Science.gov

Sample records for aeruginosa strain pa14

  1. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants

    PubMed Central

    Liberati, Nicole T.; Urbach, Jonathan M.; Miyata, Sachiko; Lee, Daniel G.; Drenkard, Eliana; Wu, Gang; Villanueva, Jacinto; Wei, Tao; Ausubel, Frederick M.

    2006-01-01

    Random transposon insertion libraries have proven invaluable in studying bacterial genomes. Libraries that approach saturation must be large, with multiple insertions per gene, making comprehensive genome-wide scanning difficult. To facilitate genome-scale study of the opportunistic human pathogen Pseudomonas aeruginosa strain PA14, we constructed a nonredundant library of PA14 transposon mutants (the PA14NR Set) in which nonessential PA14 genes are represented by a single transposon insertion chosen from a comprehensive library of insertion mutants. The parental library of PA14 transposon insertion mutants was generated by using MAR2xT7, a transposon compatible with transposon-site hybridization and based on mariner. The transposon-site hybridization genetic footprinting feature broadens the utility of the library by allowing pooled MAR2xT7 mutants to be individually tracked under different experimental conditions. A public, internet-accessible database (the PA14 Transposon Insertion Mutant Database, http://ausubellab.mgh.harvard.edu/cgi-bin/pa14/home.cgi) was developed to facilitate construction, distribution, and use of the PA14NR Set. The usefulness of the PA14NR Set in genome-wide scanning for phenotypic mutants was validated in a screen for attachment to abiotic surfaces. Comparison of the genes disrupted in the PA14 transposon insertion library with an independently constructed insertion library in P. aeruginosa strain PAO1 provides an estimate of the number of P. aeruginosa essential genes. PMID:16477005

  2. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants.

    PubMed

    Liberati, Nicole T; Urbach, Jonathan M; Miyata, Sachiko; Lee, Daniel G; Drenkard, Eliana; Wu, Gang; Villanueva, Jacinto; Wei, Tao; Ausubel, Frederick M

    2006-02-21

    Random transposon insertion libraries have proven invaluable in studying bacterial genomes. Libraries that approach saturation must be large, with multiple insertions per gene, making comprehensive genome-wide scanning difficult. To facilitate genome-scale study of the opportunistic human pathogen Pseudomonas aeruginosa strain PA14, we constructed a nonredundant library of PA14 transposon mutants (the PA14NR Set) in which nonessential PA14 genes are represented by a single transposon insertion chosen from a comprehensive library of insertion mutants. The parental library of PA14 transposon insertion mutants was generated by using MAR2xT7, a transposon compatible with transposon-site hybridization and based on mariner. The transposon-site hybridization genetic footprinting feature broadens the utility of the library by allowing pooled MAR2xT7 mutants to be individually tracked under different experimental conditions. A public, internet-accessible database (the PA14 Transposon Insertion Mutant Database, http://ausubellab.mgh.harvard.edu/cgi-bin/pa14/home.cgi) was developed to facilitate construction, distribution, and use of the PA14NR Set. The usefulness of the PA14NR Set in genome-wide scanning for phenotypic mutants was validated in a screen for attachment to abiotic surfaces. Comparison of the genes disrupted in the PA14 transposon insertion library with an independently constructed insertion library in P. aeruginosa strain PAO1 provides an estimate of the number of P. aeruginosa essential genes.

  3. Functional analysis of pyochelin-/enantiopyochelin-related genes from a pathogenicity island of Pseudomonas aeruginosa strain PA14.

    PubMed

    Maspoli, Alessandro; Wenner, Nicolas; Mislin, Gaëtan L A; Reimmann, Cornelia

    2014-06-01

    Genomic islands are foreign DNA blocks inserted in so-called regions of genomic plasticity (RGP). Depending on their gene content, they are classified as pathogenicity, symbiosis, metabolic, fitness or resistance islands, although a detailed functional analysis is often lacking. Here we focused on a 34-kb pathogenicity island of Pseudomonas aeruginosa PA14 (PA14GI-6), which is inserted at RGP5 and carries genes related to those for pyochelin/enantiopyochelin biosynthesis. These enantiomeric siderophores of P. aeruginosa and certain strains of Pseudomonas protegens are assembled by a thiotemplate mechanism from salicylate and two molecules of cysteine. The biochemical function of several proteins encoded by PA14GI-6 was investigated by a series of complementation analyses using mutants affected in potential homologs. We found that PA14_54940 codes for a bifunctional salicylate synthase/salicyl-AMP ligase (for generation and activation of salicylate), that PA14_54930 specifies a dihydroaeruginoic acid (Dha) synthetase (for coupling salicylate with a cysteine-derived thiazoline ring), that PA14_54910 produces a type II thioesterase (for quality control), and that PA14_54880 encodes a serine O-acetyltransferase (for increased cysteine availability). The structure of the PA14GI-6-specified metabolite was determined by mass spectrometry, thin-layer chromatography, and HPLC as (R)-Dha, an iron chelator with antibacterial, antifungal and antitumor activity. The conservation of this genomic island in many clinical and environmental P. aeruginosa isolates of different geographical origin suggests that the ability for Dha production may confer a selective advantage to its host. PMID:24682869

  4. Microevolution of the major common Pseudomonas aeruginosa clones C and PA14 in cystic fibrosis lungs.

    PubMed

    Cramer, Nina; Klockgether, Jens; Wrasman, Kristie; Schmidt, Mario; Davenport, Colin F; Tümmler, Burkhard

    2011-07-01

    Clones C and PA14 are the worldwide most abundant clonal complexes in the Pseudomonas aeruginosa population. The microevolution of clones C and PA14 was investigated in serial cystic fibrosis (CF) airway isolates collected over 20 years since the onset of colonization. Intraclonal evolution in CF lungs was resolved by genome sequencing of first, intermediate and late isolates and subsequent multimarker SNP genotyping of the whole strain panel. Mapping of sequence reads onto the P. aeruginosa PA14 reference genome unravelled an intraclonal and interclonal sequence diversity of 0.0035% and 0.68% respectively. Clone PA14 diversified into three branches in the patient's lungs, and the PA14 population acquired 15 nucleotide substitutions and a large deletion during the observation period. The clone C genome remained invariant during the first 3 years in CF lungs; however, 15 years later 947 transitions and 12 transversions were detected in a clone C mutL mutant strain. Key mutations occurred in retS, RNA polymerase, multidrug transporter, virulence and denitrification genes. Late clone C and PA14 persistors in the CF lungs were compromised in growth and cytotoxicity, but their mutation frequency was normal even in mutL mutant clades. PMID:21492363

  5. Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14.

    PubMed

    Kim, Han-Shin; Park, Hee-Deung

    2013-01-01

    Bacterial biofilm formation can cause serious problems in clinical and industrial settings, which drives the development or screening of biofilm inhibitors. Some biofilm inhibitors have been screened from natural products or modified from natural compounds. Ginger has been used as a medicinal herb to treat infectious diseases for thousands of years, which leads to the hypothesis that it may contain chemicals inhibiting biofilm formation. To test this hypothesis, we evaluated ginger's ability to inhibit Pseudomonas aeruginosa PA14 biofilm formation. A static biofilm assay demonstrated that biofilm development was reduced by 39-56% when ginger extract was added to the culture. In addition, various phenotypes were altered after ginger addition of PA14. Ginger extract decreased production of extracellular polymeric substances. This finding was confirmed by chemical analysis and confocal laser scanning microscopy. Furthermore, ginger extract formed noticeably less rugose colonies on agar plates containing Congo red and facilitated swarming motility on soft agar plates. The inhibition of biofilm formation and the altered phenotypes appear to be linked to a reduced level of a second messenger, bis-(3'-5')-cyclic dimeric guanosine monophosphate. Importantly, ginger extract inhibited biofilm formation in both Gram-positive and Gram-negative bacteria. Also, surface biofilm cells formed with ginger extract detached more easily with surfactant than did those without ginger extract. Taken together, these findings provide a foundation for the possible discovery of a broad spectrum biofilm inhibitor. PMID:24086697

  6. Ginger Extract Inhibits Biofilm Formation by Pseudomonas aeruginosa PA14

    PubMed Central

    Kim, Han-Shin; Park, Hee-Deung

    2013-01-01

    Bacterial biofilm formation can cause serious problems in clinical and industrial settings, which drives the development or screening of biofilm inhibitors. Some biofilm inhibitors have been screened from natural products or modified from natural compounds. Ginger has been used as a medicinal herb to treat infectious diseases for thousands of years, which leads to the hypothesis that it may contain chemicals inhibiting biofilm formation. To test this hypothesis, we evaluated ginger’s ability to inhibit Pseudomonas aeruginosa PA14 biofilm formation. A static biofilm assay demonstrated that biofilm development was reduced by 39–56% when ginger extract was added to the culture. In addition, various phenotypes were altered after ginger addition of PA14. Ginger extract decreased production of extracellular polymeric substances. This finding was confirmed by chemical analysis and confocal laser scanning microscopy. Furthermore, ginger extract formed noticeably less rugose colonies on agar plates containing Congo red and facilitated swarming motility on soft agar plates. The inhibition of biofilm formation and the altered phenotypes appear to be linked to a reduced level of a second messenger, bis-(3′-5′)-cyclic dimeric guanosine monophosphate. Importantly, ginger extract inhibited biofilm formation in both Gram-positive and Gram-negative bacteria. Also, surface biofilm cells formed with ginger extract detached more easily with surfactant than did those without ginger extract. Taken together, these findings provide a foundation for the possible discovery of a broad spectrum biofilm inhibitor. PMID:24086697

  7. Selenite Enhances Immune Response against Pseudomonas aeruginosa PA14 via SKN-1 in Caenorhabditis elegans

    PubMed Central

    Huang, Chi-Wei; Wei, Chia-Cheng; Liao, Vivian Hsiu-Chuan

    2014-01-01

    Background Selenium (Se) is an important nutrient that carries out many biological processes including maintaining optimal immune function. Here, inorganic selenite (Se(IV)) was evaluated for its pathogen resistance and potential-associated factors in Caenorhabditis elegans. The immune effects of Se(IV) were investigated by examining the responses of C. elegans to Pseudomonas aerugonisa PA14 strain. Principal Findings Se(IV)-treated C. elegans showed increased survival under PA14 infection compared with untreated controls. The significant pathogen resistance of Se(IV) on C. elegans might not be attributed to the effects of Se(IV) on PA14 as Se(IV) showed no effect on bacterial quorum-sensing and virulence factors of PA14. This study showed that Se(IV) enhanced the expression of a gene pivotal for the innate immunity in C. elegans. The study found that the pathogen-resistant phenotypes contributed by Se(IV) was absent from the skn-1 mutant worms. Moreover, Se(IV) influenced the subcellular distribution of SKN-1/Nrf in C. elegans upon PA14 infection. Furthermore, Se(IV) increased mRNA levels of SKN-1 target genes (gst-4 and gcs-1). Conclusions This study found evidence of Se(IV) protecting C. elegans against P. aeruginosa PA14 infection by exerting effects on the innate immunity of C. elegans that is likely mediated via regulation of a SKN-1-dependent signaling pathway. PMID:25147937

  8. Intraclonal genome diversity of the major Pseudomonas aeruginosa clones C and PA14

    PubMed Central

    Fischer, Sebastian; Klockgether, Jens; Morán Losada, Patricia; Chouvarine, Philippe; Cramer, Nina; Davenport, Colin F.; Dethlefsen, Sarah; Dorda, Marie; Goesmann, Alexander; Hilker, Rolf; Mielke, Samira; Schönfelder, Torben; Suerbaum, Sebastian; Türk, Oliver; Woltemate, Sabrina; Wiehlmann, Lutz

    2016-01-01

    Summary Bacterial populations differentiate at the subspecies level into clonal complexes. Intraclonal genome diversity was studied in 100 isolates of the two dominant P seudomonas aeruginosa clones C and PA14 collected from the inanimate environment, acute and chronic infections. The core genome was highly conserved among clone members with a median pairwise within‐clone single nucleotide sequence diversity of 8 × 10−6 for clone C and 2 × 10−5 for clone PA14. The composition of the accessory genome was, on the other hand, as variable within the clone as between unrelated clones. Each strain carried a large cargo of unique genes. The two dominant worldwide distributed P. aeruginosa clones combine an almost invariant core with the flexible gain and loss of genetic elements that spread by horizontal transfer. PMID:26711897

  9. Sensor Kinase PA4398 Modulates Swarming Motility and Biofilm Formation in Pseudomonas aeruginosa PA14

    PubMed Central

    Strehmel, Janine; Neidig, Anke; Nusser, Michael; Geffers, Robert; Brenner-Weiss, Gerald

    2014-01-01

    Pseudomonas aeruginosa is an opportunistic human pathogen that is able to sense and adapt to numerous environmental stimuli by the use of transcriptional regulators, including two-component regulatory systems. In this study, we demonstrate that the sensor kinase PA4398 is involved in the regulation of swarming motility and biofilm formation in P. aeruginosa PA14. A PA4398− mutant strain was considerably impaired in swarming motility, while biofilm formation was increased by approximately 2-fold. The PA4398− mutant showed no changes in growth rate, rhamnolipid synthesis, or the production of the Pel exopolysaccharide but exhibited levels of the intracellular second messenger cyclic dimeric GMP (c-di-GMP) 50% higher than those in wild-type cells. The role of PA4398 in gene regulation was investigated by comparing the PA4398− mutant to the wild-type strain by using microarray analysis, which demonstrated that 64 genes were up- or downregulated more than 1.5-fold (P < 0.05) under swarming conditions. In addition, more-sensitive real-time PCR studies were performed on genes known to be involved in c-di-GMP metabolism. Among the dysregulated genes were several involved in the synthesis and degradation of c-di-GMP or in the biosynthesis, transport, or function of the iron-scavenging siderophores pyoverdine and pyochelin, in agreement with the swarming phenotype observed. By analyzing additional mutants of selected pyoverdine- and pyochelin-related genes, we were able to show that not only pvdQ but also pvdR, fptA, pchA, pchD, and pchH are essential for the normal swarming behavior of P. aeruginosa PA14 and may also contribute to the swarming-deficient phenotype of the PA4398− mutant in addition to elevated c-di-GMP levels. PMID:25501476

  10. Sensor kinase PA4398 modulates swarming motility and biofilm formation in Pseudomonas aeruginosa PA14.

    PubMed

    Strehmel, Janine; Neidig, Anke; Nusser, Michael; Geffers, Robert; Brenner-Weiss, Gerald; Overhage, Joerg

    2015-02-01

    Pseudomonas aeruginosa is an opportunistic human pathogen that is able to sense and adapt to numerous environmental stimuli by the use of transcriptional regulators, including two-component regulatory systems. In this study, we demonstrate that the sensor kinase PA4398 is involved in the regulation of swarming motility and biofilm formation in P. aeruginosa PA14. APA4398 mutant strain was considerably impaired in swarming motility, while biofilm formation was increased by approximately 2-fold. The PA4398 mutant showed no changes in growth rate, rhamnolipid synthesis, or the production of the Pel exopolysaccharide but exhibited levels of the intracellular second messenger cyclic dimeric GMP (c-di-GMP) 50% higher than those in wild-type cells. The role of PA4398 in gene regulation was investigated by comparing the PA4398 mutant to the wildtype strain by using microarray analysis, which demonstrated that 64 genes were up- or downregulated more than 1.5-fold (P<0.05) under swarming conditions. In addition, more-sensitive real-time PCR studies were performed on genes known to be involved in c-di-GMP metabolism. Among the dysregulated genes were several involved in the synthesis and degradation of c-di-GMP or in the biosynthesis, transport, or function of the iron-scavenging siderophores pyoverdine and pyochelin, in agreement with the swarming phenotype observed. By analyzing additional mutants of selected pyoverdine- and pyochelin-related genes,we were able to show that not only pvdQ but also pvdR, fptA, pchA, pchD, and pchH are essential for the normal swarming behavior of P. aeruginosa PA14 and may also contribute to the swarming-deficient phenotype of the PA4398 mutant in addition to elevated c-di-GMP levels. PMID:25501476

  11. Facultative control of matrix production optimizes competitive fitness in Pseudomonas aeruginosa PA14 biofilm models.

    PubMed

    Madsen, Jonas S; Lin, Yu-Cheng; Squyres, Georgia R; Price-Whelan, Alexa; de Santiago Torio, Ana; Song, Angela; Cornell, William C; Sørensen, Søren J; Xavier, Joao B; Dietrich, Lars E P

    2015-12-01

    As biofilms grow, resident cells inevitably face the challenge of resource limitation. In the opportunistic pathogen Pseudomonas aeruginosa PA14, electron acceptor availability affects matrix production and, as a result, biofilm morphogenesis. The secreted matrix polysaccharide Pel is required for pellicle formation and for colony wrinkling, two activities that promote access to O2. We examined the exploitability and evolvability of Pel production at the air-liquid interface (during pellicle formation) and on solid surfaces (during colony formation). Although Pel contributes to the developmental response to electron acceptor limitation in both biofilm formation regimes, we found variation in the exploitability of its production and necessity for competitive fitness between the two systems. The wild type showed a competitive advantage against a non-Pel-producing mutant in pellicles but no advantage in colonies. Adaptation to the pellicle environment selected for mutants with a competitive advantage against the wild type in pellicles but also caused a severe disadvantage in colonies, even in wrinkled colony centers. Evolution in the colony center produced divergent phenotypes, while adaptation to the colony edge produced mutants with clear competitive advantages against the wild type in this O2-replete niche. In general, the structurally heterogeneous colony environment promoted more diversification than the more homogeneous pellicle. These results suggest that the role of Pel in community structure formation in response to electron acceptor limitation is unique to specific biofilm models and that the facultative control of Pel production is required for PA14 to maintain optimum benefit in different types of communities.

  12. Facultative Control of Matrix Production Optimizes Competitive Fitness in Pseudomonas aeruginosa PA14 Biofilm Models

    PubMed Central

    Madsen, Jonas S.; Lin, Yu-Cheng; Squyres, Georgia R.; Price-Whelan, Alexa; de Santiago Torio, Ana; Song, Angela; Cornell, William C.; Sørensen, Søren J.

    2015-01-01

    As biofilms grow, resident cells inevitably face the challenge of resource limitation. In the opportunistic pathogen Pseudomonas aeruginosa PA14, electron acceptor availability affects matrix production and, as a result, biofilm morphogenesis. The secreted matrix polysaccharide Pel is required for pellicle formation and for colony wrinkling, two activities that promote access to O2. We examined the exploitability and evolvability of Pel production at the air-liquid interface (during pellicle formation) and on solid surfaces (during colony formation). Although Pel contributes to the developmental response to electron acceptor limitation in both biofilm formation regimes, we found variation in the exploitability of its production and necessity for competitive fitness between the two systems. The wild type showed a competitive advantage against a non-Pel-producing mutant in pellicles but no advantage in colonies. Adaptation to the pellicle environment selected for mutants with a competitive advantage against the wild type in pellicles but also caused a severe disadvantage in colonies, even in wrinkled colony centers. Evolution in the colony center produced divergent phenotypes, while adaptation to the colony edge produced mutants with clear competitive advantages against the wild type in this O2-replete niche. In general, the structurally heterogeneous colony environment promoted more diversification than the more homogeneous pellicle. These results suggest that the role of Pel in community structure formation in response to electron acceptor limitation is unique to specific biofilm models and that the facultative control of Pel production is required for PA14 to maintain optimum benefit in different types of communities. PMID:26431965

  13. Single-Nucleotide Polymorphisms Found in the migA and wbpX Glycosyltransferase Genes Account for the Intrinsic Lipopolysaccharide Defects Exhibited by Pseudomonas aeruginosa PA14

    PubMed Central

    Hao, Youai; Murphy, Kathleen; Lo, Reggie Y.

    2015-01-01

    ABSTRACT Pseudomonas aeruginosa PA14 is widely used by researchers in many laboratories because of its enhanced virulence over strain PAO1 in a wide range of hosts. Although lipopolysaccharide (LPS) is an important virulence factor of all P. aeruginosa strains, the LPS of PA14 has not been characterized fully. A recent study showed that the structure of its O-specific antigen (OSA) belongs to serotype O19. We found that the OSA gene cluster of PA14 shares ∼99% identity with those of the O10/O19 group. These two serotypes share the same O-unit structure, except for an O-acetyl substitution in one of the sugars in O10. Here we showed that both PA14 and O19 LPS cross-reacted with the O10-specific monoclonal antibody MF76-2 in Western blots. Analysis by SDS-PAGE and silver staining showed that PA14 LPS exhibited modal chain lengths that were different from those of O19 LPS, in that only “very long” and “short” chain lengths were observed, while “medium” and “long” chain lengths were not detected. Two other novel observations included the lack of the uncapped core oligosaccharide epitope and of common polysaccharide antigen (CPA) LPS. The lack of the uncapped core oligosaccharide was caused by point mutations in the glycosyltransferase gene migA, while the CPA-negative phenotype was correlated with a single amino acid substitution, G20R, in the glycosyltransferase WbpX. Additionally, we showed that restoring CPA biosynthesis in PA14 significantly stimulated mature biofilm formation after 72 h, while outer membrane vesicle production was not affected. IMPORTANCE P. aeruginosa PA14 is a clinical isolate that has become an important reference strain used by many researchers worldwide. LPS of PA14 has not been characterized fully, and hence, confusion about its phenotype exists in the literature. In the present study, we set out to characterize the O-specific antigen (OSA), the common polysaccharide antigen (CPA), and the core oligosaccharide produced by

  14. Cyclic di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa PA14 requires the MotAB stator.

    PubMed

    Kuchma, S L; Delalez, N J; Filkins, L M; Snavely, E A; Armitage, J P; O'Toole, G A

    2015-02-01

    The second messenger cyclic diguanylate (c-di-GMP) plays a critical role in the regulation of motility. In Pseudomonas aeruginosa PA14, c-di-GMP inversely controls biofilm formation and surface swarming motility, with high levels of this dinucleotide signal stimulating biofilm formation and repressing swarming. P. aeruginosa encodes two stator complexes, MotAB and MotCD, that participate in the function of its single polar flagellum. Here we show that the repression of swarming motility requires a functional MotAB stator complex. Mutating the motAB genes restores swarming motility to a strain with artificially elevated levels of c-di-GMP as well as stimulates swarming in the wild-type strain, while overexpression of MotA from a plasmid represses swarming motility. Using point mutations in MotA and the FliG rotor protein of the motor supports the conclusion that MotA-FliG interactions are critical for c-di-GMP-mediated swarming inhibition. Finally, we show that high c-di-GMP levels affect the localization of a green fluorescent protein (GFP)-MotD fusion, indicating a mechanism whereby this second messenger has an impact on MotCD function. We propose that when c-di-GMP level is high, the MotAB stator can displace MotCD from the motor, thereby affecting motor function. Our data suggest a newly identified means of c-di-GMP-mediated control of surface motility, perhaps conserved among Pseudomonas, Xanthomonas, and other organisms that encode two stator systems.

  15. Tobramycin-Treated Pseudomonas aeruginosa PA14 Enhances Streptococcus constellatus 7155 Biofilm Formation in a Cystic Fibrosis Model System

    PubMed Central

    Price, Katherine E.; Naimie, Amanda A.; Griffin, Edward F.; Bay, Charles

    2015-01-01

    ABSTRACT Cystic fibrosis (CF) is a human genetic disorder which results in a lung environment that is highly conducive to chronic microbial infection. Over the past decade, deep-sequencing studies have demonstrated that the CF lung can harbor a highly diverse polymicrobial community. We expanded our existing in vitro model of Pseudomonas aeruginosa biofilm formation on CF-derived airway cells to include this broader set of CF airway colonizers to investigate their contributions to CF lung disease, particularly as they relate to the antibiotic response of the population. Using this system, we identified an interspecies interaction between P. aeruginosa, a bacterium associated with declining lung function and worsening disease, and Streptococcus constellatus, a bacterium correlated with the onset of pulmonary exacerbations in CF patients. The growth rate and cytotoxicity of S. constellatus 7155 and P. aeruginosa PA14 were unchanged when grown together as mixed biofilms in the absence of antibiotics. However, the addition of tobramycin, the frontline maintenance therapy antibiotic for individuals with CF, to a mixed biofilm of S. constellatus 7155 and P. aeruginosa PA14 resulted in enhanced S. constellatus biofilm formation. Through a candidate genetic approach, we showed that P. aeruginosa rhamnolipids were reduced upon tobramycin exposure, allowing for S. constellatus 7155 biofilm enhancement, and monorhamnolipids were sufficient to reduce S. constellatus 7155 biofilm viability in the absence of tobramycin. While the findings presented here are specific to a biofilm of S. constellatus 7155 and P. aeruginosa PA14, they highlight the potential of polymicrobial interactions to impact antibiotic tolerance in unanticipated ways. IMPORTANCE Deep-sequencing studies have demonstrated that the CF lung can harbor a diverse polymicrobial community. By recapitulating the polymicrobial communities observed in the CF lung and identifying mechanisms of interspecies interactions

  16. Swarming motility is modulated by expression of the putative xenosiderophore transporter SppR-SppABCD in Pseudomonas aeruginosa PA14.

    PubMed

    Pletzer, Daniel; Braun, Yvonne; Weingart, Helge

    2016-06-01

    In the present study, we characterised the putative peptide ABC transporter SppABCD, which is co-transcribed with the TonB-dependent receptor SppR in Pseudomonas aeruginosa PA14. However, our data show that this transporter complex is not involved in the uptake of peptides. The fact that the TonB-dependent receptor SppR is regulated by an iron starvation ECF sigma factor suggested that this transporter is probably involved in the uptake of xenosiderophores. Therefore, we screened culture supernatants of 23 siderophore-producing bacteria for their ability to induce the expression of the SppR-regulating ECF sigma factor. However, none of them had an effect on the expression of this ECF sigma factor. Since the spp operon is not expressed under standard laboratory conditions, we overexpressed it from plasmids in PA14, which led to an impairment of its swarming motility on semisolid agar. Since we excluded the possibility that the uptake of a culture medium component was responsible for the observed phenotype, we hypothesize that the Spp transport system is involved in the uptake of a compound from the periplasmic space or a compound secreted by P. aeruginosa. Furthermore, we found that rhamnolipid synthesis was decreased while biofilm and exopolysaccharide synthesis was slightly increased upon overexpression of the spp operon. Moreover, we observed an impact of spp overexpression on regulation of genes involved in siderophore and phenazine biosynthesis. PMID:26995781

  17. The Pseudomonas aeruginosa PA14 ABC Transporter NppA1A2BCD Is Required for Uptake of Peptidyl Nucleoside Antibiotics

    PubMed Central

    Braun, Yvonne; Dubiley, Svetlana; Lafon, Corinne; Köhler, Thilo; Page, Malcolm G. P.; Mourez, Michael; Severinov, Konstantin

    2015-01-01

    ABSTRACT Analysis of the genome sequence of Pseudomonas aeruginosa PA14 revealed the presence of an operon encoding an ABC-type transporter (NppA1A2BCD) showing homology to the Yej transporter of Escherichia coli. The Yej transporter is involved in the uptake of the peptide-nucleotide antibiotic microcin C, a translation inhibitor that targets the enzyme aspartyl-tRNA synthetase. Furthermore, it was recently shown that the Opp transporter from P. aeruginosa PAO1, which is identical to Npp, is required for uptake of the uridyl peptide antibiotic pacidamycin, which targets the enzyme translocase I (MraY), which is involved in peptidoglycan synthesis. We used several approaches to further explore the substrate specificity of the Npp transporter. Assays of growth in defined minimal medium containing peptides of various lengths and amino acid compositions as sole nitrogen sources, as well as Biolog Phenotype MicroArrays, showed that the Npp transporter is not required for di-, tri-, and oligopeptide uptake. Overexpression of the npp operon increased susceptibility not just to pacidamycin but also to nickel chloride and the peptidyl nucleoside antibiotic blasticidin S. Furthermore, heterologous expression of the npp operon in a yej-deficient mutant of E. coli resulted in increased susceptibility to albomycin, a naturally occurring sideromycin with a peptidyl nucleoside antibiotic. Additionally, heterologous expression showed that microcin C is recognized by the P. aeruginosa Npp system. Overall, these results suggest that the NppA1A2BCD transporter is involved in the uptake of peptidyl nucleoside antibiotics by P. aeruginosa PA14. IMPORTANCE One of the world's most serious health problems is the rise of antibiotic-resistant bacteria. There is a desperate need to find novel antibiotic therapeutics that either act on new biological targets or are able to bypass known resistance mechanisms. Bacterial ABC transporters play an important role in nutrient uptake from the

  18. Draft Genome Sequences of Pseudomonas fluorescens Strains PA4C2 and PA3G8 and Pseudomonas putida PA14H7, Three Biocontrol Bacteria against Dickeya Phytopathogens

    PubMed Central

    Cigna, Jérémy; Raoul des Essarts, Yannick; Mondy, Samuel; Hélias, Valérie; Beury-Cirou, Amélie

    2015-01-01

    Pseudomonas fluorescens strains PA4C2 and PA3G8 and Pseudomonas putida strain PA14H7 were isolated from potato rhizosphere and show an ability to inhibit the growth of Dickeya phytopathogens. Here, we report their draft genome sequences, which provide a basis for understanding the molecular mechanisms involved in antibiosis against Dickeya. PMID:25635023

  19. Draft Genome Sequences of Pseudomonas fluorescens Strains PA4C2 and PA3G8 and Pseudomonas putida PA14H7, Three Biocontrol Bacteria against Dickeya Phytopathogens.

    PubMed

    Cigna, Jérémy; Raoul des Essarts, Yannick; Mondy, Samuel; Hélias, Valérie; Beury-Cirou, Amélie; Faure, Denis

    2015-01-29

    Pseudomonas fluorescens strains PA4C2 and PA3G8 and Pseudomonas putida strain PA14H7 were isolated from potato rhizosphere and show an ability to inhibit the growth of Dickeya phytopathogens. Here, we report their draft genome sequences, which provide a basis for understanding the molecular mechanisms involved in antibiosis against Dickeya.

  20. Homogentisate 1-2-Dioxygenase Downregulation in the Chronic Persistence of Pseudomonas aeruginosa Australian Epidemic Strain-1 in the CF Lung

    PubMed Central

    Harmer, Christopher J.; Wynn, Matthew; Pinto, Rachel; Cordwell, Stuart; Rose, Barbara R.; Harbour, Colin; Triccas, James A.; Manos, Jim

    2015-01-01

    Some Pseudomonas aeruginosa strains including Australian Epidemic Strain-1 (AES-1 or AUS-01) cause persistent chronic infection in cystic fibrosis (CF) patients, with greater morbidity and mortality. Factors conferring persistence are largely unknown. Previously we analysed the transcriptomes of AES-1 grown in Luria broth, nematode growth medium for Caenorhabditis elegans assay (both aerobic) and artificial sputum medium (mainly hypoxic). Transcriptional comparisons included chronic AES-1 strains against PAO1 and acute AES-1 (AES-1R) against its chronic isogen (AES-1M), isolated 10.5 years apart from a CF patient and not eradicated in the meantime. Prominent amongst genes downregulated in AES-1M in all comparisons was homogentisate-1-2-dioxygenase (hmgA); an oxygen-dependent gene known to be mutationally deactivated in many chronic infection strains of P. aeruginosa. To investigate if hmgA downregulation and deactivation gave similar virulence persistence profiles, a hmgA mutant made in UCBPP-PA14 utilising RedS-recombinase and AES-1M were assessed in the C. elegans virulence assay, and the C57BL/6 mouse for pulmonary colonisation and TNF-α response. In C. elegans, hmgA deactivation resulted in significantly increased PA14 virulence while hmgA downregulation reduced AES-1M virulence. AES-1M was significantly more persistent in mouse lung and showed a significant increase in TNF-α (p<0.0001), sustained even with no detectable bacteria. PA14ΔhmgA did not show increased TNF-α. This study suggests that hmgA may have a role in P. aeruginosa persistence in chronic infection and the results provide a starting point for clarifying the role of hmgA in chronic AES-1. PMID:26252386

  1. Homogentisate 1-2-Dioxygenase Downregulation in the Chronic Persistence of Pseudomonas aeruginosa Australian Epidemic Strain-1 in the CF Lung.

    PubMed

    Harmer, Christopher J; Wynn, Matthew; Pinto, Rachel; Cordwell, Stuart; Rose, Barbara R; Harbour, Colin; Triccas, James A; Manos, Jim

    2015-01-01

    Some Pseudomonas aeruginosa strains including Australian Epidemic Strain-1 (AES-1 or AUS-01) cause persistent chronic infection in cystic fibrosis (CF) patients, with greater morbidity and mortality. Factors conferring persistence are largely unknown. Previously we analysed the transcriptomes of AES-1 grown in Luria broth, nematode growth medium for Caenorhabditis elegans assay (both aerobic) and artificial sputum medium (mainly hypoxic). Transcriptional comparisons included chronic AES-1 strains against PAO1 and acute AES-1 (AES-1R) against its chronic isogen (AES-1M), isolated 10.5 years apart from a CF patient and not eradicated in the meantime. Prominent amongst genes downregulated in AES-1M in all comparisons was homogentisate-1-2-dioxygenase (hmgA); an oxygen-dependent gene known to be mutationally deactivated in many chronic infection strains of P. aeruginosa. To investigate if hmgA downregulation and deactivation gave similar virulence persistence profiles, a hmgA mutant made in UCBPP-PA14 utilising RedS-recombinase and AES-1M were assessed in the C. elegans virulence assay, and the C57BL/6 mouse for pulmonary colonisation and TNF-α response. In C. elegans, hmgA deactivation resulted in significantly increased PA14 virulence while hmgA downregulation reduced AES-1M virulence. AES-1M was significantly more persistent in mouse lung and showed a significant increase in TNF-α (p<0.0001), sustained even with no detectable bacteria. PA14ΔhmgA did not show increased TNF-α. This study suggests that hmgA may have a role in P. aeruginosa persistence in chronic infection and the results provide a starting point for clarifying the role of hmgA in chronic AES-1. PMID:26252386

  2. Three Pseudomonas aeruginosa strains with different protease profiles.

    PubMed

    Andrejko, Mariola; Zdybicka-Barabas, Agnieszka; Janczarek, Monika; Cytryńska, Małgorzata

    2013-01-01

    The proteolytic activity of three Pseudomonas aeruginosa strains, ATCC 27853 - a reference strain, and two clinical isolates was tested. The activity was examined after culturing the bacteria in two different growth media: the minimal M9 medium and rich Luria-Bertani broth (LB). Based on zymograms and protease activity specific assays, it was concluded that the reference strain produced three proteolytic enzymes in the LB medium: protease IV, elastase B and elastase A, while alkaline protease was only produced in the M9 medium. The clinical isolates of P. aeruginosa produced elastase B and alkaline protease when grown in the LB medium and the minimal M9 medium, respectively. PCR analysis confirmed the presence of both the lasB gene encoding elastase B and aprA coding for alkaline protease in the genomes of the three P. aeruginosa strains analyzed. The expression of these genes coding for two important P. aeruginosa virulence factors was dependent on the growth conditions in all the strains studied. The contribution of the extracellular proteinases to the virulence of P. aeruginosa strains used in this study was investigated using an insect model, the greater wax moth Galleria mellonella.

  3. Environmentally Endemic Pseudomonas aeruginosa Strains with Mutations in lasR Are Associated with Increased Disease Severity in Corneal Ulcers.

    PubMed

    Hammond, John H; Hebert, Wesley P; Naimie, Amanda; Ray, Kathryn; Van Gelder, Rachel D; DiGiandomenico, Antonio; Lalitha, Prajna; Srinivasan, Muthiah; Acharya, Nisha R; Lietman, Thomas; Hogan, Deborah A; Zegans, Michael E

    2016-01-01

    The Steroids for Corneal Ulcers Trial (SCUT) was a multicenter, international study of bacterial keratitis in which 101 Pseudomonas aeruginosa infections were treated. Twenty-two of 101 P. aeruginosa isolates collected had a colony morphology characteristic of a loss-of-function mutation in lasR, the gene encoding a quorum-sensing master regulator. Ulcers caused by these 22 strains were associated with larger areas of corneal opacification, worse vision, and a lower rate of vision recovery in response to treatment than ulcers caused by the other isolates. The lasR sequences from these isolates each contained one of three nonsynonymous substitutions, and these strains were deficient in production of LasR-regulated protease and rhamnolipids. Replacement of lasR with either of the two most common lasR alleles from the SCUT isolates was sufficient to decrease protease and rhamnolipid production in PA14. Loss of LasR function is associated with increased production of CupA fimbriae, and the LasR-defective isolates exhibited higher production of CupA fimbriae than LasR-intact isolates. Strains with the same lasR mutation were of the same multilocus sequence type, suggesting that LasR-deficient, environmental P. aeruginosa strains were endemic to the area, and infections caused by these strains were associated with worse patient outcomes in the SCUT study. (This study has been registered at ClinicalTrials.gov under registration no. NCT00324168.) IMPORTANCE The LasR transcription factor is an important regulator of quorum sensing in P. aeruginosa and positively controls multiple virulence-associated pathways. The emergence of strains with lasR loss-of-function alleles in chronic disease is well described and is thought to represent a specific adaptation to the host environment. However, the prevalence and virulence of these strains in acute infections remain unclear. This report describes observations revealing that lasR mutants were common among isolates from a large

  4. Environmentally Endemic Pseudomonas aeruginosa Strains with Mutations in lasR Are Associated with Increased Disease Severity in Corneal Ulcers

    PubMed Central

    Hammond, John H.; Hebert, Wesley P.; Naimie, Amanda; Ray, Kathryn; Van Gelder, Rachel D.; DiGiandomenico, Antonio; Lalitha, Prajna; Srinivasan, Muthiah; Acharya, Nisha R.; Lietman, Thomas; Hogan, Deborah A.

    2016-01-01

    ABSTRACT The Steroids for Corneal Ulcers Trial (SCUT) was a multicenter, international study of bacterial keratitis in which 101 Pseudomonas aeruginosa infections were treated. Twenty-two of 101 P. aeruginosa isolates collected had a colony morphology characteristic of a loss-of-function mutation in lasR, the gene encoding a quorum-sensing master regulator. Ulcers caused by these 22 strains were associated with larger areas of corneal opacification, worse vision, and a lower rate of vision recovery in response to treatment than ulcers caused by the other isolates. The lasR sequences from these isolates each contained one of three nonsynonymous substitutions, and these strains were deficient in production of LasR-regulated protease and rhamnolipids. Replacement of lasR with either of the two most common lasR alleles from the SCUT isolates was sufficient to decrease protease and rhamnolipid production in PA14. Loss of LasR function is associated with increased production of CupA fimbriae, and the LasR-defective isolates exhibited higher production of CupA fimbriae than LasR-intact isolates. Strains with the same lasR mutation were of the same multilocus sequence type, suggesting that LasR-deficient, environmental P. aeruginosa strains were endemic to the area, and infections caused by these strains were associated with worse patient outcomes in the SCUT study. (This study has been registered at ClinicalTrials.gov under registration no. NCT00324168.) IMPORTANCE The LasR transcription factor is an important regulator of quorum sensing in P. aeruginosa and positively controls multiple virulence-associated pathways. The emergence of strains with lasR loss-of-function alleles in chronic disease is well described and is thought to represent a specific adaptation to the host environment. However, the prevalence and virulence of these strains in acute infections remain unclear. This report describes observations revealing that lasR mutants were common among isolates from

  5. Environmentally Endemic Pseudomonas aeruginosa Strains with Mutations in lasR Are Associated with Increased Disease Severity in Corneal Ulcers

    PubMed Central

    Hammond, John H.; Hebert, Wesley P.; Naimie, Amanda; Ray, Kathryn; Van Gelder, Rachel D.; DiGiandomenico, Antonio; Lalitha, Prajna; Srinivasan, Muthiah; Acharya, Nisha R.; Lietman, Thomas; Hogan, Deborah A.

    2016-01-01

    ABSTRACT The Steroids for Corneal Ulcers Trial (SCUT) was a multicenter, international study of bacterial keratitis in which 101 Pseudomonas aeruginosa infections were treated. Twenty-two of 101 P. aeruginosa isolates collected had a colony morphology characteristic of a loss-of-function mutation in lasR, the gene encoding a quorum-sensing master regulator. Ulcers caused by these 22 strains were associated with larger areas of corneal opacification, worse vision, and a lower rate of vision recovery in response to treatment than ulcers caused by the other isolates. The lasR sequences from these isolates each contained one of three nonsynonymous substitutions, and these strains were deficient in production of LasR-regulated protease and rhamnolipids. Replacement of lasR with either of the two most common lasR alleles from the SCUT isolates was sufficient to decrease protease and rhamnolipid production in PA14. Loss of LasR function is associated with increased production of CupA fimbriae, and the LasR-defective isolates exhibited higher production of CupA fimbriae than LasR-intact isolates. Strains with the same lasR mutation were of the same multilocus sequence type, suggesting that LasR-deficient, environmental P. aeruginosa strains were endemic to the area, and infections caused by these strains were associated with worse patient outcomes in the SCUT study. (This study has been registered at ClinicalTrials.gov under registration no. NCT00324168.) IMPORTANCE The LasR transcription factor is an important regulator of quorum sensing in P. aeruginosa and positively controls multiple virulence-associated pathways. The emergence of strains with lasR loss-of-function alleles in chronic disease is well described and is thought to represent a specific adaptation to the host environment. However, the prevalence and virulence of these strains in acute infections remain unclear. This report describes observations revealing that lasR mutants were common among isolates from

  6. Evolutionary genomics of epidemic and nonepidemic strains of Pseudomonas aeruginosa

    PubMed Central

    Dettman, Jeremy R.; Rodrigue, Nicolas; Aaron, Shawn D.; Kassen, Rees

    2013-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen of humans and is a major cause of morbidity and mortality in patients with cystic fibrosis (CF). Prolonged infection of the respiratory tract can lead to adaptation of the pathogen to the CF lung environment. To examine the general patterns of adaptation associated with chronic infection, we obtained genome sequences from a collection of P. aeruginosa isolated from airways of patients with CF. Our analyses support a nonclonal epidemic population structure, with a background of unique, recombining genotypes, and the rare occurrence of successful epidemic clones. We present unique genome sequence evidence for the intercontinental spread of an epidemic strain shared between CF clinics in the United Kingdom and North America. Analyses of core and accessory genomes identified candidate genes and important functional pathways associated with adaptive evolution. Many genes of interest were involved in biological functions with obvious roles in this pathosystem, such as biofilm formation, antibiotic metabolism, pathogenesis, transport, reduction/oxidation, and secretion. Key factors driving the adaptive evolution of this pathogen within the host appear to be the presence of oxidative stressors and antibiotics. Regions of the accessory genome unique to the epidemic strain were enriched for genes in transporter families that efflux heavy metals and antibiotics. The epidemic strain was significantly more resistant than nonepidemic strains to three different antibiotics. Multiple lines of evidence suggest that selection imposed by the CF lung environment has a major influence on genomic evolution and the genetic characteristics of P. aeruginosa isolates causing contemporary infection. PMID:24324153

  7. The Pseudomonas aeruginosa generalized transducing phage phiPA3 is a new member of the phiKZ-like group of 'jumbo' phages, and infects model laboratory strains and clinical isolates from cystic fibrosis patients.

    PubMed

    Monson, Rita; Foulds, Ian; Foweraker, Juliet; Welch, Martin; Salmond, George P C

    2011-03-01

    Pseudomonas aeruginosa is an important pathogen in cystic fibrosis patients, and a model organism for the study of nosocomially acquired infections, biofilms and intrinsic multidrug resistance. In this study we characterize ϕPA3, a new generalized transducing bacteriophage for P. aeruginosa. ϕPA3 transduced chromosomal mutations between PAO1 strains, and infected multiple P. aeruginosa clinical isolates as well as the P. aeruginosa model laboratory strains PAK and PA14. Electron microscopy imaging was used to classify ϕPA3 in the order Caudovirales and the family Myoviridae. The genome of ϕPA3 was sequenced and found to contain 309,208 bp, the second-largest bacteriophage currently deposited in GenBank. The genome contains 378 ORFs and five tRNAs. Many ORF products in the ϕPA3 genome are similar to proteins encoded by P. aeruginosa phage ϕKZ and Pseudomonas chlororaphis phage 201ϕ2-1, and so ϕPA3 was classified genetically as a member of the ϕKZ-like group of phages. This is the first report of a member of this group of phages acting as a generalized transducer. Given its wide host range, high transduction efficiency and large genome size, the 'jumbo' phage ϕPA3 could be a powerful tool in functional genomic analysis of diverse P. aeruginosa strains of fundamental and clinical importance.

  8. [New Virulent Bacteriophages Active against Multiresistant Pseudomonas aeruginosa Strains].

    PubMed

    Balarjishvili, N Sh; Kvachadze, L I; Kutateladze, M I; Meskhi, T Sh; Pataridze, T K; Berishvili, T A; Tevdoradze, E Sh

    2015-01-01

    The sensitivity of 512 newly isolated Pseudomonas aeruginosa clinical strains to six classes of anti-microbial preparations has been studied. Antibiotic-resistant strains were selected and genotyped. Three new virulent bacteriophages of the families Myoviridae and Podoviridae were isolated against these strains. The parameters of the intracellular phage development cycle were established, and the influence of inactivating factors (temperature, pH, and UV exposure) on phage viability was studied. The molecular weight of the phage genome was determined. Phage DNA restriction analysis and polyacrylamide gel electrophoresis in the presence of envelope protein SDS were carried out. The plating efficacy of phages on 28 genetically distant antibiotic-resistant P. aeruginosa strains was studied. It was established that 26 of them were lysed by phages with a high efficacy. The range of antibacterial action of the studied phages and their mixtures on 427 multi-drug-resistant clinical isolates was assessed. It is shown that including these phages in one multicomponent preparation enhanced their lytic activity. PMID:26859962

  9. Draft Genome Sequence of Pseudomonas aeruginosa Strain RB, a Bacterium Capable of Synthesizing Cadmium Selenide Nanoparticles.

    PubMed

    Ayano, Hiroyuki; Kuroda, Masashi; Soda, Satoshi; Ike, Michihiko

    2014-01-01

    Pseudomonas aeruginosa strain RB is a bacterium capable of synthesizing cadmium selenide (CdSe) nanoparticles and was isolated from a soil sample. Here, we present the draft genome sequence of P. aeruginosa strain RB. To the best of our knowledge, this is the first report of a draft genome of a CdSe-synthesizing bacterium.

  10. Characterization of chromosomal mediated cadmium resistance in Pseudomonas aeruginosa strain BC15.

    PubMed

    Raja, Chellaiah Edward; Selvam, Govindan Sadasivam

    2012-04-01

    Cadmium (Cd) has been used extensively in metal plating, mining, paints and plastic generation etc. In this study, Cd resistance (cadR) gene was characterized from the environmental isolate Pseudomonas aeruginosa BC15. The cadR sequences showed high homology with P. aeruginosa FLH033011 (100%), P. aeruginosa PAO1 (99%), and P. aeruginosa UCBPP-PA14 (98%) respectively. Homology modeling of cadR was carried out by using swiss-prot server. Crystal structures of E. coli CueR for Cu (1q05) and ZntR (1q08) for Zn have been used as a template. The sequence identity of P. aeruginosa cadR shares 34% for CueR and 43% for ZntR. Fold recognition of P. aeruginosa cadR was created by using PHYRE web server. Transcriptional regulator CueR (1q06a) from E. coli was chosen as the template. CadR has 31% identity and the estimated precision was 100%. The cadR gene was cloned in pET30b and transformed into E. coli BL21. The molecular weight protein of cadR was estimated to be 25 kDa by SDS-PAGE. The recombinant E. coli cadR efficiently grow in the Cd supplemented LB medium and agar plate. The order of the resistance of E. coli cadR was Mn > Pb > Cu > Cd > Ni > Zn. These findings can lead to the use of P. aeruginosa BC15 for the remediation of Cd and other heavy metals present in the polluted environment.

  11. COMPARATIVE TAXONOMY OF CRYSTALLOGENIC STRAINS OF PSEUDOMONAS AERUGINOSA AND PSEUDOMONAS CHLORORAPHIS

    PubMed Central

    Haynes, William C.; Rhodes, Lenora J.

    1962-01-01

    Haynes, William C. (Northern Utilization Research and Development Division, Peoria, Ill.) and Lenora J. Rhodes. Comparative taxonomy of crystallogenic strains of Pseudomonas aeruginosa and Pseudomonas chlororaphis. J. Bacteriol. 84:1080–1084. 1962.—Only 11 of 39 strains received in the Agricultural Research Service Culture Collection under the designation Pseudonomas chlororaphis proved to be authentic; 28 were typical, pyocyanogenic strains of P. aeruginosa. The reason for this disproportionately high rate of misidentification apparently arises from an erroneous belief that the ability to produce green and yellow crystals of chlororaphin and oxychlororaphin is confined to P. chlororaphis. The ability of many strains of P. aeruginosa to do likewise is not well known. Inasmuch as the characteristic is not unique to P. chlororaphis, other criteria are required to distinguish crystallogenic strains of these species. After a taxonomic comparison of 18 strains of P. chlororaphis and 47 crystallogenic strains of P. aeruginosa, it was determined that there are three main distinctions: (i) P. aeruginosa grows well at 42 C but fails to grow upon serial transfer at 5 C, whereas P. chlororaphis fails to grow at 42 C, but grows well at 5 C: (ii) most strains of P. aeruginosa produce pyocyanin, whereas P. chlororaphis strains do not; (iii) P. aeruginosa cells possess only one or two polar flagella, whereas P. chlororaphis usually has at least four, sometimes as many as eight, polar flagella. PMID:13963593

  12. Proteomics of Pseudomonas aeruginosa Australian epidemic strain 1 (AES-1) cultured under conditions mimicking the cystic fibrosis lung reveals increased iron acquisition via the siderophore pyochelin.

    PubMed

    Hare, Nathan J; Soe, Cho Zin; Rose, Barbara; Harbour, Colin; Codd, Rachel; Manos, Jim; Cordwell, Stuart J

    2012-02-01

    Pseudomonas aeruginosa is an opportunistic pathogen that is the major cause of morbidity and mortality in patients with cystic fibrosis (CF). While most CF patients are thought to acquire P. aeruginosa from the environment, person-to-person transmissible strains have been identified in CF clinics worldwide, and the molecular basis for transmissibility remains poorly understood. We undertook a complementary proteomics approach to characterize protein profiles from a transmissible, acute isolate of the Australian epidemic strain 1 (AES-1R), the virulent burns/wound isolate PA14, and the poorly virulent, laboratory-associated strain PAO1 when grown in an artificial medium that mimics the CF lung environment compared to growth in standard laboratory medium. Proteins elevated in abundance in AES-1R included those involved in methionine and S-adenosylmethionine biosynthesis and in the synthesis of phenazines. Proteomic data were validated by measuring culture supernatant levels of the virulence factor pyocyanin, which is the final product of the phenazine pathway. AES-1R and PAO1 released higher extracellular levels of pyocyanin compared to PA14 when grown in conditions that mimic the CF lung. Proteins associated with biosynthesis of the iron-scavenging siderophore pyochelin (PchDEFGH and FptA) were also present at elevated abundance in AES-1R and at much higher levels than in PAO1, whereas they were reduced in PA14. These protein changes resulted phenotypically in increased extracellular iron acquisition potential and, specifically, elevated pyochelin levels in AES-1R culture supernatants as detected by chrome azurol-S assay and fluorometry, respectively. Transcript analysis of pyochelin genes (pchDFG and fptA) showed they were highly expressed during the early stage of growth in artificial sputum medium (18 h) but returned to basal levels following the establishment of microcolony growth (72 h) consistent with that observed in the CF lung. This provides further

  13. Genome Sequence of Pseudomonas aeruginosa Strain LCT-PA41, with Changed Metabolism after Space Flight.

    PubMed

    Liu, Chao; Hu, Juan; Fang, Xiangqun; Zhang, Duchao; Chang, De; Wang, Junfeng; Li, Tianzhi; Guo, Yinhua; Dai, Wenkui; Liu, Changting

    2014-01-09

    To explore the effects of space flight on microorganisms, Pseudomonas aeruginosa ATCC 27853 was sent into orbit for 398 h on the spacecraft ShenZhou VIII. Here, we present the draft genome sequence of the P. aeruginosa strain LCT-PA41, determined after space flight.

  14. Genome Sequence of Pseudomonas aeruginosa Strain LCT-PA41, with Changed Metabolism after Space Flight

    PubMed Central

    Liu, Chao; Hu, Juan; Fang, Xiangqun; Zhang, Duchao; Chang, De; Wang, Junfeng; Li, Tianzhi; Guo, Yinhua; Dai, Wenkui

    2014-01-01

    To explore the effects of space flight on microorganisms, Pseudomonas aeruginosa ATCC 27853 was sent into orbit for 398 h on the spacecraft ShenZhou VIII. Here, we present the draft genome sequence of the P. aeruginosa strain LCT-PA41, determined after space flight. PMID:24407638

  15. Genome-Wide Identification of Pseudomonas aeruginosa Virulence-Related Genes Using a Caenorhabditis elegans Infection Model

    PubMed Central

    Feinbaum, Rhonda L.; Urbach, Jonathan M.; Liberati, Nicole T.; Djonovic, Slavica; Adonizio, Allison; Carvunis, Anne-Ruxandra; Ausubel, Frederick M.

    2012-01-01

    Pseudomonas aeruginosa strain PA14 is an opportunistic human pathogen capable of infecting a wide range of organisms including the nematode Caenorhabditis elegans. We used a non-redundant transposon mutant library consisting of 5,850 clones corresponding to 75% of the total and approximately 80% of the non-essential PA14 ORFs to carry out a genome-wide screen for attenuation of PA14 virulence in C. elegans. We defined a functionally diverse 180 mutant set (representing 170 unique genes) necessary for normal levels of virulence that included both known and novel virulence factors. Seven previously uncharacterized virulence genes (ABC transporters PchH and PchI, aminopeptidase PepP, ATPase/molecular chaperone ClpA, cold shock domain protein PA0456, putative enoyl-CoA hydratase/isomerase PA0745, and putative transcriptional regulator PA14_27700) were characterized with respect to pigment production and motility and all but one of these mutants exhibited pleiotropic defects in addition to their avirulent phenotype. We examined the collection of genes required for normal levels of PA14 virulence with respect to occurrence in P. aeruginosa strain-specific genomic regions, location on putative and known genomic islands, and phylogenetic distribution across prokaryotes. Genes predominantly contributing to virulence in C. elegans showed neither a bias for strain-specific regions of the P. aeruginosa genome nor for putatively horizontally transferred genomic islands. Instead, within the collection of virulence-related PA14 genes, there was an overrepresentation of genes with a broad phylogenetic distribution that also occur with high frequency in many prokaryotic clades, suggesting that in aggregate the genes required for PA14 virulence in C. elegans are biased towards evolutionarily conserved genes. PMID:22911607

  16. Evidence for different pyoverdine-mediated iron uptake systems among Pseudomonas aeruginosa strains.

    PubMed Central

    Cornelis, P; Hohnadel, D; Meyer, J M

    1989-01-01

    Fourteen strains of Pseudomonas aeruginosa (P. aeruginosa ATCC 15692, P. aeruginosa ATCC 27853, and 12 clinical isolates) were checked for the production of pyoverdine and for pyoverdine-mediated iron uptake. Under iron restriction, two isolates produced undetectable amounts of pyoverdine, but all the other strains produced a compound with physicochemical properties identical or close to those of the pyoverdine of P. aeruginosa ATCC 15692 (strain PAO1). The pyoverdines were purified and tested for their growth-promoting activity and for their ability to facilitate 59Fe uptake in homologous experiments involving each pyoverdine and its producing strain, as well as in heterologous systems involving all the other strains. The results of both types of experiments suggested the existence of three specificity groups. This was confirmed by analysis of the amino acid composition of the pyoverdines, which differed for each group. A partially purified polyclonal antiserum raised against a major 80-kilodalton (kDa) iron-regulated outer membrane protein (IROMP) of P. aeruginosa PAO1 recognized the 80-kDa IROMPs from P. aeruginosa PAO1 and the clinical isolates belonging to the same group, whereas the IROMPs from the strains belonging to the two other groups were not detected. A second antiserum raised against the P. aeruginosa ATCC 27853 80-kDa IROMP gave similar results by reacting specifically with the 80-kDa IROMP from the strains belonging to this group. Thus, together with the already known pyoverdine from P. aeruginosa PAO1, two new types of pyoverdines produced by strains belonging to this species were characterized. Images PMID:2509364

  17. Co-incubation of Acanthamoeba castellanii with strains of Pseudomonas aeruginosa alters the survival of amoeba.

    PubMed

    Cengiz, A M; Harmis, N; Stapleton, F

    2000-06-01

    Enhanced survival of Acanthamoeba castellanii has previously been reported following co-incubation with a single strain of Pseudomonas aeruginosa. The aim of this study was to evaluate the impact of different strains of P. aeruginosa on amoebae survival. Four contact lens solutions were challenged with A. castellanii for between 6 and 24 h, and survival rates of amoeba were calculated. Subsequently, A. castellanii was co-incubated with different strains of P. aeruginosa (strain 6294, an invasive isolate; 6206, a cytotoxic isolate; and Paer 001, a null isolate). Differences in amoeba survival over time between solutions for each bacterial strain were analysed. Non-neutralized hydrogen peroxide was the most effective system against A. castellani at all time points (P<0.05). Survival rates were not different between multipurpose solutions and neutralized hydrogen peroxide. Co-incubation with P. aeruginosa altered amoeba survival, and maximum survival occurred in the presence of the invasive strain of P. aeruginosa. Enhanced amoeba survival may occur in the presence of certain strains of Gram-negative bacteria, and with certain types of contact lens disinfection systems.

  18. Light and phosphate competition between Cylindrospermopsis raciborskii and Microcystis aeruginosa is strain dependent.

    PubMed

    Marinho, Marcelo Manzi; Souza, Maria Betânia Gonçalves; Lürling, Miquel

    2013-10-01

    The hypothesis that outcomes of phosphorus and light competition between Cylindrospermopsis raciborskii and Microcystis aeruginosa are strain dependent was tested experimentally. Critical requirements of phosphorus (P*) and of light (I*) of two strains of each species were determined through monoculture experiments, which indicated a trade-off between species and also between Microcystis strains. Competition experiments between species were performed using the weakest predicted competitors (with the highest values of P* and of I*) and with the strongest predicted competitors (with the lowest values of P* and of I*). Under light limitation, competition between the weakest competitors led C. raciborskii to dominate. Between the strongest competitors, the opposite was observed, M. aeruginosa displaced C. raciborskii, but both strains co-existed in equilibrium. Under phosphate limitation, competition between the weakest competitors led C. raciborskii to exclude M. aeruginosa, and between the strongest competitors, the opposite was observed, M. aeruginosa displaced C. raciborskii, but the system did not reach an equilibrium and both strains were washed out. Hence, outcomes of the competition depended on the pair of competing strains and not only on species or on type of limitation. We concluded that existence of different trade-offs among strains and between species underlie our results showing that C. raciborskii can either dominate or be displaced by M. aeruginosa when exposed to different conditions of light or phosphate limitation.

  19. Isolation of a mucoid alginate-producing Pseudomonas aeruginosa strain from the equine guttural pouch.

    PubMed Central

    Govan, J R; Sarasola, P; Taylor, D J; Tatnell, P J; Russell, N J; Gacesa, P

    1992-01-01

    The isolation and characterization of a mucoid, alginate-producing strain of Pseudomonas aeruginosa from a nonhuman host, namely, in chondroids from an equine guttural pouch, is reported for the first time. Pure cultures of P. aeruginosa 12534 were isolated from a 17-month-old pony mare with a history of chronic bilateral mucopurulent nasal discharge from the right guttural pouch. Transmission electron microscopy of chondroids showed mucoid P. aeruginosa growing as microcolonies within a matrix of extracellular material. On the basis of expression of the mucoid phenotype under different growth conditions, P. aeruginosa 12534 belongs to group 1 and resembles other isolates carrying the muc-23 mutation. The bulk of the extracellular material was characterized as being alginate by chemical and 1H nuclear magnetic resonance analyses, which showed that it had a composition similar to that produced by isolates of P. aeruginosa from human patients with cystic fibrosis. Images PMID:1551975

  20. Phenazine production enhances extracellular DNA release via hydrogen peroxide generation in Pseudomonas aeruginosa

    PubMed Central

    Das, Theerthankar; Manefield, Mike

    2013-01-01

    In Pseudomonas aeruginosa eDNA is a crucial component essential for biofilm formation and stability. In this study we report that release of eDNA is influenced by the production of phenazine in P. aeruginosa. A ∆phzA-G mutant of P. aeruginosa PA14 deficient in phenazine production generated significantly less eDNA in comparison with the phenazine producing strains. The relationship between eDNA release and phenazine production is bridged via hydrogen peroxide (H2O2) generation and subsequent H2O2 mediated cell lysis and ultimately release of chromosomal DNA into the extracellular environment as eDNA. PMID:23710274

  1. Identification of Novel Genomic Islands in Liverpool Epidemic Strain of Pseudomonas aeruginosa Using Segmentation and Clustering.

    PubMed

    Jani, Mehul; Mathee, Kalai; Azad, Rajeev K

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen implicated in a myriad of infections and a leading pathogen responsible for mortality in patients with cystic fibrosis (CF). Horizontal transfers of genes among the microorganisms living within CF patients have led to highly virulent and multi-drug resistant strains such as the Liverpool epidemic strain of P. aeruginosa, namely the LESB58 strain that has the propensity to acquire virulence and antibiotic resistance genes. Often these genes are acquired in large clusters, referred to as "genomic islands (GIs)." To decipher GIs and understand their contributions to the evolution of virulence and antibiotic resistance in P. aeruginosa LESB58, we utilized a recursive segmentation and clustering procedure, presented here as a genome-mining tool, "GEMINI." GEMINI was validated on experimentally verified islands in the LESB58 strain before examining its potential to decipher novel islands. Of the 6062 genes in P. aeruginosa LESB58, 596 genes were identified to be resident on 20 GIs of which 12 have not been previously reported. Comparative genomics provided evidence in support of our novel predictions. Furthermore, GEMINI unraveled the mosaic structure of islands that are composed of segments of likely different evolutionary origins, and demonstrated its ability to identify potential strain biomarkers. These newly found islands likely have contributed to the hyper-virulence and multidrug resistance of the Liverpool epidemic strain of P. aeruginosa.

  2. Identification of Novel Genomic Islands in Liverpool Epidemic Strain of Pseudomonas aeruginosa Using Segmentation and Clustering

    PubMed Central

    Jani, Mehul; Mathee, Kalai; Azad, Rajeev K.

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen implicated in a myriad of infections and a leading pathogen responsible for mortality in patients with cystic fibrosis (CF). Horizontal transfers of genes among the microorganisms living within CF patients have led to highly virulent and multi-drug resistant strains such as the Liverpool epidemic strain of P. aeruginosa, namely the LESB58 strain that has the propensity to acquire virulence and antibiotic resistance genes. Often these genes are acquired in large clusters, referred to as “genomic islands (GIs).” To decipher GIs and understand their contributions to the evolution of virulence and antibiotic resistance in P. aeruginosa LESB58, we utilized a recursive segmentation and clustering procedure, presented here as a genome-mining tool, “GEMINI.” GEMINI was validated on experimentally verified islands in the LESB58 strain before examining its potential to decipher novel islands. Of the 6062 genes in P. aeruginosa LESB58, 596 genes were identified to be resident on 20 GIs of which 12 have not been previously reported. Comparative genomics provided evidence in support of our novel predictions. Furthermore, GEMINI unraveled the mosaic structure of islands that are composed of segments of likely different evolutionary origins, and demonstrated its ability to identify potential strain biomarkers. These newly found islands likely have contributed to the hyper-virulence and multidrug resistance of the Liverpool epidemic strain of P. aeruginosa. PMID:27536294

  3. Identification of Novel Genomic Islands in Liverpool Epidemic Strain of Pseudomonas aeruginosa Using Segmentation and Clustering.

    PubMed

    Jani, Mehul; Mathee, Kalai; Azad, Rajeev K

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen implicated in a myriad of infections and a leading pathogen responsible for mortality in patients with cystic fibrosis (CF). Horizontal transfers of genes among the microorganisms living within CF patients have led to highly virulent and multi-drug resistant strains such as the Liverpool epidemic strain of P. aeruginosa, namely the LESB58 strain that has the propensity to acquire virulence and antibiotic resistance genes. Often these genes are acquired in large clusters, referred to as "genomic islands (GIs)." To decipher GIs and understand their contributions to the evolution of virulence and antibiotic resistance in P. aeruginosa LESB58, we utilized a recursive segmentation and clustering procedure, presented here as a genome-mining tool, "GEMINI." GEMINI was validated on experimentally verified islands in the LESB58 strain before examining its potential to decipher novel islands. Of the 6062 genes in P. aeruginosa LESB58, 596 genes were identified to be resident on 20 GIs of which 12 have not been previously reported. Comparative genomics provided evidence in support of our novel predictions. Furthermore, GEMINI unraveled the mosaic structure of islands that are composed of segments of likely different evolutionary origins, and demonstrated its ability to identify potential strain biomarkers. These newly found islands likely have contributed to the hyper-virulence and multidrug resistance of the Liverpool epidemic strain of P. aeruginosa. PMID:27536294

  4. The Susceptibility of Pseudomonas aeruginosa Strains from Cystic Fibrosis Patients to Bacteriophages

    PubMed Central

    Essoh, Christiane; Blouin, Yann; Loukou, Guillaume; Cablanmian, Arsher; Lathro, Serge; Kutter, Elizabeth; Thien, Hoang Vu; Vergnaud, Gilles; Pourcel, Christine

    2013-01-01

    Phage therapy may become a complement to antibiotics in the treatment of chronic Pseudomonas aeruginosa infection. To design efficient therapeutic cocktails, the genetic diversity of the species and the spectrum of susceptibility to bacteriophages must be investigated. Bacterial strains showing high levels of phage resistance need to be identified in order to decipher the underlying mechanisms. Here we have selected genetically diverse P. aeruginosa strains from cystic fibrosis patients and tested their susceptibility to a large collection of phages. Based on plaque morphology and restriction profiles, six different phages were purified from “pyophage”, a commercial cocktail directed against five different bacterial species, including P. aeruginosa. Characterization of these phages by electron microscopy and sequencing of genome fragments showed that they belong to 4 different genera. Among 47 P. aeruginosa strains, 13 were not lysed by any of the isolated phages individually or by pyophage. We isolated two new phages that could lyse some of these strains, and their genomes were sequenced. The presence/absence of a CRISPR-Cas system (Clustered Regularly Interspaced Short Palindromic Repeats and Crisper associated genes) was investigated to evaluate the role of the system in phage resistance. Altogether, the results show that some P. aeruginosa strains cannot support the growth of any of the tested phages belonging to 5 different genera, and suggest that the CRISPR-Cas system is not a major defence mechanism against these lytic phages. PMID:23637754

  5. The susceptibility of Pseudomonas aeruginosa strains from cystic fibrosis patients to bacteriophages.

    PubMed

    Essoh, Christiane; Blouin, Yann; Loukou, Guillaume; Cablanmian, Arsher; Lathro, Serge; Kutter, Elizabeth; Thien, Hoang Vu; Vergnaud, Gilles; Pourcel, Christine

    2013-01-01

    Phage therapy may become a complement to antibiotics in the treatment of chronic Pseudomonas aeruginosa infection. To design efficient therapeutic cocktails, the genetic diversity of the species and the spectrum of susceptibility to bacteriophages must be investigated. Bacterial strains showing high levels of phage resistance need to be identified in order to decipher the underlying mechanisms. Here we have selected genetically diverse P. aeruginosa strains from cystic fibrosis patients and tested their susceptibility to a large collection of phages. Based on plaque morphology and restriction profiles, six different phages were purified from "pyophage", a commercial cocktail directed against five different bacterial species, including P. aeruginosa. Characterization of these phages by electron microscopy and sequencing of genome fragments showed that they belong to 4 different genera. Among 47 P. aeruginosa strains, 13 were not lysed by any of the isolated phages individually or by pyophage. We isolated two new phages that could lyse some of these strains, and their genomes were sequenced. The presence/absence of a CRISPR-Cas system (Clustered Regularly Interspaced Short Palindromic Repeats and Crisper associated genes) was investigated to evaluate the role of the system in phage resistance. Altogether, the results show that some P. aeruginosa strains cannot support the growth of any of the tested phages belonging to 5 different genera, and suggest that the CRISPR-Cas system is not a major defence mechanism against these lytic phages.

  6. [PCR-RAPD typing of carbapenem-resistant Pseudomonas aeruginosa strains].

    PubMed

    Bogiel, Tomasz; Gospodarek, Eugenia

    2010-01-01

    P. aeruginosa rods are opportunistic pathogens responsible generally for nosocomial infections. Resistance to carbapenems, observed among them, is a serious threat due to ability to be transmitted between bacterial species. The aim of our study was to evaluate the usefulness of PCR-RAPD technique in typing of 16 carbapenem-resistant P. aeruginosa strains isolated in 2007 from different patients of University HospitalNo. 1 of dr A. Jurasz Collegium Medicum of L. Rydygier in Bydgoszcz Nicolaus Copernicus University in Toruń. Study shows increasing frequency of isolation that type of strains when compared to 2006. Percentage of carbapenem-resistant isolates raised from 12,4% in 2006 to 22.9% in 2007. The majority of examined strains were obtained from patients of the Intensive Care Units (25.0%) and were isolated from bronchoalveolar lavage (25.0%), urine (25.0%) and wound swabs (18.8%) samples. Examined P. aeruginosa strains demonstrated resistance to doripenem (81.3%) and piperacillin (75.0%) and susceptibility to colistin (100.0%), amikacin (81.3%), netilmicin and norfloxacin (75.0% each). Using PCR-RAPD amplification with 208 and 272 primers, 14 and 16 DNA patterns were obtained, respectively. Usefulness of PCR-RAPD in carbapenem-resistant P. aeruginosa strains typing was proved in case of strains presenting similar and/or different antimicrobials susceptibility patterns.

  7. Antibiotic resistance profiles and virulence markers of Pseudomonas aeruginosa strains isolated from composts.

    PubMed

    Kaszab, Edit; Szoboszlay, Sándor; Dobolyi, Csaba; Háhn, Judit; Pék, Nikoletta; Kriszt, Balázs

    2011-01-01

    The aim of our work was to determine the presence of Pseudomonas aeruginosa in compost raw materials, immature and mature compost, and compost-treated soil. Twenty-five strains of P. aeruginosa were isolated from a raw material (plant straw), immature and mature compost and compost-treated soil samples. The strains were identified using the PCR method for the detection of species specific variable regions of 16S rDNA. Strains were examined for the presence of five different virulence-related gene sequences (exoA, exoU, exoT, exoS and exoY) and their antibiotic resistance profiles were determined. Based on our results, species P. aeruginosa can reach significant numbers (up to 10(6) MPN/g sample) during composting and 92.0% of the isolated strains carrying at least two gene sequences encoding toxic proteins. Various types of drug resistance were detected among compost originating strains, mainly against third generation Cephalosporins and Carbapenems. Six isolates were able to resist two different classes of antibiotics (third generation Cephalosporins and Carbapenems, wide spectrum Penicillins or Aminoglycosides, respectively). Based on our results, composts can be a source of P. aeruginosa and might be a concern to individuals susceptible to this opportunistic pathogen. PMID:20817443

  8. Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent.

    PubMed

    Bano, Nazneen; Musarrat, Javed

    2003-05-01

    Phylogenetic characterization of soil isolate NJ-15, based on sequence homology of a partial 746-bp fragment of 16SrDNA amplicon, with the ribosomal database sequences (http://www.msu.edu/RDP/cgis/phylip.cgi), validated the strain as Pseudomonas aeruginosa. The strain NJ-15 produced a substantial amount of indole acetic acid (IAA) in tryptophan-supplemented medium. Besides, the strain also exhibited significant production of both the siderophore and hydrogen cyanide (HCN) on chrome azurol S and King's B media, respectively. The data revealed lower HCN production under iron-limiting conditions vis-à-vis higher HCN release with iron stimulation. Significant growth inhibition of phytopathogenic fungi occurred in the order as Fusarium oxysporum > Trichoderma herizum > Alternaria alternata > Macrophomina phasiolina upon incubation with strain NJ-15 cells. Thus, the secondary metabolites producing new Pseudomonas aeruginosa strain NJ-15 exhibited innate potential of plant growth promotion and biocontrol activities in vitro.

  9. Exploring the In Vitro Thrombolytic Activity of Nattokinase From a New Strain Pseudomonas aeruginosa CMSS

    PubMed Central

    Chandrasekaran, Subathra Devi; Vaithilingam, Mohanasrinivasan; Shanker, Ravi; Kumar, Sanjeev; Thiyur, Swathi; Babu, Vaishnavi; Selvakumar, Jemimah Naine; Prakash, Suyash

    2015-01-01

    Background: Thrombolytic therapy has become a conventional treatment for acute myocardial infarction (AMI), yet currently, clinically prescribed thrombolytic drugs have problems such as delayed action and other side effects. Fibrinolytic enzymes have attracted interest as thrombolytic agents because of their efficiency in the fibrinolytic process, including plasmin activation. Nattokinase (NK) is a potent fibrinolytic agent for thrombosis therapy. Objectives: The aim of this study was to enhance the production of NK from Pseudomonas aeruginosa CMSS by media optimization and strain improvement. Materials and Methods: In the present study, a potent NK-producing strain was isolated from cow milk and identified. To enhance the yield of NK, effect of various parameters such as pH, temperature, carbon source, nitrogen source and inoculum size were optimized. Strain improvement of P. aeruginosa CMSS was done by random UV-mutagenesis. Nattokinase was partially purified and the activity was determined by the casein digestion method, blood clot lysis and fibrin degradation assay. Results: Based on morphological, biochemical and molecular characterization, the strain was confirmed as P. aeruginosa (GenBank accession number: JX112657), designated as P. aeruginosa CMSS. The optimum condition at pH 7 and temperature at 25˚C showed activity of NK as 1514 U mL-1 and 1532 U mL-1, respectively. Sucrose as the carbon source and shrimp shell powder (SSP) as the nitrogen source expressed NK activity of 1721 U mL-1 and 2524 U mL-1, respectively. At 1% inoculum size, the maximum rate of enzyme production was achieved with 2581 U mL-1. The NK activity of the mutant strain UV60 was 4263 U mL-1, indicating a two-fold increase in activity compared to the wild strain (2581 UmL-1). Nattokinase produced from mutant strain P. aeruginosa CMSS UV60 showed 94% blood clot lysis at ten minutes. The degradation of fibrin clot by the produced NK was observed after two hours of incubation. Sodium

  10. Rapid Classification and Identification of Microcystis aeruginosa Strains Using MALDI–TOF MS and Polygenetic Analysis

    PubMed Central

    Sun, Li-Wei; Jiang, Wen-Jing; Sato, Hiroaki; Kawachi, Masanobu; Lu, Xi-Wu

    2016-01-01

    Matrix-assisted laser desorption–ionization-time-of-flight mass spectrometry (MALDI–TOF MS) was used to establish a rapid, simple, and accurate method to differentiate among strains of Microcystis aeruginosa, one of the most prevalent types of bloom-forming cyanobacteria. M. aeruginosa NIES-843, for which a complete genome has been sequenced, was used to characterize ribosomal proteins as biomarkers and to optimize conditions for observing ribosomal proteins as major peaks in a given mass spectrum. Thirty-one of 52 ribosomal subunit proteins were detected and identified along the mass spectrum. Fifty-five strains of M. aeruginosa from different habitats were analyzed using MALDI–TOF MS; among these samples, different ribosomal protein types were observed. A polygenetic analysis was performed using an unweighted pair-group method with arithmetic means and different ribosomal protein types to classify the strains into five major clades. Two clades primarily contained toxic strains, and the other three clades contained exclusively non-toxic strains. This is the first study to differentiate cyanobacterial strains using MALDI–TOF MS. PMID:27227555

  11. Comparative Protein Expression in Different Strains of the Bloom-forming Cyanobacterium Microcystis aeruginosa*

    PubMed Central

    Alexova, Ralitza; Haynes, Paul A.; Ferrari, Belinda C.; Neilan, Brett A.

    2011-01-01

    Toxin production in algal blooms presents a significant problem for the water industry. Of particular concern is microcystin, a potent hepatotoxin produced by the unicellular freshwater species Microcystis aeruginosa. In this study, the proteomes of six toxic and nontoxic strains of M. aeruginosa were analyzed to gain further knowledge in elucidating the role of microcystin production in this microorganism. This represents the first comparative proteomic study in a cyanobacterial species. A large diversity in the protein expression profiles of each strain was observed, with a significant proportion of the identified proteins appearing to be strain-specific. In total, 475 proteins were identified reproducibly and of these, 82 comprised the core proteome of M. aeruginosa. The expression of several hypothetical and unknown proteins, including four possible operons was confirmed. Surprisingly, no proteins were found to be produced only by toxic or nontoxic strains. Quantitative proteome analysis using the label-free normalized spectrum abundance factor approach revealed nine proteins that were differentially expressed between toxic and nontoxic strains. These proteins participate in carbon-nitrogen metabolism and redox balance maintenance and point to an involvement of the global nitrogen regulator NtcA in toxicity. In addition, the switching of a previously inactive toxin-producing strain to microcystin synthesis is reported. PMID:21610102

  12. Evaluating synergy between marbofloxacin and gentamicin in Pseudomonas aeruginosa strains isolated from dogs with otitis externa.

    PubMed

    Jerzsele, Ákos; Pásztiné-Gere, Erzsébet

    2015-03-01

    The aim of this study was to determine antimicrobial susceptibility of Pseudomonas aeruginosa strains to marbofloxacin and gentamicin, and investigate the possible synergistic, additive, indifferent or antagonistic effects between the two agents. P. aeruginosa strains can develop resistance quickly against certain antibiotics if used alone, thus the need emerges to find synergistic combinations. A total of 68 P. aeruginosa strains isolated from dogs were examined. In order to describe interactions between marbofloxacin and gentamicin the checkerboard microdilution method was utilized. The MICs (minimum inhibitory concentrations) for marbofloxacin and gentamicin were in the range 0.25-64 mg/L and 0.25-32 mg/L, respectively. The combination of marbofloxacin and gentamicin was more effective with a MIC range of 0.031-8 mg/L and a MIC90 of 1 mg/L, compared to 16 mg/L for marbofloxacin alone and 8 mg/L for gentamicin alone. The FIC (fractional inhibitory concentration) indices ranged from 0.0945 (pronounced synergy) to 1.0625 (indifference). Synergy between marbofloxacin and gentamicin was found in 33 isolates. The mean FIC index is 0.546, which represents a partial synergistic/additive effect close to the full synergy threshold. In vitro results indicate that marbofloxacin and gentamicin as partially synergistic agents may prove clinically useful in combination therapy against P. aeruginosa infections. Although marbofloxacin is not used in the human practice, the interactions between fluoroquinolones and aminoglycosides may have importance outside the veterinary field.

  13. Photodynamic inactivation of antibiotic resistant strain of Pseudomonas aeruginosa in vivo

    NASA Astrophysics Data System (ADS)

    Hashimoto, M. C. E.; Toffoli, D. J.; Prates, R. A.; Courrol, Lilia C.; Ribeiro, M. S.

    2009-06-01

    Burns are frequently contamined by pathogenic microorganisms and the widespread occurrence of antibiotic resistant strains of Pseudomonas aeruginosa in hospitals is a matter of growing concern. Hypocrellin B (HB) is a new generation photosensitizer extracted from the fungus Hypocrella bambusae with absorption bands at 460, 546 and 584 nm. Lanthanide ions change the HB molecular structure and a red shift in the absorption band is observed as well as an increase in the singlet oxygen quantum yield. In this study, we report the use of HB:La+3 to kill resistant strain of P. aeruginosa infected burns. Burns were produced on the back of mice and wounds were infected subcutaneously with 1x109 cfu/mL of P. aeruginosa. Three-hours after inoculation, the animals were divided into 4 groups: control, HB:La+3, blue LED and HB:La+3+blue LED. PDT was performed using 10μM HB:La+3 and 500mW light-emitting diode (LED) emitting at λ=470nm+/-20nm during 120s. The animals of all groups were killed and the infected skin was removed for bacterial counting. Mice with photosensitizer alone, light alone or untreated infected wounds presented 1x108 cfu/g while mice PDT-treated showed a reduction of 2 logs compared to untreated control. These results suggest that HB:La+3 associated to blue LED is effective in diminishing antibiotic resistant strain P. aeruginosa in infected burns.

  14. Investigation of persistent colonization by Pseudomonas aeruginosa-like strains in a spring water bottling plant.

    PubMed Central

    Morais, P V; Mesquita, C; Andrade, J L; da Costa, M S

    1997-01-01

    Ninety-seven strains, producing a fluorescent pigment under UV light and/or a green diffusive pigment on cetrimide-naladixic acid agar, were isolated from a spring water bottling plant. These strains were presumptively identified as Pseudomonas aeruginosa, but they could not be confirmed as strains of this species nor identified by the API 20NE identification system. The isolates and reference strains were clustered by computer-assisted whole-cell protein sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The numerical analysis of the protein electrophoregrams resulted in the formation of four clusters at a similarity level of 80% and two unclustered type strains. One cluster included strains isolated during a 4-month period and reference strains of several biotypes of P. fluorescens. The remaining isolates formed another cluster with a very high similarity of level, which included two groups of strains based on biochemical characterization by the API 20NE Test System. Strains were typed by random amplified polymorphic DNA (RAPD)-PCR and two different RAPD patterns were obtained, corresponding to each biochemical profile. This persistent colonization seems to be caused by a single species present in the bottling system, with two clonal origins, not related to P. aeruginosa or to any of the other type strains tested. Partial 16S rDNA sequence of a representative strain of one cluster of isolates had a level of similarity of 99.3% with P. alcaligenes. This study shows that characteristics similar to P. aeruginosa on cetrimide-naladixic acid agar can be exhibited by several groups of fluorescent pseudomonads that do not belong to this species, clearly showing that confirmation tests must be performed before a decision regarding the water quality is made. PMID:9055406

  15. Identification and characterization of transmissible Pseudomonas aeruginosa strains in cystic fibrosis patients in England and Wales.

    PubMed

    Scott, Fiona W; Pitt, Tyrone L

    2004-07-01

    Most past studies of cross-infection with Pseudomonas aeruginosa among cystic fibrosis (CF) patients in the UK suggest that it is a rare occurrence. However, two recent reports of highly transmissible strains in patients in regional centres in England (Liverpool and Manchester) have raised questions as to the extent of the problem and prompted a nationwide survey to establish the distribution of P. aeruginosa strain genotypes among these patients. Isolates of P. aeruginosa were requested from over 120 hospitals in England and Wales and a sample size of approximately 20% of the CF patient population in each centre was recommended. In total, 1225 isolates were received from 31 centres (range 1 to 330). Single patient isolates were typed by SpeI macrorestriction and PFGE. A panel of strains of the common genotypes including representatives of reported transmissible strains was assembled and further characterized by fluorescent amplified fragment length polymorphism (FAFLP) genotyping. At least 72% of all patients harboured strains with unique genotypes. Small clusters of related strains were evident in some centres, presumably indicating limited transmission of local strains. The most prevalent strain was indistinguishable from that previously described as the 'Liverpool' genotype, and accounted for approximately 11% of patient isolates from 15 centres in England and Wales. The second most common genotype (termed Midlands 1) was recovered from 86 patients in nine centres and the third genotype, which matched closely the PFGE profile of Clone C, a genotype originally described in Germany, was found in eight centres and was isolated from 15 patients. A fourth genotype, identical to the published Manchester strain, was found in three centres. FAFLP analysis revealed some microheterogeneity among strains of the Liverpool genotype but all isolates of this genotype were positive by PCR for a strain-specific marker. These data suggest that cross-infection with P. aeruginosa

  16. Increased morbidity associated with chronic infection by an epidemic Pseudomonas aeruginosa strain in CF patients

    PubMed Central

    Al-Aloul, M; Crawley, J; Winstanley, C; Hart, C; Ledson, M; Walshaw, M

    2004-01-01

    Background: Chronic pulmonary infection with transmissible Pseudomonas aeruginosa strains in individuals with cystic fibrosis (CF) has been reported, raising issues of cross infection and patient segregation. The first such strain to be described (the Liverpool epidemic strain, LES) is now widespread in many UK CF centres. However, whether such infection carries a worse prognosis is unknown. To address this, the clinical course of a group of CF patients chronically infected by LES was compared with that in patients harbouring unique strains. Methods: Using P aeruginosa strain genotyping, two cohorts of CF patients attending the Liverpool CF service were identified who were LES positive or negative in 1998 and remained so until 2002. From these, two groups of 12 patients were matched in 1998 for age, spirometric parameters, and nutritional state and their clinical course was followed for 5 years. Patients chronically infected with Burkholderia cepacia were excluded. Results: Patients chronically infected with LES had a greater annual loss of lung function than those not chronically infected by LES (mean difference between groups -4.4% (95% CI -8.1 to -0.9; p<0.02)), and by 2002 their percentage predicted forced expiratory volume in 1 second (FEV1) was worse (mean 65.0% v 82.6%, p<0.03). Their nutritional state also deteriorated over the study period (mean difference between groups in body mass index -0.7 (95% CI -1.2 to -0.2; p<0.01)), such that by 2002 they were malnourished compared with LES negative patients (mean BMI 19.4 v 22.7, p<0.02). Conclusions: Chronic infection with the Liverpool epidemic P aeruginosa strain in CF patients confers a worse prognosis than infection with unique strains alone, confirming the need for patient segregation. Since this strain is common in many CF units, strain identification in all CF centres is essential. This can only be carried out using genomic typing methods. PMID:15047956

  17. [Incidence of alginate-coding gene in carbapenem-resistant Pseudomonas aeruginosa strains].

    PubMed

    Bogiel, Tomasz; Kwiecińska-Piróg, Joanna; Kozuszko, Sylwia; Gospodarek, Eugenia

    2011-01-01

    Pseudomonas aeruginosa rods are one of the most common isolated opportunistic nosocomial pathogens. Strains usually are capable to secret a capsule-like polysaccharide called alginate important for evasion of host defenses, especially during chronic pulmonary disease of patients with cystic fibrosis. Most genes for alginate biosynthesis and lysis are encoded by the operon. The aim of our study was to evaluate the incidence of algD sequence, generally use for alginate-coding gene detection, in 120 P. aeruginosa strains resistant to carbapenems. All isolates were obtained in the Department of Clinical Microbiology University Hospital no. 1 of dr A. Jurasz Collegium Medicum of L. Rydygier in Bydgoszcz Nicolaus Copernicus University in Toruń. Examined strains demonstrated resistance to carbenicillin (90,0%), ticarcillin (89,2%) and ticarcillin clavulanate (86,7%). All strains were susceptible to colistin. The majority of examined strains was susceptible to ceftazidime and cefepime (40,8% each) and norfloxacin (37,5%). Presence of algD gene - noted in 112 (93,3%) strains proves that not every strain is capable to produce alginate. It was also found out that differences in algD genes incidence in case of different clinical material that strains were isolated from were not statistically important.

  18. Antimicrobial susceptibility survey of Pseudomonas aeruginosa strains isolated from clinical sources.

    PubMed Central

    Orrett, Fitzroy A.

    2004-01-01

    A two-year prospective study of 554 Pseudomonas aeruginosa isolates was recovered from various clinical sources throughout Trinidad, and their resistance patterns to antipseudomonal antimicrobial agents were determined. Of the 554 P. aeruginosa isolates, 20.6% (114/554) were community isolates, 17.3% (96/554) from the intensive care unit (ICU), 10.1% (56/554) from the nursery, and the remaining 52% (288/554) were from other hospital inpatient services. Respiratory tract infections were the predominant source of P. aeruginosa isolates from the ICU--46.9% (45/96)--and nursery--21.4% (12/56), whereas wounds were the principal source of P. aeruginosa from the surgical services--77.0% (141/183). Community isolates of P. aeruginosa were predominantly from ear--100% (51/51)--and urinary tract infections--35.5%, (33/93). The overall prevalence of resistance was low for both hospital isolates (13.9%) and community isolates (3.8%). All community isolates were fully sensitive to four of the nine antimicrobials tested. Resistance rates among community strains ranged from 2.6% (ciprofloxacin and ceftazidime) to 12.3% for piperacillin. All isolates from hospital were fully sensitive to imipenem, but resistance rates for the other drugs ranged between 2.5% and 27.3%. The study showed that the overall resistance pattern of P. aeruginosa was relatively low. This is an encouraging observation but invites caution since resistance to the newly introduced drug, cefepime, has now emerged within the hospital environment and may present serious therapeutic problems within the near future. Policies governing the use of antimicrobials in many institutions are lacking. Such policies must be instituted in order to limit the spread of resistance and also to reduce the emergence of resistance to newly commissioned drugs within the country. PMID:15303411

  19. Mucoid conversion by phages of Pseudomonas aeruginosa strains from patients with cystic fibrosis.

    PubMed Central

    Miller, R V; Rubero, V J

    1984-01-01

    A total of 21 of 22 independent isolates of cystic fibrosis-associated Pseudomonas aeruginosa were found to be lysogenic for DNA-containing, complex capsid viruses. Several of the phages demonstrated the ability to select mucoid cells from populations of nonmucoid bacteria. Conversion to mucoid growth was more frequently achieved when phages were isolated from mucoid as opposed to nonmucoid cystic fibrosis-associated strains. PMID:6429192

  20. Identification of Pseudomonas aeruginosa Phenazines that Kill Caenorhabditis elegans

    PubMed Central

    Cezairliyan, Brent; Vinayavekhin, Nawaporn; Grenfell-Lee, Daniel; Yuen, Grace J.; Saghatelian, Alan; Ausubel, Frederick M.

    2013-01-01

    Pathogenic microbes employ a variety of methods to overcome host defenses, including the production and dispersal of molecules that are toxic to their hosts. Pseudomonas aeruginosa, a Gram-negative bacterium, is a pathogen of a diverse variety of hosts including mammals and the nematode Caenorhabditis elegans. In this study, we identify three small molecules in the phenazine class that are produced by P. aeruginosa strain PA14 that are toxic to C. elegans. We demonstrate that 1-hydroxyphenazine, phenazine-1-carboxylic acid, and pyocyanin are capable of killing nematodes in a matter of hours. 1-hydroxyphenazine is toxic over a wide pH range, whereas the toxicities of phenazine-1-carboxylic acid and pyocyanin are pH-dependent at non-overlapping pH ranges. We found that acidification of the growth medium by PA14 activates the toxicity of phenazine-1-carboxylic acid, which is the primary toxic agent towards C. elegans in our assay. Pyocyanin is not toxic under acidic conditions and 1-hydroxyphenazine is produced at concentrations too low to kill C. elegans. These results suggest a role for phenazine-1-carboxylic acid in mammalian pathogenesis because PA14 mutants deficient in phenazine production have been shown to be defective in pathogenesis in mice. More generally, these data demonstrate how diversity within a class of metabolites could affect bacterial toxicity in different environmental niches. PMID:23300454

  1. Conversion of the Pseudomonas aeruginosa Quinolone Signal and Related Alkylhydroxyquinolines by Rhodococcus sp. Strain BG43

    PubMed Central

    Müller, Christine; Birmes, Franziska S.; Niewerth, Heiko

    2014-01-01

    A bacterial strain, which based on the sequences of its 16S rRNA, gyrB, catA, and qsdA genes, was identified as a Rhodococcus sp. closely related to Rhodococcus erythropolis, was isolated from soil by enrichment on the Pseudomonas quinolone signal [PQS; 2-heptyl-3-hydroxy-4(1H)-quinolone], a quorum sensing signal employed by the opportunistic pathogen Pseudomonas aeruginosa. The isolate, termed Rhodococcus sp. strain BG43, cometabolically degraded PQS and its biosynthetic precursor 2-heptyl-4(1H)-quinolone (HHQ) to anthranilic acid. HHQ degradation was accompanied by transient formation of PQS, and HHQ hydroxylation by cell extracts required NADH, indicating that strain BG43 has a HHQ monooxygenase isofunctional to the biosynthetic enzyme PqsH of P. aeruginosa. The enzymes catalyzing HHQ hydroxylation and PQS degradation were inducible by PQS, suggesting a specific pathway. Remarkably, Rhodococcus sp. BG43 is also capable of transforming 2-heptyl-4-hydroxyquinoline-N-oxide to PQS. It thus converts an antibacterial secondary metabolite of P. aeruginosa to a quorum sensing signal molecule. PMID:25239889

  2. Bactericidal activities of cathelicidin LL-37 and select cationic lipids against the hypervirulent Pseudomonas aeruginosa strain LESB58.

    PubMed

    Wnorowska, Urszula; Niemirowicz, Katarzyna; Myint, Melissa; Diamond, Scott L; Wróblewska, Marta; Savage, Paul B; Janmey, Paul A; Bucki, Robert

    2015-07-01

    Pseudomonas aeruginosa Liverpool epidemic strain (LES) infections in cystic fibrosis (CF) patients are associated with transmissibility and increased patient morbidity. This study was designed to assess the in vitro activities of cathelicidin LL-37 peptide (LL-37) and select cationic lipids against Pseudomonas aeruginosa LESB58 in CF sputum and in a setting mimicking the CF airway. We found that LL-37 naturally present in airway surface fluid and some nonpeptide cationic lipid molecules such as CSA-13, CSA-90, CSA-131, and D2S have significant, but broadly differing, bactericidal activities against P. aeruginosa LESB58. We observed strong inhibition of LL-37 bactericidal activity in the presence of purified bacteriophage Pf1, which is highly expressed by P. aeruginosa LES, but the activities of the cationic lipids CSA-13 and CSA-131 were not affected by this polyanionic virus. Additionally, CSA-13 and CSA-131 effectively prevent LESB58 biofilm formation, which is stimulated by Pf1 bacteriophage, DNA, or F-actin. CSA-13 and CSA-131 display strong antibacterial activities against different clinical strains of P. aeruginosa, and their activities against P. aeruginosa LESB58 and Xen5 strains were maintained in CF sputum. These data indicate that synthetic cationic lipids (mimics of natural antimicrobial peptides) are suitable for developing an effective treatment against CF lung P. aeruginosa infections, including those caused by LES strains. PMID:25870055

  3. Bactericidal Activities of Cathelicidin LL-37 and Select Cationic Lipids against the Hypervirulent Pseudomonas aeruginosa Strain LESB58

    PubMed Central

    Wnorowska, Urszula; Niemirowicz, Katarzyna; Myint, Melissa; Diamond, Scott L.; Wróblewska, Marta; Savage, Paul B.; Janmey, Paul A.

    2015-01-01

    Pseudomonas aeruginosa Liverpool epidemic strain (LES) infections in cystic fibrosis (CF) patients are associated with transmissibility and increased patient morbidity. This study was designed to assess the in vitro activities of cathelicidin LL-37 peptide (LL-37) and select cationic lipids against Pseudomonas aeruginosa LESB58 in CF sputum and in a setting mimicking the CF airway. We found that LL-37 naturally present in airway surface fluid and some nonpeptide cationic lipid molecules such as CSA-13, CSA-90, CSA-131, and D2S have significant, but broadly differing, bactericidal activities against P. aeruginosa LESB58. We observed strong inhibition of LL-37 bactericidal activity in the presence of purified bacteriophage Pf1, which is highly expressed by P. aeruginosa LES, but the activities of the cationic lipids CSA-13 and CSA-131 were not affected by this polyanionic virus. Additionally, CSA-13 and CSA-131 effectively prevent LESB58 biofilm formation, which is stimulated by Pf1 bacteriophage, DNA, or F-actin. CSA-13 and CSA-131 display strong antibacterial activities against different clinical strains of P. aeruginosa, and their activities against P. aeruginosa LESB58 and Xen5 strains were maintained in CF sputum. These data indicate that synthetic cationic lipids (mimics of natural antimicrobial peptides) are suitable for developing an effective treatment against CF lung P. aeruginosa infections, including those caused by LES strains. PMID:25870055

  4. In-Vivo Expression Profiling of Pseudomonas aeruginosa Infections Reveals Niche-Specific and Strain-Independent Transcriptional Programs

    PubMed Central

    Bielecki, Piotr; Puchałka, Jacek; Wos-Oxley, Melissa L.; Loessner, Holger; Glik, Justyna; Kawecki, Marek; Nowak, Mariusz; Tümmler, Burkhard; Weiss, Siegfried; dos Santos, Vítor A. P. Martins

    2011-01-01

    Pseudomonas aeruginosa is a threatening, opportunistic pathogen causing disease in immunocompromised individuals. The hallmark of P. aeruginosa virulence is its multi-factorial and combinatorial nature. It renders such bacteria infectious for many organisms and it is often resistant to antibiotics. To gain insights into the physiology of P. aeruginosa during infection, we assessed the transcriptional programs of three different P. aeruginosa strains directly after isolation from burn wounds of humans. We compared the programs to those of the same strains using two infection models: a plant model, which consisted of the infection of the midrib of lettuce leaves, and a murine tumor model, which was obtained by infection of mice with an induced tumor in the abdomen. All control conditions of P. aeruginosa cells growing in suspension and as a biofilm were added to the analysis. We found that these different P. aeruginosa strains express a pool of distinct genetic traits that are activated under particular infection conditions regardless of their genetic variability. The knowledge herein generated will advance our understanding of P. aeruginosa virulence and provide valuable cues for the definition of prospective targets to develop novel intervention strategies. PMID:21931663

  5. In-vivo expression profiling of Pseudomonas aeruginosa infections reveals niche-specific and strain-independent transcriptional programs.

    PubMed

    Bielecki, Piotr; Puchałka, Jacek; Wos-Oxley, Melissa L; Loessner, Holger; Glik, Justyna; Kawecki, Marek; Nowak, Mariusz; Tümmler, Burkhard; Weiss, Siegfried; dos Santos, Vítor A P Martins

    2011-01-01

    Pseudomonas aeruginosa is a threatening, opportunistic pathogen causing disease in immunocompromised individuals. The hallmark of P. aeruginosa virulence is its multi-factorial and combinatorial nature. It renders such bacteria infectious for many organisms and it is often resistant to antibiotics. To gain insights into the physiology of P. aeruginosa during infection, we assessed the transcriptional programs of three different P. aeruginosa strains directly after isolation from burn wounds of humans. We compared the programs to those of the same strains using two infection models: a plant model, which consisted of the infection of the midrib of lettuce leaves, and a murine tumor model, which was obtained by infection of mice with an induced tumor in the abdomen. All control conditions of P. aeruginosa cells growing in suspension and as a biofilm were added to the analysis. We found that these different P. aeruginosa strains express a pool of distinct genetic traits that are activated under particular infection conditions regardless of their genetic variability. The knowledge herein generated will advance our understanding of P. aeruginosa virulence and provide valuable cues for the definition of prospective targets to develop novel intervention strategies.

  6. Genotypic Diversity within a Single Pseudomonas aeruginosa Strain Commonly Shared by Australian Patients with Cystic Fibrosis

    PubMed Central

    Tai, Anna Sze; Bell, Scott Cameron; Kidd, Timothy James; Trembizki, Ella; Buckley, Cameron; Ramsay, Kay Annette; David, Michael; Wainwright, Claire Elizabeth; Grimwood, Keith; Whiley, David Mark

    2015-01-01

    In cystic fibrosis (CF), Pseudomonas aeruginosa undergoes intra-strain genotypic and phenotypic diversification while establishing and maintaining chronic lung infections. As the clinical significance of these changes is uncertain, we investigated intra-strain diversity in commonly shared strains from CF patients to determine if specific gene mutations were associated with increased antibiotic resistance and worse clinical outcomes. Two-hundred-and-one P. aeruginosa isolates (163 represented a dominant Australian shared strain, AUST-02) from two Queensland CF centres over two distinct time-periods (2001–2002 and 2007–2009) underwent mexZ and lasR sequencing. Broth microdilution antibiotic susceptibility testing in a subset of isolates was also performed. We identified a novel AUST-02 subtype (M3L7) in adults attending a single Queensland CF centre. This M3L7 subtype was multi-drug resistant and had significantly higher antibiotic minimum inhibitory concentrations than other AUST-02 subtypes. Prospective molecular surveillance using polymerase chain reaction assays determined the prevalence of the ‘M3L7’ subtype at this centre during 2007–2009 (170 patients) and 2011 (173 patients). Three-year clinical outcomes of patients harbouring different strains and subtypes were compared. MexZ and LasR sequences from AUST-02 isolates were more likely in 2007–2009 than 2001–2002 to exhibit mutations (mexZ: odds ratio (OR) = 3.8; 95% confidence interval (CI): 1.1–13.5 and LasR: OR = 2.5; 95%CI: 1.3–5.0). Surveillance at the adult centre in 2007–2009 identified M3L7 in 28/509 (5.5%) P. aeruginosa isolates from 13/170 (7.6%) patients. A repeat survey in 2011 identified M3L7 in 21/519 (4.0%) P. aeruginosa isolates from 11/173 (6.4%) patients. The M3L7 subtype was associated with greater intravenous antibiotic and hospitalisation requirements, and a higher 3-year risk of death/lung transplantation, than other AUST-02 subtypes (adjusted hazard ratio [HR] = 9

  7. Pyocyanin Production by Pseudomonas aeruginosa Confers Resistance to Ionic Silver

    PubMed Central

    Merrett, Neil D.

    2014-01-01

    Silver in its ionic form (Ag+), but not the bulk metal (Ag0), is toxic to microbial life forms and has been used for many years in the treatment of wound infections. The prevalence of bacterial resistance to silver is considered low due to the nonspecific nature of its toxicity. However, the recent increased use of silver as an antimicrobial agent for medical, consumer, and industrial products has raised concern that widespread silver resistance may emerge. Pseudomonas aeruginosa is a common pathogen that produces pyocyanin, a redox toxin and a reductant for molecular oxygen and ferric (Fe3+) ions. The objective of this study was to determine whether pyocyanin reduces Ag+ to Ag0, which may contribute to silver resistance due to lower bioavailability of the cation. Using surface plasmon resonance spectroscopy and scanning electron microscopy, pyocyanin was confirmed to be a reductant for Ag+, forming Ag0 nanoparticles and reducing the bioavailability of free Ag+ by >95% within minutes. Similarly, a pyocyanin-producing strain of P. aeruginosa (PA14) reduced Ag+ but not a pyocyanin-deficient (ΔphzM) strain of the bacterium. Challenge of each strain with Ag+ (as AgNO3) gave MICs of 20 and 5 μg/ml for the PA14 and ΔphzM strains, respectively. Removal of pyocyanin from the medium strain PA14 was grown in or its addition to the medium that ΔphzM mutant was grown in gave MICs of 5 and 20 μg/ml, respectively. Clinical isolates demonstrated similar pyocyanin-dependent resistance to Ag+. We conclude that pseudomonal silver resistance exists independently of previously recognized intracellular mechanisms and may be more prevalent than previously considered. PMID:25001302

  8. Pyocyanin facilitates extracellular DNA binding to Pseudomonas aeruginosa influencing cell surface properties and aggregation.

    PubMed

    Das, Theerthankar; Kutty, Samuel K; Kumar, Naresh; Manefield, Mike

    2013-01-01

    Pyocyanin is an electrochemically active metabolite produced by the human pathogen Pseudomonas aeruginosa. It is a recognized virulence factor and is involved in a variety of significant biological activities including gene expression, maintaining fitness of bacterial cells and biofilm formation. It is also recognized as an electron shuttle for bacterial respiration and as an antibacterial and antifungal agent. eDNA has also been demonstrated to be a major component in establishing P. aeruginosa biofilms. In this study we discovered that production of pyocyanin influences the binding of eDNA to P. aeruginosa PA14 cells, mediated through intercalation of pyocyanin with eDNA. P. aeruginosa cell surface properties including cell size (hydrodynamic diameter), hydrophobicity and attractive surface energies were influenced by eDNA in the presence of pyocyanin, affecting physico-chemical interactions and promoting aggregation. A ΔphzA-G PA14 mutant, deficient in pyocynain production, could not bind with eDNA resulting in a reduction in hydrodynamic diameter, a decrease in hydrophobicity, repulsive physico-chemical interactions and reduction in aggregation in comparison to the wildtype strain. Removal of eDNA by DNase I treatment on the PA14 wildtype strain resulted in significant reduction in aggregation, cell surface hydrophobicity and size and an increase in repulsive physico-chemical interactions, similar to the level of the ΔphzA-G mutant. The cell surface properties of the ΔphzA-G mutant were not affected by DNase I treatment. Based on these findings we propose that pyocyanin intercalation with eDNA promotes cell-to-cell interactions in P. aeruginosa cells by influencing their cell surface properties and physico-chemical interactions. PMID:23505483

  9. Elastase and alkaline protease production by Pseudomonas aeruginosa strains: comparison of two procedures.

    PubMed

    Yagci, A; Tuc, Y; Soyletir, G

    2002-04-01

    Pseudomonas aeruginosa is an opportunistic pathogen that can cause fatal infections in immunocompromised hosts. The virulence of P. aeruginosa is associated with the presence of various extracellular factors like elastase and alkaline protease. These enzymes are suggested to contribute to tissue destruction and assist bacterial invasion during infection. Therefore it seems likely that determination of these virulence factors will be an important prognostic marker in the near future especially for follow up of cystic fibrosis patients, to start antimicrobial agents that are directly or indirectly inhibit microbial growth or virulence factor production. Herein, we suggest a simple test procedure to be used in routine laboratories for estimation of elastase and alkaline protease levels and compare them with quantitative methods in the literature. We detected the amount of elastase and alkaline protease in 49 clinical P. aeruginosa isolates by comparing agar plate method and colorimetric assay. The resulting values were in the range reported in the literature and differed from one strain to another(elastase: 0-1390 mg/ml, alkaline protease: 0- 770 mg/ml). Linear relationships were found when assays compared in pairs and significant correlation coefficients were obtained(r>0.788 for alkaline protease, p<0.0001- r>0.926 for elastase, p<0.0001). Our method can be applied in laboratories regardless of the availability of technical equipment.

  10. Serotyping of Pseudomonas aeruginosa strains isolated in Bulgaria using the Lányi-Bergan combined scheme.

    PubMed

    Pencheva, P

    1986-01-01

    Two hundred Pseudomonas aeruginosa strains isolated in hospitals in Bulgaria were serotyped according to the combined scheme of Lányi and Bergan, supplemented by Akatova and Smirnova and Homma, using agglutinating O-antisera prepared in the National Institute of Hygiene, Budapest. The most frequently encountered serogroup is O2 (29%) followed by O11 (28.5%), O6, O3, O10 etc. The results were compared with those obtained by using Difco antisera prepared according to Liu et al., and showed 96.5% coincidence. The strains were phage typed according to the scheme of Meitert and tested for antibiotic resistance to aminoglycosides (gentamicin, carbenicillin, tobramycin and amikacin). Phage groups 3 (3a and 3(3)) and 1 (1a) predominated. The strains exhibited sensitivity to amikacin (99%) and frequent resistance to gentamicin (45.8%, carbenicillin (40%) and tobramycin (28%). Subdivision of the serogroups into phage and resisto-types contributes to analysis of nosocomial infections.

  11. Selective distribution of Pseudomonas aeruginosa O-antigen among strains producing group I pilin.

    PubMed

    Allison, Tara M; Castric, Peter

    2016-02-01

    Strains of Pseudomonas aeruginosa that produce type IVa pili categorized as group I have the potential to covalently attach an O-antigen repeating unit to the pilin C-terminal residue. PCR, employing primers targeting a conserved region of a group-I-specific gene, was used to provide evidence that 110 of 206 clinical isolates studied had the capability of producing this type of pilus. The potential of P. aeruginosa to produce a particular O-antigen type is determined by the presence of a specific biosynthetic gene cluster. The distribution of these gene clusters among the isolates studied was determined using a second PCR procedure. The results of these studies showed that the O-antigen repeating unit types associated with group I pilin producers were significantly different from those found in the non-group I pilin strains. In addition, the predicted ability to express O-antigen repeating units composed of four sugars, and the ability of the glycan to express a negative charge were associated with group I pilin producing strains. The results presented suggest that these properties specifically enhance group I pilus function and that the commonality of pilus and O-antigen types may be useful as targets in disease intervention.

  12. Antibacterial activity of wild Xylaria sp. strain R005 (Ascomycetes) against multidrug-resistant Staphylococcus aureus and Pseudomonas aeruginosa.

    PubMed

    Ramesh, Veluchamy; Arivudainambi, U; Thalavaipandian, Annamalai; Karunakaran, Chandran; Rajendran, Ayyappan

    2012-01-01

    There is a growing need for new and effective antibiotic agents due to the recent emergence of life-threatening, multidrug-resistant bacterial infections such as methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. In the present study, the antimicrobial potential of mushroom was investigated against multidrug-resistant bacterial strains. The mushroom was identified as Xylaria sp. strain R005 based on the morphological characteristics and confirmed by 18S ribosomal RNA sequence comparisons. The crude ethyl acetate extracts of culture filtrate and fruiting bodies of Xylaria sp. showed significant antibacterial activity against multidrug-resistant S. aureus strains (1-10) and P. aeruginosa strains (1-8). The minimum inhibitory concentration of the ethyl acetate extracts of culture filtrate and fruiting bodies ranged from 225 µg/mL to 625 µg/mL, and 120 µg/mL to 625 µg/mL, respectively, against clinical strains of S. aurues and P. aeruginosa. The synergistic action of extracts of Xylaria sp. with vancomycin and ciprofloxacin was observed against S. aureus strain 6 and P. aeruginosa strain 3, respectively. The fractional inhibitory concentration indices (FICIs) of culture filtrate extract with vancomycin and ciprofloxacin were 0.5 and 0.18, respectively. The FICI of fruiting body extract with vancomycin and ciprofloxacin were 0.5 and 0.375, respectively. These results clearly indicate that the metabolites of culture filtrate and fruiting bodies of Xylaria sp. are the potential source for production of new antimicrobial compounds.

  13. Antibacterial activity of wild Xylaria sp. strain R005 (Ascomycetes) against multidrug-resistant Staphylococcus aureus and Pseudomonas aeruginosa.

    PubMed

    Ramesh, Veluchamy; Arivudainambi, U; Thalavaipandian, Annamalai; Karunakaran, Chandran; Rajendran, Ayyappan

    2012-01-01

    There is a growing need for new and effective antibiotic agents due to the recent emergence of life-threatening, multidrug-resistant bacterial infections such as methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. In the present study, the antimicrobial potential of mushroom was investigated against multidrug-resistant bacterial strains. The mushroom was identified as Xylaria sp. strain R005 based on the morphological characteristics and confirmed by 18S ribosomal RNA sequence comparisons. The crude ethyl acetate extracts of culture filtrate and fruiting bodies of Xylaria sp. showed significant antibacterial activity against multidrug-resistant S. aureus strains (1-10) and P. aeruginosa strains (1-8). The minimum inhibitory concentration of the ethyl acetate extracts of culture filtrate and fruiting bodies ranged from 225 µg/mL to 625 µg/mL, and 120 µg/mL to 625 µg/mL, respectively, against clinical strains of S. aurues and P. aeruginosa. The synergistic action of extracts of Xylaria sp. with vancomycin and ciprofloxacin was observed against S. aureus strain 6 and P. aeruginosa strain 3, respectively. The fractional inhibitory concentration indices (FICIs) of culture filtrate extract with vancomycin and ciprofloxacin were 0.5 and 0.18, respectively. The FICI of fruiting body extract with vancomycin and ciprofloxacin were 0.5 and 0.375, respectively. These results clearly indicate that the metabolites of culture filtrate and fruiting bodies of Xylaria sp. are the potential source for production of new antimicrobial compounds. PMID:22339707

  14. A Novel Insight into Dehydroleucodine Mediated Attenuation of Pseudomonas aeruginosa Virulence Mechanism

    PubMed Central

    Mustafi, S.; Veisaga, M. L.; López, L. A.; Barbieri, M. A.

    2015-01-01

    Increasing resistance of Pseudomonas aeruginosa (P. aeruginosa) to conventional treatments demands the search for novel therapeutic strategies. In this study, the antimicrobial activity of dehydroleucodine (DhL), a sesquiterpene lactone obtained from Artemisia (A.) douglasiana, was screened against several pathogenic virulence effectors of P. aeruginosa. In vitro, minimum inhibitory concentration of DhL was determined against P. aeruginosa strains PAO1, PA103, PA14, and multidrug resistant clinical strain, CDN118. Results showed that DhL was active against each strain where PAO1 and PA103 showed higher susceptibility (MIC 0.48 mg/mL) as compared to PA14 (MIC 0.96 mg/mL) and CDN118 (MIC 0.98 mg/mL). Also, when PAO1 strain was grown in the presence of DhL (MIC50, 0.12 mg/mL), a delay in the generation time was noticed along with significant inhibition of secretory protease and elastase activities, interruption in biofilm attachment phase in a stationary culture, and a significant decline in Type III effector ExoS. At MIC50, DhL treatment increased the sensitivity of P. aeruginosa towards potent antibiotics. Furthermore, treatment of P. aeruginosa with DhL prevented toxin-induced apoptosis in macrophages. These observations suggest that DhL activity was at the bacterial transcriptional level. Hence, antimicrobial activity of DhL may serve as leads in the development of new anti-Pseudomonas pharmaceuticals. PMID:26640783

  15. [Degradation characteristics of naphthalene with a Pseudomonas aeruginosa strain isolated from soil contaminated by diesel].

    PubMed

    Liu, Wen-Chao; Wu, Bin-Bin; Li, Xiao-Sen; Lu, Dian-Nan; Liu, Yong-Min

    2015-02-01

    Abstract: A naphthalene-degrading bacterium (referred as HD-5) was isolated from the diesel-contaminated soil and was assigned to Pseudomonas aeruginosa according to 16S rDNA sequences analysis. Gene nah, which encodes naphthalene dioxygenase, was identified from strain HD-5 by PCR amplification. Different bioremediation approaches, including nature attenuation, bioaugmentation with strain Pseudomonas aeruginosa, biostimulation, and an integrated degradation by bioaugmentation and biostimulation, were evaluated for their effectiveness in the remediating soil containing 5% naphthalene. The degradation rates of naphthalene in the soil were compared among the different bioremediation approaches, the FDA and dehydrogenase activity in bioremediation process were measured, and the gene copy number of 16S rRNA and nah in soil were dynamically monitored using real-time PCR. It was shown that the naphthalene removal rate reached 71.94%, 62.22% and 83.14% in approaches of bioaugmentation (B), biostimulation(S) and integrated degradation composed of bioaugmentation and biostimulation (BS), respectively. The highest removal rate of naphthalene was achieved by using BS protocol, which also gives the highest FDA and dehydrogenase activity. The gene copy number of 16S rRNA and nah in soil increased by about 2.67 x 10(11) g(-1) and 8.67 x 10(8) g(-1) after 31 days treatment using BS protocol. Above-mentioned results also demonstrated that the screened bacterium, Pseudomonas aeruginosa, could grow well in naphthalene-contaminated soil and effectively degrade naphthalene, which is of fundamental importance for bioremediation of naphthalene-contaminated soil.

  16. Genome Sequencing of a Mung Bean Plant Growth Promoting Strain of P. aeruginosa with Biocontrol Ability

    PubMed Central

    Illakkiam, Devaraj; Shankar, Manoharan; Ponraj, Paramasivan; Rajendhran, Jeyaprakash

    2014-01-01

    Pseudomonas aeruginosa PGPR2 is a mung bean rhizosphere strain that produces secondary metabolites and hydrolytic enzymes contributing to excellent antifungal activity against Macrophomina phaseolina, one of the prevalent fungal pathogens of mung bean. Genome sequencing was performed using the Ion Torrent Personal Genome Machine generating 1,354,732 reads (6,772,433 sequenced bases) achieving ~25-fold coverage of the genome. Reference genome assembly using MIRA 3.4.0 yielded 198 contigs. The draft genome of PGPR2 encoded 6803 open reading frames, of which 5314 were genes with predicted functions, 1489 were genes of known functions, and 80 were RNA-coding genes. Strain specific and core genes of P. aeruginosa PGPR2 that are relevant to rhizospheric habitat were identified by pangenome analysis. Genes involved in plant growth promoting function such as synthesis of ACC deaminase, indole-3-acetic acid, trehalose, mineral scavenging siderophores, hydrogen cyanide, chitinases, acyl homoserine lactones, acetoin, 2,3-butanediol, and phytases were identified. In addition, niche-specific genes such as phosphate solubilising 3-phytase, adhesins, pathway-specific transcriptional regulators, a diguanylate cyclase involved in cellulose synthesis, a receptor for ferrienterochelin, a DEAD/DEAH-box helicase involved in stress tolerance, chemotaxis/motility determinants, an HtpX protease, and enzymes involved in the production of a chromanone derivative with potent antifungal activity were identified. PMID:25184130

  17. Microcyclamide Biosynthesis in Two Strains of Microcystis aeruginosa: from Structure to Genes and Vice Versa▿ †

    PubMed Central

    Ziemert, Nadine; Ishida, Keishi; Quillardet, Philippe; Bouchier, Christiane; Hertweck, Christian; de Marsac, Nicole Tandeau; Dittmann, Elke

    2008-01-01

    Comparative analysis of related biosynthetic gene clusters can provide new insights into the versatility of these pathways and allow the discovery of new natural products. The freshwater cyanobacterium Microcystis aeruginosa NIES298 produces the cytotoxic peptide microcyclamide. Here, we provide evidence that the cyclic hexapeptide is formed by a ribosomal pathway through the activity of a set of processing enzymes closely resembling those recently shown to be involved in patellamide biosynthesis in cyanobacterial symbionts of ascidians. Besides two subtilisin-type proteases and a heterocyclization enzyme, the gene cluster discovered in strain NIES298 encodes six further open reading frames, two of them without similarity to enzymes encoded by the patellamide gene cluster. Analyses of genomic data of a second cyanobacterial strain, M. aeruginosa PCC 7806, guided the discovery and structural elucidation of two novel peptides of the microcyclamide family. The identification of the microcyclamide biosynthetic genes provided an avenue by which to study the regulation of peptide synthesis at the transcriptional level. The precursor genes were strongly and constitutively expressed throughout the growth phase, excluding the autoinduction of these peptides, as has been observed for several peptide pheromone families in bacteria. PMID:18245249

  18. Silver(I) complexes with phthalazine and quinazoline as effective agents against pathogenic Pseudomonas aeruginosa strains.

    PubMed

    Glišić, Biljana Đ; Senerovic, Lidija; Comba, Peter; Wadepohl, Hubert; Veselinovic, Aleksandar; Milivojevic, Dusan R; Djuran, Miloš I; Nikodinovic-Runic, Jasmina

    2016-02-01

    Five silver(I) complexes with aromatic nitrogen-containing heterocycles, phthalazine (phtz) and quinazoline (qz), were synthesized, characterized and analyzed by single-crystal X-ray diffraction analysis. Although different AgX salts reacted with phtz, only dinuclear silver(I) complexes of the general formula {[Ag(X-O)(phtz-N)]2(μ-phtz-N,N')2} were formed, X=NO3(-) (1), CF3SO3(-) (2) and ClO4(-) (3). However, reactions of qz with an equimolar amount of AgCF3SO3 and AgBF4 resulted in the formation of polynuclear complexes, {[Ag(CF3SO3-O)(qz-N)]2}n (4) and {[Ag(qz-N)][BF4]}n (5). Complexes 1-5 were evaluated by in vitro antimicrobial studies against a panel of microbial strains that lead to many skin and soft tissue, respiratory, wound and nosocomial infections. The obtained results indicate that all tested silver(I) complexes have good antibacterial activity with MIC (minimum inhibitory concentration) values in the range from 2.9 to 48.0μM against the investigated strains. Among the investigated strains, these complexes were particularly efficient against pathogenic Pseudomonas aeruginosa (MIC=2.9-29μM) and had a marked ability to disrupt clinically relevant biofilms of strains with high inherent resistance to antibiotics. On the other hand, their activity against the fungus Candida albicans was moderate. In order to determine the therapeutic potential of silver(I) complexes 1-5, their antiproliferative effect on the human lung fibroblastic cell line MRC5, has been also evaluated. The binding of complexes 1-5 to the genomic DNA of P. aeruginosa was demonstrated by gel electrophoresis techniques and well supported by molecular docking into the DNA minor groove. All investigated complexes showed an improved cytotoxicity profile in comparison to the clinically used AgNO3.

  19. Biodegradation of acephate and methamidophos by a soil bacterium Pseudomonas aeruginosa strain Is-6.

    PubMed

    Ramu, Sasikala; Seetharaman, Barathi

    2014-01-01

    The aim of this study was to isolate and characterize a new acephate-degrading bacteria from agricultural soil and to investigate its biodegradation ability and pathway of degradation. A bacterial strain Is-6, isolated from agriculture soil could completely degrade and utilize acephate as the sole carbon, phosphorus and energy sources for growth in M9 medium. Analysis of the 16S rRNA gene sequence and phenotypic analysis suggested that the strain Is-6 was belonging to the genus Pseudomonas aeruginosa. Strain Is-6 could completely degrade acephate (50 mg L(-1)) and its metabolites within 96 h were identified by high-performance liquid chromatography (HPLC) and electron spray ionization-mass spectrometry (ESI-MS) analyses. When exposed to the higher concentration, the strain Is-6 showed 92% degradation of acephate (1000 mg L(-1)) within 7 days of incubation. It could also utilize dimethoate, parathion, methyl parathion, chlorpyrifos and malathion. The inoculation of strain Is-6 (10(7) cells g(-1)) to acephate (50 mg Kg(-1))-treated soil resulted in higher degradation rate than in noninoculated soils. These results highlight the potential of this bacterium to be used in the cleanup of contaminated pesticide waste in the environment.

  20. Deciphering the metabolic capabilities of a lipase producing Pseudomonas aeruginosa SL-72 strain.

    PubMed

    Verma, Shikha; Prasanna, Radha; Saxena, Jyoti; Sharma, Vinay; Nain, Lata

    2012-11-01

    Pseudomonads have been reported for their metabolic, nutritional and ecological versatility, which motivated us to prospect the metabolic profile of a lipolytic strain Pseudomonas aeruginosa SL-72. The strain SL-72 was found to produce high levels of lipase and pectinase (1,555.62 IU/mL and 1,490.33 IU/mL, respectively), esterase and amylase, besides low levels of xylanase, proteinase and cellulase. The strain also tested positive for different plant growth-promoting traits-production of ammonia, hydrogen cyanide, siderophores, phosphate solubilization, nitrate reduction and antifungal activity. The high levels of activity of aryl sulphatase, alkaline phosphatase and fluorescein diacetate hydrolase makes it a useful strain for enhanced nutrient cycling in soil. The strain SL-72 produced rhamnolipids, a biosurfactant and its production was enhanced when starch was used as carbon source (0.256 g/L) and utilized polycyclic hydrocarbon compounds viz. anthracene, phenanthrene, pyrene, fluorene and its mixture. The multifaceted nature of the culture illustrates its promise in bioremediation, industry, besides its use as an inoculant. PMID:22661061

  1. Truncation of type IV pilin induces mucoidy in Pseudomonas aeruginosa strain PAO579

    PubMed Central

    Ryan Withers, T; Heath Damron, F; Yin, Yeshi; Yu, Hongwei D

    2013-01-01

    Pseudomonas aeruginosa is a Gram negative, opportunistic pathogen that uses the overproduction of alginate, a surface polysaccharide, to form biofilms in vivo. Overproduction of alginate, also known as mucoidy, affords the bacterium protection from the host's defenses and facilitates the establishment of chronic lung infections in individuals with cystic fibrosis. Expression of the alginate biosynthetic operon is primarily controlled by the alternative sigma factor AlgU (AlgT/σ22). In a nonmucoid strain, AlgU is sequestered by the transmembrane antisigma factor MucA to the cytoplasmic membrane. AlgU can be released from MucA via regulated intramembrane proteolysis by proteases AlgW and MucP causing the conversion to mucoidy. Pseudomonas aeruginosa strain PAO579, a derivative of the nonmucoid strain PAO1, is mucoid due to an unidentified mutation (muc-23). Using whole genome sequencing, we identified 16 nonsynonymous and 15 synonymous single nucleotide polymorphisms (SNP). We then identified three tandem single point mutations in the pilA gene (PA4525), as the cause of mucoidy in PAO579. These tandem mutations generate a premature stop codon resulting in a truncated version of PilA (PilA108), with a C-terminal motif of phenylalanine-threonine-phenylalanine (FTF). Inactivation of pilA108 confirmed it was required for mucoidy. Additionally, algW and algU were also required for mucoidy of PAO579. Western blot analysis indicated that MucA was less stable in PAO579 than nonmucoid PAO1 or PAO381. The mucoid phenotype and high PalgU and PalgD promoter activities of PAO579 require pilA108, algW, algU, and rpoN encoding the alternative sigma factor σ54. We also observed that RpoN regulates expression of algW and pilA in PAO579. Together, these results suggest that truncation in type IV pilin in P. aeruginosa strain PAO579 can induce mucoidy through an AlgW/AlgU-dependent pathway. PMID:23533140

  2. Major Transcriptome Changes Accompany the Growth of Pseudomonas aeruginosa in Blood from Patients with Severe Thermal Injuries.

    PubMed

    Kruczek, Cassandra; Kottapalli, Kameswara Rao; Dissanaike, Sharmila; Dzvova, Nyaradzo; Griswold, John A; Colmer-Hamood, Jane A; Hamood, Abdul N

    2016-01-01

    Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that causes serious infections in immunocompromised hosts including severely burned patients. After multiplying within the burn wound, P. aeruginosa translocate into the bloodstream causing bacterial sepsis frequently leading to organ dysfunction and septic shock. Although the pathogenesis of P. aeruginosa infection of thermally-injured wounds has been extensively analyzed, little is known regarding the ability of P. aeruginosa to adapt and survive within the blood of severely burned patients during systemic infection. To identify such adaptations, transcriptome analyses (RNA-seq) were conducted on P. aeruginosa strain PA14 that was grown in whole blood from a healthy volunteer or three severely burned patients. Compared with growth in blood from healthy volunteers, growth of PA14 in the blood from severely burned patients significantly altered the expression of 2596 genes, with expression of 1060 genes enhanced, while that of 1536 genes was reduced. Genes whose expression was significantly reduced included genes related to quorum sensing, quorum sensing-controlled virulence factors and transport of heme, phosphate, and phosphonate. Genes whose expression was significantly enhanced were related to the type III secretion system, the pyochelin iron-acquisition system, flagellum synthesis, and pyocyanin production. We confirmed changes in expression of many of these genes using qRT-PCR. Although severe burns altered the levels of different blood components in each patient, the growth of PA14 in their blood produced similar changes in the expression of each gene. These results suggest that, in response to changes in the blood of severely burned patients and as part of its survival strategy, P. aeruginosa enhances the expression of certain virulence genes and reduces the expression of others. PMID:26933952

  3. Major Transcriptome Changes Accompany the Growth of Pseudomonas aeruginosa in Blood from Patients with Severe Thermal Injuries

    PubMed Central

    Kruczek, Cassandra; Kottapalli, Kameswara Rao; Dissanaike, Sharmila; Dzvova, Nyaradzo; Griswold, John A.; Colmer-Hamood, Jane A.; Hamood, Abdul N.

    2016-01-01

    Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that causes serious infections in immunocompromised hosts including severely burned patients. After multiplying within the burn wound, P. aeruginosa translocate into the bloodstream causing bacterial sepsis frequently leading to organ dysfunction and septic shock. Although the pathogenesis of P. aeruginosa infection of thermally-injured wounds has been extensively analyzed, little is known regarding the ability of P. aeruginosa to adapt and survive within the blood of severely burned patients during systemic infection. To identify such adaptations, transcriptome analyses (RNA-seq) were conducted on P. aeruginosa strain PA14 that was grown in whole blood from a healthy volunteer or three severely burned patients. Compared with growth in blood from healthy volunteers, growth of PA14 in the blood from severely burned patients significantly altered the expression of 2596 genes, with expression of 1060 genes enhanced, while that of 1536 genes was reduced. Genes whose expression was significantly reduced included genes related to quorum sensing, quorum sensing-controlled virulence factors and transport of heme, phosphate, and phosphonate. Genes whose expression was significantly enhanced were related to the type III secretion system, the pyochelin iron-acquisition system, flagellum synthesis, and pyocyanin production. We confirmed changes in expression of many of these genes using qRT-PCR. Although severe burns altered the levels of different blood components in each patient, the growth of PA14 in their blood produced similar changes in the expression of each gene. These results suggest that, in response to changes in the blood of severely burned patients and as part of its survival strategy, P. aeruginosa enhances the expression of certain virulence genes and reduces the expression of others. PMID:26933952

  4. Phenotypic and Genotypic Comparison of Epidemic and Non-Epidemic Strains of Pseudomonas aeruginosa from Individuals with Cystic Fibrosis

    PubMed Central

    Duong, Jessica; Booth, Sean C.; McCartney, Nathan K.; Rabin, Harvey R.; Parkins, Michael D.; Storey, Douglas G.

    2015-01-01

    Epidemic strains of Pseudomonas aeruginosa have been found worldwide among the cystic fibrosis (CF) patient population. Using pulse-field gel electrophoresis, the Prairie Epidemic Strain (PES) has recently been found in one-third of patients attending the Calgary Adult CF Clinic in Canada. Using multi-locus sequence typing, PES isolates from unrelated patients were found to consistently have ST192. Though most patients acquired PES prior to enrolling in the clinic, some patients were observed to experience strain replacement upon transitioning to the clinic whereby local non-epidemic P. aeruginosa isolates were displaced by PES. Here we genotypically and phenotypically compared PES to other P. aeruginosa epidemic strains (OES) found around the world as well as local non-epidemic CF P. aeruginosa isolates in order to characterize PES. Since some epidemic strains are associated with worse clinical outcomes, we assessed the pathogenic potential of PES to determine if these isolates are virulent, shared properties with OES, and if its phenotypic properties may offer a competitive advantage in displacing local non-epidemic isolates during strain replacement. As such, we conducted a comparative analysis using fourteen phenotypic traits, including virulence factor production, biofilm formation, planktonic growth, mucoidy, and antibiotic susceptibility to characterize PES, OES, and local non-epidemic isolates. We observed that PES and OES could be differentiated from local non-epidemic isolates based on biofilm growth with PES isolates being more mucoid. Pairwise comparisons indicated that PES produced significantly higher levels of proteases and formed better biofilms than OES but were more susceptible to antibiotic treatment. Amongst five patients experiencing strain replacement, we found that super-infecting PES produced lower levels of proteases and elastases but were more resistant to antibiotics compared to the displaced non-epidemic isolates. This comparative

  5. Genomic analysis and temperature-dependent transcriptome profiles of the rhizosphere originating strain Pseudomonas aeruginosa M18

    PubMed Central

    2011-01-01

    Background Our previously published reports have described an effective biocontrol agent named Pseudomonas sp. M18 as its 16S rDNA sequence and several regulator genes share homologous sequences with those of P. aeruginosa, but there are several unusual phenotypic features. This study aims to explore its strain specific genomic features and gene expression patterns at different temperatures. Results The complete M18 genome is composed of a single chromosome of 6,327,754 base pairs containing 5684 open reading frames. Seven genomic islands, including two novel prophages and five specific non-phage islands were identified besides the conserved P. aeruginosa core genome. Each prophage contains a putative chitinase coding gene, and the prophage II contains a capB gene encoding a putative cold stress protein. The non-phage genomic islands contain genes responsible for pyoluteorin biosynthesis, environmental substance degradation and type I and III restriction-modification systems. Compared with other P. aeruginosa strains, the fewest number (3) of insertion sequences and the most number (3) of clustered regularly interspaced short palindromic repeats in M18 genome may contribute to the relative genome stability. Although the M18 genome is most closely related to that of P. aeruginosa strain LESB58, the strain M18 is more susceptible to several antimicrobial agents and easier to be erased in a mouse acute lung infection model than the strain LESB58. The whole M18 transcriptomic analysis indicated that 10.6% of the expressed genes are temperature-dependent, with 22 genes up-regulated at 28°C in three non-phage genomic islands and one prophage but none at 37°C. Conclusions The P. aeruginosa strain M18 has evolved its specific genomic structures and temperature dependent expression patterns to meet the requirement of its fitness and competitiveness under selective pressures imposed on the strain in rhizosphere niche. PMID:21884571

  6. Transmission of a multiresistant Pseudomonas aeruginosa strain at a German University Hospital.

    PubMed

    Pitten, F A; Panzig, B; Schröder, G; Tietze, K; Kramer, A

    2001-02-01

    Over 15 months, 60 patients at a German University Hospital became infected or colonized by a multiresistant Pseudomonas aeruginosa strain, which was isolated from tracheal secretions, blood, urine, venous catheters, ascites and several wounds. Most patients had undergone invasive treatment (surgery, cancer therapy). The genetic relationship of the isolates was investigated by pulsed field gel electrophoresis. The isolates were resistant to beta-lactam antibiotics, including carbapenems and aztreonam, to aminoglycosides and quinolones. The only in vitro susceptibility was to polymyxin B. Extensive sampling was carried out to identify contaminated medical devices, surfaces or media (water, food). Samples were taken from doctors and nursing staff and various treatment procedures were observed for several weeks. The handling of respirators, resuscitation tubes, urine bottles, and bedpans resulted in the contamination of the patients' environment, although most devices were cleaned and disinfected with automatic washer/disinfectors. Several wash basins on the intensive care unit were contaminated, but none of the drinking water samples showed any growth of P. aeruginosa. We recommend the strict use of gloves and strict application of alcoholic hand disinfectants immediately after discarding the gloves. The chain of infection ceased after strict cohort isolation and the subsequent introduction of the specific hygiene regime.

  7. Reduction and Acetylation of 2,4-Dinitrotoluene by a Pseudomonas aeruginosa Strain

    PubMed Central

    Noguera, D. R.; Freedman, D. L.

    1996-01-01

    Aerobic and anoxic biotransformation of 2,4-dinitrotoluene (DNT) was examined by using a Pseudomonas aeruginosa strain isolated from a plant treating propellant manufacturing wastewater. DNT biotransformation in the presence and absence of oxygen was mostly reductive and was representative of the type of cometabolic transformations that occur when a high concentration of an easily degradable carbon source is present. P. aeruginosa reduced both nitro groups on DNT, with the formation of mainly 4-amino-2-nitrotoluene and 2-amino-4-nitrotoluene and small quantities of 2,4-diaminotoluene. Acetylation of the arylamines was a significant reaction. 4-Acetamide-2-nitrotoluene and the novel compounds 2-acetamide-4-nitrotoluene, 4-acetamide-2-aminotoluene, and 2,4-diacetamidetoluene were identified as DNT metabolites. The biotransformation of 2,4-diaminotoluene to 4-acetamide-2-aminotoluene was 24 times faster than abiotic transformation. 2-Nitrotoluene and 4-nitrotoluene were also reduced to their corresponding toluidines and then acetylated. However, the yield of 4-acetamidetoluene was much higher than that of 2-acetamidetoluene, demonstrating that acetylation at the position para to the methyl group was favored. PMID:16535348

  8. Biodegradation and extracellular enzymatic activities of Pseudomonas aeruginosa strain GF31 on β-cypermethrin.

    PubMed

    Tang, Aixing; Wang, Bowen; Liu, Youyan; Li, Qingyun; Tong, Zhangfa; Wei, Yingjun

    2015-09-01

    Pseudomonas aeruginosa strain GF31, isolated from a contaminated soil, can effectively degrade β-cypermethrin (β-CP), as well as fenpropathrin, fenvalerate, and cyhalothrin. The highest level of degradation (81.2 %) was achieved with the addition of peptone. Surprisingly, the enzyme responsible for degradation was mainly localized to the extracellular areas of the bacteria, in contrast to the other known pyrethroid-degrading enzymes, which are intracellular. Although intact bacterial cells function at about 30 °C for biodegradation, similar to other degrading strains, the crude extracellular extract of strain GF31 remained biologically active at 60 °C. Moreover, the extract fraction showed good storage stability, maintaining >50 % of its initial activity following storage at 25 °C for at least 20 days. Significant differences in the characteristics of the crude GF31 extracellular extract compared with the known pyrethroid-degrading enzymes indicate the presence of a novel pyrethroid-degrading enzyme. Furthermore, the identification of 3-phenoxybenzoic acid and 2,2-dimethylcyclopropanecarboxylate from the degradation products suggests the possibility that β-CP degradation by both the strain and the crude extracellular fraction is achieved through a hydrolysis pathway. Further degradation of these two metabolites may lead to the development of an efficient method for the mineralization of these types of pollutants.

  9. The T6SSs of Pseudomonas aeruginosa Strain PAO1 and Their Effectors: Beyond Bacterial-Cell Targeting

    PubMed Central

    Sana, Thibault G.; Berni, Benjamin; Bleves, Sophie

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen responsible for many diseases such as chronic lung colonization in cystic fibrosis patients and acute infections in hospitals. The capacity of P. aeruginosa to be pathogenic toward several hosts is notably due to different secretion systems. Amongst them, P. aeruginosa encodes three Type Six Secretion Systems (T6SS), named H1- to H3-T6SS, that act against either prokaryotes and/or eukaryotic cells. They are independent from each other and inject diverse toxins that interact with different components in the host cell. Here we summarize the roles of these T6SSs in the PAO1 strain, as well as the toxins injected and their targets. While H1-T6SS is only involved in antiprokaryotic activity through at least seven different toxins, H2-T6SS and H3-T6SS are also able to target prokaryotic as well as eukaryotic cells. Moreover, recent studies proposed that H2- and H3-T6SS have a role in epithelial cells invasion by injecting at least three different toxins. The diversity of T6SS effectors is astounding and other effectors still remain to be discovered. In this review, we present a table with other putative P. aeruginosa strain PAO1 T6SS-dependent effectors. Altogether, the T6SSs of P. aeruginosa are important systems that help fight other bacteria for their ecological niche, and are important in the pathogenicity process. PMID:27376031

  10. The T6SSs of Pseudomonas aeruginosa Strain PAO1 and Their Effectors: Beyond Bacterial-Cell Targeting.

    PubMed

    Sana, Thibault G; Berni, Benjamin; Bleves, Sophie

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen responsible for many diseases such as chronic lung colonization in cystic fibrosis patients and acute infections in hospitals. The capacity of P. aeruginosa to be pathogenic toward several hosts is notably due to different secretion systems. Amongst them, P. aeruginosa encodes three Type Six Secretion Systems (T6SS), named H1- to H3-T6SS, that act against either prokaryotes and/or eukaryotic cells. They are independent from each other and inject diverse toxins that interact with different components in the host cell. Here we summarize the roles of these T6SSs in the PAO1 strain, as well as the toxins injected and their targets. While H1-T6SS is only involved in antiprokaryotic activity through at least seven different toxins, H2-T6SS and H3-T6SS are also able to target prokaryotic as well as eukaryotic cells. Moreover, recent studies proposed that H2- and H3-T6SS have a role in epithelial cells invasion by injecting at least three different toxins. The diversity of T6SS effectors is astounding and other effectors still remain to be discovered. In this review, we present a table with other putative P. aeruginosa strain PAO1 T6SS-dependent effectors. Altogether, the T6SSs of P. aeruginosa are important systems that help fight other bacteria for their ecological niche, and are important in the pathogenicity process. PMID:27376031

  11. RESULTS OF MONITORING METALLO-BETA-LACTAMASE-PRODUCING STRAINS OF PSEUDOMONAS AERUGINOSA IN A MULTI-PROFILE HOSPITAL.

    PubMed

    Shamaeva, S K; Portnyagina, U S; Edelstein, M V; Kuzmina, A A; Maloguloval, S; Varfolomeeva, N A

    2015-01-01

    The authors present the results of long-term monitoring of metallo-beta-lactamase (MBL) producing strains of Pseudomonas aeruginosa in the Republican Hospital No 2 of Yakutsk, Russian Federation. Hospitals across Russia, as well as the rest of the world, face a rapid appearance and a virtually unchecked spread of multiresistant and panresistant nosocomial pathogens. Especially prevalent are multidrug-resistant isolates of P. aeruginosa, most often found among the patients of intensive care and intensive therapy units, as well as surgery departments. The aim of this study is to investigate the prevalence of metallo-beta-lactamase-producing strains of P. aeruginosa in a multi-profile hospital. 2,135 isolates of P. aeruginosa were studied, collected during a time span of seven years (2008-2014) from clinical specimens of hospitalised patients in acute surgery, purulent surgery, neurosurgery, otolaryngology, coloproctology departments, intensive care and intensive therapy, burn units, as well as intensive care unit for patients with acute cerebrovascular accidents and coronary care unit. Strains were identified and re-identified using established methods, NEFERMtest 24 (MICROLATEST) biochemical microtest and API (bioMerieux) test systems were used. For all carbapenem-resistant strains a phenotype screening for MBL was performed using the double-disks method with EDTA. In order to identify VIM-type and IMP-type MBL genes a real-time multiplex polymerase chain reaction was used. Among the investigated strains the largest number of P. aeruginosa - 35.6% (761 isolates) was found in patients at intensive care and intensive therapy units. Clonal expansion of extensively drug-resistant strain P. aeruginosa ST235 (VIM-2) was determined, the resistance mechanism of which is connected to MBL. Sensitivity determination of MBL-producing isolates of P. aeruginosa has shown that isolated strains have a high level of resistance (100%) to all tested antibacterial agents: piperacillin

  12. Carbon source-dependent modulation of NADP-glutamate dehydrogenases in isophthalate-degrading Pseudomonas aeruginosa strain PP4, Pseudomonas strain PPD and Acinetobacter lwoffii strain ISP4.

    PubMed

    Vamsee-Krishna, C; Phale, Prashant S

    2008-11-01

    Acinetobacter lwoffii strain ISP4 metabolizes isophthalate rapidly compared with Pseudomonas aeruginosa strain PP4 and Pseudomonas strain PPD. Isophthalate has been reported to be a potent competitive inhibitor of glutamate dehydrogenase (GDH). Exogenous supplementation of isophthalate with glutamate or alpha-ketoglutarate at 1 mM concentration caused strains PP4 and PPD to grow faster than in the presence of isophthalate alone; however, no such effect was observed in strain ISP4. When grown on isophthalate, all strains showed activity of NADP-dependent GDH (NADP-GDH), while cells grown on glucose, 2x yeast extract-tryptone broth (2YT) or glutamate showed activities of both NAD-dependent GDH (NAD-GDH) and NADP-GDH. Activity staining, inhibition and thermal stability studies indicated the carbon source-dependent presence of two (GDH(I) and GDH(II)), three (GDH(A), GDH(B) and GDH(C)) and one (GDH(P)) forms of NADP-GDH in strains PP4, PPD and ISP4, respectively. The results demonstrate the carbon source-dependent modulation of different forms of NADP-GDH in these bacterial strains. This modulation may help the efficient utilization of isophthalate as a carbon source by overcoming the inhibitory effect on GDH.

  13. Biodegradation of pyrene by a Pseudomonas aeruginosa strain RS1 isolated from refinery sludge.

    PubMed

    Ghosh, Indrani; Jasmine, Jublee; Mukherji, Suparna

    2014-08-01

    High molecular weight (HMW) polynuclear aromatic hydrocarbons (PAHs) with more than three rings are inherently difficult to degrade. Degradation of HMW PAHs is primarily reported for actinomycetes, such as, Rhodococcus and Mycobacterium. This study reports pyrene degradation by a Pseudomonas aeruginosa strain isolated from tank bottom sludge in a refinery. High cell surface hydrophobicity induced during growth on pyrene facilitated its utilization as sole carbon source. Specific growth rate (μ) in the range of 0.03-0.085 h(-1) could be achieved over the concentration range 25-500 mg/L. The specific growth rate and specific pyrene utilization rate increased linearly with increase in total pyrene concentration. Although various degradation intermediates were identified in the aqueous phase, accumulation of total organic carbon (TOC) in the aqueous phase was only a small fraction of TOC equivalents of pyrene lost from the cultures. The degradation pathway appears to be similar to that reported for Mycobacterium sp. PYR-I.

  14. Assessment of the Effects of Light Availability on Growth and Competition Between Strains of Planktothrix agardhii and Microcystis aeruginosa.

    PubMed

    Torres, Camila de Araujo; Lürling, Miquel; Marinho, Marcelo Manzi

    2016-05-01

    In this study, we tested the hypothesis that Planktothrix agardhii strains isolated from a tropical water body were better competitors for light than Microcystis aeruginosa strains. These cyanobacteria are common in eutrophic systems, where light is one of the main drivers of phytoplankton, and Planktothrix is considered more shade-adapted and Microcystis more high-light tolerant. First, the effect of light intensities on growth was studied in batch cultures. Next, the minimum requirement of light (I*) and the effect of light limitation on the outcome of competition was investigated in chemostats. All strains showed similar growth at 10 μmol photons m(-2) s(-1), demonstrating the ability of the two species to grow in low light. The optimum light intensity was lower for P. agardhii, but at the highest light intensity, Microcystis strains reached higher biovolume, confirming that P. agardhii has higher sensitivity to high light. Nonetheless, P. agardhii grew in light intensities considered high (500 μmol photons m(-2) s(-1)) for this species. M. aeruginosa showed a higher carrying capacity in light-limited condition, but I* was similar between all the strains. Under light competition, Microcystis strains displaced P. agardhii and dominated. In two cases, there was competitive exclusion and in the other two P. agardhii managed to remain in the system with a low biovolume (≈15%). Our findings not only show that strains of P. agardhii can grow under higher light intensities than generally assumed but also that strains of M. aeruginosa are better competitors for light than supposed. These results help to understand the co-occurrence of these species in tropical environments and the dominance of M. aeruginosa even in low-light conditions.

  15. Genome Sequence of a Virulent Pseudomonas aeruginosa Strain, 12-4-4(59), Isolated from the Blood Culture of a Burn Patient.

    PubMed

    Karna, S L Rajasekhar; Chen, Tsute; Chen, Ping; Peacock, Trent J; Abercrombie, Johnathan J; Leung, Kai P

    2016-03-03

    Pseudomonas aeruginosa is an opportunistic pathogen that frequently infects wounds, significantly impairs wound healing, and causes morbidity and mortality in burn patients. Here, we report the genome sequence of a virulent strain of P. aeruginosa, 12-4-4(59), isolated from the blood culture of a burn patient.

  16. Whole-Genome Sequence of Multidrug-Resistant Pseudomonas aeruginosa Strain BAMCPA07-48, Isolated from a Combat Injury Wound.

    PubMed

    Sanjar, Fatemeh; Karna, S L Rajasekhar; Chen, Tsute; Chen, Ping; Abercrombie, Johnathan J; Leung, Kai P

    2016-07-07

    We report here the complete genome sequence of Pseudomonas aeruginosa strain BAMCPA07-48, isolated from a combat injury wound. The closed genome sequence of this isolate is a valuable resource for pathogenome characterization of P. aeruginosa associated with wounds, which will aid in the development of a higher-resolution phylogenomic framework for molecular-guided pathogen-surveillance.

  17. Genome Sequence of a Virulent Pseudomonas aeruginosa Strain, 12-4-4(59), Isolated from the Blood Culture of a Burn Patient

    PubMed Central

    Karna, S. L. Rajasekhar; Chen, Tsute; Chen, Ping; Peacock, Trent J.; Abercrombie, Johnathan J.

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that frequently infects wounds, significantly impairs wound healing, and causes morbidity and mortality in burn patients. Here, we report the genome sequence of a virulent strain of P. aeruginosa, 12-4-4(59), isolated from the blood culture of a burn patient. PMID:26941150

  18. Draft Genome Sequence of Extremely Drug-Resistant Pseudomonas aeruginosa (ST357) Strain CMC_VB_PA_B22862 Isolated from a Community-Acquired Bloodstream Infection

    PubMed Central

    Pragasam, Agila Kumari; Yesurajan, Francis; Doss C, George Priya; George, Biju; Devanga Ragupathi, Naveen Kumar; Walia, Kamini

    2016-01-01

    Extremely drug-resistant Pseudomonas aeruginosa strains causing severe infections have become a serious concern across the world. Here, we report draft genome sequence of P. aeruginosa with an extremely drug-resistant profile isolated from a patient with community-acquired bloodstream infection in India. PMID:27795257

  19. Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste.

    PubMed

    Choudhary, Sangeeta; Sar, Pinaki

    2011-02-15

    Uranium biomineralization by a metal-resistant Pseudomonas aeruginosa strain isolated from uranium mine waste was characterized for its potential in bioremediation. Uranium resistance, its cellular localization and chemical nature of uranium-bacteria interaction were elucidated. Survival and uranium biomineralization from mine water were investigated using microcosm experiments. The selected bacterium showed U resistance and accumulation (maximum of 275 mg U g(-1)cell dry wt.) following incubation in 100 mg U L(-1), pH 4.0, for 6 h. Transmission electron microscopy and X-ray diffraction analyses revealed that bioaccumulated uranium was deposited within the cell envelope as needle shaped U-phosphate compounds that attain crystallinity only at pH 4.0. A synergistic involvement of deprotonated phosphate and carboxyl moieties in facilitating bioprecipitation of uranium was evident from FTIR analysis. Based on these findings we attribute the localized U sequestration by this bacterium as innocuous complex to its possible mechanism of uranium resistance. Microcosm data confirmed that the strain can remove soluble uranium (99%) and sequester it as U oxide and phosphate minerals while maintaining its viability. The study showed that indigenous bacteria from contaminated site that can survive uranium and other heavy metal toxicity and sequester soluble uranium as biominerals could play important role in uranium bioremediation.

  20. Susceptibility of adherent organisms from Pseudomonas aeruginosa and Staphylococcus aureus strains isolated from burn wounds to antimicrobial agents.

    PubMed

    Trafny, E A

    1998-08-01

    To assess the bactericidal effects of ciprofloxacin, netilymicin, and polymyxin B on adherent Pseudomonas aeruginosa organisms and also the bactericidal effects of ciprofloxacin, vancomycin and teicoplanin on adherent Staphylococcus aureus cells, a simple end-point microplate assay, based on the method described by Miyake et al. was used in the present study. As results of the assay, the minimal inhibitory concentration (MICADH) values are taken, which express the susceptibility of the bacterial cells spontaneously released from the surface of adherent microcolonies to antimicrobial agents. Also, a minimal bactericidal concentration (MBCADH) value was read, which is defined as the lowest antibiotic concentration required to kill the sessile bacterial cells. For twenty P. aeruginosa strains and nineteen S. aureus strains isolated from burn wounds, an enhanced resistance against bactericidal action of the applied antibiotics was observed when bacterial cells were attached to polystyrene surface. The MICADH values were comparable with the conventional MIC values only for ciprofloxacin and netilmicin for P. aeruginosa strains. The MBCADH values exceeded many times the conventional MBC values for the majority of strains. The validity of the assay was estimated in the experiment designed to determine the concentration of ciprofloxacin that should be released topically from the collagen dressing to prevent the biomaterial from microbial colonization and allow the decontamination of the wound.

  1. A novel protein quality control mechanism contributes to heat shock resistance of worldwide-distributed Pseudomonas aeruginosa clone C strains.

    PubMed

    Lee, Changhan; Wigren, Edvard; Trček, Janja; Peters, Verena; Kim, Jihong; Hasni, Muhammad Sharif; Nimtz, Manfred; Lindqvist, Ylva; Park, Chankyu; Curth, Ute; Lünsdorf, Heinrich; Römling, Ute

    2015-11-01

    Pseudomonas aeruginosa is a highly successful nosocomial pathogen capable of causing a wide variety of infections with clone C strains most prevalent worldwide. In this study, we initially characterize a molecular mechanism of survival unique to clone C strains. We identified a P. aeruginosa clone C-specific genomic island (PACGI-1) that contains the highly expressed small heat shock protein sHsp20c, the founding member of a novel subclass of class B bacterial small heat shock proteins. sHsp20c and adjacent gene products are involved in resistance against heat shock. Heat stable sHsp20c is unconventionally expressed in stationary phase in a wide temperature range from 20 to 42°C. Purified sHsp20c has characteristic features of small heat shock protein class B as it is monodisperse, forms sphere-like 24-meric oligomers and exhibits significant chaperone activity. As the P. aeruginosa clone C population is significantly more heat shock resistant than genetically unrelated P. aeruginosa strains without sHsp20c, the horizontally acquired shsp20c operon might contribute to the survival of worldwide-distributed clone C strains.

  2. Antimicrobial resistance pattern and their beta-lactamase encoding genes among Pseudomonas aeruginosa strains isolated from cancer patients.

    PubMed

    Zafer, Mai M; Al-Agamy, Mohamed H; El-Mahallawy, Hadir A; Amin, Magdy A; Ashour, Mohammed Seif El-Din

    2014-01-01

    This study was designed to investigate the prevalence of metallo-β-lactamases (MBL) and extended-spectrum β -lactamases (ESBL) in P. aeruginosa isolates collected from two different hospitals in Cairo, Egypt. Antibiotic susceptibility testing and phenotypic screening for ESBLs and MBLs were performed on 122 P. aeruginosa isolates collected in the period from January 2011 to March 2012. MICs were determined. ESBLs and MBLs genes were sought by PCR. The resistant rate to imipenem was 39.34%. The resistance rates for P. aeruginosa to cefuroxime, cefoperazone, ceftazidime, aztreonam, and piperacillin/tazobactam were 87.7%, 80.3%, 60.6%, 45.1%, and 25.4%, respectively. Out of 122 P. aeruginosa, 27% and 7.4% were MBL and ESBL, respectively. The prevalence of bla(VIM-2), bla(OXA-10(-)), bla(VEB-1), bla(NDM(-)), and bla(IMP-1)-like genes were found in 58.3%, 41.7%, 10.4%, 4.2%, and 2.1%, respectively. GIM-, SPM-, SIM-, and OXA-2-like genes were not detected in this study. OXA-10-like gene was concomitant with VIM-2 and/or VEB. Twelve isolates harbored both OXA-10 and VIM-2; two isolates carried both OXA-10 and VEB. Only one strain contained OXA-10, VIM-2, and VEB. In conclusion, bla(VIM-2)- and bla(OXA-10)-like genes were the most prevalent genes in P. aeruginosa in Egypt. To our knowledge, this is the first report of bla(VIM-2), bla(IMP-1), bla(NDM), and bla(OXA-10) in P. aeruginosa in Egypt.

  3. The Effect of Sub-MIC β-Lactam Antibiotic Exposure of Pseudomonas aeruginosa Strains from People with Cystic Fibrosis in a Desiccation Survival Model.

    PubMed

    Clifton, I J; Denton, M; M'zali, F; Peckham, D G

    2011-01-01

    Prior to modern typing methods, cross-infection of P. aeruginosa between people with cystic fibrosis (CF) was felt to be rare. Recently a number of studies have demonstrated the presence of clonal strains of P. aeruginosa infecting people with CF. The aim of this study was to determine whether strains of P. aeruginosa demonstrated differences in resistance to desiccation and whether preincubation in subminimum inhibitory concentrations (MICs) of β-lactam affected desiccation resistance. The experimental data were modelled to a first-order decay model and a Weibull decay model using least squares nonlinear regression. The Weibull model was the preferred model for the desiccation survival. The presence of a mucoid phenotype promoted desiccation survival. Preincubation with antibiotics did not have a consistent effect on the strains of P. aeruginosa. Meropenem reduced desiccation resistance, whereas ceftazidime had much less effect on the strains studied.

  4. Silver Nanoparticles: Biosynthesis Using an ATCC Reference Strain of Pseudomonas aeruginosa and Activity as Broad Spectrum Clinical Antibacterial Agents

    PubMed Central

    Quinteros, Melisa A.; Aiassa Martínez, Ivana M.; Dalmasso, Pablo R.; Páez, Paulina L.

    2016-01-01

    Currently, the biosynthesis of silver-based nanomaterials attracts enormous attention owing to the documented antimicrobial properties of these ones. This study reports the extracellular biosynthesis of silver nanoparticles (Ag-NPs) using a Pseudomonas aeruginosa strain from a reference culture collection. A greenish culture supernatant of P. aeruginosa incubated at 37°C with a silver nitrate solution for 24 h changed to a yellowish brown color, indicating the formation of Ag-NPs, which was confirmed by UV-vis spectroscopy, transmission electron microscopy, and X-ray diffraction. TEM analysis showed spherical and pseudospherical nanoparticles with a distributed size mainly between 25 and 45 nm, and the XRD pattern revealed the crystalline nature of Ag-NPs. Also it provides an evaluation of the antimicrobial activity of the biosynthesized Ag-NPs against human pathogenic and opportunistic microorganisms, namely, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Proteus mirabilis, Acinetobacter baumannii, Escherichia coli, P. aeruginosa, and Klebsiella pneumonia. Ag-NPs were found to be bioactive at picomolar concentration levels showing bactericidal effects against both Gram-positive and Gram-negative bacterial strains. This work demonstrates the first helpful use of biosynthesized Ag-NPs as broad spectrum bactericidal agents for clinical strains of pathogenic multidrug-resistant bacteria such as methicillin-resistant S. aureus, A. baumannii, and E. coli. In addition, these Ag-NPs showed negligible cytotoxic effect in human neutrophils suggesting low toxicity to the host. PMID:27340405

  5. Biotechnological potential of a rhizosphere Pseudomonas aeruginosa strain producing phenazine-1-carboxylic acid and phenazine-1-carboxamide.

    PubMed

    Zhou, Lian; Jiang, Hai-Xia; Sun, Shuang; Yang, Dan-Dan; Jin, Kai-Ming; Zhang, Wei; He, Ya-Wen

    2016-03-01

    Bacterial phenazine metabolites belong to a group of nitrogen-containing heterocyclic compounds with antimicrobial activities. In this study, a rhizosphere Pseudomonas aeruginosa strain PA1201 was isolated and identified through 16S rDNA sequence analysis and fatty acid profiling. PA1201 inhibited the growth of various pathogenic microorganisms, including Rhizotonia solani, Magnaporthe grisea, Fusarium graminearum, Xanthomonas oryzae pv. oryzae, Xanthomonas oryzae pv. oryzicola, and Staphylococcus aureus. High Performance Liquid Chromatography showed that PA1201 produced high levels of phenazine-1-carboxylic acid (PCA), a registered green fungicide 'Shenqinmycin' with the fermentation titers of 81.7 mg/L in pigment producing medium (PPM) and 926.9 mg/L in SCG medium containing soybean meal, corn steep liquor and glucose. In addition, PA1201 produced another antifungal metabolite, phenazine-1-carboxaminde (PCN), a derivative of PCA, with the fermentation titers of 18.1 and 489.5 mg/L in PPM and SCG medium respectively. To the best of our knowledge, PA1201 is a rhizosphere originating P. aeruginosa strain that congenitally produces the highest levels of PCA and PCN among currently reported P. aeruginosa isolates, which endows it great biotechnological potential to be transformed to a biopesticide-producing engineering strain. PMID:26873561

  6. Enhancement of Rhamnolipid Production in Residual Soybean Oil by an Isolated Strain of Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    de Lima, C. J. B.; França, F. P.; Sérvulo, E. F. C.; Resende, M. M.; Cardoso, V. L.

    In the present work, the production of rhamnolipid from residual soybean oil (RSO) from food frying facilities was studied using a strain of Pseudomonas aeruginosa of contaminated lagoon, isolated from a hydrocarbon contaminated soil. The optimization of RSO, amonium nitrate, and brewery residual yeast concentrations was accomplished by a central composite experimental design and surface response analysis. The experiments were performed in 500-mL Erlenmeyer flasks containing 50mL of mineral medium, at 170 rpm and 30±1°C, for a 48-h fermentation period. Rhamnolipid production has been monitored by measurements of surface tension, rhamnose concentration, and emulsifying activity. The best-planned results, located on the central point, have corresponded to 22g/L of RSO, 5.625 g/ L of NH4NO3' and 11.5 g/L of brewery yeast. At the maximum point the values for rhamnose and emulsifying index were 2.2g/L and 100%, respectively.

  7. Effects of UV-B radiation on microcystin production of a toxic strain of Microcystis aeruginosa and its competitiveness against a non-toxic strain.

    PubMed

    Yang, Zhen; Kong, Fanxiang; Shi, Xiaoli; Yu, Yang; Zhang, Min

    2015-01-01

    Microcystins (MCs) produced by toxic cyanobacteria pose a health hazard to humans and animals. Some environmental factors can alter the MC concentrations by affecting the abundance of toxin-producing strains in a cyanobacteria population and/or their toxin production. In this study, we designed a monoculture and competition experiment to investigate the impacts of UV-B radiation on MC production and the competition between toxin and non-toxin producing strains of Microcystis aeruginosa. UV-B radiation resulted in higher inhibition of the growth and photosynthetic activity of the non-toxin producing strain relative to that observed for the toxin-producing strain. Both intracellular and extracellular MC contents decreased markedly when the toxin-producing strain was exposed to UV-B radiation. In addition, a quantitative real-time PCR assay revealed that the ratio of toxin-producing M. aeruginosa under UV-B exposure was higher than that under PAR alone at an early stage of the experiment. However, its abundance under UV-B exposure was lower compared with the PAR alone treatment after day 12. Our study demonstrated that UV-B radiation has a great impact on the abundance of the toxin-producing strain in the Microcystis population and their toxin production, which suggests that the fluctuation of UV-B radiation affects the MC level of cyanobacteria blooms. PMID:25464282

  8. Effects of UV-B radiation on microcystin production of a toxic strain of Microcystis aeruginosa and its competitiveness against a non-toxic strain.

    PubMed

    Yang, Zhen; Kong, Fanxiang; Shi, Xiaoli; Yu, Yang; Zhang, Min

    2015-01-01

    Microcystins (MCs) produced by toxic cyanobacteria pose a health hazard to humans and animals. Some environmental factors can alter the MC concentrations by affecting the abundance of toxin-producing strains in a cyanobacteria population and/or their toxin production. In this study, we designed a monoculture and competition experiment to investigate the impacts of UV-B radiation on MC production and the competition between toxin and non-toxin producing strains of Microcystis aeruginosa. UV-B radiation resulted in higher inhibition of the growth and photosynthetic activity of the non-toxin producing strain relative to that observed for the toxin-producing strain. Both intracellular and extracellular MC contents decreased markedly when the toxin-producing strain was exposed to UV-B radiation. In addition, a quantitative real-time PCR assay revealed that the ratio of toxin-producing M. aeruginosa under UV-B exposure was higher than that under PAR alone at an early stage of the experiment. However, its abundance under UV-B exposure was lower compared with the PAR alone treatment after day 12. Our study demonstrated that UV-B radiation has a great impact on the abundance of the toxin-producing strain in the Microcystis population and their toxin production, which suggests that the fluctuation of UV-B radiation affects the MC level of cyanobacteria blooms.

  9. Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3

    PubMed Central

    Nie, Maiqian; Yin, Xihou; Ren, Chunyan; Wang, Yang; Xu, Feng; Shen, Qirong

    2014-01-01

    A novel rhamnolipid biosurfactant-producing and Polycyclic Aromatic Hydrocarbon (PAH)-degrading bacterium Pseudomonas aeruginosa strain NY3 was isolated from petroleum-contaminated soil samples. Strain NY3 was characterized by its extraordinary capacity to produce structurally diverse rhamnolipids. A total of 25 rhamnolipid components and 37 different parent molecular ions, representing various metal ion adducts (Na+, 2Na+ and K+), were detected by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Among these compounds are ten new rhamnolipids. In addition to its biosurfactant production, strain NY3 was shown to be capable of efficient degradation of PAHs as well as synergistic improvement in the degradation of high molecular weight PAHs by its biosurfactant. These findings have added novel members to the rhamnolipid group and expanded current knowledge regarding the diversity and productive capability of rhamnolipid biosurfactants from a single specific strain with variation of only one carbon source. Additionally, this paper lays the foundation for improvement in the yield of NY3BS and study of the degradation pathway(s) of PAHs in P. aeruginosa strain NY3. PMID:20580808

  10. Pseudomonas aeruginosa Genomic Structure and Diversity

    PubMed Central

    Klockgether, Jens; Cramer, Nina; Wiehlmann, Lutz; Davenport, Colin F.; Tümmler, Burkhard

    2011-01-01

    The Pseudomonas aeruginosa genome (G + C content 65–67%, size 5.5–7 Mbp) is made up of a single circular chromosome and a variable number of plasmids. Sequencing of complete genomes or blocks of the accessory genome has revealed that the genome encodes a large repertoire of transporters, transcriptional regulators, and two-component regulatory systems which reflects its metabolic diversity to utilize a broad range of nutrients. The conserved core component of the genome is largely collinear among P. aeruginosa strains and exhibits an interclonal sequence diversity of 0.5–0.7%. Only a few loci of the core genome are subject to diversifying selection. Genome diversity is mainly caused by accessory DNA elements located in 79 regions of genome plasticity that are scattered around the genome and show an anomalous usage of mono- to tetradecanucleotides. Genomic islands of the pKLC102/PAGI-2 family that integrate into tRNALys or tRNAGly genes represent hotspots of inter- and intraclonal genomic diversity. The individual islands differ in their repertoire of metabolic genes that make a large contribution to the pangenome. In order to unravel intraclonal diversity of P. aeruginosa, the genomes of two members of the PA14 clonal complex from diverse habitats and geographic origin were compared. The genome sequences differed by less than 0.01% from each other. One hundred ninety-eight of the 231 single nucleotide substitutions (SNPs) were non-randomly distributed in the genome. Non-synonymous SNPs were mainly found in an integrated Pf1-like phage and in genes involved in transcriptional regulation, membrane and extracellular constituents, transport, and secretion. In summary, P. aeruginosa is endowed with a highly conserved core genome of low sequence diversity and a highly variable accessory genome that communicates with other pseudomonads and genera via horizontal gene transfer. PMID:21808635

  11. Gallium induces the production of virulence factors in Pseudomonas aeruginosa.

    PubMed

    García-Contreras, Rodolfo; Pérez-Eretza, Berenice; Lira-Silva, Elizabeth; Jasso-Chávez, Ricardo; Coria-Jiménez, Rafael; Rangel-Vega, Adrián; Maeda, Toshinari; Wood, Thomas K

    2014-02-01

    The novel antimicrobial gallium is a nonredox iron III analogue with bacteriostatic and bactericidal properties, effective for the treatment of Pseudomonas aeruginosa in vitro and in vivo in mouse and rabbit infection models. It interferes with iron metabolism, transport, and presumably its homeostasis. As gallium exerts its antimicrobial effects by competing with iron, we hypothesized that it ultimately will lead cells to an iron deficiency status. As iron deficiency promotes the expression of virulence factors in vitro and promotes the pathogenicity of P. aeruginosa in animal models, it is anticipated that treatment with gallium will also promote the production of virulence factors. To test this hypothesis, the reference strain PA14 and two clinical isolates from patients with cystic fibrosis were exposed to gallium, and their production of pyocyanin, rhamnolipids, elastase, alkaline protease, alginate, pyoverdine, and biofilm was determined. Gallium treatment induced the production of all the virulence factors tested in the three strains except for pyoverdine. In addition, as the Ga-induced virulence factors are quorum sensing controlled, co-administration of Ga and the quorum quencher brominated furanone C-30 was assayed, and it was found that C-30 alleviated growth inhibition from gallium. Hence, adding both C-30 and gallium may be more effective in the treatment of P. aeruginosa infections.

  12. Twenty-Five-Year Outbreak of Pseudomonas aeruginosa Infecting Individuals with Cystic Fibrosis: Identification of the Prairie Epidemic Strain

    PubMed Central

    Glezerson, Bryan A.; Sibley, Christopher D.; Sibley, Kristen A.; Duong, Jessica; Purighalla, Swathi; Mody, Christopher H.; Workentine, Matthew L.; Storey, Douglas G.; Surette, Michael G.; Rabin, Harvey R.

    2014-01-01

    Transmissible strains of Pseudomonas aeruginosa have been described for cystic fibrosis (CF) and may be associated with a worse prognosis. Using a comprehensive strain biobank spanning 3 decades, we sought to determine the prevalence and stability of chronic P. aeruginosa infection in an adult population. P. aeruginosa isolates from sputum samples collected at initial enrollment in our adult clinic and at the most recent clinic visit were examined by a combination of pulsed-field gel electrophoresis and multilocus sequence typing and compared against a collection of established transmissible and local non-CF bronchiectasis (nCFB) isolates. A total of 372 isolates from 107 patients, spanning 674 patient-years, including 66 patients with matched isolates from initial and final encounters, were screened. A novel clone with increased antibacterial resistance, termed the prairie epidemic strain (PES), was found in 29% (31/107 patients) of chronically infected patients referred from multiple prairie-based CF centers. This isolate was not found in those diagnosed with CF as adults or in a control population with nCFB. While 90% (60/66 patients) of patients had stable infection over a mean of 10.8 years, five patients experienced strain displacement of unique isolates, with PES occurring within 2 years of transitioning to adult care. PES has been present in our cohort since at least 1987, is unique to CF, generally establishes chronic infection during childhood, and has been found in patients at the time of transition of patients from multiple prairie-based CF clinics, suggesting broad endemicity. Studies are under way to evaluate the clinical implications of PES infection. PMID:24452167

  13. Phenotypic Characterization of Clonal and Nonclonal Pseudomonas aeruginosa Strains Isolated from Lungs of Adults with Cystic Fibrosis▿

    PubMed Central

    Tingpej, Pholawat; Smith, Lucas; Rose, Barbara; Zhu, Hua; Conibear, Tim; Al Nassafi, Khaled; Manos, Jim; Elkins, Mark; Bye, Peter; Willcox, Mark; Bell, Scott; Wainwright, Claire; Harbour, Colin

    2007-01-01

    The emergence of virulent Pseudomonas aeruginosa clones is a threat to cystic fibrosis (CF) patients globally. Characterization of clonal P. aeruginosa strains is critical for an understanding of its clinical impact and developing strategies to meet this problem. Two clonal strains (AES-1 and AES-2) are circulating within CF centers in eastern Australia. In this study, phenotypic characteristics of 43 (14 AES-1, 5 AES-2, and 24 nonclonal) P. aeruginosa isolates were compared to gain insight into the properties of clonal strains. All 43 isolates produced bands of the predicted size in PCRs for vfr, rhlI, rhlR, lasA, lasB, aprA, rhlAB, and exoS genes; 42 were positive for lasI and lasR, and none had exoU. Thirty-seven (86%) isolates were positive in total protease assays; on zymography, 24 (56%) produced elastase/staphylolysin and 22 (51%) produced alkaline protease. Clonal isolates were more likely than nonclonal isolates to be positive for total proteases (P = 0.02), to show elastase and alkaline protease activity by zymography (P = 0.04 and P = 0.01, respectively), and to show elastase activity by the elastin-Congo red assay (P = 0.04). There were no other associations with genotype. Overall, increasing patient age was associated with decreasing elastase activity (P = 0.03). Thirty-two (74%) isolates had at least one N-acylhomoserine lactone (AHL) by thin-layer chromatography. rhl-associated AHL detection was associated with the production and level of total protease and elastase activity (all P < 0.01). Thirty-three (77%) isolates were positive for ExoS by Western blot analysis, 35 (81%) produced rhamnolipids, and 34 (79%) showed chitinase activity. Findings suggest that protease activity during chronic infection may contribute to the transmissibility or virulence of these clonal strains. PMID:17392437

  14. Highly toxic Microcystis aeruginosa strain, isolated from São Paulo-Brazil, produce hepatotoxins and paralytic shellfish poison neurotoxins.

    PubMed

    Sant'Anna, Célia L; de Carvalho, Luciana R; Fiore, Marli F; Silva-Stenico, Maria Estela; Lorenzi, Adriana S; Rios, Fernanda R; Konno, Katsuhiro; Garcia, Carlos; Lagos, Nestor

    2011-04-01

    While evaluating several laboratory-cultured cyanobacteria strains for the presence of paralytic shellfish poison neurotoxins, the hydrophilic extract of Microcystis aeruginosa strain SPC777--isolated from Billings's reservoir, São Paulo, Brazil--was found to exhibit lethal neurotoxic effect in mouse bioassay. The in vivo test showed symptoms that unambiguously were those produced by PSP. In order to identify the presence of neurotoxins, cells were lyophilized, and the extracts were analyzed by HPLC-FLD and HPLC-MS. HPLC-FLD analysis revealed four main Gonyautoxins: GTX4(47.6%), GTX2(29.5%), GTX1(21.9%), and GTX3(1.0%). HPLC-MS analysis, on other hand, confirmed both epimers, with positive Zwitterions M(+) 395.9 m/z for GTX3/GTX2 and M(+) 411 m/z for GTX4/GTX1 epimers.The hepatotoxins (Microcystins) were also evaluated by ELISA and HPLC-MS analyses. Positive immunoreaction was observed by ELISA assay. Alongside, the HPLC-MS analyses revealed the presence of [L: -ser(7)] MCYST-RR. The N-methyltransferase (NMT) domain of the microcystin synthetase gene mcyA was chosen as the target sequence to detect the presence of the mcy gene cluster. PCR amplification of the NMT domain, using the genomic DNA of the SPC777 strain and the MSF/MSR primer set, resulted in the expected 1,369 bp product. The phylogenetic analyses grouped the NMT sequence with the NMT sequences of other known Microcystis with high bootstrap support. The taxonomical position of M. aeruginosa SPC777 was confirmed by a detailed morphological description and a phylogenetic analysis of 16S rRNA gene sequence. Therefore, co-production of PSP neurotoxins and microcystins by an isolated M. aeruginosa strain is hereby reported for the first time.

  15. Large scale surface migration of P. aeruginosa at early stages of biofilm formation

    NASA Astrophysics Data System (ADS)

    Gibiansky, Maxsim; Utada, Andy; Zhao, Kun; Xian, Wujing; Wong, Gerard

    2013-03-01

    Pseudomonas aeruginosa is a commonly-studied bacterium which can form biofilms, surface-bound aggregates which display increased resistance to various forms of stress, including a greatly enhanced antibiotic resistance. In the early stages of biofilm formation, free-swimming planktonic cells attach to the surface and form microcolonies, expressing a variety of adhesins and transitioning from reversible to irreversible attachment. By using particle tracking algorithms, we can in principle examine the full motility and division history of all cells in a microcolony. Here, we study the effects of the pel polysaccharides in microcolony formation by investigating how pel impacts the initial stages of biofilm formation by the P. aeruginosa PA14 strain. Specifically, we quantify the phenotypic effects of pel on initial attachment, microcolony formation, and biofilm morphology.

  16. Evaluation of Synergistic Interactions Between Cell-Free Supernatant of Lactobacillus Strains and Amikacin and Genetamicin Against Pseudomonas aeruginosa

    PubMed Central

    Aminnezhad, Sargol; Kermanshahi, Rouha Kasra; Ranjbar, Reza

    2015-01-01

    Background: The indiscriminate use of antibiotics in the treatment of infectious diseases can increase the development of antibiotic resistance. Therefore, there is a big demand for new sources of antimicrobial agents and alternative treatments for reduction of antibiotic dosage required to decrease the associated side effects. Objectives: In this study, the synergistic action of aminoglycoside antibiotics and cell-free supernatant (CFS) of probiotic (Lactobacillus rahmnosus and L. casei) against Pseudomonas aeruginosa PTCC 1430 was evaluated. Materials and Methods: A growth medium for culturing of probiotic bacteria was separated by centrifugation. The antimicrobial effects of CFS of probiotic bacteria were evaluated using the agar well diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated using the micro dilution method. Finally, an interaction between CFS and amikacin or gentamicin against P. aeruginosa PTCC 1430 was examined through the checkerboard method and fractional inhibitory concentration (FIC). Furthermore, CFSs from Lactobacillus strains were analyzed by reversed phase HPLC (RP-HPLC) for antimicrobial compounds. Results: The results showed a significant effect of CFS on the growth of P. aeruginosa. The MIC and MBC of CFS from L. casei were 62.5 µL⁄mL while the MIC and MBC of CFS from L. rhamnosus were 62.5 μL⁄mL and 125 μL⁄mL, respectively. Using the FIC indices, synergistic interactions were observed in combination of CFS and antibiotics. Fractional Inhibitory Concentration indices of CFS from L. casei and aminoglycoside antibiotics were 0.124 and 0.312 while FIC indices of CFS from L. rhamnosus and aminoglycoside antibiotics were 0.124 and 0.56, respectively showing a synergism effect. The results of RP-HPLC showed that CFS of Lactobacillus strains contained acetic acid, lactic acid and hydrogen peroxide (H2O2). Conclusions: Our findings indicate that probiotic bacterial

  17. Whole-Genome Sequence of Multidrug-Resistant Pseudomonas aeruginosa Strain BAMCPA07-48, Isolated from a Combat Injury Wound

    PubMed Central

    Sanjar, Fatemeh; Karna, S. L. Rajasekhar; Chen, Tsute; Chen, Ping; Abercrombie, Johnathan J.

    2016-01-01

    We report here the complete genome sequence of Pseudomonas aeruginosa strain BAMCPA07-48, isolated from a combat injury wound. The closed genome sequence of this isolate is a valuable resource for pathogenome characterization of P. aeruginosa associated with wounds, which will aid in the development of a higher-resolution phylogenomic framework for molecular-guided pathogen-surveillance. PMID:27389262

  18. Divergence of a strain of Pseudomonas aeruginosa during an outbreak of ovine mastitis.

    PubMed

    Wright, Elli A; Di Lorenzo, Valeria; Trappetti, Claudia; Liciardi, Manuele; Orru, Germano; Viti, Carlo; Bronowski, Christina; Hall, Amanda J; Darby, Alistair C; Oggioni, Marco R; Winstanley, Craig

    2015-01-30

    Bacterial infections causing mastitis in sheep can result in severe economic losses for farmers. A large survey of milk samples from ewes with mastitis in Sardinia, Italy, indicated an increasing prevalence of Pseudomonas aeruginosa infections. It has been shown previously that during chronic, biofilm-associated infections P. aeruginosa populations diversify. We report the phenotypic and genomic characterisation of two clonal P. aeruginosa isolates (PSE305 and PSE306) from a mastitis infection outbreak, representing distinct colony morphology variants. In addition to pigment production, PSE305 and PSE306 differed in phenotypic characteristics including biofilm formation, utilisation of various carbon and nitrogen sources, twitching motility. We found higher levels of expression of genes associated with biofilm formation (pelB) and twitching motility (flgD) in PSE305, compared to the biofilm and twitching-defective PSE306. Comparative genomics analysis revealed single nucleotide polymorphisms (SNPs) and minor insertion/deletion variations between PSE305 and PSE306, including a SNP mutation in the pilP gene of PSE306. By introducing a wild-type pilP gene we were able to partially complement the defective twitching motility of PSE306. There were also three larger regions of difference between the two genomes, indicating genomic instability. Hence, we have demonstrated that P. aeruginosa population divergence can occur during an outbreak of mastitis, leading to significant variations in phenotype and genotype, and resembling the behaviour of P. aeruginosa during chronic biofilm-associated infections.

  19. Nanoscale analysis of the effects of antibiotics and CX1 on a Pseudomonas aeruginosa multidrug-resistant strain

    NASA Astrophysics Data System (ADS)

    Formosa, C.; Grare, M.; Jauvert, E.; Coutable, A.; Regnouf-de-Vains, J. B.; Mourer, M.; Duval, R. E.; Dague, E.

    2012-08-01

    Drug resistance is a challenge that can be addressed using nanotechnology. We focused on the resistance of the bacteria Pseudomonas aeruginosa and investigated, using Atomic Force Microscopy (AFM), the behavior of a reference strain and of a multidrug resistant clinical strain, submitted to two antibiotics and to an innovative antibacterial drug (CX1). We measured the morphology, surface roughness and elasticity of the bacteria under physiological conditions and exposed to the antibacterial molecules. To go further in the molecules action mechanism, we explored the bacterial cell wall nanoscale organization using functionalized AFM tips. We have demonstrated that affected cells have a molecularly disorganized cell wall; surprisingly long molecules being pulled off from the cell wall by a lectin probe. Finally, we have elucidated the mechanism of action of CX1: it destroys the outer membrane of the bacteria as demonstrated by the results on artificial phospholipidic membranes and on the resistant strain.

  20. Nanoscale analysis of the effects of antibiotics and CX1 on a Pseudomonas aeruginosa multidrug-resistant strain

    PubMed Central

    Formosa, C.; Grare, M.; Jauvert, E.; Coutable, A.; Regnouf-de-Vains, J. B.; Mourer, M.; Duval, R. E.; Dague, E.

    2012-01-01

    Drug resistance is a challenge that can be addressed using nanotechnology. We focused on the resistance of the bacteria Pseudomonas aeruginosa and investigated, using Atomic Force Microscopy (AFM), the behavior of a reference strain and of a multidrug resistant clinical strain, submitted to two antibiotics and to an innovative antibacterial drug (CX1). We measured the morphology, surface roughness and elasticity of the bacteria under physiological conditions and exposed to the antibacterial molecules. To go further in the molecules action mechanism, we explored the bacterial cell wall nanoscale organization using functionalized AFM tips. We have demonstrated that affected cells have a molecularly disorganized cell wall; surprisingly long molecules being pulled off from the cell wall by a lectin probe. Finally, we have elucidated the mechanism of action of CX1: it destroys the outer membrane of the bacteria as demonstrated by the results on artificial phospholipidic membranes and on the resistant strain. PMID:22893853

  1. Draft Genome Sequence of a Pseudomonas aeruginosa Strain Able To Decompose N,N-Dimethyl Formamide

    PubMed Central

    Yan, Ming; Xu, Lin; Wei, Li; Zhang, Liting

    2016-01-01

    Pseudomonas aeruginosa is a Gram-negative bacterium, which uses a variety of organic chemicals as carbon sources. Here, we report the genome sequence of the Cu1510 isolate from wastewater containing a high concentration of N,N-dimethyl formamide. PMID:26847883

  2. Sodium houttuyfonate inhibits biofilm formation and alginate biosynthesis-associated gene expression in a clinical strain of Pseudomonas aeruginosa in vitro

    PubMed Central

    WU, DA-QIANG; CHENG, HUIJUAN; DUAN, QIANGJUN; HUANG, WEIFENG

    2015-01-01

    The increasing multidrug resistance of Pseudomonas aeruginosa has become a serious public-health problem. In the present study, the inhibitory activities of sodium houttuyfonate (SH) against biofilm formation and alginate production in a clinical strain of P. aeruginosa (AH16) were investigated in vitro using crystal violet dying and standard curve methods, respectively. The cellular morphology of P. aeruginosa treated with SH was observed using a scanning electron microscope. Furthermore, reverse transcription-quantitative polymerase chain reaction was used to identify differences in the expression levels of genes associated with alginate biosynthesis as a result of the SH treatment. The results indicated that SH significantly inhibited biofilm formation, and decreased the levels of the primary biofilm constituent, alginate, in P. aeruginosa AH16 at various stages of biofilm development. In addition, scanning electron microscopy observations demonstrated that SH markedly altered the cellular morphology and biofilm structure of P. aeruginosa. Furthermore, the results from the reverse transcription-quantitative polymerase chain reaction analysis indicated that SH inhibited biofilm formation by mitigating the expression of the algD and algR genes, which are associated with alginate biosynthesis. Therefore, the present study has provided novel insights into the potent effects and underlying mechanisms of SH-induced inhibition of biofilm formation in a clinical strain of P. aeruginosa. PMID:26622388

  3. The effects of nickel(II) complexes with imidazole derivatives on pyocyanin and pyoverdine production by Pseudomonas aeruginosa strains isolated from cystic fibrosis.

    PubMed

    Gałczyńska, Katarzyna; Kurdziel, Krystyna; Adamus-Białek, Wioletta; Wąsik, Sławomir; Szary, Karol; Drabik, Marcin; Węgierek-Ciuk, Aneta; Lankoff, Anna; Arabski, Michał

    2015-01-01

    Pseudomonas aeruginosa infection is problematic in patients with cystic fibrosis (CF). P. aeruginosa secretes a diversity of pigments, such as pyocyanin and pyoverdine. The aim of this study was to evaluate the effects of complexes of nickel(II) ([Ni(iaa)2(H2O)2]·H2O (iaa = imidazole-4-acetate anion), [Ni(1-allim)6](NO3)2 (1-allim = 1-allylimidazole) and NiCl2 on pyocyanin and pyoverdine production by 23 strains of P. aeruginosa isolated from cystic fibrosis under growth conditions specific for the CF respiratory system. The antibacterial effects and biophysical properties of the tested substances were measured by spectrofluorometric techniques, as well as by laser interferometry, confocal and atomic force microscopy. The cytotoxic properties of all compounds were measured by Annexin/IP assay against A549 cells. All tested compounds have no effect on pyocyanin production and decrease the pyoverdine secretion in about 40% of tested P. aeruginosa strains at non-cytotoxic range of concentrations. Imidazole-4-acetate anion and 1-allylimidazole have good diffusion properties in the mature P. aeruginosa PAO1 biofilm. In conclusion, the tested nickel(II) complexes do not have clinical implications in P. aeruginosa eradication in cystic fibrosis. The diffusion properties of 1-allylimidazole and imidazole-4-acetate and their lack of effect on A549 cells suggest that they might be considered for chemical synthesis with other transition metals. PMID:26645324

  4. Coexistence of quorum-quenching and quorum-sensing in tropical marine Pseudomonas aeruginosa strain MW3A.

    PubMed

    Wong, Cheng-Siang; Yin, Wai-Fong; Choo, Yeun-Mun; Sam, Choon-Kook; Koh, Chong-Lek; Chan, Kok-Gan

    2012-02-01

    A chemically defined medium called KGm medium was used to isolate from a sample of sea water a bacterial strain, MW3A, capable of using N-3-oxohexanoyl-L: -homoserine lactone as the sole carbon source. MW3A was clustered closely to Pseudomonas aeruginosa by 16S ribosomal DNA sequence analysis. It degraded both N-acylhomoserine lactones (AHLs) with a 3-oxo group substitution and, less preferably, AHLs with unsubstituted groups at C3 position in the acyl side chain, as determined by Rapid Resolution Liquid Chromatography. Its quiP and pvdQ homologue gene sequences showed high similarities to those of known acylases. Spent supernatant of MW3A harvested at 8-h post inoculation was shown to contain long-chain AHLs when assayed with the biosensor Escherichia coli [pSB1075], and specifically N-dodecanoyl-L: -homoserine lactone and N-3-oxotetradecanoyl-L: -homoserine lactone by high resolution mass spectrometry. Hence, we report here a novel marine P. aeruginosa strain MW3A possessing both quorum-quenching and quorum-sensing properties.

  5. High-resolution genotyping of Pseudomonas aeruginosa strains linked to acute post cataract surgery endophthalmitis outbreaks in India

    PubMed Central

    Kenchappa, Prashanth; Sangwan, Virender S; Ahmed, Niyaz; Rao, K Rajender; Pathengay, Avinash; Mathai, Annie; Mansoori, Tarannum; Das, Taraprasad; Hasnain, Seyed E; Sharma, Savitri

    2005-01-01

    Background Investigation of two independent outbreaks of post cataract surgery endophthalmitis identified the reservoir of epidemic strains of P. aeruginosa. Methods Patient isolates cultured from vitreous fluid of all the nine cases and from the peripheral devices of phacoemulsification machine were subjected to high-resolution Fluorescent Amplified Fragment Length Polymorphism (FAFLP) analysis. Results FAFLP based genotyping of the isolates confirmed nosocomial transmission. Although biochemical characterization and antibiotic susceptibility profiles grouped all the isolates together, FAFLP based genotyping revealed that, all the outbreak isolates were derived from 2 different strains, with independent origins. One group of isolates was traced to phacoprobe and the second one to the internal tubing system of the phacoemulsification machine used in cataract surgery. In silico analysis indicated possible evolution in both the clusters of P. aeruginosa isolates due to genetic polymorphisms. The polymorphisms were mapped to gene products (cell envelope, outer membrane proteins) possibly having significant role in pathogenesis. Conclusion The present study is probably the first one to apply FAFLP typing successfully to investigate outbreaks of postoperative endophthalmitis (POE) in an ophthalmic setting, which was able to identify the source, and helped to make rational decisions on sterilization procedures that halted more cases of infection in these hospitals. PMID:16343353

  6. Lead-enhanced siderophore production and alteration in cell morphology in a Pb-resistant Pseudomonas aeruginosa strain 4EA.

    PubMed

    Naik, Milind Mohan; Dubey, Santosh Kumar

    2011-02-01

    A lead-resistant bacterial strain 4EA from soil contaminated with car battery waste from Goa, India was isolated and identified as Pseudomonas aeruginosa. This lead-resistant bacterial isolate interestingly revealed lead-enhanced siderophore (pyochelin and pyoverdine) production up to 0.5 mM lead nitrate whereas cells exhibit a significant decline in siderophore production above 0.5 mM lead nitrate. The bacterial cells also revealed significant alteration in cell morphology as size reduction when exposed to 0.8 mM lead nitrate. Enhanced production of siderophore was evidently detected by chrome azurol S agar diffusion (CASAD) assay as increase in diameter of orange halo, and reduction in bacterial size along with significant biosorption of lead was recorded by scanning electron microscopy coupled with energy dispersive X-ray spectrometry (SEM-EDX). Pseudomonas aeruginosa strain 4EA also exhibits cross tolerance to other toxic metals viz. cadmium, mercury, and zinc besides resistance to multiple antibiotics such as ampicillin, erythromycin, amikacin, cephalexin, co-trimoxazole, mecillinam, lincomycin, ciphaloridine, oleondamycin, and nalidixic acid. PMID:20661573

  7. Potent Antibacterial Antisense Peptide–Peptide Nucleic Acid Conjugates Against Pseudomonas aeruginosa

    PubMed Central

    Ghosal, Anubrata

    2012-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen causing severe infections in hospital settings, especially with immune compromised patients, and the increasing prevalence of multidrug resistant strains urges search for new drugs with novel mechanisms of action. In this study we introduce antisense peptide–peptide nucleic acid (PNA) conjugates as antibacterial agents against P. aeruginosa. We have designed and optimized antisense peptide–PNA conjugates targeting the translation initiation region of the ftsZ gene (an essential bacterial gene involved in cell division) or the acpP gene (an essential bacterial gene involved in fatty acid synthesis) of P. aeruginosa (PA01) and characterized these compounds according to their antimicrobial activity and mode of action. Four antisense PNA oligomers conjugated to the H-(R-Ahx-R)4-Ahx-βala or the H-(R-Ahx)6-βala peptide exhibited complete growth inhibition of P. aeruginosa strains PA01, PA14, and LESB58 at 1–2 μM concentrations without any indication of bacterial membrane disruption (even at 20 μM), and resulted in specific reduction of the targeted mRNA levels. One of the four compounds showed clear bactericidal activity while the other significantly reduced bacterial survival. These results open the possibility of development of antisense antibacterials for treatment of Pseudomonas infections. PMID:23030590

  8. Characterization of wetland quorum quenching Pseudomonas aeruginosa strain 2SW8 and its 2-heptyl-3-hydroxy-4-quinolone production.

    PubMed

    Wong, Cheng-Siang; Yin, Wai-Fong; Sam, Choon-Kook; Koh, Chong-Lek; Chan, Kok-Gan

    2012-01-01

    Most Proteobacteria produce N-acylhomoserine lactones for bacterial cell-to-cell communication, a process called quorum sensing. Interference of quorum sensing, commonly known as quorum quenching, represents an important way to control quorum sensing. This work reports the isolation of quorum quenching bacterium strain 2WS8 from Malaysia tropical wetland water (2°11'8"N, 102°15'2"E, in 2007) by using a modified version of a previously reported KG medium. Strain 2WS8 was isolated based on its ability to utilize N-(3-oxohexanoyl)-L-homoserine lactone (3-oxo-C6-HSL) as the sole source of energy. This bacterium clustered closely to Pseudomonas aeruginosa PAO1. Strain 2SW8 possesses both quiP and pvdQ homologue acylase genes. Rapid Resolution Liquid Chromatography analysis confirmed that strain 2SW8 preferentially degraded N-acylhomoserine lactones with 3-oxo group substitution but not those with unsubstituted groups at C3 position in the acyl side chain. Strain 2SW8 also showed 2-heptyl-3-hydroxy-4-quinolone production.

  9. A type III secretion negative clinical strain of Pseudomonas aeruginosa employs a two-partner secreted exolysin to induce hemorrhagic pneumonia.

    PubMed

    Elsen, Sylvie; Huber, Philippe; Bouillot, Stéphanie; Couté, Yohann; Fournier, Pierre; Dubois, Yohann; Timsit, Jean-François; Maurin, Max; Attrée, Ina

    2014-02-12

    Virulence of Pseudomonas aeruginosa is typically attributed to its type III secretion system (T3SS). A taxonomic outlier, the P. aeruginosa PA7 strain, lacks a T3SS locus, and no virulence phenotype is attributed to PA7. We characterized a PA7-related, T3SS-negative P. aeruginosa strain, CLJ1, isolated from a patient with fatal hemorrhagic pneumonia. CLJ1 is highly virulent in mice, leading to lung hemorrhage and septicemia. CLJ1-infected primary endothelial cells display characteristics of membrane damage and permeabilization. Proteomic analysis of CLJ1 culture supernatants identified a hemolysin/hemagglutinin family pore-forming toxin, Exolysin (ExlA), that is exported via ExlB, representing a putative two-partner secretion system. A recombinant P. aeruginosa PAO1ΔpscD::exlBA strain, deficient for T3SS but engineered to express ExlA, gained lytic capacity on endothelial cells and full virulence in mice, demonstrating that ExlA is necessary and sufficient for pathogenicity. This highlights clinically relevant T3SS-independent hypervirulence, isolates, and points to a broader P. aeruginosa pathogenic repertoire.

  10. Structural basis for effectiveness of siderophore-conjugated monocarbams against clinically relevant strains of Pseudomonas aeruginosa

    SciTech Connect

    Han, Seungil; Zaniewski, Richard P.; Marr, Eric S.; Lacey, Brian M.; Tomaras, Andrew P.; Evdokimov, Artem; Miller, J. Richard; Shanmugasundaram, Veerabahu

    2012-02-08

    Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that causes nosocomial infections for which there are limited treatment options. Penicillin-binding protein PBP3, a key therapeutic target, is an essential enzyme responsible for the final steps of peptidoglycan synthesis and is covalently inactivated by {beta}-lactam antibiotics. Here we disclose the first high resolution cocrystal structures of the P. aeruginosa PBP3 with both novel and marketed {beta}-lactams. These structures reveal a conformational rearrangement of Tyr532 and Phe533 and a ligand-induced conformational change of Tyr409 and Arg489. The well-known affinity of the monobactam aztreonam for P. aeruginosa PBP3 is due to a distinct hydrophobic aromatic wall composed of Tyr503, Tyr532, and Phe533 interacting with the gem-dimethyl group. The structure of MC-1, a new siderophore-conjugated monocarbam complexed with PBP3 provides molecular insights for lead optimization. Importantly, we have identified a novel conformation that is distinct to the high-molecular-weight class B PBP subfamily, which is identifiable by common features such as a hydrophobic aromatic wall formed by Tyr503, Tyr532, and Phe533 and the structural flexibility of Tyr409 flanked by two glycine residues. This is also the first example of a siderophore-conjugated triazolone-linked monocarbam complexed with any PBP. Energetic analysis of tightly and loosely held computed hydration sites indicates protein desolvation effects contribute significantly to PBP3 binding, and analysis of hydration site energies allows rank ordering of the second-order acylation rate constants. Taken together, these structural, biochemical, and computational studies provide a molecular basis for recognition of P. aeruginosa PBP3 and open avenues for future design of inhibitors of this class of PBPs.

  11. Structural basis for effectiveness of siderophore-conjugated monocarbams against clinically relevant strains of Pseudomonas aeruginosa

    PubMed Central

    Han, Seungil; Zaniewski, Richard P.; Marr, Eric S.; Lacey, Brian M.; Tomaras, Andrew P.; Evdokimov, Artem; Miller, J. Richard; Shanmugasundaram, Veerabahu

    2010-01-01

    Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that causes nosocomial infections for which there are limited treatment options. Penicillin-binding protein PBP3, a key therapeutic target, is an essential enzyme responsible for the final steps of peptidoglycan synthesis and is covalently inactivated by β-lactam antibiotics. Here we disclose the first high resolution cocrystal structures of the P. aeruginosa PBP3 with both novel and marketed β-lactams. These structures reveal a conformational rearrangement of Tyr532 and Phe533 and a ligand-induced conformational change of Tyr409 and Arg489. The well-known affinity of the monobactam aztreonam for P. aeruginosa PBP3 is due to a distinct hydrophobic aromatic wall composed of Tyr503, Tyr532, and Phe533 interacting with the gem-dimethyl group. The structure of MC-1, a new siderophore-conjugated monocarbam complexed with PBP3 provides molecular insights for lead optimization. Importantly, we have identified a novel conformation that is distinct to the high-molecular-weight class B PBP subfamily, which is identifiable by common features such as a hydrophobic aromatic wall formed by Tyr503, Tyr532, and Phe533 and the structural flexibility of Tyr409 flanked by two glycine residues. This is also the first example of a siderophore-conjugated triazolone-linked monocarbam complexed with any PBP. Energetic analysis of tightly and loosely held computed hydration sites indicates protein desolvation effects contribute significantly to PBP3 binding, and analysis of hydration site energies allows rank ordering of the second-order acylation rate constants. Taken together, these structural, biochemical, and computational studies provide a molecular basis for recognition of P. aeruginosa PBP3 and open avenues for future design of inhibitors of this class of PBPs. PMID:21135211

  12. Characterization of five newly isolated bacteriophages active against Pseudomonas aeruginosa clinical strains.

    PubMed

    Kwiatek, Magdalena; Mizak, Lidia; Parasion, Sylwia; Gryko, Romuald; Olender, Alina; Niemcewicz, Marcin

    2015-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes serious infections, especially in patients with immunodeficiency. It exhibits multiple mechanisms of resistance, including efflux pumps, antibiotic modifying enzymes and limited membrane permeability. The primary reason for the development of novel therapeutics for P. aeruginosa infections is the declining efficacy of conventional antibiotic therapy. These clinical problems caused a revitalization of interest in bacteriophages, which are highly specific and have very effective antibacterial activity as well as several other advantages over traditional antimicrobial agents. Above all, so far, no serious or irreversible side effects of phage therapy have been described. Five newly purified P. aeruginosa phages named vB_PaeM_WP1, vB_PaeM_WP2, vB_PaeM_WP3, vB_PaeM_WP4 and vB_PaeP_WP5 have been characterized as potential candidates for use in phage therapy. They are representatives of the Myoviridae and Podoviridae families. Their host range, genome size, structural proteins and stability in various physical and chemical conditions were tested. The results of these preliminary investigations indicate that the newly isolated bacteriophages may be considered for use in phagotherapy.

  13. Comparative in vitro activities of enoxacin (CI-919, AT-2266) and eleven antipseudomonal agents against aminoglycoside-susceptible and -resistant Pseudomonas aeruginosa strains.

    PubMed

    Bassey, C M; Baltch, A L; Smith, R P; Conley, P E

    1984-09-01

    The in vitro activity of enoxacin (CI 919, AT 2266), a new oral quinolone carboxylic acid compound, was compared with those of gentamicin, tobramycin, amikacin, azlocillin, piperacillin, aztreonam, moxalactam, imipenem, cefsulodin, ceftazidime, and cefoperazone against 101 aminoglycoside-susceptible and 105 aminoglycoside-resistant Pseudomonas aeruginosa strains. Among these 206 P. aeruginosa isolates were 25 strains with known mechanisms of resistance to amikacin. The activity of enoxacin was similar to that of tobramycin against aminoglycoside-susceptible strains, with MICs of 1.0 to 2.0 micrograms/ml and 0.5 to 1.0 microgram/ml, respectively, for 90% of the strains. Enoxacin was the most active agent in this in vitro study against aminoglycoside-resistant P. aeruginosa strains, with MICs of 2.0 to 4.0 micrograms/ml for 90% of the strains. Strains with enzymatic resistance to amikacin were more resistant to beta-lactams (except enoxacin and imipenem) than were strains with decreased permeability.

  14. Detection of elastase production in Escherichia coli with the elastase structural gene from several non-elastase-producing strains of Pseudomonas aeruginosa.

    PubMed Central

    Tanaka, E; Kawamoto, S; Fukushima, J; Hamajima, K; Onishi, H; Miyagi, Y; Inami, S; Morihara, K; Okuda, K

    1991-01-01

    The elastase structural gene from Pseudomonas aeruginosa IFO 3455 has been cloned and sequenced. Using this gene as a probe, we cloned the DNA fragments (pEL3080R, pEL10, and pEL103R) of the elastase gene from non-elastase-producing strains (P. aeruginosa IFO 3080, N-10, and PA103 respectively). These three Pseudomonas strains showed no detectable levels of elastase antigenicity by Western blotting (immunoblotting) or by elastase activity. When elastase structural genes about 8 kb in length were cloned into pUC18, an Escherichia coli expression vector, we were able to detect both elastase antigenicity and elastolytic activity in two bacterial clones (E. coli pEL10 and E. coli pEL103R). However, neither elastolytic activity nor elastase antigenicity was detected in the E. coli pEL3080R clone, although elastase mRNA was observed. The partial restriction map determined with several restriction enzymes of these three structural genes corresponded to that of P. aeruginosa IFO 3455. We sequenced the three DNA segments of the elastase gene from non-elastase-producing strains and compared the sequences with those from the elastase-producing P. aeruginosa strains IFO 3455 and PAO1. In P. aeruginosa N-10 and PA103, the sequences were almost identical to those from elastase-producing strains, except for several nucleotide differences. These minor differences may reflect a microheterogeneity of the elastase gene. These results suggest that two of the non-elastase-producing strains have the normal elastase structural gene and that elastase production is repressed by regulation of this gene expression in P. aeruginosa. Possible reasons for the lack of expression in these two strains are offered in this paper. In P. aeruginosa IFO 3080, the sequence had a 1-base deletion in the coding region, which should have caused a frameshift variation in the amino acid sequence. At present, we have no explanation for the abnormal posttransciptional behavior of this strain. Images PMID

  15. Art-175 Is a Highly Efficient Antibacterial against Multidrug-Resistant Strains and Persisters of Pseudomonas aeruginosa

    PubMed Central

    Briers, Yves; Walmagh, Maarten; Grymonprez, Barbara; Biebl, Manfred; Pirnay, Jean-Paul; Defraine, Valerie; Michiels, Jan; Cenens, William; Aertsen, Abram; Miller, Stefan

    2014-01-01

    Artilysins constitute a novel class of efficient enzyme-based antibacterials. Specifically, they covalently combine a bacteriophage-encoded endolysin, which degrades the peptidoglycan, with a targeting peptide that transports the endolysin through the outer membrane of Gram-negative bacteria. Art-085, as well as Art-175, its optimized homolog with increased thermostability, are each composed of the sheep myeloid 29-amino acid (SMAP-29) peptide fused to the KZ144 endolysin. In contrast to KZ144, Art-085 and Art-175 pass the outer membrane and kill Pseudomonas aeruginosa, including multidrug-resistant strains, in a rapid and efficient (∼5 log units) manner. Time-lapse microscopy confirms that Art-175 punctures the peptidoglycan layer within 1 min, inducing a bulging membrane and complete lysis. Art-175 is highly refractory to resistance development by naturally occurring mutations. In addition, the resistance mechanisms against 21 therapeutically used antibiotics do not show cross-resistance to Art-175. Since Art-175 does not require an active metabolism for its activity, it has a superior bactericidal effect against P. aeruginosa persisters (up to >4 log units compared to that of the untreated controls). In summary, Art-175 is a novel antibacterial that is well suited for a broad range of applications in hygiene and veterinary and human medicine, with a unique potential to target persister-driven chronic infections. PMID:24752267

  16. Multiple Mutations Lead to MexXY-OprM-Dependent Aminoglycoside Resistance in Clinical Strains of Pseudomonas aeruginosa

    PubMed Central

    Guénard, Sophie; Muller, Cédric; Monlezun, Laura; Benas, Philippe; Broutin, Isabelle; Jeannot, Katy

    2014-01-01

    Constitutive overproduction of the pump MexXY-OprM is recognized as a major cause of resistance to aminoglycosides, fluoroquinolones, and zwitterionic cephalosporins in Pseudomonas aeruginosa. In this study, 57 clonally unrelated strains recovered from non-cystic fibrosis patients were analyzed to characterize the mutations resulting in upregulation of the mexXY operon. Forty-four (77.2%) of the strains, classified as agrZ mutants were found to harbor mutations inactivating the local repressor gene (mexZ) of the mexXY operon (n = 33; 57.9%) or introducing amino acid substitutions in its product, MexZ (n = 11; 19.3%). These sequence variations, which mapped in the dimerization domain, the DNA binding domain, or the rest of the MexZ structure, mostly affected amino acid positions conserved in TetR-like regulators. The 13 remaining MexXY-OprM strains (22.8%) contained intact mexZ genes encoding wild-type MexZ proteins. Eight (14.0%) of these isolates, classified as agrW1 mutants, overexpressed the gene PA5471, which codes for the MexZ antirepressor AmrZ, with 5 strains exhibiting growth defects at 37°C and 44°C, consistent with mutations impairing ribosome activity. Interestingly, one agrW1 mutant appeared to harbor a 7-bp deletion in the coding sequence of the leader peptide, PA5471.1, involved in ribosome-dependent, translational attenuation of PA5471 expression. Finally, DNA sequencing and complementation experiments revealed that 5 (8.8%) strains, classified as agrW2 mutants, harbored single amino acid variations in the sensor histidine kinase of ParRS, a two-component system known to positively control mexXY expression. Collectively, these results demonstrate that clinical strains of P. aeruginosa exploit different regulatory circuitries to mutationally overproduce the MexXY-OprM pump and become multidrug resistant, which accounts for the high prevalence of MexXY-OprM mutants in the clinical setting. PMID:24145539

  17. IDENTIFICATION OF MICROCYSTIN TOXINS FROM A STRAIN OF MICROCYSTIS AERUGINOSA BY LIQUID CHROMATOGRAPHY INTRODUCTION INTO A HYBRID LINEAR ION TRAP-FOURIER TRANSFORM ION CYCLOTRON RESONANCE MASS SPECTROMETER

    EPA Science Inventory

    The cyclic heptapeptide microcystin toxins produced by a strain of Microcystis aeruginosa that has not been investigated previously were separated by liquid chromatography and identified by high-accuracy m/z measurements of their [M + H]+ ions and the fragment i...

  18. [The biological kinetics of biofilms of clinical strains of Staphylococcus aureus and Pseudomonas aeruginosa separated from patients with bronchopulmonary complications under traumatic disease of spinal cord].

    PubMed

    Ul'ianov, V Iu; Opredelentseva, S V; Shvidenko, I G; Norkin, I A; Korshunov, G V; Gladkova, E V

    2014-08-01

    The capacity and intensity of formation of microbial biofilms was analyzed in 24 strains of Staphylococcus aureus and Pseudomonas aeruginosa in static conditions of cultivation during 24, 48, 72 and 96 yours. The microorganisms were separated from patients with bronchopulmonary infectious complications in acute and early periods of traumatic disease of spinal cord. PMID:25552053

  19. [The biological kinetics of biofilms of clinical strains of Staphylococcus aureus and Pseudomonas aeruginosa separated from patients with bronchopulmonary complications under traumatic disease of spinal cord].

    PubMed

    Ul'ianov, V Iu; Opredelentseva, S V; Shvidenko, I G; Norkin, I A; Korshunov, G V; Gladkova, E V

    2014-08-01

    The capacity and intensity of formation of microbial biofilms was analyzed in 24 strains of Staphylococcus aureus and Pseudomonas aeruginosa in static conditions of cultivation during 24, 48, 72 and 96 yours. The microorganisms were separated from patients with bronchopulmonary infectious complications in acute and early periods of traumatic disease of spinal cord.

  20. Unusual non-fluorescent broad spectrum siderophore activity (SID EGYII) by Pseudomonas aeruginosa strain EGYII DSM 101801 and a new insight towards simple siderophore bioassay.

    PubMed

    Embaby, Amira M; Heshmat, Yasmin; Hussein, Ahmed

    2016-03-01

    Present study highlights an unusual non-fluorescent hydroxamate broad spectrum siderophore (SID EGYII) activity from Pseudomonas aeruginosa strain EGYII DSM 101801, a soil bacterial isolate, along with simple low cost effective siderophore bioassay. Detection of SID EGYII activity qualitatively was proved by masking this activity against Erwinia amylovora strain EGY1 DSM 101800, an indicator strain, in well-cut diffusion assay containing 100 µM FeCl3. SID EGYII activity was expressed quantitatively as arbitrary units [Siderophore arbitrary units (SAU)] 380 SAU/mL against E. amylovora strain EGY1 DSM 101800. Maximal SID EGYII activity was achieved upon growing P. aeruginosa strain EGYII DSM 101801 in PYB broth at 180 rpm for 24 h. SID EGYII displayed a broad spectrum antimicrobial activity against some human pathogens (i.e., Gram-positive bacteria, Gram-negative bacteria and yeasts) and a fireblight plant pathogen. Interestingly, transformants of Escherichia coli JM109 (DE3)pSID/EGYII harboring P. aeruginosa strain EGYII DSM 101801 plasmid demonstrated a perceivable antimicrobial activity against E. amylovora strain EGY1 DSM 101800. The broad spectrum antimicrobial activity of the unusual non-fluorescent SID EGYII would underpin its high potential in targeting bacterial pathogens posing probable threats to human health and agricultural economy. The present simple low cost effective bioassay is a new insight towards an alternative to the expensive cumbersome siderophore Chrome Azurol S assay. PMID:27015845

  1. The MSHA strain of Pseudomonas aeruginosa (PA-MSHA) inhibits gastric carcinoma progression by inducing M1 macrophage polarization.

    PubMed

    Wang, Changming; Hu, Zunqi; Zhu, Zhenxin; Zhang, Xin; Wei, Ziran; Zhang, Yu; Hu, Dali; Cai, Qingping

    2016-05-01

    Macrophages play crucial roles in promoting tumor development and progression. In the present study, we found that the mannose-sensitive hemagglutination pilus strain of Pseudomonas aeruginosa (PA-MSHA) was efficient in inducing M1 macrophage polarization. PA-MSHA treatment increases expression of M1-related cytokines and promotes activation of murine peritoneal macrophages (MPM). Interestingly, PA-MSHA inhibits cell proliferation and migration and induces the apoptosis of gastric carcinoma cells. These effects of PA-MSHA on M1 polarization were associated with activation of NF-κB expression. Thus, inducing polarization of M1 by PA-MSHA may be one potential strategy for inhibiting gastric carcinoma progression in mice.

  2. In vitro and in vivo antibacterial activity of environmental bacteriophages against Pseudomonas aeruginosa strains from cystic fibrosis patients.

    PubMed

    Olszak, Tomasz; Zarnowiec, Paulina; Kaca, Wieslaw; Danis-Wlodarczyk, Katarzyna; Augustyniak, Daria; Drevinek, Pavel; de Soyza, Anthony; McClean, Siobhán; Drulis-Kawa, Zuzanna

    2015-07-01

    The goal of the study was to determine the relationship between in vitro/in vivo efficacy of environmental Pseudomonas phages and certain phenotypical properties of Pseudomonas aeruginosa (PA) strains. We studied the diversity between particular isolates and determined phage sensitivity in vitro and in vivo in the Galleria mellonella insect model. Twenty-eight lytic bacteriophages specific for PA were tested against 121 CF PA isolates including 29 mucoid PA strains. Most strains from cystic fibrosis (CF) patients were lysed by at least three phages (93.6 %), but completely insensitive strains were also present (6.4 %). Two phages PA5oct and KT28 exhibited high rates of lytic potency on 55-68 % of PA strains (72-86 % of mucoid isolates). We further explored phage activity against six PA strains (CF and non-CF) in vitro, comparing clonal differences in phage susceptibility with bacterial properties such as the ability to form biofilms, mucosity, twitching motility, and biochemical profiles. We observed the relationship between variation in phage susceptibility and Fourier transform infrared spectroscopy (FTIR) analysis in the spectra window of carbohydrates. The protective efficacy of two selected phages against PA PAO1 and 0038 infection was confirmed in vivo in G. mellonella larvae. Generally, the wax moth model results confirmed the data from in vitro assays, but in massive infection of CF isolates, the application of lytic phages probably led to the release of toxic compound causing an increase in larvae mortality. We assumed that apart of in vitro phage activity testing, a simple and convenient wax moth larvae model should be applied for the evaluation of in vivo effectiveness of particular phage preparations. PMID:25758956

  3. The Pseudomonas aeruginosa efflux pump MexGHI-OpmD transports a natural phenazine that controls gene expression and biofilm development.

    PubMed

    Sakhtah, Hassan; Koyama, Leslie; Zhang, Yihan; Morales, Diana K; Fields, Blanche L; Price-Whelan, Alexa; Hogan, Deborah A; Shepard, Kenneth; Dietrich, Lars E P

    2016-06-21

    Redox-cycling compounds, including endogenously produced phenazine antibiotics, induce expression of the efflux pump MexGHI-OpmD in the opportunistic pathogen Pseudomonas aeruginosa Previous studies of P. aeruginosa virulence, physiology, and biofilm development have focused on the blue phenazine pyocyanin and the yellow phenazine-1-carboxylic acid (PCA). In P. aeruginosa phenazine biosynthesis, conversion of PCA to pyocyanin is presumed to proceed through the intermediate 5-methylphenazine-1-carboxylate (5-Me-PCA), a reactive compound that has eluded detection in most laboratory samples. Here, we apply electrochemical methods to directly detect 5-Me-PCA and find that it is transported by MexGHI-OpmD in P. aeruginosa strain PA14 planktonic and biofilm cells. We also show that 5-Me-PCA is sufficient to fully induce MexGHI-OpmD expression and that it is required for wild-type colony biofilm morphogenesis. These physiological effects are consistent with the high redox potential of 5-Me-PCA, which distinguishes it from other well-studied P. aeruginosa phenazines. Our observations highlight the importance of this compound, which was previously overlooked due to the challenges associated with its detection, in the context of P. aeruginosa gene expression and multicellular behavior. This study constitutes a unique demonstration of efflux-based self-resistance, controlled by a simple circuit, in a Gram-negative pathogen.

  4. The Pseudomonas aeruginosa efflux pump MexGHI-OpmD transports a natural phenazine that controls gene expression and biofilm development.

    PubMed

    Sakhtah, Hassan; Koyama, Leslie; Zhang, Yihan; Morales, Diana K; Fields, Blanche L; Price-Whelan, Alexa; Hogan, Deborah A; Shepard, Kenneth; Dietrich, Lars E P

    2016-06-21

    Redox-cycling compounds, including endogenously produced phenazine antibiotics, induce expression of the efflux pump MexGHI-OpmD in the opportunistic pathogen Pseudomonas aeruginosa Previous studies of P. aeruginosa virulence, physiology, and biofilm development have focused on the blue phenazine pyocyanin and the yellow phenazine-1-carboxylic acid (PCA). In P. aeruginosa phenazine biosynthesis, conversion of PCA to pyocyanin is presumed to proceed through the intermediate 5-methylphenazine-1-carboxylate (5-Me-PCA), a reactive compound that has eluded detection in most laboratory samples. Here, we apply electrochemical methods to directly detect 5-Me-PCA and find that it is transported by MexGHI-OpmD in P. aeruginosa strain PA14 planktonic and biofilm cells. We also show that 5-Me-PCA is sufficient to fully induce MexGHI-OpmD expression and that it is required for wild-type colony biofilm morphogenesis. These physiological effects are consistent with the high redox potential of 5-Me-PCA, which distinguishes it from other well-studied P. aeruginosa phenazines. Our observations highlight the importance of this compound, which was previously overlooked due to the challenges associated with its detection, in the context of P. aeruginosa gene expression and multicellular behavior. This study constitutes a unique demonstration of efflux-based self-resistance, controlled by a simple circuit, in a Gram-negative pathogen. PMID:27274079

  5. Sensitive and specific modified Hodge test for KPC and metallo-beta- lactamase detection in Pseudomonas aeruginosa by use of a novel indicator strain, Klebsiella pneumoniae ATCC 700603.

    PubMed

    Pasteran, Fernando; Veliz, Omar; Rapoport, Melina; Guerriero, Leonor; Corso, Alejandra

    2011-12-01

    We evaluated the ability of the modified Hodge test to discriminate between KPC- and metallo-beta-lactamase (MBL)-producing Pseudomonas aeruginosa isolates and carbapenemase nonproducers. With Escherichia coli ATCC 25922 as the indicator strain, the MHT resulted in low sensitivity, specificity, and repeatability. Replacing the indicator strain with Klebsiella pneumoniae ATCC 700603 led to an improved performance (100%, 97%, 0%, and 100% sensitivity, specificity, indeterminate results and repeatability, respectively).

  6. Synergistic effect of membrane-active peptides polymyxin B and gramicidin S on multidrug-resistant strains and biofilms of Pseudomonas aeruginosa.

    PubMed

    Berditsch, Marina; Jäger, Thomas; Strempel, Nikola; Schwartz, Thomas; Overhage, Jörg; Ulrich, Anne S

    2015-09-01

    Multidrug-resistant Pseudomonas aeruginosa is a major cause of severe hospital-acquired infections. Currently, polymyxin B (PMB) is a last-resort antibiotic for the treatment of infections caused by Gram-negative bacteria, despite its undesirable side effects. The delivery of drug combinations has been shown to reduce the required therapeutic doses of antibacterial agents and thereby their toxicity if a synergistic effect is present. In this study, we investigated the synergy between two cyclic antimicrobial peptides, PMB and gramicidin S (GS), against different P. aeruginosa isolates, using a quantitative checkerboard assay with resazurin as a growth indicator. Among the 28 strains that we studied, 20 strains showed a distinct synergistic effect, represented by a fractional inhibitory concentration index (FICI) of ≤0.5. Remarkably, several clinical P. aeruginosa isolates that grew as small-colony variants revealed a nonsynergistic effect, as indicated by FICIs between >0.5 and ≤0.70. In addition to inhibiting the growth of planktonic bacteria, the peptide combinations significantly decreased static biofilm growth compared with treatment with the individual peptides. There was also a faster and more prolonged effect when the combination of PMB and GS was used compared with single-peptide treatments on the metabolic activity of pregrown biofilms. The results of the present study define a synergistic interaction between two cyclic membrane-active peptides toward 17 multidrug-resistant P. aeruginosa and biofilms of P. aeruginosa strain PAO1. Thus, the application of PMB and GS in combination is a promising option for a topical medication and in the prevention of acute and chronic infections caused by multidrug-resistant or biofilm-forming P. aeruginosa. PMID:26077259

  7. Synergistic Effect of Membrane-Active Peptides Polymyxin B and Gramicidin S on Multidrug-Resistant Strains and Biofilms of Pseudomonas aeruginosa

    PubMed Central

    Berditsch, Marina; Jäger, Thomas; Strempel, Nikola; Schwartz, Thomas; Overhage, Jörg

    2015-01-01

    Multidrug-resistant Pseudomonas aeruginosa is a major cause of severe hospital-acquired infections. Currently, polymyxin B (PMB) is a last-resort antibiotic for the treatment of infections caused by Gram-negative bacteria, despite its undesirable side effects. The delivery of drug combinations has been shown to reduce the required therapeutic doses of antibacterial agents and thereby their toxicity if a synergistic effect is present. In this study, we investigated the synergy between two cyclic antimicrobial peptides, PMB and gramicidin S (GS), against different P. aeruginosa isolates, using a quantitative checkerboard assay with resazurin as a growth indicator. Among the 28 strains that we studied, 20 strains showed a distinct synergistic effect, represented by a fractional inhibitory concentration index (FICI) of ≤0.5. Remarkably, several clinical P. aeruginosa isolates that grew as small-colony variants revealed a nonsynergistic effect, as indicated by FICIs between >0.5 and ≤0.70. In addition to inhibiting the growth of planktonic bacteria, the peptide combinations significantly decreased static biofilm growth compared with treatment with the individual peptides. There was also a faster and more prolonged effect when the combination of PMB and GS was used compared with single-peptide treatments on the metabolic activity of pregrown biofilms. The results of the present study define a synergistic interaction between two cyclic membrane-active peptides toward 17 multidrug-resistant P. aeruginosa and biofilms of P. aeruginosa strain PAO1. Thus, the application of PMB and GS in combination is a promising option for a topical medication and in the prevention of acute and chronic infections caused by multidrug-resistant or biofilm-forming P. aeruginosa. PMID:26077259

  8. Synergistic effect of membrane-active peptides polymyxin B and gramicidin S on multidrug-resistant strains and biofilms of Pseudomonas aeruginosa.

    PubMed

    Berditsch, Marina; Jäger, Thomas; Strempel, Nikola; Schwartz, Thomas; Overhage, Jörg; Ulrich, Anne S

    2015-09-01

    Multidrug-resistant Pseudomonas aeruginosa is a major cause of severe hospital-acquired infections. Currently, polymyxin B (PMB) is a last-resort antibiotic for the treatment of infections caused by Gram-negative bacteria, despite its undesirable side effects. The delivery of drug combinations has been shown to reduce the required therapeutic doses of antibacterial agents and thereby their toxicity if a synergistic effect is present. In this study, we investigated the synergy between two cyclic antimicrobial peptides, PMB and gramicidin S (GS), against different P. aeruginosa isolates, using a quantitative checkerboard assay with resazurin as a growth indicator. Among the 28 strains that we studied, 20 strains showed a distinct synergistic effect, represented by a fractional inhibitory concentration index (FICI) of ≤0.5. Remarkably, several clinical P. aeruginosa isolates that grew as small-colony variants revealed a nonsynergistic effect, as indicated by FICIs between >0.5 and ≤0.70. In addition to inhibiting the growth of planktonic bacteria, the peptide combinations significantly decreased static biofilm growth compared with treatment with the individual peptides. There was also a faster and more prolonged effect when the combination of PMB and GS was used compared with single-peptide treatments on the metabolic activity of pregrown biofilms. The results of the present study define a synergistic interaction between two cyclic membrane-active peptides toward 17 multidrug-resistant P. aeruginosa and biofilms of P. aeruginosa strain PAO1. Thus, the application of PMB and GS in combination is a promising option for a topical medication and in the prevention of acute and chronic infections caused by multidrug-resistant or biofilm-forming P. aeruginosa.

  9. [Molecular typification of Pseudomonas aeruginosa strains isolated from patients with cystic fibrosis].

    PubMed

    Iglesias, N G; Marengo, J M; Rentería, F; Gatti, B; Segal, E; Semorile, L

    2008-01-01

    Cystic fibrosis is the most frequent lethal genetic disease that affects the caucasian population. The main cause of morbidity is the chronic lung infection, being the infection caused by Pseudomonas aeruginosa the most difficult to eradicate. This bacteria can be acquired in direct form, by person-to-person transfer, or indirectly, by hospital acquired infection. The Centro Provincial de Referencia de Fibrosis Quistica functioning in the Hospital de Niños "Sor María Ludovica", in La Plata, cares almost 220 patients aged two months to 45 years. The life expectancy depends of factors like the early diagnosis of the disease and the later acquisition of the chronic lung infection. The purpose of this work was the molecular typing of P. aeruginosa isolates obtained from cystic fibrosis patients to evaluate the genomic relationship among them. The study was carried out using RAPD-PCR. The analysis showed a great genetic heterogeneity among the isolates. The separation of the patients in groups in accordance with its bacteriology, that implies the attendance in different days and the implementation of isolation (or segregation) measures had demonstrated to be, in addition to other strategies, effective in the reduction of cross infections. PMID:18669045

  10. Interaction of Cr(VI) reduction and denitrification by strain Pseudomonas aeruginosa PCN-2 under aerobic conditions.

    PubMed

    He, Da; Zheng, Maosheng; Ma, Tao; Li, Can; Ni, Jinren

    2015-06-01

    Inhibition of efficient denitrification in presence of toxic heavy metals is one of the current problems encountered in municipal wastewater treatment plants. This paper presents how to remove hexavalent chromium (Cr(VI)) and nitrate simultaneously by the novel strain Pseudomonas aeruginosa PCN-2 under aerobic conditions. The capability of strain PCN-2 for Cr(VI) and nitrate reduction was confirmed by PCR analysis of gene ChrR, napA, nirS, cnorB, nosZ, while Cr(VI) reduction was proved via an initial single-electron transfer through Cr(V) detection using electron paramagnetic resonance. Experimental results demonstrated that Cr(VI) and nitrate reduction by strain PCN-2 was much faster at pH 8-9 and higher initial cell concentration. However, increasing Cr(VI) concentration would inhibit aerobic denitrification process and result in an significant delay of nitrate reduction or N2O accumulation, which was attributed to competition between three electron acceptors, i.e., Cr(VI), O2 and nitrate in the electron transport chain.

  11. CpxR Activates MexAB-OprM Efflux Pump Expression and Enhances Antibiotic Resistance in Both Laboratory and Clinical nalB-Type Isolates of Pseudomonas aeruginosa

    PubMed Central

    Yi, Xue-Xian; O’Gara, Fergal; Wang, Yi-Ping

    2016-01-01

    Resistance-Nodulation-Division (RND) efflux pumps are responsible for multidrug resistance in Pseudomonas aeruginosa. In this study, we demonstrate that CpxR, previously identified as a regulator of the cell envelope stress response in Escherichia coli, is directly involved in activation of expression of RND efflux pump MexAB-OprM in P. aeruginosa. A conserved CpxR binding site was identified upstream of the mexA promoter in all genome-sequenced P. aeruginosa strains. CpxR is required to enhance mexAB-oprM expression and drug resistance, in the absence of repressor MexR, in P. aeruginosa strains PA14. As defective mexR is a genetic trait associated with the clinical emergence of nalB-type multidrug resistance in P. aeruginosa during antibiotic treatment, we investigated the involvement of CpxR in regulating multidrug resistance among resistant isolates generated in the laboratory via antibiotic treatment and collected in clinical settings. CpxR is required to activate expression of mexAB-oprM and enhances drug resistance, in the absence or presence of MexR, in ofloxacin-cefsulodin-resistant isolates generated in the laboratory. Furthermore, CpxR was also important in the mexR-defective clinical isolates. The newly identified regulatory linkage between CpxR and the MexAB-OprM efflux pump highlights the presence of a complex regulatory network modulating multidrug resistance in P. aeruginosa. PMID:27736975

  12. Isolation of Pseudomonas aeruginosa strains from dental office environments and units in Barretos, state of São Paulo, Brazil, and analysis of their susceptibility to antimicrobial drugs

    PubMed Central

    de Oliveira, Ana Claudia; Maluta, Renato Pariz; Stella, Ariel Eurides; Rigobelo, Everlon Cid; Marin, José Moacir; de Ávila, Fernando Antonio

    2008-01-01

    A wide variety of opportunistic pathogens has been detected in the tubing supplying water to odontological equipment, in special in the biofilm lining of these tubes. Among these pathogens, Pseudomonas aeruginosa, one of the leading causes of nosocomial infections, is frequently found in water lines supplying dental units. In the present work, 160 samples of water, and 200 fomite samples from forty dental units were collected in the city of Barretos, State of São Paulo, Brazil and evaluated between January and July, 2005. Seventy-six P. aeruginosa strains, isolated from the dental environment (5 strains) and water system (71 strains), were tested for susceptibility to six antimicrobial drugs most frequently used against P. aeruginosa infections. Susceptibility to ciprofloxacin, followed by meropenem was the predominant profile. The need for effective means of reducing the microbial burden within dental unit water lines is emphasized, and the risk of exposure and cross-infection in dental practice, in special when caused by opportunistic pathogens like P. aeruginosa, are highlighted. PMID:24031269

  13. Pseudomonas aeruginosa High-Level Resistance to Polymyxins and Other Antimicrobial Peptides Requires cprA, a Gene That Is Disrupted in the PAO1 Strain

    PubMed Central

    Gutu, Alina D.; Rodgers, Nicole S.; Park, Jihye

    2015-01-01

    The arn locus, found in many Gram-negative bacterial pathogens, mediates resistance to polymyxins and other cationic antimicrobial peptides through 4-amino-l-arabinose modification of the lipid A moiety of lipopolysaccharide. In Pseudomonas aeruginosa, several two-component regulatory systems (TCSs) control the arn locus, which is necessary but not sufficient for these resistance phenotypes. A previous transposon mutagenesis screen to identify additional polymyxin resistance genes that these systems regulate implicated an open reading frame designated PA1559 in the genome of the P. aeruginosa PAO1 strain. Resequencing of this chromosomal region and bioinformatics analysis for a variety of P. aeruginosa strains revealed that in the sequenced PAO1 strain, a guanine deletion at the end of PA1559 results in a frameshift and truncation of a full-length open reading frame that also encompasses PA1560 in non-PAO1 strains, such as P. aeruginosa PAK. Deletion analysis in the PAK strain showed that this full-length open reading frame, designated cprA, is necessary for polymyxin resistance conferred by activating mutations in the PhoPQ, PmrAB, and CprRS TCSs. The cprA gene was also required for PmrAB-mediated resistance to other cationic antimicrobial peptides in the PAK strain. Repair of the mutated cprA allele in the PAO1 strain restored polymyxin resistance conferred by an activating TCS mutation. The deletion of cprA did not affect the arn-mediated lipid A modification, indicating that the CprA protein is necessary for a different aspect of polymyxin resistance. This protein has a domain structure with a strong similarity to the extended short-chain dehydrogenase/reductase family that comprises isomerases, lyases, and oxidoreductases. These results suggest a new avenue through which to pursue targeted inhibition of polymyxin resistance. PMID:26100714

  14. The Effect of Infection Control Nurses on the Occurrence of Pseudomonas aeruginosa Healthcare-Acquired Infection and Multidrug-Resistant Strains in Critically-Ill Children

    PubMed Central

    Xu, Wei; He, Linxi; Liu, Chunfeng; Rong, Jian; Shi, Yongyan; Song, Wenliang; Zhang, Tao; Wang, Lijie

    2015-01-01

    Background Healthcare-acquired Pseudomonas aeruginosa (P. aeruginosa) infections in the Pediatric Intensive Care Unit (PICU), which have a high incidence, increase treatment costs and mortality, and seriously threaten the safety of critically ill children. It is essential to seek convenient and effective methods to control and prevent healthcare-acquired infections (HAIs). This research was conducted to study the effect of infection control nurses on the occurrence of P. aeruginosa HAIs and multi-drug resistance (MDR) strains in PICU. Methods The clinical data was divided into two groups, with the age ranging from 1 month to 14 years. One group of the critically ill patients(N = 3,722) was admitted to PICU from 2007 to 2010, without the management of infection control nurses. The other group of the critically ill patients (N = 3,943) was admitted to PICU from 2011 to 2013, with the management of infection control nurses. Compare the mortality, morbidity and the incidence of acquired P. aeruginosa infections to evaluate the effect of infection control nurses. Results After implementation of the post of infection control nurses, the patient's overall mortality fell from 4.81% to 3.73%. Among the patients with endotracheal intubation more than 48 hours, the incidence of endotracheal intubation-related pneumonia decreased from 44.6% to 34.32%. The mortality of patients with endotracheal intubation decreased from 16.96% to 10.17%, and the morbidity of HAIs with P. aeruginosa decreased from 1.89% to 1.07%. The mutual different rate (MDR) dropped from 67.95% to 44.23%. There were remarkable differences in these rates between the two groups (p<0.05). Conclusion Implementing the post of infection control nurses is associated with effectively reducing the HAI rate, especially the incidence and morbidity of P. aeruginosa HAIs, reducing PICU mortality, improving P. aeruginosa drug resistance. PMID:26630032

  15. Motility activity, slime production, biofilm formation and genetic typing by ERIC-PCR for Pseudomonas aeruginosa strains isolated from bovine and other sources (human and environment).

    PubMed

    Wolska, K; Szweda, P; Lada, K; Rytel, E; Gucwa, K; Kot, B; Piechota, M

    2014-01-01

    The molecular-typing strategy, ERIC-PCR was used in an attempt to determine the genomic relationship of 28 P. aeruginosa strains isolated from faeces of healthy bovine, bovine mastitis and from faeces of hospital patients as well as from environment. ERIC-PCR fingerprinting revealed large molecular differentiation within this group of isolates. Twenty two out of 28 strains tested generated unique patterns of DNA bands and only three genotypes consisted of two isolates each were identified. We also tested the P. aeruginosa isolates for their ability to form a biofilm on abiotic surfaces including polyvinylchloride and polystyrene. Different biofilm-forming abilities were demonstrated among strains; however, most of them (64.3%) showed moderate-biofilm forming ability. The strains with increased swimming and twitching motility displayed elevated biofilm formation. However, a negative correlation was found between slime and initial biofilm production. On the basis of the results obtained, we suggest that there are no major differences in phenotypic properties between P. aeruginosa strains isolated from different sources.

  16. A Geobacter sulfurreducens Strain Expressing Pseudomonas aeruginosa Type IV Pili Localizes OmcS on Pili but Is Deficient in Fe(III) Oxide Reduction and Current Production

    PubMed Central

    Liu, Xing; Tremblay, Pier-Luc; Malvankar, Nikhil S.; Nevin, Kelly P.; Vargas, Madeline

    2014-01-01

    The conductive pili of Geobacter species play an important role in electron transfer to Fe(III) oxides, in long-range electron transport through current-producing biofilms, and in direct interspecies electron transfer. Although multiple lines of evidence have indicated that the pili of Geobacter sulfurreducens have a metal-like conductivity, independent of the presence of c-type cytochromes, this claim is still controversial. In order to further investigate this phenomenon, a strain of G. sulfurreducens, designated strain PA, was constructed in which the gene for the native PilA, the structural pilin protein, was replaced with the PilA gene of Pseudomonas aeruginosa PAO1. Strain PA expressed and properly assembled P. aeruginosa PilA subunits into pili and exhibited a profile of outer surface c-type cytochromes similar to that of a control strain expressing the G. sulfurreducens PilA. Surprisingly, the strain PA pili were decorated with the c-type cytochrome OmcS in a manner similar to the control strain. However, the strain PA pili were 14-fold less conductive than the pili of the control strain, and strain PA was severely impaired in Fe(III) oxide reduction and current production. These results demonstrate that the presence of OmcS on pili is not sufficient to confer conductivity to pili and suggest that there are unique structural features of the G. sulfurreducens PilA that are necessary for conductivity. PMID:24296506

  17. Occurrence of D-rhamnan as the common antigen reactive against monoclonal antibody E87 in Pseudomonas aeruginosa IFO 3080 and other strains.

    PubMed Central

    Yokota, S; Kaya, S; Araki, Y; Ito, E; Kawamura, T; Sawada, S

    1990-01-01

    S. Sawada and co-workers reported that a monoclonal antibody (MAb), E87, interacted with about 80% of Pseudomonas aeruginosa isolates, and they separated a rhamnose-rich polysaccharide as the probable antigen for MAb E87 from P. aeruginosa IFO 3080 (S. Sawada, T. Kawamura, Y. Masuho, and K. Tomibe, J. Infec. Dis. 152:1290-1299, 1985). In the present study, the rhamnose-rich polysaccharide was shown to be structurally and immunologically identical to the D-rhamnan of P. aeruginosa IID 1008 (S. Yokota, S. Kaya, S. Sawada, T. Kawamura, Y. Araki, and E. Ito, Eur. J. Biochem. 167:203-209, 1987). Furthermore, a set of enzymes responsible for the formation of GDP-rhamnose (probably in a D-form) from GDP-D-mannose was found in the 100,000 x g supernatant fractions obtained from all of nine P. aeruginosa strains reactive against MAb E87. The result strongly supports a possibility that lipopolysaccharides having a D-rhamnan chain widely occur as the common antigen among various P. aeruginosa isolates. PMID:2120200

  18. Multidrug-resistant Pseudomonas aeruginosa strain that caused an outbreak in a neurosurgery ward and its aac(6')-Iae gene cassette encoding a novel aminoglycoside acetyltransferase.

    PubMed

    Sekiguchi, Jun-ichiro; Asagi, Tsukasa; Miyoshi-Akiyama, Tohru; Fujino, Tomoko; Kobayashi, Intetsu; Morita, Koji; Kikuchi, Yoshihiro; Kuratsuji, Tadatoshi; Kirikae, Teruo

    2005-09-01

    We characterized multidrug-resistant Pseudomonas aeruginosa strains isolated from patients involved in an outbreak of catheter-associated urinary tract infections that occurred in a neurosurgery ward of a hospital in Sendai, Japan. Pulsed-field gel electrophoresis of SpeI-, XbaI-, or HpaI-digested genomic DNAs from the isolates revealed that clonal expansion of a P. aeruginosa strain designated IMCJ2.S1 had occurred in the ward. This strain possessed broad-spectrum resistance to aminoglycosides, beta-lactams, fluoroquinolones, tetracyclines, sulfonamides, and chlorhexidine. Strain IMCJ2.S1 showed a level of resistance to some kinds of disinfectants similar to that of a control strain of P. aeruginosa, ATCC 27853. IMCJ2.S1 contained a novel class 1 integron, In113, in the chromosome but not on a plasmid. In113 contains an array of three gene cassettes of bla(IMP-1), a novel aminoglycoside resistance gene, and the aadA1 gene. The aminoglycoside resistance gene, designated aac(6')-Iae, encoded a 183-amino-acid protein that shared 57.1% identity with AAC(6')-Iq. Recombinant AAC(6')-Iae protein showed aminoglycoside 6'-N-acetyltransferase activity by thin-layer chromatography. Escherichia coli expressing exogenous aac(6')-Iae showed resistance to amikacin, dibekacin, isepamicin, kanamycin, netilmicin, sisomicin, and tobramycin but not to arbekacin, gentamicins, or streptomycin. Alterations of gyrA and parC at the amino acid sequence level were detected in IMCJ2.S1, suggesting that such mutations confer the resistance to fluoroquinolones observed for this strain. These results indicate that P. aeruginosa IMCJ2.S1 has developed multidrug resistance by acquiring resistance determinants, including a novel member of the aac(6')-I family and mutations in drug resistance genes.

  19. Glutathione-Disrupted Biofilms of Clinical Pseudomonas aeruginosa Strains Exhibit an Enhanced Antibiotic Effect and a Novel Biofilm Transcriptome.

    PubMed

    Klare, William; Das, Theerthankar; Ibugo, Amaye; Buckle, Edwina; Manefield, Mike; Manos, Jim

    2016-08-01

    Pseudomonas aeruginosa infections result in high morbidity and mortality rates for individuals with cystic fibrosis (CF), with premature death often occurring. These infections are complicated by the formation of biofilms in the sputum. Antibiotic therapy is stymied by antibiotic resistance of the biofilm matrix, making novel antibiofilm strategies highly desirable. Within P. aeruginosa biofilms, the redox factor pyocyanin enhances biofilm integrity by intercalating with extracellular DNA. The antioxidant glutathione (GSH) reacts with pyocyanin, disrupting intercalation. This study investigated GSH disruption by assaying the physiological effects of GSH and DNase I on biofilms of clinical CF isolates grown in CF artificial sputum medium (ASMDM+). Confocal scanning laser microscopy showed that 2 mM GSH, alone or combined with DNase I, significantly disrupted immature (24-h) biofilms of Australian epidemic strain (AES) isogens AES-1R and AES-1M. GSH alone greatly disrupted mature (72-h) AES-1R biofilms, resulting in significant differential expression of 587 genes, as indicated by RNA-sequencing (RNA-seq) analysis. Upregulated systems included cyclic diguanylate and pyoverdine biosynthesis, the type VI secretion system, nitrate metabolism, and translational machinery. Biofilm disruption with GSH revealed a cellular physiology distinct from those of mature and dispersed biofilms. RNA-seq results were validated by biochemical and quantitative PCR assays. Biofilms of a range of CF isolates disrupted with GSH and DNase I were significantly more susceptible to ciprofloxacin, and increased antibiotic effectiveness was achieved by increasing the GSH concentration. This study demonstrated that GSH, alone or with DNase I, represents an effective antibiofilm treatment when combined with appropriate antibiotics, pending in vivo studies.

  20. Glutathione-Disrupted Biofilms of Clinical Pseudomonas aeruginosa Strains Exhibit an Enhanced Antibiotic Effect and a Novel Biofilm Transcriptome.

    PubMed

    Klare, William; Das, Theerthankar; Ibugo, Amaye; Buckle, Edwina; Manefield, Mike; Manos, Jim

    2016-08-01

    Pseudomonas aeruginosa infections result in high morbidity and mortality rates for individuals with cystic fibrosis (CF), with premature death often occurring. These infections are complicated by the formation of biofilms in the sputum. Antibiotic therapy is stymied by antibiotic resistance of the biofilm matrix, making novel antibiofilm strategies highly desirable. Within P. aeruginosa biofilms, the redox factor pyocyanin enhances biofilm integrity by intercalating with extracellular DNA. The antioxidant glutathione (GSH) reacts with pyocyanin, disrupting intercalation. This study investigated GSH disruption by assaying the physiological effects of GSH and DNase I on biofilms of clinical CF isolates grown in CF artificial sputum medium (ASMDM+). Confocal scanning laser microscopy showed that 2 mM GSH, alone or combined with DNase I, significantly disrupted immature (24-h) biofilms of Australian epidemic strain (AES) isogens AES-1R and AES-1M. GSH alone greatly disrupted mature (72-h) AES-1R biofilms, resulting in significant differential expression of 587 genes, as indicated by RNA-sequencing (RNA-seq) analysis. Upregulated systems included cyclic diguanylate and pyoverdine biosynthesis, the type VI secretion system, nitrate metabolism, and translational machinery. Biofilm disruption with GSH revealed a cellular physiology distinct from those of mature and dispersed biofilms. RNA-seq results were validated by biochemical and quantitative PCR assays. Biofilms of a range of CF isolates disrupted with GSH and DNase I were significantly more susceptible to ciprofloxacin, and increased antibiotic effectiveness was achieved by increasing the GSH concentration. This study demonstrated that GSH, alone or with DNase I, represents an effective antibiofilm treatment when combined with appropriate antibiotics, pending in vivo studies. PMID:27161630

  1. Multiple roles of Pseudomonas aeruginosa TBCF10839 PilY1 in motility, transport and infection

    PubMed Central

    Bohn, Yu-Sing Tammy; Brandes, Gudrun; Rakhimova, Elza; Horatzek, Sonja; Salunkhe, Prabhakar; Munder, Antje; van Barneveld, Andrea; Jordan, Doris; Bredenbruch, Florian; Häußler, Susanne; Riedel, Kathrin; Eberl, Leo; Jensen, Peter Østrup; Bjarnsholt, Thomas; Moser, Claus; Hoiby, Niels; Tümmler, Burkhard; Wiehlmann, Lutz

    2008-01-01

    Polymorphonuclear neutrophils are the most important mammalian host defence cells against infections with Pseudomonas aeruginosa. Screening of a signature tagged mutagenesis library of the non-piliated P. aeruginosa strain TBCF10839 uncovered that transposon inactivation of its pilY1 gene rendered the bacterium more resistant against killing by neutrophils than the wild type and any other of the more than 3000 tested mutants. Inactivation of pilY1 led to the loss of twitching motility in twitching-proficient wild-type PA14 and PAO1 strains, predisposed to autolysis and impaired the secretion of quinolones and pyocyanin, but on the other hand promoted growth in stationary phase and bacterial survival in murine airway infection models. The PilY1 population consisted of a major full-length and a minor shorter PilY1* isoform. PilY1* was detectable in small extracellular quinolone-positive aggregates, but not in the pilus. P. aeruginosa PilY1 is not an adhesin on the pilus tip, but assists in pilus biogenesis, twitching motility, secretion of secondary metabolites and in the control of cell density in the bacterial population. PMID:19054330

  2. Rapid biodegradation and decolorization of Direct Orange 39 (Orange TGLL) by an isolated bacterium Pseudomonas aeruginosa strain BCH.

    PubMed

    Jadhav, Jyoti P; Phugare, Swapnil S; Dhanve, Rhishikesh S; Jadhav, Shekhar B

    2010-06-01

    A newly isolated novel bacterium from sediments contaminated with dyestuff was identified as Pseudomonas aeruginosa strain BCH by 16S rRNA gene sequence analysis. The bacterium was extraordinarily active and operative over a wide rage of temperature (10-60 degrees C) and salinity (5-6%), for decolorization of Direct Orange 39 (Orange TGLL) at optimum pH 7. This strain was capable of decolorizing Direct Orange 39; 50 mg l(-1) within 45 +/- 5 min, with 93.06% decolorization, while maximally it could decolorize 1.5 g l(-1) of dye within 48 h with 60% decolorization. Analytical studies as, UV-Vis spectroscopy, FTIR, HPLC were employed to confirm the biodegradation of dye and formation of new metabolites. Induction in the activities of lignin peroxidases, DCIP reductase as well as tyrosinase was observed, indicating the significant role of these enzymes in biodegradation of Direct Orange 39. Toxicity studies with Phaseolus mungo and Triticum aestivum revealed the non-toxic nature of degraded metabolites.

  3. Effects of culture conditions of Pseudomonas aeruginosa strain RB on the synthesis of CdSe nanoparticles.

    PubMed

    Ayano, Hiroyuki; Kuroda, Masashi; Soda, Satoshi; Ike, Michihiko

    2015-04-01

    Cadmium selenide (CdSe) was synthesized by Pseudomonas aeruginosa strain RB in a culture containing lactic acid as a carbon source, 1 mM selenite, and 1 mM cadmium under various conditions. High purity (1.02-1.16 of the atomic ratio of Se to Cd) and efficient synthesis of biogenic CdSe nanoparticles were observed at 25-30°C, 0.05-10 g L(-1) NaCl, and neutral pH conditions compared with other tested conditions. However, the size and shape of synthesized CdSe nanoparticles were not changed by changing culture conditions. The contents of S and Se in the particles respectively increased under alkaline and weak acidic conditions. Furthermore, high temperature (>37°C), high salinity (>10 g L(-1) NaCl), and alkaline pH affected the CdSe-synthesizing rate by strain RB. This report is the first optimizing the culture conditions for synthesizing biogenic CdSe nanoparticles in a batch processing.

  4. Rapid detection of Pseudomonas aeruginosa biomarkers in biological fluids using surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Wu, Xiaomeng; Chen, Jing; Zhao, Yiping; Zughaier, Susu M.

    2014-05-01

    Pseudomonas aeruginosa (PA) is an opportunistic pathogen that causes major infection not only in Cystic Fibrosis patients but also in chronic obstructive pulmonary disease and in critically ill patients in intensive care units. Successful antibiotic treatment of the infection relies on accurate and rapid identification of the infectious agents. Conventional microbiological detection methods usually take more than 3 days to obtain accurate results. We have developed a rapid diagnostic technique based on surface-enhanced Raman scattering to directly identify PA from biological fluids. P. aeruginosa strains, PAO1 and PA14, are cultured in lysogeny broth, and the SERS spectra of the broth show the signature Raman peaks from pyocyanin and pyoverdine, two major biomarkers that P. aeruginosa secretes during its growth, as well as lipopolysaccharides. This provides the evidence that the presence of these biomarkers can be used to indicate P. aeruginosa infection. A total of 22 clinical exhaled breath condensates (EBC) samples were obtained from subjects with CF disease and from non-CF healthy donors. SERS spectra of these EBC samples were obtained and further analyzed by both principle component analysis and partial least square-discriminant analysis (PLS-DA). PLS-DA can discriminate the samples with P. aeruginosa infection and the ones without P. aeruginosa infection at 99.3% sensitivity and 99.6% specificity. In addition, this technique can also discriminate samples from subject with CF disease and healthy donor with 97.5% sensitivity and 100% specificity. These results demonstrate the potential of using SERS of EBC samples as a rapid diagnostic tool to detect PA infection.

  5. Biosorption of uranium by Pseudomonas aeruginosa strain CSU immobilized in a novel matrix

    SciTech Connect

    Hu, M.C.Z.; Reeves, M.

    1997-01-01

    A number of polymeric materials, including calcium alginate, polyacrylamide, polysulfone, and polyurethane, were evaluated as possible immobilization matrices for lyophilized biomass of P. aeruginoso CSU. Polyurethane-based materials such as hydrogel were identified as superior candidates for biomass immobilization. A novel polyurethane gel-bead fabrication technique was developed and successfully demonstrated at pilot-plant scale for producing mass qualities of spherical, uniform-size beads. The immobilized bacterial biomass was evaluated via the measurement of sorption isotherms and dynamics within a batch, stirred-tank reactor; and loading and elution behavior within a continuous, upflow, packed-bed columnar reactor. Sorption equilibrium and dynamics in a batch stirred tank were modeled with a pore-diffusion mass transfer model, by which a pore-diffusion coefficient was determined to be approximately 2.0 x 10{sup -6} cm{sup 2}/s for uranyl ion transport through the polyurethane gel matrix. The biosorbent beads were regenerable with dilute (0.01-0.1 M) sodium carbonate solutions. Preliminary column breakthrough-elution studies indicated that P. aeruginosa CSU biomass immobilized within polyurethane gel beads was effective for removal of uranium from low-concentration, acidic wastewater. 35 refs., 9 figs., 4 tabs.

  6. Iron-Regulated Expression of Alginate Production, Mucoid Phenotype, and Biofilm Formation by Pseudomonas aeruginosa

    PubMed Central

    Wiens, Jacinta R.; Vasil, Adriana I.; Schurr, Michael J.; Vasil, Michael L.

    2014-01-01

    ABSTRACT Pseudomonas aeruginosa strains of non-cystic fibrosis (non-CF) origin do not produce significant amounts of extracellular alginate and are nonmucoid. In CF, such isolates can become mucoid through mutation of one of the genes (mucA, mucB, mucC, or mucD) that produce regulatory factors that sequester AlgU, required for increased expression of alginate genes. Mutation of the muc genes in the nonmucoid PAO1, PA14, PAKS-1, and Ps388 strains led to increased levels of extracellular alginate and an obvious mucoid phenotype, but only under iron-limiting growth conditions (≤5 µM), not under iron-replete conditions (≥10 µM). In contrast, >50% of P. aeruginosa isolates from chronic CF pulmonary infections expressed increased levels of alginate and mucoidy both under iron-limiting and iron-replete conditions (i.e., iron-constitutive phenotype). No single iron regulatory factor (e.g., Fur, PvdS) was associated with this loss of iron-regulated alginate expression and mucoidy in these CF isolates. However, the loss of only pyoverdine production, or its uptake, abrogated the ability of P. aeruginosa to produce a robust biofilm that represents the Psl-type of biofilm. In contrast, we show that mutation of the pyoverdine and pyochelin biosynthesis genes and the pyoverdine receptor (FpvA) lead to iron-constitutive expression of the key alginate biosynthesis gene, algD, and an explicitly mucoid phenotype in both iron-limiting and iron-replete conditions. These data indicate that alginate production and mucoidy, in contrast to other types of biofilms produced by P. aeruginosa, are substantially enhanced under iron limitation. These results also have compelling implications in relation to the use of iron chelators in the treatment of P. aeruginosa CF infections. PMID:24496793

  7. Molecular detection of metallo-β-lactamase gene blaVIM-1 in imipenem-resistant Pseudomonas aeruginosa strains isolated from hospitalized patients in the hospitals of Isfahan

    PubMed Central

    Sedighi, Mansour; Vaez, Hamid; Moghoofeie, Mohsen; Hadifar, Shima; Oryan, Golfam; Faghri, Jamshid

    2015-01-01

    Background: Pseudomonas aeruginosa is an opportunistic human pathogen that causes serious problems, especially in people, who have immunodeficiency. In recent times, metallo-β-lactamase (MBLs) resistance in this bacterium has led to some difficulties in treating bacterial infections. The metallo-beta-lactamase family of genes, including blaVIM-1, is being reported with increasing frequency worldwide. The aim of this study is the detection of the metallo-β-lactamase gene blaVIM-1 in imipenem-resistant P. aeruginosa (IRPA) strains isolated from hospitalized patients. Materials and Methods: In this study, 106 P. aeruginosa samples were isolated from various nosocomial infections. The isolates were identified, tested for susceptibility to various antimicrobial agents by the Kirby-Bauer disk diffusion method, and all the imipenem-resistant isolates were screened for the presence of MBLs by using the combined disk (IMP-EDTA). The minimal inhibitory concentration (MIC) of imipenem was determined by E-test on the Mueller-Hinton agar. To detect the blaVIM-1 gene, the isolates were subjected to a polymerase chain reaction (PCR). Results: Of all the P. aeruginosa isolates, 62 (58.5%) were found to be imipenem-resistant P. aeruginosa (MIC ≥32 μg/ml). Twenty-six (42%) of the imipenem-resistant isolates were MBL positive. None of these isolates carried the blaVIM-1 gene using the PCR assay. Conclusion: The results demonstrated the serious therapeutic threat of the MBL-producing P. aeruginosa populations. The rate of imipenem resistance due to MBL was increased dramatically. Early detection and infection-control practices are the best antimicrobial strategies for this organism. None of MBL-producing isolates in this study carry the blaVIM-1 gene; therefore, another gene in the MBL family should be investigated. PMID:25802826

  8. Characterization of the Polymyxin B Resistome of Pseudomonas aeruginosa

    PubMed Central

    Fernández, Lucía; Álvarez-Ortega, Carolina; Wiegand, Irith; Olivares, Jorge; Kocíncová, Dana; Lam, Joseph S.; Martínez, José Luis

    2013-01-01

    Multidrug resistance in Pseudomonas aeruginosa is increasingly becoming a threat for human health. Indeed, some strains are resistant to almost all currently available antibiotics, leaving very limited choices for antimicrobial therapy. In many such cases, polymyxins are the only available option, although as their utilization increases so does the isolation of resistant strains. In this study, we screened a comprehensive PA14 mutant library to identify genes involved in changes of susceptibility to polymyxin B in P. aeruginosa. Surprisingly, our screening revealed that the polymyxin B resistome of this microorganism is fairly small. Thus, only one resistant mutant and 17 different susceptibility/intrinsic resistance determinants were identified. Among the susceptible mutants, a significant number carried transposon insertions in lipopolysaccharide (LPS)-related genes. LPS analysis revealed that four of these mutants (galU, lptC, wapR, and ssg) had an altered banding profile in SDS-polyacrylamide gels and Western blots, with three of them exhibiting LPS core truncation and lack of O-antigen decoration. Further characterization of these four mutants showed that their increased susceptibility to polymyxin B was partly due to increased basal outer membrane permeability. Additionally, these mutants also lacked the aminoarabinose-substituted lipid A species observed in the wild type upon growth in low magnesium. Overall, our results emphasize the importance of LPS integrity and lipid A modification in resistance to polymyxins in P. aeruginosa, highlighting the relevance of characterizing the genes that affect biosynthesis of cell surface structures in this pathogen to follow the evolution of peptide resistance in the clinic. PMID:23070157

  9. A novel Pseudomonas aeruginosa Bacteriophage, Ab31, a Chimera Formed from Temperate Phage PAJU2 and P. putida Lytic Phage AF: Characteristics and Mechanism of Bacterial Resistance

    PubMed Central

    Latino, Libera; Essoh, Christiane; Blouin, Yann; Vu Thien, Hoang; Pourcel, Christine

    2014-01-01

    A novel temperate bacteriophage of Pseudomonas aeruginosa, phage vB_PaeP_Tr60_Ab31 (alias Ab31) is described. Its genome is composed of structural genes related to those of lytic P. putida phage AF, and regulatory genes similar to those of temperate phage PAJU2. The virion structure resembles that of phage AF and other lytic Podoviridae (S. enterica Epsilon 15 and E. coli phiv10) with similar tail spikes. Ab31 was able to infect P. aeruginosa strain PA14 and two genetically related strains called Tr60 and Tr162, out of 35 diverse strains from cystic fibrosis patients. Analysis of resistant host variants revealed different phenotypes, including induction of pigment and alginate overproduction. Whole genome sequencing of resistant variants highlighted the existence of a large deletion of 234 kbp in two strains, encompassing a cluster of genes required for the production of CupA fimbriae. Stable lysogens formed by Ab31 in strain Tr60, permitted the identification of the insertion site. During colonization of the lung in cystic fibrosis patients, P. aeruginosa adapts by modifying its genome. We suggest that bacteriophages such as Ab31 may play an important role in this adaptation by selecting for bacterial characteristics that favor persistence of bacteria in the lung. PMID:24699529

  10. A novel Pseudomonas aeruginosa bacteriophage, Ab31, a chimera formed from temperate phage PAJU2 and P. putida lytic phage AF: characteristics and mechanism of bacterial resistance.

    PubMed

    Latino, Libera; Essoh, Christiane; Blouin, Yann; Vu Thien, Hoang; Pourcel, Christine

    2014-01-01

    A novel temperate bacteriophage of Pseudomonas aeruginosa, phage vB_PaeP_Tr60_Ab31 (alias Ab31) is described. Its genome is composed of structural genes related to those of lytic P. putida phage AF, and regulatory genes similar to those of temperate phage PAJU2. The virion structure resembles that of phage AF and other lytic Podoviridae (S. enterica Epsilon 15 and E. coli phiv10) with similar tail spikes. Ab31 was able to infect P. aeruginosa strain PA14 and two genetically related strains called Tr60 and Tr162, out of 35 diverse strains from cystic fibrosis patients. Analysis of resistant host variants revealed different phenotypes, including induction of pigment and alginate overproduction. Whole genome sequencing of resistant variants highlighted the existence of a large deletion of 234 kbp in two strains, encompassing a cluster of genes required for the production of CupA fimbriae. Stable lysogens formed by Ab31 in strain Tr60, permitted the identification of the insertion site. During colonization of the lung in cystic fibrosis patients, P. aeruginosa adapts by modifying its genome. We suggest that bacteriophages such as Ab31 may play an important role in this adaptation by selecting for bacterial characteristics that favor persistence of bacteria in the lung.

  11. The draft genome sequence of multidrug-resistant Pseudomonas aeruginosa strain CCBH4851, a nosocomial isolate belonging to clone SP (ST277) that is prevalent in Brazil.

    PubMed

    Silveira, Melise; Albano, Rodolpho; Asensi, Marise; Assef, Ana Paula Carvalho

    2014-12-01

    The high occurrence of nosocomial multidrug-resistant (MDR) microorganisms is considered a global health problem. Here, we report the draft genome sequence of a MDR Pseudomonas aeruginosa strain isolated in Brazil that belongs to the endemic clone ST277. The genome encodes important resistance determinant genes and consists of 6.7 Mb with a G+C content of 66.86% and 6,347 predicted coding regions including 60 RNAs. PMID:25466623

  12. Detection of VEB-1, OXA-10 and PER-1 genotypes in extended-spectrum beta-lactamase-producing Pseudomonas aeruginosa strains isolated from burn patients.

    PubMed

    Mirsalehian, Akbar; Feizabadi, Mehdi; Nakhjavani, Farrokh A; Jabalameli, Fereshteh; Goli, Hamidreza; Kalantari, Narges

    2010-02-01

    Resistance of Pseudomonas aeruginosa strains to the broad-spectrum cephalosporins may be mediated by the extended-spectrum beta-lactamases (ESBLs). These enzymes are encoded by different genes located on either chromosomes or plasmids. This study aimed to investigate the prevalence of ESBLs and antimicrobial susceptibilities of P. aeruginosa isolated from burn patients in Tehran, Iran. Antimicrobial susceptibility of 170 isolates to cefpodoxime, aztreonam, ciprofloxacin, ofloxacin, ceftazidime, cefepime, imipenem, meropenem, cefotaxime, levofloxacin, piperacillin-tazobactam and ceftriaxone was determined by disc agar diffusion test. Polymerase chain reaction (PCR) amplification of the genes encoding OXA-10, PER-1 and VEB-1 was also performed. All isolates (100%) were resistant to ceftazidime, cefotaxime, cefepime and aztreonam. Imipenem and meropenem were the most effective anti-pseudomonal agents. The results revealed that 148 (87.05%) of the isolates were multidrug resistant and 67 (39.41%) of the isolates were ESBL positive. Fifty (74.62%), 33 (49.25%) and 21 (31.34%) strains among 67 ESBL-producing strains amplified blaOXA-10, blaPER-1 and blaVEB-1 respectively. In conclusion, the high prevalence of multidrug resistance (87.05%) and production of OXA-10, PER-1 and VEB-1 genes in P. aeruginosa isolates in burn patients confirm that protocols considering these issues should be considered in burn hospitals.

  13. Application of bioflocculating property of Pseudomonas aeruginosa strain IASST201 in treatment of oil-field formation water.

    PubMed

    Pathak, Mihirjyoti; Devi, Arundhuti; Sarma, Hridip Kumar; Lal, Banwari

    2014-07-01

    A bioflocculating activity of 89.8% was depicted by an activated sludge-borne bacteria Pseudomonas aeruginosa strain IASST201 with a yield of bioflocculant of 2.68 g L(-1) obtained from production media broth after optimization of different parameters. The highest bioflocculation efficiency was found at the pre-stationary phase of the bacterial growth period in the production media broth at 96th hour examined from a growth-flocculation kinetics study. 85.67% of bioflocculation was observed in oil-field formation water, with a separation of 68.7% of aliphatic hydrocarbon contents of the formation water after the application of the bacterial bioflocculant by entrapment mechanism with formation of flocs which was analyzed and examined comparatively through gas-chromatography. Extensive removal of heavy metal contents of the oil-field formation water due to bioflocculation was estimated by Atomic Absorption Spectrophotometer (AAS). The SEM and AFM studies declare the extracellular polymeric nature of the bioflocculant produced by this bacterium clumped within bacterial biofilm supported with FTIR study of the extracted bioflocculant.

  14. Real-time PCR based analysis of metal resistance genes in metal resistant Pseudomonas aeruginosa strain J007.

    PubMed

    Choudhary, Sangeeta; Sar, Pinaki

    2016-07-01

    A uranium (U)-resistant and -accumulating Pseudomonas aeruginosa strain was characterized to assess the response of toxic metals toward its growth and expression of metal resistance determinants. The bacterium showed MIC (minimum inhibitory concentration) values of 6, 3, and 2 mM for Zn, Cu, and Cd, respectively; with resistance phenotype conferred by periplasmic Cu sequestering copA and RND type heavy metal efflux czcA genes. Real-time PCR-based expression analysis revealed significant upregulation of both these genes upon exposure to low concentrations of metals for short duration, whereas the global stress response gene sodA encoding superoxide dismutase enzyme was upregulated only at higher metal concentrations or longer exposure time. It could also be inferred that copA and czcA are involved in providing resistance only at low metal concentrations, whereas involvement of "global stress response" phenomenon (expression of sodA) at higher metal concentration or increased exposure was evident. This study provides significant understanding of the adaptive response of bacteria surviving in metal and radionuclide contaminated environments along with the development of real-time PCR-based quantification method of using metal resistance genes as biomarker for monitoring relevant bacteria in such habitats. PMID:26662317

  15. Changes in secondary metabolic profiles of Microcystis aeruginosa strains in response to intraspecific interactions

    PubMed Central

    Briand, Enora; Bormans, Myriam; Gugger, Muriel; Dorrestein, Pieter C.; Gerwick, William H.

    2016-01-01

    Summary The cyanobacteria Microcystis proliferate in freshwater ecosystems and produce bioactive compounds including the harmful toxins microcystins (MC). These secondary metabolites play an important role in shaping community composition through biotic interactions although their role and mode of regulation are poorly understood. As natural cyanobacterial populations include producing and non-producing strains, we tested if the production of a range of peptides by coexisting cells could be regulated through intraspecific interactions. With an innovative co-culturing chamber together with advanced mass spectrometry (MS) techniques, we monitored the growth and compared the metabolic profiles of a MC-producing as well as two non-MC-producing Microcystis strains under mono- and co-culture conditions. In monocultures, these strains grew comparably; however, the non-MC-producing mutant produced higher concentrations of cyanopeptolins, aerucyclamides and aeruginosins than the wild type. Physiological responses to co-culturing were reflected in a quantitative change in the production of the major peptides. Using a MS/MS-based molecular networking approach, we identified new analogues of known classes of peptides as well as new compounds. This work provides new insights into the factors that regulate the production of MC and other secondary metabolites in cyanobacteria, and suggests interchangeable or complementary functions allowing bloom-forming cyanobacteria to efficiently colonize and dominate in fluctuating aquatic environments. PMID:25980449

  16. Biochemical Characterization of Inducible 'Reductase' Component of Benzoate Dioxygenase and Phthalate Isomer Dioxygenases from Pseudomonas aeruginosa strain PP4.

    PubMed

    Karandikar, Rohini; Badri, Abinaya; Phale, Prashant S

    2015-09-01

    The first step involved in the degradation of phthalate isomers (phthalate, isophthalate and terephthalate) is the double hydroxylation by respective aromatic-ring hydroxylating dioxygenases. These are two component enzymes consisting of 'oxygenase' and 'reductase' components. Soil isolate Pseudomonas aeruginosa strain PP4 degrades phthalate isomers via protocatechuate and benzoate via catechol 'ortho' ring cleavage pathway. Metabolic studies suggest that strain PP4 has carbon source-specific inducible phthalate isomer dioxygenase and benzoate dioxygenase. Thus, it was of interest to study the properties of reductase components of these enzymes. Reductase activity from phthalate isomer-grown cells was 3-5-folds higher than benzoate grown cells. In-gel activity staining profile showed a reductase activity band of R f 0.56 for phthalate isomer-grown cells as compared to R f 0.73 from benzoate-grown cells. Partially purified reductase components from phthalate isomer grown cells showed K m in the range of 30-40 μM and V max = 34-48 μmol min(-1) mg(-1). However, reductase from benzoate grown cells showed K m = 49 μM and V max = 10 μmol min(-1) mg(-1). Strikingly similar molecular and kinetic properties of reductase component from phthalate isomer-grown cells suggest that probably the same reductase component is employed in three phthalate isomer dioxygenases. However, reductase component is different, with respect to kinetic properties and zymogram analysis, from benzoate-grown cells when compared to that from phthalate isomer grown cells of PP4.

  17. Association of overexpression of efflux pump genes with antibiotic resistance in Pseudomonas aeruginosa strains clinically isolated from urinary tract infection patients.

    PubMed

    Shigemura, Katsumi; Osawa, Kayo; Kato, Ayaka; Tokimatsu, Issei; Arakawa, Soichi; Shirakawa, Toshiro; Fujisawa, Masato

    2015-09-01

    There are several mechanisms for antibiotic-resistant Pseudomonas aeruginosa. The purpose of this study is to investigate the association between the expression of efflux pump-coding genes and antibiotic resistance in P. aeruginosa causing urinary tract infections (UTIs). We extracted the RNA from 105 clinical strains of P. aeruginosa isolated from UTI patients with full data on antibiotic MICs and assayed real-time quantitative reverse-transcription PCR. We investigated the gene expressions of four resistance nodulation cell division-type multi-drug efflux pump systems (MexAB-OprM, MexCD-OprJ, MexEF-OprN and MexXY(-OprA)) and the correlation of the MICs of nine antibiotics, risk factors and antibiotic resistance-related genes with expressions of mexB, mexC, mexE and mexY. Multivariate statistical data demonstrated a significant relationship between increased expression of mexB or mexC and complicated UTI (Odds ratio=8.03, P<0.001 and Odds ratio=8.86, P=0.032, respectively). We also found a significant association between the increased expression of mexC and resistance to levofloxacin (LVFX) (Odds ratio=4.48, P=0.035). In conclusion, increased expression of mexC leads to LVFX resistance in P. aeruginosa causing UTI. These results contribute to our knowledge of the efflux pump system and antibiotic resistance.

  18. Draft Genome Sequence of Textile Azo Dye-Decolorizing and -Degrading Pseudomonas aeruginosa Strain PFK10, Isolated from the Common Effluent Treatment Plant of the Ankleshwar Industrial Area of Gujarat, India

    PubMed Central

    Faldu, P. R.; Kothari, V. V.; Kothari, C. R.; Rawal, C. M.; Domadia, K. K.; Patel, P. A.; Bhimani, H. D.; Raval, V. H.; Parmar, N. R.; Nathani, N. M.; Koringa, P. G.; Joshi, C. G.

    2014-01-01

    Here, we report the draft genome sequence of Pseudomonas aeruginosa strain PFK10, isolated from the common effluent treatment plant (CETP) of the Ankleshwar industrial area of Gujarat, India. The 6.04-Mb draft genome sequence of strain PFK10 provides information about the genes encoding enzymes that enable the strain to decolorize and degrade textile azo dye. PMID:24503984

  19. Profile of Virulence Factors in the Multi-Drug Resistant Pseudomonas aeruginosa Strains of Human Urinary Tract Infections (UTI)

    PubMed Central

    Habibi, Asghar; Honarmand, Ramin

    2015-01-01

    Background: Putative virulence factors are responsible for the pathogenicity of UTIs caused by Pseudomonas aeruginosa (P. aeruginosa). Resistance of P. aeruginosa to commonly used antibiotics is caused by the extreme overprescription of those antibiotics. Objectives: The goal of the present study was to investigate the prevalence of virulence factors and the antibiotic resistance patterns of P. aeruginosa isolates in UTI cases in Iran. Patients and Methods: Two hundred and fifty urine samples were collected from patients who suffered from UTIs. Samples were cultured immediately, and those that were P. aeruginosa-positive were analyzed for the presence of virulence genes using polymerase chain reaction (PCR) testing. Antimicrobial susceptibility testing (AST) was performed using the disk diffusion method. Results: Of the 250 urine samples analyzed, 8 samples (3.2%) were positive for P. aeruginosa. The prevalence of P. aeruginosa in male and female patients was 2.7% and 3.5%, respectively, (P = 0.035). In patients less than 10 years old, it was 4.2%, and in patients more than 55 years old, it was 4.2%. These were the most commonly infected groups. The highest levels of resistance were seen against ampicillin (87.5%), norfloxacin (62.5%), gentamycin (62.5%), amikacin (62.5%), and aztreonam (62.5%), while the lowest were seen for meropenem (0%), imipenem (12.5%), and polymyxin B (12.5%). LasB (87.5%), pclH (75%), pilB (75%), and exoS (75%) were the most commonly detected virulence factors in the P. aeruginosa isolates. Conclusions: It is logical to first prescribe meropenem, imipenem, and polymyxin B in cases of UTIs caused by P. aeruginosa. Medical practitioners should be aware of the presence of levels of antibiotic resistance in hospitalized UTI patients in Iran. PMID:26756017

  20. Pseudomonas aeruginosa capability to recruit zinc under conditions of limited metal availability is affected by inactivation of the ZnuABC transporter

    PubMed Central

    D'Orazio, Melania; Mastropasqua, Maria Chiara; Cerasi, Mauro; Pacello, Francesca; Consalvo, Ada; Chirullo, Barbara; Mortensen, Brittany; Skaar, Eric P.; Ciavardelli, Domenico; Pasquali, Paolo; Battistoni, Andrea

    2015-01-01

    The ability of a large number of bacterial pathogens to multiply in the infected host and cause disease is dependent on their ability to express high affinity zinc importers. In many bacteria ZnuABC, a transporter of the ABC family, plays a central role in the process of zinc uptake in zinc poor environments, including the tissues of the infected host. To initiate an investigation into the relevance of the zinc uptake apparatus for Pseudomonas aeruginosa pathogenicity, we have generated a znuA mutant in the PA14 strain. We have found that this mutant strain displays a limited growth defect in zinc depleted media. The znuA mutant strain is more sensitive than the wild type strain to calprotectin-mediated growth inhibition, but both the strains are highly resistant to this zinc sequestering antimicrobial protein. Moreover, intracellular zinc content is not evidently affected by inactivation of the ZnuABC transporter. These findings suggest that P. aeruginosa is equipped with redundant mechanisms for the acquisition of zinc that might favor P. aeruginosa colonization of environments containing low levels of this metal. Nonetheless, deletion of znuA affects alginate production, reduces the activity of extracellular zinc-containing proteases, including LasA, LasB and Protease IV, and decreases the ability of P. aeruginosa to disseminate during systemic infections. These results indicate that efficient zinc acquisition is critical for the expression of various virulence features typical of P. aeruginosa and that ZnuABC also plays an important role in zinc homeostasis in this microorganism. PMID:25751674

  1. Sulphide Resistance in the Cyanobacterium Microcystis aeruginosa: a Comparative Study of Morphology and Photosynthetic Performance Between the Sulphide-Resistant Mutant and the Wild-Type Strain.

    PubMed

    Bañares-España, Elena; del Mar Fernández-Arjona, María; García-Sánchez, María Jesús; Hernández-López, Miguel; Reul, Andreas; Mariné, Mariona Hernández; Flores-Moya, Antonio

    2016-05-01

    The cyanobacterium Microcystis aeruginosa is a mesophilic freshwater organism, which cannot tolerate sulphide. However, it was possible to isolate a sulphide-resistant (S(r)) mutant strain that was able to survive in a normally lethal medium sulphide. In order to evaluate the cost of the mutation conferring sulphide resistance in the S(r) strain of M. aeruginosa, the morphology and the photosynthetic performance were compared to that found in the wild-type, sulphide-sensitive (S(s)) strain. An increase in size and a disrupted morphology was observed in S(r) cells in comparison to the S(s) counterpart. Phycoerythrin and phycocyanin levels were higher in the S(r) than in the S(s) cells, whereas a higher carotenoid content, per unit volume, was found in the S(s) strain. The irradiance-saturated photosynthetic oxygen-production rate (GPR max) and the photosynthetic efficiency (measured both by oxygen production and fluorescence, α(GPR) and α(ETR)) were lower in the S(r) strain than in the wild-type. These results appear to be the result of package effect. On the other hand, the S(r) strain showed higher quantum yield of non-photochemical quenching, especially those regulated mechanisms (estimated throughout qN and Y(NPQ)) and a significantly lower slope in the maximum quantum yield of light-adapted samples (Fv'/Fm') compared to the S(s) strain. These findings point to a change in the regulation of the quenching of the transition states (qT) in the S(r) strain which may be generated by a change in the distribution of thylakoidal membranes, which somehow could protect metalloenzymes of the electron transport chain from the lethal effect of sulphide. PMID:26677166

  2. Sulphide Resistance in the Cyanobacterium Microcystis aeruginosa: a Comparative Study of Morphology and Photosynthetic Performance Between the Sulphide-Resistant Mutant and the Wild-Type Strain.

    PubMed

    Bañares-España, Elena; del Mar Fernández-Arjona, María; García-Sánchez, María Jesús; Hernández-López, Miguel; Reul, Andreas; Mariné, Mariona Hernández; Flores-Moya, Antonio

    2016-05-01

    The cyanobacterium Microcystis aeruginosa is a mesophilic freshwater organism, which cannot tolerate sulphide. However, it was possible to isolate a sulphide-resistant (S(r)) mutant strain that was able to survive in a normally lethal medium sulphide. In order to evaluate the cost of the mutation conferring sulphide resistance in the S(r) strain of M. aeruginosa, the morphology and the photosynthetic performance were compared to that found in the wild-type, sulphide-sensitive (S(s)) strain. An increase in size and a disrupted morphology was observed in S(r) cells in comparison to the S(s) counterpart. Phycoerythrin and phycocyanin levels were higher in the S(r) than in the S(s) cells, whereas a higher carotenoid content, per unit volume, was found in the S(s) strain. The irradiance-saturated photosynthetic oxygen-production rate (GPR max) and the photosynthetic efficiency (measured both by oxygen production and fluorescence, α(GPR) and α(ETR)) were lower in the S(r) strain than in the wild-type. These results appear to be the result of package effect. On the other hand, the S(r) strain showed higher quantum yield of non-photochemical quenching, especially those regulated mechanisms (estimated throughout qN and Y(NPQ)) and a significantly lower slope in the maximum quantum yield of light-adapted samples (Fv'/Fm') compared to the S(s) strain. These findings point to a change in the regulation of the quenching of the transition states (qT) in the S(r) strain which may be generated by a change in the distribution of thylakoidal membranes, which somehow could protect metalloenzymes of the electron transport chain from the lethal effect of sulphide.

  3. Carbapenem resistance in cystic fibrosis strains of Pseudomonas aeruginosa as a result of amino acid substitutions in porin OprD.

    PubMed

    Richardot, Charlotte; Plésiat, Patrick; Fournier, Damien; Monlezun, Laura; Broutin, Isabelle; Llanes, Catherine

    2015-05-01

    The aim of this work was to investigate the impact of single amino acid substitutions occurring in specific porin OprD on carbapenem resistance of cystic fibrosis (CF) strains of Pseudomonas aeruginosa. A PAO1ΔoprD mutant was complemented with the oprD genes from five carbapenem-resistant CF strains exhibiting very low amounts of mutated OprD porins in their outer membrane despite wild-type levels of oprD transcripts. Compared with wild-type porin from strain PAO1, single amino acid substitutions S403P (in periplasmic loop 8), Y242H, S278P and L345P (in β-sheets 10, 12 and 14, respectively) were found to result in reduced amounts of OprD in the outer membrane, increased carbapenem resistance, and slower growth in minimal medium containing gluconate, an OprD substrate, as the sole source of carbon and energy. This indicates that in CF strains of P. aeruginosa, loss of porin OprD may not only result from mutations downregulating the expression of or disrupting the oprD gene, but also from mutations generating deleterious amino acid substitutions in the porin structure.

  4. Toxic effects produced by microcystins from a natural cyanobacterial bloom and a Microcystis aeruginosa isolated strain on the fish cell lines RTG-2 and PLHC-1.

    PubMed

    Pichardo, S; Jos, A; Zurita, J; Salguero, M; Camean, A M; Repetto, G

    2006-07-01

    Toxic cyanobacterial blooms are a worldwide problem, causing serious water pollution and public health hazard to humans and livestock. The intact cells as well as the toxins released after cellular lysis can be responsible for toxic effects in both animals and humans and are actually associated with fish kills. Two fish cell lines-PLHC-1 derived from a hepatocellular carcinoma of the topminnow Poeciliopsis lucida and RTG-2 fibroblast-like cells derived from the gonads of rainbow trout Oncorhynchus mykiss were exposed to several concentrations of extracts from a natural cyanobacterial bloom and a Microcystis aeruginosa-isolated strain. After 24 hours, morphologic and biochemical changes (total protein content, lactate dehydrogenase leakage, neutral red uptake, methathiazole tetrazolium salt metabolization, lysosomal function, and succinate dehydrogenase [SDH] activity) were investigated. The most sensitive end point for both cyanobacterial extracts in PLHC-1 cells was SDH activity, with similar EC(50) values (6 microM for the cyanobacterial bloom and 7 microM for the isolated strain). RTG-2 cells were less susceptible according to SDH activity, with their most sensitive end point lysosomal function with an EC(50) of 4 microM for the M. aeruginosa-isolated strain and 72 microM for the cyanobacterial bloom. The lysosomal function was stimulated at low concentrations, although SDH activity increased at high doses, indicating lysosomal and energetic alterations. Increased secretion vesicles, rounding effects, decreased cell numbers and size, hydropic degeneration, esteatosis, and apoptosis were observed in the morphologic study. Similar sensitivity to the M. aeruginosa-isolated strain was observed in both cell lines, whereas the cyanobacterial bloom was more toxic to the PLHC-1 cell line.

  5. Flagellum-Mediated Biofilm Defense Mechanisms of Pseudomonas aeruginosa against Host-Derived Lactoferrin ▿

    PubMed Central

    Leid, Jeff G.; Kerr, Mathias; Selgado, Candice; Johnson, Chelsa; Moreno, Gabriel; Smith, Alyssa; Shirtliff, Mark E.; O'Toole, George A.; Cope, Emily K.

    2009-01-01

    Chronic infection with the gram-negative organism Pseudomonas aeruginosa is a leading cause of morbidity and mortality in human patients, despite high doses of antibiotics used to treat the various diseases this organism causes. These infections are chronic because P. aeruginosa readily forms biofilms, which are inherently resistant to antibiotics as well as the host's immune system. Our laboratory has been investigating specific mutations in P. aeruginosa that regulate biofilm bacterial susceptibility to the host. To continue our investigation of the role of genetics in bacterial biofilm host resistance, we examined P. aeruginosa biofilms that lack the flgK gene. This mutant lacks flagella, which results in defects in early biofilm development (up to 36 h). For these experiments, the flgK-disrupted strain and the parental strain (PA14) were used in a modified version of the 96-well plate microtiter assay. Biofilms were challenged with freshly isolated human leukocytes for 4 to 6 h and viable bacteria enumerated by CFU. Subsequent to the challenge, both mononuclear cells (monocytes and lymphocytes) and neutrophils, along with tumor necrosis factor alpha (TNF-α), were required for optimal killing of the flgK biofilm bacteria. We identified a cytokine cross talk network between mononuclear cells and neutrophils that was essential to the production of lactoferrin and bacterial killing. Our data suggest that TNF-α is secreted from mononuclear cells, causing neutrophil activation, resulting in the secretion of bactericidal concentrations of lactoferrin. These results extend previous studies of the importance of lactoferrin in the innate immune defense against bacterial biofilms. PMID:19651866

  6. Establishing quality control ranges for antimicrobial susceptibility testing of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus: a cornerstone to develop reference strains for Korean clinical microbiology laboratories.

    PubMed

    Hong, Sung Kuk; Choi, Seung Jun; Shin, Saeam; Lee, Wonmok; Pinto, Naina; Shin, Nari; Lee, Kwangjun; Hong, Seong Geun; Kim, Young Ah; Lee, Hyukmin; Kim, Heejung; Song, Wonkeun; Lee, Sun Hwa; Yong, Dongeun; Lee, Kyungwon; Chong, Yunsop

    2015-11-01

    Quality control (QC) processes are being performed in the majority of clinical microbiology laboratories to ensure the performance of microbial identification and antimicrobial susceptibility testing by using ATCC strains. To obtain these ATCC strains, some inconveniences are encountered concerning the purchase cost of the strains and the shipping time required. This study was focused on constructing a database of reference strains for QC processes using domestic bacterial strains, concentrating primarily on antimicrobial susceptibility testing. Three strains (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus) that showed legible results in preliminary testing were selected. The minimal inhibitory concentrations (MICs) and zone diameters (ZDs) of eight antimicrobials for each strain were determined according to the CLSI M23. All resulting MIC and ZD ranges included at least 95% of the data. The ZD QC ranges obtained by using the CLSI method were less than 12 mm, and the MIC QC ranges extended no more than five dilutions. This study is a preliminary attempt to construct a bank of Korean QC strains. With further studies, a positive outcome toward cost and time reduction can be anticipated. PMID:26354353

  7. Synergistic algicidal effect and mechanism of two diketopiperazines produced by Chryseobacterium sp. strain GLY-1106 on the harmful bloom-forming Microcystis aeruginosa

    PubMed Central

    Guo, Xingliang; Liu, Xianglong; Pan, Jianliang; Yang, Hong

    2015-01-01

    A potent algicidal bacterium isolated from Lake Taihu, Chryseobacterium sp. strain GLY-1106, produces two algicidal compounds: 1106-A (cyclo(4-OH-Pro-Leu)) and 1106-B (cyclo(Pro-Leu)). Both diketopiperazines showed strong algicidal activities against Microcystis aeruginosa, the dominant bloom-forming cyanobacterium in Lake Taihu. Interestingly, these two algicidal compounds functioned synergistically. Compared with individual treatment, combined treatment with cyclo(4-OH-Pro-Leu) and cyclo(Pro-Leu) significantly enhanced algicidal activity, accelerated the increase in intracellular reactive oxygen species (ROS) levels in M. aeruginosa, and further decreased the activities of antioxidases, effective quantum yield and maximal electron transport rate of M. aeruginosa. The results also showed that the algicidal characteristics of cyclo(4-OH-Pro-Leu) are distinct from those of cyclo(Pro-Leu). Cyclo(4-OH-Pro-Leu) mainly interrupted the flux of electron transport in the cyanobacterial photosynthetic system, whereas cyclo(Pro-Leu) mainly inhibited the activity of cyanobacterial intracellular antioxidases. A possible algicidal mechanism for the synergism between cyclo(4-OH-Pro-Leu) and cyclo(Pro-Leu) is proposed, which is in accordance with their distinct algicidal characteristics in individual and combined treatment. These findings suggest that synergism between algicidal compounds might be used as an effective strategy for the future control of Microcystis blooms. PMID:26423356

  8. Synergistic algicidal effect and mechanism of two diketopiperazines produced by Chryseobacterium sp. strain GLY-1106 on the harmful bloom-forming Microcystis aeruginosa.

    PubMed

    Guo, Xingliang; Liu, Xianglong; Pan, Jianliang; Yang, Hong

    2015-10-01

    A potent algicidal bacterium isolated from Lake Taihu, Chryseobacterium sp. strain GLY-1106, produces two algicidal compounds: 1106-A (cyclo(4-OH-Pro-Leu)) and 1106-B (cyclo(Pro-Leu)). Both diketopiperazines showed strong algicidal activities against Microcystis aeruginosa, the dominant bloom-forming cyanobacterium in Lake Taihu. Interestingly, these two algicidal compounds functioned synergistically. Compared with individual treatment, combined treatment with cyclo(4-OH-Pro-Leu) and cyclo(Pro-Leu) significantly enhanced algicidal activity, accelerated the increase in intracellular reactive oxygen species (ROS) levels in M. aeruginosa, and further decreased the activities of antioxidases, effective quantum yield and maximal electron transport rate of M. aeruginosa. The results also showed that the algicidal characteristics of cyclo(4-OH-Pro-Leu) are distinct from those of cyclo(Pro-Leu). Cyclo(4-OH-Pro-Leu) mainly interrupted the flux of electron transport in the cyanobacterial photosynthetic system, whereas cyclo(Pro-Leu) mainly inhibited the activity of cyanobacterial intracellular antioxidases. A possible algicidal mechanism for the synergism between cyclo(4-OH-Pro-Leu) and cyclo(Pro-Leu) is proposed, which is in accordance with their distinct algicidal characteristics in individual and combined treatment. These findings suggest that synergism between algicidal compounds might be used as an effective strategy for the future control of Microcystis blooms.

  9. Risk factors for mortality in patients with bloodstream infections caused by carbapenem-resistant Pseudomonas aeruginosa: clinical impact of bacterial virulence and strains on outcome.

    PubMed

    Jeong, Su Jin; Yoon, Sang Sun; Bae, Il Kwon; Jeong, Seok Hoon; Kim, June Myung; Lee, Kyungwon

    2014-10-01

    The incidence of carbapenem-resistant Pseudomonas aeruginosa (CRPA) bacteremia has increased in recent years, and infections caused by CRPA result in higher mortality than those caused by susceptible strains. This study was performed to evaluate the risk factors for mortality and to study the impact of virulence factors and bacterial strains on clinical outcomes in patients with CRPA bacteremia. Data on 63 episodes of CRPA bacteremia that have occurred between January 1, 2007, and December 31, 2009, in a teaching hospital (2000 beds) in Seoul, Korea, were analyzed. The Acute Physiology and Chronic Health Evaluation II (APACHE II) score at the time of CRPA bacteremia and the capacity of CRPA to form biofilm were independent predictive factors for mortality in patients with CRPA bacteremia. In addition, the biofilm-forming ability and elastase activity of strains were correlated with APACHE II scores to measure the severity of disease and estimate predicted mortality in the patients.

  10. Carbapenem-resistant Pseudomonas aeruginosa strains from a Spanish hospital: characterization of metallo-beta-lactamases, porin OprD and integrons.

    PubMed

    Rojo-Bezares, Beatriz; Estepa, Vanesa; Cebollada, Rocío; de Toro, María; Somalo, Sergio; Seral, Cristina; Castillo, Francisco Javier; Torres, Carmen; Sáenz, Yolanda

    2014-05-01

    Molecular typing and mechanisms of carbapenem resistance such as alterations in porin OprD and presence of metallo-beta-lactamases (MBLs), as well as integrons have been studied in a collection of carbapenem-resistant Pseudomonas aeruginosa (CRPA) isolates from a Spanish hospital. One hundred and twenty-three CRPA isolates were recovered from different samples of 80 patients. Clonal relationship among CRPA was analyzed by SpeI-PFGE. Susceptibility testing to 11 antibiotics and MBL phenotype was determined by microdilution, IP/IPI E-test and double disc method. The oprD gene was studied by PCR and sequencing, and mutations were determined comparing with P. aeruginosa PAO1 sequence. Characterization of MBLs, and class 1 and 2 integrons were studied by PCR and sequencing. SDS-PAGE analysis of outer membrane proteins of selected strains was performed. Seventy-four-per-cent of patients with CRPA were hospitalised in the ICU setting and 50% had long hospitalization stays. Sixty-four different PFGE patterns were detected, and 87 CRPA strains were further analyzed. MBL phenotype was detected in 43 of 87 strains (49.4%), which contained blaVIM-2 gene inside class 1 integrons. VIM-2-producing strains belonged to lineages ST175, ST235, and ST973. A great diversity of nucleotide insertions, deletions, and mutations in oprD gene, and the presence of a new insertion sequence (ISPa45) truncating oprD were identified among CRPA strains. Class 1 integrons were detected in 75% of CRPA strains, blaVIM-2 and the new arrangement aac(3)-Ia+ISPa34+aadA1 (named as In661) being the most frequent gene-cassette arrays detected. Other gene cassettes detected in integrons were: aadB, aadA6, aadA7, aac(6')-Ib', and blaOXA-46.

  11. Large-insert genome analysis technology detects structural variation in Pseudomonas aeruginosa clinical strains from cystic fibrosis patients.

    PubMed

    Hayden, Hillary S; Gillett, Will; Saenphimmachak, Channakhone; Lim, Regina; Zhou, Yang; Jacobs, Michael A; Chang, Jean; Rohmer, Laurence; D'Argenio, David A; Palmieri, Anthony; Levy, Ruth; Haugen, Eric; Wong, Gane K S; Brittnacher, Mitch J; Burns, Jane L; Miller, Samuel I; Olson, Maynard V; Kaul, Rajinder

    2008-06-01

    Large-insert genome analysis (LIGAN) is a broadly applicable, high-throughput technology designed to characterize genome-scale structural variation. Fosmid paired-end sequences and DNA fingerprints from a query genome are compared to a reference sequence using the Genomic Variation Analysis (GenVal) suite of software tools to pinpoint locations of insertions, deletions, and rearrangements. Fosmids spanning regions that contain new structural variants can then be sequenced. Clonal pairs of Pseudomonas aeruginosa isolates from four cystic fibrosis patients were used to validate the LIGAN technology. Approximately 1.5 Mb of inserted sequences were identified, including 743 kb containing 615 ORFs that are absent from published P. aeruginosa genomes. Six rearrangement breakpoints and 220 kb of deleted sequences were also identified. Our study expands the "genome universe" of P. aeruginosa and validates a technology that complements emerging, short-read sequencing methods that are better suited to characterizing single-nucleotide polymorphisms than structural variation.

  12. Large-insert genome analysis technology detects structural variation in Pseudomonas aeruginosa clinical strains from cystic fibrosis patients.

    PubMed

    Hayden, Hillary S; Gillett, Will; Saenphimmachak, Channakhone; Lim, Regina; Zhou, Yang; Jacobs, Michael A; Chang, Jean; Rohmer, Laurence; D'Argenio, David A; Palmieri, Anthony; Levy, Ruth; Haugen, Eric; Wong, Gane K S; Brittnacher, Mitch J; Burns, Jane L; Miller, Samuel I; Olson, Maynard V; Kaul, Rajinder

    2008-06-01

    Large-insert genome analysis (LIGAN) is a broadly applicable, high-throughput technology designed to characterize genome-scale structural variation. Fosmid paired-end sequences and DNA fingerprints from a query genome are compared to a reference sequence using the Genomic Variation Analysis (GenVal) suite of software tools to pinpoint locations of insertions, deletions, and rearrangements. Fosmids spanning regions that contain new structural variants can then be sequenced. Clonal pairs of Pseudomonas aeruginosa isolates from four cystic fibrosis patients were used to validate the LIGAN technology. Approximately 1.5 Mb of inserted sequences were identified, including 743 kb containing 615 ORFs that are absent from published P. aeruginosa genomes. Six rearrangement breakpoints and 220 kb of deleted sequences were also identified. Our study expands the "genome universe" of P. aeruginosa and validates a technology that complements emerging, short-read sequencing methods that are better suited to characterizing single-nucleotide polymorphisms than structural variation. PMID:18445516

  13. Emergence of a novel multidrug-resistant Pseudomonas aeruginosa strain producing IMP-type metallo-β-lactamases and AAC(6')-Iae in Japan.

    PubMed

    Kitao, Tomoe; Tada, Tatsuya; Tanaka, Masashi; Narahara, Kenji; Shimojima, Masahiro; Shimada, Kayo; Miyoshi-Akiyama, Tohru; Kirikae, Teruo

    2012-06-01

    The emergence of multidrug-resistant (MDR) Pseudomonas aeruginosa isolates producing IMP-type metallo-β-lactamases (MBLs) and aminoglycoside 6'-N-acetyltransferase [AAC(6')-Iae] has become a serious problem in medical settings in Japan. A total of 217 MDR P. aeruginosa isolates were obtained from August 2009 to April 2010 from patients at 144 hospitals in Japan, of which 145 (66.8%) were positive for IMP-type MBLs and AAC(6')-Iae when tested with an immunochromatographic assay. Polymerase chain reaction (PCR) showed that these isolates were also positive for blaIMP and aac(6')-Iae genes. When these IMP-type MBL- and AAC(6')-Iae-producing isolates were analysed by pulsed-field gel electrophoresis (PFGE), two clusters (I and II) were detected. Most of the isolates (88.3%; 128/145) were grouped under cluster I and had multilocus sequence type ST235 and serotype O11, except for one isolate that was ST991 and serotype O3. The isolates were mainly isolated from the urinary tract (82/145; 56.6%) and respiratory tract (58/145; 40.0%). The epidemiological properties of the isolates belonging to cluster I were similar to those of MDR P. aeruginosa isolates that have been previously reported in Japan. The remaining 16 isolates belonged to cluster II, had identical PFGE patterns and were multilocus sequence type ST991 and serotype O18; all of these isolates were isolated from the respiratory tract. The properties of isolates belonging to cluster II have not been previously described, indicating that a novel IMP-type MBL- and AAC(6')-Iae producing P. aeruginosa strain is emerging in Japan. Isolates belonging to both clusters were isolated from different parts of the country.

  14. MrkD1P from Klebsiella pneumoniae strain IA565 allows for coexistence with Pseudomonas aeruginosa and protection from protease-mediated biofilm detachment.

    PubMed

    Childers, Brandon M; Van Laar, Tricia A; You, Tao; Clegg, Steven; Leung, Kai P

    2013-11-01

    Biofilm formation and persistence are essential components for the continued survival of pathogens inside the host and constitute a major contributor to the development of chronic wounds with resistance to antimicrobial compounds. Understanding these processes is crucial for control of biofilm-mediated disease. Though chronic wound infections are often polymicrobial in nature, much of the research on chronic wound-related microbes has focused on single-species models. Klebsiella pneumoniae and Pseudomonas aeruginosa are microbes that are often found together in wound isolates and are able to form stable in vitro biofilms, despite the antagonistic nature of P. aeruginosa with other organisms. Mutants of the K. pneumoniae strain IA565 lacking the plasmid-borne mrkD1P gene were less competitive than the wild type in an in vitro dual-species biofilm model with P. aeruginosa (PAO1). PAO1 spent medium inhibited the formation of biofilm of mrkD1P-deficient mutants and disrupted preestablished biofilms, with no effect on IA565 and no effect on the growth of the wild type or mutants. A screen using a two-allele PAO1 transposon library identified the LasB elastase as the secreted effector involved in biofilm disruption, and a purified version of the protein produced results similar to those with PAO1 spent medium. Various other proteases had a similar effect, suggesting that the disruption of the mrkD1P gene causes sensitivity to general proteolytic effects and indicating a role for MrkD1P in protection against host antibiofilm effectors. Our results suggest that MrkD1P allows for competition of K. pneumoniae with P. aeruginosa in a mixed-species biofilm and provides defense against microbial and host-derived proteases.

  15. Cloning and nucleotide sequence of Pseudomonas aeruginosa DNA gyrase gyrA gene from strain PAO1 and quinolone-resistant clinical isolates.

    PubMed Central

    Kureishi, A; Diver, J M; Beckthold, B; Schollaardt, T; Bryan, L E

    1994-01-01

    The Pseudomonas aeruginosa DNA gyrase gyrA gene was cloned and sequenced from strain PAO1. An open reading frame of 2,769 bp was found; it coded for a protein of 923 amino acids with an estimated molecular mass of 103 kDa. The derived amino acid sequence shared 67% identity with Escherichia coli GyrA and 54% identity with Bacillus subtilis GyrA, although conserved regions were present throughout the sequences, particularly toward the N terminus. Complementation of an E. coli mutant with a temperature-sensitive gyrA gene with the PAO1 gyrA gene showed that the gene is expressed in E. coli and is able to functionally complement the E. coli DNA gyrase B subunit. Expression of PAO1 gyrA in E. coli or P. aeruginosa with mutationally altered gyrA genes caused a reversion to wild-type quinolone susceptibility, indicating that the intrinsic susceptibility of the PAO1 GyrA to quinolones is comparable to that of the E. coli enzyme. PCR was used to amplify 360 bp of P. aeruginosa gyrA encompassing the so-called quinolone resistance-determining region from ciprofloxacin-resistant clinical isolates from patients with cystic fibrosis. Mutations were found in three of nine isolates tested; these mutations caused the following alterations in the sequence of GyrA: Asp at position 87 (Asp-87) to Asn, Asp-87 to Tyr, and Thr-83 to Ile. The resistance mechanisms in the other six isolates are unknown. The results of the study suggested that mechanisms other than a mutational alteration in gyrA are the most common mechanism of ciprofloxacin resistance in P. aeruginosa from the lungs of patients with cystic fibrosis. Images PMID:7811002

  16. Antibiotic resistance pattern and evaluation of metallo-beta lactamase genes (VIM and IMP) in Pseudomonas aeruginosa strains producing MBL enzyme, isolated from patients with secondary immunodeficiency

    PubMed Central

    Shirani, Kiana; Ataei, Behrouz; Roshandel, Fardad

    2016-01-01

    Background: One of the most common causes of hospital-acquired secondary infections in hospitalized patients is Pseudomonas aeruginosa. The aim of this study is to evaluate the expression of IMP and VIM in Pseudomonas aeruginosa strains (carbapenem resistant and producer MBL enzyme) in patients with secondary immunodeficiency. Materials and Methods: In a cross sectional study, 96 patients with secondary immunodeficiency hospitalized in the Al-Zahra hospital were selected. Carbapenem resistant strains isolated and modified Hodge test was performed in order to confirm the presence of the metallo carbapenemase enzyme. Under the standard conditions they were sent to the central laboratory for investigating nosocomial infection Multiplex PCR. Results: Of 96 samples 28.1% were IMP positive, 5.2% VIM positive and 3.1% both VIM and IMP positive. The prevalence of multidrug resistance in the IMP and/or VIM negative samples was 29%, while all 5 VIM positive samples have had multidrug resistance. Also the prevalence of multi-drug resistance in IMP positive samples were 96.3% and in IMP and VIM positive samples were 100%. According to Fisher’s test, the prevalence of multi-drug resistance based on gene expression has significant difference (P < 0.001). Conclusion: Based on the results of this study it can be concluded that, a significant percentage of patients with secondary immunodeficiency that suffer nosocomial infections with multidrug resistance, especially Pseudomonas aeruginosa, are probably MBL-producing gene positive. Therefore the cause of infection should be considered in the hospital care system to identify their features, the presence of genes involved in the development of multi-drug resistance and antibiotic therapy. PMID:27563634

  17. The Pseudomonas aeruginosa Mannose Sensitive Hamemagglutination Strain (PA-MSHA) Induces a Th1-Polarizing Phenotype by Promoting Human Dendritic Cells Maturation.

    PubMed

    Zhang, Yunyan; Wang, Hongtao; Li, Youqiang; Chen, Ke; Ye, Jinmei; Liao, Xin; Chen, Yiyang; Ran, Wei

    2014-06-01

    Pseudomonas aeruginosa mannose sensitive hamemagglutination strain (PA-MSHA) is a kind of peritrichous P. aeruginosa strain with MSHA fimbriae and has been shown to activate kinds of immunocytes. Dendritic cells (DCs) are specialized antigen-presenting cells required for the stimulating and priming CD4(+) T cells toward the T helper cell type 1 (Th1), Th2 and other different phenotypes. PA-MSHA effecting on Th1 remains an important missing link. Here we demonstrated that PA-MSHA augmented monocytes derived-dendritic cells (Mo-DCs) expression of HLA-DR, co-stimulatory and adhesion molecules, and induced Th1-promoting interleukin-12 and tumor necrosis factor α secretion, in addition, PA-MSHA treated Mo-DCs displayed lesser endocytic capacity. Furthermore, in mixed lymphocyte reactions, allostimulatory capacity of Mo-DCs was enhanced by PA-MSHA, CD4(+) T cells stimulated by PA-MSHA -activated Mo-DCs showed a Th1-polarized cytokine production, increasing secretion of IFN-γ and decreasing secretion of IL-10 and IL-4. Our findings identified PA-MSHA as an important exogenous factor that induced DCs maturation toward a Th1-promoting phenotype.

  18. Engineering the central biosynthetic and secondary metabolic pathways of Pseudomonas aeruginosa strain PA1201 to improve phenazine-1-carboxylic acid production.

    PubMed

    Jin, Kaiming; Zhou, Lian; Jiang, Haixia; Sun, Shuang; Fang, Yunling; Liu, Jianhua; Zhang, Xuehong; He, Ya-Wen

    2015-11-01

    The secondary metabolite phenazine-1-carboxylic acid (PCA) is an important component of the newly registered biopesticide Shenqinmycin. We used a combined method involving gene, promoter, and protein engineering to modify the central biosynthetic and secondary metabolic pathways in the PCA-producing Pseudomonas aeruginosa strain PA1201. The PCA yield of the resulting strain PA-IV was increased 54.6-fold via the following strategies: (1) blocking PCA conversion and enhancing PCA efflux pumping; (2) increasing metabolic flux towards the PCA biosynthetic pathway through the over-production of two DAHP synthases and blocking the synthesis of 21 secondary metabolites; (3) increasing the PCA precursor supply through the engineering of five chorismate-utilizing enzymes; (4) engineering the promoters of two PCA biosynthetic gene clusters. Strain PA-IV produced 9882 mg/L PCA in fed-batch fermentation, which is twice as much as that produced by the current industrial strain. Strain PA-IV was also genetically stable and comparable to Escherichia coli in cytotoxicity.

  19. Structural and physiochemical characterization of rhamnolipids produced by Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa in single strain and mixed cultures.

    PubMed

    Hošková, Miriam; Ježdík, Richard; Schreiberová, Olga; Chudoba, Josef; Šír, Marek; Čejková, Alena; Masák, Jan; Jirků, Vladimír; Řezanka, Tomáš

    2015-01-10

    Rhamnolipids are naturally occurring biosurfactants with a wide range of potential commercial applications. As naturally derived products they present an ecological alternative to synthetic surfactants. The majority of described rhamnolipid productions are single strain Pseudomonas spp. cultivations. Here we report rhamnolipids producing bacteria Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa that were cultivated separately and as mixed populations. The ratio and composition of rhamnolipid congeners was determined by tandem mass spectrometry with negative electrospray ionization. Mono-rhamnolipid and di-rhamnolipid homologues containing one or two saturated or monounsaturated 3-hydroxy fatty acids were found in all strains. Physiochemical characterization of rhamnolipids was evaluated by the critical micelle concentration determination, the emulsification test, oil displacement test and phenanthrene solubilization. Critical micelle concentrations of rhamnolipids produced by both single strain and mixed cultures were found to be very low (10-63 mg/l) and to correspond with saturated/unsaturated fatty acid content of rhamnolipid homologues. The rhamnolipids produced by all strains effectively emulsified crude petroleum in comparison with synthetic surfactants Tween 80 and sodium dodecyl sulfate (SDS). Good performance of phenanthrene solubilization was exhibited by rhamnolipids from E. asburiae. The single strain and co-cultures cultivations were proposed as a possible way to produce rhamnolipid mixtures with a specific composition and different physiochemical properties, which could be exploited in bioremediation of various hydrophobic contaminants.

  20. A Day in the Life of Microcystis aeruginosa Strain PCC 7806 as Revealed by a Transcriptomic Analysis

    PubMed Central

    Vergalli, Julia; de Marsac, Nicole Tandeau; Humbert, Jean-François

    2011-01-01

    The cyanobacterium, Microcystis aeruginosa, is able to proliferate in a wide range of freshwater ecosystems and to produce many secondary metabolites that are a threat to human and animal health. The dynamic of this production and more globally the metabolism of this species is still poorly known. A DNA microarray based on the genome of M. aeruginosa PCC 7806 was constructed and used to study the dynamics of gene expression in this cyanobacterium during the light/dark cycle, because light is a critical factor for this species, like for other photosynthetic microorganisms. This first application of transcriptomics to a Microcystis species has revealed that more than 25% of the genes displayed significant changes in their transcript abundance during the light/dark cycle and in particular during the dark/light transition. The metabolism of M. aeruginosa is compartmentalized between the light period, during which carbon uptake, photosynthesis and the reductive pentose phosphate pathway lead to the synthesis of glycogen, and the dark period, during which glycogen degradation, the oxidative pentose phosphate pathway, the TCA branched pathway and ammonium uptake promote amino acid biosynthesis. We also show that the biosynthesis of secondary metabolites, such as microcystins, aeruginosin and cyanopeptolin, occur essentially during the light period, suggesting that these metabolites may interact with the diurnal part of the central metabolism. PMID:21283831

  1. A simple alfalfa seedling infection model for Pseudomonas aeruginosa strains associated with cystic fibrosis shows AlgT (sigma-22) and RhlR contribute to pathogenesis

    PubMed Central

    Silo-Suh, Laura; Suh, Sang-Jin; Sokol, Pamela A.; Ohman, Dennis E.

    2002-01-01

    A sensitive plant infection model was developed to identify virulence factors in nontypeable, alginate overproducing (mucoid) Pseudomonas aeruginosa strains isolated from cystic fibrosis (CF) patients with chronic pulmonary disease. Nontypeable strains with defects in lipopolysaccharide O-side chains are common to CF and often exhibit low virulence in animal models of infection. However, 1,000 such bacteria were enough to show disease symptoms in the alfalfa infection. A typical mucoid CF isolate, FRD1, and its isogenic mutants were tested for alfalfa seedling infection. Although defects in the global regulators Vfr, RpoS, PvdS, or LasR had no discernable effect on virulence, a defect in RhlR reduced the infection frequency by >50%. A defect in alginate biosynthesis resulted in plant disease with >3-fold more bacteria per plant, suggesting that alginate overproduction attenuated bacterial growth in planta. FRD1 derivatives lacking AlgT, a sigma factor required for alginate production, were reduced >50% in the frequency of infection. Thus, AlgT apparently regulates factors in FRD1, besides alginate, important for pathogenesis. In contrast, in a non-CF strain, PAO1, an algT mutation did not affect its virulence on alfalfa. Conversely, PAO1 virulence was reduced in a mucA mutant that overproduced alginate. These observations suggested that mucoid conversion in CF may be driven by a selection for organisms with attenuated virulence or growth in the lung, which promotes a chronic infection. These studies also demonstrated that the wounded alfalfa seedling infection model is a useful tool to identify factors contributing to the persistence of P. aeruginosa in CF. PMID:12426404

  2. How do toxic metals affect harmful cyanobacteria? An integrative study with a toxigenic strain of Microcystis aeruginosa exposed to nickel stress.

    PubMed

    Martínez-Ruiz, Erika Berenice; Martínez-Jerónimo, Fernando

    2016-11-01

    Nickel (Ni) is an essential metal for some organisms, but also a common toxic pollutant released into the water. Toxicity of Ni has not been completely established for cyanobacteria; for this reason, we evaluated the effect of sub-inhibitory Ni concentrations on a toxigenic strain of Microcystis aeruginosa and on microcystins production. Population growth, photosynthetic pigments concentration, biomarkers, including antioxidant enzymes (catalase [CAT], glutathione peroxidase [GPx], and superoxide dismutase [SOD]), as well as macromolecules (proteins, carbohydrates and lipids) were quantified; SEM and TEM observations were also performed. Population growth was affected starting at 3µgL(-1), and at 24µgL(-1) growth was completely inhibited; the 96-h Ni(2+) IC50 was 3.7µgL(-1). Ni exposure increased pigments concentration, augmented all the macromolecules, and increased activities of CAT and GPx; alterations on the internal cell structure were also observed. The integrated biomarker response revealed that Ni(2+) augmented the antioxidant response and the macromolecules content. Ni stress also increased microcystins production. M. aeruginosa was affected by Ni at very low concentrations, even lower than those established as safe limit to protect aquatic biota. Aside from the toxic effects produced in this cyanobacterium, stimulation to produce toxins could potentiate the environmental risks associated with water pollution and eutrophication.

  3. How do toxic metals affect harmful cyanobacteria? An integrative study with a toxigenic strain of Microcystis aeruginosa exposed to nickel stress.

    PubMed

    Martínez-Ruiz, Erika Berenice; Martínez-Jerónimo, Fernando

    2016-11-01

    Nickel (Ni) is an essential metal for some organisms, but also a common toxic pollutant released into the water. Toxicity of Ni has not been completely established for cyanobacteria; for this reason, we evaluated the effect of sub-inhibitory Ni concentrations on a toxigenic strain of Microcystis aeruginosa and on microcystins production. Population growth, photosynthetic pigments concentration, biomarkers, including antioxidant enzymes (catalase [CAT], glutathione peroxidase [GPx], and superoxide dismutase [SOD]), as well as macromolecules (proteins, carbohydrates and lipids) were quantified; SEM and TEM observations were also performed. Population growth was affected starting at 3µgL(-1), and at 24µgL(-1) growth was completely inhibited; the 96-h Ni(2+) IC50 was 3.7µgL(-1). Ni exposure increased pigments concentration, augmented all the macromolecules, and increased activities of CAT and GPx; alterations on the internal cell structure were also observed. The integrated biomarker response revealed that Ni(2+) augmented the antioxidant response and the macromolecules content. Ni stress also increased microcystins production. M. aeruginosa was affected by Ni at very low concentrations, even lower than those established as safe limit to protect aquatic biota. Aside from the toxic effects produced in this cyanobacterium, stimulation to produce toxins could potentiate the environmental risks associated with water pollution and eutrophication. PMID:27400062

  4. Auxotrophic variants of Pseudomonas aeruginosa are selected from prototrophic wild-type strains in respiratory infections in patients with cystic fibrosis.

    PubMed Central

    Barth, A L; Pitt, T L

    1995-01-01

    Twenty-four nutritionally dependent (auxotrophic) Pseudomonas aeruginosa strains were isolated from 20 cystic fibrosis (CF) patients and tested for their amino acid requirements. Two different methods were necessary to identify the nutritional status of all isolates. Methionine was the most common single amino acid required (9 of 24 isolates), followed by leucine and arginine or ornithine. In total, a requirement for 12 different compounds or combination of compounds was demonstrated. Auxotrophic and prototrophic pairs of isolates from the same patient were compared by macrorestriction analysis of DNA in pulsed-field gel electrophoresis. Thirteen of 18 pairs analyzed presented identical restriction fragment length polymorphism profiles following digestion of DNA with XbaI. Three of the remaining pairs showed percentage similarities of 77, 91, and 98%, and the profiles of two pairs could not be compared because of the excessive degradation of their DNA. These results suggest that auxotrophic and prototrophic P. aeruginosa isolates colonizing the same CF patient constitute an isogenic group and raise the possibility that auxotrophs are selected from the prototrophic population during the course of pulmonary infection in CF patients. PMID:7699062

  5. Cell aggregation of Pseudomonas aeruginosa strain PAO1 as an energy-dependent stress response during growth with sodium dodecyl sulfate.

    PubMed

    Klebensberger, Janosch; Rui, Oliver; Fritz, Eva; Schink, Bernhard; Philipp, Bodo

    2006-06-01

    Pseudomonas aeruginosa strain PAO1 grew with the detergent sodium dodecyl sulfate (SDS). The growth started with the formation of macroscopic cell aggregates which consisted of respiring cells embedded in an extracellular matrix composed of acidic polysaccharides and DNA. Damaged and uncultivable cells accumulated in these aggregates compared to those cells that remained suspended. We investigated the response of suspended cells to SDS under different conditions. At high energy supply, the cells responded with a decrease in optical density and in viable counts, release of protein and DNA, and formation of macroscopic aggregates. This response was not observed if the energy supply was reduced by inhibiting respiration with KCN, or if cells not induced for SDS degradation were exposed to SDS. Exposure to SDS caused cell lysis without aggregation if cells were completely deprived of energy, either by applying anoxic conditions, by addition of CCCP, or by addition of KCN to a mutant defective in cyanide-insensitive respiration. Aggregated cells showed a more than 100-fold higher survival rate after exposure to SDS plus CCCP than suspended cells. Our results demonstrate that cell aggregation is an energy-dependent response of P. aeruginosa to detergent stress which might serve as a survival strategy during growth with SDS. PMID:16775748

  6. [blaVIM-2 gene detection in metallo-beta-lactamase-producing Pseudomonas aeruginosa strains isolated in an intensive care unit in Ciudad Bolívar, Venezuela].

    PubMed

    Guevara, Armando; de Waard, Jacobus; Araque, María

    2009-08-01

    Ten Pseudomonas aeruginosa strains with resistance to broad-spectrum cephalosporin and carbapenems were studied to determine the presence of genes that mediate the production of metallo-beta-lactamases. These strains were isolated from patients with nosocomial infection at the Intensive Care Unit of the Complejo Hospitalario "Ruiz y Paéz" of Ciudad Bolívar, Bolívar State, Venezuela, from 2003 to 2006. In all isolates a metallo-enzyme activity was detected by using the double disk synergism test. PCR amplification of genes encoding the families IMP, VIM and SPM metallo-beta-lactamases showed the presence of a blaVIM gene in all strains studied. DNA sequencing revealed that all isolates showed the presence of blaVIM-2. These results suggest that it is necessary to keep these strains under epidemiologic surveillance, establish laboratory strategies for opportune detection and the implementation of new policies to ensure the appropriate use of antibiotics in this institution.

  7. The HigB/HigA toxin/antitoxin system of Pseudomonas aeruginosa influences the virulence factors pyochelin, pyocyanin, and biofilm formation.

    PubMed

    Wood, Thammajun L; Wood, Thomas K

    2016-06-01

    Toxin/antitoxin (TA) systems are prevalent in most bacterial and archaeal genomes, and one of the emerging physiological roles of TA systems is to help regulate pathogenicity. Although TA systems have been studied in several model organisms, few studies have investigated the role of TA systems in pseudomonads. Here, we demonstrate that the previously uncharacterized proteins HigB (unannotated) and HigA (PA4674) of Pseudomonas aeruginosa PA14 form a type II TA system in which antitoxin HigA masks the RNase activity of toxin HigB through direct binding. Furthermore, toxin HigB reduces production of the virulence factors pyochelin, pyocyanin, swarming, and biofilm formation; hence, this system affects the pathogencity of this strain in a manner that has not been demonstrated previously for TA systems. PMID:26987441

  8. Antimicrobial activity of honey of stingless bees, tiúba (Melipona fasciculata) and jandaira (Melipona subnitida) compared to the strains of Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Tenório, Eleuza Gomes; de Jesus, Natália Rocha; Nascimento, Adenilde Ribeiro; Teles, Amanda Mara

    2015-12-01

    This study aimed to investigate the antimicrobial activity of honeys of stingless bees produced in Maranhão, tiúba (Melipona fasciculata) and jandaira (Melipona subnitida), opposite the strains of pathogenic bacteria, namely, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. The honey samples were collected from different regions of Maranhão. Of the 17 samples collected, twelve samples were honey M. fasciculata and five were honey M. subnitida. We used the Kirby-Bauer method, and the technique of agar disk diffusion through the extent of inhibition in milimetros. Results were negative for all samples from M. fasciculata. However, the tests for M. subnitida demonstrated bacteriostatic halos ranging from 12 to 32,6mm.

  9. One pot synthesis and anti-biofilm potential of copper nanoparticles (CuNPs) against clinical strains of Pseudomonas aeruginosa.

    PubMed

    LewisOscar, Felix; MubarakAli, Davoodbasha; Nithya, Chari; Priyanka, Rajendran; Gopinath, Venkatraman; Alharbi, Naiyf S; Thajuddin, Nooruddin

    2015-01-01

    Pseudomonas aeruginosa, an opportunistic pathogen frequently associated with nosocomial infections, is emerging as a serious threat due to its resistance to broad spectrum antimicrobials. The biofilm mode of growth confers resistance to antibiotics and novel anti-biofilm agents are urgently needed. Nanoparticle based treatments and therapies have been of recent interest because of their versatile applications. This study investigates the anti-biofilm activity of copper nanoparticles (CuNPs) synthesized by the one pot method against P. aeruginosa. Standard physical techniques including UV-visible and Fourier transform infrared spectroscopy, X-ray diffraction and transmission electron microscopy were used to characterize the synthesized CuNPs. CuNP treatments at 100 ng ml(-1) resulted in a 94, 89 and 92% reduction in biofilm, cell surface hydrophobicity and exopolysaccharides respectively, without bactericidal activity. Evidence of biofilm inhibition was also seen with light and confocal microscope analysis. This study highlights the anti-biofilm potential of CuNPs, which could be utilized as coating agents on surgical devices and medical implants to manage biofilm associated infections.

  10. Dielectrophoresis-Based Discrimination of Bacteria at the Strain Level Based on Their Surface Properties

    PubMed Central

    Braff, William A.; Willner, Dana; Hugenholtz, Philip; Rabaey, Korneel; Buie, Cullen R.

    2013-01-01

    Insulator-based dielectrophoresis can be used to manipulate biological particles, but has thus far found limited practical applications due to low sensitivity. We present linear sweep three-dimensional insulator-based dielectrophoresis as a considerably more sensitive approach for strain-level discrimination bacteria. In this work, linear sweep three-dimensional insulator-based dielectrophoresis was performed on Pseudomonas aeruginosa PA14 along with six isogenic mutants as well as Streptococcus mitis SF100 and PS344. Strain-level discrimination was achieved between these clinically important pathogens with applied electric fields below 10 V/mm. This low voltage, high sensitivity technique has potential applications in clinical diagnostics as well as microbial physiology research. PMID:24146923

  11. Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′-5′)-cyclic-GMP in virulence

    PubMed Central

    Kulesekara, Hemantha; Lee, Vincent; Brencic, Anja; Liberati, Nicole; Urbach, Jonathan; Miyata, Sachiko; Lee, Daniel G.; Neely, Alice N.; Hyodo, Mamoru; Hayakawa, Yoshihiro; Ausubel, Frederick M.; Lory, Stephen

    2006-01-01

    The opportunistic pathogen Pseudomonas aeruginosa is responsible for systemic infections in immunocompromised individuals and chronic respiratory disease in patients with cystic fibrosis. Cyclic nucleotides are known to play a variety of roles in the regulation of virulence-related factors in pathogenic bacteria. A set of P. aeruginosa genes, encoding proteins that contain putative domains characteristic of diguanylate cyclases (DGCs) and phosphodiesterases (PDEs) that are responsible for the maintenance of cellular levels of the second messenger bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP) was identified in the annotated genomes of P. aeruginosa strains PAO1 and PA14. Although the majority of these genes are components of the P. aeruginosa core genome, several are located on presumptive horizontally acquired genomic islands. A comprehensive analysis of P. aeruginosa genes encoding the enzymes of c-di-GMP metabolism (DGC- and PDE-encoding genes) was carried out to analyze the function of c-di-GMP in two disease-related phenomena, cytotoxicity and biofilm formation. Analysis of the phenotypes of DGC and PDE mutants and overexpressing clones revealed that certain virulence-associated traits are controlled by multiple DGCs and PDEs through alterations in c-di-GMP levels. A set of mutants in selected DGC- and PDE-encoding genes exhibited attenuated virulence in a mouse infection model. Given that insertions in different DGC and PDE genes result in distinct phenotypes, it seems likely that the formation or degradation of c-di-GMP by these enzymes is in highly localized and intimately linked to particular targets of c-di-GMP action. PMID:16477007

  12. Temperature-dependent sensitivity of growth and photosynthesis of Scenedesmus obliquus, Navicula pelliculosa and two strains of Microcystis aeruginosa to the herbicide atrazine.

    PubMed

    Chalifour, Annie; Juneau, Philippe

    2011-05-01

    The temperature-dependent sensitivities of two algal species and two strains of cyanobacteria to the photosynthesis-inhibiting herbicide atrazine were evaluated in order to understand how the interaction between acclimation temperature and herbicide will affect growth and photosynthesis of aquatic microorganisms. The green alga Scenedesmus obliquus, the diatom Navicula pelliculosa and a toxic and non-toxic strain of Microcystis aeruginosa were acclimated to three different temperatures (10, 15 and 25°C) and exposed to five concentrations of the herbicide atrazine (0-0.15μM) for 72h. Growth, photosynthetic yields, energy fluxes within photosystem II and pigment content were then measured as potential responses to each treatment. With the exception of N. pelliculosa, the toxicity of atrazine was higher when microorganisms were acclimated to lower temperatures. N. pelliculosa was not only the most tolerant to atrazine, but also had a similar sensitivity to this herbicide at every temperature. The observed differences in growth sensitivity to atrazine at low temperature are associated with the ability of algae and cyanobacteria to cope with high excitation pressure, by increasing its protective carotenoid content and non-photochemical energy dissipation. Our results demonstrate that future guidelines for the protection of aquatic life should consider water temperature as an important factor influencing the toxicity of atrazine to aquatic microorganisms. PMID:21392491

  13. Temperature-dependent sensitivity of growth and photosynthesis of Scenedesmus obliquus, Navicula pelliculosa and two strains of Microcystis aeruginosa to the herbicide atrazine.

    PubMed

    Chalifour, Annie; Juneau, Philippe

    2011-05-01

    The temperature-dependent sensitivities of two algal species and two strains of cyanobacteria to the photosynthesis-inhibiting herbicide atrazine were evaluated in order to understand how the interaction between acclimation temperature and herbicide will affect growth and photosynthesis of aquatic microorganisms. The green alga Scenedesmus obliquus, the diatom Navicula pelliculosa and a toxic and non-toxic strain of Microcystis aeruginosa were acclimated to three different temperatures (10, 15 and 25°C) and exposed to five concentrations of the herbicide atrazine (0-0.15μM) for 72h. Growth, photosynthetic yields, energy fluxes within photosystem II and pigment content were then measured as potential responses to each treatment. With the exception of N. pelliculosa, the toxicity of atrazine was higher when microorganisms were acclimated to lower temperatures. N. pelliculosa was not only the most tolerant to atrazine, but also had a similar sensitivity to this herbicide at every temperature. The observed differences in growth sensitivity to atrazine at low temperature are associated with the ability of algae and cyanobacteria to cope with high excitation pressure, by increasing its protective carotenoid content and non-photochemical energy dissipation. Our results demonstrate that future guidelines for the protection of aquatic life should consider water temperature as an important factor influencing the toxicity of atrazine to aquatic microorganisms.

  14. Biofilm Filtrates of Pseudomonas aeruginosa Strains Isolated from Cystic Fibrosis Patients Inhibit Preformed Aspergillus fumigatus Biofilms via Apoptosis.

    PubMed

    Shirazi, Fazal; Ferreira, Jose A G; Stevens, David A; Clemons, Karl V; Kontoyiannis, Dimitrios P

    2016-01-01

    Pseudomonas aeruginosa (Pa) and Aspergillus fumigatus (Af) colonize cystic fibrosis (CF) patient airways. Pa culture filtrates inhibit Af biofilms, and Pa non-CF, mucoid (Muc-CF) and nonmucoid CF (NMuc-CF) isolates form an ascending inhibitory hierarchy. We hypothesized this activity is mediated through apoptosis induction. One Af and three Pa (non-CF, Muc-CF, NMuc-CF) reference isolates were studied. Af biofilm was formed in 96 well plates for 16 h ± Pa biofilm filtrates. After 24 h, apoptosis was characterized by viability dye DiBAc, reactive oxygen species (ROS) generation, mitochondrial membrane depolarization, DNA fragmentation and metacaspase activity. Muc-CF and NMuc-CF filtrates inhibited and damaged Af biofilm (p<0.0001). Intracellular ROS levels were elevated (p<0.001) in NMuc-CF-treated Af biofilms (3.7- fold) compared to treatment with filtrates from Muc-CF- (2.5- fold) or non-CF Pa (1.7- fold). Depolarization of mitochondrial potential was greater upon exposure to NMuc-CF (2.4-fold) compared to Muc-CF (1.8-fold) or non-CF (1.25-fold) (p<0.0001) filtrates. Exposure to filtrates resulted in more DNA fragmentation in Af biofilm, compared to control, mediated by metacaspase activation. In conclusion, filtrates from CF-Pa isolates were more inhibitory against Af biofilms than from non-CF. The apoptotic effect involves mitochondrial membrane damage associated with metacaspase activation.

  15. Biofilm Filtrates of Pseudomonas aeruginosa Strains Isolated from Cystic Fibrosis Patients Inhibit Preformed Aspergillus fumigatus Biofilms via Apoptosis

    PubMed Central

    Shirazi, Fazal; Ferreira, Jose A. G.; Stevens, David A.; Clemons, Karl V.; Kontoyiannis, Dimitrios P.

    2016-01-01

    Pseudomonas aeruginosa (Pa) and Aspergillus fumigatus (Af) colonize cystic fibrosis (CF) patient airways. Pa culture filtrates inhibit Af biofilms, and Pa non-CF, mucoid (Muc-CF) and nonmucoid CF (NMuc-CF) isolates form an ascending inhibitory hierarchy. We hypothesized this activity is mediated through apoptosis induction. One Af and three Pa (non-CF, Muc-CF, NMuc-CF) reference isolates were studied. Af biofilm was formed in 96 well plates for 16 h ± Pa biofilm filtrates. After 24 h, apoptosis was characterized by viability dye DiBAc, reactive oxygen species (ROS) generation, mitochondrial membrane depolarization, DNA fragmentation and metacaspase activity. Muc-CF and NMuc-CF filtrates inhibited and damaged Af biofilm (p<0.0001). Intracellular ROS levels were elevated (p<0.001) in NMuc-CF-treated Af biofilms (3.7- fold) compared to treatment with filtrates from Muc-CF- (2.5- fold) or non-CF Pa (1.7- fold). Depolarization of mitochondrial potential was greater upon exposure to NMuc-CF (2.4-fold) compared to Muc-CF (1.8-fold) or non-CF (1.25-fold) (p<0.0001) filtrates. Exposure to filtrates resulted in more DNA fragmentation in Af biofilm, compared to control, mediated by metacaspase activation. In conclusion, filtrates from CF-Pa isolates were more inhibitory against Af biofilms than from non-CF. The apoptotic effect involves mitochondrial membrane damage associated with metacaspase activation. PMID:26930399

  16. Solution secondary structure of a bacterially expressed peptide from the receptor binding domain of Pseudomonas aeruginosa pili strain PAK: A heteronuclear multidimensional NMR study.

    PubMed

    Campbell, A P; Bautista, D L; Tripet, B; Wong, W Y; Irvin, R T; Hodges, R S; Sykes, B D

    1997-10-21

    The C-terminal receptor binding region of Pseudomonas aeruginosa pilin protein strain PAK (residues 128-144) has recently been the target for the design of a synthetic peptide vaccine effective against multiple strains of P. aeruginosa infection. We have successfully cloned and bacterially expressed a 15N-labeled PAK pilin peptide spanning residues 128-144 of the intact PAK pilin protein, PAK 128-144(Hs145), and have determined the solution secondary structure of this peptide using heteronuclear multidimensional NMR spectroscopy. The oxidized recombinant peptide exists as a major (trans) and minor (cis) species in solution, arising from isomerization around the Ile138-Pro139 peptide bond. The pattern of NOEs, temperature coefficients, and coupling constants observed for the trans isomer demonstrate the presence of a type I beta-turn and a type II beta-turn spanning Asp134-Glu-Gln-Phe137 and Pro139-Lys-Gly-Cys142, respectively. This is in agreement with the NMR solution structure of the trans isomer of a synthetic PAK 128-144 peptide which showed a type I and a type II beta-turn in these same regions of the sequence [McInnes, C., Sönnichsen, F. D., Kay, C. M., Hodges, R. S., and Sykes, B. D. (1993) Biochemistry 32, 13432-13440; Campbell, A. P., McInnes, C., Hodges, R. S., and Sykes, B. D. (1995) Biochemistry 34, 16255-16268]. The pattern of NOEs, temperature coefficients, and coupling constants observed for the cis isomer also demonstrate a type II beta-turn spanning Pro139-Lys-Gly-Cys142, but suggest a second beta-turn spanning Asp132-Gln-Asp-Glu135. Thus, the cis isomer may also possess a double-turn motif (like the trans isomer), but with different spacing between the turns and a different placement of the first turn in the sequence. The discovery of a double-turn motif in the trans (and cis) recombinant PAK pilin peptide is an extremely important result since the double turn has been implicated as a structural requirement for the recognition of both receptor

  17. Use of RSM modeling for optimizing decolorization of simulated textile wastewater by Pseudomonas aeruginosa strain ZM130 capable of simultaneous removal of reactive dyes and hexavalent chromium.

    PubMed

    Maqbool, Zahid; Hussain, Sabir; Ahmad, Tanvir; Nadeem, Habibullah; Imran, Muhammad; Khalid, Azeem; Abid, Muhammad; Martin-Laurent, Fabrice

    2016-06-01

    Remediation of colored wastewater loaded with dyes and metal ions is a matter of interest nowadays. In this study, 220 bacteria isolated from textile wastewater were tested for their potential to decolorize each of the four reactive dyes (reactive red-120, reactive black-5, reactive yellow-2, and reactive orange-16) in the presence of a mixture of four different heavy metals (Cr, Zn, Pb, Cd) commonly found in textile effluents. Among the tested bacteria, the isolate ZM130 was found to be the most efficient in decolorizing reactive dyes in the presence of the mixture of heavy metals and was identified as Pseudomonas aeruginosa strain ZM130 by 16S rRNA gene analysis. The strain ZM130 was highly effective in simultaneously removing hexavalent chromium (25 mg L(-1)) and the azo dyes (100 mg L(-1)) from the simulated wastewater even in the presence of other three heavy metals (Zn, Pb, Cd). Simultaneous removal of chromium and azo dyes ranged as 76.6-98.7 % and 51.9-91.1 %, respectively, after 180 h incubation. On the basis of quadratic polynomial equation and response surfaces given by the response surface methodology (RSM), optimal salt content, pH, carbon co-substrate content, and level of multi-metal mixtures for decolorization of reactive red-120 in a simulated textile wastewater by the strain ZM130 were predicted to be 19.8, 7.8, and 6.33 g L(-1) and a multi-metal mixture (Cr 13.10 mg L(-1), Pb 26.21 mg L(-1), Cd 13.10 mg L(-1), Zn 26.21 mg L(-1)), respectively. Moreover, the strain ZM130 also exhibited laccase and nicotinamide adenine dinucleotide (reduced)-dichlorophenolindophenol reductase (NADH-DCIP reductase) activity during the decolorization of reactive red-120. However, the laccase activity was found to be maximum in the presence of 300 mg L(-1) of the dye as compared to other concentrations. Hence, the isolation of this strain might serve as a potential bio-resource required for developing the strategies aiming at bioremediation of the

  18. Use of RSM modeling for optimizing decolorization of simulated textile wastewater by Pseudomonas aeruginosa strain ZM130 capable of simultaneous removal of reactive dyes and hexavalent chromium.

    PubMed

    Maqbool, Zahid; Hussain, Sabir; Ahmad, Tanvir; Nadeem, Habibullah; Imran, Muhammad; Khalid, Azeem; Abid, Muhammad; Martin-Laurent, Fabrice

    2016-06-01

    Remediation of colored wastewater loaded with dyes and metal ions is a matter of interest nowadays. In this study, 220 bacteria isolated from textile wastewater were tested for their potential to decolorize each of the four reactive dyes (reactive red-120, reactive black-5, reactive yellow-2, and reactive orange-16) in the presence of a mixture of four different heavy metals (Cr, Zn, Pb, Cd) commonly found in textile effluents. Among the tested bacteria, the isolate ZM130 was found to be the most efficient in decolorizing reactive dyes in the presence of the mixture of heavy metals and was identified as Pseudomonas aeruginosa strain ZM130 by 16S rRNA gene analysis. The strain ZM130 was highly effective in simultaneously removing hexavalent chromium (25 mg L(-1)) and the azo dyes (100 mg L(-1)) from the simulated wastewater even in the presence of other three heavy metals (Zn, Pb, Cd). Simultaneous removal of chromium and azo dyes ranged as 76.6-98.7 % and 51.9-91.1 %, respectively, after 180 h incubation. On the basis of quadratic polynomial equation and response surfaces given by the response surface methodology (RSM), optimal salt content, pH, carbon co-substrate content, and level of multi-metal mixtures for decolorization of reactive red-120 in a simulated textile wastewater by the strain ZM130 were predicted to be 19.8, 7.8, and 6.33 g L(-1) and a multi-metal mixture (Cr 13.10 mg L(-1), Pb 26.21 mg L(-1), Cd 13.10 mg L(-1), Zn 26.21 mg L(-1)), respectively. Moreover, the strain ZM130 also exhibited laccase and nicotinamide adenine dinucleotide (reduced)-dichlorophenolindophenol reductase (NADH-DCIP reductase) activity during the decolorization of reactive red-120. However, the laccase activity was found to be maximum in the presence of 300 mg L(-1) of the dye as compared to other concentrations. Hence, the isolation of this strain might serve as a potential bio-resource required for developing the strategies aiming at bioremediation of the

  19. In Vivo Efficacy of Antimicrobials against Biofilm-Producing Pseudomonas aeruginosa

    PubMed Central

    Komor, Uliana; Kasnitz, Nadine; Bielecki, Piotr; Pils, Marina C.; Gocht, Benjamin; Moter, Annette; Rohde, Manfred; Weiss, Siegfried; Häussler, Susanne

    2015-01-01

    Patients suffering from cystic fibrosis (CF) are commonly affected by chronic Pseudomonas aeruginosa biofilm infections. This is the main cause for the high disease severity. In this study, we demonstrate that P. aeruginosa is able to efficiently colonize murine solid tumors after intravenous injection and to form biofilms in this tissue. Biofilm formation was evident by electron microscopy. Such structures could not be observed with transposon mutants, which were defective in biofilm formation. Comparative transcriptional profiling of P. aeruginosa indicated physiological similarity of the bacteria in the murine tumor model and the CF lung. The efficacy of currently available antibiotics for treatment of P. aeruginosa-infected CF lungs, such as ciprofloxacin, colistin, and tobramycin, could be tested in the tumor model. We found that clinically recommended doses of these antibiotics were unable to eliminate wild-type P. aeruginosa PA14 while being effective against biofilm-defective mutants. However, colistin-tobramycin combination therapy significantly reduced the number of P. aeruginosa PA14 cells in tumors at lower concentrations. Hence, we present a versatile experimental system that is providing a platform to test approved and newly developed antibiofilm compounds. PMID:26055372

  20. Components of the Cultivated Red Seaweed Chondrus crispus Enhance the Immune Response of Caenorhabditis elegans to Pseudomonas aeruginosa through the pmk-1, daf-2/daf-16, and skn-1 Pathways

    PubMed Central

    Liu, Jinghua; Hafting, Jeff; Critchley, Alan T.; Banskota, Arjun H.

    2013-01-01

    Marine macroalgae are rich in bioactive compounds that can, when consumed, impart beneficial effects on animal and human health. The red seaweed Chondrus crispus has been reported to have a wide range of health-promoting activities, such as antitumor and antiviral activities. Using a Caenorhabditis elegans infection model, we show that C. crispus water extract (CCWE) enhances host immunity and suppresses the expression of quorum sensing (QS) and the virulence factors of Pseudomonas aeruginosa (strain PA14). Supplementation of nematode growth medium with CCWE induced the expression of C. elegans innate immune genes, such as irg-1, irg-2, F49F1.6, hsf-1, K05D8.5, F56D6.2, C29F3.7, F28D1.3, F38A1.5 ZK6.7, lys-1, spp-1, and abf-1, by more than 2-fold, while T20G5.7 was not affected. Additionally, CCWE suppressed the expression of PA14 QS genes and virulence factors, although it did not affect the growth of the bacteria. These effects correlated with a 28% reduction in the PA14-inflicted killing of C. elegans. Kappa-carrageenan (K-CGN), a major component of CCWE, was shown to play an important role in the enhancement of host immunity. Using C. elegans mutants, we identified that pmk-1, daf-2/daf-16, and skn-1 are essential in the K-CGN-induced host immune response. In view of the conservation of innate immune pathways between C. elegans and humans, the results of this study suggest that water-soluble components of C. crispus may also play a health-promoting role in higher animals and humans. PMID:24056462

  1. Computation of interactive effects and optimization of process parameters for alkaline lipase production by mutant strain of Pseudomonas aeruginosa using response surface methodology

    PubMed Central

    Bisht, Deepali; Yadav, Santosh Kumar; Darmwal, Nandan Singh

    2013-01-01

    Alkaline lipase production by mutant strain of Pseudomonas aeruginosa MTCC 10,055 was optimized in shake flask batch fermentation using response surface methodology. An empirical model was developed through Box-Behnken experimental design to describe the relationship among tested variables (pH, temperature, castor oil, starch and triton-X-100). The second-order quadratic model determined the optimum conditions as castor oil, 1.77 mL.L−1; starch, 15.0 g.L−1; triton-X-100, 0.93 mL.L−1; incubation temperature, 34.12 °C and pH 8.1 resulting into maximum alkaline lipase production (3142.57 U.mL−1). The quadratic model was in satisfactory adjustment with the experimental data as evidenced by a high coefficient of determination (R2) value (0.9987). The RSM facilitated the analysis and interpretation of experimental data to ascertain the optimum conditions of the variables for the process and recognized the contribution of individual variables to assess the response under optimal conditions. Hence Box-Behnken approach could fruitfully be applied for process optimization. PMID:24159311

  2. Quinoline-degrading strain Pseudomonas aeruginosa KDQ4 isolated from coking activated sludge is capable of the simultaneous removal of phenol in a dual substrate system.

    PubMed

    Zhang, Panhong; Jia, Rong; Zhang, Yuxiu; Shi, Peili; Chai, Tuanyao

    2016-11-01

    Quinoline is a refractory organic compound in the treatment of coking wastewater. The isolation of high efficiency quinoline-degrading bacteria from activated sludge and the evaluation of their degradation characteristics in the presence of phenol or in the actual coking wastewater are important for the improvement of effluent quality. The novel bacterial strain Pseudomonas aeruginosa KDQ4 was isolated from a quinoline enrichment culture obtained from the activated sludge of a coking wastewater treatment plant. The optimum temperature and initial pH for quinoline degradation were 33-38°C and 8-9, respectively. KDQ4 completely degraded 400 mg/L of quinoline within 24 h and 800 mg/L of phenol within 30 h. In the dual-substrate system, the removal efficiencies of quinoline and phenol at the same initial concentration (200 mg/L) by KDQ4 were 89% and 100% within 24 h, respectively, indicating that KDQ4 could simultaneously and quickly degrade quinoline and phenol in a coexistence system. Moreover, KDQ4 was able to adapt to actual coking wastewater containing high quinoline and phenol concentrations and rapidly remove them. KDQ4 also exhibited heterotrophic nitrification and aerobic denitrification potential under aerobic conditions. These results suggested a potential bioaugmentation role for KDQ4 in the removal of nitrogen-heterocyclic compounds and phenolics from coking wastewater. PMID:27458688

  3. In vitro antiproliferative, pro-apoptotic, antimetastatic and anti-inflammatory potential of 2,4-diacetylphloroglucinol (DAPG) by Pseudomonas aeruginosa strain FP10.

    PubMed

    Veena, Vijay Kumar; Popavath, Ravindra Naik; Kennedy, Kamaraj; Sakthivel, Natarajan

    2015-10-01

    The 2,4-diacetylphloroglucinol (DAPG), a polyketide metabolite extracted from Pseudomonas aeruginosa strain FP10, exhibited selective cytoxicity against lung (A549), breast (MDA MB-231), cervical (HeLa) and colon (HCT-15) cancer cells in differential and dose-dependent manner. The anticancer and antimetastatic activities of DAPG were mediated by the inhibition of ROS, NF-κB, Bcl-2, MMP-2, VEGF and primary inflammatory mediators such as TNF-α, IL-6, IL-1β and NO. The DAPG induced apoptosis in cancer cells by intrinsic and extrinsic pathways via the release of cytochrome-C, upregulation of Bax and the activation of caspases and also, exhibited anti-inflammatory activity by the inhibition of LPS-inflammed cell proliferation of macrophage (Raw 264.7), monocytic cells (THP-1) and peripheral blood mononuclear cells (PBMCs). Results further confirmed that the DAPG inhibited the primary inflammatory mediators in cancer cells and inflammed immune cells through the down regulation of NF-κB. In the present study, for the first time, antiproliferative, proapoptotic, antimetastatic and anti-inflammatory activities of DAPG in various cancer cells and inflammation-induced immune cells have been reported. PMID:26283170

  4. Identification of microcystin toxins from a strain of Microcystis aeruginosa by liquid chromatography introduction into a hybrid linear ion trap-Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Diehnelt, Chris W; Dugan, Nicholas R; Peterman, Scott M; Budde, William L

    2006-01-15

    The cyclic heptapeptide microcystin toxins produced by a strain of Microcystis aeruginosa that has not been investigated previously were separated by liquid chromatography and identified by high-accuracy m/z measurements of their [M + H]+ ions and the fragment ions produced by collision-activated dissociation of the [M + H]+ ions. The cyanobacteria B2666 strain was cultured in a standard growth medium, and the toxins were released from the cells, extracted from the aqueous phase, and concentrated using standard procedures. The microcystins were separated by reversed-phase microbore liquid chromatography and introduced directly into a hybrid linear ion trap-Fourier transform ion cyclotron resonance mass spectrometer with electrospray ionization. The known microcystins (MC) MC-LR, MC-LA, [MeSer7]MC-LR, MC-LL, MC-LF, and MC-L(Aba) were identified along with the two previously unreported structural variants [Asp3]MC-LA and [Asp3]MC-LL. In addition to the [M + H]+ ions, accurate m/z measurements were made of 12-18 product ions for each identified microcystin. The mean difference between measured and calculated exact m/z was less than 2 parts per million, which often allowed assignment of unique compositions to the observed ions. A mechanism is presented that accounts for an important collision-activated dissociation process that gives valuable sequence ions from microcystins that do not contain arginine. The analytical technique used in this work is capable of supporting fairly rapid and very reliable identifications of known microcystins when standards are not available and of most structural variants independent of additional information from other analytical techniques.

  5. Functional Characterization of WaaL, a Ligase Associated with Linking O-Antigen Polysaccharide to the Core of Pseudomonas aeruginosa Lipopolysaccharide

    PubMed Central

    Abeyrathne, Priyanka D.; Daniels, Craig; Poon, Karen K. H.; Matewish, Mauricia J.; Lam, Joseph S.

    2005-01-01

    The O antigen of Pseudomonas aeruginosa B-band lipopolysaccharide is synthesized by assembling O-antigen-repeat units at the cytoplasmic face of the inner membrane by nonprocessive glycosyltransferases, followed by polymerization on the periplasmic face. The completed chains are covalently attached to lipid A core by the O-antigen ligase, WaaL. In P. aeruginosa the process of ligating these O-antigen molecules to lipid A core is not clearly defined, and an O-antigen ligase has not been identified until this study. Using the sequence of waaL from Salmonella enterica as a template in a BLAST search, a putative waaL gene was identified in the P. aeruginosa genome. The candidate gene was amplified and cloned, and a chromosomal knockout of PAO1 waaL was generated. Lipopolysaccharide (LPS) from this mutant is devoid of B-band O-polysaccharides and semirough (SR-LPS, or core-plus-one O-antigen). The mutant PAO1waaL is also deficient in the production of A-band polysaccharide, a homopolymer of d-rhamnose. Complementation of the mutant with pPAJL4 containing waaL restored the production of both A-band and B-band O antigens as well as SR-LPS, indicating that the knockout was nonpolar and waaL is required for the attachment of O-antigen repeat units to the core. Mutation of waaL in PAO1 and PA14, respectively, could be complemented with waaL from either strain to restore wild-type LPS production. The waaL mutation also drastically affected the swimming and twitching motilities of the bacteria. These results demonstrate that waaL in P. aeruginosa encodes a functional O-antigen ligase that is important for cell wall integrity and motility of the bacteria. PMID:15838026

  6. Isolation and characterization of gallium resistant Pseudomonas aeruginosa mutants.

    PubMed

    García-Contreras, Rodolfo; Lira-Silva, Elizabeth; Jasso-Chávez, Ricardo; Hernández-González, Ismael L; Maeda, Toshinari; Hashimoto, Takahiro; Boogerd, Fred C; Sheng, Lili; Wood, Thomas K; Moreno-Sánchez, Rafael

    2013-12-01

    Pseudomonas aeruginosa PA14 cells resistant to the novel antimicrobial gallium nitrate (Ga) were developed using transposon mutagenesis and by selecting spontaneous mutants. The mutants showing the highest growth in the presence of Ga were selected for further characterization. These mutants showed 4- to 12-fold higher Ga minimal inhibitory growth concentrations and a greater than 8-fold increase in the minimum biofilm eliminating Ga concentration. Both types of mutants produced Ga resistant biofilms whereas the formation of wild-type biofilms was strongly inhibited by Ga. The gene interrupted in the transposon mutant was hitA, which encodes a periplasmic iron binding protein that delivers Fe³⁺ to the HitB iron permease; complementation of the mutant with the hitA gene restored the Ga sensitivity. This hitA mutant showed a 14-fold decrease in Ga internalization versus the wild-type strain, indicating that the HitAB system is also involved in the Ga uptake. Ga uptake in the spontaneous mutant was also lower, although no mutations were found in the hitAB genes. Instead, this mutant harbored 64 non-silent mutations in several genes including those of the phenazine pyocyanin biosynthesis. The spontaneous mutant produced 2-fold higher pyocyanin basal levels than the wild-type; the addition of this phenazine to wild-type cultures protected them from the Ga bacteriostatic effect. The present data indicate that mutations affecting Ga transport and probably pyocyanin biosynthesis enable cells to develop resistance to Ga.

  7. [Assessment of 2 automated microdilution techniques compared to an agar dilution method in determining sensitivity to fosfomycin in strains of carbapenem-resistant Pseudomonas aeruginosa].

    PubMed

    Gil-Romero, Yolanda; Regodón-Domínguez, Marta; Wilhelmi de Cal, Isabel; López-Fabal, Fátima; Gómez-Garcés, José Luis

    2016-01-01

    Carbapenems-resistance in Pseudomonas aeruginosa isolates has been widely reported. Fosfomycin has been shown to act synergistically with other antimicrobials. The agar dilution method was approved for susceptibility testing for fosfomycin and Pseudomonas aeruginosa. However, broth microdilution methods are the basis of systems currently used in clinical microbiology laboratories. The results of this study indicate that these methods are acceptable as susceptibility testing methods for fosfomycin against these organisms.

  8. Anr and its activation by PlcH activity in Pseudomonas aeruginosa host colonization and virulence.

    PubMed

    Jackson, Angelyca A; Gross, Maegan J; Daniels, Emily F; Hampton, Thomas H; Hammond, John H; Vallet-Gely, Isabelle; Dove, Simon L; Stanton, Bruce A; Hogan, Deborah A

    2013-07-01

    Pseudomonas aeruginosa hemolytic phospholipase C (PlcH) degrades phosphatidylcholine (PC), an abundant lipid in cell membranes and lung surfactant. A ΔplcHR mutant, known to be defective in virulence in animal models, was less able to colonize epithelial cell monolayers and was defective in biofilm formation on plastic when grown in lung surfactant. Microarray analyses found that strains defective in PlcH production had lower levels of Anr-regulated transcripts than the wild type. PC degradation stimulated the Anr regulon in an Anr-dependent manner under conditions where Anr activity was submaximal because of the presence of oxygen. Two PC catabolites, choline and glycine betaine (GB), were sufficient to stimulate Anr activity, and their catabolism was required for Anr activation. The addition of choline or GB to glucose-containing medium did not alter Anr protein levels, growth rates, or respiratory activity, and Anr activation could not be attributed to the osmoprotectant functions of GB. The Δanr mutant was defective in virulence in a mouse pneumonia model. Several lines of evidence indicate that Anr is important for the colonization of biotic and abiotic surfaces in both P. aeruginosa PAO1 and PA14 and that increases in Anr activity resulted in enhanced biofilm formation. Our data suggest that PlcH activity promotes Anr activity in oxic environments and that Anr activity contributes to virulence, even in the acute infection phase, where low oxygen tensions are not expected. This finding highlights the relationships among in vivo bacterial metabolism, the activity of the oxygen-sensitive regulator Anr, and virulence.

  9. Proteome Analysis of the Effect of Mucoid Conversion on Global Protein Expression in Pseudomonas aeruginosa Strain PAO1 Shows Induction of the Disulfide Bond Isomerase, DsbA

    PubMed Central

    Malhotra, Sonal; Silo-Suh, Laura A.; Mathee, Kalai; Ohman, Dennis E.

    2000-01-01

    Pseudomonas aeruginosa strains that cause chronic pulmonary infections in cystic fibrosis patients typically undergo mucoid conversion. The mucoid phenotype indicates alginate overproduction and is often due to defects in MucA, an antisigma factor that controls the activity of sigma-22 (AlgT [also called AlgU]), which is required for the activation of genes for alginate biosynthesis. In this study we hypothesized that mucoid conversion may be part of a larger response that activates genes other than those for alginate synthesis. To address this, a two-dimensional (2-D) gel analysis was employed to compare total proteins in strain PAO1 to those of its mucA22 derivative, PDO300, in order to identify protein levels enhanced by mucoid conversion. Six proteins that were clearly more abundant in the mucoid strain were observed. The amino termini of such proteins were determined and used to identify the gene products in the genomic database. Proteins involved in alginate biosynthesis were expected among these, and two (AlgA and AlgD) were identified. This result verified that the 2-D gel approach could identify gene products under sigma-22 control and upregulated by mucA mutation. Two other protein spots were also clearly upregulated in the mucA22 background, and these were identified as porin F (an outer membrane protein) and a homologue of DsbA (a disulfide bond isomerase). Single-copy gene fusions were constructed to test whether these proteins were enhanced in the mucoid strain due to increased transcription. The oprF-lacZ fusion showed little difference in levels of expression in the two strains. However, the dsbA-lacZ fusion showed two- to threefold higher expression in PDO300 than in PAO1, suggesting that its promoter was upregulated by the deregulation of sigma-22 activity. A dsbA-null mutant was constructed in PAO1 and shown to have defects predicted for a cell with reduced disulfide bond isomerase activity, namely, reduction in periplasmic alkaline phosphatase

  10. The Accessory Genome of Pseudomonas aeruginosa

    PubMed Central

    Kung, Vanderlene L.; Ozer, Egon A.; Hauser, Alan R.

    2010-01-01

    Summary: Pseudomonas aeruginosa strains exhibit significant variability in pathogenicity and ecological flexibility. Such interstrain differences reflect the dynamic nature of the P. aeruginosa genome, which is composed of a relatively invariable “core genome” and a highly variable “accessory genome.” Here we review the major classes of genetic elements comprising the P. aeruginosa accessory genome and highlight emerging themes in the acquisition and functional importance of these elements. Although the precise phenotypes endowed by the majority of the P. aeruginosa accessory genome have yet to be determined, rapid progress is being made, and a clearer understanding of the role of the P. aeruginosa accessory genome in ecology and infection is emerging. PMID:21119020

  11. Physiological responses of Microcystis aeruginosa against the algicidal bacterium Pseudomonas aeruginosa.

    PubMed

    Zhou, Su; Yin, Hua; Tang, Shaoyu; Peng, Hui; Yin, Donggao; Yang, Yixuan; Liu, Zehua; Dang, Zhi

    2016-05-01

    Proliferation of cyanobacteria in aquatic ecosystems has caused water security problems throughout the world. Our preliminary study has showed that Pseudomonas aeruginosa can inhibit the growth of cyanobacterium, Microcystis aeruginosa. In order to explore the inhibitory mechanism of P. aeruginosa on the cell growth and synthesis of intracellular substances of M. aeruginosa, concentrations of Chlorophyll-a, intracellular protein, carbohydrate, enzyme activities and ion metabolism of M. aeruginosa, were investigated. The results indicated that 83.84% algicidal efficiency of P. aeruginosa was achieved after treatment for 7 days. The strain inhibited the reproduction of M. aeruginosa by impeding the synthesis of intracellular protein and carbohydrate of cyanobacterium, and only a very small part of intracellular protein and carbohydrate was detected after exposure to P. aeruginosa for 5 days. P. aeruginosa caused the alteration of intracellular antioxidant enzyme activity of M. aeruginosa, such as catalase, peroxidase. The accumulation of malondialdehyde aggravated membrane injury after treatment for 3 days. P. aeruginosa also affected the ion metabolism of cyanobacteria. The release of Na(+) and Cl(-) was significantly enhanced while the uptake of K(+), Ca(2+), Mg(2+), NO3(-) and SO4(2)(-) decreased. Surface morphology and intracellular structure of cyanobacteria and bacterial cells changed dramatically over time as evidenced by electron microscope (SEM) and transmission electron microscope (TEM) analysis. These results revealed that the algicidal activity of P. aeruginosa was primarily due to the fermentation liquid of P. aeruginosa that impeded the synthesis of intracellular protein and carbohydrate, and damaged the cell membrane through membrane lipid peroxidation.

  12. Physiological responses of Microcystis aeruginosa against the algicidal bacterium Pseudomonas aeruginosa.

    PubMed

    Zhou, Su; Yin, Hua; Tang, Shaoyu; Peng, Hui; Yin, Donggao; Yang, Yixuan; Liu, Zehua; Dang, Zhi

    2016-05-01

    Proliferation of cyanobacteria in aquatic ecosystems has caused water security problems throughout the world. Our preliminary study has showed that Pseudomonas aeruginosa can inhibit the growth of cyanobacterium, Microcystis aeruginosa. In order to explore the inhibitory mechanism of P. aeruginosa on the cell growth and synthesis of intracellular substances of M. aeruginosa, concentrations of Chlorophyll-a, intracellular protein, carbohydrate, enzyme activities and ion metabolism of M. aeruginosa, were investigated. The results indicated that 83.84% algicidal efficiency of P. aeruginosa was achieved after treatment for 7 days. The strain inhibited the reproduction of M. aeruginosa by impeding the synthesis of intracellular protein and carbohydrate of cyanobacterium, and only a very small part of intracellular protein and carbohydrate was detected after exposure to P. aeruginosa for 5 days. P. aeruginosa caused the alteration of intracellular antioxidant enzyme activity of M. aeruginosa, such as catalase, peroxidase. The accumulation of malondialdehyde aggravated membrane injury after treatment for 3 days. P. aeruginosa also affected the ion metabolism of cyanobacteria. The release of Na(+) and Cl(-) was significantly enhanced while the uptake of K(+), Ca(2+), Mg(2+), NO3(-) and SO4(2)(-) decreased. Surface morphology and intracellular structure of cyanobacteria and bacterial cells changed dramatically over time as evidenced by electron microscope (SEM) and transmission electron microscope (TEM) analysis. These results revealed that the algicidal activity of P. aeruginosa was primarily due to the fermentation liquid of P. aeruginosa that impeded the synthesis of intracellular protein and carbohydrate, and damaged the cell membrane through membrane lipid peroxidation. PMID:26866757

  13. Proteomic analysis of keratitis-associated Pseudomonas aeruginosa

    PubMed Central

    Sewell, Abby; Dunmire, Jeffrey; Wehmann, Michael; Rowe, Theresa

    2014-01-01

    Purpose To compare the proteomic profile of a clinical isolate of Pseudomonas aeruginosa (P. aeruginosa) obtained from an infected cornea of a contact lens wearer and the laboratory strain P. aeruginosa ATCC 10145. Methods Antibiotic sensitivity, motility, biofilm formation, and virulence tests were performed using standard methods. Whole protein lysates were analyzed with liquid chromatography/ tandem mass spectrometry (LC-MS/MS) in triplicate, and relative protein abundances were determined with spectral counting. The G test followed by a post hoc Holm-Sidak adjustment was used for the statistical analyses to determine significance in the differential expression of proteins between the two strains. Results A total of 687 proteins were detected. One-hundred thirty-three (133) proteins were significantly different between the two strains. Among these, 13 were upregulated, and 16 were downregulated in the clinical strain compared to ATCC 10145, whereas 57 were detected only in the clinical strain. The upregulated proteins are associated with virulence and pathogenicity. Conclusions Proteins detected at higher levels in the clinical strain of P. aeruginosa were proteins known to be virulence factors. These results confirm that the keratitis-associated P. aeruginosa strain is pathogenic and expresses a higher number of virulence factors compared to the laboratory strain ATCC 10145. Identification of the protein profile of the corneal strain of P. aeruginosa in this study will aid in elucidating novel intervention strategies for reducing the burden of P. aeruginosa infection in keratitis. PMID:25221424

  14. Regulation of alkyl-dihydrothiazole-carboxylates (ATCs) by iron and the pyochelin gene cluster in Pseudomonas aeruginosa.

    PubMed

    Vinayavekhin, Nawaporn; Saghatelian, Alan

    2009-08-21

    Using the pyochelin (pch) gene cluster as an example, we demonstrate the utility of untargeted metabolomics in the discovery and characterization of secondary metabolites regulated by biosynthetic gene clusters. Comparison of the extracellular metabolomes of pch gene cluster mutants to the wild-type Pseudomonas aeruginosa (strain PA 14) identified 198 ions regulated by the pch genes. In addition to known metabolites, we characterized the structure of a pair of novel metabolites regulated by the pch gene cluster as 2-alkyl-4,5-dihydrothiazole-4-carboxylates (ATCs), using a combination of mass spectrometry, chemical synthesis, and stable isotope labeling. Subsequent assays revealed that ATCs bind iron and are regulated by iron levels in the media in a similar fashion as other metabolites associated with the pch gene cluster. Further genetic complementation and overexpression analyses of the pch genes revealed ATC production to be dependent on the pchE gene in the pch gene cluster. Overall, these studies highlight the ability of untargeted metabolomics to reveal regulatory connections between gene clusters and secondary metabolites, including novel metabolites. PMID:19621937

  15. Evaluating the influence of light intensity in mcyA gene expression and microcystin production in toxic strains of Planktothrix agardhii and Microcystis aeruginosa.

    PubMed

    Salvador, Daniel; Churro, Catarina; Valério, Elisabete

    2016-04-01

    Cyanobacteria are phytoplanktonic organisms widely occurring in freshwaters, being frequently associated with the production of toxins, namely microcystins (MCs). MCs are produced non-ribosomally by a multienzyme complex (mcy genes). It has been reported that environmental factors, such as light intensity, can influence toxin production. The aim of this study was to assess the influence of light intensity in the transcription of the mcyA gene and corresponding production of microcystins in toxic isolates of Planktothrix agardhii, where little is known, and compare them to Microcystis aeruginosa. For that purpose, cultures were exposed to three different light intensities (4, 20 and 30 μmol photons m(-2) s(-1)) for 18 days at 20 ± 1 °C. The growth was followed daily using absorbance readings. Samples were collected at each growth stage for cell counting, microcystins quantification and RNA extraction. The level of transcripts was quantified by RT-qPCR and the relative expression determined using 16S rDNA, gltA and rpoC1 as reference genes. The most stable reference genes in M. aeruginosa were rpoC1 and gltA, whereas in P. agardhii were 16S rDNA and gltA. There was a correspondence between the growth rate and light intensity in M. aeruginosa and P. agardhii. The growth rates for both species were lower at 4 and higher at 30 μmol photons m(-2) s(-1). Microcystin concentration per cell was similar between light intensities in M. aeruginosa and over time, while in P. agardhii it was higher in the stationary phase at 4 μmol photons m(-2) s(-1). There were differences in the expression of mcyA between the two species. In M. aeruginosa, the highest levels of expression occurred at 4 μmol photons m(-2) s(-1) in the adaptation phase, whereas for P. agardhii it was at 4μmol photons m(-2) s(-1) in the exponential growth phase. Our results indicate that the light intensities tested had distinct influences on the growth, microcystin production and mcyA expression levels

  16. Evaluating the influence of light intensity in mcyA gene expression and microcystin production in toxic strains of Planktothrix agardhii and Microcystis aeruginosa.

    PubMed

    Salvador, Daniel; Churro, Catarina; Valério, Elisabete

    2016-04-01

    Cyanobacteria are phytoplanktonic organisms widely occurring in freshwaters, being frequently associated with the production of toxins, namely microcystins (MCs). MCs are produced non-ribosomally by a multienzyme complex (mcy genes). It has been reported that environmental factors, such as light intensity, can influence toxin production. The aim of this study was to assess the influence of light intensity in the transcription of the mcyA gene and corresponding production of microcystins in toxic isolates of Planktothrix agardhii, where little is known, and compare them to Microcystis aeruginosa. For that purpose, cultures were exposed to three different light intensities (4, 20 and 30 μmol photons m(-2) s(-1)) for 18 days at 20 ± 1 °C. The growth was followed daily using absorbance readings. Samples were collected at each growth stage for cell counting, microcystins quantification and RNA extraction. The level of transcripts was quantified by RT-qPCR and the relative expression determined using 16S rDNA, gltA and rpoC1 as reference genes. The most stable reference genes in M. aeruginosa were rpoC1 and gltA, whereas in P. agardhii were 16S rDNA and gltA. There was a correspondence between the growth rate and light intensity in M. aeruginosa and P. agardhii. The growth rates for both species were lower at 4 and higher at 30 μmol photons m(-2) s(-1). Microcystin concentration per cell was similar between light intensities in M. aeruginosa and over time, while in P. agardhii it was higher in the stationary phase at 4 μmol photons m(-2) s(-1). There were differences in the expression of mcyA between the two species. In M. aeruginosa, the highest levels of expression occurred at 4 μmol photons m(-2) s(-1) in the adaptation phase, whereas for P. agardhii it was at 4μmol photons m(-2) s(-1) in the exponential growth phase. Our results indicate that the light intensities tested had distinct influences on the growth, microcystin production and mcyA expression levels

  17. Developing an international Pseudomonas aeruginosa reference panel

    PubMed Central

    De Soyza, Anthony; Hall, Amanda J; Mahenthiralingam, Eshwar; Drevinek, Pavel; Kaca, Wieslaw; Drulis-Kawa, Zuzanna; Stoitsova, Stoyanka R; Toth, Veronika; Coenye, Tom; Zlosnik, James E A; Burns, Jane L; Sá-Correia, Isabel; De Vos, Daniel; Pirnay, Jean-Paul; Kidd, Timothy J; Reid, David; Manos, Jim; Klockgether, Jens; Wiehlmann, Lutz; Tümmler, Burkhard; McClean, Siobhán; Winstanley, Craig

    2013-01-01

    Pseudomonas aeruginosa is a major opportunistic pathogen in cystic fibrosis (CF) patients and causes a wide range of infections among other susceptible populations. Its inherent resistance to many antimicrobials also makes it difficult to treat infections with this pathogen. Recent evidence has highlighted the diversity of this species, yet despite this, the majority of studies on virulence and pathogenesis focus on a small number of strains. There is a pressing need for a P. aeruginosa reference panel to harmonize and coordinate the collective efforts of the P. aeruginosa research community. We have collated a panel of 43 P. aeruginosa strains that reflects the organism's diversity. In addition to the commonly studied clones, this panel includes transmissible strains, sequential CF isolates, strains with specific virulence characteristics, and strains that represent serotype, genotype or geographic diversity. This focussed panel of P. aeruginosa isolates will help accelerate and consolidate the discovery of virulence determinants, improve our understanding of the pathogenesis of infections caused by this pathogen, and provide the community with a valuable resource for the testing of novel therapeutic agents. PMID:24214409

  18. Bioalteration of synthetic Fe(III)-, Fe(II)-bearing basaltic glasses and Fe-free glass in the presence of the heterotrophic bacteria strain Pseudomonas aeruginosa: Impact of siderophores

    NASA Astrophysics Data System (ADS)

    Perez, Anne; Rossano, Stéphanie; Trcera, Nicolas; Huguenot, David; Fourdrin, Chloé; Verney-Carron, Aurélie; van Hullebusch, Eric D.; Guyot, François

    2016-09-01

    This study aims to evaluate the role of micro-organisms and their siderophores in the first steps of the alteration processes of basaltic glasses in aqueous media. In this regard, three different types of glasses - with or without iron, in the reduced Fe(II) or oxidized Fe(III) states - were prepared on the basis of a simplified basaltic glass composition. Control and Pseudomonas aeruginosa inoculated experiments were performed in a buffered (pH 6.5) nutrient depleted medium to stimulate the production of the pyoverdine siderophore. Results show that the presence of P. aeruginosa has an effect on the dissolution kinetics of all glasses as most of the calculated elemental release rates are increased compared to sterile conditions. Reciprocally, the composition of the glass in contact with P. aeruginosa has an impact on the bacterial growth and siderophore production. As an essential nutrient for this microbial strain, Fe notably appears to play a central role during biotic experiments. Its presence in the glass stimulates the bacterial growth and minimizes the synthesis of pyoverdine. Moreover the initial Fe2+/Fe3+ ratio in the glasses modulates this synthesis, as pyoverdine is not detected at all in the system in contact with Fe(III)-bearing glass. Finally, the dissolution rates appear to be correlated to siderophore concentrations as they increase with respect to sterile experiments in the order Fe(III)-bearing glass < Fe(II)-bearing glass < Fe-free glass. This increase is attributed to complexation reactions between siderophores and Fe or Al for Fe(II)-bearing glass or Fe-free glass, respectively. The dissolution of an Fe-free glass is significantly improved in the presence of bacteria, as initial dissolution rates are increased by a factor of 3. This study attests to the essential role of siderophores in the P. aeruginosa-promoted dissolution processes of basaltic glasses as well as to the complex relationships between the nutritional potential of the glass and

  19. Comparative studies on growth and physiological responses of unicellular and colonial Microcystis aeruginosa to Acorus calamus.

    PubMed

    Zhang, S-H; Chang, J-J; Cao, J-Y; Yang, C-L

    2015-02-01

    In order to explore the growth inhibition and physiological responses of unicellular and colonial Microcystis aeruginosa during coexistence with Acorus calamus, algal densities, chlorophyll a contents, exopolysaccharide (EPS) concentrations, malondialdehyde (MDA) contents, catalase (CAT) activities, and peroxidase (POD) activities of the two algae strains were analyzed. Although the unicellular and colonial strains of M. aeruginosa were both inhibited by A. calamus, unicellular algae were more sensitive than the colonial algae. The measurement results for EPS, MDA, CAT, and POD showed that unicellular M. aeruginosa had higher levels of stress related damage than colonial strains when they were exposed to the same density of A. calamus, and the cellular defense system of colonial M. aeruginosa was stronger than that of unicellular M. aeruginosa. Natural blooms of Microcystis are typically composed of colonial forms of M. aeruginosa, therefore future efforts to control such blooms, possibly through the development of new algicides, should focus on the unique characteristics of colonial M. aeruginosa strains. PMID:25416545

  20. Dimerization of the type IV pilin from Pseudomonas aeruginosa strain K122-4 results in increased helix stability as measured by time-resolved hydrogen-deuterium exchange

    PubMed Central

    Lento, Cristina; Wilson, Derek J.; Audette, Gerald F.

    2015-01-01

    Truncated pilin monomers from Pseudomonas aeruginosa strain K122-4 (ΔK122) have been shown to enter a monomer-dimer equilibrium in solution prior to oligomerization into protein nanotubes. Here, we examine the structural changes occurring between the monomeric and dimeric states of ΔK122 using time-resolved hydrogen-deuterium exchange mass spectrometry. Based on levels of deuterium uptake, the N-terminal α-helix and the loop connecting the second and third strands of the anti-parallel β-sheet contribute significantly to pilin dimerization. Conversely, the antiparallel β-sheet and αβ loop region exhibit increased flexibility, while the receptor binding domain retains a rigid conformation in the equilibrium state. PMID:26798830

  1. Microbial degradation of quinoline and methylquinolines. [Pseudomonas aeruginosa

    SciTech Connect

    Aislabie, J.; Bej, A.K.; Hurst, H.; Rothenburger, S.; Atlas, R.M. )

    1990-02-01

    Several bacterial cultures were isolated that are able to degrade quinoline and to transform or to degrade methylquinolines. The degradation of quinoline by strains of Pseudomonas aeruginosa QP and Pseudomonas. putida QP produced hydroxyquinolines, a transient pink compound, and other undetermined products. The quinoline-degrading strains of P. aeruginosa QP and P. putida QP hydroxylated a limited number of methylquinolines but could not degrade them, nor could they transform 2-methylquinoline, isoquinoline, or pyridine. Another pseudomonad, Pseudomonas sp. strain MQP, was isolated that could degrade 2-methylquinoline. P. aeruginosa QP was able to degrade or to transform quinoline and a few methylquinolines in a complex heterocyclic nitrogen-containing fraction of a shale oil. All of the quinoline- and methylquinoline-degrading strains have multiple plasmids including a common 250-kilobase plasmid. The 225-, 250-, and 320-kilobase plasmids of the P. aeruginosa QP strain all contained genes involved in quinoline metabolism.

  2. Two unusual pilin sequences from different isolates of Pseudomonas aeruginosa.

    PubMed Central

    Pasloske, B L; Sastry, P A; Finlay, B B; Paranchych, W

    1988-01-01

    The pilin genes of two Pseudomonas aeruginosa strains isolated from two different patients with cystic fibrosis were cloned and sequenced. The predicted protein sequences of these two pilins had several unusual features compared with other published P. aeruginosa pilin sequences. PMID:2841299

  3. Evolution of Ecological Diversity in Biofilms of Pseudomonas aeruginosa by Altered Cyclic Diguanylate Signaling

    PubMed Central

    Flynn, Kenneth M.; Dowell, Gabrielle; Johnson, Thomas M.; Koestler, Benjamin J.; Waters, Christopher M.

    2016-01-01

    ABSTRACT The ecological and evolutionary forces that promote and maintain diversity in biofilms are not well understood. To quantify these forces, three Pseudomonas aeruginosa populations were experimentally evolved from strain PA14 in a daily cycle of attachment, assembly, and dispersal for 600 generations. Each biofilm population evolved diverse colony morphologies and mutator genotypes defective in DNA mismatch repair. This diversity enhanced population fitness and biofilm output, owing partly to rare, early colonizing mutants that enhanced attachment of others. Evolved mutants exhibited various levels of the intracellular signal cyclic-di-GMP, which associated with their timing of adherence. Manipulating cyclic-di-GMP levels within individual mutants revealed a network of interactions in the population that depended on various attachment strategies related to this signal. Diversification in biofilms may therefore arise and be reinforced by initial colonists that enable community assembly. IMPORTANCE How biofilm diversity assembles, evolves, and contributes to community function is largely unknown. This presents a major challenge for understanding evolution during chronic infections and during the growth of all surface-associated microbes. We used experimental evolution to probe these dynamics and found that diversity, partly related to altered cyclic-di-GMP levels, arose and persisted due to the emergence of ecological interdependencies related to attachment patterns. Clonal isolates failed to capture population attributes, which points to the need to account for diversity in infections. More broadly, this study offers an experimental framework for linking phenotypic variation to distinct ecological strategies in biofilms and for studying eco-evolutionary interactions. PMID:27021563

  4. Global Pseudomonas aeruginosa biodiversity as reflected in a Belgian river.

    PubMed

    Pirnay, Jean-Paul; Matthijs, Sandra; Colak, Huri; Chablain, Patrice; Bilocq, Florence; Van Eldere, Johan; De Vos, Daniel; Zizi, Martin; Triest, Ludwig; Cornelis, Pierre

    2005-07-01

    The biodiversity of the bacterium Pseudomonas aeruginosa in an aquatic environment (the Woluwe River, Brussels, Belgium) was analysed. Surface water was sampled bimonthly over a 1-year period (2000-2001) at seven sites evenly dispersed over the river. Total bacterial counts were performed and P. aeruginosa strains were isolated on a selective medium. A weighed out sample of 100 randomly chosen presumptive P. aeruginosa isolates was further analysed. A set of data consisting of the nucleotide sequence of the oprL gene, a DNA-based fingerprint (amplified fragment length polymorphism, AFLP), serotype, pyoverdine type and antibiogram (MICs of 21 clinically relevant antibiotics) was assembled. These data were integrated with those previously obtained for 73 P. aeruginosa clinical and environmental isolates collected across the world. The combined results were analysed and compared using biological data analysis software. Our findings indicate a positive relationship between the extent of pollution and the prevalence of P. aeruginosa. Surprisingly, the Woluwe River P. aeruginosa community was almost as diverse as the global P. aeruginosa population. Indeed, the Woluwe River harboured members of nearly all successful clonal complexes. With the exception of one multidrug-resistant (MDR) strain, belonging to a ubiquitous and clinically relevant serotype O11 clone, antibiotic resistance levels were relatively low. These findings illustrate the significance of river water as a reservoir and source of distribution of potentially pathogenic P. aeruginosa strains and could have repercussions on antinosocomial infection strategies.

  5. Cryptic transposable phages of Pseudomonas aeruginosa

    SciTech Connect

    Krylov, V.N.; Mit`kina, L.N.; Pleteneva, E.A.; Aleshin, V.V.

    1995-11-01

    Frequencies of nucleotide sequences homologous to phage transposons (PT) of two species, D3112 and B3, were assessed in genomes of natural Pseudomonas aeruginosa strains by the dot-blot hybridization method. These strains were incapable of liberating viable phages on a lawn of the PA01 standard indicator strain of P. aeruginosa. It was shown that the homologies detected belong to two groups, high and intermediate, with respect to homology level. Homology patterns were classified as high when they provided signals comparable to those for hybridization in a positive control; patterns were classified as intermediate when the hybridization level was higher than the background level, but lower than in the positive control. Homologous PT sequences were designated as cryptic PT. Intact cryptic PT prophages were shown to exist in genomes of particular natural strains manifesting a higher level of hybridization. However, the growth of these phages was limited by the restriction system of strain PA01. It is possible to isolate strains maintaining the growth of some cryptic PT. These strains differed from P. aeruginosa with respect to the specificity of the restriction and modification system. Nevertheless, in most cases, the attempt to identify a novel host capable of maintaining growth of a cryptic PT failed. Natural strains often carry cryptic PT related to both known PT species, D3112 and B3. The frequency of cryptic PT is extremely high, reaching 30% in strains with a high level of homology only and up to 50% in all strains exhibiting homology. This high PT frequency is assumed to be associated with the considerable variation of P. aeruginosa. 15 refs., 1 fig., 2 tabs.

  6. Txc, a New Type II Secretion System of Pseudomonas aeruginosa Strain PA7, Is Regulated by the TtsS/TtsR Two-Component System and Directs Specific Secretion of the CbpE Chitin-Binding Protein

    PubMed Central

    Cadoret, Frédéric; Ball, Geneviève; Douzi, Badreddine

    2014-01-01

    We present here the functional characterization of a third complete type II secretion system (T2SS) found in newly sequenced Pseudomonas aeruginosa strain PA7. We call this system Txc (third Xcp homolog). This system is encoded by the RGP69 region of genome plasticity found uniquely in strain PA7. In addition to the 11 txc genes, RGP69 contains two additional genes encoding a possible T2SS substrate and a predicted unorthodox sensor protein, TtsS (type II secretion sensor). We also identified a gene encoding a two-component response regulator called TtsR (type II secretion regulator), which is located upstream of the ttsS gene and just outside RGP69. We show that TtsS and TtsR constitute a new and functional two-component system that controls the production and secretion of the RGP69-encoded T2SS substrate in a Txc-dependent manner. Finally, we demonstrate that this Txc-secreted substrate binds chitin, and we therefore name it CbpE (chitin-binding protein E). PMID:24748613

  7. Trigonella foenum-graceum (Seed) Extract Interferes with Quorum Sensing Regulated Traits and Biofilm Formation in the Strains of Pseudomonas aeruginosa and Aeromonas hydrophila.

    PubMed

    Husain, Fohad Mabood; Ahmad, Iqbal; Khan, Mohd Shahnawaz; Al-Shabib, Nasser Abdulatif

    2015-01-01

    Trigonella foenum-graecum L. (Fenugreek) is an important plant of the Leguminosae family known to have medicinal properties. However, fraction based antiquorum sensing and antibiofilm activities have not been reported from this plant. In the present study T. foenum-graecum seed extract was sequentially fractionated and sub-MICs were tested for above activities. The methanol fraction of the extract demonstrated significant inhibition of AHL regulated virulence factors: protease, LasB elastase, pyocyanin production, chitinase, EPS, and swarming motility in Pseudomonas aeruginosa PAO1 and PAF79. Further, QS dependent virulence factor in the aquatic pathogen Aeromonas hydrophila WAF38 was also reduced. Application of T. foenum-graecum seed extract to PAO1, PAF79, and WAF38 decreased the biofilm forming abilities of the pathogens by significant levels. The extract also exhibited reduced AHL levels and subsequent downregulation of lasB gene. In vivo study showed an enhanced survival of PAO1-preinfected C. elegans after treatment with extract at 1 mg/mL. Further, the major compound detected by GC-MS, caffeine, reduced the production of QS regulated virulence factors and biofilm at 200 µg/mL concentration indicating its role in the activity of the methanol extract. The results of the present study reveal the potential anti-QS and antibiofilm property of T. foenum-graceum extract and caffeine. PMID:26000026

  8. Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of Brassica juncea.

    PubMed

    Ndeddy Aka, Robinson Junior; Babalola, Olubukola Oluranti

    2016-01-01

    Bacterial inoculation may influence Brassica juncea growth and heavy metal (Ni, Cr, and Cd) accumulation. Three metal tolerant bacterial isolates (BCr3, BCd33, and BNi11) recovered from mine tailings, identified as Pseudomonas aeruginosa KP717554, Alcaligenes feacalis KP717561, and Bacillus subtilis KP717559 were used. The isolates exhibited multiple plant growth beneficial characteristics including the production of indole-3-acetic acid, hydrogen cyanide, ammonia, insoluble phosphate solubilization together with the potential to protect plants against fungal pathogens. Bacterial inoculation improved seeds germination of B. juncea plant in the presence of 0.1 mM Cr, Cd, and Ni, as compared to the control treatment. Compared with control treatment, soil inoculation with bacterial isolates significantly increased the amount of soluble heavy metals in soil by 51% (Cr), 50% (Cd), and 44% (Ni) respectively. Pot experiment of B. juncea grown in soil spiked with 100 mg kg(-1) of NiCl2, 100 mg kg(-1) of CdCl2, and 150 mg kg(-1) of K2Cr2O7, revealed that inoculation with metal tolerant bacteria not only protected plants against the toxic effects of heavy metals, but also increased growth and metal accumulation of plants significantly. These findings suggest that such metal tolerant, plant growth promoting bacteria are valuable tools which could be used to develop bio-inoculants for enhancing the efficiency of phytoextraction. PMID:26503637

  9. Characterization of the Medium- and Long-Chain n-Alkanes Degrading Pseudomonas aeruginosa Strain SJTD-1 and Its Alkane Hydroxylase Genes

    PubMed Central

    Liu, Huan; Xu, Jing; Liang, Rubing; Liu, Jianhua

    2014-01-01

    A gram-negative aliphatic hydrocarbon-degrading bacterium SJTD-1 isolated from oil-contaminated soil was identified as Pseudomonas aeruginosa by comparative analyses of the 16S rRNA sequence, phenotype, and physiological features. SJTD-1 could efficiently mineralize medium- and long-chain n-alkanes (C12-C30) as its sole carbon source within seven days, showing the most optimal growth on n-hexadecane, followed by n-octadecane, and n-eicosane. In 36 h, 500 mg/L of tetradecane, hexadecane, and octadecane were transformed completely; and 2 g/L n-hexadecane was degraded to undetectable levels within 72 h. Two putative alkane-degrading genes (gene 3623 and gene 4712) were characterized and our results indicated that their gene products were rate-limiting enzymes involved in the synergetic catabolism of C12–C16 alkanes. On the basis of bioinformatics and transcriptional analysis, two P450 monooxygenases, along with a putative AlmA-like oxygenase, were examined. Genetically defective mutants lacking the characteristic alkane hydroxylase failed to degrade n-octadecane, thereby suggesting a different catalytic mechanism for the microbial transformation of alkanes with chain lengths over C18. PMID:25165808

  10. Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of Brassica juncea.

    PubMed

    Ndeddy Aka, Robinson Junior; Babalola, Olubukola Oluranti

    2016-01-01

    Bacterial inoculation may influence Brassica juncea growth and heavy metal (Ni, Cr, and Cd) accumulation. Three metal tolerant bacterial isolates (BCr3, BCd33, and BNi11) recovered from mine tailings, identified as Pseudomonas aeruginosa KP717554, Alcaligenes feacalis KP717561, and Bacillus subtilis KP717559 were used. The isolates exhibited multiple plant growth beneficial characteristics including the production of indole-3-acetic acid, hydrogen cyanide, ammonia, insoluble phosphate solubilization together with the potential to protect plants against fungal pathogens. Bacterial inoculation improved seeds germination of B. juncea plant in the presence of 0.1 mM Cr, Cd, and Ni, as compared to the control treatment. Compared with control treatment, soil inoculation with bacterial isolates significantly increased the amount of soluble heavy metals in soil by 51% (Cr), 50% (Cd), and 44% (Ni) respectively. Pot experiment of B. juncea grown in soil spiked with 100 mg kg(-1) of NiCl2, 100 mg kg(-1) of CdCl2, and 150 mg kg(-1) of K2Cr2O7, revealed that inoculation with metal tolerant bacteria not only protected plants against the toxic effects of heavy metals, but also increased growth and metal accumulation of plants significantly. These findings suggest that such metal tolerant, plant growth promoting bacteria are valuable tools which could be used to develop bio-inoculants for enhancing the efficiency of phytoextraction.

  11. Optimization studies on production of a salt-tolerant protease from Pseudomonas aeruginosa strain BC1 and its application on tannery saline wastewater treatment

    PubMed Central

    Sivaprakasam, Senthilkumar; Dhandapani, Balaji; Mahadevan, Surianarayanan

    2011-01-01

    Treatment and safe disposal of tannery saline wastewater, a primary effluent stream that is generated by soaking salt-laden hides and skin is one of the major problems faced by the leather manufacturing industries. Conventional treatment methods like solar evaporation ponds and land composting are not eco-friendly as they deteriorate the ground water quality. Though, this waste stream is comprised of high concentration of dissolved proteins the presence of high salinity (1–6 % NaCl by wt) makes it non-biodegradable. Enzymatic treatment is one of the positive alternatives for management of such kind of waste streams. A novel salt-tolerant alkaline protease obtained from P.aeruginosa (isolated from tannery saline wastewater) was used for enzymatic degradation studies. The effect of various physical factors including pH, temperature, incubation time, protein source and salinity on the activity of identified protease were investigated. Kinetic parameters (Km , Vmax) were calculated for the identified alkaline protease at varying substrate concentrations. Tannery saline wastewater treated with identified salt tolerant protease showed 75 % protein removal at 6 h duration and 2 % (v/v) protease addition was found to be the optimum dosage value. PMID:24031785

  12. Trigonella foenum-graceum (Seed) Extract Interferes with Quorum Sensing Regulated Traits and Biofilm Formation in the Strains of Pseudomonas aeruginosa and Aeromonas hydrophila

    PubMed Central

    Husain, Fohad Mabood; Ahmad, Iqbal; Khan, Mohd Shahnawaz; Al-Shabib, Nasser Abdulatif

    2015-01-01

    Trigonella foenum-graecum L. (Fenugreek) is an important plant of the Leguminosae family known to have medicinal properties. However, fraction based antiquorum sensing and antibiofilm activities have not been reported from this plant. In the present study T. foenum-graecum seed extract was sequentially fractionated and sub-MICs were tested for above activities. The methanol fraction of the extract demonstrated significant inhibition of AHL regulated virulence factors: protease, LasB elastase, pyocyanin production, chitinase, EPS, and swarming motility in Pseudomonas aeruginosa PAO1 and PAF79. Further, QS dependent virulence factor in the aquatic pathogen Aeromonas hydrophila WAF38 was also reduced. Application of T. foenum-graecum seed extract to PAO1, PAF79, and WAF38 decreased the biofilm forming abilities of the pathogens by significant levels. The extract also exhibited reduced AHL levels and subsequent downregulation of lasB gene. In vivo study showed an enhanced survival of PAO1-preinfected C. elegans after treatment with extract at 1 mg/mL. Further, the major compound detected by GC-MS, caffeine, reduced the production of QS regulated virulence factors and biofilm at 200 µg/mL concentration indicating its role in the activity of the methanol extract. The results of the present study reveal the potential anti-QS and antibiofilm property of T. foenum-graceum extract and caffeine. PMID:26000026

  13. Characterization of the medium- and long-chain n-alkanes degrading Pseudomonas aeruginosa strain SJTD-1 and its alkane hydroxylase genes.

    PubMed

    Liu, Huan; Xu, Jing; Liang, Rubing; Liu, Jianhua

    2014-01-01

    A gram-negative aliphatic hydrocarbon-degrading bacterium SJTD-1 isolated from oil-contaminated soil was identified as Pseudomonas aeruginosa by comparative analyses of the 16S rRNA sequence, phenotype, and physiological features. SJTD-1 could efficiently mineralize medium- and long-chain n-alkanes (C12-C30) as its sole carbon source within seven days, showing the most optimal growth on n-hexadecane, followed by n-octadecane, and n-eicosane. In 36 h, 500 mg/L of tetradecane, hexadecane, and octadecane were transformed completely; and 2 g/L n-hexadecane was degraded to undetectable levels within 72 h. Two putative alkane-degrading genes (gene 3623 and gene 4712) were characterized and our results indicated that their gene products were rate-limiting enzymes involved in the synergetic catabolism of C12-C16 alkanes. On the basis of bioinformatics and transcriptional analysis, two P450 monooxygenases, along with a putative AlmA-like oxygenase, were examined. Genetically defective mutants lacking the characteristic alkane hydroxylase failed to degrade n-octadecane, thereby suggesting a different catalytic mechanism for the microbial transformation of alkanes with chain lengths over C18. PMID:25165808

  14. Strains of the Harmful Cyanobacterium Microcystis aeruginosa Differ in Gene Expression and Activity of Inorganic Carbon Uptake Systems at Elevated CO2 Levels

    PubMed Central

    Sandrini, Giovanni; Jakupovic, Dennis; Matthijs, Hans C. P.

    2015-01-01

    Cyanobacteria are generally assumed to be effective competitors at low CO2 levels because of their efficient CO2-concentrating mechanism (CCM), and yet how bloom-forming cyanobacteria respond to rising CO2 concentrations is less clear. Here, we investigate changes in CCM gene expression at ambient CO2 (400 ppm) and elevated CO2 (1,100 ppm) in six strains of the harmful cyanobacterium Microcystis. All strains downregulated cmpA encoding the high-affinity bicarbonate uptake system BCT1, whereas both the low- and high-affinity CO2 uptake genes were expressed constitutively. Four strains downregulated the bicarbonate uptake genes bicA and/or sbtA, whereas two strains showed constitutive expression of the bicA-sbtA operon. In one of the latter strains, a transposon insert in bicA caused low bicA and sbtA transcript levels, which made this strain solely dependent on BCT1 for bicarbonate uptake. Activity measurements of the inorganic carbon (Ci) uptake systems confirmed the CCM gene expression results. Interestingly, genes encoding the RuBisCO enzyme, structural carboxysome components, and carbonic anhydrases were not regulated. Hence, Microcystis mainly regulates the initial uptake of inorganic carbon, which might be an effective strategy for a species experiencing strongly fluctuating Ci concentrations. Our results show that CCM gene regulation of Microcystis varies among strains. The observed genetic and phenotypic variation in CCM responses may offer an important template for natural selection, leading to major changes in the genetic composition of harmful cyanobacterial blooms at elevated CO2. PMID:26319871

  15. Diversity among strains of Pseudomonas aeruginosa from manure and soil, evaluated by multiple locus variable number tandem repeat analysis and antibiotic resistance profiles.

    PubMed

    Youenou, Benjamin; Brothier, Elisabeth; Nazaret, Sylvie

    2014-01-01

    The results of a multiple locus variable number of tandem repeat (VNTR) analysis (MLVA)-based study designed to understand the genetic diversity of soil and manure-borne Pseudomonas aeruginosa isolates, and the relationship between these isolates and a set of clinical and environmental isolates, are hereby reported. Fifteen described VNTR markers were first selected, and 62 isolates recovered from agricultural and industrial soils in France and Burkina Faso, and from cattle and horse manure, along with 26 snake-related isolates and 17 environmental and clinical isolates from international collections, were genotyped. Following a comparison with previously published 9-marker MLVA schemes, an optimal 13-marker MLVA scheme (MLVA13-Lyon) was identified that was found to be the most efficient, as it showed high typability (90%) and high discriminatory power (0.987). A comparison of MLVA with PFGE for typing of the snake-related isolates confirmed the MLVA13-Lyon scheme to be a robust method for quickly discriminating and inferring genetic relatedness among environmental isolates. The 62 isolates displayed wide diversity, since 41 MLVA types (i.e. MTs) were observed, with 26 MTs clustered in 10 MLVA clonal complexes (MCs). Three and eight MCs were found among soil and manure isolates, respectively. Only one MC contained both soil and manure-borne isolates. No common MC was observed between soil and manure-borne isolates and the snake-related or environmental and clinical isolates. Antibiotic resistance profiles were performed to determine a potential link between resistance properties and the selective pressure that might be present in the various habitats. Except for four soil and manure isolates resistant to ticarcillin and ticarcillin/clavulanic acid and one isolate from a hydrocarbon-contaminated soil resistant to imipenem, all environmental isolates showed wild-type antibiotic profiles.

  16. Structural Relationship of the Lipid A Acyl Groups to Activation of Murine Toll-Like Receptor 4 by Lipopolysaccharides from Pathogenic Strains of Burkholderia mallei, Acinetobacter baumannii, and Pseudomonas aeruginosa

    PubMed Central

    Korneev, Kirill V.; Arbatsky, Nikolay P.; Molinaro, Antonio; Palmigiano, Angelo; Shaikhutdinova, Rima Z.; Shneider, Mikhail M.; Pier, Gerald B.; Kondakova, Anna N.; Sviriaeva, Ekaterina N.; Sturiale, Luisa; Garozzo, Domenico; Kruglov, Andrey A.; Nedospasov, Sergei A.; Drutskaya, Marina S.; Knirel, Yuriy A.; Kuprash, Dmitry V.

    2015-01-01

    Toll-like receptor 4 (TLR4) is required for activation of innate immunity upon recognition of lipopolysaccharide (LPS) of Gram-negative bacteria. The ability of TLR4 to respond to a particular LPS species is important since insufficient activation may not prevent bacterial growth while excessive immune reaction may lead to immunopathology associated with sepsis. Here, we investigated the biological activity of LPS from Burkholderia mallei that causes glanders, and from the two well-known opportunistic pathogens Acinetobacter baumannii and Pseudomonas aeruginosa (causative agents of nosocomial infections). For each bacterial strain, R-form LPS preparations were purified by hydrophobic chromatography and the chemical structure of lipid A, an LPS structural component, was elucidated by HR-MALDI-TOF mass spectrometry. The biological activity of LPS samples was evaluated by their ability to induce production of proinflammatory cytokines, such as IL-6 and TNF, by bone marrow-derived macrophages. Our results demonstrate direct correlation between the biological activity of LPS from these pathogenic bacteria and the extent of their lipid A acylation. PMID:26635809

  17. Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover

    PubMed Central

    Orr, Mona W.; Donaldson, Gregory P.; Severin, Geoffrey B.; Wang, Jingxin; Sintim, Herman O.; Waters, Christopher M.; Lee, Vincent T.

    2015-01-01

    The bacterial second messenger cyclic di-GMP (c-di-GMP) controls biofilm formation and other phenotypes relevant to pathogenesis. Cyclic-di-GMP is synthesized by diguanylate cyclases (DGCs). Phosphodiesterases (PDE-As) end signaling by linearizing c-di-GMP to 5ʹ-phosphoguanylyl-(3ʹ,5ʹ)-guanosine (pGpG), which is then hydrolyzed to two GMP molecules by yet unidentified enzymes termed PDE-Bs. We show that pGpG inhibits a PDE-A from Pseudomonas aeruginosa. In a dual DGC and PDE-A reaction, excess pGpG extends the half-life of c-di-GMP, indicating that removal of pGpG is critical for c-di-GMP homeostasis. Thus, we sought to identify the PDE-B enzyme(s) responsible for pGpG degradation. A differential radial capillary action of ligand assay-based screen for pGpG binding proteins identified oligoribonuclease (Orn), an exoribonuclease that hydrolyzes two- to five-nucleotide-long RNAs. Purified Orn rapidly converts pGpG into GMP. To determine whether Orn is the primary enzyme responsible for degrading pGpG, we assayed cell lysates of WT and ∆orn strains of P. aeruginosa PA14 for pGpG stability. The lysates from ∆orn showed 25-fold decrease in pGpG hydrolysis. Complementation with WT, but not active site mutants, restored hydrolysis. Accumulation of pGpG in the ∆orn strain could inhibit PDE-As, increasing c-di-GMP concentration. In support, we observed increased transcription from the c-di-GMP–regulated pel promoter. Additionally, the c-di-GMP–governed auto-aggregation and biofilm phenotypes were elevated in the ∆orn strain in a pel-dependent manner. Finally, we directly detect elevated pGpG and c-di-GMP in the ∆orn strain. Thus, we identified that Orn serves as the primary PDE-B enzyme that removes pGpG, which is necessary to complete the final step in the c-di-GMP degradation pathway. PMID:26305945

  18. Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover.

    PubMed

    Orr, Mona W; Donaldson, Gregory P; Severin, Geoffrey B; Wang, Jingxin; Sintim, Herman O; Waters, Christopher M; Lee, Vincent T

    2015-09-01

    The bacterial second messenger cyclic di-GMP (c-di-GMP) controls biofilm formation and other phenotypes relevant to pathogenesis. Cyclic-di-GMP is synthesized by diguanylate cyclases (DGCs). Phosphodiesterases (PDE-As) end signaling by linearizing c-di-GMP to 5'-phosphoguanylyl-(3',5')-guanosine (pGpG), which is then hydrolyzed to two GMP molecules by yet unidentified enzymes termed PDE-Bs. We show that pGpG inhibits a PDE-A from Pseudomonas aeruginosa. In a dual DGC and PDE-A reaction, excess pGpG extends the half-life of c-di-GMP, indicating that removal of pGpG is critical for c-di-GMP homeostasis. Thus, we sought to identify the PDE-B enzyme(s) responsible for pGpG degradation. A differential radial capillary action of ligand assay-based screen for pGpG binding proteins identified oligoribonuclease (Orn), an exoribonuclease that hydrolyzes two- to five-nucleotide-long RNAs. Purified Orn rapidly converts pGpG into GMP. To determine whether Orn is the primary enzyme responsible for degrading pGpG, we assayed cell lysates of WT and ∆orn strains of P. aeruginosa PA14 for pGpG stability. The lysates from ∆orn showed 25-fold decrease in pGpG hydrolysis. Complementation with WT, but not active site mutants, restored hydrolysis. Accumulation of pGpG in the ∆orn strain could inhibit PDE-As, increasing c-di-GMP concentration. In support, we observed increased transcription from the c-di-GMP-regulated pel promoter. Additionally, the c-di-GMP-governed auto-aggregation and biofilm phenotypes were elevated in the ∆orn strain in a pel-dependent manner. Finally, we directly detect elevated pGpG and c-di-GMP in the ∆orn strain. Thus, we identified that Orn serves as the primary PDE-B enzyme that removes pGpG, which is necessary to complete the final step in the c-di-GMP degradation pathway. PMID:26305945

  19. Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover.

    PubMed

    Orr, Mona W; Donaldson, Gregory P; Severin, Geoffrey B; Wang, Jingxin; Sintim, Herman O; Waters, Christopher M; Lee, Vincent T

    2015-09-01

    The bacterial second messenger cyclic di-GMP (c-di-GMP) controls biofilm formation and other phenotypes relevant to pathogenesis. Cyclic-di-GMP is synthesized by diguanylate cyclases (DGCs). Phosphodiesterases (PDE-As) end signaling by linearizing c-di-GMP to 5'-phosphoguanylyl-(3',5')-guanosine (pGpG), which is then hydrolyzed to two GMP molecules by yet unidentified enzymes termed PDE-Bs. We show that pGpG inhibits a PDE-A from Pseudomonas aeruginosa. In a dual DGC and PDE-A reaction, excess pGpG extends the half-life of c-di-GMP, indicating that removal of pGpG is critical for c-di-GMP homeostasis. Thus, we sought to identify the PDE-B enzyme(s) responsible for pGpG degradation. A differential radial capillary action of ligand assay-based screen for pGpG binding proteins identified oligoribonuclease (Orn), an exoribonuclease that hydrolyzes two- to five-nucleotide-long RNAs. Purified Orn rapidly converts pGpG into GMP. To determine whether Orn is the primary enzyme responsible for degrading pGpG, we assayed cell lysates of WT and ∆orn strains of P. aeruginosa PA14 for pGpG stability. The lysates from ∆orn showed 25-fold decrease in pGpG hydrolysis. Complementation with WT, but not active site mutants, restored hydrolysis. Accumulation of pGpG in the ∆orn strain could inhibit PDE-As, increasing c-di-GMP concentration. In support, we observed increased transcription from the c-di-GMP-regulated pel promoter. Additionally, the c-di-GMP-governed auto-aggregation and biofilm phenotypes were elevated in the ∆orn strain in a pel-dependent manner. Finally, we directly detect elevated pGpG and c-di-GMP in the ∆orn strain. Thus, we identified that Orn serves as the primary PDE-B enzyme that removes pGpG, which is necessary to complete the final step in the c-di-GMP degradation pathway.

  20. The glycerol-3-phosphate permease GlpT is the only fosfomycin transporter in Pseudomonas aeruginosa.

    PubMed

    Castañeda-García, Alfredo; Rodríguez-Rojas, Alexandro; Guelfo, Javier R; Blázquez, Jesús

    2009-11-01

    Fosfomycin is transported into Escherichia coli via both glycerol-3-phosphate (GlpT) and a hexose phosphate transporter (UhpT). Consequently, the inactivation of either glpT or uhpT confers increased fosfomycin resistance in this species. The inactivation of other genes, including ptsI and cyaA, also confers significant fosfomycin resistance. It has been assumed that identical mechanisms are responsible for fosfomycin transport into Pseudomonas aeruginosa cells. The study of an ordered library of insertion mutants in P. aeruginosa PA14 demonstrated that only insertions in glpT confer significant resistance. To explore the uniqueness of this resistance target in P. aeruginosa, the linkage between fosfomycin resistance and the use of glycerol-3-phosphate was tested. Fosfomycin-resistant (Fos-R) mutants were obtained in LB and minimal medium containing glycerol as the sole carbon source at a frequency of 10(-6). However, no Fos-R mutants grew on plates containing fosfomycin and glycerol-3-phosphate instead of glycerol (mutant frequency, < or = 5 x 10(-11)). In addition, 10 out of 10 independent spontaneous Fos-R mutants, obtained on LB-fosfomycin, harbored mutations in glpT, and in all cases the sensitivity to fosfomycin was recovered upon complementation with the wild-type glpT gene. The analysis of these mutants provides additional insights into the structure-function relationship of glycerol-3-phosphate the transporter in P. aeruginosa. Studies with glucose-6-phosphate and different mutant derivatives strongly suggest that P. aeruginosa lacks a specific transport system for this sugar. Thus, glpT seems to be the only fosfomycin resistance mutational target in P. aeruginosa. The high frequency of Fos-R mutations and their apparent lack of fitness cost suggest that Fos-R variants will be obtained easily in vivo upon the fosfomycin treatment of P. aeruginosa infections.

  1. Cranberry-derived proanthocyanidins impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa

    PubMed Central

    Maisuria, Vimal B.; Los Santos, Yossef Lopez-de; Tufenkji, Nathalie; Déziel, Eric

    2016-01-01

    Bacteria have evolved multiple strategies for causing infections that include producing virulence factors, undertaking motility, developing biofilms, and invading host cells. N-acylhomoserine lactone (AHL)-mediated quorum sensing (QS) tightly regulates the expression of multiple virulence factors in the opportunistic pathogenic bacterium Pseudomonas aeruginosa. Thus, inhibiting QS could lead to health benefits. In this study, we demonstrate an anti-virulence activity of a cranberry extract rich in proanthocyanidins (cerPAC) against P. aeruginosa in the model host Drosophila melanogaster and show this is mediated by QS interference. cerPAC reduced the production of QS-regulated virulence determinants and protected D. melanogaster from fatal infection by P. aeruginosa PA14. Quantification of AHL production using liquid chromatography-mass spectrometry confirmed that cerPAC effectively reduced the level of AHLs produced by the bacteria. Furthermore, monitoring QS signaling gene expression revealed that AHL synthases LasI/RhlI and QS transcriptional regulators LasR/RhlR genes were inhibited and antagonized, respectively, by cerPAC. Molecular docking studies suggest that cranberry-derived proanthocyanidin binds to QS transcriptional regulators, mainly interacting with their ligand binding sites. These findings provide insights into the underlying mechanisms of action of a cerPAC to restrict the virulence of P. aeruginosa and can have implications in the development of alternative approaches to control infections. PMID:27503003

  2. Cranberry-derived proanthocyanidins impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa.

    PubMed

    Maisuria, Vimal B; Los Santos, Yossef Lopez-de; Tufenkji, Nathalie; Déziel, Eric

    2016-01-01

    Bacteria have evolved multiple strategies for causing infections that include producing virulence factors, undertaking motility, developing biofilms, and invading host cells. N-acylhomoserine lactone (AHL)-mediated quorum sensing (QS) tightly regulates the expression of multiple virulence factors in the opportunistic pathogenic bacterium Pseudomonas aeruginosa. Thus, inhibiting QS could lead to health benefits. In this study, we demonstrate an anti-virulence activity of a cranberry extract rich in proanthocyanidins (cerPAC) against P. aeruginosa in the model host Drosophila melanogaster and show this is mediated by QS interference. cerPAC reduced the production of QS-regulated virulence determinants and protected D. melanogaster from fatal infection by P. aeruginosa PA14. Quantification of AHL production using liquid chromatography-mass spectrometry confirmed that cerPAC effectively reduced the level of AHLs produced by the bacteria. Furthermore, monitoring QS signaling gene expression revealed that AHL synthases LasI/RhlI and QS transcriptional regulators LasR/RhlR genes were inhibited and antagonized, respectively, by cerPAC. Molecular docking studies suggest that cranberry-derived proanthocyanidin binds to QS transcriptional regulators, mainly interacting with their ligand binding sites. These findings provide insights into the underlying mechanisms of action of a cerPAC to restrict the virulence of P. aeruginosa and can have implications in the development of alternative approaches to control infections. PMID:27503003

  3. Genes required for and effects of alginate overproduction induced by growth of Pseudomonas aeruginosa on Pseudomonas isolation agar supplemented with ammonium metavanadate.

    PubMed

    Damron, F Heath; Barbier, Mariette; McKenney, Elizabeth S; Schurr, Michael J; Goldberg, Joanna B

    2013-09-01

    Pseudomonas aeruginosa is an opportunistic pathogen that can adapt to changing environments and can secrete an exopolysaccharide known as alginate as a protection response, resulting in a colony morphology and phenotype referred to as mucoid. However, how P. aeruginosa senses its environment and activates alginate overproduction is not fully understood. Previously, we showed that Pseudomonas isolation agar supplemented with ammonium metavanadate (PIAAMV) induces P. aeruginosa to overproduce alginate. Vanadate is a phosphate mimic and causes protein misfolding by disruption of disulfide bonds. Here we used PIAAMV to characterize the pathways involved in inducible alginate production and tested the global effects of P. aeruginosa growth on PIAAMV by a mutant library screen, by transcriptomics, and in a murine acute virulence model. The PA14 nonredundant mutant library was screened on PIAAMV to identify new genes that are required for the inducible alginate stress response. A functionally diverse set of genes encoding products involved in cell envelope biogenesis, peptidoglycan remodeling, uptake of phosphate and iron, phenazine biosynthesis, and other processes were identified as positive regulators of the mucoid phenotype on PIAAMV. Transcriptome analysis of P. aeruginosa cultures growing in the presence of vanadate showed differential expression of genes involved in virulence, envelope biogenesis, and cell stress pathways. In this study, it was observed that growth on PIAAMV attenuates P. aeruginosa in a mouse pneumonia model. Induction of alginate overproduction occurs as a stress response to protect P. aeruginosa, but it may be possible to modulate and inhibit these pathways based on the new genes identified in this study.

  4. The LasB Elastase of Pseudomonas aeruginosa Acts in Concert with Alkaline Protease AprA To Prevent Flagellin-Mediated Immune Recognition

    PubMed Central

    Casilag, Fiordiligie; Lorenz, Anne; Krueger, Jonas; Klawonn, Frank; Weiss, Siegfried

    2015-01-01

    The opportunistic pathogen Pseudomonas aeruginosa is capable of establishing severe and persistent infections in various eukaryotic hosts. It encodes a wide array of virulence factors and employs several strategies to evade immune detection. In the present study, we screened the Harvard Medical School transposon mutant library of P. aeruginosa PA14 for bacterial factors that modulate interleukin-8 responses in A549 human airway epithelial cells. We found that in addition to the previously identified alkaline protease AprA, the elastase LasB is capable of degrading exogenous flagellin under calcium-replete conditions and prevents flagellin-mediated immune recognition. Our results indicate that the production of two proteases with anti-flagellin activity provides a failsafe mechanism for P. aeruginosa to ensure the maintenance of protease-dependent immune-modulating functions. PMID:26502908

  5. The LasB Elastase of Pseudomonas aeruginosa Acts in Concert with Alkaline Protease AprA To Prevent Flagellin-Mediated Immune Recognition.

    PubMed

    Casilag, Fiordiligie; Lorenz, Anne; Krueger, Jonas; Klawonn, Frank; Weiss, Siegfried; Häussler, Susanne

    2016-01-01

    The opportunistic pathogen Pseudomonas aeruginosa is capable of establishing severe and persistent infections in various eukaryotic hosts. It encodes a wide array of virulence factors and employs several strategies to evade immune detection. In the present study, we screened the Harvard Medical School transposon mutant library of P. aeruginosa PA14 for bacterial factors that modulate interleukin-8 responses in A549 human airway epithelial cells. We found that in addition to the previously identified alkaline protease AprA, the elastase LasB is capable of degrading exogenous flagellin under calcium-replete conditions and prevents flagellin-mediated immune recognition. Our results indicate that the production of two proteases with anti-flagellin activity provides a failsafe mechanism for P. aeruginosa to ensure the maintenance of protease-dependent immune-modulating functions. PMID:26502908

  6. The LasB Elastase of Pseudomonas aeruginosa Acts in Concert with Alkaline Protease AprA To Prevent Flagellin-Mediated Immune Recognition.

    PubMed

    Casilag, Fiordiligie; Lorenz, Anne; Krueger, Jonas; Klawonn, Frank; Weiss, Siegfried; Häussler, Susanne

    2016-01-01

    The opportunistic pathogen Pseudomonas aeruginosa is capable of establishing severe and persistent infections in various eukaryotic hosts. It encodes a wide array of virulence factors and employs several strategies to evade immune detection. In the present study, we screened the Harvard Medical School transposon mutant library of P. aeruginosa PA14 for bacterial factors that modulate interleukin-8 responses in A549 human airway epithelial cells. We found that in addition to the previously identified alkaline protease AprA, the elastase LasB is capable of degrading exogenous flagellin under calcium-replete conditions and prevents flagellin-mediated immune recognition. Our results indicate that the production of two proteases with anti-flagellin activity provides a failsafe mechanism for P. aeruginosa to ensure the maintenance of protease-dependent immune-modulating functions.

  7. Comparison of Flagellin Genes from Clinical and Environmental Pseudomonas aeruginosa Isolates

    PubMed Central

    Morgan, J. Alun W.; Bellingham, Nessa F.; Winstanley, Craig; Ousley, Margaret A.; Hart, C. Anthony; Saunders, Jon R.

    1999-01-01

    Pseudomonas aeruginosa, an important opportunistic pathogen, was isolated from environmental samples and compared to clinically derived strains. While P. aeruginosa was isolated readily from an experimental mushroom-growing unit, it was found only rarely in other environmental samples. A flagellin gene PCR-restriction fragment length polymorphism analysis of the isolates revealed that environmental and clinical P. aeruginosa strains are not readily distinguishable. The variation in the central regions of the flagellin genes of seven of the isolates was investigated further. The strains used included two strains with type a genes (998 bp), four strains with type b genes (1,258 bp), and one strain, K979, with a novel flagellin gene (2,199 bp). The route by which flagellin gene variation has occurred in P. aeruginosa is discussed. PMID:10049879

  8. Draft Genome Sequences of Pseudomonas aeruginosa Isolates from Wounded Military Personnel.

    PubMed

    Arivett, Brock A; Ream, Dave C; Fiester, Steven E; Kidane, Destaalem; Actis, Luis A

    2016-08-11

    Pseudomonas aeruginosa, a Gram-negative bacterium that causes severe hospital-acquired infections, is grouped as an ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogen because of its extensive drug resistance phenotypes and effects on human health worldwide. Five multidrug resistant P. aeruginosa strains isolated from wounded military personnel were sequenced and annotated in this work.

  9. Draft Genome Sequences of Pseudomonas aeruginosa Isolates from Wounded Military Personnel

    PubMed Central

    Arivett, Brock A.; Ream, Dave C.; Fiester, Steven E.; Kidane, Destaalem

    2016-01-01

    Pseudomonas aeruginosa, a Gram-negative bacterium that causes severe hospital-acquired infections, is grouped as an ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogen because of its extensive drug resistance phenotypes and effects on human health worldwide. Five multidrug resistant P. aeruginosa strains isolated from wounded military personnel were sequenced and annotated in this work. PMID:27516516

  10. Draft Genome Sequences of Pseudomonas aeruginosa Isolates from Wounded Military Personnel.

    PubMed

    Arivett, Brock A; Ream, Dave C; Fiester, Steven E; Kidane, Destaalem; Actis, Luis A

    2016-01-01

    Pseudomonas aeruginosa, a Gram-negative bacterium that causes severe hospital-acquired infections, is grouped as an ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogen because of its extensive drug resistance phenotypes and effects on human health worldwide. Five multidrug resistant P. aeruginosa strains isolated from wounded military personnel were sequenced and annotated in this work. PMID:27516516

  11. Aspergillus fumigatus enhances elastase production in Pseudomonas aeruginosa co-cultures.

    PubMed

    Smith, Karen; Rajendran, Ranjith; Kerr, Stephen; Lappin, David F; Mackay, William G; Williams, Craig; Ramage, Gordon

    2015-09-01

    In the cystic fibrosis (CF) lung the presence of bacteria and fungi in the airways promotes an inflammatory response causing progressive lung damage, ultimately leading to high rates of morbidity and mortality. We hypothesized that polymicrobial interactions play an important role in promoting airway pathogenesis. We therefore examined the interplay between the most commonly isolated bacterial CF pathogen, Pseudomonas aeruginosa, and the most prevalent filamentous fungi, Aspergillus fumigatus, to test this. Co-culture experiments showed that in the presence of A. fumigatus the production of P. aeruginosa elastase was enhanced. This was confirmed by the presence of zones of clearance on Elastin-Congo Red (ECR) agar, which was identified as elastase by mass spectrometry. When P. aeruginosa were grown in a co-culture model with mature A. fumigatus biofilms, 60% of isolates produced significantly more elastase in the presence of the filamentous fungi than in its absence (P < .05). The expression of lasB also increased when P. aeruginosa isolates PA01 and PA14 were grown in co-culture with A. fumigatus. Supernatants from co-culture experiments were also significantly toxic to a human lung epithelial cell line (19-38% cell cytotoxicity) in comparison to supernatants from P. aeruginosa only cultures (P < .0001). Here we report that P. aeruginosa cytotoxic elastase is enhanced in the presence of the filamentous fungi A. fumigatus, suggesting that this may have a role to play in the damaging pathology associated with the lung tissue in this disease. This indicates that patients who have a co-colonisation with these two organisms may have a poorer prognosis. PMID:26162475

  12. Inhibition of Pseudomonas aeruginosa and Escherichia coli O157:H7 biofilm formation by plant metabolite ε-viniferin.

    PubMed

    Cho, Hyun Seob; Lee, Jin-Hyung; Ryu, Shi Yong; Joo, Sang Woo; Cho, Moo Hwan; Lee, Jintae

    2013-07-24

    Pathogenic biofilms are associated with persistent infection due to their high resistances to diverse antibiotics. Pseudomonas aeruginosa infects plants, animals, and humans and is a major cause of nosocomial diseases in patients with cystic fibrosis. In the present study, the antibiofilm abilities of 522 plant extracts against P. aeruginosa PA14 were examined. Three Carex plant extracts at a concentration of 200 μg/mL inhibited P. aeruginosa biofilm formation by >80% without affecting planktonic cell growth. In the most active extract of Carex pumila , resveratrol dimer ε-viniferin was one of the main antibiofilm compounds against P. aeruginosa. Interestingly, ε-viniferin at 10 μg/mL inhibited biofilm formation of enterohemorrhagic Escherichia coli O157:H7 by 98%. Although Carex extracts and trans-resveratrol are known to possess antimicrobial activity, this study is the first to report that C. pumila extract and ε-viniferin have antibiofilm activity against P. aeruginosa and E. coli O157:H7. PMID:23819562

  13. Inhibition of Pseudomonas aeruginosa and Escherichia coli O157:H7 biofilm formation by plant metabolite ε-viniferin.

    PubMed

    Cho, Hyun Seob; Lee, Jin-Hyung; Ryu, Shi Yong; Joo, Sang Woo; Cho, Moo Hwan; Lee, Jintae

    2013-07-24

    Pathogenic biofilms are associated with persistent infection due to their high resistances to diverse antibiotics. Pseudomonas aeruginosa infects plants, animals, and humans and is a major cause of nosocomial diseases in patients with cystic fibrosis. In the present study, the antibiofilm abilities of 522 plant extracts against P. aeruginosa PA14 were examined. Three Carex plant extracts at a concentration of 200 μg/mL inhibited P. aeruginosa biofilm formation by >80% without affecting planktonic cell growth. In the most active extract of Carex pumila , resveratrol dimer ε-viniferin was one of the main antibiofilm compounds against P. aeruginosa. Interestingly, ε-viniferin at 10 μg/mL inhibited biofilm formation of enterohemorrhagic Escherichia coli O157:H7 by 98%. Although Carex extracts and trans-resveratrol are known to possess antimicrobial activity, this study is the first to report that C. pumila extract and ε-viniferin have antibiofilm activity against P. aeruginosa and E. coli O157:H7.

  14. Antibiofilm activity of Streptomyces sp. BFI 230 and Kribbella sp. BFI 1562 against Pseudomonas aeruginosa.

    PubMed

    Kim, Yong-Guy; Lee, Jin-Hyung; Kim, Chang-Jin; Lee, Jae-Chan; Ju, Yoon Jung; Cho, Moo Hwan; Lee, Jintae

    2012-12-01

    Members of the actinomycetes family are a rich source of bioactive compounds including diverse antibiotics. This study sought to identify novel and non-toxic biofilm inhibitors from the actinomycetes library for reducing the biofilm formation of Pseudomonas aeruginosa PAO1. After the screening of 4104 actinomycetes strains, we found that the culture spent medium (1 %, v/v) of Streptomyces sp. BFI 230 and Kribbella sp. BFI 1562 inhibited P. aeruginosa biofilm formation by 90 % without affecting the growth of planktonic P. aeruginosa cells, while the spent media enhanced the swarming motility of P. aeruginosa. Global transcriptome analyses revealed that the spent medium of Streptomyces sp. BFI 230 induced expression of phenazine, pyoverdine, pyochelin synthesis genes, and iron uptake genes in P. aeruginosa. The addition of exogenous iron restored the biofilm formation and swarming motility of P. aeruginosa in the presence of the spent medium of Streptomyces sp. BFI 230, which suggests that the Streptomyces sp. BFI 230 strain interfered iron acquisition in P. aeruginosa. Experiments on solvent extraction, heat treatment, and proteinase K treatment suggested that hydrophilic compound(s), possibly extracellular peptides or proteins from Streptomyces sp. BFI 230 cause the biofilm reduction of P. aeruginosa. Together, this study indicates that actinomycetes strains have an ability to control the biofilm of P. aeruginosa. PMID:22722911

  15. Spaceflight Effects on Virulence of Pseudomonas Aeruginosa

    NASA Astrophysics Data System (ADS)

    Broadway, S.; Goins, T.; Crandell, C.; Richards, C.; Patel, M.; Pyle, B.

    2008-06-01

    Pseudomonas aeruginosa is an opportunistic pathogen found in the environment. It is known to infect the immunocompromised. The organism has about 25 virulence genes that play different roles in disease processes. Several exotoxin proteins may be produced, including ExoA, ExoS, ExoT and ExoY, and other virulence factors. In spaceflight, possible increased expression of P. aeruginosa virulence proteins could increase health risks for spaceflight crews who experience decreased immunity. Cultures of P. aeruginosa strains PA01 and PA103 grown on orbit on Shuttle Endeavour flight STS-123 vs. static ground controls were used for analysis. The production of ETA was quantitated using an ELISA procedure. Results showed that while flight cultures of PA103 produced slightly more ETA than corresponding ground controls, the opposite was found for PA01. While it appears that spaceflight has little effect on ETA, stimulation of other virulence factors could cause increased virulence of this organism in space flight. Similar increased virulence in spaceflight has been observed for other bacteria. This is important because astronauts may be more susceptible to opportunistic pathogens including P. aeruginosa.

  16. Pseudomonas Aeruginosa: Resistance to the Max

    PubMed Central

    Poole, Keith

    2011-01-01

    Pseudomonas aeruginosa is intrinsically resistant to a variety of antimicrobials and can develop resistance during anti-pseudomonal chemotherapy both of which compromise treatment of infections caused by this organism. Resistance to multiple classes of antimicrobials (multidrug resistance) in particular is increasingly common in P. aeruginosa, with a number of reports of pan-resistant isolates treatable with a single agent, colistin. Acquired resistance in this organism is multifactorial and attributable to chromosomal mutations and the acquisition of resistance genes via horizontal gene transfer. Mutational changes impacting resistance include upregulation of multidrug efflux systems to promote antimicrobial expulsion, derepression of ampC, AmpC alterations that expand the enzyme's substrate specificity (i.e., extended-spectrum AmpC), alterations to outer membrane permeability to limit antimicrobial entry and alterations to antimicrobial targets. Acquired mechanisms contributing to resistance in P. aeruginosa include β-lactamases, notably the extended-spectrum β-lactamases and the carbapenemases that hydrolyze most β-lactams, aminoglycoside-modifying enzymes, and 16S rRNA methylases that provide high-level pan-aminoglycoside resistance. The organism's propensity to grow in vivo as antimicrobial-tolerant biofilms and the occurrence of hypermutator strains that yield antimicrobial resistant mutants at higher frequency also compromise anti-pseudomonal chemotherapy. With limited therapeutic options and increasing resistance will the untreatable P. aeruginosa infection soon be upon us? PMID:21747788

  17. Pseudomonas aeruginosa colonization in patients with spinal cord injuries.

    PubMed Central

    Gilmore, D S; Bruce, S K; Jimenez, E M; Schick, D G; Morrow, J W; Montgomerie, J Z

    1982-01-01

    The prevalence of Pseudomonas aeruginosa colonization of patients with spinal cord injury was studied annually from 1976 to 1980. The urethra, perineum, rectum, drainage bag, and urine of patients on the spinal cord injury service were cultured. A total of 224 men and 32 women were studied. Most patients were managed with an external urinary collection system or padding, with or without intermittent catheterization. P. aeruginosa was cultured from one or more body sites (urethra, perineum, or rectum) in 65% of men and 18% of women. Drainage bags on the beds were frequently colonized with P. aeruginosa (73%). Significant bacteriuria with P. aeruginosa was present in 19% of the men and 13% of the women. P. aeruginosa colonization of body sites in men was closely associated with the use of an external urinary collection system. Significantly greater urethral and perineal colonization was found in men using an external urinary collection system. P. aeruginosa serotype 11 was the predominant serotype for the first 3 years, and the number of patients colonized with serotype 11 increased with length of hospital stay. The prevalence of serotype 11 significantly decreased in the last 2 years. The antibiotic susceptibility of the strains of P. aeruginosa isolated from these patients did not change in the 5 years, except that there was increasing susceptibility to carbenicillin in later years. This increasing susceptibility to carbenicillin was a reflection of a decreased prevalence of serotype 11 in these patients, since serotype 11 was more resistant than other serotypes to carbenicillin. PMID:6818251

  18. Mechanisms of carbapenem resistance in endemic Pseudomonas aeruginosa isolates after an SPM-1 metallo-β-lactamase producing strain subsided in an intensive care unit of a teaching hospital in Brazil

    PubMed Central

    Cacci, Luciana Camila; Chuster, Stephanie Gomes; Martins, Natacha; do Carmo, Pâmella Rodrigues; Girão, Valéria Brígido de Carvalho; Nouér, Simone Aranha; de Freitas, Wania Vasconcelos; de Matos, Juliana Arruda; Magalhães, Ana Cristina de Gouveia; Ferreira, Adriana Lúcia Pires; Picão, Renata Cristina; Moreira, Beatriz Meurer

    2016-01-01

    Carbapenem-resistance mechanisms are a challenge in the treatment of Pseudomonas aeruginosa infections. We investigated changes in P. aeruginosa carbapenem-resistance determinants over a time period of eight years after the emergence of São Paulo metallo-β-lactamase in a university hospital in Rio de Janeiro, Brazil. Patients admitted to the intensive care unit (ICU) were screened for P. aeruginosa colonisation and followed for the occurrence of infections from April 2007 to April 2008. The ICU environment was also sampled. Isolates were typed using random amplified polymorphic DNA, pulsed-field gel electrophoresis and multilocus sequence typing. Antimicrobial susceptibility was determined by disk diffusion and E-test, production of carbapenemases by a modified-CarbaNP test and presence of carbapenemase-encoding genes by polymerase chain reaction. Non-carbapenemase resistance mechanisms studied included efflux and AmpC overexpression by PAβN and cloxacillin susceptibility enhancement, respectively, as well as oprD mutations. From 472 P. aeruginosa clinical isolates (93 patients) and 17 isolates from the ICU environment, high genotypic diversity and several international clones were observed; one environment isolate belonged to the blaSPM-1 P. aeruginosa epidemic genotype. Among isolates from infections, 10 (29%) were carbapenem resistant: none produced carbapenemases, three exhibited all non-carbapenemase mechanisms studied, six presented a combination of two mechanisms, and one exclusively displayed oprD mutations. Carbapenem-resistant P. aeruginosa displayed a polyclonal profile after the SPM-1 epidemic genotype declined. This phenomenon is connected with blaSPM-1 P. aeruginosa replaced by other carbapenem-resistant pathogens. PMID:27653359

  19. Mechanisms of carbapenem resistance in endemic Pseudomonas aeruginosa isolates after an SPM-1 metallo-β-lactamase producing strain subsided in an intensive care unit of a teaching hospital in Brazil

    PubMed Central

    Cacci, Luciana Camila; Chuster, Stephanie Gomes; Martins, Natacha; do Carmo, Pâmella Rodrigues; Girão, Valéria Brígido de Carvalho; Nouér, Simone Aranha; de Freitas, Wania Vasconcelos; de Matos, Juliana Arruda; Magalhães, Ana Cristina de Gouveia; Ferreira, Adriana Lúcia Pires; Picão, Renata Cristina; Moreira, Beatriz Meurer

    2016-01-01

    Carbapenem-resistance mechanisms are a challenge in the treatment of Pseudomonas aeruginosa infections. We investigated changes in P. aeruginosa carbapenem-resistance determinants over a time period of eight years after the emergence of São Paulo metallo-β-lactamase in a university hospital in Rio de Janeiro, Brazil. Patients admitted to the intensive care unit (ICU) were screened for P. aeruginosa colonisation and followed for the occurrence of infections from April 2007 to April 2008. The ICU environment was also sampled. Isolates were typed using random amplified polymorphic DNA, pulsed-field gel electrophoresis and multilocus sequence typing. Antimicrobial susceptibility was determined by disk diffusion and E-test, production of carbapenemases by a modified-CarbaNP test and presence of carbapenemase-encoding genes by polymerase chain reaction. Non-carbapenemase resistance mechanisms studied included efflux and AmpC overexpression by PAβN and cloxacillin susceptibility enhancement, respectively, as well as oprD mutations. From 472 P. aeruginosa clinical isolates (93 patients) and 17 isolates from the ICU environment, high genotypic diversity and several international clones were observed; one environment isolate belonged to the blaSPM-1 P. aeruginosa epidemic genotype. Among isolates from infections, 10 (29%) were carbapenem resistant: none produced carbapenemases, three exhibited all non-carbapenemase mechanisms studied, six presented a combination of two mechanisms, and one exclusively displayed oprD mutations. Carbapenem-resistant P. aeruginosa displayed a polyclonal profile after the SPM-1 epidemic genotype declined. This phenomenon is connected with blaSPM-1 P. aeruginosa replaced by other carbapenem-resistant pathogens.

  20. Mechanisms of carbapenem resistance in endemic Pseudomonas aeruginosa isolates after an SPM-1 metallo-β-lactamase producing strain subsided in an intensive care unit of a teaching hospital in Brazil.

    PubMed

    Cacci, Luciana Camila; Chuster, Stephanie Gomes; Martins, Natacha; Carmo, Pâmella Rodrigues do; Girão, Valéria Brígido de Carvalho; Nouér, Simone Aranha; Freitas, Wania Vasconcelos de; Matos, Juliana Arruda de; Magalhães, Ana Cristina de Gouveia; Ferreira, Adriana Lúcia Pires; Picão, Renata Cristina; Moreira, Beatriz Meurer

    2016-09-01

    Carbapenem-resistance mechanisms are a challenge in the treatment of Pseudomonas aeruginosa infections. We investigated changes in P. aeruginosa carbapenem-resistance determinants over a time period of eight years after the emergence of São Paulo metallo-β-lactamase in a university hospital in Rio de Janeiro, Brazil. Patients admitted to the intensive care unit (ICU) were screened for P. aeruginosa colonisation and followed for the occurrence of infections from April 2007 to April 2008. The ICU environment was also sampled. Isolates were typed using random amplified polymorphic DNA, pulsed-field gel electrophoresis and multilocus sequence typing. Antimicrobial susceptibility was determined by disk diffusion and E-test, production of carbapenemases by a modified-CarbaNP test and presence of carbapenemase-encoding genes by polymerase chain reaction. Non-carbapenemase resistance mechanisms studied included efflux and AmpC overexpression by PAβN and cloxacillin susceptibility enhancement, respectively, as well as oprD mutations. From 472 P. aeruginosa clinical isolates (93 patients) and 17 isolates from the ICU environment, high genotypic diversity and several international clones were observed; one environment isolate belonged to the blaSPM-1 P. aeruginosa epidemic genotype. Among isolates from infections, 10 (29%) were carbapenem resistant: none produced carbapenemases, three exhibited all non-carbapenemase mechanisms studied, six presented a combination of two mechanisms, and one exclusively displayed oprD mutations. Carbapenem-resistant P. aeruginosa displayed a polyclonal profile after the SPM-1 epidemic genotype declined. This phenomenon is connected with blaSPM-1 P. aeruginosa replaced by other carbapenem-resistant pathogens. PMID:27653359

  1. Reduction of PCN biosynthesis by NO in Pseudomonas aeruginosa.

    PubMed

    Gao, Lei; Zhang, Yuying; Wang, Yan; Qiao, Xinhua; Zi, Jing; Chen, Chang; Wan, Yi

    2016-08-01

    Pyocyanin (PCN), a virulence factor synthesized by Pseudomonas aeruginosa, plays an important role during clinical infections. There is no study of the effect of nitric oxide (NO) on PCN biosynthesis. Here, the effect of NO on PCN levels in Pseudomonas aeruginosa strain PAO1, a common reference strain, was tested. The results showed that the NO donor sodium nitroprusside (SNP) can significantly reduce PCN levels (82.5% reduction at 60μM SNP). Furthermore, the effect of endogenous NO on PCN was tested by constructing PAO1 nor (NO reductase gene) knockout mutants. Compared to the wild-type strain, the Δnor strain had a lower PCN (86% reduction in Δnor). To examine whether the results were universal with other P. aeruginosa strains, we collected 4 clinical strains from a hospital, tested their PCN levels after SNP treatment, and obtained similar results, i.e., PCN biosynthesis was inhibited by NO. These results suggest that NO treatment may be a new strategy to inhibit PCN biosynthesis and could provide novel insights into eliminating P. aeruginosa virulence as a clinical goal.

  2. Continued transmission of Pseudomonas aeruginosa from a wash hand basin tap in a critical care unit.

    PubMed

    Garvey, M I; Bradley, C W; Tracey, J; Oppenheim, B

    2016-09-01

    Pseudomonas aeruginosa is an important nosocomial pathogen, colonizing hospital water supplies including taps and sinks. We report a cluster of P. aeruginosa acquisitions during a period of five months from tap water to patients occupying the same burns single room in a critical care unit. Pseudomonas aeruginosa cultured from clinical isolates from four different patients was indistinguishable from water strains by pulsed-field gel electrophoresis. Water outlets in critical care may be a source of P. aeruginosa despite following the national guidance, and updated guidance and improved control measures are needed to reduce the risks of transmission to patients.

  3. Nationwide Investigation of Extended-Spectrum β-Lactamases, Metallo-β-Lactamases, and Extended-Spectrum Oxacillinases Produced by Ceftazidime-Resistant Pseudomonas aeruginosa Strains in France ▿

    PubMed Central

    Hocquet, Didier; Plésiat, Patrick; Dehecq, Barbara; Mariotte, Pierre; Talon, Daniel; Bertrand, Xavier

    2010-01-01

    A nationwide study aimed to identify the extended-spectrum β-lactamases (ESBLs), metallo-β-lactamases (MBLs), and extended-spectrum oxacillinases (ES-OXAs) in a French collection of 140 clinical Pseudomonas aeruginosa isolates highly resistant to ceftazidime. Six ESBLs (PER-1, n = 3; SHV-2a, n = 2; VEB-1a, n = 1), four MBLs (VIM-2, n = 3; IMP-18, n = 1), and five ES-OXAs (OXA-19, n = 4; OXA-28, n = 1) were identified in 13 isolates (9.3% of the collection). The prevalence of these enzymes is still low in French clinical P. aeruginosa isolates but deserves to be closely monitored. PMID:20547814

  4. Genetic and Functional Diversity of Pseudomonas aeruginosa Lipopolysaccharide

    PubMed Central

    Lam, Joseph S.; Taylor, Véronique L.; Islam, Salim T.; Hao, Youai; Kocíncová, Dana

    2011-01-01

    Lipopolysccharide (LPS) is an integral component of the Pseudomonas aeruginosa cell envelope, occupying the outer leaflet of the outer membrane in this Gram-negative opportunistic pathogen. It is important for bacterium–host interactions and has been shown to be a major virulence factor for this organism. Structurally, P. aeruginosa LPS is composed of three domains, namely, lipid A, core oligosaccharide, and the distal O antigen (O-Ag). Most P. aeruginosa strains produce two distinct forms of O-Ag, one a homopolymer of D-rhamnose that is a common polysaccharide antigen (CPA, formerly termed A band), and the other a heteropolymer of three to five distinct (and often unique dideoxy) sugars in its repeat units, known as O-specific antigen (OSA, formerly termed B band). Compositional differences in the O units among the OSA from different strains form the basis of the International Antigenic Typing Scheme for classification via serotyping of different strains of P. aeruginosa. The focus of this review is to provide state-of-the-art knowledge on the genetic and resultant functional diversity of LPS produced by P. aeruginosa. The underlying factors contributing to this diversity will be thoroughly discussed and presented in the context of its contributions to host–pathogen interactions and the control/prevention of infection. PMID:21687428

  5. Infectious conjunctivitis caused by Pseudomonas aeruginosa isolated from a bathroom

    PubMed Central

    2013-01-01

    Background The elucidation of the routes of transmission of a pathogen is crucial for the prevention of infectious diseases caused by bacteria that are not a resident in human tissue. The purpose of this report is to describe a case of suture-related conjunctivitis caused by Pseudomonas aeruginosa for which we identified the transmission route using pulsed-field gel electrophoresis (PFGE). Case presentation A 38-year-old man, who had undergone surgery for glaucoma 2 years ago previously, presented with redness, discomfort, and mucopurulent discharge in the right eye. A 9–0 silk suture had been left on the conjunctiva. A strain of P. aeruginosa was isolated from a culture obtained from the suture, and the patient was therefore diagnosed with suture-related conjunctivitis caused by P. aeruginosa. The conjunctivitis was cured by the application of an antimicrobial ophthalmic solution and removal of the suture. We used PFGE to survey of the indoor and outdoor environments around the patient’s house and office in order to elucidate the route of transmission of the infection. Three strains of P. aeruginosa were isolated from the patient’s indoor environment, and the isolate obtained from the patient’s bathroom was identical to that from the suture. Conclusion The case highlights the fact that an indoor environmental strain of P. aeruginosa can cause ocular infections. PMID:23815865

  6. Pseudomonas aeruginosa ventilator-associated pneumonia management

    PubMed Central

    Ramírez-Estrada, Sergio; Borgatta, Bárbara; Rello, Jordi

    2016-01-01

    Ventilator-associated pneumonia is the most common infection in intensive care unit patients associated with high morbidity rates and elevated economic costs; Pseudomonas aeruginosa is one of the most frequent bacteria linked with this entity, with a high attributable mortality despite adequate treatment that is increased in the presence of multiresistant strains, a situation that is becoming more common in intensive care units. In this manuscript, we review the current management of ventilator-associated pneumonia due to P. aeruginosa, the most recent antipseudomonal agents, and new adjunctive therapies that are shifting the way we treat these infections. We support early initiation of broad-spectrum antipseudomonal antibiotics in present, followed by culture-guided monotherapy de-escalation when susceptibilities are available. Future management should be directed at blocking virulence; the role of alternative strategies such as new antibiotics, nebulized treatments, and vaccines is promising. PMID:26855594

  7. [Sensitivity of Ps. aeruginosa to disinfectant agents].

    PubMed

    Korudzhiĭski, N; Tsankova, S; Karadzhov, S

    1986-01-01

    Pseudomonas aeruginosa strains, isolated from semen of bulls as well as from the surrounding milieu at Artificial Insemination Stations, were tested for susceptibility to disinfection agents, such as fesiasept, concentrate C4, and chloramine with 25% active chlorine and sodium hydroxide. The investigation was carried out in vitro under practical conditions too. The analysis of results led to the conclusion that in the case of environmental contamination with Ps. aeruginosa along with semen contamination most effective proved concentrate C4 in the form of 2.5 per cent water solution. The disinfection of lab glassware and equipment, instruments, towels, kerchiefs, cloths, and white overalls and aprons is to be carried out with 1.5 per cent water solution of chloramine. PMID:3101277

  8. Ambroxol interferes with Pseudomonas aeruginosa quorum sensing.

    PubMed

    Lu, Qi; Yu, Jialin; Yang, Xiqiang; Wang, Jiarong; Wang, Lijia; Lin, Yayin; Lin, Lihua

    2010-09-01

    The mucolytic agent ambroxol has been reported to interfere with the formation of Pseudomonas aeruginosa-derived biofilms in addition to reducing alginate production by undefined mechanisms. Since quorum sensing is a key regulator of virulence and biofilm formation, we examined the effects of ambroxol on P. aeruginosa PAO1 wild-type bacterial clearance rates, adhesion profiles and biofilm formation compared with the quorum sensing-deficient, double-mutant strains DeltalasR DeltarhlR and DeltalasI DeltarhlI. Data presented in this report demonstrated that ambroxol treatment reduced survival rates of the double-mutant strains compared with the wild-type strain in a dose-dependent manner even though the double-mutants had increased adhesion in the presence of ambroxol compared with the wild-type strain. The PAO1 wild-type strain produced a significantly thicker biofilm (21.64+/-0.57 microm) compared with the biofilms produced by the DeltalasR DeltarhlR (7.36+/-0.2 microm) and DeltalasI DeltarhlI (6.62+/-0.31 microm) isolates. Ambroxol treatment reduced biofilm thickness, increased areal porosity, and decreased the average diffusion distance and textual entropy of wild-type and double-mutant strains. However, compared with the double-mutant strains, the changes observed for the wild-type strain were more clearly defined. Finally, ambroxol exhibited significant antagonistic quorum-sensing properties, suggesting that it could be adapted for use clinically in the treatment of cystic fibrosis and to reduce biofilm formation and in the colonisation of indwelling devices. PMID:20580207

  9. Ambroxol interferes with Pseudomonas aeruginosa quorum sensing.

    PubMed

    Lu, Qi; Yu, Jialin; Yang, Xiqiang; Wang, Jiarong; Wang, Lijia; Lin, Yayin; Lin, Lihua

    2010-09-01

    The mucolytic agent ambroxol has been reported to interfere with the formation of Pseudomonas aeruginosa-derived biofilms in addition to reducing alginate production by undefined mechanisms. Since quorum sensing is a key regulator of virulence and biofilm formation, we examined the effects of ambroxol on P. aeruginosa PAO1 wild-type bacterial clearance rates, adhesion profiles and biofilm formation compared with the quorum sensing-deficient, double-mutant strains DeltalasR DeltarhlR and DeltalasI DeltarhlI. Data presented in this report demonstrated that ambroxol treatment reduced survival rates of the double-mutant strains compared with the wild-type strain in a dose-dependent manner even though the double-mutants had increased adhesion in the presence of ambroxol compared with the wild-type strain. The PAO1 wild-type strain produced a significantly thicker biofilm (21.64+/-0.57 microm) compared with the biofilms produced by the DeltalasR DeltarhlR (7.36+/-0.2 microm) and DeltalasI DeltarhlI (6.62+/-0.31 microm) isolates. Ambroxol treatment reduced biofilm thickness, increased areal porosity, and decreased the average diffusion distance and textual entropy of wild-type and double-mutant strains. However, compared with the double-mutant strains, the changes observed for the wild-type strain were more clearly defined. Finally, ambroxol exhibited significant antagonistic quorum-sensing properties, suggesting that it could be adapted for use clinically in the treatment of cystic fibrosis and to reduce biofilm formation and in the colonisation of indwelling devices.

  10. Effect of tannin extract against Pseudomonas aeruginosa producing metallo beta-lactamase.

    PubMed

    Ghafourian, S; Mohebi, R; Sekawi, Z; Raftari, M; Neela, V; Ghafourian, E; Aboualigalehdari, E; Rahbar, M; Sadeghifard, N

    2012-01-01

    Carbapenems are the most potent beta-lactam agents with a broad-spectrum activity against Gram-negative and Gram-positive bacteria. They are stable in the presence of penicillinases and cephalosporinases. This study was focused on frequency of metallo beta- lactamase (MBL) among Pesudomonas aeruginosa strains isolated in patients with urinary tract infection, effect of tannin against PA positive strains which produced blaVIM or blaIMP and both of these genes (Species). Detection of MBL was performed by phonotypic and genotypic methods. Tannin extract was tested against P. aeruginosa producing MBL. During the study period, 240 P. aeruginosa isolates were identified. Among them 64 (26.6 percent) isolates were imipenem non-susceptible and confirmed by imipenem/EDTA. Our results revealed that the growth of blaVIM positive P. aeruginosa inhibited at 15 microg/ml concentration. The experiment repeated for blaIMP-positive P. aeruginosa and P. aeruginosa which harbored blaIMP and blaVIM, the results showed 35 microg/ml was the best concentration for inhibition of P. aeruginosa-positive blaIMP and also P. aeruginosa blaIMP and blaVIM. In conclusion, tannin was effective against P. aeruginosa producing blaVIM and blaIMP and both of them so it can be substituted with common antibiotics. The result showed significantly P. aeruginosa-harbored blaIMP was more responsible for imipenem resistance than P. aeruginosa-positive blaVIM. Interestingly, tannin was more effective against MBL-P. aeruginosa in comparison with current antibiotics. PMID:22824750

  11. Composition of Pseudomonas aeruginosa slime

    PubMed Central

    Brown, M. R. W.; Foster, J. H. Scott; Clamp, J. R.

    1969-01-01

    1. The slime produced by eight strains of Pseudomonas aeruginosa on a number of different media was demonstrated to be qualitatively the same. Small quantitative differences may be occasioned by differences in the extraction procedure, the growth medium or the strain of organism used. 2. The slime was shown to be predominantly polysaccharide with some nucleic acid material and a small amount of protein. 3. The hydrolysed polysaccharide fraction consists mainly of glucose with smaller amounts of mannose. This accounts for some 50–60% of the total slime. In addition, there is some 5% of hyaluronic acid. The nucleic acid material represents approx. 20% of the total weight, and is composed of both RNA and DNA. 4. Minor components are protein, rhamnose and glucosamine, the protein being less than 5% of the total. 5. Hyaluronic acid is produced in greater quantities from nutrient broth than from chemically defined media, and is more firmly attached to the cells than the other components. PMID:4240755

  12. Polydopamine-Mediated Immobilization of Alginate Lyase to Prevent P. aeruginosa Adhesion.

    PubMed

    Alves, Diana; Sileika, Tadas; Messersmith, Phillip B; Pereira, Maria Olívia

    2016-09-01

    Given alginate's contribution to Pseudomonas aeruginosa virulence, it has long been considered a promising target for interventional therapies, which have been performed by using the enzyme alginate lyase. In this work, instead of treating pre-established mucoid biofilms, alginate lyase is immobilized onto a surface as a preventive measure against P. aeruginosa adhesion. A polydopamine dip-coating strategy is employed for functionalization of polycarbonate surfaces. Enzyme immobilization is confirmed by surface characterization. Surfaces functionalized with alginate lyase exhibit anti-adhesive properties, inhibiting the attachment of the mucoid strain. Moreover, surfaces modified with this enzyme also inhibit the adhesion of the tested non-mucoid strain. Unexpectedly, treatment with heat-inactivated enzyme also inhibits the attachment of mucoid and non-mucoid P. aeruginosa strains. These findings suggest that the antibacterial performance of alginate lyase functional coatings is catalysis-independent, highlighting the importance of further studies to better understand its mechanism of action against P. aeruginosa strains. PMID:27198822

  13. Polydopamine-Mediated Immobilization of Alginate Lyase to Prevent P. aeruginosa Adhesion.

    PubMed

    Alves, Diana; Sileika, Tadas; Messersmith, Phillip B; Pereira, Maria Olívia

    2016-09-01

    Given alginate's contribution to Pseudomonas aeruginosa virulence, it has long been considered a promising target for interventional therapies, which have been performed by using the enzyme alginate lyase. In this work, instead of treating pre-established mucoid biofilms, alginate lyase is immobilized onto a surface as a preventive measure against P. aeruginosa adhesion. A polydopamine dip-coating strategy is employed for functionalization of polycarbonate surfaces. Enzyme immobilization is confirmed by surface characterization. Surfaces functionalized with alginate lyase exhibit anti-adhesive properties, inhibiting the attachment of the mucoid strain. Moreover, surfaces modified with this enzyme also inhibit the adhesion of the tested non-mucoid strain. Unexpectedly, treatment with heat-inactivated enzyme also inhibits the attachment of mucoid and non-mucoid P. aeruginosa strains. These findings suggest that the antibacterial performance of alginate lyase functional coatings is catalysis-independent, highlighting the importance of further studies to better understand its mechanism of action against P. aeruginosa strains.

  14. Elastase Deficiency Phenotype of Pseudomonas aeruginosa Canine Otitis Externa Isolates

    PubMed Central

    Petermann, Shana R.; Doetkott, Curt; Rust, Lynn

    2001-01-01

    Pseudomonas aeruginosa veterinary isolates were assayed for elastase and total matrix protease activity. The elastase activity of canine ear isolates was much less than that of strain PAO1 and that of all other veterinary isolates (P < 0.0001). The results indicate that canine ear isolates have a distinct elastase phenotype. PMID:11329471

  15. Genetic characterization of Microcystis aeruginosa isolates from Portuguese freshwater systems.

    PubMed

    Moreira, Cristiana; Vasconcelos, Vitor; Antunes, Agostinho

    2016-07-01

    Cyanobacteria are microorganisms that pose a serious threat to the aquatic waterways through the production of dense blooms under eutrophic conditions and the release of toxic secondary metabolites-cyanotoxins. Within cyanobacteria, the colonial planktonic Microcystis aeruginosa is widely distributed in both fresh and brackish aquatic environments throughout the world being frequently observed in the Portuguese water systems. Apart from the well-established distribution of M. aeruginosa in Portugal, knowledge of its genetic diversity and population structure is unknown. Therefore, in this study twenty-seven strains were obtained from the North, Centre and South regions of Portugal and were subjected to extensive phylogenetic analyses using simultaneously four distinct genetic markers (16S rRNA, 16S-23S ITS, DNA gyrase subunit ß and cell division protein (ftsZ)) encompassing in total 2834 bp. With this work we characterized the phylogenetic relationship among the Portuguese strains, with the southern strains showing higher genetic structure relatively to the North and Centre strains. A total of fifteen genotypes were determined for M. aeruginosa in Portuguese water systems revealing a high genetic diversity. This is also the first study to report geographic variation on the population structure of the Portuguese M. aeruginosa.

  16. Antioxidant enzyme activities of Microcystis aeruginosa in response to nonylphenols and degradation of nonylphenols by M. aeruginosa.

    PubMed

    Wang, Jingxian; Xie, Ping

    2007-10-01

    The aim of this study was to examine the effects of chemical nonylphenols (NPs) on the antioxidant system of Microcystis aeruginosa strains. The degradation and sorption of NPs by M. aeruginosa were also evaluated. High concentrations of NPs (1 and 2 mg/l) were found to cause increases in superoxidase dismutase (SOD) and glutathione-S-transferase (GST) activities and in glutathione (GSH) levels. These results suggest that toxic stress manifested by elevated SOD and GST levels and GSH contents may be responsible for the toxicity of NPs to M. aeruginosa and that the algal cells could improve their antioxidant and detoxification ability through the enhancement of enzymatic and nonenzymatic prevention substances. The observed elevations in GSH levels and GST activities were relatively higher than those in SOD activities, indicating that GSH and GST contributed more in eliminating toxic effects than SOD. Low concentrations of NPs (0.05-0.2 mg/l) enhanced cell growth and decreased GST activity in algal cells of M. aeruginosa, suggesting that NPs may have acted as a protecting factor, such as an antioxidant. The larger portion of the NPs (>60%) disappeared after 12 days of incubation, indicating the strong ability of M. aeruginosa to degrade the moderate persistent NP compounds. The sorption ratio of M. aeruginosa after a 12-day exposure to low nominal concentrations of NPs (0.02-0.5 mg/l) was relatively high (>30%). The fact that M. aeruginosa effectively resisted the toxic effects of NPs and strongly degraded these pollutants indicate that M. aeruginosa cells have a strong ability to adapt to variations in environmental conditions and that low and moderate concentrations of organic compounds may favor its survival. Further studies are needed to provide detailed information on the fate of persistent organic pollutants and the survival of algae and to determine the possible role of organic pollutants in the occurrence of water blooms in eutrophic lakes. PMID:17342429

  17. Vesiculation from Pseudomonas aeruginosa under SOS

    PubMed Central

    Maredia, Reshma; Devineni, Navya; Lentz, Peter; Dallo, Shatha F.; Yu, JiehJuen; Guentzel, Neal; Chambers, James; Arulanandam, Bernard; Haskins, William E.; Weitao, Tao

    2012-01-01

    Bacterial infections can be aggravated by antibiotic treatment that induces SOS response and vesiculation. This leads to a hypothesis concerning association of SOS with vesiculation. To test it, we conducted multiple analyses of outer membrane vesicles (OMVs) produced from the Pseudomonas aeruginosa wild type in which SOS is induced by ciprofloxacin and from the LexA noncleavable (lexAN) strain in which SOS is repressed. The levels of OMV proteins, lipids, and cytotoxicity increased for both the treated strains, demonstrating vesiculation stimulation by the antibiotic treatment. However, the further increase was suppressed in the lexAN strains, suggesting the SOS involvement. Obviously, the stimulated vesiculation is attributed by both SOS-related and unrelated factors. OMV subproteomic analysis was performed to examine these factors, which reflected the OMV-mediated cytotoxicity and the physiology of the vesiculating cells under treatment and SOS. Thus, SOS plays a role in the vesiculation stimulation that contributes to cytotoxicity. PMID:22448133

  18. Interactions of Pseudomonas aeruginosa in predominant biofilm or planktonic forms of existence in mixed culture with Escherichia coli in vitro.

    PubMed

    Kuznetsova, Marina V; Maslennikova, Irina L; Karpunina, Tamara I; Nesterova, Larisa Yu; Demakov, Vitaly A

    2013-09-01

    Pseudomonas aeruginosa and Escherichia coli are known to be involved in mixed communities in diverse niches. In this study we examined the influence of the predominant form of cell existence of and the exometabolite production by P. aeruginosa strains on interspecies interactions, in vitro. Bacterial numbers of P. aeruginosa and E. coli in mixed plankton cultures and biofilms compared with their numbers in single plankton cultures and biofilms changed in a different way, but were in accordance with the form of P. aeruginosa cell existence. The mass of a mixed-species biofilm was greater than the mass of a single-species biofilm. Among the mixed biofilms, the one with the "planktonic" P. aeruginosa strain had the least biomass. The total pyocyanin and pyoverdin levels were found to be lower in all mixed plankton cultures. Despite this, clinical P. aeruginosa strains irrespective of the predominant form of existence ("biofilm" or "planktonic") had a higher total concentration of exometabolites than did the reference strain in 12-24 h mixed cultures. The metabolism of E. coli, according to its bioluminescence, was reduced in mixed cultures, and the decrease was by 20- to 100-fold greater with the clinical Pseudomonas strains than the reference Pseudomonas strain. Thus, both the predominant form of existence of and the exometabolite production by distinct P. aeruginosa strains should be considered to fully understand the interspecies relationship and bacteria survival in natural communities.

  19. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa

    PubMed Central

    Hwang, Sohyun; Kim, Chan Yeong; Ji, Sun-Gou; Go, Junhyeok; Kim, Hanhae; Yang, Sunmo; Kim, Hye Jin; Cho, Ara; Yoon, Sang Sun; Lee, Insuk

    2016-01-01

    Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa. PMID:27194047

  20. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Hwang, Sohyun; Kim, Chan Yeong; Ji, Sun-Gou; Go, Junhyeok; Kim, Hanhae; Yang, Sunmo; Kim, Hye Jin; Cho, Ara; Yoon, Sang Sun; Lee, Insuk

    2016-05-01

    Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa.

  1. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa.

    PubMed

    Hwang, Sohyun; Kim, Chan Yeong; Ji, Sun-Gou; Go, Junhyeok; Kim, Hanhae; Yang, Sunmo; Kim, Hye Jin; Cho, Ara; Yoon, Sang Sun; Lee, Insuk

    2016-05-19

    Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa.

  2. Direct measurement of efflux in Pseudomonas aeruginosa using an environment-sensitive fluorescent dye.

    PubMed

    Iyer, Ramkumar; Erwin, Alice L

    2015-01-01

    Resistance-Nodulation-Division (RND) family pumps AcrB and MexB are the major efflux routes in Escherichia coli and Pseudomonas aeruginosa respectively. Fluorescent environment-sensitive dyes provide a means to study efflux pump function in live bacterial cells in real-time. Recently, we demonstrated the utility of this approach using the dye Nile Red to quantify AcrB-mediated efflux and measured the ability of antibiotics and other efflux pump substrates to compete with efflux of Nile Red, independent of antibacterial activity. Here, we extend this method to P. aeruginosa and describe a novel application that permits the comparison and rank-ordering of bacterial strains by their inherent efflux potential. We show that glucose and l-malate re-energize Nile Red efflux in P. aeruginosa, and we highlight differences in the glucose dependence and kinetics of efflux between P. aeruginosa and E. coli. We quantify the differences in efflux among a set of P. aeruginosa laboratory strains, which include PAO1, the hyper-sensitive strain ATCC 35151 and its parent, ATCC 12055. Efflux of Nile Red in P. aeruginosa is mediated by MexAB-OprM and is slower than in E. coli. In conclusion, we describe an efflux measurement tool for use in antibacterial drug discovery and basic research on P. aeruginosa efflux pumps.

  3. Virulence attributes in Brazilian clinical isolates of Pseudomonas aeruginosa.

    PubMed

    Silva, Lívia V; Galdino, Anna Clara M; Nunes, Ana Paula F; dos Santos, Kátia R N; Moreira, Beatriz M; Cacci, Luciana C; Sodré, Cátia L; Ziccardi, Mariangela; Branquinha, Marta H; Santos, André L S

    2014-11-01

    Pseudomonas aeruginosa is an opportunistic human pathogen responsible for causing a huge variety of acute and chronic infections with significant levels of morbidity and mortality. Its success as a pathogen comes from its genetic/metabolic plasticity, intrinsic/acquired antimicrobial resistance, capacity to form biofilm and expression of numerous virulence factors. Herein, we have analyzed the genetic variability, antimicrobial susceptibility as well as the production of metallo-β-lactamases (MBLs) and virulence attributes (elastase, pyocyanin and biofilm) in 96 strains of P. aeruginosa isolated from different anatomical sites of patients attended at Brazilian hospitals. Our results revealed a great genetic variability, in which 86 distinct RAPD types (89.6% of polymorphisms) were detected. Regarding the susceptibility profile, 48 strains (50%) were resistant to the antimicrobials, as follows: 22.92% to the three tested antibiotics, 12.5% to both imipenem and meropenem, 11.46% to ceftazidime only, 2.08% to imipenem only and 1.04% to both ceftazidime and meropenem. Out of the 34 clinical strains of P. aeruginosa resistant to both imipenem and meropenem, 25 (73.53%) were MBL producers by phenotypic method while 12 (35.29%) were PCR positive for the MBL gene SPM-1. All P. aeruginosa strains produced pyocyanin, elastase and biofilm, although in different levels. Some associations were demonstrated among the susceptibility and/or production of these virulence traits with the anatomical site of strain isolation. For instance, almost all strains isolated from urine (85.71%) were resistant to the three antibiotics, while the vast majority of strains isolated from rectum (95%) and mouth (66.67%) were susceptible to all tested antibiotics. Urine isolates produced the highest pyocyanin concentration (20.15±5.65 μg/ml), while strains isolated from pleural secretion and mouth produced elevated elastase activity (1441.43±303.08 FAU) and biofilm formation (OD590 0.676±0

  4. Subtilase SprP exerts pleiotropic effects in Pseudomonas aeruginosa.

    PubMed

    Pelzer, Alexander; Polen, Tino; Funken, Horst; Rosenau, Frank; Wilhelm, Susanne; Bott, Michael; Jaeger, Karl-Erich

    2014-02-01

    The open reading frame PA1242 in the genome of Pseudomonas aeruginosa PAO1 encodes a putative protease belonging to the peptidase S8 family of subtilases. The respective enzyme termed SprP consists of an N-terminal signal peptide and a so-called S8 domain linked by a domain of unknown function (DUF). Presumably, this DUF domain defines a discrete class of Pseudomonas proteins as homologous domains can be identified almost exclusively in proteins of the genus Pseudomonas. The sprP gene was expressed in Escherichia coli and proteolytic activity was demonstrated. A P. aeruginosa ∆sprP mutant was constructed and its gene expression pattern compared to the wild-type strain by genome microarray analysis revealing altered expression levels of 218 genes. Apparently, SprP is involved in regulation of a variety of different cellular processes in P. aeruginosa including pyoverdine synthesis, denitrification, the formation of cell aggregates, and of biofilms. PMID:24376018

  5. Agricultural plants and soil as a reservoir for Pseudomonas aeruginosa.

    PubMed

    Green, S K; Schroth, M N; Cho, J J; Kominos, S K; Vitanza-jack, V B

    1974-12-01

    Pseudomonas aeruginosa was detected in 24% of the soil samples but in only 0.13% of the vegetable samples from various agricultural areas of California. The distribution of pyocin types of soil and vegetable isolates was similar to that of clinical strains, and three of the soil isolates were resistant to carbenicillin. Pseudomonas aeruginosa multiplied in lettuce and bean under conditions of high temperature and high relative humidity (27 C and 80-95% relative humidity) but declined when the temperature and humidity were lowered (16 C, 55-75% relative humidity). The results suggest that soil is a reservior for P. aeruginosa and that the bacterium has the capacity to colonize plants during favorable conditions of temperature and moisture. PMID:4217591

  6. Staphylococcus aureus alters growth activity, autolysis, and antibiotic tolerance in a human host-adapted Pseudomonas aeruginosa lineage.

    PubMed

    Michelsen, Charlotte Frydenlund; Christensen, Anne-Mette Juel; Bojer, Martin Saxtorph; Høiby, Niels; Ingmer, Hanne; Jelsbak, Lars

    2014-11-01

    Interactions among members of polymicrobial infections or between pathogens and the commensal flora may determine disease outcomes. Pseudomonas aeruginosa and Staphylococcus aureus are important opportunistic human pathogens and are both part of the polymicrobial infection communities in human hosts. In this study, we analyzed the in vitro interaction between S. aureus and a collection of P. aeruginosa isolates representing different evolutionary steps of a dominant lineage, DK2, that have evolved through decades of growth in chronically infected patients. While the early adapted P. aeruginosa DK2 strains outcompeted S. aureus during coculture on agar plates, we found that later P. aeruginosa DK2 strains showed a commensal-like interaction, where S. aureus was not inhibited by P. aeruginosa and the growth activity of P. aeruginosa was enhanced in the presence of S. aureus. This effect is mediated by one or more extracellular S. aureus proteins greater than 10 kDa, which also suppressed P. aeruginosa autolysis and prevented killing by clinically relevant antibiotics through promoting small-colony variant (SCV) formation. The commensal interaction was abolished with S. aureus strains mutated in the agr quorum sensing system or in the SarA transcriptional virulence regulator, as well as with strains lacking the proteolytic subunit, ClpP, of the Clp protease. Our results show that during evolution of a dominant cystic fibrosis lineage of P. aeruginosa, a commensal interaction potential with S. aureus has developed.

  7. Study of in vitro antibacterial activity of 19 antimicrobial agents against Pseudomonas aeruginosa.

    PubMed

    Wang, R; Sun, X D; Cai, Q M

    1989-04-01

    The in vitro antibacterial activity of 19 antimicrobial agents against 40 strains of P aeruginosa was studied. The 19 antimicrobial agents included 7 semisynthetic penicillins, 6 third generation cephalosporins, 5 aminoglycosides and 1 quinolone agent. The minimal inhibition concentrations (MIGs) were measured by the serial dilution on solid agar. Ceftazidime was the most active in 19 antimicrobial agents again P aeruginosa (MIC50: 1 microgram/ml, MIC90: 2 micrograms/ml) Amikacin and ofloxaxin followed it in activity. Acylureido-penicillins, such as azlocillin, furbenicillin and piperacillin were highly active against P aeruginosa, which could inhibit, 92.5%, 90% and 85% of these strains at a concentration of 8 micrograms/ml. Cefsulodine and cefoperazone were also active against the same strains, inhibiting 92.5% and 99% of the strains at a concentration of 8 micrograms/ml. The potency of the agents mentioned above against P. aeruginosa was similar to that of aminoglycosides. The drug susceptibility of 10 strains isolated in our hospital was compared with that of 29 strains of other hospitals in Beijing. The MICS of 5 penicillins and 3 cephalosporins against the isolates of our hospital was higher than that of other hospitals, suggesting that the susceptibility of beta-lactam antibiotics against isolates of our hospital was lower. The effects of combined use of azlocillin with oxacillin and piperacillin with ofloxacin against 4 strains of carbenicillin-resistant P aeruginosa was studied using check-board testing. The synergy and partial synergy were observed in both combinations.

  8. [Profiles of resistance to aminosides of Pseudomonas aeruginosa].

    PubMed

    Lesage, D; Delisle-Mizon, F; Vergez, P; Daguet, G

    1987-05-01

    Among all Gram-negative bacilli, Pseudomonas aeruginosa is one of the most resistant to aminoglycosides. Five hundred and seventeen P. aeruginosa strains were studied. Isolates came from three Paris hospitals. Reference strains were provided by P. Courvalin and A. Philippon. The following aminoglycosides were used: streptomycin (S), spectinomycin (Sp), kanamycin (K), neomycin (N), gentamicin (G), sisomicin (Ss), netilmicin (Nt), tobramycin (T), amikacin (A), habekacin (H). The in vitro activity of antibiotics was evaluated by the standardized disk agar diffusion test. Distribution of inhibition zone diameters among susceptible strains were represented by histograms. Resistance frequency to aminoglycosides was: G: 61.5%, Ss: 38.1%, T: 35.8%, Nt: 58.2%, A: 15.5%, Seven resistance patterns were identified: G: 3%, G Ss: 3%, G Nt: 8%, G Ss Nt: 7%, G Ss T: 5%, G Ss T Nt: 53%, G Ss T Nt A: 21%. Hypothesis about resistance mechanisms and interpretation of disk agar diffusion test are discussed.

  9. The Pseudomonas aeruginosa Transcriptional Landscape Is Shaped by Environmental Heterogeneity and Genetic Variation

    PubMed Central

    Schniederjans, Monika; Khaledi, Ariane; Hornischer, Klaus; Schulz, Sebastian; Bielecka, Agata; Eckweiler, Denitsa; Pohl, Sarah; Häussler, Susanne

    2015-01-01

    ABSTRACT Phenotypic variability among bacteria depends on gene expression in response to different environments, and it also reflects differences in genomic structure. In this study, we analyzed transcriptome sequencing (RNA-seq) profiles of 151 Pseudomonas aeruginosa clinical isolates under standard laboratory conditions and of one P. aeruginosa type strain under 14 different environmental conditions. Our approach allowed dissection of the impact of the genetic background versus environmental cues on P. aeruginosa gene expression profiles and revealed that phenotypic variation was larger in response to changing environments than between genomically different isolates. We demonstrate that mutations within the global regulator LasR affect more than one trait (pleiotropy) and that the interaction between mutations (epistasis) shapes the P. aeruginosa phenotypic plasticity landscape. Because of pleiotropic and epistatic effects, average genotype and phenotype measures appeared to be uncorrelated in P. aeruginosa. PMID:26126853

  10. Use of a Multiplex Transcript Method for Analysis of Pseudomonas aeruginosa Gene Expression Profiles in the Cystic Fibrosis Lung.

    PubMed

    Gifford, Alex H; Willger, Sven D; Dolben, Emily L; Moulton, Lisa A; Dorman, Dana B; Bean, Heather; Hill, Jane E; Hampton, Thomas H; Ashare, Alix; Hogan, Deborah A

    2016-10-01

    The discovery of therapies that modulate Pseudomonas aeruginosa virulence or that can eradicate chronic P. aeruginosa lung infections associated with cystic fibrosis (CF) will be advanced by an improved understanding of P. aeruginosa behavior in vivo We demonstrate the use of multiplexed Nanostring technology to monitor relative abundances of P. aeruginosa transcripts across clinical isolates, in serial samples, and for the purposes of comparing microbial physiology in vitro and in vivo The expression of 75 transcripts encoded by genes implicated in CF lung disease was measured in a variety of P. aeruginosa strains as well as RNA serial sputum samples from four P. aeruginosa-colonized subjects with CF collected over 6 months. We present data on reproducibility, the results from different methods of normalization, and demonstrate high concordance between transcript relative abundance data obtained by Nanostring or transcriptome sequencing (RNA-Seq) analysis. Furthermore, we address considerations regarding sequence variation between strains during probe design. Analysis of P. aeruginosa grown in vitro identified transcripts that correlated with the different phenotypes commonly observed in CF clinical isolates. P. aeruginosa transcript profiles in RNA from CF sputum indicated alginate production in vivo, and transcripts involved in quorum-sensing regulation were less abundant in sputum than strains grown in the laboratory. P. aeruginosa gene expression patterns from sputum clustered closely together relative to patterns for laboratory-grown cultures; in contrast, laboratory-grown P. aeruginosa showed much greater transcriptional variation with only loose clustering of strains with different phenotypes. The clustering within and between subjects was surprising in light of differences in inhaled antibiotic and respiratory symptoms, suggesting that the pathways represented by these 75 transcripts are stable in chronic CF P. aeruginosa lung infections. PMID:27481238

  11. [Resistance to antibiotics in Pseudomonas aeruginosa in Colombian hospitals].

    PubMed

    Villa, Lina M; Cortés, Jorge A; Leal, Aura L; Meneses, Andrés; Meléndez, Martha P

    2013-12-01

    Pseudomonas aeruginosa infections cause high morbidity and mortality. We performed a descriptive analysis of the rates of antibiotic resistance in isolates of P. aeruginosa in 33 hospitals enrolled in a surveillance network in Colombia. The study was conducted between January 2005 and December 2009 .9905 isolates of P. aeruginosa were identified, (4.9% of all strains). In intensive care units (ICU) P. aeruginosa showed an overall resistance to aztreonam, cefepime , ceftazidime, imipenem, meropenem , and piperacillin / tazobactam of 31.8% , 23.9% , 24.8%, 22.5%, 20.3% and 22.3%, respectively. Resistance rates increased for piperacillin/tazobactam, cefepime, and imipenem; remained unchanged for meropenem; and decreased for aminoglycosides, quinolones and ceftazidime. Resistance to one, two and three or more families of antibiotics was found in 17%, 12.5%, and 32.1%, respectively. In samples collected from the wards, the resistance rate was lower but usually over 10%. Antibiotic resistance in P. aeruginosa isolates in hospitalized patients and particularly in those admitted to ICUs in Colombia is high.

  12. Pseudomonas aeruginosa PAO1 exopolysaccharides are important for mixed species biofilm community development and stress tolerance

    PubMed Central

    Periasamy, Saravanan; Nair, Harikrishnan A. S.; Lee, Kai W. K.; Ong, Jolene; Goh, Jie Q. J.; Kjelleberg, Staffan; Rice, Scott A.

    2015-01-01

    Pseudomonas aeruginosa PAO1 produces three polysaccharides, alginate, Psl, and Pel that play distinct roles in attachment and biofilm formation for monospecies biofilms. Considerably less is known about their role in the development of mixed species biofilm communities. This study has investigated the roles of alginate, Psl, and Pel during biofilm formation of P. aeruginosa in a defined and experimentally informative mixed species biofilm community, consisting of P. aeruginosa, Pseudomonas protegens, and Klebsiella pneumoniae. Loss of the Psl polysaccharide had the biggest impact on the integration of P. aeruginosa in the mixed species biofilms, where the percent composition of the psl mutant was significantly lower (0.06%) than its wild-type (WT) parent (2.44%). In contrast, loss of the Pel polysaccharide had no impact on mixed species biofilm development. Loss of alginate or its overproduction resulted in P. aeruginosa representing 8.4 and 18.11%, respectively, of the mixed species biofilm. Dual species biofilms of P. aeruginosa and K. pneumoniae were not affected by loss of alginate, Pel, or Psl, while the mucoid P. aeruginosa strain achieved a greater biomass than its parent strain. When P. aeruginosa was grown with P. protegens, loss of the Pel or alginate polysaccharides resulted in biofilms that were not significantly different from biofilms formed by the WT PAO1. In contrast, overproduction of alginate resulted in biofilms that were comprised of 35–40% of P. aeruginosa, which was significantly higher than the WT (5–20%). Loss of the Psl polysaccharide significantly reduced the percentage composition of P. aeruginosa in dual species biofilms with P. protegens (<1%). Loss of the Psl polysaccharide significantly disrupted the communal stress resistance of the three species biofilms. Thus, the polysaccharide composition of an individual species significantly impacts mixed species biofilm development and the emergent properties of such communities. PMID

  13. Carbapenem resistance in Pseudomonas aeruginosa and Acinetobacter baumannii in the nosocomial setting in Latin America.

    PubMed

    Labarca, Jaime A; Salles, Mauro José Costa; Seas, Carlos; Guzmán-Blanco, Manuel

    2016-01-01

    Increasing prevalence of carbapenem-resistant Pseudomonas aeruginosa and Acinetobacter baumannii strains in the nosocomial setting in Latin America represents an emerging challenge to public health, as the range of therapeutic agents active against these pathogens becomes increasingly constrained. We review published reports from 2002 to 2013, compiling data from throughout the region on prevalence, mechanisms of resistance and molecular epidemiology of carbapenem-resistant strains of P. aeruginosa and A. baumannii. We find rates of carbapenem resistance up to 66% for P. aeruginosa and as high as 90% for A. baumannii isolates across the different countries of Latin America, with the resistance rate of A. baumannii isolates greater than 50% in many countries. An outbreak of the SPM-1 carbapenemase is a chief cause of resistance in P. aeruginosa strains in Brazil. Elsewhere in Latin America, members of the VIM family are the most important carbapenemases among P. aeruginosa strains. Carbapenem resistance in A. baumannii in Latin America is predominantly due to the oxacillinases OXA-23, OXA-58 and (in Brazil) OXA-143. Susceptibility of P. aeruginosa and A. baumannii to colistin remains high, however, development of resistance has already been detected in some countries. Better epidemiological data are needed to design effective infection control interventions.

  14. Insights into Mechanisms and Proteomic Characterisation of Pseudomonas aeruginosa Adaptation to a Novel Antimicrobial Substance

    PubMed Central

    Cierniak, Peter; Jübner, Martin; Müller, Stefan; Bender, Katja

    2013-01-01

    Antibiotic resistance has been reported since the introduction of synthetic antibiotics. Bacteria, such as one of the most common nosocomial pathogens P. aeruginosa, adapt quickly to changing environmental conditions, due to their short generation time. Thus microevolutional changes can be monitored in situ. In this study, the microevolutional process of Pseudomonas aeruginosa PAO1 resistance against a recently developed novel antibacterial zinc Schiff-base (ZSB) was investigated at the proteome level. After extended exposure to ZSB the passaged strain differed in tolerance against ZSB, with the adapted P. aeruginosa PAO1 exhibiting 1.6 times higher minimal inhibitory concentration. Using Two-dimensional Difference Gel Electrophoresis, the changes in the proteome of ZSB adapted P. aeruginosa PAO1 were examined by comparison with the non-adapted P. aeruginosa PAO1. The proteome of the adapted P. aeruginosa PAO1 strain differed significantly from the non-adapted in the abundance of two proteins when both strains were grown under stressing conditions. One protein could be identified as the outer membrane protein D that plays a role in uptake of basic amino acids as well as in carbapeneme resistance. The second protein has been identified as alkyl peroxide reductase subunit F. Our data indicated a slight increase in abundance of alkyl peroxide reductase F (AhpF) in the case of ZSB passaged P. aeruginosa PAO1. Higher abundance of Ahp has been discussed in the literature as a promoter of accelerated detoxification of benzene derivatives. The observed up-regulated AhpF thus appears to be connected to an increased tolerance against ZSB. Changes in the abundance of proteins connected to oxidative stress were also found after short-time exposure of P. aeruginosa PAO1 to the ZSB. Furthermore, adapted P. aeruginosa PAO1 showed increased tolerance against hydrogen peroxide and, in addition, showed accelerated degradation of ZSB, as determined by HPLC measurements. PMID:23869205

  15. CSA-131, a ceragenin active against colistin-resistant Acinetobacter baumannii and Pseudomonas aeruginosa clinical isolates.

    PubMed

    Vila-Farrés, Xavier; Callarisa, Anna Elena; Gu, Xiaobo; Savage, Paul B; Giralt, Ernest; Vila, Jordi

    2015-11-01

    In the last decade the number of Acinetobacter baumannii and Pseudomonas aeruginosa isolates showing extended drug resistance and pandrug resistance has steadily increased, thereby limiting or eliminating the antibiotics that can be used to treat infections by these micro-organisms. In addition, few antibiotics have been launched in the last decade. The objective of this study was to investigate the in vitro activity of several ceragenins against A. baumannii and P. aeruginosa. Four ceragenins (CSA-138, -13, -131 and -44) were tested both against colistin-susceptible and colistin-resistant A. baumannii and P. aeruginosa clinical isolates using the microdilution method. Time-kill curves of CSA-131 were performed against colistin-resistant A. baumannii and P. aeruginosa strains. The ceragenin CSA-131 showed the best activity against A. baumannii and P. aeruginosa, with minimum inhibitory concentrations (MICs) of 2 mg/L and <0.5 mg/L, respectively. MIC(50) and MIC(90) values were determined using 15 epidemiologically unrelated A. baumannii and P. aeruginosa strains, with MIC(50) and MIC(90) values for CSA-131 being 2 mg/L for A. baumannii and 1 mg/L and 2 mg/L, respectively, for P. aeruginosa. The killing curves of CSA-131 showed bactericidal behaviour at all of the concentrations tested, with re-growth at the lowest concentrations both in A. baumannii and P. aeruginosa. The good MICs of CSA-131 both against A. baumannii and P. aeruginosa and its high bactericidal activity may make this ceragenin a potential future agent to treat infections caused by these two pathogens even when the strain is resistant to colistin.

  16. Sequence heterogeneity of the ferripyoverdine uptake (fpvA), but not the ferric uptake regulator (fur), genes among strains of the fluorescent pseudomonads Pseudomonas aeruginosa, Pseudomonas aureofaciens, Pseudomonas fluorescens and Pseudomonas putida.

    PubMed

    Thupvong, T; Wiideman, A; Dunn, D; Oreschak, K; Jankowicz, B; Doering, J; Castignetti, D

    1999-09-01

    Pseudomonas aeruginosa, Pseudomonas aureofaciens, Pseudomonas fluorescens and Pseudomonas putida are of importance to medicine, agriculture and biocycling. These microbes acquire ferric ion via the use of the siderophores pyochelin and the family known as the pyoverdines or pseudobactins. The ferric uptake regulator (fur) gene is responsible, at least in part, for the regulation of siderophore synthesis and uptake in P. aeruginosa. To determine whether the organisms contain single or multiple homologues of the siderophore-related genes fpvA (ferripyoverdine uptake) and fur, and whether these homologues displayed sequence heterogeneity, their chromosomal DNAs were probed with fur and fpvA sequences. As a representative of a non-fluorescent pseudomonad, the bacterium Burkholderia (Pseudomonas) cepacia was also examined. The pseudomonads all contained fpvA- and fur-like homologues, and heterogeneity was observed among the different species. The presence of two or more fpvA-like genes is indicated in all of the fluorescent pseudomonads surveyed. In contrast, B. cepacia DNA either did not hybridize to these probes, or did so only very weakly, suggesting that fur- and fpvA-like homologues are either absent or significantly different in B. cepacia compared to the fluorescent pseudomonads examined.

  17. Random amplified polymorphic DNA typing of Pseudomonas aeruginosa isolates recovered from patients with cystic fibrosis.

    PubMed Central

    Mahenthiralingam, E; Campbell, M E; Foster, J; Lam, J S; Speert, D P

    1996-01-01

    Pseudomonas aeruginosa isolates recovered from chronically colonized patients with cystic fibrosis (CF) are phenotypically different from those collected from other patients or from the environment. To assess whether alterations in motility, mucoidy, and serum susceptibility represented an adaptation to chronic infection or replacement by a new strain, sequential P. aeruginosa isolates of known phenotype collected from 20 CF patients were typed by random amplified polymorphic DNA (RAPD) analysis. A total of 35 RAPD strain types were found among 385 isolates from 20 patients, and only two patients had P. aeruginosa strains of the same RAPD fingerprint. Eight strain pairs representative of the first eight RAPD types were also analyzed by SpeI macrorestriction followed by pulsed-field gel electrophoresis (PFGE); the strain types found by both fingerprinting techniques correlated exactly. In 11 of 20 patients, the RAPD types of serial P. aeruginosa isolates remained stable despite alterations in isolate motility, colonial morphology, and lipopolysaccharide phenotype. However, in isolates collected from one CF patient, a single band change in RAPD fingerprint and CeuI PFGE profile correlated with the appearance of an RpoN mutant phenotype, suggesting that the altered phenotype may have been due to a stable genomic rearrangement. Secretion of mucoid exopolysaccharide, loss of expression of RpoN-dependent surface factors, and acquisition of a serum-susceptible phenotype in P. aeruginosa appear to evolve during chronic colonization in CF patients from specific adaptation to infection rather than from acquisition of new bacterial strains. PMID:8727889

  18. The periplasmic protein TolB as a potential drug target in Pseudomonas aeruginosa.

    PubMed

    Lo Sciuto, Alessandra; Fernández-Piñar, Regina; Bertuccini, Lucia; Iosi, Francesca; Superti, Fabiana; Imperi, Francesco

    2014-01-01

    The Gram-negative bacterium Pseudomonas aeruginosa is one of the most dreaded pathogens in the hospital setting, and represents a prototype of multi-drug resistant "superbug" for which effective therapeutic options are very limited. The identification and characterization of new cellular functions that are essential for P. aeruginosa viability and/or virulence could drive the development of anti-Pseudomonas compounds with novel mechanisms of action. In this study we investigated whether TolB, the periplasmic component of the Tol-Pal trans-envelope protein complex of Gram-negative bacteria, represents a potential drug target in P. aeruginosa. By combining conditional mutagenesis with the analysis of specific pathogenicity-related phenotypes, we demonstrated that TolB is essential for P. aeruginosa growth, both in laboratory and clinical strains, and that TolB-depleted P. aeruginosa cells are strongly defective in cell-envelope integrity, resistance to human serum and several antibiotics, as well as in the ability to cause infection and persist in an insect model of P. aeruginosa infection. The essentiality of TolB for P. aeruginosa growth, resistance and pathogenicity highlights the potential of TolB as a novel molecular target for anti-P. aeruginosa drug discovery.

  19. Proteinases of Pseudomonas aeruginosa evoke mucin release by tracheal epithelium.

    PubMed Central

    Klinger, J D; Tandler, B; Liedtke, C M; Boat, T F

    1984-01-01

    We have determined the potential of exoproducts from pathogenic bacteria to stimulate the release of high molecular weight mucins from goblet cells of airway epithelium in a rabbit tracheal explant system. Culture supernatants from proteolytic strains of Pseudomonas aeruginosa and Serratia marcescens, but not supernatants from a number of non-proteolytic strains, released mucins from goblet cells. Highly purified elastase and alkaline proteinase from P. aeruginosa stimulated goblet cell mucin release in a dose-dependent fashion. Lipopolysaccharide, exotoxin A, and alginate of P. aeruginosa did not possess mucin release properties. Proteolytic activity was required for mucin release by P. aeruginosa elastase, but such release in goblet cells was not mediated by cyclic AMP. Morphologic studies suggested rapid release of mucins from goblet cells was response to elastase by a process resembling apocrine secretion. Several nonbacterial proteinases mimicked the effect of Pseudomonas proteases. These studies provide support for the hypothesis that bacterial and other play a role in the pathogenesis of mucus hypersecretion in acute and chronic lung infections. Images PMID:6568227

  20. Dissemination of high-risk clones of extensively drug-resistant Pseudomonas aeruginosa in colombia.

    PubMed

    Correa, Adriana; Del Campo, Rosa; Perenguez, Marcela; Blanco, Victor M; Rodríguez-Baños, Mercedes; Perez, Federico; Maya, Juan J; Rojas, Laura; Cantón, Rafael; Arias, Cesar A; Villegas, Maria V

    2015-04-01

    The ability of Pseudomonas aeruginosa to develop resistance to most antimicrobials represents an important clinical threat worldwide. We report the dissemination in several Colombian hospitals of two predominant lineages of extensively drug-resistant (XDR) carbapenemase-producing P. aeruginosa strains. These lineages belong to the high-risk clones sequence type 111 (ST111) and ST235 and harbor blaVIM-2 on a class 1 integron and blaKPC-2 on a Tn4401 transposon, respectively. Additionally, P. aeruginosa ST1492, a novel single-locus variant of ST111, was identified. Clonal dissemination and the presence of mobile genetic elements likely explain the successful spread of XDR P. aeruginosa strains in Colombia. PMID:25605362

  1. Dissemination of High-Risk Clones of Extensively Drug-Resistant Pseudomonas aeruginosa in Colombia

    PubMed Central

    del Campo, Rosa; Perenguez, Marcela; Blanco, Victor M.; Rodríguez-Baños, Mercedes; Perez, Federico; Maya, Juan J.; Rojas, Laura; Cantón, Rafael; Arias, Cesar A.; Villegas, Maria V.

    2015-01-01

    The ability of Pseudomonas aeruginosa to develop resistance to most antimicrobials represents an important clinical threat worldwide. We report the dissemination in several Colombian hospitals of two predominant lineages of extensively drug-resistant (XDR) carbapenemase-producing P. aeruginosa strains. These lineages belong to the high-risk clones sequence type 111 (ST111) and ST235 and harbor blaVIM-2 on a class 1 integron and blaKPC-2 on a Tn4401 transposon, respectively. Additionally, P. aeruginosa ST1492, a novel single-locus variant of ST111, was identified. Clonal dissemination and the presence of mobile genetic elements likely explain the successful spread of XDR P. aeruginosa strains in Colombia. PMID:25605362

  2. Genetic characterization of Pseudomonas aeruginosa-resistant isolates at the university teaching hospital in Iran

    PubMed Central

    Fazeli, Hossein; Sadighian, Hooman; Esfahani, Bahram Nasr; Pourmand, Mohammad Reza

    2015-01-01

    Background: Pseudomonas aeruginosa is an opportunistic pathogen that is commonly responsible for nosocomial infections. The aim of this study was to perform a genotyping analysis of the Pseudomonas aeruginosa-resistant isolates by the multilocus sequence typing (MLST) method at the university teaching hospital in Iran. Materials and Methods: Antimicrobial susceptibility was analyzed for P. aeruginosa isolates. Ceftazidime-resistant (CAZres) isolates with a positive double-disc synergy test were screened for the presence of extended-spectrum β-lactamase-encoding genes. Phenotypic tests to detect the metallo-β-lactamase strains of P. aeruginosa were performed on imipenem-resistant (IMPres) isolates. Selected strains were characterized by MLST. Results: Of 35 P. aeruginosa isolates, 71%, 45% and 45% of isolates were CAZres, IMPres and multidrug resistant (MDR), respectively. Fifty-seven percent of the isolates carried the blaOXAgroup-1. All the five typed isolates were ST235. Isolates of ST235 that were MDR showed a unique resistance pattern. Conclusion: This study shows a high rate of MDR P. aeruginosa isolates at the university teaching hospital in Iran. It seems MDR isolates of P. aeruginosa ST235 with unique resistance pattern disseminated in this hospital. PMID:26380241

  3. Dual promoters of the major catalase (KatA) govern distinct survival strategies of Pseudomonas aeruginosa

    PubMed Central

    Chung, In-Young; Kim, Bi-o; Jang, Hye-Jeong; Cho, You-Hee

    2016-01-01

    KatA is the major catalase required for hydrogen peroxide (H2O2) resistance and acute virulence in Pseudomonas aeruginosa PA14, whose transcription is driven from the promoter (katAp1) located at 155 nucleotide (nt) upstream of the start codon. Here, we identified another promoter (katAp2), the +1 of which was mapped at the 51 nt upstream of the start codon, which was responsible for the basal transcription during the planktonic culture and down-regulated upon H2O2 treatment under the control by the master regulator of anaerobiosis, Anr. To dissect the roles of the dual promoters in conditions involving KatA, we created the promoter mutants for each -10 box (p1m, p2m, and p1p2m) and found that katAp1 is required for the function of KatA in the logarithmic growth phase during the planktonic culture as well as in acute virulence, whereas katAp2 is required for the function of KatA in the stationary phase as well as in the prolonged biofilm culture. This dismantling of the dual promoters of katA sheds light on the roles of KatA in stress resistance in both proliferative and growth-restrictive conditions and thus provides an insight into the regulatory impacts of the major catalase on the survival strategies of P. aeruginosa. PMID:27491679

  4. Dual promoters of the major catalase (KatA) govern distinct survival strategies of Pseudomonas aeruginosa.

    PubMed

    Chung, In-Young; Kim, Bi-O; Jang, Hye-Jeong; Cho, You-Hee

    2016-08-05

    KatA is the major catalase required for hydrogen peroxide (H2O2) resistance and acute virulence in Pseudomonas aeruginosa PA14, whose transcription is driven from the promoter (katAp1) located at 155 nucleotide (nt) upstream of the start codon. Here, we identified another promoter (katAp2), the +1 of which was mapped at the 51 nt upstream of the start codon, which was responsible for the basal transcription during the planktonic culture and down-regulated upon H2O2 treatment under the control by the master regulator of anaerobiosis, Anr. To dissect the roles of the dual promoters in conditions involving KatA, we created the promoter mutants for each -10 box (p1m, p2m, and p1p2m) and found that katAp1 is required for the function of KatA in the logarithmic growth phase during the planktonic culture as well as in acute virulence, whereas katAp2 is required for the function of KatA in the stationary phase as well as in the prolonged biofilm culture. This dismantling of the dual promoters of katA sheds light on the roles of KatA in stress resistance in both proliferative and growth-restrictive conditions and thus provides an insight into the regulatory impacts of the major catalase on the survival strategies of P. aeruginosa.

  5. Synthesis and biological properties of thiazole-analogues of pyochelin, a siderophore of Pseudomonas aeruginosa.

    PubMed

    Noël, Sabrina; Hoegy, Françoise; Rivault, Freddy; Rognan, Didier; Schalk, Isabelle J; Mislin, Gaëtan L A

    2014-01-01

    Pyochelin is a siderophore common to all strains of Pseudomonas aeruginosa utilized by this Gram-negative bacterium to acquire iron(III). FptA is the outer membrane transporter responsible of ferric-pyochelin uptake in P. aeruginosa. We describe in this Letter the synthesis and the biological properties ((55)Fe uptake, binding to FptA) of several thiazole analogues of pyochelin. Among them we report in this Letter the two first pyochelin analogues able to bind FptA without promoting any iron uptake in P. aeruginosa. PMID:24332092

  6. Iron Depletion Enhances Production of Antimicrobials by Pseudomonas aeruginosa

    PubMed Central

    Nguyen, Angela T.; Jones, Jace W.; Ruge, Max A.; Kane, Maureen A.

    2015-01-01

    ABSTRACT Cystic fibrosis (CF) is a heritable disease characterized by chronic, polymicrobial lung infections. While Staphylococcus aureus is the dominant lung pathogen in young CF patients, Pseudomonas aeruginosa becomes predominant by adulthood. P. aeruginosa produces a variety of antimicrobials that likely contribute to this shift in microbial populations. In particular, secretion of 2-alkyl-4(1H)-quinolones (AQs) contributes to lysis of S. aureus in coculture, providing an iron source to P. aeruginosa both in vitro and in vivo. We previously showed that production of one such AQ, the Pseudomonas quinolone signal (PQS), is enhanced by iron depletion and that this induction is dependent upon the iron-responsive PrrF small RNAs (sRNAs). Here, we demonstrate that antimicrobial activity against S. aureus during coculture is also enhanced by iron depletion, and we provide evidence that multiple AQs contribute to this activity. Strikingly, a P. aeruginosa ΔprrF mutant, which produces very little PQS in monoculture, was capable of mediating iron-regulated growth suppression of S. aureus. We show that the presence of S. aureus suppresses the ΔprrF1,2 mutant's defect in iron-regulated PQS production, indicating that a PrrF-independent iron regulatory pathway mediates AQ production in coculture. We further demonstrate that iron-regulated antimicrobial production is conserved in multiple P. aeruginosa strains, including clinical isolates from CF patients. These results demonstrate that iron plays a central role in modulating interactions of P. aeruginosa with S. aureus. Moreover, our studies suggest that established iron regulatory pathways of these pathogens are significantly altered during polymicrobial infections. IMPORTANCE Chronic polymicrobial infections involving Pseudomonas aeruginosa and Staphylococcus aureus are a significant cause of morbidity and mortality, as the interplay between these two organisms exacerbates infection. This is in part due to enhanced

  7. Growth of genetically engineered Pseudomonas aeruginosa and Pseudomonas putida in soil and rhizosphere.

    PubMed Central

    Yeung, K H; Schell, M A; Hartel, P G

    1989-01-01

    The effect of the addition of a recombinant plasmid containing the pglA gene encoding an alpha-1,4-endopolygalacturonase from Pseudomonas solanacearum on the growth of Pseudomonas aeruginosa and Pseudomonas putida in soil and rhizosphere was determined. Despite a high level of polygalacturonase production by genetically engineered P. putida and P. aeruginosa, the results suggest that polygalacturonase production had little effect on the growth of these strains in soil or rhizosphere. PMID:2515805

  8. Antibiotic Tolerance Induced by Lactoferrin in Clinical Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients

    PubMed Central

    Andrés, María T.; Viejo-Diaz, Mónica; Pérez, Francisco; Fierro, José F.

    2005-01-01

    Lactoferrin-induced cell depolarization and a delayed tobramycin-killing effect on Pseudomonas aeruginosa cells were correlated. This antibiotic tolerance effect (ATE) reflects the ability of a defense protein to modify the activity of an antibiotic as a result of its modulatory effect on bacterial physiology. P. aeruginosa isolates from cystic fibrosis patients showed higher ATE values (≤6-fold) than other clinical strains. PMID:15793153

  9. Photodynamic antimicrobial therapy to inhibit pseudomonas aeruginosa of corneal isolates (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Durkee, Heather A.; Relhan, Nidhi; Arboleda, Alejandro; Halili, Francisco; De Freitas, Carolina; Alawa, Karam; Aguilar, Mariela C.; Amescua, Guillermo; Miller, Darlene; Parel, Jean-Marie

    2016-03-01

    Keratitis associated with Pseudomonas aeruginosa is difficult to manage. Treatment includes antibiotic eye drops, however, some strains of Pseudomonas aeruginosa are resistant. Current research efforts are focused on finding alternative and adjunct therapies to treat multi-drug resistant bacteria. One promising alternate technique is photodynamic therapy (PDT). The purpose of this study was to evaluate the effect of riboflavin- and rose bengal-mediated PDT on Pseudomonas aeruginosa keratitis isolates in vitro. Two isolates (S+U- and S-U+) of Pseudomonas aeruginosa were derived from keratitis patients and exposed to five experimental groups: (1) Control (dark, UV-A irradiation, 525nm irradiation); (2) 0.1% riboflavin (dark, UV-A irradiation); and (3) 0.1% rose bengal, (4) 0.05% rose bengal and (5) 0.01% rose bengal (dark, 525nm irradiation). Three days after treatment, in dark conditions of all concentration of riboflavin and rose bengal showed no inhibition in both S+U- and S-U+ strains of Pseudomonas aeruginosa. In 0.1% and 0.05% rose bengal irradiated groups, for both S+U- and S-U+ strains, there was complete inhibition of bacterial growth in the central 50mm zone corresponding to the diameter of the green light source. These in vitro results suggest that rose bengal photodynamic therapy may be an effective adjunct treatment for Pseudomonas aeruginosa keratitis.

  10. Robustness and Plasticity of Metabolic Pathway Flux among Uropathogenic Isolates of Pseudomonas aeruginosa

    PubMed Central

    Berger, Antje; Dohnt, Katrin; Tielen, Petra; Jahn, Dieter; Becker, Judith; Wittmann, Christoph

    2014-01-01

    Pseudomonas aeruginosa is a human pathogen that frequently causes urinary tract and catheter-associated urinary tract infections. Here, using 13C-metabolic flux analysis, we conducted quantitative analysis of metabolic fluxes in the model strain P. aeruginosa PAO1 and 17 clinical isolates. All P. aeruginosa strains catabolized glucose through the Entner-Doudoroff pathway with fully respiratory metabolism and no overflow. Together with other NADPH supplying reactions, this high-flux pathway provided by far more NADPH than needed for anabolism: a benefit for the pathogen to counteract oxidative stress imposed by the host. P. aeruginosa recruited the pentose phosphate pathway exclusively for biosynthesis. In contrast to glycolytic metabolism, which was conserved among all isolates, the flux through pyruvate metabolism, the tricarboxylic acid cycle, and the glyoxylate shunt was highly variable, likely caused by adaptive processes in individual strains during infection. This aspect of metabolism was niche-specific with respect to the corresponding flux because strains isolated from the urinary tract clustered separately from those originating from catheter-associated infections. Interestingly, most glucose-grown strains exhibited significant flux through the glyoxylate shunt. Projection into the theoretical flux space, which was computed using elementary flux-mode analysis, indicated that P. aeruginosa metabolism is optimized for efficient growth and exhibits significant potential for increasing NADPH supply to drive oxidative stress response. PMID:24709961

  11. Modulation of antibiotic resistance in Pseudomonas aeruginosa by ZnO nanoparticles

    PubMed Central

    Bayroodi, Elnaz; Jalal, Razieh

    2016-01-01

    Background and Objectives: Bacterial resistance to conventional antibiotics has become a widespread public health problem. The aim of this study was to investigate the influence of zinc oxide nanoparticles (ZnO NPs) on the antibacterial activity of several conventional antibiotics against Pseudomonas aeruginosa. Materials and Methods: ZnO NPs were prepared by solvothermal method and dispersed in glycerol with the help of ammonium citrate as a dispersant. The antibacterial effects of the resulting ZnO nanofluid, ceftazidime, tobramycin, and ciprofloxacin were investigated against two P. aeruginosa strains, including one clinical isolate and P. aeruginosa ATCC 9027 using microdilution method. For the evaluation of the combined effect of ZnO nanofluid and antibiotics, the fractional inhibitory concentration indices were calculated and isobolograms were plotted. Results: Clinical strain in comparison to standard strain of P. aeruginosa showed more resistance to ZnO nanofluid and the antibiotics. ZnO nanofluid acted synergistically with ceftazidime and tobramycin against both strains. Combination of ZnO nanofluid and ciprofloxacin displayed synergistic and partial synergistic activity against clinical and standard strains of P. aeruginosa, respectively. Conclusion: The results suggest that bacterial resistance to antimicrobials could be reduced by the synergistic action of ZnO NPs. PMID:27307973

  12. Outbreaks of multidrug-resistant Pseudomonas aeruginosa in community hospitals in Japan.

    PubMed

    Sekiguchi, Jun-Ichiro; Asagi, Tsukasa; Miyoshi-Akiyama, Tohru; Kasai, Atsushi; Mizuguchi, Yukie; Araake, Minako; Fujino, Tomoko; Kikuchi, Hideko; Sasaki, Satoru; Watari, Hajime; Kojima, Tadashi; Miki, Hiroshi; Kanemitsu, Keiji; Kunishima, Hiroyuki; Kikuchi, Yoshihiro; Kaku, Mitsuo; Yoshikura, Hiroshi; Kuratsuji, Tadatoshi; Kirikae, Teruo

    2007-03-01

    We previously reported an outbreak in a neurosurgery ward of catheter-associated urinary tract infection with multidrug-resistant (MDR) Pseudomonas aeruginosa strain IMCJ2.S1, carrying the 6'-N-aminoglycoside acetyltransferase gene [aac(6')-Iae]. For further epidemiologic studies, 214 clinical isolates of MDR P. aeruginosa showing resistance to imipenem (MIC >or= 16 microg/ml), amikacin (MIC >or= 64 microg/ml), and ciprofloxacin (MIC >or= 4 microg/ml) were collected from 13 hospitals in the same prefecture in Japan. We also collected 70 clinical isolates of P. aeruginosa that were sensitive to one or more of these antibiotics and compared their characteristics with those of the MDR P. aeruginosa isolates. Of the 214 MDR P. aeruginosa isolates, 212 (99%) were serotype O11. We developed a loop-mediated isothermal amplification (LAMP) assay and a slide agglutination test for detection of the aac(6')-Iae gene and the AAC(6')-Iae protein, respectively. Of the 212 MDR P. aeruginosa isolates, 212 (100%) and 207 (98%) were positive in the LAMP assay and in the agglutination test, respectively. Mutations of gyrA and parC genes resulting in amino acid substitutions were detected in 213 of the 214 MDR P. aeruginosa isolates (99%). Of the 214 MDR P. aeruginosa isolates, 212 showed pulsed-field gel electrophoresis patterns with >or=70% similarity to that of IMCJ2.S1 and 83 showed a pattern identical to that of IMCJ2.S1, indicating that clonal expansion of MDR P. aeruginosa occurred in community hospitals in this area. The methods developed in this study to detect aac(6')-Iae were rapid and effective in diagnosing infections caused by various MDR P. aeruginosa clones.

  13. Activation of the lectin pathway of complement in experimental human keratitis with Pseudomonas aeruginosa

    PubMed Central

    Osthoff, Michael; Brown, Karl D.; Kong, David C.M.; Daniell, Mark

    2014-01-01

    Purpose Pseudomonas aeruginosa (P. aeruginosa) microbial keratitis (MK) is a sight-threatening disease. Previous animal studies have identified an important contribution of the complement system to the clearance of P. aeruginosa infection of the cornea. Mannose-binding lectin (MBL), a pattern recognition receptor of the lectin pathway of complement, has been implicated in the host defense against P. aeruginosa. However, studies addressing the role of the lectin pathway in P. aeruginosa MK are lacking. Hence, we sought to determine the activity of the lectin pathway in human MK caused by P. aeruginosa. Methods Primary human corneal epithelial cells (HCECs) from cadaveric donors were exposed to two different P. aeruginosa strains. Gene expression of interleukin (IL)-6, IL-8, MBL, and other complement proteins was determined by reverse transcription-polymerase chain reaction (RT–PCR) and MBL synthesis by enzyme-linked immunosorbent assay and intracellular flow cytometry. Results MBL gene expression was not detected in unchallenged HCECs. Exposure of HCECs to P. aeruginosa resulted in rapid induction of the transcriptional expression of MBL, IL-6, and IL-8. In addition, expression of several complement proteins of the classical and lectin pathways, but not the alternative pathway, were upregulated after 5 h of challenge, including MBL-associated serine protease 1. However, MBL protein secretion was not detectable 18 h after challenge with P. aeruginosa. Conclusions MK due to P. aeruginosa triggers activation of MBL and the lectin pathway of complement. However, the physiologic relevance of this finding is unclear, as corresponding MBL oligomer production was not observed. PMID:24426774

  14. Pseudomonas aeruginosa clinical and environmental isolates constitute a single population with high phenotypic diversity

    PubMed Central

    2014-01-01

    Background Pseudomonas aeruginosa is an opportunistic pathogen with a high incidence of hospital infections that represents a threat to immune compromised patients. Genomic studies have shown that, in contrast to other pathogenic bacteria, clinical and environmental isolates do not show particular genomic differences. In addition, genetic variability of all the P. aeruginosa strains whose genomes have been sequenced is extremely low. This low genomic variability might be explained if clinical strains constitute a subpopulation of this bacterial species present in environments that are close to human populations, which preferentially produce virulence associated traits. Results In this work, we sequenced the genomes and performed phenotypic descriptions for four non-human P. aeruginosa isolates collected from a plant, the ocean, a water-spring, and from dolphin stomach. We show that the four strains are phenotypically diverse and that this is not reflected in genomic variability, since their genomes are almost identical. Furthermore, we performed a detailed comparative genomic analysis of the four strains studied in this work with the thirteen previously reported P. aeruginosa genomes by means of describing their core and pan-genomes. Conclusions Contrary to what has been described for other bacteria we have found that the P. aeruginosa core genome is constituted by a high proportion of genes and that its pan-genome is thus relatively small. Considering the high degree of genomic conservation between isolates of P. aeruginosa from diverse environments, including human tissues, some implications for the treatment of infections are discussed. This work also represents a methodological contribution for the genomic study of P. aeruginosa, since we provide a database of the comparison of all the proteins encoded by the seventeen strains analyzed. PMID:24773920

  15. Identification of a genomic island present in the majority of pathogenic isolates of Pseudomonas aeruginosa.

    PubMed

    Liang, X; Pham, X Q; Olson, M V; Lory, S

    2001-02-01

    Pseudomonas aeruginosa, a ubiquitous gram-negative bacterium, is capable of colonizing a wide range of environmental niches and can also cause serious infections in humans. In order to understand the genetic makeup of pathogenic P. aeruginosa strains, a method of differential hybridization of arrayed libraries of cloned DNA fragments was developed. An M13 library of DNA from strain X24509, isolated from a patient with a urinary tract infection, was screened using a DNA probe from P. aeruginosa strain PAO1. The genome of PAO1 has been recently sequenced and can be used as a reference for comparisons of genetic organization in different strains. M13 clones that did not react with a DNA probe from PAO1 carried X24509-specific inserts. When a similar array hybridization analysis with DNA probes from different strains was used, a set of M13 clones which carried sequences present in the majority of human P. aeruginosa isolates from a wide range of clinical sources was identified. The inserts of these clones were used to identify cosmids encompassing a contiguous 48.9-kb region of the X24509 chromosome called PAGI-1 (for "P. aeruginosa genomic island 1"). PAGI-1 is incorporated in the X24509 chromosome at a locus that shows a deletion of a 6,729-bp region present in strain PAO1. Survey of the incidence of PAGI-1 revealed that this island is present in 85% of the strains from clinical sources. Approximately half of the PAGI-1-carrying strains show the same deletion as X24509, while the remaining strains contain both the PAGI-1 sequences and the 6,729-bp PAO1 segment. Sequence analysis of PAGI-1 revealed that it contains 51 predicted open reading frames. Several of these genes encoded products with predictable function based on their sequence similarities to known genes, including insertion sequences, determinants of regulatory proteins, a number of dehydrogenase gene homologs, and two for proteins of implicated in detoxification of reactive oxygen species. It is very

  16. Use of the paraffin wax baiting system for identification of Pseudomonas aeruginosa clinical isolates.

    PubMed

    Massengale, A R; Ollar, R A; Giordano, S J; Felder, M S; Aronoff, S C

    1999-11-01

    Pseudomonas aeruginosa is the primary pathogen among the Pseudomonads and is known for its minimal nutritional requirements, capacity to use paraffin as a sole carbon source, and biofilm formation. Because the ability of Pseudomonads to grow on paraffin is not commonly found among human pathogens and the primary Pseudomonas human pathogen is P. aeruginosa, we studied the adaptation of the paraffin baiting system for the growth and identification of clinical isolates of P. aeruginosa. We also studied the effectiveness of combining a fluorescence assay measuring fluorescein (pyoverdin) production and oxidase test with the paraffin baiting assay for P. aeruginosa speciation. Strains were tested for the capacity to use paraffin as a sole carbon source using the paraffin baiting system with Czapek's minimal salt medium. Of 111 P. aeruginosa clinical isolates tested for using paraffin as a sole carbon source, 45% exhibited growth on paraffin at 24 h and 76.6% exhibited growth on paraffin at 48 h. The ability of the reference strains and clinical isolates were then tested for their ability to associate with the paraffin slide in the presence of an additional carbon source. Of 111 P. aeruginosa clinical isolates tested, 85 strains (76.6%), and 102 (93%) were associated with the paraffin surface at 24 and 48 h. We successfully combined fluorescence and oxidase assays with the paraffin baiting system for identification of P. aeruginosa. The simple and inexpensive paraffin baiting system is a useful method for the identification and study of P. aeruginosa suitable for both the clinical and research laboratory.

  17. Molecular analysis of the Pseudomonas aeruginosa regulatory genes ptxR and ptxS.

    PubMed

    Colmer, J A; Hamood, A N

    2001-09-01

    We have previously described two Pseudomonas aeruginosa genes, ptxR, which enhances toxA and pvc (the pyoverdine chromophore operon) expression, and ptxS, the first gene of the kgu operon for the utilization of 2-ketogluconate by P. aeruginosa. ptxS interferes with the effect of ptxR on toxA expression. In this study, we have utilized DNA hybridization experiments to determine the presence of ptxR and ptxS homologous sequences in several gram-negative bacteria. ptxR homologous sequences were detected in P. aeruginosa strains only, while ptxS homologous sequences were detected in P. aeruginosa, Pseudomonas putida, and Pseudomonas fluorescens. Using Northern blot hybridization experiments and a ptxS-lacZ fusion plasmid, we have shown that P. aeruginosa ptxR and ptxS are expressed in P. putida and P. fluorescens. Additional Northern blot hybridization experiments confirmed that ptxS is transcribed in P. putida and P. fluorescens strains that carried no plasmid. The presence of a PtxS homologue in these strains was examined by DNA-gel shift experiments. Specific gel shift bands were detected when the lysates of P. aeruginosa, P. putida, and P. fluorescens were incubated with the ptxS operator site as probe. kgu-hybridizing sequences were detected in P. putida and P. fluorescens. These results suggest that (i) ptxR is present in P. aeruginosa, while ptxS is present in P. aeruginosa, P. putida, and P. fluorescens; (ii) both ptxR and ptxS are expressed in P. putida and P fluorescens; and (iii) a PtxS homologue may exist in P. putida and P. fluorescens. PMID:11683464

  18. Cloning of Escherichia coli and Pseudomonas aeruginosa phosphomannose isomerase genes and their expression in alginate-negative mutants of Pseudomonas aeruginosa.

    PubMed Central

    Darzins, A; Nixon, L L; Vanags, R I; Chakrabarty, A M

    1985-01-01

    The phosphomannose isomerase (pmi) gene of Escherichia coli was cloned on a broad-host-range cosmid vector and expressed in Pseudomonas aeruginosa at a low level. Plasmid pAD3, which harbors the E. coli pmi gene, contains a 6.2-kilobase-pair HindIII fragment derived from the chromosome of E. coli. Subcloning produced plasmids carrying the 1.5-kilobase-pair HindIII-HpaI subfragment of pAD3 that restored alginic acid production in a nonmucoid, alginate-negative mutant of P. aeruginosa. This fragment also complemented mannose-negative, phosphomannose isomerase-negative mutants of E. coli and showed no homology by DNA-DNA hybridization to P. aeruginosa chromosomal DNA. By using a BamHI constructed cosmid clone bank of the stable alginate producing strain 8830, we have been able to isolate a recombinant plasmid of P. aeruginosa origin that also restores alginate production in the alginate-negative mutant. This new recombinant plasmid, designated pAD4, contained a 9.9-kilobase-pair EcoRI-BamHI fragment with the ability to restore alginate synthesis in the alginate-negative P. aeruginosa. This fragment showed no homology to E. coli chromosomal DNA or to plasmid pAD3. Both mucoid and nonmucoid strains of P. aeruginosa had no detectable levels of phosphomannose isomerase activity as measured by mannose 6-phosphate-to-fructose 6-phosphate conversion. However, P. aeruginosa strains harboring the cloned pmi gene of E. coli contained measurable levels of phosphomannose isomerase activity as evidenced by examining the conversion of mannose 6-phosphate to fructose 6-phosphate. Images PMID:3918000

  19. Distinct synergistic action of piperacillin and methylglyoxal against Pseudomonas aeruginosa.

    PubMed

    Mukherjee, Sayanti; Chaki, Shaswati; Das, Sukhen; Sen, Saswati; Dutta, Samir Kr; Dastidar, Sujata G

    2011-07-01

    The dicarbonyl compound methylglyoxal is a natural constituent of Manuka honey produced from Manuka flowers in New Zealand. It is known to possess both anticancer and antibacterial activity. Such observations prompted to investigate the ability of methylglyoxal as a potent drug against multidrug resistant Pseudomonas aeruginosa. A total of 12 test P. aeruginosa strains isolated from various hospitals were tested for their resistances against many antibiotics, most of which are applied in the treatment of P. aeruginosa infections. Results revealed that the strains were resistant to many drugs at high levels, only piperacillin, carbenicillin, amikacin and ciprofloxacin showed resistances at comparatively lower levels. Following multiple experimentations it was observed that methylglyoxal was also antimicrobic against all the strains at comparable levels. Distinct and statistically significant synergism was observed between methylglyoxal and piperacillin by disc diffusion tests when compared with their individual effects. The fractional inhibitory concentration index of this combination evaluated by checkerboard analysis, was 0.5, which confirmed synergism between the pair. Synergism was also noted when methylglyoxal was combined with carbenicillin and amikacin. PMID:21800506

  20. Wheat Bran Enhances the Cytotoxicity of Immobilized Alcaligenes aquatilis F8 against Microcystis aeruginosa.

    PubMed

    Sun, Pengfei; Lin, Hui; Wang, Guan; Zhang, Ximing; Zhang, Qichun; Zhao, Yuhua

    2015-01-01

    Algicidal bacteria offer a promising option for killing cyanobacteria. Therefore, a new Alcaligenes aquatilis strain F8 was isolated to control Microcystis aeruginosa in this study. The algicidal activity of strain F8 was dependent on the cell density of M. aeruginosa, and the maximal algicidal rate of the free bacterium reached 88.45% within 72 h. With a view to its application to the control of M. aeruginosa in the natural environment, strain F8 was immobilized in sodium alginate beads, but immobilization of the strain decreased its algicidal rate compared to that of the free bacterium. However, addition of wheat bran to the sodium alginate matrix used to immobilize strain F8 not only eliminated the adverse effects of immobilization on the bacteria but also resulted in an 8.83% higher algicidal rate of the immobilized than free bacteria. Exclusion and recovery methods were used to identify key ingredients of wheat bran and gain insight into the mechanism underlying the observed enhancement of algicidal activity. This analysis indicated that certain factors in wheat bran, including vitamins B1, B2, B9, and E were responsible for promoting bacterial growth and thereby improving the algicidal rate of immobilized strain F8. Our findings indicate that wheat bran is able to improve the algicidal efficiency of A. aquatilis strain F8 for killing M. aeruginosa and is a good source of not only carbon and nitrogen but also vitamins for bacteria. PMID:26295573

  1. Wheat Bran Enhances the Cytotoxicity of Immobilized Alcaligenes aquatilis F8 against Microcystis aeruginosa

    PubMed Central

    Sun, Pengfei; Lin, Hui; Wang, Guan; Zhang, Ximing; Zhang, Qichun; Zhao, Yuhua

    2015-01-01

    Algicidal bacteria offer a promising option for killing cyanobacteria. Therefore, a new Alcaligenes aquatilis strain F8 was isolated to control Microcystis aeruginosa in this study. The algicidal activity of strain F8 was dependent on the cell density of M. aeruginosa, and the maximal algicidal rate of the free bacterium reached 88.45% within 72 h. With a view to its application to the control of M. aeruginosa in the natural environment, strain F8 was immobilized in sodium alginate beads, but immobilization of the strain decreased its algicidal rate compared to that of the free bacterium. However, addition of wheat bran to the sodium alginate matrix used to immobilize strain F8 not only eliminated the adverse effects of immobilization on the bacteria but also resulted in an 8.83% higher algicidal rate of the immobilized than free bacteria. Exclusion and recovery methods were used to identify key ingredients of wheat bran and gain insight into the mechanism underlying the observed enhancement of algicidal activity. This analysis indicated that certain factors in wheat bran, including vitamins B1, B2, B9, and E were responsible for promoting bacterial growth and thereby improving the algicidal rate of immobilized strain F8. Our findings indicate that wheat bran is able to improve the algicidal efficiency of A. aquatilis strain F8 for killing M. aeruginosa and is a good source of not only carbon and nitrogen but also vitamins for bacteria. PMID:26295573

  2. Emergence of Carbapenem-Resistant Pseudomonas aeruginosa and Acinetobacter baumannii Clinical Isolates Collected from Some Libyan Hospitals.

    PubMed

    Mathlouthi, Najla; Areig, Zaynab; Al Bayssari, Charbel; Bakour, Sofiane; Ali El Salabi, Allaaeddin; Ben Gwierif, Salha; Zorgani, Abdulaziz A; Ben Slama, Karim; Chouchani, Chedly; Rolain, Jean-Marc

    2015-06-01

    The aim of the present study was to investigate the molecular mechanism of carbapenem resistance in Pseudomonas aeruginosa and Acinetobacter baumannii clinical isolates recovered from Libyan hospitals between April 2013 and April 2014. In total, 49 strains (24 P. aeruginosa and 25 A. baumannii) were isolated, including 21 P. aeruginosa and 22 A. baumannii isolates (87.75%) resistant to imipenem (minimum inhibitory concentrations ≥16 μg/ml). The blaVIM-2 gene was detected in 19 P. aeruginosa isolates. All imipenem-resistant P. aeruginosa isolates showed the presence of OprD mutations. Acquired OXA-carbapenemase-encoding genes were present in all A. baumannii isolates: blaOXA-23 (n=19) and blaOXA-24 (n=3). Finally, a total of 13 and 17 different sequence types were assigned to the 21 P. aeruginosa and the 22 A. baumannii carbapenem-resistant isolates, respectively. This study is the first report describing imipenem-resistant P. aeruginosa and A. baumannii isolated from patients in Libya. We report the first case of co-occurrence of blaVIM-2 with oprD porin loss in identical isolates of P. aeruginosa in Libya and demonstrate that these oprD mutations can be used as a tool to study the clonality in P. aeruginosa isolates. We also report the first identification of multidrug-resistant A. baumannii isolates harboring blaOXA-23-like, blaOXA-24-like, and blaOXA-48-like genes in Libya.

  3. Inhibition of Pseudomonas aeruginosa biofilm formation by 2,2’-bipyridyl, lipoic, kojic and picolinic acids

    PubMed Central

    Çevik, Kübra; Ulusoy, Seyhan

    2015-01-01

    Objective(s): The inhibitory effects of iron chelators, and FeCl3 chelation on biofilm formation and swarming motility were investigated against an opportunistic human pathogen Pseudomonas aeruginosa. Materials and Methods: The inhibitory activity of 2,2’-bipyridyl, lipoic acid, kojic acid and picolinic acid on biofilm formation of P. aeruginosa strain PAO1 and three clinical isolates (P. aeruginosa PAK01, P. aeruginosa PAK02 and P. aeruginosa PAK03) were investigated, based on crystal violet assay, and swarming motility test. Results: The kojic, lipoic and picolinic acid inhibited biofilm formation by 5-33% in all tested P. aeruginosa isolates. When chelated iron was added, biofilm inhibition rates were determined to be 39-57%. Among the tested chelators against P. aeruginosa, lipoic acid (84%) and kojic acid (68%) presented the highest inhibition of swarming motility. This is the first study to report the inhibitory effect of lipoic acid on biofilm formation and swarming motility of P. aeruginosa. Conclusion: It is considered that lipoic and picolinic acids can serve as alternatives for the treatment of the P. aeruginosa infections by inhibiting biofilm formation. PMID:26557964

  4. Modified Pseudomonas agar: new differential medium for the detection/enumeration of Pseudomonas aeruginosa in mineral water.

    PubMed

    Ramalho, Rita; Cunha, Joaquim; Teixeira, Paula; Gibbs, Paul A

    2002-03-01

    Pseudomonas aeruginosa has been implicated as a foodborne and waterborne pathogen and is now considered a primary infectious agent. In the present study, the survival of P. aeruginosa inoculated in mineral water was evaluated by drop counts on Pseudomonas Agar Base (PAB), PAB with CN supplement X107, PAB with cetrimide, PAB with nalidixic acid, and these media with added FeSO(4). Initial counts, before starvation, were the same in all media tested. Following this period, P. aeruginosa became sensitive to PAB with added cetrimide. The addition of FeSO(4) did not improve the recovery of stressed P. aeruginosa but gave colonies a typical dark brown colour being easily differentiated from other species that can grow at 42 degrees C. The modified Pseudomonas agar medium was also tested with several P. aeruginosa strains, other species of Pseudomonas, and other genera. Only P. aeruginosa strains (pyocyanin positive) produced the typical colonies. Our results demonstrate that Pseudomonas agar with ferrous sulphate, used for the differentiation of P. aeruginosa colonies, and nalidixic acid, used as an inhibitor of Gram-positive bacteria, might be a useful medium for the detection of injured P. aeruginosa in mineral water. PMID:11777584

  5. Infections with Pseudomonas aeruginosa in patients with cystic fibrosis.

    PubMed

    Tümmler, B; Bosshammer, J; Breitenstein, S; Brockhausen, I; Gudowius, P; Herrmann, C; Herrmann, S; Heuer, T; Kubesch, P; Mekus, F; Römling, U; Schmidt, K D; Spangenberg, C; Walter, S

    1997-02-01

    The lung infection with Pseudomonas aeruginosa is regarded as one of the major causes of health decline in patients with cystic fibrosis (CF). The CF host response to the persistent bacterial antigen load in the endobronchiolar lumen is characterized by a pronounced humoral response, local production of cytokines, influx of neutrophils into the lung and a protease-protease inhibitor imbalance predominantly sustained by released neutrophil elastase. CF is an autosomal recessive disease, and we could demonstrate for our local patient population that the age-dependent risk to become chronically colonized with P. aeruginosa can be differentiated by the disease-causing CFTR mutation genotype. The age-specific colonisation rates were significantly lower in pancreas sufficient than in pancreas insufficient patients. P. aeruginosa is occasionally detected in throat swabs already in infancy or early childhood in most patients although there is a lapse of several years amenable to preventive measures such as vaccination until onset of persistent colonization. The epidemiology of the infection with P. aeruginosa was investigated by quantitative macrorestriction fragment pattern analysis. The distribution and frequency of clones found in CF patients match that found in other clinical and environmental aquatic habitats, but the over-representation of specific clones at a CF clinic indicates a significant impact of nosocomial transmission for the prevalence of P. aeruginosa-positive patients at a particular center. Most patients remain colonized with the initially acquired P. aeruginosa clone. According to direct sputum analysis the majority of patients is carrying a single clonal variant at a concentration of 10(7)-10(9) CFU. Co-colonization with other species or other clones is infrequent. Independent of the underlying genotype, the CF lung habitat triggers a uniform, genetically fixed conversion of bacterial phenotype. Most CFP, aeruginosa strains become non-motile, mucoid

  6. The occurrence of multidrug-resistant Pseudomonas aeruginosa on hydrocarbon-contaminated sites.

    PubMed

    Kaszab, Edit; Kriszt, Balázs; Atzél, Béla; Szabó, Gabriella; Szabó, István; Harkai, Péter; Szoboszlay, Sándor

    2010-01-01

    The main aim of this paper was the comprehensive estimation of the occurrence rate and the antibiotic-resistance conditions of opportunistic pathogen Pseudomonas aeruginosa in hydrocarbon-contaminated environments. From 2002 to 2007, 26 hydrocarbon-contaminated sites of Hungary were screened for the detection of environmental isolates. Altogether, 156 samples were collected and examined for the determination of appearance, representative cell counts, and antibiotic-resistance features of P. aeruginosa. The detected levels of minimal inhibitory concentrations of ten different drugs against 36 environmental strains were compared to the results of a widely used reference strain ATCC 27853 and four other clinical isolates of P. aeruginosa. Based on our long-term experiment, it can be established that species P. aeruginosa was detectable in case of 61.5% of the investigated hydrocarbon-contaminated sites and 35.2% of the examined samples that shows its widespread occurrence in polluted soil-groundwater systems. In the course of the antibiotic-resistance assay, our results determined that 11 of the examined 36 environmental strains had multiple drug-resistance against several clinically effective antimicrobial classes: cephalosporins, wide spectrum penicillins, carbapenems, fluoroquinolones, and aminoglycosides. The fact that these multiresistant strains were isolated from 8 different hydrocarbon-contaminated sites, mainly from outskirts, confirms that multiple drug-resistance of P. aeruginosa is widespread not only in clinical, but also in natural surroundings as well. PMID:19597862

  7. Antimicrobial susceptibility differences among mucoid and non-mucoid Pseudomonas aeruginosa isolates

    PubMed Central

    Owlia, Parviz; Nosrati, Rahim; Alaghehbandan, Reza; Lari, Abdolaziz Rastegar

    2014-01-01

    Pseudomonas aeruginosa is one of the most important opportunistic bacteria, causing a wide variety of infections particularly in immunocompromised patients. The extracellular glycocalyx is produced in copious amounts by mucoid strains of P. aeruginosa. Mucoid and non-mucoid P. aeruginosa strains show some differences in their antimicrobial susceptibility pattern. The aim of this study was to investigate the frequency of mucoid and non-mucoid types and their antimicrobial susceptibility patterns isolated from Milad and Mostafa Khomeini Hospital in Tehran, Iran. One hundred P. aeruginosa isolates were collected which all were confirmed by conventional biochemical tests and PCR assay using specific primers for oprI and oprL lipoproteins. Mucoid and non-mucoid types of isolates were determined by culturing isolates on BHI agar containing Congo red and Muir mordant staining method. The susceptibility pattern of isolates against 23 different antibiotics was assessed using MIC sensititre susceptibility plates. Fifty of 100 of isolates were mucoid type, of which 14 isolates were from Mostafa Khomeini Hospital. Frequency of mucoid type of P. aeruginosa in Mostafa Khomeini hospital (70%) was higher than that seen in Milad hospital (45%). The statistical analysis of MICs results showed significant differences in antimicrobial resistance among mucoid and non-mucoid types (non mucoid strains showed more resistance against tested antibiotics). This may be due to the tendency of some antibiotics to attach to extracellular glycocalyx of mucoid strains. PMID:25152858

  8. Antimicrobial susceptibility differences among mucoid and non-mucoid Pseudomonas aeruginosa isolates.

    PubMed

    Owlia, Parviz; Nosrati, Rahim; Alaghehbandan, Reza; Lari, Abdolaziz Rastegar

    2014-01-01

    Pseudomonas aeruginosa is one of the most important opportunistic bacteria, causing a wide variety of infections particularly in immunocompromised patients. The extracellular glycocalyx is produced in copious amounts by mucoid strains of P. aeruginosa. Mucoid and non-mucoid P. aeruginosa strains show some differences in their antimicrobial susceptibility pattern. The aim of this study was to investigate the frequency of mucoid and non-mucoid types and their antimicrobial susceptibility patterns isolated from Milad and Mostafa Khomeini Hospital in Tehran, Iran. One hundred P. aeruginosa isolates were collected which all were confirmed by conventional biochemical tests and PCR assay using specific primers for oprI and oprL lipoproteins. Mucoid and non-mucoid types of isolates were determined by culturing isolates on BHI agar containing Congo red and Muir mordant staining method. The susceptibility pattern of isolates against 23 different antibiotics was assessed using MIC sensititre susceptibility plates. Fifty of 100 of isolates were mucoid type, of which 14 isolates were from Mostafa Khomeini Hospital. Frequency of mucoid type of P. aeruginosa in Mostafa Khomeini hospital (70%) was higher than that seen in Milad hospital (45%). The statistical analysis of MICs results showed significant differences in antimicrobial resistance among mucoid and non-mucoid types (non mucoid strains showed more resistance against tested antibiotics). This may be due to the tendency of some antibiotics to attach to extracellular glycocalyx of mucoid strains. PMID:25152858

  9. Determination of genome size of Pseudomonas aeruginosa by PFGE: analysis of restriction fragments.

    PubMed Central

    Hector, J S; Johnson, A R

    1990-01-01

    Genomic DNA size was measured in three strains of Pseudomonas aeruginosa, ATCC 29260 (exotoxin A), ATCC 33467 (type I smooth) and ATCC 33468 (type 2 mucoid) by transverse alternating field electrophoresis of restriction fragments. Because of the high (67%) G + C content of Pseudomonas aeruginosa, restriction enzymes that recognize sequences with at least 4 AT base pairs were expected to be rare cutters. Eight enzymes produced fragments greater than 200 kb in size: Dral (TTT/AAA), Asnl (ATT/AAT), Hpal (GTT/AAC), AfIII (C/TTAAG), Xbal (T/CTAGA), Spel (A/CTAGT), Sspl (AAT/ATT) and Ndel (CA/TATG). All eight enzymes recognized one of three rare tetranucleotide sequences, TTAA, CTAG or ATAT. Pseudomonas aeruginosa strain 29260 has a genomic DNA size of 5573 kb. Strains 33467 and 33468 have identical restriction patterns and a possible deletion with a genomic size of 5407 kb. Images PMID:1972559

  10. Efficacy of the Novel Antibiotic POL7001 in Preclinical Models of Pseudomonas aeruginosa Pneumonia.

    PubMed

    Cigana, Cristina; Bernardini, Francesca; Facchini, Marcella; Alcalá-Franco, Beatriz; Riva, Camilla; De Fino, Ida; Rossi, Alice; Ranucci, Serena; Misson, Pauline; Chevalier, Eric; Brodmann, Maj; Schmitt, Michel; Wach, Achim; Dale, Glenn E; Obrecht, Daniel; Bragonzi, Alessandra

    2016-08-01

    The clinical development of antibiotics with a new mode of action combined with efficient pulmonary drug delivery is a priority against untreatable Pseudomonas aeruginosa lung infections. POL7001 is a macrocycle antibiotic belonging to the novel class of protein epitope mimetic (PEM) molecules with selective and potent activity against P. aeruginosa We investigated ventilator-associated pneumonia (VAP) and cystic fibrosis (CF) as indications of the clinical potential of POL7001 to treat P. aeruginosa pulmonary infections. MICs of POL7001 and comparators were measured for reference and clinical P. aeruginosa strains. The therapeutic efficacy of POL7001 given by pulmonary administration was evaluated in murine models of P. aeruginosa acute and chronic pneumonia. POL7001 showed potent in vitro activity against a large panel of P. aeruginosa isolates from CF patients, including multidrug-resistant (MDR) isolates with adaptive phenotypes such as mucoid or hypermutable phenotypes. The efficacy of POL7001 was demonstrated in both wild-type and CF mice. In addition to a reduced bacterial burden in the lung, POL7001-treated mice showed progressive body weight recovery and reduced levels of inflammatory markers, indicating an improvement in general condition. Pharmacokinetic studies indicated that POL7001 reached significant concentrations in the lung after pulmonary administration, with low systemic exposure. These results support the further evaluation of POL7001 as a novel therapeutic agent for the treatment of P. aeruginosa pulmonary infections.

  11. Pseudomonas aeruginosa Syntrophy in Chronically Colonized Airways of Cystic Fibrosis Patients

    PubMed Central

    Zerr, Danielle M.; McNutt, Michael A.; Berry, Jessica E.; Burns, Jane L.; Kapur, Raj P.

    2012-01-01

    Pseudomonas aeruginosa isolates from cystic fibrosis (CF) patients undergo remarkable phenotypic divergence over time, including loss of pigmentation, hemolysis, motility, and quorum sensing and emergence of antibiotic hypersusceptibility and/or auxotrophism. With prolonged antibiotic treatment and steady decline in lung function in chronically infected patients, the divergent characteristics associated with CF isolates have traditionally been regarded as “adapted/unusual virulence,” despite the degenerative nature of these adaptations. We examined the phenotypic and genotypic diversity in clonally related isogenic strains of P. aeruginosa from individual CF patients. Our observations support a novel model of intra-airway pseudomonal syntrophy and accompanying loss of virulence. A 2007 calendar year collection of CF P. aeruginosa isolates (n = 525) from 103 CF patients yielded in vitro MICs of sulfamethoxazole-trimethoprim (SMX-TMP, which typically has no activity against P. aeruginosa) ranging from 0.02 to >32 μg/ml (median, 1.5). Coisolation of clonally related SMX-TMP-susceptible and -resistant P. aeruginosa strains from the same host was common (57%), as were isogenic coisolates with mutations in efflux gene determinants (mexR, mexAB-oprM, and mexZ) and genes governing DNA mismatch repair (mutL and mutS). In this cohort, complete in vitro growth complementation between auxotrophic and prototrophic P. aeruginosa isogenic strains was evident and concurrent with the coding sequence mosaicism in resistance determinants. These observations suggest that syntrophic clonal strains evolve in situ in an organized colonial structure. We propose that P. aeruginosa adopts a multicellular lifestyle in CF patients due to host selection of an energetically favorable, less-virulent microbe restricted within and symbiotic with the airway over the host's lifetime. PMID:22964251

  12. Antimicrobial susceptibilities and bacteriological characteristics of bovine Pseudomonas aeruginosa and Serratia marcescens isolates from mastitis.

    PubMed

    Ohnishi, Mamoru; Sawada, Takuo; Hirose, Kazuhiko; Sato, Reiichiro; Hayashimoto, Mizuki; Hata, Eiji; Yonezawa, Chizuko; Kato, Hajime

    2011-12-29

    The presence of metallo-β-lactamase (MBL)-producing and multidrug-resistant Pseudomonas aeruginosa (MDRP) strains among bovine isolates of Gram-negative bacilli, and O-serotypes of bovine Serratia marcescens and P. aeruginosa isolates have been reported rarely. The aims of this study were to (1) elucidate antimicrobial susceptibilities and O-serotypes of P. aeruginosa and S. marcescens isolates from bovine mastitis and the presence of MBL-producers and MDRP strains among them and (2) evaluate their relationships to human isolates. We investigated the MICs of 24 antimicrobials and O-serotypes for 116 P. aeruginosa and 55 S. marcescens isolates in Japan, primarily in 2006. A total of 171 isolates exhibited high antimicrobial susceptibilities with the exception of a partial drug. P. aeruginosa isolates exhibited high susceptibilities of ≥ 95.7% to ciprofloxacin, imipenem, meropenem, piperacillin, ceftazidime, cefepime, cefoperazone/sulbactam, amikacin, tobramycin, and gentamicin; however, they exhibited a susceptibility of only 69.8% to aztreonam. They exhibited substantial resistances to ceftriaxone, enrofloxacin, cefotaxime, and moxalactam. S. marcescens isolates exhibited high susceptibilities of ≥ 90.9% to kanamycin, ceftiofur, sulfamethoxazole-trimethoprim, and the 15 aforementioned drugs, but exhibited resistance to minocycline. Neither MBL-producers nor MDRP strains were detected among the 171 strains. The dominant serotypes of P. aeruginosa isolates were OG, OA, OB, OI, OF, OE, and OK; those of S. marcescens isolates were O6 and O5. Every S. marcescens isolate was pigmented. These findings suggest that bovine P. aeruginosa and S. marcescens isolates differ from human isolates from both antibiogram and phenotypic perspectives, and could help to evaluate differences in bacteriological characteristics between bovine and human isolates.

  13. Evolved resistance to colistin and its loss due to genetic reversion in Pseudomonas aeruginosa

    PubMed Central

    Lee, Ji-Young; Park, Young Kyoung; Chung, Eun Seon; Na, In Young; Ko, Kwan Soo

    2016-01-01

    The increased reliance on colistin for treating multidrug-resistant Gram-negative bacterial infections has resulted in the emergence of colistin-resistant Pseudomonas aeruginosa. We attempted to identify genetic contributors to colistin resistance in vitro evolved isogenic colistin-resistant and -susceptible strains of two P. aeruginosa lineages (P5 and P155). Their evolutionary paths to acquisition and loss of colistin resistance were also tracked. Comparative genomic analysis revealed 13 and five colistin resistance determinants in the P5 and P155 lineages, respectively. Lipid A in colistin-resistant mutants was modified through the addition of 4-amino-L-arabinose; this modification was absent in colistin-susceptible revertant strains. Many amino acid substitutions that emerged during the acquisition of colistin resistance were reversed in colistin-susceptible revertants. We demonstrated that evolved colistin resistance in P. aeruginosa was mediated by a complicated regulatory network that likely emerges through diverse genetic alterations. Colistin-resistant P. aeruginosa became susceptible to the colistin upon its withdrawal because of genetic reversion. The mechanisms through which P. aeruginosa acquires and loses colistin resistance have implications on the treatment options that can be applied against P. aeruginosa infections, with respect to improving bactericidal efficacy and preventing further resistance to antibiotics. PMID:27150578

  14. Pseudomonas cepacia adherence to respiratory epithelial cells is enhanced by Pseudomonas aeruginosa

    SciTech Connect

    Saiman, L.; Cacalano, G.; Prince, A. )

    1990-08-01

    Pseudomonas aeruginosa and Pseudomonas cepacia are both opportunistic pathogens of patients with cystic fibrosis. The binding characteristics of these two species were compared to determine if they use similar mechanisms to adhere to respiratory epithelial cells. P. cepacia 249 was shown to be piliated, but there was no detectable homology between P. aeruginosa pilin gene probes and P. cepacia genomic DNA. P. cepacia and P. aeruginosa did not appear to compete for epithelial receptors. In the presence of purified P. aeruginosa pili, the adherence of 35S-labeled strain 249 to respiratory epithelial monolayers was unaffected, while that of P. aeruginosa PAO1 was decreased by 55%. The binding of P. cepacia 249 and 715j was increased by 2.4-fold and 1.5-fold, respectively, in the presence of an equal inoculum of PAO1. Interbacterial agglutination contributed to the increased adherence of P. cepacia, as the binding of 249 was increased twofold in the presence of irradiated PAO1. PAO1 exoproducts had a marked effect in enhancing the ability of the P. cepacia strains to adhere to the epithelial monolayers. A PAO1 supernatant increased the binding of 249 by eightfold and that of 715j by fourfold. Thus, there appears to be a synergistic relationship between P. aeruginosa and P. cepacia in which PAO1 exoproducts modify the epithelial cell surface, exposing receptors and facilitating increased P. cepacia attachment.

  15. Pseudomonas aeruginosa forms biofilms in acute infection independent of cell-to-cell signaling.

    PubMed

    Schaber, J Andy; Triffo, W Jeffrey; Suh, Sang Jin; Oliver, Jeffrey W; Hastert, Mary Catherine; Griswold, John A; Auer, Manfred; Hamood, Abdul N; Rumbaugh, Kendra P

    2007-08-01

    Biofilms are bacterial communities residing within a polysaccharide matrix that are associated with persistence and antibiotic resistance in chronic infections. We show that the opportunistic pathogen Pseudomonas aeruginosa forms biofilms within 8 h of infection in thermally injured mice, demonstrating that biofilms contribute to bacterial colonization in acute infections as well. Using light, electron, and confocal scanning laser microscopy, P. aeruginosa biofilms were visualized within burned tissue surrounding blood vessels and adipose cells. Although quorum sensing (QS), a bacterial signaling mechanism, coordinates differentiation of biofilms in vitro, wild-type and QS-deficient P. aeruginosa strains formed similar biofilms in vivo. Our findings demonstrate that P. aeruginosa forms biofilms on specific host tissues independently of QS.

  16. FvbA is required for vibriobactin utilization in Pseudomonas aeruginosa.

    PubMed

    Elias, Sivan; Degtyar, Elena; Banin, Ehud

    2011-07-01

    Bacteria acquire iron through a highly specific mechanism involving iron-chelating molecules termed siderophores. The Gram-negative bacterium Pseudomonas aeruginosa can utilize siderophores produced by other micro-organisms to facilitate iron uptake. Here we show that a P. aeruginosa strain deficient in siderophore production can use the Vibrio cholerae siderophore vibriobactin as an iron source. In addition, we identified a P. aeruginosa gene, PA4156 (fvbA), encoding a protein highly homologous to the V. cholerae vibriobactin receptor (ViuA). A P. aeruginosa mutant in the two endogenous siderophores (pyoverdine and pyochelin) and in fvbA was unable to utilize vibriobactin as an iron source. Additionally, preliminary analyses revealed the involvement of vibriobactin, Fur protein and an IclR-type regulator, FvbR (PA4157), in fvbA regulation. PMID:21546589

  17. Lichen secondary metabolite evernic acid as potential quorum sensing inhibitor against Pseudomonas aeruginosa.

    PubMed

    Gökalsın, Barış; Sesal, Nüzhet Cenk

    2016-09-01

    Cystic Fibrosis is a genetic disease and it affects the respiratory and digestive systems. Pseudomonas aeruginosa infections in Cystic Fibrosis are presented as the main cause for high mortality and morbidity rates. Pseudomonas aeruginosa populations can regulate their virulence gene expressions via the bacterial communication system: quorum sensing. Inhibition of quorum sensing by employing quorum sensing inhibitors can leave the bacteria vulnerable. Therefore, determining natural sources to obtain potential quorum sensing inhibitors is essential. Lichens have ethnobotanical value for their medicinal properties and it is possible that their secondary metabolites have quorum sensing inhibitor properties. This study aims to investigate an alternative treatment approach by utilizing lichen secondary metabolite evernic acid to reduce the expressions of Pseudomonas aeruginosa virulence factors by inhibiting quorum sensing. For this purpose, fluorescent monitor strains were utilized for quorum sensing inhibitor screens and quantitative reverse-transcriptase PCR analyses were conducted for comparison. Results indicate that evernic acid is capable of inhibiting Pseudomonas aeruginosa quorum sensing systems.

  18. Microevolution of Pseudomonas aeruginosa to a chronic pathogen of the cystic fibrosis lung.

    PubMed

    Hogardt, Michael; Heesemann, Jürgen

    2013-01-01

    Pseudomonas aeruginosa is the leading pathogen of chronic cystic fibrosis (CF) lung infection. Life-long persistance of P. aeruginosa in the CF lung requires a sophisticated habitat-specific adaptation of this pathogen to the heterogeneous and fluctuating lung environment. Due to the high selective pressure of inflamed CF lungs, P. aeruginosa increasingly experiences complex physiological and morphological changes. Pulmonary adaptation of P. aeruginosa is mediated by genetic variations that are fixed by the repeating interplay of mutation and selection. In this context, the emergence of hypermutable phenotypes (mutator strains) obviously improves the microevolution of P. aeruginosa to the diverse microenvironments of the CF lung. Mutator phenotypes are amplified during CF lung disease and accelerate the intraclonal diversification of P. aeruginosa. The resulting generation of numerous subclonal variants is advantegous to prepare P. aeruginosa population for unpredictable stresses (insurance hypothesis) and thus supports long-term survival of this pathogen. Oxygen restriction within CF lung environment further promotes persistence of P. aeruginosa due to increased antibiotic tolerance, alginate production and biofilm formation. Finally, P. aeruginosa shifts from an acute virulent pathogen of early infection to a host-adapted chronic virulent pathogen of end-stage infection of the CF lung. Common changes that are observed among chronic P. aeruginosa CF isolates include alterations in surface antigens, loss of virulence-associated traits, increasing antibiotic resistances, the overproduction of the exopolysaccharide alginate and the modulation of intermediary and micro-aerobic metabolic pathways (Hogardt and Heesemann, Int J Med Microbiol 300(8):557-562, 2010). Loss-of-function mutations in mucA and lasR genes determine the transition to mucoidity and loss of quorum sensing, which are hallmarks of the chronic virulence potential of P. aeruginosa. Metabolic factors

  19. Pseudomonas aeruginosa outcompetes other bacteria in the manifestation and maintenance of a biofilm in polyvinylchloride tubing as used in dental devices.

    PubMed

    Ammann, Christoph Gert; Nagl, Markus; Nogler, Michael; Coraça-Huber, Débora Cristina

    2016-05-01

    In a PVC tube as a model system for dental devices, Pseudomonas aeruginosa outcompetes Staphylococcus aureus and Klebsiella pneumoniae for the biofilm formation. P. aeruginosa has advantage over the other strains due to higher tolerance for low-nutrient situations or direct killing by the production of soluble factors like pyocyanin.

  20. Pseudomonas aeruginosa outcompetes other bacteria in the manifestation and maintenance of a biofilm in polyvinylchloride tubing as used in dental devices.

    PubMed

    Ammann, Christoph Gert; Nagl, Markus; Nogler, Michael; Coraça-Huber, Débora Cristina

    2016-05-01

    In a PVC tube as a model system for dental devices, Pseudomonas aeruginosa outcompetes Staphylococcus aureus and Klebsiella pneumoniae for the biofilm formation. P. aeruginosa has advantage over the other strains due to higher tolerance for low-nutrient situations or direct killing by the production of soluble factors like pyocyanin. PMID:26980595

  1. Genetic and Phenotypic Characterization of a Pseudomonas aeruginosa Population with High Frequency of Genomic Islands

    PubMed Central

    Morales-Espinosa, Rosario; Soberón-Chávez, Gloria; Delgado-Sapién, Gabriela; Sandner-Miranda, Luisa; Méndez, José L.; González-Valencia, Gerardo; Cravioto, Alejandro

    2012-01-01

    Various genomic islands, PAPI-1, PAPI-2, PAGI-1, PAGI-2, PAGI-3, and PAGI-4, and the element pKLC102 have been characterized in different P. aeruginosa strains from diverse habitats and geographical locations. Chromosomal DNA macroarray of 100 P. aeruginosa strains isolated from 85 unrelated patients hospitalized in an intensive care unit was created to assess the occurrence of these genomic islands (GEIs). The macroarray was then hybridized with labeled probes derived from each genomic island. In addition, PFGE patterns with SpeI, frequency of virulence genes, and antimicrobial resistance patterns of the strains were studied. Our results showed that almost all P. aeruginosa strains presented up to eight virulence genes. By SpeI macrorestriction fragment analysis we were able to identify 49 restriction patterns; 35 patterns correspond to single strains and the remaining 14 to strains subgroup (a–n). Most of the strains showed variation in number or composition of GEIs and a specific antimicrobial pattern indicating that each strain was an unrelated isolate. In terms of the number of genomic islands per strain, 7 GEIs were found in 34% of the strains, 6 in 18%, 5 in 12%, 4 in 14%, 3 in 10%, 2 in 7%, and 1 in 4%; only one isolate did not present any GEI. The genomic islands PAPI-1 and PAPI-2 and the element pKLC102 were the most frequently detected. The analysis of the location of each GEI in the chromosome of two strains show that the islands PAGI-3, PAPI-1, PAPI-2 and pKLC102 are present in the insertion site previously reported, but that PAGI-2 and PAGI-4 are inserted in another chromosome place in a site not characterized yet. In conclusion our data show that P. aeruginosa strains exhibited an epidemic population structure with horizontal transfer of DNA resulting in a high frequency of GEIs. PMID:22662157

  2. The Pseudomonas aeruginosa Lipid A Deacylase: Selection for Expression and Loss within the Cystic Fibrosis Airway

    PubMed Central

    Ernst, Robert K.; Adams, Kristin N.; Moskowitz, Samuel M.; Kraig, Gretchen M.; Kawasaki, Kiyoshi; Stead, Christopher M.; Trent, M. Stephen; Miller, Samuel I.

    2006-01-01

    Lipopolysaccharide (LPS) is the major surface component of gram-negative bacteria, and a component of LPS, lipid A, is recognized by the innate immune system through the Toll-like receptor 4/MD-2 complex. Pseudomonas aeruginosa, an environmental gram-negative bacterium that opportunistically infects the respiratory tracts of patients with cystic fibrosis (CF), can synthesize various structures of lipid A. Lipid A from P. aeruginosa strains isolated from infants with CF has a specific structure that includes the removal of the 3 position 3-OH C10 fatty acid. Here we demonstrate increased expression of the P. aeruginosa lipid A 3-O-deacylase (PagL) in isolates from CF infants compared to that in environmental isolates. PagL activity was increased in environmental isolates by growth in medium limited for magnesium and decreased by growth at low temperature in laboratory-adapted strains of P. aeruginosa. P. aeruginosa PagL was shown to be an outer membrane protein by isopycnic density gradient centrifugation. Heterologous expression of P. aeruginosa pagL in Salmonella enterica serovar Typhimurium and Escherichia coli resulted in removal of the 3-OH C14 fatty acid from lipid A, indicating that P. aeruginosa PagL recognizes either 3-OH C10 or 3-OH C14. Finally, deacylated lipid A species were not observed in some clinical P. aeruginosa isolates from patients with severe pulmonary disease, suggesting that loss of PagL function can occur during long-term adaptation to the CF airway. PMID:16352835

  3. A long-chain flavodoxin protects Pseudomonas aeruginosa from oxidative stress and host bacterial clearance.

    PubMed

    Moyano, Alejandro J; Tobares, Romina A; Rizzi, Yanina S; Krapp, Adriana R; Mondotte, Juan A; Bocco, José L; Saleh, Maria-Carla; Carrillo, Néstor; Smania, Andrea M

    2014-02-01

    Long-chain flavodoxins, ubiquitous electron shuttles containing flavin mononucleotide (FMN) as prosthetic group, play an important protective role against reactive oxygen species (ROS) in various microorganisms. Pseudomonas aeruginosa is an opportunistic pathogen which frequently has to face ROS toxicity in the environment as well as within the host. We identified a single ORF, hereafter referred to as fldP (for fl avo d oxin from P . aeruginosa), displaying the highest similarity in length, sequence identity and predicted secondary structure with typical long-chain flavodoxins. The gene was cloned and expressed in Escherichia coli. The recombinant product (FldP) could bind FMN and exhibited flavodoxin activity in vitro. Expression of fldP in P. aeruginosa was induced by oxidative stress conditions through an OxyR-independent mechanism, and an fldP-null mutant accumulated higher intracellular ROS levels and exhibited decreased tolerance to H2O2 toxicity compared to wild-type siblings. The mutant phenotype could be complemented by expression of a cyanobacterial flavodoxin. Overexpression of FldP in a mutT-deficient P. aeruginosa strain decreased H2O2-induced cell death and the hypermutability caused by DNA oxidative damage. FldP contributed to the survival of P. aeruginosa within cultured mammalian macrophages and in infected Drosophila melanogaster, which led in turn to accelerated death of the flies. Interestingly, the fldP gene is present in some but not all P. aeruginosa strains, constituting a component of the P. aeruginosa accessory genome. It is located in a genomic island as part of a self-regulated polycistronic operon containing a suite of stress-associated genes. The collected results indicate that the fldP gene encodes a long-chain flavodoxin, which protects the cell from oxidative stress, thereby expanding the capabilities of P. aeruginosa to thrive in hostile environments. PMID:24550745

  4. Resistance of Pseudomonas aeruginosa Isolates to Hydrogel Contact Lens Disinfection Correlates with Cytotoxic Activity

    PubMed Central

    Lakkis, Carol; Fleiszig, Suzanne M. J.

    2001-01-01

    One of the most common pathogens in infection of hydrogel contact lens wearers is Pseudomonas aeruginosa, which can gain access to the eye via contamination of the lens, lens case, and lens care solutions. Only one strain per species is used in current regulatory testing for the marketing of chemical contact lens disinfectants. The aim of this study was to determine whether P. aeruginosa strains vary in their susceptibility to hydrogel contact lens disinfectants. A method for rapidly screening bacterial susceptibility to contact lens disinfectants was developed, based on measurement of the MIC. The susceptibility of 35 P. aeruginosa isolates to two chemical disinfectants was found to vary among strains. MICs ranged from 6.25 to 100% for both disinfectants at 37°C, and a number of strains were not inhibited by a 100% disinfectant concentration in the lens case environment at room temperature (22°C). Resistance to disinfection appeared to be an inherent rather than acquired trait, since some resistant strains had been isolated prior to the introduction of the disinfectants and some susceptible P. aeruginosa strains could not be made more resistant by repeated disinfectant exposure. A number of P. aeruginosa strains which were comparatively more resistant to short-term disinfectant exposure also demonstrated the ability to grow to levels above the initial inoculum in one chemical disinfectant after long-term (24 to 48 h) disinfectant exposure. Resistance was correlated with acute cytotoxic activity toward corneal epithelial cells and with exsA, which encodes a protein that regulates cytotoxicity via a complex type III secretion system. These results suggest that chemical disinfection solutions may select for contamination with cytotoxic strains. Further investigation of the mechanisms and factors responsible for resistance may also lead to strategies for reducing adverse responses to contact lens wear. PMID:11283074

  5. Zingerone silences quorum sensing and attenuates virulence of Pseudomonas aeruginosa.

    PubMed

    Kumar, Lokender; Chhibber, Sanjay; Kumar, Rajnish; Kumar, Manoj; Harjai, Kusum

    2015-04-01

    Quorum sensing in Pseudomonas aeruginosa plays an imperative role in virulence factor, biofilm formation and antimicrobial resistance. Blocking quorum sensing pathways are viewed as viable anti-virulent therapy in association with traditional antimicrobial therapy. Anti-quorum sensing dietary phytochemicals with may prove to be a safe and viable choice as anti-virulent drug candidates. Previously, our lab proved zingerone as potent anti-biofilm agent hence; further its anti-virulent and anti-quorum activities were evaluated. Zingerone, besides decreasing swimming, swarming and twitching phenotypes of P. aeruginosa PAO1, reduced biofilm forming capacity and production of virulence factors including rhamnolipid, elastase, protease, pyocyanin, cell free and cell bound hemolysin (p<0.001) indicating anti-virulent property attributing towards attenuation of virulence of P. aeruginosa. Further zingerone not only had marked effect on the production of quorum sensing signal molecules by clinical isolates of P. aeruginosa but also showed significant interference with the activation of QS reporter strains. To study the mechanism of blocking quorum sensing cascade, in silico analysis was carried out. Anti-QS activity was attributed to interference with the ligand receptor interaction of zingerone with QS receptors (TraR, LasR, RhlR and PqsR). Zingerone showed a good comparative docking score to respective autoinducer molecules which was even higher than that of vanillin, a proven anti-quorum sensing phytochemical. The results of the present study revealed the anti-quorum sensing activity of zingerone targeting ligand-receptor interaction, hence proposing zingerone as a suitable anti-virulent drug candidate against P. aeruginosa infections. PMID:25704369

  6. Zingerone silences quorum sensing and attenuates virulence of Pseudomonas aeruginosa.

    PubMed

    Kumar, Lokender; Chhibber, Sanjay; Kumar, Rajnish; Kumar, Manoj; Harjai, Kusum

    2015-04-01

    Quorum sensing in Pseudomonas aeruginosa plays an imperative role in virulence factor, biofilm formation and antimicrobial resistance. Blocking quorum sensing pathways are viewed as viable anti-virulent therapy in association with traditional antimicrobial therapy. Anti-quorum sensing dietary phytochemicals with may prove to be a safe and viable choice as anti-virulent drug candidates. Previously, our lab proved zingerone as potent anti-biofilm agent hence; further its anti-virulent and anti-quorum activities were evaluated. Zingerone, besides decreasing swimming, swarming and twitching phenotypes of P. aeruginosa PAO1, reduced biofilm forming capacity and production of virulence factors including rhamnolipid, elastase, protease, pyocyanin, cell free and cell bound hemolysin (p<0.001) indicating anti-virulent property attributing towards attenuation of virulence of P. aeruginosa. Further zingerone not only had marked effect on the production of quorum sensing signal molecules by clinical isolates of P. aeruginosa but also showed significant interference with the activation of QS reporter strains. To study the mechanism of blocking quorum sensing cascade, in silico analysis was carried out. Anti-QS activity was attributed to interference with the ligand receptor interaction of zingerone with QS receptors (TraR, LasR, RhlR and PqsR). Zingerone showed a good comparative docking score to respective autoinducer molecules which was even higher than that of vanillin, a proven anti-quorum sensing phytochemical. The results of the present study revealed the anti-quorum sensing activity of zingerone targeting ligand-receptor interaction, hence proposing zingerone as a suitable anti-virulent drug candidate against P. aeruginosa infections.

  7. Synthesis and characterization of Pseudomonas aeruginosa alginate-tetanus toxoid conjugate.

    PubMed

    Kashef, Nasim; Behzadian-Nejad, Qorban; Najar-Peerayeh, Shahin; Mousavi-Hosseini, Kamran; Moazzeni, Mohammad; Djavid, Gholamreza Esmaeeli

    2006-10-01

    Chronic infection with Pseudomonas aeruginosa is the main proven perpetrator of lung function decline and ultimate mortality in cystic fibrosis (CF) patients. Mucoid strains of this bacterium elaborate mucoid exopolysaccharide, also referred to as alginate. Alginate-based immunization of naïve animals elicits opsonic antibodies and leads to clearance of mucoid P. aeruginosa from the lungs. Alginate was isolated from mucoid P. aeruginosa strain 8821M by repeated ethanol precipitation, dialysis, proteinase and nuclease digestion, and chromatography. To improve immunogenicity, the purified antigen was coupled to tetanus toxoid (TT) with adipic acid dihydrazide (ADH) as a spacer and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDAC) as a linker. The reaction mixture was passed through a Sepharose CL-4B column. The resulting conjugate was composed of TT and large-size alginate polymer at a ratio of about 3 : 1; it was non-toxic and non-pyrogenic, and elicited high titres of alginate-specific IgG. Antisera raised against the conjugate had high opsonic activity against the vaccine strain. The alginate conjugate was also able to protect mice against a lethal dose of mucoid P. aeruginosa. These data indicate that an alginate-based vaccine has significant potential to protect against chronic infection with mucoid P. aeruginosa in the CF host. PMID:17005795

  8. Pathogenic Phenotype and Genotype of Pseudomonas aeruginosa Isolates from Spontaneous Canine Ocular Infections

    PubMed Central

    Ledbetter, Eric C.; Mun, James J.; Kowbel, David; Fleiszig, Suzanne M. J.

    2009-01-01

    Purpose This study was designed to determine whether the ability to adversely affect corneal epithelial cell health is a factor common to Pseudomonas aeruginosa keratitis strains and to assess the prevalence of each pathogenic phenotype and genotype in a canine model of naturally-acquired P. aeruginosa ocular infection. Methods P. aeruginosa ocular isolates were collected by sampling 100 dogs without disease (six isolates collected) and by sampling dogs with conjunctivitis (two isolates), endophthalmitis (one isolate), active keratitis (12 isolates), and resolved P. aeruginosa keratitis (four isolates). Phenotype was determined in vitro by quantifying corneal epithelial cell invasion by gentamicin survival assays, and cytotoxic activity by Trypan blue exclusion assays. Genotyping was performed for genes encoding the type III secreted effectors. Results The ratio of invasive to cytotoxic strains with 95% confidence intervals (CI) was 0.83 (CI, 0.42– 0.99) for conjunctival microflora isolates, 0.80 (CI, 0.54 – 0.94) for ocular infection isolates, and 1.0 (CI, 0.45–1.0) for strains isolated post-resolution of keratitis. Among ocular infection isolates, invasive and cytotoxic strains were significantly (P ≤ 0.02) associated with older and younger dogs, respectively. Visible adverse effects on epithelial cells were significantly (P ≤ 0.03) more frequent for keratitis strains (6/12) than other strains (1/13), but only three of these keratitis strains and the single non-keratitis strain possessed ExoU. Conclusions Invasive strains predominated in the dogs of this study. Only keratitis strains had visible adverse effects on epithelial cells without overt cytotoxicity, suggesting virulence strategies affecting live corneal epithelial cell health are selected for among keratitis strains. PMID:18836164

  9. Pyoverdine and Proteases Affect the Response of Pseudomonas aeruginosa to Gallium in Human Serum

    PubMed Central

    Bonchi, Carlo; Frangipani, Emanuela; Imperi, Francesco

    2015-01-01

    Gallium is an iron mimetic which has recently been repurposed as an antibacterial agent due to its capability to disrupt bacterial iron metabolism. In this study, the antibacterial activity of gallium nitrate [Ga(NO3)3] was investigated in complement-free human serum (HS) on 55 Pseudomonas aeruginosa clinical isolates from cystic fibrosis and non-cystic fibrosis patients. The susceptibility of P. aeruginosa to Ga(NO3)3 in HS was dependent on the bacterial ability to acquire iron from serum binding proteins (i.e., transferrin). The extent of serum protein degradation correlated well with P. aeruginosa growth in HS, while pyoverdine production did not. However, pyoverdine-deficient P. aeruginosa strains were unable to grow in HS and overcome iron restriction, albeit capable of releasing proteases. Predigestion of HS with proteinase K promoted the growth of all strains, irrespective of their ability to produce proteases and/or pyoverdine. The MICs of Ga(NO3)3 were higher in HS than in an iron-poor Casamino Acids medium, where proteolysis does not affect iron availability. Coherently, strains displaying high proteolytic activity were less susceptible to Ga(NO3)3 in HS. Our data support a model in which both pyoverdine and proteases affect the response of P. aeruginosa to Ga(NO3)3 in HS. The relatively high Ga(NO3)3 concentration required to inhibit the growth of highly proteolytic P. aeruginosa isolates in HS poses a limitation to the potential of Ga(NO3)3 in the treatment of P. aeruginosa bloodstream infections. PMID:26149986

  10. Pyoverdine and proteases affect the response of Pseudomonas aeruginosa to gallium in human serum.

    PubMed

    Bonchi, Carlo; Frangipani, Emanuela; Imperi, Francesco; Visca, Paolo

    2015-09-01

    Gallium is an iron mimetic which has recently been repurposed as an antibacterial agent due to its capability to disrupt bacterial iron metabolism. In this study, the antibacterial activity of gallium nitrate [Ga(NO3)3] was investigated in complement-free human serum (HS) on 55 Pseudomonas aeruginosa clinical isolates from cystic fibrosis and non-cystic fibrosis patients. The susceptibility of P. aeruginosa to Ga(NO3)3 in HS was dependent on the bacterial ability to acquire iron from serum binding proteins (i.e., transferrin). The extent of serum protein degradation correlated well with P. aeruginosa growth in HS, while pyoverdine production did not. However, pyoverdine-deficient P. aeruginosa strains were unable to grow in HS and overcome iron restriction, albeit capable of releasing proteases. Predigestion of HS with proteinase K promoted the growth of all strains, irrespective of their ability to produce proteases and/or pyoverdine. The MICs of Ga(NO3)3 were higher in HS than in an iron-poor Casamino Acids medium, where proteolysis does not affect iron availability. Coherently, strains displaying high proteolytic activity were less susceptible to Ga(NO3)3 in HS. Our data support a model in which both pyoverdine and proteases affect the response of P. aeruginosa to Ga(NO3)3 in HS. The relatively high Ga(NO3)3 concentration required to inhibit the growth of highly proteolytic P. aeruginosa isolates in HS poses a limitation to the potential of Ga(NO3)3 in the treatment of P. aeruginosa bloodstream infections.

  11. Drosophila melanogaster as an Animal Model for the Study of Pseudomonas aeruginosa Biofilm Infections In Vivo

    PubMed Central

    Mulcahy, Heidi; Sibley, Christopher D.; Surette, Michael G.; Lewenza, Shawn

    2011-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen capable of causing both acute and chronic infections in susceptible hosts. Chronic P. aeruginosa infections are thought to be caused by bacterial biofilms. Biofilms are highly structured, multicellular, microbial communities encased in an extracellular matrix that enable long-term survival in the host. The aim of this research was to develop an animal model that would allow an in vivo study of P. aeruginosa biofilm infections in a Drosophila melanogaster host. At 24 h post oral infection of Drosophila, P. aeruginosa biofilms localized to and were visualized in dissected Drosophila crops. These biofilms had a characteristic aggregate structure and an extracellular matrix composed of DNA and exopolysaccharide. P. aeruginosa cells recovered from in vivo grown biofilms had increased antibiotic resistance relative to planktonically grown cells. In vivo, biofilm formation was dependent on expression of the pel exopolysaccharide genes, as a pelB::lux mutant failed to form biofilms. The pelB::lux mutant was significantly more virulent than PAO1, while a hyperbiofilm strain (PAZHI3) demonstrated significantly less virulence than PAO1, as indicated by survival of infected flies at day 14 postinfection. Biofilm formation, by strains PAO1 and PAZHI3, in the crop was associated with induction of diptericin, cecropin A1 and drosomycin antimicrobial peptide gene expression 24 h postinfection. In contrast, infection with the non-biofilm forming strain pelB::lux resulted in decreased AMP gene expression in the fly. In summary, these results provide novel insights into host-pathogen interactions during P. aeruginosa oral infection of Drosophila and highlight the use of Drosophila as an infection model that permits the study of P. aeruginosa biofilms in vivo. PMID:21998591

  12. Pyoverdine and proteases affect the response of Pseudomonas aeruginosa to gallium in human serum.

    PubMed

    Bonchi, Carlo; Frangipani, Emanuela; Imperi, Francesco; Visca, Paolo

    2015-09-01

    Gallium is an iron mimetic which has recently been repurposed as an antibacterial agent due to its capability to disrupt bacterial iron metabolism. In this study, the antibacterial activity of gallium nitrate [Ga(NO3)3] was investigated in complement-free human serum (HS) on 55 Pseudomonas aeruginosa clinical isolates from cystic fibrosis and non-cystic fibrosis patients. The susceptibility of P. aeruginosa to Ga(NO3)3 in HS was dependent on the bacterial ability to acquire iron from serum binding proteins (i.e., transferrin). The extent of serum protein degradation correlated well with P. aeruginosa growth in HS, while pyoverdine production did not. However, pyoverdine-deficient P. aeruginosa strains were unable to grow in HS and overcome iron restriction, albeit capable of releasing proteases. Predigestion of HS with proteinase K promoted the growth of all strains, irrespective of their ability to produce proteases and/or pyoverdine. The MICs of Ga(NO3)3 were higher in HS than in an iron-poor Casamino Acids medium, where proteolysis does not affect iron availability. Coherently, strains displaying high proteolytic activity were less susceptible to Ga(NO3)3 in HS. Our data support a model in which both pyoverdine and proteases affect the response of P. aeruginosa to Ga(NO3)3 in HS. The relatively high Ga(NO3)3 concentration required to inhibit the growth of highly proteolytic P. aeruginosa isolates in HS poses a limitation to the potential of Ga(NO3)3 in the treatment of P. aeruginosa bloodstream infections. PMID:26149986

  13. Contribution of tap water to patient colonisation with Pseudomonas aeruginosa in a medical intensive care unit.

    PubMed

    Rogues, A-M; Boulestreau, H; Lashéras, A; Boyer, A; Gruson, D; Merle, C; Castaing, Y; Bébear, C M; Gachie, J-P

    2007-09-01

    This study examined tap water as a source of Pseudomonas aeruginosa in a medical intensive care setting. We prospectively screened specimens of patients, tap water and hands of healthcare workers (HCWs) over a six-month period in a 16-bed medical intensive care unit. Molecular relatedness of P. aeruginosa strains was investigated by pulsed-field gel electrophoresis. A total of 657 tap water samples were collected from 39 faucets and 127 hands of HCWs were sampled. P. aeruginosa was found in 11.4% of 484 tap water samples taken from patients' rooms and in 5.3% of 189 other tap water samples (P<0.01). P. aeruginosa was isolated from 38 patients. Typing of 73 non-replicate isolates (water samples, hands of HCWs and patients) revealed 32 major DNA patterns. Eleven (52.4%) of the 21 faucets were contaminated with a patient strain, found before isolation from tap water in the corresponding room in nine cases, or from the neighbouring room in two cases. Among seven P. aeruginosa strains isolated from HCW hands, the genotype obtained was the same as that from the last patient they had touched in six cases, and in the seventh with the last tap water sample used. More than half of P. aeruginosa carriage in patients was acquired via tap water or cross-transmission. Carriage of P. aeruginosa by patients was both the source and the consequence of tap water colonisation. These results emphasise the need for studies on how to control tap water contamination.

  14. Regulation of the Mandelate Pathway in Pseudomonas aeruginosa

    PubMed Central

    Rosenberg, S. L.

    1971-01-01

    The pathway of mandelate metabolism in Pseudomonas aeruginosa is composed of the following steps: l(+)-mandelate → benzoylformate → benzaldehyde → benzoate. These three steps are unique to mandelate oxidation; the benzoate formed is further metabolized via the β-ketoadipate pathway. The first enzyme, l(+)-mandelate dehydrogenase, is induced by its substrate. The second and third enzymes, benzoylformate decarboxylase and benzaldehyde dehydrogenase, are both induced by benzoylformate. The same benzaldehyde dehydrogenase, or one very similar to it, is also induced by β-ketoadipate, an intermediate in the subsequent metabolism of benzoate. This dehydrogenase may also be induced by adipate or a metabolite of adipate. These conclusions have been drawn from the physiological and genetic properties of wild-type P. aeruginosa strains and from the study of mutants lacking the second and third enzyme activities. PMID:5003176

  15. The distribution of a phage-related insertion sequence element in the cyanobacterium, Microcystis aeruginosa.

    PubMed

    Kuno, Sotaro; Yoshida, Takashi; Kamikawa, Ryoma; Hosoda, Naohiko; Sako, Yoshihiko

    2010-01-01

    The cyanophage Ma-LMM01, specifically-infecting Microcystis aeruginosa, has an insertion sequence (IS) element that we named IS607-cp showing high nucleotide similarity to a counterpart in the genome of the cyanobacterium Cyanothece sp. We tested 21 strains of M. aeruginosa for the presence of IS607-cp using PCR and detected the element in strains NIES90, NIES112, NIES604, and RM6. Thermal asymmetric interlaced PCR (TAIL-PCR) revealed each of these strains has multiple copies of IS607-cp. Some of the ISs were classified into three types based on their inserted positions; IS607-cp-1 is common in strains NIES90, NIES112 and NIES604, whereas IS607-cp-2 and IS607-cp-3 are specific to strains NIES90 and RM6, respectively. This multiplicity may reflect the replicative transposition of IS607-cp. The sequence of IS607-cp in Ma-LMM01 showed robust affinity to those found in M. aeruginosa and Cyanothece spp. in a phylogenetic tree inferred from counterparts of various bacteria. This suggests the transfer of IS607-cp between the cyanobacterium and its cyanophage. We discuss the potential role of Ma-LMM01-related phages as donors of IS elements that may mediate the transfer of IS607-cp; and thereby partially contribute to the genome plasticity of M. aeruginosa.

  16. Pseudomonas aeruginosa inhibits the growth of Scedosporium aurantiacum, an opportunistic fungal pathogen isolated from the lungs of cystic fibrosis patients

    PubMed Central

    Kaur, Jashanpreet; Pethani, Bhavin P.; Kumar, Sheemal; Kim, Minkyoung; Sunna, Anwar; Kautto, Liisa; Penesyan, Anahit; Paulsen, Ian T.; Nevalainen, Helena

    2015-01-01

    The filamentous fungus Scedosporium aurantiacum and the bacterium Pseudomonas aeruginosa are opportunistic pathogens isolated from lungs of the cystic fibrosis (CF) patients. P. aeruginosa has been known to suppress the growth of a number of CF related fungi such as Aspergillus fumigatus, Candida albicans, and Cryptococcus neoformans. However, the interactions between P. aeruginosa and S. aurantiacum have not been investigated in depth. Hence we assessed the effect of P. aeruginosa reference strain PAO1 and two clinical isolates PASS1 and PASS2 on the growth of two clinical S. aurantiacum isolates WM 06.482 and WM 08.202 using solid plate assays and liquid cultures, in a synthetic medium mimicking the nutrient condition in the CF sputum. Solid plate assays showed a clear inhibition of growth of both S. aurantiacum strains when cultured with P. aeruginosa strains PASS1 and PAO1. The inhibitory effect was confirmed by confocal microscopy. In addition to using chemical fluorescent stains, strains tagged with yfp (P. aeruginosa PASS1) and mCherry (S. aurantiacum WM 06.482) were created to facilitate detailed microscopic observations on strain interaction. To our knowledge, this is the first study describing successful genetic transformation of S. aurantiacum. Inhibition of growth was observed only in co-cultures of P. aeruginosa and S. aurantiacum; the cell fractions obtained from independent bacterial monocultures failed to initiate a response against the fungus. In the liquid co-cultures, biofilm forming P. aeruginosa strains PASS1 and PAO1 displayed higher inhibition of fungal growth when compared to PASS2. No change was observed in the inhibition pattern when direct cell contact between the bacterial and fungal strains was prevented using a separation membrane suggesting the involvement of extracellular metabolites in the fungal inhibition. However, one of the most commonly described bacterial virulence factors, pyocyanin, had no effect against either of the S

  17. The Pseudomonas aeruginosa extracellular secondary metabolite, Paerucumarin, chelates iron and is not localized to extracellular membrane vesicles.

    PubMed

    Qaisar, Uzma; Kruczek, Cassandra J; Azeem, Muhammed; Javaid, Nasir; Colmer-Hamood, Jane A; Hamood, Abdul N

    2016-08-01

    Proteins encoded by the Pseudomonas aeruginosa pvcA-D operon synthesize a novel isonitrile functionalized cumarin termed paerucumarin. The pvcA-D operon enhances the expression of the P. aeruginosa fimbrial chaperone/usher pathway (cup) genes and this effect is mediated through paerucumarin. Whether pvcA-D and/or paerucumarin affect the expression of other P. aeruginosa genes is not known. In this study, we examined the effect of a mutation in pvcA-D operon the global transcriptome of the P. aeruginosa strain PAO1-UW. The mutation reduced the expression of several ironcontrolled genes including pvdS, which is essential for the expression of the pyoverdine genes. Additional transcriptional studies showed that the pvcA-D operon is not regulated by iron. Exogenously added paerucumarin enhanced pyoverdine production and pvdS expression in PAO1-UW. Iron-chelation experiments revealed that purified paerucumarin chelates iron. However, exogenously added paerucumarin significantly reduced the growth of a P. aeruginosa mutant defective in pyoverdine and pyochelin production. In contrast to other secondary metabolite, Pseudomonas quinolone signal (PQS), paerucumarin is not localized to the P. aeruginosa membrane vesicles. These results suggest that paerucumarin enhances the expression of iron-controlled genes by chelating iron within the P. aeruginosa extracellular environment. Although paerucumarin chelates iron, it does not function as a siderophore. Unlike PQS, paerucumarin is not associated with the P. aeruginosa cell envelope. PMID:27480638

  18. Efficacy of methanolic extract of green and black teas against extended-spectrum β-Lactamase-producing Pseudomonas aeruginosa.

    PubMed

    Taherpour, Arezou; Hashemi, Ali; Erfanimanesh, Soroor; Taki, Elahe

    2016-07-01

    Pseudomonas aeruginosa is one of the major bacteria causing acute infections. β-Lactamase production is the principal defense mechanism in gram-negative bacteria. The aim of our study was to evaluate the antibacterial activity of Methanolic Extracts of Green and Black Teas on P. aeruginosa Extended Spectrum-β-Lactamases (ESBLs) production. This research was carried out on burn wounds of 245 hospitalized patients in Kerman, Iran. P. aeruginosa ESBLs and MBL producing strains were detected by Combination Disk Diffusion Test (CDDT) and Epsilometer test (E-test) strips, respectively. Minimum inhibitory concentration (MIC) was measured for Ceftazidime, Meropenem, Imipenem, Aztreonam, Cefotaxime and methanollic extracts of Camellia Sinensis (Green Tea). From 245 patients in the burn ward, 120 cases were infected with P. aeruginosa. 41 isolates contained ESBL while MBL was not detected. P. aeruginosa were resistant to Cefotaxime, Aztreonam, Ceftazidime, Meropenem and Imipenem, 72 (60%), 50 (41.66%), 79 (65.83%), 33 (27.5%) and 24 (20%), respectively. Green tea extract had the highest anti-bacterial effect on standard and P. aeruginosa strains in 1.25mg/ml concentration. This study determined that the methanolic extract of green tea has a higher effect against ESBL producing P. aeruginosa than Cefotaxime, Aztreonam and Ceftazidime.

  19. Efficacy of methanolic extract of green and black teas against extended-spectrum β-Lactamase-producing Pseudomonas aeruginosa.

    PubMed

    Taherpour, Arezou; Hashemi, Ali; Erfanimanesh, Soroor; Taki, Elahe

    2016-07-01

    Pseudomonas aeruginosa is one of the major bacteria causing acute infections. β-Lactamase production is the principal defense mechanism in gram-negative bacteria. The aim of our study was to evaluate the antibacterial activity of Methanolic Extracts of Green and Black Teas on P. aeruginosa Extended Spectrum-β-Lactamases (ESBLs) production. This research was carried out on burn wounds of 245 hospitalized patients in Kerman, Iran. P. aeruginosa ESBLs and MBL producing strains were detected by Combination Disk Diffusion Test (CDDT) and Epsilometer test (E-test) strips, respectively. Minimum inhibitory concentration (MIC) was measured for Ceftazidime, Meropenem, Imipenem, Aztreonam, Cefotaxime and methanollic extracts of Camellia Sinensis (Green Tea). From 245 patients in the burn ward, 120 cases were infected with P. aeruginosa. 41 isolates contained ESBL while MBL was not detected. P. aeruginosa were resistant to Cefotaxime, Aztreonam, Ceftazidime, Meropenem and Imipenem, 72 (60%), 50 (41.66%), 79 (65.83%), 33 (27.5%) and 24 (20%), respectively. Green tea extract had the highest anti-bacterial effect on standard and P. aeruginosa strains in 1.25mg/ml concentration. This study determined that the methanolic extract of green tea has a higher effect against ESBL producing P. aeruginosa than Cefotaxime, Aztreonam and Ceftazidime. PMID:27393439

  20. Determination of the O-serovars of Pseudomonas aeruginosa by slide coagglutination.

    PubMed

    Ansorg, R; Knoche, M

    1984-06-01

    Determination of the somatic (O-) antigens of Pseudomonas aeruginosa by conventional slide agglutination is frequently complicated by the barely discernible, slow reaction of native cells. For diagnostic purposes a more practical procedure, a coagglutination test, has been developed in which protein A bearing Staphylococcus aureus (ATCC 12598) cells are added to the agglutination process occurring between specific anti-O serum and native Pseudomonas aeruginosa. Compared to the conventional method, slide O-coagglutination yields larger agglutinates in a shorter mean reaction time, i.e. one minute vs four minutes. Moreover, strains not reacting in the O-agglutination method or reacting only with polyvalent anti-O serum can be grouped by O-coagglutination, and cross reactions between reference strains of different O-groups do not occur. This method facilitates O-grouping of Pseudomonas aeruginosa in epidemiological investigations. PMID:6205872

  1. Bacteriophage can lyse antibiotic-resistant Pseudomonas aeruginosa isolated from canine diseases

    PubMed Central

    FURUSAWA, Takaaki; IWANO, Hidetomo; HIGUCHI, Hidetoshi; YOKOTA, Hiroshi; USUI, Masaru; IWASAKI, Tomohito; TAMURA, Yutaka

    2016-01-01

    Pseudomonas aeruginosa is a pathogen frequently identified as the cause of diverse infections or chronic disease. This microbe has natural resistance to several kinds of antibiotics, because of the species’ outer membrane, efflux pumps and growth as a biofilm. This bacterium can acquire increased resistance with specific point mutations. Bacteriophage (phage), however, can lyse these bacteria. Therefore, in the present study, we assessed the host range of phages isolates and their ability to lyse antibiotic-resistant P. aeruginosa. Present phages could lyse many strains of P. aeruginosa (28/39), including strains with high resistance to fluoroquinolones (4/6). In conclusion, application of phages for antibiotic-resistant bacteria is greatly effective. To avoid pervasive antibiotic-resistant bacteria, further development of phage usage for disease treatment is required. PMID:26876365

  2. Bisphenol A removal by a Pseudomonas aeruginosa immobilized on granular activated carbon and operating in a fluidized bed reactor.

    PubMed

    Mita, Luigi; Grumiro, Laura; Rossi, Sergio; Bianco, Carmen; Defez, Roberto; Gallo, Pasquale; Mita, Damiano Gustavo; Diano, Nadia

    2015-06-30

    Serratia rubidiae, Pseudomonas aeruginosa and Escherichia coli K12 have been studied for their ability of Bisphenol A removal from aqueous systems and biofilm formation on activated granule carbon. Mathematical equations for biodegradation process have been elaborated and discussed. P. aeruginosa was found the best strain to be employed in the process of Bisphenol A removal. The yield in BPA removal of a P. aeruginosa biofilm grown on GAC and operating in a fluidized bed reactor has been evaluated. The results confirm the usefulness in using biological activated carbon (BAC process) to remove phenol compounds from aqueous systems.

  3. Molecular Signature of Pseudomonas aeruginosa with Simultaneous Nanomolar Detection of Quorum Sensing Signaling Molecules at a Boron-Doped Diamond Electrode.

    PubMed

    Buzid, Alyah; Shang, Fengjun; Reen, F Jerry; Muimhneacháin, Eoin Ó; Clarke, Sarah L; Zhou, Lin; Luong, John H T; O'Gara, Fergal; McGlacken, Gerard P; Glennon, Jeremy D

    2016-01-01

    Electroanalysis was performed using a boron-doped diamond (BDD) electrode for the simultaneous detection of 2-heptyl-3-hydroxy-4-quinolone (PQS), 2-heptyl-4-hydroxyquinoline (HHQ) and pyocyanin (PYO). PQS and its precursor HHQ are two important signal molecules produced by Pseudomonas aeruginosa, while PYO is a redox active toxin involved in virulence and pathogenesis. This Gram-negative and opportunistic human pathogen is associated with a hospital-acquired infection particularly in patients with compromised immunity and is the primary cause of morbidity and mortality in cystic fibrosis (CF) patients. Early detection is crucial in the clinical management of this pathogen, with established infections entering a biofilm lifestyle that is refractory to conventional antibiotic therapies. Herein, a detection procedure was optimized and proven for the simultaneous detection of PYO, HHQ and PQS in standard mixtures, biological samples, and P. aeruginosa spiked CF sputum samples with remarkable sensitivity, down to nanomolar levels. Differential pulse voltammetry (DPV) scans were also applicable for monitoring the production of PYO, HHQ and PQS in P. aeruginosa PA14 over 8 h of cultivation. The simultaneous detection of these three compounds represents a molecular signature specific to this pathogen. PMID:27427496

  4. Molecular Signature of Pseudomonas aeruginosa with Simultaneous Nanomolar Detection of Quorum Sensing Signaling Molecules at a Boron-Doped Diamond Electrode

    NASA Astrophysics Data System (ADS)

    Buzid, Alyah; Shang, Fengjun; Reen, F. Jerry; Muimhneacháin, Eoin Ó.; Clarke, Sarah L.; Zhou, Lin; Luong, John H. T.; O’Gara, Fergal; McGlacken, Gerard P.; Glennon, Jeremy D.

    2016-07-01

    Electroanalysis was performed using a boron-doped diamond (BDD) electrode for the simultaneous detection of 2-heptyl-3-hydroxy-4-quinolone (PQS), 2-heptyl-4-hydroxyquinoline (HHQ) and pyocyanin (PYO). PQS and its precursor HHQ are two important signal molecules produced by Pseudomonas aeruginosa, while PYO is a redox active toxin involved in virulence and pathogenesis. This Gram-negative and opportunistic human pathogen is associated with a hospital-acquired infection particularly in patients with compromised immunity and is the primary cause of morbidity and mortality in cystic fibrosis (CF) patients. Early detection is crucial in the clinical management of this pathogen, with established infections entering a biofilm lifestyle that is refractory to conventional antibiotic therapies. Herein, a detection procedure was optimized and proven for the simultaneous detection of PYO, HHQ and PQS in standard mixtures, biological samples, and P. aeruginosa spiked CF sputum samples with remarkable sensitivity, down to nanomolar levels. Differential pulse voltammetry (DPV) scans were also applicable for monitoring the production of PYO, HHQ and PQS in P. aeruginosa PA14 over 8 h of cultivation. The simultaneous detection of these three compounds represents a molecular signature specific to this pathogen.

  5. Molecular Signature of Pseudomonas aeruginosa with Simultaneous Nanomolar Detection of Quorum Sensing Signaling Molecules at a Boron-Doped Diamond Electrode

    PubMed Central

    Buzid, Alyah; Shang, Fengjun; Reen, F. Jerry; Muimhneacháin, Eoin Ó; Clarke, Sarah L.; Zhou, Lin; Luong, John H. T.; O’Gara, Fergal; McGlacken, Gerard P.; Glennon, Jeremy D.

    2016-01-01

    Electroanalysis was performed using a boron-doped diamond (BDD) electrode for the simultaneous detection of 2-heptyl-3-hydroxy-4-quinolone (PQS), 2-heptyl-4-hydroxyquinoline (HHQ) and pyocyanin (PYO). PQS and its precursor HHQ are two important signal molecules produced by Pseudomonas aeruginosa, while PYO is a redox active toxin involved in virulence and pathogenesis. This Gram-negative and opportunistic human pathogen is associated with a hospital-acquired infection particularly in patients with compromised immunity and is the primary cause of morbidity and mortality in cystic fibrosis (CF) patients. Early detection is crucial in the clinical management of this pathogen, with established infections entering a biofilm lifestyle that is refractory to conventional antibiotic therapies. Herein, a detection procedure was optimized and proven for the simultaneous detection of PYO, HHQ and PQS in standard mixtures, biological samples, and P. aeruginosa spiked CF sputum samples with remarkable sensitivity, down to nanomolar levels. Differential pulse voltammetry (DPV) scans were also applicable for monitoring the production of PYO, HHQ and PQS in P. aeruginosa PA14 over 8 h of cultivation. The simultaneous detection of these three compounds represents a molecular signature specific to this pathogen. PMID:27427496

  6. Glycosylation Substrate Specificity of Pseudomonas aeruginosa 1244 Pilin*S

    PubMed Central

    Horzempa, Joseph; Comer, Jason E.; Davis, Sheila A.; Castric, Peter

    2008-01-01

    The β-carbon of the Pseudomonas aeruginosa 1244 pilin C-terminal Ser is a site of glycosylation. The present study was conducted to determine the pilin structures necessary for glycosylation. It was found that although Thr could be tolerated at the pilin C terminus, the blocking of the Ser carboxyl group with the addition of an Ala prevented glycosylation. Pilin from strain PA103 was not glycosylated by P. aeruginosa 1244, even when the C-terminal residue was converted to Ser. Substituting the disulfide loop region of strain PA103 pilin with that of strain 1244 allowed glycosylation to take place. Neither conversion of 1244 pilin disulfide loop Cys residues to Ala nor the deletion of segments of this structure prevented glycosylation. It was noted that the PA103 pilin disulfide loop environment was electronegative, whereas that of strain 1244 pilin had an overall positive charge. Insertion of a positive charge into the PA103 pilin disulfide loop of a mutant containing Ser at the C terminus allowed glycosylation to take place. Extending the “tail” region of the PA103 mutant pilin containing Ser at its terminus resulted in robust glycosylation. These results suggest that the terminal Ser is the major pilin glycosylation recognition feature and that this residue cannot be substituted at its carboxyl group. Although no other specific recognition features are present, the pilin surface must be compatible with the reaction apparatus for glycosylation to occur. PMID:16286455

  7. Prospective Survey of β-Lactamases Produced by Ceftazidime- Resistant Pseudomonas aeruginosa Isolated in a French Hospital in 2000

    PubMed Central

    De Champs, Christophe; Poirel, Laurent; Bonnet, Richard; Sirot, Danielle; Chanal, Catherine; Sirot, Jacques; Nordmann, Patrice

    2002-01-01

    In 2000, at the Université d'Auvergne teaching hospital in Clermont-Ferrand, France, 44 (6.2%) strains of Pseudomonas aeruginosa were found to be resistant to ceftazidime. After genotyping, 34 strains were selected. Nine had an additional β-lactamase: OXA-21 (n = 6), PSE-1 (CARB-2) (n = 2), or PER-1 (n = 1). Ceftazidime resistance was related solely to the overproduction of the cephalosporinase in 30 strains. Sequencing of five blaAmpC genes encoding cephalosporinases with different pIs showed 99% identity with the ampC gene of P. aeruginosa PAO1. PMID:12183264

  8. Evolution and adaptation in Pseudomonas aeruginosa biofilms driven by mismatch repair system-deficient mutators.

    PubMed

    Luján, Adela M; Maciá, María D; Yang, Liang; Molin, Søren; Oliver, Antonio; Smania, Andrea M

    2011-01-01

    Pseudomonas aeruginosa is an important opportunistic pathogen causing chronic airway infections, especially in cystic fibrosis (CF) patients. The majority of the CF patients acquire P. aeruginosa during early childhood, and most of them develop chronic infections resulting in severe lung disease, which are rarely eradicated despite intensive antibiotic therapy. Current knowledge indicates that three major adaptive strategies, biofilm development, phenotypic diversification, and mutator phenotypes [driven by a defective mismatch repair system (MRS)], play important roles in P. aeruginosa chronic infections, but the relationship between these strategies is still poorly understood. We have used the flow-cell biofilm model system to investigate the impact of the mutS associated mutator phenotype on development, dynamics, diversification and adaptation of P. aeruginosa biofilms. Through competition experiments we demonstrate for the first time that P. aeruginosa MRS-deficient mutators had enhanced adaptability over wild-type strains when grown in structured biofilms but not as planktonic cells. This advantage was associated with enhanced micro-colony development and increased rates of phenotypic diversification, evidenced by biofilm architecture features and by a wider range and proportion of morphotypic colony variants, respectively. Additionally, morphotypic variants generated in mutator biofilms showed increased competitiveness, providing further evidence for mutator-driven adaptive evolution in the biofilm mode of growth. This work helps to understand the basis for the specific high proportion and role of mutators in chronic infections, where P. aeruginosa develops in biofilm communities.

  9. Phylogenetic Distribution of CRISPR-Cas Systems in Antibiotic-Resistant Pseudomonas aeruginosa

    PubMed Central

    van Belkum, Alex; Soriaga, Leah B.; LaFave, Matthew C.; Akella, Srividya; Veyrieras, Jean-Baptiste; Barbu, E. Magda; Shortridge, Dee; Blanc, Bernadette; Hannum, Gregory; Zambardi, Gilles; Miller, Kristofer; Enright, Mark C.; Mugnier, Nathalie; Brami, Daniel; Schicklin, Stéphane; Felderman, Martina; Schwartz, Ariel S.; Richardson, Toby H.; Peterson, Todd C.; Hubby, Bolyn

    2015-01-01

    ABSTRACT Pseudomonas aeruginosa is an antibiotic-refractory pathogen with a large genome and extensive genotypic diversity. Historically, P. aeruginosa has been a major model system for understanding the molecular mechanisms underlying type I clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein (CRISPR-Cas)-based bacterial immune system function. However, little information on the phylogenetic distribution and potential role of these CRISPR-Cas systems in molding the P. aeruginosa accessory genome and antibiotic resistance elements is known. Computational approaches were used to identify and characterize CRISPR-Cas systems within 672 genomes, and in the process, we identified a previously unreported and putatively mobile type I-C P. aeruginosa CRISPR-Cas system. Furthermore, genomes harboring noninhibited type I-F and I-E CRISPR-Cas systems were on average ~300 kb smaller than those without a CRISPR-Cas system. In silico analysis demonstrated that the accessory genome (n = 22,036 genes) harbored the majority of identified CRISPR-Cas targets. We also assembled a global spacer library that aided the identification of difficult-to-characterize mobile genetic elements within next-generation sequencing (NGS) data and allowed CRISPR typing of a majority of P. aeruginosa strains. In summary, our analysis demonstrated that CRISPR-Cas systems play an important role in shaping the accessory genomes of globally distributed P. aeruginosa isolates. PMID:26604259

  10. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition

    PubMed Central

    2012-01-01

    Background We aimed to assess the hospital economic costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. Methods A retrospective study of all hospital admissions between January 1, 2005, and December 31, 2006 was carried out in a 420-bed, urban, tertiary-care teaching hospital in Barcelona (Spain). All patients with a first positive clinical culture for P. aeruginosa more than 48 h after admission were included. Patient and hospitalization characteristics were collected from hospital and microbiology laboratory computerized records. According to antibiotic susceptibility, isolates were classified as non-resistant, resistant and multi-drug resistant. Cost estimation was based on a full-costing cost accounting system and on the criteria of clinical Activity-Based Costing methods. Multivariate analyses were performed using generalized linear models of log-transformed costs. Results Cost estimations were available for 402 nosocomial incident P. aeruginosa positive cultures. Their distribution by antibiotic susceptibility pattern was 37.1% non-resistant, 29.6% resistant and 33.3% multi-drug resistant. The total mean economic cost per admission of patients with multi-drug resistant P. aeruginosa strains was higher than that for non-resistant strains (15,265 vs. 4,933 Euros). In multivariate analysis, resistant and multi-drug resistant strains were independently predictive of an increased hospital total cost in compared with non-resistant strains (the incremental increase in total hospital cost was more than 1.37-fold and 1.77-fold that for non-resistant strains, respectively). Conclusions P. aeruginosa multi-drug resistance independently predicted higher hospital costs with a more than 70% increase per admission compared with non-resistant strains. Prevention of the nosocomial emergence and spread of antimicrobial resistant microorganisms is essential to limit the strong economic impact. PMID:22621745

  11. Inhibition of co-colonizing cystic fibrosis-associated pathogens by Pseudomonas aeruginosa and Burkholderia multivorans.

    PubMed

    Costello, Anne; Reen, F Jerry; O'Gara, Fergal; Callaghan, Máire; McClean, Siobhán

    2014-07-01

    Cystic fibrosis (CF) is a recessive genetic disease characterized by chronic respiratory infections and inflammation causing permanent lung damage. Recurrent infections are caused by Gram-negative antibiotic-resistant bacterial pathogens such as Pseudomonas aeruginosa, Burkholderia cepacia complex (Bcc) and the emerging pathogen genus Pandoraea. In this study, the interactions between co-colonizing CF pathogens were investigated. Both Pandoraea and Bcc elicited potent pro-inflammatory responses that were significantly greater than Ps. aeruginosa. The original aim was to examine whether combinations of pro-inflammatory pathogens would further exacerbate inflammation. In contrast, when these pathogens were colonized in the presence of Ps. aeruginosa the pro-inflammatory response was significantly decreased. Real-time PCR quantification of bacterial DNA from mixed cultures indicated that Ps. aeruginosa significantly inhibited the growth of Burkholderia multivorans, Burkholderia cenocepacia, Pandoraea pulmonicola and Pandoraea apista, which may be a factor in its dominance as a colonizer of CF patients. Ps. aeruginosa cell-free supernatant also suppressed growth of these pathogens, indicating that inhibition was innate rather than a response to the presence of a competitor. Screening of a Ps. aeruginosa mutant library highlighted a role for quorum sensing and pyoverdine biosynthesis genes in the inhibition of B. cenocepacia. Pyoverdine was confirmed to contribute to the inhibition of B. cenocepacia strain J2315. B. multivorans was the only species that could significantly inhibit Ps. aeruginosa growth. B. multivorans also inhibited B. cenocepacia and Pa. apista. In conclusion, both Ps. aeruginosa and B. multivorans are capable of suppressing growth and virulence of co-colonizing CF pathogens.

  12. The Effect of Strict Segregation on Pseudomonas aeruginosa in Cystic Fibrosis Patients

    PubMed Central

    van Mansfeld, Rosa; de Vrankrijker, Angelica; Brimicombe, Roland; Heijerman, Harry; Teding van Berkhout, Ferdinand; Spitoni, Cristian; Grave, Sanne; van der Ent, Cornelis; Wolfs, Tom; Willems, Rob; Bonten, Marc

    2016-01-01

    Introduction Segregation of patients with cystic fibrosis (CF) was implemented to prevent chronic infection with epidemic Pseudomonas aeruginosa strains with presumed detrimental clinical effects, but its effectiveness has not been carefully evaluated. Methods The effect of strict segregation on the incidence of P. aeruginosa infection in CF patients was investigated through longitudinal protocolized follow-up of respiratory tract infection before and after segregation. In two nested cross-sectional studies in 2007 and 2011 the P. aeruginosa population structure was investigated and clinical parameters were determined in patients with and without infection with the Dutch epidemic P. aeruginosa clone (ST406). Results Of 784 included patients 315 and 382 were at risk for acquiring chronic P. aeruginosa infection before and after segregation. Acquisition rates were, respectively, 0.14 and 0.05 per 1,000 days at risk (HR: 0.66, 95% CI [0.2548–1.541]; p = 0.28). An exploratory subgroup analysis indicated lower acquisition after segregation in children < 15 years of age (HR: 0.43, 95% CI[0.21–0.95]; p = 0.04). P. aeruginosa population structure did not change after segregation and ST406 was not associated with lung function decline, death or lung transplantation. Conclusions Strict segregation was not associated with a statistically significant lower acquisition of chronic P. aeruginosa infection and ST406 was not associated with adverse clinical outcome. After segregation there were no new acquisitions of ST406. In an unplanned exploratory analysis chronic acquisition of P. aeruginosa was lower after implementation of segregation in patients under 15 years of age. PMID:27280467

  13. In Vitro Interaction of Pseudomonas aeruginosa with Human Middle Ear Epithelial Cells

    PubMed Central

    Mittal, Rahul; Grati, M’hamed; Gerring, Robert; Blackwelder, Patricia; Yan, Denise; Li, Jian-Dong; Liu, Xue Zhong

    2014-01-01

    Background Otitis media (OM) is an inflammation of the middle ear which can be acute or chronic. Acute OM is caused by Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis whereas Pseudomonas aeruginosa is a leading cause of chronic suppurative otitis media (CSOM). CSOM is a chronic inflammatory disorder of the middle ear characterized by infection and discharge. The survivors often suffer from hearing loss and neurological sequelae. However, no information is available regarding the interaction of P. aeruginosa with human middle ear epithelial cells (HMEECs). Methodology and Findings In the present investigation, we demonstrate that P. aeruginosa is able to enter and survive inside HMEECs via an uptake mechanism that is dependent on microtubule and actin microfilaments. The actin microfilament disrupting agent as well as microtubule inhibitors exhibited significant decrease in invasion of HMEECs by P. aeruginosa. Confocal microscopy demonstrated F-actin condensation associated with bacterial entry. This recruitment of F-actin was transient and returned to normal distribution after bacterial internalization. Scanning electron microscopy demonstrated the presence of bacteria on the surface of HMEECs, and transmission electron microscopy confirmed the internalization of P. aeruginosa located in the plasma membrane-bound vacuoles. We observed a significant decrease in cell invasion of OprF mutant compared to the wild-type strain. P. aeruginosa induced cytotoxicity, as demonstrated by the determination of lactate dehydrogenase levels in culture supernatants of infected HMEECs and by a fluorescent dye-based assay. Interestingly, OprF mutant showed little cell damage compared to wild-type P. aeruginosa. Conclusions and Significance This study deciphered the key events in the interaction of P. aeruginosa with HMEECs in vitro and highlighted the role of bacterial outer membrane protein, OprF, in this process. Understanding the molecular mechanisms in

  14. Protective role of extracellular catalase (KatA) against UVA radiation in Pseudomonas aeruginosa biofilms.

    PubMed

    Pezzoni, Magdalena; Pizarro, Ramón A; Costa, Cristina S

    2014-02-01

    One of the more stressful factors that Pseudomonas aeruginosa must face in nature is solar UVA radiation. In this study, the protective role of KatA catalase in both planktonic cells and biofilms of P. aeruginosa against UVA radiation was determined by using the wild-type (PAO1) and an isogenic catalase deficient strain (katA). The katA strain was more sensitive than the wild-type, especially in the case of biofilms. Moreover, the wild-type biofilm was more resistant than its planktonic counterpart, but this was not observed in the katA strain. Striking KatA activity was detected in the matrix of katA(+) strains, and to our knowledge, this is the first report of this activity in the matrix of P. aeruginosa biofilms. Provision of bovine catalase or KatA to the matrix of a katA biofilm significantly increased its UVA tolerance, demonstrating that extracellular KatA is essential to optimal defense against UVA in P. aeruginosa biofilms. Efficiency of photocatalytic treatments using TiO2 and UVA was lower in biofilms than in planktonic cells, but KatA and KatB catalases seem not to be responsible for the higher resistance of the sessile cells to this treatment. PMID:24491420

  15. Iron-binding compounds impair Pseudomonas aeruginosa biofilm formation, especially under anaerobic conditions.

    PubMed

    O'May, Che Y; Sanderson, Kevin; Roddam, Louise F; Kirov, Sylvia M; Reid, David W

    2009-06-01

    The success of Pseudomonas aeruginosa in cystic fibrosis (CF) and other chronic infections is largely attributed to its ability to grow in antibiotic-resistant biofilm communities. This study investigated the effects of limiting iron levels as a strategy for preventing/disrupting P. aeruginosa biofilms. A range of synthetic and naturally occurring iron-chelating agents were examined. Biofilm development by P. aeruginosa strain PAO1 and CF sputum isolates from chronically infected individuals was significantly decreased by iron removal under aerobic atmospheres. CF strains formed poor biofilms under anaerobic conditions. Strain PAO1 was also tested under anaerobic conditions. Biofilm formation by this model strain was almost totally prevented by several of the chelators tested. The ability of synthetic chelators to impair biofilm formation could be reversed by iron addition to cultures, providing evidence that these effective chelating compounds functioned by directly reducing availability of iron to P. aeruginosa. In contrast, the biological chelator lactoferrin demonstrated enhanced anti-biofilm effects as iron supplementation increased. Hence biofilm inhibition by lactoferrin appeared to occur through more complex mechanisms to those of the synthetic chelators. Overall, our results demonstrate the importance of iron availability to biofilms and that iron chelators have potential as adjunct therapies for preventing biofilm development, especially under low oxygen conditions such as encountered in the chronically infected CF lung. PMID:19429753

  16. Pseudomonas aeruginosa biofilms in disease.

    PubMed

    Mulcahy, Lawrence R; Isabella, Vincent M; Lewis, Kim

    2014-07-01

    Pseudomonas aeruginosa is a ubiquitous organism that is the focus of intense research because of its prominent role in disease. Due to its relatively large genome and flexible metabolic capabilities, this organism exploits numerous environmental niches. It is an opportunistic pathogen that sets upon the human host when the normal immune defenses are disabled. Its deadliness is most apparent in cystic fibrosis patients, but it also is a major problem in burn wounds, chronic wounds, chronic obstructive pulmonary disorder, surface growth on implanted biomaterials, and within hospital surface and water supplies, where it poses a host of threats to vulnerable patients (Peleg and Hooper, N Engl J Med 362:1804-1813, 2010; Breathnach et al., J Hosp Infect 82:19-24, 2012). Once established in the patient, P. aeruginosa can be especially difficult to treat. The genome encodes a host of resistance genes, including multidrug efflux pumps (Poole, J Mol Microbiol Biotechnol 3:255-264, 2001) and enzymes conferring resistance to beta-lactam and aminoglycoside antibotics (Vahdani et al., Annal Burns Fire Disast 25:78-81, 2012), making therapy against this gram-negative pathogen particularly challenging due to the lack of novel antimicrobial therapeutics (Lewis, Nature 485: 439-440, 2012). This challenge is compounded by the ability of P. aeruginosa to grow in a biofilm, which may enhance its ability to cause infections by protecting bacteria from host defenses and chemotherapy. Here, we review recent studies of P. aeruginosa biofilms with a focus on how this unique mode of growth contributes to its ability to cause recalcitrant infections.

  17. Gene Islands Integrated into tRNAGly Genes Confer Genome Diversity on a Pseudomonas aeruginosa Clone

    PubMed Central

    Larbig, Karen D.; Christmann, Andreas; Johann, André; Klockgether, Jens; Hartsch, Thomas; Merkl, Rainer; Wiehlmann, Lutz; Fritz, Hans-Joachim; Tümmler, Burkhard

    2002-01-01

    Intraclonal genome diversity of Pseudomonas aeruginosa was studied in one of the most diverse mosaic regions of the P. aeruginosa chromosome. The ca. 110-kb large hypervariable region located near the lipH gene in two members of the predominant P. aeruginosa clone C, strain C and strain SG17M, was sequenced. In both strains the region consists of an individual strain-specific gene island of 111 (strain C) or 106 (SG17M) open reading frames (ORFs) and of a 7-kb stretch of clone C-specific sequence of 9 ORFs. The gene islands are integrated into conserved tRNAGly genes and have a bipartite structure. The first part adjacent to the tRNA gene consists of strain-specific ORFs encoding metabolic functions and transporters, the majority of which have homologs of known function in other eubacteria, such as hemophores, cytochrome c biosynthesis, or mercury resistance. The second part is made up mostly of ORFs of yet-unknown function. Forty-seven of these ORFs are mutual homologs with a pairwise amino acid sequence identity of 35 to 88% and are arranged in the same order in the two gene islands. We hypothesize that this novel type of gene island derives from mobile elements which, upon integration, endow the recipient with strain-specific metabolic properties, thus possibly conferring on it a selective advantage in its specific habitat. PMID:12426355

  18. Strategies for improved rhamnolipid production by Pseudomonas aeruginosa PA1

    PubMed Central

    Pereira Jr, Nei; Freire, Denise M.G.

    2016-01-01

    Rhamnolipids are biosurfactants with potential for diversified industrial and environmental uses. The present study evaluated three strategies for increasing the production of rhamnolipid-type biosurfactants produced by Pseudomonas aeruginosa strain PA1. The influence of pH, the addition of P. aeruginosa spent culture medium and the use of a fed-batch process were examined. The culture medium adjusted to pH 7.0 was the most productive. Furthermore, the pH of the culture medium had a measurable effect on the ratio of synthesized mono- and dirhamnolipids. At pH values below 7.3, the proportion of monorhamnolipids decreased from 45 to 24%. The recycling of 20% of the spent culture medium in where P. aeruginosa was grown up to the later stationary phase was responsible for a 100% increase in rhamnolipid volumetric productivity in the new culture medium. Finally, the use of fed-batch operation under conditions of limited nitrogen resulted in a 3.8-fold increase in the amount of rhamnolipids produced (2.9 g L−1–10.9 g L−1). These results offer promising pathways for the optimization of processes for the production of rhamnolipids. PMID:27257553

  19. Indole and 7‐hydroxyindole diminish Pseudomonas aeruginosa virulence

    PubMed Central

    Lee, Jintae; Attila, Can; Cirillo, Suat L. G.; Cirillo, Jeffrey D.; Wood, Thomas K.

    2009-01-01

    Summary Indole is an extracellular biofilm signal for Escherichia coli, and many bacterial oxygenases readily convert indole to various oxidized compounds including 7‐hydroxyindole (7HI). Here we investigate the impact of indole and 7HI on Pseudomonas aeruginosa PAO1 virulence and quorum sensing (QS)‐regulated phenotypes; this strain does not synthesize these compounds but degrades them rapidly. Indole and 7HI both altered extensively gene expression in a manner opposite that of acylhomoserine lactones; the most repressed genes encode the mexGHI‐opmD multidrug efflux pump and genes involved in the synthesis of QS‐regulated virulence factors including pyocyanin (phz operon), 2‐heptyl‐3‐hydroxy‐4(1H)‐quinolone (PQS) signal (pqs operon), pyochelin (pch operon) and pyoverdine (pvd operon). Corroborating these microarray results, indole and 7HI decreased production of pyocyanin, rhamnolipid, PQS and pyoverdine and enhanced antibiotic resistance. In addition, indole affected the utilization of carbon, nitrogen and phosphorus, and 7HI abolished swarming motility. Furthermore, 7HI reduced pulmonary colonization of P. aeruginosa in guinea pigs and increased clearance in lungs. Hence, indole‐related compounds have potential as a novel antivirulence approach for the recalcitrant pathogen P. aeruginosa. PMID:21261883

  20. Rhamnolipids Modulate Swarming Motility Patterns of Pseudomonas aeruginosa

    PubMed Central

    Caiazza, Nicky C.; Shanks, Robert M. Q.; O'Toole, G. A.

    2005-01-01

    Pseudomonas aeruginosa is capable of twitching, swimming, and swarming motility. The latter form of translocation occurs on semisolid surfaces, requires functional flagella and biosurfactant production, and results in complex motility patterns. From the point of inoculation, bacteria migrate as defined groups, referred to as tendrils, moving in a coordinated manner capable of sensing and responding to other groups of cells. We were able to show that P. aeruginosa produces extracellular factors capable of modulating tendril movement, and genetic analysis revealed that modulation of these movements was dependent on rhamnolipid biosynthesis. An rhlB mutant (deficient in mono- and dirhamnolipid production) and an rhlC mutant (deficient in dirhamnolipid production) exhibited altered swarming patterns characterized by irregularly shaped tendrils. In addition, agar supplemented with rhamnolipid-containing spent supernatant inhibited wild-type (WT) swarming, whereas agar supplemented with spent supernatant from mutants that do not make rhamnolipids had no effect on WT P. aeruginosa swarming. Addition of purified rhamnolipids to swarming medium also inhibited swarming motility of the WT strain. We also show that a sadB mutant does not sense and/or respond to other groups of swarming cells and this mutant was capable of swarming on media supplemented with rhamnolipid-containing spent supernatant or purified rhamnolipids. The abilities to produce and respond to rhamnolipids in the context of group behavior are discussed. PMID:16237018

  1. Strategies for improved rhamnolipid production by Pseudomonas aeruginosa PA1.

    PubMed

    Soares Dos Santos, Alexandre; Pereira, Nei; Freire, Denise M G

    2016-01-01

    Rhamnolipids are biosurfactants with potential for diversified industrial and environmental uses. The present study evaluated three strategies for increasing the production of rhamnolipid-type biosurfactants produced by Pseudomonas aeruginosa strain PA1. The influence of pH, the addition of P. aeruginosa spent culture medium and the use of a fed-batch process were examined. The culture medium adjusted to pH 7.0 was the most productive. Furthermore, the pH of the culture medium had a measurable effect on the ratio of synthesized mono- and dirhamnolipids. At pH values below 7.3, the proportion of monorhamnolipids decreased from 45 to 24%. The recycling of 20% of the spent culture medium in where P. aeruginosa was grown up to the later stationary phase was responsible for a 100% increase in rhamnolipid volumetric productivity in the new culture medium. Finally, the use of fed-batch operation under conditions of limited nitrogen resulted in a 3.8-fold increase in the amount of rhamnolipids produced (2.9 g L(-1)-10.9 g L(-1)). These results offer promising pathways for the optimization of processes for the production of rhamnolipids.

  2. Strategies for improved rhamnolipid production by Pseudomonas aeruginosa PA1.

    PubMed

    Soares Dos Santos, Alexandre; Pereira, Nei; Freire, Denise M G

    2016-01-01

    Rhamnolipids are biosurfactants with potential for diversified industrial and environmental uses. The present study evaluated three strategies for increasing the production of rhamnolipid-type biosurfactants produced by Pseudomonas aeruginosa strain PA1. The influence of pH, the addition of P. aeruginosa spent culture medium and the use of a fed-batch process were examined. The culture medium adjusted to pH 7.0 was the most productive. Furthermore, the pH of the culture medium had a measurable effect on the ratio of synthesized mono- and dirhamnolipids. At pH values below 7.3, the proportion of monorhamnolipids decreased from 45 to 24%. The recycling of 20% of the spent culture medium in where P. aeruginosa was grown up to the later stationary phase was responsible for a 100% increase in rhamnolipid volumetric productivity in the new culture medium. Finally, the use of fed-batch operation under conditions of limited nitrogen resulted in a 3.8-fold increase in the amount of rhamnolipids produced (2.9 g L(-1)-10.9 g L(-1)). These results offer promising pathways for the optimization of processes for the production of rhamnolipids. PMID:27257553

  3. Indole and 7-hydroxyindole diminish Pseudomonas aeruginosa virulence.

    PubMed

    Lee, Jintae; Attila, Can; Cirillo, Suat L G; Cirillo, Jeffrey D; Wood, Thomas K

    2009-01-01

    Indole is an extracellular biofilm signal for Escherichia coli, and many bacterial oxygenases readily convert indole to various oxidized compounds including 7-hydroxyindole (7HI). Here we investigate the impact of indole and 7HI on Pseudomonas aeruginosa PAO1 virulence and quorum sensing (QS)-regulated phenotypes; this strain does not synthesize these compounds but degrades them rapidly. Indole and 7HI both altered extensively gene expression in a manner opposite that of acylhomoserine lactones; the most repressed genes encode the mexGHI-opmD multidrug efflux pump and genes involved in the synthesis of QS-regulated virulence factors including pyocyanin (phz operon), 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) signal (pqs operon), pyochelin (pch operon) and pyoverdine (pvd operon). Corroborating these microarray results, indole and 7HI decreased production of pyocyanin, rhamnolipid, PQS and pyoverdine and enhanced antibiotic resistance. In addition, indole affected the utilization of carbon, nitrogen and phosphorus, and 7HI abolished swarming motility. Furthermore, 7HI reduced pulmonary colonization of P. aeruginosa in guinea pigs and increased clearance in lungs. Hence, indole-related compounds have potential as a novel antivirulence approach for the recalcitrant pathogen P. aeruginosa. PMID:21261883

  4. Coculture of Staphylococcus aureus with Pseudomonas aeruginosa Drives S. aureus towards Fermentative Metabolism and Reduced Viability in a Cystic Fibrosis Model

    PubMed Central

    Filkins, Laura M.; Graber, Jyoti A.; Olson, Daniel G.; Dolben, Emily L.; Lynd, Lee R.; Bhuju, Sabin

    2015-01-01

    ABSTRACT The airways of patients with cystic fibrosis are colonized with diverse bacterial communities that change dynamically during pediatric years and early adulthood. Staphylococcus aureus is the most prevalent pathogen during early childhood, but during late teens and early adulthood, a shift in microbial composition occurs leading to Pseudomonas aeruginosa community predominance in ∼50% of adults. We developed a robust dual-bacterial in vitro coculture system of P. aeruginosa and S. aureus on monolayers of human bronchial epithelial cells homozygous for the ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) mutation to better model the mechanisms of this interaction. We show that P. aeruginosa drives the S. aureus expression profile from that of aerobic respiration to fermentation. This shift is dependent on the production of both 2-heptyl-4-hydroxyquinoline N-oxide (HQNO) and siderophores by P. aeruginosa. Furthermore, S. aureus-produced lactate is a carbon source that P. aeruginosa preferentially consumes over medium-supplied glucose. We find that initially S. aureus and P. aeruginosa coexist; however, over extended coculture P. aeruginosa reduces S. aureus viability, also in an HQNO- and P. aeruginosa siderophore-dependent manner. Interestingly, S. aureus small-colony-variant (SCV) genetic mutant strains, which have defects in their electron transport chain, experience reduced killing by P. aeruginosa compared to their wild-type parent strains; thus, SCVs may provide a mechanism for persistence of S. aureus in the presence of P. aeruginosa. We propose that the mechanism of P. aeruginosa-mediated killing of S. aureus is multifactorial, requiring HQNO and P. aeruginosa siderophores as well as additional genetic, environmental, and nutritional factors. IMPORTANCE In individuals with cystic fibrosis, Staphylococcus aureus is the primary respiratory pathogen during childhood. During adulthood, Pseudomonas aeruginosa predominates and correlates

  5. A molecular mechanism that stabilizes cooperative secretions in Pseudomonas aeruginosa

    PubMed Central

    Kim, Wook

    2010-01-01

    Summary Bacterial populations frequently act as a collective by secreting a wide range of compounds necessary for cell-cell communication, host colonization and virulence. However, how such behaviors avoid exploitation by spontaneous ‘cheater’ mutants that use but do not contribute to secretions remains unclear. We investigate this question using Pseudomonas aeruginosa swarming, a collective surface motility requiring massive secretions of rhamnolipid biosurfactants. We first show that swarming is immune to the evolution of rhlA− ‘cheaters’. We then demonstrate that P. aeruginosa resists cheating through metabolic prudence: wild-type cells secrete biosurfactants only when the cost of their production and impact on individual fitness is low, therefore preventing non-secreting strains from gaining an evolutionary advantage. Metabolic prudence works because the carbon-rich biosurfactants are only produced when growth is limited by another growth limiting nutrient, the nitrogen source. By genetically manipulating a strain to produce the biosurfactants constitutively we show that swarming becomes cheatable: a non-producing strain rapidly outcompetes and replaces this obligate cooperator. We argue that metabolic prudence, which may first evolve as a direct response to cheating or simply to optimize growth, can explain the maintenance of massive secretions in many bacteria. More generally, prudent regulation is a mechanism to stabilize cooperation. PMID:21166901

  6. Optimization of Polymyxin B in Combination with Doripenem To Combat Mutator Pseudomonas aeruginosa.

    PubMed

    Ly, Neang S; Bulman, Zackery P; Bulitta, Jürgen B; Baron, Christopher; Rao, Gauri G; Holden, Patricia N; Li, Jian; Sutton, Mark D; Tsuji, Brian T

    2016-05-01

    Development of spontaneous mutations in Pseudomonas aeruginosa has been associated with antibiotic failure, leading to high rates of morbidity and mortality. Our objective was to evaluate the pharmacodynamics of polymyxin B combinations against rapidly evolving P. aeruginosa mutator strains and to characterize the time course of bacterial killing and resistance via mechanism-based mathematical models. Polymyxin B or doripenem alone and in combination were evaluated against six P. aeruginosa strains: wild-type PAO1, mismatch repair (MMR)-deficient (mutS and mutL) strains, and 7,8-dihydro-8-oxo-deoxyguanosine system (GO) base excision repair (BER)-deficient (mutM, mutT, and mutY) strains over 48 h. Pharmacodynamic modeling was performed using S-ADAPT and facilitated by SADAPT-TRAN. Mutator strains displayed higher mutation frequencies than the wild type (>600-fold). Exposure to monotherapy was followed by regrowth, even at high polymyxin B concentrations of up to 16 mg/liter. Polymyxin B and doripenem combinations displayed enhanced killing activity against all strains where complete eradication was achieved for polymyxin B concentrations of >4 mg/liter and doripenem concentrations of 8 mg/liter. Modeling suggested that the proportion of preexisting polymyxin B-resistant subpopulations influenced the pharmacodynamic profiles for each strain uniquely (fraction of resistance values are -8.81 log10 for the wild type, -4.71 for the mutS mutant, and -7.40 log10 for the mutM mutant). Our findings provide insight into the optimization of polymyxin B and doripenem combinations against P. aeruginosa mutator strains.

  7. Optimization of Polymyxin B in Combination with Doripenem To Combat Mutator Pseudomonas aeruginosa

    PubMed Central

    Bulman, Zackery P.; Bulitta, Jürgen B.; Baron, Christopher; Rao, Gauri G.; Holden, Patricia N.; Li, Jian; Sutton, Mark D.

    2016-01-01

    Development of spontaneous mutations in Pseudomonas aeruginosa has been associated with antibiotic failure, leading to high rates of morbidity and mortality. Our objective was to evaluate the pharmacodynamics of polymyxin B combinations against rapidly evolving P. aeruginosa mutator strains and to characterize the time course of bacterial killing and resistance via mechanism-based mathematical models. Polymyxin B or doripenem alone and in combination were evaluated against six P. aeruginosa strains: wild-type PAO1, mismatch repair (MMR)-deficient (mutS and mutL) strains, and 7,8-dihydro-8-oxo-deoxyguanosine system (GO) base excision repair (BER)-deficient (mutM, mutT, and mutY) strains over 48 h. Pharmacodynamic modeling was performed using S-ADAPT and facilitated by SADAPT-TRAN. Mutator strains displayed higher mutation frequencies than the wild type (>600-fold). Exposure to monotherapy was followed by regrowth, even at high polymyxin B concentrations of up to 16 mg/liter. Polymyxin B and doripenem combinations displayed enhanced killing activity against all strains where complete eradication was achieved for polymyxin B concentrations of >4 mg/liter and doripenem concentrations of 8 mg/liter. Modeling suggested that the proportion of preexisting polymyxin B-resistant subpopulations influenced the pharmacodynamic profiles for each strain uniquely (fraction of resistance values are −8.81 log10 for the wild type, −4.71 for the mutS mutant, and −7.40 log10 for the mutM mutant). Our findings provide insight into the optimization of polymyxin B and doripenem combinations against P. aeruginosa mutator strains. PMID:26926641

  8. Mitogenic effects of purified outer membrane proteins from Pseudomonas aeruginosa.

    PubMed Central

    Chen, Y H; Hancock, R E; Mishell, R I

    1980-01-01

    Three major outer membrane proteins from Pseudomonas aeruginosa PAO1 were purified and tested for their ability to stimulate resting murine lymphocytes to proliferate. It was demonstrated that picomole amounts of all three proteins were mitogenic for both intact and T-lymphocyte-depleted populations of spleen cells from C3H/HeJ mice. In contrast, they had no activity against either mature or immature thymocytes. Since the strain of mice used is unable to respond to lipopolysaccharide, we condlude that the three proteins are B-cell mitogens. Images Fig. 2 PMID:6769818

  9. Efficacy and safety of liposomal clarithromycin and its effect on Pseudomonas aeruginosa virulence factors.

    PubMed

    Alhajlan, Mai; Alhariri, Moayad; Omri, Abdelwahab

    2013-06-01

    We investigated the efficacy and safety of liposomal clarithromycin formulations with different surface charges against clinical isolates of Pseudomonas aeruginosa from the lungs of cystic fibrosis (CF) patients. The liposomal clarithromycin formulations were prepared by the dehydration-rehydration method, and their sizes were measured using the dynamic-light-scattering technique. Encapsulation efficiency was determined by microbiological assay, and the stabilities of the formulations in biological fluid were evaluated for a period of 48 h. The MICs and minimum bactericidal concentrations (MBCs) of free and liposomal formulations were determined with P. aeruginosa strains isolated from CF patients. Liposomal clarithromycin activity against biofilm-forming P. aeruginosa was compared to that of free antibiotic using the Calgary Biofilm Device (CBD). The effects of subinhibitory concentrations of free and liposomal clarithromycin on bacterial virulence factors and motility on agar were investigated on clinical isolates of P. aeruginosa. The cytotoxicities of the liposome preparations and free drug were evaluated on a pulmonary epithelial cell line (A549). The average diameter of the formulations was >222 nm, with encapsulation efficiencies ranging from 5.7% to 30.4%. The liposomes retained more than 70% of their drug content during the 48-h time period. The highly resistant strains of P. aeruginosa became susceptible to liposome-encapsulated clarithromycin (MIC, 256 mg/liter versus 8 mg/liter; P < 0.001). Liposomal clarithromycin reduced the bacterial growth within the biofilm by 3 to 4 log units (P < 0.001), significantly attenuated virulence factor production, and reduced bacterial twitching, swarming, and swimming motilities. The clarithromycin-entrapped liposomes were less cytotoxic than the free drug (P < 0.001). These data indicate that our novel formulations could be a useful strategy to enhance the efficacy of clarithromycin against resistant P. aeruginosa

  10. Screening of Lactobacillus spp. for the prevention of Pseudomonas aeruginosa pulmonary infections

    PubMed Central

    2014-01-01

    Background Pseudomonas aeruginosa is an opportunistic pathogen that significantly increases morbidity and mortality in nosocomial infections and cystic fibrosis patients. Its pathogenicity especially relies on the production of virulence factors or resistances to many antibiotics. Since multiplication of antibiotic resistance can lead to therapeutic impasses, it becomes necessary to develop new tools for fighting P. aeruginosa infections. The use of probiotics is one of the ways currently being explored. Probiotics are microorganisms that exert a positive effect on the host’s health and some of them are known to possess antibacterial activities. Since most of their effects have been shown in the digestive tract, experimental data compatible with the respiratory environment are strongly needed. The main goal of this study was then to test the capacity of lactobacilli to inhibit major virulence factors (elastolytic activity and biofilm formation) associated with P. aeruginosa pathogenicity. Results Sixty-seven lactobacilli were isolated from the oral cavities of healthy volunteers. These isolates together with 20 lactobacilli isolated from raw milks, were tested for their capacity to decrease biofilm formation and activity of the elastase produced by P. aeruginosa PAO1. Ten isolates, particularly efficient, were accurately identified using a polyphasic approach (API 50 CHL, mass-spectrometry and 16S/rpoA/pheS genes sequencing) and typed by pulsed-field gel electrophoresis (PFGE). The 8 remaining strains belonging to the L. fermentum (6), L. zeae (1) and L. paracasei (1) species were sensitive to all antibiotics tested with the exception of the intrinsic resistance to vancomycin. The strains were all able to grow in artificial saliva. Conclusion Eight strains belonging to L. fermentum, L. zeae and L. paracasei species harbouring anti-elastase and anti-biofilm properties are potential probiotics for fighting P. aeruginosa pulmonary infections. However, further

  11. In vitro management of hospital Pseudomonas aeruginosa biofilm using indigenous T7-like lytic phage.

    PubMed

    Ahiwale, Sangeeta; Tamboli, Nilofer; Thorat, Kiran; Kulkarni, Rajendra; Ackermann, Hans; Kapadnis, Balasaheb

    2011-02-01

    Pseudomonas aeruginosa, a human pathogen capable of forming biofilm and contaminating medical settings, is responsible for 65% mortality in the hospitals all over the world. This study was undertaken to isolate lytic phages against biofilm forming Ps. aeruginosa hospital isolates and to use them for in vitro management of biofilms in the microtiter plate. Multidrug resistant strains of Ps. aeruginosa were isolated from the hospital environment in and around Pimpri-Chinchwad, Maharashtra by standard microbiological methods. Lytic phages against these strains were isolated from the Pavana river water by double agar layer plaque assay method. A wide host range phage bacterial virus Ps. aeruginosa phage (BVPaP-3) was selected. Electron microscopy revealed that BVPaP-3 phage is a T7-like phage and is a relative of phage species gh-1. A phage at MOI-0.001 could prevent biofilm formation by Ps. aeruginosa hospital strain-6(HS6) on the pegs within 24 h. It could also disperse pre-formed biofilms of all hospital isolates (HS1-HS6) on the pegs within 24 h. Dispersion of biofilm was studied by monitoring log percent reduction in cfu and log percent increase in pfu of respective bacterium and phage on the peg as well as in the well. Scanning electron microscopy confirmed that phage BVPaP-3 indeed causes biofilm reduction and bacterial cell killing. Laboratory studies prove that BVPaP-3 is a highly efficient phage in preventing and dispersing biofilms of Ps. aeruginosa. Phage BVPaP-3 can be used as biological disinfectant to control biofilm problem in medical devices.

  12. Surveillance of Pseudomonas aeruginosa-isolates in a neonatal intensive care unit over a one year-period.

    PubMed

    Zabel, Lutz Thomas; Heeg, Peter; Goelz, Rangmar

    2004-07-01

    Outbreaks of gram-negative bacteria such as Pseudomonas aeruginosa in neonatal intensive care units (NICU) can be life-threatening to pre-term infants, which are highly susceptible to serious infections with bacteria. Forty-two ventilated neonates in the NICU of the University Children's Hospital of Tuebingen were found to be colonized (n = 40) or infected (n = 2) with P. aeruginosa within a sampling period of one year. To investigate the colonization patterns and identify potential outbreak sources, epidemiological investigations, environmental surveillance and typing by serotyping and pulsed-field gel electrophoresis of the recovered isolates were performed. The investigation demonstrated a genetically related cluster of P. aeruginosa isolates during the surveillance period in 39 neonates and a second cluster at the end of the period in two neonates. A third strain representing a genetically distinct group was found in only one patient. Environmental investigations demonstrated the presence of P. aeruginosa in the ventilation equipment of 22 patients: binasal prongs (n = 22), water reservoir (n = 9), and heater (n = 1). In one case, P. aeruginosa was found in breast milk. Other environmental investigations revealed no P. aeruginosa. Although no evidence for a unique source was found, a series of intervention steps were initiated by the NICU personnel, medical microbiologists and infection control experts. The intervention steps included reinforced training of health care staff and a change from chemical to thermal disinfection of binasal prongs. Implementation of these measurements successfully stopped the recurrent occurrence of P. aeruginosa colonization.

  13. Loss of social behaviours in populations of Pseudomonas aeruginosa infecting lungs of patients with cystic fibrosis.

    PubMed

    Jiricny, Natalie; Molin, Søren; Foster, Kevin; Diggle, Stephen P; Scanlan, Pauline D; Ghoul, Melanie; Johansen, Helle Krogh; Santorelli, Lorenzo A; Popat, Roman; West, Stuart A; Griffin, Ashleigh S

    2014-01-01

    Pseudomonas aeruginosa, is an opportunistic, bacterial pathogen causing persistent and frequently fatal infections of the lung in patients with cystic fibrosis. Isolates from chronic infections differ from laboratory and environmental strains in a range of traits and this is widely interpreted as the result of adaptation to the lung environment. Typically, chronic strains carry mutations in global regulation factors that could effect reduced expression of social traits, raising the possibility that competitive dynamics between cooperative and selfish, cheating strains could also drive changes in P. aeruginosa infections. We compared the expression of cooperative traits - biofilm formation, secretion of exo-products and quorum sensing (QS) - in P. aeruginosa isolates that were estimated to have spent different lengths of time in the lung based on clinical information. All three exo-products involved in nutrient acquisition were produced in significantly smaller quantities with increased duration of infection, and patterns across four QS signal molecules were consistent with accumulation over time of mutations in lasR, which are known to disrupt the ability of cells to respond to QS signal. Pyocyanin production, and the proportion of cells in biofilm relative to motile, free-living cells in liquid culture, did not change. Overall, our results confirm that the loss of social behaviour is a consistent trend with time spent in the lung and suggest that social dynamics are potentially relevant to understanding the behaviour of P. aeruginosa in lung infections. PMID:24454693

  14. RELATIVE EXPRESSION OF EFFLUX PUMPS IN MULTI DRUG RESISTANT PSEUDOMONAS AERUGINOSA.

    PubMed

    Azimi, Leila; Namvar, Amirmorteza Ebrahimzadeh; Jamali, Sadaf; Lari, Aida Rastegar; Bijari, Aslan; Lari, Abdolaziz Rastegar

    2015-01-01

    Pseudomonas aeruginosa is known as an important opportunistic pathogen, resistant to a high number of antibiotics. Efflux pumps are one of the main intrinsic antibiotics resistance mechanisms in P. aeruginosa. MexAB-OprM, MexCD-OprJ, and MexXY-OprM are the main efflux pumps involved in beta-lactam resistant strains which may cause cross resistance to different antimicrobial classes. The aim of this study was to detect relative gene expression in betalactam-resistant clinical P. aeruginosa strains. One hundred fourteen clinical strains of P. aeruginosa were identified by phenotypic and genotypic methods. Antibiotic susceptibility testing was conducted according to CLSI guideline. Carbonyl cyanide 3-chlorophenylhydrazone (CCCP) was used as an efflux pump inhibitor for phenotypic detection of efflux pump mechanism and q-RT PCR was conducted for relative gene expression detection. The highest rate of resistance was observed against cefotaxime and various relative gene expressions levels were observed in all isolates with positive phenotypic test results. PMID:27328522

  15. Loss of social behaviours in populations of Pseudomonas aeruginosa infecting lungs of patients with cystic fibrosis.

    PubMed

    Jiricny, Natalie; Molin, Søren; Foster, Kevin; Diggle, Stephen P; Scanlan, Pauline D; Ghoul, Melanie; Johansen, Helle Krogh; Santorelli, Lorenzo A; Popat, Roman; West, Stuart A; Griffin, Ashleigh S

    2014-01-01

    Pseudomonas aeruginosa, is an opportunistic, bacterial pathogen causing persistent and frequently fatal infections of the lung in patients with cystic fibrosis. Isolates from chronic infections differ from laboratory and environmental strains in a range of traits and this is widely interpreted as the result of adaptation to the lung environment. Typically, chronic strains carry mutations in global regulation factors that could effect reduced expression of social traits, raising the possibility that competitive dynamics between cooperative and selfish, cheating strains could also drive changes in P. aeruginosa infections. We compared the expression of cooperative traits - biofilm formation, secretion of exo-products and quorum sensing (QS) - in P. aeruginosa isolates that were estimated to have spent different lengths of time in the lung based on clinical information. All three exo-products involved in nutrient acquisition were produced in significantly smaller quantities with increased duration of infection, and patterns across four QS signal molecules were consistent with accumulation over time of mutations in lasR, which are known to disrupt the ability of cells to respond to QS signal. Pyocyanin production, and the proportion of cells in biofilm relative to motile, free-living cells in liquid culture, did not change. Overall, our results confirm that the loss of social behaviour is a consistent trend with time spent in the lung and suggest that social dynamics are potentially relevant to understanding the behaviour of P. aeruginosa in lung infections.

  16. First Detection of Metallo-β-Lactamase VIM-2 in Pseudomonas aeruginosa Isolates from Colombia

    PubMed Central

    Villegas, Maria Virginia; Lolans, Karen; del Rosario Olivera, Maria; Suarez, Carlos José; Correa, Adriana; Queenan, Anne Marie; Quinn, John P.

    2006-01-01

    Carbapenem resistance rates in Pseudomonas aeruginosa isolates in Colombia, as in many South American countries, are high for reasons that remain unclear. From our nationwide network, we describe the first detection of the metallo-β-lactamase VIM-2 in clinical isolates of P. aeruginosa from multiple cities within Colombia. Metallo-β-lactamases were not detected in the two centers with the highest imipenem resistance rates. Clonality was noted in five of the eight centers with strains meeting the criteria for molecular typing. The high carbapenem resistance in P. aeruginosa in Colombia may be attributable to a combination of factors, including the presence of metallo-β-lactamases and nosocomial transmission. PMID:16377690

  17. Local Expansion of a Panmictic Lineage of Water Bloom-Forming Cyanobacterium Microcystis aeruginosa

    PubMed Central

    Tanabe, Yuuhiko; Watanabe, Makoto M.

    2011-01-01

    In previous studies, we have demonstrated that the population structure of the bloom-forming cyanobacterium Microcystis aeruginosa is clonal. Expanded multilocus sequence typing analysis of M. aeruginosa using 412 isolates identified five intraspecific lineages suggested to be panmictic while maintaining overall clonal structure probably due to a reduced recombination rate between lineages. Interestingly, since 2005 most strains belonging to one of these panmictic clusters (group G) have been found in a particular locality (Lake Kasumigaura Basin) in Japan. In this locality, multiple, similar but distinct genotypes of this lineage predominated in the bloom, a pattern that is unprecedented for M. aeruginosa. The population structure underlying blooms associated with this lineage is comparable to epidemics of pathogens. Our results may reveal an expansion of the possible adaptive lineage in a localized aquatic environment, providing us with a unique opportunity to investigate its ecological and biogeographical consequences. PMID:21390221

  18. Antimicrobial testing of selected fluoroquinolones against Pseudomonas aeruginosa isolated from canine otitis.

    PubMed

    McKay, Lindsay; Rose, Crystal D Schuman; Matousek, Jennifer L; Schmeitzel, Lynn S; Gibson, Nicole M; Gaskin, Jack M

    2007-01-01

    A total of 100 Pseudomonas aeruginosa (P. aeruginosa) isolates were collected over a 1.5-year period from cases of canine otitis. Sensitivities to enrofloxacin, marbofloxacin, and orbifloxacin were determined using minimum inhibitory concentration testing (MICT). Isolates were also tested for sensitivities to enrofloxacin and marbofloxacin using disk-diffusion susceptibility testing (DDST). Isolates were significantly more sensitive to marbofloxacin than to enrofloxacin (z = -4.57; P<0.05) or orbifloxacin (z = -5.02; P<0.05). Agreement was 87% between MICT and DDST for marbofloxacin, with approximately equal numbers of overestimation and underestimation errors. Agreement was 74% between MICT and DDST for enrofloxacin, but DDST tended to overestimate the number of enrofloxacin-susceptible strains. These results suggest that marbofloxacin is more effective against P. aeruginosa than either enrofloxacin or orbifloxacin and that relying on DDST may lead to ineffective enrofloxacin treatment.

  19. Pseudomonas aeruginosa Evolutionary Adaptation and Diversification in Cystic Fibrosis Chronic Lung Infections

    PubMed Central

    Winstanley, Craig; O’Brien, Siobhan; Brockhurst, Michael A.

    2016-01-01

    Pseudomonas aeruginosa populations undergo a characteristic evolutionary adaptation during chronic infection of the cystic fibrosis (CF) lung, including reduced production of virulence factors, transition to a biofilm-associated lifestyle, and evolution of high-level antibiotic resistance. Populations of P. aeruginosa in chronic CF lung infections typically exhibit high phenotypic diversity, including for clinically important traits such as antibiotic resistance and toxin production, and this diversity is dynamic over time, making accurate diagnosis and treatment challenging. Population genomics studies reveal extensive genetic diversity within patients, including for transmissible strains the coexistence of highly divergent lineages acquired by patient-to-patient transmission. The inherent spatial structure and spatial heterogeneity of selection in the CF lung appears to play a key role in driving P. aeruginosa diversification. PMID:26946977

  20. Multidrug resistant Pseudomonas aeruginosa infection in children undergoing chemotherapy and hematopoietic stem cell transplantation.

    PubMed

    Caselli, Désirée; Cesaro, Simone; Ziino, Ottavio; Zanazzo, Giulio; Manicone, Rosaria; Livadiotti, Susanna; Cellini, Monica; Frenos, Stefano; Milano, Giuseppe M; Cappelli, Barbara; Licciardello, Maria; Beretta, Chiara; Aricò, Maurizio; Castagnola, Elio

    2010-09-01

    Pseudomonas aeruginosa is one leading gram-negative organism associated with nosocomial infections. Bacteremia is life-threatening in the immunocompromised host. Increasing frequency of multi-drug-resistant (MDRPA) strains is concerning. We started a retrospective survey in the pediatric hematology oncology Italian network. Between 2000 and 2008, 127 patients with Pseudomonas aeruginosa bacteremia were reported from 12 centers; 31.4% of isolates were MDRPA. Death within 30 days of a positive blood culture occurred in 19.6% (25/127) of total patients; in patients with MDRPA infection it occurred in 35.8% (14/39). In the multivariate analysis, only MDRPA had significant association with infection-related death. This is the largest series of Pseudomonas aeruginosa bacteremia cases from pediatric hematology oncology centers. Monitoring local bacterial isolates epidemiology is mandatory and will allow empiric antibiotic therapy to be tailored to reduce fatalities.

  1. The Pseudomonas aeruginosa oxyvinylglycine L-2-amino-4-methoxy-trans-3-butenoic acid inhibits growth of Erwinia amylovora and acts as a weak seed germination-arrest factor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid (AMB) is demonstrated to share biological activities with 4-formylaminooxyvinylglycine, a related molecule produced by Pseudomonas fluorescens WH6. We found that culture filtrates of a P. aeruginosa strain overproduc...

  2. Analysis of quorum sensing-deficient clinical isolates of Pseudomonas aeruginosa.

    PubMed

    Schaber, J Andy; Carty, Nancy L; McDonald, Naomi A; Graham, Eric D; Cheluvappa, Rajkumar; Griswold, John A; Hamood, Abdul N

    2004-09-01

    Pseudomonas aeruginosa produces multiple virulence factors and causes different types of infections. Previous clinical studies identified P. aeruginosa isolates that lack individual virulence factors. However, the impact of losing several virulence factors simultaneously on the in vivo virulence of P. aeruginosa is not completely understood. The P. aeruginosa cell-to-cell communication system, or quorum sensing (QS), controls the production of several virulence factors. Animal studies using constructed QS mutants indicated that loss of the QS system severely impacts the virulence of P. aeruginosa. In this study, we tried to determine if deficiency within the QS system compromises the ability of P. aeruginosa to establish infections in humans. We have identified five QS-deficient strains through screening 200 isolates from patients with urinary tract, lower respiratory tract and wound infections. These strains lacked LasB and LasA activities and produced either no or very low levels of the autoinducers N-(3-oxododecanoyl) homoserine lactone and N-butyryl homoserine lactone. PCR analysis revealed that three isolates contained all four QS genes (lasI, lasR, rhlI and rhlR) while two isolates lacked both the lasR and rhlR genes. We also examined the five isolates for other virulence factors. The isolates produced variable levels of exotoxin A and, with one exception, were deficient in pyocyanin production. One isolate produced the type III secretion system (TTSS) effector proteins ExoS and ExoT, two isolates produced ExoT only and two isolates produced no TTSS proteins. The isolates produced weak to moderate biofilms on abiotic surfaces. Analysis of the patients' data revealed that two of the isolates represented a single strain that was isolated twice from the same patient within a 1 month interval. One QS-deficient clinical isolate (CI-1) lacked all tested virulence factors and produced a weak biofilm. These results suggest that naturally occurring QS

  3. Interaction between extracellular lipase LipA and the polysaccharide alginate of Pseudomonas aeruginosa

    PubMed Central

    2013-01-01

    Background As an opportunistic human pathogen Pseudomonas aeruginosa is able to cause acute and chronic infections. The biofilm mode of life significantly contributes to the growth and persistence of P. aeruginosa during an infection process and mediates the pathogenicity of the bacterium. Within a biofilm mucoid strains of P. aeruginosa simultaneously produce and secrete several hydrolytic enzymes and the extracellular polysaccharide alginate. The focus of the current study was the interaction between extracellular lipase LipA and alginate, which may be physiologically relevant in biofilms of mucoid P. aeruginosa. Results Fluorescence microscopy of mucoid P. aeruginosa biofilms were performed using fluorogenic lipase substrates. It showed a localization of the extracellular enzyme near the cells. A microtiter plate-based binding assay revealed that the polyanion alginate is able to bind LipA. A molecular modeling approach showed that this binding is structurally based on electrostatic interactions between negatively charged residues of alginate and positively charged amino acids of the protein localized opposite of the catalytic centre. Moreover, we showed that the presence of alginate protected the lipase activity by protection from heat inactivation and from degradation by the endogenous, extracellular protease elastase LasB. This effect was influenced by the chemical properties of the alginate molecules and was enhanced by the presence of O-acetyl groups in the alginate chain. Conclusion We demonstrate that the extracellular lipase LipA from P. aeruginosa interacts with the polysaccharide alginate in the self-produced extracellular biofilm matrix of P. aeruginosa via electrostatic interactions suggesting a role of this interaction for enzyme immobilization and accumulation within biofilms. This represents a physiological advantage for the cells. Especially in the biofilm lifestyle, the enzyme is retained near the cell surface, with the catalytic centre exposed

  4. Survival, recovery and microcystin release of Microcystis aeruginosa in cold or dark condition

    NASA Astrophysics Data System (ADS)

    Ding, Yi; Gan, Nanqin; Liu, Jin; Zheng, Lingling; Li, Lin; Song, Lirong

    2016-05-01

    Microcystis often dominates phytoplankton in eutrophic lakes and must survive a long period of cold or dark conditions. However, the survival strategies of Microcystis to withstand cold or dark stress are less well known. In this study, we conducted experiments on the responses of two toxic Microcystis aeruginosa strains (FACHB-905 and FACHB-915) and their microcystin release in conditions of low temperature (15°C or 4°C, with illumination) or darkness, and subsequent recovery in standard conditions (25°C with illumination). On exposure to 15°C, a small decrease in cell viability was observed, but the cell number increased gradually, suggesting that M. aeruginosa FACHB-905 and FACHB-915 cells seem in general tolerant in 15°C. Interestingly, our results show that a higher carotenoid content and microcystin release potentially enhance the fi tness of surviving cells at 15°C. M. aeruginosa cells exposed to lower temperature light stress (4°C) did not completely lose viability and retained the ability to reinitiate growth. In darkness, the maximum quantum yield (F v/F m) and the maximum electron transport rate (ETRmax) values and cell viability of M. aeruginosa cells gradually decreased with time. During the recovery period, the photosynthetic effi ciency of M. aeruginosa reverted to the normal level. Additionally, M. aeruginosa FACHB-905 and FACHB-915 exposed to low temperature had increased caspase-3-like activity and DNA fragmentation, which suggests the occurrence of a type of cell death in M. aeruginosa cells under cold stress similar to programmed cell death. Overall, our fi ndings could confer certain advantages on the Microcystis for surviving cold or dark conditions encountered in the annual cycle, and help explain its repeated occurrence in water blooms in large and shallow lakes.

  5. Clustering of mutations affecting alginic acid biosynthesis in mucoid Pseudomonas aeruginosa.

    PubMed Central

    Darzins, A; Wang, S K; Vanags, R I; Chakrabarty, A M

    1985-01-01

    A 10-kilobase DNA fragment previously shown to contain the phosphomannose isomerase gene (pmi) of Pseudomonas aeruginosa was used to construct a pBR325-based hybrid that can be propagated in P. aeruginosa only by the formation of a chromosomal-plasmid cointegrate. This plasmid, designated pAD4008, was inserted into the P. aeruginosa chromosome by recombination at a site of homology between the cloned P. aeruginosa DNA and the chromosome. Mobilization of pAD4008 into P. aeruginosa PAO and 8830 and selection for the stable acquisition of tetracycline resistance resulted in specific and predictable changes in the pattern of endonuclease restriction sites in the phosphomannose isomerase gene region of the chromosomes. Chromosomal DNA from the tetracycline-resistant transformants was used to clone the drug resistance determinant with Bg/II or XbaI, thereby allowing the "walking" of the P. aeruginosa chromosome in the vicinity of the pmi gene. Analysis of overlapping tetracycline-resistant clones indicated the presence of sequences homologous to the DNA insert of plasmid pAD2, a recombinant clone of P. aeruginosa origin previously shown to complement several alginate-negative mutants. Restriction mapping, subcloning, and complementation analysis of a 30-kilobase DNA region demonstrated the tight clustering of several genetic loci involved in alginate biosynthesis. Furthermore, the tetracycline resistance determinant in PAO strain transformed by pAD4008 was mapped on the chromosome by plasmid FP2-mediated conjugation and was found to be located near 45 min. Images PMID:3932325

  6. A crucial role of Flagellin in the induction of airway mucus production by Pseudomonas aeruginosa.

    PubMed

    Ben Mohamed, Fatima; Mohamed, Fatima Ben; Garcia-Verdugo, Ignacio; Medina, Mathieu; Balloy, Viviane; Chignard, Michel; Ramphal, Reuben; Touqui, Lhousseine

    2012-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen involved in nosocomial infections. Flagellin is a P. aeruginosa virulence factor involved in host response to this pathogen. We examined the role of flagellin in P. aeruginosa-induced mucus secretion. Using a mouse model of pulmonary infection we showed that PAK, a wild type strain of P. aeruginosa, induced airway mucus secretion and mucin muc5ac expression at higher levels than its flagellin-deficient mutant (ΔFliC). PAK induced expression of MUC5AC and MUC2 in both human airway epithelial NCI-H292 cell line and in primary epithelial cells. In contrast, ΔFliC infection had lower to no effect on MUC5AC and MUC2 expressions. A purified P. aeruginosa flagellin induced MUC5AC expression in parallel to IL-8 secretion in NCI-H292 cells. Accordingly, ΔFliC mutant stimulated IL-8 secretion at significantly lower levels compared to PAK. Incubation of NCI-H292 cells with exogenous IL-8 induced MUC5AC expression and pre-incubation of these cells with an anti-IL-8 antibody abrogated flagellin-mediated MUC5AC expression. Silencing of TLR5 and Naip, siRNA inhibited both flagellin-induced MUC5AC expression and IL-8 secretion. Finally, inhibition of ERK abolished the expression of both PAK- and flagellin-induced MUC5AC. We conclude that: (i) flagellin is crucial in P. aeruginosa-induced mucus hyper-secretion through TLR5 and Naip pathways; (ii) this process is mediated by ERK and amplified by IL-8. Our findings help understand the mechanisms involved in mucus secretion during pulmonary infectious disease induced by P. aeruginosa, such as in cystic fibrosis. PMID:22768318

  7. Different responses of pyoverdine genes to autoinduction in Pseudomonas aeruginosa and the group Pseudomonas fluorescens-Pseudomonas putida.

    PubMed

    Ambrosi, Cecilia; Leoni, Livia; Visca, Paolo

    2002-08-01

    We investigated the regulation of the psbA and pvdA pyoverdine biosynthesis genes, which encode the L-ornithine N(5)-oxygenase homologues in Pseudomonas strain B10 and Pseudomonas aeruginosa PAO1, respectively. We demonstrate that pyoverdine(B10), as the end product of its biosynthetic pathway, is a key participant of the control circuit regulating its own production in Pseudomonas strain B10. In P. aeruginosa PAO1, however, pyoverdine(PAO1) has no apparent role in the positive regulation of the pvdA gene. PMID:12147517

  8. Silver against Pseudomonas aeruginosa biofilms.

    PubMed

    Bjarnsholt, Thomas; Kirketerp-Møller, Klaus; Kristiansen, Søren; Phipps, Richard; Nielsen, Anne Kirstine; Jensen, Peter Østrup; Høiby, Niels; Givskov, Michael

    2007-08-01

    Silver has been recognized for its antimicrobial properties for centuries. Most studies on the antibacterial efficacy of silver, with particular emphasis on wound healing, have been performed on planktonic bacteria. Our recent studies, however, strongly suggest that colonization of wounds involves bacteria in both the planktonic and biofilm modes of growth. The action of silver on mature in vitro biofilms of Pseudomonas aeruginosa, a primary pathogen of chronic infected wounds, was investigated. The results show that silver is very effective against mature biofilms of P. aeruginosa, but that the silver concentration is important. A concentration of 5-10 mug/mL silver sulfadiazine eradicated the biofilm whereas a lower concentration (1 mug/mL) had no effect. The bactericidal concentration of silver required to eradicate the bacterial biofilm was 10-100 times higher than that used to eradicate planktonic bacteria. These observations strongly indicate that the concentration of silver in currently available wound dressings is much too low for treatment of chronic biofilm wounds. It is suggested that clinicians and manufacturers of the said wound dressings consider whether they are treating wounds primarily colonized either by biofilm-forming or planktonic bacteria.

  9. Prevalence of ESBLs-producing Pseudomonas aeruginosa isolates from different wards in a Chinese teaching hospital

    PubMed Central

    Chen, Zhilong; Niu, Hui; Chen, Guangyu; Li, Mingcheng; Li, Ming; Zhou, Yuqing

    2015-01-01

    This study was to explore the molecular dissemination of P. aeruginosa producing extended spectrum β-lactamase (ESBLs) recovered from the different wards in a teaching hospital, Jilin. Among 240 isolates, 91 strains were isolated from burn wards and 149 strains from surgical wards. A total of 210 strains (87.5%) produced ESBLs, 30 strains (12.5%) didn’t produce ESBLs. All ESBLs isolates showed identical antimicrobial susceptibility profiles. The genotypic prevalence of ESBLs for bla SHV-12, bla TEM-24, bla CTX-M-1, bla CTX-M-2, bla CTX-M-3, bla PER and bla VEB genes was 17.6%, 20.5%, 14.3%, 9.6%, 12.9%, 13.8% and 11.4% respectively. All P. aeruginosa strains producing ESBLs had three to six plasmids and contained class 1 integrons, which transferred resistance to E. coli C 600 by conjuation. The data indicated a high prevalence of ESBL among P. aeruginosa isolates in this region and their enzyme types were diverse. PMID:26770582

  10. Adaptation of Iron Homeostasis Pathways by a Pseudomonas aeruginosa Pyoverdine Mutant in the Cystic Fibrosis Lung

    PubMed Central

    Nguyen, Angela T.; O'Neill, Maura J.; Watts, Annabelle M.; Robson, Cynthia L.; Lamont, Iain L.; Wilks, Angela

    2014-01-01

    Cystic fibrosis (CF) patients suffer from chronic bacterial lung infections, most notably by Pseudomonas aeruginosa, which persists for decades in the lungs and undergoes extensive evolution. P. aeruginosa requires iron for virulence and uses the fluorescent siderophore pyoverdine to scavenge and solubilize ferric iron during acute infections. Pyoverdine mutants accumulate in the lungs of some CF patients, however, suggesting that the heme and ferrous iron acquisition pathways of P. aeruginosa are more important in this environment. Here, we sought to determine how evolution of P. aeruginosa in the CF lung affects iron acquisition and regulatory pathways through the use of longitudinal CF isolates. These analyses demonstrated a significant reduction of siderophore production during the course of CF lung infection in nearly all strains tested. Mass spectrometry analysis of one of these strains showed that the later CF isolate has streamlined the metabolic flux of extracellular heme through the HemO heme oxygenase, resulting in more-efficient heme utilization. Moreover, gene expression analysis shows that iron regulation via the PrrF small RNAs (sRNAs) is enhanced in the later CF isolate. Finally, analysis of P. aeruginosa gene expression in the lungs of various CF patients demonstrates that both PrrF and HemO are consistently expressed in the CF lung environment. Combined, these results suggest that heme is a critical source of iron during prolonged infection of the CF lung and that changes in iron and heme regulatory pathways play a crucial role in adaptation of P. aeruginosa to this ever-changing host environment. PMID:24727222

  11. Role of Adherence in the Pathogenesis of Pseudomonas aeruginosa Lung Infection in Cystic Fibrosis Patients

    PubMed Central

    Woods, Donald E.; Bass, Joe A.; Johanson, W. G.; Straus, David C.

    1980-01-01

    A correlation has been demonstrated between the in vitro adherence of Pseudomonas aeruginosa to upper respiratory tract epithelium and colonization of the respiratory tract by this organism. Twenty patients with cystic fibrosis (CF) and 20 age-matched controls were examined in this study. All of the CF patients but none of the controls were colonized with P. aeruginosa at the time of study. P. aeruginosa adherence to isolated epithelial cells, as determined by an in vitro assay, was 19.1 ± 1.1 bacteria per buccal epithelial cell in the CF patients and 2.3 ± 0.3 bacteria per cell in the controls (P < 0.01). P. aeruginosa strains of the mucoid colony type adhered in significantly lower numbers to buccal epithelial cells than did strains of the rough colony type (1.8 + 0.1 versus 24.8 ± 0.9, P < 0.001). This difference might explain the common observation that the initial pseudomonas colonization of the respiratory tract of CF patients is due to organisms of the rough colony type. We have further demonstrated that increased P. aeruginosa adherence in vitro varies directly with the loss of a protease-sensitive glycoprotein, fibronectin, from the cell surface, as well as increased levels of salivary proteases in CF patients. When examined by a direct radioimmune binding assay, buccal cells from CF patients possessed only 17% of the total cell surface fibronectin present on similar cells obtained from controls. Salivary protease levels, as measured by 125I release from an 125I-labeled insoluble fibrin matrix, were increased about threefold in CF patients versus controls. Thus, colonization of the respiratory tract by P. aeruginosa in CF patients correlates well with buccal cell adherence of this organism; increased adherence is associated with decreased amounts of fibronectin on respiratory epithelial cell surfaces and increased levels of salivary proteases. PMID:7014444

  12. Comparison of the outer membrane protein and lipopolysaccharide profiles of mucoid and nonmucoid Pseudomonas aeruginosa.

    PubMed Central

    Kelly, N M; MacDonald, M H; Martin, N; Nicas, T; Hancock, R E

    1990-01-01

    Laboratory-derived mucoid variants of Pseudomonas aeruginosa were selected by plating the standard PAO1 laboratory strain with bacteriophage. These mucoid variants formed two distinct groups of strains on the basis of phage typing. The first group had the same phage-typing pattern as the parent PAO1 strain, while the second group had a distinctly different phage-typing pattern. One strain from each group was assessed along with the parent PAO1 strain for its outer membrane protein (OMP) and lipopolysaccharide (LPS) profiles by sodium dodecyl sulfate-gel electrophoresis followed by appropriate staining. The mucoid derivatives were found to differ from the parent PAO1 nonmucoid strain in having lost a high-molecular-weight LPS species. Furthermore, the reversion of the mucoid strains to the nonmucoid phenotype was accompanied by a return of the missing high-molecular-weight LPS species. No observable difference between the mucoid derivatives and the parent nonmucoid strain was noted in the OMP profiles. The opposite was found in the case of four isolates of mucoid P. aeruginosa from patients with cystic fibrosis. Two OMP bands (of approximately 55 and 25 kilodaltons) were present in the mucoid isolates but missing in their sister nonmucoid strains. In the case of the cystic fibrosis isolates, no difference in the LPS profiles within mucoid-nonmucoid pairs was noted. Images PMID:2121789

  13. Post-antibiotic effect of orbifloxacin against Escherichia coli and Pseudomonas aeruginosa isolates from dogs.

    PubMed

    Harada, Kazuki; Shimizu, Takae; Kataoka, Yasushi; Takahashi, Toshio

    2012-03-20

    Orbifloxacin is a fluoroquinolone drug used widely in companion animal medicine. In this study, we firstly determined post-antibiotic effects (PAEs) and post-antibiotic sub-minimum inhibitory concentrations (MIC) effects (PA-SMEs) of orbifloxacin for two strains each of Escherichia coli and Pseudomonas aeruginosa from dogs, and these parameters were compared with those of enrofloxacin. At twice the MIC, the PAEs of orbifloxacin ranged from -0.28-0.93 h (mean, 0.29 h) for E. coli and -0.18-1.18 h (mean, 0.37 h) for P. aeruginosa. These parameters were not significantly different for E. coli and shorter for P. aeruginosa, compared to enrofloxacin (P < 0.05). Continued exposure to 0.1, 0.2, and 0.3 the MIC of orbifloxacin resulted in average PA-SMEs of 0.55, 1.11, and 2.03 h, respectively, for E. coli, and 1.04, 1.40, and 2.47 h, respectively, for P. aeruginosa. These PA-SMEs, which had no significant differences with those of enrofloxacin, were significantly longer than the corresponding PAEs (P < 0.05). These results suggest that the PA-SME of orbifloxacin for E. coli and P. aeruginosa can be meaningfully prolonged by increase of sub-MICs.

  14. A comparative study of coastal and clinical isolates of Pseudomonas aeruginosa.

    PubMed

    Nair, Anusree V; Joseph, Neetha; Krishna, Kiran; Sneha, K G; Tom, Neenu; Jangid, Kamlesh; Nair, Shanta

    2015-01-01

    Pseudomonas aeruginosa is a ubiquitous Gram-negative bacterium having a versatile metabolic potential and great ecological and clinical significance. The geographical distribution of P. aeruginosahas revealed the existence of an unbiased genetic arrangement in terrestrial isolates. In contrast, there are very few reports about P. aeruginosa strains from marine environments. The present work was aimed at studying the distribution of P. aeruginosa in coastal waters along the Indian Peninsula and understanding the environmental influence on genotypic, metabolic and phenotypic characteristics by comparing marine and clinical isolates. Of the 785 marine isolates obtained on selective media, only 32 (~4.1%) were identified as P. aeruginosa, based on their fatty acid methyl ester profiles. A low Euclidian distance value (< 2.5) obtained from chemotaxonomic analysis suggested that all the environmental (coastal and marine) isolates originated from a single species. While UPGMA analyses of AP-PCR and phenotypic profiles separated the environmental and clinical isolates, fatty acid biotyping showed overlapping between most clinical and environmental isolates. Our study revealed the genetic diversity among different environmental isolates of P. aeruginosa. While biogeographical separation was not evident based solely on phenotypic and metabolic typing, genomic and metatranscriptomic studies are more likely to show differences between these isolates. Thus, newer and more insightful methods are required to understand the ecological distribution of this complex group of bacteria. PMID:26413053

  15. Characterization of Toxin-Antitoxin (TA) Systems in Pseudomonas aeruginosa Clinical Isolates in Iran

    PubMed Central

    Savari, Mohammad; Rostami, Soodabeh; Ekrami, Alireza; Bahador, Abbas

    2016-01-01

    Background: Pseudomonas aeruginosa is among the most problematic hospital and community-acquired pathogens. Toxin-antitoxin (TA) systems are maintenance regulatory systems in bacteria and have recently been considered new targets for antimicrobial therapy. The prevalence and transcription of these systems in clinical isolates are still unknown. Objectives: The aim of this study was to characterize three types of TA systems (parDE, relBE, and higBA) among P. aeruginosa clinical isolates. Materials and Methods: We typed our clinical isolates by ERIC-PCR (enterobacterial repetitive intergenic consensus sequence-based polymerase chain reaction) and BOX-PCR. We then investigated 174 P. aeruginosa clinical isolates from three hospitals in Ahvaz, Iran, for the presence of TA system genes, and determined whether these systems were encoded on chromosomes or plasmids by amplification of the flanking regions. Results: Our results showed that in the 174 P. aeruginosa isolates, relBE and higBA were universal, but parDE was less prevalent. Both of the flanking regions of the parDE genes in all positive isolates were amplified. The flanking regions of nearly all relBE genes were amplified. Amplification was observed for the downstream sequence of every higBA locus, as well as for the region upstream of higBA, except in 14 strains. Conclusions: Based on the presence of TA systems in the majority of P. aeruginosa isolates, these could be used as a novel target for antimicrobial therapy. PMID:27099681

  16. Flagellin Delivery by Pseudomonas aeruginosa Rhamnolipids Induces the Antimicrobial Protein Psoriasin in Human Skin

    PubMed Central

    Meyer-Hoffert, Ulf; Zimmermann, Alexandra; Czapp, Manfred; Bartels, Joachim; Koblyakova, Yulia; Gläser, Regine; Schröder, Jens-Michael; Gerstel, Ulrich

    2011-01-01

    The opportunistic pathogen Pseudomonas aeruginosa can cause severe infections in patients suffering from disruption or disorder of the skin barrier as in burns, chronic wounds, and after surgery. On healthy skin P. aeruginosa causes rarely infections. To gain insight into the interaction of the ubiquitous bacterium P. aeruginosa and healthy human skin, the induction of the antimicrobial protein psoriasin by P. aeruginosa grown on an ex vivo skin model was analyzed. We show that presence of the P. aeruginosa derived biosurfactant rhamnolipid was indispensable for flagellin-induced psoriasin expression in human skin, contrary to in vitro conditions. The importance of the bacterial virulence factor flagellin as the major inducing factor of psoriasin expression in skin was demonstrated by use of a flagellin-deficient mutant. Rhamnolipid mediated shuttle across the outer skin barrier was not restricted to flagellin since rhamnolipids enable psoriasin expression by the cytokines IL-17 and IL-22 after topical application on human skin. Rhamnolipid production was detected for several clinical strains and the formation of vesicles was observed under skin physiological conditions. In conclusion we demonstrate herein that rhamnolipids enable the induction of the antimicrobial protein psoriasin by flagellin in human skin without direct contact of bacteria and responding cells. Hereby, human skin might control the microflora to prevent colonization of unwanted microbes in the earliest steps before potential pathogens can develop strategies to subvert the immune response. PMID:21283546

  17. A comparative study of coastal and clinical isolates of Pseudomonas aeruginosa

    PubMed Central

    Nair, Anusree V.; Joseph, Neetha; Krishna, Kiran; Sneha, K. G.; Tom, Neenu; Jangid, Kamlesh; Nair, Shanta

    2015-01-01

    Pseudomonas aeruginosa is a ubiquitous Gram-negative bacterium having a versatile metabolic potential and great ecological and clinical significance. The geographical distribution of P. aeruginosahas revealed the existence of an unbiased genetic arrangement in terrestrial isolates. In contrast, there are very few reports about P. aeruginosa strains from marine environments. The present work was aimed at studying the distribution of P. aeruginosa in coastal waters along the Indian Peninsula and understanding the environmental influence on genotypic, metabolic and phenotypic characteristics by comparing marine and clinical isolates. Of the 785 marine isolates obtained on selective media, only 32 (~4.1%) were identified as P. aeruginosa, based on their fatty acid methyl ester profiles. A low Euclidian distance value (< 2.5) obtained from chemotaxonomic analysis suggested that all the environmental (coastal and marine) isolates originated from a single species. While UPGMA analyses of AP-PCR and phenotypic profiles separated the environmental and clinical isolates, fatty acid biotyping showed overlapping between most clinical and environmental isolates. Our study revealed the genetic diversity among different environmental isolates of P. aeruginosa. While biogeographical separation was not evident based solely on phenotypic and metabolic typing, genomic and metatranscriptomic studies are more likely to show differences between these isolates. Thus, newer and more insightful methods are required to understand the ecological distribution of this complex group of bacteria. PMID:26413053

  18. Development and evaluation of a new PCR assay for detection of Pseudomonas aeruginosa D genotype.

    PubMed

    Lødeng, A G G; Ahlén, C; Lysvand, H; Mandal, L H; Iversen, O J

    2006-08-01

    This report describes a new PCR-based assay for the detection of Pseudomonas aeruginosa genotype D in occupational saturation diving systems in the North Sea. This genotype has persisted in these systems for 11 years (1993-2003) and represents 18% of isolates from infections analysed during this period. The new PCR assay was based on sequences obtained after randomly amplified polymorphic DNA (RAPD)-PCR analysis of a group of isolates related to diving that had been identified previously by pulsed-field gel electrophoresis (PFGE). The primer set for the D genotype targets a gene that codes for a hypothetical class 4 protein in the P. aeruginosa PAO1 genome. A primer set able to detect P. aeruginosa at the species level was also designed, based on the 23S-5S rDNA spacer region. The two assays produced 382-bp and 192-bp amplicons, respectively. The PCR assay was evaluated by analysing 100 P. aeruginosa isolates related to diving, representing 28 PFGE genotypes, and 38 clinical and community P. aeruginosa isolates and strains from other species. The assay identified all of the genotype D isolates tested. Two additional diving-relevant genotypes (TP2 and TP27) were also identified, as well as three isolates of non-diving origin. It was concluded that the new PCR assay is a useful tool for early detection and prevention of infections with the D genotype. PMID:16842571

  19. Post-antibiotic effect of orbifloxacin against Escherichia coli and Pseudomonas aeruginosa isolates from dogs

    PubMed Central

    2012-01-01

    Orbifloxacin is a fluoroquinolone drug used widely in companion animal medicine. In this study, we firstly determined post-antibiotic effects (PAEs) and post-antibiotic sub-minimum inhibitory concentrations (MIC) effects (PA-SMEs) of orbifloxacin for two strains each of Escherichia coli and Pseudomonas aeruginosa from dogs, and these parameters were compared with those of enrofloxacin. At twice the MIC, the PAEs of orbifloxacin ranged from -0.28-0.93 h (mean, 0.29 h) for E. coli and -0.18-1.18 h (mean, 0.37 h) for P. aeruginosa. These parameters were not significantly different for E. coli and shorter for P. aeruginosa, compared to enrofloxacin (P < 0.05). Continued exposure to 0.1, 0.2, and 0.3 the MIC of orbifloxacin resulted in average PA-SMEs of 0.55, 1.11, and 2.03 h, respectively, for E. coli, and 1.04, 1.40, and 2.47 h, respectively, for P. aeruginosa. These PA-SMEs, which had no significant differences with those of enrofloxacin, were significantly longer than the corresponding PAEs (P < 0.05). These results suggest that the PA-SME of orbifloxacin for E. coli and P. aeruginosa can be meaningfully prolonged by increase of sub-MICs. PMID:22433170

  20. Chronic Pseudomonas aeruginosa infection-induced chronic bronchitis and emphysematous changes in CCSP-deficient mice

    PubMed Central

    Matsumoto, Takemasa; Fujita, Masaki; Hirano, Ryosuke; Uchino, Junji; Tajiri, Yukari; Fukuyama, Satoru; Morimoto, Yasuo; Watanabe, Kentaro

    2016-01-01

    The club cell secretory protein (CCSP) is a regulator of lung inflammation following acute respiratory infection or lung injury. Recently, the relationship between CCSP and COPD has been reported. Since COPD results from an abnormal inflammatory response, we hypothesized that CCSP could have a protective role against chronic inflammation-induced lung damage. To address this issue, the pathophysiology of chronic lung inflammation induced by Pseudomonas aeruginosa in CCSP-deficient mice was determined. A tube of 5 mm in length was soaked in a fluid containing P. aeruginosa (PAO01 strain) for 1 week and inserted into the trachea of CCSP-deficient mice. One week later, P. aeruginosa was administered into the trachea. Five weeks after insertion of tube, the mice were sacrificed. Bronchoalveolar lavage fluids were collected to determine the bacterial growth, and the lung histology and physiology were also examined. P. aeruginosa was continuously detected in bronchoalveolar lavage fluids during the study. Neutrophils were increased in the bronchoalveolar lavage fluids from the CCSP-deficient mice in comparison to wild-type mice. A histological study demonstrated chronic inflammation around bronchus, serious bronchial stenosis, and alveolar enlargement in the CCSP-deficient mice. The lung physiology study demonstrated an increase in the lung compliance of the CCSP-deficient mice. Chronic P. aeruginosa inflammation resulted in chronic bronchitis and emphysematous changes in the CCSP-deficient mice. CCSP could play an important role in protecting the host from the chronic inflammation-induced lung damage. PMID:27703342

  1. The role of 2,4-dihydroxyquinoline (DHQ) in Pseudomonas aeruginosa pathogenicity

    PubMed Central

    Gruber, Jordon D.; Chen, Wei; Parnham, Stuart; Beauchesne, Kevin; Moeller, Peter; Flume, Patrick A.

    2016-01-01

    Bacteria synchronize group behaviors using quorum sensing, which is advantageous during an infection to thwart immune cell attack and resist deleterious changes in the environment. In Pseudomonas aeruginosa, the Pseudomonas quinolone signal (Pqs) quorum-sensing system is an important component of an interconnected intercellular communication network. Two alkylquinolones, 2-heptyl-4-quinolone (HHQ) and 2-heptyl-3-hydroxy-4-quinolone (PQS), activate transcriptional regulator PqsR to promote the production of quinolone signals and virulence factors. Our work focused on the most abundant quinolone produced from the Pqs system, 2,4-dihydroxyquinoline (DHQ), which was shown previously to sustain pyocyanin production and antifungal activity of P. aeruginosa. However, little is known about how DHQ affects P. aeruginosa pathogenicity. Using C. elegans as a model for P. aeruginosa infection, we found pqs mutants only able to produce DHQ maintained virulence towards the nematodes similar to wild-type. In addition, DHQ-only producing mutants displayed increased colonization of C. elegans and virulence factor production compared to a quinolone-null strain. DHQ also bound to PqsR and activated the transcription of pqs operon. More importantly, high extracellular concentration of DHQ was maintained in both aerobic and anaerobic growth. High levels of DHQ were also detected in the sputum samples of cystic fibrosis patients. Taken together, our findings suggest DHQ may play an important role in sustaining P. aeruginosa pathogenicity under oxygen-limiting conditions. PMID:26788419

  2. Prevalence and Antimicrobial-Resistance of Pseudomonas aeruginosa in Swimming Pools and Hot Tubs

    PubMed Central

    Lutz, Jonathan K.; Lee, Jiyoung

    2011-01-01

    Pseudomonas aeruginosa is an important opportunistic pathogen in recreational waters and the primary cause of hot tub folliculitis and otitis externa. The aim of this surveillance study was to determine the background prevalence and antimicrobial resistance profile of P. aeruginosa in swimming pools and hot tubs. A convenience sample of 108 samples was obtained from three hot tubs and eight indoor swimming pools. Water and swab samples were processed using membrane filtration, followed by confirmation with polymerase chain reaction. Twenty-three samples (21%) were positive for P. aeruginosa, and 23 isolates underwent susceptibility testing using the microdilution method. Resistance was noted to several antibiotic agents, including amikacin (intermediate), aztreonam, ceftriaxone, gentamicin, imipenem, meropenem (intermediate), ticarcillin/clavulanic acid, tobramycin (intermediate), and trimethoprim/sulfamethoxazole. The results of this surveillance study indicate that 96% of P. aeruginosa isolates tested from swimming pools and hot tubs were multidrug resistant. These results may have important implications for cystic fibrosis patients and other immune-suppressed individuals, for whom infection with multidrug-resistant P. aeruginosa would have greater impact. Our results underlie the importance of rigorous facility maintenance, and provide prevalence data on the occurrence of antimicrobial resistant strains of this important recreational water-associated and nosocomial pathogen. PMID:21556203

  3. The ferrichrome receptor A as a new target for Pseudomonas aeruginosa virulence attenuation.

    PubMed

    Lee, Keehoon; Lee, Kang-Mu; Go, Junhyeok; Ryu, Jae-Chan; Ryu, Ji-Hwan; Yoon, Sang Sun

    2016-06-01

    Pseudomonas aeruginosa is an opportunistic pathogen, known to develop robust biofilms. Its biofilm development increases when antibiotics are presented at subminimal inhibitory concentrations (MICs) for reasons that remain unclear. In order to identify genes that affect biofilm development under such a sublethal antibiotic stress condition, we screened a transposon (Tn) mutant library of PAO1, a prototype P. aeruginosa strain. Among ∼5000 mutants, a fiuA gene mutant was verified to form very defective biofilms in the presence of sub-MIC carbenicillin. The fiuA gene encodes ferrichrome receptor A, involved in the iron acquisition process. Of note, biofilm formation was not decreased in the ΔpchΔpvd mutant defective in the production of pyochelin and pyoverdine, two well-characterized P. aeruginosa siderophore molecules. Moreover, ΔfiuA, a non-polar fiuA deletion mutant, produced a significantly decreased level of elastase, a major virulence determinant. Mouse airway infection experiments revealed that the mutant expressed significantly less pathogenicity. Our results suggest that the fiuA gene has pleiotropic functions that affect P. aeruginosa biofilm development and virulence. The targeting of FiuA could enable the attenuation of P. aeruginosa virulence and may be suitable for the development of a drug that specifically controls the virulence of this important pathogen. PMID:27190289

  4. Fructooligosacharides reduce Pseudomonas aeruginosa PAO1 pathogenicity through distinct mechanisms.

    PubMed

    Ortega-González, Mercedes; Sánchez de Medina, Fermín; Molina-Santiago, Carlos; López-Posadas, Rocío; Pacheco, Daniel; Krell, Tino; Martínez-Augustin, Olga; Abdelali, Daddaoua

    2014-01-01

    Pseudomonas aeruginosa is ubiquitously present in the environment and acts as an opportunistic pathogen on humans, animals and plants. We report here the