Science.gov

Sample records for aeruginosa stenotrophomonas maltophilia

  1. Colistin susceptibility testing: evaluation of reliability for cystic fibrosis isolates of Pseudomonas aeruginosa and Stenotrophomonas maltophilia

    PubMed Central

    Moskowitz, Samuel M.; Garber, Elizabeth; Chen, Yunhua; Clock, Sarah A.; Tabibi, Setareh; Miller, Amanda K.; Doctor, Michael; Saiman, Lisa

    2010-01-01

    Objectives Antibiotic susceptibility methods that are commonly used to test bacterial isolates from patients with cystic fibrosis are of uncertain reliability for the polymyxins. To assess the reliability of four standard testing methods, this pilot study used a challenge set that included polymyxin-resistant isolates of Pseudomonas aeruginosa and Stenotrophomonas maltophilia. Methods Twenty-five P. aeruginosa and 12 S. maltophilia isolates were tested for susceptibility to colistin (polymyxin E). Repeatability (concordance of replicates performed concurrently), reproducibility (concordance of replicates performed over time) and comparability (concordance of different methods) of agar dilution, broth microdilution, Etest and disc diffusion were assessed through the use of descriptive statistics and scatterplot analyses. Results All four methods displayed excellent repeatability (overall concordance rate of 99%). However, analysis of reproducibility revealed substantially lower rates of concordance (74% for agar dilution, 84% for broth microdilution and Etest, and 91% for disc diffusion). In addition, comparability to agar dilution of the three other methods was generally poor, with overall rates of very major error ranging from 12% for broth microdilution to 18% for Etest and disc diffusion. Conclusions Compared with agar dilution, other susceptibility testing methods give high rates of apparent false polymyxin susceptibility for cystic fibrosis isolates of P. aeruginosa and S. maltophilia. Prospective study of the correlation between in vitro susceptibility and clinical response is needed to clarify whether these discrepancies reflect oversensitivity of the agar dilution method or insensitivity of the other methods. PMID:20430789

  2. Stenotrophomonas maltophilia: an Emerging Global Opportunistic Pathogen

    PubMed Central

    2012-01-01

    Summary: Stenotrophomonas maltophilia is an emerging multidrug-resistant global opportunistic pathogen. The increasing incidence of nosocomial and community-acquired S. maltophilia infections is of particular concern for immunocompromised individuals, as this bacterial pathogen is associated with a significant fatality/case ratio. S. maltophilia is an environmental bacterium found in aqueous habitats, including plant rhizospheres, animals, foods, and water sources. Infections of S. maltophilia can occur in a range of organs and tissues; the organism is commonly found in respiratory tract infections. This review summarizes the current literature and presents S. maltophilia as an organism with various molecular mechanisms used for colonization and infection. S. maltophilia can be recovered from polymicrobial infections, most notably from the respiratory tract of cystic fibrosis patients, as a cocolonizer with Pseudomonas aeruginosa. Recent evidence of cell-cell communication between these pathogens has implications for the development of novel pharmacological therapies. Animal models of S. maltophilia infection have provided useful information about the type of host immune response induced by this opportunistic pathogen. Current and emerging treatments for patients infected with S. maltophilia are discussed. PMID:22232370

  3. Stenotrophomonas maltophilia: an emerging global opportunistic pathogen.

    PubMed

    Brooke, Joanna S

    2012-01-01

    Stenotrophomonas maltophilia is an emerging multidrug-resistant global opportunistic pathogen. The increasing incidence of nosocomial and community-acquired S. maltophilia infections is of particular concern for immunocompromised individuals, as this bacterial pathogen is associated with a significant fatality/case ratio. S. maltophilia is an environmental bacterium found in aqueous habitats, including plant rhizospheres, animals, foods, and water sources. Infections of S. maltophilia can occur in a range of organs and tissues; the organism is commonly found in respiratory tract infections. This review summarizes the current literature and presents S. maltophilia as an organism with various molecular mechanisms used for colonization and infection. S. maltophilia can be recovered from polymicrobial infections, most notably from the respiratory tract of cystic fibrosis patients, as a cocolonizer with Pseudomonas aeruginosa. Recent evidence of cell-cell communication between these pathogens has implications for the development of novel pharmacological therapies. Animal models of S. maltophilia infection have provided useful information about the type of host immune response induced by this opportunistic pathogen. Current and emerging treatments for patients infected with S. maltophilia are discussed.

  4. Synergistic activities of macrolide antibiotics against Pseudomonas aeruginosa, Burkholderia cepacia, Stenotrophomonas maltophilia, and Alcaligenes xylosoxidans isolated from patients with cystic fibrosis.

    PubMed

    Saiman, Lisa; Chen, Yunhua; Gabriel, Pablo San; Knirsch, Charles

    2002-04-01

    Azithromycin and clarithromycin were paired with other antibiotics to test synergistic activity against 300 multidrug-resistant pathogens isolated from cystic fibrosis (CF) patients. Clarithromycin-tobramycin was most active against Pseudomonas aeruginosa and inhibited 58% of strains. Azithromycin-trimethoprim-sulfamethoxazole, azithromycin-ceftazidime, and azithromycin-doxycycline or azithromycin-trimethoprim-sulfamethoxazole inhibited 40, 20, and 22% of Stenotrophomonas maltophilia, Burkholderia cepacia complex, and Achromobacter (Alcaligenes) xylosoxidans strains, respectively.

  5. In vitro efficacy of copper and silver ions in eradicating Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Acinetobacter baumannii: implications for on-site disinfection for hospital infection control.

    PubMed

    Huang, Hsin-I; Shih, Hsiu-Yun; Lee, Chien-Ming; Yang, Thomas C; Lay, Jiunn-Jyi; Lin, Yusen E

    2008-01-01

    Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Acinetobacter baumannii are major opportunistic waterborne pathogens causing hospital-acquired infections. Copper-silver ionization has been shown to be effective in controlling Legionella colonization in hospital water systems. The objective was to determine the efficacy of copper and silver ions alone and in combination in eradicating P. aeruginosa, S. maltophilia and A. baumannii at the concentration applied to Legionella control. Kill curve experiments and mathematical modeling were conducted at copper and silver ion concentrations of 0.1, 0.2, 0.4, 0.8 and 0.01, 0.02, 0.04, 0.08 mg/L, respectively. The combinations of copper and silver ions were tested at concentrations of 0.2/0.02 and 0.4/0.04 mg/L, respectively. Initial organism concentration was ca. of 3 x 10(6)cfu/mL, and viability of the test organisms was assessed at predetermined time intervals. Samples (0.1 mL) withdrawn were mixed with 10 microL neutralizer solution immediately, serially diluted and plated in duplicate onto blood agar plates. The culture plates were incubated for 48 h at 37 degrees C and enumerated for the cfu (detection limit 10 cfu/mL). The results showed all copper ion concentrations tested (0.1-0.8 mg/L) achieved more than 99.999% reduction of P. aeruginosa which appears to be more susceptible to copper ions than S. maltophilia and A. baumannii. Silver ions concentration of 0.08 mg/L achieved more than 99.999% reduction of P. aeruginosa, S. maltophilia and A. baumannii in 6, 12 and 96 h, respectively. Combination of copper and silver ions exhibited a synergistic effect against P. aeruginosa and A. baumannii while the combination exhibited an antagonistic effect against S. maltophilia. Ionization may have a potential to eradicate P. aeruginosa, S. maltophilia and A. baumannii from hospital water systems.

  6. A Patient Presenting with Cholangitis due to Stenotrophomonas Maltophilia and Pseudomonas Aeruginosa Successfully Treated with Intrabiliary Colistine

    PubMed Central

    Pérez, Pablo N.; Ramírez, María A.; Fernández, José A.; de Guevara, Laura Ladrón

    2014-01-01

    Anatomical barriers for antibiotic penetration can pose a particular challenge in the clinical setting. Stenotrophomonas maltophilia (SM) and Pseudomonas aeruginosa (PA) are two pathogens capable of developing multiple drug-resistance (MDR) mechanisms. We report the case of a 56-year-old female patient with a permanent percutaneous transhepatic biliary drainage (PTBD), who was admitted to our hospital with a cholangitis due to a MDR Escherichia coli strain. Upon admission, culture-guided antimicrobial therapy was conducted and the biliary catheter was replaced, with poor clinical response. Subsequently, SM and PA were detected. Treatment with fosfomycin and colistine was initiated, again without adequate response. Systemic colistine and tigecycline along with an intrabiliary infusion of colistine for 5 days was then used, followed by parenteral fosfomycin and tigecycline for 7 days. The patient was then successfully discharged. This is the first case report we are aware of on the use of intrabiliary colistine. It describes a new approach to treating cholangitis by MDR bacteria in patients with a PTBD. PMID:25002957

  7. A Patient Presenting with Cholangitis due to Stenotrophomonas Maltophilia and Pseudomonas Aeruginosa Successfully Treated with Intrabiliary Colistine.

    PubMed

    Pérez, Pablo N; Ramírez, María A; Fernández, José A; de Guevara, Laura Ladrón

    2014-05-13

    Anatomical barriers for antibiotic penetration can pose a particular challenge in the clinical setting. Stenotrophomonas maltophilia (SM) and Pseudomonas aeruginosa (PA) are two pathogens capable of developing multiple drug-resistance (MDR) mechanisms. We report the case of a 56-year-old female patient with a permanent percutaneous transhepatic biliary drainage (PTBD), who was admitted to our hospital with a cholangitis due to a MDR Escherichia coli strain. Upon admission, culture-guided antimicrobial therapy was conducted and the biliary catheter was replaced, with poor clinical response. Subsequently, SM and PA were detected. Treatment with fosfomycin and colistine was initiated, again without adequate response. Systemic colistine and tigecycline along with an intrabiliary infusion of colistine for 5 days was then used, followed by parenteral fosfomycin and tigecycline for 7 days. The patient was then successfully discharged. This is the first case report we are aware of on the use of intrabiliary colistine. It describes a new approach to treating cholangitis by MDR bacteria in patients with a PTBD.

  8. Polymerase chain reaction for the detection of Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Burkholderia cepacia in sputum of patients with cystic fibrosis.

    PubMed

    Karpati, F; Jonasson, J

    1996-12-01

    Occurrence of Pseudomonas aeruginosa, Stenotrophomonas (Xanthomonas) maltophilia and Burkholderia (Pseudomonas) cepacia in sputum of cystic fibrosis (CF) patients was demonstrated with a simple and rapid polymerase chain reaction (PCR) technique. The PCR was performed with a set of three primer pairs based on 16S rRNA sequences after sputum preparation with dithiothreitol and NaOH lysis. All three pathogens could be individually detected by the use of this technique. To prevent carry-over contamination, dUTP and uracil-N-glycosylase were included in the reaction. The amplicons were visualized by agarose gel electrophoresis. Sputum culture was performed on all samples. Ninety specimens from CF patients were analysed. The sensitivity for the detection of P. aeruginosa was 37/40 (93%) compared to culture. Bacterial growth of P. aeruginosa was found in three cases, where PCR amplicons were not detected, while PCR was positive in five cases, where culture did not reveal the presence of this bacterium. For this reason, the specificity was 45/50 (90%). For S. maltophilia, the PCR was less sensitive than culture (positive in three of six cases). In our series, B. cepacia was detected by culture in one case and this was also detected by PCR. There were no false-positive PCR results regarding S. maltophilia or B. cepacia. Thus, combined PCR-based detection of these three clinically relevant bacteria in sputum samples from CF patients can be performed by a reliable technique in a relatively simple manner. The present data indicate a high sensitivity and specificity for P. aeruginosa. The lower sensitivity observed for the detection of S. maltophilia in sputum and B. cepacia, as estimated from laboratory strains, may depend on PCR conditions and genetic heterogeneity, respectively. The greatest gains with this method can be made when it is used for the early detection of P. aeruginosa in sputum-producing CF patients.

  9. [Three cases of Stenotrophomonas maltophilia pneumonia].

    PubMed

    Fujino, Satoru; Hisatomi, Keiko; Iida, Tetsuya; Ohe, Nobuharu; Hirakata, Yoichi; Hara, Kohei

    2003-07-01

    We encountered 3 cases of pneumonia caused by Stenotrophomonas maltophilia between January and June 2001. S. maltophilia is resistant to broad-spectrum antibiotics including carbapenem. Reported studies indicate that excessive use of broad-spectrum antibiotics may induce resistance in this organism. However, our data showed that there was no clear correlation between the amounts of carbapenems used in our hospital and the isolation of the organism. If broad-spectrum antibiotics are ineffective or even actually worsen a case of pneumonia, S. maltophilia may be the sole causative organism, and a potent double- (or triple-) combination therapy consisting of minocyclin and one or two other potent antimicrobial agents should be considered.

  10. Differentiation of pulmonary bacterial pathogens in cystic fibrosis by volatile metabolites emitted by their in vitro cultures: Pseudomonas aeruginosa, Staphylococcus aureus, Stenotrophomonas maltophilia and the Burkholderia cepacia complex.

    PubMed

    Dryahina, Kseniya; Sovová, Kristýna; Nemec, Alexandr; Španěl, Patrik

    2016-08-10

    As a contribution to the continuing search for breath biomarkers of lung and airways infection in patients with cystic fibrosis, CF, we have analysed the volatile metabolites released in vitro by Pseudomonas aeruginosa and other bacteria involved in respiratory infections in these patients, i.e. those belonging to the Burkholderia cepacia complex, Staphylococcus aureus or Stenotrophomonas maltophilia. These opportunistic pathogens are generally harmless to healthy people but they may cause serious infections in patients with severe underlying disease or impaired immunity such as CF patients. Volatile organic compounds emitted from the cultures of strains belonging to the above-mentioned four taxa were analysed by selected ion flow tube mass spectrometry. In order to minimize the effect of differences in media composition all strains were cultured in three different liquid media. Multivariate statistical analysis reveals that the four taxa can be well discriminated by the differences in the headspace VOC concentration profiles. The compounds that should be targeted in breath as potential biomarkers of airway infection were identified for each of these taxa of CF pathogens.

  11. Polysorbate 80 and polymyxin B inhibit Stenotrophomonas maltophilia biofilm.

    PubMed

    Malinowski, Adam M; McClarty, Bryan M; Robinson, Carolyn; Spear, William; Sanchez, Maria; Sparkes, Timothy C; Brooke, Joanna S

    2017-02-01

    Stenotrophomonas maltophilia is an opportunistic multiple-drug-resistant human pathogen that forms biofilms on implanted medical devices. We examined the potential inhibitory activity of polysorbate 80 and polymyxin B against S. maltophilia. A combination of subMIC polymyxin B and polysorbate 80 was the most effective inhibitor of growth and biofilm formation.

  12. Potential novel therapeutic strategies in cystic fibrosis: antimicrobial and anti-biofilm activity of natural and designed α-helical peptides against Staphylococcus aureus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia

    PubMed Central

    2012-01-01

    Background Treatment of cystic fibrosis-associated lung infections is hampered by the presence of multi-drug resistant pathogens, many of which are also strong biofilm producers. Antimicrobial peptides, essential components of innate immunity in humans and animals, exhibit relevant in vitro antimicrobial activity although they tend not to select for resistant strains. Results Three α-helical antimicrobial peptides, BMAP-27 and BMAP-28 of bovine origin, and the artificial P19(9/B) peptide were tested, comparatively to Tobramycin, for their in vitro antibacterial and anti-biofilm activity against 15 Staphylococcus aureus, 25 Pseudomonas aeruginosa, and 27 Stenotrophomonas maltophilia strains from cystic fibrosis patients. All assays were carried out in physical-chemical experimental conditions simulating a cystic fibrosis lung. All peptides showed a potent and rapid bactericidal activity against most P. aeruginosa, S. maltophilia and S. aureus strains tested, at levels generally higher than those exhibited by Tobramycin and significantly reduced biofilm formation of all the bacterial species tested, although less effectively than Tobramycin did. On the contrary, the viability-reducing activity of antimicrobial peptides against preformed P. aeruginosa biofilms was comparable to and, in some cases, higher than that showed by Tobramycin. Conclusions The activity shown by α-helical peptides against planktonic and biofilm cells makes them promising “lead compounds” for future development of novel drugs for therapeutic treatment of cystic fibrosis lung disease. PMID:22823964

  13. Microbiological and Clinical Aspects of Infection Associated with Stenotrophomonas maltophilia

    PubMed Central

    Denton, Miles; Kerr, Kevin G.

    1998-01-01

    The gram-negative bacterium Stenotrophomonas maltophilia is increasingly recognized as an important cause of nosocomial infection. Infection occurs principally, but not exclusively, in debilitated and immunosuppressed individuals. Management of S. maltophilia-associated infection is problematic because many strains of the bacterium manifest resistance to multiple antibiotics. These difficulties are compounded by methodological problems in in vitro susceptibility testing for which there are, as yet, no formal guidelines. Despite its acknowledged importance as a nosocomial pathogen, little is known of the epidemiology of S. maltophilia, and although it is considered an environmental bacterium, its sources and reservoirs are often not readily apparent. Molecular typing systems may contribute to our knowledge of the epidemiology of S. maltophilia infection, thus allowing the development of strategies to interrupt the transmission of the bacterium in the hospital setting. Even less is known of pathogenic mechanisms and putative virulence factors involved in the natural history of S. maltophilia infection and this, coupled with difficulties in distinguishing colonization from true infection, has fostered the view that the bacterium is essentially nonpathogenic. This article aims to review the current taxonomic status of S. maltophilia, and it discusses the laboratory identification of the bacterium. The epidemiology of the organism is considered with particular reference to nosocomial outbreaks, several of which have been investigated by molecular typing techniques. Risk factors for acquisition of the bacterium are also reviewed, and the ever-expanding spectrum of clinical syndromes associated with S. maltophilia is surveyed. Antimicrobial resistance mechanisms, pitfalls in in vitro susceptibility testing, and therapy of S. maltophilia infections are also discussed. PMID:9457429

  14. Stenotrophomonas maltophilia: An Emerging Pathogen in Paediatric Population

    PubMed Central

    Nayyar, Charu; Thakur, Preeti; Saigal, Karnika

    2017-01-01

    Introduction Stenotrophomonas maltophilia (formerly Pseudomonas maltophilia/Xanthomonas maltophilia), a Gram- negative, non-fermenting bacillus, is being increasingly recognized as a threatening nosocomial pathogen, associated with significant mortality. Aim To determine the prevalence of infection, antimicrobial susceptibility pattern and clinical outcome of S. maltophilia in a paediatric population. Materials and Methods This was a retrospective study conducted over a period of eight months, i.e., October 2015 to May 2016. All clinical samples received in the microbiology laboratory during the study period were processed using standard microbiological procedures. S. maltophilia isolates were selected. Antibiotic susceptibility was performed for levofloxacin and trimethoprim-sulphamethoxazole by Vitek 2C system (Biomerieux, France). Average length of stay and mortality caused by S. maltophilia infection was compared with age and sex matched controls without S. maltophilia infection. Results A total of 16,234 clinical specimens were received in the microbiology laboratory in the study period, with 2,734 pathogenic bacteria isolated. A total of 1,339 (1.7% of total isolates) Gram-negative bacteria were isolated, out of which 414 were non-fermenters. Among the non-fermenters, 23 (5.5%) were S. maltophilia. Out of the 23 isolates, 15 (65.2%) were isolated from blood, 4 (17.3%) were isolated from urine and tracheal aspirate each. A total of 91.3% of strains were susceptible and 8.6% were resistant to trimethoprim-sulphamethoxazole. Total 80% of strains were sensitive and 20% had intermediate susceptibility for levofloxacin. None of the strains were resistant to levofloxacin. Average length of stay of patients with S. maltophilia infection was found out to be 23.3 days as compared to 44.8 days in controls. The average mortality of patients with S. maltophilia infection was found to be same as that of controls (35.2%). Conclusion S. maltophilia is becoming an important

  15. Antibiotic resistance in the opportunistic pathogen Stenotrophomonas maltophilia.

    PubMed

    Sánchez, María B

    2015-01-01

    Stenotrophomonas maltophilia is an environmental bacterium found in the soil, associated with plants and animals, and in aquatic environments. It is also an opportunistic pathogen now causing an increasing number of nosocomial infections. The treatment of S. maltophilia is quite difficult given its intrinsic resistance to a number of antibiotics, and because it is able to acquire new resistances via horizontal gene transfer and mutations. Certainly, strains resistant to quinolones, cotrimoxale and/or cephalosporins-antibiotics commonly used to treat S. maltophilia infections-have emerged. The increasing number of available S. maltophilia genomes has allowed the identification and annotation of a large number of antimicrobial resistance genes. Most encode inactivating enzymes and efflux pumps, but information on their role in intrinsic and acquired resistance is limited. Non-typical antibiotic resistance mechanisms that also form part of the intrinsic resistome have been identified via mutant library screening. These include non-typical antibiotic resistance genes, such as bacterial metabolism genes, and non-inheritable resistant phenotypes, such as biofilm formation and persistence. Their relationships with resistance are complex and require further study.

  16. Molecular characterization of 2-chlorobiphenyl degrading Stenotrophomonas maltophilia GS-103.

    PubMed

    Somaraja, P K; Gayathri, D; Ramaiah, N

    2013-08-01

    The catabolic potential of transformer oil contaminated soil bacteria in aerobic degradation of polychlorinated biphenyls (PCB) were assessed. Transformer oil contaminated soil sample was subjected to microcosm enrichment experiments (PAS medium/biphenyl as sole carbon source). PCB-degrading activity of the enrichment cultures in PAS medium with the addition of 2-chlorobiphenyl were analysed by GC-MS indicated that, although the isolates differed in PCB-degrading capabilities, all of the enrichment cultures expressed activity toward at least some of the lower chlorinated congeners. Biphenyl-utilizing bacteria isolated from the most active PCB-degrading mixed cultures showed little taxonomic diversity and identified as Stenotrophomonas maltophilia GS-103.

  17. Isolation and characterization of novel giant Stenotrophomonas maltophilia phage phiSMA5.

    PubMed

    Chang, Hsiao-Chuan; Chen, Chiy-Rong; Lin, Juey-Wen; Shen, Gwan-Han; Chang, Kai-Ming; Tseng, Yi-Hsiung; Weng, Shu-Fen

    2005-03-01

    Stenotrophomonas maltophilia is one of the most prevalent opportunistic bacteria causing nosocomial infections. It has become problematic because most of the isolates are resistant to multiple antibiotics, and therefore, development of phage therapy has attracted strong attention. In this study, eight S. maltophilia phages were isolated from clinical samples including patient specimens, catheter-related devices, and wastewater. These phages can be divided into four distinct groups based on host range and digestibility of the phage DNAs with different restriction endonucleases. One of them, designated phiSMA5, was further characterized. Electron microscopy showed it resembled Myoviridae, with an isometric head (90 nm in diameter), a tail (90 nm long), a baseplate (25 nm wide), and short tail fibers. The phiSMA5 double-stranded DNA, refractory to digestion by most restriction enzymes, was tested and estimated to be 250 kb by pulsed-field gel electrophoresis. This genome size is second to that of the largest phage, phiKZ of Pseudomonas aeruginosa. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis, 25 virion proteins were visualized. N-terminal sequencing of four of them suggested that each of them might have had its N terminus cleaved off. Among the 87 S. maltophilia strains collected in this study, only 61 were susceptible to phiSMA5, indicating that more phages are needed toward a phage therapy strategy. Since literature search yielded no information about S. maltophilia phages, phiSMA5 appears to be the first reported.

  18. Dengue co-infection in a blood stream infection caused by Stenotrophomonas maltophilia: A case report.

    PubMed

    Srirangaraj, Sreenivasan; Kali, Arunava; Vijayan, Sivaranjini

    2014-01-01

    Stenotrophomonas maltophilia (S. maltophilia) is an emerging opportunistic bacterial pathogen with resistance to several commonly used antibiotics. Owing to its multidrug resistance (MDR), management of S. maltophilia blood stream infection (BSI) is challenging and requires the selection of appropriate antibiotic therapy. The presence of thrombocytopenia and shock are independent risk factors associated with increased mortality in patients with S. maltophilia BSI. We describe an unusual case of S. maltophilia BSI in a middle-age female complicated by dengue fever. We highlight the importance of early recognition of both dengue and S. maltophilia infection in management of such cases.

  19. Polymorphic Mutation Frequencies of Clinical and Environmental Stenotrophomonas maltophilia Populations▿

    PubMed Central

    Turrientes, María Carmen; Baquero, María Rosario; Sánchez, María Blanca; Valdezate, Sylvia; Escudero, Esther; Berg, Gabrielle; Cantón, Rafael; Baquero, Fernando; Galán, Juan Carlos; Martínez, José Luis

    2010-01-01

    Mutation frequencies were studied in 174 Stenotrophomonas maltophilia isolates from clinical and nonclinical environments by detecting spontaneous rifampin-resistant mutants in otherwise-susceptible populations. The distribution of mutation frequencies followed a pattern similar to that found for other bacterial species, with a modal value of 1 × 10−8. Nevertheless, the proportion of isolates showing mutation frequencies below the modal value (hypomutators) was significantly higher for S. maltophilia than those so far reported in other organisms. Low mutation frequencies were particularly frequent among environmental S. maltophilia strains (58.3%), whereas strong mutators were found only among isolates with a clinical origin. These results indicate that clinical environments might select bacterial populations with high mutation frequencies, likely by second-order selection processes. In several of the strong-mutator isolates, functional-complementation assays with a wild-type allele of the mutS gene demonstrated that the mutator phenotype was due to the impairment of MutS activity. In silico analysis of the amino acid changes present in the MutS proteins of these hypermutator strains in comparison with the normomutator isolates suggests that the cause of the defect in MutS might be a H683P amino acid change. PMID:20097818

  20. Polymorphic mutation frequencies of clinical and environmental Stenotrophomonas maltophilia populations.

    PubMed

    Turrientes, María Carmen; Baquero, María Rosario; Sánchez, María Blanca; Valdezate, Sylvia; Escudero, Esther; Berg, Gabrielle; Cantón, Rafael; Baquero, Fernando; Galán, Juan Carlos; Martínez, José Luis

    2010-03-01

    Mutation frequencies were studied in 174 Stenotrophomonas maltophilia isolates from clinical and nonclinical environments by detecting spontaneous rifampin-resistant mutants in otherwise-susceptible populations. The distribution of mutation frequencies followed a pattern similar to that found for other bacterial species, with a modal value of 1 x 10(-8). Nevertheless, the proportion of isolates showing mutation frequencies below the modal value (hypomutators) was significantly higher for S. maltophilia than those so far reported in other organisms. Low mutation frequencies were particularly frequent among environmental S. maltophilia strains (58.3%), whereas strong mutators were found only among isolates with a clinical origin. These results indicate that clinical environments might select bacterial populations with high mutation frequencies, likely by second-order selection processes. In several of the strong-mutator isolates, functional-complementation assays with a wild-type allele of the mutS gene demonstrated that the mutator phenotype was due to the impairment of MutS activity. In silico analysis of the amino acid changes present in the MutS proteins of these hypermutator strains in comparison with the normomutator isolates suggests that the cause of the defect in MutS might be a H683P amino acid change.

  1. Infective endocarditis caused by Stenotrophomonas maltophilia: A report of two cases and review of literature.

    PubMed

    Subhani, Shaik; Patnaik, Amar N; Barik, Ramachandra; Nemani, Lalita

    2016-09-01

    Stenotrophomonas maltophilia is known for nosocomial habitat. Infective endocarditis due to this organism is rare and challenging because of resistance to multiple broad-spectrum antibiotic regimens. Early detection and appropriate antibiotic based on culture sensitivity reports are the key to its management. We report the diagnosis, treatment, and outcome of two cases of infective endocarditis caused by S. maltophilia.

  2. Draft Genome Sequence of Stenotrophomonas maltophilia SBo1 Isolated from Bactrocera oleae

    PubMed Central

    Blow, Frances; Vontas, John

    2016-01-01

    Bacteria of the genus Stenotrophomonas are ubiquitous in the environment and are increasingly associated with insects. Stenotrophomonas maltophilia SBo1 was cultured from the gut of Bactrocera oleae. The draft genome sequence presented here will inform future investigations into the nature of the interaction between insects and their microbiota. PMID:27660769

  3. A molecular biological protocol to distinguish potentially human pathogenic Stenotrophomonas maltophilia from plant-associated Stenotrophomonas rhizophila.

    PubMed

    Ribbeck-Busch, Kathrin; Roder, Anja; Hasse, Dirk; de Boer, Wietse; Martínez, José Luis; Hagemann, Martin; Berg, Gabriele

    2005-11-01

    In recent years, the importance of the Gram-negative bacterium Stenotrophomonas as an opportunistic pathogen as well as in biotechnology has increased. The aim of the present study was to develop new methods for distinguishing between strains closely related to the potentially human pathogenic Stenotrophomonas maltophilia and those closely related to the plant-associated Stenotrophomonas rhizophila. To accomplish this, 58 strains were characterized by 16S rDNA sequencing and amplified ribosomal DNA restriction analysis (ARDRA), and the occurrence of specific functional genes. Based on 16S rDNA sequences, an ARDRA protocol was developed which allowed differentiation between strains of the S. maltophilia and the S. rhizophila group. As it was known that only salt-treated cells of S. rhizophila were able to synthesize the compatible solute glucosylglycerol (GG), the ggpS gene responsible for GG synthesis was used for differentiation between both species and it was confirmed that it only occurred in S. rhizophila strains. As a further genetic marker the smeD gene, which is part of the genes coding for the multidrug efflux pump SmeDEF from S. maltophilia, was used. Based on the results we propose a combination of fingerprinting techniques using the 16S rDNA and the functional genes ggpS and smeD to distinguish both Stenotrophomonas species.

  4. New strategies against Stenotrophomonas maltophilia: a serious worldwide intrinsically drug-resistant opportunistic pathogen.

    PubMed

    Brooke, Joanna S

    2014-01-01

    Stenotrophomonas maltophilia is a worldwide human opportunistic pathogen associated with serious infections in humans, and is most often recovered from respiratory tract infections. In addition to its intrinsic drug resistance, this organism may acquire resistance via multiple molecular mechanisms. New antimicrobial strategies are needed to combat S. maltophilia infections, particularly in immunocompromised patients, cystic fibrosis patients with polymicrobial infections of the lung, and in patients with chronic infections. This editorial reports on newer drugs and antimicrobial strategies and their potential for use in treatment of S. maltophilia infections, the development of new technologies to detect this organism, and identifies strategies currently in use to reduce transmission of this pathogen.

  5. Persistence and variability of Stenotrophomonas maltophilia in cystic fibrosis patients, Madrid, 1991-1998.

    PubMed Central

    Valdezate, S.; Vindel, A.; Maiz, L.; Baquero, F.; Escobar, H.; Cantón, R.

    2001-01-01

    During 1991 to 1998 at least one Stenotrophomonas maltophilia pulmonary infection was observed in 25 (24%) of 104 cystic fibrosis patients at the same unit of our hospital in Spain. Ribotyping and pulse-field gel electrophoresis (PFGE) characterization of 76 S. maltophilia isolates from these patients indicated an overall clonal incidence of 47.1%, reflecting new strains in 44% of patients with repeated positive cultures for S. maltophilia. Six patients with repeated episodes were persistently colonized (> or = 6 months) with the same strain. S. maltophilia bacterial counts were higher (geometric mean, 2.9 x 10(8) cfu/mL) in patients with repeated episodes than in those with a single episode (8.4 x 10(4) cfu/mL, p < 0.01). Single episodes of S. maltophilia occurred in patients < 10 years of age (43% [6/14]), whereas chronic colonization occurred more frequently in older patients (> 16 years of age). PMID:11266301

  6. Genome Sequence of Stenotrophomonas maltophilia Strain SmAs1, Isolated From the Asian Malaria Mosquito Anopheles stephensi

    PubMed Central

    Hughes, Grant L.; Raygoza Garay, Juan Antonio; Koundal, Vikas; Mwangi, Michael M.

    2016-01-01

    An isolate of Stenotrophomonas maltophilia was cultured from the Asian malaria vector Anopheles stephensi. Here, we present the annotated draft genome sequence of this S. maltophilia strain. This genomic resource will facilitate further characterization of bacteria associated with mosquitoes. PMID:26966198

  7. Metagenome-Assembled Draft Genome Sequence of a Novel Microbial Stenotrophomonas maltophilia Strain Isolated from Caenorhabditis remanei Tissue

    PubMed Central

    Murdock, Duncan A.; Thanthiriwatte, Chamali; Willis, John H.; Phillips, Patrick C.

    2017-01-01

    ABSTRACT Stenotrophomonas maltophilia is a Gram-negative aerobic bacterium and emerging nosocomial pathogen. Here, we present a draft genome sequence for an S. maltophilia strain assembled from a metagenomic DNA extract isolated from a laboratory stock of the nematode worm Caenorhabditis remanei. PMID:28209833

  8. Stenotrophomonas maltophilia and Vermamoeba vermiformis relationships: bacterial multiplication and protection in amoebal-derived structures.

    PubMed

    Cateau, Estelle; Maisonneuve, Elodie; Peguilhan, Samuel; Quellard, Nathalie; Hechard, Yann; Rodier, Marie-Helene

    2014-12-01

    Stenotrophomonas maltophilia, a bacteria involved in healthcare-associated infections, can be found in hospital water systems. Other microorganisms, such as Free Living amoebae (FLA), are also at times recovered in the same environment. Amongst these protozoa, many authors have reported the presence of Vermamoeba vermiformis. We show here that this amoeba enhances S. maltophilia growth and harbors the bacteria in amoebal-derived structures after 28 days in harsh conditions. These results highlight the fact that particular attention should be paid to the presence of FLA in hospital water systems, because of their potential implication in survival and growth of pathogenic bacterial species.

  9. Successful Treatment of Bloodstream Infection Due to Metallo-β-Lactamase-Producing Stenotrophomonas maltophilia in a Renal Transplant Patient

    PubMed Central

    Mojica, Maria F.; Ouellette, Christopher P.; Leber, Amy; Becknell, M. Brian; Ardura, Monica I.; Perez, Federico; Aitken, Samuel L.

    2016-01-01

    Stenotrophomonas maltophilia is an emerging multidrug-resistant (MDR) opportunistic pathogen for which new antibiotic options are urgently needed. We report our clinical experience treating a 19-year-old renal transplant recipient who developed prolonged bacteremia due to metallo-β-lactamase-producing S. maltophilia refractory to conventional treatment. The infection recurred despite a prolonged course of colistimethate sodium (colistin) but resolved with the use of a novel drug combination with clinical efficacy against the patient's S. maltophilia isolate. PMID:27551008

  10. A Stenotrophomonas maltophilia Strain Evades a Major Caenorhabditis elegans Defense Pathway

    PubMed Central

    White, Corin V.; Darby, Brian J.; Breeden, Robert J.

    2015-01-01

    Stenotrophomonas maltophilia is a ubiquitous bacterium and an emerging nosocomial pathogen. This bacterium is resistant to many antibiotics, associated with a number of infections, and a significant health risk, especially for immunocompromised patients. Given that Caenorhabditis elegans shares many conserved genetic pathways and pathway components with higher organisms, the study of its interaction with bacterial pathogens has biomedical implications. S. maltophilia has been isolated in association with nematodes from grassland soils, and it is likely that C. elegans encounters this bacterium in nature. We found that a local S. maltophilia isolate, JCMS, is more virulent than the other S. maltophilia isolates (R551-3 and K279a) tested. JCMS virulence correlates with intestinal distension and bacterial accumulation and requires the bacteria to be alive. Many of the conserved innate immune pathways that serve to protect C. elegans from various pathogenic bacteria also play a role in combating S. maltophilia JCMS. However, S. maltophilia JCMS is virulent to normally pathogen-resistant DAF-2/16 insulin-like signaling pathway mutants. Furthermore, several insulin-like signaling effector genes were not significantly differentially expressed between S. maltophilia JCMS and avirulent bacteria (Escherichia coli OP50). Taken together, these findings suggest that S. maltophilia JCMS evades the pathogen resistance conferred by the loss of DAF-2/16 pathway components. In summary, we have discovered a novel host-pathogen interaction between C. elegans and S. maltophilia and established a new animal model with which to study the mode of action of this emerging nosocomial pathogen. PMID:26644380

  11. The flavonoid galangin inhibits the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia.

    PubMed

    Denny, Brian J; Lambert, Peter A; West, Patrick W J

    2002-02-19

    The flavonoid galangin inhibits the partially purified metallo-beta-lactamase from Stenotrophomonas maltophilia. The effect was not reversed by the addition of ZnCl(2) suggesting that the inhibitory effect is not related to metal chelation. The flavonoid quercetin also has some inhibitory effect against the enzyme. Using the crystal structure of the enzyme, a molecular modelling study predicts a possible orientation of galangin at the active site of the enzyme.

  12. Stenotrophomonas maltophilia in Mexico: antimicrobial resistance, biofilm formation and clonal diversity.

    PubMed

    Flores-Treviño, Samantha; Gutiérrez-Ferman, Jessica Lizzeth; Morfín-Otero, Rayo; Rodríguez-Noriega, Eduardo; Estrada-Rivadeneyra, Diego; Rivas-Morales, Catalina; Llaca-Díaz, Jorge M; Camacho-Ortíz, Adrián; Mendoza-Olazarán, Soraya; Garza-González, Elvira

    2014-11-01

    Stenotrophomonas maltophilia is an important multidrug-resistant nosocomial pathogen associated with high mortality. Our aim was to examine antimicrobial susceptibility, biofilm production and clonal relatedness of clinical isolates of S. maltophilia. S. maltophilia isolates were collected between 2006 and 2013 from two tertiary care hospitals in Mexico. Antimicrobial susceptibility was evaluated by the broth microdilution method. PCR was used to determine the presence of β-lactamase genes L1 and L2. Biofilm formation was assessed with crystal violet staining. Clonal relatedness was determined by PFGE. Among the 119 collected S. maltophilia isolates, 73 (61.3%) were from the respiratory tract. Resistance levels exceeded 75% for imipenem, meropenem, ampicillin, aztreonam, gentamicin and tobramycin. Resistance to trimethoprim-sulfamethoxazole was 32.8%. L1 and L2 genes were detected in 77.1% (91/118) and 66.9% (79/118) of isolates, respectively. All S. maltophilia strains were able to produce biofilms. Strains were classified as weak (47.9%, 57/119), moderate (38.7%, 46/119), or strong (13.4%, 16/119) biofilm producers. A total of 89 distinct PFGE types were identified and 21.6% (22/102) of the isolates were distributed in nine clusters. This is the first study in Mexico to reveal characteristics of clinical isolates of S. maltophilia. Clonal diversity data indicate low cross-transmission of S. maltophilia in a hospital setting. The high antibiotic resistance underscores the need for continuous surveillance of S. maltophilia in hospital settings in Mexico.

  13. Clinical characteristics and prognostic factors of patients with Stenotrophomonas maltophilia infections

    PubMed Central

    Batra, Priyam; Mathur, Purva; Misra, Mahesh C.

    2017-01-01

    INTRODUCTION: Stenotrophomonas maltophilia earlier had limited pathogenic potential, but now with growing degree of immunosuppression in general population, it is being recognized as an important nosocomial pathogen. METHODOLOGY: A retrospective 7 years study was carried out to determine the clinical characteristics of all patients with Stenotrophomonas infections, antibiotic resistance pattern, and risk factors associated with hospital mortality. All patients with Stenotrophomonas culture positivity were identified and their medical records were reviewed. Risk factor associated with hospital mortality was analyzed. RESULTS: A total of 123 samples obtained from 88 patients were culture positive. Most patients presented with bacteremia (45, 51%) followed by pneumonia (37, 42%) and skin and soft tissue infections (6, 7%). About 23 of 88 Stenotrophomonas infected patients had co-infection. Percentage resistance to cotrimoxazole; 8 (5.4%) was lower than that for levofloxacin; 18 (12%). Twenty-eight patients died during hospital stay. Intensive Care Unit admission (P = 0.0002), mechanical ventilation (P = 0.0004), central venous catheterization (P = 0.0227), urethral catheterization (P = 0.0484), and previous antibiotic intake (P = 0.0026) were independent risk factors associated with mortality. CONCLUSION: Our findings suggest that Stenotrophomonas can cause various infections irrespective of patient's immune status and irrespective of potential source. Thus, Stenotrophomonas should be thought of as potential pathogen and its isolation should be looked with clinical suspicion. PMID:28367030

  14. Stenotrophomonas maltophilia strains from cystic fibrosis patients: genomic variability and molecular characterization of some virulence determinants.

    PubMed

    Nicoletti, Mauro; Iacobino, Angelo; Prosseda, Gianni; Fiscarelli, Ersilia; Zarrilli, Raffaele; De Carolis, Elena; Petrucca, Andrea; Nencioni, Lucia; Colonna, Bianca; Casalino, Mariassunta

    2011-01-01

    The genetic relatedness of 52 Stenotrophomonas maltophilia strains, collected from various environmental and clinical sources, including cystic fibrosis (CF) patients, as well as the presence and the expression of some virulence-associated genes were studied. Pulsed-field gel electrophoresis (PFGE) analysis identified 47 profiles and three clusters of isolates with an identical PFGE pattern considered to be indistinguishable strains. Restriction fragment length polymorphism of the gyrB gene grouped the 52 strains into nine different profiles. Most CF clinical isolates (29 out of 41) showed profile 1, while the analysis of the hypervariable regions of the 16S rRNA gene revealed five distinct allelic variations, with the majority of CF isolates (23 out of 41) belonging to sequence group 1. Furthermore, the strains were characterized for motility and expression of virulence-associated genes, including genes encoding type-1 fimbriae, proteases (StmPr1 and StmPr2) and esterase. All S. maltophilia strains exhibited a very broad range of swimming and twitching motility, while none showed swarming motility. A complete smf-1 gene was PCR-amplified only from clinically derived S. maltophilia strains. Finally, the virulence of representative S. maltophilia strains impaired in the expression of proteases and esterase activities was evaluated by infecting larvae of the wax moth Galleria mellonella. The results obtained strongly indicate that the major extracellular protease StmPr1 may be a relevant virulence factor of S. maltophilia.

  15. Update on infections caused by Stenotrophomonas maltophilia with particular attention to resistance mechanisms and therapeutic options

    PubMed Central

    Chang, Ya-Ting; Lin, Chun-Yu; Chen, Yen-Hsu; Hsueh, Po-Ren

    2015-01-01

    Stenotrophomonas maltophilia is a Gram-negative, biofilm-forming bacterium. Although generally regarded as an organism of low virulence, S. maltophilia is an emerging multi-drug resistant opportunistic pathogen in hospital and community settings, especially among immunocompromised hosts. Risk factors associated with S. maltophilia infection include underlying malignancy, cystic fibrosis, corticosteroid or immunosuppressant therapy, the presence of an indwelling central venous catheter and exposure to broad spectrum antibiotics. In this review, we provide a synthesis of information on current global trends in S. maltophilia pathogenicity as well as updated information on the molecular mechanisms contributing to its resistance to an array of antimicrobial agents. The prevalence of S. maltophilia infection in the general population increased from 0.8–1.4% during 1997–2003 to 1.3–1.68% during 2007–2012. The most important molecular mechanisms contributing to its resistance to antibiotics include β-lactamase production, the expression of Qnr genes, and the presence of class 1 integrons and efflux pumps. Trimethoprim/sulfamethoxazole (TMP/SMX) is the antimicrobial drug of choice. Although a few studies have reported increased resistance to TMP/SMX, the majority of studies worldwide show that S. maltophilia continues to be highly susceptible. Drugs with historically good susceptibility results include ceftazidime, ticarcillin-clavulanate, and fluoroquinolones; however, a number of studies show an alarming trend in resistance to those agents. Tetracyclines such as tigecycline, minocycline, and doxycycline are also effective agents and consistently display good activity against S. maltophilia in various geographic regions and across different time periods. Combination therapies, novel agents, and aerosolized forms of antimicrobial drugs are currently being tested for their ability to treat infections caused by this multi-drug resistant organism. PMID:26388847

  16. Stenotrophomonas maltophilia responds to exogenous AHL signals through the LuxR solo SmoR (Smlt1839)

    PubMed Central

    Martínez, Paula; Huedo, Pol; Martinez-Servat, Sònia; Planell, Raquel; Ferrer-Navarro, Mario; Daura, Xavier; Yero, Daniel; Gibert, Isidre

    2015-01-01

    Quorum Sensing (QS) mediated by Acyl Homoserine Lactone (AHL) molecules are probably the most widespread and studied among Gram-negative bacteria. Canonical AHL systems are composed by a synthase (LuxI family) and a regulator element (LuxR family), whose genes are usually adjacent in the genome. However, incomplete AHL-QS machinery lacking the synthase LuxI is frequently observed in Proteobacteria, and the regulator element is then referred as LuxR solo. It has been shown that certain LuxR solos participate in interspecific communication by detecting signals produced by different organisms. In the case of Stenotrophomonas maltophilia, a preliminary genome sequence analysis revealed numerous putative luxR genes, none of them associated to a luxI gene. From these, the hypothetical LuxR solo Smlt1839, here designated SmoR, presents a conserved AHL binding domain and a helix-turn-helix DNA binding motif. Its genomic organization—adjacent to hchA gene—indicate that SmoR belongs to the new family “LuxR regulator chaperone HchA-associated.” AHL-binding assays revealed that SmoR binds to AHLs in-vitro, at least to oxo-C8-homoserine lactone, and it regulates operon transcription, likely by recognizing a conserved palindromic regulatory box in the hchA upstream region. Supplementation with concentrated supernatants from Pseudomonas aeruginosa, which contain significant amounts of AHLs, promoted swarming motility in S. maltophilia. Contrarily, no swarming stimulation was observed when the P. aeruginosa supernatant was treated with the lactonase AiiA from Bacillus subtilis, confirming that AHL contributes to enhance the swarming ability of S. maltophilia. Finally, mutation of smoR resulted in a swarming alteration and an apparent insensitivity to the exogenous AHLs provided by P. aeruginosa. In conclusion, our results demonstrate that S. maltophilia senses AHLs produced by neighboring bacteria through the LuxR solo SmoR, regulating population behaviors such as swarming

  17. Stenotrophomonas maltophilia responds to exogenous AHL signals through the LuxR solo SmoR (Smlt1839).

    PubMed

    Martínez, Paula; Huedo, Pol; Martinez-Servat, Sònia; Planell, Raquel; Ferrer-Navarro, Mario; Daura, Xavier; Yero, Daniel; Gibert, Isidre

    2015-01-01

    Quorum Sensing (QS) mediated by Acyl Homoserine Lactone (AHL) molecules are probably the most widespread and studied among Gram-negative bacteria. Canonical AHL systems are composed by a synthase (LuxI family) and a regulator element (LuxR family), whose genes are usually adjacent in the genome. However, incomplete AHL-QS machinery lacking the synthase LuxI is frequently observed in Proteobacteria, and the regulator element is then referred as LuxR solo. It has been shown that certain LuxR solos participate in interspecific communication by detecting signals produced by different organisms. In the case of Stenotrophomonas maltophilia, a preliminary genome sequence analysis revealed numerous putative luxR genes, none of them associated to a luxI gene. From these, the hypothetical LuxR solo Smlt1839, here designated SmoR, presents a conserved AHL binding domain and a helix-turn-helix DNA binding motif. Its genomic organization-adjacent to hchA gene-indicate that SmoR belongs to the new family "LuxR regulator chaperone HchA-associated." AHL-binding assays revealed that SmoR binds to AHLs in-vitro, at least to oxo-C8-homoserine lactone, and it regulates operon transcription, likely by recognizing a conserved palindromic regulatory box in the hchA upstream region. Supplementation with concentrated supernatants from Pseudomonas aeruginosa, which contain significant amounts of AHLs, promoted swarming motility in S. maltophilia. Contrarily, no swarming stimulation was observed when the P. aeruginosa supernatant was treated with the lactonase AiiA from Bacillus subtilis, confirming that AHL contributes to enhance the swarming ability of S. maltophilia. Finally, mutation of smoR resulted in a swarming alteration and an apparent insensitivity to the exogenous AHLs provided by P. aeruginosa. In conclusion, our results demonstrate that S. maltophilia senses AHLs produced by neighboring bacteria through the LuxR solo SmoR, regulating population behaviors such as swarming

  18. Resistance of Stenotrophomonas maltophilia to Fluoroquinolones: Prevalence in a University Hospital and Possible Mechanisms

    PubMed Central

    Jia, Wei; Wang, Jiayuan; Xu, Haotong; Li, Gang

    2015-01-01

    Objective: The purpose of this study was to investigate the clinical distribution and genotyping of Stenotrophomonas maltophilia, its resistance to antimicrobial agents, and the possible mechanisms of this drug resistance. Methods: S. maltophilia isolates were collected from clinical specimens in a university hospital in Northwestern China during the period between 2010 and 2012, and were identified to the species level with a fully automated microbiological system. Antimicrobial susceptibility testing was performed for S. maltophilia with the Kirby-Bauer disc diffusion method. The minimal inhibitory concentrations (MICs) of norfloxacin, ofloxacin, chloramphenicol, minocycline, ceftazidime, levofloxacin and ciprofloxacin against S. maltophilia were assessed using the agar dilution method, and changes in the MIC of norfloxacin, ciprofloxacin and ofloxacin were observed after the addition of reserpine, an efflux pump inhibitor. Fluoroquinolone resistance genes were detected in S. maltophilia using a polymerase chain reaction (PCR) assay, and the expression of efflux pump smeD and smeF genes was determined using a quantitative fluorescent (QF)-PCR assay. Pulsed-field gel electrophoresis (PFGE) was employed to genotype identified S. maltophilia isolates. Results: A total of 426 S. maltophilia strains were isolated from the university hospital from 2010 to 2012, consisting of 10.1% of total non-fermentative bacteria. The prevalence of norfloxacin, ciprofloxacin and ofloxacin resistance was 32.4%, 21.9% and 13.2% in the 114 S. maltophilia isolates collected from 2012, respectively. Following reserpine treatment, 19 S. maltophilia isolates positive for efflux pump were identified, and high expression of smeD and smeF genes was detected in two resistant isolates. gyrA, parC, smeD, smeE and smeF genes were detected in all 114 S. maltophilia isolates, while smqnr gene was found in 25.4% of total isolates. Glu-Lys mutation (GAA-AAA) was detected at the 151th amino acid of the

  19. Whole-genome sequencing identifies emergence of a quinolone resistance mutation in a case of Stenotrophomonas maltophilia bacteremia.

    PubMed

    Pak, Theodore R; Altman, Deena R; Attie, Oliver; Sebra, Robert; Hamula, Camille L; Lewis, Martha; Deikus, Gintaras; Newman, Leah C; Fang, Gang; Hand, Jonathan; Patel, Gopi; Wallach, Fran; Schadt, Eric E; Huprikar, Shirish; van Bakel, Harm; Kasarskis, Andrew; Bashir, Ali

    2015-11-01

    Whole-genome sequences for Stenotrophomonas maltophilia serial isolates from a bacteremic patient before and after development of levofloxacin resistance were assembled de novo and differed by one single-nucleotide variant in smeT, a repressor for multidrug efflux operon smeDEF. Along with sequenced isolates from five contemporaneous cases, they displayed considerable diversity compared against all published complete genomes. Whole-genome sequencing and complete assembly can conclusively identify resistance mechanisms emerging in S. maltophilia strains during clinical therapy.

  20. SmeOP-TolCSm Efflux Pump Contributes to the Multidrug Resistance of Stenotrophomonas maltophilia

    PubMed Central

    Lin, Cheng-Wen; Huang, Yi-Wei; Hu, Rouh-Mei

    2014-01-01

    A five-gene cluster, tolCSm-pcm-smeRo-smeO-smeP, of Stenotrophomonas maltophilia was characterized. The presence of smeOP and smeRo-pcm-tolCSm operons was verified by reverse transcription (RT)-PCR. Both operons were negatively regulated by the TetR-type transcriptional regulator SmeRo, as demonstrated by quantitative RT-PCR and a promoter-fusion assay. SmeO and SmeP were associated with TolCSm (the TolC protein of S. maltophilia) for the assembly of a resistance-nodulation-cell-division (RND)-type pump. The compounds extruded by SmeOP-TolCSm mainly included nalidixic acid, doxycycline, amikacin, gentamicin, erythromycin, leucomycin, carbonyl cyanide 3-chlorophenylhydrazone, crystal violet, sodium dodecyl sulfate, and tetrachlorosalicylanilide. PMID:24395237

  1. Genomic Potential of Stenotrophomonas maltophilia in Bioremediation with an Assessment of Its Multifaceted Role in Our Environment

    PubMed Central

    Mukherjee, Piyali; Roy, Pranab

    2016-01-01

    The gram negative bacterium Stenotrophomonas is rapidly evolving as a nosocomial pathogen in immuno-compromised patients. Treatment of Stenotrophomonas maltophilia infections is problematic because of their increasing resistance to multiple antibiotics. This article aims to review the multi-disciplinary role of Stenotrophomonas in our environment with special focus on their metabolic and genetic potential in relation to bioremediation and phytoremediation. Current and emerging treatments and diagnosis for patients infected with S. maltophilia are discussed besides their capability of production of novel bioactive compounds. The plant growth promoting characteristics of this bacterium has been considered with special reference to secondary metabolite production. Nano-particle synthesis by Stenotrophomonas has also been reviewed in addition to their applications as effective biocontrol agents in plant and animal pathogenesis. PMID:27446008

  2. Molecular characterization and ultrastructure of a new amoeba endoparasite belonging to the Stenotrophomonas maltophilia complex.

    PubMed

    Corsaro, Daniele; Müller, Karl-Dieter; Michel, Rolf

    2013-04-01

    Naegleria and Acanthamoeba spp. were recovered from biofilm of a flushing cistern in a lavatory and both were found to be infected by rod-shaped bacteria enclosed within a vacuole. These intracellular bacteria behave like parasites, causing lysis of host amoebae. The bacteria proved unculturable on bacteriological media, and but could be maintained as endocytobionts within Acanthamoeba on agar plates. A marked differential host preference was observed in co-culture assays with various strains of amoebae. Molecular phylogenetic analyses performed on almost complete 16S rDNA sequences showed that the bacteria emerged as an atypical rapidly-evolving strain within the Stenotrophomonas maltophilia complex (Gamma-Proteobacteria, Xanthomonadales).

  3. Facile biosynthesis of phosphate capped gold nanoparticles by a bacterial isolate Stenotrophomonas maltophilia

    SciTech Connect

    Nangia, Yogesh; Wangoo, Nishima; Raman Suri, C.; Sharma, Saurabh; Wu, J.-S.; Dravid, Vinayak; Shekhawat, G. S.

    2009-06-08

    We report intracellular biosynthesis of gold nanoparticles (GNPs) by a strain Stenotrophomonas maltophilia (AuRed02) isolated from the soil samples of Singhbhum gold mines, India. An aqueous solution of gold chloride was reduced to metallic gold in a suspension of disrupted cell mass of AuRed02, which progressively turns into cherry red within 8 h of incubation at 25 deg. C. The optical spectrum showed the plasmon resonance at 530 nm and analysis by transmission electron microscopy and dynamic light scattering confirmed the formation of around 40 nm GNPs. Zeta potential and Fourier transform infrared measurements confirmed GNPs are capped by negatively charged phosphate groups of NADP.

  4. Gene flow, recombination, and positive selection in Stenotrophomonas maltophilia: mechanisms underlying the diversity of the widespread opportunistic pathogen.

    PubMed

    Yu, Dong; Yin, Zhiqiu; Li, Beiping; Jin, Yuan; Ren, Hongguang; Zhou, Jing; Zhou, Wei; Liang, Long; Yue, Junjie

    2016-12-01

    Stenotrophomonas maltophilia is a global multidrug-resistant human opportunistic pathogen in clinical environments. Stenotrophomonas maltophilia is also ubiquitous in aqueous environments, soil, and plants. Various molecular typing methods have revealed that S. maltophilia exhibits high levels of phenotypic and genotypic diversity. However, information regarding the genomic diversity within S. maltophilia and the corresponding genetic mechanisms resulting in said diversity remain scarce. The genome sequences of 17 S. maltophilia strains were selected to investigate the mechanisms contributing to genetic diversity at the genome level. The core and large pan-genomes of the species were first estimated, resulting in a large, open pan-genome. A species phylogeny was also reconstructed based on 344 orthologous genes with one copy per genome, and the contribution of four evolutionary mechanisms to the species genome diversity was quantified: 15%-35% of the genes showed evidence for recombination, 0%-25% of the genes in one genome were likely gained, 0%-44% of the genes in some genomes were likely lost, and less than 0.3% of the genes in a genome were under positive selection pressures. We observed that, among the four main mechanisms, homologous recombination plays a key role in maintaining diversity in S. maltophilia. In this study, we provide an overview of evolution in S. maltophilia to provide a better understanding of its evolutionary dynamics and its relationship with genome diversity.

  5. Phenotypic Heterogeneity Affects Stenotrophomonas maltophilia K279a Colony Morphotypes and β-Lactamase Expression

    PubMed Central

    Abda, Ebrahim M.; Krysciak, Dagmar; Krohn-Molt, Ines; Mamat, Uwe; Schmeisser, Christel; Förstner, Konrad U.; Schaible, Ulrich E.; Kohl, Thomas A.; Nieman, Stefan; Streit, Wolfgang R.

    2015-01-01

    Phenotypic heterogeneity at the cellular level in response to various stresses, e.g., antibiotic treatment has been reported for a number of bacteria. In a clonal population, cell-to-cell variation may result in phenotypic heterogeneity that is a mechanism to survive changing environments including antibiotic therapy. Stenotrophomonas maltophilia has been frequently isolated from cystic fibrosis patients, can cause numerous infections in other organs and tissues, and is difficult to treat due to antibiotic resistances. S. maltophilia K279a produces the L1 and L2 β-lactamases in response to β-lactam treatment. Here we report that the patient isolate S. maltophilia K279a diverges into cellular subpopulations with distinct but reversible morphotypes of small and big colonies when challenged with ampicillin. This observation is consistent with the formation of elongated chains of bacteria during exponential growth phase and the occurrence of mainly rod-shaped cells in liquid media. RNA-seq analysis of small versus big colonies revealed differential regulation of at least seven genes among the colony morphotypes. Among those, blaL1 and blaL2 were transcriptionally the most strongly upregulated genes. Promoter fusions of blaL1 and blaL2 genes indicated that expression of both genes is also subject to high levels of phenotypic heterogeneous expression on a single cell level. Additionally, the comE homolog was found to be differentially expressed in homogenously versus heterogeneously blaL2 expressing cells as identified by RNA-seq analysis. Overexpression of comE in S. maltophilia K279a reduced the level of cells that were in a blaL2-ON mode to 1% or lower. Taken together, our data provide strong evidence that S. maltophilia K279a populations develop phenotypic heterogeneity in an ampicillin challenged model. This cellular variability is triggered by regulation networks including blaL1, blaL2, and comE. PMID:26696982

  6. Comparison of two multimetal resistant bacterial strains: Enterobacter sp. YSU and Stenotrophomonas maltophilia ORO2.

    PubMed

    Holmes, Andrew; Vinayak, Anubhav; Benton, Cherise; Esbenshade, Aaron; Heinselman, Carlisle; Frankland, Daniel; Kulkarni, Samatha; Kurtanich, Adrienne; Caguiat, Jonathan

    2009-11-01

    The Y-12 plant in Oak Ridge, TN, which manufactured nuclear weapons during World War II and the Cold War, contaminated East Fork Poplar Creek with heavy metals. The multimetal resistant bacterial strain, Stenotrophomonas maltophilia Oak Ridge strain O2 (S. maltophilia O2), was isolated from East Fork Poplar Creek. Sequence analysis of 16s rDNA suggested that our working strain of S. maltophilia O2 was a strain of Enterobacter. Phylogenetic tree analysis and biochemical tests confirmed that it belonged to an Enterobacter species. This new strain was named Enterobacter sp. YSU. Using a modified R3A growth medium, R3A-Tris, the Hg(II), Cd(II), Zn(II), Cu(II), Au(III), Cr(VI), Ag(I), As(III), and Se(IV) MICs for a confirmed strain of S. maltophilia O2 were 0.24, 0.33, 5, 5, 0.25, 7, 0.03, 14, and 40 mM, respectively, compared to 0.07, 0.24, 0.8, 3, 0.05, 0.4, 0.08, 14, and 40 mM, respectively, for Enterobacter sp. YSU. Although S. maltophilia O2 was generally more metal resistant than Enterobacter sp. YSU, in comparison to Escherichia coli strain HB101, Enterobacter sp. YSU was resistant to Hg(II), Cd(II), Zn(II), Au(III), Ag(I), As(III), and Se(IV). By studying metal resistances in these two strains, it may be possible to understand what makes one microorganism more metal resistant than another microorganism. This work also provided benchmark MICs that can be used to evaluate the metal resistance properties of other bacterial isolates from East Fork Poplar Creek and other metal contaminated sites.

  7. Effects of Fluoroquinolones and Azithromycin on Biofilm Formation of Stenotrophomonas maltophilia

    PubMed Central

    Wang, Aihua; Wang, Qinqin; Kudinha, Timothy; Xiao, Shunian; Zhuo, Chao

    2016-01-01

    Stenotrophomonas maltophilia is an opportunistic pathogen that causes respiratory and urinary tract infections, as well as wound infections in immunocompromised patients. This pathogen is difficult to treat due to increased resistance to many antimicrobial agents. We investigated the in vitro biofilm formation of S. maltophilia, including effects of fluoroquinolones (FQs) and azithromycin on biofilm formation. The organism initiated attachment to polystyrene surfaces after a 4 h incubation period, and reached maximal growth at 18–24 h. In the presence of FQs (moxifloxacin, levofloxacin or ciprofloxacin), the biofilm biomass was significantly reduced (P < 0.05). A lower concentration of moxifloxacin (10 μg/mL) exhibited a better inhibiting effect on biofilm formation than 100 μg/mL (P < 0.01), but with no difference in effect compared to the 50 μg/mL concentration (P > 0.05). However, the inhibitory effects of 10 μg/mL of levofloxacin or ciprofloxacin were slightly less pronounced than those of the higher concentrations. A combination of azithromycin and FQs significantly reduced the biofilm inhibiting effect on S. maltophilia preformed biofilms compared to azithromycin or FQs alone. We conclude that early use of clinically acceptable concentrations of FQs, especially moxifloxacin (10 μg/mL), may possibly inhibit biofilm formation by S. maltophilia. Our study provides an experimental basis for a possible optimal treatment strategy for S. maltophilia biofilm-related infections. PMID:27405358

  8. Levofloxacin Efflux and smeD in Clinical Isolates of Stenotrophomonas maltophilia.

    PubMed

    Chong, So Young; Lee, Kyungwon; Chung, Hae-Sun; Hong, Seong Geun; Suh, Younghee; Chong, Yunsop

    2017-03-01

    Trimethoprim-sulfamethoxazole is the first-line antimicrobial combination for Stenotrophomonas maltophilia infections. However, allergy or intolerance and increasing resistance limit the use of trimethoprim-sulfamethoxazole. Quinolones can be used as an alternative therapeutic option, but resistance can emerge rapidly during therapy. We analyzed the contribution of SmeABC and SmeDEF efflux pumps to levofloxacin resistance in clinical isolates of S. maltophilia. Nonduplicate clinical isolates of S. maltophilia were collected in 2010 from 11 university hospitals (n = 102). Fifty-five levofloxacin nonsusceptible (minimum inhibitory concentration [MIC] ≥4 μg/ml) and 47 susceptible (MIC ≤2 μg/ml) isolates were tested for efflux pump overexpression. Real-time reverse transcription-PCR was performed for amplification and quantification of smeB, smeC, smeD, and smeF mRNA. To determine which antimicrobials were affected by smeD overexpression, the growth rates of a levofloxacin-susceptible S. maltophilia isolate were compared by measuring absorbance of antimicrobial-supplemented Luria-Bertani broth (LB) cultures with or without triclosan. Significant relationships between sme gene overexpression and resistance were observed for smeD against levofloxacin, smeC and smeF against ceftazidime, and smeC against ticarcillin-clavulanate. The mean MICs of moxifloxacin and tigecycline did not significantly differ for isolates with or without overexpression of smeB, smeC, and smeF, but were significantly higher for isolates with smeD overexpression. The mean MICs of amikacin were significantly higher for smeC or smeF overexpressing isolates. Increased growth of a levofloxacin-susceptible isolate was observed in LB with 1/2 MIC levofloxacin in the presence of triclosan. These data suggest that the expression of smeD plays a role in levofloxacin resistance in S. maltophilia.

  9. Removal of cadmium by bioflocculant produced by Stenotrophomonas maltophilia using phenol-containing wastewater.

    PubMed

    Chen, Honggao; Zhong, Chunying; Berkhouse, Hudson; Zhang, Youlang; Lv, Yao; Lu, Wanyu; Yang, Yongbing; Zhou, Jiangang

    2016-07-01

    Bioflocculants have been applied in numerous applications including heavy metals removal. A major bottleneck for commercial application of bioflocculant is its high production cost. Phenol-containing wastewater are abundantly available. However, the toxic phenol inhibited the microbial activities in the subsequent fermentation processes. Consequently, strains that can secrete phenol-degrading enzymes and simultaneously produce bioflocculants through directly degrading the phenol are of academic and practical interests. A phenol-degrading strain, Stenotrophomonas maltophilia ZZC-06, which can produce the bioflocculant MBF-06 using phenol-containing wastewater, was isolated in this study. The effects of culture conditions including initial pH, dissolved oxygen, phenol concentration, inoculum size, and temperature on MBF-06 production were analyzed. The experimental results showed that over 90% flocculating activity was achieved when the phenol was used as a carbon source and 4.99 g/L of MBF-06 was achieved under the optimized condition: 2.0% dissolved oxygen, 800 mg/L phenol concentration, 10% inoculum size, an initial pH of 6.0, and a temperature of 30 °C. The bioflocculant MBF-06 contained 71.2% polysaccharides and 27.9% proteins. The feasibility of cadmium removal using MBF-06 was evaluated. The highest flocculating efficiency for cadmium was 81.43%. This study shows for the first time that Stenotrophomonas maltophilia ZZC-06 can directly convert phenol into a bioflocculant, which can be used to effectively remove cadmium.

  10. Outbreak of Stenotrophomonas maltophilia bacteremia among patients undergoing bone marrow transplantation: association with faulty replacement of handwashing soap.

    PubMed

    Klausner, J D; Zukerman, C; Limaye, A P; Corey, L

    1999-11-01

    Using molecular typing methods, we confirmed an outbreak of Stenotrophomonas maltophilia among bone marrow transplant patients. The likely source was a healthcare worker who may have washed with moisturizer instead of soap between patients. Hospital epidemiologists need to go beyond antibiograms when evaluating outbreaks and be vigilant about all aspects of hand washing.

  11. The DSF Quorum Sensing System Controls the Positive Influence of Stenotrophomonas maltophilia on Plants

    PubMed Central

    Alavi, Peyman; Müller, Henry; Cardinale, Massimiliano; Zachow, Christin; Sánchez, María B.; Martínez, José Luis; Berg, Gabriele

    2013-01-01

    The interaction of the Gram-negative bacterium Stenotrophomonas maltophilia with eukaryotes can improve overall plant growth and health, but can also cause opportunistic infections in humans. While the quorum sensing molecule DSF (diffusible signal factor) is responsible for the regulation of phenotypes in pathogenic Stenotrophomonas, up until now, no beneficial effects were reported to be controlled by it. Our objective was to study the function of DSF in the plant growth promoting model strain S. maltophilia R551-3 using functional and transcriptomic analyses. For this purpose, we compared the wild-type strain with a mutant deficient in the rpfF (regulation of pathogenicity factors) gene that is essential for the synthesis of DSF. Oilseed rape seeds treated with the wild-type strain showed a statistically significant increase in germination rate compared with those treated with the rpfF mutant. Similarly, the wild-type strain exhibited better plant growth promotion and a greater efficiency in colonizing oilseed rape compared to the mutant strain. Moreover, only the wild-type was capable of forming structured cell aggregates both in vitro and in the rhizosphere, a characteristic mediated by DSF. Gene transcription analyses showed that numerous genes known to play a role in plant colonization (e.g. chemotaxis, cell motility, biofilm formation, multidrug efflux pumps) are controlled by the rpf/DSF system in S. maltophilia. In addition, we detected new potential functions of spermidine, primarily for both growth promotion and stress protection. Overall, our results showed a correspondence between the regulation of DSF and the positive interaction effect with the plant host. PMID:23874407

  12. Occurrence of Stenotrophomonas maltophilia in agricultural soils and antibiotic resistance properties.

    PubMed

    Deredjian, Amélie; Alliot, Nolwenn; Blanchard, Laurine; Brothier, Elisabeth; Anane, Makram; Cambier, Philippe; Jolivet, Claudy; Khelil, Mohamed Naceur; Nazaret, Sylvie; Saby, Nicolas; Thioulouse, Jean; Favre-Bonté, Sabine

    2016-05-01

    The occurrence of Stenotrophomonas maltophilia was monitored in organic amendments and agricultural soils from various sites in France and Tunisia. S. maltophilia was detected in horse and bovine manures, and its abundance ranged from 0.294 (±0.509) × 10(3) to 880 (±33.4) × 10(3) CFU (g drywt)(-1) of sample. S. maltophilia was recovered from most tested soil samples (104/124). Its abundance varied from 0.33 (±0.52) to 414 (±50) × 10(3) CFU (g drywt)(-1) of soil and was not related to soil characteristics. Antibiotic resistance properties of a set of environmental strains were compared to a clinical set, and revealed a high diversity of antibiotic resistance profiles, given both the numbers of resistance and the phenotypes. Manure strains showed resistance phenotypes, with most of the strains resisting between 7 and 9 antibiotics. While French soil strains were sensitive to most antibiotics tested, some Tunisian strains displayed resistance phenotypes close to those of clinical French strains. Screening for metal resistance among 66 soil strains showed a positive relationship between antibiotic and metal resistance. However, the prevalence of antibiotic resistance phenotypes in the studied sites was not related to the metal content in soil samples.

  13. Interplay between intrinsic and acquired resistance to quinolones in Stenotrophomonas maltophilia.

    PubMed

    García-León, Guillermo; Salgado, Fabiola; Oliveros, Juan Carlos; Sánchez, María Blanca; Martínez, José Luis

    2014-05-01

    To analyse whether the mutation-driven resistance-acquisition potential of a given bacterium might be a function of its intrinsic resistome, quinolones were used as selective agents and Stenotrophomonas maltophilia was chosen as a bacterial model. S. maltophilia has two elements - SmQnr and SmeDEF - that are important in intrinsic resistance to quinolones. Using a battery of mutants in which either or both of these elements had been removed, the apparent mutation frequency for quinolone resistance and the phenotype of the selected mutants were found to be related to the intrinsic resistome and also depended on the concentration of the selector. Most mutants had phenotypes compatible with the overexpression of multidrug efflux pump(s); SmeDEF overexpression was the most common cause of quinolone resistance. Whole genome sequencing showed that mutations of the SmeRv regulator, which result in the overexpression of the efflux pump SmeVWX, are the cause of quinolone resistance in mutants not overexpressing SmeDEF. These results indicate that the development of mutation-driven antibiotic resistance is highly dependent on the intrinsic resistome, which, at least for synthetic antibiotics such as quinolones, did not develop as a response to the presence of antibiotics in the natural ecosystems in which S. maltophilia evolved.

  14. Infections Caused by Stenotrophomonas maltophilia in Recipients of Hematopoietic Stem Cell Transplantation

    PubMed Central

    Al-Anazi, Khalid Ahmed; Al-Jasser, Asma M.

    2014-01-01

    Stenotrophomonas maltophilia (S. maltophilia) is a globally emerging Gram-negative bacillus that is widely spread in environment and hospital equipment. Recently, the incidence of infections caused by this organism has increased, particularly in patients with hematological malignancy and in recipients of hematopoietic stem cell transplantation (HSCT) having neutropenia, mucositis, diarrhea, central venous catheters or graft versus host disease and receiving intensive cytotoxic chemotherapy, immunosuppressive therapy, or broad-spectrum antibiotics. The spectrum of infections in HSCT recipients includes pneumonia, urinary tract and surgical site infection, peritonitis, bacteremia, septic shock, and infection of indwelling medical devices. The organism exhibits intrinsic resistance to many classes of antibiotics including carbapenems, aminoglycosides, most of the third-generation cephalosporins, and other β-lactams. Despite the increasingly reported drug resistance, trimethoprim-sulfamethoxazole is still the drug of choice. However, the organism is still susceptible to ticarcillin-clavulanic acid, tigecycline, fluoroquinolones, polymyxin-B, and rifampicin. Genetic factors play a significant role not only in evolution of drug resistance but also in virulence of the organism. The outcome of patients having S. maltophilia infections can be improved by: using various combinations of novel therapeutic agents and aerosolized aminoglycosides or colistin, prompt administration of in vitro active antibiotics, removal of possible sources of infection such as infected indwelling intravascular catheters, and application of strict infection control measures. PMID:25202682

  15. The isolation and characterization of Stenotrophomonas maltophilia T4-like bacteriophage DLP6.

    PubMed

    Peters, Danielle L; Stothard, Paul; Dennis, Jonathan J

    2017-01-01

    Increasing isolation of the extremely antibiotic resistant bacterium Stenotrophomonas maltophilia has caused alarm worldwide due to the limited treatment options available. A potential treatment option for fighting this bacterium is 'phage therapy', the clinical application of bacteriophages to selectively kill bacteria. Bacteriophage DLP6 (vB_SmoM-DLP6) was isolated from a soil sample using clinical isolate S. maltophilia strain D1571 as host. Host range analysis of phage DLP6 against 27 clinical S. maltophilia isolates shows successful infection and lysis in 13 of the 27 isolates tested. Transmission electron microscopy of DLP6 indicates that it is a member of the Myoviridae family. Complete genome sequencing and analysis of DLP6 reveals its richly recombined evolutionary history, featuring a core of both T4-like and cyanophage genes, which suggests that it is a member of the T4-superfamily. Unlike other T4-superfamily phages however, DLP6 features a transposase and ends with 229 bp direct terminal repeats. The isolation of this bacteriophage is an exciting discovery due to the divergent nature of DLP6 in relation to the T4-superfamily of phages.

  16. The isolation and characterization of Stenotrophomonas maltophilia T4-like bacteriophage DLP6

    PubMed Central

    Peters, Danielle L.; Stothard, Paul

    2017-01-01

    Increasing isolation of the extremely antibiotic resistant bacterium Stenotrophomonas maltophilia has caused alarm worldwide due to the limited treatment options available. A potential treatment option for fighting this bacterium is ‘phage therapy’, the clinical application of bacteriophages to selectively kill bacteria. Bacteriophage DLP6 (vB_SmoM-DLP6) was isolated from a soil sample using clinical isolate S. maltophilia strain D1571 as host. Host range analysis of phage DLP6 against 27 clinical S. maltophilia isolates shows successful infection and lysis in 13 of the 27 isolates tested. Transmission electron microscopy of DLP6 indicates that it is a member of the Myoviridae family. Complete genome sequencing and analysis of DLP6 reveals its richly recombined evolutionary history, featuring a core of both T4-like and cyanophage genes, which suggests that it is a member of the T4-superfamily. Unlike other T4-superfamily phages however, DLP6 features a transposase and ends with 229 bp direct terminal repeats. The isolation of this bacteriophage is an exciting discovery due to the divergent nature of DLP6 in relation to the T4-superfamily of phages. PMID:28291834

  17. Iron is a signal for Stenotrophomonas maltophilia biofilm formation, oxidative stress response, OMPs expression, and virulence

    PubMed Central

    García, Carlos A.; Alcaraz, Eliana S.; Franco, Mirta A.; Passerini de Rossi, Beatriz N.

    2015-01-01

    Stenotrophomonas maltophilia is an emerging nosocomial pathogen. In many bacteria iron availability regulates, through the Fur system, not only iron homeostasis but also virulence. The aim of this work was to assess the role of iron on S. maltophilia biofilm formation, EPS production, oxidative stress response, OMPs regulation, quorum sensing (QS), and virulence. Studies were done on K279a and its isogenic fur mutant F60 cultured in the presence or absence of dipyridyl. This is the first report of spontaneous fur mutants obtained in S. maltophilia. F60 produced higher amounts of biofilms than K279a and CLSM analysis demonstrated improved adherence and biofilm organization. Under iron restricted conditions, K279a produced biofilms with more biomass and enhanced thickness. In addition, F60 produced higher amounts of EPS than K279a but with a similar composition, as revealed by ATR-FTIR spectroscopy. With respect to the oxidative stress response, MnSOD was the only SOD isoenzyme detected in K279a. F60 presented higher SOD activity than the wt strain in planktonic and biofilm cultures, and iron deprivation increased K279a SOD activity. Under iron starvation, SDS-PAGE profile from K279a presented two iron-repressed proteins. Mass spectrometry analysis revealed homology with FepA and another putative TonB-dependent siderophore receptor of K279a. In silico analysis allowed the detection of potential Fur boxes in the respective coding genes. K279a encodes the QS diffusible signal factor (DSF). Under iron restriction K279a produced higher amounts of DSF than under iron rich condition. Finally, F60 was more virulent than K279a in the Galleria mellonella killing assay. These results put in evidence that iron levels regulate, likely through the Fur system, S. maltophilia biofilm formation, oxidative stress response, OMPs expression, DSF production and virulence. PMID:26388863

  18. Nosocomial outbreak of colonization and infection with Stenotrophomonas maltophilia in preterm infants associated with contaminated tap water.

    PubMed Central

    Verweij, P. E.; Meis, J. F.; Christmann, V.; Van der Bor, M.; Melchers, W. J.; Hilderink, B. G.; Voss, A.

    1998-01-01

    Between March and May 1996 Stenotrophomonas maltophilia was cultured from endotracheal aspirate samples from five preterm infants in a neonatal intensive care unit (NICU). Four infants were superficially colonized, but a fifth died due to S. maltophilia septicaemia. S. maltophilia was cultured from tap water from three outlets in the NICU including one with a previously unnoticed defective sink drain. Water from these outlets was used to wash the preterm infants. Environmental and clinical S. maltophilia isolates yielded identical banding patterns on random arbitrary polymorphic DNA (RAPD) PCR analysis. The outbreak was controlled by reinforcement of hand disinfection, limitation of the use of tap water for hand washing and by using sterile water to wash the preterm infants. We conclude that tap water should not be used for washing preterm infants in the NICU, unless steps are taken to prevent microbial growth in the outlets. PMID:9692603

  19. Antibiotic susceptibility of Stenotrophomonas (Xanthomonas) maltophilia: comparative (NCCLS criteria) evaluation of antimicrobial drugs with the agar dilution and the agar disk diffusion (Bauer-Kirby) tests.

    PubMed

    Traub, W H; Leonhard, B; Bauer, D

    1998-01-01

    Ninety-six clinical isolates of Stenotrophomonas maltophilia were examined with the agar dilution method for susceptibility to 19 antimicrobial drugs. Doxycycline, cotrimoxazole, timentin, ofloxacin, fosfomycin, and piperacillin + tazobactam, in that order, inhibited the majority of strains. All isolates were resistant to nitrofurantoin. Concurrent disk susceptibility (Bauer-Kirby method) testing, using currently valid NCCLS interpretative criteria for Pseudomonas aeruginosa, uncovered a significant incidence of very major (category I), major (category II), and minor (categories III and IV) discrepancies for aminoglycosides, cephalosporins, chloramphenicol, and piperacillin + tazobactam and ticarcillin + clavulanic acid. Therefore, new interpretative criteria indicative of intermediate (I) susceptibility of S. maltophilia to these various antibiotics were proposed. In addition, new intermediate susceptibility criteria were proposed for the two beta-lactam-beta-lactamase inhibitor combinations. It was recommended to exclude ciprofloxacin from test batteries against this microorganism due to the wide scatter of minimal inhibitory concentration values and diameters of inhibition zones; the same was true for polymyxin B. It is hoped that the proposed modified, species-specific criteria will improve the clinical utility of laboratory-generated disk antibiograms with respect to the inherently multiple antibiotic-resistant, opportunistic pathogen S. maltophilia.

  20. Genotypic and Phenotypic Characterization of Stenotrophomonas maltophilia Strains from a Pediatric Tertiary Care Hospital in Serbia

    PubMed Central

    Madi, Haowa; Lukić, Jovanka; Vasiljević, Zorica; Biočanin, Marjan; Kojić, Milan; Jovčić, Branko; Lozo, Jelena

    2016-01-01

    Background Stenotrophomonas maltophilia is an environmental bacterium and an opportunistic pathogen usually associated with healthcare-associated infections, which has recently been recognized as a globally multi-drug resistant organism. The aim of this study was genotyping and physiological characterization of Stenotrophomonas maltophilia isolated in a large, tertiary care pediatric hospital in Belgrade, Serbia, hosting the national reference cystic fibrosis (CF) center for pediatric and adult patients. Methods We characterized 42 strains of cystic fibrosis (CF) and 46 strains of non-cystic fibrosis (non-CF) origin isolated from 2013 to 2015 in order to investigate their genetic relatedness and phenotypic traits. Genotyping was performed using sequencing of 16S rRNA gene, Pulse Field Gel Electrophoresis (PFGE) and Multi locus sequencing typing (MLST) analysis. Sensitivity to five relevant antimicrobial agents was determined, namely trimethoprim/sulfamethoxazole (TMP/SMX), chloramphenicol, ciprofloxacin, levofloxacin and tetracycline. Surface characteristics, motility, biofilm formation and adhesion to mucin were tested in all strains. Statistical approach was used to determine correlations between obtained results. Results Most of the isolates were not genetically related. Six new sequence types were determined. Strains were uniformly sensitive to all tested antimicrobial agents. The majority of isolates (89.8%) were able to form biofilm with almost equal representation in both CF and non-CF strains. Swimming motility was observed in all strains, while none of them exhibited swarming motility. Among strains able to adhere to mucin, no differences between CF and non-CF isolates were observed. Conclusions High genetic diversity among isolates implies the absence of clonal spread within the hospital. Positive correlation between motility, biofilm formation and adhesion to mucin was demonstrated. Biofilm formation and motility were more pronounced among non-CF than CF

  1. Draft Genome Sequence of Stenotrophomonas maltophilia Strain B418, a Promising Agent for Biocontrol of Plant Pathogens and Root-Knot Nematode.

    PubMed

    Wu, Yuanzheng; Wang, Yilian; Li, Jishun; Hu, Jindong; Chen, Kai; Wei, Yanli; Bazhanov, Dmitry P; Bazhanova, Alesia A; Yang, Hetong

    2015-02-19

    Stenotrophomonas maltophilia strain B418 was isolated from a barley rhizosphere in China. This bacterium exhibits broad-spectrum inhibitory activities against plant pathogens and root-knot nematode along with growth-promoting effects. Here, we present the draft genome sequence of S. maltophilia B418.

  2. In Vitro Efficacy of High-Dose Tobramycin against Burkholderia cepacia Complex and Stenotrophomonas maltophilia Isolates from Cystic Fibrosis Patients

    PubMed Central

    Ratjen, Anina; Yau, Yvonne; Wettlaufer, Jillian; Matukas, Larissa; Zlosnik, James E. A.; Speert, David P.; LiPuma, John J.; Tullis, Elizabeth

    2014-01-01

    Burkholderia cepacia complex and Stenotrophomonas maltophilia infections are associated with poor clinical outcomes in persons with cystic fibrosis (CF). The MIC50 based on planktonic growth and the biofilm concentration at which 50% of the isolates tested are inhibited (BIC50) of tobramycin were measured for 180 B. cepacia complex and 101 S. maltophilia CF isolates and were 100 μg/ml for both species. New inhalation devices that deliver high tobramycin levels to the lung may be able to exceed these MICs. PMID:25348526

  3. In vitro efficacy of high-dose tobramycin against Burkholderia cepacia complex and Stenotrophomonas maltophilia isolates from cystic fibrosis patients.

    PubMed

    Ratjen, Anina; Yau, Yvonne; Wettlaufer, Jillian; Matukas, Larissa; Zlosnik, James E A; Speert, David P; LiPuma, John J; Tullis, Elizabeth; Waters, Valerie

    2015-01-01

    Burkholderia cepacia complex and Stenotrophomonas maltophilia infections are associated with poor clinical outcomes in persons with cystic fibrosis (CF). The MIC50 based on planktonic growth and the biofilm concentration at which 50% of the isolates tested are inhibited (BIC50) of tobramycin were measured for 180 B. cepacia complex and 101 S. maltophilia CF isolates and were 100 μg/ml for both species. New inhalation devices that deliver high tobramycin levels to the lung may be able to exceed these MICs.

  4. Whole-Genome Sequencing Identifies Emergence of a Quinolone Resistance Mutation in a Case of Stenotrophomonas maltophilia Bacteremia

    PubMed Central

    Altman, Deena R.; Attie, Oliver; Sebra, Robert; Hamula, Camille L.; Lewis, Martha; Deikus, Gintaras; Newman, Leah C.; Fang, Gang; Hand, Jonathan; Patel, Gopi; Wallach, Fran; Schadt, Eric E.; Huprikar, Shirish; van Bakel, Harm; Bashir, Ali

    2015-01-01

    Whole-genome sequences for Stenotrophomonas maltophilia serial isolates from a bacteremic patient before and after development of levofloxacin resistance were assembled de novo and differed by one single-nucleotide variant in smeT, a repressor for multidrug efflux operon smeDEF. Along with sequenced isolates from five contemporaneous cases, they displayed considerable diversity compared against all published complete genomes. Whole-genome sequencing and complete assembly can conclusively identify resistance mechanisms emerging in S. maltophilia strains during clinical therapy. PMID:26324280

  5. A Polysaccharide Lyase from Stenotrophomonas maltophilia with a Unique, pH-regulated Substrate Specificity*

    PubMed Central

    MacDonald, Logan C.; Berger, Bryan W.

    2014-01-01

    Polysaccharide lyases (PLs) catalyze the depolymerization of anionic polysaccharides via a β-elimination mechanism. PLs also play important roles in microbial pathogenesis, participating in bacterial invasion and toxin spread into the host tissue via degradation of the host extracellular matrix, or in microbial biofilm formation often associated with enhanced drug resistance. Stenotrophomonas maltophilia is a Gram-negative bacterium that is among the emerging multidrug-resistant organisms associated with chronic lung infections as well as with cystic fibrosis patients. A putative alginate lyase (Smlt1473) from S. maltophilia was heterologously expressed in Escherichia coli, purified in a one-step fashion via affinity chromatography, and activity as well as specificity determined for a range of polysaccharides. Interestingly, Smlt1473 catalyzed the degradation of not only alginate, but poly-β-d-glucuronic acid and hyaluronic acid as well. Furthermore, the pH optimum for enzymatic activity is substrate-dependent, with optimal hyaluronic acid degradation at pH 5, poly-β-d-glucuronic acid degradation at pH 7, and alginate degradation at pH 9. Analysis of the degradation products revealed that each substrate was cleaved endolytically into oligomers comprised predominantly of even numbers of sugar groups, with lower accumulation of trimers and pentamers. Collectively, these results imply that Smlt1473 is a multifunctional PL that exhibits broad substrate specificity, but utilizes pH as a mechanism to achieve selectivity. PMID:24257754

  6. Effects of Green Tea Compound Epigallocatechin-3-Gallate against Stenotrophomonas maltophilia Infection and Biofilm

    PubMed Central

    Vidigal, Pedrina G.; Müsken, Mathias; Becker, Katrin A.; Häussler, Susanne; Wingender, Jost; Steinmann, Eike; Kehrmann, Jan; Gulbins, Erich; Buer, Jan; Rath, Peter Michael; Steinmann, Jörg

    2014-01-01

    We investigated the in vitro and in vivo activities of epigallocatechin-3-gallate (EGCg), a green tea component, against Stenotrophomonas maltophilia (Sm) isolates from cystic fibrosis (CF) patients. In vitro effects of EGCg and the antibiotic colistin (COL) on growth inhibition, survival, and also against young and mature biofilms of S. maltophilia were determined. Qualitative and quantitative changes on the biofilms were assessed by confocal laser scanning microscopy (CLSM). Further, in vivo effects of nebulized EGCg in C57BL/6 and Cftr mutant mice during acute Sm lung infection were evaluated. Subinhibitory concentrations of EGCg significantly reduced not only biofilm formation, but also the quantity of viable cells in young and mature biofilms. CLSM showed that EGCg-exposed biofilms exhibited either a change in total biofilm biovolume or an increase of the fraction of dead cells contained within the biofilm in a dose depended manner. Sm infected wild-type and Cftr mutant mice treated with 1,024 mg/L EGCg by inhalation exhibited significantly lower bacterial counts than those undergoing no treatment or treated with COL. EGCg displayed promising inhibitory and anti-biofilm properties against CF Sm isolates in vitro and significantly reduced Sm bacterial counts in an acute infection model with wild type and CF mice. This natural compound may represent a novel therapeutic agent against Sm infection in CF. PMID:24690894

  7. Insights into the degradation of chlorimuron-ethyl by Stenotrophomonas maltophilia D310-3.

    PubMed

    Zang, Hailian; Yu, Qi; Lv, Tongyang; Cheng, Yi; Feng, Lu; Cheng, Xiaosong; Li, Chunyan

    2016-02-01

    In this study, the effects of cultivation conditions on the degradation of chlorimuron-ethyl by Stenotrophomonas maltophilia D310-3, which exhibits a high chlorimuron-ethyl-degrading capability, were investigated. To improve the biodegradation efficiency, the cultivation conditions were optimized using response surface methodology (RSM) based on Box-Behnken design (BBD). The maximum biodegradation rate (89.9%) was obtained at the optimal conditions (culture time, 6 d; substrate concentration, 50.21 mg L(-1); pH, 5.95; temperature, 30.15 °C). The Andrews model was used to describe the dynamic change regularity of the specific degradation rate as the substrate concentration increased, and the values of the maximum specific degradation rate (q(max)), half-saturation constant (K(S)) and inhibition constant (K(i)) were 78.87 d(-1), 9180.97 mg L(-1) and 0.28 mg L(-1), respectively. Eight degradation products were captured and identified by liquid chromatography-mass spectrometry (LC-MS) and Fourier transform infrared (FTIR) spectrometry, and three possible degradation pathways are proposed based on the results of high-performance liquid chromatography (HPLC), LC-MS and FTIR analyses as well as results reported in relevant literature. To the best of our knowledge, this is the first systematic study of the degradation pathway of chlorimuron-ethyl by S. maltophilia D310-3. This study provides valuable information for further exploration of the microbial degradation of other sulfonylurea herbicides.

  8. Effects of green tea compound epigallocatechin-3-gallate against Stenotrophomonas maltophilia infection and biofilm.

    PubMed

    Vidigal, Pedrina G; Müsken, Mathias; Becker, Katrin A; Häussler, Susanne; Wingender, Jost; Steinmann, Eike; Kehrmann, Jan; Gulbins, Erich; Buer, Jan; Rath, Peter Michael; Steinmann, Jörg

    2014-01-01

    We investigated the in vitro and in vivo activities of epigallocatechin-3-gallate (EGCg), a green tea component, against Stenotrophomonas maltophilia (Sm) isolates from cystic fibrosis (CF) patients. In vitro effects of EGCg and the antibiotic colistin (COL) on growth inhibition, survival, and also against young and mature biofilms of S. maltophilia were determined. Qualitative and quantitative changes on the biofilms were assessed by confocal laser scanning microscopy (CLSM). Further, in vivo effects of nebulized EGCg in C57BL/6 and Cftr mutant mice during acute Sm lung infection were evaluated. Subinhibitory concentrations of EGCg significantly reduced not only biofilm formation, but also the quantity of viable cells in young and mature biofilms. CLSM showed that EGCg-exposed biofilms exhibited either a change in total biofilm biovolume or an increase of the fraction of dead cells contained within the biofilm in a dose depended manner. Sm infected wild-type and Cftr mutant mice treated with 1,024 mg/L EGCg by inhalation exhibited significantly lower bacterial counts than those undergoing no treatment or treated with COL. EGCg displayed promising inhibitory and anti-biofilm properties against CF Sm isolates in vitro and significantly reduced Sm bacterial counts in an acute infection model with wild type and CF mice. This natural compound may represent a novel therapeutic agent against Sm infection in CF.

  9. A new Stenotrophomonas maltophilia strain producing laccase. Use in decolorization of synthetics dyes.

    PubMed

    Galai, Said; Limam, Ferid; Marzouki, M Nejib

    2009-08-01

    Laccase activity was detected in a soil bacterium Stenotrophomonas maltophilia AAP56 identified by biochemical and molecular methods. It was produced in cells at the stationary growth phase in Luria Bertani (LB) medium added by 0.4 mM copper sulfate. The addition of CuSO(4) in culture medium improved production of laccase activity. However, one laccase enzyme was detected by native polyacrylamide gel electrophoresis. The enzyme showed syringaldazine (K (m) = 53 microM), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (K (m) = 700 microM), and pyrocatechol (K (m) = 25 microM) oxidase activity and was activated by addition of 0.1% (v/v) Triton-X-100 in the reaction mixture. Moreover, the laccase activity was increased 2.6-fold by the addition of 10 mM copper sulfate; the enzyme was totally inhibited by ethylenediaminetetraacetic acid (5 mM), suggesting that this laccase is a metal-dependant one. Decolorization activity of some synthetic dyes (methylene blue, methyl green, toluidine blue, Congo red, methyl orange, and pink) and the industrial effluent (SITEX Black) was achieved by the bacteria S. maltophilia AAP56 in the LB growth medium under shaking conditions.

  10. A Highly Thermostable Xylanase from Stenotrophomonas maltophilia: Purification and Partial Characterization.

    PubMed

    Raj, Abhay; Kumar, Sharad; Singh, Sudheer Kumar

    2013-01-01

    Seven xylanolytic bacterial strains were isolated from saw-dust dump soil. The bacterial strain X6 was selected on the basis of the highest xylanase activity with no cellulase contamination. It was identified as Stenotrophomonas maltophilia by biochemical tests and 16S rRNA gene sequencing approach. Xylanase production studies by S. maltophilia on different commercial xylans and agro-industrial residues suggested that wheat bran was the best carbon source for xylanase production (26.4 ± 0.6 IU/mL). The studies with inorganic and organic nitrogen sources suggested yeast extract as the best support for xylanase production (25 ± 0.6 IU/mL). Maximum xylanase production was observed at initial medium pH = 8.0 (23.8 ± 0.4 IU/mL) with production at pH = 7.0 and pH = 9.0 being almost comparable. Xylanase produced by S. maltophilia was purified to homogeneity using ammonium sulfate precipitation, gel filtration, and ion exchange chromatography. The final purification was 5.43-fold with recovery of 19.18%. The molecular weight of the purified xylanase protein was ~142 kDa. Both crude and purified xylanase had good stability at pH = 9.0 and 80°C with activity retention greater than 90% after 30 min incubation. The enzyme stability at high temperature and alkaline pH make it potentially effective for industrial applications.

  11. High Genetic Diversity among Stenotrophomonas maltophilia Strains Despite Their Originating at a Single Hospital

    PubMed Central

    Valdezate, Sylvia; Vindel, Ana; Martín-Dávila, Pilar; Del Saz, Begoña Sánchez; Baquero, Fernando; Cantón, Rafael

    2004-01-01

    The levels of genetic relatedness of 139 Stenotrophomonas maltophilia strains recovered from 105 hospitalized non-cystic fibrosis patients (51% from medical wards, 35% from intensive care units, and 14% from surgical wards) and 7 environmental sources in the same hospital setting during a 4-year period were typed by the pulsed-field gel electrophoresis (PFGE) technique. A total of 99 well-defined distinct XbaI PFGE patterns were identified (Simpson's discrimination index, 0.996). The dendrogram showed a Dice similarity coefficient ranging from 28 to 80%. Two major clusters (I and II), three minor clusters (III, IV, and V), and two independent branches were observed when using a 36% Dice coefficient, indicating a high diversity of genetic relatedness. It is of note that 84% of strains were grouped within two major clonal lineages. No special cluster gathering was found among strains belonging to the same sample type specimen, patients' infection or colonization status, and ward of precedence. Despite this fact, three different clones (A, B, and C) recovered from respiratory samples from six, three, and two patients, respectively, and two clones, D and E, in two bacteremic patients each, were identified. Isolation of an S. maltophilia strain belonging to the clone A profile in a bronchoscope demonstrated a common source from this clone. This study revealed a high genetic diversity of S. maltophilia isolates despite their origin from a single hospital, which may be related to the wide environmental distribution of this pathogen. However, few clones could be transmitted among different patients, yielding outbreak situations. PMID:14766838

  12. Epidemiology and outcomes of Stenotrophomonas maltophilia and Burkholderia cepacia infections among trauma patients of India: a five year experience

    PubMed Central

    Rajkumari, Nonika; Gupta, Amit K; Sharma, Kumkum; Misra, Mahesh C

    2014-01-01

    Background: Infections by uncommon non-fermenting Gram negative bacteria are on the rise, but little is known about the risk factors and drug resistance in trauma patients in India. This study explored the infections caused by Stenotrophomonas maltophilia and/or Burkholderia cepacia in trauma patients over a period of 5 years. Material and methods: Patients admitted for trauma care with S. maltophilia and/or B. cepacia isolated from clinical specimens were enrolled. Characteristics regarding the strain isolation, drug sensitivity pattern, multidrug resistance (MDR), patient, outcomes, and differentiation of true infection from colonisation were observed. Results: Of the total 233 isolates, 102 were S. maltophilia and 131 were B. cepacia; 4.3% were responsible for polymicrobial infections with other bacteria. There were more B. cepacia MDR isolates than S. maltophilia. Maximum resistance was found to tetracycline (86.7%) and tobramycin (86.7%) in B. cepacia and to co-trimoxazole (68.7%) in S. maltophilia. Of these, 21 (16.03%) had a fatal outcome and the remaining 111 (84.7%) were discharged healthy. The in-hospital mortality rate associated with B. cepacia was much (16%) higher than S. maltophilia (13%) at this centre. Conclusion: The analysis of epidemiology and outcome of these infections will help to inform their management and treatment.

  13. In Vitro Killing Effect of Moxifloxacin on Clinical Isolates of Stenotrophomonas maltophilia Resistant to Trimethoprim-Sulfamethoxazole

    PubMed Central

    Giamarellos-Bourboulis, Evangelos J.; Karnesis, Lazaros; Galani, Irene; Giamarellou, Helen

    2002-01-01

    The time-kill effect of moxifloxacin on 20 genetically distinct isolates of Stenotrophomonas maltophilia resistant to trimethoprim-sulfamethoxazole was studied. The majority (80%) were killed by a concentration equivalent to four times the MIC; the MIC induced a transient decrease in bacterial counts at 4 h, followed by regrowth. No effect was detected in four isolates. These results merit further clinical consideration. PMID:12435710

  14. Isolation and characterization of a novel strain of Stenotrophomonas maltophilia possessing various dioxygenases for monocyclic hydrocarbon degradation

    PubMed Central

    Urszula, Guzik; Izabela, Greń; Danuta, Wojcieszyńska; Sylwia, Łabużek

    2009-01-01

    A Gram-negative bacterium, designated as strain KB2, was isolated from activated sludge and was found to utilize different aromatic substrates as sole carbon and energy source. On the basis of morphological and physiochemical characteristics and 16S rRNA gene sequence analysis, the isolated strain KB2 was identified as Stenotrophomonas maltophilia. Strain KB2 is from among different Stenotrophomonas maltophilia strains the first one described as exhibiting the activities of three types of dioxygenases depending on the structure of the inducer. The cells grown on benzoate and catechol showed mainly catechol 1,2-dioxygenase activity. The activity of 2,3-dioxygenase was detected after phenol induction. Protocatechuate 3,4-dioxygenase was found in crude cell extracts of this strain after incubation with 4-hydroxybenzoic acid, protocatechuic acid and vanillic acid. Because of broad spectrum of dioxygenases’ types that Stenotrophomonas maltophilia KB2 can exhibit, this strain appears to be very powerful and useful tool in the biotreatment of wastewaters and in soil decontamination. PMID:24031359

  15. Aflatoxin B1 Degradation by Stenotrophomonas Maltophilia and Other Microbes Selected Using Coumarin Medium#

    PubMed Central

    Guan, Shu; Ji, Cheng; Zhou, Ting; Li, Junxia; Ma, Qiugang; Niu, Tiangui

    2008-01-01

    Aflatoxin B1 (AFB1) is one of the most harmful mycotoxins in animal production and food industry. A safe, effective and environmentally sound detoxification method is needed for controlling this toxin. In this study, 65 samples were screened from various sources with vast microbial populations using a newly developed medium containing coumarin as the sole carbon source. Twenty five single-colony bacterial isolates showing AFB1 reduction activity in a liquid culture medium were selected from the screen. Isolate 35-3, obtained from tapir feces and identified to be Stenotrophomonas maltophilia, reduced AFB1 by 82.5% after incubation in the liquid medium at 37 °C for 72 h. The culture supernatant of isolate 35-3 was able to degrade AFB1 effectively, whereas the viable cells and cell extracts were far less effective. Factors influencing AFB1 degradation by the culture supernatant were investigated. Activity was reduced to 60.8% and 63.5% at 20 °C and 30 °C, respectively, from 78.7% at 37 °C. The highest degradation rate was 84.8% at pH 8 and the lowest was only 14.3% at pH 4.0. Ions Mg2+ and Cu2+ were activators for AFB1 degradation, however ion Zn2+ was a strong inhibitor. Treatments with proteinase K, proteinase K plus SDS and heating significantly reduced or eradicated the degradation activity of the culture supernatant. The results indicated that the degradation of AFB1 by S. maltophilia 35-3 was enzymatic and could have a great potential in industrial applications. PMID:19325817

  16. Decoding the genetic and functional diversity of the DSF quorum-sensing system in Stenotrophomonas maltophilia

    PubMed Central

    Huedo, Pol; Yero, Daniel; Martinez-Servat, Sònia; Ruyra, Àngels; Roher, Nerea; Daura, Xavier; Gibert, Isidre

    2015-01-01

    Stenotrophomonas maltophilia uses the Diffusible Signal Factor (DSF) quorum sensing (QS) system to mediate intra- and inter-specific signaling and regulate virulence-related processes. The components of this system are encoded by the rpf cluster, with genes rpfF and rpfC encoding for the DSF synthase RpfF and sensor RpfC, respectively. Recently, we have shown that there exist two variants of the rpf cluster (rpf-1 and rpf-2), distinguishing two groups of S. maltophilia strains. Surprisingly, only rpf-1 strains produce detectable DSF, correlating with their ability to control biofilm formation, swarming motility and virulence. The evolutive advantage of acquiring two different rpf clusters, the phylogenetic time point and mechanism of this acquisition and the conditions that activate DSF production in rpf-2 strains, are however not known. Examination of this cluster in various species suggests that its variability originated most probably by genetic exchange between rhizosphere bacteria. We propose that rpf-2 variant strains make use of a strategy recently termed as “social cheating.” Analysis of cellular and extracellular fatty acids (FAs) of strains E77 (rpf-1) and M30 (rpf-2) suggests that their RpfFs have also a thioesterase activity that facilitates the release of unspecific FAs to the medium in addition to DSF. Production of DSF in rpf-1 strains appears in fact to be modulated by some of these extracellular FAs in addition to other factors such as temperature and nutrients, while in rpf-2 strains DSF biosynthesis is derepressed only upon detection of DSF itself, suggesting that they require cohabitation with DSF-producer bacteria to activate their DSF regulatory machinery. Finally, we show that the mixed rpf-1/rpf-2 population presents synergism in DSF production and virulence capacity in an in vivo infection model. Recovery and quantification of DSF from co-infected animals correlates with the observed mortality rate. PMID:26284046

  17. Antibiogram of Stenotrophomonas maltophilia Isolated From Nkonkobe Municipality, Eastern Cape Province, South Africa

    PubMed Central

    Adegoke, Anthony Ayodeji; Okoh, Anthony I.

    2014-01-01

    Background: Assessment of resistance genes is imperative, as they become disseminated to bacterial flora in plants and to the indigenous bacterial community, and thus ultimately contributes to the clinical problems of antibiotic resistant pathogens. Objectives: The research was to assess the antibiotic characteristics and incidence of sul3 genes of Stenotrophomonas maltophilia isolates recovered from rhizospheres plant in Nkonkobe Municipality. Materials and Methods: Identification and assessment of resistance genes (sul2 and sul3 genes) were carried out using polymerase chain reaction (PCR). Analytical profile index (API) was used for biochemical characterization for identification before the PCR. Antibiotic susceptibility test was carried out using the approved guidelines and standards of Clinical Laboratory Standard Institute (CLSI). Results: A total of 125 isolates were identified, composed of 120 (96%) from grass root rhizosphere and 5 (4%) from soil butternut root rhizosphere. In vitro antibiotic susceptibility tests showed varying resistances to meropenem (8.9%), cefuroxime (95.6 %), ampicillin-sulbactam (53.9%), ceftazidime (10.7%), cefepime (29.3 %), minocycline (2.2%), kanamycin (56.9%), ofloxacin (2.9%), levofloxacin (1.3%), moxifloxacin (2.8%), ciprofloxacin (24.3%), gatifloxacin (1.3%), polymyxin B (2.9 %), cotrimoxazole (26.1%), trimethoprim (98.6%) and aztreonam (58%). The isolates were susceptible to the fluoroquinolones (74.3-94.7%), polymycin (97.1%) and meropenem (88.1%). The newest sulphonamide resistance gene, sul3, was detected among the trimethoprim-sulfamethoxazole (cotrimoxazole)-resistant isolates, while the most frequent sulphonamide-resistant gene in animal source isolates, sul2, was not. Conclusions: The commensal S. maltophilia isolates in the Nkonkobe Municipality environment harbored the resistant gene sul3 as clinical counterparts, especially from the perspective of reservoirs of antibiotic resistance determinants. PMID:25789125

  18. Comparative Genomics of Environmental and Clinical Stenotrophomonas maltophilia Strains with Different Antibiotic Resistance Profiles

    PubMed Central

    Youenou, Benjamin; Favre-Bonté, Sabine; Bodilis, Josselin; Brothier, Elisabeth; Dubost, Audrey; Muller, Daniel; Nazaret, Sylvie

    2015-01-01

    Stenotrophomonas maltophilia, a ubiquitous Gram-negative γ-proteobacterium, has emerged as an important opportunistic pathogen responsible for nosocomial infections. A major characteristic of clinical isolates is their high intrinsic or acquired antibiotic resistance level. The aim of this study was to decipher the genetic determinism of antibiotic resistance among strains from different origins (i.e., natural environment and clinical origin) showing various antibiotic resistance profiles. To this purpose, we selected three strains isolated from soil collected in France or Burkina Faso that showed contrasting antibiotic resistance profiles. After whole-genome sequencing, the phylogenetic relationships of these 3 strains and 11 strains with available genome sequences were determined. Results showed that a strain’s phylogeny did not match their origin or antibiotic resistance profiles. Numerous antibiotic resistance coding genes and efflux pump operons were revealed by the genome analysis, with 57% of the identified genes not previously described. No major variation in the antibiotic resistance gene content was observed between strains irrespective of their origin and antibiotic resistance profiles. Although environmental strains generally carry as many multidrug resistant (MDR) efflux pumps as clinical strains, the absence of resistance–nodulation–division (RND) pumps (i.e., SmeABC) previously described to be specific to S. maltophilia was revealed in two environmental strains (BurA1 and PierC1). Furthermore the genome analysis of the environmental MDR strain BurA1 showed the absence of SmeABC but the presence of another putative MDR RND efflux pump, named EbyCAB on a genomic island probably acquired through horizontal gene transfer. PMID:26276674

  19. A Stenotrophomonas maltophilia Multilocus Sequence Typing Scheme for Inferring Population Structure▿ †

    PubMed Central

    Kaiser, Sabine; Biehler, Klaus; Jonas, Daniel

    2009-01-01

    Stenotrophomonas maltophilia is an opportunistic, highly resistant, and ubiquitous pathogen. Strains have been assigned to genogroups using amplified fragment length polymorphism. Hence, isolates of environmental and clinical origin predominate in different groups. A multilocus sequence typing (MLST) scheme was developed using a highly diverse selection of 70 strains of various ecological origins from seven countries on all continents including strains of the 10 previously defined genogroups. Sequence data were assigned to 54 sequence types (ST) based on seven loci. Indices of association for all isolates and clinical isolates of 2.498 and 2.562 indicated a significant linkage disequilibrium, as well as high congruence of tree topologies from different loci. Potential recombination events were detected in one-sixth of all ST. Calculation of the mean divergence between and within predicted clusters confirmed previously defined groups and revealed five additional groups. Consideration of the different ecological origins showed that 18 out of 31 respiratory tract isolates, including 12 out of 19 isolates from cystic fibrosis (CF) patients, belonged to genogroup 6. In contrast, 16 invasive strains isolated from blood cultures were distributed among nine different genogroups. Three genogroups contained isolates of strictly environmental origin that also featured high sequence distances to other genogroups, including the S. maltophilia type strain. On the basis of this MLST scheme, isolates can be assigned to the genogroups of this species in order to further scrutinize the population structure of this species and to unravel the uneven distribution of environmental and clinical isolates obtained from infected, colonized, or CF patients. PMID:19251858

  20. Stenotrophomonas maltophilia Phenotypic and Genotypic Diversity during a 10-year Colonization in the Lungs of a Cystic Fibrosis Patient

    PubMed Central

    Pompilio, Arianna; Crocetta, Valentina; Ghosh, Dipankar; Chakrabarti, Malabika; Gherardi, Giovanni; Vitali, Luca Agostino; Fiscarelli, Ersilia; Di Bonaventura, Giovanni

    2016-01-01

    The present study was carried out to understand the adaptive strategies developed by Stenotrophomonas maltophilia for chronic colonization of the cystic fibrosis (CF) lung. For this purpose, 13 temporally isolated strains from a single CF patient chronically infected over a 10-year period were systematically characterized for growth rate, biofilm formation, motility, mutation frequencies, antibiotic resistance, and pathogenicity. Pulsed-field gel electrophoresis (PFGE) showed over time the presence of two distinct groups, each consisting of two different pulsotypes. The pattern of evolution followed by S. maltophilia was dependent on pulsotype considered, with strains belonging to pulsotype 1.1 resulting to be the most adapted, being significantly changed in all traits considered. Generally, S. maltophilia adaptation to CF lung leads to increased growth rate and antibiotic resistance, whereas both in vivo and in vitro pathogenicity as well as biofilm formation were decreased. Overall, our results show for the first time that S. maltophilia can successfully adapt to a highly stressful environment such as CF lung by paying a “biological cost,” as suggested by the presence of relevant genotypic and phenotypic heterogeneity within bacterial population. S. maltophilia populations are, therefore, significantly complex and dynamic being able to fluctuate rapidly under changing selective pressures. PMID:27746770

  1. Extracellular serine proteases from Stenotrophomonas maltophilia: Screening, isolation and heterologous expression in E. coli.

    PubMed

    Ribitsch, D; Heumann, S; Karl, W; Gerlach, J; Leber, R; Birner-Gruenberger, R; Gruber, K; Eiteljoerg, I; Remler, P; Siegert, P; Lange, J; Maurer, K H; Berg, G; Guebitz, G M; Schwab, H

    2012-01-01

    A large strain collection comprising antagonistic bacteria was screened for novel detergent proteases. Several strains displayed protease activity on agar plates containing skim milk but were inactive in liquid media. Encapsulation of cells in alginate beads induced protease production. Stenotrophomonas maltophilia emerged as best performer under washing conditions. For identification of wash-active proteases, four extracellular serine proteases called StmPr1, StmPr2, StmPr3 and StmPr4 were cloned. StmPr2 and StmPr4 were sufficiently overexpressed in E. coli. Expression of StmPr1 and StmPr3 resulted in unprocessed, insoluble protein. Truncation of most of the C-terminal domain which has been identified by enzyme modeling succeeded in expression of soluble, active StmPr1 but failed in case of StmPr3. From laundry application tests StmPr2 turned out to be a highly wash-active protease at 45°C. Specific activity of StmPr2 determined with suc-L-Ala-L-Ala-L-Pro-l-Phe-p-nitroanilide as the substrate was 17±2U/mg. In addition we determined the kinetic parameters and cleavage preferences of protease StmPr2.

  2. Global and local selection acting on the pathogen Stenotrophomonas maltophilia in the human lung

    PubMed Central

    Chung, Hattie; Lieberman, Tami D.; Vargas, Sara O.; Flett, Kelly B.; McAdam, Alexander J.; Priebe, Gregory P.; Kishony, Roy

    2017-01-01

    Bacterial populations diversify during infection into distinct subpopulations that coexist within the human body. Yet, it is unknown to what extent subpopulations adapt to location-specific selective pressures as they migrate and evolve across space. Here we identify bacterial genes under local and global selection by testing for spatial co-occurrence of adaptive mutations. We sequence 552 genomes of the pathogen Stenotrophomonas maltophilia across 23 sites of the lungs from a patient with cystic fibrosis. We show that although genetically close isolates colocalize in space, distant lineages with distinct phenotypes separated by adaptive mutations spread throughout the lung, suggesting global selective pressures. Yet, for one gene (a distant homologue of the merC gene implicated in metal resistance), mutations arising independently in two lineages colocalize in space, providing evidence for location-specific selection. Our work presents a general framework for understanding how selection acts upon a pathogen that colonizes and evolves across the complex environment of the human body. PMID:28102223

  3. High-level quinolone resistance is associated with the overexpression of smeVWX in Stenotrophomonas maltophilia clinical isolates.

    PubMed

    García-León, G; Ruiz de Alegría Puig, C; García de la Fuente, C; Martínez-Martínez, L; Martínez, J L; Sánchez, M B

    2015-05-01

    Stenotrophomonas maltophilia is the only known bacterium in which quinolone-resistant isolates do not present mutations in the genes encoding bacterial topoisomerases. The expression of the intrinsic quinolone resistance elements smeDEF, smeVWX and Smqnr was analysed in 31 clinical S. maltophilia isolates presenting a minimum inhibitory concentration (MIC) range to ciprofloxacin between 0.5 and > 32 μg/mL; 11 (35.5%) overexpressed smeDEF, 2 (6.5%) presenting the highest quinolone MICs overexpressed smeVWX and 1 (3.2%) overexpressed Smqnr. Both strains overexpressing smeVWX presented changes at the Gly266 position of SmeRv, the repressor of smeVWX. Changes at the same position were previously observed in in vitro selected S. maltophilia quinolone-resistant mutants, indicating this amino acid is highly relevant for the activity of SmeRv in repressing smeVWX expression. For the first time SmeVWX overexpression is associated with quinolone resistance of S. maltophilia clinical isolates.

  4. Antibiotic susceptibility of sulfamethoxazole-trimethoprim resistant Stenotrophomonas maltophilia strains isolated at a tertiary care centre in Hungary.

    PubMed

    Juhász, Emese; Pongrácz, Júlia; Iván, Miklós; Kristóf, Katalin

    2015-09-01

    Sulfamethoxazole-trimethoprim (SXT) is the drug-of-choice in Stenotrophomonas maltophilia caused infections. There has been an increase in resistance to SXT of S. maltophilia over recent years. In this study 30 S. maltophilia clinical isolates resistant to SXT were investigated. Antibiotic susceptibilities for ciprofloxacin, moxifloxacin, levofloxacin, doxycycline, tigecycline, ceftazidime, colistin and chloramphenicol were determined by broth microdilution method. None of the strains were susceptible to ciprofloxacin, tigecycline, ceftazidime or colistin. Only 37% of the isolates were susceptible to levofloxacin or moxifloxacin. Two isolates resistant to all tested antibiotic agents and two others susceptible only to doxycycline were further investigated: susceptibility for combinations of antibiotics was analyzed by checkerboard technique. According to the fractional inhibitory concentration indices calculated, moxifloxacin plus ceftazidime combination was found to be synergistic in each case. Genetic testing revealed the predominance of sul1 gene. Our study concluded that the range of effective antibiotic agents is even more limited in infections caused by SXT-resistant S. maltophilia. In these cases, in vitro synergistic antibiotic combinations could be potential therapeutic options.

  5. Stenotrophomonas maltophilia Virulence and Specific Variations in Trace Elements during Acute Lung Infection: Implications in Cystic Fibrosis

    PubMed Central

    Crocetta, Valentina; Consalvo, Ada; Zappacosta, Roberta; Di Ilio, Carmine; Di Bonaventura, Giovanni

    2014-01-01

    Metal ions are necessary for the proper functioning of the immune system, and, therefore, they might have a significant influence on the interaction between bacteria and host. Ionic dyshomeostasis has been recently observed also in cystic fibrosis (CF) patients, whose respiratory tract is frequently colonized by Stenotrophomonas maltophilia. For the first time, here we used an inductively mass spectrometry method to perform a spatial and temporal analysis of the pattern of changes in a broad range of major trace elements in response to pulmonary infection by S. maltophilia. To this, DBA/2 mouse lungs were comparatively infected by a CF strain and by an environmental one. Our results showed that pulmonary ionomic profile was significantly affected during infection. Infected mice showed increased lung levels of Mg, P, S, K, Zn, Se, and Rb. To the contrary, Mn, Fe, Co, and Cu levels resulted significantly decreased. Changes of element concentrations were correlated with pulmonary bacterial load and markers of inflammation, and occurred mostly on day 3 post-exposure, when severity of infection culminated. Interestingly, CF strain – significantly more virulent than the environmental one in our murine model - provoked a more significant impact in perturbing pulmonary metal homeostasis. Particularly, exposure to CF strain exclusively increased P and K levels, while decreased Fe and Mn ones. Overall, our data clearly indicate that S. maltophilia modulates pulmonary metal balance in a concerted and virulence-dependent manner highlighting the potential role of the element dyshomeostasis during the progression of S. maltophilia infection, probably exacerbating the harmful effects of the loss of CF transmembrane conductance regulator function. Further investigations are required to understand the biological significance of these alterations and to confirm they are specifically caused by S. maltophilia. PMID:24586389

  6. Genome Sequence of a Multidrug-Resistant Strain of Stenotrophomonas maltophilia with Carbapenem Resistance, Isolated from King Abdullah Medical City, Makkah, Saudi Arabia

    PubMed Central

    Abdel-Haleem, Alyaa M.; Rchiad, Zineb; Khan, Babar K.; Abdallah, Abdallah M.; Naeem, Raeece; Nikhat Sheerin, Shalam; Solovyev, Victor; Ahmed, Abdalla

    2015-01-01

    The emergence and spread of multidrug-resistant (MDR) bacteria have been regarded as major challenges among health care-associated infections worldwide. Here, we report the draft genome sequence of an MDR Stenotrophomonas maltophilia strain isolated in 2014 from King Abdulla Medical City, Makkah, Saudi Arabia. PMID:26472828

  7. Draft Genome Sequence of Stenotrophomonas maltophilia CBF10-1, an Organophosphate-Degrading Bacterium Isolated from Ranch Soil in Fairchilds, Texas

    PubMed Central

    Damania, Ashish

    2016-01-01

    Stenotrophomonas maltophilia CBF10-1 was isolated from a ranch in Fairchilds, Texas, USA. Its genome reveals a highly adaptable microorganism with a large complement of antibiotic and heavy metal resistance genes, efflux pumps, multidrug transporters, and xenobiotic degradation pathways. PMID:27174285

  8. Honeydew honey as a potent antibacterial agent in eradication of multi-drug resistant Stenotrophomonas maltophilia isolates from cancer patients.

    PubMed

    Majtan, Juraj; Majtanova, Lubica; Bohova, Jana; Majtan, Viktor

    2011-04-01

    Multi-drug resistance in nosocomial pathogens is a continually evolving and alarming problem in health care units. Since ancient times, honey has been used successfully for the treatment of a broad spectrum of infections with no risk of resistance development. This study investigated the antibacterial activity of two natural honeys, namely honeydew and manuka, against 20 nosocomial multi-drug resistant Stenotrophomonas maltophilia (S. maltophilia) isolates from cancer patients. An antibiotic susceptibility test was carried out using the disk diffusion method with 20 antibiotic disks. The antibacterial activity of honey was determined using a broth dilution method. The concentration of honey used in the study was within the range of 3.75% to 25% (w/v). All 20 clinical isolates were multi-drug resistant against 11 to 19 antibiotics. The MICs for honeydew honey ranged from 6.25% to 17.5%, while those for active manuka honey ranged from 7.5% to 22.5%. Honeydew honey had lower MICs than manuka honey against 16 of the tested isolates. This study showed that Slovak honeydew honey has exceptional antibacterial activity against multi-drug resistant S. maltophilia isolates and was more efficient than manuka honey (UMF 15+). Honeydew honey with strong antibacterial activity could be used as a potential agent to eradicate multi-drug resistant clinical isolates.

  9. Surfactant-enhanced biodegradation of high molecular weight polycyclic aromatic hydrocarbons by stenotrophomonas maltophilia

    PubMed

    Boonchan; Britz; Stanley

    1998-08-20

    The objectives of this study were to isolate and evaluate microorganisms with the ability to degrade high molecular weight polycyclic aromatic hydrocarbons (PAHs) in the presence of synthetic surfactants. Stenotrophomonas maltophilia VUN 10,010, isolated from PAH-contaminated soil, utilized pyrene as a sole carbon and energy source and also degraded other high molecular weight PAHs containing up to seven benzene rings. Various synthetic surfactants were tested for their ability to improve the PAH degradation rate of strain VUN 10,010. Anionic and cationic surfactants were highly toxic to this strain, and the Tween series was used as a growth substrate. Five nonionic surfactants (Brij 35, Igepal CA-630, Triton X-100, Tergitol NP-10, and Tyloxapol) were not utilized by, and were less toxic to, strain VUN 10,010. MSR and log Km values were determined for fluoranthene, pyrene, and benzo[a]pyrene in the presence of these nonionic surfactants and their apparent solubility was increased by a minimum of 250-fold in the presence of 10 g L-1 of all surfactants. The rate of pyrene degradation by strain VUN 10,010 was enhanced by the addition of four of the nonionic surfactants (5-10 g L-1); however, 5 g L-1 Igepal CA-630 inhibited pyrene degradation and microbial growth. The specific growth rate of VUN 10,010 on pyrene was increased by 67% in the presence of 10 g L-1 Brij 35 or Tergitol NP-10. The addition of Brij 35 and Tergitol NP-10 to media containing a single high molecular weight PAH (four and five benzene rings) as the sole carbon source increased the maximum specific PAH degradation rate and decreased the lag period normally seen for PAH degradation. The addition of Tergitol NP-10 to VUN 10,010 cultures which contained a PAH mixture (three to seven benzene rings) substantially improved the overall degradation rate of each PAH and increased the specific growth rate of VUN 10,010 by 30%. Evaluation of the use of VUN 10,010 for degrading high molecular weight PAHs in

  10. A function of SmeDEF, the major quinolone resistance determinant of Stenotrophomonas maltophilia, is the colonization of plant roots.

    PubMed

    García-León, Guillermo; Hernández, Alvaro; Hernando-Amado, Sara; Alavi, Peyman; Berg, Gabriele; Martínez, José Luis

    2014-08-01

    Quinolones are synthetic antibiotics, and the main cause of resistance to these antimicrobials is mutation of the genes encoding their targets. However, in contrast to the case for other organisms, such mutations have not been found in quinolone-resistant Stenotrophomonas maltophilia isolates, in which overproduction of the SmeDEF efflux pump is a major cause of quinolone resistance. SmeDEF is chromosomally encoded and highly conserved in all studied S. maltophilia strains; it is an ancient element that evolved over millions of years in this species. It thus seems unlikely that its main function would be resistance to quinolones, a family of synthetic antibiotics not present in natural environments until the last few decades. Expression of SmeDEF is tightly controlled by the transcriptional repressor SmeT. Our work shows that plant-produced flavonoids can bind to SmeT, releasing it from smeDEF and smeT operators. Antibiotics extruded by SmeDEF do not impede the binding of SmeT to DNA. The fact that plant-produced flavonoids specifically induce smeDEF expression indicates that they are bona fide effectors regulating expression of this resistance determinant. Expression of efflux pumps is usually downregulated unless their activity is needed. Since smeDEF expression is triggered by plant-produced flavonoids, we reasoned that this efflux pump may have a role in the colonization of plants by S. maltophilia. Our results showed that, indeed, deletion of smeE impairs S. maltophilia colonization of plant roots. Altogether, our results indicate that quinolone resistance is a recent function of SmeDEF and that colonization of plant roots is likely one original function of this efflux pump.

  11. Clinical Characteristics of Stenotrophomonas maltophilia Bacteremia: A Regional Report and a Review of a Japanese Case Series

    PubMed Central

    Ebara, Hirotaka; Hagiya, Hideharu; Haruki, Yuto; Kondo, Eisei; Otsuka, Fumio

    2017-01-01

    Objective Stenotrophomonas maltophilia is an emerging nosocomial pathogen that causes fatal infections in critically ill or immunocompromised patients. S. maltophilia bacteremia (SMB) is a rare condition, and its clinical characteristics in Japanese settings are not well known. Methods The medical charts of patients with SMB were retrospectively reviewed at two medical facilities (Okayama University Hospital and Tsuyama Chuo Hospital) for seven years. The data were analyzed along with those previously reported from other Japanese facilities. Result A total of 181 patients (110 men and 71 women) were evaluated. The major underlying diseases included hematologic malignancy (36.5%), solid organ malignancy (25.4%), and neutropenia (31.5%). The recent use of carbapenem was seen in 56.9% of the cases in total, and more than one-third of the patients in our hospitals were treated with carbapenem at the onset of SMB. Of 28 (63.6%) of 44 cases treated for S. maltophilia, those who did not survive were more likely to have been treated with broad-spectrum antibiotics. A multivariate analysis revealed that a higher updated Charlson Comorbidity Index [odds ratio (95% confidence interval), 1.75 (1.11-2.75); p=0.015] and intubation [odds ratio (95% confidence interval), 12.6 (1.62-97.9); p=0.016] were associated with mortality in our cases. Pathogens were often resistant to ceftazidime but susceptible to minocycline, trimethoprim/sulfamethoxazole, and fluoroquinolones. The overall mortality rates within 30 and 90 days were 37.5% and 62.5%, respectively. Conclusion The clinical characteristics of SMB in Japanese cases were similar to those reported from other countries. Clinicians should be aware that breakthrough infection by S. maltophilia may occur during administration of carbapenem. PMID:28090041

  12. Characteristics of Aspergillus fumigatus in Association with Stenotrophomonas maltophilia in an In Vitro Model of Mixed Biofilm

    PubMed Central

    Melloul, Elise; Luiggi, Stéphanie; Anaïs, Leslie; Arné, Pascal; Costa, Jean-Marc; Fihman, Vincent; Briard, Benoit; Dannaoui, Eric; Guillot, Jacques; Decousser, Jean-Winoc; Beauvais, Anne; Botterel, Françoise

    2016-01-01

    Background Biofilms are communal structures of microorganisms that have long been associated with a variety of persistent infections poorly responding to conventional antibiotic or antifungal therapy. Aspergillus fumigatus fungus and Stenotrophomonas maltophilia bacteria are examples of the microorganisms that can coexist to form a biofilm especially in the respiratory tract of immunocompromised patients or cystic fibrosis patients. The aim of the present study was to develop and assess an in vitro model of a mixed biofilm associating S. maltophilia and A. fumigatus by using analytical and quantitative approaches. Materials and Methods An A. fumigatus strain (ATCC 13073) expressing a Green Fluorescent Protein (GFP) and an S. maltophilia strain (ATCC 13637) were used. Fungal and bacterial inocula (105 conidia/mL and 106 cells/mL, respectively) were simultaneously deposited to initiate the development of an in vitro mixed biofilm on polystyrene supports at 37°C for 24 h. The structure of the biofilm was analysed via qualitative microscopic techniques like scanning electron and transmission electron microscopy, and fluorescence microscopy, and by quantitative techniques including qPCR and crystal violet staining. Results Analytic methods revealed typical structures of biofilm with production of an extracellular matrix (ECM) enclosing fungal hyphae and bacteria. Quantitative methods showed a decrease of A. fumigatus growth and ECM production in the mixed biofilm with antibiosis effect of the bacteria on the fungi seen as abortive hyphae, limited hyphal growth, fewer conidia, and thicker fungal cell walls. Conclusion For the first time, a mixed A. fumigatus—S. maltophilia biofilm was validated by various analytical and quantitative approaches and the bacterial antibiosis effect on the fungus was demonstrated. The mixed biofilm model is an interesting experimentation field to evaluate efficiency of antimicrobial agents and to analyse the interactions between the

  13. Predictive Studies Suggest that the Risk for the Selection of Antibiotic Resistance by Biocides Is Likely Low in Stenotrophomonas maltophilia

    PubMed Central

    Sánchez, María Blanca; Decorosi, Francesca; Viti, Carlo; Oggioni, Marco Rinaldo; Martínez, José Luis; Hernández, Alvaro

    2015-01-01

    Biocides are used without restriction for several purposes. As a consequence, large amounts of biocides are released without any control in the environment, a situation that can challenge the microbial population dynamics, including selection of antibiotic resistant bacteria. Previous work has shown that triclosan selects Stenotrophomonas maltophilia antibiotic resistant mutants overexpressing the efflux pump SmeDEF and induces expression of this pump triggering transient low-level resistance. In the present work we analyze if two other common biocides, benzalkonium chloride and hexachlorophene, trigger antibiotic resistance in S. maltophilia. Bioinformatic and biochemical methods showed that benzalkonium chloride and hexachlorophene bind the repressor of smeDEF, SmeT. Only benzalkonium chloride triggers expression of smeD and its effect in transient antibiotic resistance is minor. None of the hexachlorophene-selected mutants was antibiotic resistant. Two benzalkonium chloride resistant mutants presented reduced susceptibility to antibiotics and were impaired in growth. Metabolic profiling showed they were more proficient than their parental strain in the use of some dipeptides. We can then conclude that although bioinformatic predictions and biochemical studies suggest that both hexachlorophene and benzalkonium chloride should induce smeDEF expression leading to transient S. maltophilia resistance to antibiotics, phenotypic assays showed this not to be true. The facts that hexachlorophene resistant mutants are not antibiotic resistant and that the benzalkonium chloride resistant mutants presenting altered susceptibility to antibiotics were impaired in growth suggests that the risk for the selection (and fixation) of S. maltophilia antibiotic resistant mutants by these biocides is likely low, at least in the absence of constant selection pressure. PMID:26201074

  14. Predictive Studies Suggest that the Risk for the Selection of Antibiotic Resistance by Biocides Is Likely Low in Stenotrophomonas maltophilia.

    PubMed

    Sánchez, María Blanca; Decorosi, Francesca; Viti, Carlo; Oggioni, Marco Rinaldo; Martínez, José Luis; Hernández, Alvaro

    2015-01-01

    Biocides are used without restriction for several purposes. As a consequence, large amounts of biocides are released without any control in the environment, a situation that can challenge the microbial population dynamics, including selection of antibiotic resistant bacteria. Previous work has shown that triclosan selects Stenotrophomonas maltophilia antibiotic resistant mutants overexpressing the efflux pump SmeDEF and induces expression of this pump triggering transient low-level resistance. In the present work we analyze if two other common biocides, benzalkonium chloride and hexachlorophene, trigger antibiotic resistance in S. maltophilia. Bioinformatic and biochemical methods showed that benzalkonium chloride and hexachlorophene bind the repressor of smeDEF, SmeT. Only benzalkonium chloride triggers expression of smeD and its effect in transient antibiotic resistance is minor. None of the hexachlorophene-selected mutants was antibiotic resistant. Two benzalkonium chloride resistant mutants presented reduced susceptibility to antibiotics and were impaired in growth. Metabolic profiling showed they were more proficient than their parental strain in the use of some dipeptides. We can then conclude that although bioinformatic predictions and biochemical studies suggest that both hexachlorophene and benzalkonium chloride should induce smeDEF expression leading to transient S. maltophilia resistance to antibiotics, phenotypic assays showed this not to be true. The facts that hexachlorophene resistant mutants are not antibiotic resistant and that the benzalkonium chloride resistant mutants presenting altered susceptibility to antibiotics were impaired in growth suggests that the risk for the selection (and fixation) of S. maltophilia antibiotic resistant mutants by these biocides is likely low, at least in the absence of constant selection pressure.

  15. Stenotrophomonas maltophilia as a part of normal oral bacterial flora in captive snakes and its susceptibility to antibiotics.

    PubMed

    Hejnar, Petr; Bardon, Jan; Sauer, Pavel; Kolár, Milan

    2007-04-15

    Only little is known about normal oral bacterial flora in captive snakes containing Stenotrophomonas maltophilia. This microbe has been reported as a causative agent of numerous infections in reptiles. Therefore, the goal of the study was to detect its presence in the mouths of a significant number of healthy captive snakes and determining its susceptibility to antibiotics at 30 and 37 degrees C. The isolates were obtained in 1999-2005 from mouth swabs of 115 snakes of 12 genera and 22 species-most often Elaphe guttata (24 individuals; 20.9%). Susceptibility to 24 antibiotics was tested by the microdilution method. The microbe was demonstrated in 34 (29.6%) individuals. Overall, 47 strains of S. maltophilia were acquired. Evaluation using PFGE profiles and antibiograms resulted in confirmation of one strain of S. maltophilia in 23 (20.0%) individuals, two strains in nine (7.8%) and three in two (1.8%) snakes. All tested antibiotics were more effective at 37 degrees C, with the partial exception of cotrimoxazole and cefoperazone/sulbactam. At a temperature of 37 degrees C, the lowest frequency of resistance to levofloxacin (no resistant strains), cotrimoxazole and ofloxacin (97.9% of susceptible strains) was recorded. At 30 degrees C, the most active agents were cotrimoxazole (97.9% of susceptible strains), levofloxacin (91.5%) and ofloxacin (85.1%). In conclusion, S. maltophilia is present in the mouths of about one third of healthy captive snakes, showing good susceptibility to cotrimoxazole, some fluoroquinolones and aminoglycosides. The antibiotics (particularly aminoglycosides) are more effective at 37 degrees C.

  16. A Function of SmeDEF, the Major Quinolone Resistance Determinant of Stenotrophomonas maltophilia, Is the Colonization of Plant Roots

    PubMed Central

    García-León, Guillermo; Hernández, Alvaro; Hernando-Amado, Sara; Alavi, Peyman; Berg, Gabriele

    2014-01-01

    Quinolones are synthetic antibiotics, and the main cause of resistance to these antimicrobials is mutation of the genes encoding their targets. However, in contrast to the case for other organisms, such mutations have not been found in quinolone-resistant Stenotrophomonas maltophilia isolates, in which overproduction of the SmeDEF efflux pump is a major cause of quinolone resistance. SmeDEF is chromosomally encoded and highly conserved in all studied S. maltophilia strains; it is an ancient element that evolved over millions of years in this species. It thus seems unlikely that its main function would be resistance to quinolones, a family of synthetic antibiotics not present in natural environments until the last few decades. Expression of SmeDEF is tightly controlled by the transcriptional repressor SmeT. Our work shows that plant-produced flavonoids can bind to SmeT, releasing it from smeDEF and smeT operators. Antibiotics extruded by SmeDEF do not impede the binding of SmeT to DNA. The fact that plant-produced flavonoids specifically induce smeDEF expression indicates that they are bona fide effectors regulating expression of this resistance determinant. Expression of efflux pumps is usually downregulated unless their activity is needed. Since smeDEF expression is triggered by plant-produced flavonoids, we reasoned that this efflux pump may have a role in the colonization of plants by S. maltophilia. Our results showed that, indeed, deletion of smeE impairs S. maltophilia colonization of plant roots. Altogether, our results indicate that quinolone resistance is a recent function of SmeDEF and that colonization of plant roots is likely one original function of this efflux pump. PMID:24837376

  17. Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia strain VUN 10,003.

    PubMed

    Juhasz, A L; Stanley, G A; Britz, M L

    2000-05-01

    The ability of Stenotrophomonas maltophilia strain VUN 10,003 to degrade and detoxify high molecular weight polycyclic aromatic hydrocarbons (PAHs) was evaluated in a basal liquid medium. Using high cell density inocula of strain VUN 10,003, the concentration of pyrene, fluoranthene, benz[a]anthracene, benzo[a]pyrene, dibenz[a, h]anthracene and coronene decreased by 98, 45, 26, 22, 22 and 55% over periods ranging from 5 to 42 d. When a PAH mixture containing three- to seven-ring compounds was used, degradation of both low and high molecular weight compounds occurred concurrently. Mutagenicity assays (Ames Test) demonstrated a decrease in the mutagenic potential of dichloromethane culture extracts from all cultures containing single PAH over the incubation period, corresponding to the decrease in the concentration of the PAH. These observations indicate that strain VUN 10,003 could be used for the detoxification of PAH-contaminated wastes.

  18. [Methods for extraction of exopolymeric complex in plankton and biofilm growth mode of Stenotrophomonas maltophilia 22M].

    PubMed

    Boretskaia, M A; Suslova, O S

    2013-01-01

    The optimal methods for the extraction of exopolymeric complex (EPS) of Stenotrophomonas maltophilia 22M was determined. That EPS was synthesized in plankton and biofilm growth mode on the mild steel surface. It is desirable to use different physical and chemical methods for studying the EPS composition (carbohydrates and proteins) depending on the bacteria growth mode. In this way the interaction with ion exchange resin was the most effective for plankton growth mode to determine the maximum amount of carbohydrates (9.5 microg/ml), and the impact of heating to determine protein (3.9 microg/ml). For EPS biofilm in order to obtain maximum amount of carbohydrate it is desirable to use heating (30 microg/ml) and centrifugation (35 microg/ml). It is recommended to determine protein in the biofilm EPS after treatment with heating (3.75 microg/ml) and centrifugation (3.75 microg/ml).

  19. Purification and characterization of novel organic solvent tolerant 98kDa alkaline protease from isolated Stenotrophomonas maltophilia strain SK.

    PubMed

    Waghmare, Shailesh R; Gurav, Aparna A; Mali, Sonal A; Nadaf, Naiem H; Jadhav, Deepak B; Sonawane, Kailas D

    2015-03-01

    Ability of microorganisms to grow at alkaline pH makes them an attractive target for several industrial applications. Thus, search for new extremozyme producing microorganisms must be a continuous exercise. Hence, we isolated a potent alkaline protease producing bacteria from slaughter house soil. The morphological, biochemical and 16S rDNA gene sequencing studies revealed that the isolated bacteria is Stenotrophomonas maltophilia strain SK. Alkaline protease from S. maltophilia strain SK was purified by using ammonium sulphate precipitation and DEAE-cellulose ion exchange column chromatography. The purified enzyme was optimally active at pH 9.0 and temperature 40°C with broad substrate specificity. It was observed that the metal ions such as Ca(++), Mg(++) and Fe(+++) completely repressed the enzyme activity. The enzyme was stable in presence of various water miscible solvents like ethanol, methanol, isopropanol at 25% (v/v) concentration and less stable at 37.5% (v/v) concentration. These robust properties of enzyme might be applicable for various applications in detergent and pharmaceutical industries.

  20. Genome-Wide Identification of Genes Necessary for Biofilm Formation by Nosocomial Pathogen Stenotrophomonas maltophilia Reveals that Orphan Response Regulator FsnR Is a Critical Modulator

    PubMed Central

    Kang, Xiu-Min; Wang, Fang-Fang; Zhang, Huan

    2014-01-01

    Stenotrophomonas maltophilia is a Gram-negative bacterial pathogen of increasing concern to human health. Most clinical isolates of S. maltophilia efficiently form biofilms on biotic and abiotic surfaces, making this bacterium resistant to a number of antibiotic treatments and therefore difficult to eliminate. To date, very few studies have investigated the molecular and regulatory mechanisms responsible for S. maltophilia biofilm formation. Here we constructed a random transposon insertion mutant library of S. maltophilia ATCC 13637 and screened 14,028 clones. A total of 46 nonredundant genes were identified. Mutants of these genes exhibited marked changes in biofilm formation, suggesting that multiple physiological pathways, including extracellular polysaccharide production, purine synthesis, transportation, and peptide and lipid synthesis, are involved in bacterial cell aggregation. Of these genes, 20 putatively contributed to flagellar biosynthesis, indicating a critical role for cell motility in S. maltophilia biofilm formation. Genetic and biochemical evidence demonstrated that an orphan response regulator, FsnR, activated transcription of at least two flagellum-associated operons by directly binding to their promoters. This regulatory protein plays a fundamental role in controlling flagellar assembly, cell motility, and biofilm formation. These results provide a genetic basis to systematically study biofilm formation of S. maltophilia. PMID:25480754

  1. Surveillance of Dihydropteroate Synthase Genes in Stenotrophomonas maltophilia by LAMP: Implications for Infection Control and Initial Therapy

    PubMed Central

    Zhao, Jin; Xing, Yubin; Liu, Wei; Ni, Wentao; Wei, Chuanqi; Wang, Rui; Liu, Yunxi; Liu, Youning

    2016-01-01

    Stenotrophomonas maltophilia is a common nosocomial pathogen that causes high morbidity and mortality. Because of its inherent extended antibiotic resistance, therapeutic options for S. maltophilia are limited, and sulfamethoxazole/trimethoprim (SXT) is the only first-line antimicrobial recommended. However, with the spread of dihydropteroate synthase (sul1 and sul2) genes, global emergence of SXT resistance has been reported. There is an urgent need to develop a rapid and sensitive but cost-efficient method to monitor the dissemination of sul genes. In this study, we developed loop-mediated isothermal amplification (LAMP) assays for sul1 and sul2 using real-time turbidity and hydroxy naphthol blue coloration methods. The assays could quickly detect sul genes with high sensitivity and specificity. The LAMP detection limit was 0.74 pg/reaction of extracted genomic DNA for sul1 and 2.6 pg/reaction for sul2, which were both 10-fold more sensitive than the corresponding traditional PCR assays. Additionally, the LAMP assays could positively amplify DNA from sul1-producing strains, but not from the negative controls. We then used the LAMP assays to investigate the dissemination of sul genes among S. maltophilia isolates from patients in three hospitals in Beijing, China. Among 450 non-duplicated samples collected during 2012–2014, 56 (12.4%) strains were SXT-resistant. All these SXT-resistant strains were positive for sul genes, with 35 (62.5%) carrying sul1, 17 (30.4%) carrying sul2, and 4 (7.1%) carrying both sul1 and sul2, which indicated that sul genes were the predominant resistance mechanism. Of 394 SXT-susceptible strains, 16 were also sul-positive. To provide epidemiological data for the appropriate choice of antimicrobials for treatment of sul-positive S. maltophilia, we further tested the susceptibility to 18 antimicrobials. Among these, sul-positive strains showed the highest susceptibility to tetracycline derivatives, especially minocycline (MIC50/MIC90, 0

  2. Changes in fatty acid composition of Stenotrophomonas maltophilia KB2 during co-metabolic degradation of monochlorophenols.

    PubMed

    Nowak, Agnieszka; Greń, Izabela; Mrozik, Agnieszka

    2016-12-01

    The changes in the cellular fatty acid composition of Stenotrophomonas maltophilia KB2 during co-metabolic degradation of monochlorophenols in the presence of phenol as well as its adaptive mechanisms to these compounds were studied. It was found that bacteria were capable of degrading 4-chlorophenol (4-CP) completely in the presence of phenol, while 2-chlorophenol (2-CP) and 3-chlorophenol (3-CP) they degraded partially. The analysis of the fatty acid profiles indicated that adaptive mechanisms of bacteria depended on earlier exposure to phenol, which isomer they degraded, and on incubation time. In bacteria unexposed to phenol the permeability and structure of their membranes could be modified through the increase of hydroxylated and cyclopropane fatty acids, and straight-chain and hydroxylated fatty acids under 2-CP, 3-CP and 4-CP exposure, respectively. In the exposed cells, regardless of the isomer they degraded, the most important changes were connected with the increase of the contribution of branched fatty acid on day 4 and the content of hydroxylated fatty acids on day 7. The changes, particularly in the proportion of branched fatty acids, could be a good indicator for assessing the progress of the degradation of monochlorophenols by S. maltophilia KB2. In comparison, in phenol-degrading cells the increase of cyclopropane and straight-chain fatty acid content was established. These findings indicated the degradative potential of the tested strain towards the co-metabolic degradation of persistent chlorophenols, and extended the current knowledge about the adaptive mechanisms of these bacteria to such chemicals.

  3. A linkage between SmeIJK efflux pump, cell envelope integrity, and σE-mediated envelope stress response in Stenotrophomonas maltophilia.

    PubMed

    Huang, Yi-Wei; Liou, Rung-Shiuan; Lin, Yi-Tsung; Huang, Hsin-Hui; Yang, Tsuey-Ching

    2014-01-01

    Resistance nodulation division (RND) efflux pumps, such as the SmeIJK pump of Stenotrophomonas maltophilia, are known to contribute to the multidrug resistance in Gram-negative bacteria. However, some RND pumps are constitutively expressed even though no antimicrobial stresses occur, implying that there should be some physical implications for these RND pumps. In this study, the role of SmeIJK in antimicrobials resistance, envelope integrity, and σE-mediated envelope stress response (ESR) of S. maltophilia was assessed. SmeIJK was involved in the intrinsic resistance of S. maltophilia KJ to aminoglycosides and leucomycin. Compared with the wild-type KJ, the smeIJK deletion mutant exhibited growth retardation in the MH medium, an increased sensitivity to membrane-damaging agents (MDAs), as well as activation of an σE-mediated ESR. Moreover, the expression of smeIJK was further induced by sub-lethal concentrations of MDAs or surfactants in an σE-dependent manner. These data collectively suggested an alternative physiological role of smeIJK in cell envelope integrity maintenance and σE-mediated ESR beyond the efflux of antibiotics. Because of the necessity of the physiological role of SmeIJK in protecting S. maltophilia from the envelope stress, smeIJK is constitutively expressed, which, in turn, contributes the intrinsic resistance to aminoglycoside and leucomycin. This is the first demonstration of the linkage among RND-type efflux pump, cell envelope integrity, and σE-mediated ESR in S. maltophilia.

  4. Degradation of abamectin by newly isolated Stenotrophomonas maltophilia ZJB-14120 and characterization of its abamectin-tolerance mechanism.

    PubMed

    Wang, Yuan-Shan; Zheng, Xing-Chang; Hu, Qi-Wei; Zheng, Yu-Guo

    2015-06-01

    An abamectin (ABM)-degrading bacterium, Stenotrophomonas maltophilia ZJB-14120, was isolated and identified. This strain is capable of degrading 84.82% of ABM at an initial concentration of 200 mg/L over a 48 h incubation period. This strain showed efficient biodegradation ability (7.81 mg/L/h) to ABM and high tolerance (1000 mg/L) to all macrolides tested. In addition to ABM, emamectin, erythromycin and spiramycin can also be degraded by this strain. Modifications involving either reduction of the double bond between C22-C23 or replacement of the C25-group of ABM with a cyclohexyl group can completely inhibit biodegradation of ABM. The ABM-degrading capability of strain ZJB-14120 is likely to be intrinsic to its metabolism and could be inhibited by incubating with erythromycin, azithromycin, spiramycin or rifampicin. A new and successive degradation pathway was proposed based on metabolite analysis. Although there is evidence for metabolite inhibition, this strain has high ABM degradation activity and reusability. Further investigation showed that activated macrolide efflux pump(s) and an undetermined mechanism for regulating the intracellular ABM concentration are responsible for normal uptake of essential metabolites while pumping out excess harmful compounds. Strain ZJB-14120 may provide efficient treatment of water and soil contaminated by toxic levels of abamectin and emamectin.

  5. Current Situation of Antimicrobial Resistance and Genetic Differences in Stenotrophomonas maltophilia Complex Isolates by Multilocus Variable Number of Tandem Repeat Analysis

    PubMed Central

    Song, Jae-Hoon

    2016-01-01

    Background Stenotrophomonas maltophilia is one of several opportunistic pathogens of growing significance. Several studies on the molecular epidemiology of S. maltophilia have shown clinical isolates to be genetically diverse. Materials and Methods A total of 121 clinical isolates tentatively identified as S. malophilia from seven tertiary-care hospitals in Korea from 2007 to 2011 were included. Species and groups were identified using partial gyrB gene sequences and antimicrobial susceptibility testing was performed using a broth microdilution method. Multi locus variable number of tandem repeat analysis (MLVA) surveys are used for subtyping. Results Based on partial gyrB gene sequences, 118 isolates were identified as belonging to the S. maltophilia complex. For all S. maltophilia isolates, the resistance rates to trimethoprime-sulfamethoxazole (TMP/SMX) and levofloxacin were the highest (both, 30.5%). Resistance rate to ceftazidime was 28.0%. 11.0% and 11.9% of 118 S. maltophilia isolates displayed resistance to piperacillin/tazobactam and tigecycline, respectively. Clade 1 and Clade 2 were definitely distinguished from the data of MLVA with amplification of loci. All 118 isolates were classified into several clusters as its identification. Conclusion Because of high resistance rates to TMP/SMX and levofloxacin, the clinical laboratory department should consider providing the data about other antimicrobial agents and treatment of S. maltophilia infections with a combination of antimicrobials can be considered in the current practice. The MLVA evaluated in this study provides a fast, portable, relatively low cost genotyping method that can be employed in genotypic linkage or transmission networks comparing to analysis of the gyrB gene. PMID:28032486

  6. Structural and Functional Analysis of SmeT, the Repressor of the Stenotrophomonas maltophilia Multidrug Efflux Pump SmeDEF*

    PubMed Central

    Hernández, Alvaro; Maté, María J.; Sánchez-Díaz, Patricia C.; Romero, Antonio; Rojo, Fernando; Martínez, José L.

    2009-01-01

    Stenotrophomonas maltophilia is an opportunistic pathogen characterized for its intrinsic low susceptibility to several antibiotics. Part of this low susceptibility relies on the expression of chromosomally encoded multidrug efflux pumps, with SmeDEF being the most relevant antibiotic resistance efflux pump so far studied in this bacterial species. Expression of smeDEF is down-regulated by the SmeT repressor, encoded upstream smeDEF, in its complementary DNA strand. In the present article we present the crystal structure of SmeT and analyze its interactions with its cognate operator. Like other members of the TetR family of transcriptional repressors, SmeT behaves as a dimer and presents some common structural features with other TetR proteins like TtgR, QacR, and TetR. Differing from other TetR proteins for which the structure is available, SmeT turned out to have two extensions at the N and C termini that might be relevant for its function. Besides, SmeT presents the smallest binding pocket so far described in the TetR family of transcriptional repressors, which may correlate with a specific type and range of effectors. In vitro studies revealed that SmeT binds to a 28-bp pseudopalindromic region, forming two complexes. This operator region was found to overlap the promoters of smeT and smeDEF. This finding is consistent with a role for SmeT simultaneously down-regulating smeT and smeDEF transcription, likely by steric hindrance on RNA polymerase binding to DNA. PMID:19324881

  7. Identification of Electrode Respiring, Hydrocarbonoclastic Bacterial Strain Stenotrophomonas maltophilia MK2 Highlights the Untapped Potential for Environmental Bioremediation

    PubMed Central

    Venkidusamy, Krishnaveni; Megharaj, Mallavarapu

    2016-01-01

    Electrode respiring bacteria (ERB) possess a great potential for many biotechnological applications such as microbial electrochemical remediation systems (MERS) because of their exoelectrogenic capabilities to degrade xenobiotic pollutants. Very few ERB have been isolated from MERS, those exhibited a bioremediation potential toward organic contaminants. Here we report once such bacterial strain, Stenotrophomonas maltophilia MK2, a facultative anaerobic bacterium isolated from a hydrocarbon fed MERS, showed a potent hydrocarbonoclastic behavior under aerobic and anaerobic environments. Distinct properties of the strain MK2 were anaerobic fermentation of the amino acids, electrode respiration, anaerobic nitrate reduction and the ability to metabolize n-alkane components (C8–C36) of petroleum hydrocarbons (PH) including the biomarkers, pristine and phytane. The characteristic of diazoic dye decolorization was used as a criterion for pre-screening the possible electrochemically active microbial candidates. Bioelectricity generation with concomitant dye decolorization in MERS showed that the strain is electrochemically active. In acetate fed microbial fuel cells (MFCs), maximum current density of 273 ± 8 mA/m2 (1000 Ω) was produced (power density 113 ± 7 mW/m2) by strain MK2 with a coulombic efficiency of 34.8%. Further, the presence of possible alkane hydroxylase genes (alkB and rubA) in the strain MK2 indicated that the genes involved in hydrocarbon degradation are of diverse origin. Such observations demonstrated the potential of facultative hydrocarbon degradation in contaminated environments. Identification of such a novel petrochemical hydrocarbon degrading ERB is likely to offer a new route to the sustainable bioremedial process of source zone contamination with simultaneous energy generation through MERS. PMID:28018304

  8. Antibacterial and Cytotoxic Efficacy of Extracellular Silver Nanoparticles Biofabricated from Chromium Reducing Novel OS4 Strain of Stenotrophomonas maltophilia

    PubMed Central

    Oves, Mohammad; Khan, Mohammad Saghir; Zaidi, Almas; Ahmed, Arham S.; Ahmed, Faheem; Ahmad, Ejaz; Sherwani, Asif; Owais, Mohammad; Azam, Ameer

    2013-01-01

    Biofabricated metal nanoparticles are generally biocompatible, inexpensive, and ecofriendly, therefore, are used preferably in industries, medical and material science research. Considering the importance of biofabricated materials, we isolated, characterized and identified a novel bacterial strain OS4 of Stenotrophomonas maltophilia (GenBank: JN247637.1). At neutral pH, this Gram negative bacterial strain significantly reduced hexavalent chromium, an important heavy metal contaminant found in the tannery effluents and minings. Subsequently, even at room temperature the supernatant of log phase grown culture of strain OS4 also reduced silver nitrate (AgNO3) to generate nanoparticles (AgNPs). These AgNPs were further characterized by UV–visible, Nanophox particle size analyzer, XRD, SEM and FTIR. As evident from the FTIR data, plausibly the protein components of supernatant caused the reduction of AgNO3. The cuboid and homogenous AgNPs showed a characteristic UV-visible peak at 428 nm with average size of ∼93 nm. The XRD spectra exhibited the characteristic Bragg peaks of 111, 200, 220 and 311 facets of the face centred cubic symmetry of nanoparticles suggesting that these nanoparticles were crystalline in nature. From the nanoparticle release kinetics data, the rapid release of AgNPs was correlated with the particle size and increasing surface area of the nanoparticles. A highly significant antimicrobial activity against medically important bacteria by the biofabricated AgNPs was also revealed as decline in growth of Staphylococcus aureus (91%), Escherichia coli (69%) and Serratia marcescens (66%) substantially. Additionally, different cytotoxic assays showed no toxicity of AgNPs to liver function, RBCs, splenocytes and HeLa cells, hence these particles were safe to use. Therefore, this novel bacterial strain OS4 is likely to provide broad spectrum benefits for curing chromium polluted sites, for biofabrication of AgNPs and ultimately in the nanoparticle based

  9. Systematic Mutational Analysis of Histidine Kinase Genes in the Nosocomial Pathogen Stenotrophomonas maltophilia Identifies BfmAK System Control of Biofilm Development

    PubMed Central

    Zheng, Liu; Wang, Fang-Fang; Ren, Bao-Zhen; Liu, Wei

    2016-01-01

    The Gram-negative bacterium Stenotrophomonas maltophilia lives in diverse ecological niches. As a result of its formidable capabilities of forming biofilm and its resistance to multiple antibiotic agents, the bacterium is also a nosocomial pathogen of serious threat to the health of patients whose immune systems are suppressed or compromised. Besides the histidine kinase RpfC, the two-component signal transduction system (TCS), which is the canonical regulatory machinery used by most bacterial pathogens, has never been experimentally investigated in S. maltophilia. Here, we annotated 62 putative histidine kinase genes in the S. maltophilia genome and successfully obtained 51 mutants by systematical insertional inactivation. Phenotypic characterization identified a series of mutants with deficiencies in bacterial growth, swimming motility, and biofilm development. A TCS, named here BfmA-BfmK (Smlt4209-Smlt4208), was genetically confirmed to regulate biofilm formation in S. maltophilia. Together with interacting partner prediction and chromatin immunoprecipitation screens, six candidate promoter regions bound by BfmA in vivo were identified. We demonstrated that, among them, BfmA acts as a transcription factor that binds directly to the promoter regions of bfmA-bfmK and Smlt0800 (acoT), a gene encoding an acyl coenzyme A thioesterase that is associated with biofilm development, and positively controls their transcription. Genome-scale mutational analyses of histidine kinase genes and functional dissection of BfmK-BfmA regulation in biofilm provide genetic information to support more in-depth studies on cellular signaling in S. maltophilia, in the context of developing novel approaches to fight this important bacterial pathogen. PMID:26873318

  10. Modification of surface and enzymatic properties of Achromobacter denitrificans and Stenotrophomonas maltophilia in association with diesel oil biodegradation enhanced with alkyl polyglucosides.

    PubMed

    Sałek, Karina; Zgoła-Grześkowiak, Agnieszka; Kaczorek, Ewa

    2013-11-01

    The article concerns the influence of selected alkyl polyglucosides on biodegradation, cell surface and enzymatic properties of Stenotrophomonas maltophilia and Achromobacter denitrificans. The biodegradation of diesel oil depends on several factors including type and the amount of surfactant as well as bacterial genera used in the process. Nevertheless, a careful selection of these variables must be made as some bacterial strains prefer to use surfactants as their carbon source. This leads to the lowered biodegradation of diesel oil as can be observed for the tested S. maltophilia strain. Alkyl polyglucosides influenced the cell surface properties of both of the tested strains in slightly different ways. Especially for A. denitrificans, for which the hydrophobicity increased with concentration of both--Lutensol GD 70 and Glucopon 215 in diesel oil-surfactant systems. Moreover, judging by the efficiency of biodegradation, the most effective process was observed in the presence of Lutensol GD 70 (240 and 360 mg L(-1)) with biodegradation rising from 32% (without surfactant) to 68%. No such relation was observed for S. maltophilia.

  11. High activity catechol 1,2-dioxygenase from Stenotrophomonas maltophilia strain KB2 as a useful tool in cis,cis-muconic acid production.

    PubMed

    Guzik, Urszula; Hupert-Kocurek, Katarzyna; Sitnik, Małgorzata; Wojcieszyńska, Danuta

    2013-06-01

    This is the first report of a catechol 1,2-dioxygenase from Stenotrophomonas maltophilia strain KB2 with high activity against catechol and its methyl derivatives. This enzyme was maximally active at pH 8.0 and 40 °C and the half-life of the enzyme at this temperature was 3 h. Kinetic studies showed that the value of K m and V max was 12.8 μM and 1,218.8 U/mg of protein, respectively. During our studies on kinetic properties of the catechol 1,2-dioxygenase we observed substrate inhibition at >80 μM. The nucleotide sequence of the gene encoding the S. maltophilia strain KB2 catechol 1,2-dioxygenase has high identity with other catA genes from members of the genus Pseudomonas. The deduced 314-residue sequence of the enzyme corresponds to a protein of molecular mass 34.5 kDa. This enzyme was inhibited by competitive inhibitors (phenol derivatives) only by ca. 30 %. High tolerance against condition changes is desirable in industrial processes. Our data suggest that this enzyme could be of use as a tool in production of cis,cis-muconic acid and its derivatives.

  12. Minocycline activity tested against Acinetobacter baumannii complex, Stenotrophomonas maltophilia, and Burkholderia cepacia species complex isolates from a global surveillance program (2013).

    PubMed

    Flamm, Robert K; Castanheira, Mariana; Streit, Jennifer M; Jones, Ronald N

    2016-07-01

    Clinical isolates of Acinetobacter baumannii complex (1312), Stenotrophomonas maltophilia (464), and Burkholderia cepacia species complex (30) were selected from medical centers in the United States (USA), Europe and the Mediterranean (EU-M) region, Latin America, and Asia Pacific. Only one isolate per infected patient episode was included and local identifications were confirmed by the monitoring laboratory. Susceptibility testing was performed at the monitoring laboratory using the reference broth microdilution method as described by Clinical and Laboratory Standards Institute (CLSI). A. baumannii complex were classified as MDR (multi-drug resistant [MDR]; nonsusceptible to ≥1 agent in ≥3 antimicrobial classes) and extensively drug-resistant (XDR; nonsusceptible to ≥1 agent in all but ≤2 antimicrobial classes). A total of 81.6% of A. baumannii complex were MDR. Colistin was the most active agent against MDR A. baumannii complex. Minocycline was the most active "tetracycline" against these organisms based on susceptibility. Against B. cepacia, trimethoprim-sulfamethoxazole (MIC90, 2 μg/mL; 100.0% susceptible) was the most active agent tested. Overall, minocycline was the most active tetracycline tested against A. baumannii complex and S. maltophilia isolates collected from patients throughout EU-M, USA, Latin America, and the Asia-Pacific. Minocycline, particularly the intravenous formulation, has activity against several ESKAPE pathogens and merits consideration in seriously ill patients where treatment options may be limited due to the presence of MDR bacteria.

  13. Biodegradation of polycyclic aromatic hydrocarbons by an acidophilic Stenotrophomonas maltophilia strain AJH1 isolated from a mineral mining site in Saudi Arabia.

    PubMed

    Arulazhagan, P; Al-Shekri, K; Huda, Q; Godon, J J; Basahi, J M; Jeyakumar, D

    2017-01-01

    The present study aims at analyzing the degradation of polycyclic aromatic hydrocarbons (PAHs) at acidic conditions (pH = 2) by acidophilic Stenotrophomonas maltophilia strain AJH1 (KU664513). The strain AJH1 was obtained from an enrichment culture obtained from soil samples of mining area in the presence of PAH as sole sources of carbon and energy. Strain AJH1was able to degrade low (anthracene, phenanthrene, naphthalene, fluorene) and high (pyrene, benzo(e)pyrene and benzo(k)fluoranthene) molecular weight PAHs in acidophilic mineral salt medium at pH 2, with removal rates of up to 95% (LMW PAH) and 80% (HMW PAH), respectively. In addition, strain AJH1 treated petroleum wastewater with 89 ± 1.1% COD removal under acidic condition (pH 2) in a continuously stirred reactor. Acidophilic S. maltophilia strain AJH1, hence holds the promise as an effective degrader for biological treatment of PAHs contaminated wastewater at acidic pH.

  14. Draft Genome Sequences of Stenotrophomonas maltophilia Strains Sm32COP, Sm41DVV, Sm46PAILV, SmF3, SmF22, SmSOFb1, and SmCVFa1, Isolated from Different Manures in France

    PubMed Central

    Bodilis, Josselin; Youenou, Benjamin; Briolay, Jérome; Brothier, Elisabeth; Favre-Bonté, Sabine

    2016-01-01

    Stenotrophomonas maltophilia is a major opportunistic human pathogen responsible for nosocomial infections. Here, we report the draft genome sequences of Sm32COP, Sm41DVV, Sm46PAILV, SmF3, SmF22, SmSOFb1, and SmCVFa1, isolated from different manures in France, which provide insights into the genetic determinism of intrinsic or acquired antibiotic resistance in this species. PMID:27540065

  15. Determination of crystal structures of proteins of unknown identity using a marathon molecular replacement procedure: structure of Stenotrophomonas maltophilia phosphate-binding protein.

    PubMed

    Hatti, Kaushik; Gulati, Ashutosh; Srinivasan, Narayanaswamy; Murthy, M R N

    2016-10-01

    During the past decade, the authors have collected a few X-ray diffraction data sets from protein crystals that appeared to be easy cases of molecular replacement but failed to yield structures even after extensive trials. Here, the use of a large-scale molecular replacement method that explores all structurally characterized domains as phasing models to determine the structure corresponding to two data sets collected at 1.9 and 2.3 Å resolution is reported. These two structures were of the same protein independently crystallized in 2007 and 2011. The structures derived are virtually identical and were found to consist of two compact globular domains connected by a hinge. The high resolution of one of these data sets enabled inference of the amino-acid sequence from the electron-density map. The deduced sequence is nearly identical to that of a protein from the multidrug-resistant bacterium Stenotrophomonas maltophilia. Although the structure of this protein has not been determined previously, it is homologous to the well studied DING proteins which mediate the cellular uptake of phosphate ions. The final electron-density maps from both of the data sets revealed a large density at the interface of the two globular domains that is likely to represent a phosphate ion. Thus, the structure is likely to be that of a phosphate-binding protein encoded by the S. maltophilia genome (SmPBP; PDB entry 5j1d). The nature of the phosphate-binding site of SmPBP closely resembles that of Pseudomonas fluorescens DING (PfluDING), which displays remarkable discrimination between the closely similar phosphate and arsenate ions. The results presented here illustrate that routine crystallization trials may occasionally lead to the serendipitous crystallization of a protein of unknown identity and brute-force molecular replacement through `fold space' might allow the identification of the unknown protein.

  16. Delineation of Stenotrophomonas maltophilia isolates from cystic fibrosis patients by fatty acid methyl ester profiles and matrix-assisted laser desorption/ionization time-of-flight mass spectra using hierarchical cluster analysis and principal component analysis.

    PubMed

    Vidigal, Pedrina Gonçalves; Mosel, Frank; Koehling, Hedda Luise; Mueller, Karl Dieter; Buer, Jan; Rath, Peter Michael; Steinmann, Joerg

    2014-12-01

    Stenotrophomonas maltophilia is an opportunist multidrug-resistant pathogen that causes a wide range of nosocomial infections. Various cystic fibrosis (CF) centres have reported an increasing prevalence of S. maltophilia colonization/infection among patients with this disease. The purpose of this study was to assess specific fingerprints of S. maltophilia isolates from CF patients (n = 71) by investigating fatty acid methyl esters (FAMEs) through gas chromatography (GC) and highly abundant proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), and to compare them with isolates obtained from intensive care unit (ICU) patients (n = 20) and the environment (n = 11). Principal component analysis (PCA) of GC-FAME patterns did not reveal a clustering corresponding to distinct CF, ICU or environmental types. Based on the peak area index, it was observed that S. maltophilia isolates from CF patients produced significantly higher amounts of fatty acids in comparison with ICU patients and the environmental isolates. Hierarchical cluster analysis (HCA) based on the MALDI-TOF MS peak profiles of S. maltophilia revealed the presence of five large clusters, suggesting a high phenotypic diversity. Although HCA of MALDI-TOF mass spectra did not result in distinct clusters predominantly composed of CF isolates, PCA revealed the presence of a distinct cluster composed of S. maltophilia isolates from CF patients. Our data suggest that S. maltophilia colonizing CF patients tend to modify not only their fatty acid patterns but also their protein patterns as a response to adaptation in the unfavourable environment of the CF lung.

  17. Protocatechuate 3,4-dioxygenase: a wide substrate specificity enzyme isolated from Stenotrophomonas maltophilia KB2 as a useful tool in aromatic acid biodegradation.

    PubMed

    Guzik, Urszula; Hupert-Kocurek, Katarzyna; Sitnik, Małgorzata; Wojcieszyńska, Danuta

    2014-01-01

    Protocatechuate 3,4-dioxygenases (P34Os) catalyze the reaction of the ring cleavage of aromatic acid derivatives. It is a key reaction in many xenobiotic metabolic pathways. P34Os characterize narrow substrate specificity. This property is an unfavorable feature in the biodegradation process because one type of pollution is rarely present in the environment. Thus, the following study aimed at the characterization of a P34O from Stenotrophomonas maltophilia KB2, being able to utilize a wide spectrum of aromatic carboxylic acids. A total of 3 mM vanillic acid and 4-hydroxybenzoate were completely degraded during 8 and 4.5 h, respectively. When cells of strain KB2 were grown on 9 mM 4-hydroxybenzoate, P34O was induced. Biochemical analysis revealed that the examined enzyme was similar to other known P34Os, but showed untypical wide substrate specificity. A high activity of P34O against 2,4- and 3,5-dihydroxybenzoate was observed. As these substrates do not possess ortho configuration hydroxyl groups, it is postulated that their cleavage could be connected with their monodentate binding of substrate to the active site. Since this enzyme characterizes untypical wide substrate specificity it makes it a useful tool in applications for environmental clean-up purposes.

  18. Copper Enhanced Monooxygenase Activity and FT-IR Spectroscopic Characterisation of Biotransformation Products in Trichloroethylene Degrading Bacterium: Stenotrophomonas maltophilia PM102

    PubMed Central

    Mukherjee, Piyali; Roy, Pranab

    2013-01-01

    Stenotrophomonas maltophilia PM102 (NCBI GenBank Acc. no. JQ797560) is capable of growth on trichloroethylene as the sole carbon source. In this paper, we report the purification and characterisation of oxygenase present in the PM102 isolate. Enzyme activity was found to be induced 10.3-fold in presence of 0.7 mM copper with a further increment to 14.96-fold in presence of 0.05 mM NADH. Optimum temperature for oxygenase activity was recorded at 36°C. The reported enzyme was found to have enhanced activity at pH 5 and pH 8, indicating presence of two isoforms. Maximum activity was seen on incubation with benzene compared to other substrates like TCE, chloroform, toluene, hexane, and petroleum benzene. Km and Vmax for benzene were 3.8 mM and 340 U/mg/min and those for TCE were 2.1 mM and 170 U/mg/min. The crude enzyme was partially purified by ammonium sulphate precipitation followed by dialysis. Zymogram analysis revealed two isoforms in the 70% purified enzyme fraction. The activity stain was more prominent when the native gel was incubated in benzene as substrate in comparison to TCE. Crude enzyme and purified enzyme fractions were assayed for TCE degradation by the Fujiwara test. TCE biotransformation products were analysed by FT-IR spectroscopy. PMID:24083236

  19. Effects of Endobacterium (Stenotrophomonas maltophilia) on Pathogenesis-Related Gene Expression of Pine Wood Nematode (Bursaphelenchus xylophilus) and Pine Wilt Disease

    PubMed Central

    He, Long-Xi; Wu, Xiao-Qin; Xue, Qi; Qiu, Xiu-Wen

    2016-01-01

    Pine wilt disease (PWD) caused by the pine wood nematode (PWN), Bursaphelenchus xylophilus, is responsible for devastating epidemics in pine trees in Asia and Europe. Recent studies showed that bacteria carried by the PWN might be involved in PWD. However, the molecular mechanism of the interaction between bacteria and the PWN remained unclear. Now that the whole genome of B. xylophilus (Bursaphelenchus xylophilus) is published, transcriptome analysis is a unique method to study the role played by bacteria in PWN. In this study, the transcriptome of aseptic B. xylophilus, B. xylophilus treated with endobacterium (Stenotrophomonas maltophilia NSPmBx03) and fungus B. xylophilus were sequenced. We found that 61 genes were up-regulated and 830 were down-regulated in B. xylophilus after treatment with the endobacterium; 178 genes were up-regulated and 1122 were down-regulated in fungus B. xylophilus compared with aseptic B. xylophilus. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were used to study the significantly changed biological functions and pathways for these differentially expressed genes. Many pathogenesis-related genes, including glutathinone S-transferase, pectate lyase, ATP-binding cassette transporter and cytochrome P450, were up-regulated after B. xylophilus were treated with the endobacterium. In addition, we found that bacteria enhanced the virulence of PWN. These findings indicate that endobacteria might play an important role in the development and virulence of PWN and will improve our understanding of the regulatory mechanisms involved in the interaction between bacteria and the PWN. PMID:27231904

  20. Inactivation of SmeSyRy Two-Component Regulatory System Inversely Regulates the Expression of SmeYZ and SmeDEF Efflux Pumps in Stenotrophomonas maltophilia

    PubMed Central

    Lin, Yi-Tsung; Ning, Hsiao-Chen; Yang, Tsuey-Ching

    2016-01-01

    SmeYZ efflux pump is a critical pump responsible for aminoglycosides resistance, virulence-related characteristics (oxidative stress susceptibility, motility, and secreted protease activity), and virulence in Stenotrophomonas maltophilia. However, the regulatory circuit involved in SmeYZ expression is little known. A two-component regulatory system (TCS), smeRySy, transcribed divergently from the smeYZ operon is the first candidate to be considered. To assess the role of SmeRySy in smeYZ expression, the smeRySy isogenic deletion mutant, KJΔRSy, was constructed by gene replacement strategy. Inactivation of smeSyRy correlated with a higher susceptibility to aminoglycosides concomitant with an increased resistance to chloramphenicol, ciprofloxacin, tetracycline, and macrolides. To elucidate the underlying mechanism responsible for the antimicrobials susceptibility profiles, the SmeRySy regulon was firstly revealed by transcriptome analysis and further confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and promoter transcription fusion constructs assay. The results demonstrate that inactivation of smeRySy decreased the expression of SmeYZ pump and increased the expression of SmeDEF pump, which underlies the ΔsmeSyRy-mediated antimicrobials susceptibility profile. To elucidate the cognate relationship between SmeSy and SmeRy, a single mutant, KJΔRy, was constructed and the complementation assay of KJΔRSy with smeRy were performed. The results support that SmeSy-SmeRy TCS is responsible for the regulation of smeYZ operon; whereas SmeSy may be cognate with another unidentified response regulator for the regulation of smeDEF operon. The impact of inverse expression of SmeYZ and SmeDEF pumps on physiological functions was evaluated by mutants construction, H2O2 susceptibility test, swimming, and secreted protease activity assay. The increased expression of SmeDEF pump in KJΔRSy may compensate, to some extents, the SmeYZ downexpression

  1. Nosocomial Infections with IMP-19−Producing Pseudomonas aeruginosa Linked to Contaminated Sinks, France

    PubMed Central

    Amoureux, Lucie; Riedweg, Karena; Chapuis, Angélique; Bador, Julien; Siebor, Eliane; Péchinot, André; Chrétien, Marie-Lorraine; de Curraize, Claire

    2017-01-01

    We isolated IMP-19–producing Pseudomonas aeruginosa from 7 patients with nosocomial infections linked to contaminated sinks in France. We showed that blaIMP-19 was located on various class 1 integrons among 8 species of gram-negative bacilli detected in sinks: P. aeruginosa, Achromobacter xylosoxidans, A. aegrifaciens, P. putida, Stenotrophomonas maltophilia, P. mendocina, Comamonas testosteroni, and Sphingomonas sp. PMID:28098548

  2. In vitro activity of levofloxacin against planktonic and biofilm Stenotrophomonas maltophilia lifestyles under conditions relevant to pulmonary infection in cystic fibrosis, and relationship with SmeDEF multidrug efflux pump expression.

    PubMed

    Pompilio, Arianna; Crocetta, Valentina; Verginelli, Fabio; Bonaventura, Giovanni Di

    2016-07-01

    The activity of levofloxacin against planktonic and biofilm Stenotrophomonas maltophilia cells and the role played by the multidrug efflux pump SmeDEF were evaluated under conditions relevant to the cystic fibrosis (CF) lung. MIC, MBC and MBEC of levofloxacin were assessed, against five CF strains, under 'standard' (CLSI-recommended) and 'CF-like' (pH 6.8, 5% CO2, in a synthetic CF sputum) conditions. Levofloxacin was tested against biofilms at concentrations (10, 50 and 100 μg mL(-1)) corresponding to achievable serum levels and sputum levels by aerosolisation. smeD expression was evaluated, under both conditions, in planktonic and biofilm cells by RT-PCR. The bactericidal effect of levofloxacin was decreased, in three out of five strains tested, under 'CF-like' conditions (MBC: 2-4 vs 8-16 μg mL(-1), under 'standard' and 'CF-like' conditions, respectively). Biofilm was intrinsically resistant to levofloxacin, regardless of conditions tested (MBECs ≥ 100 μg mL(-1) for all strains). Only under 'CF-like' conditions, smeD expression increased during planktonic-to-biofilm transition, and in biofilm cells compared to stationary planktonic cells. Our findings confirmed that S. maltophilia biofilm is intrinsically resistant to therapeutic concentrations of levofloxacin. Under conditions relevant to CF, smeD overexpression could contribute to levofloxacin resistance. Further studies are warranted to define the clinical relevance of our findings.

  3. Genome Sequence of Type Strains of Genus Stenotrophomonas

    PubMed Central

    Patil, Prashant P.; Midha, Samriti; Kumar, Sanjeet; Patil, Prabhu B.

    2016-01-01

    Genomic resource of type strains and historically important strains of genus Stenotrophomonas allowed us to reveal the existence of 18 distinct species by applying modern phylogenomic criterions. Apart from Stenotrophomonas maltophilia, S. africana represents another species of clinical importance. Interestingly, Pseudomonas hibsicola, P. beteli, and S. pavani that are of plant origin are closer to S. maltophilia than the majority of the environmental isolates. The genus has an open pan-genome. By providing the case study on genes encoding metallo-β-lactamase and Clustered Regularly Interspaced Short Palindrome Repeats (CRISPR) regions, we have tried to show the importance of this genomic dataset in understanding its ecology. PMID:27014232

  4. Stenotrophomonas, Mycobacterium, and Streptomyces in home dust and air: associations with moldiness and other home/family characteristics

    EPA Science Inventory

    Abstract Aims: (1) To investigate the dustborne and airborne bacterial concentrations of three emerging moisture-related bacteria: Stenotrophomonas maltophilia, Streptomyces, and Mycobacterium. (2) To study the association between these bacteria concentrations and Environmenta...

  5. The versatility and adaptation of bacteria from the genus Stenotrophomonas

    SciTech Connect

    Ryan, R.P.; van der Lelie, D.; Monchy, S.; Cardinale, M.; Taghavi, S.; Crossman, L.; Avison, M. B.; Berg, G.; Dow, J. M.

    2009-07-01

    The genus Stenotrophomonas comprises at least eight species. These bacteria are found throughout the environment, particularly in close association with plants. Strains of the most predominant species, Stenotrophomonas maltophilia, have an extraordinary range of activities that include beneficial effects for plant growth and health, the breakdown of natural and man-made pollutants that are central to bioremediation and phytoremediation strategies and the production of biomolecules of economic value, as well as detrimental effects, such as multidrug resistance, in human pathogenic strains. Here, we discuss the versatility of the bacteria in the genus Stenotrophomonas and the insight that comparative genomic analysis of clinical and endophytic isolates of S. maltophilia has brought to our understanding of the adaptation of this genus to various niches.

  6. Aph(3′)-IIc, an Aminoglycoside Resistance Determinant from Stenotrophomonas maltophilia▿

    PubMed Central

    Okazaki, Aki; Avison, Matthew B.

    2007-01-01

    We report the characterization of an intrinsic, chromosomally carried aph(3′)-IIc gene from Stenotrophomonas maltophilia clinical isolate K279a, encoding an aminoglycoside phosphotransferase enzyme that significantly increases MICs of kanamycin, neomycin, butirosin, and paromomycin when expressed in Escherichia coli. Disruption of aph(3′)-IIc in K279a results in decreased MICs of these drugs. PMID:17088477

  7. Phylogenetic Analysis of Stenotrophomonas spp. Isolates Contributes to the Identification of Nosocomial and Community-Acquired Infections

    PubMed Central

    Cerezer, Vinicius Godoy; Pasternak, Jacyr; Franzolin, Marcia Regina; Moreira-Filho, Carlos Alberto

    2014-01-01

    Stenotrophomonas ssp. has a wide environmental distribution and is also found as an opportunistic pathogen, causing nosocomial or community-acquired infections. One species, S. maltophilia, presents multidrug resistance and has been associated with serious infections in pediatric and immunocompromised patients. Therefore, it is relevant to conduct resistance profile and phylogenetic studies in clinical isolates for identifying infection origins and isolates with augmented pathogenic potential. Here, multilocus sequence typing was performed for phylogenetic analysis of nosocomial isolates of Stenotrophomonas spp. and, environmental and clinical strains of S. maltophilia. Biochemical and multidrug resistance profiles of nosocomial and clinical strains were determined. The inferred phylogenetic profile showed high clonal variability, what correlates with the adaptability process of Stenotrophomonas to different habitats. Two clinical isolates subgroups of S. maltophilia sharing high phylogenetic homogeneity presented intergroup recombination, thus indicating the high permittivity to horizontal gene transfer, a mechanism involved in the acquisition of antibiotic resistance and expression of virulence factors. For most of the clinical strains, phylogenetic inference was made using only partial ppsA gene sequence. Therefore, the sequencing of just one specific fragment of this gene would allow, in many cases, determining whether the infection with S. maltophilia was nosocomial or community-acquired. PMID:24818127

  8. Screening for endophytic nitrogen-fixing bacteria in Brazilian sugar cane varieties used in organic farming and description of Stenotrophomonas pavanii sp. nov.

    PubMed

    Ramos, Patrícia L; Van Trappen, Stefanie; Thompson, Fabiano L; Rocha, Rafael C S; Barbosa, Heloiza R; De Vos, Paul; Moreira-Filho, Carlos A

    2011-04-01

    A Gram-negative, rod-shaped, non-spore-forming and nitrogen-fixing bacterium, designated ICB 89(T), was isolated from stems of a Brazilian sugar cane variety widely used in organic farming. 16S rRNA gene sequence analysis revealed that strain ICB 89(T) belonged to the genus Stenotrophomonas and was most closely related to Stenotrophomonas maltophilia LMG 958(T), Stenotrophomonas rhizophila LMG 22075(T), Stenotrophomonas nitritireducens L2(T), [Pseudomonas] geniculata ATCC 19374(T), [Pseudomonas] hibiscicola ATCC 19867(T) and [Pseudomonas] beteli ATCC 19861(T). DNA-DNA hybridization together with chemotaxonomic data and biochemical characteristics allowed the differentiation of strain ICB 89(T) from its nearest phylogenetic neighbours. Therefore, strain ICB 89(T) represents a novel species, for which the name Stenotrophomonas pavanii sp. nov. is proposed. The type strain is ICB 89(T) ( = CBMAI 564(T)  = LMG 25348(T)).

  9. Virulence genes in clinical and environmental Stenotrophomas maltophilia isolates: a genome sequencing and gene expression approach.

    PubMed

    Adamek, Martina; Linke, Burkhard; Schwartz, Thomas

    2014-01-01

    The rate of nosocomial infections with the opportunistic pathogen Stenotrophomonas maltophilia has remarkably increased in the last decade. To determine S. maltophilia virulence genes, the complete genome sequences of two S. maltophilia isolates were compared. The clinical strain SKK35 was proved virulent in an amoeba host-pathogen model, and wastewater strain RA8 was determined as non-virulent in the amoeba model. The genome sequences of three additional S. maltophilia strains, K279a (clinical, non-virulent against amoeba), R511-3 and SKA14 (both environmental, non-virulent against amoeba) were taken into account as reference strains. We were able to show that all clinical and environmental S. maltophilia strains presented comparable distribution of so far identified potential virulence genes, regardless to their virulence potential against amoebae. Aside from that, strain SKK35 was found harboring a putative, strain specific pathogenicity island, encoding two proteins from the RTX (repeats-in-toxin) family. The actual expression of the RTX genes was verified in growth experiments in different culture media containing blood or blood components and in co-cultures with amoeba.

  10. PME-1, an extended-spectrum β-lactamase identified in Pseudomonas aeruginosa.

    PubMed

    Tian, Guo-Bao; Adams-Haduch, Jennifer M; Bogdanovich, Tatiana; Wang, Hong-Ning; Doi, Yohei

    2011-06-01

    A novel extended-spectrum β-lactamase (ESBL) was identified in a Pseudomonas aeruginosa clinical isolate obtained from a patient admitted to a hospital in Pennsylvania in 2008. The patient had a prolonged hospitalization in a hospital in Dubai, United Arab Emirates, before being transferred to the United States. The novel ESBL, designated PME-1 (Pseudomonas aeruginosa ESBL 1), is a molecular class A, Bush-Jacoby-Medeiros group 2be enzyme and shared 50, 43, and 41% amino acid identity with the L2 β-lactamase of Stenotrophomonas maltophilia, CTX-M-9, and KPC-2, respectively. PME-1 conferred clinically relevant resistance to ceftazidime, cefotaxime, cefepime, and aztreonam in P. aeruginosa PAO1 but not to carbapenems. Purified PME-1 showed good hydrolytic activity against ceftazidime, cefotaxime, and aztreonam, while activity against carbapenems and cefepime could not be measured. PME-1 was inhibited well by β-lactamase inhibitors, including clavulanic acid, sulbactam, and tazobactam. The bla(PME-1) gene was carried by an approximately 9-kb plasmid and flanked by tandem ISCR24 elements.

  11. Specific gonadotropin binding to Pseudomonas maltophilia.

    PubMed

    Richert, N D; Ryan, R J

    1977-03-01

    Binding of 125I-labeled human chorionic gonadotropin to Pseudomonas maltophilia is dependent on time, temperature, and pH and the binding to this procaryotic species is hormone-specific and saturable. The equilibrium dissociation constant is 2.3 X 10(-9) M. There are no cooperative interactions between binding sites (Hill coefficient, 1.05). The number of sites is estimaated as 240 fmol/100 mug of protein. NaCl and KCl, at concentrations from 1 to 10 mM, have no effect on binding. Divalent cations (Mg2+ and Ca2+) and 1 mM EDTA inhibit hormone binding. Binding is destroyed by heat or by treatment with Pronase of alpha-chymotrypsin and is increased by phospholipase C. Binding of the labeled gonadotropin is not observed with other gram-negative organisms--e.g., Escherichia coli, Pseudomonas testosteroni, Pseudomonas aeruginosa, Enterobacter aerogenes, or Enterobacter cloacae.

  12. ['In vitro' activity of different antimicrobial agents on Gram-negative nonfermentative bacilli, excluding Pseudomonas aeruginosa and Acinetobacter spp].

    PubMed

    Vay, C A; Almuzara, M N; Rodríguez, C H; Pugliese, M L; Lorenzo Barba, F; Mattera, J C; Famiglietti, A M R

    2005-01-01

    Gram-negative nonfermentative bacilli (NFB) are widely spread in the environment. Besides of difficulties for identification, they often have a marked multiresistance to antimicrobial agents, including those active against Pseudomonas aeruginosa. The objective of this study was to evaluate the 'in vitro' activity of different antimicrobial agents on 177 gram-negative nonfermentative bacilli isolates (excluding Pseudomonas aeruginosa and Acinetobacter spp.) isolated from clinical specimens. Minimum inhibitory concentrations (MIC) were determined according to the Mueller Hinton agar dilution method against the following antibacterial agents: ampicillin, piperacillin, piperacillin-tazobactam, sulbactam, cefoperazone, cefoperazone-sulbactam, ceftazidime, cefepime, aztreonam, imipenem, meropenem, colistin, gentamicin, amikacin, trimethoprim-sulfamethoxazole, chloramphenicol, erythromycin, rifampin, norfloxacin, ciprofloxacin and minocycline. Seven isolates: Sphingobacterium multivorum (2), Sphingobacteriumspiritivorum (1), Empedobacterbrevis (1), Weeksella virosa (1), Bergeyella zoohelcum (1) and Oligella urethralis (1), were tested for amoxicillin-clavulanic acid and ampicillin-sulbactam susceptibility, and susceptibility to cefoperazone or sulbactam was not determined. Multiresistance was generally found in Stenotrophomonas maltophilia, Burkholderia cepacia, Chryseobacterium spp., Myroides spp., Achromobacter xylosoxidans, and Ochrobactrum anthropi isolates. On the other hand, Pseudomonas stutzeri, Shewanella putrefaciens-algae, Sphingomonas paucimobilis, and Pseudomonas oryzihabitans, Bergeyella zoohelcum, Weeksella virosa and Oligella urethralis were widely susceptible to the antibacterial agents tested. As a result of the wide variation in antimicrobial susceptibility shown by different species, a test on susceptibility to different antibacterial agents is essential in order to select an adequate therapy. The marked multiresistance evidenced by some species

  13. Stenotrophomonas, Mycobacterium, and Streptomyces in home dust and air: Associations with moldiness and other home/family characteristics

    PubMed Central

    Kettleson, Eric; Kumar, Sudhir; Reponen, Tiina; Vesper, Stephen; Méheust, Delphine; Grinshpun, Sergey A.; Adhikari, Atin

    2013-01-01

    Respiratory illnesses have been linked to children’s exposures to water-damaged homes. Therefore, understanding the microbiome in water-damaged homes is critical to preventing these illnesses. Few studies have quantified bacterial contamination, especially specific species, in water-damaged homes. We collected air and dust samples in twenty-one low-mold homes and twenty-one high-mold homes. The concentrations of three bacteria/genera, Stenotrophomonas maltophilia, Streptomyces sp. and Mycobacterium sp., were measured in air and dust samples using quantitative PCR (QPCR). The concentrations of the bacteria measured in the air samples were not associated with any specific home characteristic based on multiple regression models. However, higher concentrations of S. maltophilia in the dust samples were associated with water damage, i.e. with higher floor surface moisture and higher concentrations of moisture-related mold species. The concentrations of Streptomyces and Mycobacterium sp. had similar patterns and may be partially determined by human and animal occupants and outdoor sources of these bacteria. PMID:23397905

  14. Persistence of microbial communities including Pseudomonas aeruginosa in a hospital environment: a potential health hazard

    PubMed Central

    2014-01-01

    Background The persistence of microbial communities and how they change in indoor environments is of immense interest to public health. Moreover, hospital acquired infections are significant contributors to morbidity and mortality. Evidence suggests that, in hospital environments agent transfer between surfaces causes healthcare associated infections in humans, and that surfaces are an important transmission route and may act as a reservoir for some of the pathogens. This study aimed to evaluate the diversity of microorganisms that persist on noncritical equipment and surfaces in a main hospital in Portugal, and are able to grow in selective media for Pseudomonas, and relate them with the presence of Pseudomonas aeruginosa. Results During 2 years, a total of 290 environmental samples were analyzed, in 3 different wards. The percentage of equipment in each ward that showed low contamination level varied between 22% and 38%, and more than 50% of the equipment sampled was highly contaminated. P. aeruginosa was repeatedly isolated from sinks (10 times), from the taps’ biofilm (16 times), and from the showers and bedside tables (two times). Two ERIC clones were isolated more than once. The contamination level of the different taps analyzed showed correlation with the contamination level of the hand gels support, soaps and sinks. Ten different bacteria genera were frequently isolated in the selective media for Pseudomonas. Organisms usually associated with nosocomial infections as Stenotrophomonas maltophilia, Enterococcus feacalis, Serratia nematodiphila were also repeatedly isolated on the same equipment. Conclusions The environment may act as a reservoir for at least some of the pathogens implicated in nosocomial infections. The bacterial contamination level was related to the presence of humidity on the surfaces, and tap water (biofilm) was a point of dispersion of bacterial species, including potentially pathogenic organisms. The materials of the equipment

  15. Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076.

    PubMed

    Huertas Méndez, Nataly De Jesús; Vargas Casanova, Yerly; Gómez Chimbi, Anyelith Katherine; Hernández, Edith; Leal Castro, Aura Lucia; Melo Diaz, Javier Mauricio; Rivera Monroy, Zuly Jenny; García Castañeda, Javier Eduardo

    2017-03-12

    Linear, dimeric, tetrameric, and cyclic peptides derived from lactoferricin B-containing non-natural amino acids and the RWQWR motif were synthesized, purified, and characterized using RP-HPLC, MALDI-TOF mass spectrometry, and circular dichroism. The antibacterial activity of peptides against Escherichia coli ATCC 11775, Stenotrophomonas maltophilia ATCC 13636, and Salmonella enteritidis ATCC 13076 was evaluated. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The synthetic bovine lactoferricin exhibited antibacterial activity against E. coli ATCC 11775 and S. enteritidis ATCC 13076. The dimeric peptide (RRWQWR)₂K-Ahx exhibited the highest antibacterial activity against the tested bacterial strain. The monomeric, cyclic, tetrameric, and palindromic peptides containing the RWQWR motif exhibited high and specific activity against E. coli ATCC 11775. The results suggest that short peptides derived from lactoferricin B could be considered as potential candidates for the development of antibacterial agents against infections caused by E. coli.

  16. Biodegradation and dissolution of polyaromatic hydrocarbons by Stenotrophomonas sp.

    PubMed

    Tiwari, Bhagyashree; Manickam, N; Kumari, Smita; Tiwari, Akhilesh

    2016-09-01

    The aim of this work was to study the biodegradation capabilities of a locally isolated bacterium, Stenotrophomonas sp. strain IITR87 to degrade the polycyclic aromatic hydrocarbons and also check the preferential biodegradation of polycyclic aromatic hydrocarbons (PAHs). From preferential substrate degradation studies, it was found that Stenotrophomonas sp. strain IITR87 first utilized phenanthrene (three membered ring), followed by pyrene (four membered ring), then benzo[α]pyrene (five membered ring). Dissolution study of PAHs with surfactants, rhamnolipid and tritonX-100 showed that the dissolution of PAHs increased in the presence of surfactants.

  17. Strong incidence of Pseudomonas aeruginosa on bacterial rrs and ITS genetic structures of cystic fibrosis sputa

    PubMed Central

    Pages-Monteiro, Laurence; Marti, Romain; Commun, Carine; Alliot, Nolwenn; Bardel, Claire; Meugnier, Helene; Perouse-de-Montclos, Michele; Reix, Philippe; Durieu, Isabelle; Durupt, Stephane; Vandenesch, Francois; Freney, Jean; Cournoyer, Benoit; Doleans-Jordheim, Anne

    2017-01-01

    Cystic fibrosis (CF) lungs harbor a complex community of interacting microbes, including pathogens like Pseudomonas aeruginosa. Meta-taxogenomic analysis based on V5-V6 rrs PCR products of 52 P. aeruginosa-positive (Pp) and 52 P. aeruginosa-negative (Pn) pooled DNA extracts from CF sputa suggested positive associations between P. aeruginosa and Stenotrophomonas and Prevotella, but negative ones with Haemophilus, Neisseria and Burkholderia. Internal Transcribed Spacer analyses (RISA) from individual DNA extracts identified three significant genetic structures within the CF cohorts, and indicated an impact of P. aeruginosa. RISA clusters Ip and IIIp contained CF sputa with a P. aeruginosa prevalence above 93%, and of 24.2% in cluster IIp. Clusters Ip and IIIp showed lower RISA genetic diversity and richness than IIp. Highly similar cluster IIp RISA profiles were obtained from two patients harboring isolates of a same P. aeruginosa clone, suggesting convergent evolution in the structure of their microbiota. CF patients of cluster IIp had received significantly less antibiotics than patients of clusters Ip and IIIp but harbored the most resistant P. aeruginosa strains. Patients of cluster IIIp were older than those of Ip. The effects of P. aeruginosa on the RISA structures could not be fully dissociated from the above two confounding factors but several trends in these datasets support the conclusion of a strong incidence of P. aeruginosa on the genetic structure of CF lung microbiota. PMID:28282386

  18. Bulgecin A as a β-lactam enhancer for carbapenem-resistant Pseudomonas aeruginosa and carbapenem-resistant Acinetobacter baumannii clinical isolates containing various resistance mechanisms

    PubMed Central

    Skalweit, Marion J; Li, Mei

    2016-01-01

    Genetic screening of Pseudomonas aeruginosa (PSDA) and Acinetobacter baumannii (ACB) reveals genes that confer increased susceptibility to β-lactams when disrupted, suggesting novel drug targets. One such target is lytic transglycosylase. Bulgecin A (BlgA) is a natural product of Pseudomonas mesoacidophila and a lytic transglycosolase inhibitor that works synergistically with β-lactams targeting PBP3 for Enterobacteriaceae. BlgA also weakly inhibits di-Zn2+ metallo-β-lactamases like L1 of Stenotrophomonas maltophilia. We hypothesized that because of its unique mechanism of action, BlgA could restore susceptibility to carbapenems in carbapenem-resistant PSDA (CR-PSDA) and carbapenem-resistant ACB, as well as ACB resistant to sulbactam. A BlgA-containing extract was prepared using a previously published protocol. CR-PSDA clinical isolates demonstrating a variety of carbapenem resistance mechanisms (VIM-2 carbapenemases, efflux mechanisms, and AmpC producer expression) were characterized with agar dilution minimum inhibitory concentration (MIC) testing and polymerase chain reaction. Growth curves using these strains were prepared using meropenem, BlgA extract, and meropenem plus BlgA extract. A concentrated Blg A extract combined with low concentrations of meropenem, was able to inhibit the growth of clinical strains of CR-PSDA for strains that had meropenem MICs ≥8 mg/L by agar dilution, and a clinical strain of an OXA-24 producing ACB that had a meropenem MIC >32 mg/L and intermediate ampicillin/sulbactam susceptibility. Similar experiments were conducted on a TEM-1 producing ACB strain resistant to sulbactam. BlgA with ampicillin/sulbactam inhibited the growth of this organism. As in Enterobacteriaceae, BlgA appears to restore the efficacy of meropenem in suppressing the growth of CR-PSDA and carbapenem-resistant ACB strains with a variety of common carbapenem resistance mechanisms. BlgA extract also inhibits VIM-2 β-lactamase in vitro. BlgA may prove to be

  19. Cloning, purification, crystallization and preliminary X-ray diffraction of the OleC protein from Stenotrophomonas maltophilia involved in head-to-head hydrocarbon biosynthesis

    SciTech Connect

    Frias, JA; Goblirsch, BR; Wackett, LP; Wilmot, CM

    2010-08-28

    OleC, a biosynthetic enzyme involved in microbial hydrocarbon biosynthesis, has been crystallized. Synchrotron X-ray diffraction data have been collected to 3.4 A resolution. The crystals belonged to space group P3(1)21 or P3(2)21, with unit-cell parameters a = b = 98.8, c = 141.0 A.

  20. Degradation potential of protocatechuate 3,4-dioxygenase from crude extract of Stenotrophomonas maltophilia strain KB2 immobilized in calcium alginate hydrogels and on glyoxyl agarose.

    PubMed

    Guzik, Urszula; Hupert-Kocurek, Katarzyna; Krysiak, Marta; Wojcieszyńska, Danuta

    2014-01-01

    Microbial intradiol dioxygenases have been shown to have a great potential for bioremediation; however, their structure is sensitive to various environmental and chemical agents. Immobilization techniques allow for the improvement of enzyme properties. This is the first report on use of glyoxyl agarose and calcium alginate as matrixes for the immobilization of protocatechuate 3,4-dioxygenase. Multipoint attachment of the enzyme to the carrier caused maintenance of its initial activity during the 21 days. Immobilization of dioxygenase in calcium alginate or on glyoxyl agarose resulted in decrease in the optimum temperature by 5 °C and 10 °C, respectively. Entrapment of the enzyme in alginate gel shifted its optimum pH towards high-alkaline pH while immobilization of the enzyme on glyoxyl agarose did not influence pH profile of the enzyme. Protocatechuate 3,4-dioygenase immobilized in calcium alginate showed increased activity towards 2,5-dihydroxybenzoate, caffeic acid, 2,3-dihydroxybenzoate, and 3,5-dihydroxybenzoate. Slightly lower activity of the enzyme was observed after its immobilization on glyoxyl agarose. Entrapment of the enzyme in alginate gel protected it against chelators and aliphatic alcohols while its immobilization on glyoxyl agarose enhanced enzyme resistance to inactivation by metal ions.

  1. Associated mortality and clinical characteristics of nosocomial Pseudomonas maltophilia in a university hospital.

    PubMed Central

    Morrison, A J; Hoffmann, K K; Wenzel, R P

    1986-01-01

    We studied the spectrum of clinical disease in 99 patients with nosocomial Pseudomonas maltophilia isolates at the University of Virginia Hospital from 1981 through 1984. The annual rate of isolation increased from 7.1 to 14.1 per 10,000 patient discharges. A crude mortality rate of 43% was documented in all patients from whom the organism was cultured, and the data include 12 patients with nosocomial bacteremia (four deaths). Risk factors associated with death for patients having a P. maltophilia isolate included the following: requirement for care in any intensive care unit during hospitalization (P = 0.0001), patient age over 40 years (P = 0.002), and a pulmonary source for the P. maltophilia isolate (P = 0.003). All P. maltophilia isolates were susceptible to trimethoprim-sulfamethoxazole, 60% of the isolates were resistant to all aminoglycosides (amikacin, tobramycin, and gentamicin), and more than 75% of the isolates were resistant to all beta-lactam antibiotics. The antibiotic susceptibility pattern allows for a niche exploitable in the hospital microbial environment by an organism with a marked associated mortality. PMID:3487553

  2. Rapid biodegradation of organophosphorus pesticides by Stenotrophomonas sp. G1.

    PubMed

    Deng, Shuyan; Chen, Yao; Wang, Daosheng; Shi, Taozhong; Wu, Xiangwei; Ma, Xin; Li, Xiangqiong; Hua, Rimao; Tang, Xinyun; Li, Qing X

    2015-10-30

    Organophosphorus insecticides have been widely used, which are highly poisonous and cause serious concerns over food safety and environmental pollution. A bacterial strain being capable of degrading O,O-dialkyl phosphorothioate and O,O-dialkyl phosphate insecticides, designated as G1, was isolated from sludge collected at the drain outlet of a chlorpyrifos manufacture plant. Physiological and biochemical characteristics and 16S rDNA gene sequence analysis suggested that strain G1 belongs to the genus Stenotrophomonas. At an initial concentration of 50 mg/L, strain G1 degraded 100% of methyl parathion, methyl paraoxon, diazinon, and phoxim, 95% of parathion, 63% of chlorpyrifos, 38% of profenofos, and 34% of triazophos in 24 h. Orthogonal experiments showed that the optimum conditions were an inoculum volume of 20% (v/v), a substrate concentration of 50 mg/L, and an incubation temperature in 40 °C. p-Nitrophenol was detected as the metabolite of methyl parathion, for which intracellular methyl parathion hydrolase was responsible. Strain G1 can efficiently degrade eight organophosphorus pesticides (OPs) and is a very excellent candidate for applications in OP pollution remediation.

  3. Indirect Manganese Removal by Stenotrophomonas sp. and Lysinibacillus sp. Isolated from Brazilian Mine Water

    PubMed Central

    Barboza, Natália Rocha; Amorim, Soraya Sander; Santos, Pricila Almeida; Reis, Flávia Donária; Cordeiro, Mônica Mendes; Guerra-Sá, Renata; Leão, Versiane Albis

    2015-01-01

    Manganese is a contaminant in the wastewaters produced by Brazilian mining operations, and the removal of the metal is notoriously difficult because of the high stability of the Mn(II) ion in aqueous solutions. To explore a biological approach for removing excessive amounts of aqueous Mn(II), we investigated the potential of Mn(II) oxidation by both consortium and bacterial isolates from a Brazilian manganese mine. A bacterial consortium was able to remove 99.7% of the Mn(II). A phylogenetic analysis of isolates demonstrated that the predominant microorganisms were members of Stenotrophomonas, Bacillus, and Lysinibacillus genera. Mn(II) removal rates between 58.5% and 70.9% were observed for Bacillus sp. and Stenotrophomonas sp. while the Lysinibacillus isolate 13P removes 82.7%. The catalytic oxidation of Mn(II) mediated by multicopper oxidase was not properly detected; however, in all of the experiments, a significant increase in the pH of the culture medium was detected. No aggregates inside the cells grown for a week were found by electronic microscopy. Nevertheless, an energy-dispersive X-ray spectroscopy of the isolates revealed the presence of manganese in Stenotrophomonas sp. and Lysinibacillus sp. grown in K medium. These results suggest that members of Stenotrophomonas and Lysinibacillus genera were able to remove Mn(II) by a nonenzymatic pathway. PMID:26697496

  4. Treatment of Polymicrobial Osteomyelitis with Ceftolozane-Tazobactam: Case Report and Sensitivity Testing of Isolates

    PubMed Central

    Jolliff, Jeffrey C.; Joson, Jeremiah; Heidari, Arash; Johnson, Royce

    2016-01-01

    Stenotrophomonas maltophilia is an inherently multidrug resistant (MDR) opportunistic pathogen with many mechanisms of resistance. SENTRY studies reveal decreasing sensitivities of S. maltophilia to trimethoprim-sulfamethoxazole and fluoroquinolones. Ceftolozane-tazobactam (Zerbaxa, Merck & Co., Inc.) a novel intravenous combination agent of a third-generation cephalosporin and β-lactamase inhibitor was demonstrated to have in vitro activity against many Gram-positive, Gram-negative, and MDR organisms. Data for ceftolozane-tazobactam's use outside of Food and Drug Administration (FDA) approved indications has been limited thus far to two case reports which demonstrated its efficacy in pan-resistant Pseudomonas aeruginosa pneumonia. Herein, we describe the first published case of treatment of MDR S. maltophilia in polymicrobial osteomyelitis with long-term (>14 days) ceftolozane-tazobactam and metronidazole. Ceftolozane-tazobactam may offer a possible alternative for clinicians faced with limited options in the treatment of resistant pathogens including MDR S. maltophilia. PMID:27437155

  5. Infectious Complications of Open Type III Tibial Fractures among Combat Casualties

    DTIC Science & Technology

    2007-08-15

    Escherichia coli 2 1 Stenotrophomonas maltophilia 1 0 Unknown 1 0 Gram-positive Coagulase-negative staphylococci 3 7 Enterococcus species 3 0 MSSA 2b 5...aeruginosa (6) Amputation (9)c 8 25 (M, IIIb) CoNS ( Escherichia coli and En- terobacter species recovered from broth) (30) Imipenem-cilastatin (2...nonunion wound; this organisim was a methicillin- resistant Staphylococcus aureus strain that was inadvertently not treated. Five of 35 patients

  6. Complete Genome Sequence of a Copper-Resistant Bacterium from the Citrus Phyllosphere, Stenotrophomonas sp. Strain LM091, Obtained Using Long-Read Technology

    PubMed Central

    Richard, Damien; Boyer, Claudine; Lefeuvre, Pierre

    2016-01-01

    The Stenotrophomonas genus shows great adaptive potential including resistance to multiple antimicrobials, opportunistic pathogenicity, and production of numerous secondary metabolites. Using long-read technology, we report the sequence of a plant-associated Stenotrophomonas strain originating from the citrus phyllosphere that displays a copper resistance phenotype. PMID:27979933

  7. The production and molecular properties of the zinc beta-lactamase of Pseudomonas maltophilia IID 1275.

    PubMed Central

    Bicknell, R; Emanuel, E L; Gagnon, J; Waley, S G

    1985-01-01

    The production and purification of a tetrameric zinc beta-lactamase from Pseudomonas maltophilia IID 1275 were greatly improved. Three charge variants were isolated by chromatofocusing. The subunits each contain two atomic proportions of zinc and (in two of the variants) one residue of cysteine. The thiol group is not required for activity, nor does it appear to bind to the metal. Replacement of zinc by cobalt, cadmium or nickel takes place at a measurable rate, and gives enzymes that are less active than the zinc enzyme. The properties of this enzyme differ from those of the other known zinc beta-lactamase, beta-lactamase II from Bacillus cereus. The amino acid sequence of the N-terminal 32 residues was determined; there is no similarity to the N-terminal sequences of other beta-lactamases. PMID:3931629

  8. Engineering chlorpyrifos-degrading Stenotrophomonas sp. YC-1 for heavy metal accumulation and enhanced chlorpyrifos degradation.

    PubMed

    Liu, Ruihua; Jiang, Hong; Xu, Ping; Qiao, Chuanling; Zhou, Qixing; Yang, Chao

    2014-11-01

    Many ecosystems are currently co-contaminated with pesticides and heavy metals, such as chlorpyrifos and cadmium. A promising strategy to remediate mixed chlorpyrifos-cadmium-contaminated sites is the use of chlorpyrifos-degrading bacteria endowed with cadmium removal capabilities. In this work, a gene coding for synthetic phytochelatins (EC20) with high cadmium-binding capacity was introduced into a chlorpyrifos-degrading bacterium, Stenotrophomonas sp. YC-1, resulting in an engineered strain with both cadmium accumulation and chlorpyrifos degradation capabilities. To improve the cadmium-binding efficiency of whole cells, EC20 was displayed on the cell surface of Stenotrophomonas sp. YC-1 using the truncated ice nucleation protein (INPNC) anchor. The surface localization of the INPNC-EC20 fusion protein was demonstrated by cell fractionation, Western blot analysis, and immunofluorescence microscopy. Expression of EC20 on the cell surface not only improved cadmium binding, but also alleviated the cellular toxicity of cadmium. As expected, the chlorpyrifos degradation rate was reduced in the presence of cadmium for cells without EC20 expression. However, expression of EC20 (higher cadmium accumulation) completely restored the level of chlorpyrifos degradation. These results demonstrated that EC20 expression not only enhanced cadmium accumulation, but also reduced the toxic effect of cadmium on chlorpyrifos degradation.

  9. [Pneumonia due to Pseudomonas aeruginosa].

    PubMed

    Vallés, Jordi; Mariscal, Dolors

    2005-12-01

    Pseudomonas aeruginosa is one of the leading causes of Gram-negative nosocomial pneumonia. It is the most common cause of ventilator-associated pneumonia and carries the highest mortality among hospital-acquired infections. P. aeruginosa produces a large number of toxins and surface components that make it especially virulent compared with other microorganisms. These include pili, flagella, membrane bound lipopolysaccharide, and secreted products such as exotoxins A, S and U, elastase, alkaline protease, cytotoxins and phospholipases. The most common mechanism of infection in mechanically ventilated patients is through aspiration of upper respiratory tract secretions previously colonized in the process of routine nursing care or via contaminated hands of hospital personnel. Intravenous therapy with an antipseudomonal regimen should be started immediately when P. aeruginosa pneumonia is suspected or confirmed. Empiric therapy with drugs active against P. aeruginosa should be started, especially in patients who have received previous antibiotics or present late-onset pneumonia.

  10. Chronic Pseudomonas aeruginosa cervical osteomyelitis

    PubMed Central

    Meher, Sujeet Kumar; Jain, Harsh; Tripathy, Laxmi Narayan; Basu, Sunandan

    2016-01-01

    Pseudomonas aeruginosa is a rare cause of osteomyelitis of the cervical spine and is usually seen in the background of intravenous drug use and immunocompromised state. Very few cases of osteomyelitis of the cervical spine caused by pseudomonas aeruginosa have been reported in otherwise healthy patients. This is a case presentation of a young female, who in the absence of known risk factors for cervical osteomyelitis presented with progressively worsening neurological signs and symptoms. PMID:27891039

  11. Characterization of three antifungal calcite-forming bacteria, Arthrobacter nicotianae KNUC2100, Bacillus thuringiensis KNUC2103, and Stenotrophomonas maltophilia KNUC2106, derived from the Korean islands, Dokdo and their application on mortar.

    PubMed

    Park, Jong-Myong; Park, Sung-Jin; Ghim, Sa-Youl

    2013-09-28

    Crack remediation on the surface of cement mortar using microbiological calcium carbonate (CaCO3) precipitation (MICP) has been investigated as a microbial sealing agent on construction materials. However, MICP research has never acknowledged the antifungal properties of calcite-forming bacteria (CFB). Since fungal colonization on concrete surfaces can trigger biodeterioration processes, fungi on concrete buildings have to be prevented. Therefore, to develop a microbial sealing agent that has antifungal properties to remediate cement cracks without deteriorative fungal colonization, we introduced an antifungal CFB isolated from oceanic islands (Dokdo islands, territory of South Korea, located at the edge of the East Sea in Korea.). The isolation of CFB was done using B4 or urea-CaCl2 media. Furthermore, antifungal assays were done using the pairing culture and disk diffusion methods. Five isolated CFB showed CaCO3 precipitation and antifungal activities against deteriorative fungal strains. Subsequently, five candidate bacteria were identified using 16S rDNA sequence analysis. Crack remediation, fungi growth inhibition, and water permeability reduction of antifungal CFB-treated cement surfaces were tested. All antifungal CFB showed crack remediation abilities, but only three strains (KNUC2100, 2103, and 2106) reduced the water permeability. Furthermore, these three strains showed fungi growth inhibition. This paper is the first application research of CFB that have antifungal activity, for an eco-friendly improvement of construction materials.

  12. Isolation of new Stenotrophomonas bacteriophages and genomic characterization of temperate phage S1.

    PubMed

    García, Pilar; Monjardín, Cristina; Martín, Rebeca; Madera, Carmen; Soberón, Nora; Garcia, Eva; Meana, Alvaro; Suárez, Juan E

    2008-12-01

    Twenty-two phages that infect Stenotrophomonas species were isolated through sewage enrichment and prophage induction. Of them, S1, S3, and S4 were selected due to their wide host ranges compared to those of the other phages. S1 and S4 are temperate siphoviruses, while S3 is a virulent myovirus. The genomes of S3 and S4, about 33 and 200 kb, were resistant to restriction digestion. The lytic cycles lasted 30 min for S3 and about 75 min for S1 and S4. The burst size for S3 was 100 virions/cell, while S1 and S4 produced about 75 virus particles/cell. The frequency of bacteriophage-insensitive host mutants, calculated by dividing the number of surviving colonies by the bacterial titer of a parallel, uninfected culture, ranged between 10(-5) and 10(-6) for S3 and 10(-3) and 10(-4) for S1 and S4. The 40,287-bp genome of S1 contains 48 open reading frames (ORFs) and 12-bp 5' protruding cohesive ends. By using a combination of bioinformatics and experimental evidence, functions were ascribed to 21 ORFs. The morphogenetic and lysis modules are well-conserved, but no lysis-lysogeny switch or DNA replication gene clusters were recognized. Two major clusters of genes with respect to transcriptional orientation were observed. Interspersed among them were lysogenic conversion genes encoding phosphoadenosine phosphosulfate reductase and GspM, a protein involved in the general secretion system II. The attP site of S1 may be located within a gene that presents over 75% homology to a Stenotrophomonas chromosomal determinant.

  13. Isolation and Characterization of α-Endosulfan Degrading Bacteria from the Microflora of Cockroaches.

    PubMed

    Ozdal, Murat; Ozdal, Ozlem Gur; Alguri, Omer Faruk

    2016-01-01

    Extensive applications of organochlorine pesticides like endosulfan have led to the contamination of soil and environments. Five different bacteria were isolated from cockroaches living in pesticide contaminated environments. According to morphological, physiological, biochemical properties, and total cellular fatty acid profile by Fatty Acid Methyl Esters (FAMEs), the isolates were identified as Pseudomonas aeruginosa G1, Stenotrophomonas maltophilia G2, Bacillus atrophaeus G3, Citrobacter amolonaticus G4 and Acinetobacter lwoffii G5. This is the first study on the bacterial flora of Blatta orientalis evaluated for the biodegradation of α-endosulfan. After 10 days of incubation, the biodegradation yields obtained from P. aeruginosa G1, S. maltophilia G2, B. atrophaeus G3, C. amolonaticus G4 and A. lwoffii G5 were 88.5% , 85.5%, 64.4%, 56.7% and 80.2%, respectively. As a result, these bacterial strains may be utilized for biodegradation of endosulfan polluted soil and environments.

  14. Insights into Cystic Fibrosis Polymicrobial Consortia: The Role of Species Interactions in Biofilm Development, Phenotype, and Response to In-Use Antibiotics.

    PubMed

    Magalhães, Andreia P; Lopes, Susana P; Pereira, Maria O

    2016-01-01

    Cystic Fibrosis (CF) airways disease involves complex polymicrobial infections where different bacterial species can interact and influence each other and/or even interfere with the whole community. To gain insights into the role that interactions between Pseudomonas aeruginosa in co-culture with Staphylococcus aureus, Inquilinus limosus, and Stenotrophomonas maltophilia may play in infection, the reciprocal effect during biofilm formation and the response of dual biofilms toward ciprofloxacin under in vitro atmospheres with different oxygen availabilities were evaluated. Biofilm formation kinetics showed that the growth of S. aureus, I. limosus, and S. maltophilia was disturbed in the presence of P. aeruginosa, under both aerobic and anaerobic environments. On the other hand, under aerobic conditions, I. limosus led to a decrease in biofilm mass production by P. aeruginosa, although biofilm-cells viability remains unaltered. The interaction between S. maltophilia and P. aeruginosa positively influenced dual biofilm development by increasing its biomass. Compared with monocultures, biomass of P. aeruginosa+ S. aureus biofilms was significantly reduced by reciprocal interference. When grown in dual biofilms with P. aeruginosa, ciprofloxacin was less effective against S. aureus, I. limosus, and S. maltophilia, with increasing antibiotic doses leading to drastic inhibitions of P. aeruginosa cultivability. Therefore, P. aeruginosa might be responsible for the protection of the whole dual consortia against ciprofloxacin activity. Based on the overall data, it can be speculated that reciprocal interferences occur between the different bacterial species in CF lung, regardless the level of oxygen. The findings also suggest that alterations of bacterial behavior due to species interplay may be important for disease progression in CF infection.

  15. Insights into Cystic Fibrosis Polymicrobial Consortia: The Role of Species Interactions in Biofilm Development, Phenotype, and Response to In-Use Antibiotics

    PubMed Central

    Magalhães, Andreia P.; Lopes, Susana P.; Pereira, Maria O.

    2017-01-01

    Cystic Fibrosis (CF) airways disease involves complex polymicrobial infections where different bacterial species can interact and influence each other and/or even interfere with the whole community. To gain insights into the role that interactions between Pseudomonas aeruginosa in co-culture with Staphylococcus aureus, Inquilinus limosus, and Stenotrophomonas maltophilia may play in infection, the reciprocal effect during biofilm formation and the response of dual biofilms toward ciprofloxacin under in vitro atmospheres with different oxygen availabilities were evaluated. Biofilm formation kinetics showed that the growth of S. aureus, I. limosus, and S. maltophilia was disturbed in the presence of P. aeruginosa, under both aerobic and anaerobic environments. On the other hand, under aerobic conditions, I. limosus led to a decrease in biofilm mass production by P. aeruginosa, although biofilm-cells viability remains unaltered. The interaction between S. maltophilia and P. aeruginosa positively influenced dual biofilm development by increasing its biomass. Compared with monocultures, biomass of P. aeruginosa+ S. aureus biofilms was significantly reduced by reciprocal interference. When grown in dual biofilms with P. aeruginosa, ciprofloxacin was less effective against S. aureus, I. limosus, and S. maltophilia, with increasing antibiotic doses leading to drastic inhibitions of P. aeruginosa cultivability. Therefore, P. aeruginosa might be responsible for the protection of the whole dual consortia against ciprofloxacin activity. Based on the overall data, it can be speculated that reciprocal interferences occur between the different bacterial species in CF lung, regardless the level of oxygen. The findings also suggest that alterations of bacterial behavior due to species interplay may be important for disease progression in CF infection. PMID:28133457

  16. Pseudomonas aeruginosa displays an altered phenotype in vitro when grown in the presence of mannitol.

    PubMed

    Moore, J E; Rendall, J C; Downey, D G

    2015-01-01

    D-mannitol has been approved in dry powder formulation as an effective antimucolytic agent in patients with cystic fibrosis. What is not known is the effect of adding a metabolisable sugar on the biology of chronic bacterial pathogens in the CF lung. Therefore, a series of simple in vitro experiments were performed to examine the effect of adding D-mannitol on the phenotype of the CF respiratory pathogens Pseudomonas aeruginosa and Burkholderia cenocepacia. Clinical isolates (n = 86) consisting of P. aeruginosa (n = 51), B. cenocepacia (n = 26), P. putida (n = 4), Stenotrophomonas maltophila (n = 3) and Pseudomonas spp. (n = 2) were examined by supplementing basal nutrient agar with varying concentrations of D-mannitol (0-20% [w/v]) and subsequently examining for any change in microbial phenotype. The effect of supplementation with mannitol was four-fold, namely i) To increase the proliferation and increase in cell density of all CF organisms examined, with an optimal concentration of 2-4% (w/v) D-mannitol. No such increase in cell proliferation was observed when mannitol was substituted with sodium chloride. ii) Enhanced pigment production was observed in 2/51 (3.9%) of the P. aeruginosa isolates examined, in one of the P. putida isolates, and in 3/26 (11.5%) of the B. cenocepacia isolates examined. iii). When examined at 4.0% (w/v) supplementation with mannitol, 11/51 (21.6%) P. aeruginosa isolates and 3/26 (11.5%) B. cenocepacia isolates were seen to exhibit the altered adhesion phenotype. iv). With respect to the altered mucoid phenotype, 5/51 (9.8%) P. aeruginosa produced this phenotype when grown at 4% mannitol. Mucoid production was greatest at 4%, was poor at 10% and absent at 20% (w/v) mannitol. The altered mucoid phenotype was not observed in the B. cenocepacia isolates or any of the other clinical taxa examined. Due consideration therefore needs to be given, where there is altered physiology within the small airways, leading to a potentially altered

  17. Stenotrophomonas sp. RZS 7, a novel PHB degrader isolated from plastic contaminated soil in Shahada, Maharashtra, Western India.

    PubMed

    Wani, S J; Shaikh, S S; Tabassum, B; Thakur, R; Gulati, A; Sayyed, R Z

    2016-12-01

    This paper reports an isolation and identification of novel poly-β-hydroxybutyrate (PHB) degrading bacterium Stenotrophomonas sp. RZS 7 and studies on its extracellular PHB degrading depolymerase enzyme. The bacterium isolated from soil samples of plastic contaminated sites of municipal area in Shahada, Maharashtra, Western India. It was identified as Stenotrophomonas sp. RZS 7 based on polyphasic approach. The bacterium grew well in minimal salt medium (MSM) and produced a zone (4.2 mm) of PHB hydrolysis on MSM containing PHB as the only source of nutrient. An optimum yield of enzyme was obtained on the fifth day of incubation at 37 °C and at pH 6.0. Further increase in enzyme production was recorded with Ca(2+) ions, while other metal ions like Fe(2+) (1 mM) and chemical viz. mercaptoethanol severally affected the production of enzyme.

  18. Pseudomonas aeruginosa: breaking down barriers.

    PubMed

    Berube, Bryan J; Rangel, Stephanie M; Hauser, Alan R

    2016-02-01

    Many bacterial pathogens have evolved ingenious ways to escape from the lung during pneumonia to cause bacteremia. Unfortunately, the clinical consequences of this spread to the bloodstream are frequently dire. It is therefore important to understand the molecular mechanisms used by pathogens to breach the lung barrier. We have recently shown that Pseudomonas aeruginosa, one of the leading causes of hospital-acquired pneumonia, utilizes the type III secretion system effector ExoS to intoxicate pulmonary epithelial cells. Injection of these cells leads to localized disruption of the pulmonary-vascular barrier and dissemination of P. aeruginosa to the bloodstream. We put these data in the context of previous studies to provide a holistic model of P. aeruginosa dissemination from the lung. Finally, we compare P. aeruginosa dissemination to that of other bacteria to highlight the complexity of bacterial pneumonia. Although respiratory pathogens use distinct and intricate strategies to escape from the lungs, a thorough understanding of these processes can lay the foundation for new therapeutic approaches for bacterial pneumonia.

  19. Biosynthesis of gold and silver nanoparticles using a novel marine strain of Stenotrophomonas.

    PubMed

    Malhotra, Ankit; Dolma, Kunzes; Kaur, Navjot; Rathore, Y S; Ashish; Mayilraj, S; Choudhury, Anirban Roy

    2013-08-01

    The present study aims at exploiting marine microbial diversity for biosynthesis of metal nanoparticles and also investigates role of microbial proteins in the process of bio-mineralization of gold and silver. This is the first report for concurrent production of gold and silver nanoparticles (AuNPs and AgNPs) by extracellular secretion of a novel strain of Stenotrophomonas, isolated from Indian marine origin. This novel strain has faster rate kinetics for AgNPs synthesis than any other organism reported earlier. The nanoparticles were further characterized using UV-vis spectrophotometer, TEM, DLS and EDAX confirming their size ranging from 10-50 nm and 40-60 nm in dimensions for AuNPs and AgNPs, respectively. TEM analysis indicated formation of multi-shaped nanoparticles with heterogeneous size distribution in both the cases. Finally, the SDS-PAGE analysis of extracellular media supernatant suggested a potential involvement of certain low molecular weight secretory proteins in AuNPs and AgNPs biosynthesis.

  20. Biodegradation of DDT by Stenotrophomonas sp. DDT-1: Characterization and genome functional analysis

    NASA Astrophysics Data System (ADS)

    Pan, Xiong; Lin, Dunli; Zheng, Yuan; Zhang, Qian; Yin, Yuanming; Cai, Lin; Fang, Hua; Yu, Yunlong

    2016-02-01

    A novel bacterium capable of utilizing 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) as the sole carbon and energy source was isolated from a contaminated soil which was identified as Stenotrophomonas sp. DDT-1 based on morphological characteristics, BIOLOG GN2 microplate profile, and 16S rDNA phylogeny. Genome sequencing and functional annotation of the isolate DDT-1 showed a 4,514,569 bp genome size, 66.92% GC content, 4,033 protein-coding genes, and 76 RNA genes including 8 rRNA genes. Totally, 2,807 protein-coding genes were assigned to Clusters of Orthologous Groups (COGs), and 1,601 protein-coding genes were mapped to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. The degradation half-lives of DDT increased with substrate concentration from 0.1 to 10.0 mg/l, whereas decreased with temperature from 15 °C to 35 °C. Neutral condition was the most favorable for DDT biodegradation. Based on genome annotation of DDT degradation genes and the metabolites detected by GC-MS, a mineralization pathway was proposed for DDT biodegradation in which it was orderly converted into DDE/DDD, DDMU, DDOH, and DDA via dechlorination, hydroxylation, and carboxylation, and ultimately mineralized to carbon dioxide. The results indicate that the isolate DDT-1 is a promising bacterial resource for the removal or detoxification of DDT residues in the environment.

  1. Astaxanthin preparation by fermentation of esters from Haematococcus pluvialis algal extracts with Stenotrophomonas species.

    PubMed

    Dong, Hao; Li, Xuemin; Xue, Changhu; Mao, Xiangzhao

    2016-05-01

    Natural astaxanthin (Ax) is an additive that is widely used because of its beneficial biochemical functions. However, the methods used to produce free Ax have drawbacks. Chemical saponification methods produce several by-products, and lipase-catalyzed hydrolysis methods are not cost effective. In this study, a bacterial strain of Stenotrophomonas sp. was selected to enzymatically catalyze the saponification of Ax esters to produce free all-trans-Ax. Through single-factor experiments and a Box-Behnken design, the optimal fermentation conditions were determined as follows: a seed culture age of 37.79 h, an inoculum concentration of 5.92%, and an initial broth pH of 6.80. Under these conditions, a fermentation curve was drawn, and the optimal fermentation time was shown to be 60 h. At 60 h, the degradation rate of the Ax esters was 98.08%, and the yield of free all-trans-Ax was 50.130 μg/mL. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:649-656, 2016.

  2. Biodegradation of DDT by Stenotrophomonas sp. DDT-1: Characterization and genome functional analysis.

    PubMed

    Pan, Xiong; Lin, Dunli; Zheng, Yuan; Zhang, Qian; Yin, Yuanming; Cai, Lin; Fang, Hua; Yu, Yunlong

    2016-02-18

    A novel bacterium capable of utilizing 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) as the sole carbon and energy source was isolated from a contaminated soil which was identified as Stenotrophomonas sp. DDT-1 based on morphological characteristics, BIOLOG GN2 microplate profile, and 16S rDNA phylogeny. Genome sequencing and functional annotation of the isolate DDT-1 showed a 4,514,569 bp genome size, 66.92% GC content, 4,033 protein-coding genes, and 76 RNA genes including 8 rRNA genes. Totally, 2,807 protein-coding genes were assigned to Clusters of Orthologous Groups (COGs), and 1,601 protein-coding genes were mapped to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. The degradation half-lives of DDT increased with substrate concentration from 0.1 to 10.0 mg/l, whereas decreased with temperature from 15 °C to 35 °C. Neutral condition was the most favorable for DDT biodegradation. Based on genome annotation of DDT degradation genes and the metabolites detected by GC-MS, a mineralization pathway was proposed for DDT biodegradation in which it was orderly converted into DDE/DDD, DDMU, DDOH, and DDA via dechlorination, hydroxylation, and carboxylation, and ultimately mineralized to carbon dioxide. The results indicate that the isolate DDT-1 is a promising bacterial resource for the removal or detoxification of DDT residues in the environment.

  3. Phosphate taxis in Pseudomonas aeruginosa.

    PubMed

    Kato, J; Ito, A; Nikata, T; Ohtake, H

    1992-08-01

    Pseudomonas aeruginosa was shown to be attracted to phosphate. The chemotactic response was induced by phosphate starvation. The specificity of chemoreceptors for phosphate was high so that no other tested phosphorus compounds elicited a chemotactic response as strong as that elicited by phosphate. Competition experiments showed that the chemoreceptors for phosphate appeared to be different from those for the common amino acids. Mutants constitutive for alkaline phosphatase showed the chemotactic response to phosphate regardless of whether the cells were starved for phosphate.

  4. Carbenicillin resistance of Pseudomonas aeruginosa.

    PubMed Central

    Rodríguez-Tebar, A; Rojo, F; Dámaso, D; Vázquez, D

    1982-01-01

    Four strains of Pseudomonas aeruginosa obtained from clinical isolates which are carbenicillin resistant were studied to find the cause(s) of resistance to this beta-lactam antibiotic. The electrophoresis patterns of the four strains (PH20610, PH20815, PH4011, and PH4301) were found to be different from those of a wild-type strain, P. aeruginosa NCTC 10662, and appeared to lack penicillin-binding protein 2. Affinity of other penicillin-binding proteins from strains PH20610 and PH20815 for carbenicillin seemed to be normal or slightly diminished. Electrophoretic patterns of penicillin-binding proteins from strains PH4011 and PH4301 had more profound differences, since the affinities of their penicillin-binding proteins 1a, 1b, and 4 for carbenicillin were decreased by nearly two orders of magnitude relative to the preparations from the wild-type strain. Kinetic studies on binding of carbenicillin to penicillin-binding proteins both in isolated membrane preparations and in intact cells revealed that carbenicillin penetration into resistant cells was a much slower process than in susceptible cells, suggesting that the outer envelope structures serve as an efficient barrier against carbenicillin entry into our P. aeruginosa strains from clinical isolates. PMID:6821456

  5. [Pathogenic bacteria in cystic fibrosis].

    PubMed

    Mariani-Kurkdjian, P; Bingen, E

    2003-09-01

    Since the CF gene identification in 1989 and despite the improvement of our knowledge in the physiopathology of the disease, bronchopulmonary infection determines the vital prognosis. Following Staphylococcus aureus infection, patients are colonized or colonized by Pseudomonas aeruginosa, greatly involved in the pulmonary deterioration. Other bacteria may be involved Burkholderia cepacia, Stenotrophomonas maltophilia, Alcaligenes sp. Intensive antibiotic treatment of primocolonisation helps to prevent or delay chronic colonisation. Chronic colonization needs a rational long term antibiotic strategy to prevent the occurrence of multiresistant germs; antibiotic cures are performed every 3 or 4 months before pulmonary exacerbation symptoms.

  6. Pseudomonas aeruginosa Population Structure Revisited

    PubMed Central

    Pirnay, Jean-Paul; Bilocq, Florence; Pot, Bruno; Cornelis, Pierre; Zizi, Martin; Van Eldere, Johan; Deschaght, Pieter; Vaneechoutte, Mario; Jennes, Serge; Pitt, Tyrone; De Vos, Daniel

    2009-01-01

    At present there are strong indications that Pseudomonas aeruginosa exhibits an epidemic population structure; clinical isolates are indistinguishable from environmental isolates, and they do not exhibit a specific (disease) habitat selection. However, some important issues, such as the worldwide emergence of highly transmissible P. aeruginosa clones among cystic fibrosis (CF) patients and the spread and persistence of multidrug resistant (MDR) strains in hospital wards with high antibiotic pressure, remain contentious. To further investigate the population structure of P. aeruginosa, eight parameters were analyzed and combined for 328 unrelated isolates, collected over the last 125 years from 69 localities in 30 countries on five continents, from diverse clinical (human and animal) and environmental habitats. The analysed parameters were: i) O serotype, ii) Fluorescent Amplified-Fragment Length Polymorphism (FALFP) pattern, nucleotide sequences of outer membrane protein genes, iii) oprI, iv) oprL, v) oprD, vi) pyoverdine receptor gene profile (fpvA type and fpvB prevalence), and prevalence of vii) exoenzyme genes exoS and exoU and viii) group I pilin glycosyltransferase gene tfpO. These traits were combined and analysed using biological data analysis software and visualized in the form of a minimum spanning tree (MST). We revealed a network of relationships between all analyzed parameters and non-congruence between experiments. At the same time we observed several conserved clones, characterized by an almost identical data set. These observations confirm the nonclonal epidemic population structure of P. aeruginosa, a superficially clonal structure with frequent recombinations, in which occasionally highly successful epidemic clones arise. One of these clones is the renown and widespread MDR serotype O12 clone. On the other hand, we found no evidence for a widespread CF transmissible clone. All but one of the 43 analysed CF strains belonged to a ubiquitous P

  7. Once-Daily Amikacin Dosing in Burn Patients Treated with Continuous Venovenous Hemofiltration

    DTIC Science & Technology

    2011-10-01

    Stenotrophomonas maltophilia (11 isolates), Enterobacter aerogenes (9 isolates), Aeromonas hydro- philia (6 isolates), Serratia marcescens (4 isolates), Escherichia...64 Acinetobacter baumannii (35) 39.1% 23 64/64 Other Enterobacteriaciae (43) Stenotrophomonas maltophilia (11), Enterobacter aerogenes (9...Patient and infection characteristics . Sixty patients received amikacin and had sufficient dosing and postinfusion data to calculate pharmacokinetic

  8. Microcystin-degrading activity of an indigenous bacterial strain Stenotrophomonas acidaminiphila MC-LTH2 isolated from Lake Taihu.

    PubMed

    Yang, Fei; Zhou, Yuanlong; Yin, Lihong; Zhu, Guangcan; Liang, Geyu; Pu, Yuepu

    2014-01-01

    Microcystin-LR (MC-LR) and microcystin-RR (MC-RR) produced by harmful cyanobacterial blooms (HCBs) pose substantial threats to the ecosystem and public health due to their potential hepatotoxicity. Degradation of microcystins (MCs) by indigenous bacteria represents a promising method for removing MCs from fresh water without harming the aquatic environment, but only a few microcystin (MC)-degrading bacteria have been isolated and had their mechanisms reported. This study aimed to isolate indigenous bacteria from Lake Taihu, and investigate the capability and mechanism of MC degradation by these bacteria. During a Microcystis bloom, an indigenous MC-degrading bacterium designated MC-LTH2 was successfully isolated from Lake Taihu, and identified as Stenotrophomonas acidaminiphila based on phylogenetic analysis. In the presence of MC-LR together with MC-RR, the strain MC-LTH2 was capable of totally degrading both simultaneously in 8 days, at rates of 3.0 mg/(L⋅d) and 5.6 mg/(L⋅d), respectively. The degradation rates of MCs were dependent on temperature, pH, and initial MC concentration. Adda (3-amino-9-methoxy-2, 6, 8-trimethyl-10-phenyldeca-4, 6-dienoic acid) was detected as an intermediate degradation product of MCs using high performance liquid chromatography coupled with time-of-flight mass spectrometry (HPLC-TOF-MS). To the best of our knowledge, this is the first report of Stenotrophomonas acidaminiphila capable of degrading two MC analogues and other compounds containing Adda residue completely under various conditions, although the mlrA gene in the strain was not detected. These results indicate the Stenotrophomonas acidaminiphila strain MC-LTH2 possesses a significant potential to be used in bioremediation of water bodies contaminated by MC-LR and MC-RR, and is potentially involved in the degradation of MCs during the disappearance of the HCBs in Lake Taihu.

  9. Root-microbe systems: the effect and mode of interaction of Stress Protecting Agent (SPA) Stenotrophomonas rhizophila DSM14405T

    PubMed Central

    Alavi, Peyman; Starcher, Margaret R.; Zachow, Christin; Müller, Henry; Berg, Gabriele

    2013-01-01

    Stenotrophomonas rhizophila has great potential for applications in biotechnology and biological control due to its ability to both promote plant growth and protect roots against biotic and a-biotic stresses, yet little is known about the mode of interactions in the root-environment system. We studied mechanisms associated with osmotic stress using transcriptomic and microscopic approaches. In response to salt or root extracts, the transcriptome of S. rhizophila DSM14405T changed drastically. We found a notably similar response for several functional gene groups responsible for general stress protection, energy production, and cell motility. However, unique changes in the transcriptome were also observed: the negative regulation of flagella-coding genes together with the up-regulation of the genes responsible for biofilm formation and alginate biosynthesis were identified as a single mechanism of S. rhizophila DSM14405T against salt shock. However, production and excretion of glucosylglycerol (GG) were found as a remarkable mechanism for the stress protection of this Stenotrophomonas strain. For S. rhizophila treated with root exudates, the shift from the planktonic lifestyle to a sessile one was measured as expressed in the down-regulation of flagellar-driven motility. These findings fit well with the observed positive regulation of host colonization genes and microscopic images that show different colonization patterns of oilseed rape roots. Spermidine, described as a plant growth regulator, was also newly identified as a protector against stress. Overall, we identified mechanisms of Stenotrophomonas to protect roots against osmotic stress in the environment. In addition to both the changes in life style and energy metabolism, phytohormons, and osmoprotectants were also found to play a key role in stress protection. PMID:23717321

  10. The Accessory Genome of Pseudomonas aeruginosa

    PubMed Central

    Kung, Vanderlene L.; Ozer, Egon A.; Hauser, Alan R.

    2010-01-01

    Summary: Pseudomonas aeruginosa strains exhibit significant variability in pathogenicity and ecological flexibility. Such interstrain differences reflect the dynamic nature of the P. aeruginosa genome, which is composed of a relatively invariable “core genome” and a highly variable “accessory genome.” Here we review the major classes of genetic elements comprising the P. aeruginosa accessory genome and highlight emerging themes in the acquisition and functional importance of these elements. Although the precise phenotypes endowed by the majority of the P. aeruginosa accessory genome have yet to be determined, rapid progress is being made, and a clearer understanding of the role of the P. aeruginosa accessory genome in ecology and infection is emerging. PMID:21119020

  11. Thrombus Degradation by Fibrinolytic Enzyme of Stenotrophomonas sp. Originated from Indonesian Soybean-Based Fermented Food on Wistar Rats

    PubMed Central

    Tjandrawinata, Raymond R.

    2016-01-01

    Objective. To evaluate thrombus degrading effect of a fibrinolytic enzyme from food origin Stenotrophomonas sp. of Indonesia. Methods. Prior to animal study, the enzyme safety was tested using cell culture. The effect on expression of tissue plasminogen activator was also analysed in the cell culture. For in vivo studies, 25 Wistar rats were used: normal control, negative control, treatment groups with crude and semipurified enzyme given orally at 25 mg/kg, and positive control group which received Lumbrokinase at 25 mg/kg. Blood clot in the tail was induced by kappa carrageenan injection at 1 mg/kg BW. Results. Experiment with cell culture confirmed the enzyme safety at the concentration used and increased expression of tPA. Decreasing of thrombus was observed in the positive group down to 70.35 ± 23.11% of the negative control animals (100%). The thrombus observed in the crude enzyme treatment was down to 56.99 ± 15.95% and 71.5 ± 15.7% for semipurified enzyme. Scanning electron microscopy showed clearly that bood clots were found in the animals injected with kappa carrageenan; however, in the treatment and positive groups, the clot was much reduced. Conclusions. Oral treatment of enzyme from Stenotrophomonas sp. of Indonesian fermented food was capable of degrading thrombus induced in Wistar rats. PMID:27635131

  12. Bacterial strains isolated from PCB-contaminated sediments and their use for bioaugmentation strategy in microcosms.

    PubMed

    Dudášová, Hana; Lukáčová, Lucia; Murínová, Slavomíra; Puškárová, Andrea; Pangallo, Domenico; Dercová, Katarína

    2014-04-01

    This study was focused on the characterization of 15 bacterial strains isolated from long-term PCB-contaminated sediment located at the Strážsky canal in eastern part of Slovakia, in the surroundings of a former PCB producer. PCB-degrading strains were isolated and identified as Microbacterium oleivorans, Stenotrophomonas maltophilia, Brevibacterium sp., Ochrobactrum anthropi, Pseudomonas mandelii, Rhodococcus sp., Achromobacter xylosoxidans, Stenotrophomonas sp., Ochrobactrum sp., Pseudomonas aeruginosa, and Starkeya novella by the 16S rRNA gene sequence phylogenetic analysis. This study presents a newly isolated bacterial strain S. novella with PCB-degrading ability in liquid medium as well as in sediment. For A. xylosoxidans, the bphA gene was identified. The best growth ability in the presence of all sole carbon sources (biphenyl and PCBs vapor) was obtained for Ochrobactrum sp. and Rhodococcus sp. Uncultured Achromobacter sp. showed the highest potential for bioaugmentation of PCB-contaminated sediment.

  13. Antibiotic Conditioned Growth Medium of Pseudomonas Aeruginosa

    ERIC Educational Resources Information Center

    Benathen, Isaiah A.; Cazeau, Barbara; Joseph, Njeri

    2004-01-01

    A simple method to study the consequences of bacterial antibiosis after interspecific competition between microorganisms is presented. Common microorganisms are used as the test organisms and Pseudomonas aeruginosa are used as the source of the inhibitor agents.

  14. Occurrence of Pseudomonas aeruginosa in Kuwait soil.

    PubMed

    Al-Saleh, Esmaeil; Akbar, Abrar

    2015-02-01

    Environmentally ubiquitous bacteria such as Pseudomonas aeruginosa evolved mechanisms to adapt and prevail under diverse conditions. In the current investigation, strains of P. aeruginosa demonstrating high rates of crude oil utilization and tolerance to high concentrations of heavy metals were found in both crude oil-contaminated and uncontaminated sites in Kuwait, and were dominant in the contaminated sites. The incidence of P. aeruginosa in tested soils implies the definitive pattern of crude oil contamination in the selection of the bacterial population in petroleum-contaminated sites in Kuwait. Surprisingly, the unculturable P. aeruginosa in different soil samples showed significant high similarity coefficients based on 16S-RFLP analyses, implying that the unculturable fraction of existing bacterial population in environmental samples is more stable and, hence, reliable for phylogenetic studies compared to the culturable bacteria.

  15. Osmoregulation in Pseudomonas aeruginosa under hyperosmotic shock.

    PubMed

    Velasco, R; Burgoa, R; Flores, E; Hernández, E; Villa, A; Vaca, S

    1995-01-01

    Pseudomonas aeruginosa PAO1 strain was found to be able to tolerate 700 mM NaCl. 0.5 mM of the osmoprotectant betaine restablished the growth of this strain in 1200 mM NaCl. Intracellular K+ and glutamate concentrations of P. aeruginosa PAO1 after an hyperosmotic shock (400 mM NaCl) showed a permanent increase. Adition of betaine (0.5 mM) to the medium with NaCl had an inhibitory effect on the intracellular accumulation of glutamate. The results indicate that P. aeruginosa PAO1 resists high NaCl concentrations, K+ accumulation and glutamate synthesis probably being the first mechanisms involved in adaptation to osmotic stress. Also is is demonstrated that betaine modulates intracellular glutamate levels in osmotically stressed P. aeruginosa PAO1.

  16. Degradation of Microcystin-LR and RR by a Stenotrophomonas sp. Strain EMS Isolated from Lake Taihu, China

    PubMed Central

    Chen, Jian; Hu, Liang Bin; Zhou, Wei; Yan, Shao Hua; Yang, Jing Dong; Xue, Yan Feng; Shi, Zhi Qi

    2010-01-01

    A bacterial strain EMS with the capability of degrading microcystins (MCs) was isolated from Lake Taihu, China. The bacterium was tentatively identified as a Stenotrophomonas sp. The bacterium could completely consume MC-LR and MC-RR within 24 hours at a concentration of 0.7 μg/mL and 1.7 μg/mL, respectively. The degradation of MC-LR and MC-RR by EMS occurred preferentially in an alkaline environment. In addition, mlrA gene involved in the degradation of MC-LR and MC-RR was detected in EMS. Due to the limited literature this gene has rare homologues. Sequencing analysis of the translated protein from mlrA suggested that MlrA might be a transmembrane protein, which suggests a possible new protease family having unique function. PMID:20479990

  17. Biosurfactant production by the crude oil degrading Stenotrophomonas sp. B-2: chemical characterization, biological activities and environmental applications.

    PubMed

    Gargouri, Boutheina; Contreras, María Del Mar; Ammar, Sonda; Segura-Carretero, Antonio; Bouaziz, Mohamed

    2016-11-26

    In this work, biosurfactant-producing microorganisms were isolated from hydrocarbon-contaminated water collected from Tunisian oilfield. After enrichment and isolation, different bacterial strains were preliminary studied for their biosurfactant/bioemulsifier properties when using crude oil as the unique carbon source. In particular, the isolate strain B-2, a Gram-negative, rod-shaped bacterium, efficiently emulsified crude oil. The extracellular biosurfactant product from this strain presented an emulsification activity above 70% and a hydrophobicity of 71%. In addition, a diameter of 6 cm was observed in the oil displacement test. The characterization of B-2 strain using 16S rDNA sequencing enables us to find a high degree of similarity with various members of the genus Stenotrophomonas (with a percentage of similarity of 99%). The emulsification activity of Stenotrophomonas biosurfactant B-2 was maintained in a wide range of pH (2 to 6), temperature (4 to 55 °C), and salinity (0 to 50 g L(-1)) conditions. It also enhanced the solubility of phenanthrene in water and could be used in the re-mobilization of hydrocarbon-contaminated environment. In addition, this biosurfactant exhibited antimicrobial and antioxidant properties. Infrared spectroscopy suggested potential lipidic and peptidic moieties, and mass spectrometry-based analyses showed that the biosurfactant contains mainly cyclic peptidic structures belonging to the class of diketopiperazines. Therefore, the B-2 strain is a promising biosurfactant-producing microorganism and its derived biosurfactant presents a wide range of industrial applications.

  18. Developing an international Pseudomonas aeruginosa reference panel.

    PubMed

    De Soyza, Anthony; Hall, Amanda J; Mahenthiralingam, Eshwar; Drevinek, Pavel; Kaca, Wieslaw; Drulis-Kawa, Zuzanna; Stoitsova, Stoyanka R; Toth, Veronika; Coenye, Tom; Zlosnik, James E A; Burns, Jane L; Sá-Correia, Isabel; De Vos, Daniel; Pirnay, Jean-Paul; Kidd, Timothy J; Reid, David; Manos, Jim; Klockgether, Jens; Wiehlmann, Lutz; Tümmler, Burkhard; McClean, Siobhán; Winstanley, Craig

    2013-12-01

    Pseudomonas aeruginosa is a major opportunistic pathogen in cystic fibrosis (CF) patients and causes a wide range of infections among other susceptible populations. Its inherent resistance to many antimicrobials also makes it difficult to treat infections with this pathogen. Recent evidence has highlighted the diversity of this species, yet despite this, the majority of studies on virulence and pathogenesis focus on a small number of strains. There is a pressing need for a P. aeruginosa reference panel to harmonize and coordinate the collective efforts of the P. aeruginosa research community. We have collated a panel of 43 P. aeruginosa strains that reflects the organism's diversity. In addition to the commonly studied clones, this panel includes transmissible strains, sequential CF isolates, strains with specific virulence characteristics, and strains that represent serotype, genotype or geographic diversity. This focussed panel of P. aeruginosa isolates will help accelerate and consolidate the discovery of virulence determinants, improve our understanding of the pathogenesis of infections caused by this pathogen, and provide the community with a valuable resource for the testing of novel therapeutic agents.

  19. Pseudomonas aeruginosa Dose-Response and Bathing Water Infection

    EPA Science Inventory

    Pseudomonas aeruginosa is the most commonly identified opportunistic pathogen associated with pool acquired bather disease. To better understand why this microorganism poses this protracted problem we recently appraised P. aeruginosa pool risk management. Much is known about the ...

  20. Potential of biosynthesized silver nanoparticles using Stenotrophomonas sp. BHU-S7 (MTCC 5978) for management of soil-borne and foliar phytopathogens

    PubMed Central

    Mishra, Sandhya; Singh, Braj Raj; Naqvi, Alim H.; Singh, H. B.

    2017-01-01

    Stenotrophomonas sp. is emerging as a popular microbe of global concern with various potential ecological roles. Biosynthesis of gold and silver nanoparticles (AgNPs) using this bacterial strain has shown promising applications in life sciences. However, there is no report on efficient agricultural applications of biosynthesized AgNPs using Stenotrophomonas sp. In this regard, successful biosynthesis of AgNPs using Stenotrophomonas sp. BHU-S7 (MTCC 5978) was monitored by Uv-visible spectrum showing surface plasmon resonance (SPR) peak at 440 nm. The biosynthesized AgNPs were spherical with an average mean size of ~12 nm. The antifungal efficacy of biosynthesized AgNPs against foliar and soil-borne phytopathogens was observed. The inhibitory impact of AgNPs (2, 4, 10 μg/ml) on conidial germination was recorded under in vitro conditions. Interestingly, sclerotia of Sclerotium rolfsii exposed to AgNPs failed to germinate on PDA medium and in soil system. Moreover, AgNPs treatment successfully managed collar rot of chickpea caused by S. rolfsii under greenhouse conditions. The reduced sclerotia germination, phenolic acids induction, altered lignification and H2O2 production was observed to be the probable mechanisms providing protection to chickpea against S. rolfsii. Our data revealed that AgNPs treated plants are better equipped to cope with pathogen challenge pointing towards their robust applications in plant disease management. PMID:28345581

  1. Iron-stimulated toxin production in Microcystis aeruginosa.

    PubMed Central

    Utkilen, H; Gjølme, N

    1995-01-01

    Nitrate- and phosphate-limited conditions had no effect on toxin production by Microcystis aeruginosa. In contrast, iron-limited conditions influenced toxin production by M. aeruginosa, and iron uptake was light dependent. A model for production of toxin by M. aeruginosa is proposed. PMID:7574617

  2. Risk assessment of Pseudomonas aeruginosa in water.

    PubMed

    Mena, Kristina D; Gerba, Charles P

    2009-01-01

    P. aeruginosa is part of a large group of free-living bacteria that are ubiquitous in the environment. This organism is often found in natural waters such as lakes and rivers in concentrations of 10/100 mL to >1,000/100 mL. However, it is not often found in drinking water. Usually it is found in 2% of samples, or less, and at concentrations up to 2,300 mL(-1) (Allen and Geldreich 1975) or more often at 3-4 CFU/mL. Its occurrence in drinking water is probably related more to its ability to colonize biofilms in plumbing fixtures (i.e., faucets, showerheads, etc.) than its presence in the distribution system or treated drinking water. P. aeruginosa can survive in deionized or distilled water (van der Jooij et al. 1982; Warburton et al. 1994). Hence, it may be found in low nutrient or oligotrophic environments, as well as in high nutrient environments such as in sewage and in the human body. P. aeruginosa can cause a wide range of infections, and is a leading cause of illness in immunocompromised individuals. In particular, it can be a serious pathogen in hospitals (Dembry et al. 1998). It can cause endocarditis, osteomyelitis, pneumonia, urinary tract infections, gastrointestinal infections, and meningitis, and is a leading cause of septicemia. P. aeruginosa is also a major cause of folliculitis and ear infections acquired by exposure to recreational waters containing the bacterium. In addition, it has been recognized as a serious cause of keratitis, especially in patients wearing contact lenses. P. aeruginosa is also a major pathogen in burn and cystic fibrosis (CF) patients and causes a high mortality rate in both populations (MOlina et al. 1991; Pollack 1995). P. aeruginosa is frequently found in whirlpools and hot tubs, sometimes in 94-100% of those tested at concenrations of <1 to 2,400 CFU/mL. The high concentrations found probably result from the relatively high temperatures of whirlpools, which favor the growth of P. aeruginosa, and the aeration which also

  3. Nontuberculous Mycobacteria, Fungi, and Opportunistic Pathogens in Unchlorinated Drinking Water in the Netherlands

    PubMed Central

    van der Kooij, Dick

    2013-01-01

    The multiplication of opportunistic pathogens in drinking water supplies might pose a threat to public health. In this study, distributed unchlorinated drinking water from eight treatment plants in the Netherlands was sampled and analyzed for fungi, nontuberculous mycobacteria (NTM), and several opportunistic pathogens by using selective quantitative PCR methods. Fungi and NTM were detected in all drinking water samples, whereas Legionella pneumophila, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Aspergillus fumigatus were sporadically observed. Mycobacterium avium complex and Acanthamoeba spp. were not detected. Season had no influence on the occurrence of these organisms, except for NTM and S. maltophilia, which were present in higher numbers in the summer. Opportunistic pathogens were more often observed in premise plumbing water samples than in samples from the distribution system. The lowest number of these organisms was observed in the finished water at the plant. Thus, fungi, NTM, and some of the studied opportunistic pathogens can multiply in the distribution and premise plumbing systems. Assimilable organic carbon (AOC) and/or total organic carbon (TOC) had no clear effects on fungal and NTM numbers or on P. aeruginosa- and S. maltophilia-positive samples. However, L. pneumophila was detected more often in water with AOC concentrations above 10 μg C liter−1 than in water with AOC levels below 5 μg C liter−1. Finally, samples that contained L. pneumophila, P. aeruginosa, or S. maltophilia were more frequently positive for a second opportunistic pathogen, which shows that certain drinking water types and/or sampling locations promote the growth of multiple opportunistic pathogens. PMID:23160134

  4. Nontuberculous mycobacteria, fungi, and opportunistic pathogens in unchlorinated drinking water in The Netherlands.

    PubMed

    van der Wielen, Paul W J J; van der Kooij, Dick

    2013-02-01

    The multiplication of opportunistic pathogens in drinking water supplies might pose a threat to public health. In this study, distributed unchlorinated drinking water from eight treatment plants in the Netherlands was sampled and analyzed for fungi, nontuberculous mycobacteria (NTM), and several opportunistic pathogens by using selective quantitative PCR methods. Fungi and NTM were detected in all drinking water samples, whereas Legionella pneumophila, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Aspergillus fumigatus were sporadically observed. Mycobacterium avium complex and Acanthamoeba spp. were not detected. Season had no influence on the occurrence of these organisms, except for NTM and S. maltophilia, which were present in higher numbers in the summer. Opportunistic pathogens were more often observed in premise plumbing water samples than in samples from the distribution system. The lowest number of these organisms was observed in the finished water at the plant. Thus, fungi, NTM, and some of the studied opportunistic pathogens can multiply in the distribution and premise plumbing systems. Assimilable organic carbon (AOC) and/or total organic carbon (TOC) had no clear effects on fungal and NTM numbers or on P. aeruginosa- and S. maltophilia-positive samples. However, L. pneumophila was detected more often in water with AOC concentrations above 10 μg C liter(-1) than in water with AOC levels below 5 μg C liter(-1). Finally, samples that contained L. pneumophila, P. aeruginosa, or S. maltophilia were more frequently positive for a second opportunistic pathogen, which shows that certain drinking water types and/or sampling locations promote the growth of multiple opportunistic pathogens.

  5. Optimization of medium components and physicochemical parameters to simultaneously enhance microbial growth and production of lypolitic enzymes by Stenotrophomonas sp.

    PubMed

    Mazzucotelli, Cintia Anabela; Agüero, María Victoria; Del Rosario Moreira, María; Ansorena, María Roberta

    2016-05-01

    The optimization of lipase and esterase production (LP and EP) and bacterial growth (BG) of a Stenotrophomonas sp. strain was developed. For this purpose, the effect of five different medium components and three physicochemical parameters were evaluated using a Plackett-Burman statistical design. Among eight variables, stirring speed, pH, and peptone concentration were found to be the most effective factors on the three responses under evaluation. An optimization study applying Box-Behnken response surface methodology was used to study the interactive effects of the three selected variables on LP/EP and microorganism growth. Predicted models were found to be significant with high regression coefficients (90%-99%). By using the desirability function approach, the optimum condition applying simultaneous optimization of the three responses under study resulted to be: stirring speed of 100 rpm, pH of 7.5, and a peptone concentration of 10 g/L, with a desirability value of 0.977. Under these optimal conditions, it is possible to achieve in the optimized medium a 15-fold increase in esterase productivity, a 117-fold increase in lipase production, and a 9-log CFU/mL increase in BG, compared with the basal medium without agitation.

  6. Pseudomonas Aeruginosa: Resistance to the Max

    PubMed Central

    Poole, Keith

    2011-01-01

    Pseudomonas aeruginosa is intrinsically resistant to a variety of antimicrobials and can develop resistance during anti-pseudomonal chemotherapy both of which compromise treatment of infections caused by this organism. Resistance to multiple classes of antimicrobials (multidrug resistance) in particular is increasingly common in P. aeruginosa, with a number of reports of pan-resistant isolates treatable with a single agent, colistin. Acquired resistance in this organism is multifactorial and attributable to chromosomal mutations and the acquisition of resistance genes via horizontal gene transfer. Mutational changes impacting resistance include upregulation of multidrug efflux systems to promote antimicrobial expulsion, derepression of ampC, AmpC alterations that expand the enzyme's substrate specificity (i.e., extended-spectrum AmpC), alterations to outer membrane permeability to limit antimicrobial entry and alterations to antimicrobial targets. Acquired mechanisms contributing to resistance in P. aeruginosa include β-lactamases, notably the extended-spectrum β-lactamases and the carbapenemases that hydrolyze most β-lactams, aminoglycoside-modifying enzymes, and 16S rRNA methylases that provide high-level pan-aminoglycoside resistance. The organism's propensity to grow in vivo as antimicrobial-tolerant biofilms and the occurrence of hypermutator strains that yield antimicrobial resistant mutants at higher frequency also compromise anti-pseudomonal chemotherapy. With limited therapeutic options and increasing resistance will the untreatable P. aeruginosa infection soon be upon us? PMID:21747788

  7. Spaceflight Effects on Virulence of Pseudomonas Aeruginosa

    NASA Astrophysics Data System (ADS)

    Broadway, S.; Goins, T.; Crandell, C.; Richards, C.; Patel, M.; Pyle, B.

    2008-06-01

    Pseudomonas aeruginosa is an opportunistic pathogen found in the environment. It is known to infect the immunocompromised. The organism has about 25 virulence genes that play different roles in disease processes. Several exotoxin proteins may be produced, including ExoA, ExoS, ExoT and ExoY, and other virulence factors. In spaceflight, possible increased expression of P. aeruginosa virulence proteins could increase health risks for spaceflight crews who experience decreased immunity. Cultures of P. aeruginosa strains PA01 and PA103 grown on orbit on Shuttle Endeavour flight STS-123 vs. static ground controls were used for analysis. The production of ETA was quantitated using an ELISA procedure. Results showed that while flight cultures of PA103 produced slightly more ETA than corresponding ground controls, the opposite was found for PA01. While it appears that spaceflight has little effect on ETA, stimulation of other virulence factors could cause increased virulence of this organism in space flight. Similar increased virulence in spaceflight has been observed for other bacteria. This is important because astronauts may be more susceptible to opportunistic pathogens including P. aeruginosa.

  8. Effect of bacteria on survival and growth of Acanthamoeba castellanii.

    PubMed

    Wang, X; Ahearn, D G

    1997-04-01

    The growth and survival of Acanthamoeba castellanii in the presence of Gram-negative bacteria such as Pseudomonas aeruginosa, Escherichia coli, Serratia marcescens, and Stenotrophomonas maltophilia varied with the densities and species of bacteria. All species of bacteria suspended in a buffered saline at densities of 10(5) to 10(6)/ml supported the growth and survival of 10(6)/ml trophozoites of Acanthamoeba castellanii in a buffered saline solution. At densities of bacteria to amoebae of 100:1 or greater, growth and survival of A. castellanii were suppressed, particularly by P. aeruginosa. In an enrichment medium, the rapid growth of most co-inoculated bacteria inhibited the growth and survival of the amoeba.

  9. Pseudomonas aeruginosa ventilator-associated pneumonia management.

    PubMed

    Ramírez-Estrada, Sergio; Borgatta, Bárbara; Rello, Jordi

    2016-01-01

    Ventilator-associated pneumonia is the most common infection in intensive care unit patients associated with high morbidity rates and elevated economic costs; Pseudomonas aeruginosa is one of the most frequent bacteria linked with this entity, with a high attributable mortality despite adequate treatment that is increased in the presence of multiresistant strains, a situation that is becoming more common in intensive care units. In this manuscript, we review the current management of ventilator-associated pneumonia due to P. aeruginosa, the most recent antipseudomonal agents, and new adjunctive therapies that are shifting the way we treat these infections. We support early initiation of broad-spectrum antipseudomonal antibiotics in present, followed by culture-guided monotherapy de-escalation when susceptibilities are available. Future management should be directed at blocking virulence; the role of alternative strategies such as new antibiotics, nebulized treatments, and vaccines is promising.

  10. Pseudomonas aeruginosa ventilator-associated pneumonia management

    PubMed Central

    Ramírez-Estrada, Sergio; Borgatta, Bárbara; Rello, Jordi

    2016-01-01

    Ventilator-associated pneumonia is the most common infection in intensive care unit patients associated with high morbidity rates and elevated economic costs; Pseudomonas aeruginosa is one of the most frequent bacteria linked with this entity, with a high attributable mortality despite adequate treatment that is increased in the presence of multiresistant strains, a situation that is becoming more common in intensive care units. In this manuscript, we review the current management of ventilator-associated pneumonia due to P. aeruginosa, the most recent antipseudomonal agents, and new adjunctive therapies that are shifting the way we treat these infections. We support early initiation of broad-spectrum antipseudomonal antibiotics in present, followed by culture-guided monotherapy de-escalation when susceptibilities are available. Future management should be directed at blocking virulence; the role of alternative strategies such as new antibiotics, nebulized treatments, and vaccines is promising. PMID:26855594

  11. Isolation and characterization of alkane degrading bacteria from petroleum reservoir waste water in Iran (Kerman and Tehran provenances).

    PubMed

    Hassanshahian, Mehdi; Ahmadinejad, Mohammad; Tebyanian, Hamid; Kariminik, Ashraf

    2013-08-15

    Petroleum products spill and leakage have become two major environmental challenges in Iran. Sampling was performed in the petroleum reservoir waste water of Tehran and Kerman Provinces of Iran. Alkane degrading bacteria were isolated by enrichment in a Bushnel-Hass medium, with hexadecane as sole source of carbon and energy. The isolated strains were identified by amplification of 16S rDNA gene and sequencing. Specific primers were used for identification of alkane hydroxylase gene. Fifteen alkane degrading bacteria were isolated and 8 strains were selected as powerful degradative bacteria. These 8 strains relate to Rhodococcus jostii, Stenotrophomonas maltophilia, Achromobacter piechaudii, Tsukamurella tyrosinosolvens, Pseudomonas fluorescens, Rhodococcus erythropolis, Stenotrophomonas maltophilia, Pseudomonas aeruginosa genera. The optimum concentration of hexadecane that allowed high growth was 2.5%. Gas chromatography results show that all strains can degrade approximately half of hexadecane in one week of incubation. All of the strains have alkane hydroxylase gene which are important for biodegradation. As a result, this study indicates that there is a high diversity of degradative bacteria in petroleum reservoir waste water in Iran.

  12. Cryptic transposable phages of Pseudomonas aeruginosa

    SciTech Connect

    Krylov, V.N.; Mit`kina, L.N.; Pleteneva, E.A.; Aleshin, V.V.

    1995-11-01

    Frequencies of nucleotide sequences homologous to phage transposons (PT) of two species, D3112 and B3, were assessed in genomes of natural Pseudomonas aeruginosa strains by the dot-blot hybridization method. These strains were incapable of liberating viable phages on a lawn of the PA01 standard indicator strain of P. aeruginosa. It was shown that the homologies detected belong to two groups, high and intermediate, with respect to homology level. Homology patterns were classified as high when they provided signals comparable to those for hybridization in a positive control; patterns were classified as intermediate when the hybridization level was higher than the background level, but lower than in the positive control. Homologous PT sequences were designated as cryptic PT. Intact cryptic PT prophages were shown to exist in genomes of particular natural strains manifesting a higher level of hybridization. However, the growth of these phages was limited by the restriction system of strain PA01. It is possible to isolate strains maintaining the growth of some cryptic PT. These strains differed from P. aeruginosa with respect to the specificity of the restriction and modification system. Nevertheless, in most cases, the attempt to identify a novel host capable of maintaining growth of a cryptic PT failed. Natural strains often carry cryptic PT related to both known PT species, D3112 and B3. The frequency of cryptic PT is extremely high, reaching 30% in strains with a high level of homology only and up to 50% in all strains exhibiting homology. This high PT frequency is assumed to be associated with the considerable variation of P. aeruginosa. 15 refs., 1 fig., 2 tabs.

  13. Pseudomonas aeruginosa essentials: an update on investigation of essential genes.

    PubMed

    Juhas, Mario

    2015-11-01

    Pseudomonas aeruginosa is the leading cause of nosocomial infections, particularly in immunocompromised, cancer, burn and cystic fibrosis patients. Development of novel antimicrobials against P. aeruginosa is therefore of the highest importance. Although the first reports on P. aeruginosa essential genes date back to the early 2000s, a number of more sensitive genomic approaches have been used recently to better define essential genes in this organism. These analyses highlight the evolution of the definition of an 'essential' gene from the traditional to the context-dependent. Essential genes, particularly those indispensable under the clinically relevant conditions, are considered to be promising targets of novel antibiotics against P. aeruginosa. This review provides an update on the investigation of P. aeruginosa essential genes. Special focus is on recently identified P. aeruginosa essential genes and their exploitation for the development of antimicrobials.

  14. Glycerol metabolism promotes biofilm formation by Pseudomonas aeruginosa.

    PubMed

    Scoffield, Jessica; Silo-Suh, Laura

    2016-08-01

    Pseudomonas aeruginosa causes persistent infections in the airways of cystic fibrosis (CF) patients. Airway sputum contains various host-derived nutrients that can be utilized by P. aeruginosa, including phosphotidylcholine, a major component of host cell membranes. Phosphotidylcholine can be degraded by P. aeruginosa to glycerol and fatty acids to increase the availability of glycerol in the CF lung. In this study, we explored the role that glycerol metabolism plays in biofilm formation by P. aeruginosa. We report that glycerol metabolism promotes biofilm formation by both a chronic CF isolate (FRD1) and a wound isolate (PAO1) of P. aeruginosa. Moreover, loss of the GlpR regulator, which represses the expression of genes involved in glycerol metabolism, enhances biofilm formation in FRD1 through the upregulation of Pel polysaccharide. Taken together, our results suggest that glycerol metabolism may be a key factor that contributes to P. aeruginosa persistence by promoting biofilm formation.

  15. Autophagy enhances bacterial clearance during P. aeruginosa lung infection.

    PubMed

    Junkins, Robert D; Shen, Ann; Rosen, Kirill; McCormick, Craig; Lin, Tong-Jun

    2013-01-01

    Pseudomonas aeruginosa is an opportunistic bacterial pathogen which is the leading cause of morbidity and mortality among cystic fibrosis patients. Although P. aeruginosa is primarily considered an extacellular pathogen, recent reports have demonstrated that throughout the course of infection the bacterium acquires the ability to enter and reside within host cells. Normally intracellular pathogens are cleared through a process called autophagy which sequesters and degrades portions of the cytosol, including invading bacteria. However the role of autophagy in host defense against P. aeruginosa in vivo remains unknown. Understanding the role of autophagy during P. aeruginosa infection is of particular importance as mutations leading to cystic fibrosis have recently been shown to cause a blockade in the autophagy pathway, which could increase susceptibility to infection. Here we demonstrate that P. aeruginosa induces autophagy in mast cells, which have been recognized as sentinels in the host defense against bacterial infection. We further demonstrate that inhibition of autophagy through pharmacological means or protein knockdown inhibits clearance of intracellular P. aeruginosa in vitro, while pharmacologic induction of autophagy significantly increased bacterial clearance. Finally we find that pharmacological manipulation of autophagy in vivo effectively regulates bacterial clearance of P. aeruginosa from the lung. Together our results demonstrate that autophagy is required for an effective immune response against P. aeruginosa infection in vivo, and suggest that pharmacological interventions targeting the autophagy pathway could have considerable therapeutic potential in the treatment of P. aeruginosa lung infection.

  16. Mechanism of resistance to benzalkonium chloride by Pseudomonas aeruginosa.

    PubMed

    Sakagami, Y; Yokoyama, H; Nishimura, H; Ose, Y; Tashima, T

    1989-08-01

    The mechanisms of resistance of Pseudomonas aeruginosa to benzalkonium chloride (BC) were studied. The effluence of cell components was observed in susceptible P. aeruginosa by electron microscopy, but resistant P. aeruginosa seemed to be undamaged. No marked changes in cell surface potential between Escherichia coli NIHJC-2 and a spheroplast strain were found. The contents of phospholipids (PL) and fatty and neutral lipids (FNL) in the cell walls of resistant P. aeruginosa were higher than those in the cell walls of susceptible P. aeruginosa. The amounts of BC adsorbed to PL and FNL of cell walls of BC-resistant P. aeruginosa were lower than those for BC-susceptible P. aeruginosa. Fifteen species of cellular fatty acids were identified by capillary gas chromatography and gas chromatography-mass spectrometry. The ability of BC to permeate the cell wall was reduced because of the increase in cellular fatty acids. These results suggested that the resistance of P. aeruginosa to BC is mainly a result of increased in the contents of PL and FNL. In resistant P. aeruginosa, the decrease in the amount of BC adsorbed is likely to be the result of increases in the contents of PL and FNL.

  17. Mechanism of resistance to benzalkonium chloride by Pseudomonas aeruginosa.

    PubMed Central

    Sakagami, Y; Yokoyama, H; Nishimura, H; Ose, Y; Tashima, T

    1989-01-01

    The mechanisms of resistance of Pseudomonas aeruginosa to benzalkonium chloride (BC) were studied. The effluence of cell components was observed in susceptible P. aeruginosa by electron microscopy, but resistant P. aeruginosa seemed to be undamaged. No marked changes in cell surface potential between Escherichia coli NIHJC-2 and a spheroplast strain were found. The contents of phospholipids (PL) and fatty and neutral lipids (FNL) in the cell walls of resistant P. aeruginosa were higher than those in the cell walls of susceptible P. aeruginosa. The amounts of BC adsorbed to PL and FNL of cell walls of BC-resistant P. aeruginosa were lower than those for BC-susceptible P. aeruginosa. Fifteen species of cellular fatty acids were identified by capillary gas chromatography and gas chromatography-mass spectrometry. The ability of BC to permeate the cell wall was reduced because of the increase in cellular fatty acids. These results suggested that the resistance of P. aeruginosa to BC is mainly a result of increased in the contents of PL and FNL. In resistant P. aeruginosa, the decrease in the amount of BC adsorbed is likely to be the result of increases in the contents of PL and FNL. Images PMID:2506813

  18. Detection of Bacillus and Stenotrophomonas species growing in an organic acid and endocrine-disrupting chemical-rich environment of distillery spent wash and its phytotoxicity.

    PubMed

    Chandra, Ram; Kumar, Vineet

    2017-01-01

    Sugarcane molasses-based distillery spent wash (DSW) is well known for its toxicity and complex mixture of various recalcitrant organic pollutants with acidic pH, but the chemical nature of these pollutants is unknown. This study revealed the presence of toxic organic acids (butanedioic acid bis(TMS)ester; 2-hydroxysocaproic acid; benzenepropanoic acid, α-[(TMS)oxy], TMS ester; vanillylpropionic acid, bis(TMS)), and other recalcitrant organic pollutants (2-furancarboxylic acid, 5-[[(TMS)oxy] methyl], TMS ester; benzoic acid 3-methoxy-4-[(TMS)oxy], TMS ester; and tricarballylic acid 3TMS), which are listed as endocrine-disrupting chemicals. In addition, several major heavy metals were detected, including Fe (163.947), Mn (4.556), Zn (2.487), and Ni (1.175 mg l(-1)). Bacterial community analysis by restriction fragment length polymorphism revealed that Bacillus and Stenotrophomonas were dominant autochthonous bacterial communities belonging to the phylum Firmicutes and γ-Proteobacteria, respectively. The presence of Bacillus and Stenotrophomonas species in highly acidic environments indicated its broad range adaptation. These findings indicated that these autochthonous bacterial communities were pioneer taxa for in situ remediation of this hazardous waste during ecological succession. Further, phytotoxicity assay of DSW with Phaseolus mungo L. and Triticum aestivum revealed that T. aestivum was more sensitive than P. mungo L. in the seed germination test. The results of this study may be useful for monitoring and toxicity assessment of sugarcane molasses-based distillery waste at disposal sites.

  19. Social cheating in Pseudomonas aeruginosa quorum sensing.

    PubMed

    Sandoz, Kelsi M; Mitzimberg, Shelby M; Schuster, Martin

    2007-10-02

    In a process termed quorum sensing, bacteria use diffusible chemical signals to coordinate cell density-dependent gene expression. In the human pathogen Pseudomonas aeruginosa, quorum sensing controls hundreds of genes, many of which encode extracellular virulence factors. Quorum sensing is required for P. aeruginosa virulence in animal models. Curiously, quorum sensing-deficient variants, most of which carry a mutation in the gene encoding the central quorum sensing regulator lasR, are frequently isolated from acute and chronic infections. The mechanism for their emergence is not known. Here we provide experimental evidence suggesting that these lasR mutants are social cheaters that cease production of quorum-controlled factors and take advantage of their production by the group. We detected an emerging subpopulation of lasR mutants after approximately 100 generations of in vitro evolution of the P. aeruginosa wild-type strain under culture conditions that require quorum sensing for growth. Under such conditions, quorum sensing appears to impose a metabolic burden on the proliferating bacterial cell, because quorum-controlled genes not normally induced until cessation of growth were highly expressed early in growth, and a defined lasR mutant showed a growth advantage when cocultured with the parent strain. The emergence of quorum-sensing-deficient variants in certain environments is therefore an indicator of high quorum sensing activity of the bacterial population as a whole. It does not necessarily indicate that quorum sensing is insignificant, as has previously been suggested. Thus, novel antivirulence strategies aimed at disrupting bacterial communication may be particularly effective in such clinical settings.

  20. First report of NDM-1-producing Pseudomonas aeruginosa in Egypt.

    PubMed

    Zafer, Mai Mahmoud; Amin, Mady; El Mahallawy, Hadir; Ashour, Mohammed Seif El-Din; Al Agamy, Mohamed

    2014-12-01

    This work reports the occurrence of New Delhi metallo-beta-lactamase 1 (NDM-1) in metallo-beta-lactamase-producing Pseudomonas aeruginosa in Egypt for the first time, and the presence of more than one blaMBL gene in carbapenem-resistant P. aeruginosa.

  1. Oxidation of 1-Tetradecene by Pseudomonas aeruginosa

    PubMed Central

    Markovetz, A. J.; Klug, M. J.; Forney, F. W.

    1967-01-01

    Pseudomonas aeruginosa strain Sol 20 was grown on 1-tetradecene as sole carbon source, and a vinyl-unsaturated 14-carbon monocarboxylic acid, 13-tetradecenoic acid, was identified from culture fluid. This acid was not produced when n-tetradecane served as substrate for growth. Oxidation of the methyl group represents one method of attack on the 1-alkene by this organism. Tentative identification of 2-tetradecanol indicates that an attack on the double bond is also occurring. α, ω-Dienes would not support growth. PMID:4962057

  2. Molecular epidemiology of Pseudomonas aeruginosa in an intensive care unit.

    PubMed Central

    Döring, G.; Hörz, M.; Ortelt, J.; Grupp, H.; Wolz, C.

    1993-01-01

    Genotyping was used to analyse Pseudomonas aeruginosa isolates from sink drains and 15 intubated patients as part of a 3-month prospective study of strain transmission in a medical-surgical intensive care unit. Ninety percent of all washbasin drains were persistently contaminated with several P. aeruginosa genotypes. In 60% (9/15) of the patients, P. aeruginosa colonization or infection was hospital-acquired: P. aeruginosa strains isolated from these patients were present in hospital sinks or in other patients before their admission. Since all patients were immobile, personnel were the probable route of transmission of P. aeruginosa in the hospital. The mechanism of strain transmission from sinks to hands during hand washing was investigated in a children's hospital. When P. aeruginosa was present at densities of > 10(5)/c.f.u. per ml in sink drains, hand washing resulted in hand contamination with P. aeruginosa via aerosol generation in the majority of experiments or P. aeruginosa was detected using an air sampler above the washing basin. High P. aeruginosa cfu were present at 4.30 h in the eight sinks (5.4 x 10(5)-7.0 x 10(10) c.f.u./ml), whereas at 13.00 h P. aeruginosa c.f.u. were significantly lower (3.1 x 10(2)-8.0 x 10(5) c.f.u./ml). These data reveal that the danger of bacterial contamination of hands during hand washing is highest in the morning. The identified transmission routes demand more effective hygienic measures in hospital settings particularly concerning personnel hands and sink drains. Images Fig. 1 PMID:8519308

  3. Imported PER-1 producing Pseudomonas aeruginosa, PER-1 producing Acinetobacter baumanii and VIM-2-producing Pseudomonas aeruginosa strains in Hungary

    PubMed Central

    Szabó, Dora; Szentandrássy, Julia; Juhász, Zsuzsa; Katona, Katalin; Nagy, Károly; Rókusz, László

    2008-01-01

    Introduction Pseudomonas aeruginosa and Acinetobacter baumanii are important nosocomial pathogens with wide intrinsic resistance. However, due to the dissemination of the acquired resistance mechanisms, such as extended-spectrum beta-lactamase (ESBL) and metallo beta-lactamase (MBL) production, multidrug resistant strains have been isolated more often. Case presentation We report a case of a Hungarian tourist, who was initially hospitalized in Egypt and later transferred to Hungary. On the day of admission PER-1-producing P. aeruginosa, PER-1 producing A. baumannii, SHV-5-producing Klebsiella pneumoniae and VIM-2-producing P. aeruginosa isolates were subcultured from the patient's samples in Hungary. Comparing the pulsed-field gel electrophoresis (PFGE) patterns of the P. aeruginosa strains from the patient to the P. aeruginosa strains occurring in this hospital, we can state that the PER-1-producing P. aeruginosa and VIM-2-producing P. aeruginosa had external origin. Conclusion This is the first report of PER-1-producing P. aeruginosa,and PER-1-producing A. baumanii strains in Hungary. This case highlights the importance of spreading of the beta-lactamase-mediated resistance mechanisms between countries and continents, showing the importance of careful screening and the isolation of patients arriving from a different country. PMID:18513394

  4. Biotransformation of myrcene by Pseudomonas aeruginosa

    PubMed Central

    2011-01-01

    Background Dihydrolinalool and terpineol are sources of fragrances that provide a unique volatile terpenoid alcohol of low toxicity and thus are widely used in the perfumery industry, in folk medicine, and in aromatherapy. They are important chemical constituents of the essential oil of many plants. Previous studies have concerned the biotransformation of limonene by Pseudomonas putida. The objective of this research was to study biotransformation of myrcene by Pseudomonas aeruginosa. The culture preparation was done using such variables as different microbial methods and incubation periods to obtain maximum cells of P. aeruginosa for myrcene biotransformation. Results It was found that myrcene was converted to dihydrolinalool and 2,6-dimethyloctane in high percentages. The biotransformation products were identified by Fourier-transform infrared spectroscopy (FT-IR), ultraviolet (UV) analysis, gas chromatography (GC), and gas chromatography-mass spectroscopy (GC-MS). Comparison of the different incubation times showed that 3 days was more effective, the major products being 2,6-dimethyloctane (90.0%) and α-terpineol (7.7%) and comprising 97.7%. In contrast, the main compounds derived for an incubation time of 1.5 days were dihydrolinalool (79.5%) and 2,6-dimethyloctane (9.3%), with a total yield of 88.8%. PMID:21609445

  5. Purification of extracellular lipase from Pseudomonas aeruginosa.

    PubMed Central

    Stuer, W; Jaeger, K E; Winkler, U K

    1986-01-01

    Lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) was excreted by Pseudomonas aeruginosa PAC1R during the late logarithmic growth phase. Characterization of cell-free culture supernatants by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of significant amounts of lipopolysaccharide, part of which seemed to be tightly bound to lipase. After concentration of culture supernatants by ultrafiltration, lipase-lipopolysaccharide complexes were dissociated by treatment with EDTA-Tris buffer and subsequent sonication in the presence of the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. The solubilized lipase was purified by isoelectric focusing in an agarose gel containing the same detergent; the lipase activity appeared in a single peak corresponding to a distinct band in the silver-stained gel. The isoelectric point was 5.8. Analysis of purified lipase by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and scanning revealed an apparent molecular weight of 29,000 and a specific activity of 760 mu kat/mg of protein. Estimations based on these data showed that a single P. aeruginosa cell excreted about 200 molecules of lipase, each having a molecular activity of 2.2 X 10(4) per s. Images PMID:3096967

  6. Subinhibitory bismuth-thiols reduce virulence of Pseudomonas aeruginosa.

    PubMed

    Wu, Chieh-Liang; Domenico, Philip; Hassett, Daniel J; Beveridge, Terry J; Hauser, Alan R; Kazzaz, Jeffrey A

    2002-06-01

    Pseudomonas aeruginosa is a common pathogen in mechanically ventilated patients and produces a wide array of virulence factors. Bismuth-thiols (BTs) are active in vitro against all bacterial lung pathogens, including P. aeruginosa. The objective of these studies was to examine the biochemical and morphologic effects of sublethal BT concentrations on P. aeruginosa and to evaluate virulence in cell culture. Bismuth-dimercaprol, at a fraction of the minimal inhibitory concentration, reduced alginate expression by 67% in P. aeruginosa, whereas subinhibitory bismuth-ethanedithiol (BisEDT) reduced alginate by 92% in P. syringae. BisEDT effects on lipopolysaccharide content and type III secreted cytoxins were examined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Subinhibitory BisEDT reduced cell-associated lipopolysaccharide, and inhibited processing of the secreted cytotoxic protein ExoU. BisEDT-induced outer membrane blebbing and aggregation of cytoplasmic material was noted in electron microscopy. Virulence of P. aeruginosa was assessed by adherence to epithelial cells and sensitivity to serum killing. BisEDT inhibited adherence of P. aeruginosa to 16HBE14o- cells by 28% and to a collagen matrix by 53%. BisEDT-treated bacteria were also 100-fold more sensitive to serum bactericidal activity. In summary, low BT concentrations affect P. aeruginosa in a variety of ways, the combination of which may help prevent or resolve respiratory tract infection.

  7. Dynorphin Activates Quorum Sensing Quinolone Signaling in Pseudomonas aeruginosa

    PubMed Central

    Zaborina, Olga; Lepine, Francois; Xiao, Gaoping; Valuckaite, Vesta; Chen, Yimei; Li, Terry; Ciancio, Mae; Zaborin, Alex; Petroff, Elaine; Turner, Jerrold R; Rahme, Laurence G; Chang, Eugene; Alverdy, John C

    2007-01-01

    There is now substantial evidence that compounds released during host stress directly activate the virulence of certain opportunistic pathogens. Here, we considered that endogenous opioids might function as such compounds, given that they are among the first signals to be released at multiple tissue sites during host stress. We tested the ability of various opioid compounds to enhance the virulence of Pseudomonas aeruginosa using pyocyanin production as a biological readout, and demonstrated enhanced virulence when P. aeruginosa was exposed to synthetic (U-50,488) and endogenous (dynorphin) κ-agonists. Using various mutants and reporter strains of P. aeruginosa, we identified involvement of key elements of the quorum sensing circuitry such as the global transcriptional regulator MvfR and the quorum sensing-related quinolone signaling molecules PQS, HHQ, and HQNO that respond to κ-opioids. The in vivo significance of κ-opioid signaling of P. aeruginosa was demonstrated in mice by showing that dynorphin is released from the intestinal mucosa following ischemia/reperfusion injury, activates quinolone signaling in P. aeruginosa, and enhances the virulence of P. aeruginosa against Lactobacillus spp. and Caenorhabditis elegans. Taken together, these data demonstrate that P. aeruginosa can intercept opioid compounds released during host stress and integrate them into core elements of quorum sensing circuitry leading to enhanced virulence. PMID:17367209

  8. Otopathogenic Pseudomonas aeruginosa Enters and Survives Inside Macrophages

    PubMed Central

    Mittal, Rahul; Lisi, Christopher V.; Kumari, Hansi; Grati, M’hamed; Blackwelder, Patricia; Yan, Denise; Jain, Chaitanya; Mathee, Kalai; Weckwerth, Paulo H.; Liu, Xue Z.

    2016-01-01

    Otitis media (OM) is a broad term describing a group of infectious and inflammatory disorders of the middle ear. Despite antibiotic therapy, acute OM can progress to chronic suppurative otitis media (CSOM) characterized by ear drum perforation and purulent discharge. Pseudomonas aeruginosa is the most common pathogen associated with CSOM. Although, macrophages play an important role in innate immune responses but their role in the pathogenesis of P. aeruginosa-induced CSOM is not known. The objective of this study is to examine the interaction of P. aeruginosa with primary macrophages. We observed that P. aeruginosa enters and multiplies inside human and mouse primary macrophages. This bacterial entry in macrophages requires both microtubule and actin dependent processes. Transmission electron microscopy demonstrated that P. aeruginosa was present in membrane bound vesicles inside macrophages. Interestingly, deletion of oprF expression in P. aeruginosa abrogates its ability to survive inside macrophages. Our results suggest that otopathogenic P. aeruginosa entry and survival inside macrophages is OprF-dependent. The survival of bacteria inside macrophages will lead to evasion of killing and this lack of pathogen clearance by phagocytes contributes to the persistence of infection in CSOM. Understanding host–pathogen interaction will provide novel avenues to design effective treatment modalities against OM. PMID:27917157

  9. Interactions between Neutrophils and Pseudomonas aeruginosa in Cystic Fibrosis

    PubMed Central

    Rada, Balázs

    2017-01-01

    Cystic fibrosis (CF) affects 70,000 patients worldwide. Morbidity and mortality in CF is largely caused by lung complications due to the triad of impaired mucociliary clearance, microbial infections and chronic inflammation. Cystic fibrosis airway inflammation is mediated by robust infiltration of polymorphonuclear neutrophil granulocytes (PMNs, neutrophils). Neutrophils are not capable of clearing lung infections and contribute to tissue damage by releasing their dangerous cargo. Pseudomonas aeruginosa is an opportunistic pathogen causing infections in immunocompromised individuals. P. aeruginosa is a main respiratory pathogen in CF infecting most patients. Although PMNs are key to attack and clear P. aeruginosa in immunocompetent individuals, PMNs fail to do so in CF. Understanding why neutrophils cannot clear P. aeruginosa in CF is essential to design novel therapies. This review provides an overview of the antimicrobial mechanisms by which PMNs attack and eliminate P. aeruginosa. It also summarizes current advances in our understanding of why PMNs are incapable of clearing P. aeruginosa and how this bacterium adapts to and resists PMN-mediated killing in the airways of CF patients chronically infected with P. aeruginosa. PMID:28282951

  10. Mast cells protect against Pseudomonas aeruginosa-induced lung injury.

    PubMed

    Junkins, Robert D; Carrigan, Svetlana O; Wu, Zhengli; Stadnyk, Andrew W; Cowley, Elizabeth; Issekutz, Thomas; Berman, Jason; Lin, Tong-Jun

    2014-08-01

    Pseudomonas aeruginosa, an opportunistic pathogen, is the leading cause of morbidity and mortality in immune-compromised individuals. Maintaining the integrity of the respiratory epithelium is critical for an effective host response to P. aeruginosa. Given the close spatial relationship between mast cells and the respiratory epithelium, and the importance of tightly regulated epithelial permeability during lung infections, we examined whether mast cells influence airway epithelial integrity during P. aeruginosa lung infection in a mouse model. We found that mast cell-deficient Kit(W-sh)/Kit(W-sh) mice displayed greatly increased epithelial permeability, bacterial dissemination, and neutrophil accumulation compared with wild-type animals after P. aeruginosa infection; these defects were corrected on reconstitution with mast cells. An in vitro Transwell co-culture model further demonstrated that a secreted mast cell factor decreased epithelial cell apoptosis and tumor necrosis factor production after P. aeruginosa infection. Together, our data demonstrate a previously unrecognized role for mast cells in the maintenance of epithelial integrity during P. aeruginosa infection, through a mechanism that likely involves prevention of epithelial apoptosis and tumor necrosis factor production. Our understanding of mechanisms of the host response to P. aeruginosa will open new avenues for the development of successful preventative and treatment strategies.

  11. Environmental Pseudomonads Inhibit Cystic Fibrosis Patient-Derived Pseudomonas aeruginosa.

    PubMed

    Chatterjee, Payel; Davis, Elizabeth; Yu, Fengan; James, Sarah; Wildschutte, Julia H; Wiegmann, Daniel D; Sherman, David H; McKay, Robert M; LiPuma, John J; Wildschutte, Hans

    2017-01-15

    Pseudomonas aeruginosa is an opportunistic pathogen which is evolving resistance to many currently used antibiotics. While much research has been devoted to the roles of pathogenic P. aeruginosa in cystic fibrosis (CF) patients, less is known of its ecological properties. P. aeruginosa dominates the lungs during chronic infection in CF patients, yet its abundance in some environments is less than that of other diverse groups of pseudomonads. Here, we sought to determine if clinical isolates of P. aeruginosa are vulnerable to environmental pseudomonads that dominate soil and water habitats in one-to-one competitions which may provide a source of inhibitory factors. We isolated a total of 330 pseudomonads from diverse habitats of soil and freshwater ecosystems and competed these strains against one another to determine their capacity for antagonistic activity. Over 900 individual inhibitory events were observed. Extending the analysis to P. aeruginosa isolates revealed that clinical isolates, including ones with increased alginate production, were susceptible to competition by multiple environmental strains. We performed transposon mutagenesis on one isolate and identified an ∼14.8-kb locus involved in antagonistic activity. Only two other environmental isolates were observed to carry the locus, suggesting the presence of additional unique compounds or interactions among other isolates involved in outcompeting P. aeruginosa This collection of strains represents a source of compounds that are active against multiple pathogenic strains. With the evolution of resistance of P. aeruginosa to currently used antibiotics, these environmental strains provide opportunities for novel compound discovery against drug-resistant clinical strains.

  12. Comparison of UVB and UVC irradiation disinfection efficacies on Pseudomonas Aeruginosa (P. aeruginosa) biofilm

    NASA Astrophysics Data System (ADS)

    Argyraki, A.; Markvart, M.; Nielsen, Anne; Bjarnsholt, T.; Bjørndal, L.; Petersen, P. M.

    2016-04-01

    Disinfection routines are important in all clinical applications. The uprising problem of antibiotic resistance has driven major research efforts towards alternative disinfection approaches, involving light-based solutions. Pseudomonas aeruginosa (P. aeruginosa) is a common bacterium that can cause skin, soft tissue, lungs, kidney and urinary tract infections. Moreover, it can be found on and in medical equipment causing often cross infections in hospitals. The objective of this study was to test the efficiency, of two different light-based disinfection treatments, namely UVB and UVC irradiation, on P. aeruginosa biofilms at different growth stages. In our experiments a new type of UV light emitting diodes (LEDs) were used to deliver UV irradiation on the biofilms, in the UVB (296nm) and UVC (266nm) region. The killing rate was studied as a function of dose for 24h grown biofilms. The dose was ramped from 72J/m2 to 10000J/m2. It was shown that UVB irradiation was more effective than UVC irradiation in inactivating P. aeruginosa biofilms. No colony forming units (CFU) were observed for the UVB treated biofilms when the dose was 10000 J/m2 (CFU in control sample: 7.5 x 104). UVB irradiation at a dose of 20000J/m2 on mature biofilms (72h grown) resulted in a 3.9 log killing efficacy. The fact that the wavelength of 296nm exists in daylight and has such disinfection ability on biofilms gives new perspectives for applications within disinfection at hospitals.

  13. Thermal mitigation of Pseudomonas aeruginosa biofilms

    PubMed Central

    O’Toole, Ann; Ricker, Erica B.; Nuxoll, Eric

    2015-01-01

    Bacterial biofilms infect 2 – 4 % of medical devices upon implantation, resulting in multiple surgeries and increased recovery time due to the very great increase in antibiotic resistance in the biofilm phenotype. This work investigates the feasibility of thermal mitigation of biofilms at physiologically accessible temperatures. Pseudomonas aeruginosa biofilms were cultured to high bacterial density (1.7 × 109 CFU cm−2) and subjected to thermal shocks ranging from 50 °C to 80 °C for durations of 1 to 30 min. The decrease in viable bacteria was closely correlated with an Arrhenius temperature dependence and Weibull-style time dependence, demonstrating up to six orders of magnitude reduction in bacterial load. The bacterial load for films with more conventional initial bacterial densities dropped below quantifiable levels, indicating thermal mitigation as a viable approach to biofilm control. PMID:26371591

  14. Microbial contamination of suction tubes attached to suction instruments and preventive methods.

    PubMed

    Yorioka, Katsuhiro; Oie, Shigeharu; Kamiya, Akira

    2010-03-01

    We investigated the microbial contamination of suction tubes attached to wall-type suction instruments. Microbial contamination of suction tubes used for endoscopy or sputum suction in hospital wards was examined before and after their disinfection. In addition, disinfection and washing methods for suction tubes were evaluated. Suction tubes (n=33) before disinfection were contaminated with 10(2)-10(8) colony-forming units (cfu)/tube. The main contaminants were Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia. The suction tubes were disinfected with sodium hypochlorite (n=11) or hot water (n=11), or by an automatic tube cleaner (n=11). After 2-h immersion in 0.1% (1,000 ppm) sodium hypochlorite, 10(3)-10(7) cfu/tube of bacteria were detected in all 11 tubes examined. After washing in hot running water (65 degrees C), 10(3)-10(7) cfu/tube were detected in 3 of the 11 examined tubes. The bacteria detected in the suction tubes after disinfection with sodium hypochlorite or hot water were P. aeruginosa, A. baumannii, and S. maltophilia. On the other hand, after washing with warm water (40 degrees C) using the automatic tube cleaner, contamination was found to be <20 cfu/tube (lower detection limit, 20 cfu/tube) in all 11 tubes examined. These results suggest the usefulness of washing with automatic tube cleaners.

  15. The Regulatory Network of Pseudomonas aeruginosa

    PubMed Central

    2011-01-01

    Background Pseudomonas aeruginosa is an important bacterial model due to its metabolic and pathogenic abilities, which allow it to interact and colonize a wide range of hosts, including plants and animals. In this work we compile and analyze the structure and organization of an experimentally supported regulatory network in this bacterium. Results The regulatory network consists of 690 genes and 1020 regulatory interactions between their products (12% of total genes: 54% sigma and 16% of transcription factors). This complex interplay makes the third largest regulatory network of those reported in bacteria. The entire network is enriched for activating interactions and, peculiarly, self-activation seems to occur more prominent for transcription factors (TFs), which contrasts with other biological networks where self-repression is dominant. The network contains a giant component of 650 genes organized into 11 hierarchies, encompassing important biological processes, such as, biofilms formation, production of exopolysaccharide alginate and several virulence factors, and of the so-called quorum sensing regulons. Conclusions The study of gene regulation in P. aeruginosa is biased towards pathogenesis and virulence processes, all of which are interconnected. The network shows power-law distribution -input degree -, and we identified the top ten global regulators, six two-element cycles, the longest paths have ten steps, six biological modules and the main motifs containing three and four elements. We think this work can provide insights for the design of further studies to cover the many gaps in knowledge of this important bacterial model, and for the design of systems strategies to combat this bacterium. PMID:22587778

  16. Ambroxol interferes with Pseudomonas aeruginosa quorum sensing.

    PubMed

    Lu, Qi; Yu, Jialin; Yang, Xiqiang; Wang, Jiarong; Wang, Lijia; Lin, Yayin; Lin, Lihua

    2010-09-01

    The mucolytic agent ambroxol has been reported to interfere with the formation of Pseudomonas aeruginosa-derived biofilms in addition to reducing alginate production by undefined mechanisms. Since quorum sensing is a key regulator of virulence and biofilm formation, we examined the effects of ambroxol on P. aeruginosa PAO1 wild-type bacterial clearance rates, adhesion profiles and biofilm formation compared with the quorum sensing-deficient, double-mutant strains DeltalasR DeltarhlR and DeltalasI DeltarhlI. Data presented in this report demonstrated that ambroxol treatment reduced survival rates of the double-mutant strains compared with the wild-type strain in a dose-dependent manner even though the double-mutants had increased adhesion in the presence of ambroxol compared with the wild-type strain. The PAO1 wild-type strain produced a significantly thicker biofilm (21.64+/-0.57 microm) compared with the biofilms produced by the DeltalasR DeltarhlR (7.36+/-0.2 microm) and DeltalasI DeltarhlI (6.62+/-0.31 microm) isolates. Ambroxol treatment reduced biofilm thickness, increased areal porosity, and decreased the average diffusion distance and textual entropy of wild-type and double-mutant strains. However, compared with the double-mutant strains, the changes observed for the wild-type strain were more clearly defined. Finally, ambroxol exhibited significant antagonistic quorum-sensing properties, suggesting that it could be adapted for use clinically in the treatment of cystic fibrosis and to reduce biofilm formation and in the colonisation of indwelling devices.

  17. Isolation of oxidase-negative Pseudomonas aeruginosa from sputum culture.

    PubMed

    Hampton, K D; Wasilauskas, B L

    1979-05-01

    Two isolates of Pseudomonas aeruginosa lacking characteristic indophenol oxidase were recovered from a sputum specimen. A discussion of the characteristic biochemical tests and antibiograms along with a possible explanation for this phenomenon is presented.

  18. Electrochemically monitoring the antibiotic susceptibility of Pseudomonas aeruginosa biofilms.

    PubMed

    Webster, Thaddaeus A; Sismaet, Hunter J; Chan, I-ping J; Goluch, Edgar D

    2015-11-07

    The condition of cells in Pseudomonas aeruginosa biofilms was monitored via the electrochemical detection of the electro-active virulence factor pyocyanin in a fabricated microfluidic growth chamber coupled with a disposable three electrode cell. Cells were exposed to 4, 16, and 100 mg L(-1) colistin sulfate after overnight growth. At the end of testing, the measured maximum peak current (and therefore pyocyanin concentration) was reduced by approximately 68% and 82% in P. aeruginosa exposed to 16 and 100 mg L(-1) colistin sulfate, respectively. Samples were removed from the microfluidic chamber, analyzed for viability using staining, and streaked onto culture plates to confirm that the P. aeruginosa cells were affected by the antibiotics. The correlation between electrical signal drop and the viability of P. aeruginosa cells after antibiotic exposure highlights the usefulness of this approach for future low cost antibiotic screening applications.

  19. Acquisition and Role of Molybdate in Pseudomonas aeruginosa

    PubMed Central

    Pederick, Victoria G.; Eijkelkamp, Bart A.; Ween, Miranda P.; Begg, Stephanie L.; Paton, James C.

    2014-01-01

    In microaerophilic or anaerobic environments, Pseudomonas aeruginosa utilizes nitrate reduction for energy production, a process dependent on the availability of the oxyanionic form of molybdenum, molybdate (MoO42−). Here, we show that molybdate acquisition in P. aeruginosa occurs via a high-affinity ATP-binding cassette permease (ModABC). ModA is a cluster D-III solute binding protein capable of interacting with molybdate or tungstate oxyanions. Deletion of the modA gene reduces cellular molybdate concentrations and results in inhibition of anaerobic growth and nitrate reduction. Further, we show that conditions that permit nitrate reduction also cause inhibition of biofilm formation and an alteration in fatty acid composition of P. aeruginosa. Collectively, these data highlight the importance of molybdate for anaerobic growth of P. aeruginosa and reveal novel consequences of nitrate reduction on biofilm formation and cell membrane composition. PMID:25172858

  20. Oxylipins produced by Pseudomonas aeruginosa promote biofilm formation and virulence

    PubMed Central

    Martínez, Eriel; Campos-Gómez, Javier

    2016-01-01

    The oxygenation of unsaturated fatty acids by dioxygenases occurs in all kingdoms of life and produces physiologically important lipids called oxylipins. The biological roles of oxylipins have been extensively studied in animals, plants, algae and fungi, but remain largely unidentified in prokaryotes. The bacterium Pseudomonas aeruginosa displays a diol synthase activity that transforms several monounsaturated fatty acids into mono- and di-hydroxylated derivatives. Here we show that oxylipins derived from this activity inhibit flagellum-driven motility and upregulate type IV pilus-dependent twitching motility of P. aeruginosa. Consequently, these oxylipins promote bacterial organization in microcolonies, increasing the ability of P. aeruginosa to form biofilms in vitro and in vivo (in Drosophila flies). We also demonstrate that oxylipins produced by P. aeruginosa promote virulence in Drosophila flies and lettuce. Our study thus uncovers a role for prokaryotic oxylipins in the physiology and pathogenicity of bacteria. PMID:27929111

  1. Acquisition and role of molybdate in Pseudomonas aeruginosa.

    PubMed

    Pederick, Victoria G; Eijkelkamp, Bart A; Ween, Miranda P; Begg, Stephanie L; Paton, James C; McDevitt, Christopher A

    2014-11-01

    In microaerophilic or anaerobic environments, Pseudomonas aeruginosa utilizes nitrate reduction for energy production, a process dependent on the availability of the oxyanionic form of molybdenum, molybdate (MoO4 (2-)). Here, we show that molybdate acquisition in P. aeruginosa occurs via a high-affinity ATP-binding cassette permease (ModABC). ModA is a cluster D-III solute binding protein capable of interacting with molybdate or tungstate oxyanions. Deletion of the modA gene reduces cellular molybdate concentrations and results in inhibition of anaerobic growth and nitrate reduction. Further, we show that conditions that permit nitrate reduction also cause inhibition of biofilm formation and an alteration in fatty acid composition of P. aeruginosa. Collectively, these data highlight the importance of molybdate for anaerobic growth of P. aeruginosa and reveal novel consequences of nitrate reduction on biofilm formation and cell membrane composition.

  2. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa.

    PubMed

    Lovewell, Rustin R; Patankar, Yash R; Berwin, Brent

    2014-04-01

    Pseudomonas aeruginosa is an opportunistic bacterial pathogen responsible for a high incidence of acute and chronic pulmonary infection. These infections are particularly prevalent in patients with chronic obstructive pulmonary disease and cystic fibrosis: much of the morbidity and pathophysiology associated with these diseases is due to a hypersusceptibility to bacterial infection. Innate immunity, primarily through inflammatory cytokine production, cellular recruitment, and phagocytic clearance by neutrophils and macrophages, is the key to endogenous control of P. aeruginosa infection. In this review, we highlight recent advances toward understanding the innate immune response to P. aeruginosa, with a focus on the role of phagocytes in control of P. aeruginosa infection. Specifically, we summarize the cellular and molecular mechanisms of phagocytic recognition and uptake of P. aeruginosa, and how current animal models of P. aeruginosa infection reflect clinical observations in the context of phagocytic clearance of the bacteria. Several notable phenotypic changes to the bacteria are consistently observed during chronic pulmonary infections, including changes to mucoidy and flagellar motility, that likely enable or reflect their ability to persist. These traits are likewise examined in the context of how the bacteria avoid phagocytic clearance, inflammation, and sterilizing immunity.

  3. Tracking the immunopathological response to Pseudomonas aeruginosa during respiratory infections

    PubMed Central

    Cigana, Cristina; Lorè, Nicola Ivan; Riva, Camilla; De Fino, Ida; Spagnuolo, Lorenza; Sipione, Barbara; Rossi, Giacomo; Nonis, Alessandro; Cabrini, Giulio; Bragonzi, Alessandra

    2016-01-01

    Repeated cycles of infections, caused mainly by Pseudomonas aeruginosa, combined with a robust host immune response and tissue injury, determine the course and outcome of cystic fibrosis (CF) lung disease. As the disease progresses, P. aeruginosa adapts to the host modifying dramatically its phenotype; however, it remains unclear whether and how bacterial adaptive variants and their persistence influence the pathogenesis and disease development. Using in vitro and murine models of infection, we showed that P. aeruginosa CF-adaptive variants shaped the innate immune response favoring their persistence. Next, we refined a murine model of chronic pneumonia extending P. aeruginosa infection up to three months. In this model, including CFTR-deficient mice, we unveil that the P. aeruginosa persistence lead to CF hallmarks of airway remodelling and fibrosis, including epithelial hyperplasia and structure degeneration, goblet cell metaplasia, collagen deposition, elastin degradation and several additional markers of tissue damage. This murine model of P. aeruginosa chronic infection, reproducing CF lung pathology, will be instrumental to identify novel molecular targets and test newly tailored molecules inhibiting chronic inflammation and tissue damage processes in pre-clinical studies. PMID:26883959

  4. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa

    PubMed Central

    Lovewell, Rustin R.; Patankar, Yash R.

    2014-01-01

    Pseudomonas aeruginosa is an opportunistic bacterial pathogen responsible for a high incidence of acute and chronic pulmonary infection. These infections are particularly prevalent in patients with chronic obstructive pulmonary disease and cystic fibrosis: much of the morbidity and pathophysiology associated with these diseases is due to a hypersusceptibility to bacterial infection. Innate immunity, primarily through inflammatory cytokine production, cellular recruitment, and phagocytic clearance by neutrophils and macrophages, is the key to endogenous control of P. aeruginosa infection. In this review, we highlight recent advances toward understanding the innate immune response to P. aeruginosa, with a focus on the role of phagocytes in control of P. aeruginosa infection. Specifically, we summarize the cellular and molecular mechanisms of phagocytic recognition and uptake of P. aeruginosa, and how current animal models of P. aeruginosa infection reflect clinical observations in the context of phagocytic clearance of the bacteria. Several notable phenotypic changes to the bacteria are consistently observed during chronic pulmonary infections, including changes to mucoidy and flagellar motility, that likely enable or reflect their ability to persist. These traits are likewise examined in the context of how the bacteria avoid phagocytic clearance, inflammation, and sterilizing immunity. PMID:24464809

  5. Resistance to pefloxacin in Pseudomonas aeruginosa.

    PubMed Central

    Michea-Hamzehpour, M; Lucain, C; Pechere, J C

    1991-01-01

    Mechanisms of resistance to pefloxacin were investigated in four isogenic Pseudomonas aeruginosa strains: S (parent isolate; MIC, 2 micrograms/ml), PT1 and PT2 (posttherapy isolates obtained in animals; MICs, 32 and 128 micrograms/ml, respectively), and PT2-r (posttherapy isolate obtained after six in vitro subpassages of PT2; MIC, 32 micrograms/ml). [2-3H]adenine incorporation (indirect evidence of DNA gyrase activity) in EDTA-permeabilized cells was less affected by pefloxacin in PT2 and PT2-r (50% inhibitory concentration, 0.27 and 0.26 microgram/ml, respectively) than it was in S and PT1 (50% inhibitory concentration, 0.04 and 0.05 microgram/ml, respectively). Reduced [14C]pefloxacin labeling of intact cells in strains PT1 and PT2 correlated with more susceptibility to EDTA and the presence of more calcium (P less than 0.05) and phosphorus in the outer membrane fractions. Outer membrane protein analysis showed reduced expression of protein D2 (47 kDa) in strains PT1 and PT2. Other proteins were apparently similar in all strains. The addition of calcium chloride (2 mM) to the sodium dodecyl sulfate-solubilized samples of outer membrane proteins, before heating and Western blotting, probed with monoclonal antibody anti-OmpF showed electrophoretic mobility changes of OmpF in strains PT1 and PT2 which were not seen in strain S. Calcium-induced changes were reversed with ethyleneglycoltetraacetate. Decreased [14C]pefloxacin labeling was further correlated with an altered lipopolysaccharide pattern and increased 3-deoxy-D-mannooctulosonic acid concentration (P less than 0.01). These findings suggested that resistance to pefloxacin is associated with altered DNA gyrase in strain PT2-r, with altered permeability in PT1, and with both mechanisms in PT2. The decreased expression of protein D2 and the higher calcium and lipopolysaccharide contents of the outer membrane could be responsible for the permeability deficiency in P. aeruginosa. Images PMID:1645509

  6. Environmental Pseudomonads Inhibit Cystic Fibrosis Patient-Derived Pseudomonas aeruginosa

    PubMed Central

    Chatterjee, Payel; Davis, Elizabeth; Yu, Fengan; James, Sarah; Wildschutte, Julia H.; Wiegmann, Daniel D.; Sherman, David H.; McKay, Robert M.; LiPuma, John J.

    2016-01-01

    ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen which is evolving resistance to many currently used antibiotics. While much research has been devoted to the roles of pathogenic P. aeruginosa in cystic fibrosis (CF) patients, less is known of its ecological properties. P. aeruginosa dominates the lungs during chronic infection in CF patients, yet its abundance in some environments is less than that of other diverse groups of pseudomonads. Here, we sought to determine if clinical isolates of P. aeruginosa are vulnerable to environmental pseudomonads that dominate soil and water habitats in one-to-one competitions which may provide a source of inhibitory factors. We isolated a total of 330 pseudomonads from diverse habitats of soil and freshwater ecosystems and competed these strains against one another to determine their capacity for antagonistic activity. Over 900 individual inhibitory events were observed. Extending the analysis to P. aeruginosa isolates revealed that clinical isolates, including ones with increased alginate production, were susceptible to competition by multiple environmental strains. We performed transposon mutagenesis on one isolate and identified an ∼14.8-kb locus involved in antagonistic activity. Only two other environmental isolates were observed to carry the locus, suggesting the presence of additional unique compounds or interactions among other isolates involved in outcompeting P. aeruginosa. This collection of strains represents a source of compounds that are active against multiple pathogenic strains. With the evolution of resistance of P. aeruginosa to currently used antibiotics, these environmental strains provide opportunities for novel compound discovery against drug-resistant clinical strains. IMPORTANCE We demonstrate that clinical CF-derived isolates of P. aeruginosa are susceptible to competition in the presence of environmental pseudomonads. We observed that many diverse environmental strains exhibited varied

  7. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence

    PubMed Central

    Moradali, M. Fata; Ghods, Shirin; Rehm, Bernd H. A.

    2017-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen affecting immunocompromised patients. It is known as the leading cause of morbidity and mortality in cystic fibrosis (CF) patients and as one of the leading causes of nosocomial infections. Due to a range of mechanisms for adaptation, survival and resistance to multiple classes of antibiotics, infections by P. aeruginosa strains can be life-threatening and it is emerging worldwide as public health threat. This review highlights the diversity of mechanisms by which P. aeruginosa promotes its survival and persistence in various environments and particularly at different stages of pathogenesis. We will review the importance and complexity of regulatory networks and genotypic-phenotypic variations known as adaptive radiation by which P. aeruginosa adjusts physiological processes for adaptation and survival in response to environmental cues and stresses. Accordingly, we will review the central regulatory role of quorum sensing and signaling systems by nucleotide-based second messengers resulting in different lifestyles of P. aeruginosa. Furthermore, various regulatory proteins will be discussed which form a plethora of controlling systems acting at transcriptional level for timely expression of genes enabling rapid responses to external stimuli and unfavorable conditions. Antibiotic resistance is a natural trait for P. aeruginosa and multiple mechanisms underlying different forms of antibiotic resistance will be discussed here. The importance of each mechanism in conferring resistance to various antipseudomonal antibiotics and their prevalence in clinical strains will be described. The underlying principles for acquiring resistance leading pan-drug resistant strains will be summarized. A future outlook emphasizes the need for collaborative international multidisciplinary efforts to translate current knowledge into strategies to prevent and treat P. aeruginosa infections while reducing the rate of antibiotic resistance

  8. Why Does the Healthy Cornea Resist Pseudomonas aeruginosa Infection?

    PubMed Central

    Evans, David J.; Fleiszig, Suzanne M. J.

    2013-01-01

    Purpose To provide our perspective on why the cornea is resistant to infection based on our research results with Pseudomonas aeruginosa. Perspective We focus on our current understanding of the interplay between bacteria, tear fluid and the corneal epithelium that determine health as the usual outcome, and propose a theoretical model for how contact lens wear might change those interactions to enable susceptibility to P. aeruginosa infection. Methods Use of “null-infection” in vivo models, cultured human corneal epithelial cells, contact lens-wearing animal models, and bacterial genetics help to elucidate mechanisms by which P. aeruginosa survive at the ocular surface, adheres, and traverses multilayered corneal epithelia. These models also help elucidate the molecular mechanisms of corneal epithelial innate defense. Results and Discussion Tear fluid and the corneal epithelium combine to make a formidable defense against P. aeruginosa infection of the cornea. Part of that defense involves the expression of antimicrobials such as β-defensins, the cathelicidin LL-37, cytokeratin-derived antimicrobial peptides, and RNase7. Immunomodulators such as SP-D and ST2 also contribute. Innate defenses of the cornea depend in part on MyD88, a key adaptor protein of TLR and IL-1R signaling, but the basal lamina represents the final barrier to bacterial penetration. Overcoming these defenses involves P. aeruginosa adaptation, expression of the type three secretion system, proteases, and P. aeruginosa biofilm formation on contact lenses. Conclusion After more than two decades of research focused on understanding how contact lens wear predisposes to P. aeruginosa infection, our working hypothesis places blame for microbial keratitis on bacterial adaptation to ocular surface defenses, combined with changes to the biochemistry of the corneal surface caused by trapping bacteria and tear fluid against the cornea under the lens. PMID:23601656

  9. Evaluation of flagella and flagellin of Pseudomonas aeruginosa as vaccines.

    PubMed

    Campodónico, Victoria L; Llosa, Nicolás J; Grout, Martha; Döring, Gerd; Maira-Litrán, Tomás; Pier, Gerald B

    2010-02-01

    Pseudomonas aeruginosa is a serious pathogen in hospitalized, immunocompromised, and cystic fibrosis (CF) patients. P. aeruginosa is motile via a single polar flagellum made of polymerized flagellin proteins differentiated into two major serotypes: a and b. Antibodies to flagella delay onset of infection in CF patients, but whether immunity to polymeric flagella and that to monomeric flagellin are comparable has not been addressed, nor has the question of whether such antibodies might negatively impact Toll-like receptor 5 (TLR5) activation, an important component of innate immunity to P. aeruginosa. We compared immunization with flagella and that with flagellin for in vitro effects on motility, opsonic killing, and protective efficacy using a mouse pneumonia model. Antibodies to flagella were superior to antibodies to flagellin at inhibiting motility, promoting opsonic killing, and mediating protection against P. aeruginosa pneumonia in mice. Protection against the flagellar type strains PAK and PA01 was maximal, but it was only marginal against motile clinical isolates from flagellum-immunized CF patients who nonetheless became colonized with P. aeruginosa. Purified flagellin was a more potent activator of TLR5 than were flagella and also elicited higher TLR5-neutralizing antibodies than did immunization with flagella. Antibody to type a but not type b flagella or flagellin inhibited TLR5 activation by whole bacterial cells. Overall, intact flagella appear to be superior for generating immunity to P. aeruginosa, and flagellin monomers might induce antibodies capable of neutralizing innate immunity due to TLR5 activation, but solid immunity to P. aeruginosa based on flagellar antigens may require additional components beyond type a and type b proteins from prototype strains.

  10. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence.

    PubMed

    Moradali, M Fata; Ghods, Shirin; Rehm, Bernd H A

    2017-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen affecting immunocompromised patients. It is known as the leading cause of morbidity and mortality in cystic fibrosis (CF) patients and as one of the leading causes of nosocomial infections. Due to a range of mechanisms for adaptation, survival and resistance to multiple classes of antibiotics, infections by P. aeruginosa strains can be life-threatening and it is emerging worldwide as public health threat. This review highlights the diversity of mechanisms by which P. aeruginosa promotes its survival and persistence in various environments and particularly at different stages of pathogenesis. We will review the importance and complexity of regulatory networks and genotypic-phenotypic variations known as adaptive radiation by which P. aeruginosa adjusts physiological processes for adaptation and survival in response to environmental cues and stresses. Accordingly, we will review the central regulatory role of quorum sensing and signaling systems by nucleotide-based second messengers resulting in different lifestyles of P. aeruginosa. Furthermore, various regulatory proteins will be discussed which form a plethora of controlling systems acting at transcriptional level for timely expression of genes enabling rapid responses to external stimuli and unfavorable conditions. Antibiotic resistance is a natural trait for P. aeruginosa and multiple mechanisms underlying different forms of antibiotic resistance will be discussed here. The importance of each mechanism in conferring resistance to various antipseudomonal antibiotics and their prevalence in clinical strains will be described. The underlying principles for acquiring resistance leading pan-drug resistant strains will be summarized. A future outlook emphasizes the need for collaborative international multidisciplinary efforts to translate current knowledge into strategies to prevent and treat P. aeruginosa infections while reducing the rate of antibiotic resistance

  11. Secretion of phospholipase C by Pseudomonas aeruginosa.

    PubMed Central

    Stinson, M W; Hayden, C

    1979-01-01

    The conditions necessary for the secretion of phospholipase C (phosphatidylcholine cholinephosphohydrolase) by Pseudomonas aeruginosa were studied. Enzyme secretion by washed cell suspensions required a carbon source and ammonium, potassium, and calcium ions. The calcium requirement could be substituted by magnesium and strontium but not by copper, manganese, cobalt, or zinc. During growth in liquid medium, cells secreted phospholipase C during late logarithmic and early stationary phases. Secretion was repressed by the addition of inorganic phosphate but not by organic phosphates, glucose, or sodium succinate. Studies with tetracycline indicated that de novo protein synthesis was necessary for the secretion of phospholipase C and that the exoenzyme was not released from a preformed periplasmic pool. Similarly, extraction of actively secreting cells with 0.2 M MgCl2 at pH 8.4 solubilized large quantities of the periplasmic enzyme alkaline phosphatase but insignificant amounts of phospholipase C. Bacteria continued to secrete enzyme for nearly 45 min after the addition of inorganic phosphate or rifampin. Images PMID:114487

  12. Comprehensive transposon mutant library of Pseudomonas aeruginosa

    PubMed Central

    Jacobs, Michael A.; Alwood, Ashley; Thaipisuttikul, Iyarit; Spencer, David; Haugen, Eric; Ernst, Stephen; Will, Oliver; Kaul, Rajinder; Raymond, Christopher; Levy, Ruth; Chun-Rong, Liu; Guenthner, Donald; Bovee, Donald; Olson, Maynard V.; Manoil, Colin

    2003-01-01

    We have developed technologies for creating saturating libraries of sequence-defined transposon insertion mutants in which each strain is maintained. Phenotypic analysis of such libraries should provide a virtually complete identification of nonessential genes required for any process for which a suitable screen can be devised. The approach was applied to Pseudomonas aeruginosa, an opportunistic pathogen with a 6.3-Mbp genome. The library that was generated consists of 30,100 sequence-defined mutants, corresponding to an average of five insertions per gene. About 12% of the predicted genes of this organism lacked insertions; many of these genes are likely to be essential for growth on rich media. Based on statistical analyses and bioinformatic comparison to known essential genes in E. coli, we estimate that the actual number of essential genes is 300-400. Screening the collection for strains defective in two defined multigenic processes (twitching motility and prototrophic growth) identified mutants corresponding to nearly all genes expected from earlier studies. Thus, phenotypic analysis of the collection may produce essentially complete lists of genes required for diverse biological activities. The transposons used to generate the mutant collection have added features that should facilitate downstream studies of gene expression, protein localization, epistasis, and chromosome engineering. PMID:14617778

  13. Comprehensive transposon mutant library of Pseudomonas aeruginosa.

    PubMed

    Jacobs, Michael A; Alwood, Ashley; Thaipisuttikul, Iyarit; Spencer, David; Haugen, Eric; Ernst, Stephen; Will, Oliver; Kaul, Rajinder; Raymond, Christopher; Levy, Ruth; Chun-Rong, Liu; Guenthner, Donald; Bovee, Donald; Olson, Maynard V; Manoil, Colin

    2003-11-25

    We have developed technologies for creating saturating libraries of sequence-defined transposon insertion mutants in which each strain is maintained. Phenotypic analysis of such libraries should provide a virtually complete identification of nonessential genes required for any process for which a suitable screen can be devised. The approach was applied to Pseudomonas aeruginosa, an opportunistic pathogen with a 6.3-Mbp genome. The library that was generated consists of 30,100 sequence-defined mutants, corresponding to an average of five insertions per gene. About 12% of the predicted genes of this organism lacked insertions; many of these genes are likely to be essential for growth on rich media. Based on statistical analyses and bioinformatic comparison to known essential genes in E. coli, we estimate that the actual number of essential genes is 300-400. Screening the collection for strains defective in two defined multigenic processes (twitching motility and prototrophic growth) identified mutants corresponding to nearly all genes expected from earlier studies. Thus, phenotypic analysis of the collection may produce essentially complete lists of genes required for diverse biological activities. The transposons used to generate the mutant collection have added features that should facilitate downstream studies of gene expression, protein localization, epistasis, and chromosome engineering.

  14. Adherence of Pseudomonas aeruginosa to contact lenses

    SciTech Connect

    Miller, M.J.

    1988-01-01

    The purpose of this research was to examined the interactions of P. aeruginosa with hydrogel contact lenses and other substrata, and characterize adherence to lenses under various physiological and physicochemical conditions. Isolates adhered to polystyrene, glass, and hydrogel lenses. With certain lens types, radiolabeled cells showed decreased adherence with increasing water content of the lenses, however, this correlation with not found for all lenses. Adherence to rigid gas permeable lenses was markedly greater than adherence to hydrogels. Best adherence occurred near pH 7 and at a sodium chloride concentration of 50 mM. Passive adhesion of heat-killed cells to hydrogels was lower than the adherence obtained of viable cells. Adherence to hydrogels was enhanced by mucin, lactoferrin, lysozyme, IgA, bovine serum albumin, and a mixture of these macromolecules. Adherence to coated and uncoated lenses was greater with a daily-wear hydrogel when compared with an extended-wear hydrogel of similar polymer composition. Greater adherence was attributed to a higher concentration of adsorbed macromolecules on the 45% water-content lens in comparison to the 55% water-content lens.

  15. Iron Depletion Enhances Production of Antimicrobials by Pseudomonas aeruginosa

    PubMed Central

    Nguyen, Angela T.; Jones, Jace W.; Ruge, Max A.; Kane, Maureen A.

    2015-01-01

    ABSTRACT Cystic fibrosis (CF) is a heritable disease characterized by chronic, polymicrobial lung infections. While Staphylococcus aureus is the dominant lung pathogen in young CF patients, Pseudomonas aeruginosa becomes predominant by adulthood. P. aeruginosa produces a variety of antimicrobials that likely contribute to this shift in microbial populations. In particular, secretion of 2-alkyl-4(1H)-quinolones (AQs) contributes to lysis of S. aureus in coculture, providing an iron source to P. aeruginosa both in vitro and in vivo. We previously showed that production of one such AQ, the Pseudomonas quinolone signal (PQS), is enhanced by iron depletion and that this induction is dependent upon the iron-responsive PrrF small RNAs (sRNAs). Here, we demonstrate that antimicrobial activity against S. aureus during coculture is also enhanced by iron depletion, and we provide evidence that multiple AQs contribute to this activity. Strikingly, a P. aeruginosa ΔprrF mutant, which produces very little PQS in monoculture, was capable of mediating iron-regulated growth suppression of S. aureus. We show that the presence of S. aureus suppresses the ΔprrF1,2 mutant's defect in iron-regulated PQS production, indicating that a PrrF-independent iron regulatory pathway mediates AQ production in coculture. We further demonstrate that iron-regulated antimicrobial production is conserved in multiple P. aeruginosa strains, including clinical isolates from CF patients. These results demonstrate that iron plays a central role in modulating interactions of P. aeruginosa with S. aureus. Moreover, our studies suggest that established iron regulatory pathways of these pathogens are significantly altered during polymicrobial infections. IMPORTANCE Chronic polymicrobial infections involving Pseudomonas aeruginosa and Staphylococcus aureus are a significant cause of morbidity and mortality, as the interplay between these two organisms exacerbates infection. This is in part due to enhanced

  16. A network biology approach to denitrification in Pseudomonas aeruginosa

    DOE PAGES

    Arat, Seda; Bullerjahn, George S.; Laubenbacher, Reinhard

    2015-02-23

    Pseudomonas aeruginosa is a metabolically flexible member of the Gammaproteobacteria. Under anaerobic conditions and the presence of nitrate, P. aeruginosa can perform (complete) denitrification, a respiratory process of dissimilatory nitrate reduction to nitrogen gas via nitrite (NO₂), nitric oxide (NO) and nitrous oxide (N₂O). This study focuses on understanding the influence of environmental conditions on bacterial denitrification performance, using a mathematical model of a metabolic network in P. aeruginosa. To our knowledge, this is the first mathematical model of denitrification for this bacterium. Analysis of the long-term behavior of the network under changing concentration levels of oxygen (O₂), nitrate (NO₃),more » and phosphate (PO₄) suggests that PO₄ concentration strongly affects denitrification performance. The model provides three predictions on denitrification activity of P. aeruginosa under various environmental conditions, and these predictions are either experimentally validated or supported by pertinent biological literature. One motivation for this study is to capture the effect of PO₄ on a denitrification metabolic network of P. aeruginosa in order to shed light on mechanisms for greenhouse gas N₂O accumulation during seasonal oxygen depletion in aquatic environments such as Lake Erie (Laurentian Great Lakes, USA). Simulating the microbial production of greenhouse gases in anaerobic aquatic systems such as Lake Erie allows a deeper understanding of the contributing environmental effects that will inform studies on, and remediation strategies for, other hypoxic sites worldwide.« less

  17. Influence of Pseudomonas Aeruginosa on Exacerbation in Patients with Bronchiectasis

    PubMed Central

    Chawla, Kiran; Vishwanath, Shashidhar; Manu, Mohan K; Lazer, Bernaitis

    2015-01-01

    Background: A majority of the studies done on the western population have shown that Pseudomonas aeruginosa causes many severe infections in patients with bronchiectasis as compared to other pathogens. There is scarcity of similar data from the Asian population. Materials and Methods: A prospective study was undertaken to identify the various pathogens isolated from the respiratory samples of 117 patients with bronchiectasis from south India and to compare the clinicomicrobiological profile of infections caused by P. aeruginosa and other respiratory pathogens. Results: The respiratory pathogens were isolated from 63 (53.8%) patients. P. aeruginosa was the most common isolate (46.0%) followed by Klebsiella pneumoniae (14.3%) and other pathogenic bacteria. Patients included in the P. aeruginosa group had a higher number of exacerbations (p: 0.008), greater number of hospital admissions (p: 0.007), a prolonged hospital stay (p: 0.03), and poor lung function, compared to the patients infected with the non-Pseudomonas group. Conclusion: It is necessary to investigate the etiology of respiratory tract infections among bronchiectasis patients followed by the prompt management of cases diagnosed with P. aeruginosa infections, so as to lower the morbidity and have a better prognosis. PMID:25722615

  18. Pseudomonas aeruginosa Virulence and Therapy: Evolving Translational Strategies

    PubMed Central

    Veesenmeyer, Jeffrey L.; Lisboa, Thiago; Rello, Jordi

    2009-01-01

    Structured abstract Objective Although most reviews of Pseudomonas aeruginosa therapeutics focus on antibiotics currently in use or in the pipeline, we review evolving translational strategies aimed at using virulence factor antagonists as adjuvant therapies. Data Source Current literature regarding P. aeruginosa virulence determinants and approaches that target them, with an emphasis on type III secretion, quorum-sensing, biofilms, and flagella. Data Extraction and Synthesis P. aeruginosa remains one of the most important pathogens in nosocomial infections, with high associated morbidity and mortality. Its predilection to develop resistance to antibiotics and expression of multiple virulence factors contributes to the frequent ineffectiveness of current therapies. Among the many P. aeruginosa virulence determinants that impact infections, type III secretion, quorum sensing, biofilm formation, and flagella have been the focus of much recent investigation. Here we review how increased understanding of these important bacterial structures and processes has enabled the development of novel approaches to inhibit each. These promising translational strategies may lead to the development of adjuvant therapies capable of improving outcomes. Conclusions Adjuvant therapies directed against virulence factors have the potential to improve outcomes in P. aeruginosa infections. PMID:19325463

  19. [Resistance to antibiotics in Pseudomonas aeruginosa in Colombian hospitals].

    PubMed

    Villa, Lina M; Cortés, Jorge A; Leal, Aura L; Meneses, Andrés; Meléndez, Martha P

    2013-12-01

    Pseudomonas aeruginosa infections cause high morbidity and mortality. We performed a descriptive analysis of the rates of antibiotic resistance in isolates of P. aeruginosa in 33 hospitals enrolled in a surveillance network in Colombia. The study was conducted between January 2005 and December 2009 .9905 isolates of P. aeruginosa were identified, (4.9% of all strains). In intensive care units (ICU) P. aeruginosa showed an overall resistance to aztreonam, cefepime , ceftazidime, imipenem, meropenem , and piperacillin / tazobactam of 31.8% , 23.9% , 24.8%, 22.5%, 20.3% and 22.3%, respectively. Resistance rates increased for piperacillin/tazobactam, cefepime, and imipenem; remained unchanged for meropenem; and decreased for aminoglycosides, quinolones and ceftazidime. Resistance to one, two and three or more families of antibiotics was found in 17%, 12.5%, and 32.1%, respectively. In samples collected from the wards, the resistance rate was lower but usually over 10%. Antibiotic resistance in P. aeruginosa isolates in hospitalized patients and particularly in those admitted to ICUs in Colombia is high.

  20. Gold-functionalized magnetic nanoparticles restrict growth of Pseudomonas aeruginosa.

    PubMed

    Niemirowicz, Katarzyna; Swiecicka, Izabela; Wilczewska, Agnieszka Z; Misztalewska, Iwona; Kalska-Szostko, Beata; Bienias, Kamil; Bucki, Robert; Car, Halina

    2014-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) and their derivatives (aminosilane and gold-coated) have been widely investigated in numerous medical applications, including their potential to act as antibacterial drug carriers that may penetrate into bacteria cells and biofilm mass. Pseudomonas aeruginosa is a frequent cause of infection in hospitalized patients, and significant numbers of currently isolated clinical strains are resistant to standard antibiotic therapy. Here we describe the impact of three types of SPIONs on the growth of P. aeruginosa during long-term bacterial culture. Their size, structure, and physicochemical properties were determined using transmission electron microscopy, X-ray diffraction analysis, and Fourier transform infrared spectroscopy. We observed significant inhibition of P. aeruginosa growth in bacterial cultures continued over 96 hours in the presence of gold-functionalized nanoparticles (Fe₃O₄@Au). At the 48-hour time point, growth of P. aeruginosa, as assessed by the number of colonies grown from treated samples, showed the highest inhibition (decreased by 40%). These data provide strong evidence that Fe₃O₄@Au can dramatically reduce growth of P. aeruginosa and provide a platform for further study of the antibacterial activity of this nanomaterial.

  1. The Genomic Basis of Evolutionary Innovation in Pseudomonas aeruginosa

    PubMed Central

    Wagner, Andreas; MacLean, R. Craig

    2016-01-01

    Novel traits play a key role in evolution, but their origins remain poorly understood. Here we address this problem by using experimental evolution to study bacterial innovation in real time. We allowed 380 populations of Pseudomonas aeruginosa to adapt to 95 different carbon sources that challenged bacteria with either evolving novel metabolic traits or optimizing existing traits. Whole genome sequencing of more than 80 clones revealed profound differences in the genetic basis of innovation and optimization. Innovation was associated with the rapid acquisition of mutations in genes involved in transcription and metabolism. Mutations in pre-existing duplicate genes in the P. aeruginosa genome were common during innovation, but not optimization. These duplicate genes may have been acquired by P. aeruginosa due to either spontaneous gene amplification or horizontal gene transfer. High throughput phenotype assays revealed that novelty was associated with increased pleiotropic costs that are likely to constrain innovation. However, mutations in duplicate genes with close homologs in the P. aeruginosa genome were associated with low pleiotropic costs compared to mutations in duplicate genes with distant homologs in the P. aeruginosa genome, suggesting that functional redundancy between duplicates facilitates innovation by buffering pleiotropic costs. PMID:27149698

  2. The Genomic Basis of Evolutionary Innovation in Pseudomonas aeruginosa.

    PubMed

    Toll-Riera, Macarena; San Millan, Alvaro; Wagner, Andreas; MacLean, R Craig

    2016-05-01

    Novel traits play a key role in evolution, but their origins remain poorly understood. Here we address this problem by using experimental evolution to study bacterial innovation in real time. We allowed 380 populations of Pseudomonas aeruginosa to adapt to 95 different carbon sources that challenged bacteria with either evolving novel metabolic traits or optimizing existing traits. Whole genome sequencing of more than 80 clones revealed profound differences in the genetic basis of innovation and optimization. Innovation was associated with the rapid acquisition of mutations in genes involved in transcription and metabolism. Mutations in pre-existing duplicate genes in the P. aeruginosa genome were common during innovation, but not optimization. These duplicate genes may have been acquired by P. aeruginosa due to either spontaneous gene amplification or horizontal gene transfer. High throughput phenotype assays revealed that novelty was associated with increased pleiotropic costs that are likely to constrain innovation. However, mutations in duplicate genes with close homologs in the P. aeruginosa genome were associated with low pleiotropic costs compared to mutations in duplicate genes with distant homologs in the P. aeruginosa genome, suggesting that functional redundancy between duplicates facilitates innovation by buffering pleiotropic costs.

  3. Emergence of Carbapenem Resistant Non-Fermenting Gram-Negative Bacilli Isolated in an ICU of a Tertiary Care Hospital

    PubMed Central

    Agarwal, Sonika; Khanduri, Sushant; Gupta, Shalini

    2017-01-01

    Introduction The emergence and spread of Multi-Drug Resistant (MDR) Non-Fermenting Gram-Negative Bacilli (NFGNB) in Intensive Care Units (ICU) and their genetic potential to transmit diverse antibiotic resistance regardless of their ability to ferment glucose poses a major threat in hospitals. The complex interplay of clonal spread, persistence, transmission of resistance elements and cell-cell interaction leads to the difficulty in controlling infections caused by these multi drug-resistant strains. Among non-fermenting Gram-negative rods, the most clinically significant species Pseudomonas aeruginosa, Acinetobacter baumannii and Stenotrophomonas maltophilia are increasingly acquiring resistant to carbapenems. Carbapenems once considered as a backbone of treatment of life threatening infections appears to be broken as the resistance to carbapenems is on rise. Aim To document the prevalence of carbapenem resistance in non-fermenting Gram-negative bacilli isolated from patients with respiratory tract infections in the ICU of Himalayan Institute of Medical Sciences, Dehradun. Materials and Methods This is a cross-sectional study conducted in ICU patients between October 2015 to March 2016. A total of 366 lower respiratory tract samples were collected from 356 patients with clinical evidence of lower respiratory tract infections in form of Endotracheal (ET) aspirate, Tracheal Tube (TT) aspirate and Bronchoalveolar Lavage (BAL) specimen. Organism identification and the susceptibility testing was done by using an automated system VITEK 2. Results Out of 366 samples received 99 NFGNB were isolated and most common sample was ET aspirate sample 256 (64.5%). Acinetobacter baumannii was the most common NFGNB isolated 63 (63.63%) followed by Pseudomonas aeruginosa 25 (25.25%), Elizabethkingia meningoseptica seven (7.07%) and Strenotrophomonas maltophilia four (4.04%). We observed that 90.5% Acinetobacter baumannii were resistant to imipenem and 95.2% resistant to meropenem

  4. Use of an ultraviolet light at point-of-dispense faucet to eliminate Pseudomonas aeruginosa.

    PubMed

    Gerba, Charles P

    2015-05-01

    Tap water is believed to be a significant source of Pseudomonas aeruginosa in health care environments. This study evaluated an ultraviolet (UV) light point-of-dispense water treatment system for control of P aeruginosa. No P aeruginosa was detected in 30 different water dispensers in which the UV light device had been operating for 1-34 months. In comparison, P aeruginosa was found in other taps that did not feature this UV light system.

  5. Biodegradation of fenvalerate and 3-phenoxybenzoic acid by a novel Stenotrophomonas sp. strain ZS-S-01 and its use in bioremediation of contaminated soils.

    PubMed

    Chen, Shaohua; Yang, Liu; Hu, Meiying; Liu, Jingjing

    2011-04-01

    A bacterial strain ZS-S-01, newly isolated from activated sludge, could effectively degrade fenvalerate and its hydrolysis product 3-phenoxybenzoic acid (3-PBA). Based on the morphology, physiological biochemical characteristics, and 16 S rDNA sequence, strain ZS-S-01 was identified as Stenotrophomonas sp. Strain ZS-S-01 could also degrade and utilize deltamethrin, beta-cypermethrin, beta-cyfluthrin, and cyhalothrin as substrates for growth. Strain ZS-S-01 was capable of degrading fenvalerate rapidly without a lag phase over a wide range of pH and temperature, even in the presence of other carbon sources, and metabolized it to yield 3-PBA, then completely degraded it. No persistent accumulative product was detected by HPLC and GC/MS analysis. Studies on biodegradation in various soils showed that strain ZS-S-01 demonstrated efficient degradation of fenvalerate and 3-PBA (both 50 mg·kg(-1)) with a rate constant of 0.1418-0.3073 d(-1), and half-lives ranged from 2.3 to 4.9 days. Compared with the controls, the half-lives for fenvalerate and 3-PBA reduced by 16.9-156.3 days. These results highlight strain ZS-S-01 may have potential for use in bioremediation of pyrethroid-contaminated environment.

  6. Optimization of Crude Oil and PAHs Degradation by Stenotrophomonas rhizophila KX082814 Strain through Response Surface Methodology Using Box-Behnken Design

    PubMed Central

    Virupakshappa, Praveen Kumar Siddalingappa; Mishra, Gaurav; Mehkri, Mohammed Ameenuddin

    2016-01-01

    The present paper describes the process optimization study for crude oil degradation which is a continuation of our earlier work on hydrocarbon degradation study of the isolate Stenotrophomonas rhizophila (PM-1) with GenBank accession number KX082814. Response Surface Methodology with Box-Behnken Design was used to optimize the process wherein temperature, pH, salinity, and inoculum size (at three levels) were used as independent variables and Total Petroleum Hydrocarbon, Biological Oxygen Demand, and Chemical Oxygen Demand of crude oil and PAHs as dependent variables (response). The statistical analysis, via ANOVA, showed coefficient of determination R2 as 0.7678 with statistically significant P value 0.0163 fitting in second-order quadratic regression model for crude oil removal. The predicted optimum parameters, namely, temperature, pH, salinity, and inoculum size, were found to be 32.5°C, 9, 12.5, and 12.5 mL, respectively. At this optimum condition, the observed and predicted PAHs and crude oil removal were found to be 71.82% and 79.53% in validation experiments, respectively. The % TPH results correlate with GC/MS studies, BOD, COD, and TPC. The validation of numerical optimization was done through GC/MS studies and % removal of crude oil. PMID:28116165

  7. γ-Dodecelactone production from safflower oil via 10-hydroxy-12(Z)-octadecenoic acid intermediate by whole cells of Candida boidinii and Stenotrophomonas nitritireducens.

    PubMed

    Jo, Ye-Seul; An, Jung-Ung; Oh, Deok-Kun

    2014-07-16

    Candida boidinii was selected as a γ-dodecelactone producer because of the highest production of γ-dodecelactone from 10-hydroxy-12(Z)-octadecenoic acid among the 11 yeast strains tested. Under the reaction conditions of pH 5.5 and 25 °C with 5 g/L 10-hydroxy-12(Z)-octadecenoic acid and 30 g/L cells, whole C. boidinii cells produced 2.1 g/L γ-dodecelactone from 5 g/L 10-hydroxy-12(Z)-octadecenoic acid after 6 h, with a conversion yield of 64% (mol/mol) and a volumetric productivity of 350 mg/L/h. The production of γ-dodecelactone from safflower oil was performed by lipase hydrolysis reaction and two-step whole-cell biotransformation using Stenotrophomonas nitritireducens and C. boidinii. γ-Dodecelactone at 1.88 g/L was produced from 7.5 g/L safflower oil via 5 g/L 10-hydroxy-12(Z)-octadecenoic acid intermediate by these reactions after 8 h of reaction time, with a volumetric productivity of 235 mg/L/h and a conversion yield of 25% (w/w). To the best of the authors' knowledge, this is the highest volumetric productivity and conversion yield reported to date for the production of γ-lactone from natural oils.

  8. Optimization of Crude Oil and PAHs Degradation by Stenotrophomonas rhizophila KX082814 Strain through Response Surface Methodology Using Box-Behnken Design.

    PubMed

    Virupakshappa, Praveen Kumar Siddalingappa; Krishnaswamy, Manjunatha Bukkambudhi; Mishra, Gaurav; Mehkri, Mohammed Ameenuddin

    2016-01-01

    The present paper describes the process optimization study for crude oil degradation which is a continuation of our earlier work on hydrocarbon degradation study of the isolate Stenotrophomonas rhizophila (PM-1) with GenBank accession number KX082814. Response Surface Methodology with Box-Behnken Design was used to optimize the process wherein temperature, pH, salinity, and inoculum size (at three levels) were used as independent variables and Total Petroleum Hydrocarbon, Biological Oxygen Demand, and Chemical Oxygen Demand of crude oil and PAHs as dependent variables (response). The statistical analysis, via ANOVA, showed coefficient of determination R(2) as 0.7678 with statistically significant P value 0.0163 fitting in second-order quadratic regression model for crude oil removal. The predicted optimum parameters, namely, temperature, pH, salinity, and inoculum size, were found to be 32.5°C, 9, 12.5, and 12.5 mL, respectively. At this optimum condition, the observed and predicted PAHs and crude oil removal were found to be 71.82% and 79.53% in validation experiments, respectively. The % TPH results correlate with GC/MS studies, BOD, COD, and TPC. The validation of numerical optimization was done through GC/MS studies and % removal of crude oil.

  9. Ambroxol inhibits mucoid conversion of Pseudomonas aeruginosa and contributes to the bactericidal activity of ciprofloxacin against mucoid P. aeruginosa biofilms.

    PubMed

    Wang, Wenlei; Yu, Jialin; He, Yu; Wang, Zhengli; Li, Fang

    2016-07-01

    Pseudomonas aeruginosa is an opportunistic human pathogen that can cause severe infections in immunocompromised individuals. Because it forms biofilms, which protect against host immune attack and increase resistance to conventional antibiotics, mucoid P. aeruginosa is nearly impossible to eradicate. Moreover, mucoid conversion of P. aeruginosa in cystic fibrosis (CF) patients leads to poor outcomes. This conversion is mainly due to mucA gene mutation, which is thought to be induced by polymorphonuclear leukocytes (PMNs) and the reactive oxygen species they release. Ambroxol, a mucolytic agent with antioxidant characteristics, is used clinically, and this compound has recently been demonstrated to possess anti-biofilm properties. In this study, we found that ambroxol inhibits the H2 O2 -mediated conversion of P. aeruginosa from a non-mucoid to a mucoid phenotype, an effect that is due to its antioxidant property against H2 O2 . Furthermore, the bactericidal activity of ciprofloxacin against mucoid P. aeruginosa biofilms was increased in vitro when used in combination with ambroxol.

  10. Subtilase SprP exerts pleiotropic effects in Pseudomonas aeruginosa

    PubMed Central

    Pelzer, Alexander; Polen, Tino; Funken, Horst; Rosenau, Frank; Wilhelm, Susanne; Bott, Michael; Jaeger, Karl-Erich

    2014-01-01

    The open reading frame PA1242 in the genome of Pseudomonas aeruginosa PAO1 encodes a putative protease belonging to the peptidase S8 family of subtilases. The respective enzyme termed SprP consists of an N-terminal signal peptide and a so-called S8 domain linked by a domain of unknown function (DUF). Presumably, this DUF domain defines a discrete class of Pseudomonas proteins as homologous domains can be identified almost exclusively in proteins of the genus Pseudomonas. The sprP gene was expressed in Escherichia coli and proteolytic activity was demonstrated. A P. aeruginosa ΔsprP mutant was constructed and its gene expression pattern compared to the wild-type strain by genome microarray analysis revealing altered expression levels of 218 genes. Apparently, SprP is involved in regulation of a variety of different cellular processes in P. aeruginosa including pyoverdine synthesis, denitrification, the formation of cell aggregates, and of biofilms. PMID:24376018

  11. Sphingoid long chain bases prevent lung infection by Pseudomonas aeruginosa

    PubMed Central

    Pewzner-Jung, Yael; Tavakoli Tabazavareh, Shaghayegh; Grassmé, Heike; Becker, Katrin Anne; Japtok, Lukasz; Steinmann, Jörg; Joseph, Tammar; Lang, Stephan; Tuemmler, Burkhard; Schuchman, Edward H; Lentsch, Alex B; Kleuser, Burkhard; Edwards, Michael J; Futerman, Anthony H; Gulbins, Erich

    2014-01-01

    Cystic fibrosis patients and patients with chronic obstructive pulmonary disease, trauma, burn wound, or patients requiring ventilation are susceptible to severe pulmonary infection by Pseudomonas aeruginosa. Physiological innate defense mechanisms against this pathogen, and their alterations in lung diseases, are for the most part unknown. We now demonstrate a role for the sphingoid long chain base, sphingosine, in determining susceptibility to lung infection by P. aeruginosa. Tracheal and bronchial sphingosine levels were significantly reduced in tissues from cystic fibrosis patients and from cystic fibrosis mouse models due to reduced activity of acid ceramidase, which generates sphingosine from ceramide. Inhalation of mice with sphingosine, with a sphingosine analog, FTY720, or with acid ceramidase rescued susceptible mice from infection. Our data suggest that luminal sphingosine in tracheal and bronchial epithelial cells prevents pulmonary P. aeruginosa infection in normal individuals, paving the way for novel therapeutic paradigms based on inhalation of acid ceramidase or of sphingoid long chain bases in lung infection. PMID:25085879

  12. Subtilase SprP exerts pleiotropic effects in Pseudomonas aeruginosa.

    PubMed

    Pelzer, Alexander; Polen, Tino; Funken, Horst; Rosenau, Frank; Wilhelm, Susanne; Bott, Michael; Jaeger, Karl-Erich

    2014-02-01

    The open reading frame PA1242 in the genome of Pseudomonas aeruginosa PAO1 encodes a putative protease belonging to the peptidase S8 family of subtilases. The respective enzyme termed SprP consists of an N-terminal signal peptide and a so-called S8 domain linked by a domain of unknown function (DUF). Presumably, this DUF domain defines a discrete class of Pseudomonas proteins as homologous domains can be identified almost exclusively in proteins of the genus Pseudomonas. The sprP gene was expressed in Escherichia coli and proteolytic activity was demonstrated. A P. aeruginosa ∆sprP mutant was constructed and its gene expression pattern compared to the wild-type strain by genome microarray analysis revealing altered expression levels of 218 genes. Apparently, SprP is involved in regulation of a variety of different cellular processes in P. aeruginosa including pyoverdine synthesis, denitrification, the formation of cell aggregates, and of biofilms.

  13. Pseudomonas aeruginosa biofilm, a programmed bacterial life for fitness.

    PubMed

    Lee, Keehoon; Yoon, Sang Sun

    2017-03-17

    Biofilm is a community of microbes that typically inhabits on surfaces and is encased in an extracellular matrix. Biofilms display very dissimilar characteristics to their planktonic counterparts. Biofilms are ubiquitous in the environments and influence our life tremendously in both positive and negative ways. Pseudomonas aeruginosa is a bacterium, known to produce robust biofilms. P. aeruginosa biofilms cause severe problems in immunocompromised patients including those with cystic fibrosis or wound infection. Moreover, the unique biofilm properties further complicates the eradication of the biofilm infection and leading to the development of chronic infections. In this review, we discuss a history of biofilm research and general characteristics of bacterial biofilms. Then, distinct features pertaining to each stage of P. aeruginosa biofilm development are highlighted. Furthermore, infections caused by biofilms of its own or in association with other bacterial species (i.e., multi-species biofilms) are discussed in detail.

  14. Anionic fluoroquinolones as antibacterials against biofilm-producing Pseudomonas aeruginosa.

    PubMed

    Long, Timothy E; Keding, Lexie C; Lewis, Demetria D; Anstead, Michael I; Withers, T Ryan; Yu, Hongwei D

    2016-02-15

    Pseudomonas aeruginosa is a common biofilm-forming bacterial pathogen implicated in diseases of the lungs. The extracellular polymeric substances (EPS) of respiratory Pseudomonas biofilms are largely comprised of anionic molecules such as rhamnolipids and alginate that promote a mucoid phenotype. In this Letter, we examine the ability of negatively-charged fluoroquinolones to transverse the EPS and inhibit the growth of mucoid P. aeruginosa. Anionic fluoroquinolones were further compared with standard antibiotics via a novel microdiffusion assay to evaluate drug penetration through pseudomonal alginate and respiratory mucus from a patient with cystic fibrosis.

  15. A case of Pseudomonas Aeruginosa commercial tattoo infection.

    PubMed

    Maloberti, A; Betelli, M; Perego, M R; Foresti, S; Scarabelli, G; Grassi, G

    2015-11-18

    Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium that can cause disease in immunocompromised patients but also burn wounds and other cutaneous infections. We report the case of a 31 years old woman with a P. Aeruginosa commercial tattoo infection treated with intravenous antibiotic therapy. Today tattooing is increasingly common and despite specific regulations many cases of tattoo site infection are reported in the literature. Principal actual tattoo infective epidemiology includes Streptococcus pyogenes, Staphylococcus aureus and mycosis infections and parenteral transmission of HIV, HBV and HCV but also recently published cases of Methicillin-Resistant Staphylococcus aureus and non tuberculous mycobacterium tattoo infection.

  16. Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm.

    PubMed

    Xu, Dake; Xia, Jin; Zhou, Enze; Zhang, Dawei; Li, Huabing; Yang, Chunguang; Li, Qi; Lin, Hai; Li, Xiaogang; Yang, Ke

    2017-02-01

    Microbiologically influenced corrosion (MIC) of 2205 duplex stainless steel (DSS) in the presence of Pseudomonas aeruginosa was investigated through electrochemical and surface analyses. The electrochemical results showed that P. aeruginosa significantly reduced the corrosion resistance of 2205 DSS. Confocal laser scanning microscopy (CLSM) images showed that the depths of the largest pits on 2205 DSS with and without P. aeruginosa were 14.0 and 4.9μm, respectively, indicating that the pitting corrosion was accelerated by P. aeruginosa. X-ray photoelectron spectroscopy (XPS) results revealed that CrO3 and CrN formed on the 2205 DSS surface in the presence of P. aeruginosa.

  17. Pseudomonas aeruginosa facilitates Campylobacter jejuni growth in biofilms under oxic flow conditions.

    PubMed

    Culotti, Alessandro; Packman, Aaron I

    2015-12-01

    We investigated the growth of Campylobacter jejuni in biofilms with Pseudomonas aeruginosa under oxic flow conditions. We observed the growth of C. jejuni in mono-culture, deposited on pre-established P. aeruginosa biofilms, and co-inoculated with P. aeruginosa. In mono-culture, C. jejuni was unable to form biofilms. However, deposited C. jejuni continuously grew on pre-established P. aeruginosa biofilms for a period of 3 days. The growth of scattered C. jejuni clusters was strictly limited to the P. aeruginosa biofilm surface, and no intergrowth was observed. Co-culturing of C. jejuni and P. aeruginosa also enabled the growth of both organisms in biofilms, with C. jejuni clusters developing on the surface of the P. aeruginosa biofilm. Dissolved oxygen (DO) measurements in the medium showed that P. aeruginosa biofilms depleted the effluent DO from 9.0 to 0.5 mg L(-1) 24 hours after inoculation. The localized microaerophilic environment generated by P. aeruginosa promoted the persistence and growth of C. jejuni. Our findings show that P. aeruginosa not only prolongs the survival of C. jejuni under oxic conditions, but also enables the growth of C. jejuni on the surface of P. aeruginosa biofilms.

  18. Pseudomonas Aeruginosa Endocarditis in Acute Myeloid Leukemia: A Rare Complication

    PubMed Central

    J, Barshay; A, Nemets; A, Ducach; G, Lugassy

    2008-01-01

    Infectious endocarditis is a rarely encountered complication among leukemia patient during induction therapy. We describe a young patient who developed prolonged high fever after aggressive chemotherapy for Acute Myeloid Leukemia. Pseudomonas Aeruginosa endocarditis was found to be the etiology for the febrile state. Our purpose is to emphasize the need for an early diagnosis of this rare, albeit treatable complication. PMID:23675106

  19. [Hospital infections caused by Pseudomonas aeruginosa. Significance in intensive therapy].

    PubMed

    Sidorenko, S V; Gel'fand, E B; Mamontova, O A

    1999-01-01

    The significance of P. aeruginosa as an agent of hospital infections in intensive care departments is determined by high prevalence of this microorganism, its natural and acquired resistance to antibiotics of various groups, and severity of the infection it induces. The resistance of P. aeruginosa to antibiotics is different in different regions. Among the strains isolated in Moscow in intensive care wards for newborns 9% were resistant to meropenem, 10% to amicacine, 15% to imipramine, 16% to cefepime, 37% to ceftasidime, 45% to piperacylline/tasobactam, 45% to ciprofloxacine, and 60% to gentamicin; 1.5% of these strains were resistant to all tested antibiotics. High prevalence of antibiotic resistance among P. aeruginosa impedes the choice of drugs for empirical antibiotic therapy and increases the significance of microbiological diagnosis. Even if an agent is sensitive to such antibiotics as semisynthetic penicillines and aminoglycosides, their use as monotherapy in infections caused by P. aeruginosa is ineffective. Carbapenemes, III- IV generations cefalosporines, and fluoroquinolones can be used as mono therapy.

  20. Inhibition of Pseudomonas aeruginosa biofilm formation on wound dressings

    PubMed Central

    Brandenburg, Kenneth S.; Calderon, Diego F.; Kierski, Patricia R.; Brown, Amanda L.; Shah, Nihar M.; Abbott, Nicholas L.; Schurr, Michael J.; Murphy, Christopher J.; McAnulty, Jonathan F.; Czuprynski, Charles J.

    2016-01-01

    Chronic non-healing skin wounds often contain bacterial biofilms that prevent normal wound healing and closure and present challenges to the use of conventional wound dressings. We investigated inhibition of Pseudomonas aeruginosa biofilm formation, a common pathogen of chronic skin wounds, on a commercially available biological wound dressing. Building upon prior reports, we examined whether the amino acid tryptophan would inhibit P. aeruginosa biofilm formation on the 3-dimensional surface of the biological dressing. Bacterial biomass and biofilm polysaccharides were quantified using crystal violet staining or an enzyme linked lectin, respectively. Bacterial cells and biofilm matrix adherent to the wound dressing were visualized through scanning electron microscopy. D-/L-tryptophan inhibited P. aeruginosa biofilm formation on the wound dressing in a dose dependent manner and was not directly cytotoxic to immortalized human keratinocytes although there was some reduction in cellular metabolism or enzymatic activity. More importantly, D-/L-tryptophan did not impair wound healing in a splinted skin wound murine model. Furthermore, wound closure was improved when D-/L-tryptophan treated wound dressing with P. aeruginosa biofilms were compared with untreated dressings. These findings indicate that tryptophan may prove useful for integration into wound dressings to inhibit biofilm formation and promote wound healing. PMID:26342168

  1. Genetic characterization of Microcystis aeruginosa isolates from Portuguese freshwater systems.

    PubMed

    Moreira, Cristiana; Vasconcelos, Vitor; Antunes, Agostinho

    2016-07-01

    Cyanobacteria are microorganisms that pose a serious threat to the aquatic waterways through the production of dense blooms under eutrophic conditions and the release of toxic secondary metabolites-cyanotoxins. Within cyanobacteria, the colonial planktonic Microcystis aeruginosa is widely distributed in both fresh and brackish aquatic environments throughout the world being frequently observed in the Portuguese water systems. Apart from the well-established distribution of M. aeruginosa in Portugal, knowledge of its genetic diversity and population structure is unknown. Therefore, in this study twenty-seven strains were obtained from the North, Centre and South regions of Portugal and were subjected to extensive phylogenetic analyses using simultaneously four distinct genetic markers (16S rRNA, 16S-23S ITS, DNA gyrase subunit ß and cell division protein (ftsZ)) encompassing in total 2834 bp. With this work we characterized the phylogenetic relationship among the Portuguese strains, with the southern strains showing higher genetic structure relatively to the North and Centre strains. A total of fifteen genotypes were determined for M. aeruginosa in Portuguese water systems revealing a high genetic diversity. This is also the first study to report geographic variation on the population structure of the Portuguese M. aeruginosa.

  2. Pseudomonas aeruginosa sepsis in stem cell transplantation patients.

    PubMed

    Fanci, Rosa; Pecile, Patrizia; Casalone, Enrico; Mengoni, Alessio; Tamburini, Elena; Guidi, Stefano; Cecconi, Daniela; Bosi, Alberto; Nicoletti, Pierluigi; Mastromei, Giorgio

    2006-07-01

    We report the epidemiological investigation of an outbreak of Pseudomonas aeruginosa infection in 6 patients who shared, during different periods, the same 2 rooms of a bone marrow transplantation unit. Phenotypic and molecular analysis of isolates from patients and from the environment strongly suggested a single, environmental source of infection.

  3. 7-fluoroindole as an antivirulence compound against Pseudomonas aeruginosa.

    PubMed

    Lee, Jin-Hyung; Kim, Yong-Guy; Cho, Moo Hwan; Kim, Jung-Ae; Lee, Jintae

    2012-04-01

    The emergence of antibiotic resistance has necessitated new therapeutic approaches for combating persistent bacterial infection. An alternative approach is regulation of bacterial virulence instead of growth suppression, which can readily lead to drug resistance. The virulence of the opportunistic human pathogen Pseudomonas aeruginosa depends on a large number of extracellular factors and biofilm formation. Thirty-one natural and synthetic indole derivatives were screened. 7-fluoroindole (7FI) was identified as a compound that inhibits biofilm formation and blood hemolysis without inhibiting the growth of planktonic P. aeruginosa cells. Moreover, 7FI markedly reduced the production of quorum-sensing (QS)-regulated virulence factors 2-heptyl-3-hydroxy-4(1H)-quinolone, pyocyanin, rhamnolipid, two siderophores, pyoverdine and pyochelin. 7FI clearly suppressed swarming motility, protease activity and the production of a polymeric matrix in P. aeruginosa. However, unlike natural indole compounds, synthetic 7FI did not increase antibiotic resistance. Therefore, 7FI is a potential candidate for use in an antivirulence approach against persistent P. aeruginosa infection.

  4. Removal of Microcystis aeruginosa using cationic starch modified soils.

    PubMed

    Shi, Wenqing; Tan, Wanqiao; Wang, Lijing; Pan, Gang

    2016-06-15

    A cheap and biodegradable modifier, cationic starch (CS), was used to turn local soils into effective flocculants for Microcystis aeruginosa (M. aeruginosa) removal. The isoelectric point of soil particles was remarkably increased from pH 0.5 to 11.8 after modification with CS, which made CS modified soil particles positively charged and obtain algal flocculation ability. At the soil concentration of 100 mg/L, when the CS modifier was 10 mg/L, 86% of M. aeruginosa cells were removed within 30 min. Lower or higher CS dosage led to limited algal removal. About 71% and 45% of M. aeruginosa cells were removed within 30 min when CS was 5 mg/L and 80 mg/L, respectively. This is because only part of algal cells combined with CS modified soil particles through charge neutralization at low dosage, while flocs formed at high CS dosage were positively charged which prevents further aggregation among the flocs. The floc stability was quantified by a floc breakage index under applied shear force. Algal flocs formed at acid and alkaline conditions were more prone to be broken than those at the neutral condition. The cost and biodegradability concerns may be largely reduced through the use of CS modified local soils. For field applications, other practical issues (e.g., re-suspension) should be further studied by jointly using other methods.

  5. Production of mucoid exopolysaccharide during development of Pseudomonas aeruginosa biofilms.

    PubMed Central

    Hoyle, B D; Williams, L J; Costerton, J W

    1993-01-01

    Production of mucoid exopolysaccharide by planktonic, chemostat-derived, and adherent Pseudomonas aeruginosa 579 bacteria was separately monitored for 7 days by using a lacZ-algD promoter-reporter gene and assays of total carbohydrate and metabolic activity. Mucoid exopolysaccharide production was transiently elevated following adherence but declined to planktonic levels by day 7. PMID:8423105

  6. Full Virulence of Pseudomonas aeruginosa Requires OprF▿

    PubMed Central

    Fito-Boncompte, Laurène; Chapalain, Annelise; Bouffartigues, Emeline; Chaker, Hichem; Lesouhaitier, Olivier; Gicquel, Gwendoline; Bazire, Alexis; Madi, Amar; Connil, Nathalie; Véron, Wilfried; Taupin, Laure; Toussaint, Bertrand; Cornelis, Pierre; Wei, Qing; Shioya, Koki; Déziel, Eric; Feuilloley, Marc G. J.; Orange, Nicole; Dufour, Alain; Chevalier, Sylvie

    2011-01-01

    OprF is a general outer membrane porin of Pseudomonas aeruginosa, a well-known human opportunistic pathogen associated with severe hospital-acquired sepsis and chronic lung infections of cystic fibrosis patients. A multiphenotypic approach, based on the comparative study of a wild-type strain of P. aeruginosa, its isogenic oprF mutant, and an oprF-complemented strain, showed that OprF is required for P. aeruginosa virulence. The absence of OprF results in impaired adhesion to animal cells, secretion of ExoT and ExoS toxins through the type III secretion system (T3SS), and production of the quorum-sensing-dependent virulence factors pyocyanin, elastase, lectin PA-1L, and exotoxin A. Accordingly, in the oprF mutant, production of the signal molecules N-(3-oxododecanoyl)-l-homoserine lactone and N-butanoyl-l-homoserine lactone was found to be reduced and delayed, respectively. Pseudomonas quinolone signal (PQS) production was decreased, while its precursor, 4-hydroxy-2-heptylquinoline (HHQ), accumulated in the cells. Taken together, these results show the involvement of OprF in P. aeruginosa virulence, at least partly through modulation of the quorum-sensing network. This is the first study showing a link between OprF, PQS synthesis, T3SS, and virulence factor production, providing novel insights into virulence expression. PMID:21189321

  7. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA.

    PubMed

    Teixeira, Bertinellys; Rodulfo, Hectorina; Carreño, Numirin; Guzmán, Militza; Salazar, Elsa; De Donato, Marcos

    2016-01-01

    The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC), aminoglycoside-adenyltransferases (AAD), and aminoglycoside-phosphotransferases (APH), is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA) were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137) were identified from the Intensive Care Unit (ICU), mainly from discharges (96/137). The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively). Phenotype VI, resistant to these antibiotics, was the most frequent (14/49), followed by phenotype I, resistant to all the aminoglycosides tested (12/49). The aac(6´)-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´)-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America.

  8. Identification, cloning, and expression of Pseudomonas aeruginosa phosphorylcholine phosphatase gene.

    PubMed

    Massimelli, María J; Beassoni, Paola R; Forrellad, Marina A; Barra, José L; Garrido, Mónica N; Domenech, Carlos E; Lisa, Angela T

    2005-05-01

    Pseudomonas aeruginosa phosphorylcholine phosphatase (PChP) is a periplasmic enzyme produced simultaneously with the hemolytic phospholipase C (PLc-H) when the bacteria are grown in the presence of choline, betaine, dimethylglycine or carnitine. Molecular analysis of the P. aeruginosa mutant JUF8-00, after Tn5-751 mutagenesis, revealed that the PA5292 gene in the P. aeruginosa PAO1 genome was responsible for the synthesis of PChP. The enzyme expressed in E. coli, rPChP-Ec, purified by a chitin-binding column (IMPACT-CN system, New England BioLabs) was homogeneous after SDS-PAGE analysis. PChP was also expressed in P. aeruginosa PAO1-LAC, rPChP-Pa. Both recombinant enzymes exhibited a molecular mass of approximately 40 kDa, as expected for the size of the PA5292 gene, and catalyzed the hydrolysis of phosphorylcholine, phosphorylethanolamine, and p-nitrophenylphosphate. The saturation curve of rPChP-Ec and rPChP-Pa by phosphorylcholine revealed that these recombinant enzymes, like the purified native PChP, also contained the high- and low-affinity sites for phosphorylcholine and that the enzyme activity was inhibited by high substrate concentration.

  9. Effects of azithromycin in Pseudomonas aeruginosa burn wound infection

    PubMed Central

    Nichols, DP; Caceres, S; Caverly, L; Fratelli, C; Kim, SH; Malcolm, KC; Poch, KR; Saavedra, M; Solomon, G; Taylor-Cousar, J; Moskowitz, SM; Nick, JA

    2013-01-01

    Background Cutaneous thermal injuries (i.e. burns) remain a common form of debilitating trauma and outcomes are often worsened by wound infection with environmental bacteria, chiefly Pseudomonas aeruginosa. Materials and Methods We tested the effects of early administration of a single dose of azithromycin, with or without subsequent anti-pseudomonal antibiotics, in a mouse model of standardized thermal injury infected with P. aeruginosa on both wound site and systemic infection. We also tested the antimicrobial effects of these antibiotics alone or combined in comparative biofilm and planktonic cultures in vitro. Results In our model, early azithromycin administration significantly reduced wound and systemic infection without altering wound site or circulating neutrophil activity. The antimicrobial effect of azithromycin was additive with ciprofloxacin but significantly reduced the antimicrobial effect of tobramycin. This pattern was reproduced in biofilm cultures and not observed in planktonic cultures of P. aeruginosa. Conclusion these data suggest that early administration of azithromycin following burn-related trauma and infection may reduce P. aeruginosa infection and potential interactions with other antibiotics should be considered when designing future studies. PMID:23478086

  10. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA

    PubMed Central

    TEIXEIRA, Bertinellys; RODULFO, Hectorina; CARREÑO, Numirin; GUZMÁN, Militza; SALAZAR, Elsa; DONATO, Marcos DE

    2016-01-01

    The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC), aminoglycoside-adenyltransferases (AAD), and aminoglycoside-phosphotransferases (APH), is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA) were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137) were identified from the Intensive Care Unit (ICU), mainly from discharges (96/137). The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively). Phenotype VI, resistant to these antibiotics, was the most frequent (14/49), followed by phenotype I, resistant to all the aminoglycosides tested (12/49). The aac(6´)-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´)-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America. PMID:27007556

  11. Comparative studies on growth and physiological responses of unicellular and colonial Microcystis aeruginosa to Acorus calamus.

    PubMed

    Zhang, S-H; Chang, J-J; Cao, J-Y; Yang, C-L

    2015-02-01

    In order to explore the growth inhibition and physiological responses of unicellular and colonial Microcystis aeruginosa during coexistence with Acorus calamus, algal densities, chlorophyll a contents, exopolysaccharide (EPS) concentrations, malondialdehyde (MDA) contents, catalase (CAT) activities, and peroxidase (POD) activities of the two algae strains were analyzed. Although the unicellular and colonial strains of M. aeruginosa were both inhibited by A. calamus, unicellular algae were more sensitive than the colonial algae. The measurement results for EPS, MDA, CAT, and POD showed that unicellular M. aeruginosa had higher levels of stress related damage than colonial strains when they were exposed to the same density of A. calamus, and the cellular defense system of colonial M. aeruginosa was stronger than that of unicellular M. aeruginosa. Natural blooms of Microcystis are typically composed of colonial forms of M. aeruginosa, therefore future efforts to control such blooms, possibly through the development of new algicides, should focus on the unique characteristics of colonial M. aeruginosa strains.

  12. Dissecting the Machinery That Introduces Disulfide Bonds in Pseudomonas aeruginosa

    PubMed Central

    Arts, Isabelle S.; Ball, Geneviève; Leverrier, Pauline; Garvis, Steven; Nicolaes, Valérie; Vertommen, Didier; Ize, Bérengère; Tamu Dufe, Veronica; Messens, Joris; Voulhoux, Romé; Collet, Jean-François

    2013-01-01

    ABSTRACT Disulfide bond formation is required for the folding of many bacterial virulence factors. However, whereas the Escherichia coli disulfide bond-forming system is well characterized, not much is known on the pathways that oxidatively fold proteins in pathogenic bacteria. Here, we report the detailed unraveling of the pathway that introduces disulfide bonds in the periplasm of the human pathogen Pseudomonas aeruginosa. The genome of P. aeruginosa uniquely encodes two DsbA proteins (P. aeruginosa DsbA1 [PaDsbA1] and PaDsbA2) and two DsbB proteins (PaDsbB1 and PaDsbB2). We found that PaDsbA1, the primary donor of disulfide bonds to secreted proteins, is maintained oxidized in vivo by both PaDsbB1 and PaDsbB2. In vitro reconstitution of the pathway confirms that both PaDsbB1 and PaDsbB2 shuttle electrons from PaDsbA1 to membrane-bound quinones. Accordingly, deletion of both P. aeruginosa dsbB1 (PadsbB1) and PadsbB2 is required to prevent the folding of several P. aeruginosa virulence factors and to lead to a significant decrease in pathogenicity. Using a high-throughput proteomic approach, we also analyzed the impact of PadsbA1 deletion on the global periplasmic proteome of P. aeruginosa, which allowed us to identify more than 20 new potential substrates of this major oxidoreductase. Finally, we report the biochemical and structural characterization of PaDsbA2, a highly oxidizing oxidoreductase, which seems to be expressed under specific conditions. By fully dissecting the machinery that introduces disulfide bonds in P. aeruginosa, our work opens the way to the design of novel antibacterial molecules able to disarm this pathogen by preventing the proper assembly of its arsenal of virulence factors. PMID:24327342

  13. Zingerone silences quorum sensing and attenuates virulence of Pseudomonas aeruginosa.

    PubMed

    Kumar, Lokender; Chhibber, Sanjay; Kumar, Rajnish; Kumar, Manoj; Harjai, Kusum

    2015-04-01

    Quorum sensing in Pseudomonas aeruginosa plays an imperative role in virulence factor, biofilm formation and antimicrobial resistance. Blocking quorum sensing pathways are viewed as viable anti-virulent therapy in association with traditional antimicrobial therapy. Anti-quorum sensing dietary phytochemicals with may prove to be a safe and viable choice as anti-virulent drug candidates. Previously, our lab proved zingerone as potent anti-biofilm agent hence; further its anti-virulent and anti-quorum activities were evaluated. Zingerone, besides decreasing swimming, swarming and twitching phenotypes of P. aeruginosa PAO1, reduced biofilm forming capacity and production of virulence factors including rhamnolipid, elastase, protease, pyocyanin, cell free and cell bound hemolysin (p<0.001) indicating anti-virulent property attributing towards attenuation of virulence of P. aeruginosa. Further zingerone not only had marked effect on the production of quorum sensing signal molecules by clinical isolates of P. aeruginosa but also showed significant interference with the activation of QS reporter strains. To study the mechanism of blocking quorum sensing cascade, in silico analysis was carried out. Anti-QS activity was attributed to interference with the ligand receptor interaction of zingerone with QS receptors (TraR, LasR, RhlR and PqsR). Zingerone showed a good comparative docking score to respective autoinducer molecules which was even higher than that of vanillin, a proven anti-quorum sensing phytochemical. The results of the present study revealed the anti-quorum sensing activity of zingerone targeting ligand-receptor interaction, hence proposing zingerone as a suitable anti-virulent drug candidate against P. aeruginosa infections.

  14. Gene cloning of an efficiency oleate hydratase from Stenotrophomonas nitritireducens for polyunsaturated fatty acids and its application in the conversion of plant oils to 10-hydroxy fatty acids.

    PubMed

    Kang, Woo-Ri; Seo, Min-Ju; Shin, Kyung-Chul; Park, Jin-Byung; Oh, Deok-Kun

    2017-01-01

    Hydroxy fatty acids are used as precursors of lactones and dicarboxylic acids, as starting materials of polymers, and as additives in coatings and paintings. Stenotrophomonas nitritireducens efficiently converts cis-9 polyunsaturated fatty acids (PUFAs) to 10-hydroxy fatty acids. However, gene encoding enzyme involved in this conversion has not been identified to date. We purified a putative fatty acid double-bond hydratase from S. nitritireducens by ultrafiltration and HiPrep DEAE FF and Resource Q ion exchange chromatographies. Peptide sequences of the purified enzyme were obtained by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) analysis. Sequence of the partial gene encoding this putative fatty acid double-bond hydratase was determined by degenerate polymerase chain reaction (PCR) based on the peptide sequences. The remaining gene sequence was identified by rapid amplification of cDNA ends using cDNA of S. nitritireducens as a template, and the full-length gene was cloned subsequently. The expressed enzyme was identified as an oleate hydratase by determining its kinetic parameters toward unsaturated fatty acids. S. nitritireducens oleate hydratase showed higher activity toward PUFAs compared with other available oleate hydratases. This suggested that the enzyme could be used effectively to convert plant oils to 10-hydroxy fatty acids because these oils contained unsaturated fatty acids such as oleic acid (OA) and linoleic acid (LA) and PUFAs such as α-linolenic acid and/or γ-linolenic acid. The enzyme converted soybean oil and perilla seed oil hydrolyzates containing 10 mM total unsaturated fatty acids, including OA, LA, and ALA, to 8.87 and 8.70 mM total 10-hydroxy fatty acids, respectively, in 240 min. To our knowledge, this is the first study on the biotechnological conversion of PUFA-containing oils to hydroxy fatty acids. Biotechnol. Bioeng. 2017;114: 74-82. © 2016 Wiley Periodicals, Inc.

  15. Complementary treatment of contact lens-induced corneal ulcer using honey: a case report.

    PubMed

    Majtanova, Nora; Vodrazkova, Erika; Kurilova, Veronika; Horniackova, Miroslava; Cernak, Martin; Cernak, Andrej; Majtan, Juraj

    2015-02-01

    The aim of this study was to report the complementary use of honey for treatment of a contact lens-induced corneal ulcer. A 23-year-old contact lens user presented with a corneal ulcer in her left eye. She had visual acuity reduced to hand movement. There was a history of wearing contact lenses while swimming in a lake seven days before presentation. The cultures from corneal scrapings and contact lenses were positive for Klebsiella oxytoca, Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Pseudomonas spp. The treatment with topical levofloxacin and 25% (w/v) γ-irradiated honeydew honey solution was effective and the patient achieved final best corrected visual acuity of affected eye. In addition to positive clinical outcome, honeydew honey was shown to be highly effective in vitro against ocular isolates, in particular S. maltophilia. The minimal inhibitory concentrations for honeydew honey ranged from 5% to 10%. These results demonstrate that honey is a promising antibacterial agent in management of corneal ulcers. Moreover, honey exhibits anti-biofilm and anti-inflammatory properties, and thus becomes an interesting ophthalmologic agent.

  16. VDUP1 exacerbates bacteremic shock in mice infected with Pseudomonas aeruginosa.

    PubMed

    Piao, Zheng-Hao; Kim, Mi Sun; Jeong, Mira; Yun, Sohyun; Lee, Suk Hyung; Sun, Hu-Nan; Song, Hae Young; Suh, Hyun-Woo; Jung, Haiyoung; Yoon, Suk Ran; Kim, Tae-Don; Lee, Young-Ho; Choi, Inpyo

    2012-11-01

    Vitamin-D3 upregulated protein-1 (VDUP1) is a stress response protein. Pseudomonas aeruginosa (P. aeruginosa) infection is a leading cause of death. Mice infected with live P. aeruginosa exhibit significantly decreased VDUP1 expression. However, the function of VDUP1 during P. aeruginosa-induced mouse bacteremic shock is unknown. To address the function of VDUP1 in P. aeruginosa-infected mice, we constructed a bacteremic shock model wherein both wild-type and VDUP1-deficient mice were infected intra-peritoneally with live P. aeruginosa. We found that VDUP1-deficient mice were more resistant to P. aeruginosa-induced bacteremic shock than wild-type mice, as shown by the increased survival, accelerated bacterial clearance and suppression of cytokine overproduction of the VDUP1-deficient mice. VDUP1 promoted the recruitment of neutrophils into the peritoneal cavities of infected mice. VDUP1 impeded the phagocytosis of non-opsonized P. aeruginosa via phosphatidylinositide 3-kinase (PI3K) pathway in macrophages. P. aeruginosa infection induced the generation of reactive oxygen species (ROS), and the increased production of ROS by the peritoneal cells of VDUP1-deficient mice was advantageous in clearing the bacteria. Overall, VDUP1 aggravates bacteremic shock; thus, VDUP1 can be considered a target molecule for the inhibition of P. aeruginosa-induced bacteremic shock.

  17. Toxicogenomic response of Pseudomonas aeruginosa to ortho-phenylphenol

    PubMed Central

    Nde, Chantal W; Jang, Hyeung-Jin; Toghrol, Freshteh; Bentley, William E

    2008-01-01

    Background Pseudomonas aeruginosa (P. aeruginosa) is the most common opportunistic pathogen implicated in nosocomial infections and in chronic lung infections in cystic fibrosis patients. Ortho-phenylphenol (OPP) is an antimicrobial agent used as an active ingredient in several EPA registered disinfectants. Despite its widespread use, there is a paucity of information on its target molecular pathways and the cellular responses that it elucidates in bacteria in general and in P. aeruginosa in particular. An understanding of the OPP-driven gene regulation and cellular response it elicits will facilitate more effective utilization of this antimicrobial and possibly lead to the development of more effective disinfectant treatments. Results Herein, we performed a genome-wide transcriptome analysis of the cellular responses of P. aeruginosa exposed to 0.82 mM OPP for 20 and 60 minutes. Our data indicated that OPP upregulated the transcription of genes encoding ribosomal, virulence and membrane transport proteins after both treatment times. After 20 minutes of exposure to 0.82 mM OPP, genes involved in the exhibition of swarming motility and anaerobic respiration were upregulated. After 60 minutes of OPP treatment, the transcription of genes involved in amino acid and lipopolysaccharide biosynthesis were upregulated. Further, the transcription of the ribosome modulation factor (rmf) and an alternative sigma factor (rpoS) of RNA polymerase were downregulated after both treatment times. Conclusion Results from this study indicate that after 20 minutes of exposure to OPP, genes that have been linked to the exhibition of anaerobic respiration and swarming motility were upregulated. This study also suggests that the downregulation of the rmf and rpoS genes may be indicative of the mechanism by which OPP causes decreases in cell viability in P. aeruginosa. Consequently, a protective response involving the upregulation of translation leading to the increased synthesis of

  18. Correlation between circuital current, Cu(II) reduction and cellular electron transfer in EAB isolated from Cu(II)-reduced biocathodes of microbial fuel cells.

    PubMed

    Shen, Jingya; Huang, Liping; Zhou, Peng; Quan, Xie; Puma, Gianluca Li

    2017-04-01

    The performance of four indigenous electrochemically active bacteria (EAB) (Stenotrophomonas maltophilia JY1, Citrobacter sp. JY3, Pseudomonas aeruginosa JY5 and Stenotrophomonas sp. JY6) was evaluated for Cu(II) reduction on the cathodes of microbial fuel cells (MFCs). These EAB were isolated from well adapted mixed cultures on the MFC cathodes operated for Cu(II) reduction. The relationship between circuital current, Cu(II) reduction rate, and cellular electron transfer processes was investigated from a mechanistic point of view using X-ray photoelectron spectroscopy, scanning electronic microscopy coupled with energy dispersive X-ray spectrometry, linear sweep voltammetry and cyclic voltammetry. JY1 and JY5 exhibited a weak correlation between circuital current and Cu(II) reduction. A much stronger correlation was observed for JY3 followed by JY6, demonstrating the relationship between circuital current and Cu(II) reduction for these species. In the presence of electron transfer inhibitors (2,4-dinitrophenol or rotenone), significant inhibition on JY6 activity and a weak effect on JY1, JY3 and JY5 was observed, confirming a strong correlation between cellular electron transfer processes and either Cu(II) reduction or circuital current. This study provides evidence of the diverse functions played by these EAB, and adds to a deeper understanding of the capabilities exerted by diverse EAB associated with Cu(II) reduction.

  19. Fluorescent probe based subcellular distribution of Cu(II) ions in living electrotrophs isolated from Cu(II)-reduced biocathodes of microbial fuel cells.

    PubMed

    Tao, Ye; Xue, Hua; Huang, Liping; Zhou, Peng; Yang, Wei; Quan, Xie; Yuan, Jinxiu

    2017-02-01

    Based on the four indigenous electrotrophs (Stenotrophomonas maltophilia JY1, Citrobacter sp. JY3, Pseudomonas aeruginosa JY5 and Stenotrophomonas sp. JY6) isolated from well adapted Cu(II)-reduced biocathodes of microbial fuel cells (MFCs), a rhodamine based Cu(II) fluorescent probe was used to imaginably and quantitatively track subcellular Cu(II) ions in these electrotrophs. Cathodic electrons led to more Cu(II) ions (14.3-30.1%) in the intracellular sites at operation time of 2-3h with Cu(II) removal rates of 2.90-3.64mg/Lh whereas the absence of cathodic electrons prolonged the appearance of more Cu(II) ions (16.6-22.5%) to 5h with Cu(II) removal rates of 1.96-2.28mg/Lh. This study illustrates that cathodic electrons directed more Cu(II) ions for quicker entrance into the electrotrophic cytoplasm, and gives an alternative approach for developing imaging and functionally tracking Cu(II) ions in the electrotrophs of MFCs.

  20. [Bacterial isolates from respiratory samples of pediatric patients with cystic fibrosis and their distribution by ages].

    PubMed

    Busquets, Natalia P; Baroni, María R; Ochoteco, María C; Zurbriggen, María L; Virgolini, Stella; Meneghetti, Fernando G

    2013-01-01

    The bacterial isolates from respiratory samples of 50 pediatric patients with cystic fibrosis, their distribution by ages and antimicrobial resistance pattern as well as the intermittence of isolations and coinfections, were investigated. Staphylococcus aureus was isolated in 72 % of patients, followed by Pseudomonas aeruginosa (58 %), Haemophilus. influenzae (56 %), and the Burkholderia cepacia complex (12 %). The frequency of resistance of P. aeruginosa isolates to β-lactam antibiotics was low (13.8 %). Fifty percent of S. aureus isolates was methicillin-resistant, and 57.1 % of H. influenza was ampicillin resistant due to β-lactamase production. In children under 4 years-old, S. aureus was predominant, followed by P. aeruginosa and H. influenzae. This order of predominance was observed in all the groups studied, except in that of children between 10 and 14 years-old. Stenotrophomonas maltophilia and Achromobacter xylosoxidans isolates were intermittent and accompanied by other microorganisms. Finally, we observed a great variety of bacterial species, which imposes stringent performance requirements for microbiological studies in all respiratory samples of these patients.

  1. Epinecidin-1 Has Immunomodulatory Effects, Facilitating Its Therapeutic Use in a Mouse Model of Pseudomonas aeruginosa Sepsis

    PubMed Central

    Pan, Chieh-Yu; Chen, Jian-Chyi; Sheen, Jenn-Feng; Lin, Tai-Lang

    2014-01-01

    Antimicrobial peptides (AMPs) are garnering attention as possible alternatives to antibiotics. Here, we describe the antimicrobial properties of epinecidin-1 against a multidrug-resistant clinical isolate of P. aeruginosa (P. aeruginosa R) and a P. aeruginosa strain from ATCC (P. aeruginosa ATCC 19660) in vivo. The MICs of epinecidin-1 against P. aeruginosa R and P. aeruginosa ATCC 19660 were determined and compared with those of imipenem. Epinecidin-1 was found to be highly effective at combating peritonitis infection caused by P. aeruginosa R or P. aeruginosa ATCC 19660 in mouse models, without inducing adverse behavioral effects or liver or kidney toxicity. Taken together, our results indicate that epinecidin-1 enhances the rate of survival of mice infected with the bacterial pathogen P. aeruginosa through both antimicrobial and immunomodulatory effects. PMID:24820078

  2. Does Pseudomonas aeruginosa use intercellular signalling to build biofilm communities?

    PubMed

    Kirisits, Mary Jo; Parsek, Matthew R

    2006-12-01

    Pseudomonas aeruginosa is a Gram-negative bacterial species that causes several opportunistic human infections. This organism is also found in the environment, where it is renowned (like other Pseudomonads) for its ability to use a wide variety of compounds as carbon and energy sources. It is a model species for studying group-related behaviour in bacteria. Two types of group behaviour it engages in are intercellular signalling, or quorum sensing, and the formation of surface-associated communities called biofilms. Both quorum sensing and biofilm formation are important in the pathogenesis of P. aeruginosa infections. Quorum sensing regulates the expression of several secreted virulence factors and quorum sensing mutant strains are attenuated for virulence in animal models. Biofilms have been implicated in chronic infections. Two examples are the chronic lung infections afflicting people suffering from cystic fibrosis and colonization of indwelling medical devices. This review will discuss quorum sensing and biofilm formation and studies that link these two processes.

  3. Pseudomonas aeruginosa dose response and bathing water infection.

    PubMed

    Roser, D J; van den Akker, B; Boase, S; Haas, C N; Ashbolt, N J; Rice, S A

    2014-03-01

    Pseudomonas aeruginosa is the opportunistic pathogen mostly implicated in folliculitis and acute otitis externa in pools and hot tubs. Nevertheless, infection risks remain poorly quantified. This paper reviews disease aetiologies and bacterial skin colonization science to advance dose-response theory development. Three model forms are identified for predicting disease likelihood from pathogen density. Two are based on Furumoto & Mickey's exponential 'single-hit' model and predict infection likelihood and severity (lesions/m2), respectively. 'Third-generation', mechanistic, dose-response algorithm development is additionally scoped. The proposed formulation integrates dispersion, epidermal interaction, and follicle invasion. The review also details uncertainties needing consideration which pertain to water quality, outbreaks, exposure time, infection sites, biofilms, cerumen, environmental factors (e.g. skin saturation, hydrodynamics), and whether P. aeruginosa is endogenous or exogenous. The review's findings are used to propose a conceptual infection model and identify research priorities including pool dose-response modelling, epidermis ecology and infection likelihood-based hygiene management.

  4. Flagellation of Pseudomonas aeruginosa in newly divided cells

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Lee, Calvin; Anda, Jaime; Wong, Gerard

    2015-03-01

    For monotrichous bacteria, Pseudomonas aeruginosa, after cell division, one daughter cell inherits the old flagellum from its mother cell, and the other grows a new flagellum during or after cell division. It had been shown that the new flagellum grows at the distal pole of the dividing cell when the two daughter cells haven't completely separated. However, for those daughter cells who grow new flagella after division, it still remains unknown at which pole the new flagellum will grow. Here, by combining our newly developed bacteria family tree tracking techniques with genetic manipulation method, we showed that for the daughter cell who did not inherit the old flagellum, a new flagellum has about 90% chances to grow at the newly formed pole. We proposed a model for flagellation of P. aeruginosa.

  5. Transport of Aromatic Amino Acids by Pseudomonas aeruginosa

    PubMed Central

    Kay, W. W.; Gronlund, Audrey F.

    1971-01-01

    Kinetic studies of the transport of aromatic amino acids by Pseudomonas aeruginosa revealed the existence of two high-affinity transport systems which recognized the three aromatic amino acids. From competition data and studies on the exchange of preformed aromatic amino acid pools, the first transport system was found to be functional with phenylalanine, tyrosine, and tryptophan (in order of decreasing activity), whereas the second system was active with tryptophan, phenylalanine, and tyrosine. The two systems also transported a number of aromatic amino acid analogues but not other amino acids. Mutants defective in each of the two and in both transport systems were isolated and described. When the amino acids were added at low external concentrations to cells growing logarithmically in glucose minimal medium, the tryptophan pool very quickly became saturated. Under identical conditions, phenylalanine and tyrosine each accumulated in the intracellular pool of P. aeruginosa at a concentration which was 10 times greater than that of tryptophan. PMID:4994029

  6. Mass Spectrometry Analysis of Pseudomonas aeruginosa Treated With Azithromycin

    PubMed Central

    Phelan, Vanessa V.; Fang, Jinshu; Dorrestein, Pieter C.

    2015-01-01

    In microbiology, changes in specialized metabolite production (cell-to-cell signaling metabolites, virulence factors and natural products) are measured using phenotypic assays. However, advances in mass spectrometry based techniques including imaging mass spectrometry (IMS) now allow researchers to directly visualize the production of specialized metabolites from microbial colony biofilms. In this study, a combination of IMS and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to visualize the effect of the macrolide antibiotic azithromycin (AZM) on colony biofilms of Pseudomonas aeruginosa. While previous research suggested that AZM may inhibit cell-to-cell signaling of P. aeruginosa and thereby reducing pathogenicity, we observed no clear decrease in specialized metabolite production. PMID:25801585

  7. Regulation of Pseudomonas aeruginosa Virulence by Distinct Iron Sources

    PubMed Central

    Reinhart, Alexandria A.; Oglesby-Sherrouse, Amanda G.

    2016-01-01

    Pseudomonas aeruginosa is a ubiquitous environmental bacterium and versatile opportunistic pathogen. Like most other organisms, P. aeruginosa requires iron for survival, yet iron rapidly reacts with oxygen and water to form stable ferric (FeIII) oxides and hydroxides, limiting its availability to living organisms. During infection, iron is also sequestered by the host innate immune system, further limiting its availability. P. aeruginosa’s capacity to cause disease in diverse host environments is due to its ability to scavenge iron from a variety of host iron sources. Work over the past two decades has further shown that different iron sources can affect the expression of distinct virulence traits. This review discusses how the individual components of P. aeruginosa’s iron regulatory network allow this opportunist to adapt to a multitude of host environments during infection. PMID:27983658

  8. Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa.

    PubMed

    Evans, L R; Linker, A

    1973-11-01

    The slime polysaccharides produced by Pseudomonas aeruginosa isolated from a variety of human infections were investigated. Slime production in culture seemed optimal when adequate amounts of carbohydrate were present and under conditions of either high osmotic pressure or inadequate protein supply. The polysaccharides produced by the organisms were similar to each other, to the slime of Azotobacter vinelandii, and to seaweed alginic acids. They were composed of beta-1,4-linked d-mannuronic acid residues and variable amounts of its 5-epimer l-guluronic acid. All bacterial polymers contained o-acetyl groups which are absent in the alginates. The polysaccharides differed considerably in the ratio of mannuronic to guluronic acid content and in the number of o-acetyl groups. The particular composition of the slime was not found to be characteristic for the disease process from which the mucoid variants of P. aeruginosa were obtained.

  9. Alginate Overproduction Affects Pseudomonas aeruginosa Biofilm Structure and Function

    PubMed Central

    Hentzer, Morten; Teitzel, Gail M.; Balzer, Grant J.; Heydorn, Arne; Molin, Søren; Givskov, Michael; Parsek, Matthew R.

    2001-01-01

    During the course of chronic cystic fibrosis (CF) infections, Pseudomonas aeruginosa undergoes a conversion to a mucoid phenotype, which is characterized by overproduction of the exopolysaccharide alginate. Chronic P. aeruginosa infections involve surface-attached, highly antibiotic-resistant communities of microorganisms organized in biofilms. Although biofilm formation and the conversion to mucoidy are both important aspects of CF pathogenesis, the relationship between them is at the present unclear. In this study, we report that the overproduction of alginate affects biofilm development on an abiotic surface. Biofilms formed by an alginate-overproducing strain exhibit a highly structured architecture and are significantly more resistant to the antibiotic tobramycin than a biofilm formed by an isogenic nonmucoid strain. These results suggest that an important consequence of the conversion to mucoidy is an altered biofilm architecture that shows increasing resistance to antimicrobial treatments. PMID:11514525

  10. Mass Spectrometry Analysis of Pseudomonas aeruginosa Treated with Azithromycin

    NASA Astrophysics Data System (ADS)

    Phelan, Vanessa V.; Fang, Jinshu; Dorrestein, Pieter C.

    2015-06-01

    In microbiology, changes in specialized metabolite production (cell-to-cell signaling metabolites, virulence factors, and natural products) are measured using phenotypic assays. However, advances in mass spectrometry-based techniques including imaging mass spectrometry (IMS) now allow researchers to directly visualize the production of specialized metabolites from microbial colony biofilms. In this study, a combination of IMS and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to visualize the effect of the macrolide antibiotic azithromycin (AZM) on colony biofilms of Pseudomonas aeruginosa. Although previous research suggested that AZM may inhibit cell-to-cell signaling of P. aeruginosa and thereby reduce pathogenicity, we observed no clear decrease in specialized metabolite production.

  11. The Psl economy in early P. aeruginosa biofilm development

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Tseng, Boo Shan; Jin, Fan; Gibiansky, Max; Harrison, Joe; Parsek, Matthew; Wong, Gerard

    2012-02-01

    Psl from P. aeruginosa (PAO1) is a mannose- and galactose-rich exopolysaccharide (EPS). It has been shown that Psl plays an important role in bacterial surface adhesion. Here, we examine role of Psl in controlling motility and microcolony formation during early biofilm development, by translating video microscopy movies into searchable databases of bacterial trajectories. We use a massively-parallel cell tracking algorithm to extract the full motility history of every cell in a large community. We find that at early stages of growth, P. aeruginosa motility is guided by Psl and self-organize in a manner analogous to a capitalist economic system, resulting in a power law bacterial distribution where a small number of bacteria are extremely ``rich'' in communally produced Psl. By comparing overproducers and underproducers of Psl, we find that local Psl levels determine post-division cell fates: High local Psl levels drive the formation of sessile microcolonies that grow exponentially.

  12. [Water used for hemodialysis equipment: where is Pseudomonas aeruginosa?].

    PubMed

    Ducki, Sébastien; Francini, Nicolas; Blech, Marie-Françoise

    2005-05-01

    The water used in dilution of the dialysis solutions constitutes an essential element of the efficiency and the safety of this therapeutics. Water must be specifically treated, and some technical rules must be respected, such as disinfection of the equipment for water treatment, to guarantee a satisfying level for whole the installation. This article reports the investigations, which were led to find the spring of Pseudomonas aeruginosa which contamined in a recurring way the water feeding dialysis equipment. The observation of samples'chronology and an analysis of the sanitary pad suggested a contamination during disinfection. Sample of residual water from the pump used for the injection of Dialox identified this reservoir as origin of the contamination. To stop this contamination by P. aeruginosa, a pump maintenance revision and purges of the system were used.

  13. Airway epithelial control of Pseudomonas aeruginosa infection in cystic fibrosis

    PubMed Central

    Campόdonico, Victoria L; Gadjeva, Mihaela; Paradis-Bleau, Catherine; Uluer, Ahmet; Pier, Gerald B

    2013-01-01

    Defective expression or function of the cystic fibrosis transmembrane conductance regulator (CFTR) underlies the hypersusceptibility of cystic fibrosis (CF) patients to chronic airway infections, particularly with Pseudomonas aeruginosa. CFTR is involved in the specific recognition of P. aeruginosa, thereby contributing to effective innate immunity and proper hydration of the airway surface layer (ASL). In CF, the airway epithelium fails to initiate an appropriate innate immune response, allowing the microbe to bind to mucus plugs that are then not properly cleared because of the dehydrated ASL. Recent studies have identified numerous CFTR-dependent factors that are recruited to the epithelial plasma membrane in response to infection and that are needed for bacterial clearance, a process that is defective in CF patients hypersusceptible to infection with this organism. PMID:18262467

  14. Pseudomonas aeruginosa exoenzyme S induces proliferation of human T lymphocytes.

    PubMed Central

    Mody, C H; Buser, D E; Syme, R M; Woods, D E

    1995-01-01

    Pseudomonas aeruginosa is a gram-negative bacterium that is responsible for devastating acute and chronic infections, which include bronchiectasis in cystic fibrosis, nosocomial pneumonia, and infection of burn wounds. Previous studies have demonstrated that these patients have impaired host responses, including cell-mediated immune responses, which are important in anti-Pseudomonas host defense. The P. aeruginosa exoproduct, exoenzyme S, has a number of characteristics which suggest that it might be important in cell-mediated immunity. To determine whether exoenzyme S activates lymphocytes to proliferate, peripheral blood mononuclear cells (PBMC) from normal volunteers were stimulated with purified exoenzyme S, and the lymphocyte response was assessed by measuring [3H]thymidine uptake and by counting the number of cells after various times in culture. Ninety-five percent of healthy adult donors had a lymphocyte response to exoenzyme S. The optimal lymphocyte response occurred on day 7, with 4 x 10(5) PBMC per microtiter well when cells were stimulated with 10 micrograms exoenzyme S per ml. [3H]thymidine uptake correlated with an increase in the number of mononuclear cells, indicating that proliferation occurred. In unseparated PBMC, T cells, and to a lesser extent B cells, proliferated. Purified T cells proliferated, while purified B cells proliferated only after the addition of irradiated T cells. Thus, T lymphocytes are necessary and sufficient for the proliferative response to exoenzyme S. We speculate that exoenzyme S from P. aeruginosa is important in T-lymphocyte-mediated host defense to P. aeruginosa. In strategies to enhance impaired cell-mediated immunity, exoenzyme S should be considered as a potential stimulant. PMID:7537248

  15. Membrane proteomes of Pseudomonas aeruginosa and Acinetobacter baumannii.

    PubMed

    Dé, E; Cosette, P; Coquet, L; Siroy, A; Alexandre, S; Duncan, A; Naudin, B; Rihouey, C; Schaumann, A; Junter, G A; Jouenne, T

    2011-12-01

    Acinetobacter baumannii and Pseudomonas aeruginosa are known for their intrinsic resistance to antibiotics. Between mechanisms involved in this resistance, diminished expression of outer membrane proteins and up-regulation of efflux pumps play an important role. The characterization of membrane proteins is consequently necessary because of their importance in the antibiotic resistance but also in virulence. This review presents proteomic investigations aiming to describe the protein content of the membranes of these two bacterial species.

  16. [Properties of a nitrite reductase inhibitor protein from Pseudomonas aeruginosa].

    PubMed

    Karapetian, A V; Nalbandian, R M

    1993-08-01

    The amino acid composition and major physico-chemical properties of the "nonblue" copper protein isolated earlier from Pseudomonas aeruginosa have been determined. It has been found that the azurin oxidase, cytochrome c551 oxidase and superoxide dismutase activities of the enzyme are inhibited by this protein. The inhibition seems to be due to the protein interaction with the electron-accepting center of nitrite reductase.

  17. Functionalized polyanilines disrupt Pseudomonas aeruginosa and Staphylococcus aureus biofilms.

    PubMed

    Gizdavic-Nikolaidis, Marija R; Pagnon, Joanne C; Ali, Naseem; Sum, Reuben; Davies, Noel; Roddam, Louise F; Ambrose, Mark

    2015-12-01

    The purpose of the present study was to investigate the antimicrobial effects of functionalized polyanilines (fPANIs) against stationary phase cells and biofilms of Pseudomonas aeruginosa and Staphylococcus aureus using homopolymer of sulfanilic acid (poly-SO3H) as a model. The chemically synthesized poly-SO3H was characterized using Fourier Transform Infra-Red (FTIR) and Ultraviolet-Visible (UV-Vis) spectroscopies. The molecular weight (Mw) and elemental analysis of homopolymer poly-SO3H were also examined. We found that poly-SO3H was bactericidal against stationary phase cells of P. aeruginosa and S. aureus at a concentration of 20 mgml(-1). Surprisingly, we discovered that the same concentration (20 mgml(-1)) of poly-SO3H significantly disrupted and killed bacterial cells present in pre-established forty-eight hour static biofilms of these organisms, as shown by crystal violet and bacterial live/dead fluorescence staining assays. In support of these data, poly-SO3H extensively diminished the expression of bacterial genes related to biofilm formation in stationary phase cells of P. aeruginosa, and seemed to greatly reduce the amount of the quorum sensing molecule N-(3-oxododecanoyl)-l-homoserine lactone (3OC12-HSL) able to be recovered from biofilms of this organism. Furthermore, we found that poly-SO3H was able to effectively penetrate and kill cells in biofilms formed by the P. aeruginosa (AESIII) isolate derived from the sputum of a cystic fibrosis patient. Taken together, the results of the present study emphasise the broad antimicrobial activities of fPANI, and suggest that they could be developed further and used in some novel ways to construct medical devices and/or industrial equipment that are refractory to colonization by biofilm-forming bacteria.

  18. Enterobactin-mediated iron transport in Pseudomonas aeruginosa.

    PubMed Central

    Poole, K; Young, L; Neshat, S

    1990-01-01

    A pyoverdine-deficient strain of Pseudomonas aeruginosa was unable to grow in an iron-deficient minimal medium in the presence of the nonmetabolizable iron chelator ethylene diamine-di(omega-hydroxyphenol acetic acid) (EDDHA), although addition of enterobactin to EDDHA-containing minimal media did restore growth of the pyoverdine-deficient P. aeruginosa. Consistent with the apparent ability of enterobactin to provide iron to P. aeruginosa, enterobactin-dependent 55Fe3+ uptake was observed in cells of P. aeruginosa previously grown in an iron-deficient medium containing enterobactin (or enterobactin-containing Escherichia coli culture supernatant). This uptake was energy dependent, was observable at low concentrations (60 nM) of FeCl3, and was absent in cells cultured without enterobactin. A novel protein with a molecular weight of approximately 80,000 was identified in the outer membranes of cells grown in iron-deficient minimal medium containing enterobactin, concomitant with the induction of enterobactin-dependent iron uptake. A Tn501 insertion mutant lacking this protein was isolated and shown to be deficient in enterobactin-mediated iron transport at 60 nM FeCl3, although it still exhibited enterobactin-dependent growth in iron-deficient medium containing EDDHA. It was subsequently observed that the mutant was, however, capable of enterobactin-mediated iron transport at much higher concentrations (600 nM) of FeCl3. Indeed, enterobactin-dependent iron uptake at this concentration of iron was observed in both the mutant and parent strains irrespective of whether they had been cultured in the presence of enterobactin.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:2174865

  19. Genetics of O-Antigen Biosynthesis in Pseudomonas aeruginosa

    PubMed Central

    Rocchetta, H. L.; Burrows, L. L.; Lam, J. S.

    1999-01-01

    Pathogenic bacteria produce an elaborate assortment of extracellular and cell-associated bacterial products that enable colonization and establishment of infection within a host. Lipopolysaccharide (LPS) molecules are cell surface factors that are typically known for their protective role against serum-mediated lysis and their endotoxic properties. The most heterogeneous portion of LPS is the O antigen or O polysaccharide, and it is this region which confers serum resistance to the organism. Pseudomonas aeruginosa is capable of concomitantly synthesizing two types of LPS referred to as A band and B band. The A-band LPS contains a conserved O polysaccharide region composed of d-rhamnose (homopolymer), while the B-band O-antigen (heteropolymer) structure varies among the 20 O serotypes of P. aeruginosa. The genes coding for the enzymes that direct the synthesis of these two O antigens are organized into two separate clusters situated at different chromosomal locations. In this review, we summarize the organization of these two gene clusters to discuss how A-band and B-band O antigens are synthesized and assembled by dedicated enzymes. Examples of unique proteins required for both A-band and B-band O-antigen synthesis and for the synthesis of both LPS and alginate are discussed. The recent identification of additional genes within the P. aeruginosa genome that are homologous to those in the A-band and B-band gene clusters are intriguing since some are able to influence O-antigen synthesis. These studies demonstrate that P. aeruginosa represents a unique model system, allowing studies of heteropolymeric and homopolymeric O-antigen synthesis, as well as permitting an examination of the interrelationship of the synthesis of LPS molecules and other virulence determinants. PMID:10477307

  20. Effect of Tyrosol and Farnesol on Virulence and Antibiotic Resistance of Clinical Isolates of Pseudomonas aeruginosa.

    PubMed

    Abdel-Rhman, Shaymaa Hassan; El-Mahdy, Areej Mostafa; El-Mowafy, Mohammed

    2015-01-01

    Mixed-species biofilms could create a protected environment that allows for survival to external antimicrobials and allows different bacterial-fungal interactions. Pseudomonas aeruginosa-Candida albicans coexistence is an example for such mixed-species community. Numerous reports demonstrated how P. aeruginosa or its metabolites could influence the growth, morphogenesis, and virulence of C. albicans. In this study, we investigated how the C. albicans quorum sensing compounds, tyrosol and farnesol, might affect Egyptian clinical isolates of P. aeruginosa regarding growth, antibiotic sensitivity, and virulence. We could demonstrate that tyrosol possesses an antibacterial activity against P. aeruginosa (10 µM inhibited more than 50% of growth after 16 h cultivation). Moreover, we could show for the first time that tyrosol strongly inhibits the production of the virulence factors hemolysin and protease in P. aeruginosa, whereas farnesol inhibits, to lower extent, hemolysin production in this bacterial pathogen. Cumulatively, tyrosol is expected to strongly affect P. aeruginosa in mixed microbial biofilm.

  1. Light intensity adaptation and phycobilisome composition of Microcystis aeruginosa

    SciTech Connect

    Raps, S.; Kycia, J.H.; Ledbetter, M.C.; Siegelman, H.W.

    1985-12-01

    Phycobilisomes isolated from Microcystis aeruginosa grown to midlog at high light (270 microeinsteins per square meter per second) or at low light intensities (40 microeinsteins per square meter per second) were found to be identical. Electron micrographs established that they have a triangular central core apparently consisting of three allophycocyanin trimers surrounded by six rods, each composed of two hexameric phycocyanin molecules. The apparent mass of a phycobilisome obtained by gel filtration is 2.96 x 10/sup 6/ daltons. The molar ratio of the phycobiliproteins per phycobilisome is 12 phycocyanin hexamers:9 allophycocyanin trimers. The electron microscopic observations combined with the phycobilisome apparent mass and the phycobiliprotein stoichiometry data indicate that M. aeruginosa phycobilisomes are composed of a triangular central core of three stacks of three allophycocyanin trimers and six rods each containing two phycocyanin hexamers. Adaptation of M. aeruginosa to high light intensity results in a decrease in the number of phycobilisomes per cell with no alteration in phycobilisome composition or structure.

  2. Heterogeneity of Pseudomonas aeruginosa in Brazilian Cystic Fibrosis Patients

    PubMed Central

    Silbert, Suzane; Barth, Afonso Luis; Sader, Hélio S.

    2001-01-01

    The aim of this study was to assess the diversity and genomic variability of Pseudomonas aeruginosa isolates from cystic fibrosis (CF) patients being treated at a university hospital in Brazil. Ninety-seven isolates of P. aeruginosa from 43 CF patients were characterized by macrorestriction analysis of chromosomal DNA by pulsed-field gel electrophoresis (PFGE) and tested for susceptibility to 20 antimicrobial agents by broth microdilution. It was possible to evaluate single isolates from 20 patients and multiple isolates (two to seven) from 23 patients collected during a 22-month period. Among all of the unrelated patients, we detected only one pair of patients sharing a common strain. Among the 77 isolates from 23 patients who had multiple isolates analyzed, we identified 37 major types by PFGE, and five different colonization patterns were recognized. The isolates were susceptible to several antimicrobial agents, although consecutive isolates from the same patient may display differences in their susceptibilities. Mucoid isolates were more resistant (P < 0.001) than nonmucoid isolates to five antibiotics. Our results indicate that CF patients remain colonized by more than one strain of P. aeruginosa for long periods of time. In addition, the finding of several different genotypes in the same patient suggests that the colonizing strain may occasionally be replaced. PMID:11682517

  3. Exploitation of syndecan-1 shedding by Pseudomonas aeruginosa enhances virulence.

    PubMed

    Park, P W; Pier, G B; Hinkes, M T; Bernfield, M

    2001-05-03

    Cell-surface heparan sulphate proteoglycans (HSPGs) are ubiquitous and abundant receptors/co-receptors of extracellular ligands, including many microbes. Their role in microbial infections is poorly defined, however, because no cell-surface HSPG has been clearly connected to the pathogenesis of a particular microbe. We have previously shown that Pseudomonas aeruginosa, through its virulence factor LasA, enhances the in vitro shedding of syndecan-1-the predominant cell-surface HSPG of epithelia. Here we show that shedding of syndecan-1 is also activated by P. aeruginosa in vivo, and that the resulting syndecan-1 ectodomains enhance bacterial virulence in newborn mice. Newborn mice deficient in syndecan-1 resist P. aeruginosa lung infection but become susceptible when given purified syndecan-1 ectodomains or heparin, but not when given ectodomain core protein, indicating that the ectodomain's heparan sulphate chains are the effectors. In wild-type newborn mice, inhibition of syndecan-1 shedding or inactivation of the shed ectodomain's heparan sulphate chains prevents lung infection. Our findings uncover a pathogenetic mechanism in which a host response to tissue injury-syndecan-1 shedding-is exploited to enhance microbial virulence apparently by modulating host defences.

  4. Human immune response to Pseudomonas aeruginosa mucoid exopolysaccharide (alginate) vaccine.

    PubMed Central

    Pier, G B; DesJardin, D; Grout, M; Garner, C; Bennett, S E; Pekoe, G; Fuller, S A; Thornton, M O; Harkonen, W S; Miller, H C

    1994-01-01

    Chronic lung infection with mucoid Pseudomonas aeruginosa is the major pathologic feature of cystic fibrosis. Previous studies suggested that a failure to produce opsonic antibody to the mucoid exopolysaccharide (MEP; also called alginate) capsule is associated with the maintenance of chronic bacterial infection. Provision of MEP-specific opsonic antibodies has therapeutic potential. To evaluate the ability of MEP to elicit opsonic antibodies, humans were immunized with two lots of MEP vaccine that differed principally in molecular size. Lot 2 had a larger average MEP polymer size. Both vaccines were well tolerated, but lot 1 was poorly immunogenic, inducing long-lived opsonic antibodies in only 2 of 28 vaccinates given doses of 10 to 150 micrograms. In contrast, at the optimal dose of 100 micrograms, lot 2 elicited long-lived opsonic antibodies in 80 to 90% of the vaccinates. The antibodies elicited by both lots enhanced deposition of C3 onto mucoid P. aeruginosa cells and mediated opsonic killing of heterologous mucoid strains expressing distinct MEP antigens. These results indicate that the polymers of MEP with the largest molecular sizes safely elicit opsonic antibodies in a sufficiently large proportion of vaccinates to permit studies of active and passive immunization of cystic fibrosis patients against infection with mucoid P. aeruginosa. PMID:8063415

  5. Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms.

    PubMed

    Kirisits, Mary Jo; Prost, Lynne; Starkey, Melissa; Parsek, Matthew R

    2005-08-01

    In this study, we report the isolation of small, rough, strongly cohesive colony morphology variants from aging Pseudomonas aeruginosa PAO1 biofilms. Similar to many of the P. aeruginosa colony morphology variants previously described in the literature, these variants autoaggregate in liquid culture and hyperadhere to solid surfaces. They also exhibit increased hydrophobicity and reduced motility compared to the wild-type parent strain. Despite the similarities in appearance of our colony morphology variant isolates on solid medium, the isolates showed a range of responses in various phenotypic assays. These variants form biofilms with significant three-dimensional structure and more biomass than the wild-type parent. To further explore the nature of the variants, their transcriptional profiles were evaluated. The variants generally showed increased expression of the psl and pel loci, which have been previously implicated in the adherence of P. aeruginosa to solid surfaces. When a mutation in the psl locus was introduced into a colony morphology variant, the colony morphology was only partially affected, but hyperadherence and autoaggregation were lost. Finally, similar colony morphology variants were found in isolates from cystic fibrosis patients. These variants displayed many of the same characteristics as the laboratory variants, suggesting a link between laboratory and cystic fibrosis biofilms.

  6. Origin and Impact of Nitric Oxide in Pseudomonas aeruginosa Biofilms

    PubMed Central

    2015-01-01

    The formation of the organized bacterial community called biofilm is a crucial event in bacterial physiology. Given that biofilms are often refractory to antibiotics and disinfectants to which planktonic bacteria are susceptible, their formation is also an industrially and medically relevant issue. Pseudomonas aeruginosa, a well-known human pathogen causing acute and chronic infections, is considered a model organism to study biofilms. A large number of environmental cues control biofilm dynamics in bacterial cells. In particular, the dispersal of individual cells from the biofilm requires metabolic and morphological reprogramming in which the second messenger bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP) plays a central role. The diatomic gas nitric oxide (NO), a well-known signaling molecule in both prokaryotes and eukaryotes, is able to induce the dispersal of P. aeruginosa and other bacterial biofilms by lowering c-di-GMP levels. In this review, we summarize the current knowledge on the molecular mechanisms connecting NO sensing to the activation of c-di-GMP-specific phosphodiesterases in P. aeruginosa, ultimately leading to c-di-GMP decrease and biofilm dispersal. PMID:26260455

  7. Measuring antimicrobial susceptibility of Pseudomonas aeruginosa using Poloxamer 407 gel.

    PubMed

    Yamada, Hiroyuki; Koike, Naohito; Ehara, Tomoko; Matsumoto, Tetsuya

    2011-04-01

    Pseudomonas aeruginosa is a Gram-negative bacterium that causes various opportunistic infections. Chronic and intractable infections with P. aeruginosa are closely related to the high levels of resistance displayed by this organism to antimicrobial agents and its ability to form biofilms. Although the standard method for examining antimicrobial resistance involves susceptibility testing using Mueller-Hinton agar or broth, this method does not take into account the influence of biofilm formation on antimicrobial susceptibility. Poloxamer 407 is a hydrophilic, nonionic surfactant of the more general class of copolymers that can be used to culture bacteria with similar properties as cells in a biofilm environment. Therefore, the aim of this study was to compare the antimicrobial susceptibility of bacteria cultured in Poloxamer 407 gel to those grown on Mueller-Hinton agar using the Kirby-Bauer disk diffusion method with 24 strains of P. aeruginosa. Antimicrobial sensibility differed between the two mediums, with >60% of the strains displaying increased resistance to β-lactams when cultured on Poloxamer 407 gel. In addition, scanning electron microscopy revealed that typical biofilm formation and extracellular polymeric substance production was only observed with bacteria grown on Poloxamer 407 gel. Therefore, antimicrobial susceptibility test using Poloxamer 407 gel may provide more accurate information and allow the selection of suitable antimicrobial agents for treating patients infected with biofilm-forming pathogens.

  8. Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems

    PubMed Central

    Singh, Braj R.; Singh, Brahma N.; Singh, Akanksha; Khan, Wasi; Naqvi, Alim H.; Singh, Harikesh B.

    2015-01-01

    Quorum sensing (QS) is a chemical communication process that Pseudomonas aeruginosa uses to regulate virulence and biofilm formation. Disabling of QS is an emerging approach for combating its pathogenicity. Silver nanoparticles (AgNPs) have been widely applied as antimicrobial agents against human pathogenic bacteria and fungi, but not for the attenuation of bacterial QS. Here we mycofabricated AgNPs (mfAgNPs) using metabolites of soil fungus Rhizopus arrhizus BRS-07 and tested their effect on QS-regulated virulence and biofilm formation of P. aeruginosa. Transcriptional studies demonstrated that mfAgNPs reduced the levels of LasIR-RhlIR. Treatment of mfAgNPs inhibited biofilm formation, production of several virulence factors (e.g. LasA protease, LasB elastrase, pyocyanin, pyoverdin, pyochelin, rhamnolipid, and alginate) and reduced AHLs production. Further genes quantification analyses revealed that mfAgNPs significantly down-regulated QS-regulated genes, specifically those encoded to the secretion of virulence factors. The results clearly indicated the anti-virulence property of mfAgNPs by inhibiting P. aeruginosa QS signaling. PMID:26347993

  9. In vitro antimicrobial activity of LED irradiation on Pseudomonas aeruginosa.

    PubMed

    Petrini, Morena; Trentini, Paolo; Tripodi, Domenico; Spoto, Giuseppe; D'Ercole, Simonetta

    2017-03-01

    Pseudomonas aeruginosa is an opportunistic pathogen responsible of many deaths due to nosocomial pneumonia each year. It is particularly resistant to many different classes of antibiotics and disinfectants. For all these reasons, there is the necessity to find novel approaches of treatment. The aim of this study was to evaluate the effect of 880nm light emitting diodes (LED) irradiation on P. aeruginosa, in vitro. Different LED irradiation parameters (time, energy output and the addition of methylene blue and chlorhexidine) have been tested in order to evaluate the effects on this bacterium. After treatment, the colony forming units per milliliter (CFU mL-1) were recorded and the data were submitted to ANOVA and Bonferroni post hoc tests at a level of significance of 5%. A statistical significant reduction of bacterial count has been registered after 5min of LED irradiation. The antibacterial effect was directly proportional to irradiation time and the output energy. The pre-treatment with methylene blue, seems to be not effective against P. aeruginosa, independently from irradiation parameters. On the contrary, the contemporary action of LED and chlorhexidine has shown a great reduction of bacterial count that was statistical significant respect chlorhexidine and LED alone. The effect of LED irradiation was visible also after 24h, when a lower bacterial count characterized all irradiated samples respect controls.

  10. Indole and 7‐hydroxyindole diminish Pseudomonas aeruginosa virulence

    PubMed Central

    Lee, Jintae; Attila, Can; Cirillo, Suat L. G.; Cirillo, Jeffrey D.; Wood, Thomas K.

    2009-01-01

    Summary Indole is an extracellular biofilm signal for Escherichia coli, and many bacterial oxygenases readily convert indole to various oxidized compounds including 7‐hydroxyindole (7HI). Here we investigate the impact of indole and 7HI on Pseudomonas aeruginosa PAO1 virulence and quorum sensing (QS)‐regulated phenotypes; this strain does not synthesize these compounds but degrades them rapidly. Indole and 7HI both altered extensively gene expression in a manner opposite that of acylhomoserine lactones; the most repressed genes encode the mexGHI‐opmD multidrug efflux pump and genes involved in the synthesis of QS‐regulated virulence factors including pyocyanin (phz operon), 2‐heptyl‐3‐hydroxy‐4(1H)‐quinolone (PQS) signal (pqs operon), pyochelin (pch operon) and pyoverdine (pvd operon). Corroborating these microarray results, indole and 7HI decreased production of pyocyanin, rhamnolipid, PQS and pyoverdine and enhanced antibiotic resistance. In addition, indole affected the utilization of carbon, nitrogen and phosphorus, and 7HI abolished swarming motility. Furthermore, 7HI reduced pulmonary colonization of P. aeruginosa in guinea pigs and increased clearance in lungs. Hence, indole‐related compounds have potential as a novel antivirulence approach for the recalcitrant pathogen P. aeruginosa. PMID:21261883

  11. Indole and 7-hydroxyindole diminish Pseudomonas aeruginosa virulence.

    PubMed

    Lee, Jintae; Attila, Can; Cirillo, Suat L G; Cirillo, Jeffrey D; Wood, Thomas K

    2009-01-01

    Indole is an extracellular biofilm signal for Escherichia coli, and many bacterial oxygenases readily convert indole to various oxidized compounds including 7-hydroxyindole (7HI). Here we investigate the impact of indole and 7HI on Pseudomonas aeruginosa PAO1 virulence and quorum sensing (QS)-regulated phenotypes; this strain does not synthesize these compounds but degrades them rapidly. Indole and 7HI both altered extensively gene expression in a manner opposite that of acylhomoserine lactones; the most repressed genes encode the mexGHI-opmD multidrug efflux pump and genes involved in the synthesis of QS-regulated virulence factors including pyocyanin (phz operon), 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) signal (pqs operon), pyochelin (pch operon) and pyoverdine (pvd operon). Corroborating these microarray results, indole and 7HI decreased production of pyocyanin, rhamnolipid, PQS and pyoverdine and enhanced antibiotic resistance. In addition, indole affected the utilization of carbon, nitrogen and phosphorus, and 7HI abolished swarming motility. Furthermore, 7HI reduced pulmonary colonization of P. aeruginosa in guinea pigs and increased clearance in lungs. Hence, indole-related compounds have potential as a novel antivirulence approach for the recalcitrant pathogen P. aeruginosa.

  12. Strategies for improved rhamnolipid production by Pseudomonas aeruginosa PA1

    PubMed Central

    Pereira Jr, Nei; Freire, Denise M.G.

    2016-01-01

    Rhamnolipids are biosurfactants with potential for diversified industrial and environmental uses. The present study evaluated three strategies for increasing the production of rhamnolipid-type biosurfactants produced by Pseudomonas aeruginosa strain PA1. The influence of pH, the addition of P. aeruginosa spent culture medium and the use of a fed-batch process were examined. The culture medium adjusted to pH 7.0 was the most productive. Furthermore, the pH of the culture medium had a measurable effect on the ratio of synthesized mono- and dirhamnolipids. At pH values below 7.3, the proportion of monorhamnolipids decreased from 45 to 24%. The recycling of 20% of the spent culture medium in where P. aeruginosa was grown up to the later stationary phase was responsible for a 100% increase in rhamnolipid volumetric productivity in the new culture medium. Finally, the use of fed-batch operation under conditions of limited nitrogen resulted in a 3.8-fold increase in the amount of rhamnolipids produced (2.9 g L−1–10.9 g L−1). These results offer promising pathways for the optimization of processes for the production of rhamnolipids. PMID:27257553

  13. Gallium induces the production of virulence factors in Pseudomonas aeruginosa.

    PubMed

    García-Contreras, Rodolfo; Pérez-Eretza, Berenice; Lira-Silva, Elizabeth; Jasso-Chávez, Ricardo; Coria-Jiménez, Rafael; Rangel-Vega, Adrián; Maeda, Toshinari; Wood, Thomas K

    2014-02-01

    The novel antimicrobial gallium is a nonredox iron III analogue with bacteriostatic and bactericidal properties, effective for the treatment of Pseudomonas aeruginosa in vitro and in vivo in mouse and rabbit infection models. It interferes with iron metabolism, transport, and presumably its homeostasis. As gallium exerts its antimicrobial effects by competing with iron, we hypothesized that it ultimately will lead cells to an iron deficiency status. As iron deficiency promotes the expression of virulence factors in vitro and promotes the pathogenicity of P. aeruginosa in animal models, it is anticipated that treatment with gallium will also promote the production of virulence factors. To test this hypothesis, the reference strain PA14 and two clinical isolates from patients with cystic fibrosis were exposed to gallium, and their production of pyocyanin, rhamnolipids, elastase, alkaline protease, alginate, pyoverdine, and biofilm was determined. Gallium treatment induced the production of all the virulence factors tested in the three strains except for pyoverdine. In addition, as the Ga-induced virulence factors are quorum sensing controlled, co-administration of Ga and the quorum quencher brominated furanone C-30 was assayed, and it was found that C-30 alleviated growth inhibition from gallium. Hence, adding both C-30 and gallium may be more effective in the treatment of P. aeruginosa infections.

  14. Mechanism of azithromycin inhibition of HSL synthesis in Pseudomonas aeruginosa

    PubMed Central

    Zeng, Jianming; Zhang, Ni; Huang, Bin; Cai, Renxin; Wu, Binning; E, Shunmei; Fang, Chengcai; Chen, Cha

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen and a leading cause of nosocomial infections. Unfortunately, P. aeruginosa has low antibiotic susceptibility due to several chromosomally encoded antibiotic resistance genes. Hence, we carried out mechanistic studies to determine how azithromycin affects quorum sensing and virulence in P. aeruginosa. lasI and rhlI single and double mutants were constructed. We then undertook a quantitative approach to determine the optimal concentration of azithromycin and culture time that can affect the expression of HSLs. Furthermore, based on the above results, the effect on quorum sensing was analyzed at a transcriptional level. It was found that 2 μg/mL azithromycin caused a 79% decrease in 3-oxo-C12-HSL secretion during cultivation, while C4-HSL secretion was strongly repressed in the early stages. Azithromycin acts on ribosomes; to determine whether this can elicit alternative modes of gene expression, transcriptional regulation of representative virulence genes was analyzed. We propose a new relationship for lasI and rhlI: lasI acts as a cell density sensor, and rhlI functions as a fine-tuning mechanism for coordination between different quorum sensing systems. PMID:27075730

  15. INHIBITION OF VIRULENCE FACTORS OF PSEUDOMONAS AERUGINOSA BY DICLOFENAC SODIUM.

    PubMed

    Abbas, Hisham A

    2015-01-01

    Resistance of Pseudomonas aeruginosa to antibiotics is a major problem. Targeting virulence factors is an alternative option to avoid the emergence of resistance to antibiotics. The effect of sub-inhibitory concentration of diclofenac sodium on the production of virulence factors of P. aeruginosa was investigated. The virulence factors included protease, haemolysin, pyocyanin and pyoverdin, in addition to pathogenic behaviors such as swimming and twitching motilities and biofilm formation. Diclofenac sodium showed significant inhibition of virulence factors as compared to the control. Diclofenac sodium decreased twitching and swimming motilities by 29.27% and 45.36%, respectively. The percentage of inhibition of pyocyanin by diclofenac sodium was 42.32%. On the other hand, pyoverdin was inhibited to a lesser extent (36.72%). Diclofenac sodium reduced protease by 52.58% and biofilm formation by 58.37%. Moreover, haemolytic activity in the presence of diclofenac sodium was 15.64% as compared to the control (100% haemolytic activity). The inhibitory activities may be due to inhibition of quorum sensing that regulates the expression of virulence factors. This study suggests the potential for the use of diclofenac sodium as an anti-virulence agent in the treatment of Pseudomonas aeruginosa infections.

  16. Quorum sensing and policing of Pseudomonas aeruginosa social cheaters.

    PubMed

    Wang, Meizhen; Schaefer, Amy L; Dandekar, Ajai A; Greenberg, E Peter

    2015-02-17

    The bacterium Pseudomonas aeruginosa is an opportunistic human pathogen that uses a quorum sensing signal cascade to activate expression of dozens of genes when sufficient population densities have been reached. Quorum sensing controls production of several key virulence factors, including secreted proteases such as elastase. Cooperating groups of bacteria growing on protein are susceptible to social cheating by quorum-sensing defective mutants. A possible way to restrict cheater emergence is by policing where cooperators produce costly goods to sanction or punish cheats. The P. aeruginosa LasR-LasI quorum sensing system controls genes including those encoding proteases and also those encoding a second quorum-sensing system, the RhlR-RhlI system, which controls numerous genes including those for cyanide production. By using RhlR quorum sensing mutants and cyanide synthesis mutants, we show that cyanide production is costly and cyanide-producing cooperators use cyanide to punish LasR-null social cheaters. Cooperators are less susceptible to cyanide than are LasR mutants. These experiments demonstrate policing in P. aeruginosa, provide a mechanistic understanding of policing, and show policing involves the cascade organization of the two quorum sensing systems in this bacterium.

  17. Strategies for improved rhamnolipid production by Pseudomonas aeruginosa PA1.

    PubMed

    Soares Dos Santos, Alexandre; Pereira, Nei; Freire, Denise M G

    2016-01-01

    Rhamnolipids are biosurfactants with potential for diversified industrial and environmental uses. The present study evaluated three strategies for increasing the production of rhamnolipid-type biosurfactants produced by Pseudomonas aeruginosa strain PA1. The influence of pH, the addition of P. aeruginosa spent culture medium and the use of a fed-batch process were examined. The culture medium adjusted to pH 7.0 was the most productive. Furthermore, the pH of the culture medium had a measurable effect on the ratio of synthesized mono- and dirhamnolipids. At pH values below 7.3, the proportion of monorhamnolipids decreased from 45 to 24%. The recycling of 20% of the spent culture medium in where P. aeruginosa was grown up to the later stationary phase was responsible for a 100% increase in rhamnolipid volumetric productivity in the new culture medium. Finally, the use of fed-batch operation under conditions of limited nitrogen resulted in a 3.8-fold increase in the amount of rhamnolipids produced (2.9 g L(-1)-10.9 g L(-1)). These results offer promising pathways for the optimization of processes for the production of rhamnolipids.

  18. Pseudomonas Aeruginosa Lectins As Targets for Novel Antibacterials

    PubMed Central

    Grishin, A. V.; Krivozubov, M. S.; Karyagina, A. S.; Gintsburg, A. L.

    2015-01-01

    Pseudomonas aeruginosa is one of the most widespread and troublesome opportunistic pathogens that is capable of colonizing various human tissues and organs and is often resistant to many currently used antibiotics. This resistance is caused by different factors, including the acquisition of specific resistance genes, intrinsic capability to diminish antibiotic penetration into the bacterial cell, and the ability to form biofilms. This situation has prompted the development of novel compounds differing in their mechanism of action from traditional antibiotics that suppress the growth of microorganisms or directly kill bacteria. Instead, these new compounds should decrease the pathogens’ ability to colonize and damage human tissues by inhibiting the virulence factors and biofilm formation. The lectins LecA and LecB that bind galactose and fucose, as well as oligo- and polysaccharides containing these sugars, are among the most thoroughly-studied targets for such novel antibacterials. In this review, we summarize the results of experiments highlighting the importance of these proteins for P. aeruginosa pathogenicity and provide information on existing lectins inhibitors and their effectiveness in various experimental models. Particular attention is paid to the effects of lectins inhibition in animal models of infection and in clinical practice. We argue that lectins inhibition is a perspective approach to combating P. aeruginosa. However, despite the existence of highly effective in vitro inhibitors, further experiments are required in order to advance these inhibitors into pre-clinical studies. PMID:26085942

  19. Proteolytic regulation of alginate overproduction in Pseudomonas aeruginosa.

    PubMed

    Damron, F Heath; Goldberg, Joanna B

    2012-05-01

    Pseudomonas aeruginosa, a Gram-negative bacterium, is a significant opportunistic pathogen associated with skin and soft tissue infections, nosocomial pneumonia and sepsis. In addition, it can chronically colonize the lungs of cystic fibrosis (CF) patients. Overproduction of the exopolysaccharide called alginate provides P. aeruginosa with a selective advantage and facilitates survival in the CF lung. The in vitro phenotype of alginate overproduction observed on solid culture media is referred to as mucoid. Expression of the alginate machinery and biosynthetic enzymes are controlled by the extracytoplasmic sigma factor, σ(22) (AlgU/T). The key negative regulator of both σ(22) activity and the mucoid phenotype is the cognate anti-sigma factor MucA. MucA sequesters σ(22) to the inner membrane inhibiting the sigma factor's transcriptional activity. The well-studied mechanism for transition to the mucoid phenotype is mutation of mucA, leading to loss of MucA function and therefore activation of σ(22) . Recently, regulated intramembrane proteolysis (RIP) has been recognized as a mechanism whereby proteolysis of the anti-sigma factor MucA leads to active σ(22) allowing P. aeruginosa to respond to environmental stress conditions by overproduction of alginate. The goal of this review is to illuminate the pathways leading to RIP that have been identified and proposed.

  20. General and condition-specific essential functions of Pseudomonas aeruginosa

    PubMed Central

    Lee, Samuel A.; Gallagher, Larry A.; Thongdee, Metawee; Staudinger, Benjamin J.; Lippman, Soyeon; Singh, Pradeep K.; Manoil, Colin

    2015-01-01

    The essential functions of a bacterial pathogen reflect the most basic processes required for its viability and growth, and represent potential therapeutic targets. Most screens for essential genes have assayed a single condition—growth in a rich undefined medium—and thus have not distinguished genes that are generally essential from those that are specific to this particular condition. To help define these classes for Pseudomonas aeruginosa, we identified genes required for growth on six different media, including a medium made from cystic fibrosis patient sputum. The analysis used the Tn-seq circle method to achieve high genome coverage and analyzed more than 1,000,000 unique insertion positions (an average of one insertion every 6.0 bp). We identified 352 general and 199 condition-specific essential genes. A subset of assignments was verified in individual strains with regulated expression alleles. The profile of essential genes revealed that, compared with Escherichia coli, P. aeruginosa is highly vulnerable to mutations disrupting central carbon-energy metabolism and reactive oxygen defenses. These vulnerabilities may arise from the stripped-down architecture of the organism’s carbohydrate utilization pathways and its reliance on respiration for energy generation. The essential function profile thus provides fundamental insights into P. aeruginosa physiology as well as identifying candidate targets for new antibacterial agents. PMID:25848053

  1. Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems.

    PubMed

    Singh, Braj R; Singh, Brahma N; Singh, Akanksha; Khan, Wasi; Naqvi, Alim H; Singh, Harikesh B

    2015-09-08

    Quorum sensing (QS) is a chemical communication process that Pseudomonas aeruginosa uses to regulate virulence and biofilm formation. Disabling of QS is an emerging approach for combating its pathogenicity. Silver nanoparticles (AgNPs) have been widely applied as antimicrobial agents against human pathogenic bacteria and fungi, but not for the attenuation of bacterial QS. Here we mycofabricated AgNPs (mfAgNPs) using metabolites of soil fungus Rhizopus arrhizus BRS-07 and tested their effect on QS-regulated virulence and biofilm formation of P. aeruginosa. Transcriptional studies demonstrated that mfAgNPs reduced the levels of LasIR-RhlIR. Treatment of mfAgNPs inhibited biofilm formation, production of several virulence factors (e.g. LasA protease, LasB elastrase, pyocyanin, pyoverdin, pyochelin, rhamnolipid, and alginate) and reduced AHLs production. Further genes quantification analyses revealed that mfAgNPs significantly down-regulated QS-regulated genes, specifically those encoded to the secretion of virulence factors. The results clearly indicated the anti-virulence property of mfAgNPs by inhibiting P. aeruginosa QS signaling.

  2. Complete Genome Sequencing of Stenotrophomonas acidaminiphila ZAC14D2_NAIMI4_2, a Multidrug-Resistant Strain Isolated from Sediments of a Polluted River in Mexico, Uncovers New Antibiotic Resistance Genes and a Novel Class-II Lasso Peptide Biosynthesis Gene Cluster.

    PubMed

    Vinuesa, Pablo; Ochoa-Sánchez, Luz Edith

    2015-12-10

    Here, we report the first complete genome sequence of a Stenotrophomonas acidaminiphila strain, generated with PacBio RS II single-molecule real-time technology, consisting of a single circular chromosome of 4.13 Mb. We annotated mobile genetic elements and natural product biosynthesis clusters, including a novel class-II lasso peptide with a 7-residue macrolactam ring.

  3. Draft Genome Sequences of Pseudomonas aeruginosa Isolates from Wounded Military Personnel.

    PubMed

    Arivett, Brock A; Ream, Dave C; Fiester, Steven E; Kidane, Destaalem; Actis, Luis A

    2016-08-11

    Pseudomonas aeruginosa, a Gram-negative bacterium that causes severe hospital-acquired infections, is grouped as an ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogen because of its extensive drug resistance phenotypes and effects on human health worldwide. Five multidrug resistant P. aeruginosa strains isolated from wounded military personnel were sequenced and annotated in this work.

  4. Quorum-sensing inhibition abrogates the deleterious impact of Pseudomonas aeruginosa on airway epithelial repair.

    PubMed

    Ruffin, Manon; Bilodeau, Claudia; Maillé, Émilie; LaFayette, Shantelle L; McKay, Geoffrey A; Trinh, Nguyen Thu Ngan; Beaudoin, Trevor; Desrosiers, Martin-Yvon; Rousseau, Simon; Nguyen, Dao; Brochiero, Emmanuelle

    2016-09-01

    Chronic Pseudomonas aeruginosa lung infections are associated with progressive epithelial damage and lung function decline. In addition to its role in tissue injury, the persistent presence of P. aeruginosa-secreted products may also affect epithelial repair ability, raising the need for new antivirulence therapies. The purpose of our study was to better understand the outcomes of P. aeruginosa exoproducts exposure on airway epithelial repair processes to identify a strategy to counteract their deleterious effect. We found that P. aeruginosa exoproducts significantly decreased wound healing, migration, and proliferation rates, and impaired the ability of directional migration of primary non-cystic fibrosis (CF) human airway epithelial cells. Impact of exoproducts was inhibited after mutations in P. aeruginosa genes that encoded for the quorum-sensing (QS) transcriptional regulator, LasR, and the elastase, LasB, whereas impact was restored by LasB induction in ΔlasR mutants. P. aeruginosa purified elastase also induced a significant decrease in non-CF epithelial repair, whereas protease inhibition with phosphoramidon prevented the effect of P. aeruginosa exoproducts. Furthermore, treatment of P. aeruginosa cultures with 4-hydroxy-2,5-dimethyl-3(2H)-furanone, a QS inhibitor, abrogated the negative impact of P. aeruginosa exoproducts on airway epithelial repair. Finally, we confirmed our findings in human airway epithelial cells from patients with CF, a disease featuring P. aeruginosa chronic respiratory infection. These data demonstrate that secreted proteases under the control of the LasR QS system impair airway epithelial repair and that QS inhibitors could be of benefit to counteract the deleterious effect of P. aeruginosa in infected patients.-Ruffin, M., Bilodeau, C., Maillé, É., LaFayette, S. L., McKay, G. A., Trinh, N. T. N., Beaudoin, T., Desrosiers, M.-Y., Rousseau, S., Nguyen, D., Brochiero, E. Quorum-sensing inhibition abrogates the deleterious impact

  5. Alginate Lyase Promotes Diffusion of Aminoglycosides through the Extracellular Polysaccharide of Mucoid Pseudomonas aeruginosa

    PubMed Central

    Hatch, Richard A.; Schiller, Neal L.

    1998-01-01

    We demonstrated that a 2% suspension of Pseudomonas aeruginosa alginate completely blocked the diffusion of gentamicin and tobramycin, but not that of carbenicillin, illustrating how alginate production can help protect P. aeruginosa growing within alginate microcolonies in patients with cystic fibrosis (CF) from the effects of aminoglycosides. This aminoglycoside diffusion barrier was degraded with a semipurified preparation of P. aeruginosa alginate lyase, suggesting that this enzyme deserves consideration as an adjunctive agent for CF patients colonized by mucoid strains of P. aeruginosa. PMID:9559826

  6. Virulence genome analysis of Pseudomonas aeruginosa VRFPA10 recovered from patient with scleritis.

    PubMed

    Murugan, Nandagopal; Malathi, Jambulingam; Umashankar, Vetrivel; Madhavan, Hajib Narahari Rao

    2017-06-01

    Infectious keratitis is a major cause of blindness, next to cataract and majority of cases are mainly caused by gram negative bacterium Pseudomonas aeruginosa (P. aeruginosa). In this study, we investigated a P. aeruginosa VRFPA10 genome which exhibited susceptibility to commonly used drugs in vitro but the patient had poor prognosis due to its hyper virulent nature. Genomic analysis of VRFPA10 deciphered multiple virulence factors and P.aeruginosa Genomic Islands (PAGIs) VRFPA10 genome which correlated with hyper virulence nature of the organism. The genome sequence has been deposited in DDBJ/EMBL/GenBank under the accession numbers LFMZ01000001-LFMZ01000044.

  7. [Justification of the significance of Pseudomonas aeruginosa index in assessing the quality of drinking water].

    PubMed

    Ivanova, L V; Artemova, T Z; Gipp, E K; Zagaĭnova, A V; Maksimkina, T N; Krasniak, A V; Korneĭchuk, S S

    2013-01-01

    The analysis of literature data was carried out and performed research justifying the epidemic value of detection in water P. aeruginosa in drinking and domestic water use. The were revealed features of the vital activity of P aeruginosa in water bodies as opposed to conventional microbiological indicators. It was shown that the coliform group indices can not guarantee the epidemic safety of drinking water use in relation to P aeruginosa. The data obtained justify the need for the introduction of P aeruginosa as an additional index in monitoring the water quality of centralized and decentralized water supply.

  8. Fast and specific detection of Pseudomonas Aeruginosa from other pseudomonas species by PCR

    PubMed Central

    Jami Al-Ahmadi, G.; Zahmatkesh Roodsari, R.

    2016-01-01

    Summary Pseudomonas aeruginosa is an important life-threatening nosocomial pathogen that plays a prominent role in wound infections of burned patients. We designed this study to identify the isolates of P. aeruginosa recovered from burned patients at the genus and species level through primers targeting oprI and oprL genes, and analyzed their antimicrobial resistance pattern. Over a 2-month period, wound samples were taken from burned patients and plated on MacConkey agar. All suspected colonies were primarily screened for P. aeruginosa by a combination of phenotypic tests. Molecular identifications of colonies were done using specific primers for oprI and oprL genes. Bacterial isolates were recovered from burn wound infections. Based on phenotypical identification tests, 138 (34%) P. aeruginosa isolates were identified; whereas by molecular techniques, just 128 P. aeruginosa yielded amplicon of oprL gene using species-specific primers, verifying the identity of P. aeruginosa; the others yielded amplicon of oprI gene using genus-specific primers, confirming the identity of fluorescent pseudomonads. This study indicates that molecular detection of P. aeruginosa in burn patients employing the OprL gene target is a useful technique for the early and precise detection of P. aeruginosa. PCR detection should be carried out as well as phenotypic testing for the best aggressive antibiotic treatment of P. aeruginosa strains at an earlier stage. It also has significant benefits on clinical outcomes. PMID:28289359

  9. Pseudomonas aeruginosa on vinyl-canvas inflatables and foam teaching aids in swimming pools.

    PubMed

    Schets, F M; van den Berg, H H J L; Baan, R; Lynch, G; de Roda Husman, A M

    2014-12-01

    Swimming pool-related Pseudomonas aeruginosa infections mainly result in folliculitis and otitis externa. P. aeruginosa forms biofilms on surfaces in the swimming pool environment. The presence of P. aeruginosa on inflatables and foam teaching aids in 24 public swimming pools in the Netherlands was studied. Samples (n = 230) were taken from 175 objects and analysed for P. aeruginosa by culture. Isolated P. aeruginosa were tested for antibiotic resistance by disk diffusion. P. aeruginosa was detected in 63 samples (27%), from 47 objects (27%) in 19 (79%) swimming pools. More vinyl-canvas objects (44%) than foam objects (20%) were contaminated, as were wet objects (43%) compared to dry objects (13%). Concentrations were variable, and on average higher on vinyl-canvas than on foam objects. Forty of 193 (21%) P. aeruginosa isolates from 11 different objects were (intermediate) resistant to one or more of 12 clinically relevant antibiotics, mostly to imipenem and aztreonam. The immediate risk of a P. aeruginosa infection from exposure to swimming pool objects seems limited, but the presence of P. aeruginosa on pool objects is unwanted and requires attention of pool managers and responsible authorities. Strict drying and cleaning policies are needed for infrequently used vinyl-canvas objects.

  10. Inactivation of Microcystis aeruginosa using dielectric barrier discharge low-temperature plasma

    SciTech Connect

    Pu, Sichuan; Chen, Jierong; Wang, Gang; Li, Xiaoyong; Ma, Yun

    2013-05-13

    The efficiency of Microcystis aeruginosa plasma inactivation was investigated using dielectric barrier discharge low-temperature plasma. The inactivation efficiency was characterized in terms of optical density. The influence of electrical and physicochemical parameters on M. aeruginosa inactivation was studied to determine the optimal experimental conditions. The influence of active species was studied. The proliferation of the M. aeruginosa cells was significantly decreased under plasma exposure. The morphologic changes in M. aeruginosa were characterized under scanning electron microscopy. These results suggest that the low-temperature plasma technology is a promising method for water pollution control.

  11. Pseudomonas aeruginosa forms Biofilms in Acute InfectionIndependent of Cell-to-Cell Signaling

    SciTech Connect

    Schaber, J. Andy; Triffo, W.J.; Suh, Sang J.; Oliver, Jeffrey W.; Hastert, Mary C.; Griswold, John A.; Auer, Manfred; Hamood, Abdul N.; Rumbaugh, Kendra P.

    2006-09-20

    Biofilms are bacterial communities residing within a polysaccharide matrix that are associated with persistence and antibiotic resistance in chronic infections. We show that the opportunistic pathogen Pseudomonas aeruginosa forms biofilms within 8 hours of infection in thermally-injured mice, demonstrating that biofilms contribute to bacterial colonization in acute infections. P. aeruginosa biofilms were visualized within burned tissue surrounding blood vessels and adipose cells. Although quorum sensing (QS), a bacterial signaling mechanism, coordinates differentiation of biofilms in vitro, wild type and QS-deficient P. aeruginosa formed similar biofilms in vivo. Our findings demonstrate that P. aeruginosa forms biofilms on specific host tissues independent of QS.

  12. Cystic fibrosis transmembrane conductance regulator and caveolin-1 regulate epithelial cell internalization of Pseudomonas aeruginosa

    PubMed Central

    Bajmoczi, Milan; Gadjeva, Mihaela; Alper, Seth L.; Pier, Gerald B.; Golan, David E.

    2009-01-01

    Patients with cystic fibrosis (CF) exhibit defective innate immunity and are susceptible to chronic lung infection with Pseudomonas aeruginosa. To investigate the molecular bases for the hypersusceptibility of CF patients to P. aeruginosa, we used the IB3-1 cell line with two defective CF transmembrane conductance regulator (CFTR) genes (ΔF508/W1282X) to generate isogenic stable, clonal lung epithelial cells expressing wild-type (WT)-CFTR with an NH2-terminal green fluorescent protein (GFP) tag. GFP-CFTR exhibited posttranslational modification, subcellular localization, and anion transport function typical of WT-CFTR. P. aeruginosa internalization, a component of effective innate immunity, required functional CFTR and caveolin-1, as shown by: 1) direct correlation between GFP-CFTR expression levels and P. aeruginosa internalization; 2) enhanced P. aeruginosa internalization by aminoglycoside-induced read through of the CFTR W1282X allele in IB3-1 cells; 3) decreased P. aeruginosa internalization following siRNA knockdown of GFP-CFTR or caveolin-1; and 4) spatial association of P. aeruginosa with GFP-CFTR and caveolin-1 at the cell surface. P. aeruginosa internalization also required free lateral diffusion of GFP-CFTR, allowing for bacterial coclustering with GFP-CFTR and caveolin-1 at the plasma membrane. Thus efficient initiation of innate immunity to P. aeruginosa requires formation of an epithelial “internalization platform” involving both caveolin-1 and functional, laterally mobile CFTR. PMID:19386787

  13. Cystic fibrosis transmembrane conductance regulator and caveolin-1 regulate epithelial cell internalization of Pseudomonas aeruginosa.

    PubMed

    Bajmoczi, Milan; Gadjeva, Mihaela; Alper, Seth L; Pier, Gerald B; Golan, David E

    2009-08-01

    Patients with cystic fibrosis (CF) exhibit defective innate immunity and are susceptible to chronic lung infection with Pseudomonas aeruginosa. To investigate the molecular bases for the hypersusceptibility of CF patients to P. aeruginosa, we used the IB3-1 cell line with two defective CF transmembrane conductance regulator (CFTR) genes (DeltaF508/W1282X) to generate isogenic stable, clonal lung epithelial cells expressing wild-type (WT)-CFTR with an NH(2)-terminal green fluorescent protein (GFP) tag. GFP-CFTR exhibited posttranslational modification, subcellular localization, and anion transport function typical of WT-CFTR. P. aeruginosa internalization, a component of effective innate immunity, required functional CFTR and caveolin-1, as shown by: 1) direct correlation between GFP-CFTR expression levels and P. aeruginosa internalization; 2) enhanced P. aeruginosa internalization by aminoglycoside-induced read through of the CFTR W1282X allele in IB3-1 cells; 3) decreased P. aeruginosa internalization following siRNA knockdown of GFP-CFTR or caveolin-1; and 4) spatial association of P. aeruginosa with GFP-CFTR and caveolin-1 at the cell surface. P. aeruginosa internalization also required free lateral diffusion of GFP-CFTR, allowing for bacterial coclustering with GFP-CFTR and caveolin-1 at the plasma membrane. Thus efficient initiation of innate immunity to P. aeruginosa requires formation of an epithelial "internalization platform" involving both caveolin-1 and functional, laterally mobile CFTR.

  14. Effect of Human Burn Wound Exudate on Pseudomonas aeruginosa Virulence

    PubMed Central

    Gonzalez, Manuel R.; Fleuchot, Betty; Lauciello, Leonardo; Jafari, Paris; Applegate, Lee Ann; Raffoul, Wassim; Que, Yok-Ai

    2016-01-01

    ABSTRACT Burn wound sepsis is currently the main cause of morbidity and mortality after burn trauma. Infections by notorious pathogens such as Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii impair patient recovery and can even lead to fatality. In this study, we investigated the effect of burn wound exudates (BWEs) on the virulence of those pathogens. BWEs were collected within 7 days after burn trauma from 5 burn patients. We first monitored their effect on pathogen growth. In contrast to A. baumannii and S. aureus, P. aeruginosa was the only pathogen able to grow within these human fluids. Expression of typical virulence factors such as pyocyanin and pyoverdine was even enhanced compared the levels seen with standard laboratory medium. A detailed chemical composition analysis of BWE was performed, which enabled us to determine the major components of BWE and underline the metabolic modifications induced by burn trauma. These data are essential for the development of an artificial medium mimicking the burn wound environment and the establishment of an in vitro system to analyze the initial steps of burn wound infections. IMPORTANCE Microbial infection of severe burn wounds is currently a major medical challenge. Of the infections by bacteria able to colonize such injuries, those by Pseudomonas aeruginosa are among the most severe, causing major delays in burn patient recovery or leading to fatal issues. In this study, we investigated the growth properties of several burn wound pathogens in biological fluids secreted from human burn wounds. We found that P. aeruginosa strains were able to proliferate but not those of the other pathogens tested. In addition, burn wound exudates (BWEs) stimulate the expression of virulence factors in P. aeruginosa. The chemical composition analysis of BWEs enabled us to determine the major components of these fluids. These data are essential for the development of an artificial medium mimicking the

  15. Effect of Human Burn Wound Exudate on Pseudomonas aeruginosa Virulence.

    PubMed

    Gonzalez, Manuel R; Fleuchot, Betty; Lauciello, Leonardo; Jafari, Paris; Applegate, Lee Ann; Raffoul, Wassim; Que, Yok-Ai; Perron, Karl

    2016-01-01

    Burn wound sepsis is currently the main cause of morbidity and mortality after burn trauma. Infections by notorious pathogens such as Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii impair patient recovery and can even lead to fatality. In this study, we investigated the effect of burn wound exudates (BWEs) on the virulence of those pathogens. BWEs were collected within 7 days after burn trauma from 5 burn patients. We first monitored their effect on pathogen growth. In contrast to A. baumannii and S. aureus, P. aeruginosa was the only pathogen able to grow within these human fluids. Expression of typical virulence factors such as pyocyanin and pyoverdine was even enhanced compared the levels seen with standard laboratory medium. A detailed chemical composition analysis of BWE was performed, which enabled us to determine the major components of BWE and underline the metabolic modifications induced by burn trauma. These data are essential for the development of an artificial medium mimicking the burn wound environment and the establishment of an in vitro system to analyze the initial steps of burn wound infections. IMPORTANCE Microbial infection of severe burn wounds is currently a major medical challenge. Of the infections by bacteria able to colonize such injuries, those by Pseudomonas aeruginosa are among the most severe, causing major delays in burn patient recovery or leading to fatal issues. In this study, we investigated the growth properties of several burn wound pathogens in biological fluids secreted from human burn wounds. We found that P. aeruginosa strains were able to proliferate but not those of the other pathogens tested. In addition, burn wound exudates (BWEs) stimulate the expression of virulence factors in P. aeruginosa. The chemical composition analysis of BWEs enabled us to determine the major components of these fluids. These data are essential for the development of an artificial medium mimicking the burn wound

  16. The increasing threat of Pseudomonas aeruginosa high-risk clones.

    PubMed

    Oliver, Antonio; Mulet, Xavier; López-Causapé, Carla; Juan, Carlos

    2015-01-01

    The increasing prevalence of chronic and hospital-acquired infections produced by multidrug-resistant (MDR) or extensively drug-resistant (XDR) Pseudomonas aeruginosa strains is associated with significant morbidity and mortality. This growing threat results from the extraordinary capacity of this pathogen for developing resistance through chromosomal mutations and from the increasing prevalence of transferable resistance determinants, particularly those encoding carbapenemases or extended-spectrum β-lactamases (ESBLs). P. aeruginosa has a nonclonal epidemic population structure, composed of a limited number of widespread clones which are selected from a background of a large quantity of rare and unrelated genotypes that are recombining at high frequency. Indeed, recent concerning reports have provided evidence of the existence of MDR/XDR global clones, denominated high-risk clones, disseminated in hospitals worldwide; ST235, ST111, and ST175 are likely those more widespread. Noteworthy, the vast majority of infections by MDR, and specially XDR, strains are produced by these and few other clones worldwide. Moreover, the association of high-risk clones, particularly ST235, with transferable resistance is overwhelming; nearly 100 different horizontally-acquired resistance elements and up to 39 different acquired β-lactamases have been reported so far among ST235 isolates. Likewise, MDR internationally-disseminated epidemic strains, such as the Liverpool Epidemic Strain (LES, ST146), have been noted as well among cystic fibrosis patients. Here we review the population structure, epidemiology, antimicrobial resistance mechanisms and virulence of the P. aeruginosa high-risk clones. The phenotypic and genetic factors potentially driving the success of high-risk clones, the aspects related to their detection in the clinical microbiology laboratory and the implications for infection control and public health are also discussed.

  17. Pseudomonas aeruginosa EftM Is a Thermoregulated Methyltransferase*

    PubMed Central

    Owings, Joshua P.; Kuiper, Emily G.; Prezioso, Samantha M.; Meisner, Jeffrey; Varga, John J.; Zelinskaya, Natalia; Dammer, Eric B.; Duong, Duc M.; Seyfried, Nicholas T.; Albertí, Sebastián; Conn, Graeme L.; Goldberg, Joanna B.

    2016-01-01

    Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that trimethylates elongation factor-thermo-unstable (EF-Tu) on lysine 5. Lysine 5 methylation occurs in a temperature-dependent manner and is generally only seen when P. aeruginosa is grown at temperatures close to ambient (25 °C) but not at higher temperatures (37 °C). We have previously identified the gene, eftM (for EF-Tu-modifying enzyme), responsible for this modification and shown its activity to be associated with increased bacterial adhesion to and invasion of respiratory epithelial cells. Bioinformatic analyses predicted EftM to be a Class I S-adenosyl-l-methionine (SAM)-dependent methyltransferase. An in vitro methyltransferase assay was employed to show that, in the presence of SAM, EftM directly trimethylates EF-Tu. A natural variant of EftM, with a glycine to arginine substitution at position 50 in the predicted SAM-binding domain, lacks both SAM binding and enzyme activity. Mass spectrometry analysis of the in vitro methyltransferase reaction products revealed that EftM exclusively methylates at lysine 5 of EF-Tu in a distributive manner. Consistent with the in vivo temperature dependence of methylation of EF-Tu, preincubation of EftM at 37 °C abolished methyltransferase activity, whereas this activity was retained when EftM was preincubated at 25 °C. Irreversible protein unfolding at 37 °C was observed, and we propose that this instability is the molecular basis for the temperature dependence of EftM activity. Collectively, our results show that EftM is a thermolabile, SAM-dependent methyltransferase that directly trimethylates lysine 5 of EF-Tu in P. aeruginosa. PMID:26677219

  18. Biotic inactivation of the Pseudomonas aeruginosa quinolone signal molecule.

    PubMed

    Soh, Eliza Ye-Chen; Chhabra, Siri R; Halliday, Nigel; Heeb, Stephan; Müller, Christine; Birmes, Franziska S; Fetzner, Susanne; Cámara, Miguel; Chan, Kok-Gan; Williams, Paul

    2015-11-01

    In Pseudomonas aeruginosa, quorum sensing (QS) regulates the production of secondary metabolites, many of which are antimicrobials that impact on polymicrobial community composition. Consequently, quenching QS modulates the environmental impact of P. aeruginosa. To identify bacteria capable of inactivating the QS signal molecule 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS), a minimal medium containing PQS as the sole carbon source was used to enrich a Malaysian rainforest soil sample. This yielded an Achromobacter xylosoxidans strain (Q19) that inactivated PQS, yielding a new fluorescent compound (I-PQS) confirmed as PQS-derived using deuterated PQS. The I-PQS structure was elucidated using mass spectrometry and nuclear magnetic resonance spectroscopy as 2-heptyl-2-hydroxy-1,2-dihydroquinoline-3,4-dione (HHQD). Achromobacter xylosoxidans Q19 oxidized PQS congeners with alkyl chains ranging from C1 to C5 and also N-methyl PQS, yielding the corresponding 2-hydroxy-1,2-dihydroquinoline-3,4-diones, but was unable to inactivate the PQS precursor HHQ. This indicates that the hydroxyl group at position 3 in PQS is essential and that A. xylosoxidans inactivates PQS via a pathway involving the incorporation of oxygen at C2 of the heterocyclic ring. The conversion of PQS to HHQD also occurred on incubation with 12/17 A. xylosoxidans strains recovered from cystic fibrosis patients, with P. aeruginosa and with Arthrobacter, suggesting that formation of hydroxylated PQS may be a common mechanism of inactivation.

  19. Regional Control of Chromosome Segregation in Pseudomonas aeruginosa

    PubMed Central

    Lagage, Valentine

    2016-01-01

    Chromosome segregation in bacteria occurs concomitantly with DNA replication, and the duplicated regions containing the replication origin oriC are generally the first to separate and migrate to their final specific location inside the cell. In numerous bacterial species, a three-component partition machinery called the ParABS system is crucial for chromosome segregation. This is the case in the gammaproteobacterium Pseudomonas aeruginosa, where impairing the ParABS system is very detrimental for growth, as it increases the generation time and leads to the formation of anucleate cells and to oriC mispositioning inside the cell. In this study, we investigate in vivo the ParABS system in P. aeruginosa. Using chromatin immuno-precipitation coupled with high throughput sequencing, we show that ParB binds to four parS site located within 15 kb of oriC in vivo, and that this binding promotes the formation of a high order nucleoprotein complex. We show that one parS site is enough to prevent anucleate cell formation, therefore for correct chromosome segregation. By displacing the parS site from its native position on the chromosome, we demonstrate that parS is the first chromosomal locus to be separated upon DNA replication, which indicates that it is the site of force exertion of the segregation process. We identify a region of approximatively 650 kb surrounding oriC in which the parS site must be positioned for chromosome segregation to proceed correctly, and we called it “competence zone” of the parS site. Mutant strains that have undergone specific genetic rearrangements allow us to propose that the distance between oriC and parS defines this “competence zone”. Implications for the control of chromosome segregation in P. aeruginosa are discussed. PMID:27820816

  20. Emergence of colistin resistant Pseudomonas aeruginosa at Tabriz hospitals, Iran

    PubMed Central

    Goli, Hamid Reza; Nahaei, Mohammad Reza; Ahangarzadeh Rezaee, Mohammad; Hasani, Alka; Samadi Kafil, Hossein; Aghazadeh, Mohammad

    2016-01-01

    Background and Objectives: The prevalence of multidrug resistant Pseudomonas aeruginosa is the main reason of new drugs resurgence such as colistin. The main objectives of this study were to determine the antibiotic resistance pattern and the rate of colistin resistance along with its correlation with overexpression of MexAB-OprM and MexXY-OprM efflux pumps among P. aeruginosa isolates. Materials and Methods: Hundred clinical isolates were collected from 100 patients during 6 months in 2014. Susceptibility to the eight antibiotics was investigated using Kirby-Bauer and agar dilution methods. The Quantitative Real-time PCR was used to determine the expression levels of efflux genes. Results: Resistance rates to various antibiotics were as follows: ticarcillin (73%), ciprofloxacin (65%), aztreonam (60%), ceftazidime (55%), gentamicin (55%), imipenem (49%), piperacillin/tazobactam (34%) and colistin (2%). In disk diffusion method, only two isolates were non susceptible to colistin, however in agar dilution method the two isolates were confirmed as resistant and two others were intermediate resistant. Sixty eight (68%) isolates were multi-drug resistant and 10 isolates were susceptible to all tested antibiotics. Both colistin resistant isolates showed overexpression of both efflux pumps, but two intermediate resistant isolates exhibited reduction of efflux genes expression. Conclusions: Emergence of colistin resistance is increasing in P. aeruginosa indicating great challenge in the treatment of infections caused by MDR strains of this organism in Iran. ParRS may promote either induced or constitutive resistance to colistin through the activation of distinct mechanisms such as MDR efflux pumps, and LPS modification. PMID:27092226

  1. Detection of Pseudomonas aeruginosa in sputum headspace through volatile organic compound analysis

    PubMed Central

    2012-01-01

    Introduction Chronic pulmonary infection is the hallmark of Cystic Fibrosis lung disease. Searching for faster and easier screening may lead to faster diagnosis and treatment of Pseudomonas aeruginosa (P. aeruginosa). Our aim was to analyze and build a model to predict the presence of P. aeruginosa in sputa. Methods Sputa from 28 bronchiectatic patients were used for bacterial culturing and analysis of volatile compounds by gas chromatography–mass spectrometry. Data analysis and model building were done by Partial Least Squares Regression Discriminant analysis (PLS-DA). Two analysis were performed: one comparing P. aeruginosa positive with negative cultures at study visit (PA model) and one comparing chronic colonization according to the Leeds criteria with P. aeruginosa negative patients (PACC model). Results The PA model prediction of P. aeruginosa presence was rather poor, with a high number of false positives and false negatives. On the other hand, the PACC model was stable and explained chronic P. aeruginosa presence for 95% with 4 PLS-DA factors, with a sensitivity of 100%, a positive predictive value of 86% and a negative predictive value of 100%. Conclusion Our study shows the potential for building a prediction model for the presence of chronic P. aeruginosa based on volatiles from sputum. PMID:23031195

  2. Predicting the growth situation of Pseudomonas aeruginosa on agar plates and meat stuffs using gas sensors

    NASA Astrophysics Data System (ADS)

    Gu, Xinzhe; Sun, Ye; Tu, Kang; Dong, Qingli; Pan, Leiqing

    2016-12-01

    A rapid method of predicting the growing situation of Pseudomonas aeruginosa is presented. Gas sensors were used to acquire volatile compounds generated by P. aeruginosa on agar plates and meat stuffs. Then, optimal sensors were selected to simulate P. aeruginosa growth using modified Logistic and Gompertz equations by odor changes. The results showed that the responses of S8 or S10 yielded high coefficients of determination (R2) of 0.89–0.99 and low root mean square errors (RMSE) of 0.06–0.17 for P. aeruginosa growth, fitting the models on the agar plate. The responses of S9, S4 and the first principal component of 10 sensors fit well with the growth of P. aeruginosa inoculated in meat stored at 4 °C and 20 °C, with R2 of 0.73–0.96 and RMSE of 0.25–1.38. The correlation coefficients between the fitting models, as measured by electronic nose responses, and the colony counts of P. aeruginosa were high, ranging from 0.882 to 0.996 for both plate and meat samples. Also, gas chromatography–mass spectrometry results indicated the presence of specific volatiles of P. aeruginosa on agar plates. This work demonstrated an acceptable feasibility of using gas sensors—a rapid, easy and nondestructive method for predicting P. aeruginosa growth.

  3. The Pseudomonas aeruginosa Pathogenicity Island PAPI-1 is transferred via a novel Type IV pilus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas aeruginosa is a major cause of nosocomial infections, particularly in immunocompromised patients or in individuals with cystic fibrosis. The notable ability of P. aeruginosa to inhabit a broad range of environments including humans is in part due to its large and diverse genomic repertoi...

  4. Draft Genome Sequence of Beneficial Rice Rhizosphere Isolate Pseudomonas aeruginosa PUPa3

    PubMed Central

    Uzelac, Gordana; Bertani, Iris; Kojic, Milan; Paszkiewicz, Konrad H.; Studholme, David J.; Passos da Silva, Daniel

    2014-01-01

    Pseudomonas aeruginosa PUPa3 is a rhizosphere-colonizing and plant growth-promoting strain isolated from the rhizosphere of rice. This strain has, however, been shown to be pathogenic in two nonmammalian infection models. Here we report the draft genome sequence of P. aeruginosa PUPa3. PMID:24994800

  5. Draft Genome Sequence of Beneficial Rice Rhizosphere Isolate Pseudomonas aeruginosa PUPa3.

    PubMed

    Uzelac, Gordana; Bertani, Iris; Kojic, Milan; Paszkiewicz, Konrad H; Studholme, David J; Passos da Silva, Daniel; Venturi, Vittorio

    2014-07-03

    Pseudomonas aeruginosa PUPa3 is a rhizosphere-colonizing and plant growth-promoting strain isolated from the rhizosphere of rice. This strain has, however, been shown to be pathogenic in two nonmammalian infection models. Here we report the draft genome sequence of P. aeruginosa PUPa3.

  6. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Hwang, Sohyun; Kim, Chan Yeong; Ji, Sun-Gou; Go, Junhyeok; Kim, Hanhae; Yang, Sunmo; Kim, Hye Jin; Cho, Ara; Yoon, Sang Sun; Lee, Insuk

    2016-05-01

    Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa.

  7. Pseudomonas aeruginosa and Its Bacterial Components Influence the Cytokine Response in Thymocytes and Splenocytes

    PubMed Central

    Zimmermann, Corinna; Mausberg, Anne K.; Dehmel, Thomas; Kieseier, Bernd C.; Hartung, Hans-Peter; Hofstetter, Harald H.

    2016-01-01

    Infections with Pseudomonas aeruginosa may cause many different diseases. The spectrum of such infections in general includes inflammation and bacterial sepsis. Hospital-acquired pneumonia, naturally resistant to a wide range of antibiotics, is associated with a particularly high mortality rate in mechanically ventilated patients. The pathogenesis of P. aeruginosa is complex and mediated by several virulence factors, as well as cell-associated factors. We have previously demonstrated that stimulation with different bacteria triggers the cytokine response of thymocytes. In this study, we investigated the effect of P. aeruginosa and its different components on the cytokine production of immature and mature immune cells. We found that the induced cytokine pattern in the thymus and the spleen after infections with P. aeruginosa is primarily mediated by lipopolysaccharide (LPS) of the outer cell membrane, but other components of the bacterium can influence the cytokine secretion as well. Stimulation with heat-killed P. aeruginosa and LPS does not influence the amount of cytokine-producing CD4+ T cells but instead suppresses the emergence of Th17 cells. However, stimulation with P. aeruginosa or its components triggers the interleukin-17 (IL-17) response both in thymocytes and in splenocytes. We conclude that infections with P. aeruginosa affect the cytokine secretion of immature and mature cells and that IL-17 and Th17 cells play only a minor role in the development of pathological systemic inflammatory disease conditions during P. aeruginosa infections. Therefore, other inflammatory immune responses must be responsible for septic reactions of the host. PMID:26902726

  8. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa

    PubMed Central

    Hwang, Sohyun; Kim, Chan Yeong; Ji, Sun-Gou; Go, Junhyeok; Kim, Hanhae; Yang, Sunmo; Kim, Hye Jin; Cho, Ara; Yoon, Sang Sun; Lee, Insuk

    2016-01-01

    Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa. PMID:27194047

  9. Cellular responses and biodegradation of amoxicillin in Microcystis aeruginosa at different nitrogen levels.

    PubMed

    Liu, Ying; Wang, Feng; Chen, Xiao; Zhang, Jian; Gao, Baoyu

    2015-01-01

    The influence of nitrogen on the interactions between amoxicillin and Microcystis aeruginosa was investigated using a 7-day exposure test. Growth of M. aeruginosa was not significantly (p>0.05) affected by amoxicillin at the lowest nitrogen level of 0.05 mg L(-1), stimulated by 500 ng L(-1) of amoxicillin at a moderate nitrogen level of 0.5 mg L(-1) and enhanced by 200-500 ng L(-1) of amoxicillin at the highest nitrogen level of 5 mg L(-1). The generation of reactive oxygen species (ROS) and the synthesis of glutathione S-transferases (GST) and glutathione (GSH) were more sensitive to amoxicillin and were stimulated at all nitrogen levels. At the lowest nitrogen level of 0.05 mg L(-1), superoxide dismutase and peroxidase were not effective at eliminating amoxicillin-induced ROS, resulting in the highest malondialdehyde content in M. aeruginosa. The biodegradation of 18.5-30.5% of amoxicillin by M. aeruginosa was coupled to increasing GST activity and GSH content. Elevated nitrogen concentrations significantly enhanced (p<0.05) the stimulation effect of amoxicillin on the growth of M. aeruginosa, the antioxidant responses to amoxicillin and the biodegradation of amoxicillin in M. aeruginosa. The nitrogen-dependent hormesis effect of the coexisting amoxicillin contaminant on the M. aeruginosa bloom should be fully considered during the control of M. aeruginosa bloom.

  10. Effects of sulfate on microcystin production, photosynthesis, and oxidative stress in Microcystis aeruginosa.

    PubMed

    Chen, Lei; Gin, Karina Y H; He, Yiliang

    2016-02-01

    Increasing sulfate in freshwater systems, caused by human activities and climate change, may have negative effects on aquatic organisms. Microcystis aeruginosa (M. aeruginosa) is both a major primary producer and a common toxic cyanobacterium, playing an important role in the aquatic environment. This study first investigated the effects of sulfate on M. aeruginosa. The experiment presented here aims at analyzing the effects of sulfate on physiological indices, molecular levels, and its influencing mechanism. The results of our experiment showed that sulfate (at 40, 80, and 300 mg L(-1)) inhibited M. aeruginosa growth, increased both intracellular and extracellular toxin contents, and enhanced the mcyD transcript level. Sulfate inhibited the photosynthesis of M. aeruginosa, based on the decrease in pigment content and the down-regulation of photosynthesis-related genes after sulfate exposure. Furthermore, sulfate decreased the maximum electron transport rate, causing the cell to accumulate surplus electrons and form reactive oxygen species (ROS). Sulfate also increased the malondialdehyde (MDA) content, which showed that sulfate damaged the cytomembrane. This damage contributed to the release of intracellular toxin to the culture medium. Although sulfate increased superoxide dismutase (SOD) activities, expression of sod, and total antioxidant capacity in M. aeruginosa, it still overwhelmed the antioxidant system since the ROS level simultaneously increased, and finally caused oxidative stress. Our results indicate that sulfate has direct effects on M. aeruginosa, inhibits photosynthesis, causes oxidative stress, increases toxin production, and affects the related genes expression in M. aeruginosa.

  11. Draft Genome Sequence of Pseudomonas aeruginosa Strain RB, a Bacterium Capable of Synthesizing Cadmium Selenide Nanoparticles.

    PubMed

    Ayano, Hiroyuki; Kuroda, Masashi; Soda, Satoshi; Ike, Michihiko

    2014-05-15

    Pseudomonas aeruginosa strain RB is a bacterium capable of synthesizing cadmium selenide (CdSe) nanoparticles and was isolated from a soil sample. Here, we present the draft genome sequence of P. aeruginosa strain RB. To the best of our knowledge, this is the first report of a draft genome of a CdSe-synthesizing bacterium.

  12. Plasmid-Determined Resistance to Boron and Chromium Compounds in Pseudomonas aeruginosa

    PubMed Central

    Summers, Anne O.; Jacoby, George A.

    1978-01-01

    Plasmids determining resistance to arsenic, mercury, silver, and tellurium compounds in Escherichia coli and Pseudomonas aeruginosa were tested for resistance to 40 other metal compounds. Resistance to trivalent boron and hexavalent chromium compounds was a property of certain P. aeruginosa plasmids. PMID:96730

  13. Effects of Microcystis aeruginosa on life history of water flea Daphnia magna

    NASA Astrophysics Data System (ADS)

    Liu, Liping; Li, Kang; Chen, Taoying; Dai, Xilin; Jiang, Min; Diana, James S.

    2011-07-01

    Cyanobacterial blooms in eutrophic freshwater systems are a worldwide problem, creating adverse effects for many aquatic organisms by producing toxic microcystins and deteriorating water quality. In this study, microcystins (MCs) in Microcystis aeruginosa, and Daphnia magna exposed to M. aeruginosa, were analyzed by HPLC-MS, and the effects of M. aeruginosa on D. magna were investigated. When D. magna was exposed to M. aeruginosa for more than 2 h, Microcystin-LR (MC-LR) was detected. When exposed to 1.5 × 106, 3 × 106, 0.75 × 107, and 1.5 × 107 cell/mL of M. aeruginosa for 96 h, average survival of D. magna for treatments were 23.33%, 33.33%, 13.33%, 16.67%, respectively, which were significantly lower than the average 100% survival in the control group ( P < 0.05). The adverse effects of M. aeruginosa on body length, time for the first brood, brood numbers, gross fecundity, lifespan, and population growth of D. magna were density-dependent. These results suggest that the occurrence of M. aeruginosa blooms could strongly inhibit the population growth of D. magna through depression of survival, individual growth and gross fecundity. In the most serious situations, M. aeruginosa blooms could undermine the food web by eliminating filter-feeding zooplankton, which would destroy the ecological balance of aquaculture water bodies.

  14. Predicting the growth situation of Pseudomonas aeruginosa on agar plates and meat stuffs using gas sensors

    PubMed Central

    Gu, Xinzhe; Sun, Ye; Tu, Kang; Dong, Qingli; Pan, Leiqing

    2016-01-01

    A rapid method of predicting the growing situation of Pseudomonas aeruginosa is presented. Gas sensors were used to acquire volatile compounds generated by P. aeruginosa on agar plates and meat stuffs. Then, optimal sensors were selected to simulate P. aeruginosa growth using modified Logistic and Gompertz equations by odor changes. The results showed that the responses of S8 or S10 yielded high coefficients of determination (R2) of 0.89–0.99 and low root mean square errors (RMSE) of 0.06–0.17 for P. aeruginosa growth, fitting the models on the agar plate. The responses of S9, S4 and the first principal component of 10 sensors fit well with the growth of P. aeruginosa inoculated in meat stored at 4 °C and 20 °C, with R2 of 0.73–0.96 and RMSE of 0.25–1.38. The correlation coefficients between the fitting models, as measured by electronic nose responses, and the colony counts of P. aeruginosa were high, ranging from 0.882 to 0.996 for both plate and meat samples. Also, gas chromatography–mass spectrometry results indicated the presence of specific volatiles of P. aeruginosa on agar plates. This work demonstrated an acceptable feasibility of using gas sensors—a rapid, easy and nondestructive method for predicting P. aeruginosa growth. PMID:27941841

  15. Adaptation of the cyanobacterium Microcystis aeruginosa to light intensity

    SciTech Connect

    Raps, S.; Wyman, K.; Siegelman, H.W.; Falkowski, P.G.

    1983-01-01

    Light intensity adaptation (20 to 565 microeinsteins per square meter per second) of Microcystis aeruginosa (UV-027) was examined in turbidostat culture. Chlorophyll a and phycocyanin concentrations decreased with increasing light intensity while carotenoid, cellular carbon, and nitrogen contents did not vary. Variation in the number but not the size of photosynthetic units per cell, based on chlorophyll a/P/sub 700/ ratios, occurred on light intensity adaptation. Changes in the numbers of photosynthetic units partially dampened the effects of changes in light intensity on growth rates.

  16. [Necrotizing fasciitis caused by pseudomonas aeruginosa (an obervation)].

    PubMed

    Abada, A; Benhmidoune, L; Tahiri, H; Essalim, K; Chakib, A; Elbelhadji, M; Rachid, R; Zaghloul, K; Amraoui, A

    2007-01-01

    Necrotizing fasciitis is an exceptional and severe form of subcutaneous gangrene which requires early diagnosis and emergency treatment. We report the case of a 24 year old woman presenting with necrotizing fasciitis after pansinusitis resistant to treatment. The germ detected was pseudomonas aeruginosa. The infection was controled with intensive care, antibiotics and surgical resection of necrotic tissues. The aim of this observation is to highlight the clinical characteristics of this disease, and to insist on the necessity to recognize the early symptoms and to start treatment as soon as possible.

  17. Phosphorylated tyrosine in the flagellum filament protein of Pseudomonas aeruginosa

    SciTech Connect

    Kelly-Wintenberg, K.; Anderson, T.; Montie, T.C. )

    1990-09-01

    Purified flagella from two strains of {sup 32}P-labeled Pseudomonas aeruginosa were shown to be phosphorylated. This was confirmed by autoradiography of flagellin protein in polyacrylamide gels. Thin-layer electrophoresis and autoradiography of flagellin partial hydrolysates indicated that phosphotyrosine was the major phosphorylated amino acid. High-pressure liquid chromatographic analysis confirmed the presence of phosphotyrosine in flagellum filament protein. Preliminary data indicated that less than one tyrosine per subunit was phosphorylated. No evidence was found for phosphorylation of serine or threonine. A function related to tyrosine phosphorylation has not been determined.

  18. Vaccines for Pseudomonas aeruginosa: A long and winding road

    PubMed Central

    Priebe, Gregory P.; Goldberg, Joanna B.

    2015-01-01

    Summary Despite the recognition of Pseudomonas aeruginosa is an opportunistic pathogen, no vaccine against this bacteria have come to market. This review describes the current state-of-the-art in vaccinology for this bacterium. This includes a discussion of those at risk for infection, the types of vaccines and the approaches for empirical and targeted antigen selection under development, as well as a perspective on where the field should go. In addition, the challenges in developing a vaccine for those individuals at risk are discussed. PMID:24575895

  19. The Approach to Pseudomonas aeruginosa in Cystic Fibrosis.

    PubMed

    Talwalkar, Jaideep S; Murray, Thomas S

    2016-03-01

    There is a high prevalence of Pseudomonas aeruginosa in patients with cystic fibrosis and clear epidemiologic links between chronic infection and morbidity and mortality exist. Prevention and early identification of infection are critical, and stand to improve with the advent of new vaccines and laboratory methods. Once the organism is identified, a variety of treatment options are available. Aggressive use of antipseudomonal antibiotics is the standard of care for acute pulmonary exacerbations in cystic fibrosis, and providers must take into account specific patient characteristics when making treatment decisions related to antibiotic selection, route and duration of administration, and site of care.

  20. Bacteriophages of Pseudomonas aeruginosa: long-term prospects for use in phage therapy.

    PubMed

    Krylov, Victor N

    2014-01-01

    Bacteria Pseudomonas aeruginosa, being opportunistic pathogens, are the major cause of nosocomial infections and, in some cases, the primary cause of death. They are virtually untreatable with currently known antibiotics. Phage therapy is considered as one of the possible approaches to the treatment of P. aeruginosa infections. Difficulties in the implementation of phage therapy in medical practice are related, for example, to the insufficient number and diversity of virulent phages that are active against P. aeruginosa. Results of interaction of therapeutic phages with bacteria in different conditions and environments are studied insufficiently. A little is known about possible interactions of therapeutic phages with resident prophages and plasmids in clinical strains in the foci of infections. This chapter highlights the different approaches to solving these problems and possible ways to expand the diversity of therapeutic P. aeruginosa phages and organizational arrangements (as banks of phages) to ensure long-term use of phages in the treatment of P. aeruginosa infections.

  1. [Studies on hyperspectral characteristics of Microcystis aeruginosa under the cultivation conditions with different phosphorus concentrations].

    PubMed

    Qin, Zhao-Yang; Liu, Xue-Hua; Zhao, Jin-Bo

    2013-02-01

    Microcystis aeruginosa is one of the most common species in the algae-bloom events of domestic lakes. Illumination incubator was used to cultivate M. aeruginosa under conditions of different phosphorus concentrations in the laboratory. Spectroscopic data of culture solutions were collected by GER1500 spectrometer under the sunlight. The study focused on the growth rhythm of M. aeruginosa and the characteristics of spectral variation in the culture solutions. The results showed that low phosphorus concentration (< or =10 microg x L(-1)) is a restricting factor for the growth and reproduction of M. aeruginosa. Moreover, the reflections of spectrum from culture solutions of M. aeruginosa showed significant changes along with cultivation period, such as at the wavelengths of 550, 610, 660, 700-710 and 760 nm.

  2. Assessment of biofilm formation in Pseudomonas aeruginosa by antisense mazE-PNA.

    PubMed

    Valadbeigi, Hassan; Sadeghifard, Nourkhoda; Salehi, Majid Baseri

    2017-03-01

    The hallmark patogenicity in Pseudomonas aeruginosa (P. aeruginosa) is biofilm formation that is not easy to eradicate, because it has variety mechanisms for antibiotic resistance. In addition, toxin-antitoxin (TA) system may play role in biofilm formation. The current study aimed to evaluate the role of TA loci in biofilm formation. Therefore, 18 P. aeruginosa clinical isolates were collected and evaluated for specific biofilm and TA genes. The analysis by RT-qPCR demonstrated that expression of mazE antitoxin in biofilm formation was increase. On the other hand, mazE antitoxin TA system was used as target for antisense PNA. mazE-PNA was able to influence in biofilm formation and was inhibit at 5,10 and 15 μM concentrations biofilm formation in P. aeruginosa. Therefore, it could be highlighted target for anti-biofilm target to eradicate P. aeruginosa biofilm producer.

  3. Pseudomonas aeruginosa PAO1 resistance to Zinc pyrithione: phenotypic changes suggest the involvement of efflux pumps.

    PubMed

    Abdel Malek, Suzanne M; Al-Adham, Ibrahim S; Matalka, Khalid Z; Collier, Philip J

    2009-08-01

    The aim of this study is to investigate the involvement of an efflux pump in the development of Pseudomonas aeruginosa resistance to zinc pyrithione (ZnPT). In the presence of efflux inhibitor carbonyl cyanide m-chlorophenyl-hydrazone (CCCP), the minimum inhibitory concentration of ZnPT for P. aeruginosa resistant cells is reduced significantly (p < 0.05). In addition, the concentration of ZnPT excluded by the resistant bacteria was reduced significantly (p < 0.01). However, the above reductions did not reach the levels measured for P. aeruginosa PAO1 sensitive strain. Furthermore, such changes in P. aeruginosa resistant cells were correlated with the overexpression of outer membrane proteins, reduced sensitivity toward imipenem (p < 0.01) and increased sensitivity toward sulphatriad and chloramphenicol (p < 0.05). In a continuation to a previous study, we conclude that P. aeruginosa resistance to ZnPT is multifactorial and involves induced efflux systems.

  4. Insights into the respiratory tract microbiota of patients with cystic fibrosis during early Pseudomonas aeruginosa colonization

    DOE PAGES

    Keravec, Marlène; Mounier, Jérôme; Prestat, Emmanuel; ...

    2015-08-09

    Pseudomonas aeruginosa plays a major role in cystic fibrosis (CF) progression. Therefore, it is important to understand the initial steps of P. aeruginosa infection. The structure and dynamics of CF respiratory tract microbial communities during the early stages of P. aeruginosa colonization were characterized by pyrosequencing and cloning-sequencing. The respiratory microbiota showed high diversity, related to the young age of the CF cohort (mean age 10 years). Wide inter- and intra-individual variations were revealed. A common core microbiota of 5 phyla and 13 predominant genera was found, the majority of which were obligate anaerobes. A few genera were significantly moremore » prevalent in patients never infected by P. aeruginosa. Persistence of an anaerobic core microbiota regardless of P. aeruginosa status suggests a major role of certain anaerobes in the pathophysiology of lung infections in CF. Some genera may be potential biomarkers of pulmonary infection state.« less

  5. Insights into the respiratory tract microbiota of patients with cystic fibrosis during early Pseudomonas aeruginosa colonization

    SciTech Connect

    Keravec, Marlene; Mounier, Jerome; Prestat , Emmanuel; Vallet, Sophie; Jansson, Janet K.; Bergaud , Gaetaqn; Rosec, Silvain; Gourious, Stephanie; Rault, Gilles; Coton, Emmanuel; Barbier, George; Hery-Arnaud, Geneveieve

    2015-08-09

    Abstract Pseudomonas aeruginosa plays a major role in cystic fibrosis (CF) progression. Therefore, it is important to understand the initial steps of P. aeruginosa infection. The structure and dynamics of CF respiratory tract microbial communities during the early stages of P. aeruginosa colonization were characterized by pyrosequencing and cloning-sequencing. The respiratory microbiota showed high diversity, related to the young age of the CF cohort (mean age 10 years). Wide inter- and intra-individual variations were revealed. A common core microbiota of 5 phyla and 13 predominant genera was found, the majority of which were obligate anaerobes. A few genera were significantly more prevalent in patients never infected by P. aeruginosa. Persistence of an anaerobic core microbiota regardless of P. aeruginosa status suggests a major role of certain anaerobes in the pathophysiology of lung infections in CF. Some genera may be potential biomarkers of pulmonary infection state.

  6. Impact of alginate-producing Pseudomonas aeruginosa on alveolar macrophage apoptotic cell clearance.

    PubMed

    McCaslin, Charles A; Petrusca, Daniela N; Poirier, Christophe; Serban, Karina A; Anderson, Gregory G; Petrache, Irina

    2015-01-01

    Pseudomonas aeruginosa infection is a hallmark of lung disease in cystic fibrosis. Acute infection with P. aeruginosa profoundly inhibits alveolar macrophage clearance of apoptotic cells (efferocytosis) via direct effect of virulence factors. During chronic infection, P. aeruginosa evades host defense by decreased virulence, which includes the production or, in the case of mucoidy, overproduction of alginate. The impact of alginate on innate immunity, in particular on macrophage clearance of apoptotic cells is not known. We hypothesized that P. aeruginosa strains that exhibit reduced virulence impair macrophage clearance of apoptotic cells and we investigated if the polysaccharide alginate produced by mucoid P. aeruginosa is sufficient to inhibit alveolar macrophage efferocytosis. Rat alveolar or human peripheral blood monocyte (THP-1)-derived macrophage cell lines were exposed in vitro to exogenous alginate or to wild type or alginate-overproducing mucoid P. aeruginosa prior to challenge with apoptotic human Jurkat T-lymphocytes. The importance of LPS contamination and that of structural integrity of alginate polymers was tested using alginate of different purities and alginate lyase, respectively. Alginate inhibited alveolar macrophage efferocytosis in a dose- and time-dependent manner. This effect was augmented but not exclusively attributed to lipopolysaccharide (LPS) present in alginates. Alginate-producing P. aeruginosa inhibited macrophage efferocytosis by more than 50%. A mannuronic-specific alginate lyase did not restore efferocytosis inhibited by exogenous guluronic-rich marine alginate, but had a marked beneficial effect on efferocytosis of alveolar macrophages exposed to mucoid P. aeruginosa. Despite decreased virulence, mucoid P. aeruginosa may contribute to chronic airway inflammation through significant inhibition of alveolar clearance of apoptotic cells and debris. The mechanism by which mucoid bacteria inhibit efferocytosis may involve alginate

  7. Polymorphonuclear Leukocytes Restrict Growth of Pseudomonas aeruginosa in the Lungs of Cystic Fibrosis Patients

    PubMed Central

    Kragh, Kasper N.; Alhede, Morten; Jensen, Peter Ø.; Moser, Claus; Scheike, Thomas; Jacobsen, Carsten S.; Seier Poulsen, Steen; Eickhardt-Sørensen, Steffen Robert; Trøstrup, Hannah; Christoffersen, Lars; Hougen, Hans-Petter; Rickelt, Lars F.; Kühl, Michael; Høiby, Niels

    2014-01-01

    Cystic fibrosis (CF) patients have increased susceptibility to chronic lung infections by Pseudomonas aeruginosa, but the ecophysiology within the CF lung during infections is poorly understood. The aim of this study was to elucidate the in vivo growth physiology of P. aeruginosa within lungs of chronically infected CF patients. A novel, quantitative peptide nucleic acid (PNA) fluorescence in situ hybridization (PNA-FISH)-based method was used to estimate the in vivo growth rates of P. aeruginosa directly in lung tissue samples from CF patients and the growth rates of P. aeruginosa in infected lungs in a mouse model. The growth rate of P. aeruginosa within CF lungs did not correlate with the dimensions of bacterial aggregates but showed an inverse correlation to the concentration of polymorphonuclear leukocytes (PMNs) surrounding the bacteria. A growth-limiting effect on P. aeruginosa by PMNs was also observed in vitro, where this limitation was alleviated in the presence of the alternative electron acceptor nitrate. The finding that P. aeruginosa growth patterns correlate with the number of surrounding PMNs points to a bacteriostatic effect by PMNs via their strong O2 consumption, which slows the growth of P. aeruginosa in infected CF lungs. In support of this, the growth of P. aeruginosa was significantly higher in the respiratory airways than in the conducting airways of mice. These results indicate a complex host-pathogen interaction in chronic P. aeruginosa infection of the CF lung whereby PMNs slow the growth of the bacteria and render them less susceptible to antibiotic treatment while enabling them to persist by anaerobic respiration. PMID:25114118

  8. Magnetic fields suppress Pseudomonas aeruginosa biofilms and enhance ciprofloxacin activity.

    PubMed

    Bandara, H M H N; Nguyen, D; Mogarala, S; Osiñski, M; Smyth, H D C

    2015-01-01

    Due to the refractory nature of pathogenic microbial biofilms, innovative biofilm eradication strategies are constantly being sought. Thus, this study addresses a novel approach to eradicate Pseudomonas aeruginosa biofilms. Magnetic nanoparticles (MNP), ciprofloxacin (Cipro), and magnetic fields were systematically evaluated in vitro for their relative anti-biofilm contributions. Twenty-four-hour biofilms exposed to aerosolized MNPs, Cipro, or a combination of both, were assessed in the presence or absence of magnetic fields (Static one-sided, Static switched, Oscillating, Static + oscillating) using changes in bacterial metabolism, biofilm biomass, and biofilm imaging. The biofilms exposed to magnetic fields alone exhibited significant metabolic and biomass reductions (p < 0.05). When biofilms were treated with a MNP/Cipro combination, the most significant metabolic and biomass reductions were observed when exposed to static switched magnetic fields (p < 0.05). The exposure of P. aeruginosa biofilms to a static switched magnetic field alone, or co-administration with MNP/Cipro/MNP + Cipro appears to be a promising approach to eradicate biofilms of this bacterium.

  9. [Allelopathy effects of ferulic acid and coumarin on Microcystis aeruginosa].

    PubMed

    Guo, Ya-Li; Fu, Hai-Yan; Huang, Guo-He; Gao, Pan-Feng; Chai, Tian; Yan, Bin; Liao, Huan

    2013-04-01

    The inhibitory effects and allelopathy mechanism of ferulic acid and coumarin on Microcystis aeruginosa were investigated by measuring the D680 value, the content of chlorophyll-a, the electrical conductivity (EC) and superoxide anion radical O*- value. Ferulic acid and coumarin had allelopathic effects on the growth of M. aeruginosa and promoted the physiological metabolism at low concentrations while inhibited the metabolism at high concentrations. Obvious inhibitory effects were observed when the concentration of ferulic acid or coumarin was over 100 mg x L(-1). The average inhibitory rates reached 80.3% and 58.0% after six days when the concentration of ferulic acid or coumarin was 200 mg x L(-1). The content of chlorophyll-a was decreased while the EC value and O2*- concentration were promoted by higher concentrations of ferulic acid or coumarin, suggesting that the growth of algae was inhibited probably by the damage of cell membrane, increase in the content of O2*- and decrease in the content of chlorophyll-a. In addition, seed germination test elucidated that Ferulic acid was safer than Coumarin.

  10. Non-apoptotic toxicity of Pseudomonas aeruginosa toward murine cells.

    PubMed

    Roy, Sanhita; Bonfield, Tracey; Tartakoff, Alan M

    2013-01-01

    Although P. aeruginosa is especially dangerous in cystic fibrosis (CF), there is no consensus as to how it kills representative cell types that are of key importance in the lung. This study concerns the acute toxicity of the sequenced strain, PAO1, toward a murine macrophage cell line (RAW 264.7). Toxicity requires brief contact with the target cell, but is then delayed for more than 12 h. None of the classical toxic effectors of this organism is required and cell death occurs without phagocytosis or acute perturbation of the actin cytoskeleton. Apoptosis is not required for toxicity toward either RAW 264.7 cells or for alveolar macrophages. Transcriptional profiling shows that encounter between PAO1 and RAW 264.7 cells elicits an early inflammatory response, followed by growth arrest. As an independent strategy to understand the mechanism of toxicity, we selected variant RAW 264.7 cells that resist PAO1. Upon exposure to P. aeruginosa, they are hyper-responsive with regard to classical inflammatory cytokine production and show transient downregulation of transcripts that are required for cell growth. They do not show obvious morphologic changes. Although they do not increase interferon transcripts, when exposed to PAO1 they dramatically upregulate a subset of the responses that are characteristic of exposure to g-interferon, including several guanylate-binding proteins. The present observations provide a novel foundation for learning how to equip cells with resistance to a complex challenge.

  11. Chromosomal DNA deletion confers phage resistance to Pseudomonas aeruginosa.

    PubMed

    Le, Shuai; Yao, Xinyue; Lu, Shuguang; Tan, Yinling; Rao, Xiancai; Li, Ming; Jin, Xiaolin; Wang, Jing; Zhao, Yan; Wu, Nicholas C; Lux, Renate; He, Xuesong; Shi, Wenyuan; Hu, Fuquan

    2014-04-28

    Bacteria develop a broad range of phage resistance mechanisms, such as prevention of phage adsorption and CRISPR/Cas system, to survive phage predation. In this study, Pseudomonas aeruginosa PA1 strain was infected with lytic phage PaP1, and phage-resistant mutants were selected. A high percentage (~30%) of these mutants displayed red pigmentation phenotype (Red mutant). Through comparative genomic analysis, one Red mutant PA1r was found to have a 219.6 kb genomic fragment deletion, which contains two key genes hmgA and galU related to the observed phenotypes. Deletion of hmgA resulted in the accumulation of a red compound homogentisic acid; while A galU mutant is devoid of O-antigen, which is required for phage adsorption. Intriguingly, while the loss of galU conferred phage resistance, it significantly attenuated PA1r in a mouse infection experiment. Our study revealed a novel phage resistance mechanism via chromosomal DNA deletion in P. aeruginosa.

  12. [Pseudomonas aeruginosa bacteriaemia: new clinical and therapeutic aspects ].

    PubMed

    Janbon, F; Despaux, E; Lepeu, G; Jonquet, O; Santoni, A; Balmayer, B; Bertrand, A

    1982-06-01

    Fifty one cases of Pseudomonas aeruginosa bacteriaemia observed during the last 12 years are reported. Thirty five patients were over fifty years old; 92 p. cent were admitted for several days and about 50 p. cent were in post-operative period. A previous antibiotherapy and an impaired status are promotive factors. The respiratory or peritoneal origins are the most frequent. All patients were feverish; 24 have had an infectious shock which was inaugural in 12 cases. Seven pneumonitis, 3 endocarditis, one pericarditis and 2 osteitis were observed. An ecthyma gangrenosum was noted in three patients. Mortality was 70 p. cent. Comparison between recovered and died patients improved bad prognosis of old age, post operative period, neoplasic, previous organica weakness and pulmonary or peritoneal origins. Used alone, colimycin has seemed to be more effective than aminosid antibiotics; but their association with betalactamins was better. An in vitro study of the susceptibility of 100 Pseudomonas aeruginosa strains has proved the interest of piperacillin and cefsulodin; azlocillin, cefoperazone and ceftriaxone are just less effective.

  13. Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa

    PubMed Central

    Persat, Alexandre; Inclan, Yuki F.; Engel, Joanne N.; Stone, Howard A.; Gitai, Zemer

    2015-01-01

    Bacteria have evolved a wide range of sensing systems to appropriately respond to environmental signals. Here we demonstrate that the opportunistic pathogen Pseudomonas aeruginosa detects contact with surfaces on short timescales using the mechanical activity of its type IV pili, a major surface adhesin. This signal transduction mechanism requires attachment of type IV pili to a solid surface, followed by pilus retraction and signal transduction through the Chp chemosensory system, a chemotaxis-like sensory system that regulates cAMP production and transcription of hundreds of genes, including key virulence factors. Like other chemotaxis pathways, pili-mediated surface sensing results in a transient response amplified by a positive feedback that increases type IV pili activity, thereby promoting long-term surface attachment that can stimulate additional virulence and biofilm-inducing pathways. The methyl-accepting chemotaxis protein-like chemosensor PilJ directly interacts with the major pilin subunit PilA. Our results thus support a mechanochemical model where a chemosensory system measures the mechanically induced conformational changes in stretched type IV pili. These findings demonstrate that P. aeruginosa not only uses type IV pili for surface-specific twitching motility, but also as a sensor regulating surface-induced gene expression and pathogenicity. PMID:26041805

  14. Identification of Pseudomonas aeruginosa Phenazines that Kill Caenorhabditis elegans

    PubMed Central

    Cezairliyan, Brent; Vinayavekhin, Nawaporn; Grenfell-Lee, Daniel; Yuen, Grace J.; Saghatelian, Alan; Ausubel, Frederick M.

    2013-01-01

    Pathogenic microbes employ a variety of methods to overcome host defenses, including the production and dispersal of molecules that are toxic to their hosts. Pseudomonas aeruginosa, a Gram-negative bacterium, is a pathogen of a diverse variety of hosts including mammals and the nematode Caenorhabditis elegans. In this study, we identify three small molecules in the phenazine class that are produced by P. aeruginosa strain PA14 that are toxic to C. elegans. We demonstrate that 1-hydroxyphenazine, phenazine-1-carboxylic acid, and pyocyanin are capable of killing nematodes in a matter of hours. 1-hydroxyphenazine is toxic over a wide pH range, whereas the toxicities of phenazine-1-carboxylic acid and pyocyanin are pH-dependent at non-overlapping pH ranges. We found that acidification of the growth medium by PA14 activates the toxicity of phenazine-1-carboxylic acid, which is the primary toxic agent towards C. elegans in our assay. Pyocyanin is not toxic under acidic conditions and 1-hydroxyphenazine is produced at concentrations too low to kill C. elegans. These results suggest a role for phenazine-1-carboxylic acid in mammalian pathogenesis because PA14 mutants deficient in phenazine production have been shown to be defective in pathogenesis in mice. More generally, these data demonstrate how diversity within a class of metabolites could affect bacterial toxicity in different environmental niches. PMID:23300454

  15. Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants.

    PubMed

    D'Argenio, David A; Calfee, M Worth; Rainey, Paul B; Pesci, Everett C

    2002-12-01

    Two distinctive colony morphologies were noted in a collection of Pseudomonas aeruginosa transposon insertion mutants. One set of mutants formed wrinkled colonies of autoaggregating cells. Suppressor analysis of a subset of these mutants showed that this was due to the action of the regulator WspR and linked this regulator (and the chemosensory pathway to which it belongs) to genes that encode a putative fimbrial adhesin required for biofilm formation. WspR homologs, related in part by a shared GGDEF domain, regulate cell surface factors, including aggregative fimbriae and exopolysaccharides, in diverse bacteria. The second set of distinctive insertion mutants formed colonies that lysed at their center. Strains with the most pronounced lysis overproduced the Pseudomonas quinolone signal (PQS), an extracellular signal that interacts with quorum sensing. Autolysis was suppressed by mutation of genes required for PQS biosynthesis, and in one suppressed mutant, autolysis was restored by addition of synthetic PQS. The mechanism of autolysis may involve activation of the endogenous prophage and phage-related pyocins in the genome of strain PAO1. The fact that PQS levels correlated with autolysis suggests a fine balance in natural populations of P. aeruginosa between survival of the many and persistence of the few.

  16. Pseudomonas aeruginosa: my research passion. Interview by Hannah Branch.

    PubMed

    Hazlett, Linda

    2013-07-01

    Linda Hazlett is a department chair and distinguished professor at Wayne State University (MI, USA). Her research is focused on the host immune response to Pseudomonas aeruginosa and its role in ocular infections. Dr Hazlett has been funded continuously by the NIH by R01 support for 34 years. She is currently principal investigator of two R01 grants from the National Eye Institute that study pathogenesis of P. aeruginosa in the eye. Dr Hazlett oversees four Course Directors who lead Year 1 medical student teaching, in addition to two graduate course directors. Furthermore, although not involved in medical teaching, she educates graduate students and mentors a Research Scientist and a Research Assistant Professor. Throughout her career, Dr Hazlett has achieved several honors and awards including Distinguished Professor at Wayne State University (2008), National Eye Institute Core Center (P30) grant for 1987-2013, Chair of Physiology Search 2008-2009, Member of the Academy of Scholars at Wayne State University, Association for Research in Vision and Ophthalmology fellow at the Gold Medal level (2009) and was an invited speaker at the Gordon Conference 2010.

  17. Production and properties of crude enterotoxin of Pseudomonas aeruginosa.

    PubMed

    Grover, S; Batish, V K; Srinivasan, R A

    1990-05-01

    Pseudomonas aeruginosa CTM-3 was found to be the most potentially enterotoxigenic strain out of the 12 isolates recovered from milk, as a high fluid length ratio, i.e. F/L (1.1) in rabbit gut and a strong permeability response in rabbit skin (38.5 mm2 necrotic zone) was obtained with this culture. No clear-cut relationship between the two tests was observed. Six of the ethidium bromide (300 micrograms/ml) cured variants of this culture completely lost their ability to produce enterotoxin indicating the possible involvement of a plasmid in enterotoxin synthesis. The crude enterotoxin from P. aeruginosa CTM-3 was completely inactivated in 15 s at 72 degrees C. However, it was fairly stable at pH values in the range 4.5-7.5. Both pepsin and trypsin inactivated the enterotoxin activity at a concentration of 40 micrograms/ml. Organic acids, formalin and hydrogen peroxide had no significant effect on the enterotoxin activity. The need for further investigations with purified preparations is emphasized.

  18. Bacteriophages for the treatment of Pseudomonas aeruginosa infections.

    PubMed

    Harper, D R; Enright, M C

    2011-07-01

    Bacteriophages were first identified in 1915 and were used as antimicrobial agents from 1919 onwards. Despite apparent successes and widespread application, early users did not understand the nature of these agents and their efficacy remained controversial. As a result, they were replaced in the west by chemical antibiotics once these became available. However, bacteriophages remained a common therapeutic approach in parts of Eastern Europe where they are still in use. Increasing levels of antibiotic-resistant bacterial infections are now driving demand for novel therapeutic approaches. In cases where antibiotic options are limited or nonexistent, the pressure for new agents is greatest. One of the most prominent areas of concern is multidrug-resistant Gram-negative bacteria. Pseudomonas aeruginosa is a prominent member of this class and is the cause of damaging infections that can be resistant to successful treatment with conventional antibiotics. At the same time, it exhibits a number of properties that make it a suitable target for bacteriophage-based approaches, including growth in biofilms that can hydrolyse following phage infection. Pseudomonas aeruginosa provides a striking example of an infection where clinical need and the availability of a practical therapy coincide.

  19. Mechanical destruction of pseudomonas aeruginosa biofilms by ultrasound exposure

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Bigelow, Timothy A.; Halverson, Larry J.; Middendorf, Jill; Rusk, Ben

    2012-10-01

    Medical implants are prone to colonization by bacterial biofilms, which are highly resistant to antibiotics. Normally, surgery is required to replace the infected implant. One promising non-invasive treatment option is to destroy the biofilm with high-intensity focused ultrasound (HIFU) exposure. In our study, Pseudomonas aeruginosa bacterial biofilms were grown on graphite disks in a flow chamber for three days prior to exposing them to ultrasound pulses of varying duration or burst period. The pulses were 20 cycles in duration at a frequency of 1.1 MHz from a spherically focused transducer (f/1, 63 mm focal length), creating peak compressional and rarefactional pressures at the disk surface of 30 and 13 MPa, respectively. P. aeruginosa were tagged with GFP and cells killed by HIFU were visualized using propidium iodide, which permeates membranes of dead cells, to aid determining the extent of biofilm destruction and whether cells are alive or dead. Our results indicate that a 30-s exposure and 6-ms pulse period or those combinations with the same number of pulses, were sufficient to destroy the biofilm and to kill the remaining cells. Reducing the number of pulses decreased biofilm destruction, leaving more dead and live bacteria on the surface.

  20. Host defense mechanisms against pneumonia due to Pseudomonas aeruginosa.

    PubMed

    Pennington, J E; Ehrie, M G; Hickey, W F

    1984-01-01

    Pneumonia due to Pseudomonas aeruginosa is associated with unusually high mortalities. Accordingly, efforts to define better the most important components of lung defenses against this infection are justified as a prelude to defining improved management strategies. In this report, a guinea pig model of experimental aspiration pseudomonas pneumonia was employed for studies of cellular and humoral mechanisms of pulmonary defense. Animals treated with cortisone acetate plus cyclophosphamide experienced decreased survival from pneumonia, and survival rates correlated directly with the degree of myelosuppression. Numbers of pulmonary macrophages and polymorphonuclear neutrophils were reduced in drug-treated animals before impairment of macrophage antibacterial function. Thus, a reduction in numbers of phagocytes alone was sufficient to markedly reduce lung defenses. In additional experiments, normal guinea pigs were vaccinated with a lipopolysaccharide pseudomonas vaccine. Improved survival from pneumonia correlated with high titers of type-specific, heat-stable opsonic antibody. It is concluded that adequate numbers of lung phagocytes, plus type-specific opsonic antibody, represent the ideal status for lung defense against P. aeruginosa infection.

  1. Pseudomonas aeruginosa sabotages the generation of host proresolving lipid mediators.

    PubMed

    Flitter, Becca A; Hvorecny, Kelli L; Ono, Emiko; Eddens, Taylor; Yang, Jun; Kwak, Daniel H; Bahl, Christopher D; Hampton, Thomas H; Morisseau, Christophe; Hammock, Bruce D; Liu, Xinyu; Lee, Janet S; Kolls, Jay K; Levy, Bruce D; Madden, Dean R; Bomberger, Jennifer M

    2017-01-03

    Recurrent Pseudomonas aeruginosa infections coupled with robust, damaging neutrophilic inflammation characterize the chronic lung disease cystic fibrosis (CF). The proresolving lipid mediator, 15-epi lipoxin A4 (15-epi LXA4), plays a critical role in limiting neutrophil activation and tissue inflammation, thus promoting the return to tissue homeostasis. Here, we show that a secreted P. aeruginosa epoxide hydrolase, cystic fibrosis transmembrane conductance regulator inhibitory factor (Cif), can disrupt 15-epi LXA4 transcellular biosynthesis and function. In the airway, 15-epi LXA4 production is stimulated by the epithelial-derived eicosanoid 14,15-epoxyeicosatrienoic acid (14,15-EET). Cif sabotages the production of 15-epi LXA4 by rapidly hydrolyzing 14,15-EET into its cognate diol, eliminating a proresolving signal that potently suppresses IL-8-driven neutrophil transepithelial migration in vitro. Retrospective analyses of samples from patients with CF supported the translational relevance of these preclinical findings. Elevated levels of Cif in bronchoalveolar lavage fluid were correlated with lower levels of 15-epi LXA4, increased IL-8 concentrations, and impaired lung function. Together, these findings provide structural, biochemical, and immunological evidence that the bacterial epoxide hydrolase Cif disrupts resolution pathways during bacterial lung infections. The data also suggest that Cif contributes to sustained pulmonary inflammation and associated loss of lung function in patients with CF.

  2. Combined effects of two antibiotic contaminants on Microcystis aeruginosa.

    PubMed

    Liu, Ying; Zhang, Jian; Gao, Baoyu; Feng, Suping

    2014-08-30

    Combined toxicity of spiramycin and amoxicillin was tested in Microcystis aeruginosa. The respective 50% effective concentrations (EC50mix) expressed in toxic unit (TU) values were 1.25 and 1.83 for spiramycin and amoxicillin mixed at 1:7 and 1:1, suggesting an antagonistic interaction at the median effect level. Deviations from the prediction of concentration addition (CA) and independent action (IA) models further indicated that combined toxicity of two antibiotics mixed at 1:1 varied from synergism to antagonism with increasing test concentration. Both the EC50mix of 0.86 (in TU value) and the deviation from two models manifested a synergistic interaction between spiramycin and amoxicillin mixed at 7:1. At an environmentally relevant concentration of 800ngL(-1), combined effect of mixed antibiotics on algal growth changed from stimulation to inhibition with the increasing proportion of higher toxic component (spiramycin). Chlorophyll-a content and expression levels of psbA, psaB, and rbcL varied in a similar manner as growth rate, suggesting a correlation between algal growth and photosynthesis under exposure to mixed antibiotics. The stimulation of microcystin-production by mixed antibiotics was related with the elevated expression of mcyB. The mixture of two target antibiotics with low proportion of spiramycin (<50%) could increase the harm of M. aeruginosa to aquatic environments by stimulating algal growth and production and release of microcystin-LR at their current contamination levels.

  3. Genotyping of Pseudomonas aeruginosa isolated from cockroaches and human urine.

    PubMed

    Saitou, Keiko; Furuhata, Katsunori; Fukuyama, Masafumi

    2010-10-01

    Molecular-epidemiological analysis of Pseudomonas aeruginosa isolated from cockroaches captured in hospitals and from patient urine was performed, employing randomly amplified polymorphic DNA (RAPD) analysis to investigate the usefulness of RAPD analysis. Four specific bands at positions of 993, 875, 521, and 402 bp were commonly detected using primer 272 in 16 of 45 cockroach-derived strains (35.6%), but not in 21 urine-derived strains. On analysis using primer 208, 4 specific bands at positions of 1,235, 1,138, 1,068, and 303 bp were commonly detected in 15 of the 45 cockroach-derived (33.3%) and 10 of the 21 patient urine-derived (47.6%) strains, in a total of 25 of 66 strains (37.8%). On cluster analysis, 12 (48.5%) and 16 (66.7%) clusters were grouped based on a homology of 89% or greater, using primer 272 and primer 208, respectively, showing that primer 208 was suitable for the confirmation of diversity. Seven patterns were clustered based on 100% homology using either primer, and 6 of these consisted of only cockroach-derived strains. In the individual groups with 100% homology, all strains in the group were isolated at an identical site during the same period. P. aeruginosa isolated from cockroaches showed diverse genotypes suggesting several sources of contamination, indicating the necessity for investigating infection control targeting cockroaches inhabiting hospitals.

  4. Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa.

    PubMed Central

    Askeland, R A; Morrison, S M

    1983-01-01

    Of 200 water isolates screened, five strains of Pseudomonas fluorescens and one strain of Pseudomonas aeruginosa were cyanogenic. Maximum cyanogenesis by two strains of P. fluorescens in a defined growth medium occurred at 25 to 30 degrees C over a pH range of 6.6 to 8.9. Cyanide production per cell was optimum at 300 mM phosphate. A linear relationship was observed between cyanogenesis and the log of iron concentration over a range of 3 to 300 microM. The maximum rate of cyanide production occurred during the transition from exponential to stationary growth phase. Radioactive tracer experiments with [1-14C]glycine and [2-14C]glycine demonstrated that the cyanide carbon originates from the number 2 carbon of glycine for both P. fluorescens and P. aeruginosa. Cyanide production was not observed in raw industrial wastewater or in sterile wastewater inoculated with pure cultures of cyanogenic Pseudomonas strains. Cyanide was produced when wastewater was amended by the addition of components of the defined growth medium. PMID:6410989

  5. Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa.

    PubMed

    Askeland, R A; Morrison, S M

    1983-06-01

    Of 200 water isolates screened, five strains of Pseudomonas fluorescens and one strain of Pseudomonas aeruginosa were cyanogenic. Maximum cyanogenesis by two strains of P. fluorescens in a defined growth medium occurred at 25 to 30 degrees C over a pH range of 6.6 to 8.9. Cyanide production per cell was optimum at 300 mM phosphate. A linear relationship was observed between cyanogenesis and the log of iron concentration over a range of 3 to 300 microM. The maximum rate of cyanide production occurred during the transition from exponential to stationary growth phase. Radioactive tracer experiments with [1-14C]glycine and [2-14C]glycine demonstrated that the cyanide carbon originates from the number 2 carbon of glycine for both P. fluorescens and P. aeruginosa. Cyanide production was not observed in raw industrial wastewater or in sterile wastewater inoculated with pure cultures of cyanogenic Pseudomonas strains. Cyanide was produced when wastewater was amended by the addition of components of the defined growth medium.

  6. Mechanical Properties of Type IV Pili in P. Aeruginosa

    NASA Astrophysics Data System (ADS)

    Lu, Shun; Touhami, Ahmed; Scheurwater, Edie; Harvey, Hanjeong; Burrows, Lori; Dutcher, John

    2009-03-01

    Type IV pili (Tfp) are thin flexible protein filaments that extend from the cell membrane of bacteria such as Pseudomonas aeruginosa and Neisseria gonorrhoeae. The mechanical properties of Tfp are of great importance since they allow bacteria to interact with and colonize various surfaces. In the present study, we have used atomic force microscopy (AFM) for both imaging and pulling on Tfp from P. aeruginosa (PAO1) and from its PilA, PilT, and FliC mutants. A single pilus filament was mechanically stretched and the resulting force-extension profiles were fitted using the worm-like-chain (WLC) model. The statistical distributions obtained for contour length, persistence length, and number of pili per bacteria pole, were used to evaluate the mechanical properties of a single pilus and the biogenesis functions of different proteins (PilA, PilT) involved in its assembly and disassembly. Importantly, the persistence length value of ˜ 1 μm measured in the present study, which is consistent with the curvature of the pili observed in our AFM images, is significantly lower than the value of 5 μm reported earlier by Skerker et al. (1). Our results shed new light on the role of mechanical forces that mediate bacteria-surface interactions and biofilm formation. 1- J.M. Skerker and H.C. Berg, Proc. Natl. Acad. Sci. USA, 98, 6901-6904 (2001).

  7. Pseudomonas aeruginosa Exopolyphosphatase Is Also a Polyphosphate: ADP Phosphotransferase.

    PubMed

    Beassoni, Paola R; Gallarato, Lucas A; Boetsch, Cristhian; Garrido, Mónica N; Lisa, Angela T

    2015-01-01

    Pseudomonas aeruginosa exopolyphosphatase (paPpx; EC 3.6.1.11) catalyzes the hydrolysis of polyphosphates (polyP), producing polyPn-1 plus inorganic phosphate (Pi). In a recent work we have shown that paPpx is involved in the pathogenesis of P. aeruginosa. The present study was aimed at performing the biochemical characterization of this enzyme. We found some properties that were already described for E. coli Ppx (ecPpx) but we also discovered new and original characteristics of paPpx: (i) the peptide that connects subdomains II and III is essential for enzyme activity; (ii) NH4 (+) is an activator of the enzyme and may function at concentrations lower than those of K(+); (iii) Zn(2+) is also an activator of paPpx and may substitute Mg(2+) in the catalytic site; and (iv) paPpx also has phosphotransferase activity, dependent on Mg(2+) and capable of producing ATP regardless of the presence or absence of K(+) or NH4 (+) ions. In addition, we detected that the active site responsible for the phosphatase activity is also responsible for the phosphotransferase activity. Through the combination of molecular modeling and docking techniques, we propose a model of the paPpx N-terminal domain in complex with a polyP chain of 7 residues long and a molecule of ADP to explain the phosphotransferase activity.

  8. Computer simulation of the rough lipopolysaccharide membrane of Pseudomonas aeruginosa.

    PubMed Central

    Lins, R D; Straatsma, T P

    2001-01-01

    Lipopolysaccharides (LPSs) form the major constituent of the outer membrane of Gram-negative bacteria, and are believed to play a key role in processes that govern microbial metal binding, microbial adsorption to mineral surfaces, and microbe-mediated oxidation/reduction reactions at the bacterial exterior surface. A computational modeling capability is being developed for the study of geochemical reactions at the outer bacterial envelope of Gram-negative bacteria. A molecular model for the rough LPS of Pseudomonas aeruginosa has been designed based on experimentally determined structural information. An electrostatic model was developed based on Hartree-Fock SCF calculations of the complete LPS molecule to obtain partial atomic charges. The exterior of the bacterial membrane was assembled by replication of a single LPS molecule and a single phospholipid molecule. Molecular dynamics simulations of the rough LPS membrane of P. aeruginosa were carried out and trajectories were analyzed for the energetic and structural factors that determine the role of LPS in processes at the cell surface. PMID:11463645

  9. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa.

    PubMed

    Chan, Benjamin K; Sistrom, Mark; Wertz, John E; Kortright, Kaitlyn E; Narayan, Deepak; Turner, Paul E

    2016-05-26

    Increasing prevalence and severity of multi-drug-resistant (MDR) bacterial infections has necessitated novel antibacterial strategies. Ideally, new approaches would target bacterial pathogens while exerting selection for reduced pathogenesis when these bacteria inevitably evolve resistance to therapeutic intervention. As an example of such a management strategy, we isolated a lytic bacteriophage, OMKO1, (family Myoviridae) of Pseudomonas aeruginosa that utilizes the outer membrane porin M (OprM) of the multidrug efflux systems MexAB and MexXY as a receptor-binding site. Results show that phage selection produces an evolutionary trade-off in MDR P. aeruginosa, whereby the evolution of bacterial resistance to phage attack changes the efflux pump mechanism, causing increased sensitivity to drugs from several antibiotic classes. Although modern phage therapy is still in its infancy, we conclude that phages, such as OMKO1, represent a new approach to phage therapy where bacteriophages exert selection for MDR bacteria to become increasingly sensitive to traditional antibiotics. This approach, using phages as targeted antibacterials, could extend the lifetime of our current antibiotics and potentially reduce the incidence of antibiotic resistant infections.

  10. Ventilator-associated pneumonia and the importance of education of ICU nurses on prevention – Preliminary results

    PubMed Central

    Mogyoródi, Bence; Dunai, Erzsébet; Gál, János; Iványi, Zsolt

    2016-01-01

    Background and aims Ventilator-associated pneumonia (VAP) increases intensive care unit (ICU) length of stay, ICU mortality, the number of ventilator days, and costs. We implemented a VAP bundle and investigated its efficacy on prevention. Materials and methods A prospective observational study was conducted between January 1, 2015 and December 31, 2015 in a 12-bed multidisciplinary ICU. The bundle was implemented on July 02, 2015. Comparative analysis was performed before and after the implementation of the bundle. The compliance of the nurses was also studied. Results The incidence of VAP was 21.5/1,000 ventilator days (95% CI: 14.17–31.10) in the first phase and 12.0/1,000 ventilator days (95% CI: 7.2–19.49) in the second phase. Relative risk reduction was 44% (95% CI: −0.5 to 0.98). Most common bacteria identified during the first phase were Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Staphylococcus aureus; and in the second phase P. aeruginosa, Acinetobacter baumannii, and S. maltophilia were identified. Significant improvement was achieved in the head-of-bed elevation (p = 0.004), oral care (p = 0.01), hand hygiene (p < 0.001), endotracheal suctioning (p = 0.004), and removal of condensate (p = 0.043). Discussion The incidence of VAP showed tendency for reduction. The prevalence of nursing-dependent bacteria decreased and compliance in following prevention methods increased. Conclusion These results underline the importance of education of prevention methods. PMID:28180003

  11. Impact of untreated urban waste on the prevalence and antibiotic resistance profiles of human opportunistic pathogens in agricultural soils from Burkina Faso.

    PubMed

    Youenou, Benjamin; Hien, Edmond; Deredjian, Amélie; Brothier, Elisabeth; Favre-Bonté, Sabine; Nazaret, Sylvie

    2016-12-01

    This study examined the long-term effects of the landfill disposal of untreated urban waste for soil fertilization on the prevalence and antibiotic resistance profiles of various human opportunistic pathogens in soils from Burkina Faso. Samples were collected at three sites in the periphery of Ouagadougou during two campaigns in 2008 and 2011. At each site, amendment led to changes in physico-chemical characteristics as shown by the increase in pH, CEC, total C, total N, and metal contents. Similarly, the numbers of total heterotrophic bacteria were higher in the amended fields than in the control ones. No sanitation indicators, i.e., coliforms, Staphylococci, and Enterococci, were detected. Pseudomonas aeruginosa and Burkholderia cepacia complex (Bcc) were detected at a low level in one amended field. Stenotrophomonas maltophilia was detected from both campaigns at the three sites in the amended fields and only once in an unamended field. Diversity analysis showed some opportunistic pathogen isolates to be closely related to reference clinical strains responsible for nosocomial- or community-acquired infections in Northern countries. Antibiotic resistance tests showed that P. aeruginosa and Bcc isolates had a wild-type phenotype and that most S. maltophilia isolates had a multi-drug resistance profile with resistance to 7 to 15 antibiotics. Then we were able to show that amendment led to an increase of some human opportunistic pathogens including multi-drug resistant isolates. Although the application of untreated urban waste increases both soil organic matter content and therefore soil fertility, the consequences of this practice on human health should be considered.

  12. Increasing Incidence of Multidrug Resistance Among Cystic Fibrosis Respiratory Bacterial Isolates.

    PubMed

    Rutter, W Cliff; Burgess, Donna R; Burgess, David S

    2017-01-01

    Pseudomonas aeruginosa and Staphylococcus aureus are common pathogens in cystic fibrosis (CF) patients with increasing multidrug resistance (MDR). This study characterized antimicrobial susceptibility trends among organisms isolated from the respiratory tract of CF patients. Microbiological culture and sensitivity results for all CF patients were collected from January 2010 through December 2014. Minimum inhibitory concentrations were obtained using Phoenix(®) and Etest(®) methods. Clinical and Laboratory Standards Institute guidelines were used to remove duplicate isolates and develop antimicrobial susceptibility reports. MDR was defined as resistance to one agent in three or more antibiotic classes or oxacillin resistance in S. aureus. Overall, 542 bacterial isolates from 376 cultures were analyzed for trends. P. aeruginosa (41%), S. aureus (40%), and Stenotrophomonas maltophilia (8%) were the most commonly isolated organisms. Multidrug-resistant organism isolation increased from 39% to 49% (r = 0.76, p = 0.13), while representing 47.6% of all isolates. Multidrug-resistant P. aeruginosa incidence increased each year from 26% to 43% (r = 0.89, p = 0.046), while P. aeruginosa isolation decreased from 47% to 38% over the study period (r = -0.93, p = 0.02). MRSA accounted for 62.6% of all S. aureus isolated, while overall multidrug-resistant S. aureus incidence was 73.1% in all cultures. MDR among common pathogens in CF continues to increase. Empiric therapy for CF exacerbations should be targeted to previous antimicrobial susceptibility, and P. aeruginosa and S. aureus should be empirically covered.

  13. Cystic Fibrosis Transmembrane Conductance Regulator is an Epithelial Cell Receptor for Clearance of Pseudomonas aeruginosa from the Lung

    NASA Astrophysics Data System (ADS)

    Pier, Gerald B.; Grout, Martha; Zaidi, Tanweer S.

    1997-10-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride ion channel, but its relationship to the primary clinical manifestation of CF, chronic Pseudomonas aeruginosa pulmonary infection, is unclear. We report that CFTR is a cellular receptor for binding, endocytosing, and clearing P. aeruginosa from the normal lung. Murine cells expressing recombinant human wild-type CFTR ingested 30-100 times as many P. aeruginosa as cells lacking CFTR or expressing mutant Δ F508 CFTR protein. Purified CFTR inhibited ingestion of P. aeruginosa by human airway epithelial cells. The first extracellular domain of CFTR specifically bound to P. aeruginosa and a synthetic peptide of this region inhibited P. aeruginosa internalization in vivo, leading to increased bacterial lung burdens. CFTR clears P. aeruginosa from the lung, indicating a direct connection between mutations in CFTR and the clinical consequences of CF.

  14. Behaviors of Microcystis aeruginosa cells during floc storage in drinking water treatment process.

    PubMed

    Xu, Hangzhou; Pei, Haiyan; Xiao, Hongdi; Jin, Yan; Li, Xiuqing; Hu, Wenrong; Ma, Chunxia; Sun, Jiongming; Li, Hongmin

    2016-10-07

    This is the first study to systematically investigate the different behaviors of Microcystis aeruginosa in the sludges formed by AlCl3, FeCl3, and polymeric aluminium ferric chloride (PAFC) coagulants during storage. Results show that the viability of Microcystis aeruginosa in PAFC sludge was stronger than that of cells in either AlCl3 or FeCl3 sludge after the same storage time, while the cells' viability in the latter two systems stayed at almost the same level. In AlCl3 and FeCl3 sludges high concentrations of Al and Fe were toxic to Microcystis aeruginosa, whereas in PAFC sludge low levels of Al showed little toxic effect on Microcystis aeruginosa growth and moderate amounts of Fe were beneficial to growth. The lysis of Microcystis aeruginosa in AlCl3 sludge was more serious than that in PAFC sludge, for the same storage time. Although the cell viability in FeCl3 sludge was low (similar to AlCl3 sludge), the Microcystis aeruginosa cells remained basically intact after 10 d storage (similar to PAFC sludge). The maintenance of cellular integrity in FeCl3 sludge might be due to the large floc size and high density, which had a protective effect for Microcystis aeruginosa.

  15. Direct measurement of efflux in Pseudomonas aeruginosa using an environment-sensitive fluorescent dye.

    PubMed

    Iyer, Ramkumar; Erwin, Alice L

    2015-01-01

    Resistance-Nodulation-Division (RND) family pumps AcrB and MexB are the major efflux routes in Escherichia coli and Pseudomonas aeruginosa respectively. Fluorescent environment-sensitive dyes provide a means to study efflux pump function in live bacterial cells in real-time. Recently, we demonstrated the utility of this approach using the dye Nile Red to quantify AcrB-mediated efflux and measured the ability of antibiotics and other efflux pump substrates to compete with efflux of Nile Red, independent of antibacterial activity. Here, we extend this method to P. aeruginosa and describe a novel application that permits the comparison and rank-ordering of bacterial strains by their inherent efflux potential. We show that glucose and l-malate re-energize Nile Red efflux in P. aeruginosa, and we highlight differences in the glucose dependence and kinetics of efflux between P. aeruginosa and E. coli. We quantify the differences in efflux among a set of P. aeruginosa laboratory strains, which include PAO1, the hyper-sensitive strain ATCC 35151 and its parent, ATCC 12055. Efflux of Nile Red in P. aeruginosa is mediated by MexAB-OprM and is slower than in E. coli. In conclusion, we describe an efflux measurement tool for use in antibacterial drug discovery and basic research on P. aeruginosa efflux pumps.

  16. Second harmonic generation imaging of corneal stroma after infection by Pseudomonas aeruginosa

    PubMed Central

    Robertson, Danielle M.; Rogers, Nathan A.; Petroll, W. Matthew; Zhu, Meifang

    2017-01-01

    Pseudomonas aeruginosa is a pathogenic gram-negative organism that has the ability to cause blinding corneal infections following trauma and during contact lens wear. In this study, we investigated the directional movement and orientation of an invasive corneal isolate of P. aeruginosa in the corneal stroma during infection of ex vivo and in vivo rabbit corneas using multiphoton fluorescence and second harmonic generation (SHG) imaging. Ex vivo, rabbit corneas were subject to three partial thickness wounds prior to inoculation. In vivo, New Zealand white rabbits were fit with P. aeruginosa laden contact lenses in the absence of a penetrating wound. At all time points tested, infiltration of the corneal stroma by P. aeruginosa revealed a high degree of alignment between the bacteria and collagen lamellae ex vivo (p < 0.001). In vivo, P. aeruginosa traveled throughout the stroma in discrete regions or bands. Within each region, the bacteria showed good alignment with collagen lamellae (P = 0.002). Interestingly, in both the in vitro and in vivo models, P. aeruginosa did not appear to cross the corneal limbus. Taken together, our findings suggest that P. aeruginosa exploits the precise spacing of collagen lamellae in the central cornea to facilitate spread throughout the stroma.

  17. Behaviors of Microcystis aeruginosa cells during floc storage in drinking water treatment process

    PubMed Central

    Xu, Hangzhou; Pei, Haiyan; Xiao, Hongdi; Jin, Yan; Li, Xiuqing; Hu, Wenrong; Ma, Chunxia; Sun, Jiongming; Li, Hongmin

    2016-01-01

    This is the first study to systematically investigate the different behaviors of Microcystis aeruginosa in the sludges formed by AlCl3, FeCl3, and polymeric aluminium ferric chloride (PAFC) coagulants during storage. Results show that the viability of Microcystis aeruginosa in PAFC sludge was stronger than that of cells in either AlCl3 or FeCl3 sludge after the same storage time, while the cells’ viability in the latter two systems stayed at almost the same level. In AlCl3 and FeCl3 sludges high concentrations of Al and Fe were toxic to Microcystis aeruginosa, whereas in PAFC sludge low levels of Al showed little toxic effect on Microcystis aeruginosa growth and moderate amounts of Fe were beneficial to growth. The lysis of Microcystis aeruginosa in AlCl3 sludge was more serious than that in PAFC sludge, for the same storage time. Although the cell viability in FeCl3 sludge was low (similar to AlCl3 sludge), the Microcystis aeruginosa cells remained basically intact after 10 d storage (similar to PAFC sludge). The maintenance of cellular integrity in FeCl3 sludge might be due to the large floc size and high density, which had a protective effect for Microcystis aeruginosa. PMID:27713525

  18. 3-indolylacetonitrile decreases Escherichia coli O157:H7 biofilm formation and Pseudomonas aeruginosa virulence.

    PubMed

    Lee, Jin-Hyung; Cho, Moo Hwan; Lee, Jintae

    2011-01-01

    Intercellular signal indole and its derivative hydroxyindoles inhibit Escherichia coli biofilm and diminish Pseudomonas aeruginosa virulence. However, indole and bacterial indole derivatives are unstable in the microbial community because they are quickly degraded by diverse bacterial oxygenases. Hence, this work sought to identify novel, non-toxic, stable and potent indole derivatives from plant sources for inhibiting the biofilm formation of E. coli O157:H7 and P. aeruginosa. Here, plant auxin 3-indolylacetonitrile (IAN) was found to inhibit the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth. IAN more effectively inhibited biofilms than indole for the two pathogenic bacteria. Additionally, IAN decreased the production of virulence factors including 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS), pyocyanin and pyoverdine in P. aeruginosa. DNA microarray analysis indicated that IAN repressed genes involved in curli formation and glycerol metabolism, whereas IAN induced indole-related genes and prophage genes in E. coli O157:H7. It appeared that IAN inhibited the biofilm formation of E. coli by reducing curli formation and inducing indole production. Also, corroborating phenotypic results of P. aeruginosa, whole-transcriptomic data showed that IAN repressed virulence-related genes and motility-related genes, while IAN induced several small molecule transport genes. Furthermore, unlike bacterial indole derivatives, plant-originated IAN was stable in the presence of either E. coli or P. aeruginosa. Additionally, indole-3-carboxyaldehyde was another natural biofilm inhibitor for both E. coli and P. aeruginosa.

  19. Bacterial Secretant from Pseudomonas aeruginosa Dampens Inflammasome Activation in a Quorum Sensing-Dependent Manner

    PubMed Central

    Yang, Jungmin; Lee, Kang-Mu; Park, Sangjun; Cho, Yoeseph; Lee, Eunju; Park, Jong-Hwan; Shin, Ok Sarah; Son, Junghyun; Yoon, Sang Sun; Yu, Je-Wook

    2017-01-01

    Inflammasome signaling can contribute to host innate immune defense against bacterial pathogens such as Pseudomonas aeruginosa. However, bacterial evasion of host inflammasome activation is still poorly elucidated. Quorum sensing (QS) is a bacterial communication mechanism that promotes coordinated adaptation by triggering expression of a wide range of genes. QS is thought to strongly contribute to the virulence of P. aeruginosa, but the molecular impact of bacterial QS on host inflammasome defense is completely unknown. Here, we present evidence that QS-related factors of the bacterial secretant (BS) from P. aeruginosa can dampen host inflammasome signaling in mouse bone marrow-derived macrophages. We found that BS from QS-defective ΔlasR/rhlR mutant, but not from wild-type (WT) P. aeruginosa, induces robust activation of the NLRC4 inflammasome. P. aeruginosa-released flagellin mediates this inflammasome activation by ΔlasR/rhlR secretant, but QS-regulated bacterial proteases in the WT BS impair extracellular flagellin to attenuate NLRC4 inflammasome activation. P. aeruginosa-secreted proteases also degrade inflammasome components in the extracellular space to inhibit the propagation of inflammasome-mediated responses. Furthermore, QS-regulated virulence factor pyocyanin and QS autoinducer 3-oxo-C12-homoserine lactone directly suppressed NLRC4- and even NLRP3-mediated inflammasome assembly and activation. Taken together, our data indicate that QS system of P. aeruginosa facilitates bacteria to evade host inflammasome-dependent sensing machinery.

  20. CHANGES IN THE MORPHOLOGY AND POLYSACCHARIDE CONTENT OF MICROCYSTIS AERUGINOSA (CYANOBACTERIA) DURING FLAGELLATE GRAZING(1).

    PubMed

    Yang, Zhou; Kong, Fanxiang; Shi, Xiaoli; Zhang, Min; Xing, Peng; Cao, Huansheng

    2008-06-01

    To investigate the changes in the morphology and polysaccharide content of Microcystis aeruginosa (Kütz.) Kütz. during flagellate grazing, cultures of M. aeruginosa were exposed to grazing Ochromonas sp. for a period of 9 d under controlled laboratory conditions. M. aeruginosa responded actively to flagellate grazing and formed colonies, most of which were made up of several or dozens of cells, suggesting that flagellate grazing may be one of the biotic factors responsible for colony formation in M. aeruginosa. When colonies were formed, the cell surface ultrastructure changed, and the polysaccharide layer on the surface of the cell wall became thicker. This change indicated that synthesis and secretion of extracellular polysaccharide (EPS) of M. aeruginosa cells increased under flagellate grazing pressure. The contents of soluble extracellular polysaccharide (sEPS), bound extracellular polysaccharide (bEPS), and total polysaccharide (TPS) in colonial cells of M. aeruginosa increased significantly compared with those in single cells. This finding suggested that the increased amount of EPS on the cell surface may play a role in keeping M. aeruginosa cells together to form colonies.

  1. Effects of laser irradiation on a bloom forming cyanobacterium Microcystis aeruginosa.

    PubMed

    Li, Tiancui; Bi, Yonghong; Liu, Jiantong; Wu, Chenxi

    2016-10-01

    Effects of laser irradiation on photosystem II (PS II) photochemical efficiencies, growth, and other physiological responses of Microcystis aeruginosa were investigated in this study. Results indicate that laser irradiation (wavelengths 405, 450, 532, and 650 nm) could effectively inhibit maximal PS II quantum yield (Fv/Fm) and maximal electron transport rates (ETRmax) of M. aeruginosa, while saturating light levels (Ek) of M. aeruginosa did not change significantly. Among the four tested wavelengths, 650 nm laser (red light) showed the highest inhibitory efficiency. Following 650 nm laser irradiation, the growth of M. aeruginosa was significantly suppressed, and contents of cellular photosynthetic pigments (chlorophyll a, carotenoid, phycocyanin, and allophycocyanin) decreased as irradiation dose increased. Meanwhile, laser irradiation enhanced the enzyme activities of superoxide dismutase (SOD) and peroxidase (POD) in M. aeruginosa cells. Lower irradiation doses did not change the intracellular microcystin contents, but higher dose irradiation (>1284 J cm(-2)) caused the release of microcystin into the culture medium. Transmission electron microscope examination showed that the ultrastructure of M. aeruginosa cells was destructed progressively following laser irradiation. Effects of laser irradiation on M. aeruginosa may be a combination of photochemical, electromagnetic, and thermal effects.

  2. Behaviors of Microcystis aeruginosa cells during floc storage in drinking water treatment process

    NASA Astrophysics Data System (ADS)

    Xu, Hangzhou; Pei, Haiyan; Xiao, Hongdi; Jin, Yan; Li, Xiuqing; Hu, Wenrong; Ma, Chunxia; Sun, Jiongming; Li, Hongmin

    2016-10-01

    This is the first study to systematically investigate the different behaviors of Microcystis aeruginosa in the sludges formed by AlCl3, FeCl3, and polymeric aluminium ferric chloride (PAFC) coagulants during storage. Results show that the viability of Microcystis aeruginosa in PAFC sludge was stronger than that of cells in either AlCl3 or FeCl3 sludge after the same storage time, while the cells’ viability in the latter two systems stayed at almost the same level. In AlCl3 and FeCl3 sludges high concentrations of Al and Fe were toxic to Microcystis aeruginosa, whereas in PAFC sludge low levels of Al showed little toxic effect on Microcystis aeruginosa growth and moderate amounts of Fe were beneficial to growth. The lysis of Microcystis aeruginosa in AlCl3 sludge was more serious than that in PAFC sludge, for the same storage time. Although the cell viability in FeCl3 sludge was low (similar to AlCl3 sludge), the Microcystis aeruginosa cells remained basically intact after 10 d storage (similar to PAFC sludge). The maintenance of cellular integrity in FeCl3 sludge might be due to the large floc size and high density, which had a protective effect for Microcystis aeruginosa.

  3. Annona glabra Flavonoids Act As Antimicrobials by Binding to Pseudomonas aeruginosa Cell Walls

    PubMed Central

    Galvão, Stanley de S. L.; Monteiro, Andrea de S.; Siqueira, Ezequias P.; Bomfim, Maria Rosa Q.; Dias-Souza, Marcus Vinícius; Ferreira, Gabriella F.; Denadai, Angelo Márcio L.; Santos, Áquila R. C.; Lúcia dos Santos, Vera; de Souza-Fagundes, Elaine M.; Fernandes, Elizabeth S.; Monteiro-Neto, Valério

    2016-01-01

    Pseudomonas aeruginosa is an important pathogen in opportunistic infections in humans. The increased incidence of antimicrobial-resistant P. aeruginosa isolates has highlighted the need for novel and more potent therapies against this microorganism. Annona glabra is known for presenting different compounds with diverse biological activities, such as anti-tumor and immunomodulatory activities. Although other species of the family display antimicrobial actions, this has not yet been reported for A. glabra. Here, we investigated the antimicrobial activity of the ethyl acetate fraction (EAF) obtained from the leaf hydroalcoholic extract of A. glabra. EAF was bactericidal against different strains of P. aeruginosa. EAF also presented with a time- and concentration-dependent effect on P. aeruginosa viability. Testing of different EAF sub-fractions showed that the sub-fraction 32-33 (SF32-33) was the most effective against P. aeruginosa. Analysis of the chemical constituents of SF32-33 demonstrated a high content of flavonoids. Incubation of this active sub-fraction with P. aeruginosa ATCC 27983 triggered an endothermic reaction, which was accompanied by an increased electric charge, suggesting a high binding of SF32-33 compounds to bacterial cell walls. Collectively, our results suggest that A. glabra-derived compounds, especially flavonoids, may be useful for treating infections caused by P. aeruginosa. PMID:28066374

  4. Distribution and Inhibition of Liposomes on Staphylococcus aureus and Pseudomonas aeruginosa Biofilm

    PubMed Central

    Dong, Dong; Thomas, Nicky; Thierry, Benjamin; Vreugde, Sarah; Prestidge, Clive A.; Wormald, Peter-John

    2015-01-01

    Background Staphylococcus aureus and Pseudomonas aeruginosa are major pathogens in chronic rhinosinusitis (CRS) and their biofilms have been associated with poorer postsurgical outcomes. This study investigated the distribution and anti-biofilm effect of cationic (+) and anionic (-) phospholipid liposomes with different sizes (unilamellar and multilamellar vesicle, ULV and MLV respectively) on S. aureus and P. aeruginosa biofilms. Method Specific biofilm models for S. aureus ATCC 25923 and P. aeruginosa ATCC 15692 were established. Liposomal distribution was determined by observing SYTO9 stained biofilm exposed to DiI labeled liposomes using confocal scanning laser microscopy, followed by quantitative image analysis. The anti-biofilm efficacy study was carried out by using the alamarBlue assay to test the relative viability of biofilm treated with various liposomes for 24 hours and five minutes. Results The smaller ULVs penetrated better than larger MLVs in both S. aureus and P. aeruginosa biofilm. Except that +ULV and –ULV displayed similar distribution in S. aureus biofilm, the cationic liposomes adhered better than their anionic counterparts. Biofilm growth was inhibited at 24-hour and five-minute exposure time, although the decrease of viability for P. aeruginosa biofilm after liposomal treatment did not reach statistical significance. Conclusion The distribution and anti-biofilm effects of cationic and anionic liposomes of different sizes differed in S. aureus and P. aeruginosa biofilms. Reducing the liposome size and formulating liposomes as positively charged enhanced the penetration and inhibition of S. aureus and P. aeruginosa biofilms. PMID:26125555

  5. SERS detection of the biomarker hydrogen cyanide from Pseudomonas aeruginosa cultures isolated from cystic fibrosis patients

    PubMed Central

    Lauridsen, Rikke Kragh; Sommer, Lea M.; Johansen, Helle Krogh; Rindzevicius, Tomas; Molin, Søren; Jelsbak, Lars; Engelsen, Søren Balling; Boisen, Anja

    2017-01-01

    Pseudomonas aeruginosa is the primary cause of chronic airway infections in cystic fibrosis (CF) patients. Persistent infections are seen from the first P. aeruginosa culture in about 75% of young CF patients, and it is important to discover new ways to detect P. aeruginosa at an earlier stage. The P. aeruginosa biomarker hydrogen cyanide (HCN) contains a triple bond, which is utilized in this study because of the resulting characteristic C≡N peak at 2135 cm−1 in a Raman spectrum. The Raman signal was enhanced by surface-enhanced Raman spectroscopy (SERS) on a Au-coated SERS substrate. After long-term infection, a mutation in the patho-adaptive lasR gene can alter the expression of HCN, which is why it is sometimes not possible to detect HCN in the breath of chronically infected patients. Four P. aeruginosa reference strains and 12 clinical P. aeruginosa strains isolated from CF children were evaluated, and HCN was clearly detected from overnight cultures of all wild type-like isolates and half of the later isolates from the same patients. The clinical impact could be that P. aeruginosa infections could be detected at an earlier stage, because daily breath sampling with an immediate output could be possible with a point-of-care SERS device. PMID:28349938

  6. The complex interplay of iron, biofilm formation, and mucoidy affecting antimicrobial resistance of Pseudomonas aeruginosa.

    PubMed

    Oglesby-Sherrouse, Amanda G; Djapgne, Louise; Nguyen, Angela T; Vasil, Adriana I; Vasil, Michael L

    2014-04-01

    Pseudomonas aeruginosa is a Gram-negative opportunistic bacterial pathogen that is refractory to a variety of current antimicrobial therapeutic regimens. Complicating treatment for such infections is the ability of P. aeruginosa to form biofilms, as well as several innate and acquired resistance mechanisms. Previous studies suggest iron plays a role in resistance to antimicrobial therapy, including the efficacy of an FDA-approved iron chelator, deferasirox (DSX), or Gallium, an iron analog, in potentiating antibiotic-dependent killing of P. aeruginosa biofilms. Here, we show that iron-replete conditions enhance resistance of P. aeruginosa nonbiofilm growth against tobramycin and tigecycline. Interestingly, the mechanism of iron-enhanced resistance to each of these antibiotics is distinct. Whereas pyoverdine-mediated iron uptake is important for optimal resistance to tigecycline, it does not enhance tobramycin resistance. In contrast, heme supplementation results in increased tobramycin resistance, while having no significant effect on tigecycline resistance. Thus, nonsiderophore bound iron plays an important role in resistance to tobramycin, while pyoverdine increases the ability of P. aeruginosa to resist tigecycline treatment. Lastly, we show that iron increases the minimal concentration of tobramycin, but not tigecycline, required to eradicate P. aeruginosa biofilms. Moreover, iron depletion blocks the previous observed induction of biofilm formation by subinhibitory concentrations of tobramycin, suggesting iron and tobramycin signal through overlapping regulatory pathways to affect biofilm formation. These data further support the role of iron in P. aeruginosa antibiotic resistance, providing yet another compelling case for targeting iron acquisition for future antimicrobial drug development.

  7. COMPARATIVE TAXONOMY OF CRYSTALLOGENIC STRAINS OF PSEUDOMONAS AERUGINOSA AND PSEUDOMONAS CHLORORAPHIS

    PubMed Central

    Haynes, William C.; Rhodes, Lenora J.

    1962-01-01

    Haynes, William C. (Northern Utilization Research and Development Division, Peoria, Ill.) and Lenora J. Rhodes. Comparative taxonomy of crystallogenic strains of Pseudomonas aeruginosa and Pseudomonas chlororaphis. J. Bacteriol. 84:1080–1084. 1962.—Only 11 of 39 strains received in the Agricultural Research Service Culture Collection under the designation Pseudonomas chlororaphis proved to be authentic; 28 were typical, pyocyanogenic strains of P. aeruginosa. The reason for this disproportionately high rate of misidentification apparently arises from an erroneous belief that the ability to produce green and yellow crystals of chlororaphin and oxychlororaphin is confined to P. chlororaphis. The ability of many strains of P. aeruginosa to do likewise is not well known. Inasmuch as the characteristic is not unique to P. chlororaphis, other criteria are required to distinguish crystallogenic strains of these species. After a taxonomic comparison of 18 strains of P. chlororaphis and 47 crystallogenic strains of P. aeruginosa, it was determined that there are three main distinctions: (i) P. aeruginosa grows well at 42 C but fails to grow upon serial transfer at 5 C, whereas P. chlororaphis fails to grow at 42 C, but grows well at 5 C: (ii) most strains of P. aeruginosa produce pyocyanin, whereas P. chlororaphis strains do not; (iii) P. aeruginosa cells possess only one or two polar flagella, whereas P. chlororaphis usually has at least four, sometimes as many as eight, polar flagella. PMID:13963593

  8. BIIL 284 reduces neutrophils numbers but increases P. aeruginosa bacteraemia and inflammation in mouse lungs

    PubMed Central

    Döring, Gerd; Bragonzi, Alessandra; Paroni, Moira; Aktürk, Firdevs-Fatma; Cigana, Cristina; Schmidt, Annika; Gilpin, Deirdre; Heyder, Susanne; Born, Torsten; Smaczny, Christina; Kohlhäufl, Martin; Wagner, Thomas O. F.; Loebinger, Michael R.; Bilton, Diana; Tunney, Michael M.; Elborn, J. Stuart; Pier, Gerald B.; Konstan, Michael W.; Ulrich, Martina

    2014-01-01

    Background A clinical study to investigate the leukotriene B4 (LTB4)-receptor antagonist BIIL 284 in cystic fibrosis (CF) patients was prematurely terminated due to a significantly increased risk of adverse pulmonary events. We aimed to establish the effect of BIIL284 in models of Pseudomonas aeruginosa lung infection, thereby contributing to a better understanding of what could have led to adverse pulmonary events in CF patients. Methods P. aeruginosa DNA in the blood of CF patients during and after acute pulmonary exacerbations and in stable patients with non-CF bronchiectasis (NCFB) and healthy individuals was assessed by PCR. The effect of BIIL 284 treatment was tested in an agar beads murine model of Pseudomonas aeruginosa lung infection. Bacterial count and inflammation were evaluated in lung and other organs. Result Most CF patients (98%) and all patients with NCFB and healthy individuals had negative P. aeruginosa DNA in their blood. Similarly, the P. aeruginosa-infected mice showed bacterial counts in the lung but not blood or spleen. BIIL 284 treatment decreased pulmonary neutrophils and increased P. aeruginosa numbers in mouse lungs leading to significantly higher bacteremia rates and lung inflammation compared to placebo treated animals. Conclusions Decreased airway neutrophils induced lung proliferation and severe bacteraemia in a murine model of P. aeruginosa lung infection. These data suggest that caution should be taken when administering anti-inflammatory compounds to patients with bacterial infections. PMID:24183915

  9. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections.

    PubMed

    Cornelis, Pierre; Dingemans, Jozef

    2013-01-01

    Pseudomonas aeruginosa is a Gram-negative γ-Proteobacterium which is known for its capacity to colonize various niches, including some invertebrate and vertebrate hosts, making it one of the most frequent bacteria causing opportunistic infections. P. aeruginosa is able to cause acute as well as chronic infections and it uses different colonization and virulence factors to do so. Infections range from septicemia, urinary infections, burn wound colonization, and chronic colonization of the lungs of cystic fibrosis patients. Like the vast majority of organisms, P. aeruginosa needs iron to sustain growth. P. aeruginosa utilizes different strategies to take up iron, depending on the type of infection it causes. Two siderophores are produced by this bacterium, pyoverdine and pyochelin, characterized by high and low affinities for iron respectively. P. aeruginosa is also able to utilize different siderophores from other microorganisms (siderophore piracy). It can also take up heme from hemoproteins via two different systems. Under microaerobic or anaerobic conditions, P. aeruginosa is also able to take up ferrous iron via its Feo system using redox-cycling phenazines. Depending on the type of infection, P. aeruginosa can therefore adapt by switching from one iron uptake system to another as we will describe in this short review.

  10. Efficacy of the Novel Antibiotic POL7001 in Preclinical Models of Pseudomonas aeruginosa Pneumonia

    PubMed Central

    Cigana, Cristina; Bernardini, Francesca; Facchini, Marcella; Alcalá-Franco, Beatriz; Riva, Camilla; De Fino, Ida; Rossi, Alice; Ranucci, Serena; Misson, Pauline; Chevalier, Eric; Brodmann, Maj; Schmitt, Michel; Wach, Achim; Dale, Glenn E.

    2016-01-01

    The clinical development of antibiotics with a new mode of action combined with efficient pulmonary drug delivery is a priority against untreatable Pseudomonas aeruginosa lung infections. POL7001 is a macrocycle antibiotic belonging to the novel class of protein epitope mimetic (PEM) molecules with selective and potent activity against P. aeruginosa. We investigated ventilator-associated pneumonia (VAP) and cystic fibrosis (CF) as indications of the clinical potential of POL7001 to treat P. aeruginosa pulmonary infections. MICs of POL7001 and comparators were measured for reference and clinical P. aeruginosa strains. The therapeutic efficacy of POL7001 given by pulmonary administration was evaluated in murine models of P. aeruginosa acute and chronic pneumonia. POL7001 showed potent in vitro activity against a large panel of P. aeruginosa isolates from CF patients, including multidrug-resistant (MDR) isolates with adaptive phenotypes such as mucoid or hypermutable phenotypes. The efficacy of POL7001 was demonstrated in both wild-type and CF mice. In addition to a reduced bacterial burden in the lung, POL7001-treated mice showed progressive body weight recovery and reduced levels of inflammatory markers, indicating an improvement in general condition. Pharmacokinetic studies indicated that POL7001 reached significant concentrations in the lung after pulmonary administration, with low systemic exposure. These results support the further evaluation of POL7001 as a novel therapeutic agent for the treatment of P. aeruginosa pulmonary infections. PMID:27297477

  11. Frequency of fungi in respiratory samples from Turkish cystic fibrosis patients.

    PubMed

    Güngör, Ozge; Tamay, Zeynep; Güler, Nermin; Erturan, Zayre

    2013-03-01

    An increased isolation of fungi from the respiratory tract of patients with cystic fibrosis (CF) has been reported. The prevalence of different fungi in CF patients from Turkey is not known. Our aim was to determine the frequency of fungi in the respiratory tract of Turkish CF patients. We investigated a total of 184 samples from 48 patients. Samples were inoculated on Medium B+ and CHROMagar Candida. Candida albicans was the predominant yeast isolated [30 patients (62.5%)], followed by C. parapsilosis [6 (12.5%)] and C. dubliniensis 5 (10.4%). Aspergillus fumigatus was the most common filamentous fungus [5 (10.4%)] and non-fumigatus Aspergillus species were isolated from four (8.3%) patients. Staphylococcus aureus was the most frequently detected bacterium in C. albicans positive samples (53.57%). A. fumigatus and Pseudomonas aeruginosa or S. aureus were detected together in 75% of A. fumigatus positive samples each. No statistically significant relationship was detected between growth of yeast and moulds and age, gender, the use of inhaled corticosteroids or tobramycin. No significant correlation was found between the isolation of C. albicans, A. fumigatus and P. aeruginosa, Stenotrophomonas maltophilia or S. aureus, and the isolation of C. albicans and Haemophilus influenzae. Other factors which may be responsible for the increased isolation of fungi in CF need to be investigated.

  12. [Antibacterial activity of sulopenem, a new parenteral penem antibiotic].

    PubMed

    Inoue, E; Komoto, E; Taniyama, Y; Mitsuhashi, S

    1996-04-01

    Sulopenem, a new penem antibiotic, was compared with other antibiotics with regard to in vitro antibacterial and bactericidal activities, stabilization against beta-lactamases, and effect on the release of lipopolysaccharide from Gram-negative bacteria. The results are summarized as follows. 1. Sulopenem showed more potent activities than other antibiotics against both Gram-positive and Gram-negative bacteria except Pseudomonas aeruginosa. 2. Sulopenem showed potent bactericidal activities (MIC/MBC) against both Gram-positive and Gram-negative bacteria. Time kill studies against Staphylococcus aureus, Escherichia coli, Enterobacter cloacae and Citrobacter freundii showed potent bactericidal activities of sulopenem. 3. Sulopenem was found to possess a stronger activity than other antibiotics against beta-lactamase-producing strains except P. aeruginosa and Stenotrophomonas maltophilia. 4. In particular, sulopenem was found to be more stable to the hydrolysis by various beta-lactamases produced by Gram-negative bacteria than any other antibiotics tested. Vmax/Km values of sulopenem were smaller than those of cefotiam for all tested beta-lactamases, which reflected a broad antibacterial spectrum of sulopenem. 5. E. coli ML4707 exposed to sulopenem and imipenem released less endotoxin than did controls at all concentration ranges tested. In contrast, the strain exposed to ceftazidime at bacteriostatic concentrations released a large amount of endotoxin.

  13. Effect of carbon on whole-biofilm metabolic response to high doses of streptomycin

    PubMed Central

    Jackson, Lindsay M. D.; Kroukamp, Otini; Wolfaardt, Gideon M.

    2015-01-01

    Biofilms typically exist as complex communities comprising multiple species with the ability to adapt to a variety of harsh conditions. In clinical settings, antibiotic treatments based on planktonic susceptibility tests are often ineffective against biofilm infections. Using a CO2 evolution measurement system we delineated the real-time metabolic response in continuous flow biofilms to streptomycin doses much greater than their planktonic susceptibilities. Stable biofilms from a multispecies culture (containing mainly Pseudomonas aeruginosa and Stenotrophomonas maltophilia), Gram-negative environmental isolates, and biofilms formed by pure culture P. aeruginosa strains PAO1 and PAO1 ΔMexXY (minimum planktonic inhibitory concentrations between 1.5 and 3.5 mg/l), were exposed in separate experiments to 4000 mg/l streptomycin for 4 h after which growth medium resumed. In complex medium, early steady state multispecies biofilms were susceptible to streptomycin exposure, inferred by a cessation of CO2 production. However, multispecies biofilms survived high dose exposures when there was extra carbon in the antibiotic medium, or when they were grown in defined citrate medium. The environmental isolates and PAO1 biofilms showed similar metabolic profiles in response to streptomycin; ceasing CO2 production after initial exposure, with CO2 levels dropping toward baseline levels prior to recovery back to steady state levels, while subsequent antibiotic exposure elicited increased CO2 output. Monitoring biofilm metabolic response in real-time allowed exploration of conditions resulting in vulnerability after antibiotic exposure compared to the resistance displayed following subsequent exposures. PMID:26441887

  14. Identification and antimicrobial susceptibility of Alcaligenes xylosoxidans isolated from patients with cystic fibrosis.

    PubMed

    Saiman, L; Chen, Y; Tabibi, S; San Gabriel, P; Zhou, J; Liu, Z; Lai, L; Whittier, S

    2001-11-01

    In the past decade, potential pathogens, including Alcaligenes species, have been increasingly recovered from cystic fibrosis (CF) patients. Accurate identification of multiply antibiotic-resistant gram-negative bacilli is critical to understanding the epidemiology and clinical implications of emerging pathogens in CF. We examined the frequency of correct identification of Alcaligenes spp. by microbiology laboratories affiliated with American CF patient care centers. Selective media, an exotoxin A probe for Pseudomonas aeruginosa, and a commercial identification assay, API 20 NE, were used for identification. The activity of antimicrobial agents against these clinical isolates was determined. A total of 106 strains from 78 patients from 49 CF centers in 22 states were studied. Most (89%) were correctly identified by the referring laboratories as Alcaligenes xylosoxidans. However, 12 (11%) strains were misidentified; these were found to be P. aeruginosa (n = 10), Stenotrophomonas maltophilia (n = 1), and Burkholderia cepacia (n = 1). Minocycline, imipenem, meropenem, piperacillin, and piperacillin-tazobactam were the most active since 51, 59, 51, 50, and 55% of strains, respectively, were inhibited. High concentrations of colistin (100 and 200 microg/ml) inhibited 92% of strains. Chloramphenicol paired with minocycline and ciprofloxacin paired with either imipenem or meropenem were the most active combinations and inhibited 40 and 32%, respectively, of strains. Selective media and biochemical identification proved to be useful strategies for distinguishing A. xylosoxidans from other CF pathogens. Standards for processing CF specimens should be developed, and the optimal method for antimicrobial susceptibility testing of A. xylosoxidans should be determined.

  15. Gallium-Protoporphyrin IX Inhibits Pseudomonas aeruginosa Growth by Targeting Cytochromes

    PubMed Central

    Hijazi, Sarah; Visca, Paolo; Frangipani, Emanuela

    2017-01-01

    Pseudomonas aeruginosa is a challenging pathogen due to both innate and acquired resistance to antibiotics. It is capable of causing a variety of infections, including chronic lung infection in cystic fibrosis (CF) patients. Given the importance of iron in bacterial physiology and pathogenicity, iron-uptake and metabolism have become attractive targets for the development of new antibacterial compounds. P. aeruginosa can acquire iron from a variety of sources to fulfill its nutritional requirements both in the environment and in the infected host. The adaptation of P. aeruginosa to heme iron acquisition in the CF lung makes heme utilization pathways a promising target for the development of new anti-Pseudomonas drugs. Gallium [Ga(III)] is an iron mimetic metal which inhibits P. aeruginosa growth by interfering with iron-dependent metabolism. The Ga(III) complex of the heme precursor protoporphyrin IX (GaPPIX) showed enhanced antibacterial activity against several bacterial species, although no inhibitory effect has been reported on P. aeruginosa. Here, we demonstrate that GaPPIX is indeed capable of inhibiting the growth of clinical P. aeruginosa strains under iron-deplete conditions, as those encountered by bacteria during infection, and that GaPPIX inhibition is reversed by iron. Using P. aeruginosa PAO1 as model organism, we show that GaPPIX enters cells through both the heme-uptake systems has and phu, primarily via the PhuR receptor which plays a crucial role in P. aeruginosa adaptation to the CF lung. We also demonstrate that intracellular GaPPIX inhibits the aerobic growth of P. aeruginosa by targeting cytochromes, thus interfering with cellular respiration. PMID:28184354

  16. Solar Disinfection of Pseudomonas aeruginosa in Harvested Rainwater: A Step towards Potability of Rainwater

    PubMed Central

    Amin, Muhammad T.; Nawaz, Mohsin; Amin, Muhammad N.; Han, Mooyoung

    2014-01-01

    Efficiency of solar based disinfection of Pseudomonas aeruginosa (P. aeruginosa) in rooftop harvested rainwater was evaluated aiming the potability of rainwater. The rainwater samples were exposed to direct sunlight for about 8–9 hours and the effects of water temperature (°C), sunlight irradiance (W/m2), different rear surfaces of polyethylene terephthalate bottles, variable microbial concentrations, pH and turbidity were observed on P. aeruginosa inactivation at different weathers. In simple solar disinfection (SODIS), the complete inactivation of P. aeruginosa was obtained only under sunny weather conditions (>50°C and >700 W/m2) with absorptive rear surface. Solar collector disinfection (SOCODIS) system, used to improve the efficiency of simple SODIS under mild and weak weather, completely inactivated the P. aeruginosa by enhancing the disinfection efficiency of about 20% only at mild weather. Both SODIS and SOCODIS systems, however, were found inefficient at weak weather. Different initial concentrations of P. aeruginosa and/or Escherichia coli had little effects on the disinfection efficiency except for the SODIS with highest initial concentrations. The inactivation of P. aeruginosa increased by about 10–15% by lowering the initial pH values from 10 to 3. A high initial turbidity, adjusted by adding kaolin, adversely affected the efficiency of both systems and a decrease, about 15–25%; in inactivation of P. aeruginosa was observed. The kinetics of this study was investigated by Geeraerd Model for highlighting the best disinfection system based on reaction rate constant. The unique detailed investigation of P. aeruginosa disinfection with sunlight based disinfection systems under different weather conditions and variable parameters will help researchers to understand and further improve the newly invented SOCODIS system. PMID:24595188

  17. Diverse effects of Galleria mellonella infection with entomopathogenic and clinical strains of Pseudomonas aeruginosa.

    PubMed

    Andrejko, Mariola; Zdybicka-Barabas, Agnieszka; Cytryńska, Małgorzata

    2014-01-01

    In numerous studies, the greater wax moth Galleria mellonella has been exploited as an alternative model host for investigating virulence factors of different pathogenic bacteria. In the present paper, we provide evidence that G. mellonella constitutes a useful and convenient model for analysis of the pathogenicity of Pseudomonas aeruginosa clinical strains. In this in vivo study on the G. mellonella–P. aeruginosa interaction, a bidirectional analysis comprising evaluation of humoral immune response of the bacteria-infected larvae and determination of P. aeruginosa proteinases synthesized during the infection was performed. The effects of G. mellonella infection by two clinical strains (PA C124/9 and PA 02/18) and one entomopathogenic strain (ATCC 27853) cultured in a rich LB and minimal M9 medium, known to induce synthesis of different sets of extracellular proteinases, were evaluated. Both clinical isolates were able to establish infection in G. mellonella caterpillars after intrahemocelic injection. However, although the final effect of the larvae infection by each P. aeruginosa strain was their death within ca. 48 h, considerable strain and medium-dependent differences in the immune response of the insects were detected. The results indicated that G. mellonella larvae distinguished between the three P. aeruginosa strains, which was well reflected by the diverse humoral immune response. The significant differences concerned, among others, the level of phenoloxidase, lysozyme, and antibacterial activity in the hemolymph of the infected insects. An analysis of proteinases performed using specific activity tests, zymography and immunoblotting, revealed that elastase B and alkaline protease were synthesized by each P. aeruginosa strain during the infection. In contrast, a high level of elastase A activity was detected only in the larvae infected by the P. aeruginosa ATCC 27853 strain. It can be postulated that the three P. aeruginosa strains exploit different

  18. Anti-Pseudomonas aeruginosa antibody detection in patients with bronchiectasis without cystic fibrosis

    PubMed Central

    Caballero, E; Drobnic, M; Perez, M; Manresa, J; Ferrer, A; Orriols, R

    2001-01-01

    BACKGROUND—Pseudomonas aeruginosa is a frequent cause of infection in patients with bronchiectasis. Differentiation between non-infected patients and those with different degrees of P aeruginosa infection could influence the management and prognosis of these patients. The diagnostic usefulness of serum IgG antibodies against P aeruginosa outer membrane proteins was determined in patients with bronchiectasis without cystic fibrosis.
METHODS—Fifty six patients were classified according to sputum culture into three groups: group A (n=18) with no P aeruginosa in any sample; group B (n=18) with P aeruginosa alternating with other microorganisms; and group C (n=20) with P aeruginosa in all sputum samples. Each patient had at least three sputum cultures in the 6 months prior to serum collection. Detection of antibodies was performed by Western blot and their presence against 20 protein bands (10-121 kd) was assessed.
RESULTS—Antibodies to more than four bands in total or to five individual bands (36, 26, 22, 20 or 18 kd) differentiated group B from group A, while antibodies to a total of more than eight bands or to 10 individual bands (104, 69, 63, 56, 50, 44, 30, 25, 22,13 kd) differentiated group C from group B. When discordant results between the total number of bands and the frequency of P aeruginosa isolation were obtained, the follow up of patients suggested that the former, in most cases, predicted chronic P aeruginosa colonisation.
CONCLUSION—In patients with bronchiectasis the degree of P aeruginosa infection can be determined by the number and type of outer membrane protein bands indicating which serum antibodies are present.

 PMID:11514685

  19. Candida albicans Inhibits Pseudomonas aeruginosa Virulence through Suppression of Pyochelin and Pyoverdine Biosynthesis

    PubMed Central

    Lopez-Medina, Eduardo; Fan, Di; Coughlin, Laura A.; Ho, Evi X.; Lamont, Iain L.; Reimmann, Cornelia; Hooper, Lora V.; Koh, Andrew Y.

    2015-01-01

    Bacterial-fungal interactions have important physiologic and medical ramifications, but the mechanisms of these interactions are poorly understood. The gut is host to trillions of microorganisms, and bacterial-fungal interactions are likely to be important. Using a neutropenic mouse model of microbial gastrointestinal colonization and dissemination, we show that the fungus Candida albicans inhibits the virulence of the bacterium Pseudomonas aeruginosa by inhibiting P. aeruginosa pyochelin and pyoverdine gene expression, which plays a critical role in iron acquisition and virulence. Accordingly, deletion of both P. aeruginosa pyochelin and pyoverdine genes attenuates P. aeruginosa virulence. Heat-killed C. albicans has no effect on P. aeruginosa, whereas C. albicans secreted proteins directly suppress P. aeruginosa pyoverdine and pyochelin expression and inhibit P. aeruginosa virulence in mice. Interestingly, suppression or deletion of pyochelin and pyoverdine genes has no effect on P. aeruginosa’s ability to colonize the GI tract but does decrease P. aeruginosa’s cytotoxic effect on cultured colonocytes. Finally, oral iron supplementation restores P. aeruginosa virulence in P. aeruginosa and C. albicans colonized mice. Together, our findings provide insight into how a bacterial-fungal interaction can modulate bacterial virulence in the intestine. Previously described bacterial-fungal antagonistic interactions have focused on growth inhibition or colonization inhibition/modulation, yet here we describe a novel observation of fungal-inhibition of bacterial effectors critical for virulence but not important for colonization. These findings validate the use of a mammalian model system to explore the complexities of polymicrobial, polykingdom infections in order to identify new therapeutic targets for preventing microbial disease. PMID:26313907

  20. Carbapenem Susceptibility and Multidrug-Resistance in Pseudomonas aeruginosa Isolates in Egypt

    PubMed Central

    Hashem, Hany; Hanora, Amro; Abdalla, Salah; Shawky, Alaa; Saad, Alaa

    2016-01-01

    Background Resistant Pseudomonas aeruginosa is a serious concern for antimicrobial therapy, as the common isolates exhibit variable grades of resistance, involving beta-lactamase enzymes, beside native defense mechanisms. Objectives The present study was designed to determine the occurrence of Metallo-β- Lactamases (MBL) and Amp C harboring P. aeruginosa isolates from Suez Canal university hospital in Ismailia, Egypt. Methods A total of 147 P. aeruginosa isolates, recovered from 311 patients during a 10-month period, were collected between May 2013 and February 2014; the isolates were collected from urine, wound and sputum. Minimum inhibitory concentration (MIC) determined by agar dilution methods was ≥2 μg/mL for meropenem and imipenem. Identification of P. aeruginosa was confirmed using API 20NE. Metallo-β- Lactamases and Amp C were detected based on different phenotypic methods. Results Overall, 26.5% of P. aeruginosa isolates (39/147) were carbapenem resistant isolates. Furthermore, 64.1% (25/39) were MBL producers, these isolates were screened by the combined disc and disc diffusion methods to determine the ability of MBL production. Both MBL and Amp C harbored P. aeruginosa isolates were 28% (7/25). Sixty-four percent of P. aeruginosa isolates were multidrug resistant (MDR) (16/25). The sensitivity toward polymyxin, imipenem, norfloxacin, piperacillin-tazobactam and gentamicin was 99%, 91%, 88%, 82% and 78%, respectively. The resistance rate towards cefotaxime, ceftazidime, cefepime, aztreonam and meropenem was 98.6%, 86%, 71.4%, 34% and 30%, respectively. Conclusions Multidrug resistance was significantly associated with MBL production in P. aeruginosa. Early detection of MBL-producing P. aeruginosa and hospital antibiotic policy prescription helps proper antimicrobial therapy and avoidance of dissemination of these multidrug resistance isolates. PMID:28138370

  1. Insights into Mechanisms and Proteomic Characterisation of Pseudomonas aeruginosa Adaptation to a Novel Antimicrobial Substance

    PubMed Central

    Cierniak, Peter; Jübner, Martin; Müller, Stefan; Bender, Katja

    2013-01-01

    Antibiotic resistance has been reported since the introduction of synthetic antibiotics. Bacteria, such as one of the most common nosocomial pathogens P. aeruginosa, adapt quickly to changing environmental conditions, due to their short generation time. Thus microevolutional changes can be monitored in situ. In this study, the microevolutional process of Pseudomonas aeruginosa PAO1 resistance against a recently developed novel antibacterial zinc Schiff-base (ZSB) was investigated at the proteome level. After extended exposure to ZSB the passaged strain differed in tolerance against ZSB, with the adapted P. aeruginosa PAO1 exhibiting 1.6 times higher minimal inhibitory concentration. Using Two-dimensional Difference Gel Electrophoresis, the changes in the proteome of ZSB adapted P. aeruginosa PAO1 were examined by comparison with the non-adapted P. aeruginosa PAO1. The proteome of the adapted P. aeruginosa PAO1 strain differed significantly from the non-adapted in the abundance of two proteins when both strains were grown under stressing conditions. One protein could be identified as the outer membrane protein D that plays a role in uptake of basic amino acids as well as in carbapeneme resistance. The second protein has been identified as alkyl peroxide reductase subunit F. Our data indicated a slight increase in abundance of alkyl peroxide reductase F (AhpF) in the case of ZSB passaged P. aeruginosa PAO1. Higher abundance of Ahp has been discussed in the literature as a promoter of accelerated detoxification of benzene derivatives. The observed up-regulated AhpF thus appears to be connected to an increased tolerance against ZSB. Changes in the abundance of proteins connected to oxidative stress were also found after short-time exposure of P. aeruginosa PAO1 to the ZSB. Furthermore, adapted P. aeruginosa PAO1 showed increased tolerance against hydrogen peroxide and, in addition, showed accelerated degradation of ZSB, as determined by HPLC measurements. PMID:23869205

  2. Antioxidant responses and degradation of two antibiotic contaminants in Microcystis aeruginosa.

    PubMed

    Liu, Ying; Guan, Yuntao; Gao, Baoyu; Yue, Qinyan

    2012-12-01

    Cyanobacteria may interact with antibiotic contaminants in aquatic environments, but the interaction effects and mechanisms remain unclear. In the present study, aqueous culture of Microcystis aeruginosa was exposed to 50ng/l-1μg/l of spiramycin and amoxicillin for seven days. The influences of antibiotics on the antioxidant system of M. aeruginosa and the degradation of antibiotics by M. aeruginosa were investigated. The activities of superoxide dismutase (SOD) in spiramycin-treated M. aeruginosa were stimulated by up to 2.2 folds, while the activities of peroxidase (POD) and catalase (CAT) were inhibited by spiramycin at test concentrations of 500ng/l-1μg/l, with a decrease of up to 71% and 76% compared to the control, respectively. The activities of SOD, POD and CAT in M. aeruginosa were stimulated by amoxicillin during the whole exposure period, with respective increases of up to 60%, 30% and 120% relative to the control. At test concentrations of 500ng/l-1μg/l, the higher MDA contents in spiramycin-treated M. aeruginosa indicated a higher toxicity of spiramycin than amoxicillin, possibly due to the accumulation of hydrogen peroxide caused by the inhibited activities of POD and CAT under exposure to spiramycin. The increase of glutathione content, the stimulation of glutathione S-transferase activity and the degradation of each antibiotic were observed in M. aeruginosa during the 7-day exposure. At the end of exposure, 12.5%-32.9% of spiramycin and 30.5%-33.6% of amoxicillin could be degraded by M. aeruginosa from the culture medium, indicating the ability of M. aeruginosa to eliminate coexisting contaminants via detoxification.

  3. Detection of Metallo-Beta Lactamases Among Carbapenem-Resistant Pseudomonas aeruginosa

    PubMed Central

    Farajzadeh Sheikh, Ahmad; Rostami, Soodabeh; Jolodar, Abbas; Tabatabaiefar, Mohammad Amin; Khorvash, Farzin; Saki, Azadeh; Shoja, Saeed; Sheikhi, Raheleh

    2014-01-01

    Background: Carbapenems are important drugs used for the treatment of Pseudomonas aeruginosa infections, however metallo-β-lactamases (MBL) are able to efficiently hydrolyze these classes of drugs. Immediate detection of the MBL-producing P. aeruginosa is necessary in order to accurately treat infections caused by this organism. Objectives: To determine the prevalence of MBL producing P. aeruginosa in burn and non-burn patients by two phenotypic tests and polymerase chain reaction (PCR) and to compare phenotypic tests with PCR. Materials and Methods: A total of 223 non-duplicate strains of P. aeruginosa were collected from three teaching hospitals of Ahvaz, Iran. Antimicrobial susceptibility and minimum inhibitory concentrations (MICs) of carbapenems (imipenem, meropenem, doripenem and ertapenem) were determined by the Kirby-Bauer and E-test methods. Combined disk (CD) test, MBL E-test and PCR were performed for carbapenem-resistant P. aeruginosa isolates. Results: Amongst all the P. aeruginosa isolates, 58.7% were resistant to imipenem while 31.8%, 13.5% and 74.4% were resistant to meropenem, doripenem and ertapenem, respectively. Amongst all the P. aeruginosa isolates, 44.4% were multidrug resistant and 13.45% were resistant to all of the carbapenems. The CD test with doripenem disk / 750 μg ethylene diamine tetra acetic acid (EDTA) had the highest efficiency compared to the other phenotypic tests. blaIMP and blaVIM genes were detected in 11.7% and 0.4% of isolates, respectively. blaSPM and blaNDM genes were not observed. Conclusions: Epidemiological and regional evaluation of MBL-producing P. aeruginosa through simple and inexpensive methods should be considered for effective treatment of carbapenem-resistant P. aeruginosa infections. PMID:25774271

  4. Gallium-Protoporphyrin IX Inhibits Pseudomonas aeruginosa Growth by Targeting Cytochromes.

    PubMed

    Hijazi, Sarah; Visca, Paolo; Frangipani, Emanuela

    2017-01-01

    Pseudomonas aeruginosa is a challenging pathogen due to both innate and acquired resistance to antibiotics. It is capable of causing a variety of infections, including chronic lung infection in cystic fibrosis (CF) patients. Given the importance of iron in bacterial physiology and pathogenicity, iron-uptake and metabolism have become attractive targets for the development of new antibacterial compounds. P. aeruginosa can acquire iron from a variety of sources to fulfill its nutritional requirements both in the environment and in the infected host. The adaptation of P. aeruginosa to heme iron acquisition in the CF lung makes heme utilization pathways a promising target for the development of new anti-Pseudomonas drugs. Gallium [Ga(III)] is an iron mimetic metal which inhibits P. aeruginosa growth by interfering with iron-dependent metabolism. The Ga(III) complex of the heme precursor protoporphyrin IX (GaPPIX) showed enhanced antibacterial activity against several bacterial species, although no inhibitory effect has been reported on P. aeruginosa. Here, we demonstrate that GaPPIX is indeed capable of inhibiting the growth of clinical P. aeruginosa strains under iron-deplete conditions, as those encountered by bacteria during infection, and that GaPPIX inhibition is reversed by iron. Using P. aeruginosa PAO1 as model organism, we show that GaPPIX enters cells through both the heme-uptake systems has and phu, primarily via the PhuR receptor which plays a crucial role in P. aeruginosa adaptation to the CF lung. We also demonstrate that intracellular GaPPIX inhibits the aerobic growth of P. aeruginosa by targeting cytochromes, thus interfering with cellular respiration.

  5. Post-translational modifications in Pseudomonas aeruginosa revolutionized by proteomic analysis.

    PubMed

    Ouidir, Tassadit; Jouenne, Thierry; Hardouin, Julie

    2016-06-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes severe infections in vulnerable individuals. It is known that post-translational modifications (PTMs) play a key role in bacterial physiology. Their characterization is still challenging and the recent advances in proteomics allow large-scale and high-throughput analyses of PTMs. Here, we provide an overview of proteomic data about the modified proteins in P. aeruginosa. We emphasize the significant contribution of proteomics in knowledge enhancement of PTMs (phosphorylation, N-acetylation and glycosylation) and we discuss their importance in P. aeruginosa physiology.

  6. Pseudomonas aeruginosa porphobilinogen synthase assembly state regulators: hit discovery and initial SAR studies

    PubMed Central

    Reitz, Allen B.; Ramirez, Ursula D.; Stith, Linda; Du, Yanming; Smith, Garry R.; Jaffe, Eileen K.

    2010-01-01

    Porphobilinogen synthase (PBGS) catalyzes the first common step in the biosynthesis of the essential heme, chlorophyll and vitamin B12 heme pigments. PBGS activity is regulated by assembly state, with certain oligomers exhibiting biological activity and others either partially or completely inactive, affording an innovative means of allosteric drug action. Pseudomonas aeruginosa PBGS is functionally active as an octamer, and inactive as a dimer. We have identified a series of compounds that stabilize the inactive P. aeruginosa dimer by a computational prescreen followed by native PAGE gel mobility shift analysis. From those results, we have prepared related thiadiazoles and evaluated their ability to regulate P. aeruginosa PBGS assembly state. PMID:21643541

  7. Specific cleavage of human type III and IV collagens by Pseudomonas aeruginosa elastase.

    PubMed Central

    Heck, L W; Morihara, K; McRae, W B; Miller, E J

    1986-01-01

    Purified Pseudomonas aeruginosa elastase cleaved human type III and IV collagens with the formation of specific cleavage products. Furthermore, type I collagen appeared to be slowly cleaved by both P. aeruginosa elastase and alkaline protease. These cleavage fragments from type III and IV collagens were separated from the intact collagen chains by SDS polyacrylamide gradient gel electrophoresis run under reducing conditions, and they were detected by their characteristic Coomassie blue staining pattern. The results of these studies suggest that the pathogenesis of tissue invasion and hemorrhagic tissue necrosis observed in P. aeruginosa infections may be related to the degradation of these collagen types by bacterial extracellular proteases. Images PMID:3079727

  8. R-type pyocin is required for competitive growth advantage between Pseudomonas aeruginosa strains.

    PubMed

    Heo, Yun-Jeong; Chung, In-Young; Choi, Kelly B; Cho, You-Hee

    2007-01-01

    R-type pyocin is a bacteriophage tail-shaped bacteriocin produced by Pseudomonas aeruginosa, but its physiological roles are relatively unknown. Here we describe a role of R-type pyocin in the competitive growth advantages between P. aeruginosa strains. Partial purification and gene disruption revealed that the major killing activity from the culture supernatant of PA14 is attributed to R-type pyocin, neither F-type nor S-type pyocins. These findings may provide insight into the forces governing P. aeruginosa population dynamics to promote and maintain its biodiversity.

  9. The effect of flagellar motor-rotor complexes on twitching motility in P. aeruginosa

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Utada, Andrew; Gibiansky, Maxsim; Xian, Wujing; Wong, Gerard

    2013-03-01

    P. aeruginosa is an opportunistic bacterium responsible for a broad range of biofilm infections. In order for biofilms to form, P. aeruginosa uses different types of surface motility. In the current understanding, flagella are used for swarming motility and type IV pili are used for twitching motility. The flagellum also plays important roles in initial surface attachment and in shaping the architectures of mature biofilms. Here we examine how flagella and pili interact during surface motility, by using cell tracking techniques. We show that the pili driven twitching motility of P. aeruginosa can be affected by the motor-rotor complexes of the flagellar system.

  10. Cloning of a Phosphate-Regulated Hemolysin Gene (Phospholipase C) from Pseudomonas aeruginosa

    PubMed Central

    Vasil, Michael L.; Berka, Randy M.; Gray, Gregory L.; Nakai, Hiroshi

    1982-01-01

    Phospholipase C (heat-labile hemolysin) of Pseudomonas aeruginosa is a phosphate (Pi)-regulated extracellular protein which may be a significant virulence factor of this organism. The gene for this hemolytic enzyme was cloned on a 4.1-megadalton (Mdal) fragment from a BamHI digest of P. aeruginosa PAO1 genomic DNA and was inserted into the BamHI sites of the multicopy Escherichia coli(pBR322) and P. aeruginosa(pMW79) vectors. The E. coli and P. aeruginosa recombinant plasmids were designated pGV26 and pVB81, respectively. A restriction map of the 4.1-Mdal fragment from pGV26 was constructed, using double and single digestions with BamHI and EcoRI and several different restriction enzymes. Based on information from this map, a 2.4-Mdal BamHI/BglII fragment containing the gene for phospholipase C was subcloned to pBR322. The hybrid plasmids pGV26 and pVB81 direct the synthesis of enzymatically active phospholipase C, which is also hemolytic. The plasmid-directed synthesis of phospholipase C in E. coli or P. aeruginosa is not repressible by Pi as is the chromosomally directed synthesis in P. aeruginosa. Data are presented which suggest that the synthesis of phospholipase C from pGV26 and pVB81 is directed from the tetracycline resistance gene promoter. The level of enzyme activity produced by E. coli(pGV26) is slightly higher than the levels produced by P. aeruginosa(pMW79) under repressed conditions. In contrast, the levels produced by P. aeruginosa(pVB81) are at least 600-fold higher than the levels produced by P. aeruginosa(pMW79) under repressed conditions and approximately 20-fold higher than those produced by P. aeruginosa(pMW79) under derepressed conditions. The majority (85%) of the enzyme produced by E. coli(pGV26) remained cell associated, whereas >95% of the enzyme produced by P. aeruginosa(pVB81) was extracellular. Analysis of extracellular proteins from cultures of P. aeruginosa(pMW79) and P. aeruginosa(pVB81) by high-performance liquid chromotography and

  11. A physical genome map of Pseudomonas aeruginosa PAO.

    PubMed Central

    Römling, U; Grothues, D; Bautsch, W; Tümmler, B

    1989-01-01

    A complete macrorestriction map of the 5.9 Mb genome of Pseudomonas aeruginosa PAO (DSM 1707) was constructed by the combination of various one- and two-dimensional pulsed field gel electrophoresis techniques. A total of 51 restriction sites (36 SpeI sites, 15 DpnI sites) were placed on the physical map yielding an average resolution of 110 kb. Several genes encoding virulence factors and enzymes of metabolic pathways were located on the anonymous map by Southern hybridization. Distances between the gene loci were similar on the genetic and physical maps, suggesting an even distribution of genome mobility throughout the bacterial chromosome. The four rRNA operons were organized in pairs of inverted repeats. The two-dimensional macro-restriction techniques described herein are generally applicable for the genome mapping of any prokaryote and lower eukaryote which yields resolvable fragment patterns on two-dimensional pulsed field gels. Images PMID:2512121

  12. Heat shock mediated labelling of Pseudomonas aeruginosa with quantum dots.

    PubMed

    Kumar, Natasha; Wiraja, Christian; Palanisamy, Kannan; Marsili, Enrico; Xu, Chenjie

    2016-06-01

    Biocompatible nanoparticles are good candidates to label bacteria for imaging and diagnosis purposes. A high labeling efficiency reduces the concentration of nanoparticles required for labeling and allows the labeled bacteria to be tracked for longer periods. This report explores the optimal labeling strategy for Pseudomonas aeruginosa, a common gram-negative opportunistic pathogen, with quantum dots. Three strategies including direct incubation, calcium chloride treatment, and heat shock are compared and the labeling efficiency is assessed through fluorescence microscopy and flow cytometry analysis. Of the three, heat shock is finally selected due to its comparable labeling efficiency and simplicity. Through the assay of the respiration rate of bacteria together with morphology analysis, the heat shock process does not show any negative effect over the cells activity even at sub-toxic concentrations.

  13. Decrease of Pseudomonas aeruginosa biofilm formation by food waste materials.

    PubMed

    Maderova, Zdenka; Horska, Katerina; Kim, Sang-Ryoung; Lee, Chung-Hak; Pospiskova, Kristyna; Safarikova, Mirka; Safarik, Ivo

    2016-01-01

    The formation of bacterial biofilm on various surfaces has significant negative economic effects. The aim of this study was to find a simple procedure to decrease the Pseudomonas aeruginosa biofilm formation in a water environment by using different food waste biological materials as signal molecule adsorbents. The selected biomaterials did not reduce the cell growth but affected biofilm formation. Promising biomaterials were magnetically modified in order to simplify manipulation and facilitate their magnetic separation. The best biocomposite, magnetically modified spent grain, exhibited substantial adsorption of signal molecules and decreased the biofilm formation. These results suggest that selected food waste materials and their magnetically responsive derivatives could be applied to solve biofilm problems in water environment.

  14. Cellular proteins of Microcystis aeruginosa inhibiting coagulation with polyaluminum chloride.

    PubMed

    Takaara, Tomoko; Sano, Daisuke; Konno, Hiroshi; Omura, Tatsuo

    2007-04-01

    Cyanobacterial growth in semi-closed water areas such as reservoirs brings about a coagulation inhibition in a drinking water treatment system, but the inhibitory substances and mechanisms involved have yet to be elucidated. In this study, proteins having a high affinity with polyaluminum chloride (PACl) were isolated from organic substances produced by Microcystis aeruginosa with the affinity chromatography technique. Both extracellular organic matter (EOM) and cellular organic matter (COM) disturbed the flocculation of suspended kaolin with PACl, but it was likely that nonproteinous substances in EOM cause the reduction of coagulation effciency. In contrast, proteins in COM were obtained as possible inhibitory substances for the coagulation with PACl. These proteins could consume PACl in the coagulation process due to the formation of chelate complexes between these inhibitory proteins and the coagulant. The consumption of PACl by cyanobacterial proteins could be one of the important causes of the increase in coagulant demand.

  15. Production of proteinase on noncarbohydrate carbon sources by Pseudomonas aeruginosa.

    PubMed

    Morihara, K

    1965-09-01

    Proteinase production by Pseudomonas aeruginosa was studied in medium containing noncarbohydrate materials, especially various hydrocarbons, as the sole carbon source. On heavy oil, kerosene, n-paraffinic hydrocarbon of C(12), C(14), or C(16), and propylene glycol, the bacteria grew well and high protinase production was observed. However, production on paraffinic hydrocarbon differed remarkably with strains of varied origins. The elastase-positive strain, IFO 3455, showed abundant growth and high proteinase production on medium containing a paraffin of C(12), C(14), or C(16), whereas the elastase-negative strain, IFO 3080, showed little growth on the same medium. Neither elastase-positive nor elastase-negative strains, however, utilized n-paraffins of C(5) to C(10), or various aromatic hydrocarbons such as benzene, naphthalene, phenanthrene, and anthracene. The proteinases produced on the noncarbohydrate medium were identical with those produced in glucose medium.

  16. Bioengineered lysozyme in combination therapies for Pseudomonas aeruginosa lung infections

    PubMed Central

    Griswold, Karl E; Bement, Jenna L; Teneback, Charlotte C; Scanlon, Thomas C; Wargo, Matthew J; Leclair, Laurie W

    2014-01-01

    There is increasing urgency in the battle against drug-resistant bacterial pathogens, and this public health crisis has created a desperate need for novel antimicrobial agents. Recombinant human lysozyme represents one interesting candidate for treating pulmonary infections, but the wild type enzyme is subject to electrostatic mediated inhibition by anionic biopolymers that accumulate in the infected lung. We have redesigned lysozyme’s electrostatic potential field, creating a genetically engineered variant that is less susceptible to polyanion inhibition, yet retains potent bactericidal activity. A recent publication demonstrated that the engineered enzyme outperforms wild type lysozyme in a murine model of Pseudomonas aeruginosa lung infection. Here, we expand upon our initial studies and consider dual therapies that combine lysozymes with an antimicrobial peptide. Consistent with our earlier results, the charge modified lysozyme combination outperformed its wild type counterpart, yielding more than an order-of-magnitude reduction in bacterial burden following treatment with a single dose. PMID:24637705

  17. Pseudomonas aeruginosa KUCD1, a possible candidate for cadmium bioremediation

    PubMed Central

    Sinha, Sangram; Mukherjee, Samir Kumar

    2009-01-01

    A cadmium (8 mM) resistant Pseudomonas aeruginosa strain KUCd1 exhibiting high Cd accumulation under in vitro aerobic condition has been reported. The isolate showed a significant ability to remove more than 75% and 89% of the soluble cadmium during the active growth phase from the growth medium and from Cd-amended industrial wastewater under growth supportive condition. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDXS) suggest the presence of Cd in the cells from mid stationary phase. The cell fractionation study revealed membrane and periplasm to be the major accumulating site in this strain. The chemical nature of the accumulated Cd was studied by X-ray powder diffraction analysis. PMID:24031411

  18. Biofilm formation and surface exploration behavior of P. aeruginosa

    NASA Astrophysics Data System (ADS)

    Beckerman, Bernard; Zhao, Kun; Wong, Gerard; Luijten, Erik

    2013-03-01

    Despite extensive studies, the early stages of biofilm formation are not fully understood. Recent work on the opportunistic pathogen Pseudomonas aeruginosa has shown that these bacteria deposit the exopolysaccharide Psl as they move across a surface, which in turn attracts repeat visits of bacteria to the sites of deposition. Using a massively parallel cell-tracking algorithm combined with fluorescent Psl staining and computer simulations, we show that this behavior results in a surface visit distribution that can be approximated by a power law. The steepness of this Zipf's Law is a measure of the hierarchical nature of bacterial surface visits, and is (among other parameters) a function of both Psl secretion rate and sensitivity of the bacteria to Psl. We characterize the bacterial distributions using various computational techniques to quantitatively analyze the effect of Psl on microcolony organization and to identify the key stages of microcolony growth. This work was supported by the National Institutes of Health and the National Science Foundation.

  19. Crystal structure of PvdO from Pseudomonas aeruginosa.

    PubMed

    Yuan, Zenglin; Gao, Fei; Bai, Guohui; Xia, Hengchuan; Gu, Lichuan; Xu, Sujuan

    2017-02-26

    Pyoverdine I (PVDI) is a water-soluble fluorescein siderophore with strong iron chelating ability from the gram-negative pathogen Pseudomonas aeruginosa PAO1. Compared to common siderophores, PVDI is a relatively large compound whose synthesis requires a group of enzymes with different catalytic activities. In addition to four nonribosomal peptide synthetases (NRPS) which are responsible for the production of the peptide backbone of PVDI, several additional enzymes are associated with the modification of the side chains. PvdO is one of these enzymes and participates in PVDI precursor maturation in the periplasm. We determined the crystal structure of PvdO at 1.24 Å resolution. The PvdO structure shares a common fold with some FGly-generating enzymes (FGE) and is stabilized by Ca(2+). However, the catalytic residues in FGE are not observed in PvdO, indicating PvdO adopts a unique catalytic mechanism.

  20. Pyocyanin Production by Pseudomonas aeruginosa Confers Resistance to Ionic Silver

    PubMed Central

    Merrett, Neil D.

    2014-01-01

    Silver in its ionic form (Ag+), but not the bulk metal (Ag0), is toxic to microbial life forms and has been used for many years in the treatment of wound infections. The prevalence of bacterial resistance to silver is considered low due to the nonspecific nature of its toxicity. However, the recent increased use of silver as an antimicrobial agent for medical, consumer, and industrial products has raised concern that widespread silver resistance may emerge. Pseudomonas aeruginosa is a common pathogen that produces pyocyanin, a redox toxin and a reductant for molecular oxygen and ferric (Fe3+) ions. The objective of this study was to determine whether pyocyanin reduces Ag+ to Ag0, which may contribute to silver resistance due to lower bioavailability of the cation. Using surface plasmon resonance spectroscopy and scanning electron microscopy, pyocyanin was confirmed to be a reductant for Ag+, forming Ag0 nanoparticles and reducing the bioavailability of free Ag+ by >95% within minutes. Similarly, a pyocyanin-producing strain of P. aeruginosa (PA14) reduced Ag+ but not a pyocyanin-deficient (ΔphzM) strain of the bacterium. Challenge of each strain with Ag+ (as AgNO3) gave MICs of 20 and 5 μg/ml for the PA14 and ΔphzM strains, respectively. Removal of pyocyanin from the medium strain PA14 was grown in or its addition to the medium that ΔphzM mutant was grown in gave MICs of 5 and 20 μg/ml, respectively. Clinical isolates demonstrated similar pyocyanin-dependent resistance to Ag+. We conclude that pseudomonal silver resistance exists independently of previously recognized intracellular mechanisms and may be more prevalent than previously considered. PMID:25001302

  1. Phosphorylcholine Phosphatase: A Peculiar Enzyme of Pseudomonas aeruginosa

    PubMed Central

    Domenech, Carlos Eduardo; Otero, Lisandro Horacio; Beassoni, Paola Rita; Lisa, Angela Teresita

    2011-01-01

    Pseudomonas aeruginosa synthesizes phosphorylcholine phosphatase (PchP) when grown on choline, betaine, dimethylglycine or carnitine. In the presence of Mg2+ or Zn2+, PchP catalyzes the hydrolysis of p-nitrophenylphosphate (p-NPP) or phosphorylcholine (Pcho). The regulation of pchP gene expression is under the control of GbdR and NtrC; dimethylglycine is likely the metabolite directly involved in the induction of PchP. Therefore, the regulation of choline metabolism and consequently PchP synthesis may reflect an adaptive response of P. aeruginosa to environmental conditions. Bioinformatic and biochemistry studies shown that PchP contains two sites for alkylammonium compounds (AACs): one in the catalytic site near the metal ion-phosphoester pocket, and another in an inhibitory site responsible for the binding of the alkylammonium moiety. Both sites could be close to each other and interact through the residues 42E, 43E and 82YYY84. Zn2+ is better activator than Mg2+ at pH 5.0 and it is more effective at alleviating the inhibition produced by the entry of Pcho or different AACs in the inhibitory site. We postulate that Zn2+ induces at pH 5.0 a conformational change in the active center that is communicated to the inhibitory site, producing a compact or closed structure. However, at pH 7.4, this effect is not observed because to the hydrolysis of the [Zn2+L2−1L20(H2O)2] complex, which causes a change from octahedral to tetrahedral in the metal coordination geometry. This enzyme is also present in P. fluorescens, P. putida, P. syringae, and other organisms. We have recently crystallized PchP and solved its structure. PMID:21915373

  2. Sequences and expression of pyruvate dehydrogenase genes from Pseudomonas aeruginosa.

    PubMed Central

    Rae, J L; Cutfield, J F; Lamont, I L

    1997-01-01

    A mutant of Pseudomonas aeruginosa, OT2100, which appeared to be defective in the production of the fluorescent yellow-green siderophore pyoverdine had been isolated previously following transposon mutagenesis (T. R. Merriman and I. L. Lamont, Gene 126:17-23, 1993). DNA from either side of the transposon insertion site was cloned, and the sequence was determined. The mutated gene had strong identity with the dihydrolipoamide acetyltransferase (E2) components of pyruvate dehydrogenase (PDH) from other bacterial species. Enzyme assays revealed that the mutant was defective in the E2 subunit of PDH, preventing assembly of a functional complex. PDH activity in OT2100 cell extracts was restored when extract from an E1 mutant was added. On the basis of this evidence, OT2100 was identified as an aceB or E2 mutant. A second gene, aceA, which is likely to encode the E1 component of PDH, was identified upstream from aceB. Transcriptional analysis revealed that aceA and aceB are expressed as a 5-kb polycistronic transcript from a promoter upstream of aceA. An intergenic region of 146 bp was located between aceA and aceB, and a 2-kb aceB transcript that originated from a promoter in the intergenic region was identified. DNA fragments upstream of aceA and aceB were shown to have promoter activities in P. aeruginosa, although only the aceA promoter was active in Escherichia coli. It is likely that the apparent pyoverdine-deficient phenotype of mutant OT2100 is a consequence of acidification of the growth medium due to accumulation of pyruvic acid in the absence of functional PDH. PMID:9171401

  3. Fructooligosacharides Reduce Pseudomonas aeruginosa PAO1 Pathogenicity through Distinct Mechanisms

    PubMed Central

    Ortega-González, Mercedes; Sánchez de Medina, Fermín; Molina-Santiago, Carlos; López-Posadas, Rocío; Pacheco, Daniel; Krell, Tino; Martínez-Augustin, Olga; Abdelali, Daddaoua

    2014-01-01

    Pseudomonas aeruginosa is ubiquitously present in the environment and acts as an opportunistic pathogen on humans, animals and plants. We report here the effects of the prebiotic polysaccharide inulin and its hydrolysed form FOS on this bacterium. FOS was found to inhibit bacterial growth of strain PAO1, while inulin did not affect growth rate or yield in a significant manner. Inulin stimulated biofilm formation, whereas a dramatic reduction of the biofilm formation was observed in the presence of FOS. Similar opposing effects were observed for bacterial motility, where FOS inhibited the swarming and twitching behaviour whereas inulin caused its stimulation. In co-cultures with eukaryotic cells (macrophages) FOS and, to a lesser extent, inulin reduced the secretion of the inflammatory cytokines IL-6, IL-10 and TNF-α. Western blot experiments indicated that the effects mediated by FOS in macrophages are associated with a decreased activation of the NF-κB pathway. Since FOS and inulin stimulate pathway activation in the absence of bacteria, the FOS mediated effect is likely to be of indirect nature, such as via a reduction of bacterial virulence. Further, this modulatory effect is observed also with the highly virulent ptxS mutated strain. Co-culture experiments of P. aeruginosa with IEC18 eukaryotic cells showed that FOS reduces the concentration of the major virulence factor, exotoxin A, suggesting that this is a possible mechanism for the reduction of pathogenicity. The potential of these compounds as components of antibacterial and anti-inflammatory cocktails is discussed. PMID:24465697

  4. Biological Markers of Pseudomonas aeruginosa Epidemic High-Risk Clones

    PubMed Central

    Mulet, Xavier; Cabot, Gabriel; Ocampo-Sosa, Alain A.; Domínguez, M. Angeles; Zamorano, Laura; Juan, Carlos; Tubau, Fe; Rodríguez, Cristina; Moyà, Bartolomé; Peña, Carmen; Martínez-Martínez, Luis

    2013-01-01

    A limited number of Pseudomonas aeruginosa genotypes (mainly ST-111, ST-175, and ST-235), known as high-risk clones, are responsible for epidemics of nosocomial infections by multidrug-resistant (MDR) or extensively drug-resistant (XDR) strains worldwide. We explored the potential biological parameters that may explain the success of these clones. A total of 20 isolates from each of 4 resistance groups (XDR, MDR, ModR [resistant to 1 or 2 classes], and MultiS [susceptible to all antipseudomonals]), recovered from a multicenter study of P. aeruginosa bloodstream infections performed in 10 Spanish hospitals, were analyzed. A further set of 20 XDR isolates belonging to epidemic high-risk clones (ST-175 [n = 6], ST-111 [n = 7], and ST-235 [n = 7]) recovered from different geographical locations was also studied. When unknown, genotypes were documented through multilocus sequence typing. The biological parameters evaluated included twitching, swimming, and swarming motility, biofilm formation, production of pyoverdine and pyocyanin, spontaneous mutant frequencies, and the in vitro competition index (CI) obtained with a flow cytometry assay. All 20 (100%) XDR, 8 (40%) MDR, and 1 (5%) ModR bloodstream isolate from the multicenter study belonged to high-risk clones. No significant differences were observed between clonally diverse ModR and MultiS isolates for any of the parameters. In contrast, MDR/XDR high-risk clones showed significantly increased biofilm formation and mutant frequencies but significantly reduced motility (twitching, swimming, and swarming), production of pyoverdine and pyocyanin, and fitness. The defined biological markers of high-risk clones, which resemble those resulting from adaptation to chronic infections, could be useful for the design of specific treatment and infection control strategies. PMID:23979744

  5. Crystal structure of the flavoenzyme PA4991 from Pseudomonas aeruginosa

    SciTech Connect

    Jacewicz, Agata; Schnell, Robert; Lindqvist, Ylva; Schneider, Gunter

    2016-01-22

    PA4991 is a FAD-dependent oxidoreductase from the pathogen P. aeruginosa that is essential for virulence and survival in the infected host. The structure of this enzyme, determined to 2.4 Å resolution, reveals that PA4991 belongs to the GR{sub 2} family of flavoenzymes. The locus PA4991 in Pseudomonas aeruginosa encodes an open reading frame that has been identified as essential for the virulence and/or survival of this pathogenic organism in the infected host. Here, it is shown that this gene encodes a monomeric FAD-binding protein of molecular mass 42.2 kDa. The structure of PA4991 was determined by a combination of molecular replacement using a search model generated with Rosetta and phase improvement by a low-occupancy heavy-metal derivative. PA4991 belongs to the GR{sub 2} family of FAD-dependent oxidoreductases, comprising an FAD-binding domain typical of the glutathione reductase family and a second domain dominated by an eight-stranded mixed β-sheet. Most of the protein–FAD interactions are via the FAD-binding domain, but the isoalloxazine ring is located at the domain interface and interacts with residues from both domains. A comparison with the structurally related glycine oxidase and glycerol-3-phosphate dehydrogenase shows that in spite of very low amino-acid sequence identity (<18%) several active-site residues involved in substrate binding in these enzymes are conserved in PA4991. However, enzymatic assays show that PA4991 does not display amino-acid oxidase or glycerol-3-phosphate dehydrogenase activities, suggesting that it requires different substrates for activity.

  6. Structural Characterization of Novel Pseudomonas aeruginosa Type IV Pilins

    SciTech Connect

    Nguyen, Y.; Jackson, S; Aidoo, F; Junop, M; Burrows, L

    2010-01-01

    Pseudomonas aeruginosa type IV pili, composed of PilA subunits, are used for attachment and twitching motility on surfaces. P. aeruginosa strains express one of five phylogenetically distinct PilA proteins, four of which are associated with accessory proteins that are involved either in pilin posttranslational modification or in modulation of pilus retraction dynamics. Full understanding of pilin diversity is crucial for the development of a broadly protective pilus-based vaccine. Here, we report the 1.6-{angstrom} X-ray crystal structure of an N-terminally truncated form of the novel PilA from strain Pa110594 (group V), which represents the first non-group II pilin structure solved. Although it maintains the typical T4a pilin fold, with a long N-terminal {alpha}-helix and four-stranded antiparallel {beta}-sheet connected to the C-terminus by a disulfide-bonded loop, the presence of an extra helix in the {alpha}{beta}-loop and a disulfide-bonded loop with helical character gives the structure T4b pilin characteristics. Despite the presence of T4b features, the structure of PilA from strain Pa110594 is most similar to the Neisseria gonorrhoeae pilin and is also predicted to assemble into a fiber similar to the GC pilus, based on our comparative pilus modeling. Interactions between surface-exposed areas of the pilin are suggested to contribute to pilus fiber stability. The non-synonymous sequence changes between group III and V pilins are clustered in the same surface-exposed areas, possibly having an effect on accessory protein interactions. However, based on our high-confidence model of group III PilA{sub PA14}, compensatory changes allow for maintenance of a similar shape.

  7. Influence of the hydrodynamic environment on quorum sensing in Pseudomonas aeruginosa biofilms.

    PubMed

    Kirisits, Mary Jo; Margolis, Jeffrey J; Purevdorj-Gage, Boloroo L; Vaughan, Benjamin; Chopp, David L; Stoodley, Paul; Parsek, Matthew R

    2007-11-01

    We provide experimental and modeling evidence that the hydrodynamic environment can impact quorum sensing (QS) in a Pseudomonas aeruginosa biofilm. The amount of biofilm biomass required for full QS induction of the population increased as the flow rate increased.

  8. Altered denA and anr gene expression in aminoglycoside adaptive resistance in Pseudomonas aeruginosa.

    PubMed

    Karlowsky, J A; Hoban, D J; Zelenitsky, S A; Zhanel, G G

    1997-09-01

    Adaptive resistance to aminoglycoside killing and cytoplasmic accumulation occurs in cultures of originally susceptible Pseudomonas aeruginosa following an initial incubation with aminoglycoside. Anaerobiosis has also been reported to reduce bacterial killing and limit cytoplasmic aminoglycoside accumulation. We hypothesized that a common mechanism may facilitate reduced bacterial killing and aminoglycoside accumulation in both cases. Northern blot analysis of P. aeruginosa adaptively resistant to gentamicin demonstrated increased mRNA levels of both denA (nitrite reductase), which facilitates terminal electron acceptance in the anaerobic respiratory pathway, and its regulatory protein, ANR, in the absence of promoter DNA sequence changes, when compared with controls. These observations suggested that P. aeruginosa may regulate the expression of genes in its anaerobic respiratory pathway in response to aminoglycosides and may explain, at least partially, P. aeruginosa adaptive resistance to aminoglycosides.

  9. The interaction between nitrobenzene and Microcystis aeruginosa and its potential to impact water quality.

    PubMed

    Liu, Zhiquan; Cui, Fuyi; Ma, Hua; Fan, Zhenqiang; Zhao, Zhiwei; Hou, Zhenling; Liu, Dongmei; Jia, Xuebin

    2013-08-01

    The potential water quality problems caused by the interaction between nitrobezene (NB) and Microcystis aeruginosa was investigated by studying the growth inhibition, the haloacetic acids formation potential (HAAFP) and the secretion of microcystin-LR (MC-LR). The results showed that NB can inhibit the growth of M. aeruginosa, and the value of EC50 increased with the increase of initial algal density. Although NB can hardly react with chlorine to form HAAs, the presence of NB can enhance the HAAFP productivity. The secretion of the intracellular MC-LR is constant under the steady experimental conditions. However, the presence of NB can reduce the MC-LR productivity of M. aeruginosa. Overall, the increased disinfection risk caused by the interaction has more important effect on the safety of drinking water quality than the benefit of the decreased MC-LR productivity, and should be serious considered when the water contained NB and M. aeruginosa is used as drinking water source.

  10. A study on the effect of Pseudomonas aeruginosa in semen on bovine fertility.

    PubMed Central

    Eaglesome, M D; Garcia, M M; Bielanski, A B

    1995-01-01

    Two experiments were done to demonstrate whether the presence of Pseudomonas aeruginosa in bovine semen could affect fertilization and/or early embryonic development. In the first experiment, superovulated heifers were inseminated with semen naturally contaminated with P. aeruginosa (ADRI 102) or clean semen and seven day-old embryos were collected nonsurgically. The endometrium of treated heifers appeared more sensitive to the flush procedures. In experiment 2, heifers were inseminated at synchronized estrus with semen experimentally contaminated with P. aeruginosa (ADRI 102) and processed in the same way as commercial semen with antibiotics (gentamicin, lincomycin, spectinomycin and tylosin) or processed without antibiotics added. Embryos were recovered at slaughter seven days later. In general, there was no significant reduction in fertility or development of embryos in vitro as a result of relatively high numbers of P. aeruginosa in bovine semen. PMID:7704848

  11. Draft Genome Sequence of Microcystis aeruginosa CACIAM 03, a Cyanobacterium Isolated from an Amazonian Freshwater Environment

    PubMed Central

    Castro, Wendel Oliveira; Lima, Alex Ranieri Jerônimo; Moraes, Pablo Henrique Gonçalves; Siqueira, Andrei Santos; Aguiar, Délia Cristina Figueira; Baraúna, Anna Rafaella Ferreira; Martins, Luisa Carício; Fuzii, Hellen Thais; de Lima, Clayton Pereira Silva; Vianez-Júnior, João Lídio Silva Gonçalves; Nunes, Márcio Roberto Teixeira; Dall'Agnol, Leonardo Teixeira

    2016-01-01

    Given its toxigenic potential, Microcystis aeruginosa is an important bloom-forming cyanobacterium. Here, we present a draft genome and annotation of the strain CACIAM 03, which was isolated from an Amazonian freshwater environment. PMID:27856592

  12. Pseudomonas aeruginosa Diversification during Infection Development in Cystic Fibrosis Lungs—A Review

    PubMed Central

    Sousa, Ana Margarida; Pereira, Maria Olívia

    2014-01-01

    Pseudomonas aeruginosa is the most prevalent pathogen of cystic fibrosis (CF) lung disease. Its long persistence in CF airways is associated with sophisticated mechanisms of adaptation, including biofilm formation, resistance to antibiotics, hypermutability and customized pathogenicity in which virulence factors are expressed according the infection stage. CF adaptation is triggered by high selective pressure of inflamed CF lungs and by antibiotic treatments. Bacteria undergo genetic, phenotypic, and physiological variations that are fastened by the repeating interplay of mutation and selection. During CF infection development, P. aeruginosa gradually shifts from an acute virulent pathogen of early infection to a host-adapted pathogen of chronic infection. This paper reviews the most common changes undergone by P. aeruginosa at each stage of infection development in CF lungs. The comprehensive understanding of the adaptation process of P. aeruginosa may help to design more effective antimicrobial treatments and to identify new targets for future drugs to prevent the progression of infection to chronic stages. PMID:25438018

  13. Phage-antibiotic synergism: a possible approach to combatting Pseudomonas aeruginosa.

    PubMed

    Knezevic, Petar; Curcin, Sanja; Aleksic, Verica; Petrusic, Milivoje; Vlaski, Ljiljana

    2013-01-01

    Pseudomonas aeruginosa is a highly resistant opportunistic pathogen and an important etiological agent of various types of infections. During the last decade, P. aeruginosa phages have been extensively examined as alternative antimicrobial agents. The aim of the study was to determine antimicrobial effectiveness of combining subinhibitory concentrations of gentamicin, ceftriaxone, ciprofloxacin or polymyxin B with P. aeruginosa-specific bacteriophages belonging to families Podoviridae and Siphoviridae. The time-kill curve method showed that a combination of bacteriophages and subinhibitory concentrations of ceftriaxone generally reduced bacterial growth, and synergism was proven for a Siphoviridae phage σ-1 after 300 min of incubation. The detected alteration in morphology after ceftriaxone application, resulting in cell elongation, along with its specific mode of action, seemed to be a necessary but was not a sufficient reason for phage-antibiotic synergism. The phenomenon offers an opportunity for future development of treatment strategies for potentially lethal infections caused by P. aeruginosa.

  14. Dissemination of high-risk clones of extensively drug-resistant Pseudomonas aeruginosa in colombia.

    PubMed

    Correa, Adriana; Del Campo, Rosa; Perenguez, Marcela; Blanco, Victor M; Rodríguez-Baños, Mercedes; Perez, Federico; Maya, Juan J; Rojas, Laura; Cantón, Rafael; Arias, Cesar A; Villegas, Maria V

    2015-04-01

    The ability of Pseudomonas aeruginosa to develop resistance to most antimicrobials represents an important clinical threat worldwide. We report the dissemination in several Colombian hospitals of two predominant lineages of extensively drug-resistant (XDR) carbapenemase-producing P. aeruginosa strains. These lineages belong to the high-risk clones sequence type 111 (ST111) and ST235 and harbor blaVIM-2 on a class 1 integron and blaKPC-2 on a Tn4401 transposon, respectively. Additionally, P. aeruginosa ST1492, a novel single-locus variant of ST111, was identified. Clonal dissemination and the presence of mobile genetic elements likely explain the successful spread of XDR P. aeruginosa strains in Colombia.

  15. Lichen secondary metabolite evernic acid as potential quorum sensing inhibitor against Pseudomonas aeruginosa.

    PubMed

    Gökalsın, Barış; Sesal, Nüzhet Cenk

    2016-09-01

    Cystic Fibrosis is a genetic disease and it affects the respiratory and digestive systems. Pseudomonas aeruginosa infections in Cystic Fibrosis are presented as the main cause for high mortality and morbidity rates. Pseudomonas aeruginosa populations can regulate their virulence gene expressions via the bacterial communication system: quorum sensing. Inhibition of quorum sensing by employing quorum sensing inhibitors can leave the bacteria vulnerable. Therefore, determining natural sources to obtain potential quorum sensing inhibitors is essential. Lichens have ethnobotanical value for their medicinal properties and it is possible that their secondary metabolites have quorum sensing inhibitor properties. This study aims to investigate an alternative treatment approach by utilizing lichen secondary metabolite evernic acid to reduce the expressions of Pseudomonas aeruginosa virulence factors by inhibiting quorum sensing. For this purpose, fluorescent monitor strains were utilized for quorum sensing inhibitor screens and quantitative reverse-transcriptase PCR analyses were conducted for comparison. Results indicate that evernic acid is capable of inhibiting Pseudomonas aeruginosa quorum sensing systems.

  16. Pseudomonas aeruginosa Airway Infection Recruits and Modulates Neutrophilic Myeloid-Derived Suppressor Cells

    PubMed Central

    Öz, Hasan H.; Zhou, Benyuan; Voss, Pina; Carevic, Melanie; Schroth, Carolin; Frey, Nina; Rieber, Nikolaus; Hector, Andreas; Hartl, Dominik

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes infections mainly in patients with cystic fibrosis (CF) lung disease. Despite innate and adaptive immune responses upon infection, P. aeruginosa is capable of efficiently escaping host defenses, but the underlying immune mechanisms remain poorly understood. Myeloid-derived suppressor cells (MDSCs) are innate immune cells that are functionally characterized by their potential to suppress T- and natural killer (NK)-cell responses. Here we demonstrate, using an airway in vivo infection model, that P. aeruginosa recruits and activates neutrophilic MDSCs, which functionally suppress T-cell responses. We further show that the CF gene defect (CF transmembrane conductance regulator, CFTR) modulates the functionality, but not the recruitment or generation of neutrophilic MDSCs. Collectively, we define a mechanism by which P. aeruginosa airway infection undermines host immunity by modulating neutrophilic MDSCs in vivo. PMID:27965936

  17. Epidemiology and Ecology of Opportunistic Premise Plumbing Pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa

    EPA Science Inventory

    BACKGROUND: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa are opportunistic premise plumbing pathogens (OPPPs) that persist and grow in household plumbing, habitats they share with humans. Infections caused by these OPPPs involve individuals with preexis...

  18. Biological activities of pyochelins: iron-chelating agents of Pseudomonas aeruginosa.

    PubMed Central

    Liu, P V; Shokrani, F

    1978-01-01

    Strains of Pseudomonas aeruginosa able to grow readily in serum (serum resistant) produce siderophores in large quantity, enabling them to extract iron from transferrins. The term pyochelin has been proposed for this group of compounds. Pyochelin extractable with ethyl acetate and designated pyochelin A appears to be a mixture of catechols and other phenolates. The structures of water-soluble siderophores, designated pyochelin B, have not been determined. Pyochelins enabled growth in serum of strains of serum-sensitive P. aeruginosa and other gram-negative bacilli. Serum-resistant strains of P. aeruginosa tended to be more virulent than equally toxigenic strains of the serum-sensitive group. However, incorporation of pyochelins into the inocula of serum-sensitive strains could reduce, rather than enhance, their virulence. Utilization of pyochelins by serum-sensitive strains of P. aeruginosa rendered some of these organisms resistant to pyocins which were otherwise lethal to them. Images PMID:103839

  19. A Novel Antimicrobial Endolysin, LysPA26, against Pseudomonas aeruginosa

    PubMed Central

    Guo, Mingquan; Feng, Chunyan; Ren, Jie; Zhuang, Xuran; Zhang, Yan; Zhu, Yongzhang; Dong, Ke; He, Ping; Guo, Xiaokui; Qin, Jinhong

    2017-01-01

    The global increase in multidrug resistant (MDR) bacteria has led to phage therapy being refocused upon. A novel endolysin, LysPA26, containing a lysozyme-like domain, was screened against Pseudomonas aeruginosa in this study. It had activity against MDR P. aeruginosa without pretreatment with an outer-membrane permeabilizer. LysPA26 could kill up to 4 log units P. aeruginosa in 30 min. In addition, temperature and pH effect assays revealed that LysPA26 had good stability over a broad range of pH and temperatures. Moreover, LysPA26 could kill other Gram-negative bacteria, such as Klebsiella pneumonia, Acinetobacter baumannii and Escherichia coli, but not Gram-positive bacteria. Furthermore, LysPA26 could eliminate P. aeruginosa in biofilm formation. Our current results show that LysPA26 is a new and promising antimicrobial agent for the combat of Gram-negative pathogens. PMID:28289407

  20. Mechanisms responsible for the emergence of carbapenem resistance in Pseudomonas aeruginosa

    PubMed Central

    Meletis, G; Exindari, M; Vavatsi, N; Sofianou, D; Diza, E

    2012-01-01

    Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen associated with a range of nosocomial infections. This microorganism is noted for its intrinsic resistance to antibiotics and for its ability to acquire genes encoding resistance determinants. Among the beta-lactam antibiotics, carbapenems with antipseudomonal activity are important agents for the therapy of infections due to P. aeruginosa. The development of carbapenem resistance among P. aeruginosa strains is multifactorial. Plasmid or integron-mediated carbapenemases, increased expression of efflux systems, reduced porin expression and increased chromosomal cephalosporinase activity have all been defined as contributory factors. Phenotypic tests and molecular techniques are used for the characterization of the resistance determinants. The isolation of carbapenem resistant strains is alarming and requires the implementation of strict infection control measures in order to prevent the spread of carbapenemase encoding genes to unrelated clones or to other bacterial species. PMID:23935307

  1. Dissemination of High-Risk Clones of Extensively Drug-Resistant Pseudomonas aeruginosa in Colombia

    PubMed Central

    del Campo, Rosa; Perenguez, Marcela; Blanco, Victor M.; Rodríguez-Baños, Mercedes; Perez, Federico; Maya, Juan J.; Rojas, Laura; Cantón, Rafael; Arias, Cesar A.; Villegas, Maria V.

    2015-01-01

    The ability of Pseudomonas aeruginosa to develop resistance to most antimicrobials represents an important clinical threat worldwide. We report the dissemination in several Colombian hospitals of two predominant lineages of extensively drug-resistant (XDR) carbapenemase-producing P. aeruginosa strains. These lineages belong to the high-risk clones sequence type 111 (ST111) and ST235 and harbor blaVIM-2 on a class 1 integron and blaKPC-2 on a Tn4401 transposon, respectively. Additionally, P. aeruginosa ST1492, a novel single-locus variant of ST111, was identified. Clonal dissemination and the presence of mobile genetic elements likely explain the successful spread of XDR P. aeruginosa strains in Colombia. PMID:25605362

  2. Polydopamine-Mediated Immobilization of Alginate Lyase to Prevent P. aeruginosa Adhesion.

    PubMed

    Alves, Diana; Sileika, Tadas; Messersmith, Phillip B; Pereira, Maria Olívia

    2016-09-01

    Given alginate's contribution to Pseudomonas aeruginosa virulence, it has long been considered a promising target for interventional therapies, which have been performed by using the enzyme alginate lyase. In this work, instead of treating pre-established mucoid biofilms, alginate lyase is immobilized onto a surface as a preventive measure against P. aeruginosa adhesion. A polydopamine dip-coating strategy is employed for functionalization of polycarbonate surfaces. Enzyme immobilization is confirmed by surface characterization. Surfaces functionalized with alginate lyase exhibit anti-adhesive properties, inhibiting the attachment of the mucoid strain. Moreover, surfaces modified with this enzyme also inhibit the adhesion of the tested non-mucoid strain. Unexpectedly, treatment with heat-inactivated enzyme also inhibits the attachment of mucoid and non-mucoid P. aeruginosa strains. These findings suggest that the antibacterial performance of alginate lyase functional coatings is catalysis-independent, highlighting the importance of further studies to better understand its mechanism of action against P. aeruginosa strains.

  3. Impact of new water systems on healthcare-associated colonization or infection with Pseudomonas aeruginosa

    PubMed Central

    Lefebvre, Annick; Quantin, Catherine; Vanhems, Philippe; Lucet, Jean-Christophe; Bertrand, Xavier; Astruc, Karine; Chavanet, Pascal; Aho-Glélé, Ludwig S.

    2016-01-01

    Aim: We aimed to study the impact of new water systems, which were less contaminated with P. aeruginosa, on the incidence of healthcare-associated P. aeruginosa cases (colonizations or infections) in care units that moved to a different building between 2005 and 2014. Methods: Generalized Estimated Equations were used to compare the incidence of P. aeruginosa healthcare-associated cases according to the building. Results: Twenty-nine units moved during the study period and 2,759 cases occurred in these units. No difference was observed when the new building was compared with older buildings overall. Conclusion: Our results did not support our hypothesis of a positive association between water system contamination and the incidence of healthcare-associated P. aeruginosa cases. These results must be confirmed by linking results of water samples and patients’ data. PMID:27274443

  4. Application of bacteriophages to selectively remove Pseudomonas aeruginosa in water and wastewater filtration systems.

    PubMed

    Zhang, Yanyan; Hunt, Heather K; Hu, Zhiqiang

    2013-09-01

    Water and wastewater filtration systems often house pathogenic bacteria, which must be removed to ensure clean, safe water. Here, we determine the persistence of the model bacterium Pseudomonas aeruginosa in two types of filtration systems, and use P. aeruginosa bacteriophages to determine their ability to selectively remove P. aeruginosa. These systems used beds of either anthracite or granular activated carbon (GAC), which were operated at an empty bed contact time (EBCT) of 45 min. The clean bed filtration systems were loaded with an instantaneous dose of P. aeruginosa at a total cell number of 2.3 (± 0.1 [standard deviation]) × 10(7) cells. An immediate dose of P. aeruginosa phages (1 mL of phage stock at the concentration of 2.7 × 10(7) PFU (Plaque Forming Units)/mL) resulted in a reduction of 50% (± 9%) and >99.9% in the effluent P. aeruginosa concentrations in the clean anthracite and GAC filters, respectively. To further evaluate the effects of P. aeruginosa phages, synthetic stormwater was run through anthracite and GAC biofilters where mixed-culture biofilms were present. Eighty five days after an instantaneous dose of P. aeruginosa (2.3 × 10(7) cells per filter) on day 1, 7.5 (± 2.8) × 10(7) and 1.1 (± 0.5) × 10(7) P. aeruginosa cells/g filter media were detected in the top layer (close to the influent port) of the anthracite and GAC biofilters, respectively, demonstrating the growth and persistence of pathogenic bacteria in the biofilters. A subsequent 1-h dose of phages, at the concentration of 5.1 × 10(6) PFU/mL and flow rate of 1.6 mL/min, removed the P. aeruginosa inside the GAC biofilters and the anthracite biofilters by 70% (± 5%) and 56% (± 1%), respectively, with no P. aeruginosa detected in the effluent, while not affecting ammonia oxidation or the ammonia-oxidizing bacterial community inside the biofilters. These results suggest that phage treatment can selectively remove pathogenic bacteria with minimal impact on beneficial

  5. Pseudomonas aeruginosa isolates in severe chronic obstructive pulmonary disease: characterization and risk factors

    PubMed Central

    2014-01-01

    Background Patients with severe chronic obstructive pulmonary disease (COPD) are at increased risk of infection by P. aeruginosa. The specific role of bronchiectasis in both infection and chronic colonization by this microorganism in COPD, however, remains ill defined. To evaluate the prevalence and risk factors for P. aeruginosa recovery from sputum in outpatients with severe COPD, characterizing P. aeruginosa isolates by pulsed-field gel electrophoresis (PFGE) and focusing on the influence of bronchiectasis on chronic colonization in these patients. Methods A case-cohort study of 118 patients with severe COPD attended at a Respiratory Day Unit for an acute infectious exacerbation and followed up over one year. High-resolution CT scans were performed during stability for bronchiectasis assessment and sputum cultures were obtained during exacerbation and stability in all patients. P. aeruginosa isolates were genotyped by PFGE. Determinants of the recovery of P. aeruginosa in sputum and chronic colonization by this microorganism were assessed by multivariate analysis. Results P. aeruginosa was isolated from 41 of the 118 patients studied (34.7%). Five of these 41 patients (12.2%) with P. aeruginosa recovery fulfilled criteria for chronic colonization. In the multivariate analysis, the extent of bronchiectasis (OR 9.8, 95% CI: 1.7 to 54.8) and the number of antibiotic courses (OR 1.7, 95% CI: 1.1 to 2.5) were independently associated with an increased risk of P. aeruginosa isolation. Chronic colonization was unrelated to the presence of bronchiectasis (p=0.75). In patients with chronic colonization the isolates of P. aeruginosa retrieved corresponded to the same clones during the follow-up, and most of the multidrug resistant isolates (19/21) were harbored by these patients. Conclusions The main risk factors for P. aeruginosa isolation in severe COPD were the extent of bronchiectasis and exposure to antibiotics. Over 10% of these patients fulfilled criteria for

  6. Physiological and biochemical effects of allelochemical ethyl 2-methyl acetoacetate (EMA) on cyanobacterium Microcystis aeruginosa.

    PubMed

    Hong, Yu; Hu, Hong-Ying; Li, Feng-Min

    2008-10-01

    The physiological and biochemical effects of an allelochemical ethyl 2-methyl acetoacetate (EMA) isolated from reed (Phragmites communis) on bloom-forming cyanobacterium, Microcystis aeruginosa, were investigated. EMA significantly inhibited the growth of M. aeruginosa in a concentration-dependent way. The metabolic indices (represented by esterase and total dehydrogenase activities), the cellular redox status (represented by the level of reactive oxygen species (ROS)), and the oxidative damage index (represented by the content of malondialdehyde (MDA), the product of membrane lipid peroxidation) were used to evaluate the physiological and biochemical changes in M. aeruginosa after EMA exposure. Esterase activity in M. aeruginosa did not change (P>0.05) after 2 h of exposure to EMA, but increased greatly after 24 and 48 h (P<0.05). EMA exposure (>0.5 mg L(-1)) resulted in a remarkable loss of total dehydrogenase activity in M. aeruginosa after 4 h (P<0.01), but an increase after 40 h (P<0.05). EMA caused a great increase in ROS level of the algal cells. At high EMA concentration (4 mg L(-1)), the ROS level was remarkably elevated to 1.91 times as much as that in the controls after 2 h. Increases in the ROS level also occurred after 24 and 48 h. The increase in lipid peroxidation of M. aeruginosa was dependent upon EMA concentration and the exposure time. After 40 h of exposure, the MDA content at 4 mg L(-1) of EMA reached approximately 3.5 times (P<0.01) versus the controls. These results suggest that the cellular structure and metabolic activity of M. aeruginosa are influenced by EMA; the increased metabolic activity perhaps reflects the fact that the resistance of cellular response system to the stress from EMA is initiated during EMA exposure, and the oxidative damage induced by EMA via the oxidation of ROS may be an important factor responsible for the inhibition of EMA on the growth of M. aeruginosa.

  7. A long-chain flavodoxin protects Pseudomonas aeruginosa from oxidative stress and host bacterial clearance.

    PubMed

    Moyano, Alejandro J; Tobares, Romina A; Rizzi, Yanina S; Krapp, Adriana R; Mondotte, Juan A; Bocco, José L; Saleh, Maria-Carla; Carrillo, Néstor; Smania, Andrea M

    2014-02-01

    Long-chain flavodoxins, ubiquitous electron shuttles containing flavin mononucleotide (FMN) as prosthetic group, play an important protective role against reactive oxygen species (ROS) in various microorganisms. Pseudomonas aeruginosa is an opportunistic pathogen which frequently has to face ROS toxicity in the environment as well as within the host. We identified a single ORF, hereafter referred to as fldP (for fl avo d oxin from P . aeruginosa), displaying the highest similarity in length, sequence identity and predicted secondary structure with typical long-chain flavodoxins. The gene was cloned and expressed in Escherichia coli. The recombinant product (FldP) could bind FMN and exhibited flavodoxin activity in vitro. Expression of fldP in P. aeruginosa was induced by oxidative stress conditions through an OxyR-independent mechanism, and an fldP-null mutant accumulated higher intracellular ROS levels and exhibited decreased tolerance to H2O2 toxicity compared to wild-type siblings. The mutant phenotype could be complemented by expression of a cyanobacterial flavodoxin. Overexpression of FldP in a mutT-deficient P. aeruginosa strain decreased H2O2-induced cell death and the hypermutability caused by DNA oxidative damage. FldP contributed to the survival of P. aeruginosa within cultured mammalian macrophages and in infected Drosophila melanogaster, which led in turn to accelerated death of the flies. Interestingly, the fldP gene is present in some but not all P. aeruginosa strains, constituting a component of the P. aeruginosa accessory genome. It is located in a genomic island as part of a self-regulated polycistronic operon containing a suite of stress-associated genes. The collected results indicate that the fldP gene encodes a long-chain flavodoxin, which protects the cell from oxidative stress, thereby expanding the capabilities of P. aeruginosa to thrive in hostile environments.

  8. Use of the paraffin wax baiting system for identification of Pseudomonas aeruginosa clinical isolates.

    PubMed

    Massengale, A R; Ollar, R A; Giordano, S J; Felder, M S; Aronoff, S C

    1999-11-01

    Pseudomonas aeruginosa is the primary pathogen among the Pseudomonads and is known for its minimal nutritional requirements, capacity to use paraffin as a sole carbon source, and biofilm formation. Because the ability of Pseudomonads to grow on paraffin is not commonly found among human pathogens and the primary Pseudomonas human pathogen is P. aeruginosa, we studied the adaptation of the paraffin baiting system for the growth and identification of clinical isolates of P. aeruginosa. We also studied the effectiveness of combining a fluorescence assay measuring fluorescein (pyoverdin) production and oxidase test with the paraffin baiting assay for P. aeruginosa speciation. Strains were tested for the capacity to use paraffin as a sole carbon source using the paraffin baiting system with Czapek's minimal salt medium. Of 111 P. aeruginosa clinical isolates tested for using paraffin as a sole carbon source, 45% exhibited growth on paraffin at 24 h and 76.6% exhibited growth on paraffin at 48 h. The ability of the reference strains and clinical isolates were then tested for their ability to associate with the paraffin slide in the presence of an additional carbon source. Of 111 P. aeruginosa clinical isolates tested, 85 strains (76.6%), and 102 (93%) were associated with the paraffin surface at 24 and 48 h. We successfully combined fluorescence and oxidase assays with the paraffin baiting system for identification of P. aeruginosa. The simple and inexpensive paraffin baiting system is a useful method for the identification and study of P. aeruginosa suitable for both the clinical and research laboratory.

  9. Maintenance of Paraoxonase 2 Activity as a Strategy to Attenuate P. Aeruginosa Virulence

    DTIC Science & Technology

    2013-10-01

    Bacterial Pathogenesis, Host Defense, Host-Pathogen Interactions, Innate Immunity, Paraoxonase, Pseudomonas aeruginosa, Quorum Sensing 16. SECURITY...esterase that has been shown to efficiently hydrolyze, and thereby inactivate, the P. aeruginosa quorum sensing molecule 3OC12(1). This suggests that...PON2 may be an important component of the innate defense which can disrupt bacterial quorum sensing , limiting the pathogenicity of the bacteria. We

  10. Inhibition of Biofilm Formation by Esomeprazole in Pseudomonas aeruginosa and Staphylococcus aureus

    PubMed Central

    Singh, Vandana; Arora, Vaneet; Alam, M. Jahangir

    2012-01-01

    Staphylococcus aureus and Pseudomonas aeruginosa are common nosocomial pathogens responsible for biofilm-associated infections. Proton pump inhibitors (PPI), such as esomeprazole, may have novel antimicrobial properties. The objective of this study was to assess whether esomeprazole prevents sessile bacterial growth and biofilm formation and whether it may have synergistic killing effects with standard antibiotics. The antibiofilm activity of esomeprazole at 0.25 mM was tested against two strains each of S. aureus and P. aeruginosa. Bacterial biofilms were prepared using a commercially available 96-peg-plate Calgary biofilm device. Sessile bacterial CFU counts and biomass were assessed during 72 hours of esomeprazole exposure. The killing activities after an additional 24 hours of vancomycin (against S. aureus) and meropenem (against P. aeruginosa) treatment with or without preexposure to esomeprazole were also assessed by CFU and biomass analyses. P. aeruginosa and S. aureus strains exposed to esomeprazole displayed decreased sessile bacterial growth and biomass (P < 0.001, each parameter). After 72 h of exposure, there was a 1-log10 decrease in the CFU/ml of esomeprazole-exposed P. aeruginosa and S. aureus strains compared to controls (P < 0.001). After 72 h of exposure, measured absorbance was 100% greater in P. aeruginosa control strains than in esomeprazole-exposed strains (P < 0.001). Increased killing and decreased biomass were observed for esomeprazole-treated bacteria compared to untreated controls exposed to conventional antibiotics (P < 0.001, each parameter). Reduced biofilm growth after 24 h was visibly apparent by light micrographs for P. aeruginosa and S. aureus isolates exposed to esomeprazole compared to untreated controls. In conclusion, esomeprazole demonstrated an antibiofilm effect against biofilm-producing S. aureus and P. aeruginosa. PMID:22664967

  11. The Effect of Strict Segregation on Pseudomonas aeruginosa in Cystic Fibrosis Patients

    PubMed Central

    van Mansfeld, Rosa; de Vrankrijker, Angelica; Brimicombe, Roland; Heijerman, Harry; Teding van Berkhout, Ferdinand; Spitoni, Cristian; Grave, Sanne; van der Ent, Cornelis; Wolfs, Tom; Willems, Rob; Bonten, Marc

    2016-01-01

    Introduction Segregation of patients with cystic fibrosis (CF) was implemented to prevent chronic infection with epidemic Pseudomonas aeruginosa strains with presumed detrimental clinical effects, but its effectiveness has not been carefully evaluated. Methods The effect of strict segregation on the incidence of P. aeruginosa infection in CF patients was investigated through longitudinal protocolized follow-up of respiratory tract infection before and after segregation. In two nested cross-sectional studies in 2007 and 2011 the P. aeruginosa population structure was investigated and clinical parameters were determined in patients with and without infection with the Dutch epidemic P. aeruginosa clone (ST406). Results Of 784 included patients 315 and 382 were at risk for acquiring chronic P. aeruginosa infection before and after segregation. Acquisition rates were, respectively, 0.14 and 0.05 per 1,000 days at risk (HR: 0.66, 95% CI [0.2548–1.541]; p = 0.28). An exploratory subgroup analysis indicated lower acquisition after segregation in children < 15 years of age (HR: 0.43, 95% CI[0.21–0.95]; p = 0.04). P. aeruginosa population structure did not change after segregation and ST406 was not associated with lung function decline, death or lung transplantation. Conclusions Strict segregation was not associated with a statistically significant lower acquisition of chronic P. aeruginosa infection and ST406 was not associated with adverse clinical outcome. After segregation there were no new acquisitions of ST406. In an unplanned exploratory analysis chronic acquisition of P. aeruginosa was lower after implementation of segregation in patients under 15 years of age. PMID:27280467

  12. A Long-Chain Flavodoxin Protects Pseudomonas aeruginosa from Oxidative Stress and Host Bacterial Clearance

    PubMed Central

    Moyano, Alejandro J.; Krapp, Adriana R.; Mondotte, Juan A.; Bocco, José L.; Saleh, Maria-Carla; Carrillo, Néstor; Smania, Andrea M.

    2014-01-01

    Long-chain flavodoxins, ubiquitous electron shuttles containing flavin mononucleotide (FMN) as prosthetic group, play an important protective role against reactive oxygen species (ROS) in various microorganisms. Pseudomonas aeruginosa is an opportunistic pathogen which frequently has to face ROS toxicity in the environment as well as within the host. We identified a single ORF, hereafter referred to as fldP (for flavodoxin from P . aeruginosa), displaying the highest similarity in length, sequence identity and predicted secondary structure with typical long-chain flavodoxins. The gene was cloned and expressed in Escherichia coli. The recombinant product (FldP) could bind FMN and exhibited flavodoxin activity in vitro. Expression of fldP in P. aeruginosa was induced by oxidative stress conditions through an OxyR-independent mechanism, and an fldP-null mutant accumulated higher intracellular ROS levels and exhibited decreased tolerance to H2O2 toxicity compared to wild-type siblings. The mutant phenotype could be complemented by expression of a cyanobacterial flavodoxin. Overexpression of FldP in a mutT-deficient P. aeruginosa strain decreased H2O2-induced cell death and the hypermutability caused by DNA oxidative damage. FldP contributed to the survival of P. aeruginosa within cultured mammalian macrophages and in infected Drosophila melanogaster, which led in turn to accelerated death of the flies. Interestingly, the fldP gene is present in some but not all P. aeruginosa strains, constituting a component of the P. aeruginosa accessory genome. It is located in a genomic island as part of a self-regulated polycistronic operon containing a suite of stress-associated genes. The collected results indicate that the fldP gene encodes a long-chain flavodoxin, which protects the cell from oxidative stress, thereby expanding the capabilities of P. aeruginosa to thrive in hostile environments. PMID:24550745

  13. Antibiotic Tolerance Induced by Lactoferrin in Clinical Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients

    PubMed Central

    Andrés, María T.; Viejo-Diaz, Mónica; Pérez, Francisco; Fierro, José F.

    2005-01-01

    Lactoferrin-induced cell depolarization and a delayed tobramycin-killing effect on Pseudomonas aeruginosa cells were correlated. This antibiotic tolerance effect (ATE) reflects the ability of a defense protein to modify the activity of an antibiotic as a result of its modulatory effect on bacterial physiology. P. aeruginosa isolates from cystic fibrosis patients showed higher ATE values (≤6-fold) than other clinical strains. PMID:15793153

  14. Immunological evaluation of an alginate-based conjugate as a vaccine candidate against Pseudomonas aeruginosa.

    PubMed

    Farjah, Ali; Owlia, Parviz; Siadat, Seyed Davar; Mousavi, Seyed Fazlollah; Ardestani, Mehdi Shafiee; Mohammadpour, Hashem Khorsand

    2015-02-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes serious infections, is usually resistant to antimicrobial agents, and is the leading cause of morbidity and premature mortality in patients with cystic fibrosis (CF). Mucoid strains of P. aeruginosa produce a virulence factor known as alginate. Developing a strategy to raise opsonic antibodies against alginate could be promising for the treatment of P. aeruginosa infection in CF patients. Conjugation of alginate to a carrier protein is a good method for increasing the immunogenicity of alginate. We conjugated alginate to the outer membrane vesicle (OMV) of Neisseria meningitidis serogroup B, which is a safe carrier protein, and evaluated its efficacy in mice. To evaluate the immune response, total IgG, IgG1, IgG2a, and IgG2b titers were analyzed. Immunization of mice with the alginate-OMV conjugate raised the levels of opsonic antibodies, and the vaccinated mice were protected when challenged intranasally with P. aeruginosa. Further studies showed that the conjugated vaccine could eliminate P. aeruginosa from the lungs of infected mice. This study supports the proposal that immunization of mice with an alginate-OMV conjugate vaccine could be safe and protective against P. aeruginosa infection.

  15. [Strategies for management of difficult to treat Gram-negative infections: focus on Pseudomonas aeruginosa].

    PubMed

    Bassetti, Matteo

    2007-09-01

    Pseudomonas aeruginosa is often involved in the aetiology of numerous infections, particularly those occurring in hospital. The infections in which P. aeruginosa most frequently has a pathogenic role include respiratory tract infections, particularly those occurring in patients with chronic obstructive pulmonary disease (COPD), nosocomial pneumonia, ventilator-associated pneumonia, and cystic fibrosis, as well as those developing in patients with AIDS, bacteraemia, sepsis, urinary tract infections, especially those related to catheterisation or kidney transplants, infections in neutropenic patients, and skin infections, particular those developing in surgical wounds or in burns. Thus, in practice, P. aeruginosa is ubiquitously present in all body districts. Particular attention should also be given to the presence of P. aeruginosa in the community setting, for example when it causes community-acquired pneumonia in the elderly or pneumonia in patients with advanced stage COPD. The mortality rate of patients with severe P. aeruginosa infections is very high. Treatment should be initiated very promptly with the most suitable drug, perhaps making use of combination therapy with a beta-lactam and a fluoroquinolone when indicated, and continued for a sufficiently long period. As far as concerns future therapeutic options for the treatment of P. aeruginosa infections, the only two new molecules that will probably become available are doripenem and ceftobiprole. Given this prospective, trust must be placed in the already known drugs, exploiting them more appropriately.

  16. Elimination of Pseudomonas aeruginosa through Efferocytosis upon Binding to Apoptotic Cells

    PubMed Central

    Arias, Paula; Kierbel, Arlinet

    2016-01-01

    For opportunistic pathogens such as Pseudomonas aeruginosa, the mucosal barrier represents a formidable challenge. Infections develop only in patients with altered epithelial barriers. Here, we showed that P. aeruginosa interacts with a polarized epithelium, adhering almost exclusively at sites of multi-cellular junctions. In these sites, numerous bacteria attach to an extruded apoptotic cell or apoptotic body. This dead cell tropism is independent of the type of cell death, as P. aeruginosa also binds to necrotic cells. We further showed that P. aeruginosa is internalized through efferocytosis, a process in which surrounding epithelial cells engulf and dispose of extruded apoptotic cells. Intracellularly, along with apoptotic cell debris, P. aeruginosa inhabits an efferocytic phagosome that acquires lysosomal features, and is finally killed. We propose that elimination of P. aeruginosa through efferocytosis is part of a host defense mechanism. Our findings could be relevant for the study of cystic fibrosis, which is characterized by an exacerbated number of apoptotic cells and ineffective efferocytosis. PMID:27977793

  17. [Effect of nitrogen and phosphorus on growth and competition of M. aeruginosa and S. quadricauda].

    PubMed

    Wan, Lei; Zhu, Wei; Zhao, Lian-Fang

    2007-06-01

    In order to disclosure the formation rule of predominant species in different nutrition conditions, three kinds of nutrition concentration were selected for the competition experiments with the common species of blue-green algae bloom Microcystis aeruginosa and the common species of green algae bloom Scenedesmus quadricauda. The competition relation was analysed by the competition parameters. The results indicate, in low nutrition, Scenedesmus quadricauda can stimulate the growth of Microcystis aeruginosa in mixed culture, the simulation becomes evident in low N/P ratio and M. aeruginosa can al