properties from wild-type cells. We further examined biofilm growth of the mutants and determined that CPA(-) cells could not develop into robust biofilms and exhibit changes in cell morphology and biofilm matrix production. Together these results demonstrate the importance of O polysaccharide expression on P. aeruginosa OMV composition and highlight the significance of CPA expression in biofilm development.

  14. Dynamics of extracellular matrix production and turnover in tissue engineered cardiovascular structures.

    PubMed

    Stock, U A; Wiederschain, D; Kilroy, S M; Shum-Tim, D; Khalil, P N; Vacanti, J P; Mayer, J E; Moses, M A

    2001-03-26

    Appropriate matrix formation, turnover and remodeling in tissue-engineered small diameter vascular conduits are crucial requirements for their long-term patency and function. This complex process requires the deposition and accumulation of extracellular matrix molecules as well as the remodeling of this extracellular matrix (ECM) by matrix metalloproteinases (MMPs) and their endogenous inhibitors (TIMPs). In this study, we have investigated the dynamics of ECM production and the activity of MMPs and TIMPs in long-term tissue-engineered vascular conduits using quantitative ECM analysis, substrate gel electrophoresis, radiometric enzyme assays and Western blot analyses. Over a time period of 169 days in vivo, levels of elastin and proteoglycans/glycosaminoglycans in tissue-engineered constructs came to approximate those of their native tissue counter parts. The kinetics of collagen deposition and remodeling, however, apparently require a much longer time period. Through the use of substrate gel electrophoresis, proteolytic bands whose molecular weight was consistent with their identification as the active form of MMP-2 (approximately 64--66 kDa) were detected in all native and tissue-engineered samples. Additional proteolytic bands migrating at approximately 72 kDa representing the latent form of MMP-2 were detected in tissue-engineered samples at time points from 5 throughout 55 days. Radiometric assays of MMP-1 activity demonstrated no significant differences between the native and tissue-engineered samples. This study determines the dynamics of ECM production and turnover in a long-term tissue-engineered vascular tissue and highlights the importance of ECM remodeling in the development of successful tissue-engineered vascular structures.

  15. Nitric oxide as a signal for extracellular polysaccharide production by soil microbes

    NASA Astrophysics Data System (ADS)

    Sher, Y.; Brodie, E.; Firestone, M.

    2016-12-01

    Soil microorganisms use various strategies to tolerate the drying of soil, including the production of EPS (extracellular polysaccharides), which forms a water-holding, protective sheath around microbial cells. Soil systems encompass a range of chemical signals that can potentially regulate microbial EPS production. This presentation focuses on nitric oxide (NO), which can be produced by soil microbes, plant roots or abiotic chemical reactions. In order to examine NO control of EPS production by soil microbes, soil samples and bacterial isolates were exposed to NO at concentrations previously documented in soil atmospheres. Soil samples were taken from a northern California annual grassland, which experiences a Mediterranean-type climate. In addition, bacterial isolates, from this same soil, were inoculated on sand grains. Soil samples and soil isolates growing on sand were incubated in a nitric oxide application system at an NO concentration of 5 ppm. EPS production was then quantified by measuring carbohydrates with the sulfuric acid-phenol assay. Results indicate that exposure to nitric oxide enhances bacterial production of EPS (Bradyrhizobium sp.), with about 1400 mg Glucose eqv'/mg protein in treatments exposed to NO compared to about 200 mg Glucose eqv'/mg protein in treatments not exposed to NO. Increase in EPS production was not similarly apparent in soil samples exposed to NO. However, soil aggregate stability, determined with a wet sieving method, was greater in soil samples exposed to NO than those not exposed to NO, suggesting the presence of a higher amount of soil particle "glue". These results indicate that NO may be a controller of EPS production by soil microorganisms and that the resulting EPS may play a role in soil particle aggregation.

  16. Neutrophil extracellular traps induce IL-1β production by macrophages in combination with lipopolysaccharide

    PubMed Central

    Hu, Zhongshuang; Murakami, Taisuke; Tamura, Hiroshi; Reich, Johannes; Kuwahara-Arai, Kyoko; Iba, Toshiaki; Tabe, Yoko; Nagaoka, Isao

    2017-01-01

    Upon exposure to invading microorganisms, neutrophils undergo NETosis, a recently identified type of programmed cell death, and release neutrophil extracellular traps (NETs). NETs are described as an antimicrobial mechanism, based on the fact that NETs can trap microorganisms and exhibit bactericidal activity through the action of NET-associated components. In contrast, the components of NETs have been recognized as damage-associated molecular pattern molecules (DAMPs), which trigger inflammatory signals to induce cell death, inflammation and organ failure. In the present study, to clarify the effect of NETs on cytokine production by macrophages, mouse macrophage-like J774 cells were treated with NETs in combination with lipopolysaccharide (LPS) as a constituent of pathogen-associated molecular patterns. The results revealed that NETs significantly induced the production of interleukin (IL)-1β by J774 cells in the presence of LPS. Notably, the NET/LPS-induced IL-1β production was inhibited by both caspase-1 and caspase-8 inhibitors. Furthermore, nucleases and serine protease inhibitors but not anti-histone antibodies significantly inhibited the NET/LPS-induced IL-1β production. Moreover, we confirmed that caspase-1 and caspase-8 were activated by NETs/LPS, and the combination of LPS, DNA and neutrophil elastase induced IL-1β production in reconstitution experiments. These observations indicate that NETs induce the production of IL-1β by J774 macrophages in combination with LPS via the caspase-1 and caspase-8 pathways, and NET-associated DNA and serine proteases are involved in NET/LPS-induced IL-1β production as essential components. PMID:28204821

  17. Differential effects of fluticasone on extracellular matrix production by airway and parenchymal fibroblasts in severe COPD.

    PubMed

    Brandsma, Corry-Anke; Timens, Wim; Jonker, Marnix R; Rutgers, Bea; Noordhoek, Jacobien A; Postma, Dirkje S

    2013-10-15

    Chronic obstructive pulmonary disease (COPD) is characterized by abnormal repair in the lung resulting in airway obstruction associated with emphysema and peripheral airway fibrosis. Because the presence and degree of airways disease and emphysema varies between COPD patients, this may explain the heterogeneity in the response to treatment. It is currently unknown whether and to what extent inhaled steroids can affect the abnormal repair process in the airways and lung parenchyma in COPD. We investigated the effects of fluticasone on transforming growth factor (TGF)-β- and cigarette smoke-induced changes in mothers against decapentaplegic homolog (Smad) signaling and extracellular matrix (ECM) production in airway and parenchymal lung fibroblasts from patients with severe COPD. We showed that TGF-β-induced ECM production by pulmonary fibroblasts, but not activation of the Smad pathway, was sensitive to the effects of fluticasone. Fluticasone induced decorin production by airway fibroblasts and partly reversed the negative effects of TGF-β treatment. Fluticasone inhibited biglycan production in both airway and parenchymal fibroblasts and procollagen 1 production only in parenchymal fibroblasts, thereby restoring the basal difference in procollagen 1 production between airway and parenchymal fibroblasts. Our findings suggest that the effects of steroids on the airway compartment may be beneficial for patients with severe COPD, i.e., restoration of decorin loss around the airways, whereas the effects of steroids on the parenchyma may be detrimental, since the tissue repair response, i.e., biglycan and procollagen production, is inhibited. More research is needed to further disentangle these differential effects of steroid treatment on the different lung compartments and its impact on tissue repair and remodeling in COPD.

  18. Statistical optimization of medium components for extracellular protease production by an extreme haloarchaeon, Halobacterium sp. SP1(1).

    PubMed

    Akolkar, A; Bharambe, N; Trivedi, S; Desai, A

    2009-01-01

    Optimization of medium components for extracellular protease production by Halobacterium sp. SP1(1) using statistical approach. The significant factors influencing the protease production as screened by Plackett-Burman method were identified as soybean flour and FeCl(3). Response surface methodology such as central composite design was applied for further optimization studies. The concentrations of medium components for higher protease production as optimized using this approach were (g l(-1)): NaCl, 250; KCl, 2; MgSO(4), 10; tri-Na-citrate, 1.5; soybean flour, 10 and FeCl(3), 0.16. This statistical optimization approach led to production of 69.44 +/- 0.811 U ml(-1) of protease. Soybean flour and FeCl(3) were identified as important factors controlling the production of extracellular protease by Halobacterium sp. SP1(1). The statistical approach was found to be very effective in optimizing the medium components in manageable number of experimental runs with overall 3.9-fold increase in extracellular protease production. The present study is the first report on statistical optimization of medium components for production of haloarchaeal protease. The study also explored the possibility of using extracellular protease produced by Halobacterium sp. SP1(1) for various applications like antifouling coatings and fish sauce preparation using cheaper raw material.

  19. Mathematical modeling of Microcystis aeruginosa growth and [D-Leu(1)] microcystin-LR production in culture media at different temperatures.

    PubMed

    Melina Celeste, Crettaz Minaglia; Lorena, Rosso; Jorge Oswaldo, Aranda; Sandro, Goñi; Daniela, Sedan; Dario, Andrinolo; Leda, Giannuzzi

    2017-07-01

    The effect of temperature (26°C, 28°C, 30°C and 35°C) on the growth of native CAAT-3-2005 Microcystis aeruginosa and the production of Chlorophyll-a (Chl-a) and Microcystin-LR (MC-LR) were examined through laboratory studies. Kinetic parameters such as specific growth rate (μ), lag phase duration (LPD) and maximum population density (MPD) were determined by fitting the modified Gompertz equation to the M. aeruginosa strain cell count (cellsmL(-1)). A 4.8-fold increase in μ values and a 10.8-fold decrease in the LPD values were found for M. aeruginosa growth when the temperature changed from 15°C to 35°C. The activation energy of the specific growth rate (Eμ) and of the adaptation rate (E1/LPD) were significantly correlated (R(2)=0.86). The cardinal temperatures estimated by the modified Ratkowsky model were minimum temperature=8.58±2.34°C, maximum temperature=45.04±1.35°C and optimum temperature=33.39±0.55°C. Maximum MC-LR production decreased 9.5-fold when the temperature was increased from 26°C to 35°C. The maximum production values were obtained at 26°C and the maximum depletion rate of intracellular MC-LR was observed at 30-35°C. The MC-LR cell quota was higher at 26 and 28°C (83 and 80fgcell(-1), respectively) and the MC-LR Chl-a quota was similar at all the different temperatures (0.5-1.5fgng(-1)). The Gompertz equation and dynamic model were found to be the most appropriate approaches to calculate M. aeruginosa growth and production of MC-LR, respectively. Given that toxin production decreased with increasing temperatures but growth increased, this study demonstrates that growth and toxin production processes are uncoupled in M. aeruginosa. These data and models may be useful to predict M. aeruginosa bloom formation in the environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Optimization of production of C-phycocyanin and extracellular polymeric substances by Arthrospira sp.

    PubMed

    Dejsungkranont, Monchai; Chisti, Yusuf; Sirisansaneeyakul, Sarote

    2017-08-01

    The key factors influencing the production of C-phycocyanin (C-PC) and extracellular polymeric substances (EPS) by photoautotrophic culture of Arthrospira sp. were optimized using Taguchi method. Six factors were varied at either three or two levels as follows: light intensity at three levels; three initial culture pHs; two species of Arthrospira; three concentrations of Zarrouk's medium; three rates of aeration of the culture with air mixed with 2% v/v carbon dioxide; and two incubation temperatures. All cultures ran for 14 days. The optimal conditions for the production of C-PC and EPS were different. For both products, the best cyanobacterium proved to be Arthrospira maxima IFRPD1183. The production of C-PC was maximized with the following conditions: a light intensity of 68 µmol photons m(-2) s(-1) (a diurnal cycle of 16-h photoperiod and 8-h dark period), an initial pH of 10, the full strength (100%) Zarrouk's culture medium, an aeration rate of 0.6 vvm (air mixed with 2% v/v CO2) and a culture temperature of 30 °C. The concentration of Zarrouk's medium was the most important factor influencing the final concentration of C-PC. The optimal conditions for maximal production of EPS were as follows: a light intensity of 203 µmol photons m(-2) s(-1) with the earlier specified light-dark cycle; an initial pH of 9.5; a 50% strength of Zarrouk's medium; an aeration rate of 0.2 vvm (air mixed with 2% v/v CO2); and a temperature of 35 °C. Production of C-PC and EPS in raceway ponds is discussed.

  1. Conversion of squid pen by Pseudomonas aeruginosa K187 fermentation for the production of N-acetyl chitooligosaccharides and biofertilizers.

    PubMed

    Wang, San-Lang; Hsu, Wan-Han; Liang, Tzu-Wen

    2010-05-07

    Pseudomonas aeruginosa K187, a protease- and chitinase-producing bacterium, exhibited protease and chitinase activity after three and five days of incubation, respectively. The protease and chitinase were both produced by using 1% squid pen powder (SPP) (w/v) as sole carbon and nitrogen source. After fermentation, the deproteinization rate of the recovered squid pen gradually increased up to 68% on the fourth day. After five days of fermentation, the production of GlcNAc, (GlcNAc)(2), (GlcNAc)(3), (GlcNAc)(4) and (GlcNAc)(5) were 1.18mg/mL, 0.76mg/mL, 1.02mg/mL, 0.93mg/mL and 0.90mg/mL, respectively. The culture supernatant of K187 also exhibited activity of enhancing vegetable growth. For Brassica chinensis Linn treated with the fifth day culture supernatant, the total weight and total length increased up to 529% and 148%, respectively, compared to the control group. With this method, the production of protease, chitinase, N-acetyl chitooligosaccharides and biofertilizers may be useful for biological applications.

  2. Enhanced active extracellular polysaccharide production from Ganoderma formosanum using computational modeling.

    PubMed

    Hsu, Kai-Di; Wu, Shu-Pei; Lin, Shin-Ping; Lum, Chi-Chin; Cheng, Kuan-Chen

    2017-10-01

    Extracellular polysaccharide (EPS) is one of the major bioactive ingredients contributing to the health benefits of Ganoderma spp. In this study, response surface methodology was applied to determine the optimal culture conditions for EPS production of Ganoderma formosanum. The optimum medium composition was found to be at initial pH 5.3, 49.2 g/L of glucose, and 4.9 g/L of yeast extract by implementing a three-factor-three-level Box-Behnken design. Under this condition, the predicted yield of EPS was up to 830.2 mg/L, which was 1.4-fold higher than the one from basic medium (604.5 mg/L). Furthermore, validating the experimental value of EPS production depicted a high correlation (100.4%) with the computational prediction response model. In addition, the percentage of β-glucan, a well-recognized bioactive polysaccharide, in EPS was 53±5.5%, which was higher than that from Ganoderma lucidum in a previous study. Moreover, results of monosaccharide composition analysis indicated that glucose was the major component of G. formosanum EPS, supporting a high β-glucan percentage in EPS. Taken together, this is the first study to investigate the influence of medium composition for G. formosanum EPS production as well as its β-glucan composition. Copyright © 2017. Published by Elsevier B.V.

  3. Production of extracellular polysaccharide by Bacillus megaterium RB-05 using jute as substrate.

    PubMed

    Chowdhury, Sougata Roy; Basak, Ratan Kumar; Sen, Ramkrishna; Adhikari, Basudam

    2011-06-01

    Bacillus megaterium RB-05 was grown on glucose and on "tossa-daisee" (Corchorus olitorius)-derived jute, and production and composition of extracellular polysaccharide (EPS) were monitored. An EPS yield of 0.065 ± 0.013 and of 0.297 g ± 0.054 g(-1) substrate after 72 h was obtained for glucose and jute, respectively. EPS production in the presence of jute paralleled bacterial cellulase activity. High performance liquid chromatography (HPLC), matrix assisted LASER desorption/ionization-time of flight (MALDI-ToF) mass spectroscopy, and fourier transform infrared (FT-IR) spectroscopy demonstrated that the EPS synthesized in jute culture (JC) differed from that synthesized in glucose mineral salts medium (GMSM). While fucose was only a minor constituent (4.9 wt.%) of EPS from GMSM, it a major component (41.9 wt.%) of EPS synthesized in JC. This study establishes jute as an effective fermentation substrate for EPS production by a cellulase-producing bacterium.

  4. Variability in the production of extracellular enzymes by entomopathogenic fungi grown on different substrates

    PubMed Central

    Fernandes, Elio Gomes; Valério, Henrique Maia; Feltrin, Thaisa; Van Der Sand, Sueli Teresinha

    2012-01-01

    Entomopathogenic fungi are important controllers of pest-insects populations in agricultural production systems and in natural environment. These fungi have enzymatic machinery which involve since the recognition and adherence of spores in their hosts culminating with infection and death of these insects. The main objective of this study was to analyzed extracellular enzyme production of the fungi strains Beauveria bassiana, Metarhizium anisopliae and Paecilomyces sp when cultured on substrates. These fungi were grown in minimal media containing specific substrates for the analysis of different enzymes such as amylases, cellulases, esterases, lipases, proteases (gelatin and caseinase), pectinases and cuticles of Musca domestica larvae and adults. All the assays were performed with and without the presence of dextrose in the culture media. The quantification of enzyme activity was performed by the ratio of halo / colony (H/C) and the results subjected to variance analysis level of 5% (ANOVA) followed by post-Tukey test. All strains were positive for lipase and also they showed a high significant enzyme production for gelatin at concentrations of 4 and 1%. B. bassiana and Paecilomyces sp. were positive for amylase, pectinase and caseinase, and only Paecilomyces sp. showed cellulase activity. PMID:24031896

  5. Inhibitory effects of extracellular products from oral bacteria on human fibroblasts and stimulated lymphocytes.

    PubMed

    Higerd, T B; Vesole, D H; Goust, J M

    1978-08-01

    Extracellular products of 12 strains of Streptococcus mutans and 5 additional species of oral bacteria were analyzed for their ability to inhibit proliferation of fibroblastoid cells (HeLa and AV3) and blast transformation of human peripheral blood lymphocytes obtained from normal individuals. Products from S. mutans strains AHT and BHT, Streptococcus intermedius, and Actinomyces viscosus inhibited [3H]thymidine uptake by fibroblastoid cells and phytohemagglutinin-stimulated lymphocytes. Products from S. mutans E49, Streptococcus salivarius, and Actinomyces naeslundii inhibited blast transformation of human lymphocytes but did not significantly inhibit the growth of fibroblastoid cells. Preparations from S. intermedius gave the greatest inhibitory activity against both target cell types; initial characterization of this preparation suggested a single factor active in both assays, in that the heat lability and Sephadex G-200 elution profile were similar for the inhibitory activity seen with the two cell types. The molecular weight of the inhibitor, estimated by gel filtration on Sephadex G-200 and Ultragel AcA34, was approximately 160,000. The results strongly suggest that oral bacteria produce heat-labile substances that interfere with fibroblast proliferation and alter the lymphocytic immunological response.

  6. Enhancement of extracellular lipid production by oleaginous yeast through preculture and sequencing batch culture strategy with acetic acid.

    PubMed

    Huang, Xiang-Feng; Shen, Yi; Luo, Hui-Juan; Liu, Jia-Nan; Liu, Jia

    2017-09-19

    Oleaginous yeast Cryptococcus curvatus MUCL 29819, an acid-tolerant lipid producer, was tested to spill lipids extracellularly using different concentrations of acetic acid as carbon source. Extracellular lipids were released when the yeast was cultured with acetic acid exceeding 20g/L. The highest production of lipid (5.01g/L) was obtained when the yeast was cultured with 40g/L acetic acid. When the yeast was cultivated with moderate concentration (20g/L) of acetic acid, lipid production was further increased by 49.6% through preculture with 40g/L acetic acid as stimulant. When applying high concentration (40g/L) of acetic acid as carbon source in sequencing batch cultivation, extracellular lipids accounted up to 50.5% in the last cycle and the extracellular lipids reached 5.43g/L through the whole process. This study provides an effective strategy to enhance extracellular lipid production and facilitate the recovery of microbial lipids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Phosphatidic acid formation is required for extracellular ATP-mediated nitric oxide production in suspension-cultured tomato cells.

    PubMed

    Sueldo, Daniela J; Foresi, Noelia P; Casalongué, Claudia A; Lamattina, Lorenzo; Laxalt, Ana M

    2010-03-01

    *In animals and plants, extracellular ATP exerts its effects by regulating the second messengers Ca(2+), nitric oxide (NO) and reactive oxygen species (ROS). In animals, phospholipid-derived molecules, such as diacylglycerol, phosphatidic acid (PA) and inositol phosphates, have been associated with the extracellular ATP signaling pathway. The involvement of phospholipids in extracellular ATP signaling in plants, as it is established in animals, is unknown. *In vivo phospholipid signaling upon extracellular ATP treatment was studied in (32)P(i)-labeled suspension-cultured tomato (Solanum lycopersicum) cells. *Here, we report that, in suspension-cultured tomato cells, extracellular ATP induces the formation of the signaling lipid phosphatidic acid. Exogenous ATP at doses of 0.1 and 1 mM induce the formation of phosphatidic acid within minutes. Studies on the enzymatic sources of phosphatidic acid revealed the participation of both phospholipase D and C in concerted action with diacylglycerol kinase. *Our results suggest that extracellular ATP-mediated nitric oxide production is downstream of phospholipase C/diacylglycerol kinase activation.

  8. Low Extracellular Zinc Increases Neuronal Oxidant Production Through NADPH Oxidase and Nitric Oxide Synthase Activation

    PubMed Central

    Aimo, Lucila; Cherr, Gary N.; Oteiza, Patricia I.

    2012-01-01

    A decrease in zinc (Zn) levels increases the production of cell oxidants, affects the oxidant defense system and triggers oxidant sensitive signals in neuronal cells. However, the underlying mechanisms are still unclear. This work tested the hypothesis that the increase in neuronal oxidants that occurs when cellular Zn decreases is mediated by the activation of the NMDA receptor. Differentiated PC12 cells were cultured in control, Zn-deficient or Zn-repleted media. The incubation in Zn deficient media led to a rapid increase in cellular calcium levels, which was prevented by a NMDA receptor antagonist (MK-801). Cellular calcium accumulation was associated with NADPH oxidase and nitric oxide synthase (NOS) activation, an increase in cell oxidant levels, and an associated activation of a redox-sensitive signal (AP-1). In cells incubated in the Zn deficient medium, NADPH oxidase activation was prevented by MK-801 and by a protein kinase C inhibitor. The rise in cell oxidants was prevented by inhibitors of NADPH oxidase, of the NOS and by MK-801. A similar pattern of inhibitor action was observed for zinc deficiency-induced AP-1 activation. Results demonstrate that a decrease in extracellular Zn leads to an increase in neuronal oxidants through the activation of the NMDAR that leads to calcium influx and to a calcium-mediated activation of protein kinase C/NADPH oxidase and NOS. Changes in extracellular Zn concentrations can be sensed by neurons, which using reactive oxygen and nitrogen species as second messengers, can regulate signaling involved in neuronal development and function. PMID:20211250

  9. Changes in muscle fiber contractility and extracellular matrix production during skeletal muscle hypertrophy.

    PubMed

    Mendias, Christopher L; Schwartz, Andrew J; Grekin, Jeremy A; Gumucio, Jonathan P; Sugg, Kristoffer B

    2017-03-01

    Skeletal muscle can adapt to increased mechanical loads by undergoing hypertrophy. Transient reductions in whole muscle force production have been reported during the onset of hypertrophy, but contractile changes in individual muscle fibers have not been previously studied. Additionally, the extracellular matrix (ECM) stores and transmits forces from muscle fibers to tendons and bones, and determining how the ECM changes during hypertrophy is important in understanding the adaptation of muscle tissue to mechanical loading. Using the synergist ablation model, we sought to measure changes in muscle fiber contractility, collagen content, and cross-linking, and in the expression of several genes and activation of signaling proteins that regulate critical components of myogenesis and ECM synthesis and remodeling during muscle hypertrophy. Tissues were harvested 3, 7, and 28 days after induction of hypertrophy, and nonoverloaded rats served as controls. Muscle fiber specific force (sFo), which is the maximum isometric force normalized to cross-sectional area, was reduced 3 and 7 days after the onset of mechanical overload, but returned to control levels by 28 days. Collagen abundance displayed a similar pattern of change. Nearly a quarter of the transcriptome changed over the course of overload, as well as the activation of signaling pathways related to hypertrophy and atrophy. Overall, this study provides insight into fundamental mechanisms of muscle and ECM growth, and indicates that although muscle fibers appear to have completed remodeling and regeneration 1 mo after synergist ablation, the ECM continues to be actively remodeling at this time point.NEW & NOTEWORTHY This study utilized a rat synergist ablation model to integrate changes in single muscle fiber contractility, extracellular matrix composition, activation of important signaling pathways in muscle adaption, and corresponding changes in the muscle transcriptome to provide novel insight into the basic

  10. The role of 2,4-dihydroxyquinoline (DHQ) in Pseudomonas aeruginosa pathogenicity

    PubMed Central

    Gruber, Jordon D.; Chen, Wei; Parnham, Stuart; Beauchesne, Kevin; Moeller, Peter; Flume, Patrick A.

    2016-01-01

    Bacteria synchronize group behaviors using quorum sensing, which is advantageous during an infection to thwart immune cell attack and resist deleterious changes in the environment. In Pseudomonas aeruginosa, the Pseudomonas quinolone signal (Pqs) quorum-sensing system is an important component of an interconnected intercellular communication network. Two alkylquinolones, 2-heptyl-4-quinolone (HHQ) and 2-heptyl-3-hydroxy-4-quinolone (PQS), activate transcriptional regulator PqsR to promote the production of quinolone signals and virulence factors. Our work focused on the most abundant quinolone produced from the Pqs system, 2,4-dihydroxyquinoline (DHQ), which was shown previously to sustain pyocyanin production and antifungal activity of P. aeruginosa. However, little is known about how DHQ affects P. aeruginosa pathogenicity. Using C. elegans as a model for P. aeruginosa infection, we found pqs mutants only able to produce DHQ maintained virulence towards the nematodes similar to wild-type. In addition, DHQ-only producing mutants displayed increased colonization of C. elegans and virulence factor production compared to a quinolone-null strain. DHQ also bound to PqsR and activated the transcription of pqs operon. More importantly, high extracellular concentration of DHQ was maintained in both aerobic and anaerobic growth. High levels of DHQ were also detected in the sputum samples of cystic fibrosis patients. Taken together, our findings suggest DHQ may play an important role in sustaining P. aeruginosa pathogenicity under oxygen-limiting conditions. PMID:26788419

  11. The effect of sub-inhibitory concentrations of rifaximin on urease production and on other virulence factors expressed by Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa and Staphylococcus aureus.

    PubMed

    Ricci, Annalisa; Coppo, Erika; Barbieri, Ramona; Debbia, Eugenio A; Marchese, Anna

    2017-04-01

    Rifaximin, a topical derivative of rifampin, inhibited urease production and other virulence factors at sub-MIC concentrations in strains involved in hepatic encephalopathy and the expression of methicillin resistance in Staphylococcus aureus. In particular, urease production was affected in all Proteus mirabilis and Klebsiella pneumoniae strains as well as in all tested Pseudomonas aeruginosa isolates. Other exotoxins, synthesized by P. aeruginosa, such as protease, gelatinase, lipase, lecithinase and DNAse were also not metabolized in the presence of rifaximin. This antibiotic inhibited pigment production in both P. aeruginosa and Chromobacterium violaceum, a biosensor control strain. Lastly, rifaximin affected haemolysin production in S. aureus and was able to restore cefoxitin susceptibility when the strain was cultured in the presence of sub-MICs of the drug. The present findings confirm and extend previous observations about the beneficial effects of rifaximin for the treatment of gastrointestinal diseases, since in this anatomic site, it reaches a large array of concentrations which prevents enterobacteria from thriving and/or producing their major virulence factors.

  12. Extracellular production of beta-amylase by a halophilic isolate, Halobacillus sp. LY9.

    PubMed

    Li, Xin; Yu, Hui-Ying

    2011-11-01

    A moderately halophilic strain LY9 with high amylolytic activity was isolated from soil sample obtained from Yuncheng, China. Biochemical and physiological characterization along with 16S rRNA sequence analysis placed the isolate in the genus Halobacillus. Amylase production started from the post-exponential phase of bacterial growth and reached a maximum level during the early-stationary phase. The isolate LY9 was found to secrete the amylase, the production of which depended on the salinity of the growth medium. Maximum amylase production was observed in the presence of 10% KCl or 10% NaCl. Maltose was the main product of soluble starch hydrolysis, indicating a β-amylase activity. The enzyme showed optimal activity at 60°C, pH 8.0, and 10-12.5% of NaCl. It was highly active over broad temperature (50-70°C), NaCl concentration (5.0-20.0%), and pH (4.0-12.0) ranges, indicating its thermoactive and alkali-stable nature. However, activity dropped off dramatically at low NaCl concentrations, showing the amylase was halophilic. Ca(2+) was found to stimulate the β-amylase activity, whereas ethylenediaminetetraacetic acid (EDTA), phenylarsine oxide (PAO), and diethyl pyrocarbonate (DEPC) strongly inhibited the enzyme, indicating it probably was a metalloenzyme with cysteine and histidine residues located in its active site. Moreover, the enzyme exhibited remarkable stability towards sodium dodecyl sulfate (SDS) and Triton X-100. This is the first report of β-amylase production from moderate halophiles. The present study indicates that the extracellular β-amylase of Halobacillus sp. LY9 may have considerable potential for industrial application owing to its properties.

  13. Evaluating the influence of light intensity in mcyA gene expression and microcystin production in toxic strains of Planktothrix agardhii and Microcystis aeruginosa.

    PubMed

    Salvador, Daniel; Churro, Catarina; Valério, Elisabete

    2016-04-01

    Cyanobacteria are phytoplanktonic organisms widely occurring in freshwaters, being frequently associated with the production of toxins, namely microcystins (MCs). MCs are produced non-ribosomally by a multienzyme complex (mcy genes). It has been reported that environmental factors, such as light intensity, can influence toxin production. The aim of this study was to assess the influence of light intensity in the transcription of the mcyA gene and corresponding production of microcystins in toxic isolates of Planktothrix agardhii, where little is known, and compare them to Microcystis aeruginosa. For that purpose, cultures were exposed to three different light intensities (4, 20 and 30 μmol photons m(-2) s(-1)) for 18 days at 20 ± 1 °C. The growth was followed daily using absorbance readings. Samples were collected at each growth stage for cell counting, microcystins quantification and RNA extraction. The level of transcripts was quantified by RT-qPCR and the relative expression determined using 16S rDNA, gltA and rpoC1 as reference genes. The most stable reference genes in M. aeruginosa were rpoC1 and gltA, whereas in P. agardhii were 16S rDNA and gltA. There was a correspondence between the growth rate and light intensity in M. aeruginosa and P. agardhii. The growth rates for both species were lower at 4 and higher at 30 μmol photons m(-2) s(-1). Microcystin concentration per cell was similar between light intensities in M. aeruginosa and over time, while in P. agardhii it was higher in the stationary phase at 4 μmol photons m(-2) s(-1). There were differences in the expression of mcyA between the two species. In M. aeruginosa, the highest levels of expression occurred at 4 μmol photons m(-2) s(-1) in the adaptation phase, whereas for P. agardhii it was at 4μmol photons m(-2) s(-1) in the exponential growth phase. Our results indicate that the light intensities tested had distinct influences on the growth, microcystin production and mcyA expression levels

  14. Evaluation of Mannosidase and Trypsin Enzymes Effects on Biofilm Production of Pseudomonas aeruginosa Isolated from Burn Wound Infections

    PubMed Central

    Banar, Maryam; Emaneini, Mohammad; Satarzadeh, Mhboubeh; Abdellahi, Nafiseh; Beigverdi, Reza; van Leeuwen, Willem B.; Jabalameli, Fereshteh

    2016-01-01

    Biofilm is an important virulence factor in Pseudomonas aeruginosa and has a substantial role in antibiotic resistance and chronic burn wound infections. New therapeutic agents against P. aeruginosa, degrading biofilms in burn wounds and improving the efficacy of current antimicrobial agents, are required. In this study, the effects of α-mannosidase, β-mannosidase and trypsin enzymes on the degradation of P. aeruginosa biofilms and on the reduction of ceftazidime minimum biofilm eliminating concentrations (MBEC) were evaluated. All tested enzymes, destroyed the biofilms and reduced the ceftazidime MBECs. However, only trypsin had no cytotoxic effect on A-431 human epidermoid carcinoma cell lines. In conclusion, since trypsin had better features than mannosidase enzymes, it can be a promising agent in combatting P. aeruginosa burn wound infections. PMID:27736961

  15. Action of Group A Streptococcus Extracellular Product(s) on the Connective Tissue of the Bovine Heart Valve

    PubMed Central

    Goldstein, Israël; Caravano, René; Parlebas, Janine

    1974-01-01

    Group A streptococcal strains isolated from rheumatic fever patients were cultivated in the presence of bovine heart valves in a medium devoid of components from animal origin. Other group A streptococci and various bacteria were used as controls. The supernatant of these cultures was extracted and analyzed chemically and immunologically. The extracts prepared from cultures of two “rheumatogenic” strains in the presence of bovine heart valves showed fraction(s) containing proteins, oses (neutral and amined), and uronic and sialic acids. This fraction(s) was immunologically active with both anti-group A streptococcus and antisoluble connective glycoprotein antisera, with a partial identity reaction. Experiments with a diffusion chamber and attempts to precipitate a postulated enzyme from the culture of these strains by ammonium sulfate suggest that this action is due to an extracellular product of the bacteria. The meaning of these data in the physiopathology of rheumatic cardiac lesions is briefly discussed. PMID:4202889

  16. Mutations improving production and secretion of extracellular lipase by Burkholderia glumae PG1.

    PubMed

    Knapp, Andreas; Voget, Sonja; Gao, Rong; Zaburannyi, Nestor; Krysciak, Dagmar; Breuer, Michael; Hauer, Bernhard; Streit, Wolfgang R; Müller, Rolf; Daniel, Rolf; Jaeger, Karl-Erich

    2015-10-17

    Burkholderia glumae is a Gram-negative phytopathogenic bacterium known as the causative agent of rice panicle blight. Strain B. glumae PG1 is used for the production of a biotechnologically relevant lipase, which is secreted into the culture supernatant via a type II secretion pathway. We have comparatively analyzed the genome sequences of B. glumae PG1 wild type and a lipase overproducing strain obtained by classical strain mutagenesis. Among a total number of 72 single nucleotide polymorphisms (SNPs) identified in the genome of the production strain, two were localized in front of the lipAB operon and were analyzed in detail. Both mutations contribute to a 100-fold overproduction of extracellular lipase in B. glumae PG1 by affecting transcription of the lipAB operon and efficiency of lipase secretion. We analyzed each of the two SNPs separately and observed a stronger influence of the promoter mutation than of the signal peptide modification but also a cumulative effect of both mutations. Furthermore, fusion of the mutated LipA signal peptide resulted in a 2-fold increase in secretion of the heterologous reporter alkaline phosphatase from Escherichia coli.

  17. Production, fractionation, characterization of extracellular polysaccharide from a newly isolated Trametes gibbosa and its hypoglycemic activity.

    PubMed

    Ma, Yuping; Mao, Duobin; Geng, Lujing; Wang, Zheng; Xu, Chunping

    2013-07-25

    The submerged fermentation for extracellular polysaccharide (EPS) production from Trametes gibbosa was optimized. An optimal medium for EPS production was obtained through central composite design (CCD) as follows: 53.12 g/L maltose and 4.21 g/L polypeptone in distilled water. Furthermore, four groups of EPSs (designated as Fr-I, Fr-II, Fr-III and Fr-IV) were obtained from the culture filtrates by size exclusion chromatography (SEC), and their molecular characteristics were examined by a multiangle laser-light scattering (MALLS) and refractive index (RI) detector system. The weight-average molar mass of Fr-I was determined to be 3.872 x 10(5)g/mol and its molecular shape was revealed to be a rigid rod in an aqueous solution. Finally, the hypoglycemic effect of the EPS, investigated in streptozotocin induced diabetic mice, decreased plasma glucose, total cholesterol and triacylglycerol concentrations by 17.4%, 14.0% and 12.6%, respectively. The results indicate the potential of this EPS to prevent hyperglycemia in diabetic patients.

  18. A cold-active extracellular metalloprotease from Pedobacter cryoconitis--production and properties.

    PubMed

    Margesin, Rosa; Dieplinger, Hans; Hofmann, Johann; Sarg, Bettina; Lindner, Herbert

    2005-05-01

    An extracellular protease from Pedobacter cryoconitis, isolated from alpine cryoconite on glacier ice, was purified and characterized. Despite high cell densities at a temperature range of 1-25 degrees C, the optimum temperature for protease production was 15 degrees C. Maximum enzyme production was achieved when the strain was grown in a pH-neutral medium containing soybean meal, wheat flour and citrate over 72 h. The 27-kDa enzyme was a metalloprotease (sensitive to EDTA, EGTA and phenanthroline) and showed maximal activity towards azocasein at 40 degrees C and pH 8. The protease was stable for 60 min at 20-30 degrees C, lost 50% of activity after 30 min at 40 degrees C, and was inactivated at 50 degrees C, but was resistant to repeated freezing and thawing. Calcium ions had no protective effect against thermal denaturation. More than 80% of the maximum activity were retained at a pH in the range of 7-10. No activity loss was detected after 1 h at pH 7-9 and 20 degrees C, nor after 1 h of incubation with 3 M urea or 0.1% perborate.

  19. p11 regulates extracellular plasmin production and invasiveness of HT1080 fibrosarcoma cells.

    PubMed

    Choi, Kyu-Sil; Fogg, Darin K; Yoon, Chang-Soon; Waisman, David M

    2003-02-01

    The defining characteristic of a tumor cell is its ability to escape the constraints imposed by neighboring cells, invade the surrounding tissue, and metastasize to distant sites. This invasive property of tumor cells is dependent on activation of proteases at the cell surface. Most cancer cells secrete the urokinase-type plasminogen activator, which converts cell-bound plasminogen to plasmin. Here we address the issue of whether the plasminogen binding protein, p11, plays a significant role in this process. Transfection of human HT1080 fibrosarcoma cells with the human p11 gene in the antisense orientation resulted in a loss of p11 protein from the cell surface and concomitant decreases in cellular plasmin production, ECM degradation, and cellular invasiveness. The transfected cells demonstrated reduced development of lung metastatic foci in SCID mice. In contrast, HT1080 cells transfected with the p11 gene in the sense orientation displayed increased cell surface p11 protein and concomitant increases in cellular plasmin production, as well as enhanced ECM degradation and enhanced cellular invasiveness. The p11 overexpressing cells showed enhanced development of lung metastatic foci. These data establish that changes in the extracellular expression of the plasminogen receptor protein, p11, dramatically affect tumor cell-mediated pericellular proteolysis.

  20. Pioglitazone inhibits TGFβ induced keratocyte transformation to myofibroblast and extracellular matrix production.

    PubMed

    Pan, Hong-Wei; Xu, Jin-Tang; Chen, Jian-Su

    2011-10-01

    Phenotype transformation of corneal keratocyte to myofibroblast plays an important role in the wound healing process of cornea and TGFβ is considered to be the most important mediator to induce myofibroblast trans-differentiation. Peroxisome proliferator-activated receptors-γ (PPAR-γ) activation has been proved to exert anti-fibrotic effect in many tissues. In this study, we investigated the effect of PPAR-γ agonist, pioglitazone, on myofibroblast transformation, extracellular matrix production and cell proliferation. The results showed pioglitazone inhibited the TGFβ-driven myofibroblast differentiation, as determined by F-actin fluorescence staining, α-smooth muscle actin-specific immunocytochemistry and western blot analysis. Pioglitazone also potently attenuated TGFβ induced type I collagen and fibronectin mRNA and protein production. Moreover, pioglitazone showed inhibitory effect on TGFβ induced cell proliferation. The irreversible PPAR-γ antagonist GW9662, partially reversed the inhibition of collagen I and fibronectin expression but not myofibroblast transformation, suggesting both PPAR-γ dependent and PPAR-γ independent mechanisms were involved in the action of pioglitazone. Therefore, our study indicates pioglitazone has a potential application in therapy of corneal fibrosis and PPAR-γ might be a promising therapy target.

  1. The combined effects of Dolichospermum flos-aquae, light, and temperature on microcystin production by Microcystis aeruginosa

    NASA Astrophysics Data System (ADS)

    Chen, Ruoqi; Li, Fangfang; Liu, Jiadong; Zheng, Hongye; Shen, Fei; Xue, Yarong; Liu, Changhong

    2016-11-01

    The effects of light, temperature, and coculture on the intracellular microcystin-LR (MC-LR) quota of Microcystis aeruginosa were evaluated based on coculture experiments with nontoxic Dolichospermum ( Anabaena) flos-aquae. The MC-LR quota and transcription of mcyB and mcyD genes encoding MC synthetases in M. aeruginosa were evaluated on the basis of cell counts, high-performance liquid chromatography, and reverse-transcription quantitative real-time PCR. The MC-LR quotas of M. aeruginosa in coculture with a 1/1 ratio of inoculum of the two species were significantly lower relative to monocultures 6-d after inoculation. Decreased MC-LR quotas under coculture conditions were enhanced by increasing the D. flos-aquae to M. aeruginosa ratio in the inoculum and by environmental factors, such as temperature and light intensity. Moreover, the transcriptional concentrations of mcyB and mcyD genes in M. aeruginosa were significantly inhibited by D. flos-aquae competition in coculture ( P <0.01), lowered to 20% of initial concentrations within 8 days. These data suggested that coculture eff ects by D. flos-aquae not only reduced M. aeruginosa's intracellular MC-LR quota via inhibition of genes encoding MC synthetases, but also that this eff ect was regulated by environmental factors, including temperature and light intensities.

  2. Effects of nicotine on proliferation and extracellular matrix production of human gingival fibroblasts in vitro.

    PubMed

    Tipton, D A; Dabbous, M K

    1995-12-01

    Normal function of gingival fibroblasts is essential for maintenance of the gingival extracellular matrix (ECM), but under inflammatory conditions in gingival tissue which may occur with tobacco use, they can also act in its destruction. The purpose of this study was to determine the effects of nicotine, a major component of tobacco, on gingival fibroblast proliferation, the production of fibronectin (FN), and the production and breakdown of type I collagen to elucidate its role in periodontal destruction associated with its use. A human gingival fibroblast strain derived from a healthy individual with non-inflamed gingiva was used in this study. Nicotine at concentrations > 0.075% caused cell death, and at 0.075% and 0.05% it caused transient vacuolization of the fibroblasts. At concentrations of 0.001% to 0.075%, nicotine significantly inhibited proliferation (P < or = 0.03), measured by the incorporation of [3H]-thymidine into DNA. The production of FN and type I collagen was significantly inhibited by nicotine at > or = 0.05% (P < or = 0.001), measured using specific ELISAs. On the other hand, nicotine at > or = 0.025% significantly increased collagenase activity (P < or = 0.008), using [3H]-gly and [14C]-pro-labeled type I collagen gels as substrate. The results show that, in vitro, nicotine inhibits the growth of gingival fibroblasts and their production of FN and collagen, while also promoting collagen breakdown. This suggests that nicotine itself may augment the destruction of the gingival ECM occurring during periodontal inflammation associated with smokeless tobacco use.

  3. A LuxR Homolog Controls Production of Symbiotically Active Extracellular Polysaccharide II by Sinorhizobium meliloti

    PubMed Central

    Pellock, Brett J.; Teplitski, Max; Boinay, Ryan P.; Bauer, W. Dietz; Walker, Graham C.

    2002-01-01

    Production of complex extracellular polysaccharides (EPSs) by the nitrogen-fixing soil bacterium Sinorhizobium meliloti is required for efficient invasion of root nodules on the host plant alfalfa. Any one of three S. meliloti polysaccharides, succinoglycan, EPS II, or K antigen, can mediate infection thread initiation and extension (root nodule invasion) on alfalfa. Of these three polysaccharides, the only symbiotically active polysaccharide produced by S. meliloti wild-type strain Rm1021 is succinoglycan. The expR101 mutation is required to turn on production of symbiotically active forms of EPS II in strain Rm1021. In this study, we have determined the nature of the expR101 mutation in S. meliloti. The expR101 mutation, a spontaneous dominant mutation, results from precise, reading frame-restoring excision of an insertion sequence from the coding region of expR, a gene whose predicted protein product is highly homologous to the Rhizobium leguminosarum bv. viciae RhiR protein and a number of other homologs of Vibrio fischeri LuxR that function as receptors for N-acylhomoserine lactones (AHLs) in quorum-sensing regulation of gene expression. S. meliloti ExpR activates transcription of genes involved in EPS II production in a density-dependent fashion, and it does so at much lower cell densities than many quorum-sensing systems. High-pressure liquid chromatographic fractionation of S. meliloti culture filtrate extracts revealed at least three peaks with AHL activity, one of which activated ExpR-dependent expression of the expE operon. PMID:12193623

  4. Effect of extracellular matrix on testosterone production during in vitro culture of bovine testicular cells.

    PubMed

    Akbarinejad, Vahid; Tajik, Parviz; Movahedin, Mansoureh; Youssefi, Reza

    2017-01-01

    Testosterone is believed to play a significant role in spermatogenesis, but its contribution to the process of spermatogenesis is not completely understood. Given that extracellular matrix (ECM) facilitates differentiation of spermatogonial stem cells (SSCs) during culture, the present study was conducted to elucidate whether testosterone contribute to the permissive effect of ECM on SSCs differentiation. In experiment 1, testosterone production was measured in testicular cells cultured for 12 days on ECM or plastic (control). In experiment 2, testosterone production was assessed in testicular cells cultured on ECM or plastic (control) and exposed to different concentrations of hCG. In experiment 3, the gene expression of factors involved in testosterone production was analyzed. Testosterone concentration was lower in ECM than in the control group in experiment 1 (p < 0.05). In experiment 2, testosterone concentration was increased in response to hCG in both groups but cells cultured on ECM were more responsive to hCG than those cultured on plastic (p < 0.05). In the experiment 3, qRT-PCR revealed the inhibitory effect of ECM on the gene expression of steroidogenic acute regulatory protein (StAR) (p < 0.05). Nevertheless, the expression of LH receptor was greater in ECM-exposed than in unexposed cells (p < 0.05). In conclusion, the present study showed that inhibiting the expression of StAR, ECM could lower testosterone production by Leydig cells during in vitro culture. In addition, the results indicated that ECM could augment the responsiveness of Leydig cells to hCG through stimulating the expression of LH receptor.

  5. Optimization of Carbon and Nitrogen Sources for Extracellular Polymeric Substances Production by Chryseobacterium indologenes MUT.2.

    PubMed

    Khani, Mojtaba; Bahrami, Ali; Chegeni, Asma; Ghafari, Mohammad Davoud; Mansouran Zadeh, ALi

    2016-06-01

    Bacterial Extracellular Polymeric Substances (EPS) are environmental friendly and versatile polymeric materials that are used in a wide range of industries such as: food, textile, cosmetics, and pharmaceuticals. To make the production process of the EPS cost-effective, improvements in the production yield is required which could be implemented through application of processes such as optimized culture conditions, and development of the strains with higher yield (e.g. through genetic manipulation), or using low-cost substrates. In this work, the effects of carbon and nitrogen sources were studied in order to improve the EPS production by the submerged cultivation of Chryseobacterium indologenes MUT.2. The mesophilic microorganism Chryseobacterium indologenes MUT.2, was grown and maintained in the Luria Bertani agar. The initial basal medium contained: glucose (20 g.L(-1)), yeast extracts (5 g.L(-1)), K2HPO4 (6 g.L(-1)), NaH2PO4 (7 g.L(-1)), NH4CL (0.7 g.L(-1)), and MgSO4 (0.5 g.L(-1)). For evaluating the carbon and nitrogen sources' effect on the fermentation performance, cultures were prepared in 500 mL flasks filled with 300 mL of the medium. The single-factor experiments based on statistics was employed to evaluate and optimize the carbon and nitrogen sources for EPS production in the liquid culture medium of Chryseobacterium indologenes MUT.2. The preferred carbon-sources, sucrose and glucose, commonly gave the highest EPS production of 8.32 and 6.37 g.L(-1), respectively, and the maximum EPS production of 8.87 g.L(-1) was achieved when glutamic acid (5 g.L(-1)) was employed as the nitrogen source. In this work, the culture medium for production of EPS by Chryseobacterium indologenes MUT.2 was optimized. Compared to the basal culture medium in shake-flasks and stirred tank bioreactor, the use of optimized culture medium has resulted in a 53% and 73% increase in the EPS production, respectively.

  6. Carbon spectrum utilization by an indigenous strain of Pseudomonas aeruginosa NCIM 5514: Production, characterization and surface active properties of biosurfactant.

    PubMed

    Varjani, Sunita J; Upasani, Vivek N

    2016-12-01

    The present research work was undertaken with a mandate to study carbon spectrum utilization and structural characterization of biosurfactant produced by indigenous Pseudomonas aeruginosa NCIM 5514, which showed unique properties to utilize a large number of carbon sources effectively for production of biosurfactant, although glucose was the best carbon substrate. In Bushnell-Hass medium supplemented with glucose (1%, w/v), 3.178±0.071g/l biosurfactant was produced by this isolate in 96h. The biosurfactant produced showed surface tension and emulsification activity values from 29.14±0.05 to 62.29±0.13mN/m and 88.50±1.96 to 15.40±0.91%, respectively. Toluene showed highest emulsification activity followed by kerosene. However, kerosene exhibited emulsion stability for 30days. Biosurfactant was characterized as a mixture of di-rhamnolipid (Rha-Rha-C10-C14:1) and mono-rhamnolipid (Rha-C8-C10) by FTIR, ESI-MS and LC-MS techniques. High biosurfactant yield opens up doors for the isolate to find utility in various industries.

  7. End-products diacylglycerol and ceramide modulate membrane fusion induced by a phospholipase C/sphingomyelinase from Pseudomonas aeruginosa

    PubMed Central

    Ibarguren, Maitane; Bomans, Paul H. H.; Frederik, Peter M.; Stonehouse, Martin; Vasil, Michael L.; Alonso, Alicia; Goñi, Félix M.

    2009-01-01

    A phospholipase C/ sphingomyelinase from Pseudomonas aeruginosa has been assayed on vesicles containing phosphatidylcholine, sphingomyelin, phosphatidylethanolamine and cholesterol, at equimolar ratios. The enzyme activity modifies the bilayer chemical composition giving rise to diacylglycerol (DAG) and ceramide (Cer). Assays of enzyme activity, enzyme-induced aggregation and fusion have been performed. Ultrastructural evidence of vesicle fusion at various stages of the process is presented, based on cryo-EM observations. The two enzyme lipidic end-products, DAG and Cer, have opposite effects on the bilayer physical properties, the former abolishes lateral phase separation, while the latter generates a new gel phase [Sot et al., FEBS Lett. 582, 3230–3236 (2008)]. Addition of either DAG, or Cer, or both to the liposome mixture causes an increase in enzyme binding to the bilayers and a decrease in lag time of hydrolysis. These two lipids also have different effects on the enzyme activity, DAG enhancing enzyme-induced vesicle aggregation and fusion, Cer inhibiting the hydrolytic activity. These effects are explained in terms of the different physical properties of the two lipids. DAG increases bilayers fluidity and decreases lateral separation of lipids, thus increasing enzyme activity and substrate accessibility to the enzyme. Cer has the opposite effect mainly because of its tendency to sequester sphingomyelin, an enzyme substrate, into rigid domains, presumably less accessible to the enzyme. PMID:19891956

  8. End-products diacylglycerol and ceramide modulate membrane fusion induced by a phospholipase C/sphingomyelinase from Pseudomonas aeruginosa.

    PubMed

    Ibarguren, Maitane; Bomans, Paul H H; Frederik, Peter M; Stonehouse, Martin; Vasil, Adriana I; Vasil, Michael L; Alonso, Alicia; Goñi, Félix M

    2010-01-01

    A phospholipase C/sphingomyelinase from Pseudomonas aeruginosa has been assayed on vesicles containing phosphatidylcholine, sphingomyelin, phosphatidylethanolamine and cholesterol at equimolar ratios. The enzyme activity modifies the bilayer chemical composition giving rise to diacylglycerol (DAG) and ceramide (Cer). Assays of enzyme activity, enzyme-induced aggregation and fusion have been performed. Ultrastructural evidence of vesicle fusion at various stages of the process is presented, based on cryo-EM observations. The two enzyme lipidic end-products, DAG and Cer, have opposite effects on the bilayer physical properties; the former abolishes lateral phase separation, while the latter generates a new gel phase [Sot et al., FEBS Lett. 582, 3230-3236 (2008)]. Addition of either DAG, or Cer, or both to the liposome mixture causes an increase in enzyme binding to the bilayers and a decrease in lag time of hydrolysis. These two lipids also have different effects on the enzyme activity, DAG enhancing enzyme-induced vesicle aggregation and fusion, Cer inhibiting the hydrolytic activity. These effects are explained in terms of the different physical properties of the two lipids. DAG increases bilayers fluidity and decreases lateral separation of lipids, thus increasing enzyme activity and substrate accessibility to the enzyme. Cer has the opposite effect mainly because of its tendency to sequester sphingomyelin, an enzyme substrate, into rigid domains, presumably less accessible to the enzyme.

  9. Social cheating in Pseudomonas aeruginosa quorum sensing.

    PubMed

    Sandoz, Kelsi M; Mitzimberg, Shelby M; Schuster, Martin

    2007-10-02

    In a process termed quorum sensing, bacteria use diffusible chemical signals to coordinate cell density-dependent gene expression. In the human pathogen Pseudomonas aeruginosa, quorum sensing controls hundreds of genes, many of which encode extracellular virulence factors. Quorum sensing is required for P. aeruginosa virulence in animal models. Curiously, quorum sensing-deficient variants, most of which carry a mutation in the gene encoding the central quorum sensing regulator lasR, are frequently isolated from acute and chronic infections. The mechanism for their emergence is not known. Here we provide experimental evidence suggesting that these lasR mutants are social cheaters that cease production of quorum-controlled factors and take advantage of their production by the group. We detected an emerging subpopulation of lasR mutants after approximately 100 generations of in vitro evolution of the P. aeruginosa wild-type strain under culture conditions that require quorum sensing for growth. Under such conditions, quorum sensing appears to impose a metabolic burden on the proliferating bacterial cell, because quorum-controlled genes not normally induced until cessation of growth were highly expressed early in growth, and a defined lasR mutant showed a growth advantage when cocultured with the parent strain. The emergence of quorum-sensing-deficient variants in certain environments is therefore an indicator of high quorum sensing activity of the bacterial population as a whole. It does not necessarily indicate that quorum sensing is insignificant, as has previously been suggested. Thus, novel antivirulence strategies aimed at disrupting bacterial communication may be particularly effective in such clinical settings.

  10. Prevalence of Extended-Spectrum and Metallo β-Lactamase Production in AmpC β-Lactamase Producing Pseudomonas aeruginosa Isolates From Burns

    PubMed Central

    Rafiee, Roya; Eftekhar, Fereshteh; Tabatabaei, Seyyed Ahmad; Minaee Tehrani, Dariush

    2014-01-01

    Background: Pseudomonas aeruginosa is one of the most common causes of nosocomial infections. Resistance of P. aeruginosa to β-lactam antibiotics may be the result of acquired resistance through mutation and over production of various antibiotic inactivating enzymes. This research aimed to determine the prevalence of extended-spectrum β-lactamases (ESBL) and metallo β-lactamase (MBL) production as well as the presence of their related genes among AmpC β-lactamase producing P. aeruginosa isolated from burns. Objectives: The current study aimed to determine the prevalence of class A ESBL and MBL production in relation to the presence of their related genes among AmpC β-lactamase producing P. aeruginosa isolated from burns. Materials and Methods: The antimicrobial susceptibility of 51 P. aeruginosa isolates from patients with burns was examined against 13 antibiotics by the disc diffusion method. Minimum inhibitory concentrations (MIC) for imipenem and ceftazidime were measured by the microdilution method. AmpC production was detected by AmpC disc and the modified three-dimensional extract tests. ESBL phenotype was confirmed by the double disc synergy test (DDST). Presence of β-lactamase genes was detected by specific primers and polymerase chain reaction (PCR). Results: All isolates were multidrug resistant. AmpC, ESBL and MBL production were observed in 35 (68.6%), 20 (39.2%) and 19 (37.3%) isolates, respectively. Overall, 43 isolates (84.3%) carried β-lactamase genes, out of which 31 (60.8%) harbored blaAmpC, 20 (39.2%) had blaTEM and 11 (21.6%) carried blaPER-1 genes. Among the AmpC producers, two isolates (6.5%) carried blaAmpC + blaESBL, 13 (41.9%) had blaAmpC + blaMBL and six (19.4%) produced the three enzymes. Conclusions: A high prevalence of multiple β-lactamase production was observed among the AmpC producers (60%), of which the majority co-produced AmpC and MBL. The current study results showed correlation between β-lactamase production and the

  11. Solid state fermentation for extracellular polysaccharide production by Lactobacillus confusus with coconut water and sugar cane juice as renewable wastes.

    PubMed

    Seesuriyachan, Phisit; Techapun, Charin; Shinkawa, Hidenori; Sasaki, Ken

    2010-01-01

    Extracellular polysaccharide (EPS) production by Lactobacillus confusus in liquid and solid state fermentation was carried out using coconut water and sugarcane juice as renewable wastes. High concentrations of EPS of 62 (sugarcane juice) and 18 g/l of coconut water were produced in solid state fermentation when nitrogen sources were reduced 5-fold from the original medium.

  12. Production of polyol oils from soybean oil by Pseudomonas aeruginosa E03-12.

    USDA-ARS?s Scientific Manuscript database

    Soy-polyols are important starting materials for the manufacture of polymers such as polyurethane. We have been trying to develop a bioprocess for the production of polyol oils directly from soybean oil. We reported earlier the polyol products produced from soybean oil by Acinetobacter haemolyticus ...

  13. Production of Lysozyme by Staphylococci and Its Correlation with Three Other Extracellular Substances1

    PubMed Central

    Jay, James M.

    1966-01-01

    Jay, James M. (Wayne State University, Detroit, Mich.). Production of lysozyme by staphylococci and its correlation with three other extracellular substances. J. Bacteriol. 91:1804–1810. 1966.—Lysozyme production was determined on plates containing 1 mg/ml of Lysozyme Substrate in Heart Infusion Agar with incubation at 37 C for 48 hr. Its production was compared with that of α-hemolysin and sheep hemolysin and egg-yolk precipitation, by use of both coagulase-positive and coagulase-negative strains of staphylococci. Of 126 coagulase-positive strains tested, 120 or 95.2% produced lysozyme, 117 or 92.9% produced α-hemolysin, 108 or 85.7% precipitated egg yolk, and 102 or 81% produced sheep hemolysin. Of the 49 coagulase-negative strains (which included 22 pathogens), only 4 or 8.1% produced lysozyme, 14 or 28.6% produced α-hemolysin, 13 or 26.5% produced sheep hemolysins, and 5 or 10.2% precipitated egg yolk. Only two of the six coagulase-positive strains which failed to produce lysozyme showed any consistent patterns in relation to the four characteristics determined. The four coagulase-negative strains which produced lysozyme were inconsistent for the other characteristics measured. It is suggested that lysozyme production is more a property of coagulase-positive staphylococci, and therefore a better ancillary test of pathogenicity, than either production of α-hemolysin or egg-yolk precipitation, because the incidence of lysozyme producers is higher among this group than among those producing the other substances and because fewer coagulase-negative staphylococci produced lysozyme than hemolysins or egg-yolk precipitation. Of 16 other species of bacteria and yeasts tested, all were found negative except Bacillus subtilis. Lysozyme production by staphylococci in heavily contaminated foods was not inhibited on plates containing sodium azide, whereas media containing 7.5% salt and sorbic acid were unsuitable. The possible relationship of lysozyme production to

  14. Cultural conditions on the production of extracellular enzymes by Trichoderma isolates from tobacco rhizosphere

    PubMed Central

    Mallikharjuna Rao, K.L.N.; Siva Raju, K.; Ravisankar, H.

    2016-01-01

    Twelve isolates of Trichoderma spp. isolated from tobacco rhizosphere were evaluated for their ability to produce chitinase and β-1,3-glucanase extracellular hydrolytic enzymes. Isolates ThJt1 and TvHt2, out of 12 isolates, produced maximum activities of chitinase and β-1,3-glucanase, respectively. In vitro production of chitinase and β-1,3-glucanase by isolates ThJt1 and TvHt2 was tested under different cultural conditions. The enzyme activities were significantly influenced by acidic pH and the optimum temperature was 30 °C. The chitin and cell walls of Sclerotium rolfsii, as carbon sources, supported the maximum and significantly higher chitinase activity by both isolates. The chitinase activity of isolate ThJt1 was suppressed significantly by fructose (80.28%), followed by glucose (77.42%), whereas the β-1,3-glucanase activity of ThJt1 and both enzymes of isolate TvHt2 were significantly suppressed by fructose, followed by sucrose. Ammonium nitrate as nitrogen source supported the maximum activity of chitinase in both isolates, whereas urea was a poor nitrogen source. Production of both enzymes by the isolates was significantly influenced by the cultural conditions. Thus, the isolates ThJt1 and TvHt2 showed higher levels of chitinase and β-1,3-glucanase activities and were capable of hydrolyzing the mycelium of S. rolfsii infecting tobacco. These organisms can be used therefore for assessment of their synergism in biomass production and biocontrol efficacy and for their field biocontrol ability against S. rolfsii and Pythium aphanidermatum infecting tobacco. PMID:26887223

  15. Cultural conditions on the production of extracellular enzymes by Trichoderma isolates from tobacco rhizosphere.

    PubMed

    Mallikharjuna Rao, K L N; Siva Raju, K; Ravisankar, H

    2016-01-01

    Twelve isolates of Trichoderma spp. isolated from tobacco rhizosphere were evaluated for their ability to produce chitinase and β-1,3-glucanase extracellular hydrolytic enzymes. Isolates ThJt1 and TvHt2, out of 12 isolates, produced maximum activities of chitinase and β-1,3-glucanase, respectively. In vitro production of chitinase and β-1,3-glucanase by isolates ThJt1 and TvHt2 was tested under different cultural conditions. The enzyme activities were significantly influenced by acidic pH and the optimum temperature was 30°C. The chitin and cell walls of Sclerotium rolfsii, as carbon sources, supported the maximum and significantly higher chitinase activity by both isolates. The chitinase activity of isolate ThJt1 was suppressed significantly by fructose (80.28%), followed by glucose (77.42%), whereas the β-1,3-glucanase activity of ThJt1 and both enzymes of isolate TvHt2 were significantly suppressed by fructose, followed by sucrose. Ammonium nitrate as nitrogen source supported the maximum activity of chitinase in both isolates, whereas urea was a poor nitrogen source. Production of both enzymes by the isolates was significantly influenced by the cultural conditions. Thus, the isolates ThJt1 and TvHt2 showed higher levels of chitinase and β-1,3-glucanase activities and were capable of hydrolyzing the mycelium of S. rolfsii infecting tobacco. These organisms can be used therefore for assessment of their synergism in biomass production and biocontrol efficacy and for their field biocontrol ability against S. rolfsii and Pythium aphanidermatum infecting tobacco.

  16. Induction by lipopolysaccharide of intracellular and extracellular interleukin 1 production: analysis with synthetic models.

    PubMed

    Lasfargues, A; Ledur, A; Charon, D; Szabo, L; Chaby, R

    1987-07-15

    An attempt was made to identify the molecular structures that are present in bacterial LPS and induce the production of intracellular and extracellular pools of IL 1 by peritoneal macrophages of the mouse and by human monocytes. Activities of glycolipids and carbohydrates prepared by synthesis, and structurally related to the hydrophobic (Lipid A) and to the polysaccharide (PS) regions of LPS were compared with those induced by Bordetella pertussis endotoxin and by fragments derived therefrom. Both isolated regions of this LPS (PS and Lipid A) were able to induce IL 1 synthesis by monocytes and macrophages. Among the synthetic glycolipids employed, propyl-2-deoxy-2-[(3R)-3-hydroxytetrade-canamido]-4-O-pho sph ono-6-O-tetradecanoyl-beta-D-glucopyranoside (glycolipid M9) induced IL 1 secretion more efficiently than Lipid A and LPS, whereas the amounts of intracellular IL 1 produced upon induction by these three substances were comparable. Macrophages from C3H/HeJ mice were unresponsive to Lipid A and to glycolipid M9, but produced IL 1 when incubated with PS or with a hydrophilic fragment isolated after methanolysis of the endotoxin. However, all synthetic derivatives of 3-deoxy-D-manno-2-octulosonic acid (KDO) used in this study failed to induce IL 1 production by both mouse macrophages and human monocytes. The implications of these findings for a more precise comprehension of the molecular mechanism of LPS-induced activation of macrophages, and the relations between the molecular structures required for the induction of IL 1 production vs cytostatic activity in macrophages, are discussed.

  17. Growth inhibition and microcystin degradation effects of Acinetobacter guillouiae A2 on Microcystis aeruginosa.

    PubMed

    Yi, Yang-Lei; Yu, Xiao-Bo; Zhang, Chao; Wang, Gao-Xue

    2015-01-01

    Strain A2 with algicidal activity against Microcystis aeruginosa was isolated and identified with the genus Acinetobacter on the basis of phenotypic tests and 16S rRNA gene analysis. It was identified with the species Acinetobactor guillouiae by partial rpoB sequence analysis. When 10% (v/v) of the bacterial culture was co-incubated with M. aeruginosa culture, algicidal efficiency reached 91.6% after 7 days. Supernatant of A2 culture showed similar algicidal activity, while the cell pellet had little activity, suggesting that Acinetobacter guillouiae A2 indirectly attacked M. aeruginosa cells by secreting an extracellular algicidal compound, which was characterized as heat-stable. A significant decrease in the microcystin (microcystin-LR) concentration was observed after 10% (v/v) addition of A2 culture. Transcription of three microcystin-related genes (mcyA, mcyD and mcyH) was also found to be inhibited. The algicidal compound 4-hydroxyphenethylamine was obtained by further isolation and purification using various chromatographic techniques. The EC50, 3d and EC50, 7d values of 4-hydroxyphenethylamine against M. aeruginosa were 22.5 and 10.3 mgL(-1), respectively. These results indicate that A. guillouiae strain A2 inhibits growth of M. aeruginosa and degrades microcystin production. The identified compound, 4-hydroxyphenethylamine, has potential for development as a new algicidal formulation or product.

  18. Extracellular production and affinity purification of recombinant proteins with Escherichia coli using the versatility of the maltose binding protein.

    PubMed

    Sommer, Benjamin; Friehs, Karl; Flaschel, Erwin; Reck, Michael; Stahl, Frank; Scheper, Thomas

    2009-03-25

    Recombinant proteins are essential products of today's industrial biotechnology. In this study we address two crucial factors in recombinant protein production: (i) product accessibility and (ii) product recovery. Escherichia coli, one of the most frequently used hosts for recombinant protein expression, does not inherently secrete proteins into the extracellular environment. The major drawback of this expression system is, therefore, to be found in the intracellular protein accumulation and hampered product accessibility. We have constructed a set of expression vectors in order to facilitate extracellular protein production and purification. The maltose binding protein from E. coli is used as fusion partner for several proteins of interest allowing an export to the bacteria's periplasm via both the Sec and the Tat pathway. Upon coexpression of a modified Cloacin DF13 bacteriocin release protein, the hybrid proteins are released into the culture medium. This essentially applies to a distinguished reporter molecule, the green fluorescent protein, for which an extracellular production was not reported so far. The sequestered proteins can be purified to approximate homogeneity by a simple, rapid and cheap procedure which utilizes the affinity of the maltose binding protein to alpha-1,4-glucans.

  19. Pseudomonas aeruginosa Psl polysaccharide reduces neutrophil phagocytosis and the oxidative response by limiting complement-mediated opsonization

    PubMed Central

    Mishra, Meenu; Byrd, Matthew S.; Sergeant, Susan; Azad, Abul K.; Parsek, Matthew R.; McPhail, Linda; Schlesinger, Larry S.; Wozniak, Daniel J.

    2015-01-01

    Summary Pseudomonas aeruginosa causes chronic lung infections in the airways of cystic fibrosis (CF) patients. Psl is an extracellular polysaccharide expressed by non-mucoid P. aeruginosa strains, which are believed to be initial colonizers. We hypothesized that Psl protects P. aeruginosa from host defences within the CF lung prior to their conversion to the mucoid phenotype. We discovered that serum opsonization significantly increased the production of reactive oxygen species (ROS) by neutrophils exposed to a psl-deficient mutant, compared with wild-type (WT) and Psl overexpressing strains (Psl++). Psl-deficient P. aeruginosa were internalized and killed by neutrophils and macrophages more efficiently than WT and Psl++ variants. Deposition of complement components C3, C5 and C7 was significantly higher on psl-deficient strains compared with WT and Psl++ bacteria. In an in vivo pulmonary competition assay, there was a 4.5-fold fitness advantage for WT over psl-deficient P. aeruginosa. Together, these data show that Psl inhibits efficient opsonization, resulting in reduced neutrophil ROS production, and decreased killing by phagocytes. This provides a survival advantage in vivo. Since phagocytes are critical in early recognition and control of infection, therapies aimed at Psl could improve the quality of life for patients colonized with P. aeruginosa. PMID:21951860

  20. Pseudomonas aeruginosa Psl polysaccharide reduces neutrophil phagocytosis and the oxidative response by limiting complement-mediated opsonization.

    PubMed

    Mishra, Meenu; Byrd, Matthew S; Sergeant, Susan; Azad, Abul K; Parsek, Matthew R; McPhail, Linda; Schlesinger, Larry S; Wozniak, Daniel J

    2012-01-01

    Pseudomonas aeruginosa causes chronic lung infections in the airways of cystic fibrosis (CF) patients. Psl is an extracellular polysaccharide expressed by non-mucoid P. aeruginosa strains, which are believed to be initial colonizers. We hypothesized that Psl protects P. aeruginosa from host defences within the CF lung prior to their conversion to the mucoid phenotype. We discovered that serum opsonization significantly increased the production of reactive oxygen species (ROS) by neutrophils exposed to a psl-deficient mutant, compared with wild-type (WT) and Psl overexpressing strains (Psl(++)). Psl-deficient P. aeruginosa were internalized and killed by neutrophils and macrophages more efficiently than WT and Psl(++) variants. Deposition of complement components C3, C5 and C7 was significantly higher on psl-deficient strains compared with WT and Psl(++) bacteria. In an in vivo pulmonary competition assay, there was a 4.5-fold fitness advantage for WT over psl-deficient P. aeruginosa. Together, these data show that Psl inhibits efficient opsonization, resulting in reduced neutrophil ROS production, and decreased killing by phagocytes. This provides a survival advantage in vivo. Since phagocytes are critical in early recognition and control of infection, therapies aimed at Psl could improve the quality of life for patients colonized with P. aeruginosa. © 2011 Blackwell Publishing Ltd.

  1. High-yield production of extracellular type-I cellulose by the cyanobacterium Synechococcus sp. PCC 7002

    PubMed Central

    Zhao, Chi; Li, Zhongkui; Li, Tao; Zhang, Yingjiao; Bryant, Donald A; Zhao, Jindong

    2015-01-01

    Cellulose synthase, encoded by the cesA gene, is responsible for the synthesis of cellulose in nature. We show that the cell wall of the cyanobacterium Synechococcus sp. PCC 7002 naturally contains cellulose. Cellulose occurs as a possibly laminated layer between the inner and outer membrane, as well as being an important component of the extracellular glycocalyx in this cyanobacterium. Overexpression of six genes, cmc–ccp–cesAB–cesC–cesD–bgl, from Gluconacetobacter xylinus in Synechococcus sp. PCC 7002 resulted in very high-yield production of extracellular type-I cellulose. High-level cellulose production only occurred when the native cesA gene was inactivated and when cells were grown at low salinity. This system provides a method for the production of lignin-free cellulose from sunlight and CO2 for biofuel production and other biotechnological applications. PMID:27462405

  2. High-yield production of extracellular type-I cellulose by the cyanobacterium Synechococcus sp. PCC 7002.

    PubMed

    Zhao, Chi; Li, Zhongkui; Li, Tao; Zhang, Yingjiao; Bryant, Donald A; Zhao, Jindong

    2015-01-01

    Cellulose synthase, encoded by the cesA gene, is responsible for the synthesis of cellulose in nature. We show that the cell wall of the cyanobacterium Synechococcus sp. PCC 7002 naturally contains cellulose. Cellulose occurs as a possibly laminated layer between the inner and outer membrane, as well as being an important component of the extracellular glycocalyx in this cyanobacterium. Overexpression of six genes, cmc-ccp-cesAB-cesC-cesD-bgl, from Gluconacetobacter xylinus in Synechococcus sp. PCC 7002 resulted in very high-yield production of extracellular type-I cellulose. High-level cellulose production only occurred when the native cesA gene was inactivated and when cells were grown at low salinity. This system provides a method for the production of lignin-free cellulose from sunlight and CO2 for biofuel production and other biotechnological applications.

  3. Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium.

    PubMed Central

    Kersten, P J; Kirk, T K

    1987-01-01

    The importance of extracellular H2O2 in lignin degradation has become increasingly apparent with the recent discovery of H2O2-requiring ligninases produced by white-rot fungi. Here we describe a new H2O2-producing activity of Phanerochaete chrysosporium that involves extracellular oxidases able to use simple aldehyde, alpha-hydroxycarbonyl, or alpha-dicarbonyl compounds as substrates. The activity is expressed during secondary metabolism, when the ligninases are also expressed. Analytical isoelectric focusing of the extracellular proteins, followed by activity staining, indicated that minor proteins with broad substrate specificities are responsible for the oxidase activity. Two of the oxidase substrates, glyoxal and methylglyoxal, were also identified, as their quinoxaline derivatives, in the culture fluid as secondary metabolites. The significance of these findings is discussed with respect to lignin degradation and other proposed systems for H2O2 production in P. chrysosporium. Images PMID:3553159

  4. Off-loading of cyclic hydrostatic pressure promotes production of extracellular matrix by chondrocytes.

    PubMed

    Tatsumura, Masaki; Sakane, Masataka; Ochiai, Naoyuki; Mizuno, Shuichi

    2013-01-01

    The addition of cyclic hydrostatic pressure (cHP) to cell culture medium has been used to promote extracellular matrix (ECM) production by articular chondrocytes. Though a combination of cHP followed by atmospheric pressure (AP) has been examined previously, the rationale of such a combination was unclear. We compared the effects of loading once versus twice (combinations of cHP followed by AP) regarding both gene expression and biochemical and histological phenotypes of chondrocytes. Isolated bovine articular chondrocytes were embedded in a collagen gel and incubated for 14 days under conditions combining cHP and AP. The gene expression of aggrecan core protein and collagen type II were upregulated in response to cHP, and those levels were maintained for at least 4 days after cHP treatment. Accumulation of cartilage-specific sulfated glycosaminoglycans following cHP for 7 days and subsequent AP for 7 days was significantly greater than that of the AP control (p < 0.05). Therefore, incubation at AP after loading with cHP was found to beneficially affect ECM accumulation. Manipulating algorithms of cHP combined with AP will be useful in producing autologous chondrocyte-based cell constructs for implantation. © 2014 S. Karger AG, Basel.

  5. Virulence determinants and production of extracellular enzymes in Enterococcus spp. from surface water sources.

    PubMed

    Molale, Lesego Gertrude; Bezuidenhout, Cornelius Carlos

    2016-01-01

    Virulence factors in Enterococcus may be indicative of potential pathogenicity. The aim of this study was to determine the relationship between the presence of clinically relevant virulence genes, in Enterococcus spp. from environmental water, and their in vitro expression. One hundred and twenty-four Enterococcus isolates (seven species), from five surface water systems in the North West Province, South Africa, were screened for the presence of asa1, cylA, esp, gelE and hyl using polymerase chain reaction. The expression of cylA, hyl and gelE was determined by phenotypic assessments. Sixty-five percent of the isolates were positive for one virulence gene and 13% for two or more. Most frequently detected genes were gelE (32%) and cylA (28%). Enterococcal surface protein was absent in all isolates screened. The presence of virulence genes was correlated with their extracellular enzyme production. The results show that a large percentage of these environmental Enterococcus spp. possess virulence factors that could be expressed in vitro. This is a cause for concern and could have implications for individuals using this water for recreational and cultural purposes. Further investigation is required into the sources of these potential pathogenic Enterococcus isolates and measures to minimize their presence in water sources.

  6. Lipolytic Potential of Aspergillus japonicus LAB01: Production, Partial Purification, and Characterisation of an Extracellular Lipase

    PubMed Central

    Souza, Lívia Tereza Andrade; Oliveira, Jamil S.; dos Santos, Vera L.; Regis, Wiliam C. B.; Santoro, Marcelo M.; Resende, Rodrigo R.

    2014-01-01

    Lipolytic potential of Aspergillus japonicus LAB01 was investigated by describing the catalytic properties and stability of a secreted extracellular lipase. Enzyme production was considered high under room temperature after 4 days using sunflower oil and a combination of casein with sodium nitrate. Lipase was partially purified by 3.9-fold, resulting in a 44.2% yield using ammonium sulphate precipitation (60%) quantified with Superose 12 HR gel filtration chromatography. The activity of the enzyme was maximised at pH 8.5, and the enzyme demonstrated stability under alkaline conditions. The optimum temperature was found to be 45°C, and the enzyme was stable for up to 100 minutes, with more than 80% of initial activity remaining after incubation at this temperature. Partially purified enzyme showed reasonable stability with triton X-100 and was activated in the presence of organic solvents (toluene, hexane, and methanol). Among the tested ions, only Cu2+, Ni2+, and Al3+ showed inhibitory effects. Substrate specificity of the lipase was higher for C14 among various p-nitrophenyl esters assayed. The KM and V max values of the purified enzyme for p-nitrophenyl palmitate were 0.13 mM and 12.58 umol/(L·min), respectively. These features render a novel biocatalyst for industrial applications. PMID:25530954

  7. Enhanced production and partial characterization of an extracellular polysaccharide from newly isolated Azotobacter sp. SSB81.

    PubMed

    Gauri, Samiran Sona; Mandal, Santi M; Mondal, Keshab C; Dey, Satyahari; Pati, Bikas R

    2009-09-01

    A strain was selected by its highest extracellular polysaccharide (EPS) production ability compare to other isolates from the same rhizospheric soil. The selected strain was identified by 16S rDNA sequencing and designated as SSB81. Phylogenetic analysis of the gene sequence showed its close relatedness with Azotobacter vinelandii and Azotobacter salinestris. Maximum EPS (2.52 g l(-1)) was recovered when the basal medium was supplemented with glucose (2.0%), riboflavin (1 mg l(-1)) and casamino acid (0.2%). The EPS showed a stable viscosity level at acidic pH (3.0-6.5) and the pyrolysis temperature was found to be at 116.73 degrees C with an enthalpy (DeltaH) of 1330.72 J g(-1). MALDI TOF mass spectrometric result suggests that polymer contained Hex(5)Pent(3) as oligomeric building subunit. SEM studies revealed that the polymer had a porous structure with small pore size distribution indicating the compactness of the polymer. This novel EPS may find possible application as a polymer for environmental bioremediation and biotechnological processes.

  8. Metalloprotease vsm is the major determinant of toxicity for extracellular products of Vibrio splendidus.

    PubMed

    Binesse, Johan; Delsert, Claude; Saulnier, Denis; Champomier-Vergès, Marie-Christine; Zagorec, Monique; Munier-Lehmann, Hélène; Mazel, Didier; Le Roux, Frédérique

    2008-12-01

    Genomic data combined with reverse genetic approaches have contributed to the characterization of major virulence factors of Vibrio species; however, these studies have targeted primarily human pathogens. Here, we investigate virulence factors in the oyster pathogen Vibrio splendidus LGP32 and show that toxicity is correlated to the presence of a metalloprotease and its corresponding vsm gene. Comparative genomics showed that an avirulent strain closely related to LGP32 lacked the metalloprotease. The toxicity of LGP32 metalloprotease was confirmed by exposing mollusk and mouse fibroblastic cell lines to extracellular products (ECPs) of the wild type (wt) and a vsm deletion mutant (Deltavsm mutant). The ECPs of the wt induced a strong cytopathic effect whose severity was cell type dependent, while those of the Deltavsm mutant were much less toxic, and exposure to purified protein demonstrated the direct toxicity of the Vsm metalloprotease. Finally, to investigate Vsm molecular targets, a proteomic analysis of the ECPs of both LGP32 and the Deltavsm mutant was performed, revealing a number of differentially expressed and/or processed proteins. One of these, the VSA1062 metalloprotease, was found to have significant identity to the immune inhibitor A precursor, a virulence factor of Bacillus thuringiensis. Deletion mutants corresponding to several of the major proteins were constructed by allelic exchange, and the ECPs of these mutants proved to be toxic to both cell cultures and animals. Taken together, these data demonstrate that Vsm is the major toxicity factor in the ECPs of V. splendidus.

  9. Fractionation and characterization of the immunosuppressive substance in crude extracellular products released by Streptococcus intermedius.

    PubMed Central

    Arala-Chaves, M P; Porto, M T; Arnaud, P; Saraiva, M J; Geada, H; Patrick, C C; Fudenberg, H H

    1981-01-01

    The noncytotoxic immunosuppressive substance detected in crude extracellular products of Streptococcus intermedius (CEP-SI) was fractionated by two steps of preparative isoelectric focusing in sucrose gradients using ampholytes of pH range from 3.5 to 6 and 4 to 5, respectively. The in vitro and in vivo suppressor effects of the most highly purified fraction of CEP-Si, designated fraction 3' (F3'EP-Si), corresponded well with those of the original CEP-Si. F3'EP-Si was sensitive to the effects of alpha, gamma, and delta chymotrypsin, trypsin, and heating. It contained approximately 1% of the total amount of protein found in the original CEP-Si, corresponding to a single band on analytical isoelectric focusing, stainable by Coomassie Blue and of isoelectric point of 4.25. The absorption spectrum of F3'EP-Si had a maximum at 260 nm but its biological activity was resistant to deoxyribonuclease and ribonuclease A and it did not contain material stainable by methylene blue. It was also resistant to neuraminidase and did not contain material stainable by periodic acid schiff. We conclude that the substance responsible for the suppressor activity of CEP-Si is a protein of molecular weight approximately 90,000, which adheres to Sephadex of cellulose acetate and forms complexes with other, nonactive constituents of CEP-Si. Images PMID:6454698

  10. Production, purification and characterization of an extracellular alpha-amylase enzyme isolated from Aspergillus flavus.

    PubMed

    Abou-Zeid, A M

    1997-01-01

    Filamentous fungi isolated from cereals were screened for their ability to produce alpha-amylase (1,4-alpha-glucan glucanohydrolase, EC 3.2.1.1). A selected strain identified as Aspergillus flavus showed high enzymatic activity. A single extracellular alpha-amylase was purified to homogeneity by a starch adsorption method. The molecular weight (M(r)) of the A. flavus alpha-amylase was approximately 75,000 +/- 3,000 by polyacrylamide gel electrophoresis (PAGE) and that of the subunit was approximately 75,000 +/- 3000 SDS-PAGE. The optimal activity of the purified enzyme was achieved at pH 7.0 and 30 degrees C. K+ ions increased the alpha-amylase activity, but Mg2+ did not greatly affect enzyme activity. Mn2+, Zn2+, Cu2+ and Fe3+ ions strongly inhibited the enzyme activity. The products of hydrolysis of native starch by the A. flavus enzyme were mainly glucose as well as unidentified oligosaccharides.

  11. Slime production a virulence marker in Pseudomonas aeruginosa strains isolated from clinical and environmental specimens: a comparative study of two methods.

    PubMed

    Prasad, S Vishnu; Ballal, Mamatha; Shivananda, P G

    2009-01-01

    Detection of slime in Pseudomonas aeruginosa can be useful in understanding the virulence of this organism. Here, comparative studies of two phenotypic methods using the tube method and the spectrophotometric method for slime production from 100 clinically and 21 environmentally significant isolates of P. aeruginosa were performed. A total of 68 isolates were positive by either of the tests whereas only 34 were positive by both the tests. The tube method detected slime significantly in more number of isolates than the spectrophotometric method. The tube test was found to be superior to the spectrophotometric method in ease of performance, interpretation and sensitivity. Among the clinical isolates, systemic isolates produce less slime compared to wound, respiratory and urinary isolates. Isolates from the hospital environment produced more slime indicating that this virulence marker helps the organism to survive for longer periods and cause nosocomial infections.

  12. Pseudomonas aeruginosa OspR is an oxidative stress sensing regulator that affects pigment production, antibiotic resistance and dissemination during infection.

    PubMed

    Lan, Lefu; Murray, Thomas S; Kazmierczak, Barbara I; He, Chuan

    2010-01-01

    Oxidative stress is one of the main challenges bacteria must cope with during infection. Here, we identify a new oxidative stress sensing and response ospR (oxidative stress response and pigment production Regulator) gene in Pseudomonas aeruginosa. Deletion of ospR leads to a significant induction in H(2)O(2) resistance. This effect is mediated by de-repression of PA2826, which lies immediately upstream of ospR and encodes a glutathione peroxidase. Constitutive expression of ospR alters pigment production and beta-lactam resistance in P. aeruginosa via a PA2826-independent manner. We further discovered that OspR regulates additional genes involved in quorum sensing and tyrosine metabolism. These regulatory effects are redox-mediated as addition of H(2)O(2) or cumene hydroperoxide leads to the dissociation of OspR from promoter DNA. A conserved Cys residue, Cys-24, plays the major role of oxidative stress sensing in OspR. The serine substitution mutant of Cys-24 is less susceptible to oxidation in vitro and exhibits altered pigmentation and beta-lactam resistance. Lastly, we show that an ospR null mutant strain displays a greater capacity for dissemination than wild-type MPAO1 strain in a murine model of acute pneumonia. Thus, OspR is a global regulator that senses oxidative stress and regulates multiple pathways to enhance the survival of P. aeruginosa inside host.

  13. Pseudomonas aeruginosa OspR is an oxidative stress sensing regulator that affects pigment production, antibiotic resistance and dissemination during infection

    PubMed Central

    Lan, Lefu; Murray, Thomas S.; Kazmierczak, Barbara I.; He, Chuan

    2010-01-01

    Summary Oxidative stress is one of the main challenges bacteria must cope with during infection. Here, we identify a new oxidative stress sensing and response ospR (oxidative stress response and pigment production Regulator) gene in Pseudomonas aeruginosa. Deletion of ospR leads to a significant induction in H2O2 resistance. This effect is mediated by de-repression of PA2826, which lies immediately upstream of ospR and encodes a glutathione peroxidase. Constitutive expression of ospR alters pigment production and β-lactam resistance in P. aeruginosa via a PA2826-independent manner. We further discovered that OspR regulates additional genes involved in quorum sensing and tyrosine metabolism. These regulatory effects are redox-mediated as addition of H2O2 or cumene hydroperoxide leads to the dissociation of OspR from promoter DNA. A conserved Cys residue, Cys-24, plays the major role of oxidative stress sensing in OspR. The serine substitution mutant of Cys-24 is less susceptible to oxidation in vitro and exhibits altered pigmentation and β-lactam resistance. Lastly, we show that an ospR null mutant strain displays a greater capacity for dissemination than wild-type MPAO1 strain in a murine model of acute pneumonia. Thus, OspR is a global regulator that senses oxidative stress and regulates multiple pathways to enhance the survival of P. aeruginosa inside host. PMID:19943895

  14. Peptidylarginine Deiminase Inhibitor Suppresses Neutrophil Extracellular Trap Formation and MPO-ANCA Production

    PubMed Central

    Kusunoki, Yoshihiro; Nakazawa, Daigo; Shida, Haruki; Hattanda, Fumihiko; Miyoshi, Arina; Masuda, Sakiko; Nishio, Saori; Tomaru, Utano; Atsumi, Tatsuya; Ishizu, Akihiro

    2016-01-01

    Myeloperoxidase-antineutrophil cytoplasmic antibody (MPO-ANCA)-associated vasculitis is a systemic small-vessel vasculitis, wherein, MPO-ANCA plays a critical role in the pathogenesis. Neutrophil extracellular traps (NETs) released from activated neutrophils are composed of extracellular web-like DNA and antimicrobial proteins, including MPO. Diverse stimuli, such as phorbol myristate acetate (PMA) and ligands of toll-like receptors (TLR), induce NETs. Although TLR-mediated NET formation can occur with preservation of living neutrophilic functions (called vital NETosis), PMA-stimulated neutrophils undergo cell death with NET formation (called suicidal NETosis). In the process of suicidal NETosis, histones are citrullinated by peptidylarginine deiminase 4 (PAD4). Since this step is necessary for decondensation of DNA, PAD4 plays a pivotal role in suicidal NETosis. Although NETs are essential for elimination of microorganisms, excessive formation of NETs has been suggested to be implicated in MPO-ANCA production. This study aimed to determine if pan-PAD inhibitors could suppress MPO-ANCA production in vivo. At first, NETs were induced in peripheral blood neutrophils derived from healthy donors (1 × 106/ml) by stimulation with 20 nM PMA with or without 20 μM propylthiouracil (PTU), an anti-thyroid drug. We then determined that the in vitro NET formation was inhibited completely by 200 μM Cl-amidine, a pan-PAD inhibitor. Next, we established mouse models with MPO-ANCA production. BALB/c mice were given intraperitoneal (i.p.) injection of PMA (50 ng at days 0 and 7) and oral PTU (2.5 mg/day) for 2 weeks. These mice were divided into two groups; the first group was given daily i.p. injection of PBS (200 μl/day) (n = 13) and the other group with daily i.p. injection of Cl-amidine (0.3 mg/200 μl PBS/day) (n = 7). Two weeks later, citrullination as an indicator of NET formation in the peritoneum and serum MPO-ANCA titer was compared

  15. Beta-lactamases production and antimicrobial resistance ratio of Pseudomonas aeruginosa from hospitalized patients in Kahramanmaras, Turkey.

    PubMed

    Toroglu, Sevil; Avan, Hatice; Keskin, Dilek

    2013-07-01

    Sixteen isolates of P. aeruginosa were collected from different hospitals in Kahramanmaras among 2006-2007 and tested for the level of resistance to the widely used antipseudomonal antibiotics and used in local midicinal and veterinary practice. The aim of this study was to determine the antibiotic resistance to P. aeruginosa strains isolated in Microbiology Laboratory of different hospitals in Kahramanmaras between 2006-2007. These strains were mostly isolated from urine and few from tracheolaringeal aspirate, tracheal secretion, mucus, bronchoalveolar lavage. The antibiotic resistance rates were as follows: Penicillin (PEN) 100%, Amoxicillin (AMO) 94%, Cefazolin (CEF) 87.5%, Cefoxitin (CEFX) 81%, Nitrofrantoin (NIT) 75%, Chlorampenicol (CHL) 62.5%, Tetracycline (TET) 56%, Ceftriaxone (CEFT) 44%, Oflaxain (OFL) and Gentamycin (GEN) 37.5%, Meropenem (MER) and Streptomycine (STR) 31%. Among 16 isolates of P. aeruginosa from wounds showed 8 (50%) beta-lactamase activity, whereas 8 isolates of P. aeruginosa from urine showed no beta-lactamase activity. All P. aeruginosa strains 16 (100%) isolates showed multiple antibiotic resistance towards three to eleven antibiotics.

  16. Effects of iron and phytic acid on production of extracellular radicals by Enterococcus faecalis.

    PubMed

    Moore, Danny R; Kotake, Yashige; Huycke, Mark M

    2004-12-01

    Enterococcus faecalis is a human intestinal commensal that produces extracellular superoxide, hydrogen peroxide, and hydroxyl radical while colonizing the intestinal tract. To determine whether dietary factors implicated in colorectal cancer affect oxidant production by E. faecalis, radicals were measured in rats colonized with this microorganism while on diets supplemented with iron or phytic acid. Hydroxyl radical activity was measured by assaying for aromatic hydroxylation products of D-phenylalanine using reverse-phase high-performance liquid chromatography and electrochemical detection. In vitro, as expected, iron enhanced, and phytic acid decreased, hydroxyl radical formation by E. faecalis. For rats colonized with E. faecalis given supplemental dietary iron (740 mg elemental iron as ferric phosphate per kg diet) or phytic acid (1.2% w/w), no differences were found in concentrations of urinary ortho- or meta- isomers of D-phenylalanine compared to rats on a basal diet. Aqueous radicals in colonic contents were further assessed ex vivo by electron spin resonance using 5,5-dimethyl-1-pyrroline-N-oxide as a spin trap. Mixtures of thiyl (sulfur-centered) and oxygen-centered radicals were detected across all diets. In vitro, similar spectra were observed when E. faecalis was incubated with hydrogen sulfide, air-oxidized cysteine, or an alkylsulfide, as typical sulfur-containing compounds that might occur in colonic contents. In conclusion, intestinal colonization with E. faecalis in a rat model generates both thiyl and oxygen-centered radicals in colonic contents. Radical formation, however, was not significantly altered by short-term dietary supplementation with iron or phytic acid.

  17. Extracellular Microvesicle Production by Human Eosinophils Activated by “Inflammatory” Stimuli

    PubMed Central

    Akuthota, Praveen; Carmo, Lívia A. S.; Bonjour, Kennedy; Murphy, Ryann O.; Silva, Thiago P.; Gamalier, Juliana P.; Capron, Kelsey L.; Tigges, John; Toxavidis, Vasilis; Camacho, Virginia; Ghiran, Ionita; Ueki, Shigeharu; Weller, Peter F.; Melo, Rossana C. N.

    2016-01-01

    A key function of human eosinophils is to secrete cytokines, chemokines and cationic proteins, trafficking, and releasing these mediators for roles in inflammation and other immune responses. Eosinophil activation leads to secretion of pre-synthesized granule-stored mediators through different mechanisms, but the ability of eosinophils to secrete extracellular vesicles (EVs), very small vesicles with preserved membrane topology, is still poorly understood. In the present work, we sought to identify and characterize EVs released from human eosinophils during different conditions: after a culturing period or after isolation and stimulation with inflammatory stimuli, which are known to induce eosinophil activation and secretion: CCL11 (eotaxin-1) and tumor necrosis factor alpha (TNF-α). EV production was investigated by nanoscale flow cytometry, conventional transmission electron microscopy (TEM) and pre-embedding immunonanogold EM. The tetraspanins CD63 and CD9 were used as EV biomarkers for both flow cytometry and ultrastructural immunolabeling. Nanoscale flow cytometry showed that human eosinophils produce EVs in culture and that a population of EVs expressed detectable CD9, while CD63 was not consistently detected. When eosinophils were stimulated immediately after isolation and analyzed by TEM, EVs were clearly identified as microvesicles (MVs) outwardly budding off the plasma membrane. Both CCL11 and TNF-α induced significant increases of MVs compared to unstimulated cells. TNF-α induced amplified release of MVs more than CCL11. Eosinophil MV diameters varied from 20 to 1000 nm. Immunonanogold EM revealed clear immunolabeling for CD63 and CD9 on eosinophil MVs, although not all MVs were labeled. Altogether, we identified, for the first time, that human eosinophils secrete MVs and that this production increases in response to inflammatory stimuli. This is important to understand the complex secretory activities of eosinophils underlying immune responses. The

  18. Anti-quorum Sensing and Anti-biofilm Activity of Delftia tsuruhatensis Extract by Attenuating the Quorum Sensing-Controlled Virulence Factor Production in Pseudomonas aeruginosa.

    PubMed

    Singh, Vijay K; Mishra, Avinash; Jha, Bhavanath

    2017-01-01

    Multidrug-resistance bacteria commonly use cell-to-cell communication that leads to biofilm formation as one of the mechanisms for developing resistance. Quorum sensing inhibition (QSI) is an effective approach for the prevention of biofilm formation. A Gram-negative bacterium, Delftia tsuruhatensis SJ01, was isolated from the rhizosphere of a species of sedge (Cyperus laevigatus) grown along the coastal-saline area. The isolate SJ01 culture and bacterial crude extract showed QSI activity in the biosensor plate containing the reference strain Chromobacterium violaceum CV026. A decrease in the violacein production of approximately 98% was detected with the reference strain C. violaceum CV026. The bacterial extract (strain SJ01) exhibited anti-quorum sensing activity and inhibited the biofilm formation of clinical isolates wild-type Pseudomonas aeruginosa PAO1 and P. aeruginosa PAH. A non-toxic effect of the bacterial extract (SJ01) was detected on the cell growth of the reference strains as P. aeruginosa viable cells were present within the biofilm. It is hypothesized that the extract (SJ01) may change the topography of the biofilm and thus prevent bacterial adherence on the biofilm surface. The extract also inhibits the motility, virulence factors (pyocyanin and rhamnolipid) and activity (elastase and protease) in P. aeruginosa treated with SJ01 extract. The potential active compound present was identified as 1,2-benzenedicarboxylic acid, diisooctyl ester. Microarray and transcript expression analysis unveiled differential expression of quorum sensing regulatory genes. The key regulatory genes, LasI, LasR, RhlI, and RhlR were down-regulated in the P. aeruginosa analyzed by quantitative RT-PCR. A hypothetical model was generated of the transcriptional regulatory mechanism inferred in P. aeruginosa for quorum sensing, which will provide useful insight to develop preventive strategies against the biofilm formation. The potential active compound identified, 1

  19. Anti-quorum Sensing and Anti-biofilm Activity of Delftia tsuruhatensis Extract by Attenuating the Quorum Sensing-Controlled Virulence Factor Production in Pseudomonas aeruginosa

    PubMed Central

    Singh, Vijay K.; Mishra, Avinash; Jha, Bhavanath

    2017-01-01

    Multidrug-resistance bacteria commonly use cell-to-cell communication that leads to biofilm formation as one of the mechanisms for developing resistance. Quorum sensing inhibition (QSI) is an effective approach for the prevention of biofilm formation. A Gram-negative bacterium, Delftia tsuruhatensis SJ01, was isolated from the rhizosphere of a species of sedge (Cyperus laevigatus) grown along the coastal-saline area. The isolate SJ01 culture and bacterial crude extract showed QSI activity in the biosensor plate containing the reference strain Chromobacterium violaceum CV026. A decrease in the violacein production of approximately 98% was detected with the reference strain C. violaceum CV026. The bacterial extract (strain SJ01) exhibited anti-quorum sensing activity and inhibited the biofilm formation of clinical isolates wild-type Pseudomonas aeruginosa PAO1 and P. aeruginosa PAH. A non-toxic effect of the bacterial extract (SJ01) was detected on the cell growth of the reference strains as P. aeruginosa viable cells were present within the biofilm. It is hypothesized that the extract (SJ01) may change the topography of the biofilm and thus prevent bacterial adherence on the biofilm surface. The extract also inhibits the motility, virulence factors (pyocyanin and rhamnolipid) and activity (elastase and protease) in P. aeruginosa treated with SJ01 extract. The potential active compound present was identified as 1,2-benzenedicarboxylic acid, diisooctyl ester. Microarray and transcript expression analysis unveiled differential expression of quorum sensing regulatory genes. The key regulatory genes, LasI, LasR, RhlI, and RhlR were down-regulated in the P. aeruginosa analyzed by quantitative RT-PCR. A hypothetical model was generated of the transcriptional regulatory mechanism inferred in P. aeruginosa for quorum sensing, which will provide useful insight to develop preventive strategies against the biofilm formation. The potential active compound identified, 1

  20. [Pneumonia due to Pseudomonas aeruginosa].

    PubMed

    Vallés, Jordi; Mariscal, Dolors

    2005-12-01

    Pseudomonas aeruginosa is one of the leading causes of Gram-negative nosocomial pneumonia. It is the most common cause of ventilator-associated pneumonia and carries the highest mortality among hospital-acquired infections. P. aeruginosa produces a large number of toxins and surface components that make it especially virulent compared with other microorganisms. These include pili, flagella, membrane bound lipopolysaccharide, and secreted products such as exotoxins A, S and U, elastase, alkaline protease, cytotoxins and phospholipases. The most common mechanism of infection in mechanically ventilated patients is through aspiration of upper respiratory tract secretions previously colonized in the process of routine nursing care or via contaminated hands of hospital personnel. Intravenous therapy with an antipseudomonal regimen should be started immediately when P. aeruginosa pneumonia is suspected or confirmed. Empiric therapy with drugs active against P. aeruginosa should be started, especially in patients who have received previous antibiotics or present late-onset pneumonia.

  1. The impact of anaerobiosis on strain-dependent phenotypic variations in Pseudomonas aeruginosa.

    PubMed

    Fang, Hao; Toyofuku, Masanori; Kiyokawa, Tatsunori; Ichihashi, Akihiro; Tateda, Kazuhiro; Nomura, Nobuhiko

    2013-01-01

    Bacteria participate in social behaviors by communicating with each other and forming surface-associated biofilms. In Pseudomonas aeruginosa, such social behaviors are affected greatly by the environment. Although P. aeruginosa survive under anaerobic conditions, previous studies indicate that quorum sensing is attenuated under such conditions, and that this leads to decreased activity of extracellular virulence factors as compared to aerobic conditions. Hence it has come into question whether P. aeruginosa are virulent under anaerobic conditions. Here, we compared various phenotypes between PAO1 and clinical isolates under anaerobic conditions. Our data revealed that when grown anaerobically, growth and cell morphology greatly differed among the strains. One of the clinical isolates produced comparable amounts of quorum-sensing signaling molecules and extracellular virulence factors under aerobic and anaerobic conditions, while the other strains showed low production under anaerobic conditions. Biofilm formation also exhibited strain-dependent variations, suggesting that there are several mechanisms that lead to biofilm formation under anaerobic conditions. Taken together, these results indicate that the impact of anaerobiosis on the social interactions of P. aeruginosa is strain dependent, and suggest that multiple regulatory mechanisms are involved in the regulation of quorum sensing and biofilm formation under anaerobic conditions.

  2. Pretreatment optimization of the biomass of Microcystis aeruginosa for efficient bioethanol production.

    PubMed

    Khan, Muhammad Imran; Lee, Moon Geon; Shin, Jin Hyuk; Kim, Jong Deog

    2017-12-01

    Microalgae are considered to be the future promising sources of biofuels and bio products. The algal carbohydrates can be fermented to bioethanol after pretreatment process. Efficient pretreatment of the biomass is one of the major requirements for commercialization of the algal based biofuels. In present study the microalga, M. aeruginsa was used for pretreatment optimization and bioethanol production. Treatment of algal biomass with CaO before acid and/or enzymatic hydrolysis enhanced the degradation of algal cells. Monomeric sugars yield was increased more than twice when biomass was pretreated with CaO. Similarly, an increase was noted in the amount of fermentable sugars when biomass was subjected to invertase saccharification after acid or lysozyme pretreatment. Highest yield of fermentable sugars (16 mM/ml) in the centrifuged algal juice was obtained. 4 Different microorganisms' species were used individually and in combination for converting centrifuged algal juice to bioethanol. Comparatively higher yield of bioethanol (60 mM/ml) was obtained when the fermenter microorganisms were used in combination. The results demonstrated that M. arginase biomass can be efficiently pretreated to get higher yield of fermentable sugars for enhanced yield of bioethanol production.

  3. Extracellular expression of natural cytosolic arginine deiminase from Pseudomonas putida and its application in the production of L-citrulline.

    PubMed

    Su, Lingqia; Ma, Yue; Wu, Jing

    2015-11-01

    The Pseudomonas putida arginine deiminase (ADI), a natural cytosolic enzyme, and Thermobifida fusca cutinase were co-expressed in Escherichia coli, and the optimized cutinase gene was used for increasing its expression level. 90.9% of the total ADI protein was released into culture medium probably through a nonspecific leaking mechanism caused by the co-expressed cutinase. The enzymatic properties of the extracellular ADI were found to be similar to those of ADI prepared by conventional cytosolic expression. Extracellular production of ADI was further scaled up in a 3-L fermentor. When the protein expression was induced by IPTG (25.0μM) and lactose (0.1gL(-1)h(-1)) at 30°C, the extracellular ADI activity reached 101.2UmL(-1), which represented the highest ADI production ever reported. In addition, the enzymatic synthesis of l-citrulline was performed using the extracellularly expressed ADI, and the conversion rate reached 100% with high substrate concentration at 650gL(-1).

  4. Complex marine natural products as potential epigenetic and production regulators of antibiotics from a marine Pseudomonas aeruginosa

    USDA-ARS?s Scientific Manuscript database

    Marine microbes are capable of producing secondary metabolites for defense and competition. Factors exerting an impact on secondary metabolite production of microbial communities included bioactive natural products and co-culturing. These external influences may have practical applications such as ...

  5. Production of rhamnolipids by Pseudomonas aeruginosa is inhibited by H2S but resumes in a co-culture with P. stutzeri: applications for microbial enhanced oil recovery.

    PubMed

    Zhao, Feng; Ma, Fang; Shi, Rongjiu; Zhang, Jie; Han, Siqin; Zhang, Ying

    2015-09-01

    Sulfate-reducing bacteria and H2S exist widely in oil production systems, and in situ production of rhamnolipids is promising for microbial enhanced oil recovery (MEOR). However, information of the effect of S(2-) on rhamnolipids production is scarce. Two facultative anaerobic rhamnolipids-producing bacterial strains, Pseudomonas aeruginosa SG and WJ-1, were used. Above 10 mg S(2-)/l, both cell growth and rhamnolipids production were inhibited. A large inoculum (9%, v/v) failed to completely relieve the inhibitory effect of 10 mg S(2-)/l. Below 30 mg S(2-)/l, both strains resumed rhamnolipid production through co-culturing with the denitrifying and sulphide-removing strain Pseudomonas stutzeri DQ1. H2S has a direct but reversible inhibitory effect on rhamnolipids production. Control of H2S in oilfields is indispensable to MEOR, and the co-culture method is effective in restoring rhamnolipid production in presence of S(2-).

  6. Inquisition of Microcystis aeruginosa and Synechocystis nanowires: characterization and modelling.

    PubMed

    Sure, Sandeep; Torriero, Angel A J; Gaur, Aditya; Li, Lu Hua; Chen, Ying; Tripathi, Chandrakant; Adholeya, Alok; Ackland, M Leigh; Kochar, Mandira

    2015-11-01

    Identification of extracellular conductive pilus-like structures (PLS) i.e. microbial nanowires has spurred great interest among scientists due to their potential applications in the fields of biogeochemistry, bioelectronics, bioremediation etc. Using conductive atomic force microscopy, we identified microbial nanowires in Microcystis aeruginosa PCC 7806 which is an aerobic, photosynthetic microorganism. We also confirmed the earlier finding that Synechocystis sp. PCC 6803 produces microbial nanowires. In contrast to the use of highly instrumented continuous flow reactors for Synechocystis reported earlier, we identified simple and optimum culture conditions which allow increased production of nanowires in both test cyanobacteria. Production of these nanowires in Synechocystis and Microcystis were found to be sensitive to the availability of carbon source and light intensity. These structures seem to be proteinaceous in nature and their diameter was found to be 4.5-7 and 8.5-11 nm in Synechocystis and M. aeruginosa, respectively. Characterization of Synechocystis nanowires by transmission electron microscopy and biochemical techniques confirmed that they are type IV pili (TFP) while nanowires in M. aeruginosa were found to be similar to an unnamed protein (GenBank : CAO90693.1). Modelling studies of the Synechocystis TFP subunit i.e. PilA1 indicated that strategically placed aromatic amino acids may be involved in electron transfer through these nanowires. This study identifies PLS from Microcystis which can act as nanowires and supports the earlier hypothesis that microbial nanowires are widespread in nature and play diverse roles.

  7. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation.

    PubMed

    Laverty, Garry; Gorman, Sean P; Gilmore, Brendan F

    2014-07-18

    Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl), pellicle Formation (Pel) and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides) that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation.

  8. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation

    PubMed Central

    Laverty, Garry; Gorman, Sean P.; Gilmore, Brendan F.

    2014-01-01

    Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl), pellicle Formation (Pel) and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides) that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation. PMID:25438014

  9. The exit strategy: Pharmacological modulation of extracellular matrix production and deposition for better aqueous humor drainage.

    PubMed

    Pattabiraman, Padmanabhan P; Toris, Carol B

    2016-09-15

    Primary open angle glaucoma (POAG) is an optic neuropathy and an irreversible blinding disease. The etiology of glaucoma is not known but numerous risk factors are associated with this disease including aging, elevated intraocular pressure (IOP), race, myopia, family history and use of steroids. In POAG, the resistance to the aqueous humor drainage is increased leading to elevated IOP. Lowering the resistance and ultimately the IOP has been the only way to slow disease progression and prevent vision loss. The primary drainage pathway comprising of the trabecular meshwork (TM) is made up of relatively large porous beams surrounded by extracellular matrix (ECM). Its juxtacanalicular tissue (JCT) or the cribriform meshwork is made up of cells embedded in dense ECM. The JCT is considered to offer the major resistance to the aqueous humor outflow. This layer is adjacent to the endothelial cells forming Schlemm's canal, which provides approximately 10% of the outflow resistance. The ECM in the TM and the JCT undergoes continual remodeling to maintain normal resistance to aqueous humor outflow. It is believed that the TM is a major contributor of ECM proteins and evidence points towards increased ECM deposition in the outflow pathway in POAG. It is not clear how and from where the ECM components emerge to hinder the normal aqueous humor drainage. This review focuses on the involvement of the ECM in ocular hypertension and glaucoma and the mechanisms by which various ocular hypotensive drugs, both current and emerging, target ECM production, remodeling, and deposition. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Effects of ranibizumab on the extracellular matrix production by human Tenon's fibroblast.

    PubMed

    Md Noh, Siti Munirah; Sheikh Abdul Kadir, Siti H; Bannur, Zakaria M; Froemming, Gabriele Anisah; Abdul Hamid Hasani, Narimah; Mohd Nawawi, Hapizah; Crowston, Jonathan G; Vasudevan, Sushil

    2014-10-01

    Anti-Vascular Endothelial Growth Factors (Anti-VEGF) agents have received recent interest as potential anti-fibrotic agents for their concurrent use with trabeculectomy. Preliminary cohort studies have revealed improved bleb morphology following trabeculectomy augmented with ranibizumab. The effects of this humanized monoclonal antibody on human Tenon's fibroblast (HTF), the key player of post trabeculectomy scar formation, are not fully understood. This study was conducted to understand the effects of ranibizumab on extracellular matrix production by HTF. The effect of ranibizumab on HTF proliferation and cell viability was determined using MTT assay (3-(4,5-dimethylthiazone-2-yl)-2,5-diphenyl tetrazolium). Ranibizumab at concentrations ranging from 0.01 to 0.5 mg/mL were administered for 24, 48 and 72 h in serum and serum free conditions. Supernatants and cell lysates from samples were assessed for collagen type 1 alpha 1 and fibronectin mRNA and protein level using quantitative real time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). After 48-h, ranibizumab at 0.5 mg/mL, significantly induced cell death under serum-free culture conditions (p < 0.05). Ranibizumab caused significant reduction of collagen type 1 alpha 1 (COL1A1) mRNA, but not for fibronectin (FN). Meanwhile, COL1A1 and FN protein levels were found upregulated in treated monolayers compared to control monolayers. Ranibizumab at 0.5 mg/mL significantly reduced cell viability in cultured HTF. From this study, we found that single application of ranibizumab is inadequate to induce the anti-fibrotic effects on HTF, suggesting the importance of adjunctive therapy. Further studies are underway to understand mechanism of actions of ranibizumab on HTF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Metalloprotease Vsm Is the Major Determinant of Toxicity for Extracellular Products of Vibrio splendidus▿ †

    PubMed Central

    Binesse, Johan; Delsert, Claude; Saulnier, Denis; Champomier-Vergès, Marie-Christine; Zagorec, Monique; Munier-Lehmann, Hélène; Mazel, Didier; Le Roux, Frédérique

    2008-01-01

    Genomic data combined with reverse genetic approaches have contributed to the characterization of major virulence factors of Vibrio species; however, these studies have targeted primarily human pathogens. Here, we investigate virulence factors in the oyster pathogen Vibrio splendidus LGP32 and show that toxicity is correlated to the presence of a metalloprotease and its corresponding vsm gene. Comparative genomics showed that an avirulent strain closely related to LGP32 lacked the metalloprotease. The toxicity of LGP32 metalloprotease was confirmed by exposing mollusk and mouse fibroblastic cell lines to extracellular products (ECPs) of the wild type (wt) and a vsm deletion mutant (Δvsm mutant). The ECPs of the wt induced a strong cytopathic effect whose severity was cell type dependent, while those of the Δvsm mutant were much less toxic, and exposure to purified protein demonstrated the direct toxicity of the Vsm metalloprotease. Finally, to investigate Vsm molecular targets, a proteomic analysis of the ECPs of both LGP32 and the Δvsm mutant was performed, revealing a number of differentially expressed and/or processed proteins. One of these, the VSA1062 metalloprotease, was found to have significant identity to the immune inhibitor A precursor, a virulence factor of Bacillus thuringiensis. Deletion mutants corresponding to several of the major proteins were constructed by allelic exchange, and the ECPs of these mutants proved to be toxic to both cell cultures and animals. Taken together, these data demonstrate that Vsm is the major toxicity factor in the ECPs of V. splendidus. PMID:18836018

  12. Calreticulin Regulates Transforming Growth Factor-β-stimulated Extracellular Matrix Production*

    PubMed Central

    Zimmerman, Kurt A.; Graham, Lauren V.; Pallero, Manuel A.; Murphy-Ullrich, Joanne E.

    2013-01-01

    Endoplasmic reticulum (ER) stress is an emerging factor in fibrotic disease, although precise mechanisms are not clear. Calreticulin (CRT) is an ER chaperone and regulator of Ca2+ signaling up-regulated by ER stress and in fibrotic tissues. Previously, we showed that ER CRT regulates type I collagen transcript, trafficking, secretion, and processing into the extracellular matrix (ECM). To determine the role of CRT in ECM regulation under fibrotic conditions, we asked whether CRT modified cellular responses to the pro-fibrotic cytokine, TGF-β. These studies show that CRT−/− mouse embryonic fibroblasts (MEFs) and rat and human idiopathic pulmonary fibrosis lung fibroblasts with siRNA CRT knockdown had impaired TGF-β stimulation of type I collagen and fibronectin. In contrast, fibroblasts with increased CRT expression had enhanced responses to TGF-β. The lack of CRT does not impact canonical TGF-β signaling as TGF-β was able to stimulate Smad reporter activity in CRT−/− MEFs. CRT regulation of TGF-β-stimulated Ca2+ signaling is important for induction of ECM. CRT−/− MEFs failed to increase intracellular Ca2+ levels in response to TGF-β. NFAT activity is required for ECM stimulation by TGF-β. In CRT−/− MEFs, TGF-β stimulation of NFAT nuclear translocation and reporter activity is impaired. Importantly, CRT is required for TGF-β stimulation of ECM under conditions of ER stress, as tunicamycin-induced ER stress was insufficient to induce ECM production in TGF-β stimulated CRT−/− MEFs. Together, these data identify CRT-regulated Ca2+-dependent pathways as a critical molecular link between ER stress and TGF-β fibrotic signaling. PMID:23564462

  13. Sequestration and Distribution Characteristics of Cd(II) by Microcystis aeruginosa and Its Role in Colony Formation

    PubMed Central

    Bi, Xiangdong; Yan, Ran; Li, Fenxiang; Dai, Wei; Jiao, Kewei; Liu, Qi

    2016-01-01

    To investigate the sequestration and distribution characteristics of Cd(II) by Microcystis aeruginosa and its role in Microcystis colony formation, M. aeruginosa was exposed to six different Cd(II) concentrations for 10 days. Cd(II) exposure caused hormesis in the growth of M. aeruginosa. Low concentrations of Cd(II) significantly induced formation of small Microcystis colonies (P < 0.05) and increased the intracellular polysaccharide (IPS) and bound extracellular polysaccharide (bEPS) contents of M. aeruginosa significantly (P < 0.05). There was a linear relationship between the amount of Cd(II) sequestrated by algal cells and the amount added to cultures in the rapid adsorption process that occurred during the first 5 min of exposure. After 10 d, M. aeruginosa sequestrated nearly 80% of 0.2 mg L−1 added Cd(II), while >93% of Cd(II) was sequestrated in the groups with lower added concentrations of Cd(II). More than 80% of the sequestrated Cd(II) was bioadsorbed by bEPS. The Pearson correlation coefficients of exterior and interior factors related to colony formation of M. aeruginosa revealed that Cd(II) could stimulate the production of IPS and bEPS via increasing Cd(II) bioaccumulation and bioadsorption. Increased levels of cross-linking between Cd(II) and bEPS stimulated algal cell aggregation, which eventually promoted the formation of Microcystis colonies. PMID:27777956

  14. Sequestration and Distribution Characteristics of Cd(II) by Microcystis aeruginosa and Its Role in Colony Formation.

    PubMed

    Bi, Xiangdong; Yan, Ran; Li, Fenxiang; Dai, Wei; Jiao, Kewei; Zhou, Qixing; Liu, Qi

    2016-01-01

    To investigate the sequestration and distribution characteristics of Cd(II) by Microcystis aeruginosa and its role in Microcystis colony formation, M. aeruginosa was exposed to six different Cd(II) concentrations for 10 days. Cd(II) exposure caused hormesis in the growth of M. aeruginosa. Low concentrations of Cd(II) significantly induced formation of small Microcystis colonies (P < 0.05) and increased the intracellular polysaccharide (IPS) and bound extracellular polysaccharide (bEPS) contents of M. aeruginosa significantly (P < 0.05). There was a linear relationship between the amount of Cd(II) sequestrated by algal cells and the amount added to cultures in the rapid adsorption process that occurred during the first 5 min of exposure. After 10 d, M. aeruginosa sequestrated nearly 80% of 0.2 mg L(-1) added Cd(II), while >93% of Cd(II) was sequestrated in the groups with lower added concentrations of Cd(II). More than 80% of the sequestrated Cd(II) was bioadsorbed by bEPS. The Pearson correlation coefficients of exterior and interior factors related to colony formation of M. aeruginosa revealed that Cd(II) could stimulate the production of IPS and bEPS via increasing Cd(II) bioaccumulation and bioadsorption. Increased levels of cross-linking between Cd(II) and bEPS stimulated algal cell aggregation, which eventually promoted the formation of Microcystis colonies.

  15. Extracellular heat shock protein 90 binding to TGFβ receptor I participates in TGFβ-mediated collagen production in myocardial fibroblasts.

    PubMed

    García, Raquel; Merino, David; Gómez, Jenny M; Nistal, J Francisco; Hurlé, María A; Cortajarena, Aitziber L; Villar, Ana V

    2016-10-01

    The pathological remodeling heart shows an increase in left ventricular mass and an excess of extracellular matrix deposition that can over time cause heart failure. Transforming growth factor β (TGFβ) is the main cytokine controlling this process. The molecular chaperone heat shock protein 90 (Hsp90) has been shown to play a critical role in TGFβ signaling by stabilizing the TGFβ signaling cascade. We detected extracellular Hsp90 in complex with TGFβ receptor I (TGFβRI) in fibroblasts and determined a close proximity between both proteins suggesting a potential physical interaction between the two at the plasma membrane. This was supported by in silico studies predicting Hsp90 dimers and TGFβRI extracellular domain interaction. Both, Hsp90aa1 and Hsp90ab1 isoforms participate in TGFβRI complex. Extracellular Hsp90 inhibition lessened the yield of collagen production as well as the canonical TGFβ signaling cascade, and collagen protein synthesis was drastically reduced in Hsp90aa1 KO mice. These observations together with the significant increase in activity of Hsp90 at the plasma membrane pointed to a functional cooperative partnership between Hsp90 and TGFβRI in the fibrotic process. We propose that a surface population of Hsp90 extracellularly binds TGFβRI and this complex behaves as an active participant in collagen production in TGFβ-activated fibroblasts. We also offer an in vivo insight into the role of Hsp90 and its isoforms during cardiac remodeling in murine aortic banding model suffering from pathological cardiac remodeling and detect circulating Hsp90 overexpressed in remodeling mice.

  16. Extracellular Histones Induce Chemokine Production in Whole Blood Ex Vivo and Leukocyte Recruitment In Vivo.

    PubMed

    Westman, Johannes; Papareddy, Praveen; Dahlgren, Madelene W; Chakrakodi, Bhavya; Norrby-Teglund, Anna; Smeds, Emanuel; Linder, Adam; Mörgelin, Matthias; Johansson-Lindbom, Bengt; Egesten, Arne; Herwald, Heiko

    2015-12-01

    The innate immune system relies to a great deal on the interaction of pattern recognition receptors with pathogen- or damage-associated molecular pattern molecules. Extracellular histones belong to the latter group and their release has been described to contribute to the induction of systemic inflammatory reactions. However, little is known about their functions in the early immune response to an invading pathogen. Here we show that extracellular histones specifically target monocytes in human blood and this evokes the mobilization of the chemotactic chemokines CXCL9 and CXCL10 from these cells. The chemokine induction involves the toll-like receptor 4/myeloid differentiation factor 2 complex on monocytes, and is under the control of interferon-γ. Consequently, subcutaneous challenge with extracellular histones results in elevated levels of CXCL10 in a murine air pouch model and an influx of leukocytes to the site of injection in a TLR4 dependent manner. When analyzing tissue biopsies from patients with necrotizing fasciitis caused by Streptococcus pyogenes, extracellular histone H4 and CXCL10 are immunostained in necrotic, but not healthy tissue. Collectively, these results show for the first time that extracellular histones have an important function as chemoattractants as their local release triggers the recruitment of immune cells to the site of infection.

  17. Extracellular Histones Induce Chemokine Production in Whole Blood Ex Vivo and Leukocyte Recruitment In Vivo

    PubMed Central

    Westman, Johannes; Papareddy, Praveen; Dahlgren, Madelene W.; Chakrakodi, Bhavya; Norrby-Teglund, Anna; Smeds, Emanuel; Linder, Adam; Mörgelin, Matthias; Johansson-Lindbom, Bengt; Egesten, Arne; Herwald, Heiko

    2015-01-01

    The innate immune system relies to a great deal on the interaction of pattern recognition receptors with pathogen- or damage-associated molecular pattern molecules. Extracellular histones belong to the latter group and their release has been described to contribute to the induction of systemic inflammatory reactions. However, little is known about their functions in the early immune response to an invading pathogen. Here we show that extracellular histones specifically target monocytes in human blood and this evokes the mobilization of the chemotactic chemokines CXCL9 and CXCL10 from these cells. The chemokine induction involves the toll-like receptor 4/myeloid differentiation factor 2 complex on monocytes, and is under the control of interferon-γ. Consequently, subcutaneous challenge with extracellular histones results in elevated levels of CXCL10 in a murine air pouch model and an influx of leukocytes to the site of injection in a TLR4 dependent manner. When analyzing tissue biopsies from patients with necrotizing fasciitis caused by Streptococcus pyogenes, extracellular histone H4 and CXCL10 are immunostained in necrotic, but not healthy tissue. Collectively, these results show for the first time that extracellular histones have an important function as chemoattractants as their local release triggers the recruitment of immune cells to the site of infection. PMID:26646682

  18. Environmental conditions associating microcystins production to Microcystis aeruginosa in a reservoir of Thailand.

    PubMed

    Wang, Xiaofeng; Parkpian, Preeda; Fujimoto, Naoshi; Ruchirawat, Khunying Mathuros; DeLaune, R D; Jugsujinda, A

    2002-08-01

    Three heptapeptide toxins, microcystin-RR, microcystin-RY and microcystin-LR, which can cause health problems in animals and humans were monitored in Bang Phra Reservoir, Thailand using reversed-phase high performance liquid chromatography. The concentrations of the three toxins in the reservoir varied greatly depending on location and time water samples were collected. Water quality parameters such as light intensity, temperature, pH, dissolved oxygen, suspended solid, chemical oxygen demand, dissolved organic carbon, total nitrogen, total phosphorus, ammonia, nitrate, phosphate, total dissolved nitrogen, total dissolved phosphorus and chlorophyll-a were also measured in parallel with microcystin determinations. Relationships among water quality parameters, toxins and chlorophyll-a were established. Toxin concentration increased in proportion to increases in total phosphorus, fraction of dissolved phosphorus, but was inversely correlated with water pH and total suspended solids. The other measured parameters in the study showed no correlations to toxin level in reservoir water. Significant correlations between chlorophyll-a and suspended solids, phosphate, nitrate and ammonia were observed suggesting that nitrogen and phosphorus are the two major nutrients governing growth of algae in the reservoir. This relationship suggests that algal production as well as toxin concentration are dependant on nutrient levels in the water body, since both measured light intensity and temperature level was favorable for algal growth. A small algal bloom observed in the rainy season of each year (lasting for only a couple of months) paralleled measured increases in toxin concentration, chlorophyll-a, TP and TN in the water column. Toxin level in the water column remain detectable for 3-4 months period following the initiation of algal bloom. Results indicate that major blooms are likely to occur following the raining season which usually occurs near the end of October when runoff

  19. Pseudomonas aeruginosa mastitis outbreaks in sheep and goat flocks: antibody production and vaccination in a mouse model.

    PubMed

    Leitner, G; Krifucks, O

    2007-10-15

    Pseudomonas aeruginosa is most often associated with sporadic clinical mastitis. Outbreaks among more than 15 Israeli dairy sheep and goat herds presented clinical signs, including gangrenous infections. Characterization of the P. aeruginosa isolates revealed the presence of multiple environmental strains in the various farms, and it was hypothesized that the infected herds were temporarily immunocompromised. In spite of the variability of the isolates, because of the economic impact on the small-ruminant farms, we decided to search for common antigens that might induce an immune response that would protect the animals from the various P. aeruginosa strains present in the herds. Responses to selected isolates, representative of various animals and farms, were further studied in mouse models for capability to induce antibodies and to protect from homologous and heterologous challenge after immunization with an experimental primary vaccine. 1-D-SDS-PAGE tests revealed two patterns of protein bands among the various P. aeruginosa isolates, whereas the immunoblot and ELISA tests of sera of mice immunized with either MA-58, GE-61 monovalent, or (MA-58 + GE-61) bivalent bacterial vaccine preparations revealed two subgroups with low mutual cross-reactivity. Immunization with a vaccine prepared from either of the subgroups protected mice only from the homologues but not from the heterologues, whereas the bivalent vaccine protected mice from both subgroups.

  20. Alkaline Phosphatase, Soluble Extracellular Adenine Nucleotides, and Adenosine Production after Infant Cardiopulmonary Bypass.

    PubMed

    Davidson, Jesse A; Urban, Tracy; Tong, Suhong; Twite, Mark; Woodruff, Alan; Wischmeyer, Paul E; Klawitter, Jelena

    2016-01-01

    Decreased alkaline phosphatase activity after infant cardiac surgery is associated with increased post-operative cardiovascular support requirements. In adults undergoing coronary artery bypass grafting, alkaline phosphatase infusion may reduce inflammation. Mechanisms underlying these effects have not been explored but may include decreased conversion of extracellular adenine nucleotides to adenosine. 1) Evaluate the association between alkaline phosphatase activity and serum conversion of adenosine monophosphate to adenosine after infant cardiac surgery; 2) assess if inhibition/supplementation of serum alkaline phosphatase modulates this conversion. Pre/post-bypass serum samples were obtained from 75 infants <4 months of age. Serum conversion of 13C5-adenosine monophosphate to 13C5-adenosine was assessed with/without selective inhibition of alkaline phosphatase and CD73. Low and high concentration 13C5-adenosine monophosphate (simulating normal/stress concentrations) were used. Effects of alkaline phosphatase supplementation on adenosine monophosphate clearance were also assessed. Changes in serum alkaline phosphatase activity were strongly correlated with changes in 13C5-adenosine production with or without CD73 inhibition (r = 0.83; p<0.0001). Serum with low alkaline phosphatase activity (≤80 U/L) generated significantly less 13C5-adenosine, particularly in the presence of high concentration 13C5-adenosine monophosphate (10.4μmol/L vs 12.9μmol/L; p = 0.0004). Inhibition of alkaline phosphatase led to a marked decrease in 13C5-adenosine production (11.9μmol/L vs 2.7μmol/L; p<0.0001). Supplementation with physiologic dose human tissue non-specific alkaline phosphatase or high dose bovine intestinal alkaline phosphatase doubled 13C5-adenosine monophosphate conversion to 13C5-adenosine (p<0.0001). Alkaline phosphatase represents the primary serum ectonucleotidase after infant cardiac surgery and low post-operative alkaline phosphatase activity leads to

  1. [Impacts of Eichhornia crassipes (Mart.) Solms stress on the growth characteristics, microcystins and nutrients release of Microcystis aeruginosa].

    PubMed

    Zhou, Qing; Han, Shi-Qun; Yan, Shao-Hua; Song, Wei; Liu, Guo-Feng

    2014-02-01

    Due to the large-scale application of Eichhornia crassipes (Mart.) Solms on the bioremediation of eutrophic lake in China, the influence of growth, physiological characteristics, microcystins production and release of M. aeruginosa by E. crassipes was investigated. Meanwhile, the release risk of nutrients from M. aeruginosa and the accumulation risk of microcystins in E. crassipe were explored through semi-continuous co-existence experiments. Our results indicated that M. aeruginosa was promoted by E. crassipes to undergo the cell death. Under the stress of E. crassipes, direct damage of phycocyanin and phycocyanin/allophycocyanin ratio in M. aeruginosa occurred, while the photosystem II-Hill reaction in M. aeruginosa was not interrupted. The PC/APC levels in the treatment of 10% and 20% water exchange rate were respectively decreased to 54.93% +/- 7.07% and 55.81% +/- 1.97% of the level in their relative controls after 8 days. Then, the final significant decrease of specific superoxide dismutase activity and the striking elevation of malondialdehyde content in M. aeruginosa could be the results of oxidative damage by E. crassipes. Algal malondialdehyde content in the treatment of 10% and 20% water exchange rate were respectively 2.95 +/- 0.074 and 2.22 +/- 0.086 times of the level in their relative controls on day 8. The release of nutrients from M. aeruginosa was accelerated because the decay and lysis of algal cells were promoted by E. crassipes. After 12-day co-existence experiments, the concentration of total dissolved nitrogen in water was brought back to the initial level and the release of total dissolved phosphorus was faster than nitrogen nutrients under the stress of E. crassipes. In addition, the microcystins production in M. aeruginosa was not stimulated and the extracellular microcystins were significantly eliminated by the influence of E. crassipes. The extracellular microcystins contents in the treatment of 10% and 20% water exchange rate were

  2. Enhanced extracellular production of aspartyl proteinase, a virulence factor, by Candida albicans isolates following growth in subinhibitory concentrations of fluconazole.

    PubMed

    Wu, T; Wright, K; Hurst, S F; Morrison, C J

    2000-05-01

    We examined the production of secreted aspartyl proteinase (Sap), a putative virulence factor of Candida albicans, by a series of 17 isolates representing a single strain obtained from the oral cavity of an AIDS patient before and after the development of clinical and in vitro resistance to fluconazole. Isolates were grown in Sap-inducing yeast carbon base-bovine serum albumin medium containing 0, 0.25, 0.5, or 1 MIC of fluconazole, and cultures were sampled daily for 14 days to determine extracellular Sap activity by enzymatic degradation of bovine serum albumin. Extracellular Sap activity was significantly decreased in a dose-dependent manner for the most fluconazole-susceptible isolate (MIC, 1.0 microg/ml) and significantly increased in a dose-dependent manner for the most fluconazole-resistant isolate (MIC, >64 microg/ml). Enhanced extracellular Sap production could not be attributed to cell death or nonspecific release of Sap, because there was no reduction in the number of CFU and no significant release of enolase, a constitutive enzyme of the glycolytic pathway. Conversely, intracellular Sap concentrations were significantly increased in a dose-dependent manner in the most fluconazole-susceptible isolate and decreased in the most fluconazole-resistant isolate. Enhanced Sap production correlated with the overexpression of a gene encoding a multidrug resistance (MDR1) efflux pump occurring in these isolates. These data indicate that exposure to subinhibitory concentrations of fluconazole can result in enhanced extracellular production of Sap by isolates with the capacity to overexpress MDR1 and imply that patients infected with these isolates and subsequently treated with suboptimal doses of fluconazole may experience enhanced C. albicans virulence in vivo.

  3. Macromolecularly crowded in vitro microenvironments accelerate the production of extracellular matrix-rich supramolecular assemblies

    PubMed Central

    Kumar, Pramod; Satyam, Abhigyan; Fan, Xingliang; Collin, Estelle; Rochev, Yury; Rodriguez, Brian J.; Gorelov, Alexander; Dillon, Simon; Joshi, Lokesh; Raghunath, Michael; Pandit, Abhay; Zeugolis, Dimitrios I.

    2015-01-01

    Therapeutic strategies based on the principles of tissue engineering by self-assembly put forward the notion that functional regeneration can be achieved by utilising the inherent capacity of cells to create highly sophisticated supramolecular assemblies. However, in dilute ex vivo microenvironments, prolonged culture time is required to develop an extracellular matrix-rich implantable device. Herein, we assessed the influence of macromolecular crowding, a biophysical phenomenon that regulates intra- and extra-cellular activities in multicellular organisms, in human corneal fibroblast culture. In the presence of macromolecules, abundant extracellular matrix deposition was evidenced as fast as 48 h in culture, even at low serum concentration. Temperature responsive copolymers allowed the detachment of dense and cohesive supramolecularly assembled living substitutes within 6 days in culture. Morphological, histological, gene and protein analysis assays demonstrated maintenance of tissue-specific function. Macromolecular crowding opens new avenues for a more rational design in engineering of clinically relevant tissue modules in vitro. PMID:25736020

  4. Does Extracellular DNA Production Vary in Staphylococcal Biofilms Isolated From Infected Implants versus Controls?

    PubMed

    Zatorska, Beata; Groger, Marion; Moser, Doris; Diab-Elschahawi, Magda; Lusignani, Luigi Segagni; Presterl, Elisabeth

    2017-08-01

    Prosthetic implant infections caused by Staphylococcus aureus and epidermidis are major challenges for early diagnosis and treatment owing to biofilm formation on the implant surface. Extracellular DNA (eDNA) is actively excreted from bacterial cells in biofilms, contributing to biofilm stability, and may offer promise in the detection or treatment of such infections. (1) Does DNA structure change during biofilm formation? (2) Are there time-dependent differences in eDNA production during biofilm formation? (3) Is there differential eDNA production between clinical and control Staphylococcal isolates? (4) Is eDNA production correlated to biofilm thickness? We investigated eDNA presence during biofilm formation in 60 clinical and 30 control isolates of S aureus and S epidermidis. The clinical isolates were isolated from patients with infections of orthopaedic prostheses and implants: 30 from infected hip prostheses and 30 from infected knee prostheses. The control isolates were taken from healthy volunteers who had not been exposed to antibiotics and a hospital environment during the previous 3 and 12 months, respectively. Control S epidermidis was isolated from the skin of the antecubital fossa, and control S aureus was isolated from the nares. For the biofilm experiments the following methods were used to detect eDNA: (1) fluorescent staining with 4',6-diamidino-2-phenylindole (DAPI), (2) eDNA extraction using a commercial kit, and (3) confocal laser scanning microscopy for 24-hour biofilm observation using propidium iodide and concanavalin-A staining; TOTO(®)-1 and SYTO(®) 60 staining were used for observation and quantification of eDNA after 6 and 24 hours of biofilm formation. Additionally antibiotic resistance was described. eDNA production as observed by confocal laser scanning microscopy was greater in clinical isolates than controls (clinical isolates mean ± SD: 1.84% ± 1.31%; control mean ± SD: 1.17% ± 1.37%; p < 0.005) after 6 hours of biofilm

  5. Interaction of the Pseudomonas aeruginosa secretory products pyocyanin and pyochelin generates hydroxyl radical and causes synergistic damage to endothelial cells. Implications for Pseudomonas-associated tissue injury.

    PubMed Central

    Britigan, B E; Roeder, T L; Rasmussen, G T; Shasby, D M; McCormick, M L; Cox, C D

    1992-01-01

    Pyocyanin, a secretory product of Pseudomonas aeruginosa, has the capacity to undergo redox cycling under aerobic conditions with resulting generation of superoxide and hydrogen peroxide. By using spin trapping techniques in conjunction with electron paramagnetic resonance spectrometry (EPR), superoxide was detected during the aerobic reduction of pyocyanin by NADH or porcine endothelial cells. No evidence of hydroxyl radical formation was detected. Chromium oxalate eliminated the EPR spectrum of the superoxide-derived spin adduct resulting from endothelial cell exposure to pyocyanin, suggesting superoxide formation close to the endothelial cell plasma membrane. We have previously reported that iron bound to the P. aeruginosa siderophore pyochelin (ferripyochelin) catalyzes the formation of hydroxyl free radical from superoxide and hydrogen peroxide via the Haber-Weiss reaction. In the present study, spin trap evidence of hydroxyl radical formation was detected when NADH and pyocyanin were allowed to react in the presence of ferripyochelin. Similarly, endothelial cell exposure to pyocyanin and ferripyochelin also resulted in hydroxyl radical production which appeared to occur in close proximity to the cell surface. As assessed by 51Cr release, endothelial cells which were treated with pyocyanin or ferripyochelin alone demonstrated minimal injury. However, endothelial cell exposure to the combination of pyochelin and pyocyanin resulted in 55% specific 51Cr release. Injury was not observed with the substitution of iron-free pyochelin and was diminished by the presence of catalase or dimethyl thiourea. These data suggest the possibility that the P. aeruginosa secretory products pyocyanin and pyochelin may act synergistically via the generation of hydroxyl radical to damage local tissues at sites of pseudomonas infection. PMID:1469082

  6. Release of Active Peptidyl Arginine Deiminases by Neutrophils Can Explain Production of Extracellular Citrullinated Autoantigens in Rheumatoid Arthritis Synovial Fluid

    PubMed Central

    Spengler, Julia; Lugonja, Božo; Jimmy Ytterberg, A.; Zubarev, Roman A.; Creese, Andrew J.; Pearson, Mark J.; Grant, Melissa M.; Milward, Michael; Lundberg, Karin; Buckley, Christopher D.; Filer, Andrew; Raza, Karim; Cooper, Paul R.; Chapple, Iain L.

    2015-01-01

    Objective In the majority of patients with rheumatoid arthritis (RA), antibodies specifically recognize citrullinated autoantigens that are generated by peptidylarginine deiminases (PADs). Neutrophils express high levels of PAD and accumulate in the synovial fluid (SF) of RA patients during disease flares. This study was undertaken to test the hypothesis that neutrophil cell death, induced by either NETosis (extrusion of genomic DNA–protein complexes known as neutrophil extracellular traps [NETs]) or necrosis, can contribute to production of autoantigens in the inflamed joint. Methods Extracellular DNA was quantified in the SF of patients with RA, patients with osteoarthritis (OA), and patients with psoriatic arthritis (PsA). Release of PAD from neutrophils was investigated by Western blotting, mass spectrometry, immunofluorescence staining, and PAD activity assays. PAD2 and PAD4 protein expression, as well as PAD enzymatic activity, were assessed in the SF of patients with RA and those with OA. Results Extracellular DNA was detected at significantly higher levels in RA SF than in OA SF (P < 0.001) or PsA SF (P < 0.05), and its expression levels correlated with neutrophil concentrations and PAD activity in RA SF. Necrotic neutrophils released less soluble extracellular DNA compared to NETotic cells in vitro (P < 0.05). Higher PAD activity was detected in RA SF than in OA SF (P < 0.05). The citrullinated proteins PAD2 and PAD4 were found attached to NETs and also freely diffused in the supernatant. PAD enzymatic activity was detected in supernatants of neutrophils undergoing either NETosis or necrosis. Conclusion Release of active PAD isoforms into the SF by neutrophil cell death is a plausible explanation for the generation of extracellular autoantigens in RA. PMID:26245941

  7. Indole and 7‐hydroxyindole diminish Pseudomonas aeruginosa virulence

    PubMed Central

    Lee, Jintae; Attila, Can; Cirillo, Suat L. G.; Cirillo, Jeffrey D.; Wood, Thomas K.

    2009-01-01

    Summary Indole is an extracellular biofilm signal for Escherichia coli, and many bacterial oxygenases readily convert indole to various oxidized compounds including 7‐hydroxyindole (7HI). Here we investigate the impact of indole and 7HI on Pseudomonas aeruginosa PAO1 virulence and quorum sensing (QS)‐regulated phenotypes; this strain does not synthesize these compounds but degrades them rapidly. Indole and 7HI both altered extensively gene expression in a manner opposite that of acylhomoserine lactones; the most repressed genes encode the mexGHI‐opmD multidrug efflux pump and genes involved in the synthesis of QS‐regulated virulence factors including pyocyanin (phz operon), 2‐heptyl‐3‐hydroxy‐4(1H)‐quinolone (PQS) signal (pqs operon), pyochelin (pch operon) and pyoverdine (pvd operon). Corroborating these microarray results, indole and 7HI decreased production of pyocyanin, rhamnolipid, PQS and pyoverdine and enhanced antibiotic resistance. In addition, indole affected the utilization of carbon, nitrogen and phosphorus, and 7HI abolished swarming motility. Furthermore, 7HI reduced pulmonary colonization of P. aeruginosa in guinea pigs and increased clearance in lungs. Hence, indole‐related compounds have potential as a novel antivirulence approach for the recalcitrant pathogen P. aeruginosa. PMID:21261883

  8. Indole and 7-hydroxyindole diminish Pseudomonas aeruginosa virulence.

    PubMed

    Lee, Jintae; Attila, Can; Cirillo, Suat L G; Cirillo, Jeffrey D; Wood, Thomas K

    2009-01-01

    Indole is an extracellular biofilm signal for Escherichia coli, and many bacterial oxygenases readily convert indole to various oxidized compounds including 7-hydroxyindole (7HI). Here we investigate the impact of indole and 7HI on Pseudomonas aeruginosa PAO1 virulence and quorum sensing (QS)-regulated phenotypes; this strain does not synthesize these compounds but degrades them rapidly. Indole and 7HI both altered extensively gene expression in a manner opposite that of acylhomoserine lactones; the most repressed genes encode the mexGHI-opmD multidrug efflux pump and genes involved in the synthesis of QS-regulated virulence factors including pyocyanin (phz operon), 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) signal (pqs operon), pyochelin (pch operon) and pyoverdine (pvd operon). Corroborating these microarray results, indole and 7HI decreased production of pyocyanin, rhamnolipid, PQS and pyoverdine and enhanced antibiotic resistance. In addition, indole affected the utilization of carbon, nitrogen and phosphorus, and 7HI abolished swarming motility. Furthermore, 7HI reduced pulmonary colonization of P. aeruginosa in guinea pigs and increased clearance in lungs. Hence, indole-related compounds have potential as a novel antivirulence approach for the recalcitrant pathogen P. aeruginosa.

  9. Measuring antimicrobial susceptibility of Pseudomonas aeruginosa using Poloxamer 407 gel.

    PubMed

    Yamada, Hiroyuki; Koike, Naohito; Ehara, Tomoko; Matsumoto, Tetsuya

    2011-04-01

    Pseudomonas aeruginosa is a Gram-negative bacterium that causes various opportunistic infections. Chronic and intractable infections with P. aeruginosa are closely related to the high levels of resistance displayed by this organism to antimicrobial agents and its ability to form biofilms. Although the standard method for examining antimicrobial resistance involves susceptibility testing using Mueller-Hinton agar or broth, this method does not take into account the influence of biofilm formation on antimicrobial susceptibility. Poloxamer 407 is a hydrophilic, nonionic surfactant of the more general class of copolymers that can be used to culture bacteria with similar properties as cells in a biofilm environment. Therefore, the aim of this study was to compare the antimicrobial susceptibility of bacteria cultured in Poloxamer 407 gel to those grown on Mueller-Hinton agar using the Kirby-Bauer disk diffusion method with 24 strains of P. aeruginosa. Antimicrobial sensibility differed between the two mediums, with >60% of the strains displaying increased resistance to β-lactams when cultured on Poloxamer 407 gel. In addition, scanning electron microscopy revealed that typical biofilm formation and extracellular polymeric substance production was only observed with bacteria grown on Poloxamer 407 gel. Therefore, antimicrobial susceptibility test using Poloxamer 407 gel may provide more accurate information and allow the selection of suitable antimicrobial agents for treating patients infected with biofilm-forming pathogens.

  10. Effect of light on growth, intracellular and extracellular pigment production by five pigment-producing filamentous fungi in synthetic medium.

    PubMed

    Velmurugan, Palanivel; Lee, Yong Hoon; Venil, Chidambaram Kulandaisamy; Lakshmanaperumalsamy, Perumalsamy; Chae, Jong-Chan; Oh, Byung-Taek

    2010-04-01

    The competence of the living creatures to sense and respond to light is well known. The effect of darkness and different color light quality on biomass, extracellular and intracellular pigment yield of five potent pigment producers Monascus purpureus, Isaria farinosa, Emericella nidulans, Fusarium verticillioides and Penicillium purpurogenum, with different color shades such as red, pink, reddish brown and yellow, were investigated. Incubation in total darkness increased the biomass, extracellular and intracellular pigment production in all the fungi. Extracellular red pigment produced by M. purpureus resulted maximum in darkness 36.75 + or - 2.1 OD and minimum in white unscreened light 5.90 + or - 1.1 OD. Similarly, intracellular red pigment produced by M. purpureus resulted maximum in darkness 18.27 + or - 0.9 OD/g and minimum in yellow light 8.03 + or - 0.6 OD/g of substrate. The maximum biomass production was also noticed in darkness 2.51 g/L and minimum in yellow light 0.5 g/L of dry weight. In contrast, growth of fungi in green and yellow wavelengths resulted in low biomass and pigment yield. It was found that darkness, (red 780-622 nm, blue 492-455 nm) and white light influenced pigment and biomass yield. Copyright 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Application of repeated aspartate tags to improving extracellular production of Escherichia coli L-asparaginase isozyme II.

    PubMed

    Kim, Sun-Ki; Min, Won-Ki; Park, Yong-Cheol; Seo, Jin-Ho

    2015-11-01

    Asparaginase isozyme II from Escherichia coli is a popular enzyme that has been used as a therapeutic agent against acute lymphoblastic leukemia. Here, fusion tag systems consisting of the pelB signal sequence and various lengths of repeated aspartate tags were devised to highly express and to release active asparaginase isozyme II extracellularly in E. coli. Among several constructs, recombinant asparaginase isozyme II fused with the pelB signal sequence and five aspartate tag was secreted efficiently into culture medium at 34.6 U/mg cell of specific activity. By batch fermentation, recombinant E. coli produced 40.8 U/ml asparaginase isozyme II in the medium. In addition, deletion of the gspDE gene reduced extracellular production of asparaginase isozyme II, indicating that secretion of recombinant asparaginase isozyme II was partially ascribed to the recognition by the general secretion machinery. This tag system composed of the pelB signal peptide, and repeated aspartates can be applied to extracellular production of other recombinant proteins.

  12. Adhesive properties, extracellular protein production, and metabolism in the Lactobacillus rhamnosus GG strain when grown in the presence of mucin.

    PubMed

    Sanchez, Borja; Saad, Naima; Schmitter, Jean-Marie; Bressollier, Philippe; Urdaci, Maria C

    2010-06-01

    This paper examines the probiotic bacterium Lactobacillus rhamnosus GG, and how it reacts to the presence of mucin in its extracellular milieu. Parameters studied included cell clustering, adhesion to mucin, extracellular protein production, and formation of final metabolites. L. rhamnosus GG was found to grow efficiently in the presence of glucose, N-acetylglucosamine, or mucin (partially purified or purified) as sole carbon sources. However, it was unable to grow using other mucin constituents, such as fucose or glucuronic acid. Mucin induced noticeable changes in all the parameters studied when compared with growth using glucose, including in the formation of cell clusters, which were easily disorganized with trypsin. Mucin increased adhesion of the bacterium, and modulated the production of extracellular proteins. SDS-PAGE revealed that mucin was not degraded during L. rhamnosus GG growth, suggesting that this bacterium is able to partially use the glucidic moiety of glycoprotein. This study goes some way towards developing an understanding of the metabolic and physiological changes that L. rhamnosus GG undergoes within the human gastrointestinal tract.

  13. Physiological and Proteomic Responses of Continuous Cultures of Microcystis aeruginosa PCC 7806 to Changes in Iron Bioavailability and Growth Rate

    PubMed Central

    Yeung, Anna C. Y.; Poljak, Anne; McDonald, James; Bligh, Mark W.

    2016-01-01

    ABSTRACT The hepatotoxin microcystin (MCYST) is produced by a variety of freshwater cyanobacterial species, including Microcystis aeruginosa. Interestingly, MCYST-producing M. aeruginosa strains have been shown to outcompete their nontoxic counterparts under iron-limiting conditions. However, the reasons for this are unclear. Here we examined the proteomic response of M. aeruginosa PCC 7806 continuous cultures under different iron and growth regimes. Iron limitation was correlated with a global reduction in levels of proteins associated with energy metabolism and photosynthesis. These proteomic changes were consistent with physiological observations, including reduced chlorophyll a content and reduced cell size. While levels of MCYST biosynthesis proteins did not fluctuate during the study period, both intra- and extracellular toxin quotas were significantly higher under iron-limiting conditions. Our results support the hypothesis that intracellular MCYST plays a role in protecting the cell against oxidative stress. Further, we propose that extracellular MCYST may act as a signaling molecule, stimulating MCYST production under conditions of iron limitation and enhancing the fitness of bloom populations. IMPORTANCE Microcystin production in water supply reservoirs is a global public health problem. Understanding the ecophysiology of hepatotoxic cyanobacteria, including their responses to the presence of key micronutrient metals such as iron, is central to managing harmful blooms. To our knowledge, this was the first study to examine proteomic and physiological changes occurring in M. aeruginosa continuous cultures under conditions of iron limitation at different growth rates. PMID:27474713

  14. The Pseudomonas aeruginosa flagellum confers resistance to pulmonary surfactant protein-A by impacting the production of exoproteases through quorum-sensing.

    PubMed

    Kuang, Zhizhou; Hao, Yonghua; Hwang, Sunghei; Zhang, Shiping; Kim, Eunice; Akinbi, Henry T; Schurr, Michael J; Irvin, Randall T; Hassett, Daniel J; Lau, Gee W

    2011-03-01

    Surfactant protein-A (SP-A) is an important antimicrobial protein that opsonizes and permeabilizes membranes of microbial pathogens in mammalian lungs. Previously, we have shown that Pseudomonas aeruginosa flagellum-deficient mutants are preferentially cleared in the lungs of wild-type mice by SP-A-mediated membrane permeabilization, and not by opsonization. In this study, we report a flagellum-mediated mechanism of P. aeruginosa resistance to SP-A. We discovered that flagellum-deficient (ΔfliC) bacteria are unable to produce adequate amounts of exoproteases to degrade SP-A in vitro and in vivo, leading to its preferential clearance in the lungs of SP-A(+/+) mice. In addition, ΔfliC bacteria failed to degrade another important lung antimicrobial protein lysozyme. Detailed analyses showed that ΔfliC bacteria are unable to upregulate the transcription of lasI and rhlI genes, impairing the production of homoserine lactones necessary for quorum-sensing, an important virulence process that regulates the production of multiple exoproteases. Thus, reduced ability of ΔfliC bacteria to quorum-sense attenuates production of exoproteases and limits degradation of SP-A, thereby conferring susceptibility to this major pulmonary host defence protein. © 2011 Blackwell Publishing Ltd.

  15. The Pseudomonas aeruginosa Flagellum Confers Resistance to Pulmonary Surfactant Protein-A by Impacting the Production of Exoproteases Through Quorum-Sensing

    PubMed Central

    Kuang, Zhizhou; Hao, Yonghua; Hwang, Sunghei; Zhang, Shiping; Kim, Eunice; Akinbi, Henry T; Schurr, Michael J.; Irvin, Randall T.; Hassett, Daniel J; Lau, Gee W.

    2011-01-01

    Surfactant protein-A (SP-A) is an important antimicrobial protein that opsonizes and permeabilizes membranes of microbial pathogens in mammalian lungs. Previously, we have shown that Pseudomonas aeruginosa flagellum-deficient mutants are preferentially cleared in the lungs of wild-type mice by SP-A-mediated membrane permeabilization, and not by opsonization. In this study, we report a flagellum-mediated mechanism of P. aeruginosa resistance to SP-A. We discovered that flagellum-deficient (ΔfliC) bacteria are unable to produce adequate amounts of exoproteases to degrade SP-A in vitro and in vivo, leading to its preferential clearance in the lungs of SP-A+/+ mice. In addition, ΔfliC bacteria failed to degrade another important lung antimicrobial protein lysozyme. Detailed analyses showed that ΔfliC bacteria are unable to upregulate the transcription of lasI and rhlI genes, impairing the production of homoserine lactones necessary for quorum-sensing, an important virulence process that regulates the production of multiple exoproteases. Thus, reduced ability of ΔfliC bacteria to quorum-sense attenuates production of exoproteases and limits degradation of SP-A, thereby conferring susceptibility to this major pulmonary host defense protein. PMID:21205009

  16. A study on large scale cultivation of Microcystis aeruginosa under open raceway pond at semi-continuous mode for biodiesel production.

    PubMed

    Ashokkumar, Veeramuthu; Agila, Elango; Salam, Zainal; Ponraj, Mohanadoss; Din, Mohd Fadhil Md; Ani, Farid Nasir

    2014-11-01

    The study explores on upstream and downstream process in Microcystis aeruginosa for biodiesel production. The alga was isolated from temple tank, acclimatized and successfully mass cultivated in open raceway pond at semi-continuous mode. A two step combined process was designed and harvested 99.3% of biomass, the daily dry biomass productivity was recorded up to 28gm(-2)day(-1). The lipid extraction was optimized and achieved 21.3%; physicochemical properties were characterized and found 11.7% of FFA, iodine value 72% and 99.2% of ester content. The lipid was transesterified by a two step simultaneous process and produced 90.1% of biodiesel; the calorific value of the biodiesel was 38.8MJ/kg. Further, the physicochemical properties of biodiesel was characterized and found to be within the limits of American ASTM D6751. Based on the areal and volumetric biomass productivity estimation, M. aeruginosa can yield 84.1 tons of dry biomass ha(-1)year(-1).

  17. Two schemes for production of biosurfactant from Pseudomonas aeruginosa MR01: Applying residues from soybean oil industry and silica sol-gel immobilized cells.

    PubMed

    Bagheri Lotfabad, Tayebe; Ebadipour, Negisa; Roostaazad, Reza; Partovi, Maryam; Bahmaei, Manochehr

    2017-04-01

    Rhamnolipids are the most common biosurfactants and P. aeruginosa strains are the most frequently studied microorganisms for the production of rhamnolipids. Eco-friendly advantages and promising applications of rhamnolipids in various industries are the major reasons for pursuing the economic production of these biosurfactants. This study shows that cultivation of P. aeruginosa MR01 in medium contained inexpensive soybean oil refinery wastes which exhibited similar levels and homologues of rhamnolipids. Mass spectrometry indicated that the Rha-C10-C10 and Rha-Rha-C10-C10 constitute the main rhamnolipids in different cultures of MR01 including one of oil carbon source analogues. Moreover, rhamnolipid mixtures extracted from different cultures showed critical micelle concentrations (CMC) in the range of ≃24 to ≃36mg/l with capability to reduce the surface tension of aqueous solution from 72 to ≃27-32mN/m. However, the sol-gel technique using tetraethyl orthosilicate (TEOS) was used as a gentler method in order to entrap the P. aeruginosa MR01 cells in mold silica gels. Immobilized cells can be utilized several times in consecutive fermentation batches as well as in flow fermentation processes. In this way, reusability of the cells may lead to a more economical fermentation process. Approximately 90% of cell viability was retained during the silica sol-gel immobilization and ≃84% of viability of immobilized cells was preserved for 365days of immobilization and storage of the cells in phosphate buffer at 4°C and 25°C. Moreover, mold gels showed good mechanical stability during the seven successive fermentation batches and the entrapped cells were able to efficiently preserve their biosurfactant-producing potential.

  18. Presence of a lethal protease in the extracellular products of Vibrio splendidus-Vibrio lentus related strains.

    PubMed

    Farto, R; Armada, S P; Montes, M; Perez, M J; Nieto, T P

    2006-12-01

    The presence of a lethal extracellular 39-kDa protease, a virulence determinant of a Listonella pelagia strain which produces vibriosis in turbot, was determined in the extracellular products (ECP) of 33 Vibrionaceae strains. Both immunological and enzymatic techniques distinguished this specific protease from other Vibrionaceae proteins. It was detected in 15% (5/33) of the ECPs assayed belonging to strains of the Vibrio splendidus-V. lentus related group isolated in Galician aquaculture systems (NW Spain). As these strains were associated with diseased octopus and cultured turbot, were able to colonize the internal organs of fish and produced a lethal ECP for fish, they are a potential risk for the health of reared aquatic organisms.

  19. Effect of clindamycin, erythromycin, lincomycin, and tetracycline on growth and extracellular lipase production by propionibacteria in vitro.

    PubMed Central

    Unkles, S E; Gemmell, C G

    1982-01-01

    Two propionibacteria identified as Propionibacterium acnes and Propionibacterium granulosum were grown anaerobically in the presence of growth subinhibitory concentrations (0.25 and 0.5 minimal inhibitory concentrations) of clindamycin, erythromycin, lincomycin, and tetracycline. Viable counts and assays of extracellular lipase were performed on samples taken at 24-h intervals over a 96-h period. The results showed that lincomycin and clindamycin could inhibit the production of the enzyme by both strains with little effect on their growth rates. Tetracycline caused inhibition of lipase production by P. granulosum only. Although production of the enzyme by P. acnes was delayed in the presence of tetracycline, the final titer was the same as the control. Erythromycin had little effect on growth and enzyme production of either strain. It is possible, therefore, that certain antibiotics used in acne therapy may act not only as bactericidal agents but also as inhibitors of enzyme production under non-growth-limiting conditions. PMID:7081974

  20. Extracellular Polysaccharide Production in a Scytonemin-Deficient Mutant of Nostoc punctiforme Under UVA and Oxidative Stress.

    PubMed

    Soule, Tanya; Shipe, Dexter; Lothamer, Justin

    2016-10-01

    Some cyanobacteria can protect themselves from ultraviolet radiation by producing sunscreen pigments. In particular, the sheath pigment scytonemin protects cells against long-wavelength UVA radiation and is only found in cyanobacteria which are capable of extracellular polysaccharide (EPS) production. The presence of a putative glycosyltransferase encoded within the scytonemin gene cluster, along with the localization of scytonemin and EPS to the extracellular sheath, prompted us to investigate the relationship between scytonemin and EPS production under UVA stress. In this study, it was hypothesized that there would be a relationship between the biosynthesis of scytonemin and EPS under both UVA and oxidative stress, since the latter is a by-product of UVA radiation. EPS production was measured following exposure of wild-type Nostoc punctiforme and the non-scytonemin-producing strain SCY59 to UVA and oxidative stress. Under UVA, SCY59 produced significantly more EPS than the unstressed controls and the wild type, while both strains produced more EPS under oxidative stress compared to the controls. The results suggest that EPS secretion occurs in response to the oxidative stress by-product of UVA rather than as a direct response to UVA radiation.

  1. Production of an extracellular polyethylene-degrading enzyme(s) by Streptomyces species.

    PubMed Central

    Pometto, A L; Lee, B T; Johnson, K E

    1992-01-01

    Extracellular culture concentrates were prepared from Streptomyces viridosporus T7A, Streptomyces badius 252, and Streptomyces setonii 75Vi2 shake flask cultures. Ten-day-heat-treated (70 degrees C) starch-polyethylene degradable plastic films were incubated with shaking with active or inactive enzyme for 3 weeks (37 degrees C). Active enzyme illustrated changes in the films' Fourier transform infrared spectra, mechanical properties, and polyethylene molecular weight distributions. PMID:1610196

  2. Proteolytic activity of extracellular products from Arthrobotrys musiformis and their effect in vitro against Haemonchus contortus infective larvae

    PubMed Central

    Acevedo-Ramírez, Perla María del Carmen; Figueroa-Castillo, Juan Antonio; Ulloa-Arvizú, Raúl; Martínez-García, Luz Gisela; Guevara-Flores, Alberto; Rendón, Juan Luis; Valero-Coss, Rosa Ofelia; Mendoza-de Gives, Pedro; Quiroz-Romero, Héctor

    2015-01-01

    Arthrobotrys musiformis is a nematophagous fungus with potential for the biological control of Haemonchus contortus larvae. This study aimed to identify and demonstrate the proteolytic activity of extracellular products from A musiformis cultured in a liquid medium against H contortus infective larvae. A musiformis was cultured on a solid medium and further grown in a liquid medium, which was then processed through ion exchange and hydrophobic interaction chromatography. The proteolytic activity of the purified fraction was assayed with either gelatin or bovine serum albumin as substrate. Optimum proteolytic activity was observed at pH 8 and a temperature of 37°C. Results obtained with specific inhibitors suggest the enzyme belongs to the serine-dependent protease family. The purified fraction concentrate from A musiformis was tested against H contortus infective larvae. A time-dependent effect was observed with 77 per cent immobility after 48 hours incubation, with alteration of the sheath. It is concluded that A musiformis is a potential candidate for biological control because of its resistant structures and also because of its excretion of extracellular products such as proteases. The present study contributes to the identification of one of the in vitro mechanisms of action of Amusiformis, namely the extracellular production of proteases against H contortus infective larvae. More investigations should be undertaken into how these products could be used to decrease the nematode population in sheep flocks under field conditions, thereby improving animal health while simultaneously diminishing the human and environmental impact of chemical-based drugs. PMID:26392902

  3. Heterologous co-expression of accA, fabD, and thioesterase genes for improving long-chain fatty acid production in Pseudomonas aeruginosa and Escherichia coli.

    PubMed

    Lee, Sunhee; Jeon, Eunyoung; Jung, Yeontae; Lee, Jinwon

    2012-05-01

    The goal of the present study was to increase the content of intracellular long-chain fatty acids in two bacterial strains, Pseudomonas aeruginosa PA14 and Escherichia coli K-12 MG1655, by co-overexpressing essential enzymes that are involved in the fatty acid synthesis metabolic pathway. Recently, microbial fatty acids and their derivatives have been receiving increasing attention as an alternative source of fuel. By introducing two genes (accA and fabD) of P. aeruginosa into the two bacterial strains and by co-expressing with them the fatty acyl-acyl carrier protein thioesterase gene of Streptococcus pyogenes (strain MGAS10270), we have engineered recombinant strains that are efficient producers of long-chain fatty acids (C16 and C18). The recombinant strains exhibit a 1.3-1.7-fold increase in the production of long-chain fatty acids over the wild-type strains. To enhance the production of total long-chain fatty acids, we researched the carbon sources for optimized culture conditions and results were used for post-culture incubation period. E. coli SGJS17 (containing the accA, fabD, and thioesterase genes) produced the highest content of intracellular total fatty acids; in particular, the unsaturated fatty acid content was about 20-fold higher than that in the wild-type E. coli.

  4. Development of a mixed mode adsorption process for the direct product sequestration of an extracellular protease from microbial batch cultures.

    PubMed

    Hamilton, G E; Luechau, F; Burton, S C; Lyddiatt, A

    2000-04-28

    Direct product sequestration of extracellular proteins from microbial batch cultures can be achieved by continuous or intermittent broth recycle through an external extractive loop. Here, we describe the development of a fluidisable, mixed mode adsorbent, designed to tolerate increasing ionic strength (synonymous with extended productive batch cultures). This facilitated operations for the integrated recovery of an extracellular acid protease from cultures of Yarrowia lipolytica. Mixed mode adsorbents were prepared using chemistries containing hydrophobic and ionic groups. Matrix hydrophobicity and titration ranges were matched to the requirements of integrated protease adsorption. A single expanded bed was able to service the productive phase of growth without recourse to the pH adjustment of the broth previously required for ion exchange adsorption. This resulted in increased yields of product, accompanied by further increases in enzyme specific activity. A step change from pH 4.5 to 2.6, across the isoelectric point of the protease, enabled high resolution fixed bed elution induced by electrostatic repulsion. The generic application of mixed mode chemistries, which combine the physical robustness of ion-exchange ligands in sanitisation and sterilisation procedures with a selectivity, which approaches that of affinity interactions, is discussed.

  5. Cloning and characterization of Bacillus subtilis iep, which has positive and negative effects on production of extracellular proteases.

    PubMed Central

    Tanaka, T; Kawata, M

    1988-01-01

    We have isolated a DNA fragment from Bacillus subtilis 168 which, when present in a high-copy plasmid, inhibited production of extracellular alkaline and neutral proteases. The gene responsible for this activity was referred to as iep. The open reading frame of iep was found to be incomplete in the cloned DNA fragment. When the intact iep gene was reconstructed after the missing part of the iep gene had been cloned, it showed an enhancing effect on the production of the extracellular proteases. The open reading frame encodes a polypeptide of 229 amino acids with a molecular weight of ca. 25,866. Deletion of two amino acids from the N-terminal half of the putative iep protein resulted in dual effects, i.e., a decrease in the inhibitory activity shown by the incomplete iep gene and a slight increase in the enhancing activity shown by the complete iep gene. These results show that the iep gene product is a bifunctional protein, containing inhibitory and enhancing activities for the exoprotease production in the N-terminal and C-terminal regions, respectively. It was found by genetic and functional analyses that iep lies very close to sacU. Images PMID:3136143

  6. Cloning and characterization of Bacillus subtilis iep, which has positive and negative effects on production of extracellular proteases.

    PubMed

    Tanaka, T; Kawata, M

    1988-08-01

    We have isolated a DNA fragment from Bacillus subtilis 168 which, when present in a high-copy plasmid, inhibited production of extracellular alkaline and neutral proteases. The gene responsible for this activity was referred to as iep. The open reading frame of iep was found to be incomplete in the cloned DNA fragment. When the intact iep gene was reconstructed after the missing part of the iep gene had been cloned, it showed an enhancing effect on the production of the extracellular proteases. The open reading frame encodes a polypeptide of 229 amino acids with a molecular weight of ca. 25,866. Deletion of two amino acids from the N-terminal half of the putative iep protein resulted in dual effects, i.e., a decrease in the inhibitory activity shown by the incomplete iep gene and a slight increase in the enhancing activity shown by the complete iep gene. These results show that the iep gene product is a bifunctional protein, containing inhibitory and enhancing activities for the exoprotease production in the N-terminal and C-terminal regions, respectively. It was found by genetic and functional analyses that iep lies very close to sacU.

  7. Genetics of O-Antigen Biosynthesis in Pseudomonas aeruginosa

    PubMed Central

    Rocchetta, H. L.; Burrows, L. L.; Lam, J. S.

    1999-01-01

    Pathogenic bacteria produce an elaborate assortment of extracellular and cell-associated bacterial products that enable colonization and establishment of infection within a host. Lipopolysaccharide (LPS) molecules are cell surface factors that are typically known for their protective role against serum-mediated lysis and their endotoxic properties. The most heterogeneous portion of LPS is the O antigen or O polysaccharide, and it is this region which confers serum resistance to the organism. Pseudomonas aeruginosa is capable of concomitantly synthesizing two types of LPS referred to as A band and B band. The A-band LPS contains a conserved O polysaccharide region composed of d-rhamnose (homopolymer), while the B-band O-antigen (heteropolymer) structure varies among the 20 O serotypes of P. aeruginosa. The genes coding for the enzymes that direct the synthesis of these two O antigens are organized into two separate clusters situated at different chromosomal locations. In this review, we summarize the organization of these two gene clusters to discuss how A-band and B-band O antigens are synthesized and assembled by dedicated enzymes. Examples of unique proteins required for both A-band and B-band O-antigen synthesis and for the synthesis of both LPS and alginate are discussed. The recent identification of additional genes within the P. aeruginosa genome that are homologous to those in the A-band and B-band gene clusters are intriguing since some are able to influence O-antigen synthesis. These studies demonstrate that P. aeruginosa represents a unique model system, allowing studies of heteropolymeric and homopolymeric O-antigen synthesis, as well as permitting an examination of the interrelationship of the synthesis of LPS molecules and other virulence determinants. PMID:10477307

  8. Extracellular Lipase and Protease Production from a Model Drinking Water Bacterial Community Is Functionally Robust to Absence of Individual Members.

    PubMed

    Willsey, Graham G; Wargo, Matthew J

    2015-01-01

    Bacteria secrete enzymes into the extracellular space to hydrolyze macromolecules into constituents that can be imported for microbial nutrition. In bacterial communities, these enzymes and their resultant products can be modeled as community property. Our goal was to investigate the impact of individual community member absence on the resulting community production of exoenzymes (extracellular enzymes) involved in lipid and protein hydrolysis. Our model community contained nine bacteria isolated from the potable water system of the International Space Station. Bacteria were grown in static conditions individually, all together, or in all combinations of eight species and exoproduct production was measured by colorimetric or fluorometric reagents to assess short chain and long chain lipases, choline-specific phospholipases C, and proteases. The exoenzyme production of each species grown alone varied widely, however, the enzyme activity levels of the mixed communities were functionally robust to absence of any single species, with the exception of phospholipase C production in one community. For phospholipase C, absence of Chryseobacterium gleum led to increased choline-specific phospholipase C production, correlated with increased growth of Burkholderia cepacia and Sphingomonas sanguinis. Because each individual species produced different enzyme activity levels in isolation, we calculated an expected activity value for each bacterial mixture using input levels or known final composition. This analysis suggested that robustness of each exoenzyme activity is not solely mediated by community composition, but possibly influenced by bacterial communication, which is known to regulate such pathways in many bacteria. We conclude that in this simplified model of a drinking water bacterial community, community structure imposes constraints on production and/or secretion of exoenzymes to generate a level appropriate to exploit a given nutrient environment.

  9. Extracellular Lipase and Protease Production from a Model Drinking Water Bacterial Community Is Functionally Robust to Absence of Individual Members

    PubMed Central

    Willsey, Graham G.; Wargo, Matthew J.

    2015-01-01

    Bacteria secrete enzymes into the extracellular space to hydrolyze macromolecules into constituents that can be imported for microbial nutrition. In bacterial communities, these enzymes and their resultant products can be modeled as community property. Our goal was to investigate the impact of individual community member absence on the resulting community production of exoenzymes (extracellular enzymes) involved in lipid and protein hydrolysis. Our model community contained nine bacteria isolated from the potable water system of the International Space Station. Bacteria were grown in static conditions individually, all together, or in all combinations of eight species and exoproduct production was measured by colorimetric or fluorometric reagents to assess short chain and long chain lipases, choline-specific phospholipases C, and proteases. The exoenzyme production of each species grown alone varied widely, however, the enzyme activity levels of the mixed communities were functionally robust to absence of any single species, with the exception of phospholipase C production in one community. For phospholipase C, absence of Chryseobacterium gleum led to increased choline-specific phospholipase C production, correlated with increased growth of Burkholderia cepacia and Sphingomonas sanguinis. Because each individual species produced different enzyme activity levels in isolation, we calculated an expected activity value for each bacterial mixture using input levels or known final composition. This analysis suggested that robustness of each exoenzyme activity is not solely mediated by community composition, but possibly influenced by bacterial communication, which is known to regulate such pathways in many bacteria. We conclude that in this simplified model of a drinking water bacterial community, community structure imposes constraints on production and/or secretion of exoenzymes to generate a level appropriate to exploit a given nutrient environment. PMID:26599415

  10. Temperature and Light Effects on Extracellular Superoxide Production by Algal and Bacterial Symbionts in Corals: Implications for Coral Bleaching

    NASA Astrophysics Data System (ADS)

    Brighi, C.; Diaz, J. M.; Apprill, A.; Hansel, C. M.

    2014-12-01

    Increased surface seawater temperature due to global warming is one of the main causes of coral bleaching, a phenomenon in which corals lose their photosynthetic algae. Light and temperature induced production of superoxide and other reactive oxygen species (ROS) by these symbiotic algae has been implicated in the breakdown of their symbiotic association with the coral host and subsequent coral bleaching. Nevertheless, a direct link between Symbiodinium ROS production and coral bleaching has not been demonstrated. In fact, given the abundance and diversity of microorganisms within the coral holobiont, the concentration and fluxes of ROS within corals may involve several microbial sources and sinks. Here, we explore the role of increased light and temperature on superoxide production by coral-derived cultures of Symbiodinium algae and Oceanospirillales bacteria of the genus Endozoicomonas, which are globally common and abundant associates of corals. Using a high sensitivity chemiluminescent technique, we find that heat stress (exposure to 34°C vs. 23°C for 2hr or 24hr) has no significant effect on extracellular superoxide production by Symbiodinium isolates within clades B and C, regardless of the level of light exposure. Exposure to high light, however, increased superoxide production by these organisms at both 34°C and 23°C. On the other hand, extracellular superoxide production by Endozoicomonas bacteria tested under the same conditions was stimulated by the combined effects of thermal and light stress. The results of this research suggest that the sources and physical triggers for biological superoxide production within corals are more complex than currently assumed. Thus, further investigations into the biological processes controlling ROS dynamics within corals are required to improve our understanding of the mechanisms underpinning coral bleaching and to aid in the development of mitigation strategies.

  11. Extracellular acidic polysaccharide production by a two-membered bacterial coculture.

    PubMed

    Kurata, Shinya; Yamada, Kazutaka; Takatsu, Kyoko; Hanada, Satoshi; Koyama, Osamu; Yokomaku, Toyokazu; Kamagata, Yoichi; Kanagawa, Takahiro; Kurane, Ryuichiro

    2003-01-01

    A two-membered coculture of strains KYM-7 and KYM-8, identified as Cellulomonas cellulans and Agrobacterium tumefaciens, respectively, produced a large amount of an extracellular polysaccharide, designated APK-78, from starch. Each strain in pure culture produced only very little amount of polysaccharide from starch; the coexistence of the two strains from the early stage of cultivation was indispensable for a large amount of polysaccharide to be produced. The polysaccharide APK-78 was acidic and composed of glucose, galactose, succinic acid, and pyruvic acid with a molar ratio of 8.1:1.0:1.7:1.0, indicating that it is a succinoglycan type of polysaccharide.

  12. Use of Phage Display To Identify Potential Pseudomonas aeruginosa Gene Products Relevant to Early Cystic Fibrosis Airway Infections

    PubMed Central

    Beckmann, Christiane; Brittnacher, Mitchell; Ernst, Robert; Mayer-Hamblett, Nicole; Miller, Samuel I.; Burns, Jane L.

    2005-01-01

    Pseudomonas aeruginosa airway infections are a major cause of morbidity and mortality in patients with cystic fibrosis. Treatment of established infections is difficult, even with microbiologically active agents. Thus, prevention of infection is an important goal of management. Isolates from cystic fibrosis patients appear to originate from the environment but adapt to the milieu of the airway of the cystic fibrosis patient and evolve toward a common phenotype. Identification of the antigens expressed early in infection may lead to novel targets for vaccine development. Immunogenic peptides were identified in a J404 random nonapeptide phage display library with serum from cystic fibrosis patients obtained within the first year of P. aeruginosa infection. One hundred sixty-five reactive clones were verified by plaque lift assays, and their inserts were sequenced. The sequenced nonapeptides were compared with the published sequence of strain PAO1, identifying homologies to 76 genes encoding outer membrane and secreted proteins. The majority of these were proteins involved in small-molecule transport, membrane structural proteins, and secreted factors. An in silico analysis was performed that suggested that the occurrence of multiple matches to predominantly outer membrane and secreted proteins was not attributable to random chance. Finally, gene expression array data from early isolates of P. aeruginosa from cystic fibrosis patients was compared with the results from phage display analysis. Eleven outer membrane and secreted proteins were common between the two data sets. These included genes involved in iron acquisition, antibiotic efflux, fimbrial biogenesis, and pyocin synthesis. These results demonstrate the feasibility and validity of this novel approach and suggest potential targets for future development. PMID:15618183

  13. Heterotrimeric G protein alpha subunit controls growth, stress response, extracellular protease activity, and cyclopiazonic acid production in Penicillium camemberti.

    PubMed

    García-Rico, Ramón O; Gil-Durán, Carlos; Rojas-Aedo, Juan F; Vaca, Inmaculada; Figueroa, Luis; Levicán, Gloria; Chávez, Renato

    2017-09-01

    The fungus Penicillium camemberti is widely used in the ripening of various bloomy-rind cheeses. Several properties of P. camemberti are important in cheese ripening, including conidiation, growth and enzyme production, among others. However, the production of mycotoxins such as cyclopiazonic acid during the ripening process by P. camemberti has raised concerns among consumers that demand food with minimal contamination. Here we show that overexpressing an α-subunit from the subgroup I of the heterotrimeric G protein (Gαi) influences several of these processes: it negatively affects growth in a media-dependent manner, triggers conidial germination, reduces the rate of sporulation, affects thermal and osmotic stress resistance, and also extracellular protease and cyclopiazonic acid production. Our results contribute to understanding the biological determinants underlying these biological processes in the economically important fungus P. camemberti. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  14. Effects of Silver Sulphadiazine on Production of Extracellular Proteins by Strains of Staphylococcus Aureus Isolated from Burns Wound.

    PubMed

    Javid Khojasteh, Vahideh; Alfakhri, Souad; Foster, Howard Anthony

    2016-01-01

    Previous studies had shown that sub-inhibitory concentrations of silver sulphadiazine (AgSD) stimulated the production of Toxic Shock Syndrome Toxin-1 in certain strains (responder strains) of Staphylococcus aureus and that protease production was also affected. No changes were detected in other strains (non-responders). Extracellular proteins from eleven responder and non-responder strains grown with and without AgSD were separated by SDS PAGE. There were three classes of response, responder strains that showed enhancement of synthesis of certain proteins, non-responder strains that showed no change and responder strains that showed a general decrease in exoprotein production in the early stages of growth. The results showed that the effects of AgSD were complex and that S. aureus strains were heterogenous with respect to their response to sub-inhibitory concentrations of AgSD.

  15. Application of a novel enzymatic pretreatment using crude hydrolytic extracellular enzyme solution to microalgal biomass for dark fermentative hydrogen production.

    PubMed

    Yun, Yeo-Myeong; Kim, Dong-Hoon; Oh, You-Kwan; Shin, Hang-Sik; Jung, Kyung-Won

    2014-05-01

    In this study, a novel enzymatic pretreatment of Chlorella vulgaris for dark fermentative hydrogen production (DFHP) was performed using crude hydrolytic extracellular enzyme solution (CHEES) extracted from the H2 fermented effluent of food waste. It was found that the enzyme extracted at 52 h had the highest hydrolysis efficiency of microalgal biomass, resulting in the highest H2 yield of 43.1 mL H2/g dry cell weight along with shorter lag periods. Even though a high amount of VFAs was accumulated in CHEES, especially butyrate, the fermentative bacteria on the DFHP was not affected from product inhibition. It also appears that the presence of organic acids, especially lactate and acetate, contained in the CHEES facilitated enhancement of H2 production acted as a co-substrate. Therefore, all of the experimental results suggest that the enhancement of DFHP performance caused by CHEES has a dual role as the hydrolysis enhancer and the co-substrate supplier.

  16. Inhibition of Quorum Sensing-Controlled Virulence Factor Production in Pseudomonas aeruginosa PAO1 by Ayurveda Spice Clove (Syzygium Aromaticum) Bud Extract

    PubMed Central

    Krishnan, Thiba; Yin, Wai-Fong; Chan, Kok-Gan

    2012-01-01

    Quorum sensing controls the virulence determinants in most proteobacteria. In this work, the hexane, chloroform and methanol extracts of an Ayurveda spice, namely clove (Syzygium aromaticum), shown anti-quorum sensing activity. Hexane and methanol extracts of clove inhibited the response of C. violaceum CV026 to exogenously supplied N‐hexanoylhomoserine lactone, in turn preventing violacein production. Chloroform and methanol extracts of clove significantly reduced bioluminescence production by E. coli [pSB1075] grown in the presence of N-(3-oxododecanoyl)-l-homoserine lactone. We demonstrated that clove extract inhibited quorum sensing-regulated phenotypes in Pseudomonas aeruginosa PA01, including expression of lecA::lux (by hexane extract), swarming (maximum inhibition by methanol extract), pyocyanin (maximum inhibition by hexane extract). This study shows that the presence of natural compounds that exhibit anti-quorum sensing activity in the clove extracts may be useful as the lead of anti-infective drugs. PMID:22666015

  17. Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa PAO1 by Ayurveda spice clove (Syzygium aromaticum) bud extract.

    PubMed

    Krishnan, Thiba; Yin, Wai-Fong; Chan, Kok-Gan

    2012-01-01

    Quorum sensing controls the virulence determinants in most proteobacteria. In this work, the hexane, chloroform and methanol extracts of an Ayurveda spice, namely clove (Syzygium aromaticum), shown anti-quorum sensing activity. Hexane and methanol extracts of clove inhibited the response of C. violaceum CV026 to exogenously supplied N-hexanoylhomoserine lactone, in turn preventing violacein production. Chloroform and methanol extracts of clove significantly reduced bioluminescence production by E. coli [pSB1075] grown in the presence of N-(3-oxododecanoyl)-L-homoserine lactone. We demonstrated that clove extract inhibited quorum sensing-regulated phenotypes in Pseudomonas aeruginosa PA01, including expression of lecA::lux (by hexane extract), swarming (maximum inhibition by methanol extract), pyocyanin (maximum inhibition by hexane extract). This study shows that the presence of natural compounds that exhibit anti-quorum sensing activity in the clove extracts may be useful as the lead of anti-infective drugs.

  18. A Geobacter sulfurreducens Strain Expressing Pseudomonas aeruginosa Type IV Pili Localizes OmcS on Pili but Is Deficient in Fe(III) Oxide Reduction and Current Production

    PubMed Central

    Liu, Xing; Tremblay, Pier-Luc; Malvankar, Nikhil S.; Nevin, Kelly P.; Vargas, Madeline

    2014-01-01

    The conductive pili of Geobacter species play an important role in electron transfer to Fe(III) oxides, in long-range electron transport through current-producing biofilms, and in direct interspecies electron transfer. Although multiple lines of evidence have indicated that the pili of Geobacter sulfurreducens have a metal-like conductivity, independent of the presence of c-type cytochromes, this claim is still controversial. In order to further investigate this phenomenon, a strain of G. sulfurreducens, designated strain PA, was constructed in which the gene for the native PilA, the structural pilin protein, was replaced with the PilA gene of Pseudomonas aeruginosa PAO1. Strain PA expressed and properly assembled P. aeruginosa PilA subunits into pili and exhibited a profile of outer surface c-type cytochromes similar to that of a control strain expressing the G. sulfurreducens PilA. Surprisingly, the strain PA pili were decorated with the c-type cytochrome OmcS in a manner similar to the control strain. However, the strain PA pili were 14-fold less conductive than the pili of the control strain, and strain PA was severely impaired in Fe(III) oxide reduction and current production. These results demonstrate that the presence of OmcS on pili is not sufficient to confer conductivity to pili and suggest that there are unique structural features of the G. sulfurreducens PilA that are necessary for conductivity. PMID:24296506

  19. A Geobacter sulfurreducens strain expressing pseudomonas aeruginosa type IV pili localizes OmcS on pili but is deficient in Fe(III) oxide reduction and current production.

    PubMed

    Liu, Xing; Tremblay, Pier-Luc; Malvankar, Nikhil S; Nevin, Kelly P; Lovley, Derek R; Vargas, Madeline

    2014-02-01

    The conductive pili of Geobacter species play an important role in electron transfer to Fe(III) oxides, in long-range electron transport through current-producing biofilms, and in direct interspecies electron transfer. Although multiple lines of evidence have indicated that the pili of Geobacter sulfurreducens have a metal-like conductivity, independent of the presence of c-type cytochromes, this claim is still controversial. In order to further investigate this phenomenon, a strain of G. sulfurreducens, designated strain PA, was constructed in which the gene for the native PilA, the structural pilin protein, was replaced with the PilA gene of Pseudomonas aeruginosa PAO1. Strain PA expressed and properly assembled P. aeruginosa PilA subunits into pili and exhibited a profile of outer surface c-type cytochromes similar to that of a control strain expressing the G. sulfurreducens PilA. Surprisingly, the strain PA pili were decorated with the c-type cytochrome OmcS in a manner similar to the control strain. However, the strain PA pili were 14-fold less conductive than the pili of the control strain, and strain PA was severely impaired in Fe(III) oxide reduction and current production. These results demonstrate that the presence of OmcS on pili is not sufficient to confer conductivity to pili and suggest that there are unique structural features of the G. sulfurreducens PilA that are necessary for conductivity.

  20. Myogenic Progenitor Cells Control Extracellular Matrix Production by Fibroblasts during Skeletal Muscle Hypertrophy.

    PubMed

    Fry, Christopher S; Kirby, Tyler J; Kosmac, Kate; McCarthy, John J; Peterson, Charlotte A

    2017-01-05

    Satellite cells, the predominant stem cell population in adult skeletal muscle, are activated in response to hypertrophic stimuli and give rise to myogenic progenitor cells (MPCs) within the extracellular matrix (ECM) that surrounds myofibers. This ECM is composed largely of collagens secreted by interstitial fibrogenic cells, which influence satellite cell activity and muscle repair during hypertrophy and aging. Here we show that MPCs interact with interstitial fibrogenic cells to ensure proper ECM deposition and optimal muscle remodeling in response to hypertrophic stimuli. MPC-dependent ECM remodeling during the first week of a growth stimulus is sufficient to ensure long-term myofiber hypertrophy. MPCs secrete exosomes containing miR-206, which represses Rrbp1, a master regulator of collagen biosynthesis, in fibrogenic cells to prevent excessive ECM deposition. These findings provide insights into how skeletal stem and progenitor cells interact with other cell types to actively regulate their extracellular environments for tissue maintenance and adaptation. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Inhibition of Streptococcus mutans biofilm formation, extracellular polysaccharide production, and virulence by an oxazole derivative.

    PubMed

    Chen, Lulu; Ren, Zhi; Zhou, Xuedong; Zeng, Jumei; Zou, Jing; Li, Yuqing

    2016-01-01

    Dental caries, a biofilm-related oral disease, is a result of disruption of the microbial ecological balance in the oral environment. Streptococcus mutans, which is one of the primary cariogenic bacteria, produces glucosyltransferases (Gtfs) that synthesize extracellular polysaccharides (EPSs). The EPSs, especially water-insoluble glucans, contribute to the formation of dental plaque, biofilm stability, and structural integrity, by allowing bacteria to adhere to tooth surfaces and supplying the bacteria with protection against noxious stimuli and other environmental attacks. The identification of novel alternatives that selectively inhibit cariogenic organisms without suppressing oral microbial residents is required. The goal of the current study is to investigate the influence of an oxazole derivative on S. mutans biofilm formation and the development of dental caries in rats, given that oxazole and its derivatives often exhibit extensive and pharmacologically important biological activities. Our data shows that one particular oxazole derivative, named 5H6, inhibited the formation of S. mutans biofilms and prevented synthesis of extracellular polysaccharides by antagonizing Gtfs in vitro, without affecting the growth of the bacteria. In addition, topical applications with the inhibitor resulted in diminished incidence and severity of both smooth and sulcal surface caries in vivo with a lower percentage of S. mutans in the animals' dental plaque compared to the control group (P < 0.05). Our results showed that this oxazole derivative has the capacity to inhibit biofilm formation and cariogenicity of S. mutans.

  2. Extraction of extracellular lipids from chemoautotrophic bacteria Serratia sp. ISTD04 for production of biodiesel.

    PubMed

    Bharti, Randhir K; Srivastava, Shaili; Thakur, Indu Shekhar

    2014-08-01

    A CO2 sequestering bacterial strain, Serratia sp. ISTD04, that produces a significant amount of extracellular lipids was isolated from marble mine rocks. (14)C labeling analysis revealed that the rate of assimilation of CO2 by the strain is 0.756×10(-9)μmolCO2fixedcell(-1)h(-1). It was found to produce 466mg/l of extracellular lipid which was characterized using (1)H NMR. After transesterification of lipids, the total saturated and unsaturated FAME was found to be 51% and 49% respectively. The major FAME contained in the biodiesel were palmitic acid methyl ester (C16:0), oleic acid methyl ester (C18:1) and 10-nonadecenoic acid methyl ester (C19:1). Biodiesel produced by Serratia sp. ISTD04 is balanced in terms of FAME composition of good quality. It also contained higher proportion of oleic acid (35%) which makes it suitable for utilization in existing engines. Thus, the strain can be harnessed commercially to sequester CO2 into biodiesel. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Extracellular enzyme production and phylogenetic distribution of yeasts in wastewater treatment systems.

    PubMed

    Yang, Qingxiang; Zhang, Hao; Li, Xueling; Wang, Zhe; Xu, Ying; Ren, Siwei; Chen, Xuanyu; Xu, Yuanyuan; Hao, Hongxin; Wang, Hailei

    2013-02-01

    The abilities of yeasts to produce different extracellular enzymes and their distribution characteristics were studied in municipal, inosine fermentation, papermaking, antibiotic fermentation, and printing and dyeing wastewater treatment systems. The results indicated that of the 257 yeasts, 16, 14, 55, and 11 produced lipase, protease, manganese dependant peroxidase (MnP), and lignin peroxidase (LiP), respectively. They were distributed in 12 identified and four unidentified genera, in which Candida rugosa (AA-M17) and an unidentified Saccharomycetales (AA-Y5), Pseudozyma sp. (PH-M15), Candida sp. (MO-Y11), and Trichosporon montevideense (MO-M16) were shown to have the highest activity of lipase, protease, Mnp, and LiP, respectively. No yeast had amylase, cellulose, phytase, or laccase activity. Although only 60 isolates produced ligninolytic enzymes, 249 of the 257 yeasts could decolorize different dyes through the mechanism of biodegradation (222 isolates) or bio-sorption. The types of extracellular enzymes that the yeasts produced were significantly shaped by the types of wastewater treated.

  4. Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and methyljasmonate.

    PubMed

    Belchí-Navarro, Sarai; Almagro, Lorena; Lijavetzky, Diego; Bru, Roque; Pedreño, María A

    2012-01-01

    In this work, the effect of different inducing factors on trans-resveratrol extracellular production in Monastrell grapevine suspension cultured cells is evaluated. A detailed analysis provides the optimal concentrations of cyclodextrins, methyljasmonate and UV irradiation dosage, optimal cell density, elicitation time and sucrose content in the culture media. The results indicate that trans-resveratrol production decreases as the initial cell density increases for a constant elicitor concentration in Monastrell suspension cultured cells treated with cyclodextrins individually or in combination with methyljasmonate; the decrease observed in cell cultures elicited with cyclodextrins alone is far more drastic than those observed in the combined treatment. trans-Resveratrol extracellular production observed by the joint use of cyclodextrins and methyljasmonate (1,447.8 ± 60.4 μmol trans-resveratrol g(-1) dry weight) is lower when these chemical compounds are combined with UV light short exposure (669.9 ± 45.2 μmol trans-resveratrol g(-1) dry weight). Likewise, trans-resveratrol production is dependent on levels of sucrose in the elicitation medium with the maximal levels observed with 20 g l(-1) sucrose and the joint action of cyclodextrins and 100 μM methyljasmonate. The sucrose concentration did not seem to limit the process although it affects significantly the specific productivity since the lowest sucrose concentration is 10 g l(-1), the highest productivity is reached (100.7 ± 5.8 μmol trans-resveratrol g(-1) dry weight g(-1) sucrose) using cyclodextrins and 25 μM methyljasmonate.

  5. Adaptation of Iron Homeostasis Pathways by a Pseudomonas aeruginosa Pyoverdine Mutant in the Cystic Fibrosis Lung

    PubMed Central

    Nguyen, Angela T.; O'Neill, Maura J.; Watts, Annabelle M.; Robson, Cynthia L.; Lamont, Iain L.; Wilks, Angela

    2014-01-01

    Cystic fibrosis (CF) patients suffer from chronic bacterial lung infections, most notably by Pseudomonas aeruginosa, which persists for decades in the lungs and undergoes extensive evolution. P. aeruginosa requires iron for virulence and uses the fluorescent siderophore pyoverdine to scavenge and solubilize ferric iron during acute infections. Pyoverdine mutants accumulate in the lungs of some CF patients, however, suggesting that the heme and ferrous iron acquisition pathways of P. aeruginosa are more important in this environment. Here, we sought to determine how evolution of P. aeruginosa in the CF lung affects iron acquisition and regulatory pathways through the use of longitudinal CF isolates. These analyses demonstrated a significant reduction of siderophore production during the course of CF lung infection in nearly all strains tested. Mass spectrometry analysis of one of these strains showed that the later CF isolate has streamlined the metabolic flux of extracellular heme through the HemO heme oxygenase, resulting in more-efficient heme utilization. Moreover, gene expression analysis shows that iron regulation via the PrrF small RNAs (sRNAs) is enhanced in the later CF isolate. Finally, analysis of P. aeruginosa gene expression in the lungs of various CF patients demonstrates that both PrrF and HemO are consistently expressed in the CF lung environment. Combined, these results suggest that heme is a critical source of iron during prolonged infection of the CF lung and that changes in iron and heme regulatory pathways play a crucial role in adaptation of P. aeruginosa to this ever-changing host environment. PMID:24727222

  6. Production of extracellular protease and glucose uptake in Bacillus clausii in steady-state and transient continuous cultures.

    PubMed

    Christiansen, Torben; Nielsen, Jens

    2002-08-28

    The production of the extracellular alkaline protease Savinase (EC 3.4.21.62) and glucose uptake in a non-sporulating strain of Bacillus clausii were investigated by analysing steady-state and transients during continuous cultivations. The specific production rate was found to have an optimum at a dilution rate between 0.14 and 0.17 h(-1), whereas the yield of Savinase on glucose was found to increase with decreasing specific growth rate. A linear relationship between the ribosomal RNA content and the specific production rate was found, indicating that the translational capacity may be limiting for product formation. The dynamics of the production of Savinase were studied during step changes in the dilution rate. During a step down in the dilution rate the specific production rate decreased immediately until it reached a new steady value. During a step-up an initial cease in the production rate was observed, but when glucose stopped to accumulate the production rate was regained. The glucose uptake was further investigated when chemostat cultures growing at different dilution rates were exposed to glucose pulses. The maximal glucose uptake capacity was found to be dependent on the initial specific growth rate. Furthermore, the adaptation to high glucose concentrations was faster at high dilution rates than at low dilution rates.

  7. Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions.

    PubMed

    Marx, Joseph G; Carpenter, Shelly D; Deming, Jody W

    2009-01-01

    Extracellular polysaccharide substances (EPS) play critical roles in microbial ecology, including the colonization of extreme environments in the ocean, from sea ice to the deep sea. After first developing a sugar-free growth medium, we examined the relative effects of temperature, pressure, and salinity on EPS production (on a per cell basis) by the obligately marine and psychrophilic gamma-proteobacterium, Colwellia psychrerythraea strain 34H. Over growth-permissive temperatures of approximately 10 to -4 degrees C, EPS production did not change, but from -8 to -14 degrees C when samples froze, EPS production rose dramatically. Similarly, at growth-permissive hydrostatic pressures of 1-200 atm (1 atm = 101.325 kPa) (at -1 and 8 degrees C), EPS production was unchanged, but at higher pressures of 400 and 600 atm EPS production rose markedly. In salinity tests at 10-100 parts per million (and -1 and 5 degrees C), EPS production increased at the freshest salinity tested. Extreme environmental conditions thus appear to stimulate EPS production by this strain. Furthermore, strain 34H recovered best from deep-freezing to -80 degrees C (not found for Earthly environments) if first supplemented with a preparation of its own EPS, rather than other cryoprotectants like glycerol, suggesting EPS production as both a survival strategy and source of compounds with potentially novel properties for biotechnological and other applications.

  8. Utilization of Agro-Industry Residue for Rhamnolipid Production by P. aeruginosa AMB AS7 and Its Application in Chromium Removal.

    PubMed

    Samykannu, Mariaamalraj; Achary, Anant

    2017-02-04

    Coconut oil sludge and oil cake was utilized as carbon source for biosurfactant production by Pseudomonas aeruginosa AMB AS7. The results of optimization study revealed that 1.5% (w/v) of coconut oil cake, 2% (w/v) of coconut oil sludge, pH 7.2, 37 °C, and 120 rpm were the optimum conditions for biosurfactant production. The yield coefficient of biosurfactant on biomass (Y P/X ) was 1.29 g/g. Besides, the results indicated that aeration of 0.5 vvm and agitation of 450 rpm in bioreactor resulted in high volumetric productivity of biosurfactant (r p ) and specific product formation rate (q p ) of 0.115 g/(L h) and 0.0131 g/(g h), respectively in medium containing 2% (w/v) coconut oil sludge. The maximum biosurfactant concentration of 5.53 g/L was obtained during 60 h of cultivation. The emulsification index (EI24) against coconut oil was found to be 88.42 ± 0.5%, and cell surface hydrophobicity of P. aeruginosa AMB AS7 was obtained 32.4 ± 0.9%. FTIR and GC-MS analysis revealed that the biosurfactant is rhamnolipid with anionic charge. The critical micelle concentration (CMC) of rhamnolipid was found to be 50 mg/L. It was found that 66.95% of chromium from aqueous solution can be removed using rhamnolipid at its CMC.

  9. Pseudomonas aeruginosa utilises its type III secretion system to kill the free-living amoeba Acanthamoeba castellanii.

    PubMed

    Abd, Hadi; Wretlind, Bengt; Saeed, Amir; Idsund, Eva; Hultenby, Kjell; Sandström, Gunnar

    2008-01-01

    Pseudomonas aeruginosa is a free-living and common environmental bacterium. It is an opportunistic and nosocomial pathogen causing serious human health problems. To overcome its predators, such as macrophages and environmental phagocytes, it utilises different survival strategies, such as the formation of microcolonies and the production of toxins mediated by a type III secretion system (TTSS). The aim of this study was to examine interaction of TTSS effector proteins of P. aeruginosa PA103 with Acanthamoeba castellanii by co-cultivation, viable count, eosin staining, electron microscopy, apoptosis assay, and statistical analysis. The results showed that P. aeruginosa PA103 induced necrosis and apoptosis to kill A. castellanii by the effects of TTSS effector proteins ExoU, ExoS, ExoT, and ExoY. In comparison, Acanthamoeba cultured alone and co-cultured with P. aeruginosa PA103 lacking the known four TTSS effector proteins were not killed. The results are consistent with P. aeruginosa being a strict extracellular bacterium that needs TTSS to survive in the environment, because the TTSS effector proteins are able to kill its eukaryotic predators, such as Acanthamoeba.

  10. Characterization of Co-Cultivation of Cyanobacteria on Growth, Productions of Polysaccharides and Extracellular Proteins, Nitrogenase Activity, and Photosynthetic Activity.

    PubMed

    Xue, Chuizhao; Wang, Libo; Wu, Tong; Zhang, Shiping; Tang, Tao; Wang, Liang; Zhao, Quanyu; Sun, Yuhan

    2017-01-01

    Cyanobacteria as biofertilizers are benefit to reduce the use of chemical fertilizers and reestablish the ecological system in soil. In general, several strains of cyanobacteria were involved in the biofertilizers. The co-cultivation of cyanobacteria were characterized on growth profile, production of polysaccharides and extracellular proteins, nitrogenase activity, and photosynthetic activity for three selected N2-fixing cyanobacteria, Anabaena cylindrica (B1611 and F243) and Nostoc sp. (F280). After eight-day culture, the highest dry weights were obtained in F280 pure culture and co-cultivation of B1611 and F280. Higher production of extracellular proteins and cell-bonding polysaccharides (CPS) were observed in co-cultivations compared with pure culture. The highest released polysaccharides (RPS) contents were obtained in pure culture of F280 and co-cultivation of F280 and F243. Galactose and glucose were major components of CPS and RPS in all samples. Trehalose was a specific component of RPS in F280 pure culture. Based on the monosaccharide contents of CPS and RPS, F280 was the dominant species in the related treatments of co-cultivation. The nitrogenase activities in all treatments exhibited a sharp rise at the late stage while a significant decrease existed when three cyanobacteria strains were mixed. Photosynthetic activities for all treatments were determined with rapid light curve, and the related parameters were estimated.

  11. Activin A suppresses osteoblast mineralization capacity by altering extracellular matrix (ECM) composition and impairing matrix vesicle (MV) production.

    PubMed

    Alves, Rodrigo D A M; Eijken, Marco; Bezstarosti, Karel; Demmers, Jeroen A A; van Leeuwen, Johannes P T M

    2013-10-01

    During bone formation, osteoblasts deposit an extracellular matrix (ECM) that is mineralized via a process involving production and secretion of highly specialized matrix vesicles (MVs). Activin A, a transforming growth factor-β (TGF-β) superfamily member, was previously shown to have inhibitory effects in human bone formation models through unclear mechanisms. We investigated these mechanisms elicited by activin A during in vitro osteogenic differentiation of human mesenchymal stem cells (hMSC). Activin A inhibition of ECM mineralization coincided with a strong decline in alkaline phosphatase (ALP(1)) activity in extracellular compartments, ECM and matrix vesicles. SILAC-based quantitative proteomics disclosed intricate protein composition alterations in the activin A ECM, including changed expression of collagen XII, osteonectin and several cytoskeleton-binding proteins. Moreover, in activin A osteoblasts matrix vesicle production was deficient containing very low expression of annexin proteins. ECM enhanced human mesenchymal stem cell osteogenic development and mineralization. This osteogenic enhancement was significantly decreased when human mesenchymal stem cells were cultured on ECM produced under activin A treatment. These findings demonstrate that activin A targets the ECM maturation phase of osteoblast differentiation resulting ultimately in the inhibition of mineralization. ECM proteins modulated by activin A are not only determinant for bone mineralization but also possess osteoinductive properties that are relevant for bone tissue regeneration.

  12. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells

    SciTech Connect

    Matsuzaki, Shinichi; Ishizuka, Tamotsu; Yamada, Hidenori; Kamide, Yosuke; Hisada, Takeshi; Ichimonji, Isao; Aoki, Haruka; Yatomi, Masakiyo; Komachi, Mayumi; Tsurumaki, Hiroaki; Ono, Akihiro; Koga, Yasuhiko; Dobashi, Kunio; Mogi, Chihiro; Sato, Koichi; Tomura, Hideaki; Mori, Masatomo; Okajima, Fumikazu

    2011-10-07

    Highlights: {yields} The involvement of extracellular acidification in airway remodeling was investigated. {yields} Extracellular acidification alone induced CTGF production in human ASMCs. {yields} Extracellular acidification enhanced TGF-{beta}-induced CTGF production in human ASMCs. {yields} Proton-sensing receptor OGR1 was involved in acidic pH-stimulated CTGF production. {yields} OGR1 may play an important role in airway remodeling in asthma. -- Abstract: Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connective tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-{beta}-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the G{sub q/11} protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP{sub 3}) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/G{sub q/11} protein and inositol-1,4,5-trisphosphate-induced Ca{sup 2+} mobilization in human ASMCs.

  13. Extracellular DNA in Single- and Multiple-Species Unsaturated Biofilms

    PubMed Central

    Steinberger, R. E.; Holden, P. A.

    2005-01-01

    The extracellular polymeric substances (EPS) of bacterial biofilms form a hydrated barrier between cells and their external environment. Better characterization of EPS could be useful in understanding biofilm physiology. The EPS are chemically complex, changing with both bacterial strain and culture conditions. Previously, we reported that Pseudomonas aeruginosa unsaturated biofilm EPS contains large amounts of extracellular DNA (eDNA) (R. E. Steinberger, A. R. Allen, H. G. Hansma, and P. A. Holden, Microb. Ecol. 43:416-423, 2002). Here, we investigated the compositional similarity of eDNA to cellular DNA, the relative quantity of eDNA, and the terminal restriction fragment length polymorphism (TRFLP) community profile of eDNA in multiple-species biofilms. By randomly amplified polymorphic DNA analysis, cellular DNA and eDNA appear identical for P. aeruginosa biofilms. Significantly more eDNA was produced in P. aeruginosa and Pseudomonas putida biofilms than in Rhodococcus erythropolis or Variovorax paradoxus biofilms. While the amount of eDNA in dual-species biofilms was of the same order of magnitude as that of of single-species biofilms, the amounts were not predictable from single-strain measurements. By the Shannon diversity index and principle components analysis of TRFLP profiles generated from 16S rRNA genes, eDNA of four-species biofilms differed significantly from either cellular or total DNA of the same biofilm. However, total DNA- and cellular DNA-based TRFLP analyses of this biofilm community yielded identical results. We conclude that extracellular DNA production in unsaturated biofilms is species dependent and that the phylogenetic information contained in this DNA pool is quantifiable and distinct from either total or cellular DNA. PMID:16151131

  14. Extracellular DNA in single- and multiple-species unsaturated biofilms.

    PubMed

    Steinberger, R E; Holden, P A

    2005-09-01

    The extracellular polymeric substances (EPS) of bacterial biofilms form a hydrated barrier between cells and their external environment. Better characterization of EPS could be useful in understanding biofilm physiology. The EPS are chemically complex, changing with both bacterial strain and culture conditions. Previously, we reported that Pseudomonas aeruginosa unsaturated biofilm EPS contains large amounts of extracellular DNA (eDNA) (R. E. Steinberger, A. R. Allen, H. G. Hansma, and P. A. Holden, Microb. Ecol. 43:416-423, 2002). Here, we investigated the compositional similarity of eDNA to cellular DNA, the relative quantity of eDNA, and the terminal restriction fragment length polymorphism (TRFLP) community profile of eDNA in multiple-species biofilms. By randomly amplified polymorphic DNA analysis, cellular DNA and eDNA appear identical for P. aeruginosa biofilms. Significantly more eDNA was produced in P. aeruginosa and Pseudomonas putida biofilms than in Rhodococcus erythropolis or Variovorax paradoxus biofilms. While the amount of eDNA in dual-species biofilms was of the same order of magnitude as that of of single-species biofilms, the amounts were not predictable from single-strain measurements. By the Shannon diversity index and principle components analysis of TRFLP profiles generated from 16S rRNA genes, eDNA of four-species biofilms differed significantly from either cellular or total DNA of the same biofilm. However, total DNA- and cellular DNA-based TRFLP analyses of this biofilm community yielded identical results. We conclude that extracellular DNA production in unsaturated biofilms is species dependent and that the phylogenetic information contained in this DNA pool is quantifiable and distinct from either total or cellular DNA.

  15. Baicalein attenuates the quorum sensing-controlled virulence factors of Pseudomonas aeruginosa and relieves the inflammatory response in P. aeruginosa-infected macrophages by downregulating the MAPK and NFκB signal-transduction pathways

    PubMed Central

    Luo, Jing; Kong, Jin-liang; Dong, Bi-ying; Huang, Hong; Wang, Ke; Wu, Li-hong; Hou, Chang-chun; Liang, Yue; Li, Bing; Chen, Yi-qiang

    2016-01-01

    Burgeoning antibiotic resistance and unfavorable outcomes of inflammatory injury after Pseudomonas aeruginosa infection have necessitated the development of novel agents that not only target quorum sensing (QS) but also combat inflammatory injury with the least risk of resistance. This study aimed to assess the anti-QS and anti-inflammatory activities of baicalein, a traditional herbal medicine that is widely used in the People’s Republic of China, against P. aeruginosa infection. We found that subminimum inhibitory concentrations of baicalein efficiently interfered with the QS-signaling pathway of P. aeruginosa via downregulation of the transcription of QS-regulated genes and the translation of QS-signaling molecules. This interference resulted in the global attenuation of QS-controlled virulence factors, such as motility and biofilm formation, and the secretion into the culture supernatant of extracellular virulence factors, including pyocyanin, LasA protease, LasB elastase, and rhamnolipids. Moreover, we examined the anti-inflammatory activity of baicalein and its mode of action via a P. aeruginosa-infected macrophage model to address its therapeutic effect. Baicalein reduced the P. aeruginosa-induced secretion of the inflammatory cytokines IL-1β, IL-6, IL-8, and TNFα. In addition, baicalein suppressed P. aeruginosa-induced activation of the MAPK and NFκB signal-transduction pathways in cocultured macrophages; this may be the mechanism by which baicalein inhibits the production of proinflammatory cytokines. Therefore, our study demonstrates that baicalein represents a potential treatment for P. aeruginosa infection because it clearly exhibits both antibacterial and anti-inflammatory activities. PMID:26792984

  16. Screening, mutagenesis and protoplast fusion of Aspergillus niger for the enhancement of extracellular glucose oxidase production.

    PubMed

    Khattab, A A; Bazaraa, W A

    2005-07-01

    Various strains of Aspergillus niger were screened for extracellular glucose oxidase (GOD) activity. The most effective producer, strain FS-3 (15.9 U mL(-1)), was mutagenized using UV-irradiation or ethyl methane sulfonate. Of the 400 mutants obtained, 32 were found to be resistant to 2-deoxy D: -glucose, and 17 of these exhibited higher GOD activities (from 114.5 to 332.1%) than the original FS-3 strain. Following determination of antifungal resistance of the highest producing mutants, four mutants were selected and used in protoplast fusions in three different intraspecific crosses. All fusants showed higher activities (from 285.5 to 394.2%) than the original strain. Moreover, of the 30 fusants isolated, 19 showed higher GOD activity than their corresponding higher-producing parent strain.

  17. Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: A combinatorial study with azithromycin and gentamicin

    NASA Astrophysics Data System (ADS)

    Das, Manash C.; Sandhu, Padmani; Gupta, Priya; Rudrapaul, Prasenjit; de, Utpal C.; Tribedi, Prosun; Akhter, Yusuf; Bhattacharjee, Surajit

    2016-03-01

    Microbial biofilm are communities of surface-adhered cells enclosed in a matrix of extracellular polymeric substances. Exte