Science.gov

Sample records for aeruginosa virulence factors

  1. INHIBITION OF VIRULENCE FACTORS OF PSEUDOMONAS AERUGINOSA BY DICLOFENAC SODIUM.

    PubMed

    Abbas, Hisham A

    2015-01-01

    Resistance of Pseudomonas aeruginosa to antibiotics is a major problem. Targeting virulence factors is an alternative option to avoid the emergence of resistance to antibiotics. The effect of sub-inhibitory concentration of diclofenac sodium on the production of virulence factors of P. aeruginosa was investigated. The virulence factors included protease, haemolysin, pyocyanin and pyoverdin, in addition to pathogenic behaviors such as swimming and twitching motilities and biofilm formation. Diclofenac sodium showed significant inhibition of virulence factors as compared to the control. Diclofenac sodium decreased twitching and swimming motilities by 29.27% and 45.36%, respectively. The percentage of inhibition of pyocyanin by diclofenac sodium was 42.32%. On the other hand, pyoverdin was inhibited to a lesser extent (36.72%). Diclofenac sodium reduced protease by 52.58% and biofilm formation by 58.37%. Moreover, haemolytic activity in the presence of diclofenac sodium was 15.64% as compared to the control (100% haemolytic activity). The inhibitory activities may be due to inhibition of quorum sensing that regulates the expression of virulence factors. This study suggests the potential for the use of diclofenac sodium as an anti-virulence agent in the treatment of Pseudomonas aeruginosa infections.

  2. INHIBITION OF VIRULENCE FACTORS OF PSEUDOMONAS AERUGINOSA BY DICLOFENAC SODIUM.

    PubMed

    Abbas, Hisham A

    2015-01-01

    Resistance of Pseudomonas aeruginosa to antibiotics is a major problem. Targeting virulence factors is an alternative option to avoid the emergence of resistance to antibiotics. The effect of sub-inhibitory concentration of diclofenac sodium on the production of virulence factors of P. aeruginosa was investigated. The virulence factors included protease, haemolysin, pyocyanin and pyoverdin, in addition to pathogenic behaviors such as swimming and twitching motilities and biofilm formation. Diclofenac sodium showed significant inhibition of virulence factors as compared to the control. Diclofenac sodium decreased twitching and swimming motilities by 29.27% and 45.36%, respectively. The percentage of inhibition of pyocyanin by diclofenac sodium was 42.32%. On the other hand, pyoverdin was inhibited to a lesser extent (36.72%). Diclofenac sodium reduced protease by 52.58% and biofilm formation by 58.37%. Moreover, haemolytic activity in the presence of diclofenac sodium was 15.64% as compared to the control (100% haemolytic activity). The inhibitory activities may be due to inhibition of quorum sensing that regulates the expression of virulence factors. This study suggests the potential for the use of diclofenac sodium as an anti-virulence agent in the treatment of Pseudomonas aeruginosa infections. PMID:27328521

  3. Gallium induces the production of virulence factors in Pseudomonas aeruginosa.

    PubMed

    García-Contreras, Rodolfo; Pérez-Eretza, Berenice; Lira-Silva, Elizabeth; Jasso-Chávez, Ricardo; Coria-Jiménez, Rafael; Rangel-Vega, Adrián; Maeda, Toshinari; Wood, Thomas K

    2014-02-01

    The novel antimicrobial gallium is a nonredox iron III analogue with bacteriostatic and bactericidal properties, effective for the treatment of Pseudomonas aeruginosa in vitro and in vivo in mouse and rabbit infection models. It interferes with iron metabolism, transport, and presumably its homeostasis. As gallium exerts its antimicrobial effects by competing with iron, we hypothesized that it ultimately will lead cells to an iron deficiency status. As iron deficiency promotes the expression of virulence factors in vitro and promotes the pathogenicity of P. aeruginosa in animal models, it is anticipated that treatment with gallium will also promote the production of virulence factors. To test this hypothesis, the reference strain PA14 and two clinical isolates from patients with cystic fibrosis were exposed to gallium, and their production of pyocyanin, rhamnolipids, elastase, alkaline protease, alginate, pyoverdine, and biofilm was determined. Gallium treatment induced the production of all the virulence factors tested in the three strains except for pyoverdine. In addition, as the Ga-induced virulence factors are quorum sensing controlled, co-administration of Ga and the quorum quencher brominated furanone C-30 was assayed, and it was found that C-30 alleviated growth inhibition from gallium. Hence, adding both C-30 and gallium may be more effective in the treatment of P. aeruginosa infections.

  4. Crystal Structure of the Pseudomonas aeruginosa Virulence Factor Regulator

    SciTech Connect

    Cordes, Timothy J.; Worzalla, Gregory A.; Ginster, Aaron M.; Forest, Katrina T.

    2012-09-07

    Virulence factor regulator (Vfr) enhances Pseudomonas aeruginosa pathogenicity through its role as a global transcriptional regulator. The crystal structure of Vfr shows that it is a winged-helix DNA-binding protein like its homologue cyclic AMP receptor protein (CRP). In addition to an expected primary cyclic AMP-binding site, a second ligand-binding site is nestled between the N-terminal domain and the C-terminal helix-turn-helix domain. Unlike CRP, Vfr is a symmetric dimer in the absence of DNA. Removal of seven disordered N-terminal residues of Vfr prvents the growth of P. aeruginosa.

  5. [Virulence factors in Pseudomonas aeruginosa: mechanisms and modes of regulation].

    PubMed

    Ben Haj Khalifa, Anis; Moissenet, Didier; Vu Thien, Hoang; Khedher, Mohamed

    2011-01-01

    Pseudomonas aeruginosa is a bacterium responsible for severe nosocomial infections, life-threatening infections in immunocompromised persons, and chronic infections in cystic fibrosis patients. The bacterium's virulence depends on a large number of cell-associated and extracellular factors. The virulence factors play an important pathological role in the colonization, the survival of the bacteria and the invasion of tissues. There are two types of virulence factors: (1) factors involved in the acute infection: these factors are either on the surface of P. aeruginosa, either secreted. The pili allow adherence to the epithelium. The exoenzyme S and other adhesins reinforce the adherence to epithelial cells. The exotoxin A is responsible of tissue necrosis. Phospholipase C is a thermolabile haemolysin. The pathogenic role of exoenzyme S is attributable to the disruption of normal cytoskeletal organization, the destruction of immunoglobulin G and A, leads to depolymerization of actin filaments and contributes to the resistance to macrophages. P. aeruginosa produces at least four proteases causing bleeding and tissue necrosis; (2) factors involved in the chronic infection: siderophores (pyoverdin and pyochelin), allow the bacteria to multiply in the absence of ferrous ions. The strains isolated from patients with cystic fibrosis have a pseudocapsule of alginate that protects the bacterium from phagocytosis, dehydration and antibiotics. Moreover, it improves adherence to epithelial cells forming a biofilm. Two different types of regulation systems control the expression of the majority of these virulence factors: the two-component transcriptional regulatory system and the quorum sensing system. These two mechanisms are necessary to the survival and the proliferation of this microorganism in the host. PMID:21896403

  6. Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa.

    PubMed

    Persat, Alexandre; Inclan, Yuki F; Engel, Joanne N; Stone, Howard A; Gitai, Zemer

    2015-06-16

    Bacteria have evolved a wide range of sensing systems to appropriately respond to environmental signals. Here we demonstrate that the opportunistic pathogen Pseudomonas aeruginosa detects contact with surfaces on short timescales using the mechanical activity of its type IV pili, a major surface adhesin. This signal transduction mechanism requires attachment of type IV pili to a solid surface, followed by pilus retraction and signal transduction through the Chp chemosensory system, a chemotaxis-like sensory system that regulates cAMP production and transcription of hundreds of genes, including key virulence factors. Like other chemotaxis pathways, pili-mediated surface sensing results in a transient response amplified by a positive feedback that increases type IV pili activity, thereby promoting long-term surface attachment that can stimulate additional virulence and biofilm-inducing pathways. The methyl-accepting chemotaxis protein-like chemosensor PilJ directly interacts with the major pilin subunit PilA. Our results thus support a mechanochemical model where a chemosensory system measures the mechanically induced conformational changes in stretched type IV pili. These findings demonstrate that P. aeruginosa not only uses type IV pili for surface-specific twitching motility, but also as a sensor regulating surface-induced gene expression and pathogenicity.

  7. Chemical Inhibition of Kynureninase Reduces Pseudomonas aeruginosa Quorum Sensing and Virulence Factor Expression.

    PubMed

    Kasper, Stephen H; Bonocora, Richard P; Wade, Joseph T; Musah, Rabi Ann; Cady, Nathaniel C

    2016-04-15

    The opportunistic pathogen Pseudomonas aeruginosa utilizes multiple quorum sensing (QS) pathways to coordinate an arsenal of virulence factors. We previously identified several cysteine-based compounds inspired by natural products from the plant Petiveria alliacea which are capable of antagonizing multiple QS circuits as well as reducing P. aeruginosa biofilm formation. To understand the global effects of such compounds on virulence factor production and elucidate their mechanism of action, RNA-seq transcriptomic analysis was performed on P. aeruginosa PAO1 exposed to S-phenyl-l-cysteine sulfoxide, the most potent inhibitor from the prior study. Exposure to this inhibitor down-regulated expression of several QS-regulated virulence operons (e.g., phenazine biosynthesis, type VI secretion systems). Interestingly, many genes that were differentially regulated pertain to the related metabolic pathways that yield precursors of pyochelin, tricarboxylic acid cycle intermediates, phenazines, and Pseudomonas quinolone signal (PQS). Activation of the MexT-regulon was also indicated, including the multidrug efflux pump encoded by mexEF-oprN, which has previously been shown to inhibit QS and pathogenicity. Deeper investigation of the metabolites involved in these systems revealed that S-phenyl-l-cysteine sulfoxide has structural similarity to kynurenine, a precursor of anthranilate, which is critical for P. aeruginosa virulence. By supplementing exogenous anthranilate, the QS-inhibitory effect was reversed. Finally, it was shown that S-phenyl-l-cysteine sulfoxide competitively inhibits P. aeruginosa kynureninase (KynU) activity in vitro and reduces PQS production in vivo. The kynurenine pathway has been implicated in P. aeruginosa QS and virulence factor expression; however, this is the first study to show that targeted inhibition of KynU affects P. aeruginosa gene expression and QS, suggesting a potential antivirulence strategy.

  8. Chemical Inhibition of Kynureninase Reduces Pseudomonas aeruginosa Quorum Sensing and Virulence Factor Expression.

    PubMed

    Kasper, Stephen H; Bonocora, Richard P; Wade, Joseph T; Musah, Rabi Ann; Cady, Nathaniel C

    2016-04-15

    The opportunistic pathogen Pseudomonas aeruginosa utilizes multiple quorum sensing (QS) pathways to coordinate an arsenal of virulence factors. We previously identified several cysteine-based compounds inspired by natural products from the plant Petiveria alliacea which are capable of antagonizing multiple QS circuits as well as reducing P. aeruginosa biofilm formation. To understand the global effects of such compounds on virulence factor production and elucidate their mechanism of action, RNA-seq transcriptomic analysis was performed on P. aeruginosa PAO1 exposed to S-phenyl-l-cysteine sulfoxide, the most potent inhibitor from the prior study. Exposure to this inhibitor down-regulated expression of several QS-regulated virulence operons (e.g., phenazine biosynthesis, type VI secretion systems). Interestingly, many genes that were differentially regulated pertain to the related metabolic pathways that yield precursors of pyochelin, tricarboxylic acid cycle intermediates, phenazines, and Pseudomonas quinolone signal (PQS). Activation of the MexT-regulon was also indicated, including the multidrug efflux pump encoded by mexEF-oprN, which has previously been shown to inhibit QS and pathogenicity. Deeper investigation of the metabolites involved in these systems revealed that S-phenyl-l-cysteine sulfoxide has structural similarity to kynurenine, a precursor of anthranilate, which is critical for P. aeruginosa virulence. By supplementing exogenous anthranilate, the QS-inhibitory effect was reversed. Finally, it was shown that S-phenyl-l-cysteine sulfoxide competitively inhibits P. aeruginosa kynureninase (KynU) activity in vitro and reduces PQS production in vivo. The kynurenine pathway has been implicated in P. aeruginosa QS and virulence factor expression; however, this is the first study to show that targeted inhibition of KynU affects P. aeruginosa gene expression and QS, suggesting a potential antivirulence strategy. PMID:26785289

  9. Impact of glycerol-3-phosphate dehydrogenase on virulence factor production by Pseudomonas aeruginosa.

    PubMed

    Daniels, Jonathan B; Scoffield, Jessica; Woolnough, Jessica L; Silo-Suh, Laura

    2014-12-01

    Pseudomonas aeruginosa establishes life-long chronic infections in the cystic fibrosis (CF) lung by utilizing various adaptation strategies. Some of these strategies include altering metabolic pathways to utilize readily available nutrients present in the host environment. The airway sputum contains various host-derived nutrients that can be utilized by P. aeruginosa, including phosphatidylcholine, a major component of lung surfactant. Pseudomonas aeruginosa can degrade phosphatidylcholine to glycerol and fatty acids to increase the availability of usable carbon sources in the CF lung. In this study, we show that some CF-adapted P. aeruginosa isolates utilize glycerol more efficiently as a carbon source than nonadapted isolates. Furthermore, a mutation in a gene required for glycerol utilization impacts the production of several virulence factors in both acute and chronic isolates of P. aeruginosa. Taken together, the results suggest that interference with this metabolic pathway may have potential therapeutic benefits. PMID:25409940

  10. Phosphatidylserine externalization and procoagulant activation of erythrocytes induced by Pseudomonas aeruginosa virulence factor pyocyanin.

    PubMed

    Qadri, Syed M; Donkor, David A; Bhakta, Varsha; Eltringham-Smith, Louise J; Dwivedi, Dhruva J; Moore, Jane C; Pepler, Laura; Ivetic, Nikola; Nazi, Ishac; Fox-Robichaud, Alison E; Liaw, Patricia C; Sheffield, William P

    2016-04-01

    The opportunistic pathogen Pseudomonas aeruginosa causes a wide range of infections in multiple hosts by releasing an arsenal of virulence factors such as pyocyanin. Despite numerous reports on the pleiotropic cellular targets of pyocyanin toxicity in vivo, its impact on erythrocytes remains elusive. Erythrocytes undergo an apoptosis-like cell death called eryptosis which is characterized by cell shrinkage and phosphatidylserine (PS) externalization; this process confers a procoagulant phenotype on erythrocytes as well as fosters their phagocytosis and subsequent clearance from the circulation. Herein, we demonstrate that P. aeruginosa pyocyanin-elicited PS exposure and cell shrinkage in erythrocyte while preserving the membrane integrity. Mechanistically, exposure of erythrocytes to pyocyanin showed increased cytosolic Ca(2+) activity as well as Ca(2+) -dependent proteolytic processing of μ-calpain. Pyocyanin further up-regulated erythrocyte ceramide abundance and triggered the production of reactive oxygen species. Pyocyanin-induced increased PS externalization in erythrocytes translated into enhanced prothrombin activation and fibrin generation in plasma. As judged by carboxyfluorescein succinimidyl-ester labelling, pyocyanin-treated erythrocytes were cleared faster from the murine circulation as compared to untreated erythrocytes. Furthermore, erythrocytes incubated in plasma from patients with P. aeruginosa sepsis showed increased PS exposure as compared to erythrocytes incubated in plasma from healthy donors. In conclusion, the present study discloses the eryptosis-inducing effect of the virulence factor pyocyanin, thereby shedding light on a potentially important mechanism in the systemic complications of P. aeruginosa infection. PMID:26781477

  11. Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation

    PubMed Central

    Das, Theerthankar; Kutty, Samuel K.; Tavallaie, Roya; Ibugo, Amaye I.; Panchompoo, Janjira; Sehar, Shama; Aldous, Leigh; Yeung, Amanda W. S.; Thomas, Shane R.; Kumar, Naresh; Gooding, J. Justin; Manefield, Mike

    2015-01-01

    Bacterial resistance to conventional antibiotics necessitates the identification of novel leads for infection control. Interference with extracellular phenomena, such as quorum sensing, extracellular DNA integrity and redox active metabolite release, represents a new frontier to control human pathogens such as Pseudomonas aeruginosa and hence reduce mortality. Here we reveal that the extracellular redox active virulence factor pyocyanin produced by P. aeruginosa binds directly to the deoxyribose-phosphate backbone of DNA and intercalates with DNA nitrogenous base pair regions. Binding results in local perturbations of the DNA double helix structure and enhanced electron transfer along the nucleic acid polymer. Pyocyanin binding to DNA also increases DNA solution viscosity. In contrast, antioxidants interacting with DNA and pyocyanin decrease DNA solution viscosity. Biofilms deficient in pyocyanin production and biofilms lacking extracellular DNA show similar architecture indicating the interaction is important in P. aeruginosa biofilm formation. PMID:25669133

  12. A Novel Extracytoplasmic Function (ECF) Sigma Factor Regulates Virulence in Pseudomonas aeruginosa

    PubMed Central

    Llamas, María A.; van der Sar, Astrid; Chu, Byron C. H.; Sparrius, Marion; Vogel, Hans J.; Bitter, Wilbert

    2009-01-01

    Next to the two-component and quorum sensing systems, cell-surface signaling (CSS) has been recently identified as an important regulatory system in Pseudomonas aeruginosa. CSS systems sense signals from outside the cell and transmit them into the cytoplasm. They generally consist of a TonB-dependent outer membrane receptor, a sigma factor regulator (or anti-sigma factor) in the cytoplasmic membrane, and an extracytoplasmic function (ECF) sigma factor. Upon perception of the extracellular signal by the receptor the ECF sigma factor is activated and promotes the transcription of a specific set of gene(s). Although most P. aeruginosa CSS systems are involved in the regulation of iron uptake, we have identified a novel system involved in the regulation of virulence. This CSS system, which has been designated PUMA3, has a number of unusual characteristics. The most obvious difference is the receptor component which is considerably smaller than that of other CSS outer membrane receptors and lacks a β-barrel domain. Homology modeling of PA0674 shows that this receptor is predicted to be a bilobal protein, with an N-terminal domain that resembles the N-terminal periplasmic signaling domain of CSS receptors, and a C-terminal domain that resembles the periplasmic C-terminal domains of the TolA/TonB proteins. Furthermore, the sigma factor regulator both inhibits the function of the ECF sigma factor and is required for its activity. By microarray analysis we show that PUMA3 regulates the expression of a number of genes encoding potential virulence factors, including a two-partner secretion (TPS) system. Using zebrafish (Danio rerio) embryos as a host we have demonstrated that the P. aeruginosa PUMA3-induced strain is more virulent than the wild-type. PUMA3 represents the first CSS system dedicated to the transcriptional activation of virulence functions in a human pathogen. PMID:19730690

  13. Efficacy and safety of liposomal clarithromycin and its effect on Pseudomonas aeruginosa virulence factors.

    PubMed

    Alhajlan, Mai; Alhariri, Moayad; Omri, Abdelwahab

    2013-06-01

    We investigated the efficacy and safety of liposomal clarithromycin formulations with different surface charges against clinical isolates of Pseudomonas aeruginosa from the lungs of cystic fibrosis (CF) patients. The liposomal clarithromycin formulations were prepared by the dehydration-rehydration method, and their sizes were measured using the dynamic-light-scattering technique. Encapsulation efficiency was determined by microbiological assay, and the stabilities of the formulations in biological fluid were evaluated for a period of 48 h. The MICs and minimum bactericidal concentrations (MBCs) of free and liposomal formulations were determined with P. aeruginosa strains isolated from CF patients. Liposomal clarithromycin activity against biofilm-forming P. aeruginosa was compared to that of free antibiotic using the Calgary Biofilm Device (CBD). The effects of subinhibitory concentrations of free and liposomal clarithromycin on bacterial virulence factors and motility on agar were investigated on clinical isolates of P. aeruginosa. The cytotoxicities of the liposome preparations and free drug were evaluated on a pulmonary epithelial cell line (A549). The average diameter of the formulations was >222 nm, with encapsulation efficiencies ranging from 5.7% to 30.4%. The liposomes retained more than 70% of their drug content during the 48-h time period. The highly resistant strains of P. aeruginosa became susceptible to liposome-encapsulated clarithromycin (MIC, 256 mg/liter versus 8 mg/liter; P < 0.001). Liposomal clarithromycin reduced the bacterial growth within the biofilm by 3 to 4 log units (P < 0.001), significantly attenuated virulence factor production, and reduced bacterial twitching, swarming, and swimming motilities. The clarithromycin-entrapped liposomes were less cytotoxic than the free drug (P < 0.001). These data indicate that our novel formulations could be a useful strategy to enhance the efficacy of clarithromycin against resistant P. aeruginosa

  14. Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity

    PubMed Central

    Pier, Gerald B.

    2007-01-01

    Pseudomonas aeruginosa is one of the most important bacterial pathogens encountered by immunocompromised hosts and patients with cystic fibrosis (CF), and the lipopolysaccharide (LPS) elaborated by this organism is a key factor in virulence and both innate and acquired host responses to infection. The molecule has a fair degree of heterogeneity in its lipid A and O-antigen structure, and elaborates 2 different outer-core glycoforms, of which only one binds O-antigen. A close relatedness between the chemical structures and genes encoding biosynthetic enzymes has been established, with 11 major O-antigen groups identified. The lipid A can be variably penta-, hexa- or hepta-acylated, and these isoforms have differing potencies when activating host innate immunity via binding to Toll-like receptor 4. The O-antigen is a major target for protective immunity as evidenced by numerous animal studies, but attempts, to date, to produce a human vaccine targeting these epitopes have not been successful Newer strategies employing live attenuated P. aeruginosa, or heterologous attenuated bacteria expressing P. aeruginosa O-antigens are potential means to solve some of the existing problems related to making a P. aeruginosa LPS-specific vaccine. Overall, there is now a large amount of information available about the genes and enzymes needed to produce the P. aeruginosa LPS, detailed chemical structures have been determined for the major O-antigens, and significant biologic and immunologic studies have been conducted to define the role of this molecule in virulence and immunity to P. aeruginosa infection. PMID:17466590

  15. Regulation of Pseudomonas aeruginosa virulence factors by two novel RNA thermometers.

    PubMed

    Grosso-Becerra, María Victoria; Croda-García, Gerardo; Merino, Enrique; Servín-González, Luis; Mojica-Espinosa, Raúl; Soberón-Chávez, Gloria

    2014-10-28

    In a number of bacterial pathogens, the production of virulence factors is induced at 37 °C; this effect is often regulated by mRNA structures formed in the 5' untranslated region (UTR) that block translation initiation of genes at environmental temperatures. At 37 °C, the RNA structures become unstable and ribosomes gain access to their binding sites in the mRNAs. Pseudomonas aeruginosa is an important opportunistic pathogen and the expression of many of its virulence-associated traits is regulated by the quorum-sensing (QS) response, but the effect of temperature on virulence-factor expression is not well-understood. The aim of this work is the characterization of the molecular mechanism involved in thermoregulation of QS-dependent virulence-factor production. We demonstrate that traits that are dependent on the QS transcriptional regulator RhlR have a higher expression at 37 °C, correlating with a higher RhlR concentration as measured by Western blot. We also determined, using gene fusions and point mutations, that RhlR thermoregulation is a posttranscriptional effect dependent on an RNA thermometer of the ROSE (Repression Of heat-Shock gene Expression) family. This RNA element regulates the expression of the rhlAB operon, involved in rhamnolipid production, and of the downstream rhlR gene. We also identified a second functional thermometer in the 5' UTR of the lasI gene. We confirmed that these RNA thermometers are the main mechanism of thermoregulation of QS-dependent gene expression in P. aeruginosa using quantitative real-time PCR. This is the first description, to our knowledge, of a ROSE element regulating the expression of virulence traits and of an RNA thermometer controlling multiple genes in an operon through a polar effect.

  16. Regulation of Pseudomonas aeruginosa virulence factors by two novel RNA thermometers

    PubMed Central

    Grosso-Becerra, María Victoria; Croda-García, Gerardo; Merino, Enrique; Servín-González, Luis; Mojica-Espinosa, Raúl; Soberón-Chávez, Gloria

    2014-01-01

    In a number of bacterial pathogens, the production of virulence factors is induced at 37 °C; this effect is often regulated by mRNA structures formed in the 5′ untranslated region (UTR) that block translation initiation of genes at environmental temperatures. At 37 °C, the RNA structures become unstable and ribosomes gain access to their binding sites in the mRNAs. Pseudomonas aeruginosa is an important opportunistic pathogen and the expression of many of its virulence-associated traits is regulated by the quorum-sensing (QS) response, but the effect of temperature on virulence-factor expression is not well-understood. The aim of this work is the characterization of the molecular mechanism involved in thermoregulation of QS-dependent virulence-factor production. We demonstrate that traits that are dependent on the QS transcriptional regulator RhlR have a higher expression at 37 °C, correlating with a higher RhlR concentration as measured by Western blot. We also determined, using gene fusions and point mutations, that RhlR thermoregulation is a posttranscriptional effect dependent on an RNA thermometer of the ROSE (Repression Of heat-Shock gene Expression) family. This RNA element regulates the expression of the rhlAB operon, involved in rhamnolipid production, and of the downstream rhlR gene. We also identified a second functional thermometer in the 5′ UTR of the lasI gene. We confirmed that these RNA thermometers are the main mechanism of thermoregulation of QS-dependent gene expression in P. aeruginosa using quantitative real-time PCR. This is the first description, to our knowledge, of a ROSE element regulating the expression of virulence traits and of an RNA thermometer controlling multiple genes in an operon through a polar effect. PMID:25313031

  17. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production.

    PubMed

    Lee, Jin-Hyung; Kim, Yong-Guy; Cho, Moo Hwan; Lee, Jintae

    2014-12-01

    The opportunistic pathogen Pseudomonas aeruginosa produces a variety of virulence factors, and biofilms of this bacterium are much more resistant to antibiotics than planktonic cells. Thirty-six metal ions have been investigated to identify antivirulence and antibiofilm metal ions. Zinc ions and ZnO nanoparticles were found to markedly inhibit biofilm formation and the production of pyocyanin, Pseudomonas quinolone signal (PQS), pyochelin, and hemolytic activity of P. aeruginosa without affecting the growth of planktonic cells. Transcriptome analyses showed that ZnO nanoparticles induce the zinc cation efflux pump czc operon and several important transcriptional regulators (porin gene opdT and type III repressor ptrA), but repress the pyocyanin-related phz operon, which explains observed phenotypic changes. A mutant study showed that the effects of ZnO nanoparticles on the control of pyocyanin production and biofilm formation require the czc regulator CzcR. In addition, ZnO nanoparticles markedly increased the cellular hydrophilicity of P. aeruginosa cells. Our results support that ZnO nanoparticles are potential antivirulence materials against recalcitrant P. aeruginosa infections and possibly other important pathogens. PMID:24958247

  18. Catheter-related infections caused by Pseudomonas aeruginosa: virulence factors involved and their relationships.

    PubMed

    Olejnickova, Katerina; Hola, Veronika; Ruzicka, Filip

    2014-11-01

    The nosocomial pathogen Pseudomonas aeruginosa is equipped with a large arsenal of cell-associated and secreted virulence factors which enhance its invasive potential. The complex relationships among virulence determinants have hitherto not been fully elucidated. In the present study, 175 catheter-related isolates were observed for the presence of selected virulence factors, namely extracellular enzymes and siderophore production, biofilm formation, resistance to antibiotics, and motility. A high percentage of the strains produced most of the tested virulence factors. A positive correlation was identified between the production of several exoproducts, and also between the formation of both types of biofilm. An opposite trend was observed between the two types of biofilm and the production of siderophores. Whereas the relationship between the submerged biofilm production (i.e. the biofilm formed on the solid surface below the water level) and the siderophore secretion was negative, the production of air-liquid interface (A-L) biofilm (i.e. the biofilm floating on the surface of the cultivation medium) and the siderophore secretion were positively correlated. All correlations were statistically significant at the level P = 0.05 with the correlation coefficient γ ≥ 0.50. Our results suggest that: (1) the co-production of the lytic enzymes and siderophores can play an important role in the pathogenesis of the catheter-related infections and should be taken into account when the virulence potential is assessed; (2) biofilm-positive strains are capable of forming both submerged and non-attached A-L biofilms; and (3) the different micro-environment in the submerged biofilm and A-L biofilm layers have opposite consequences for the production of other virulence factors.

  19. RpoN Regulates Virulence Factors of Pseudomonas aeruginosa via Modulating the PqsR Quorum Sensing Regulator.

    PubMed

    Cai, Zhao; Liu, Yang; Chen, Yicai; Yam, Joey Kuok Hoong; Chew, Su Chuen; Chua, Song Lin; Wang, Ke; Givskov, Michael; Yang, Liang

    2015-11-30

    The alternative sigma factor RpoN regulates many cell functions, such as motility, quorum sensing, and virulence in the opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa). P. aeruginosa often evolves rpoN-negative variants during the chronic infection in cystic fibrosis patients. It is unclear how RpoN interacts with other regulatory mechanisms to control virulence of P. aeruginosa. In this study, we show that RpoN modulates the function of PqsR, a quorum sensing receptor regulating production of virulence factors including the phenazine pyocyanin. The ∆rpoN mutant is able to synthesize 4-quinolone signal molecule HHQ but unable to activate PqsR and Pseudomonas quinolone signal (pqs) quorum sensing. The ∆rpoN mutant produces minimal level of pyocyanin and is unable to produce the anti-staphylococcal agents. Providing pqsR in trans in the ∆rpoN mutant restores its pqs quorum sensing and virulence factor production to the wild-type level. Our study provides evidence that RpoN has a regulatory effect on P. aeruginosa virulence through modulating the function of the PqsR quorum sensing regulator.

  20. Profile of Virulence Factors in the Multi-Drug Resistant Pseudomonas aeruginosa Strains of Human Urinary Tract Infections (UTI)

    PubMed Central

    Habibi, Asghar; Honarmand, Ramin

    2015-01-01

    Background: Putative virulence factors are responsible for the pathogenicity of UTIs caused by Pseudomonas aeruginosa (P. aeruginosa). Resistance of P. aeruginosa to commonly used antibiotics is caused by the extreme overprescription of those antibiotics. Objectives: The goal of the present study was to investigate the prevalence of virulence factors and the antibiotic resistance patterns of P. aeruginosa isolates in UTI cases in Iran. Patients and Methods: Two hundred and fifty urine samples were collected from patients who suffered from UTIs. Samples were cultured immediately, and those that were P. aeruginosa-positive were analyzed for the presence of virulence genes using polymerase chain reaction (PCR) testing. Antimicrobial susceptibility testing (AST) was performed using the disk diffusion method. Results: Of the 250 urine samples analyzed, 8 samples (3.2%) were positive for P. aeruginosa. The prevalence of P. aeruginosa in male and female patients was 2.7% and 3.5%, respectively, (P = 0.035). In patients less than 10 years old, it was 4.2%, and in patients more than 55 years old, it was 4.2%. These were the most commonly infected groups. The highest levels of resistance were seen against ampicillin (87.5%), norfloxacin (62.5%), gentamycin (62.5%), amikacin (62.5%), and aztreonam (62.5%), while the lowest were seen for meropenem (0%), imipenem (12.5%), and polymyxin B (12.5%). LasB (87.5%), pclH (75%), pilB (75%), and exoS (75%) were the most commonly detected virulence factors in the P. aeruginosa isolates. Conclusions: It is logical to first prescribe meropenem, imipenem, and polymyxin B in cases of UTIs caused by P. aeruginosa. Medical practitioners should be aware of the presence of levels of antibiotic resistance in hospitalized UTI patients in Iran. PMID:26756017

  1. Quorum-sensing-regulated virulence factors in Pseudomonas aeruginosa are toxic to Lucilia sericata maggots

    PubMed Central

    Andersen, A. S.; Joergensen, B.; Bjarnsholt, T.; Johansen, H.; Karlsmark, T.; Givskov, M.; Krogfelt, K. A.

    2010-01-01

    Maggot debridement therapy (MDT) is widely used for debridement of chronic infected wounds; however, for wounds harbouring specific bacteria limited effect or failure of the treatment has been described. Here we studied the survival of Lucilia sericata maggots encountering Pseudomonas aeruginosa PAO1 in a simple assay with emphasis on the quorum-sensing (QS)-regulated virulence. The maggots were challenged with GFP-tagged P. aeruginosa wild-type (WT) PAO1 and a GFP-tagged P. aeruginosa ΔlasR rhlR (ΔRR) QS-deficient mutant in different concentrations. Maggots were killed in the presence of WT PAO1 whereas the challenge with the QS mutant showed a survival reduction of ∼25 % compared to negative controls. Furthermore, bacterial intake by the maggots was lower in the presence of WT PAO1 compared to the PAO1 ΔRR mutant. Maggot excretions/secretions (ES) were assayed for the presence of QS inhibitors; only high doses of ES showed inhibition of QS in P. aeruginosa. Thus P. aeruginosa was shown to be toxic to L. sericata maggots. This, coupled to the preferential feeding by the maggots and reduced ingestion of P. aeruginosa, could explain MDT failure in wounds colonized by P. aeruginosa. Wounds heavily colonized with P. aeruginosa should be a counterindication for MDT unless used in combination with a pre-treatment with other topical therapeutics targeting P. aeruginosa. PMID:19892758

  2. Quorum-sensing-regulated virulence factors in Pseudomonas aeruginosa are toxic to Lucilia sericata maggots.

    PubMed

    Andersen, A S; Joergensen, B; Bjarnsholt, T; Johansen, H; Karlsmark, T; Givskov, M; Krogfelt, K A

    2010-02-01

    Maggot debridement therapy (MDT) is widely used for debridement of chronic infected wounds; however, for wounds harbouring specific bacteria limited effect or failure of the treatment has been described. Here we studied the survival of Lucilia sericata maggots encountering Pseudomonas aeruginosa PAO1 in a simple assay with emphasis on the quorum-sensing (QS)-regulated virulence. The maggots were challenged with GFP-tagged P. aeruginosa wild-type (WT) PAO1 and a GFP-tagged P. aeruginosa DeltalasR rhlR (DeltaRR) QS-deficient mutant in different concentrations. Maggots were killed in the presence of WT PAO1 whereas the challenge with the QS mutant showed a survival reduction of approximately 25 % compared to negative controls. Furthermore, bacterial intake by the maggots was lower in the presence of WT PAO1 compared to the PAO1 DeltaRR mutant. Maggot excretions/secretions (ES) were assayed for the presence of QS inhibitors; only high doses of ES showed inhibition of QS in P. aeruginosa. Thus P. aeruginosa was shown to be toxic to L. sericata maggots. This, coupled to the preferential feeding by the maggots and reduced ingestion of P. aeruginosa, could explain MDT failure in wounds colonized by P. aeruginosa. Wounds heavily colonized with P. aeruginosa should be a counterindication for MDT unless used in combination with a pre-treatment with other topical therapeutics targeting P. aeruginosa.

  3. Inhibiting an Epoxide Hydrolase Virulence Factor from Pseudomonas aeruginosa Protects CFTR.

    PubMed

    Bahl, Christopher D; Hvorecny, Kelli L; Bomberger, Jennifer M; Stanton, Bruce A; Hammock, Bruce D; Morisseau, Christophe; Madden, Dean R

    2015-08-17

    Opportunistic pathogens exploit diverse strategies to sabotage host defenses. Pseudomonas aeruginosa secretes the CFTR inhibitory factor Cif and thus triggers loss of CFTR, an ion channel required for airway mucociliary defense. However, the mechanism of action of Cif has remained unclear. It catalyzes epoxide hydrolysis, but there is no known role for natural epoxides in CFTR regulation. It was demonstrated that the hydrolase activity of Cif is strictly required for its effects on CFTR. A small-molecule inhibitor that protects this key component of the mucociliary defense system was also uncovered. These results provide a basis for targeting the distinctive virulence chemistry of Cif and suggest an unanticipated role of physiological epoxides in intracellular protein trafficking. PMID:26136396

  4. Cellular Effects of Pyocyanin, a Secreted Virulence Factor of Pseudomonas aeruginosa

    PubMed Central

    Hall, Susan; McDermott, Catherine; Anoopkumar-Dukie, Shailendra; McFarland, Amelia J.; Forbes, Amanda; Perkins, Anthony V.; Davey, Andrew K.; Chess-Williams, Russ; Kiefel, Milton J.; Arora, Devinder; Grant, Gary D.

    2016-01-01

    Pyocyanin has recently emerged as an important virulence factor produced by Pseudomonas aeruginosa. The redox-active tricyclic zwitterion has been shown to have a number of potential effects on various organ systems in vitro, including the respiratory, cardiovascular, urological, and central nervous systems. It has been shown that a large number of the effects to these systems are via the formation of reactive oxygen species. The limitations of studies are, to date, focused on the localized effect of the release of pyocyanin (PCN). It has been postulated that, given its chemical properties, PCN is able to readily cross biological membranes, however studies have yet to be undertaken to evaluate this effect. This review highlights the possible manifestations of PCN exposure; however, most studies to date are in vitro. Further high quality in vivo studies are needed to fully assess the physiological manifestations of PCN exposure on the various body systems. PMID:27517959

  5. Accumulation of Pyrimidine Intermediate Orotate Decreases Virulence Factor Production in Pseudomonas aeruginosa.

    PubMed

    Niazy, Abdurahman; Hughes, Lee E

    2015-08-01

    The impact of orotate accumulation in the medically important bacterium Pseudomonas aeruginosa was studied by deleting pyrE, the gene encoding orotate phosphoribosyltransferase and responsible for converting orotate into orotate monophosphate within the de novo pyrimidine synthesis pathway. The pyrE mutant accumulated orotate and exhibited decreased production of hemolysin, casein protease, and elastase. Feeding orotate at a concentration of 51.25 μM to the wild type, PAO1, likewise decreased production of these factors except for hemolysin, which was not affected. A significant increase in the pigments pyocyanin and pyoverdin was also observed. Pyocyanin increase in the pyrE mutant was heightened when the mutant was supplemented with orotate. Although pyoverdin production in the wild-type PAO1 was unaffected by orotate supplementation, a decrease in the mutant's production was observed when supplemented with orotate. These results indicate a significant reduction in virulence factor production in the pyrE mutant and reduction in some virulence factors in the wild type when supplemented with orotate. PMID:25917504

  6. [The comparison of selected virulence factors in Pseudomonas aeruginosa catheter isolates].

    PubMed

    Olejnízková, Katerina; Holá, Veronika

    2012-05-01

    Healthcare quality improvement brings about an increasing number of invasive diagnostic and therapeutic procedures and thus also an increasing number of high-risk patients prone to hospital infections. Pseudomonas aeruginosa is one of the most commonly isolated nosocomial species and the treatment of the infection is often long and problematic, with frequent recurrences. The pathogenesis of Pseudomonas infection is associated with a range of virulence factors. In the present study, 93 catheter isolates of Pseudomonas aeruginosa were screened for the biofilm formation, motility and secretion of selected extracellular products. A high rate of the strains tested were producers of hemolysins, LasB elastase, and pyoverdines (> 70%). The biofilm formation was detected in 80% of isolates and formation of aerated biofilm was present in 90% of isolates with a positive correlation found between the two types of biofilm formation (p = 0.00583; gamma = 0.551). All strains showed swarming motility, 95% of strains showed swimming motility, and 75% of strains showed twitching motility. Among the virulence factors studied, only pyocyanin and pyochelin were produced by a lower proportion of isolates (< 25%). A positive correlation was seen between the production of some extracellular molecules (pyochelin and pyocyanin, pyocyanin and LasB elastase, and LasB elastase and haemolysins), between biofilm formation and formation of aerated biofilm, and between formation of aerated biofilm and pigments (pyoverdine and pyocyanin) production. On the other hand, a negative correlation was found between biofilm production and LasB elastase production and between the production of biofilm under immersion and pigments (pyoverdine and pyocyanin) production. All correlations are significant at the level p = 0.05, with the correlation coefficient gamma > 0.50.

  7. [The comparison of selected virulence factors in Pseudomonas aeruginosa catheter isolates].

    PubMed

    Olejnízková, Katerina; Holá, Veronika

    2012-05-01

    Healthcare quality improvement brings about an increasing number of invasive diagnostic and therapeutic procedures and thus also an increasing number of high-risk patients prone to hospital infections. Pseudomonas aeruginosa is one of the most commonly isolated nosocomial species and the treatment of the infection is often long and problematic, with frequent recurrences. The pathogenesis of Pseudomonas infection is associated with a range of virulence factors. In the present study, 93 catheter isolates of Pseudomonas aeruginosa were screened for the biofilm formation, motility and secretion of selected extracellular products. A high rate of the strains tested were producers of hemolysins, LasB elastase, and pyoverdines (> 70%). The biofilm formation was detected in 80% of isolates and formation of aerated biofilm was present in 90% of isolates with a positive correlation found between the two types of biofilm formation (p = 0.00583; gamma = 0.551). All strains showed swarming motility, 95% of strains showed swimming motility, and 75% of strains showed twitching motility. Among the virulence factors studied, only pyocyanin and pyochelin were produced by a lower proportion of isolates (< 25%). A positive correlation was seen between the production of some extracellular molecules (pyochelin and pyocyanin, pyocyanin and LasB elastase, and LasB elastase and haemolysins), between biofilm formation and formation of aerated biofilm, and between formation of aerated biofilm and pigments (pyoverdine and pyocyanin) production. On the other hand, a negative correlation was found between biofilm production and LasB elastase production and between the production of biofilm under immersion and pigments (pyoverdine and pyocyanin) production. All correlations are significant at the level p = 0.05, with the correlation coefficient gamma > 0.50. PMID:22880261

  8. Spaceflight Effects on Virulence of Pseudomonas Aeruginosa

    NASA Astrophysics Data System (ADS)

    Broadway, S.; Goins, T.; Crandell, C.; Richards, C.; Patel, M.; Pyle, B.

    2008-06-01

    Pseudomonas aeruginosa is an opportunistic pathogen found in the environment. It is known to infect the immunocompromised. The organism has about 25 virulence genes that play different roles in disease processes. Several exotoxin proteins may be produced, including ExoA, ExoS, ExoT and ExoY, and other virulence factors. In spaceflight, possible increased expression of P. aeruginosa virulence proteins could increase health risks for spaceflight crews who experience decreased immunity. Cultures of P. aeruginosa strains PA01 and PA103 grown on orbit on Shuttle Endeavour flight STS-123 vs. static ground controls were used for analysis. The production of ETA was quantitated using an ELISA procedure. Results showed that while flight cultures of PA103 produced slightly more ETA than corresponding ground controls, the opposite was found for PA01. While it appears that spaceflight has little effect on ETA, stimulation of other virulence factors could cause increased virulence of this organism in space flight. Similar increased virulence in spaceflight has been observed for other bacteria. This is important because astronauts may be more susceptible to opportunistic pathogens including P. aeruginosa.

  9. Rhodococcus erythropolis BG43 Genes Mediating Pseudomonas aeruginosa Quinolone Signal Degradation and Virulence Factor Attenuation

    PubMed Central

    Müller, Christine; Birmes, Franziska S.; Rückert, Christian; Kalinowski, Jörn

    2015-01-01

    Rhodococcus erythropolis BG43 is able to degrade the Pseudomonas aeruginosa quorum sensing signal molecules PQS (Pseudomonas quinolone signal) [2-heptyl-3-hydroxy-4(1H)-quinolone] and HHQ [2-heptyl-4(1H)-quinolone] to anthranilic acid. Based on the hypothesis that degradation of HHQ might involve hydroxylation to PQS followed by dioxygenolytic cleavage of the heterocyclic ring and hydrolysis of the resulting N-octanoylanthranilate, the genome was searched for corresponding candidate genes. Two gene clusters, aqdA1B1C1 and aqdA2B2C2, each predicted to code for a hydrolase, a flavin monooxygenase, and a dioxygenase related to 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase, were identified on circular plasmid pRLCBG43 of strain BG43. Transcription of all genes was upregulated by PQS, suggesting that both gene clusters code for alkylquinolone-specific catabolic enzymes. An aqdR gene encoding a putative transcriptional regulator, which was also inducible by PQS, is located adjacent to the aqdA2B2C2 cluster. Expression of aqdA2B2C2 in Escherichia coli conferred the ability to degrade HHQ and PQS to anthranilic acid; however, for E. coli transformed with aqdA1B1C1, only PQS degradation was observed. Purification of the recombinant AqdC1 protein verified that it catalyzes the cleavage of PQS to form N-octanoylanthranilic acid and carbon monoxide and revealed apparent Km and kcat values for PQS of ∼27 μM and 21 s−1, respectively. Heterologous expression of the PQS dioxygenase gene aqdC1 or aqdC2 in P. aeruginosa PAO1 quenched the production of the virulence factors pyocyanin and rhamnolipid and reduced the synthesis of the siderophore pyoverdine. Thus, the toolbox of quorum-quenching enzymes is expanded by new PQS dioxygenases. PMID:26319870

  10. Rhodococcus erythropolis BG43 Genes Mediating Pseudomonas aeruginosa Quinolone Signal Degradation and Virulence Factor Attenuation.

    PubMed

    Müller, Christine; Birmes, Franziska S; Rückert, Christian; Kalinowski, Jörn; Fetzner, Susanne

    2015-11-01

    Rhodococcus erythropolis BG43 is able to degrade the Pseudomonas aeruginosa quorum sensing signal molecules PQS (Pseudomonas quinolone signal) [2-heptyl-3-hydroxy-4(1H)-quinolone] and HHQ [2-heptyl-4(1H)-quinolone] to anthranilic acid. Based on the hypothesis that degradation of HHQ might involve hydroxylation to PQS followed by dioxygenolytic cleavage of the heterocyclic ring and hydrolysis of the resulting N-octanoylanthranilate, the genome was searched for corresponding candidate genes. Two gene clusters, aqdA1B1C1 and aqdA2B2C2, each predicted to code for a hydrolase, a flavin monooxygenase, and a dioxygenase related to 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase, were identified on circular plasmid pRLCBG43 of strain BG43. Transcription of all genes was upregulated by PQS, suggesting that both gene clusters code for alkylquinolone-specific catabolic enzymes. An aqdR gene encoding a putative transcriptional regulator, which was also inducible by PQS, is located adjacent to the aqdA2B2C2 cluster. Expression of aqdA2B2C2 in Escherichia coli conferred the ability to degrade HHQ and PQS to anthranilic acid; however, for E. coli transformed with aqdA1B1C1, only PQS degradation was observed. Purification of the recombinant AqdC1 protein verified that it catalyzes the cleavage of PQS to form N-octanoylanthranilic acid and carbon monoxide and revealed apparent Km and kcat values for PQS of ∼27 μM and 21 s(-1), respectively. Heterologous expression of the PQS dioxygenase gene aqdC1 or aqdC2 in P. aeruginosa PAO1 quenched the production of the virulence factors pyocyanin and rhamnolipid and reduced the synthesis of the siderophore pyoverdine. Thus, the toolbox of quorum-quenching enzymes is expanded by new PQS dioxygenases. PMID:26319870

  11. Rational Design of Potent and Selective Inhibitors of an Epoxide Hydrolase Virulence Factor from Pseudomonas aeruginosa.

    PubMed

    Kitamura, Seiya; Hvorecny, Kelli L; Niu, Jun; Hammock, Bruce D; Madden, Dean R; Morisseau, Christophe

    2016-05-26

    The virulence factor cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif) is secreted by Pseudomonas aeruginosa and is the founding member of a distinct class of epoxide hydrolases (EHs) that triggers the catalysis-dependent degradation of the CFTR. We describe here the development of a series of potent and selective Cif inhibitors by structure-based drug design. Initial screening revealed 1a (KB2115), a thyroid hormone analog, as a lead compound with low micromolar potency. Structural requirements for potency were systematically probed, and interactions between Cif and 1a were characterized by X-ray crystallography. On the basis of these data, new compounds were designed to yield additional hydrogen bonding with residues of the Cif active site. From this effort, three compounds were identified that are 10-fold more potent toward Cif than our first-generation inhibitors and have no detectable thyroid hormone-like activity. These inhibitors will be useful tools to study the pathological role of Cif and have the potential for clinical application. PMID:27120257

  12. Virulence Factors of Pseudomonas aeruginosa Induce Both the Unfolded Protein and Integrated Stress Responses in Airway Epithelial Cells

    PubMed Central

    van ‘t Wout, Emily F. A.; van Schadewijk, Annemarie; van Boxtel, Ria; Dalton, Lucy E.; Clarke, Hanna J.; Tommassen, Jan; Marciniak, Stefan J.; Hiemstra, Pieter S.

    2015-01-01

    Pseudomonas aeruginosa infection can be disastrous in chronic lung diseases such as cystic fibrosis and chronic obstructive pulmonary disease. Its toxic effects are largely mediated by secreted virulence factors including pyocyanin, elastase and alkaline protease (AprA). Efficient functioning of the endoplasmic reticulum (ER) is crucial for cell survival and appropriate immune responses, while an excess of unfolded proteins within the ER leads to “ER stress” and activation of the “unfolded protein response” (UPR). Bacterial infection and Toll-like receptor activation trigger the UPR most likely due to the increased demand for protein folding of inflammatory mediators. In this study, we show that cell-free conditioned medium of the PAO1 strain of P. aeruginosa, containing secreted virulence factors, induces ER stress in primary bronchial epithelial cells as evidenced by splicing of XBP1 mRNA and induction of CHOP, GRP78 and GADD34 expression. Most aspects of the ER stress response were dependent on TAK1 and p38 MAPK, except for the induction of GADD34 mRNA. Using various mutant strains and purified virulence factors, we identified pyocyanin and AprA as inducers of ER stress. However, the induction of GADD34 was mediated by an ER stress-independent integrated stress response (ISR) which was at least partly dependent on the iron-sensing eIF2α kinase HRI. Our data strongly suggest that this increased GADD34 expression served to protect against Pseudomonas-induced, iron-sensitive cell cytotoxicity. In summary, virulence factors from P. aeruginosa induce ER stress in airway epithelial cells and also trigger the ISR to improve cell survival of the host. PMID:26083346

  13. Effect of Cinnamon Oil on Quorum Sensing-Controlled Virulence Factors and Biofilm Formation in Pseudomonas aeruginosa.

    PubMed

    Kalia, Manmohit; Yadav, Vivek Kumar; Singh, Pradeep Kumar; Sharma, Deepmala; Pandey, Himanshu; Narvi, Shahid Suhail; Agarwal, Vishnu

    2015-01-01

    Quorum sensing (QS) is a system of stimuli and responses in bacterial cells governed by their population density, through which they regulate genes that control virulence factors and biofilm formation. Despite considerable research on QS and the discovery of new antibiotics, QS-controlled biofilm formation by microorganisms in clinical settings has remained a problem because of nascent drug resistance, which requires screening of diverse compounds for anti-QS activities. Cinnamon is a dietary phytochemical that is traditionally used to remedy digestive problems and assorted contagions, which suggests that cinnamon might contain chemicals that can hinder the QS process. To test this hypothesis, the anti-QS activity of cinnamon oil against P. aeruginosa was tested, measured by the inhibition of biofilm formation and other QS-associated phenomena, including virulence factors such as pyocyanin, rhamnolipid, protease, alginate production, and swarming activity. To this end, multiple microscopy analyses, including light, scanning electron and confocal microscopy, revealed the ability of cinnamon oil to inhibit P. aeruginosa PAO1 biofilms and their accompanying extracellular polymeric substances. This work is the first to demonstrate that cinnamon oil can influence various QS-based phenomena in P. aeruginosa PAO1, including biofilm formation.

  14. Effect of Cinnamon Oil on Quorum Sensing-Controlled Virulence Factors and Biofilm Formation in Pseudomonas aeruginosa

    PubMed Central

    Kalia, Manmohit; Yadav, Vivek Kumar; Singh, Pradeep Kumar; Sharma, Deepmala; Pandey, Himanshu; Narvi, Shahid Suhail; Agarwal, Vishnu

    2015-01-01

    Quorum sensing (QS) is a system of stimuli and responses in bacterial cells governed by their population density, through which they regulate genes that control virulence factors and biofilm formation. Despite considerable research on QS and the discovery of new antibiotics, QS-controlled biofilm formation by microorganisms in clinical settings has remained a problem because of nascent drug resistance, which requires screening of diverse compounds for anti-QS activities. Cinnamon is a dietary phytochemical that is traditionally used to remedy digestive problems and assorted contagions, which suggests that cinnamon might contain chemicals that can hinder the QS process. To test this hypothesis, the anti-QS activity of cinnamon oil against P. aeruginosa was tested, measured by the inhibition of biofilm formation and other QS-associated phenomena, including virulence factors such as pyocyanin, rhamnolipid, protease, alginate production, and swarming activity. To this end, multiple microscopy analyses, including light, scanning electron and confocal microscopy, revealed the ability of cinnamon oil to inhibit P. aeruginosa PAO1 biofilms and their accompanying extracellular polymeric substances. This work is the first to demonstrate that cinnamon oil can influence various QS-based phenomena in P. aeruginosa PAO1, including biofilm formation. PMID:26263486

  15. Purification, crystallization and preliminary X-ray diffraction analysis of Cif, a virulence factor secreted by Pseudomonas aeruginosa.

    PubMed

    Bahl, Christopher D; MacEachran, Daniel P; O'Toole, George A; Madden, Dean R

    2010-01-01

    The opportunistic pathogen Pseudomonas aeruginosa secretes a protein that triggers the accelerated degradation of the cystic fibrosis transmembrane conductance regulator (CFTR) in airway epithelial cells. This protein, which is known as the CFTR inhibitory factor (Cif), acts as a virulence factor and may facilitate airway colonization by P. aeruginosa. Based on sequence similarity Cif appears to be an epoxide hydrolase (EH), but it lacks several of the conserved features found in the active sites of canonical members of the EH family. Here, the crystallization of purified recombinant Cif by vapor diffusion is reported. The crystals formed in space group C2, with unit-cell parameters a = 167.4, b = 83.6, c = 88.3 A, beta = 100.6 degrees . The crystals diffracted to 2.39 A resolution on a rotating-anode source. Based on the calculated Matthews coefficient (2.2 A(3) Da(-1)), it appears that the asymmetric unit contains four molecules. PMID:20057063

  16. Lactonase-expressing Lactobacillus plantarum NC8 attenuates the virulence factors of multiple drug resistant Pseudomonas aeruginosa in co-culturing environment.

    PubMed

    Joshi, Sudha; Kaur, Amanjot; Sharma, Prince; Harjai, Kusum; Capalash, Neena

    2014-08-01

    Pseudomonas aeruginosa possesses an arcade of both cell-associated and extracellular cytotoxic virulence factors which are regulated by a multi-component quorum sensing system. Many research studies report success of lactonase in combating the pathogenicity of P. aeruginosa but delivery of lactonase remains a challenge. The present study aims at developing a delivery vehicle for lactonase. Lactobacillus plantarum NC8 was used as host for aiiA (Bacillus thuringiensis 4A3 lactonase gene) using pSIP409 expression vector. pSIP409: aiiA construct was stably maintained in L. plantarum NC8. Co-culturing of multi-drug resistant (MDR) clinical isolates of P. aeruginosa and PAO1 with recombinant L. plantarum NC8 led to significant reduction (p < 0.001) in extracellular virulence factors like pyocyanin, protease, elastase and rhamnolipids in P. aeruginosa and also showed significant reduction in adhesion of P. aeruginosa strains to uroepithelial cells in vitro. This study shows the heterologous expression of AiiA lactonase in L. plantarum NC8. Co-culturing of lactonase expressing L. plantarum NC8 with MDR P. aeruginosa strains led to attenuation of their virulence significantly. These results underscore the potential application of recombinant L. plantarum NC8 with anti-quorum sensing properties to control infections caused by multidrug resistant P. aeruginosa.

  17. Polynucleotide Phosphorylase Regulates Multiple Virulence Factors and the Stabilities of Small RNAs RsmY/Z in Pseudomonas aeruginosa

    PubMed Central

    Chen, Ronghao; Weng, Yuding; Zhu, Feng; Jin, Yongxin; Liu, Chang; Pan, Xiaolei; Xia, Bin; Cheng, Zhihui; Jin, Shouguang; Wu, Weihui

    2016-01-01

    Post-transcriptional regulation enables bacteria to quickly response to environmental stresses. Polynucleotide phosphorylase (PNPase), which contains an N-terminal catalytic core and C-terminal RNA binding KH-S1 domains, is involved in RNA processing. Here we demonstrate that in Pseudomonas aeruginosa the KH-S1 domains of PNPase are required for the type III secretion system (T3SS) and bacterial virulence. Transcriptome analysis revealed a pleiotropic role of PNPase in gene regulation. Particularly, the RNA level of exsA was decreased in the ΔKH-S1 mutant, which was responsible for the reduced T3SS expression. Meanwhile, the pilus biosynthesis genes were down regulated and the type VI secretion system (T6SS) genes were up regulated in the ΔKH-S1 mutant, which were caused by increased levels of small RNAs, RsmY, and RsmZ. Further studies revealed that deletion of the KH-S1 domains did not affect the transcription of RsmY/Z, but increased their stabilities. An in vivo pull-down and in vitro electrophoretic mobility shift assay (EMSA) demonstrated a direct interaction between RsmY/Z and the KH-S1 fragment. Overall, this study reveals the roles of PNPase in the regulation of virulence factors and stabilities of small RNAs in P. aeruginosa. PMID:26973625

  18. Purification, Crystallization and Preliminary X-ray Diffraction Analysis of Cif, a Virulence Factor Secreted by Pseudomonas aeruginosa

    SciTech Connect

    Bahl, C.; MacEachran, D; O' Toole, G; Madden, D

    2010-01-01

    The opportunistic pathogen Pseudomonas aeruginosa secretes a protein that triggers the accelerated degradation of the cystic fibrosis transmembrane conductance regulator (CFTR) in airway epithelial cells. This protein, which is known as the CFTR inhibitory factor (Cif), acts as a virulence factor and may facilitate airway colonization by P. aeruginosa. Based on sequence similarity Cif appears to be an epoxide hydrolase (EH), but it lacks several of the conserved features found in the active sites of canonical members of the EH family. Here, the crystallization of purified recombinant Cif by vapor diffusion is reported. The crystals formed in space group C2, with unit-cell parameters a = 167.4, b = 83.6, c = 88.3 {angstrom}, {beta} = 100.6{sup o}. The crystals diffracted to 2.39 {angstrom} resolution on a rotating-anode source. Based on the calculated Matthews coefficient (2.2 {angstrom}{sup 3} Da{sup -1}), it appears that the asymmetric unit contains four molecules.

  19. The Extra-Cytoplasmic Function Sigma Factor SigX Modulates Biofilm and Virulence-Related Properties in Pseudomonas aeruginosa

    PubMed Central

    Gicquel, Gwendoline; Bouffartigues, Emeline; Bains, Manjeet; Oxaran, Virginie; Rosay, Thibaut; Lesouhaitier, Olivier; Connil, Nathalie; Bazire, Alexis; Maillot, Olivier; Bénard, Magalie; Cornelis, Pierre; Hancock, Robert E. W.; Dufour, Alain; Feuilloley, Marc G. J.; Orange, Nicole; Déziel, Eric; Chevalier, Sylvie

    2013-01-01

    SigX, one of the 19 extra-cytoplasmic function sigma factors of P. aeruginosa, was only known to be involved in transcription of the gene encoding the major outer membrane protein OprF. We conducted a comparative transcriptomic study between the wildtype H103 strain and its sigX mutant PAOSX, which revealed a total of 307 differentially expressed genes that differed by more than 2 fold. Most dysregulated genes belonged to six functional classes, including the “chaperones and heat shock proteins”, “antibiotic resistance and susceptibility”, “energy metabolism”, “protein secretion/export apparatus”, and “secreted factors”, and “motility and attachment” classes. In this latter class, the large majority of the affected genes were down-regulated in the sigX mutant. In agreement with the array data, the sigX mutant was shown to demonstrate substantially reduced motility, attachment to biotic and abiotic surfaces, and biofilm formation. In addition, virulence towards the nematode Caenorhabditis elegans was reduced in the sigX mutant, suggesting that SigX is involved in virulence-related phenotypes. PMID:24260387

  20. Crystal Structure of the LasA Virulence Factor from Pseudomonas aeruginosa: Substrate Specificity and Mechanism of M23 Metallopeptidases

    SciTech Connect

    Spencer, James; Murphy, Loretta M.; Conners, Rebecca; Sessions, Richard B.; Gamblin, Steven J.

    2010-09-21

    Pseudomonas aeruginosa is an opportunist Gram-negative bacterial pathogen responsible for a wide range of infections in immunocompromized individuals and is a leading cause of mortality in cystic fibrosis patients. A number of secreted virulence factors, including various proteolytic enzymes, contribute to the establishment and maintenance of Pseudomonas infection. One such is LasA, an M23 metallopeptidase related to autolytic glycylglycine endopeptidases such as Staphylococcus aureus lysostaphin and LytM, and to DD-endopeptidases involved in entry of bacteriophage to host bacteria. LasA is implicated in a range of processes related to Pseudomonas virulence, including stimulating ectodomain shedding of the cell surface heparan sulphate proteoglycan syndecan-1 and elastin degradation in connective tissue. Here we present crystal structures of active LasA as a complex with tartrate and in the uncomplexed form. While the overall fold resembles that of the other M23 family members, the LasA active site is less constricted and utilizes a different set of metal ligands. The active site of uncomplexed LasA contains a five-coordinate zinc ion with trigonal bipyramidal geometry and two metal-bound water molecules. Using these structures as a starting point, we propose a model for substrate binding by LasA that explains its activity against a wider range of substrates than those used by related lytic enzymes, and offer a catalytic mechanism for M23 metallopeptidases consistent with available structural and mutagenesis data. Our results highlight how LasA is a structurally distinct member of this endopeptidase family, consistent with its activity against a wider range of substrates and with its multiple roles in Pseudomonas virulence.

  1. Pseudomonas aeruginosa Virulence and Therapy: Evolving Translational Strategies

    PubMed Central

    Veesenmeyer, Jeffrey L.; Lisboa, Thiago; Rello, Jordi

    2009-01-01

    Structured abstract Objective Although most reviews of Pseudomonas aeruginosa therapeutics focus on antibiotics currently in use or in the pipeline, we review evolving translational strategies aimed at using virulence factor antagonists as adjuvant therapies. Data Source Current literature regarding P. aeruginosa virulence determinants and approaches that target them, with an emphasis on type III secretion, quorum-sensing, biofilms, and flagella. Data Extraction and Synthesis P. aeruginosa remains one of the most important pathogens in nosocomial infections, with high associated morbidity and mortality. Its predilection to develop resistance to antibiotics and expression of multiple virulence factors contributes to the frequent ineffectiveness of current therapies. Among the many P. aeruginosa virulence determinants that impact infections, type III secretion, quorum sensing, biofilm formation, and flagella have been the focus of much recent investigation. Here we review how increased understanding of these important bacterial structures and processes has enabled the development of novel approaches to inhibit each. These promising translational strategies may lead to the development of adjuvant therapies capable of improving outcomes. Conclusions Adjuvant therapies directed against virulence factors have the potential to improve outcomes in P. aeruginosa infections. PMID:19325463

  2. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence

    PubMed Central

    Balasubramanian, Deepak; Schneper, Lisa; Kumari, Hansi; Mathee, Kalai

    2013-01-01

    Pseudomonas aeruginosa is a metabolically versatile bacterium that is found in a wide range of biotic and abiotic habitats. It is a major human opportunistic pathogen causing numerous acute and chronic infections. The critical traits contributing to the pathogenic potential of P. aeruginosa are the production of a myriad of virulence factors, formation of biofilms and antibiotic resistance. Expression of these traits is under stringent regulation, and it responds to largely unidentified environmental signals. This review is focused on providing a global picture of virulence gene regulation in P. aeruginosa. In addition to key regulatory pathways that control the transition from acute to chronic infection phenotypes, some regulators have been identified that modulate multiple virulence mechanisms. Despite of a propensity for chaotic behaviour, no chaotic motifs were readily observed in the P. aeruginosa virulence regulatory network. Having a ‘birds-eye’ view of the regulatory cascades provides the forum opportunities to pose questions, formulate hypotheses and evaluate theories in elucidating P. aeruginosa pathogenesis. Understanding the mechanisms involved in making P. aeruginosa a successful pathogen is essential in helping devise control strategies. PMID:23143271

  3. Zingerone silences quorum sensing and attenuates virulence of Pseudomonas aeruginosa.

    PubMed

    Kumar, Lokender; Chhibber, Sanjay; Kumar, Rajnish; Kumar, Manoj; Harjai, Kusum

    2015-04-01

    Quorum sensing in Pseudomonas aeruginosa plays an imperative role in virulence factor, biofilm formation and antimicrobial resistance. Blocking quorum sensing pathways are viewed as viable anti-virulent therapy in association with traditional antimicrobial therapy. Anti-quorum sensing dietary phytochemicals with may prove to be a safe and viable choice as anti-virulent drug candidates. Previously, our lab proved zingerone as potent anti-biofilm agent hence; further its anti-virulent and anti-quorum activities were evaluated. Zingerone, besides decreasing swimming, swarming and twitching phenotypes of P. aeruginosa PAO1, reduced biofilm forming capacity and production of virulence factors including rhamnolipid, elastase, protease, pyocyanin, cell free and cell bound hemolysin (p<0.001) indicating anti-virulent property attributing towards attenuation of virulence of P. aeruginosa. Further zingerone not only had marked effect on the production of quorum sensing signal molecules by clinical isolates of P. aeruginosa but also showed significant interference with the activation of QS reporter strains. To study the mechanism of blocking quorum sensing cascade, in silico analysis was carried out. Anti-QS activity was attributed to interference with the ligand receptor interaction of zingerone with QS receptors (TraR, LasR, RhlR and PqsR). Zingerone showed a good comparative docking score to respective autoinducer molecules which was even higher than that of vanillin, a proven anti-quorum sensing phytochemical. The results of the present study revealed the anti-quorum sensing activity of zingerone targeting ligand-receptor interaction, hence proposing zingerone as a suitable anti-virulent drug candidate against P. aeruginosa infections. PMID:25704369

  4. Zingerone silences quorum sensing and attenuates virulence of Pseudomonas aeruginosa.

    PubMed

    Kumar, Lokender; Chhibber, Sanjay; Kumar, Rajnish; Kumar, Manoj; Harjai, Kusum

    2015-04-01

    Quorum sensing in Pseudomonas aeruginosa plays an imperative role in virulence factor, biofilm formation and antimicrobial resistance. Blocking quorum sensing pathways are viewed as viable anti-virulent therapy in association with traditional antimicrobial therapy. Anti-quorum sensing dietary phytochemicals with may prove to be a safe and viable choice as anti-virulent drug candidates. Previously, our lab proved zingerone as potent anti-biofilm agent hence; further its anti-virulent and anti-quorum activities were evaluated. Zingerone, besides decreasing swimming, swarming and twitching phenotypes of P. aeruginosa PAO1, reduced biofilm forming capacity and production of virulence factors including rhamnolipid, elastase, protease, pyocyanin, cell free and cell bound hemolysin (p<0.001) indicating anti-virulent property attributing towards attenuation of virulence of P. aeruginosa. Further zingerone not only had marked effect on the production of quorum sensing signal molecules by clinical isolates of P. aeruginosa but also showed significant interference with the activation of QS reporter strains. To study the mechanism of blocking quorum sensing cascade, in silico analysis was carried out. Anti-QS activity was attributed to interference with the ligand receptor interaction of zingerone with QS receptors (TraR, LasR, RhlR and PqsR). Zingerone showed a good comparative docking score to respective autoinducer molecules which was even higher than that of vanillin, a proven anti-quorum sensing phytochemical. The results of the present study revealed the anti-quorum sensing activity of zingerone targeting ligand-receptor interaction, hence proposing zingerone as a suitable anti-virulent drug candidate against P. aeruginosa infections.

  5. Cinnamide Derivatives of d‐Mannose as Inhibitors of the Bacterial Virulence Factor LecB from Pseudomonas aeruginosa

    PubMed Central

    Sommer, Roman; Hauck, Dirk; Varrot, Annabelle; Wagner, Stefanie; Audfray, Aymeric; Prestel, Andreas; Möller, Heiko M.; Imberty, Anne

    2015-01-01

    Abstract Pseudomonas aeruginosa is an opportunistic Gram‐negative pathogen with high antibiotic resistance. Its lectin LecB was identified as a virulence factor and is relevant in bacterial adhesion and biofilm formation. Inhibition of LecB with carbohydrate‐based ligands results in a decrease in toxicity and biofilm formation. We recently discovered two classes of potent drug‐like glycomimetic inhibitors, that is, sulfonamides and cinnamides of d‐mannose. Here, we describe the chemical synthesis and biochemical evaluation of more than 20 derivatives with increased potency compared to the unsubstituted cinnamide. The structure–activity relationship (SAR) obtained and the extended biophysical characterization allowed the experimental determination of the binding mode of these cinnamides with LecB. The established surface binding mode now allows future rational structure‐based drug design. Importantly, all glycomimetics tested showed extended receptor residence times with half‐lives in the 5–20 min range, a prerequisite for therapeutic application. Thus, the glycomimetics described here provide an excellent basis for future development of anti‐infectives against this multidrug‐resistant pathogen. PMID:27308201

  6. Baicalein attenuates the quorum sensing-controlled virulence factors of Pseudomonas aeruginosa and relieves the inflammatory response in P. aeruginosa-infected macrophages by downregulating the MAPK and NFκB signal-transduction pathways

    PubMed Central

    Luo, Jing; Kong, Jin-liang; Dong, Bi-ying; Huang, Hong; Wang, Ke; Wu, Li-hong; Hou, Chang-chun; Liang, Yue; Li, Bing; Chen, Yi-qiang

    2016-01-01

    Burgeoning antibiotic resistance and unfavorable outcomes of inflammatory injury after Pseudomonas aeruginosa infection have necessitated the development of novel agents that not only target quorum sensing (QS) but also combat inflammatory injury with the least risk of resistance. This study aimed to assess the anti-QS and anti-inflammatory activities of baicalein, a traditional herbal medicine that is widely used in the People’s Republic of China, against P. aeruginosa infection. We found that subminimum inhibitory concentrations of baicalein efficiently interfered with the QS-signaling pathway of P. aeruginosa via downregulation of the transcription of QS-regulated genes and the translation of QS-signaling molecules. This interference resulted in the global attenuation of QS-controlled virulence factors, such as motility and biofilm formation, and the secretion into the culture supernatant of extracellular virulence factors, including pyocyanin, LasA protease, LasB elastase, and rhamnolipids. Moreover, we examined the anti-inflammatory activity of baicalein and its mode of action via a P. aeruginosa-infected macrophage model to address its therapeutic effect. Baicalein reduced the P. aeruginosa-induced secretion of the inflammatory cytokines IL-1β, IL-6, IL-8, and TNFα. In addition, baicalein suppressed P. aeruginosa-induced activation of the MAPK and NFκB signal-transduction pathways in cocultured macrophages; this may be the mechanism by which baicalein inhibits the production of proinflammatory cytokines. Therefore, our study demonstrates that baicalein represents a potential treatment for P. aeruginosa infection because it clearly exhibits both antibacterial and anti-inflammatory activities. PMID:26792984

  7. Baicalein attenuates the quorum sensing-controlled virulence factors of Pseudomonas aeruginosa and relieves the inflammatory response in P. aeruginosa-infected macrophages by downregulating the MAPK and NFκB signal-transduction pathways.

    PubMed

    Luo, Jing; Kong, Jin-Liang; Dong, Bi-Ying; Huang, Hong; Wang, Ke; Wu, Li-Hong; Hou, Chang-Chun; Liang, Yue; Li, Bing; Chen, Yi-Qiang

    2016-01-01

    Burgeoning antibiotic resistance and unfavorable outcomes of inflammatory injury after Pseudomonas aeruginosa infection have necessitated the development of novel agents that not only target quorum sensing (QS) but also combat inflammatory injury with the least risk of resistance. This study aimed to assess the anti-QS and anti-inflammatory activities of baicalein, a traditional herbal medicine that is widely used in the People's Republic of China, against P. aeruginosa infection. We found that subminimum inhibitory concentrations of baicalein efficiently interfered with the QS-signaling pathway of P. aeruginosa via downregulation of the transcription of QS-regulated genes and the translation of QS-signaling molecules. This interference resulted in the global attenuation of QS-controlled virulence factors, such as motility and biofilm formation, and the secretion into the culture supernatant of extracellular virulence factors, including pyocyanin, LasA protease, LasB elastase, and rhamnolipids. Moreover, we examined the anti-inflammatory activity of baicalein and its mode of action via a P. aeruginosa-infected macrophage model to address its therapeutic effect. Baicalein reduced the P. aeruginosa-induced secretion of the inflammatory cytokines IL-1β, IL-6, IL-8, and TNFα. In addition, baicalein suppressed P. aeruginosa-induced activation of the MAPK and NFκB signal-transduction pathways in cocultured macrophages; this may be the mechanism by which baicalein inhibits the production of proinflammatory cytokines. Therefore, our study demonstrates that baicalein represents a potential treatment for P. aeruginosa infection because it clearly exhibits both antibacterial and anti-inflammatory activities.

  8. The Mucoid Switch in Pseudomonas aeruginosa Represses Quorum Sensing Systems and Leads to Complex Changes to Stationary Phase Virulence Factor Regulation

    PubMed Central

    Ryall, Ben; Carrara, Marta; Zlosnik, James E. A.; Behrends, Volker; Lee, Xiaoyun; Wong, Zhen; Lougheed, Kathryn E.; Williams, Huw D.

    2014-01-01

    The opportunistic pathogen Pseudomonas aeruginosa chronically infects the airways of Cystic Fibrosis (CF) patients during which it adapts and undergoes clonal expansion within the lung. It commonly acquires inactivating mutations of the anti-sigma factor MucA leading to a mucoid phenotype, caused by excessive production of the extracellular polysaccharide alginate that is associated with a decline in lung function. Alginate production is believed to be the key benefit of mucA mutations to the bacterium in the CF lung. A phenotypic and gene expression characterisation of the stationary phase physiology of mucA22 mutants demonstrated complex and subtle changes in virulence factor production, including cyanide and pyocyanin, that results in their down-regulation upon entry into stationary phase but, (and in contrast to wildtype strains) continued production in prolonged stationary phase. These findings may have consequences for chronic infection if mucoid P. aeruginosa were to continue to make virulence factors under non-growing conditions during infection. These changes resulted in part from a severe down-regulation of both AHL-and AQ (PQS)-dependent quorum sensing systems. In trans expression of the cAMP-dependent transcription factor Vfr restored both quorum sensing defects and virulence factor production in early stationary phase. Our findings have implications for understanding the evolution of P. aeruginosa during CF lung infection and it demonstrates that mucA22 mutation provides a second mechanism, in addition to the commonly occurring lasR mutations, of down-regulating quorum sensing during chronic infection this may provide a selection pressure for the mucoid switch in the CF lung. PMID:24852379

  9. The mucoid switch in Pseudomonas aeruginosa represses quorum sensing systems and leads to complex changes to stationary phase virulence factor regulation.

    PubMed

    Ryall, Ben; Carrara, Marta; Zlosnik, James E A; Behrends, Volker; Lee, Xiaoyun; Wong, Zhen; Lougheed, Kathryn E; Williams, Huw D

    2014-01-01

    The opportunistic pathogen Pseudomonas aeruginosa chronically infects the airways of Cystic Fibrosis (CF) patients during which it adapts and undergoes clonal expansion within the lung. It commonly acquires inactivating mutations of the anti-sigma factor MucA leading to a mucoid phenotype, caused by excessive production of the extracellular polysaccharide alginate that is associated with a decline in lung function. Alginate production is believed to be the key benefit of mucA mutations to the bacterium in the CF lung. A phenotypic and gene expression characterisation of the stationary phase physiology of mucA22 mutants demonstrated complex and subtle changes in virulence factor production, including cyanide and pyocyanin, that results in their down-regulation upon entry into stationary phase but, (and in contrast to wildtype strains) continued production in prolonged stationary phase. These findings may have consequences for chronic infection if mucoid P. aeruginosa were to continue to make virulence factors under non-growing conditions during infection. These changes resulted in part from a severe down-regulation of both AHL-and AQ (PQS)-dependent quorum sensing systems. In trans expression of the cAMP-dependent transcription factor Vfr restored both quorum sensing defects and virulence factor production in early stationary phase. Our findings have implications for understanding the evolution of P. aeruginosa during CF lung infection and it demonstrates that mucA22 mutation provides a second mechanism, in addition to the commonly occurring lasR mutations, of down-regulating quorum sensing during chronic infection this may provide a selection pressure for the mucoid switch in the CF lung. PMID:24852379

  10. Pseudomonas aeruginosa Biofilm Formation and Persistence, along with the Production of Quorum Sensing-Dependent Virulence Factors, Are Disrupted by a Triterpenoid Coumarate Ester Isolated from Dalbergia trichocarpa, a Tropical Legume

    PubMed Central

    Pottier, Laurent; Huet, Joelle; Rabemanantsoa, Christian; Kiendrebeogo, Martin; Andriantsimahavandy, Abel; Rasamindrakotroka, Andry; Stévigny, Caroline; Duez, Pierre; El Jaziri, Mondher

    2015-01-01

    Recently, extracts of Dalbergia trichocarpa bark have been shown to disrupt P. aeruginosa PAO1 quorum sensing (QS) mechanisms, which are key regulators of virulence factor expression and implicated in biofilm formation. One of the active compounds has been isolated and identified as oleanolic aldehyde coumarate (OALC), a novel bioactive compound that inhibits the formation of P. aeruginosa PAO1 biofilm and its maintenance as well as the expression of the las and rhl QS systems. Consequently, the production of QS-controlled virulence factors including, rhamnolipids, pyocyanin, elastase and extracellular polysaccharides as well as twitching and swarming motilities is reduced. Native acylhomoserine lactones (AHLs) production is inhibited by OALC but exogenous supply of AHLs does not restore the production of virulence factors by OALC-treated cultures, indicating that OALC exerts its effect beyond AHLs synthesis in the QS pathways. Further experiments provided a significant inhibition of the global virulence factor activator gacA by OALC. OALC disorganizes established biofilm structure and improves the bactericidal activity of tobramycin against biofilm-encapsulated PAO1 cells. Finally, a significant reduction of Caenorhabditis elegans paralysis was recorded when the worms were infected with OALC-pre-treated P. aeruginosa. Taken together, these results show that triterpenoid coumarate esters are suitable chemical backbones to target P. aeruginosa virulence mechanisms. PMID:26186595

  11. Epidemic population structure of Pseudomonas aeruginosa: evidence for a clone that is pathogenic to the eye and that has a distinct combination of virulence factors.

    PubMed

    Lomholt, J A; Poulsen, K; Kilian, M

    2001-10-01

    The genetic structure of a population of Pseudomonas aeruginosa, isolated from patients with keratitis, endophthalmitis, and contact lens-associated red eye, contact lens storage cases, urine, ear, blood, lungs, wounds, feces, and the environment was determined by multilocus enzyme electrophoresis. The presence and characteristics of virulence factors were determined by restriction fragment length polymorphism analysis with DNA probes for lasA, lasB, aprA, exoS, exoT, exoU, and ctx and by zymography of staphylolysin, elastase, and alkaline protease. These analyses revealed an epidemic population structure of P. aeruginosa, characterized by frequent recombination in which a particular successful clone may increase, predominate for a time, and then disappear as a result of recombination. Epidemic clones were found among isolates from patients with keratitis. They were characterized by high activity of a hitherto-unrecognized size variant of elastase, high alkaline protease activity, and possession of the exoU gene encoding the cytotoxic exoenzyme U. These virulence determinants are not exclusive traits in strains causing keratitis, as strains with other properties may cause keratitis in the presence of predisposing conditions. There were no uniform patterns of characteristics of isolates from other types of infection; however, all strains from urinary tract infections possessed the exoS gene, all strains from environment and feces and the major part of keratitis and wound isolates exhibited high elastase and alkaline protease activity, and all strains from feces showed high staphylolysin activity, indicating that these virulence factors may be important in the pathogenesis of these infectious diseases.

  12. Risk factors for mortality in patients with bloodstream infections caused by carbapenem-resistant Pseudomonas aeruginosa: clinical impact of bacterial virulence and strains on outcome.

    PubMed

    Jeong, Su Jin; Yoon, Sang Sun; Bae, Il Kwon; Jeong, Seok Hoon; Kim, June Myung; Lee, Kyungwon

    2014-10-01

    The incidence of carbapenem-resistant Pseudomonas aeruginosa (CRPA) bacteremia has increased in recent years, and infections caused by CRPA result in higher mortality than those caused by susceptible strains. This study was performed to evaluate the risk factors for mortality and to study the impact of virulence factors and bacterial strains on clinical outcomes in patients with CRPA bacteremia. Data on 63 episodes of CRPA bacteremia that have occurred between January 1, 2007, and December 31, 2009, in a teaching hospital (2000 beds) in Seoul, Korea, were analyzed. The Acute Physiology and Chronic Health Evaluation II (APACHE II) score at the time of CRPA bacteremia and the capacity of CRPA to form biofilm were independent predictive factors for mortality in patients with CRPA bacteremia. In addition, the biofilm-forming ability and elastase activity of strains were correlated with APACHE II scores to measure the severity of disease and estimate predicted mortality in the patients.

  13. Characterization of exo-s, exo-u, and alg virulence factors and antimicrobial resistance in Pseudomonas aeruginosa isolated from migratory Egyptian vultures from India.

    PubMed

    Sharma, Pradeep; Faridi, Farah; Mir, Irfan A; Sharma, Sandeep K

    2014-01-01

    This study of Pseudomonas aeruginosa in fecal droppings of migratory Egyptian vultures (Neophron p. percnopterus) revealed eight positive samples (n=25) by a 16S rRNA gene-based PCR in two consecutive winter seasons. Disk diffusion sensitivity testing revealed three multiple antimicrobial resistant (MAR) isolates. Genotypic characterization showed mutually exclusive exo-s and exo-u virulence genes in five and three isolates, respectively, while the alg gene was present in all of the isolates. MAR isolates with virulence genes were detected in both seasons. The Egyptian vultures could potentially be vectors of pathogenic and MAR P. aeruginosa, thereby affecting regional control and preventive measures. PMID:25317261

  14. Characterization of exo-s, exo-u, and alg virulence factors and antimicrobial resistance in Pseudomonas aeruginosa isolated from migratory Egyptian vultures from India.

    PubMed

    Sharma, Pradeep; Faridi, Farah; Mir, Irfan A; Sharma, Sandeep K

    2014-01-01

    This study of Pseudomonas aeruginosa in fecal droppings of migratory Egyptian vultures (Neophron p. percnopterus) revealed eight positive samples (n=25) by a 16S rRNA gene-based PCR in two consecutive winter seasons. Disk diffusion sensitivity testing revealed three multiple antimicrobial resistant (MAR) isolates. Genotypic characterization showed mutually exclusive exo-s and exo-u virulence genes in five and three isolates, respectively, while the alg gene was present in all of the isolates. MAR isolates with virulence genes were detected in both seasons. The Egyptian vultures could potentially be vectors of pathogenic and MAR P. aeruginosa, thereby affecting regional control and preventive measures.

  15. The HigB/HigA toxin/antitoxin system of Pseudomonas aeruginosa influences the virulence factors pyochelin, pyocyanin, and biofilm formation.

    PubMed

    Wood, Thammajun L; Wood, Thomas K

    2016-06-01

    Toxin/antitoxin (TA) systems are prevalent in most bacterial and archaeal genomes, and one of the emerging physiological roles of TA systems is to help regulate pathogenicity. Although TA systems have been studied in several model organisms, few studies have investigated the role of TA systems in pseudomonads. Here, we demonstrate that the previously uncharacterized proteins HigB (unannotated) and HigA (PA4674) of Pseudomonas aeruginosa PA14 form a type II TA system in which antitoxin HigA masks the RNase activity of toxin HigB through direct binding. Furthermore, toxin HigB reduces production of the virulence factors pyochelin, pyocyanin, swarming, and biofilm formation; hence, this system affects the pathogencity of this strain in a manner that has not been demonstrated previously for TA systems. PMID:26987441

  16. Virulence attributes in Brazilian clinical isolates of Pseudomonas aeruginosa.

    PubMed

    Silva, Lívia V; Galdino, Anna Clara M; Nunes, Ana Paula F; dos Santos, Kátia R N; Moreira, Beatriz M; Cacci, Luciana C; Sodré, Cátia L; Ziccardi, Mariangela; Branquinha, Marta H; Santos, André L S

    2014-11-01

    Pseudomonas aeruginosa is an opportunistic human pathogen responsible for causing a huge variety of acute and chronic infections with significant levels of morbidity and mortality. Its success as a pathogen comes from its genetic/metabolic plasticity, intrinsic/acquired antimicrobial resistance, capacity to form biofilm and expression of numerous virulence factors. Herein, we have analyzed the genetic variability, antimicrobial susceptibility as well as the production of metallo-β-lactamases (MBLs) and virulence attributes (elastase, pyocyanin and biofilm) in 96 strains of P. aeruginosa isolated from different anatomical sites of patients attended at Brazilian hospitals. Our results revealed a great genetic variability, in which 86 distinct RAPD types (89.6% of polymorphisms) were detected. Regarding the susceptibility profile, 48 strains (50%) were resistant to the antimicrobials, as follows: 22.92% to the three tested antibiotics, 12.5% to both imipenem and meropenem, 11.46% to ceftazidime only, 2.08% to imipenem only and 1.04% to both ceftazidime and meropenem. Out of the 34 clinical strains of P. aeruginosa resistant to both imipenem and meropenem, 25 (73.53%) were MBL producers by phenotypic method while 12 (35.29%) were PCR positive for the MBL gene SPM-1. All P. aeruginosa strains produced pyocyanin, elastase and biofilm, although in different levels. Some associations were demonstrated among the susceptibility and/or production of these virulence traits with the anatomical site of strain isolation. For instance, almost all strains isolated from urine (85.71%) were resistant to the three antibiotics, while the vast majority of strains isolated from rectum (95%) and mouth (66.67%) were susceptible to all tested antibiotics. Urine isolates produced the highest pyocyanin concentration (20.15±5.65 μg/ml), while strains isolated from pleural secretion and mouth produced elevated elastase activity (1441.43±303.08 FAU) and biofilm formation (OD590 0.676±0

  17. Indole and 7‐hydroxyindole diminish Pseudomonas aeruginosa virulence

    PubMed Central

    Lee, Jintae; Attila, Can; Cirillo, Suat L. G.; Cirillo, Jeffrey D.; Wood, Thomas K.

    2009-01-01

    Summary Indole is an extracellular biofilm signal for Escherichia coli, and many bacterial oxygenases readily convert indole to various oxidized compounds including 7‐hydroxyindole (7HI). Here we investigate the impact of indole and 7HI on Pseudomonas aeruginosa PAO1 virulence and quorum sensing (QS)‐regulated phenotypes; this strain does not synthesize these compounds but degrades them rapidly. Indole and 7HI both altered extensively gene expression in a manner opposite that of acylhomoserine lactones; the most repressed genes encode the mexGHI‐opmD multidrug efflux pump and genes involved in the synthesis of QS‐regulated virulence factors including pyocyanin (phz operon), 2‐heptyl‐3‐hydroxy‐4(1H)‐quinolone (PQS) signal (pqs operon), pyochelin (pch operon) and pyoverdine (pvd operon). Corroborating these microarray results, indole and 7HI decreased production of pyocyanin, rhamnolipid, PQS and pyoverdine and enhanced antibiotic resistance. In addition, indole affected the utilization of carbon, nitrogen and phosphorus, and 7HI abolished swarming motility. Furthermore, 7HI reduced pulmonary colonization of P. aeruginosa in guinea pigs and increased clearance in lungs. Hence, indole‐related compounds have potential as a novel antivirulence approach for the recalcitrant pathogen P. aeruginosa. PMID:21261883

  18. Indole and 7-hydroxyindole diminish Pseudomonas aeruginosa virulence.

    PubMed

    Lee, Jintae; Attila, Can; Cirillo, Suat L G; Cirillo, Jeffrey D; Wood, Thomas K

    2009-01-01

    Indole is an extracellular biofilm signal for Escherichia coli, and many bacterial oxygenases readily convert indole to various oxidized compounds including 7-hydroxyindole (7HI). Here we investigate the impact of indole and 7HI on Pseudomonas aeruginosa PAO1 virulence and quorum sensing (QS)-regulated phenotypes; this strain does not synthesize these compounds but degrades them rapidly. Indole and 7HI both altered extensively gene expression in a manner opposite that of acylhomoserine lactones; the most repressed genes encode the mexGHI-opmD multidrug efflux pump and genes involved in the synthesis of QS-regulated virulence factors including pyocyanin (phz operon), 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) signal (pqs operon), pyochelin (pch operon) and pyoverdine (pvd operon). Corroborating these microarray results, indole and 7HI decreased production of pyocyanin, rhamnolipid, PQS and pyoverdine and enhanced antibiotic resistance. In addition, indole affected the utilization of carbon, nitrogen and phosphorus, and 7HI abolished swarming motility. Furthermore, 7HI reduced pulmonary colonization of P. aeruginosa in guinea pigs and increased clearance in lungs. Hence, indole-related compounds have potential as a novel antivirulence approach for the recalcitrant pathogen P. aeruginosa. PMID:21261883

  19. Antipathogenic potential of marine Bacillus sp. SS4 on N-acyl-homoserine-lactone-mediated virulence factors production in Pseudomonas aeruginosa (PAO1).

    PubMed

    Musthafa, K Syed; Saroja, V; Pandian, S Karutha; Ravi, A Veera

    2011-03-01

    Antipathogenic therapy is an outcome of the quorum-sensing inhibition (QSI) mechanism, which targets autoinducer-dependent virulent gene expression in bacterial pathogens. N-acyl homoserine lactone (AHL) acts as a key regulator in the production of virulence factors and biofilm formation in Pseudomonas aeruginosa PAO1 and violacein pigment production in Chromobacterium violaceum. In the present study, the marine bacterial strain SS4 showed potential QSI activity in a concentration-dependent manner (0.5-2 mg/ml) against the AHL-mediated violacein production in C. violaceum (33-86%) and biofilm formation (33-88%), total protease (20-65%), LasA protease (59-68%), LasB elastase (36-68%), pyocyanin (17-86%) and pyoverdin productions in PAO1. The light and confocal laser scanning microscopic analyses confirmed the reduction of the biofilm-forming ability of PAO1 when treated with SS4 extract. Furthermore, the antibiofilm potential was confirmed through static biofilm ring assay, in which ethyl acetate extract of SS4 showed concentration-dependent reduction in the biofilm-forming ability of PAO1. Thus, the result of this study clearly reveals the antipathogenic and antibiofilm properties of the bacterial isolate SS4. Through 16S rDNA analysis, the strain SS4 was identified as Bacillus sp. (GenBank Accession Number: GU471751). PMID:21451248

  20. Effect of Human Burn Wound Exudate on Pseudomonas aeruginosa Virulence

    PubMed Central

    Gonzalez, Manuel R.; Fleuchot, Betty; Lauciello, Leonardo; Jafari, Paris; Applegate, Lee Ann; Raffoul, Wassim; Que, Yok-Ai

    2016-01-01

    ABSTRACT Burn wound sepsis is currently the main cause of morbidity and mortality after burn trauma. Infections by notorious pathogens such as Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii impair patient recovery and can even lead to fatality. In this study, we investigated the effect of burn wound exudates (BWEs) on the virulence of those pathogens. BWEs were collected within 7 days after burn trauma from 5 burn patients. We first monitored their effect on pathogen growth. In contrast to A. baumannii and S. aureus, P. aeruginosa was the only pathogen able to grow within these human fluids. Expression of typical virulence factors such as pyocyanin and pyoverdine was even enhanced compared the levels seen with standard laboratory medium. A detailed chemical composition analysis of BWE was performed, which enabled us to determine the major components of BWE and underline the metabolic modifications induced by burn trauma. These data are essential for the development of an artificial medium mimicking the burn wound environment and the establishment of an in vitro system to analyze the initial steps of burn wound infections. IMPORTANCE Microbial infection of severe burn wounds is currently a major medical challenge. Of the infections by bacteria able to colonize such injuries, those by Pseudomonas aeruginosa are among the most severe, causing major delays in burn patient recovery or leading to fatal issues. In this study, we investigated the growth properties of several burn wound pathogens in biological fluids secreted from human burn wounds. We found that P. aeruginosa strains were able to proliferate but not those of the other pathogens tested. In addition, burn wound exudates (BWEs) stimulate the expression of virulence factors in P. aeruginosa. The chemical composition analysis of BWEs enabled us to determine the major components of these fluids. These data are essential for the development of an artificial medium mimicking the

  1. Effect of Human Burn Wound Exudate on Pseudomonas aeruginosa Virulence.

    PubMed

    Gonzalez, Manuel R; Fleuchot, Betty; Lauciello, Leonardo; Jafari, Paris; Applegate, Lee Ann; Raffoul, Wassim; Que, Yok-Ai; Perron, Karl

    2016-01-01

    Burn wound sepsis is currently the main cause of morbidity and mortality after burn trauma. Infections by notorious pathogens such as Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii impair patient recovery and can even lead to fatality. In this study, we investigated the effect of burn wound exudates (BWEs) on the virulence of those pathogens. BWEs were collected within 7 days after burn trauma from 5 burn patients. We first monitored their effect on pathogen growth. In contrast to A. baumannii and S. aureus, P. aeruginosa was the only pathogen able to grow within these human fluids. Expression of typical virulence factors such as pyocyanin and pyoverdine was even enhanced compared the levels seen with standard laboratory medium. A detailed chemical composition analysis of BWE was performed, which enabled us to determine the major components of BWE and underline the metabolic modifications induced by burn trauma. These data are essential for the development of an artificial medium mimicking the burn wound environment and the establishment of an in vitro system to analyze the initial steps of burn wound infections. IMPORTANCE Microbial infection of severe burn wounds is currently a major medical challenge. Of the infections by bacteria able to colonize such injuries, those by Pseudomonas aeruginosa are among the most severe, causing major delays in burn patient recovery or leading to fatal issues. In this study, we investigated the growth properties of several burn wound pathogens in biological fluids secreted from human burn wounds. We found that P. aeruginosa strains were able to proliferate but not those of the other pathogens tested. In addition, burn wound exudates (BWEs) stimulate the expression of virulence factors in P. aeruginosa. The chemical composition analysis of BWEs enabled us to determine the major components of these fluids. These data are essential for the development of an artificial medium mimicking the burn wound

  2. Discovery of an inhibitor of the production of the Pseudomonas aeruginosa virulence factor pyocyanin in wild-type cells

    PubMed Central

    Morkunas, Bernardas; Gal, Balint; Galloway, Warren R J D; Hodgkinson, James T; Ibbeson, Brett M; Sing Tan, Yaw; Welch, Martin

    2016-01-01

    Summary Pyocyanin is a small molecule produced by Pseudomonas aeruginosa that plays a crucial role in the pathogenesis of infections by this notorious opportunistic pathogen. The inhibition of pyocyanin production has been identified as an attractive antivirulence strategy for the treatment of P. aeruginosa infections. Herein, we report the discovery of an inhibitor of pyocyanin production in cultures of wild-type P. aeruginosa which is based around a 4-alkylquinolin-2(1H)-one scaffold. To the best of our knowledge, this is the first reported example of pyocyanin inhibition by a compound based around this molecular framework. The compound may therefore be representative of a new structural sub-class of pyocyanin inhibitors, which could potentially be exploited in in a therapeutic context for the development of critically needed new antipseudomonal agents. In this context, the use of wild-type cells in this study is notable, since the data obtained are of direct relevance to native situations. The compound could also be of value in better elucidating the role of pyocyanin in P. aeruginosa infections. Evidence suggests that the active compound reduces the level of pyocyanin production by inhibiting the cell–cell signalling mechanism known as quorum sensing. This could have interesting implications; quorum sensing regulates a range of additional elements associated with the pathogenicity of P. aeruginosa and there is a wide range of other potential applications where the inhibition of quorum sensing is desirable. PMID:27559393

  3. The Transcription Factor AmrZ Utilizes Multiple DNA Binding Modes to Recognize Activator and Repressor Sequences of Pseudomonas aeruginosa Virulence Genes

    PubMed Central

    Pryor, Edward E.; Waligora, Elizabeth A.; Xu, Binjie; Dellos-Nolan, Sheri; Wozniak, Daniel J.; Hollis, Thomas

    2012-01-01

    AmrZ, a member of the Ribbon-Helix-Helix family of DNA binding proteins, functions as both a transcriptional activator and repressor of multiple genes encoding Pseudomonas aeruginosa virulence factors. The expression of these virulence factors leads to chronic and sustained infections associated with worsening prognosis. In this study, we present the X-ray crystal structure of AmrZ in complex with DNA containing the repressor site, amrZ1. Binding of AmrZ to this site leads to auto-repression. AmrZ binds this DNA sequence as a dimer-of-dimers, and makes specific base contacts to two half sites, separated by a five base pair linker region. Analysis of the linker region shows a narrowing of the minor groove, causing significant distortions. AmrZ binding assays utilizing sequences containing variations in this linker region reveals that secondary structure of the DNA, conferred by the sequence of this region, is an important determinant in binding affinity. The results from these experiments allow for the creation of a model where both intrinsic structure of the DNA and specific nucleotide recognition are absolutely necessary for binding of the protein. We also examined AmrZ binding to the algD promoter, which results in activation of the alginate exopolysaccharide biosynthetic operon, and found the protein utilizes different interactions with this site. Finally, we tested the in vivo effects of this differential binding by switching the AmrZ binding site at algD, where it acts as an activator, for a repressor binding sequence and show that differences in binding alone do not affect transcriptional regulation. PMID:22511872

  4. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors

    PubMed Central

    Hentzer, Morten; Wu, Hong; Andersen, Jens Bo; Riedel, Kathrin; Rasmussen, Thomas B.; Bagge, Niels; Kumar, Naresh; Schembri, Mark A.; Song, Zhijun; Kristoffersen, Peter; Manefield, Mike; Costerton, John W.; Molin, Søren; Eberl, Leo; Steinberg, Peter; Kjelleberg, Staffan; Høiby, Niels; Givskov, Michael

    2003-01-01

    Traditional treatment of infectious diseases is based on compounds that kill or inhibit growth of bacteria. A major concern with this approach is the frequent development of resistance to antibiotics. The discovery of communication systems (quorum sensing systems) regulating bacterial virulence has afforded a novel opportunity to control infectious bacteria without interfering with growth. Compounds that can override communication signals have been found in the marine environment. Using Pseudomonas aeruginosa PAO1 as an example of an opportunistic human pathogen, we show that a synthetic derivate of natural furanone compounds can act as a potent antagonist of bacterial quorum sensing. We employed GeneChip® microarray technology to identify furanone target genes and to map the quorum sensing regulon. The transcriptome analysis showed that the furanone drug specifically targeted quorum sensing systems and inhibited virulence factor expression. Application of the drug to P.aeruginosa biofilms increased bacterial susceptibility to tobramycin and SDS. In a mouse pulmonary infection model, the drug inhibited quorum sensing of the infecting bacteria and promoted their clearance by the mouse immune response. PMID:12881415

  5. Pleiotropic effects of acyltransferases on various virulence-related phenotypes of Pseudomonas aeruginosa.

    PubMed

    Yeom, Doo Hwan; Kim, Soo-Kyoung; Lee, Mi-Nan; Lee, Joon-Hee

    2013-08-01

    Pseudomonas aeruginosa, an opportunistic pathogen causing various infections, expresses various virulence factors under the control of quorum sensing (QS), a cell density-sensing mechanism. Because the major signal molecules of QS are acyl homoserine lactones (acyl-HSLs), acyltransferases, the enzymes that act upon acyl group transfer could affect the QS signaling and QS-related virulence phenotypes. In this study, we overexpressed acyltransferases of P. aeruginosa and screened them for the activity influencing the QS and QS-related virulence phenotypes. Among seven acyltransferases tested in this study, two acyltransferases, PA3984 (apolipoprotein N-acyltransferase) and PA2537 (putative acyltransferase), significantly affected both growth of P. aeruginosa and the activity of LasR, a major QS regulator, when overexpressed. These acyltransferases also reduced virulence and swarming motility of P. aeruginosa. The other acyltransferase, PA3646 (UDP-3-O-[3-hydroxylauroyl] glucosamine N-acyltransferase), reduced the LasR activity, swarming motility, protease production and virulence without any influence on growth. These effects by PA3646 over-expression were caused by less production of QS signal. PA3644 (UDP-N-acetylglucosamine acyltransferase) enhanced biofilm formation and swarming motility with no effect on the growth and QS activity. These results suggest that acyltransferases may be an important factor regulating the cellular activity about virulence-related phenotypes. PMID:23848169

  6. Inhibition of Quorum Sensing-Controlled Virulence Factors and Biofilm Formation in Pseudomonas aeruginosa by Culture Extract from Novel Bacterial Species of Paenibacillus Using a Rat Model of Chronic Lung Infection

    PubMed Central

    Alasil, Saad Musbah; Omar, Rahmat; Yusof, Mohd Yasim

    2015-01-01

    Quorum sensing (QS) is a key regulator of virulence factors and biofilm formation in Gram-negative bacteria such as Pseudomonas aeruginosa. Microorganisms that inhabit soil are of strategic importance in the discovery of compounds with anti-QS properties. The objective of the study was to test the culture extract of a taxonomically novel species of Paenibacillus strain 139SI for its inhibitory effects on the QS-controlled virulence factors and biofilm formation of Pseudomonas aeruginosa both in vitro and in vivo. The Paenibacillus sp. culture extract was used to test its anti-QS effects on the LasA protease, LasB elastase, pyoverdin production, and biofilm formation of P. aeruginosa as well as evaluate its therapeutic effects on lung bacteriology, pathology, hematological profile, and serum antibody responses of experimental animals in a rat model of chronic lung infection. Results showed significant decrease in the activities of QS-controlled LasA protease, LasB elastase pyoverdin, and biofilm formation of P. aeruginosa caused by the culture extract. Moreover, the extract significantly prolonged the survival times of rats and facilitated the clearance of biofilm infections from infected lungs. In conclusion, the antiquorum sensing effects of culture extract from a novel species of Paenibacillus provide new insights to combat biofilm-associated infections. PMID:26904749

  7. Inhibition of Quorum Sensing-Controlled Virulence Factors and Biofilm Formation in Pseudomonas aeruginosa by Culture Extract from Novel Bacterial Species of Paenibacillus Using a Rat Model of Chronic Lung Infection.

    PubMed

    Alasil, Saad Musbah; Omar, Rahmat; Ismail, Salmah; Yusof, Mohd Yasim

    2015-01-01

    Quorum sensing (QS) is a key regulator of virulence factors and biofilm formation in Gram-negative bacteria such as Pseudomonas aeruginosa. Microorganisms that inhabit soil are of strategic importance in the discovery of compounds with anti-QS properties. The objective of the study was to test the culture extract of a taxonomically novel species of Paenibacillus strain 139SI for its inhibitory effects on the QS-controlled virulence factors and biofilm formation of Pseudomonas aeruginosa both in vitro and in vivo. The Paenibacillus sp. culture extract was used to test its anti-QS effects on the LasA protease, LasB elastase, pyoverdin production, and biofilm formation of P. aeruginosa as well as evaluate its therapeutic effects on lung bacteriology, pathology, hematological profile, and serum antibody responses of experimental animals in a rat model of chronic lung infection. Results showed significant decrease in the activities of QS-controlled LasA protease, LasB elastase pyoverdin, and biofilm formation of P. aeruginosa caused by the culture extract. Moreover, the extract significantly prolonged the survival times of rats and facilitated the clearance of biofilm infections from infected lungs. In conclusion, the antiquorum sensing effects of culture extract from a novel species of Paenibacillus provide new insights to combat biofilm-associated infections. PMID:26904749

  8. The role of quorum sensing in the in vivo virulence of Pseudomonas aeruginosa.

    PubMed

    Rumbaugh, K P; Griswold, J A; Hamood, A N

    2000-11-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes a wide variety of infections. The cell-density-dependent signaling mechanisms known as quorum sensing play a role in several of these infections including corneal, lung and burn wound infections. In addition, the quorum-sensing systems contribute to the ability of P. aeruginosa to form biofilms on medically important devices. The quorum-sensing systems accomplish their effect by controlling the production of different virulence factors and by manipulating the host immune response.

  9. Cranberry-derived proanthocyanidins impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa

    PubMed Central

    Maisuria, Vimal B.; Los Santos, Yossef Lopez-de; Tufenkji, Nathalie; Déziel, Eric

    2016-01-01

    Bacteria have evolved multiple strategies for causing infections that include producing virulence factors, undertaking motility, developing biofilms, and invading host cells. N-acylhomoserine lactone (AHL)-mediated quorum sensing (QS) tightly regulates the expression of multiple virulence factors in the opportunistic pathogenic bacterium Pseudomonas aeruginosa. Thus, inhibiting QS could lead to health benefits. In this study, we demonstrate an anti-virulence activity of a cranberry extract rich in proanthocyanidins (cerPAC) against P. aeruginosa in the model host Drosophila melanogaster and show this is mediated by QS interference. cerPAC reduced the production of QS-regulated virulence determinants and protected D. melanogaster from fatal infection by P. aeruginosa PA14. Quantification of AHL production using liquid chromatography-mass spectrometry confirmed that cerPAC effectively reduced the level of AHLs produced by the bacteria. Furthermore, monitoring QS signaling gene expression revealed that AHL synthases LasI/RhlI and QS transcriptional regulators LasR/RhlR genes were inhibited and antagonized, respectively, by cerPAC. Molecular docking studies suggest that cranberry-derived proanthocyanidin binds to QS transcriptional regulators, mainly interacting with their ligand binding sites. These findings provide insights into the underlying mechanisms of action of a cerPAC to restrict the virulence of P. aeruginosa and can have implications in the development of alternative approaches to control infections. PMID:27503003

  10. Cranberry-derived proanthocyanidins impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa.

    PubMed

    Maisuria, Vimal B; Los Santos, Yossef Lopez-de; Tufenkji, Nathalie; Déziel, Eric

    2016-01-01

    Bacteria have evolved multiple strategies for causing infections that include producing virulence factors, undertaking motility, developing biofilms, and invading host cells. N-acylhomoserine lactone (AHL)-mediated quorum sensing (QS) tightly regulates the expression of multiple virulence factors in the opportunistic pathogenic bacterium Pseudomonas aeruginosa. Thus, inhibiting QS could lead to health benefits. In this study, we demonstrate an anti-virulence activity of a cranberry extract rich in proanthocyanidins (cerPAC) against P. aeruginosa in the model host Drosophila melanogaster and show this is mediated by QS interference. cerPAC reduced the production of QS-regulated virulence determinants and protected D. melanogaster from fatal infection by P. aeruginosa PA14. Quantification of AHL production using liquid chromatography-mass spectrometry confirmed that cerPAC effectively reduced the level of AHLs produced by the bacteria. Furthermore, monitoring QS signaling gene expression revealed that AHL synthases LasI/RhlI and QS transcriptional regulators LasR/RhlR genes were inhibited and antagonized, respectively, by cerPAC. Molecular docking studies suggest that cranberry-derived proanthocyanidin binds to QS transcriptional regulators, mainly interacting with their ligand binding sites. These findings provide insights into the underlying mechanisms of action of a cerPAC to restrict the virulence of P. aeruginosa and can have implications in the development of alternative approaches to control infections. PMID:27503003

  11. Sputum containing zinc enhances carbapenem resistance, biofilm formation and virulence of Pseudomonas aeruginosa.

    PubMed

    Marguerettaz, Mélanie; Dieppois, Guennaëlle; Que, Yok Ai; Ducret, Véréna; Zuchuat, Sandrine; Perron, Karl

    2014-12-01

    Pseudomonas aeruginosa chronic lung infections are the leading cause of mortality in cystic fibrosis patients, a serious problem which is notably due to the numerous P. aeruginosa virulence factors, to its ability to form biofilms and to resist the effects of most antibiotics. Production of virulence factors and biofilm formation by P. aeruginosa is highly coordinated through complex regulatory systems. We recently found that CzcRS, the zinc and cadmium-specific two-component system is not only involved in metal resistance, but also in virulence and carbapenem antibiotic resistance in P. aeruginosa. Interestingly, zinc has been shown to be enriched in the lung secretions of cystic fibrosis patients. In this study, we investigated whether zinc might favor P. aeruginosa pathogenicity using an artificial sputum medium to mimic the cystic fibrosis lung environment. Our results show that zinc supplementation triggers a dual P. aeruginosa response: (i) it exacerbates pathogenicity by a CzcRS two-component system-dependent mechanism and (ii) it stimulates biofilm formation by a CzcRS-independent mechanism. Furthermore, P. aeruginosa cells embedded in these biofilms exhibited increased resistance to carbapenems. We identified a novel Zn-sensitive regulatory circuit controlling the expression of the OprD porin and modifying the carbapenem resistance profile. Altogether our data demonstrated that zinc levels in the sputum of cystic fibrosis patients might aggravate P. aeruginosa infection. Targeting zinc levels in sputum would be a valuable strategy to curb the increasing burden of P. aeruginosa infections in cystic fibrosis patients. PMID:25448466

  12. [New Virulent Bacteriophages Active against Multiresistant Pseudomonas aeruginosa Strains].

    PubMed

    Balarjishvili, N Sh; Kvachadze, L I; Kutateladze, M I; Meskhi, T Sh; Pataridze, T K; Berishvili, T A; Tevdoradze, E Sh

    2015-01-01

    The sensitivity of 512 newly isolated Pseudomonas aeruginosa clinical strains to six classes of anti-microbial preparations has been studied. Antibiotic-resistant strains were selected and genotyped. Three new virulent bacteriophages of the families Myoviridae and Podoviridae were isolated against these strains. The parameters of the intracellular phage development cycle were established, and the influence of inactivating factors (temperature, pH, and UV exposure) on phage viability was studied. The molecular weight of the phage genome was determined. Phage DNA restriction analysis and polyacrylamide gel electrophoresis in the presence of envelope protein SDS were carried out. The plating efficacy of phages on 28 genetically distant antibiotic-resistant P. aeruginosa strains was studied. It was established that 26 of them were lysed by phages with a high efficacy. The range of antibacterial action of the studied phages and their mixtures on 427 multi-drug-resistant clinical isolates was assessed. It is shown that including these phages in one multicomponent preparation enhanced their lytic activity. PMID:26859962

  13. Effect of Tyrosol and Farnesol on Virulence and Antibiotic Resistance of Clinical Isolates of Pseudomonas aeruginosa

    PubMed Central

    Hassan Abdel-Rhman, Shaymaa; Mostafa El-Mahdy, Areej; El-Mowafy, Mohammed

    2015-01-01

    Mixed-species biofilms could create a protected environment that allows for survival to external antimicrobials and allows different bacterial-fungal interactions. Pseudomonas aeruginosa-Candida albicans coexistence is an example for such mixed-species community. Numerous reports demonstrated how P. aeruginosa or its metabolites could influence the growth, morphogenesis, and virulence of C. albicans. In this study, we investigated how the C. albicans quorum sensing compounds, tyrosol and farnesol, might affect Egyptian clinical isolates of P. aeruginosa regarding growth, antibiotic sensitivity, and virulence. We could demonstrate that tyrosol possesses an antibacterial activity against P. aeruginosa (10 µM inhibited more than 50% of growth after 16 h cultivation). Moreover, we could show for the first time that tyrosol strongly inhibits the production of the virulence factors hemolysin and protease in P. aeruginosa, whereas farnesol inhibits, to lower extent, hemolysin production in this bacterial pathogen. Cumulatively, tyrosol is expected to strongly affect P. aeruginosa in mixed microbial biofilm. PMID:26844228

  14. The Activity of the Pseudomonas aeruginosa Virulence Regulator σ(VreI) Is Modulated by the Anti-σ Factor VreR and the Transcription Factor PhoB.

    PubMed

    Quesada, Jose M; Otero-Asman, Joaquín R; Bastiaansen, Karlijn C; Civantos, Cristina; Llamas, María A

    2016-01-01

    Gene regulation in bacteria is primarily controlled at the level of transcription initiation by modifying the affinity of the RNA polymerase (RNAP) for the promoter. This control often occurs through the substitution of the RNAP sigma (σ) subunit. Next to the primary σ factor, most bacteria contain a variable number of alternative σ factors of which the extracytoplasmic function group (σ(ECF)) is predominant. Pseudomonas aeruginosa contains nineteen σ(ECF), including the virulence regulator σ(VreI). σ(VreI) is encoded by the vreAIR operon, which also encodes a receptor-like protein (VreA) and an anti-σ factor (VreR). These three proteins form a signal transduction pathway known as PUMA3, which controls expression of P. aeruginosa virulence functions. Expression of the vreAIR operon occurs under inorganic phosphate (Pi) limitation and requires the PhoB transcription factor. Intriguingly, the genes of the σ(VreI) regulon are also expressed in low Pi despite the fact that the σ(VreI) repressor, the anti-σ factor VreR, is also produced in this condition. Here we show that although σ(VreI) is partially active under Pi starvation, maximal transcription of the σ(VreI) regulon genes requires the removal of VreR. This strongly suggests that an extra signal, probably host-derived, is required in vivo for full σ(VreI) activation. Furthermore, we demonstrate that the activity of σ(VreI) is modulated not only by VreR but also by the transcription factor PhoB. Presence of this regulator is an absolute requirement for σ(VreI) to complex the DNA and initiate transcription of the PUMA3 regulon. The potential DNA binding sites of these two proteins, which include a pho box and -10 and -35 elements, are proposed. PMID:27536271

  15. The Activity of the Pseudomonas aeruginosa Virulence Regulator σVreI Is Modulated by the Anti-σ Factor VreR and the Transcription Factor PhoB

    PubMed Central

    Quesada, Jose M.; Otero-Asman, Joaquín R.; Bastiaansen, Karlijn C.; Civantos, Cristina; Llamas, María A.

    2016-01-01

    Gene regulation in bacteria is primarily controlled at the level of transcription initiation by modifying the affinity of the RNA polymerase (RNAP) for the promoter. This control often occurs through the substitution of the RNAP sigma (σ) subunit. Next to the primary σ factor, most bacteria contain a variable number of alternative σ factors of which the extracytoplasmic function group (σECF) is predominant. Pseudomonas aeruginosa contains nineteen σECF, including the virulence regulator σVreI. σVreI is encoded by the vreAIR operon, which also encodes a receptor-like protein (VreA) and an anti-σ factor (VreR). These three proteins form a signal transduction pathway known as PUMA3, which controls expression of P. aeruginosa virulence functions. Expression of the vreAIR operon occurs under inorganic phosphate (Pi) limitation and requires the PhoB transcription factor. Intriguingly, the genes of the σVreI regulon are also expressed in low Pi despite the fact that the σVreI repressor, the anti-σ factor VreR, is also produced in this condition. Here we show that although σVreI is partially active under Pi starvation, maximal transcription of the σVreI regulon genes requires the removal of VreR. This strongly suggests that an extra signal, probably host-derived, is required in vivo for full σVreI activation. Furthermore, we demonstrate that the activity of σVreI is modulated not only by VreR but also by the transcription factor PhoB. Presence of this regulator is an absolute requirement for σVreI to complex the DNA and initiate transcription of the PUMA3 regulon. The potential DNA binding sites of these two proteins, which include a pho box and −10 and −35 elements, are proposed. PMID:27536271

  16. Cis-2-dodecenoic acid signal modulates virulence of Pseudomonas aeruginosa through interference with quorum sensing systems and T3SS

    PubMed Central

    2013-01-01

    Background Cis-2-dodecenoic acid (BDSF) is well known for its important functions in intraspecies signaling in Burkholderia cenocepacia. Previous work has also established an important role of BDSF in interspecies and inter-kingdom communications. It was identified that BDSF modulates virulence of Pseudomonas aeruginosa. However, how BDSF interferes with virulence of P. aeruginosa is still not clear. Results We report here that BDSF mediates the cross-talk between B. cenocepacia and P. aeruginosa through interference with quorum sensing (QS) systems and type III secretion system (T3SS) of P. aeruginosa. Bioassay results revealed that exogenous addition of BDSF not only reduced the transcriptional expression of the regulator encoding gene of QS systems, i.e., lasR, pqsR, and rhlR, but also simultaneously decreased the production of QS signals including 3-oxo-C12-HSL, Pseudomonas quinolone signal (PQS) and C4-HSL, consequently resulting in the down-regulation of biofilm formation and virulence factor production of P. aeruginosa. Furthermore, BDSF and some of its derivatives are also capable of inhibiting T3SS of P. aeruginosa at a micromolar level. Treatment with BDSF obviously reduced the virulence of P. aeruginosa in both HeLa cell and zebrafish infection models. Conclusions These results depict that BDSF modulates virulence of P. aeruginosa through interference with QS systems and T3SS. PMID:24134835

  17. The Pseudomonas aeruginosa PAO1 Two-Component Regulator CarSR Regulates Calcium Homeostasis and Calcium-Induced Virulence Factor Production through Its Regulatory Targets CarO and CarP

    PubMed Central

    Guragain, Manita; King, Michelle M.; Williamson, Kerry S.; Pérez-Osorio, Ailyn C.; Akiyama, Tatsuya; Khanam, Sharmily

    2016-01-01

    ABSTRACT Pseudomonas aeruginosa is an opportunistic human pathogen that causes severe, life-threatening infections in patients with cystic fibrosis (CF), endocarditis, wounds, or artificial implants. During CF pulmonary infections, P. aeruginosa often encounters environments where the levels of calcium (Ca2+) are elevated. Previously, we showed that P. aeruginosa responds to externally added Ca2+ through enhanced biofilm formation, increased production of several secreted virulence factors, and by developing a transient increase in the intracellular Ca2+ level, followed by its removal to the basal submicromolar level. However, the molecular mechanisms responsible for regulating Ca2+-induced virulence factor production and Ca2+ homeostasis are not known. Here, we characterized the genome-wide transcriptional response of P. aeruginosa to elevated [Ca2+] in both planktonic cultures and biofilms. Among the genes induced by CaCl2 in strain PAO1 was an operon containing the two-component regulator PA2656-PA2657 (here called carS and carR), while the closely related two-component regulators phoPQ and pmrAB were repressed by CaCl2 addition. To identify the regulatory targets of CarSR, we constructed a deletion mutant of carR and performed transcriptome analysis of the mutant strain at low and high [Ca2+]. Among the genes regulated by CarSR in response to CaCl2 are the predicted periplasmic OB-fold protein, PA0320 (here called carO), and the inner membrane-anchored five-bladed β-propeller protein, PA0327 (here called carP). Mutations in both carO and carP affected Ca2+ homeostasis, reducing the ability of P. aeruginosa to export excess Ca2+. In addition, a mutation in carP had a pleotropic effect in a Ca2+-dependent manner, altering swarming motility, pyocyanin production, and tobramycin sensitivity. Overall, the results indicate that the two-component system CarSR is responsible for sensing high levels of external Ca2+ and responding through its regulatory targets that

  18. The Multiple Signaling Systems Regulating Virulence in Pseudomonas aeruginosa

    PubMed Central

    Nadal Jimenez, Pol; Koch, Gudrun; Thompson, Jessica A.; Xavier, Karina B.; Cool, Robbert H.

    2012-01-01

    Summary: Cell-to-cell communication is a major process that allows bacteria to sense and coordinately react to the fluctuating conditions of the surrounding environment. In several pathogens, this process triggers the production of virulence factors and/or a switch in bacterial lifestyle that is a major determining factor in the outcome and severity of the infection. Understanding how bacteria control these signaling systems is crucial to the development of novel antimicrobial agents capable of reducing virulence while allowing the immune system of the host to clear bacterial infection, an approach likely to reduce the selective pressures for development of resistance. We provide here an up-to-date overview of the molecular basis and physiological implications of cell-to-cell signaling systems in Gram-negative bacteria, focusing on the well-studied bacterium Pseudomonas aeruginosa. All of the known cell-to-cell signaling systems in this bacterium are described, from the most-studied systems, i.e., N-acyl homoserine lactones (AHLs), the 4-quinolones, the global activator of antibiotic and cyanide synthesis (GAC), the cyclic di-GMP (c-di-GMP) and cyclic AMP (cAMP) systems, and the alarmones guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), to less-well-studied signaling molecules, including diketopiperazines, fatty acids (diffusible signal factor [DSF]-like factors), pyoverdine, and pyocyanin. This overview clearly illustrates that bacterial communication is far more complex than initially thought and delivers a clear distinction between signals that are quorum sensing dependent and those relying on alternative factors for their production. PMID:22390972

  19. Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa PAO1 by Ayurveda spice clove (Syzygium aromaticum) bud extract.

    PubMed

    Krishnan, Thiba; Yin, Wai-Fong; Chan, Kok-Gan

    2012-01-01

    Quorum sensing controls the virulence determinants in most proteobacteria. In this work, the hexane, chloroform and methanol extracts of an Ayurveda spice, namely clove (Syzygium aromaticum), shown anti-quorum sensing activity. Hexane and methanol extracts of clove inhibited the response of C. violaceum CV026 to exogenously supplied N-hexanoylhomoserine lactone, in turn preventing violacein production. Chloroform and methanol extracts of clove significantly reduced bioluminescence production by E. coli [pSB1075] grown in the presence of N-(3-oxododecanoyl)-L-homoserine lactone. We demonstrated that clove extract inhibited quorum sensing-regulated phenotypes in Pseudomonas aeruginosa PA01, including expression of lecA::lux (by hexane extract), swarming (maximum inhibition by methanol extract), pyocyanin (maximum inhibition by hexane extract). This study shows that the presence of natural compounds that exhibit anti-quorum sensing activity in the clove extracts may be useful as the lead of anti-infective drugs.

  20. Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa PAO1 by Ayurveda spice clove (Syzygium aromaticum) bud extract.

    PubMed

    Krishnan, Thiba; Yin, Wai-Fong; Chan, Kok-Gan

    2012-01-01

    Quorum sensing controls the virulence determinants in most proteobacteria. In this work, the hexane, chloroform and methanol extracts of an Ayurveda spice, namely clove (Syzygium aromaticum), shown anti-quorum sensing activity. Hexane and methanol extracts of clove inhibited the response of C. violaceum CV026 to exogenously supplied N-hexanoylhomoserine lactone, in turn preventing violacein production. Chloroform and methanol extracts of clove significantly reduced bioluminescence production by E. coli [pSB1075] grown in the presence of N-(3-oxododecanoyl)-L-homoserine lactone. We demonstrated that clove extract inhibited quorum sensing-regulated phenotypes in Pseudomonas aeruginosa PA01, including expression of lecA::lux (by hexane extract), swarming (maximum inhibition by methanol extract), pyocyanin (maximum inhibition by hexane extract). This study shows that the presence of natural compounds that exhibit anti-quorum sensing activity in the clove extracts may be useful as the lead of anti-infective drugs. PMID:22666015

  1. Inhibition of Quorum Sensing-Controlled Virulence Factor Production in Pseudomonas aeruginosa PAO1 by Ayurveda Spice Clove (Syzygium Aromaticum) Bud Extract

    PubMed Central

    Krishnan, Thiba; Yin, Wai-Fong; Chan, Kok-Gan

    2012-01-01

    Quorum sensing controls the virulence determinants in most proteobacteria. In this work, the hexane, chloroform and methanol extracts of an Ayurveda spice, namely clove (Syzygium aromaticum), shown anti-quorum sensing activity. Hexane and methanol extracts of clove inhibited the response of C. violaceum CV026 to exogenously supplied N‐hexanoylhomoserine lactone, in turn preventing violacein production. Chloroform and methanol extracts of clove significantly reduced bioluminescence production by E. coli [pSB1075] grown in the presence of N-(3-oxododecanoyl)-l-homoserine lactone. We demonstrated that clove extract inhibited quorum sensing-regulated phenotypes in Pseudomonas aeruginosa PA01, including expression of lecA::lux (by hexane extract), swarming (maximum inhibition by methanol extract), pyocyanin (maximum inhibition by hexane extract). This study shows that the presence of natural compounds that exhibit anti-quorum sensing activity in the clove extracts may be useful as the lead of anti-infective drugs. PMID:22666015

  2. An orphan chemotaxis sensor regulates virulence and antibiotic tolerance in the human pathogen Pseudomonas aeruginosa.

    PubMed

    McLaughlin, Heather Pearl; Caly, Delphine L; McCarthy, Yvonne; Ryan, Robert Patrick; Dow, John Maxwell

    2012-01-01

    The synthesis of virulence factors by pathogenic bacteria is highly regulated and occurs in response to diverse environmental cues. An array of two component systems (TCSs) serves to link perception of different cues to specific changes in gene expression and/or bacterial behaviour. Those TCSs that regulate functions associated with virulence represent attractive targets for interference in anti-infective strategies for disease control. We have previously identified PA2572 as a putative response regulator required for full virulence of Pseudomonas aeruginosa, the opportunistic human pathogen, to Galleria mellonella (Wax moth) larvae. Here we have investigated the involvement of candidate sensors for signal transduction involving PA2572. Mutation of PA2573, encoding a probable methyl-accepting chemotaxis protein, gave rise to alterations in motility, virulence, and antibiotic resistance, functions which are also controlled by PA2572. Comparative transcriptome profiling of mutants revealed that PA2572 and PA2573 regulate expression of a common set of 49 genes that are involved in a range of biological functions including virulence and antibiotic resistance. Bacterial two-hybrid analysis indicated a REC-dependent interaction between PA2572 and PA2573 proteins. Finally expression of PA2572 in the PA2573 mutant background restored virulence to G. mellonella towards wild-type levels. The findings indicate a role for the orphan chemotaxis sensor PA2573 in the regulation of virulence and antibiotic tolerance in P. aeruginosa and indicate that these effects are exerted in part through signal transduction involving PA2572.

  3. Infection of human mucosal tissue by Pseudomonas aeruginosa requires sequential and mutually dependent virulence factors and a novel pilus-associated adhesin

    PubMed Central

    Heiniger, Ryan W.; Winther-Larsen, Hanne C.; Pickles, Raymond J.; Koomey, Michael; Wolfgang, Matthew C.

    2010-01-01

    Summary Tissue damage predisposes humans to life-threatening disseminating infection by the opportunistic pathogen Pseudomonas aeruginosa. Bacterial adherence to host tissue is a critical first step in this infection process. It is well established that P. aeruginosa attachment to host cells involves type IV pili (TFP), which are retractile surface fibers. The molecular details of attachment and the identity of the bacterial adhesin and host receptor remain controversial. Using a mucosal epithelium model system derived from primary human tissue, we show that the pilus-associated protein PilY1 is required for bacterial adherence. We establish that P. aeruginosa preferentially binds to exposed basolateral host cell surfaces, providing a mechanistic explanation for opportunistic infection of damaged tissue. Further, we demonstrate that invasion and fulminant infection of intact host tissue requires the coordinated and mutually dependent action of multiple bacterial factors, including pilus fiber retraction and the host cell intoxication system, termed type III secretion. Our findings offer new and important insights into the complex interactions between a pathogen and its human host and provide compelling evidence that PilY1 serves as the principal P. aeruginosa adhesin for human tissue and that it specifically recognizes a host receptor localized or enriched on basolateral epithelial cell surfaces. PMID:20331639

  4. Role of Iron Uptake Systems in Pseudomonas aeruginosa Virulence and Airway Infection.

    PubMed

    Minandri, Fabrizia; Imperi, Francesco; Frangipani, Emanuela; Bonchi, Carlo; Visaggio, Daniela; Facchini, Marcella; Pasquali, Paolo; Bragonzi, Alessandra; Visca, Paolo

    2016-08-01

    Pseudomonas aeruginosa is a leading cause of hospital-acquired pneumonia and chronic lung infections in cystic fibrosis patients. Iron is essential for bacterial growth, and P. aeruginosa expresses multiple iron uptake systems, whose role in lung infection deserves further investigation. P. aeruginosa Fe(3+) uptake systems include the pyoverdine and pyochelin siderophores and two systems for heme uptake, all of which are dependent on the TonB energy transducer. P. aeruginosa also has the FeoB transporter for Fe(2+) acquisition. To assess the roles of individual iron uptake systems in P. aeruginosa lung infection, single and double deletion mutants were generated in P. aeruginosa PAO1 and characterized in vitro, using iron-poor media and human serum, and in vivo, using a mouse model of lung infection. The iron uptake-null mutant (tonB1 feoB) and the Fe(3+) transport mutant (tonB1) did not grow aerobically under low-iron conditions and were avirulent in the mouse model. Conversely, the wild type and the feoB, hasR phuR (heme uptake), and pchD (pyochelin) mutants grew in vitro and caused 60 to 90% mortality in mice. The pyoverdine mutant (pvdA) and the siderophore-null mutant (pvdA pchD) grew aerobically in iron-poor media but not in human serum, and they caused low mortality in mice (10 to 20%). To differentiate the roles of pyoverdine in iron uptake and virulence regulation, a pvdA fpvR double mutant defective in pyoverdine production but expressing wild-type levels of pyoverdine-regulated virulence factors was generated. Deletion of fpvR in the pvdA background partially restored the lethal phenotype, indicating that pyoverdine contributes to the pathogenesis of P. aeruginosa lung infection by combining iron transport and virulence-inducing capabilities. PMID:27271740

  5. Role of Iron Uptake Systems in Pseudomonas aeruginosa Virulence and Airway Infection.

    PubMed

    Minandri, Fabrizia; Imperi, Francesco; Frangipani, Emanuela; Bonchi, Carlo; Visaggio, Daniela; Facchini, Marcella; Pasquali, Paolo; Bragonzi, Alessandra; Visca, Paolo

    2016-08-01

    Pseudomonas aeruginosa is a leading cause of hospital-acquired pneumonia and chronic lung infections in cystic fibrosis patients. Iron is essential for bacterial growth, and P. aeruginosa expresses multiple iron uptake systems, whose role in lung infection deserves further investigation. P. aeruginosa Fe(3+) uptake systems include the pyoverdine and pyochelin siderophores and two systems for heme uptake, all of which are dependent on the TonB energy transducer. P. aeruginosa also has the FeoB transporter for Fe(2+) acquisition. To assess the roles of individual iron uptake systems in P. aeruginosa lung infection, single and double deletion mutants were generated in P. aeruginosa PAO1 and characterized in vitro, using iron-poor media and human serum, and in vivo, using a mouse model of lung infection. The iron uptake-null mutant (tonB1 feoB) and the Fe(3+) transport mutant (tonB1) did not grow aerobically under low-iron conditions and were avirulent in the mouse model. Conversely, the wild type and the feoB, hasR phuR (heme uptake), and pchD (pyochelin) mutants grew in vitro and caused 60 to 90% mortality in mice. The pyoverdine mutant (pvdA) and the siderophore-null mutant (pvdA pchD) grew aerobically in iron-poor media but not in human serum, and they caused low mortality in mice (10 to 20%). To differentiate the roles of pyoverdine in iron uptake and virulence regulation, a pvdA fpvR double mutant defective in pyoverdine production but expressing wild-type levels of pyoverdine-regulated virulence factors was generated. Deletion of fpvR in the pvdA background partially restored the lethal phenotype, indicating that pyoverdine contributes to the pathogenesis of P. aeruginosa lung infection by combining iron transport and virulence-inducing capabilities.

  6. Global Regulator MorA Affects Virulence-Associated Protease Secretion in Pseudomonas aeruginosa PAO1

    PubMed Central

    Ravichandran, Ayshwarya; Wong, Chui Ching; Swarup, Sanjay

    2015-01-01

    Bacterial invasion plays a critical role in the establishment of Pseudomonas aeruginosa infection and is aided by two major virulence factors – surface appendages and secreted proteases. The second messenger cyclic diguanylate (c-di-GMP) is known to affect bacterial attachment to surfaces, biofilm formation and related virulence phenomena. Here we report that MorA, a global regulator with GGDEF and EAL domains that was previously reported to affect virulence factors, negatively regulates protease secretion via the type II secretion system (T2SS) in P. aeruginosa PAO1. Infection assays with mutant strains carrying gene deletion and domain mutants show that host cell invasion is dependent on the active domain function of MorA. Further investigations suggest that the MorA-mediated c-di-GMP signaling affects protease secretion largely at a post-translational level. We thus report c-di-GMP second messenger system as a novel regulator of T2SS function in P. aeruginosa. Given that T2SS is a central and constitutive pump, and the secreted proteases are involved in interactions with the microbial surroundings, our data broadens the significance of c-di-GMP signaling in P. aeruginosa pathogenesis and ecological fitness. PMID:25894344

  7. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation.

    PubMed

    O'Loughlin, Colleen T; Miller, Laura C; Siryaporn, Albert; Drescher, Knut; Semmelhack, Martin F; Bassler, Bonnie L

    2013-10-29

    Quorum sensing is a chemical communication process that bacteria use to regulate collective behaviors. Disabling quorum-sensing circuits with small molecules has been proposed as a potential strategy to prevent bacterial pathogenicity. The human pathogen Pseudomonas aeruginosa uses quorum sensing to control virulence and biofilm formation. Here, we analyze synthetic molecules for inhibition of the two P. aeruginosa quorum-sensing receptors, LasR and RhlR. Our most effective compound, meta-bromo-thiolactone (mBTL), inhibits both the production of the virulence factor pyocyanin and biofilm formation. mBTL also protects Caenorhabditis elegans and human lung epithelial cells from killing by P. aeruginosa. Both LasR and RhlR are partially inhibited by mBTL in vivo and in vitro; however, RhlR, not LasR, is the relevant in vivo target. More potent antagonists do not exhibit superior function in impeding virulence. Because LasR and RhlR reciprocally control crucial virulence factors, appropriately tuning rather than completely inhibiting their activities appears to hold the key to blocking pathogenesis in vivo.

  8. Metabolite transfer with the fermentation product 2,3-butanediol enhances virulence by Pseudomonas aeruginosa

    PubMed Central

    Venkataraman, Arvind; Rosenbaum, Miriam A; Werner, Jeffrey J; Winans, Stephen C; Angenent, Largus T

    2014-01-01

    The respiratory tract of cystic fibrosis (CF) patients harbor persistent microbial communities (CF airway microbiome) with Pseudomonas aeruginosa emerging as a dominant pathogen. Within a polymicrobial infection, interactions between co-habitant microbes can be important for pathogenesis, but even when considered, these interactions are not well understood. Here, we show with in vitro experiments that, compared with glucose, common fermentation products from co-habitant bacteria significantly increase virulence factor production, antimicrobial activity and biofilm formation of P. aeruginosa. The maximum stimulating effect was produced with the fermentation product 2,3-butanediol, which is a substrate for P. aeruginosa, resulting in a metabolic relationship between fermenters and this pathogen. The global transcription regulator LasI LasR, which controls quorum sensing, was upregulated threefold with 2,3-butanediol, resulting in higher phenazine and exotoxin concentrations and improved biofilm formation. This indicates that the success of P. aeruginosa in CF airway microbiomes could be governed by the location within the food web with fermenting bacteria. Our findings suggest that interbacterial metabolite transfer in polymicrobial infections stimulates virulence of P. aeruginosa and could have a considerable impact on disease progression. PMID:24401856

  9. [Sodium houttuyfonate inhibits virulence related motility of Pseudomonas aeruginosa].

    PubMed

    Wu, Da-qiang; Huang, Wei-feng; Duan, Qiang-jun; Cheng, Hui-juan; Wang, Chang-zhong

    2015-04-01

    Sodium houttuyfonate (SH) is a derivative of effective component of a Chinese material medica, Houttuynia cordata, which is applied in anti-infection of microorganism. But, the antimicrobial mechanisms of SH still remain unclear. Here, we firstly discovered that SH effectively inhibits the three types of virulence related motility of.Pseudomonas aeruginosa, i.e., swimming, twitching and swarming. The plate assay results showed that the inhibitory action of SH against swimming and twitching in 24 h and swarming in 48 h is dose-dependent; and bacteria nearly lost all of the motile activities under the concentration of 1 x minimum inhibitory concentration (MIC) (512 mg x L(-1) same as azithromycin positive group (1 x MIC, 16 mg x L(-1)). Furthermore, we found that the expression of structural gene flgB and pilG is down-regulated by SH, which implies that inhibitory mechanism of SH against motility of P. aeruginosa may be due to the inhibition of flagella and pili bioformation of P. aeruginosa by SR Therefore, our presented results firstly demonstrate that SH effectively inhibits the motility activities of P. aeruginosa, and suggest that SH could be a promising antipseudomonas agents in clinic. PMID:26281603

  10. Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa.

    PubMed

    Rashid, M H; Rumbaugh, K; Passador, L; Davies, D G; Hamood, A N; Iglewski, B H; Kornberg, A

    2000-08-15

    The human opportunistic pathogen Pseudomonas aeruginosa causes a variety of infections in immunocompromised hosts and in individuals with cystic fibrosis. A knockout mutation in the polyphosphate kinase (ppk) gene, encoding PPK responsible for the synthesis of inorganic polyphosphate from ATP, renders P. aeruginosa cells unable to form a thick and differentiated biofilm. The mutant is aberrant in quorum sensing and responses in that production of the quorum-sensing controlled virulence factors elastase and rhamnolipid are severely reduced. In a burned-mouse pathogenesis model, the virulence of the mutant is greatly reduced with severe defects in the colonization of mouse tissues. The conservation of PPK among many bacterial pathogens and its absence in eukaryotes suggest that PPK might be an attractive target for antimicrobial drugs.

  11. Interspecies competition triggers virulence and mutability in Candida albicans–Pseudomonas aeruginosa mixed biofilms

    PubMed Central

    Trejo-Hernández, Abigail; Andrade-Domínguez, Andrés; Hernández, Magdalena; Encarnación, Sergio

    2014-01-01

    Inter-kingdom and interspecies interactions are ubiquitous in nature and are important for the survival of species and ecological balance. The investigation of microbe-microbe interactions is essential for understanding the in vivo activities of commensal and pathogenic microorganisms. Candida albicans, a polymorphic fungus, and Pseudomonas aeruginosa, a Gram-negative bacterium, are two opportunistic pathogens that interact in various polymicrobial infections in humans. To determine how P. aeruginosa affects the physiology of C. albicans and vice versa, we compared the proteomes of each species in mixed biofilms versus single-species biofilms. In addition, extracellular proteins were analyzed. We observed that, in mixed biofilms, both species showed differential expression of virulence proteins, multidrug resistance-associated proteins, proteases and cell defense, stress and iron-regulated proteins. Furthermore, in mixed biofilms, both species displayed an increase in mutability compared with monospecific biofilms. This characteristic was correlated with the downregulation of enzymes conferring protection against DNA oxidation. In mixed biofilms, P. aeruginosa regulates its production of various molecules involved in quorum sensing and induces the production of virulence factors (pyoverdine, rhamnolipids and pyocyanin), which are major contributors to the ability of this bacterium to cause disease. Overall, our results indicate that interspecies competition between these opportunistic pathogens enhances the production of virulence factors and increases mutability and thus can alter the course of host-pathogen interactions in polymicrobial infections. PMID:24739628

  12. Virulence Gene Profiles of Multidrug-Resistant Pseudomonas aeruginosa Isolated From Iranian Hospital Infections

    PubMed Central

    Fazeli, Nastaran; Momtaz, Hassan

    2014-01-01

    Background: The most common hospital-acquired pathogen is Pseudomonas aeruginosa. It is a multidrug resistant bacterium causing systemic infections. Objectives: The present study was carried out in order to investigate the distribution of virulence factors and antibiotic resistance properties of Pseudomonas aeruginosa isolated from various types of hospital infections in Iran. Patients and Methods: Two-hundred and seventeen human infection specimens were collected from Baqiyatallah and Payambaran hospitals in Tehran, Iran. The clinical samples were cultured immediately and samples positive for P. aeruginosa were analyzed for the presence of antibiotic resistance and bacterial virulence genes using PCR (polymerase chain reaction). Antimicrobial susceptibility testing was performed using disk diffusion methodology with Müeller–Hinton agar. Results: Fifty-eight out of 127 (45.66%) male infection specimens and 44 out of 90 (48.88%) female infection specimens harbored P. aeruginosa. Also, 65% (in male specimens) and 21% (in female specimens) of respiratory system infections were positive for P. aeruginosa, which was a high rate. The genes encoding exoenzyme S (67.64%) and phospholipases C (45.09%) were the most common virulence genes found among the strains. The incidences of various β-lactams encoding genes, including blaTEM, blaSHV, blaOXA, blaCTX-M, blaDHA, and blaVEB were 94.11%, 16.66%, 15.68%, 18.62%, 21.56%, and 17.64%, respectively. The most commonly detected fluoroquinolones encoding gene was gyrA (15. 68%). High resistance levels to penicillin (100%), tetracycline (90.19%), streptomycin (64.70%), and erythromycin (43.13%) were observed too. Conclusions: Our findings should raise awareness about antibiotic resistance in hospitalized patients in Iran. Clinicians should exercise caution in prescribing antibiotics, especially in cases of human infections. PMID:25763199

  13. Small Molecules that Modulate Quorum Sensing and Control Virulence in Pseudomonas aeruginosa

    PubMed Central

    Mattmann, Margrith E.; Blackwell, Helen E.

    2010-01-01

    Bacteria use small molecule signals to access their local population densities in a process called quorum sensing (QS). Once a threshold signal concentration is reached, and therefore a certain number of bacteria have assembled, bacteria use QS to change gene expression levels and initiate behaviors that benefit the group. These group processes play central roles in both bacterial virulence and symbiosis, and can have significant impacts on human health, agriculture, and the environment. The dependence of QS on small molecule signals has inspired organic chemists to design non-native molecules that can intercept these signals and thereby perturb bacterial group behaviors. The opportunistic pathogen Pseudomonas aeruginosa has been the target of many of these efforts due to its prevalence in human infections. P. aeruginosa uses at least two N-acyl L-homoserine lactone signals and three homologous LuxR-type receptors to initiate a range of pathogenic behaviors at high cell densities, including biofilm formation and the production of an arsenal of virulence factors. This review highlights recent chemical efforts to modulate LuxR-type receptor activity in P. aeruginosa, and offers insight into the development of receptor-specific ligands as potential anti-virulence strategies. PMID:20672805

  14. Subinhibitory concentration of ciprofloxacin targets quorum sensing system of Pseudomonas aeruginosa causing inhibition of biofilm formation & reduction of virulence

    PubMed Central

    Gupta, Parul; Chhibber, Sanjay; Harjai, Kusum

    2016-01-01

    Background & objectives: Biofilms formed by Pseudomonas aeruginosa lead to persistent infections. Use of antibiotics for the treatment of biofilm induced infection poses a threat towards development of resistance. Therefore, the research is directed towards exploring the property of antibiotics which may alter the virulence of an organism besides altering its growth. The aim of this study was to evaluate the role of subinhibitory concentration of ciprofloxacin (CIP) in inhibiting biofilm formation and virulence of P. aeruginosa. Methods: Antibiofilm potential of subinhibitory concentration of CIP was evaluated in terms of log reduction, biofilm forming capacity and coverslip assay. P. aeruginosa isolates (grown in the presence and absence of sub-MIC of CIP) were also evaluated for inhibition in motility, virulence factor production and quorum sensing (QS) signal production. Results: Sub-minimum inhibitory concentration (sub-MIC) of CIP significantly reduced the motility of P. aeruginosa stand and strain and clinical isolates and affected biofilm forming capacity. Production of protease, elastase, siderophore, alginate, and rhamnolipid was also significantly reduced by CIP. Interpretation & conclusions: Reduction in virulence factors and biofilm formation was due to inhibition of QS mechanism which was indicated by reduced production of QS signal molecules by P. aeruginosa in presence of subinhibitory concentration of CIP. PMID:27488009

  15. Analysis of Pdeudomonas aeruginosa Growth and Virulence in Modelled Microgravity

    NASA Technical Reports Server (NTRS)

    Guadarrama, Seratna; deL. Pulcini, Elinor; Broadaway, Susan C.; Pyle, Barry H.

    2005-01-01

    Stress, radiation and microgravity cause astronauts to experience secondary immunosuppression. Spaceflight conditions enhance bacterial growth and alter antimicrobial susceptibility. Clinostats are used to model microgravity effects at lxg. In controls rotated on the vertical axis, the g-vector acts on cells as in static cultures. Salmonella enterica serovar Typhimurium virulence genes are up-regulated in modelled microgravity (MMG); a MMG regulon has been postulated. We hypothesize that the virulence of P. aeruginosa (PA) may be affected similarly by microgravity, which could be observed in MMG. This study focused on regulation of the ETA protein by PA during growth in MMG. PA103 was grown in an ETA production medium at 37 C. One series of media was inoculated with frozen cultures and grown using horizontal (MMG) or static incubation. Another series inoculated with refrigerated cultures included vertical rotating controls. Analyses included optical density (OD), agar plate counts (PC) on R2A, ETA ELISA, and protein expression by 2-D gel analyses. Growth and ETA results differed depending on inoculum, with minor effects of MMG. Proteomic analysis of 2-D gels indicate differences in protein expression with MMG. Growth and ETA results show that consistent methodology is critical when studying environmental effects. This study provides information on the relationships between environmental changes and virulence regulation, especially for flight experiments, when ground experiments are used to predict potential spaceflight effects.

  16. Heavy metal resistance and virulence profile in Pseudomonas aeruginosa isolated from Brazilian soils.

    PubMed

    Pitondo-Silva, André; Gonçalves, Guilherme Bartolomeu; Stehling, Eliana Guedes

    2016-08-01

    Pseudomonas aeruginosa is an opportunistic pathogen, which can have several virulence factors that confer on it the ability to cause severe, acute and chronic infections. Thus, the simultaneous occurrence of resistance to antibiotics and heavy metals associated with the presence of virulence genes is a potential threat to human health and environmental balance. This study aimed to investigate the resistance profile to heavy metals and the correlation of this phenotype of resistance to antimicrobials and to investigate the pathogenic potential of 46 P. aeruginosa isolates obtained from the soil of five Brazilian regions. The bacteria were evaluating for antimicrobial and heavy metal resistance, as well as the presence of plasmids and virulence genes. The isolates showed resistance to four different antibiotics and the majority (n = 44) had resistance to aztreonam or ticarcillin, furthermore, 32 isolates showed concomitant resistance to both of these antibiotics. A high prevalence of virulence genes was found, which highlights the pathogenic potential of the studied environmental isolates. Moreover, a high frequency of heavy metal resistance genes was also detected, however, the phenotypic results indicated that other genes and/or mechanisms should be related to heavy metal resistance. PMID:27197940

  17. A gacS Deletion in Pseudomonas aeruginosa Cystic Fibrosis Isolate CHA Shapes Its Virulence

    PubMed Central

    Sall, Khady Mayebine; Casabona, Maria Guillermina; Bordi, Christophe; Huber, Philippe; de Bentzmann, Sophie; Attrée, Ina; Elsen, Sylvie

    2014-01-01

    Pseudomonas aeruginosa, a human opportunistic pathogen, is capable of provoking acute and chronic infections that are associated with defined sets of virulence factors. During chronic infections, the bacterium accumulates mutations that silence some and activate other genes. Here we show that the cystic fibrosis isolate CHA exhibits a unique virulence phenotype featuring a mucoid morphology, an active Type III Secretion System (T3SS, hallmark of acute infections), and no Type VI Secretion System (H1-T6SS). This virulence profile is due to a 426 bp deletion in the 3′ end of the gacS gene encoding an essential regulatory protein. The absence of GacS disturbs the Gac/Rsm pathway leading to depletion of the small regulatory RNAs RsmY/RsmZ and, in consequence, to expression of T3SS, while switching off the expression of H1-T6SS and Pel polysaccharides. The CHA isolate also exhibits full ability to swim and twitch, due to active flagellum and Type IVa pili. Thus, unlike the classical scheme of balance between virulence factors, clinical strains may adapt to a local niche by expressing both alginate exopolysaccharide, a hallmark of membrane stress that protects from antibiotic action, host defences and phagocytosis, and efficient T3S machinery that is considered as an aggressive virulence factor. PMID:24780952

  18. Candida albicans Inhibits Pseudomonas aeruginosa Virulence through Suppression of Pyochelin and Pyoverdine Biosynthesis.

    PubMed

    Lopez-Medina, Eduardo; Fan, Di; Coughlin, Laura A; Ho, Evi X; Lamont, Iain L; Reimmann, Cornelia; Hooper, Lora V; Koh, Andrew Y

    2015-08-01

    Bacterial-fungal interactions have important physiologic and medical ramifications, but the mechanisms of these interactions are poorly understood. The gut is host to trillions of microorganisms, and bacterial-fungal interactions are likely to be important. Using a neutropenic mouse model of microbial gastrointestinal colonization and dissemination, we show that the fungus Candida albicans inhibits the virulence of the bacterium Pseudomonas aeruginosa by inhibiting P. aeruginosa pyochelin and pyoverdine gene expression, which plays a critical role in iron acquisition and virulence. Accordingly, deletion of both P. aeruginosa pyochelin and pyoverdine genes attenuates P. aeruginosa virulence. Heat-killed C. albicans has no effect on P. aeruginosa, whereas C. albicans secreted proteins directly suppress P. aeruginosa pyoverdine and pyochelin expression and inhibit P. aeruginosa virulence in mice. Interestingly, suppression or deletion of pyochelin and pyoverdine genes has no effect on P. aeruginosa's ability to colonize the GI tract but does decrease P. aeruginosa's cytotoxic effect on cultured colonocytes. Finally, oral iron supplementation restores P. aeruginosa virulence in P. aeruginosa and C. albicans colonized mice. Together, our findings provide insight into how a bacterial-fungal interaction can modulate bacterial virulence in the intestine. Previously described bacterial-fungal antagonistic interactions have focused on growth inhibition or colonization inhibition/modulation, yet here we describe a novel observation of fungal-inhibition of bacterial effectors critical for virulence but not important for colonization. These findings validate the use of a mammalian model system to explore the complexities of polymicrobial, polykingdom infections in order to identify new therapeutic targets for preventing microbial disease. PMID:26313907

  19. Determination of several potential virulence factors in non-o1 Vibrio cholerae, Pseudomonas aeruginosa, faecal coliforms and streptococci isolated from Marrakesh groundwater.

    PubMed

    Lamrani Alaoui, Hafsa; Oufdou, Khalid; Mezrioui, Nour-Eddine

    2010-01-01

    The dynamic, hemolytic and hemagglutination activities and the antibiotic resistance of non-O1 Vibrio cholerae, Pseudomonas aeruginosa, faecal coliforms (FC) and faecal streptococci (FS), isolated by standard membrane filtration methods from suburban and rural groundwater supplies, were carried out. Detectable non-O1 V. cholerae and P. aeruginosa was present in 81% and 88% of samples. The total occurrence of FC and FS during the period of study was 94%. The annual average densities of non-O1 V. cholerae were 4,903 MPN/100 mL. While, they were 206, 1,891 and 1,246 cfu/100 mL for P. aeruginosa, FC and FS respectively. Non-O1 V. cholerae strains had the highest percentage of hemolytic activities (alpha + beta) (71.29%), whereas 20.71% of FS, 16.88% of FC and 9.13% of P. aeruginosa strains produced hemolysin. Bacterial strains isolated were found to be adhesive, with percentages of 63.09%, 65.09%, 84.06% and 87.98% respectively for non-O1 V. cholerae, FS, FC and P. aeruginosa. As for antibiotic resistance, the overall resistance of non-O1 V. cholerae strains was 79%, whereas it was 100% for the other bacteria. Non-O1 V. cholerae resistance was expressed towards sulfamethoxazole (75%), streptomycin (62%) and cephalothin (60%). Obtained results indicated correlation between bacteriological pollution and their public health implications.

  20. Small Molecule Disruption of Quorum Sensing Cross-Regulation in Pseudomonas aeruginosa Causes Major and Unexpected Alterations to Virulence Phenotypes

    PubMed Central

    Welsh, Michael A.; Eibergen, Nora R.; Moore, Joseph D.; Blackwell, Helen E.

    2015-01-01

    The opportunistic pathogen Pseudomonas aeruginosa uses three interwoven quorum-sensing (QS) circuits—Las, Rhl, and Pqs—to regulate the global expression of myriad virulence-associated genes. Interception of these signaling networks with small molecules represents an emerging strategy for the development of anti-infective agents against this bacterium. In the current study, we applied a chemical approach to investigate how the Las-Rhl-Pqs QS hierarchy coordinates key virulence phenotypes in wild-type P. aeruginosa. We screened a focused library of synthetic, non-native N-acyl l-homoserine lactones and identified compounds that can drastically alter production of two important virulence factors: pyocyanin and rhamnolipid. We demonstrate that these molecules act by targeting RhlR in P. aeruginosa, a QS receptor that has seen far less scrutiny to date relative to other circuitry. Unexpectedly, modulation of RhlR activity by a single compound induces inverse regulation of pyocyanin and rhamnolipid, a result that was not predicted using genetic approaches to interrogate QS in P. aeruginosa. Further, we show that certain RhlR agonists strongly repress Pqs signaling, revealing disruption of Rhl-Pqs cross-regulation as a novel mechanism for QS inhibition. These compounds significantly expand the known repertoire of chemical probes available to study RhlR in P. aeruginosa. Moreover, our results suggest that designing chemical agents to disrupt Rhl-Pqs crosstalk could be an effective antivirulence strategy to fight this common pathogen. PMID:25574853

  1. Candida albicans Inhibits Pseudomonas aeruginosa Virulence through Suppression of Pyochelin and Pyoverdine Biosynthesis

    PubMed Central

    Lopez-Medina, Eduardo; Fan, Di; Coughlin, Laura A.; Ho, Evi X.; Lamont, Iain L.; Reimmann, Cornelia; Hooper, Lora V.; Koh, Andrew Y.

    2015-01-01

    Bacterial-fungal interactions have important physiologic and medical ramifications, but the mechanisms of these interactions are poorly understood. The gut is host to trillions of microorganisms, and bacterial-fungal interactions are likely to be important. Using a neutropenic mouse model of microbial gastrointestinal colonization and dissemination, we show that the fungus Candida albicans inhibits the virulence of the bacterium Pseudomonas aeruginosa by inhibiting P. aeruginosa pyochelin and pyoverdine gene expression, which plays a critical role in iron acquisition and virulence. Accordingly, deletion of both P. aeruginosa pyochelin and pyoverdine genes attenuates P. aeruginosa virulence. Heat-killed C. albicans has no effect on P. aeruginosa, whereas C. albicans secreted proteins directly suppress P. aeruginosa pyoverdine and pyochelin expression and inhibit P. aeruginosa virulence in mice. Interestingly, suppression or deletion of pyochelin and pyoverdine genes has no effect on P. aeruginosa’s ability to colonize the GI tract but does decrease P. aeruginosa’s cytotoxic effect on cultured colonocytes. Finally, oral iron supplementation restores P. aeruginosa virulence in P. aeruginosa and C. albicans colonized mice. Together, our findings provide insight into how a bacterial-fungal interaction can modulate bacterial virulence in the intestine. Previously described bacterial-fungal antagonistic interactions have focused on growth inhibition or colonization inhibition/modulation, yet here we describe a novel observation of fungal-inhibition of bacterial effectors critical for virulence but not important for colonization. These findings validate the use of a mammalian model system to explore the complexities of polymicrobial, polykingdom infections in order to identify new therapeutic targets for preventing microbial disease. PMID:26313907

  2. Evidence for Direct Control of Virulence and Defense Gene Circuits by the Pseudomonas aeruginosa Quorum Sensing Regulator, MvfR

    PubMed Central

    Maura, Damien; Hazan, Ronen; Kitao, Tomoe; Ballok, Alicia E.; Rahme, Laurence G.

    2016-01-01

    Pseudomonas aeruginosa defies eradication by antibiotics and is responsible for acute and chronic human infections due to a wide variety of virulence factors. Currently, it is believed that MvfR (PqsR) controls the expression of many of these factors indirectly via the pqs and phnAB operons. Here we provide strong evidence that MvfR may also bind and directly regulate the expression of additional 35 loci across the P. aeruginosa genome, including major regulators and virulence factors, such as the quorum sensing (QS) regulators lasR and rhlR, and genes involved in protein secretion, translation, and response to oxidative stress. We show that these anti-oxidant systems, AhpC-F, AhpB-TrxB2 and Dps, are critical for P. aeruginosa survival to reactive oxygen species and antibiotic tolerance. Considering that MvfR regulated compounds generate reactive oxygen species, this indicates a tightly regulated QS self-defense anti-poisoning system. These findings also challenge the current hierarchical regulation model of P. aeruginosa QS systems by revealing new interconnections between them that suggest a circular model. Moreover, they uncover a novel role for MvfR in self-defense that favors antibiotic tolerance and cell survival, further demonstrating MvfR as a highly desirable anti-virulence target. PMID:27678057

  3. Genome-Wide Identification of Pseudomonas aeruginosa Virulence-Related Genes Using a Caenorhabditis elegans Infection Model

    PubMed Central

    Feinbaum, Rhonda L.; Urbach, Jonathan M.; Liberati, Nicole T.; Djonovic, Slavica; Adonizio, Allison; Carvunis, Anne-Ruxandra; Ausubel, Frederick M.

    2012-01-01

    Pseudomonas aeruginosa strain PA14 is an opportunistic human pathogen capable of infecting a wide range of organisms including the nematode Caenorhabditis elegans. We used a non-redundant transposon mutant library consisting of 5,850 clones corresponding to 75% of the total and approximately 80% of the non-essential PA14 ORFs to carry out a genome-wide screen for attenuation of PA14 virulence in C. elegans. We defined a functionally diverse 180 mutant set (representing 170 unique genes) necessary for normal levels of virulence that included both known and novel virulence factors. Seven previously uncharacterized virulence genes (ABC transporters PchH and PchI, aminopeptidase PepP, ATPase/molecular chaperone ClpA, cold shock domain protein PA0456, putative enoyl-CoA hydratase/isomerase PA0745, and putative transcriptional regulator PA14_27700) were characterized with respect to pigment production and motility and all but one of these mutants exhibited pleiotropic defects in addition to their avirulent phenotype. We examined the collection of genes required for normal levels of PA14 virulence with respect to occurrence in P. aeruginosa strain-specific genomic regions, location on putative and known genomic islands, and phylogenetic distribution across prokaryotes. Genes predominantly contributing to virulence in C. elegans showed neither a bias for strain-specific regions of the P. aeruginosa genome nor for putatively horizontally transferred genomic islands. Instead, within the collection of virulence-related PA14 genes, there was an overrepresentation of genes with a broad phylogenetic distribution that also occur with high frequency in many prokaryotic clades, suggesting that in aggregate the genes required for PA14 virulence in C. elegans are biased towards evolutionarily conserved genes. PMID:22911607

  4. Role of ppGpp in Pseudomonas aeruginosa acute pulmonary infection and virulence regulation.

    PubMed

    Xu, Xiaohui; Yu, Hua; Zhang, Di; Xiong, Junzhi; Qiu, Jing; Xin, Rong; He, Xiaomei; Sheng, Halei; Cai, Wenqiang; Jiang, Lu; Zhang, Kebin; Hu, Xiaomei

    2016-11-01

    During infection, bacteria might generate adaptive responses to facilitate their survival and colonization in the host environment. The alarmone guanosine 5'-triphosphate-3'-diphosphate (ppGpp), the levels of which are regulated by the RelA and SpoT enzymes, plays a critical role in mediating bacterial adaptive responses and virulence. However, the mechanism by which ppGpp regulates virulence-associated traits in Pseudomonas aeruginosa is poorly understood. To investigate the regulatory role of ppGpp, the ppGpp-deficient strain ΔRS (relA and spoT gene double mutant) and the complemented strain ΔRS(++) (complemented with relA and spoT genes) were constructed. Herein, we reported that the ΔRS strain showed decreased cytotoxicity towards A549 human alveolar adenocarcinoma cell lines and led to reduced mortality, lung edema and inflammatory cell infiltration in a mouse model of acute pneumonia compared to wild-type PAO1 and the complemented strain ΔRS(++). Subsequent analyses demonstrated that the ΔRS strain displayed reduced T3SS expression, decreased levels of elastase activity, pyocyanin, pyoverdin and alginate, and inhibited swarming and biofilm formation compared to PAO1 and the complemented strain ΔRS(++). In addition, the results demonstrate that ppGpp-mediated regulation of T3SS, virulence factor production, and swarming occurs in a quinolone quorum-sensing system-dependent manner. Taken together, these results suggest that ppGpp is required for virulence regulation in P. aeruginosa, providing new clues for the development of interference strategies against bacterial infection. PMID:27664726

  5. Role of ppGpp in Pseudomonas aeruginosa acute pulmonary infection and virulence regulation.

    PubMed

    Xu, Xiaohui; Yu, Hua; Zhang, Di; Xiong, Junzhi; Qiu, Jing; Xin, Rong; He, Xiaomei; Sheng, Halei; Cai, Wenqiang; Jiang, Lu; Zhang, Kebin; Hu, Xiaomei

    2016-11-01

    During infection, bacteria might generate adaptive responses to facilitate their survival and colonization in the host environment. The alarmone guanosine 5'-triphosphate-3'-diphosphate (ppGpp), the levels of which are regulated by the RelA and SpoT enzymes, plays a critical role in mediating bacterial adaptive responses and virulence. However, the mechanism by which ppGpp regulates virulence-associated traits in Pseudomonas aeruginosa is poorly understood. To investigate the regulatory role of ppGpp, the ppGpp-deficient strain ΔRS (relA and spoT gene double mutant) and the complemented strain ΔRS(++) (complemented with relA and spoT genes) were constructed. Herein, we reported that the ΔRS strain showed decreased cytotoxicity towards A549 human alveolar adenocarcinoma cell lines and led to reduced mortality, lung edema and inflammatory cell infiltration in a mouse model of acute pneumonia compared to wild-type PAO1 and the complemented strain ΔRS(++). Subsequent analyses demonstrated that the ΔRS strain displayed reduced T3SS expression, decreased levels of elastase activity, pyocyanin, pyoverdin and alginate, and inhibited swarming and biofilm formation compared to PAO1 and the complemented strain ΔRS(++). In addition, the results demonstrate that ppGpp-mediated regulation of T3SS, virulence factor production, and swarming occurs in a quinolone quorum-sensing system-dependent manner. Taken together, these results suggest that ppGpp is required for virulence regulation in P. aeruginosa, providing new clues for the development of interference strategies against bacterial infection.

  6. Identification of a small molecule that simultaneously suppresses virulence and antibiotic resistance of Pseudomonas aeruginosa.

    PubMed

    Guo, Qiaoyun; Wei, Yu; Xia, Bin; Jin, Yongxin; Liu, Chang; Pan, Xiaolei; Shi, Jing; Zhu, Feng; Li, Jinlong; Qian, Lei; Liu, Xinqi; Cheng, Zhihui; Jin, Shouguang; Lin, Jianping; Wu, Weihui

    2016-01-01

    The rising antibiotic resistance of bacteria imposes a severe threat on human health. Inhibition of bacterial virulence is an alternative approach to develop new antimicrobials. Molecules targeting antibiotic resistant enzymes have been used in combination with cognate antibiotics. It might be ideal that a molecule can simultaneously suppress virulence factors and antibiotic resistance. Here we combined genetic and computer-aided inhibitor screening to search for such molecules against the bacterial pathogen Pseudomonas aeruginosa. To identify target proteins that control both virulence and antibiotic resistance, we screened for mutants with defective cytotoxicity and biofilm formation from 93 transposon insertion mutants previously reported with increased antibiotic susceptibility. A pyrD mutant displayed defects in cytotoxicity, biofilm formation, quorum sensing and virulence in an acute mouse pneumonia model. Next, we employed a computer-aided screening to identify potential inhibitors of the PyrD protein, a dihydroorotate dehydrogenase (DHODase) involved in pyrimidine biosynthesis. One of the predicted inhibitors was able to suppress the enzymatic activity of PyrD as well as bacterial cytotoxicity, biofilm formation and antibiotic resistance. A single administration of the compound reduced the bacterial colonization in the acute mouse pneumonia model. Therefore, we have developed a strategy to identify novel treatment targets and antimicrobial molecules. PMID:26751736

  7. Identification of a small molecule that simultaneously suppresses virulence and antibiotic resistance of Pseudomonas aeruginosa

    PubMed Central

    Guo, Qiaoyun; Wei, Yu; Xia, Bin; Jin, Yongxin; Liu, Chang; Pan, Xiaolei; Shi, Jing; Zhu, Feng; Li, Jinlong; Qian, Lei; Liu, Xinqi; Cheng, Zhihui; Jin, Shouguang; Lin, Jianping; Wu, Weihui

    2016-01-01

    The rising antibiotic resistance of bacteria imposes a severe threat on human health. Inhibition of bacterial virulence is an alternative approach to develop new antimicrobials. Molecules targeting antibiotic resistant enzymes have been used in combination with cognate antibiotics. It might be ideal that a molecule can simultaneously suppress virulence factors and antibiotic resistance. Here we combined genetic and computer-aided inhibitor screening to search for such molecules against the bacterial pathogen Pseudomonas aeruginosa. To identify target proteins that control both virulence and antibiotic resistance, we screened for mutants with defective cytotoxicity and biofilm formation from 93 transposon insertion mutants previously reported with increased antibiotic susceptibility. A pyrD mutant displayed defects in cytotoxicity, biofilm formation, quorum sensing and virulence in an acute mouse pneumonia model. Next, we employed a computer-aided screening to identify potential inhibitors of the PyrD protein, a dihydroorotate dehydrogenase (DHODase) involved in pyrimidine biosynthesis. One of the predicted inhibitors was able to suppress the enzymatic activity of PyrD as well as bacterial cytotoxicity, biofilm formation and antibiotic resistance. A single administration of the compound reduced the bacterial colonization in the acute mouse pneumonia model. Therefore, we have developed a strategy to identify novel treatment targets and antimicrobial molecules. PMID:26751736

  8. Cell aggregation promotes pyoverdine-dependent iron uptake and virulence in Pseudomonas aeruginosa.

    PubMed

    Visaggio, Daniela; Pasqua, Martina; Bonchi, Carlo; Kaever, Volkhard; Visca, Paolo; Imperi, Francesco

    2015-01-01

    In Pseudomonas aeruginosa the Gac signaling system and the second messenger cyclic diguanylate (c-di-GMP) participate in the control of the switch between planktonic and biofilm lifestyles, by regulating the production of the two exopolysaccharides Pel and Psl. The Gac and c-di-GMP regulatory networks also coordinately promote the production of the pyoverdine siderophore, and the extracellular polysaccharides Pel and Psl have recently been found to mediate c-di-GMP-dependent regulation of pyoverdine genes. Here we demonstrate that Pel and Psl are also essential for Gac-mediated activation of pyoverdine production. A pel psl double mutant produces very low levels of pyoverdine and shows a marked reduction in the expression of the pyoverdine-dependent virulence factors exotoxin A and PrpL protease. While the exopolysaccharide-proficient parent strain forms multicellular planktonic aggregates in liquid cultures, the Pel and Psl-deficient mutant mainly grows as dispersed cells. Notably, artificially induced cell aggregation is able to restore pyoverdine-dependent gene expression in the pel psl mutant, in a way that appears to be independent of iron diffusion or siderophore signaling, as well as of recently described contact-dependent mechanosensitive systems. This study demonstrates that cell aggregation represents an important cue triggering the expression of pyoverdine-related genes in P. aeruginosa, suggesting a novel link between virulence gene expression, cell-cell interaction and the multicellular community lifestyle.

  9. Cell aggregation promotes pyoverdine-dependent iron uptake and virulence in Pseudomonas aeruginosa.

    PubMed

    Visaggio, Daniela; Pasqua, Martina; Bonchi, Carlo; Kaever, Volkhard; Visca, Paolo; Imperi, Francesco

    2015-01-01

    In Pseudomonas aeruginosa the Gac signaling system and the second messenger cyclic diguanylate (c-di-GMP) participate in the control of the switch between planktonic and biofilm lifestyles, by regulating the production of the two exopolysaccharides Pel and Psl. The Gac and c-di-GMP regulatory networks also coordinately promote the production of the pyoverdine siderophore, and the extracellular polysaccharides Pel and Psl have recently been found to mediate c-di-GMP-dependent regulation of pyoverdine genes. Here we demonstrate that Pel and Psl are also essential for Gac-mediated activation of pyoverdine production. A pel psl double mutant produces very low levels of pyoverdine and shows a marked reduction in the expression of the pyoverdine-dependent virulence factors exotoxin A and PrpL protease. While the exopolysaccharide-proficient parent strain forms multicellular planktonic aggregates in liquid cultures, the Pel and Psl-deficient mutant mainly grows as dispersed cells. Notably, artificially induced cell aggregation is able to restore pyoverdine-dependent gene expression in the pel psl mutant, in a way that appears to be independent of iron diffusion or siderophore signaling, as well as of recently described contact-dependent mechanosensitive systems. This study demonstrates that cell aggregation represents an important cue triggering the expression of pyoverdine-related genes in P. aeruginosa, suggesting a novel link between virulence gene expression, cell-cell interaction and the multicellular community lifestyle. PMID:26379660

  10. Requirement of the Pseudomonas aeruginosa CbrA Sensor Kinase for Full Virulence in a Murine Acute Lung Infection Model

    PubMed Central

    Yeung, Amy T. Y.; Janot, Laure; Pena, Olga M.; Neidig, Anke; Kukavica-Ibrulj, Irena; Hilchie, Ashley; Levesque, Roger C.; Overhage, Joerg

    2014-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that is a major cause of respiratory tract and other nosocomial infections. The sensor kinase CbrA is a central regulator of carbon and nitrogen metabolism and in vitro also regulates virulence-related processes in P. aeruginosa. Here, we investigated the role of CbrA in two murine models of infection. In both peritoneal infections in leukopenic mice and lung infection models, the cbrA mutant was less virulent since substantially larger numbers of cbrA mutant bacteria were required to cause the same level of infection as wild-type or complemented bacteria. In contrast, in the chronic rat lung model the cbrA mutant grew and persisted as well as the wild type, indicating that the decrease of in vivo virulence of the cbrA mutant did not result from growth deficiencies on particular carbon substrates observed in vitro. In addition, a mutant in the cognate response regulator CbrB showed no defect in virulence in the peritoneal infection model, ruling out the involvement of certain alterations of virulence properties in the cbrA mutant including defective swarming motility, increased biofilm formation, and cytotoxicity, since these alterations are controlled through CbrB. Further investigations indicated that the mutant was more susceptible to uptake by phagocytes in vitro, resulting in greater overall bacterial killing. Consistent with the virulence defect, it took a smaller number of Dictyostelium discoideum amoebae to kill the cbrA mutant than to kill the wild type. Transcriptional analysis of the cbrA mutant during D. discoideum infection led to the conclusion that CbrA played an important role in the iron metabolism, protection of P. aeruginosa against oxidative stress, and the regulation of certain virulence factors. PMID:24379284

  11. Requirement of the Pseudomonas aeruginosa CbrA sensor kinase for full virulence in a murine acute lung infection model.

    PubMed

    Yeung, Amy T Y; Janot, Laure; Pena, Olga M; Neidig, Anke; Kukavica-Ibrulj, Irena; Hilchie, Ashley; Levesque, Roger C; Overhage, Joerg; Hancock, Robert E W

    2014-03-01

    Pseudomonas aeruginosa is an opportunistic pathogen that is a major cause of respiratory tract and other nosocomial infections. The sensor kinase CbrA is a central regulator of carbon and nitrogen metabolism and in vitro also regulates virulence-related processes in P. aeruginosa. Here, we investigated the role of CbrA in two murine models of infection. In both peritoneal infections in leukopenic mice and lung infection models, the cbrA mutant was less virulent since substantially larger numbers of cbrA mutant bacteria were required to cause the same level of infection as wild-type or complemented bacteria. In contrast, in the chronic rat lung model the cbrA mutant grew and persisted as well as the wild type, indicating that the decrease of in vivo virulence of the cbrA mutant did not result from growth deficiencies on particular carbon substrates observed in vitro. In addition, a mutant in the cognate response regulator CbrB showed no defect in virulence in the peritoneal infection model, ruling out the involvement of certain alterations of virulence properties in the cbrA mutant including defective swarming motility, increased biofilm formation, and cytotoxicity, since these alterations are controlled through CbrB. Further investigations indicated that the mutant was more susceptible to uptake by phagocytes in vitro, resulting in greater overall bacterial killing. Consistent with the virulence defect, it took a smaller number of Dictyostelium discoideum amoebae to kill the cbrA mutant than to kill the wild type. Transcriptional analysis of the cbrA mutant during D. discoideum infection led to the conclusion that CbrA played an important role in the iron metabolism, protection of P. aeruginosa against oxidative stress, and the regulation of certain virulence factors.

  12. Computationally identifying virulence factors based on KEGG pathways.

    PubMed

    Cui, Weiren; Chen, Lei; Huang, Tao; Gao, Qian; Jiang, Min; Zhang, Ning; Zheng, Lulu; Feng, Kaiyan; Cai, Yudong; Wang, Hongwei

    2013-06-01

    Virulence factors are molecules that play very important roles in enhancing the pathogen's capability in causing diseases. Many efforts were made to investigate the mechanism of virulence factors using in silico methods. In this study, we present a novel computational method to predict virulence factors by integrating protein-protein interactions in a STRING database and biological pathways in the KEGG. Three specific species were studied according to their records in the VFDB. They are Campylobacter jejuni NCTC 11168, Escherichia coli O6 : K15 : H31 536 (UPEC) and Pseudomonas aeruginosa PAO1. The prediction accuracies reached were 0.9467, 0.9575 and 0.9180, respectively. Metabolism pathways, flagellar assembly and chemotaxis may be of importance for virulence based on the analysis of the optimal feature sets we obtained. We hope this can provide some insight and guidance for related research.

  13. Campylobacter virulence and survival factors.

    PubMed

    Bolton, Declan J

    2015-06-01

    Despite over 30 years of research, campylobacteriosis is the most prevalent foodborne bacterial infection in many countries including in the European Union and the United States of America. However, relatively little is known about the virulence factors in Campylobacter or how an apparently fragile organism can survive in the food chain, often with enhanced pathogenicity. This review collates information on the virulence and survival determinants including motility, chemotaxis, adhesion, invasion, multidrug resistance, bile resistance and stress response factors. It discusses their function in transition through the food processing environment and human infection. In doing so it provides a fundamental understanding of Campylobacter, critical for improved diagnosis, surveillance and control.

  14. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa

    PubMed Central

    Hwang, Sohyun; Kim, Chan Yeong; Ji, Sun-Gou; Go, Junhyeok; Kim, Hanhae; Yang, Sunmo; Kim, Hye Jin; Cho, Ara; Yoon, Sang Sun; Lee, Insuk

    2016-01-01

    Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa. PMID:27194047

  15. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Hwang, Sohyun; Kim, Chan Yeong; Ji, Sun-Gou; Go, Junhyeok; Kim, Hanhae; Yang, Sunmo; Kim, Hye Jin; Cho, Ara; Yoon, Sang Sun; Lee, Insuk

    2016-05-01

    Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa.

  16. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa.

    PubMed

    Hwang, Sohyun; Kim, Chan Yeong; Ji, Sun-Gou; Go, Junhyeok; Kim, Hanhae; Yang, Sunmo; Kim, Hye Jin; Cho, Ara; Yoon, Sang Sun; Lee, Insuk

    2016-05-19

    Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa.

  17. Ndk, a novel host-responsive regulator, negatively regulates bacterial virulence through quorum sensing in Pseudomonas aeruginosa

    PubMed Central

    Yu, Hua; Xiong, Junzhi; Zhang, Rong; Hu, Xiaomei; Qiu, Jing; Zhang, Di; Xu, Xiaohui; Xin, Rong; He, Xiaomei; Xie, Wei; Sheng, Halei; Chen, Qian; Zhang, Le; Rao, Xiancai; Zhang, Kebin

    2016-01-01

    Pathogenic bacteria could adjust gene expression to enable their survival in the distinct host environment. However, the mechanism by which bacteria adapt to the host environment is not well described. In this study, we demonstrated that nucleoside diphosphate kinase (Ndk) of Pseudomonas aeruginosa is critical for adjusting the bacterial virulence determinants during infection. Ndk expression was down-regulated in the pulmonary alveoli of a mouse model of acute pneumonia. Knockout of ndk up-regulated transcription factor ExsA-mediated T3S regulon expression and decreased exoproduct-related gene expression through the inhibition of the quorum sensing hierarchy. Moreover, in vitro and in vivo studies demonstrated that the ndk mutant exhibits enhanced cytotoxicity and host pathogenicity by increasing T3SS proteins. Taken together, our data reveal that ndk is a critical novel host-responsive gene required for coordinating P. aeruginosa virulence upon acute infection. PMID:27345215

  18. Ndk, a novel host-responsive regulator, negatively regulates bacterial virulence through quorum sensing in Pseudomonas aeruginosa.

    PubMed

    Yu, Hua; Xiong, Junzhi; Zhang, Rong; Hu, Xiaomei; Qiu, Jing; Zhang, Di; Xu, Xiaohui; Xin, Rong; He, Xiaomei; Xie, Wei; Sheng, Halei; Chen, Qian; Zhang, Le; Rao, Xiancai; Zhang, Kebin

    2016-01-01

    Pathogenic bacteria could adjust gene expression to enable their survival in the distinct host environment. However, the mechanism by which bacteria adapt to the host environment is not well described. In this study, we demonstrated that nucleoside diphosphate kinase (Ndk) of Pseudomonas aeruginosa is critical for adjusting the bacterial virulence determinants during infection. Ndk expression was down-regulated in the pulmonary alveoli of a mouse model of acute pneumonia. Knockout of ndk up-regulated transcription factor ExsA-mediated T3S regulon expression and decreased exoproduct-related gene expression through the inhibition of the quorum sensing hierarchy. Moreover, in vitro and in vivo studies demonstrated that the ndk mutant exhibits enhanced cytotoxicity and host pathogenicity by increasing T3SS proteins. Taken together, our data reveal that ndk is a critical novel host-responsive gene required for coordinating P. aeruginosa virulence upon acute infection. PMID:27345215

  19. Lipoxin A4 augments host defense in sepsis and reduces Pseudomonas aeruginosa virulence through quorum sensing inhibition.

    PubMed

    Wu, Benedict; Capilato, Joseph; Pham, Michelle P; Walker, Jean; Spur, Bernd; Rodriguez, Ana; Perez, Lark J; Yin, Kingsley

    2016-06-01

    Bacterial infections can quickly turn into sepsis, with its attendant clinical sequelae of inflammation, tissue injury, and organ failure. Paradoxically, sustained inflammation in sepsis may lead to immune suppression, because of which the host is unable to clear the existing infection. Use of agents that suppress the inflammatory response may accelerate host immune suppression, whereas use of traditional antibiotics does not significantly affect inflammation. In this study, we investigated whether lipoxin A4 (LXA4), a specialized, proresolution lipid mediator, could increase neutrophil phagocytic activity as well as reduce bacterial virulence. Using the mouse cecal ligation and puncture (CLP) model of sepsis, the administration of LXA4 (7 μg/kg i.v.) 1 h after surgery increased neutrophil phagocytic ability and Fcγ receptor I (CD64) expression. Ex vivo studies have confirmed that the direct addition of LXA4 to CLP neutrophils increased phagocytic ability but not CD64 expression. LXA4 did not affect neutrophils taken from control mice in which CD64 expression was minimal. Taken together with in vivo data, these results suggest that LXA4 directly augments CD64-mediated neutrophil phagocytic ability but does not directly increase neutrophil CD64 expression. Bacterial communication and virulence is regulated by quorum sensing inducers. In Pseudomonas aeruginosa, virulence is induced with release of various virulence factors, by N-3-oxododecanolyl homoserine lactone binding to the quorum sensing receptor, LasR. We show that LXA4 is an inhibitor of LasR in P. aeruginosa and that it decreases the release of pyocyanin exotoxin. These results suggest that LXA4 has the novel dual properties of increasing host defense and decreasing pathogen virulence by inhibiting quorum sensing.-Wu, B., Capilato, J., Pham, M. P., Walker, J., Spur, B., Rodriguez, A., Perez, L. J., Yin, K. Lipoxin A4 augments host defense in sepsis and reduces Pseudomonas aeruginosa virulence through

  20. A Novel Virulence Strategy for Pseudomonas aeruginosa Mediated by an Autotransporter with Arginine-Specific Aminopeptidase Activity

    PubMed Central

    Watters, Chase; AbuOun, Manal; Wright, Victoria; Paredes-Osses, Esteban; Ward, Jenny; Goto, Hana; Heeb, Stephan; Pommier, Stéphanie; Rumbaugh, Kendra P.; Cámara, Miguel; Hardie, Kim R.

    2012-01-01

    The opportunistic human pathogen, Pseudomonas aeruginosa, is a major cause of infections in chronic wounds, burns and the lungs of cystic fibrosis patients. The P. aeruginosa genome encodes at least three proteins exhibiting the characteristic three domain structure of autotransporters, but much remains to be understood about the functions of these three proteins and their role in pathogenicity. Autotransporters are the largest family of secreted proteins in Gram-negative bacteria, and those characterised are virulence factors. Here, we demonstrate that the PA0328 autotransporter is a cell-surface tethered, arginine-specific aminopeptidase, and have defined its active site by site directed mutagenesis. Hence, we have assigned PA0328 with the name AaaA, for arginine-specific autotransporter of P. aeruginosa. We show that AaaA provides a fitness advantage in environments where the sole source of nitrogen is peptides with an aminoterminal arginine, and that this could be important for establishing an infection, as the lack of AaaA led to attenuation in a mouse chronic wound infection which correlated with lower levels of the cytokines TNFα, IL-1α, KC and COX-2. Consequently AaaA is an important virulence factor playing a significant role in the successful establishment of P. aeruginosa infections. PMID:22927813

  1. 2-Furaldehyde diethyl acetal from tender coconut water (Cocos nucifera) attenuates biofilm formation and quorum sensing-mediated virulence of Chromobacterium violaceum and Pseudomonas aeruginosa.

    PubMed

    Sethupathy, Sivasamy; Nithya, Chari; Pandian, Shunmugiah Karutha

    2015-01-01

    The aim of this study was to evaluate the anti-biofilm and quorum sensing inhibitory (QSI) potential of tender coconut water (TCW) against Chromobacterium violaceum and Pseudomonas aeruginosa. TCW significantly inhibited the QS regulated violacein, virulence factors and biofilm production without affecting their growth. qRT-PCR analysis revealed the down-regulation of autoinducer synthase, transcriptional regulator and virulence genes. Mass-spectrometric analysis of a petroleum ether extract of the TCW hydrolyte revealed that 2-furaldehyde diethyl acetal (2FDA) and palmitic acid (PA) are the major compounds. In vitro bioassays confirmed the ability of 2FDA to inhibit the biofilm formation and virulence factors. In addition, the combination of PA with 2FDA resulted in potent inhibition of biofilm formation and virulence factors. The results obtained strongly suggest that TCW can be exploited as a base for designing a novel antipathogenic drug formulation to treat biofilm mediated infections caused by P. aeruginosa.

  2. The ferrichrome receptor A as a new target for Pseudomonas aeruginosa virulence attenuation.

    PubMed

    Lee, Keehoon; Lee, Kang-Mu; Go, Junhyeok; Ryu, Jae-Chan; Ryu, Ji-Hwan; Yoon, Sang Sun

    2016-06-01

    Pseudomonas aeruginosa is an opportunistic pathogen, known to develop robust biofilms. Its biofilm development increases when antibiotics are presented at subminimal inhibitory concentrations (MICs) for reasons that remain unclear. In order to identify genes that affect biofilm development under such a sublethal antibiotic stress condition, we screened a transposon (Tn) mutant library of PAO1, a prototype P. aeruginosa strain. Among ∼5000 mutants, a fiuA gene mutant was verified to form very defective biofilms in the presence of sub-MIC carbenicillin. The fiuA gene encodes ferrichrome receptor A, involved in the iron acquisition process. Of note, biofilm formation was not decreased in the ΔpchΔpvd mutant defective in the production of pyochelin and pyoverdine, two well-characterized P. aeruginosa siderophore molecules. Moreover, ΔfiuA, a non-polar fiuA deletion mutant, produced a significantly decreased level of elastase, a major virulence determinant. Mouse airway infection experiments revealed that the mutant expressed significantly less pathogenicity. Our results suggest that the fiuA gene has pleiotropic functions that affect P. aeruginosa biofilm development and virulence. The targeting of FiuA could enable the attenuation of P. aeruginosa virulence and may be suitable for the development of a drug that specifically controls the virulence of this important pathogen. PMID:27190289

  3. The Regulatory Repertoire of Pseudomonas aeruginosa AmpC ß-Lactamase Regulator AmpR Includes Virulence Genes

    PubMed Central

    Balasubramanian, Deepak; Schneper, Lisa; Merighi, Massimo; Smith, Roger; Narasimhan, Giri; Lory, Stephen; Mathee, Kalai

    2012-01-01

    In Enterobacteriaceae, the transcriptional regulator AmpR, a member of the LysR family, regulates the expression of a chromosomal β-lactamase AmpC. The regulatory repertoire of AmpR is broader in Pseudomonas aeruginosa, an opportunistic pathogen responsible for numerous acute and chronic infections including cystic fibrosis. In addition to regulating ampC, P. aeruginosa AmpR regulates the sigma factor AlgT/U and production of some quorum sensing (QS)-regulated virulence factors. In order to better understand the ampR regulon, we compared the transcriptional profile generated using DNA microarrays of the prototypic P. aeruginosa PAO1 strain with its isogenic ampR deletion mutant, PAOΔampR. Transcriptome analysis demonstrates that the AmpR regulon is much more extensive than previously thought, with the deletion of ampR influencing the differential expression of over 500 genes. In addition to regulating resistance to β-lactam antibiotics via AmpC, AmpR also regulates non-β-lactam antibiotic resistance by modulating the MexEF-OprN efflux pump. Other virulence mechanisms including biofilm formation and QS-regulated acute virulence factors are AmpR-regulated. Real-time PCR and phenotypic assays confirmed the microarray data. Further, using a Caenorhabditis elegans model, we demonstrate that a functional AmpR is required for P. aeruginosa pathogenicity. AmpR, a member of the core genome, also regulates genes in the regions of genome plasticity that are acquired by horizontal gene transfer. Further, we show differential regulation of other transcriptional regulators and sigma factors by AmpR, accounting for the extensive AmpR regulon. The data demonstrates that AmpR functions as a global regulator in P. aeruginosa and is a positive regulator of acute virulence while negatively regulating biofilm formation, a chronic infection phenotype. Unraveling this complex regulatory circuit will provide a better understanding of the bacterial response to antibiotics and how the

  4. Pseudomonas aeruginosa fimL regulates multiple virulence functions by intersecting with Vfr-modulated pathways

    PubMed Central

    Whitchurch, Cynthia B.; Beatson, Scott A.; Comolli, James C.; Jakobsen, Thania; Sargent, Jennifer L.; Bertrand, Jacob J.; West, Joyce; Klausen, Mikkel; Waite, Leslie L.; Kang, Pil Jung; Tolker-Nielsen, Tim; Mattick, John S.; Engel, Joanne N.

    2005-01-01

    Virulence of Pseudomonas aeruginosa involves the co-ordinate expression of a range of factors including type IV pili (tfp), the type III secretion system (TTSS) and quorum sensing. Tfp are required for twitching motility, efficient biofilm formation, and for adhesion and type III secretion (TTS)-mediated damage to mammalian cells. We describe a novel gene (fimL) that is required for tfp biogenesis and function, for TTS and for normal biofilm development in P. aeruginosa. The predicted product of fimL is homologous to the N-terminal domain of ChpA, except that its putative histidine and threonine phosphotransfer sites have been replaced with glutamine. fimL mutants resemble vfr mutants in many aspects including increased autolysis, reduced levels of surface-assembled tfp and diminished production of type III secreted effectors. Expression of vfr in trans can complement fimL mutants. vfr transcription and production is reduced in fimL mutants whereas cAMP levels are unaffected. Deletion and insertion mutants of fimL frequently revert to wild-type phenotypes suggesting that an extragenic suppressor mutation is able to overcome the loss of fimL. vfr transcription and production, as well as cAMP levels, are elevated in these revertants, while Pseudomonas quinolone signal (PQS) production is reduced. These results suggest that the site(s) of spontaneous mutation is in a gene(s) which lies upstream of vfr transcription, cAMP, production, and PQS synthesis. Our studies indicate that Vfr and FimL are components of intersecting pathways that control twitching motility, TTSS and autolysis in P. aeruginosa. PMID:15720546

  5. Salmonella-secreted Virulence Factors

    SciTech Connect

    Heffron, Fred; Niemann, George; Yoon, Hyunjin; Kidwai, Afshan S.; Brown, Roslyn N.; McDermott, Jason E.; Smith, Richard D.; Adkins, Joshua N.

    2011-05-01

    In this short review we discuss secreted virulence factors of Salmonella, which directly affect Salmonella interaction with its host. Salmonella secretes protein to subvert host defenses but also, as discussed, to reduce virulence thereby permitting the bacteria to persist longer and more successfully disperse. The type III secretion system (TTSS) is the best known and well studied of the mechanisms that enable secretion from the bacterial cytoplasm to the host cell cytoplasm. Other secretion systems include outer membrane vesicles, which are present in all Gram-negative bacteria examined to date, two-partner secretion, and type VI secretion will also be addressed. Excellent reviews of Salmonella secreted effectors have focused on themes such as actin rearrangements, vesicular trafficking, ubiquitination, and the activities of the virulence factors themselves. This short review is based on S. Typhimurium infection of mice because it is a model of typhoid like disease in humans. We have organized effectors in terms of events that happen during the infection cycle and how secreted effectors may be involved.

  6. The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa.

    PubMed

    Jones, S; Yu, B; Bainton, N J; Birdsall, M; Bycroft, B W; Chhabra, S R; Cox, A J; Golby, P; Reeves, P J; Stephens, S

    1993-06-01

    Erwinia carotovora and Pseudomonas aeruginosa secrete exoenzymes that contribute to the pathogenesis of plant and mammalian infections respectively. E.carotovora mutants defective in synthesis of the pectinase, cellulase and protease exoenzymes were isolated and classified into two groups. Group 2 mutants were found to be defective in the production of a small freely diffusible molecule, N-3-(oxohexanoyl)-L-homoserine, lactone (HSL), and were avirulent. Addition of exogenous HSL to these group 2 mutants restores synthesis of the exoenzymes and virulence in planta. Of the exoenzymes of P.aeruginosa the metalloprotease, elastase, is an established virulence determinant. Mutants of P.aeruginosa that are defective in elastase production have been isolated and were again found to fall into two groups. Analogous to the group 2 mutants of E.carotovora, group 2 mutants of P. aeruginosa are defective in the synthesis of HSL and exogenous HSL restores elastase production. HSL has now been linked to the control of bioluminescence in Vibrio fischeri, carbapenem antibiotic production of E.carotovora and the above exoenzyme virulence determinants. This information significantly enhances our understanding of the extent and nature of pheromone mediated gene expression control in prokaryotes.

  7. The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa.

    PubMed Central

    Jones, S; Yu, B; Bainton, N J; Birdsall, M; Bycroft, B W; Chhabra, S R; Cox, A J; Golby, P; Reeves, P J; Stephens, S

    1993-01-01

    Erwinia carotovora and Pseudomonas aeruginosa secrete exoenzymes that contribute to the pathogenesis of plant and mammalian infections respectively. E.carotovora mutants defective in synthesis of the pectinase, cellulase and protease exoenzymes were isolated and classified into two groups. Group 2 mutants were found to be defective in the production of a small freely diffusible molecule, N-3-(oxohexanoyl)-L-homoserine, lactone (HSL), and were avirulent. Addition of exogenous HSL to these group 2 mutants restores synthesis of the exoenzymes and virulence in planta. Of the exoenzymes of P.aeruginosa the metalloprotease, elastase, is an established virulence determinant. Mutants of P.aeruginosa that are defective in elastase production have been isolated and were again found to fall into two groups. Analogous to the group 2 mutants of E.carotovora, group 2 mutants of P. aeruginosa are defective in the synthesis of HSL and exogenous HSL restores elastase production. HSL has now been linked to the control of bioluminescence in Vibrio fischeri, carbapenem antibiotic production of E.carotovora and the above exoenzyme virulence determinants. This information significantly enhances our understanding of the extent and nature of pheromone mediated gene expression control in prokaryotes. Images PMID:8508773

  8. The Lon protease is essential for full virulence in Pseudomonas aeruginosa.

    PubMed

    Breidenstein, Elena B M; Janot, Laure; Strehmel, Janine; Fernandez, Lucia; Taylor, Patrick K; Kukavica-Ibrulj, Irena; Gellatly, Shaan L; Levesque, Roger C; Overhage, Joerg; Hancock, Robert E W

    2012-01-01

    Pseudomonas aeruginosa PAO1 lon mutants are supersusceptible to ciprofloxacin, and exhibit a defect in cell division and in virulence-related properties, such as swarming, twitching and biofilm formation, despite the fact that the Lon protease is not a traditional regulator. Here we set out to investigate the influence of a lon mutation in a series of infection models. It was demonstrated that the lon mutant had a defect in cytotoxicity towards epithelial cells, was less virulent in an amoeba model as well as a mouse acute lung infection model, and impacted on in vivo survival in a rat model of chronic infection. Using qRT-PCR it was demonstrated that the lon mutation led to a down-regulation of Type III secretion genes. The Lon protease also influenced motility and biofilm formation in a mucin-rich environment. Thus alterations in several virulence-related processes in vitro in a lon mutant were reflected by defective virulence in vivo.

  9. In Vitro Analysis of Pseudomonas aeruginosa Virulence Using Conditions That Mimic the Environment at Specific Infection Sites.

    PubMed

    Colmer-Hamood, J A; Dzvova, N; Kruczek, C; Hamood, A N

    2016-01-01

    Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that causes chronic lung infection in patients with cystic fibrosis (CF) and acute systemic infections in severely burned patients and immunocompromised patients including cancer patients undergoing chemotherapy and HIV infected individuals. In response to the environmental conditions at specific infection sites, P. aeruginosa expresses certain sets of cell-associated and extracellular virulence factors that produce tissue damage. Analyzing the mechanisms that govern the production of these virulence factors in vitro requires media that closely mimic the environmental conditions within the infection sites. In this chapter, we review studies based on media that closely resemble three in vivo conditions, the thick mucus accumulated within the lung alveoli of CF patients, the serum-rich wound bed and the bloodstream. Media resembling the CF alveolar mucus include standard laboratory media supplemented with sputum obtained from CF patients as well as prepared synthetic mucus media formulated to contain the individual components of CF sputum. Media supplemented with serum or individual serum components have served as surrogates for the soluble host components of wound infections, while whole blood has been used to investigate the adaptation of pathogens to the bloodstream. Studies using these media have provided valuable information regarding P. aeruginosa gene expression in different host environments as varying sets of genes were differentially regulated during growth in each medium. The unique effects observed indicate the essential role of these in vitro media that closely mimic the in vivo conditions in providing accurate information regarding the pathogenesis of P. aeruginosa infections. PMID:27571695

  10. Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in pressure ulcer infection in rats.

    PubMed

    Nakagami, Gojiro; Morohoshi, Tomohiro; Ikeda, Tsukasa; Ohta, Yasunori; Sagara, Hiroshi; Huang, Lijuan; Nagase, Takashi; Sugama, Junko; Sanada, Hiromi

    2011-01-01

    The impact of quorum sensing (QS) in in vivo models of infection has been widely investigated, but there are no descriptions for ischemic wound infection. To explore the role of QS in Pseudomonas aeruginosa in the establishment of ischemic wound infection, we challenged a pressure ulcer model in rats with the PAO-1, PAO-1 derivatives ΔlasIΔrhlI and ΔlasRΔrhlR strains, which cannot induce the virulence factor under QS control, thus the reduced tissue destruction was expended in these mutant strains. However unexpectedly, on postwounding day 3, the inflammatory responses in the three groups were similarly severe and the numbers of bacteria in tissue samples did not differ among the three strains. Biofilm formation was immature in QS-deficient strains, defined by the absence of dense bacterial aggregates and extracellular polymeric substance, which was confirmed by scanning electron microscopy. The Pseudomonas aeruginosa QS signal, acylated homoserine lactone, was only quantified from wound samples in the PAO-1 group. The swimming and twitching motilities were significantly enhanced in the ΔlasRΔrhlR group compared with the PAO-1 group in vitro. A significantly larger wound area was correlated with the bacterial motility. The inflammation in the early phase of bacterial challenge to wounds with immature biofilm formation in the QS-deficient strains indicated that the role of QS was more crucial for the chronic phase than for the acute phase of infection. The present findings indicate a difference in the importance of QS in ischemic wound infections compared with other infection models.

  11. Pleiotropic effects of temperature-regulated 2-OH-lauroytransferase (PA0011) on Pseudomonas aeruginosa antibiotic resistance, virulence and type III secretion system.

    PubMed

    Wang, Bobo; Li, Bo; Liang, Ying; Li, Jing; Gao, Lang; Chen, Lin; Duan, Kangmin; Shen, Lixin

    2016-02-01

    Pseudomonas aeruginosa is an important human pathogen which adapts to changing environment, such as temperature variations and entering host by regulating their gene expression. Here, we report that gene PA0011 in P. aeruginosa PAO1, which encodes a 2-OH-lauroytransferase participating in lipid A biosynthesis, is involved in carbapenem resistance and virulence in a temperature-regulated manner in PAO1. The expression of PA0011 was higher at an environment temperature (21 °C) than that at a body temperature (37 °C). The inactivation of PA0011 rendered increased antibiotic susceptibility and decreased virulence both in vivo and in vitro. The impaired integrity and the decreased stability of the outer membrane were the cause of the increased susceptibility of PAO1(Δ0011) to carbapenem and many other common antibiotics. The reduced endotoxic activity of lipopolysaccharide (LPS) contributed to the decreased virulence both at 21 °C and 37 °C in PAO1 (Δ0011). In addition, we have found that PA0011 repressed the expression of TTSS virulence factors both at transcriptional and translational levels, similar to the effect of O antigen of LPS but unlike any effect of its homologue reported in other bacteria. The effect of PA0011 on resistance to many antibiotics including carbapenem and virulence in P. aeruginosa makes it a target for novel antimicrobial therapies.

  12. Phages can constrain protist predation-driven attenuation of Pseudomonas aeruginosa virulence in multienemy communities

    PubMed Central

    Friman, Ville-Petri; Buckling, Angus

    2014-01-01

    The coincidental theory of virulence predicts that bacterial pathogenicity could be a by-product of selection by natural enemies in environmental reservoirs. However, current results are ambiguous and the simultaneous impact of multiple ubiquitous enemies, protists and phages on virulence evolution has not been investigated previously. Here we tested experimentally how Tetrahymena thermophila protist predation and PNM phage parasitism (bacteria-specific virus) alone and together affect the evolution of Pseudomonas aeruginosa PAO1 virulence, measured in wax moth larvae. Protist predation selected for small colony types, both in the absence and presence of phage, which showed decreased edibility to protists, reduced growth in the absence of enemies and attenuated virulence. Although phage selection alone did not affect the bacterial phenotype, it weakened protist-driven antipredatory defence (biofilm formation), its associated pleiotropic growth cost and the correlated reduction in virulence. These results suggest that protist selection can be a strong coincidental driver of attenuated bacterial virulence, and that phages can constrain this effect owing to effects on population dynamics and conflicting selection pressures. Attempting to define causal links such as these might help us to predict the cold and hot spots of coincidental virulence evolution on the basis of microbial community composition of environmental reservoirs. PMID:24671085

  13. Phages can constrain protist predation-driven attenuation of Pseudomonas aeruginosa virulence in multienemy communities.

    PubMed

    Friman, Ville-Petri; Buckling, Angus

    2014-09-01

    The coincidental theory of virulence predicts that bacterial pathogenicity could be a by-product of selection by natural enemies in environmental reservoirs. However, current results are ambiguous and the simultaneous impact of multiple ubiquitous enemies, protists and phages on virulence evolution has not been investigated previously. Here we tested experimentally how Tetrahymena thermophila protist predation and PNM phage parasitism (bacteria-specific virus) alone and together affect the evolution of Pseudomonas aeruginosa PAO1 virulence, measured in wax moth larvae. Protist predation selected for small colony types, both in the absence and presence of phage, which showed decreased edibility to protists, reduced growth in the absence of enemies and attenuated virulence. Although phage selection alone did not affect the bacterial phenotype, it weakened protist-driven antipredatory defence (biofilm formation), its associated pleiotropic growth cost and the correlated reduction in virulence. These results suggest that protist selection can be a strong coincidental driver of attenuated bacterial virulence, and that phages can constrain this effect owing to effects on population dynamics and conflicting selection pressures. Attempting to define causal links such as these might help us to predict the cold and hot spots of coincidental virulence evolution on the basis of microbial community composition of environmental reservoirs.

  14. Feeding behaviour of Caenorhabditis elegans is an indicator of Pseudomonas aeruginosa PAO1 virulence

    PubMed Central

    Charron-Mazenod, Laetitia; Giroux, Lauriane; Zamponi, Alexandra D.

    2014-01-01

    Caenorhabditis elegans is commonly used as an infection model for pathogenesis studies in Pseudomonas aeruginosa. The standard virulence assays rely on the slow and fast killing or paralysis of nematodes but here we developed a behaviour assay to monitor the preferred bacterial food sources of C. elegans. We monitored the food preferences of nematodes fed the wild type PAO1 and mutants in the type III secretion (T3S) system, which is a conserved mechanism to inject secreted effectors into the host cell cytosol. A ΔexsEΔpscD mutant defective for type III secretion served as a preferred food source, while an ΔexsE mutant that overexpresses the T3S effectors was avoided. Both food sources were ingested and observed in the gastrointestinal tract. Using the slow killing assay, we showed that the ΔexsEΔpscD had reduced virulence and thus confirmed that preferred food sources are less virulent than the wild type. Next we developed a high throughput feeding behaviour assay with 48 possible food colonies in order to screen a transposon mutant library and identify potential virulence genes. C. elegans identified and consumed preferred food colonies from a grid of 48 choices. The mutants identified as preferred food sources included known virulence genes, as well as novel genes not identified in previous C. elegans infection studies. Slow killing assays were performed and confirmed that several preferred food sources also showed reduced virulence. We propose that C. elegans feeding behaviour can be used as a sensitive indicator of virulence for P. aeruginosa PAO1. PMID:25165631

  15. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes.

    PubMed Central

    Pearson, J P; Gray, K M; Passador, L; Tucker, K D; Eberhard, A; Iglewski, B H; Greenberg, E P

    1994-01-01

    In Pseudomonas aeruginosa the LasR protein is required for activation of lasB and several other virulence genes. A diffusible signal molecule, the P. aeruginosa autoinducer (PAI), produced by the bacterial cell and released into the growth medium, is required for activity of LasR. By cloning a lasB::lacZ fusion and a lasR gene under control of the lac promoter in Escherichia coli, we have developed a quantitative bioassay for PAI. We have used this assay to follow the purification of PAI from cell-free culture supernatant fluids in which P. aeruginosa or E. coli containing the P. aeruginosa gene required for autoinducer synthesis, lasI, had been grown. Chemical analyses indicated the purified material was 3-oxo-N-(tetrahydro-2-oxo-3-furanyl)dodecanamide. To confirm this assignment, the compound was synthesized and the synthetic compound was shown to have chemical and biological properties identical to those of PAI purified from culture supernatant fluids. The elucidation of the PAI structure suggests therapeutic approaches toward control of P. aeruginosa infections. PMID:8278364

  16. A Novel Signal Transduction Pathway that Modulates rhl Quorum Sensing and Bacterial Virulence in Pseudomonas aeruginosa

    PubMed Central

    Chen, Feifei; Xia, Yongjie; Lou, Jingyu; Zhang, Xue; Yang, Nana; Sun, Xiaoxu; Zhang, Qin; Zhuo, Chao; Huang, Xi; Deng, Xin; Yang, Cai-Guang; Ye, Yan; Zhao, Jing; Wu, Min; Lan, Lefu

    2014-01-01

    The rhl quorum-sensing (QS) system plays critical roles in the pathogenesis of P. aeruginosa. However, the regulatory effects that occur directly upstream of the rhl QS system are poorly understood. Here, we show that deletion of gene encoding for the two-component sensor BfmS leads to the activation of its cognate response regulator BfmR, which in turn directly binds to the promoter and decreases the expression of the rhlR gene that encodes the QS regulator RhlR, causing the inhibition of the rhl QS system. In the absence of bfmS, the Acka-Pta pathway can modulate the regulatory activity of BfmR. In addition, BfmS tunes the expression of 202 genes that comprise 3.6% of the P. aeruginosa genome. We further demonstrate that deletion of bfmS causes substantially reduced virulence in lettuce leaf, reduced cytotoxicity, enhanced invasion, and reduced bacterial survival during acute mouse lung infection. Intriguingly, specific missense mutations, which occur naturally in the bfmS gene in P. aeruginosa cystic fibrosis (CF) isolates such as DK2 strains and RP73 strain, can produce BfmS variants (BfmSL181P, BfmSL181P/E376Q, and BfmSR393H) that no longer repress, but instead activate BfmR. As a result, BfmS variants, but not the wild-type BfmS, inhibit the rhl QS system. This study thus uncovers a previously unexplored signal transduction pathway, BfmS/BfmR/RhlR, for the regulation of rhl QS in P. aeruginosa. We propose that BfmRS TCS may have an important role in the regulation and evolution of P. aeruginosa virulence during chronic infection in CF lungs. PMID:25166864

  17. Development of an Ex Vivo Porcine Lung Model for Studying Growth, Virulence, and Signaling of Pseudomonas aeruginosa

    PubMed Central

    Muruli, Aneesha; Higgins, Steven; Diggle, Stephen P.

    2014-01-01

    Research into chronic infection by bacterial pathogens, such as Pseudomonas aeruginosa, uses various in vitro and live host models. While these have increased our understanding of pathogen growth, virulence, and evolution, each model has certain limitations. In vitro models cannot recapitulate the complex spatial structure of host organs, while experiments on live hosts are limited in terms of sample size and infection duration for ethical reasons; live mammal models also require specialized facilities which are costly to run. To address this, we have developed an ex vivo pig lung (EVPL) model for quantifying Pseudomonas aeruginosa growth, quorum sensing (QS), virulence factor production, and tissue damage in an environment that mimics a chronically infected cystic fibrosis (CF) lung. In a first test of our model, we show that lasR mutants, which do not respond to 3-oxo-C12-homoserine lactone (HSL)-mediated QS, exhibit reduced virulence factor production in EVPL. We also show that lasR mutants grow as well as or better than a corresponding wild-type strain in EVPL. lasR mutants frequently and repeatedly arise during chronic CF lung infection, but the evolutionary forces governing their appearance and spread are not clear. Our data are not consistent with the hypothesis that lasR mutants act as social “cheats” in the lung; rather, our results support the hypothesis that lasR mutants are more adapted to the lung environment. More generally, this model will facilitate improved studies of microbial disease, especially studies of how cells of the same and different species interact in polymicrobial infections in a spatially structured environment. PMID:24866798

  18. A Novel Insight into Dehydroleucodine Mediated Attenuation of Pseudomonas aeruginosa Virulence Mechanism

    PubMed Central

    Mustafi, S.; Veisaga, M. L.; López, L. A.; Barbieri, M. A.

    2015-01-01

    Increasing resistance of Pseudomonas aeruginosa (P. aeruginosa) to conventional treatments demands the search for novel therapeutic strategies. In this study, the antimicrobial activity of dehydroleucodine (DhL), a sesquiterpene lactone obtained from Artemisia (A.) douglasiana, was screened against several pathogenic virulence effectors of P. aeruginosa. In vitro, minimum inhibitory concentration of DhL was determined against P. aeruginosa strains PAO1, PA103, PA14, and multidrug resistant clinical strain, CDN118. Results showed that DhL was active against each strain where PAO1 and PA103 showed higher susceptibility (MIC 0.48 mg/mL) as compared to PA14 (MIC 0.96 mg/mL) and CDN118 (MIC 0.98 mg/mL). Also, when PAO1 strain was grown in the presence of DhL (MIC50, 0.12 mg/mL), a delay in the generation time was noticed along with significant inhibition of secretory protease and elastase activities, interruption in biofilm attachment phase in a stationary culture, and a significant decline in Type III effector ExoS. At MIC50, DhL treatment increased the sensitivity of P. aeruginosa towards potent antibiotics. Furthermore, treatment of P. aeruginosa with DhL prevented toxin-induced apoptosis in macrophages. These observations suggest that DhL activity was at the bacterial transcriptional level. Hence, antimicrobial activity of DhL may serve as leads in the development of new anti-Pseudomonas pharmaceuticals. PMID:26640783

  19. Antibiotic resistance profiles and virulence markers of Pseudomonas aeruginosa strains isolated from composts.

    PubMed

    Kaszab, Edit; Szoboszlay, Sándor; Dobolyi, Csaba; Háhn, Judit; Pék, Nikoletta; Kriszt, Balázs

    2011-01-01

    The aim of our work was to determine the presence of Pseudomonas aeruginosa in compost raw materials, immature and mature compost, and compost-treated soil. Twenty-five strains of P. aeruginosa were isolated from a raw material (plant straw), immature and mature compost and compost-treated soil samples. The strains were identified using the PCR method for the detection of species specific variable regions of 16S rDNA. Strains were examined for the presence of five different virulence-related gene sequences (exoA, exoU, exoT, exoS and exoY) and their antibiotic resistance profiles were determined. Based on our results, species P. aeruginosa can reach significant numbers (up to 10(6) MPN/g sample) during composting and 92.0% of the isolated strains carrying at least two gene sequences encoding toxic proteins. Various types of drug resistance were detected among compost originating strains, mainly against third generation Cephalosporins and Carbapenems. Six isolates were able to resist two different classes of antibiotics (third generation Cephalosporins and Carbapenems, wide spectrum Penicillins or Aminoglycosides, respectively). Based on our results, composts can be a source of P. aeruginosa and might be a concern to individuals susceptible to this opportunistic pathogen. PMID:20817443

  20. Diversity of Antimicrobial Resistance and Virulence Determinants in Pseudomonas aeruginosa Associated with Fresh Vegetables

    PubMed Central

    Allydice-Francis, Kashina; Brown, Paul D.

    2012-01-01

    With the increased focus on healthy eating and consuming raw vegetables, this study assessed the extent of contamination of fresh vegetables by Pseudomonas aeruginosa in Jamaica and examined the antibiotic susceptibility profiles and the presence of various virulence associated determinants of P. aeruginosa. Analyses indicated that vegetables from retail markets and supermarkets were widely contaminated by P. aeruginosa; produce from markets were more frequently contaminated, but the difference was not significant. Lettuce and carrots were the most frequently contaminated vegetables, while tomatoes were the least. Pigment production (Pyoverdine, pyocyanin, pyomelanin and pyorubin), fluorescein and alginate were common in these isolates. Imipenem, gentamicin and ciprofloxacin were the most inhibitory antimicrobial agents. However, isolates were resistant or showed reduced susceptibility to ampicillin, chloramphenicol, sulphamethoxazole/trimethoprim and aztreonam, and up to 35% of the isolates were resistant to four antimicrobial agents. As many as 30% of the isolates were positive for the fpv1 gene, and 13% had multiple genes. Sixty-four percent of the isolates harboured an exoenzyme gene (exoS, exoT, exoU or exoY), and multiple exo genes were common. We conclude that P. aeruginosa is a major contaminant of fresh vegetables, which might be a source of infection for susceptible persons within the community. PMID:23213336

  1. [Proteus bacilli: features and virulence factors].

    PubMed

    Rózalski, Antoni; Kwil, Iwona; Torzewska, Agnieszka; Baranowska, Magdalena; Staczek, Paweł

    2007-01-01

    In this article, different aspects of virulence factors of Proteus bacilii (P. mirabilis, P. vulgaris, P. penneri i P. hauseri) are presented. These are opportunistic pathogens that cause different kinds of infections, most frequently of the urinary tract. These bacteria have developed several virulence factors, such as adherence due to the presence of fimbriae or afimbrial adhesins, invasiveness, swarming phenomenon, hemolytic activity, urea hydrolysis, proteolysis, and endotoxicity. Below we focus on data concerning the molecular basis of the pathogenicity of Proteus bacilli.

  2. Anr and its activation by PlcH activity in Pseudomonas aeruginosa host colonization and virulence.

    PubMed

    Jackson, Angelyca A; Gross, Maegan J; Daniels, Emily F; Hampton, Thomas H; Hammond, John H; Vallet-Gely, Isabelle; Dove, Simon L; Stanton, Bruce A; Hogan, Deborah A

    2013-07-01

    Pseudomonas aeruginosa hemolytic phospholipase C (PlcH) degrades phosphatidylcholine (PC), an abundant lipid in cell membranes and lung surfactant. A ΔplcHR mutant, known to be defective in virulence in animal models, was less able to colonize epithelial cell monolayers and was defective in biofilm formation on plastic when grown in lung surfactant. Microarray analyses found that strains defective in PlcH production had lower levels of Anr-regulated transcripts than the wild type. PC degradation stimulated the Anr regulon in an Anr-dependent manner under conditions where Anr activity was submaximal because of the presence of oxygen. Two PC catabolites, choline and glycine betaine (GB), were sufficient to stimulate Anr activity, and their catabolism was required for Anr activation. The addition of choline or GB to glucose-containing medium did not alter Anr protein levels, growth rates, or respiratory activity, and Anr activation could not be attributed to the osmoprotectant functions of GB. The Δanr mutant was defective in virulence in a mouse pneumonia model. Several lines of evidence indicate that Anr is important for the colonization of biotic and abiotic surfaces in both P. aeruginosa PAO1 and PA14 and that increases in Anr activity resulted in enhanced biofilm formation. Our data suggest that PlcH activity promotes Anr activity in oxic environments and that Anr activity contributes to virulence, even in the acute infection phase, where low oxygen tensions are not expected. This finding highlights the relationships among in vivo bacterial metabolism, the activity of the oxygen-sensitive regulator Anr, and virulence.

  3. The Lon Protease Is Essential for Full Virulence in Pseudomonas aeruginosa

    PubMed Central

    Breidenstein, Elena B. M.; Janot, Laure; Strehmel, Janine; Fernandez, Lucia; Taylor, Patrick K.; Kukavica-Ibrulj, Irena; Gellatly, Shaan L.; Levesque, Roger C.; Overhage, Joerg; Hancock, Robert E. W.

    2012-01-01

    Pseudomonas aeruginosa PAO1 lon mutants are supersusceptible to ciprofloxacin, and exhibit a defect in cell division and in virulence-related properties, such as swarming, twitching and biofilm formation, despite the fact that the Lon protease is not a traditional regulator. Here we set out to investigate the influence of a lon mutation in a series of infection models. It was demonstrated that the lon mutant had a defect in cytotoxicity towards epithelial cells, was less virulent in an amoeba model as well as a mouse acute lung infection model, and impacted on in vivo survival in a rat model of chronic infection. Using qRT-PCR it was demonstrated that the lon mutation led to a down-regulation of Type III secretion genes. The Lon protease also influenced motility and biofilm formation in a mucin-rich environment. Thus alterations in several virulence-related processes in vitro in a lon mutant were reflected by defective virulence in vivo. PMID:23145092

  4. Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′-5′)-cyclic-GMP in virulence

    PubMed Central

    Kulesekara, Hemantha; Lee, Vincent; Brencic, Anja; Liberati, Nicole; Urbach, Jonathan; Miyata, Sachiko; Lee, Daniel G.; Neely, Alice N.; Hyodo, Mamoru; Hayakawa, Yoshihiro; Ausubel, Frederick M.; Lory, Stephen

    2006-01-01

    The opportunistic pathogen Pseudomonas aeruginosa is responsible for systemic infections in immunocompromised individuals and chronic respiratory disease in patients with cystic fibrosis. Cyclic nucleotides are known to play a variety of roles in the regulation of virulence-related factors in pathogenic bacteria. A set of P. aeruginosa genes, encoding proteins that contain putative domains characteristic of diguanylate cyclases (DGCs) and phosphodiesterases (PDEs) that are responsible for the maintenance of cellular levels of the second messenger bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP) was identified in the annotated genomes of P. aeruginosa strains PAO1 and PA14. Although the majority of these genes are components of the P. aeruginosa core genome, several are located on presumptive horizontally acquired genomic islands. A comprehensive analysis of P. aeruginosa genes encoding the enzymes of c-di-GMP metabolism (DGC- and PDE-encoding genes) was carried out to analyze the function of c-di-GMP in two disease-related phenomena, cytotoxicity and biofilm formation. Analysis of the phenotypes of DGC and PDE mutants and overexpressing clones revealed that certain virulence-associated traits are controlled by multiple DGCs and PDEs through alterations in c-di-GMP levels. A set of mutants in selected DGC- and PDE-encoding genes exhibited attenuated virulence in a mouse infection model. Given that insertions in different DGC and PDE genes result in distinct phenotypes, it seems likely that the formation or degradation of c-di-GMP by these enzymes is in highly localized and intimately linked to particular targets of c-di-GMP action. PMID:16477007

  5. Pseudolysogeny and sequential mutations build multiresistance to virulent bacteriophages in Pseudomonas aeruginosa.

    PubMed

    Latino, Libera; Midoux, Cédric; Hauck, Yolande; Vergnaud, Gilles; Pourcel, Christine

    2016-05-01

    Coevolution between bacteriophages (phages) and their prey is the result of mutualistic interactions. Here, we show that pseudolysogeny is a frequent outcome of infection by virulent phages of Pseudomonas aeruginosa and that selection of resistant bacterial mutants is favoured by continuous production of phages. We investigated the frequency and characteristics of P. aeruginosa strain PAO1 variants resisting infection by different combinations of virulent phages belonging to four genera. The frequency of resistant bacteria was 10- 5 for single phage infection and 10- 6 for infections with combinations of two or four phages. The genome of 27 variants was sequenced and the comparison with the genome of the parental PAO1 strain allowed the identification of point mutations or small indels. Four additional variants were characterized by a candidate gene approach. In total, 27 independent mutations were observed affecting 14 genes and a regulatory region. The mutations affected genes involved in biosynthesis of type IV pilus, alginate, LPS and O-antigen. Half of the variants possessed changes in homopolymer tracts responsible for frameshift mutations and these phase variation mutants were shown to be unstable. Eleven double mutants were detected. The presence of free phage DNA was observed in association with exclusion of superinfection in half of the variants and no chromosomal mutation could be found in three of them. Upon further growth of these pseudolysogens, some variants with new chromosomal mutations were recovered, presumably due to continuous evolutionary pressure.

  6. A eukaryotic-type signalling system of Pseudomonas aeruginosa contributes to oxidative stress resistance, intracellular survival and virulence

    PubMed Central

    2011-01-01

    Background The genome of Pseudomonas aeruginosa contains at least three genes encoding eukaryotic-type Ser/Thr protein kinases, one of which, ppkA, has been implicated in P. aeruginosa virulence. Together with the adjacent pppA phosphatase gene, they belong to the type VI secretion system (H1-T6SS) locus, which is important for bacterial pathogenesis. To determine the biological function of this protein pair, we prepared a pppA-ppkA double mutant and characterised its phenotype and transcriptomic profiles. Results Phenotypic studies revealed that the mutant grew slower than the wild-type strain in minimal media and exhibited reduced secretion of pyoverdine. In addition, the mutant had altered sensitivity to oxidative and hyperosmotic stress conditions. Consequently, mutant cells had an impaired ability to survive in murine macrophages and an attenuated virulence in the plant model of infection. Whole-genome transcriptome analysis revealed that pppA-ppkA deletion affects the expression of oxidative stress-responsive genes, stationary phase σ-factor RpoS-regulated genes, and quorum-sensing regulons. The transcriptome of the pppA-ppkA mutant was also analysed under conditions of oxidative stress and showed an impaired response to the stress, manifested by a weaker induction of stress adaptation genes as well as the genes of the SOS regulon. In addition, expression of either RpoS-regulated genes or quorum-sensing-dependent genes was also affected. Complementation analysis confirmed that the transcription levels of the differentially expressed genes were specifically restored when the pppA and ppkA genes were expressed ectopically. Conclusions Our results suggest that in addition to its crucial role in controlling the activity of P. aeruginosa H1-T6SS at the post-translational level, the PppA-PpkA pair also affects the transcription of stress-responsive genes. Based on these data, it is likely that the reduced virulence of the mutant strain results from an impaired

  7. Ellagic Acid Derivatives from Terminalia chebula Retz. Downregulate the Expression of Quorum Sensing Genes to Attenuate Pseudomonas aeruginosa PAO1 Virulence

    PubMed Central

    Sarabhai, Sajal; Sharma, Prince; Capalash, Neena

    2013-01-01

    Background Burgeoning antibiotic resistance in Pseudomonas aeruginosa has necessitated the development of anti pathogenic agents that can quench acylhomoserine lactone (AHL) mediated QS with least risk of resistance. This study explores the anti quorum sensing potential of T. chebula Retz. and identification of probable compounds(s) showing anti QS activity and the mechanism of attenuation of P. aeruginosa PAO1 virulence factors. Methods and Results Methanol extract of T. chebula Retz. fruit showed anti QS activity using Agrobacterium tumefaciens A136. Bioactive fraction (F7), obtained by fractionation of methanol extract using Sephadex LH20, showed significant reduction (p<0.001) in QS regulated production of extracellular virulence factors in P. aeruginosa PAO1. Biofilm formation and alginate were significantly (p<0.05) reduced with enhanced (20%) susceptibility to tobramycin. Real Time PCR of F7 treated P. aeruginosa showed down regulation of autoinducer synthase (lasI and rhlI) and their cognate receptor (lasR and rhlR) genes by 89, 90, 90 and 93%, respectively. Electrospray Ionization Mass Spectrometry also showed 90 and 64% reduction in the production of 3-oxo-C12HSL and C4HSL after treatment. Decrease in AHLs as one of the mechanisms of quorum quenching by F7 was supported by the reversal of inhibited swarming motility in F7-treated P. aeruginosa PAO1 on addition of C4HSL. F7 also showed antagonistic activity against 3-oxo-C12HSL-dependent QS in E. coli bioreporter. C. elegans fed on F7-treated P. aeruginosa showed enhanced survival with LT50 increasing from 24 to 72 h. LC-ESI-MS of F7 revealed the presence of ellagic acid derivatives responsible for anti QS activity in T. chebula extract. Conclusions This is the first report on anti QS activity of T. chebula fruit linked to EADs which down regulate the expression of lasIR and rhlIR genes with concomitant decrease in AHLs in P. aeruginosa PAO1 causing attenuation of its virulence factors and enhanced

  8. Plant Natural Products Targeting Bacterial Virulence Factors.

    PubMed

    Silva, Laura Nunes; Zimmer, Karine Rigon; Macedo, Alexandre José; Trentin, Danielle Silva

    2016-08-24

    Decreased antimicrobial efficiency has become a global public health issue. The paucity of new antibacterial drugs is evident, and the arsenal against infectious diseases needs to be improved urgently. The selection of plants as a source of prototype compounds is appropriate, since plant species naturally produce a wide range of secondary metabolites that act as a chemical line of defense against microorganisms in the environment. Although traditional approaches to combat microbial infections remain effective, targeting microbial virulence rather than survival seems to be an exciting strategy, since the modulation of virulence factors might lead to a milder evolutionary pressure for the development of resistance. Additionally, anti-infective chemotherapies may be successfully achieved by combining antivirulence and conventional antimicrobials, extending the lifespan of these drugs. This review presents an updated discussion of natural compounds isolated from plants with chemically characterized structures and activity against the major bacterial virulence factors: quorum sensing, bacterial biofilms, bacterial motility, bacterial toxins, bacterial pigments, bacterial enzymes, and bacterial surfactants. Moreover, a critical analysis of the most promising virulence factors is presented, highlighting their potential as targets to attenuate bacterial virulence. The ongoing progress in the field of antivirulence therapy may therefore help to translate this promising concept into real intervention strategies in clinical areas. PMID:27437994

  9. A Novel Metagenomic Short-Chain Dehydrogenase/Reductase Attenuates Pseudomonas aeruginosa Biofilm Formation and Virulence on Caenorhabditis elegans

    PubMed Central

    Bijtenhoorn, Patrick; Mayerhofer, Hubert; Müller-Dieckmann, Jochen; Utpatel, Christian; Schipper, Christina; Hornung, Claudia; Szesny, Matthias; Grond, Stephanie; Thürmer, Andrea; Brzuszkiewicz, Elzbieta; Daniel, Rolf; Dierking, Katja; Schulenburg, Hinrich; Streit, Wolfgang R.

    2011-01-01

    In Pseudomonas aeruginosa, the expression of a number of virulence factors, as well as biofilm formation, are controlled by quorum sensing (QS). N-Acylhomoserine lactones (AHLs) are an important class of signaling molecules involved in bacterial QS and in many pathogenic bacteria infection and host colonization are AHL-dependent. The AHL signaling molecules are subject to inactivation mainly by hydrolases (Enzyme Commission class number EC 3) (i.e. N-acyl-homoserine lactonases and N-acyl-homoserine-lactone acylases). Only little is known on quorum quenching mechanisms of oxidoreductases (EC 1). Here we report on the identification and structural characterization of the first NADP-dependent short-chain dehydrogenase/reductase (SDR) involved in inactivation of N-(3-oxo-dodecanoyl)-L-homoserine lactone (3-oxo-C12-HSL) and derived from a metagenome library. The corresponding gene was isolated from a soil metagenome and designated bpiB09. Heterologous expression and crystallographic studies established BpiB09 as an NADP-dependent reductase. Although AHLs are probably not the native substrate of this metagenome-derived enzyme, its expression in P. aeruginosa PAO1 resulted in significantly reduced pyocyanin production, decreased motility, poor biofilm formation and absent paralysis of Caenorhabditis elegans. Furthermore, a genome-wide transcriptome study suggested that the level of lasI and rhlI transcription together with 36 well known QS regulated genes was significantly (≥10-fold) affected in P. aeruginosa strains expressing the bpiB09 gene in pBBR1MCS-5. Thus AHL oxidoreductases could be considered as potent tools for the development of quorum quenching strategies. PMID:22046268

  10. Virulence factors of the Mycobacterium tuberculosis complex

    PubMed Central

    Forrellad, Marina A.; Klepp, Laura I.; Gioffré, Andrea; Sabio y García, Julia; Morbidoni, Hector R.; Santangelo, María de la Paz; Cataldi, Angel A.; Bigi, Fabiana

    2013-01-01

    The Mycobacterium tuberculosis complex (MTBC) consists of closely related species that cause tuberculosis in both humans and animals. This illness, still today, remains to be one of the leading causes of morbidity and mortality throughout the world. The mycobacteria enter the host by air, and, once in the lungs, are phagocytated by macrophages. This may lead to the rapid elimination of the bacillus or to the triggering of an active tuberculosis infection. A large number of different virulence factors have evolved in MTBC members as a response to the host immune reaction. The aim of this review is to describe the bacterial genes/proteins that are essential for the virulence of MTBC species, and that have been demonstrated in an in vivo model of infection. Knowledge of MTBC virulence factors is essential for the development of new vaccines and drugs to help manage the disease toward an increasingly more tuberculosis-free world. PMID:23076359

  11. The prrF-Encoded Small Regulatory RNAs Are Required for Iron Homeostasis and Virulence of Pseudomonas aeruginosa

    PubMed Central

    Reinhart, Alexandria A.; Powell, Daniel A.; Nguyen, Angela T.; O'Neill, Maura; Djapgne, Louise; Wilks, Angela; Ernst, Robert K.

    2014-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that requires iron to cause infection, but it also must regulate the uptake of iron to avoid iron toxicity. The iron-responsive PrrF1 and PrrF2 small regulatory RNAs (sRNAs) are part of P. aeruginosa's iron regulatory network and affect the expression of at least 50 genes encoding iron-containing proteins. The genes encoding the PrrF1 and PrrF2 sRNAs are encoded in tandem in P. aeruginosa, allowing for the expression of a distinct, heme-responsive sRNA named PrrH that appears to regulate genes involved in heme metabolism. Using a combination of growth, mass spectrometry, and gene expression analysis, we showed that the ΔprrF1,2 mutant, which lacks expression of the PrrF and PrrH sRNAs, is defective for both iron and heme homeostasis. We also identified phuS, encoding a heme binding protein involved in heme acquisition, and vreR, encoding a previously identified regulator of P. aeruginosa virulence genes, as novel targets of prrF-mediated heme regulation. Finally, we showed that the prrF locus encoding the PrrF and PrrH sRNAs is required for P. aeruginosa virulence in a murine model of acute lung infection. Moreover, we showed that inoculation with a ΔprrF1,2 deletion mutant protects against future challenge with wild-type P. aeruginosa. Combined, these data demonstrate that the prrF-encoded sRNAs are critical regulators of P. aeruginosa virulence. PMID:25510881

  12. Virulence factors of medically important fungi.

    PubMed Central

    Hogan, L H; Klein, B S; Levitz, S M

    1996-01-01

    Human fungal pathogens have become an increasingly important medical problem with the explosion in the number of immunocompromised patients as a result of cancer, steroid therapy, chemotherapy, and AIDS. Additionally, the globalization of travel and expansion of humankind into previously undisturbed habitats have led to the reemergence of old fungi and new exposure to previously undescribed fungi. Until recently, relatively little was known about virulence factors for the medically important fungi. With the advent of molecular genetics, rapid progress has now been made in understanding the basis of pathogenicity for organisms such as Aspergillus species and Cryptococcus neoformans. The twin technologies of genetic transformation and "knockout" deletion construction allowed for genetic tests of virulence factors in these organisms. Such knowledge will prove invaluable for the rational design of antifungal therapies. Putative virulence factors and attributes are reviewed for Aspergillus species, C. neoformans, the dimorphic fungal pathogens, and others, with a focus upon a molecular genetic approach. Candida species are excluded from coverage, having been the subject of numerous recent reviews. This growing body of knowledge about fungal pathogens and their virulence factors will significantly aid efforts to treat the serious diseases they cause. PMID:8894347

  13. Bioactive proteins from Solanaceae as quorum sensing inhibitors against virulence in Pseudomonas aeruginosa.

    PubMed

    Singh, Gurpreet; Tamboli, Ekant; Acharya, Aurovind; Kumarasamy, Chellan; Mala, Kanchana; Raman, Pachaiappan

    2015-06-01

    Cell-to-cell communication or quorum sensing (QS) is a generic event in bacteria that is used to coordinate gene expression among local populations. The phenomenon of QS depends on the fact that presence of sufficient bacteria ascertains a threshold level of autoinducer concentration that allows bacteria to sense a critical cell mass and to activate or repress target genes. Thus, QS has been an attractive target for the development of anti-infective strategies that are not based on the use of antibiotics. Several anti-QS approaches have been demonstrated including natural products from plant-based secondary metabolites. However, the role of plant bioactive proteins as an anti-QS peptide is yet to be deciphered. Against a backdrop of ever-increasing antibiotic resistant pathogens, there is a strong need for development of alternative therapeutic strategies. Thus, our hypothesis is that bioactive proteins from the plant family Solanaceae are quorum quenching molecules that can be exploited to develop a therapeutic strategy against virulence. We presume that bioactive proteins will inactivate or inhibit or degrade QS signals from bacteria to prevent cell-to-cell communication and thus inhibit development of virulence in Pseudomonas aeruginosa. Further, the use of proteins as quorum quenchers will delay the bacteria to develop resistance against these quenching molecules.

  14. Pseudomonas aeruginosa Possesses Two Putative Type I Signal Peptidases, LepB and PA1303, Each with Distinct Roles in Physiology and Virulence

    PubMed Central

    Rose, Ruth S.; Rangarajan, Minnie; Aduse-Opoku, Joseph; Hashim, Ahmed; Curtis, Michael A.

    2012-01-01

    Type I signal peptidases (SPases) cleave signal peptides from proteins during translocation across biological membranes and hence play a vital role in cellular physiology. SPase activity is also of fundamental importance to the pathogenesis of infection for many bacteria, including Pseudomonas aeruginosa, which utilizes a variety of secreted virulence factors, such as proteases and toxins. P. aeruginosa possesses two noncontiguous SPase homologues, LepB (PA0768) and PA1303, which share 43% amino acid identity. Reverse transcription (RT)-PCR showed that both proteases were expressed, while a FRET-based assay using a peptide based on the signal sequence cleavage region of the secreted LasB elastase showed that recombinant LepB and PA1303 enzymes were both active. LepB is positioned within a genetic locus that resembles the locus containing the extensively characterized SPase of E. coli and is of similar size and topology. It was also shown to be essential for viability and to have high sequence identity with SPases from other pseudomonads (≥78%). In contrast, PA1303, which is small for a Gram-negative SPase (20 kDa), was found to be dispensable. Mutation of PA1303 resulted in an altered protein secretion profile and increased N-butanoyl homoserine lactone production and influenced several quorum-sensing-controlled phenotypic traits, including swarming motility and the production of rhamnolipid and elastinolytic activity. The data indicate different cellular roles for these P. aeruginosa SPase paralogues; the role of PA1303 is integrated with the quorum-sensing cascade and includes the suppression of virulence factor secretion and virulence-associated phenotypes, while LepB is the primary SPase. PMID:22730125

  15. σ Factor and Anti-σ Factor That Control Swarming Motility and Biofilm Formation in Pseudomonas aeruginosa

    PubMed Central

    McGuffie, Bryan A.; Vallet-Gely, Isabelle

    2015-01-01

    ABSTRACT Pseudomonas aeruginosa is capable of causing a variety of acute and chronic infections. Here, we provide evidence that sbrR (PA2895), a gene previously identified as required during chronic P. aeruginosa respiratory infection, encodes an anti-σ factor that inhibits the activity of its cognate extracytoplasmic-function σ factor, SbrI (PA2896). Bacterial two-hybrid analysis identified an N-terminal region of SbrR that interacts directly with SbrI and that was sufficient for inhibition of SbrI-dependent gene expression. We show that SbrI associates with RNA polymerase in vivo and identify the SbrIR regulon. In cells lacking SbrR, the SbrI-dependent expression of muiA was found to inhibit swarming motility and promote biofilm formation. Our findings reveal SbrR and SbrI as a novel set of regulators of swarming motility and biofilm formation in P. aeruginosa that mediate their effects through muiA, a gene not previously known to influence surface-associated behaviors in this organism. IMPORTANCE This study characterizes a σ factor/anti-σ factor system that reciprocally regulates the surface-associated behaviors of swarming motility and biofilm formation in the opportunistic pathogen Pseudomonas aeruginosa. We present evidence that SbrR is an anti-σ factor specific for its cognate σ factor, SbrI, and identify the SbrIR regulon in P. aeruginosa. We find that cells lacking SbrR are severely defective in swarming motility and exhibit enhanced biofilm formation. Moreover, we identify muiA (PA1494) as the SbrI-dependent gene responsible for mediating these effects. SbrIR have been implicated in virulence and in responding to antimicrobial and cell envelope stress. SbrIR may therefore represent a stress response system that influences the surface behaviors of P. aeruginosa during infection. PMID:26620262

  16. Virulence Factors of Erwinia amylovora: A Review.

    PubMed

    Piqué, Núria; Miñana-Galbis, David; Merino, Susana; Tomás, Juan M

    2015-06-05

    Erwinia amylovora, a Gram negative bacteria of the Enterobacteriaceae family, is the causal agent of fire blight, a devastating plant disease affecting a wide range of host species within Rosaceae and a major global threat to commercial apple and pear production. Among the limited number of control options currently available, prophylactic application of antibiotics during the bloom period appears the most effective. Pathogen cells enter plants through the nectarthodes of flowers and other natural openings, such as wounds, and are capable of rapid movement within plants and the establishment of systemic infections. Many virulence determinants of E. amylovora have been characterized, including the Type III secretion system (T3SS), the exopolysaccharide (EPS) amylovoran, biofilm formation, and motility. To successfully establish an infection, E. amylovora uses a complex regulatory network to sense the relevant environmental signals and coordinate the expression of early and late stage virulence factors involving two component signal transduction systems, bis-(3'-5')-cyclic di-GMP (c-di-GMP) and quorum sensing. The LPS biosynthetic gene cluster is one of the relatively few genetic differences observed between Rubus- and Spiraeoideae-infecting genotypes of E. amylovora. Other differential factors, such as the presence and composition of an integrative conjugative element associated with the Hrp T3SS (hrp genes encoding the T3SS apparatus), have been recently described. In the present review, we present the recent findings on virulence factors research, focusing on their role in bacterial pathogenesis and indicating other virulence factors that deserve future research to characterize them.

  17. Virulence Factors of Erwinia amylovora: A Review

    PubMed Central

    Piqué, Núria; Miñana-Galbis, David; Merino, Susana; Tomás, Juan M.

    2015-01-01

    Erwinia amylovora, a Gram negative bacteria of the Enterobacteriaceae family, is the causal agent of fire blight, a devastating plant disease affecting a wide range of host species within Rosaceae and a major global threat to commercial apple and pear production. Among the limited number of control options currently available, prophylactic application of antibiotics during the bloom period appears the most effective. Pathogen cells enter plants through the nectarthodes of flowers and other natural openings, such as wounds, and are capable of rapid movement within plants and the establishment of systemic infections. Many virulence determinants of E. amylovora have been characterized, including the Type III secretion system (T3SS), the exopolysaccharide (EPS) amylovoran, biofilm formation, and motility. To successfully establish an infection, E. amylovora uses a complex regulatory network to sense the relevant environmental signals and coordinate the expression of early and late stage virulence factors involving two component signal transduction systems, bis-(3′-5′)-cyclic di-GMP (c-di-GMP) and quorum sensing. The LPS biosynthetic gene cluster is one of the relatively few genetic differences observed between Rubus- and Spiraeoideae-infecting genotypes of E. amylovora. Other differential factors, such as the presence and composition of an integrative conjugative element associated with the Hrp T3SS (hrp genes encoding the T3SS apparatus), have been recently described. In the present review, we present the recent findings on virulence factors research, focusing on their role in bacterial pathogenesis and indicating other virulence factors that deserve future research to characterize them. PMID:26057748

  18. Genome Sequence of a Virulent Pseudomonas aeruginosa Strain, 12-4-4(59), Isolated from the Blood Culture of a Burn Patient.

    PubMed

    Karna, S L Rajasekhar; Chen, Tsute; Chen, Ping; Peacock, Trent J; Abercrombie, Johnathan J; Leung, Kai P

    2016-03-03

    Pseudomonas aeruginosa is an opportunistic pathogen that frequently infects wounds, significantly impairs wound healing, and causes morbidity and mortality in burn patients. Here, we report the genome sequence of a virulent strain of P. aeruginosa, 12-4-4(59), isolated from the blood culture of a burn patient.

  19. Genome Sequence of a Virulent Pseudomonas aeruginosa Strain, 12-4-4(59), Isolated from the Blood Culture of a Burn Patient

    PubMed Central

    Karna, S. L. Rajasekhar; Chen, Tsute; Chen, Ping; Peacock, Trent J.; Abercrombie, Johnathan J.

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that frequently infects wounds, significantly impairs wound healing, and causes morbidity and mortality in burn patients. Here, we report the genome sequence of a virulent strain of P. aeruginosa, 12-4-4(59), isolated from the blood culture of a burn patient. PMID:26941150

  20. Virulence factors of the family Legionellaceae.

    PubMed Central

    Dowling, J N; Saha, A K; Glew, R H

    1992-01-01

    Whereas bacteria in the genus Legionella have emerged as relatively frequent causes of pneumonia, the mechanisms underlying their pathogenicity are obscure. The legionellae are facultative intracellular pathogens which multiply within the phagosome of mononuclear phagocytes and are not killed efficiently by polymorphonuclear leukocytes. The functional defects that might permit the intracellular survival of the legionellae have remained an enigma until recently. Phagosome-lysosome fusion is inhibited by a single strain (Philadelphia 1) of Legionella pneumophila serogroup 1, but not by other strains of L. pneumophila or other species. It has been found that following the ingestion of Legionella organisms, the subsequent activation of neutrophils and monocytes in response to both soluble and particulate stimuli is profoundly impaired and the bactericidal activity of these cells is attenuated, suggesting that Legionella bacterial cell-associated factors have an inhibitory effect on phagocyte activation. Two factors elaborated by the legionellae which inhibit phagocyte activation have been described. First, the Legionella (cyto)toxin blocks neutrophil oxidative metabolism in response to various agonists by an unknown mechanism. Second, L. micdadei bacterial cells contain a phosphatase which blocks superoxide anion production by stimulated neutrophils. The Legionella phosphatase disrupts the formation of critical intracellular second messengers in neutrophils. In addition to the toxin and phosphatase, several other moieties that may serve as virulence factors by promoting cell invasion or intracellular survival and multiplication are elaborated by the legionellae. Molecular biological studies show that a cell surface protein named Mip is necessary for the efficient invasion of monocytes. A possible role for a Legionella phospholipase C as a virulence factor is still largely theoretical. L. micdadei contains an unusual protein kinase which catalyzes the phosphorylation of

  1. Structural and Molecular Mechanism of CdpR Involved in Quorum-Sensing and Bacterial Virulence in Pseudomonas aeruginosa

    PubMed Central

    Zhu, Miao; Kang, Huaping; Ma, Jinbiao; Wu, Min; Gan, Jianhua; Deng, Xin; Liang, Haihua

    2016-01-01

    Although quorum-sensing (QS) systems are important regulators of virulence gene expression in the opportunistic human pathogen Pseudomonas aeruginosa, their detailed regulatory mechanisms have not been fully characterized. Here, we show that deletion of PA2588 resulted in increased production of pyocyanin and biofilm, as well as enhanced pathogenicity in a mouse model. To gain insights into the function of PA2588, we performed a ChIP-seq assay and identified 28 targets of PA2588, including the intergenic region between PA2588 and pqsH, which encodes the key synthase of Pseudomonas quinolone signal (PQS). Though the C-terminal domain was similar to DNA-binding regions of other AraC family members, structural studies revealed that PA2588 has a novel fold at the N-terminal region (NTR), and its C-terminal HTH (helix-turn-helix) domain is also unique in DNA recognition. We also demonstrated that the adaptor protein ClpS, an essential regulator of ATP-dependent protease ClpAP, directly interacted with PA2588 before delivering CdpR to ClpAP for degradation. We named PA2588 as CdpR (ClpAP-degradation and pathogenicity Regulator). Moreover, deletion of clpP or clpS/clpA promotes bacterial survival in a mouse model of acute pneumonia infection. Taken together, this study uncovered that CdpR is an important QS regulator, which can interact with the ClpAS-P system to regulate the expression of virulence factors and pathogenicity. PMID:27119725

  2. Structural and Molecular Mechanism of CdpR Involved in Quorum-Sensing and Bacterial Virulence in Pseudomonas aeruginosa.

    PubMed

    Zhao, Jingru; Yu, Xiang; Zhu, Miao; Kang, Huaping; Ma, Jinbiao; Wu, Min; Gan, Jianhua; Deng, Xin; Liang, Haihua

    2016-04-01

    Although quorum-sensing (QS) systems are important regulators of virulence gene expression in the opportunistic human pathogen Pseudomonas aeruginosa, their detailed regulatory mechanisms have not been fully characterized. Here, we show that deletion of PA2588 resulted in increased production of pyocyanin and biofilm, as well as enhanced pathogenicity in a mouse model. To gain insights into the function of PA2588, we performed a ChIP-seq assay and identified 28 targets of PA2588, including the intergenic region between PA2588 and pqsH, which encodes the key synthase of Pseudomonas quinolone signal (PQS). Though the C-terminal domain was similar to DNA-binding regions of other AraC family members, structural studies revealed that PA2588 has a novel fold at the N-terminal region (NTR), and its C-terminal HTH (helix-turn-helix) domain is also unique in DNA recognition. We also demonstrated that the adaptor protein ClpS, an essential regulator of ATP-dependent protease ClpAP, directly interacted with PA2588 before delivering CdpR to ClpAP for degradation. We named PA2588 as CdpR (ClpAP-degradation and pathogenicity Regulator). Moreover, deletion of clpP or clpS/clpA promotes bacterial survival in a mouse model of acute pneumonia infection. Taken together, this study uncovered that CdpR is an important QS regulator, which can interact with the ClpAS-P system to regulate the expression of virulence factors and pathogenicity. PMID:27119725

  3. A High-Content, Phenotypic Screen Identifies Fluorouridine as an Inhibitor of Pyoverdine Biosynthesis and Pseudomonas aeruginosa Virulence

    PubMed Central

    Kirienko, Daniel R.; Revtovich, Alexey V.

    2016-01-01

    ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen that causes severe health problems. Despite intensive investigation, many aspects of microbial virulence remain poorly understood. We used a high-throughput, high-content, whole-organism, phenotypic screen to identify small molecules that inhibit P. aeruginosa virulence in Caenorhabditis elegans. Approximately half of the hits were known antimicrobials. A large number of hits were nonantimicrobial bioactive compounds, including the cancer chemotherapeutic 5-fluorouracil. We determined that 5-fluorouracil both transiently inhibits bacterial growth and reduces pyoverdine biosynthesis. Pyoverdine is a siderophore that regulates the expression of several virulence determinants and is critical for pathogenesis in mammals. We show that 5-fluorouridine, a downstream metabolite of 5-fluorouracil, is responsible for inhibiting pyoverdine biosynthesis. We also show that 5-fluorouridine, in contrast to 5-fluorouracil, is a genuine antivirulence compound, with no bacteriostatic or bactericidal activity. To our knowledge, this is the first report utilizing a whole-organism screen to identify novel compounds with antivirulent properties effective against P. aeruginosa. IMPORTANCE Despite intense research effort from scientists and the advent of the molecular age of biomedical research, many of the mechanisms that underlie pathogenesis are still understood poorly, if at all. The opportunistic human pathogen Pseudomonas aeruginosa causes a variety of soft tissue infections and is responsible for over 50,000 hospital-acquired infections per year. In addition, P. aeruginosa exhibits a striking degree of innate and acquired antimicrobial resistance, complicating treatment. It is increasingly important to understand P. aeruginosa virulence. In an effort to gain this information in an unbiased fashion, we used a high-throughput phenotypic screen to identify small molecules that disrupted bacterial pathogenesis and

  4. A High-Content, Phenotypic Screen Identifies Fluorouridine as an Inhibitor of Pyoverdine Biosynthesis and Pseudomonas aeruginosa Virulence.

    PubMed

    Kirienko, Daniel R; Revtovich, Alexey V; Kirienko, Natalia V

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes severe health problems. Despite intensive investigation, many aspects of microbial virulence remain poorly understood. We used a high-throughput, high-content, whole-organism, phenotypic screen to identify small molecules that inhibit P. aeruginosa virulence in Caenorhabditis elegans. Approximately half of the hits were known antimicrobials. A large number of hits were nonantimicrobial bioactive compounds, including the cancer chemotherapeutic 5-fluorouracil. We determined that 5-fluorouracil both transiently inhibits bacterial growth and reduces pyoverdine biosynthesis. Pyoverdine is a siderophore that regulates the expression of several virulence determinants and is critical for pathogenesis in mammals. We show that 5-fluorouridine, a downstream metabolite of 5-fluorouracil, is responsible for inhibiting pyoverdine biosynthesis. We also show that 5-fluorouridine, in contrast to 5-fluorouracil, is a genuine antivirulence compound, with no bacteriostatic or bactericidal activity. To our knowledge, this is the first report utilizing a whole-organism screen to identify novel compounds with antivirulent properties effective against P. aeruginosa. IMPORTANCE Despite intense research effort from scientists and the advent of the molecular age of biomedical research, many of the mechanisms that underlie pathogenesis are still understood poorly, if at all. The opportunistic human pathogen Pseudomonas aeruginosa causes a variety of soft tissue infections and is responsible for over 50,000 hospital-acquired infections per year. In addition, P. aeruginosa exhibits a striking degree of innate and acquired antimicrobial resistance, complicating treatment. It is increasingly important to understand P. aeruginosa virulence. In an effort to gain this information in an unbiased fashion, we used a high-throughput phenotypic screen to identify small molecules that disrupted bacterial pathogenesis and increased host

  5. NrsZ: a novel, processed, nitrogen-dependent, small non-coding RNA that regulates Pseudomonas aeruginosa PAO1 virulence.

    PubMed

    Wenner, Nicolas; Maes, Alexandre; Cotado-Sampayo, Marta; Lapouge, Karine

    2014-04-01

    The opportunistic pathogen Pseudomonas aeruginosa PAO1 has a remarkable capacity to adapt to various environments and to survive with limited nutrients. Here, we report the discovery and characterization of a novel small non-coding RNA: NrsZ (nitrogen-regulated sRNA). We show that under nitrogen limitation, NrsZ is induced by the NtrB/C two component system, an important regulator of nitrogen assimilation and P. aeruginosa's swarming motility, in concert with the alternative sigma factor RpoN. Furthermore, we demonstrate that NrsZ modulates P. aeruginosa motility by controlling the production of rhamnolipid surfactants, virulence factors notably needed for swarming motility. This regulation takes place through the post-transcriptional control of rhlA, a gene essential for rhamnolipids synthesis. Interestingly, we also observed that NrsZ is processed in three similar short modules, and that the first short module encompassing the first 60 nucleotides is sufficient for NrsZ regulatory functions.

  6. Trichomonas vaginalis virulence factors: an integrative overview

    PubMed Central

    Hirt, Robert P

    2013-01-01

    The elusive nature of Trichomonas vaginalis, the most common, non-viral, sexually transmitted pathogen has hampered our knowledge of its significance for human health for over 150 years. The combination of epidemiology, molecular cell biology, immunology and more recently genomics and other allied omics data, are all contributing at shedding new light onto what is increasingly recognised as a significant human pathogen leading to important health sequelae due to multifaceted interactions with its human host, the human microbiota, bacterial pathogens and viruses. The integrations of these various data are contributing in important ways to refining our understanding of the parasite pathobiology and virulent factors. Indeed, it is increasingly recognised that to rationalise the development of effective prophylactic and therapeutic treatments for human pathogens it is important to integrate the broadest possible spectrum of human-microbial-parasite-virus interactions in relation to qualitative and quantitative variations in the human innate and adaptive defence responses. This short review aims at providing an integrative overview of T vaginalis virulent factors by taking into account the importance of the human-microbiota-parasite-virus interplay in human health. It also highlights selected cellular characteristics of the parasite often overlooked in the biological and medical literature. PMID:23694938

  7. Virulence Factors of Helicobacter pylori: A Review

    PubMed Central

    Roesler, Bruna M.; Rabelo-Gonçalves, Elizabeth M.A.; Zeitune, José M.R.

    2014-01-01

    Helicobacter pylori is a spiral-shaped Gram-negative bacterium that colonizes the human stomach and can establish a long-term infection of the gastric mucosa, a condition that affects the relative risk of developing various clinical disorders of the upper gastrointestinal tract, such as chronic gastritis, peptic ulcer disease, mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric adenocarcinoma. H. pylori presents a high-level of genetic diversity, which can be an important factor in its adaptation to the host stomach and also for the clinical outcome of infection. There are important H. pylori virulence factors that, along with host characteristics and the external environment, have been associated with the different occurrences of diseases. This review is aimed to analyzing and summarizing the main of them and possible associations with the clinical outcome. PMID:24833944

  8. Streptococcus pneumoniae: virulence factors, pathogenesis, and vaccines.

    PubMed Central

    AlonsoDeVelasco, E; Verheul, A F; Verhoef, J; Snippe, H

    1995-01-01

    Although pneumococcal conjugate vaccines are close to being licensed, a more profound knowledge of the virulence factors responsible for the morbidity and mortality caused by Streptococcus pneumoniae is necessary. This review deals with the major structures of pneumococci involved in the pathogenesis of pneumococcal disease and their interference with the defense mechanisms of the host. It is well known that protection against S. pneumoniae is the result of phagocytosis of invading pathogens. For this process, complement and anticapsular polysaccharide antibodies are required. Besides, relatively recent experimental data suggest that protection is also mediated by the removal of disintegrating pneumococci and their degradation products (cell wall, pneumolysin). These structures seem to be major contributors to illness and death caused by pneumococci. An effective conjugate vaccine should therefore preferably include the capsular polysaccharide and at least one of these inflammatory factors. PMID:8531887

  9. Influence of chelation strength and bacterial uptake of gallium salicylidene acylhydrazide on biofilm formation and virulence of Pseudomonas aeruginosa.

    PubMed

    Hakobyan, Shoghik; Rzhepishevska, Olena; Björn, Erik; Boily, Jean-François; Ramstedt, Madeleine

    2016-07-01

    Development of antibiotic resistance in bacteria causes major challenges for our society and has prompted a great need for new and alternative treatment methods for infection. One promising approach is to target bacterial virulence using for example salicylidene acylhydrazides (hydrazones). Hydrazones coordinate metal ions such as Fe(III) and Ga(III) through a five-membered and a six-membered chelation ring. One suggested mode of action is via restricting bacterial Fe uptake. Thus, it was hypothesized that the chelating strength of these substances could be used to predict their biological activity on bacterial cells. This was investigated by comparing Ga chelation strength of two hydrazone complexes, as well as bacterial Ga uptake, biofilm formation, and virulence in the form of production and secretion of a toxin (ExoS) by Pseudomonas aeruginosa. Equilibrium constants for deprotonation and Ga(III) binding of the hydrazone N'-(5-chloro-2-hydroxy-3-methylbenzylidene)-2,4-dihydroxybenzhydrazide (ME0329), with anti-virulence effect against P. aeruginosa, were determined and compared to bacterial siderophores and the previously described Ga(III) 2-oxo-2-[N-(2,4,6-trihydroxy-benzylidene)-hydrazino]-acetamide (Ga-ME0163) and Ga-citrate complexes. In comparison with these two complexes, it was shown that the uptake of Ga(III) was higher from the Ga-ME0329 complex. The results further show that the Ga-ME0329 complex reduced ExoS expression and secretion to a higher extent than Ga-citrate, Ga-ME0163 or the non-coordinated hydrazone. However, the effect against biofilm formation by P. aeruginosa, by the ME0329 complex, was similar to Ga-citrate and lower than what has been reported for Ga-ME0163.

  10. The icmF3 locus is involved in multiple adaptation- and virulence-related characteristics in Pseudomonas aeruginosa PAO1

    PubMed Central

    Lin, Jinshui; Cheng, Juanli; Chen, Keqi; Guo, Chenghao; Zhang, Weipeng; Yang, Xu; Ding, Wei; Ma, Li; Wang, Yao; Shen, Xihui

    2015-01-01

    The type VI secretion system (T6SS) is widely distributed in Gram-negative bacteria. Three separate T6SSs called H1-, H2-, and H3-T6SS have been discovered in Pseudomonas aeruginosa PAO1. Recent studies suggest that, in contrast to the H1-T6SS that targets prokaryotic cells, H2- and H3-T6SS are involved in interactions with both prokaryotic and eukaryotic cells. However, the detailed functions of T6SS components are still uncharacterized. The intracellular multiplication factor (IcmF) protein is conserved in type VI secretion systems (T6SS) of all different bacterial pathogens. Bioinformatic analysis revealed that IcmF3 in P. aeruginosa PAO1 is different from other IcmF homologs and may represent a new branch of these proteins with distinct functions. Herein, we have investigated the function of IcmF3 in this strain. We have shown that deletion of the icmF3 gene in P. aeruginosa PAO1 is associated with pleiotropic phenotypes. The icmF3 mutant has variant colony morphology and an hypergrowth phenotype in iron-limiting medium. Surprisingly, this mutant is also defective for the production of pyoverdine, as well as defects in swimming motility and virulence in a C. elegans worm model. The icmF3 mutant exhibits higher conjugation frequency than the wild type and increased biofilm formation on abiotic surfaces. Additionally, expression of two phenazine biosynthetic loci is increased in the icmF3 mutant, leading to the overproduction of pyocyanin. Finally, the mutant exhibits decreased susceptibility to aminoglycosides such as tobramycin and gentamicin. And the detected phenotypes can be restored completely or partially by trans complementation of wild type icmF3 gene. The pleiotropic effects observed upon icmF3 deletion demonstrate that icmF3 plays critical roles in both pathogenesis and environmental adaptation in P. aeruginosa PAO1. PMID:26484316

  11. The icmF3 locus is involved in multiple adaptation- and virulence-related characteristics in Pseudomonas aeruginosa PAO1.

    PubMed

    Lin, Jinshui; Cheng, Juanli; Chen, Keqi; Guo, Chenghao; Zhang, Weipeng; Yang, Xu; Ding, Wei; Ma, Li; Wang, Yao; Shen, Xihui

    2015-01-01

    The type VI secretion system (T6SS) is widely distributed in Gram-negative bacteria. Three separate T6SSs called H1-, H2-, and H3-T6SS have been discovered in Pseudomonas aeruginosa PAO1. Recent studies suggest that, in contrast to the H1-T6SS that targets prokaryotic cells, H2- and H3-T6SS are involved in interactions with both prokaryotic and eukaryotic cells. However, the detailed functions of T6SS components are still uncharacterized. The intracellular multiplication factor (IcmF) protein is conserved in type VI secretion systems (T6SS) of all different bacterial pathogens. Bioinformatic analysis revealed that IcmF3 in P. aeruginosa PAO1 is different from other IcmF homologs and may represent a new branch of these proteins with distinct functions. Herein, we have investigated the function of IcmF3 in this strain. We have shown that deletion of the icmF3 gene in P. aeruginosa PAO1 is associated with pleiotropic phenotypes. The icmF3 mutant has variant colony morphology and an hypergrowth phenotype in iron-limiting medium. Surprisingly, this mutant is also defective for the production of pyoverdine, as well as defects in swimming motility and virulence in a C. elegans worm model. The icmF3 mutant exhibits higher conjugation frequency than the wild type and increased biofilm formation on abiotic surfaces. Additionally, expression of two phenazine biosynthetic loci is increased in the icmF3 mutant, leading to the overproduction of pyocyanin. Finally, the mutant exhibits decreased susceptibility to aminoglycosides such as tobramycin and gentamicin. And the detected phenotypes can be restored completely or partially by trans complementation of wild type icmF3 gene. The pleiotropic effects observed upon icmF3 deletion demonstrate that icmF3 plays critical roles in both pathogenesis and environmental adaptation in P. aeruginosa PAO1. PMID:26484316

  12. Virulence factors in Escherichia coli urinary tract infection.

    PubMed Central

    Johnson, J R

    1991-01-01

    Uropathogenic strains of Escherichia coli are characterized by the expression of distinctive bacterial properties, products, or structures referred to as virulence factors because they help the organism overcome host defenses and colonize or invade the urinary tract. Virulence factors of recognized importance in the pathogenesis of urinary tract infection (UTI) include adhesins (P fimbriae, certain other mannose-resistant adhesins, and type 1 fimbriae), the aerobactin system, hemolysin, K capsule, and resistance to serum killing. This review summarizes the virtual explosion of information regarding the epidemiology, biochemistry, mechanisms of action, and genetic basis of these urovirulence factors that has occurred in the past decade and identifies areas in need of further study. Virulence factor expression is more common among certain genetically related groups of E. coli which constitute virulent clones within the larger E. coli population. In general, the more virulence factors a strain expresses, the more severe an infection it is able to cause. Certain virulence factors specifically favor the development of pyelonephritis, others favor cystitis, and others favor asymptomatic bacteriuria. The currently defined virulence factors clearly contribute to the virulence of wild-type strains but are usually insufficient in themselves to transform an avirulent organism into a pathogen, demonstrating that other as-yet-undefined virulence properties await discovery. Virulence factor testing is a useful epidemiological and research tool but as yet has no defined clinical role. Immunological and biochemical anti-virulence factor interventions are effective in animal models of UTI and hold promise for the prevention of UTI in humans. Images PMID:1672263

  13. Inactivation of the Mismatch Repair System in Pseudomonas aeruginosa Attenuates Virulence but Favors Persistence of Oropharyngeal Colonization in Cystic Fibrosis Mice▿

    PubMed Central

    Mena, Ana; Maciá, María D.; Borrell, Nuria; Moya, Bartolomé; de Francisco, Teresa; Pérez, José L.; Oliver, Antonio

    2007-01-01

    The inactivation of the mismatch repair (MMR) system of Pseudomonas aeruginosa modestly reduced in vitro fitness, attenuated virulence in murine models of acute systemic and respiratory infections, and decreased the initial oropharyngeal colonization potential. In contrast, the inactivation of the MMR system favored long-term persistence of oropharyngeal colonization in cystic fibrosis mice. These results may help in understanding the reasons for the low and high prevalences, respectively, of hypermutable P. aeruginosa strains in acute and chronic infections. PMID:17307847

  14. AmrZ Beta-Sheet Residues Are Essential for DNA Binding and Transcriptional Control of Pseudomonas aeruginosa Virulence Genes ▿ †

    PubMed Central

    Waligora, Elizabeth A.; Ramsey, Deborah M.; Pryor, Edward E.; Lu, Haiping; Hollis, Thomas; Sloan, Gina P.; Deora, Rajendar; Wozniak, Daniel J.

    2010-01-01

    AmrZ is a putative ribbon-helix-helix (RHH) transcriptional regulator. RHH proteins utilize residues within the β-sheet for DNA binding, while the α-helices promote oligomerization. AmrZ is of interest due to its dual roles as a transcriptional activator and as a repressor, regulating genes encoding virulence factors associated with both chronic and acute Pseudomonas aeruginosa infection. In this study, cross-linking revealed that AmrZ forms oligomers in solution but that the amino terminus, containing an unordered region and a β-sheet, were not required for oligomerization. The first 12 unordered residues (extended amino terminus) contributed minimally to DNA binding. Mutagenesis of the AmrZ β-sheet demonstrated that residues 18, 20, and 22 were essential for DNA binding at both activation and repressor sites, suggesting that AmrZ utilizes a similar mechanism for binding to these sites. Mice infected with amrZ mutants exhibited reduced bacterial burden, morbidity, and mortality. Direct in vivo competition assays showed a 5-fold competitive advantage for the wild type over an isogenic amrZ mutant. Finally, the reduced infection phenotype of the amrZ-null strain was similar to that of a strain expressing a DNA-binding-deficient AmrZ variant, indicating that DNA binding and transcriptional regulation by AmrZ is responsible for the in vivo virulence defect. These recent infection data, along with previously identified AmrZ-regulated virulence factors, suggest the necessity of AmrZ transcriptional regulation for optimal virulence during acute infection. PMID:20709902

  15. Cold Plasma Inactivation of Bacterial Biofilms and Reduction of Quorum Sensing Regulated Virulence Factors

    PubMed Central

    Ziuzina, Dana; Boehm, Daniela; Patil, Sonal; Cullen, P. J.; Bourke, Paula

    2015-01-01

    The main objectives of this work were to investigate the effect of atmospheric cold plasma (ACP) against a range of microbial biofilms commonly implicated in foodborne and healthcare associated human infections and against P. aeruginosa quorum sensing (QS)-regulated virulence factors, such as pyocyanin, elastase (Las B) and biofilm formation capacity post-ACP treatment. The effect of processing factors, namely treatment time and mode of plasma exposure on antimicrobial activity of ACP were also examined. Antibiofilm activity was assessed for E. coli, L. monocytogenes and S. aureus in terms of reduction of culturability and retention of metabolic activity using colony count and XTT assays, respectively. All samples were treated ‘inpack’ using sealed polypropylene containers with a high voltage dielectric barrier discharge ACP generated at 80 kV for 0, 60, 120 and 300 s and a post treatment storage time of 24 h. According to colony counts, ACP treatment for 60 s reduced populations of E. coli to undetectable levels, whereas 300 s was necessary to significantly reduce populations of L. monocytogenes and S. aureus biofilms. The results obtained from XTT assay indicated possible induction of viable but non culturable state of bacteria. With respect to P. aeruginosa QS-related virulence factors, the production of pyocyanin was significantly inhibited after short treatment times, but reduction of elastase was notable only after 300 s and no reduction in actual biofilm formation was achieved post-ACP treatment. Importantly, reduction of virulence factors was associated with reduction of the cytotoxic effects of the bacterial supernatant on CHO-K1 cells, regardless of mode and duration of treatment. The results of this study point to ACP technology as an effective strategy for inactivation of established biofilms and may play an important role in attenuation of virulence of pathogenic bacteria. Further investigation is warranted to propose direct evidence for the

  16. Cold Plasma Inactivation of Bacterial Biofilms and Reduction of Quorum Sensing Regulated Virulence Factors.

    PubMed

    Ziuzina, Dana; Boehm, Daniela; Patil, Sonal; Cullen, P J; Bourke, Paula

    2015-01-01

    The main objectives of this work were to investigate the effect of atmospheric cold plasma (ACP) against a range of microbial biofilms commonly implicated in foodborne and healthcare associated human infections and against P. aeruginosa quorum sensing (QS)-regulated virulence factors, such as pyocyanin, elastase (Las B) and biofilm formation capacity post-ACP treatment. The effect of processing factors, namely treatment time and mode of plasma exposure on antimicrobial activity of ACP were also examined. Antibiofilm activity was assessed for E. coli, L. monocytogenes and S. aureus in terms of reduction of culturability and retention of metabolic activity using colony count and XTT assays, respectively. All samples were treated 'inpack' using sealed polypropylene containers with a high voltage dielectric barrier discharge ACP generated at 80 kV for 0, 60, 120 and 300 s and a post treatment storage time of 24 h. According to colony counts, ACP treatment for 60 s reduced populations of E. coli to undetectable levels, whereas 300 s was necessary to significantly reduce populations of L. monocytogenes and S. aureus biofilms. The results obtained from XTT assay indicated possible induction of viable but non culturable state of bacteria. With respect to P. aeruginosa QS-related virulence factors, the production of pyocyanin was significantly inhibited after short treatment times, but reduction of elastase was notable only after 300 s and no reduction in actual biofilm formation was achieved post-ACP treatment. Importantly, reduction of virulence factors was associated with reduction of the cytotoxic effects of the bacterial supernatant on CHO-K1 cells, regardless of mode and duration of treatment. The results of this study point to ACP technology as an effective strategy for inactivation of established biofilms and may play an important role in attenuation of virulence of pathogenic bacteria. Further investigation is warranted to propose direct evidence for the inhibition

  17. Cold Plasma Inactivation of Bacterial Biofilms and Reduction of Quorum Sensing Regulated Virulence Factors.

    PubMed

    Ziuzina, Dana; Boehm, Daniela; Patil, Sonal; Cullen, P J; Bourke, Paula

    2015-01-01

    The main objectives of this work were to investigate the effect of atmospheric cold plasma (ACP) against a range of microbial biofilms commonly implicated in foodborne and healthcare associated human infections and against P. aeruginosa quorum sensing (QS)-regulated virulence factors, such as pyocyanin, elastase (Las B) and biofilm formation capacity post-ACP treatment. The effect of processing factors, namely treatment time and mode of plasma exposure on antimicrobial activity of ACP were also examined. Antibiofilm activity was assessed for E. coli, L. monocytogenes and S. aureus in terms of reduction of culturability and retention of metabolic activity using colony count and XTT assays, respectively. All samples were treated 'inpack' using sealed polypropylene containers with a high voltage dielectric barrier discharge ACP generated at 80 kV for 0, 60, 120 and 300 s and a post treatment storage time of 24 h. According to colony counts, ACP treatment for 60 s reduced populations of E. coli to undetectable levels, whereas 300 s was necessary to significantly reduce populations of L. monocytogenes and S. aureus biofilms. The results obtained from XTT assay indicated possible induction of viable but non culturable state of bacteria. With respect to P. aeruginosa QS-related virulence factors, the production of pyocyanin was significantly inhibited after short treatment times, but reduction of elastase was notable only after 300 s and no reduction in actual biofilm formation was achieved post-ACP treatment. Importantly, reduction of virulence factors was associated with reduction of the cytotoxic effects of the bacterial supernatant on CHO-K1 cells, regardless of mode and duration of treatment. The results of this study point to ACP technology as an effective strategy for inactivation of established biofilms and may play an important role in attenuation of virulence of pathogenic bacteria. Further investigation is warranted to propose direct evidence for the inhibition

  18. Pseudomonas aeruginosa virulence expression is directly activated by morphine and is capable of causing lethal gut derived sepsis in mice during chronic morphine administration

    PubMed Central

    Babrowski, Trissa; Holbrook, Christopher; Moss, Jonathan; Gottlieb, Lawrence; Valuckaite, Vesta; Zaborin, Alexander; Poroyko, Valeriy; Liu, Donald C.; Zaborina, Olga; Alverdy, John C.

    2011-01-01

    OBJECTIVE This study was designed to examine the effect of morphine administration on the intestinal mucus barrier and determine its direct effect on the virulence and lethality of Pseudomonas aeruginosa, one of the most frequent pathogens to colonize the gut of critically ill patients. SUMMARY BACKGROUND DATA Surgical injury is associated with significant exposure of host tissues to morphine from both endogenous release as well as its use as a potent analgesic agent. Morphine use in surgical patients exposed to extreme physiologic stress is well established to result in increased infection risk. Although morphine is a known immunosuppressant, whether it directly induces virulence expression and lethality in microbes that colonize the human gut remains unknown. METHODS Mice were implanted with a slow release morphine or placebo pellet with and without intestinal inoculation of P. aeruginosa created by direct cecal injection. Mucus production and epithelial integrity was assessed in cecal tissue via Alcian Blue staining and histological analysis. In vivo and in vitro P. aeruginosa virulence expression was examined using reporter strains tagged to the epithelial barrier disrupting protein PA-I lectin. P. aeruginosa chemotaxis toward morphine was also assayed in vitro. Finally the direct effect of morphine to induce PA-I lectin expression was determined in the absence and presence of methylnaltrexone, a mu opioid receptor antagonist. RESULTS Mice intestinally inoculated with P. aeruginosa and implanted with a morphine pellet demonstrated significant suppression of intestinal mucus, disrupted intestinal epithelium and enhanced mortality whereas exposure of mice to either systemic morphine or intestinal P. aeruginosa alone enhanced intestinal mucus without mortality suggesting a shift in P. aeruginosa during morphine exposure to a mucus suppressing, barrier disrupting, and lethal phenotype. Direct exposure of P. aeruginosa to morphine in vitro confirmed that morphine

  19. Thermal control of virulence factors in bacteria: A hot topic

    PubMed Central

    Lam, Oliver; Wheeler, Jun; Tang, Christoph M

    2014-01-01

    Pathogenic bacteria sense environmental cues, including the local temperature, to control the production of key virulence factors. Thermal regulation can be achieved at the level of DNA, RNA or protein and although many virulence factors are subject to thermal regulation, the exact mechanisms of control are yet to be elucidated in many instances. Understanding how virulence factors are regulated by temperature presents a significant challenge, as gene expression and protein production are often influenced by complex regulatory networks involving multiple transcription factors in bacteria. Here we highlight some recent insights into thermal regulation of virulence in pathogenic bacteria. We focus on bacteria which cause disease in mammalian hosts, which are at a significantly higher temperature than the outside environment. We outline the mechanisms of thermal regulation and how understanding this fundamental aspect of the biology of bacteria has implications for pathogenesis and human health. PMID:25494856

  20. Entamoeba histolytica. Phagocytosis as a virulence factor

    PubMed Central

    1983-01-01

    In this paper, we attempted to define the role of phagocytosis in the virulence of Entamoeba histolytica. We have isolated, from a highly phagocytic and virulent strain, a clone deficient in phagocytosis. Trophozoites of wild-type strain HM1:IMSS were fed with Escherichia coli strain CR34-Thy- grown on 5-bromo,2'-deoxyuridine. The trophozoites that had incorporated the base analog through phagocytosis of the bacteria were killed by irradiation with 310 nm light. The survivors, presumably trophozoites defective in phagocytosis, were grown until log phase and submitted two more times to the selection procedure. Clone L-6, isolated from a subpopulation resulting from this selection procedure, showed 75-85% less erythrophagocytic activity than the wild-type strain. The virulence of clone L-6 and strain HM1:IMSS was measured. The inoculum required to induce liver abscesses in 50% of the newborn hamsters inoculated (AD50) of HM1:IMSS was 1.5 X 10(4) trophozoites. Clone L-6 trophozoites failed to induce liver abscesses in newborn hamsters even with inocula of 5 X 10(5) trophozoites. Virulence revertants were obtained by successive passage of L-6 trophozoites through the liver of young hamsters. The trophozoites that recovered the ability to produce liver abscesses simultaneously recuperate high erythrophagocytic rates. These results show that phagocytosis is involved in the aggressive mechanisms of E. histolytica. PMID:6313842

  1. Virulence Factor-activity Relationships: Workshop Summary

    EPA Science Inventory

    The concept or notion of virulence factor–activity relationships (VFAR) is an approach for identifying an analogous process to the use of qualitative structure–activity relationships (QSAR) for identifying new microbial contaminants. In QSAR, it is hypothesized that, for new chem...

  2. Proteomics Analysis Reveals Previously Uncharacterized Virulence Factors in Vibrio proteolyticus

    PubMed Central

    Ray, Ann; Kinch, Lisa N.; de Souza Santos, Marcela; Grishin, Nick V.

    2016-01-01

    ABSTRACT Members of the genus Vibrio include many pathogens of humans and marine animals that share genetic information via horizontal gene transfer. Hence, the Vibrio pan-genome carries the potential to establish new pathogenic strains by sharing virulence determinants, many of which have yet to be characterized. Here, we investigated the virulence properties of Vibrio proteolyticus, a Gram-negative marine bacterium previously identified as part of the Vibrio consortium isolated from diseased corals. We found that V. proteolyticus causes actin cytoskeleton rearrangements followed by cell lysis in HeLa cells in a contact-independent manner. In search of the responsible virulence factor involved, we determined the V. proteolyticus secretome. This proteomics approach revealed various putative virulence factors, including active type VI secretion systems and effectors with virulence toxin domains; however, these type VI secretion systems were not responsible for the observed cytotoxic effects. Further examination of the V. proteolyticus secretome led us to hypothesize and subsequently demonstrate that a secreted hemolysin, belonging to a previously uncharacterized clan of the leukocidin superfamily, was the toxin responsible for the V. proteolyticus-mediated cytotoxicity in both HeLa cells and macrophages. Clearly, there remains an armory of yet-to-be-discovered virulence factors in the Vibrio pan-genome that will undoubtedly provide a wealth of knowledge on how a pathogen can manipulate host cells. PMID:27460800

  3. Co-expressional conservation in virulence and stress related genes of three Gammaproteobacterial species: Escherichia coli, Salmonella enterica and Pseudomonas aeruginosa.

    PubMed

    Hosseinkhan, Nazanin; Zarrineh, Peyman; Rokni-Zadeh, Hassan; Ashouri, Mohammad Reza; Masoudi-Nejad, Ali

    2015-11-01

    Gene co-expression analysis is one of the main aspects of systems biology that uses high-throughput gene expression data. In the present study we applied cross-species co-expressional analysis on a module of biofilm and stress response associated genes. We addressed different kinds of stresses in three most intensively studied members of Gammaproteobacteria including Escherichia coli K12, Pseudomonas aeruginosa PAO1 and Salmonella enterica for which large sets of gene expression data are available. Our aim was to evaluate the presence of common stress response strategies adopted by these microorganisms that may be assigned to the other members of Gammaproteobacteria. Results of functional annotation analysis revealed distinct categories among co-expressed genes, most of which concerned biological processes associated with virulence and stress response. Transcriptional regulatory analysis of genes present in co-expressed modules showed that the global stress sigma factor, RpoS, besides several local transcription factors accounts for the observed co-expressional response, and that several cases of feed-forward loops exist between global regulators, local transcription factors and their targets. Our results lend partial support to our underlying assumption of the conservation of core biological processes and regulatory interactions among these related Gammaproteobacteria members. This has led to the implementation of transferring gene function annotations from well-studied Gammaproteobacterial species to less-characterized members. These findings can shed light on the discovery of new drug targets capable of controlling severe infections caused by these groups of bacteria.

  4. 'Ready made' virulence and 'dual use' virulence factors in pathogenic environmental fungi--the Cryptococcus neoformans paradigm.

    PubMed

    Casadevall, Arturo; Steenbergen, Judith N; Nosanchuk, Joshua D

    2003-08-01

    Environmental pathogenic fungi present a paradox in that they are virulent in animals without requiring animal hosts for replication or survival, a phenomenon we call 'ready-made' virulence. In the human pathogenic fungus Cryptococcus neoformans, the capacity for virulence in animals may originate from environmental selective pressures imposed by such organisms as amoeboid and nematode predators. Many C. neoformans virulence factors appear to have 'dual use' capabilities that confer survival advantages in both animal hosts and in the environment. The findings with C. neoformans may provide a paradigm for understanding the origin and maintenance of virulence in other pathogenic environmental fungi.

  5. Bacterial Sphingomyelinases and Phospholipases as Virulence Factors.

    PubMed

    Flores-Díaz, Marietta; Monturiol-Gross, Laura; Naylor, Claire; Alape-Girón, Alberto; Flieger, Antje

    2016-09-01

    Bacterial sphingomyelinases and phospholipases are a heterogeneous group of esterases which are usually surface associated or secreted by a wide variety of Gram-positive and Gram-negative bacteria. These enzymes hydrolyze sphingomyelin and glycerophospholipids, respectively, generating products identical to the ones produced by eukaryotic enzymes which play crucial roles in distinct physiological processes, including membrane dynamics, cellular signaling, migration, growth, and death. Several bacterial sphingomyelinases and phospholipases are essential for virulence of extracellular, facultative, or obligate intracellular pathogens, as these enzymes contribute to phagosomal escape or phagosomal maturation avoidance, favoring tissue colonization, infection establishment and progression, or immune response evasion. This work presents a classification proposal for bacterial sphingomyelinases and phospholipases that considers not only their enzymatic activities but also their structural aspects. An overview of the main physiopathological activities is provided for each enzyme type, as are examples in which inactivation of a sphingomyelinase- or a phospholipase-encoding gene impairs the virulence of a pathogen. The identification of sphingomyelinases and phospholipases important for bacterial pathogenesis and the development of inhibitors for these enzymes could generate candidate vaccines and therapeutic agents, which will diminish the impacts of the associated human and animal diseases. PMID:27307578

  6. Virulence Factors of Aeromonas hydrophila: In the Wake of Reclassification

    PubMed Central

    Rasmussen-Ivey, Cody R.; Figueras, Maria J.; McGarey, Donald; Liles, Mark R.

    2016-01-01

    The ubiquitous “jack-of-all-trades,” Aeromonas hydrophila, is a freshwater, Gram-negative bacterial pathogen under revision in regard to its phylogenetic and functional affiliation with other aeromonads. While virulence factors are expectedly diverse across A. hydrophila strains and closely related species, our mechanistic knowledge of the vast majority of these factors is based on the molecular characterization of the strains A. hydrophila AH-3 and SSU, which were reclassified as A. piscicola AH-3 in 2009 and A. dhakensis SSU in 2013. Individually, these reclassifications raise important questions involving the applicability of previous research on A. hydrophila virulence mechanisms; however, this issue is exacerbated by a lack of genomic data on other research strains. Collectively, these changes represent a fundamental gap in the literature on A. hydrophila and confirm the necessity of biochemical, molecular, and morphological techniques in the classification of research strains that are used as a foundation for future research. This review revisits what is known about virulence in A. hydrophila and the feasibility of using comparative genomics in light of this phylogenetic revision. Conflicting data between virulence factors, secretion systems, quorum sensing, and their effect on A. hydrophila pathogenicity appears to be an artifact of inappropriate taxonomic comparisons and/or be due to the fact that these properties are strain-specific. This review audits emerging data on dominant virulence factors that are present in both A. dhakensis and A. hydrophila in order to synthesize existing data with the aim of locating where future research is needed.

  7. Virulence Factors of Aeromonas hydrophila: In the Wake of Reclassification.

    PubMed

    Rasmussen-Ivey, Cody R; Figueras, Maria J; McGarey, Donald; Liles, Mark R

    2016-01-01

    The ubiquitous "jack-of-all-trades," Aeromonas hydrophila, is a freshwater, Gram-negative bacterial pathogen under revision in regard to its phylogenetic and functional affiliation with other aeromonads. While virulence factors are expectedly diverse across A. hydrophila strains and closely related species, our mechanistic knowledge of the vast majority of these factors is based on the molecular characterization of the strains A. hydrophila AH-3 and SSU, which were reclassified as A. piscicola AH-3 in 2009 and A. dhakensis SSU in 2013. Individually, these reclassifications raise important questions involving the applicability of previous research on A. hydrophila virulence mechanisms; however, this issue is exacerbated by a lack of genomic data on other research strains. Collectively, these changes represent a fundamental gap in the literature on A. hydrophila and confirm the necessity of biochemical, molecular, and morphological techniques in the classification of research strains that are used as a foundation for future research. This review revisits what is known about virulence in A. hydrophila and the feasibility of using comparative genomics in light of this phylogenetic revision. Conflicting data between virulence factors, secretion systems, quorum sensing, and their effect on A. hydrophila pathogenicity appears to be an artifact of inappropriate taxonomic comparisons and/or be due to the fact that these properties are strain-specific. This review audits emerging data on dominant virulence factors that are present in both A. dhakensis and A. hydrophila in order to synthesize existing data with the aim of locating where future research is needed. PMID:27610107

  8. Insights into virulence factors determining the pathogenicity of Cronobacter sakazakii.

    PubMed

    Singh, Niharika; Goel, Gunjan; Raghav, Mamta

    2015-01-01

    Cronobacter sakazakii is an opportunistic pathogen associated with outbreaks of life-threatening necrotizing enterocolitis, meningitis and sepsis in neonates and infants. The pathogen possesses an array of virulence factors which aid in tissue adhesion, invasion and host cell injury. Although the identification and validation of C. sakazakii virulence factors has been hindered by availability of suitable neonatal animal model, various studies has reported outer membrane protein A (ompA) as a potential virulence marker. Various other plasmid associated genes such as filamentous hemagglutinin (fhaBC), Cronobacter plasminogen activator (cpa) and genes responsible for iron acquisition (eitCBAD and iucABD/iutA) have been reported in different strains of C. sakazakii. Besides these proposed virulence factors, several biophysical growth factors such as formation of biofilms and resistance to various environmental stresses also contributes to the pathogenic potential of this pathogen. This review provides an update on virulence determinants associated with the pathogenesis of C. sakazakii. The potential reservoirs of the pathogen, mode of transmission and epidemiology are also discussed. PMID:25950947

  9. Identification of disulfide bond isomerase substrates reveals bacterial virulence factors

    PubMed Central

    Ren, Guoping; Champion, Matthew M.; Huntley, Jason F.

    2014-01-01

    Summary Bacterial pathogens are exposed to toxic molecules inside the host and require efficient systems to form and maintain correct disulfide bonds for protein stability and function. The intracellular pathogen Francisella tularensis encodes a disulfide bond formation protein ortholog, DsbA, which previously was reported to be required for infection of macrophages and mice. However, the molecular mechanisms by which F. tularensis DsbA contributes to virulence are unknown. Here, we demonstrate that F. tularensis DsbA is a bifunctional protein that oxidizes and, more importantly, isomerizes complex disulfide connectivity in substrates. A single amino acid in the conserved cis-proline loop of the DsbA thioredoxin domain was shown to modulate both isomerase activity and F. tularensis virulence. Trapping experiments in F. tularensis identified over 50 F. tularensis DsbA substrates, including outer membrane proteins, virulence factors, and many hypothetical proteins. Six of these hypothetical proteins were randomly selected and deleted, revealing two novel proteins, FTL_1548 and FTL_1709, which are required for F. tularensis virulence. We propose that the extreme virulence of F. tularensis is partially due to the bifunctional nature of DsbA, that many of the newly-identified substrates are required for virulence, and that the development of future DsbA inhibitors could have broad anti-bacterial implications. PMID:25257164

  10. Potent and Selective Modulation of the RhlR Quorum Sensing Receptor by Using Non-native Ligands: An Emerging Target for Virulence Control in Pseudomonas aeruginosa.

    PubMed

    Eibergen, Nora R; Moore, Joseph D; Mattmann, Margrith E; Blackwell, Helen E

    2015-11-01

    Pseudomonas aeruginosa uses N-acylated L-homoserine lactone signals and a triumvirate of LuxR-type receptor proteins--LasR, RhlR, and QscR--for quorum sensing (QS). Each of these receptors can contribute to QS activation or repression and, thereby, the control of myriad virulence phenotypes in this pathogen. LasR has traditionally been considered to be at the top of the QS receptor hierarchy in P. aeruginosa; however, recent reports suggest that RhlR plays a more prominent role in infection than originally predicted, in some circumstances superseding that of LasR. Herein, we report the characterization of a set of synthetic, small-molecule agonists and antagonists of RhlR. Using E. coli reporter strains, we demonstrated that many of these compounds can selectively activate or inhibit RhlR instead of LasR and QscR. Moreover, several molecules maintain their activities in P. aeruginosa at concentrations analogous to native RhlR signal levels. These compounds represent useful chemical probes to study the role of RhlR in the complex QS circuitry of P. aeruginosa, its direct (and indirect) effects on virulence, and its overall merit as a target for anti-infective therapy. PMID:26460240

  11. Potent and Selective Modulation of the RhlR Quorum Sensing Receptor by Using Non-native Ligands: An Emerging Target for Virulence Control in Pseudomonas aeruginosa.

    PubMed

    Eibergen, Nora R; Moore, Joseph D; Mattmann, Margrith E; Blackwell, Helen E

    2015-11-01

    Pseudomonas aeruginosa uses N-acylated L-homoserine lactone signals and a triumvirate of LuxR-type receptor proteins--LasR, RhlR, and QscR--for quorum sensing (QS). Each of these receptors can contribute to QS activation or repression and, thereby, the control of myriad virulence phenotypes in this pathogen. LasR has traditionally been considered to be at the top of the QS receptor hierarchy in P. aeruginosa; however, recent reports suggest that RhlR plays a more prominent role in infection than originally predicted, in some circumstances superseding that of LasR. Herein, we report the characterization of a set of synthetic, small-molecule agonists and antagonists of RhlR. Using E. coli reporter strains, we demonstrated that many of these compounds can selectively activate or inhibit RhlR instead of LasR and QscR. Moreover, several molecules maintain their activities in P. aeruginosa at concentrations analogous to native RhlR signal levels. These compounds represent useful chemical probes to study the role of RhlR in the complex QS circuitry of P. aeruginosa, its direct (and indirect) effects on virulence, and its overall merit as a target for anti-infective therapy.

  12. Caenorhabditis elegans semi-automated liquid screen reveals a specialized role for the chemotaxis gene cheB2 in Pseudomonas aeruginosa virulence.

    PubMed

    Garvis, Steven; Munder, Antje; Ball, Geneviève; de Bentzmann, Sophie; Wiehlmann, Lutz; Ewbank, Jonathan J; Tümmler, Burkhard; Filloux, Alain

    2009-08-01

    Pseudomonas aeruginosa is an opportunistic human pathogen that causes infections in a variety of animal and plant hosts. Caenorhabditis elegans is a simple model with which one can identify bacterial virulence genes. Previous studies with C. elegans have shown that depending on the growth medium, P. aeruginosa provokes different pathologies: slow or fast killing, lethal paralysis and red death. In this study, we developed a high-throughput semi-automated liquid-based assay such that an entire genome can readily be scanned for virulence genes in a short time period. We screened a 2,200-member STM mutant library generated in a cystic fibrosis airway P. aeruginosa isolate, TBCF10839. Twelve mutants were isolated each showing at least 70% attenuation in C. elegans killing. The selected mutants had insertions in regulatory genes, such as a histidine kinase sensor of two-component systems and a member of the AraC family, or in genes involved in adherence or chemotaxis. One mutant had an insertion in a cheB gene homologue, encoding a methylesterase involved in chemotaxis (CheB2). The cheB2 mutant was tested in a murine lung infection model and found to have a highly attenuated virulence. The cheB2 gene is part of the chemotactic gene cluster II, which was shown to be required for an optimal mobility in vitro. In P. aeruginosa, the main player in chemotaxis and mobility is the chemotactic gene cluster I, including cheB1. We show that, in contrast to the cheB2 mutant, a cheB1 mutant is not attenuated for virulence in C. elegans whereas in vitro motility and chemotaxis are severely impaired. We conclude that the virulence defect of the cheB2 mutant is not linked with a global motility defect but that instead the cheB2 gene is involved in a specific chemotactic response, which takes place during infection and is required for P. aeruginosa pathogenicity.

  13. Identification of novel secreted virulence factors from Xylella fastidiosa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Xylella fastidiosa is a bacterium that causes Pierce’s disease (PD) of grapevine and other leaf scorch diseases of agriculturally important crops. Little is known about virulence factors that are necessary for X. fastidiosa to grow and cause disease in the xylem vessels of a plant host. Any protein ...

  14. Virulence Factors of Aeromonas hydrophila: In the Wake of Reclassification

    PubMed Central

    Rasmussen-Ivey, Cody R.; Figueras, Maria J.; McGarey, Donald; Liles, Mark R.

    2016-01-01

    The ubiquitous “jack-of-all-trades,” Aeromonas hydrophila, is a freshwater, Gram-negative bacterial pathogen under revision in regard to its phylogenetic and functional affiliation with other aeromonads. While virulence factors are expectedly diverse across A. hydrophila strains and closely related species, our mechanistic knowledge of the vast majority of these factors is based on the molecular characterization of the strains A. hydrophila AH-3 and SSU, which were reclassified as A. piscicola AH-3 in 2009 and A. dhakensis SSU in 2013. Individually, these reclassifications raise important questions involving the applicability of previous research on A. hydrophila virulence mechanisms; however, this issue is exacerbated by a lack of genomic data on other research strains. Collectively, these changes represent a fundamental gap in the literature on A. hydrophila and confirm the necessity of biochemical, molecular, and morphological techniques in the classification of research strains that are used as a foundation for future research. This review revisits what is known about virulence in A. hydrophila and the feasibility of using comparative genomics in light of this phylogenetic revision. Conflicting data between virulence factors, secretion systems, quorum sensing, and their effect on A. hydrophila pathogenicity appears to be an artifact of inappropriate taxonomic comparisons and/or be due to the fact that these properties are strain-specific. This review audits emerging data on dominant virulence factors that are present in both A. dhakensis and A. hydrophila in order to synthesize existing data with the aim of locating where future research is needed. PMID:27610107

  15. Klebsiella pneumoniae: characteristics of carbapenem resistance and virulence factors.

    PubMed

    Candan, Esra Deniz; Aksöz, Nilüfer

    2015-01-01

    Klebsiella pneumoniae, known as a major threat to public health, is the most common factor of nosocomial and community acquired infections. In this study, 50 K. pneumoniae clinical specimens isolated from bronchial, urea, blood, catheter, rectal, bile, tracheal and wound cultures were collected. These isolates were identified and carbapenem resistance was determined via an automated system, CHROMagar Orientation and CHROMagar KPC. The carbapenemase gene regions (blaIMP, blaVIM, blaOXA, blaNDM and blaKPC) and presence of virulence factors (magA, k2A, rmpA, wabG, uge, allS, entB, ycfM, kpn, wcaG, fimH, mrkD, iutA, iroN, hly ve cnf-1) of these isolates were determined by using Multiplex-PCR. The OXA-48 carbapenemase gene regions were determined in 33 of 50 K. pneumoniae strains. In addition, NDM-1 resistance in one, OXA-48 and NDM-1 resistance in four unusual K. pneumoniae isolates were detected. Virulence gene regions that were encountered among K. pneumoniae isolates were 88% wabG, 86% uge, 80% ycfM and 72% entB, related with capsule, capsule lipoprotein and external membrane protein, responsible for enterobactin production, respectively. Even though there was no significant difference between resistant and sensitive strains due to the virulence gene regions (P≥0.05), virulence factors in carbapenem resistant isolates were found to be more diverse. This study is important for both, to prevent the spread of carbapenem resistant infections and to plan for developing effective treatments. Moreover, this study is the first detailed study of the carbapenem resistance and virulence factors in K. pneumoniae strains.

  16. Development of potent inhibitors of pyocyanin production in Pseudomonas aeruginosa

    PubMed Central

    Miller, Laura C.; O’Loughlin, Colleen T.; Zhang, Zinan; Siryaporn, Albert; Silpe, Justin E.; Bassler, Bonnie L.; Semmelhack, Martin F.

    2015-01-01

    The development of new approaches for the treatment of antimicrobial-resistant infections is an urgent public health priority. The Pseudomonas aeruginosa pathogen, in particular, is a leading source of infection in hospital settings, with few available treatment options. In the context of an effort to develop antivirulence strategies to combat bacterial infection, we identified a series of highly effective small molecules that inhibit the production of pyocyanin, a redox-active virulence factor produced by P. aeruginosa. Interestingly, these new antagonists appear to suppress P. aeruginosa virulence factor production through a pathway that is independent of LasR and RhlR. PMID:25597392

  17. Inactivation of MuxABC-OpmB transporter system in Pseudomonas aeruginosa leads to increased ampicillin and carbenicillin resistance and decreased virulence.

    PubMed

    Yang, Liang; Chen, Lin; Shen, Lixin; Surette, Michael; Duan, Kangmin

    2011-02-01

    Resistance-Nodulation-Cell Division (RND) pumps play important roles in bacterial resistance to antibiotics. Pseudomonas aeruginosa is an important human pathogen which exhibits high level resistance to antibiotics. There are total of 12 RND pumps present in the P. aeruginosa PAOl genome. The recently characterized MuxABC-OpmB system has been shown to play a role in resistance to novobiocin, aztreonam, macrolides, and tetracycline in a multiple knockout mutation. In this study, we examined the expression levels of all the 12 RND pump gene clusters and tested the involvement of MuxABC-OpmB in pathogenicity. The results indicated that in addition to the four known constitutively expressed RND pumps, mexAB-oprM, mexGHI-opmD, mexVW, and mexXY, relatively high levels of expression were observed with mexJK and muxABC-opmB in the conditions tested. Inactivation of muxA in the muxABC-opmB operon resulted in elevated resistance to ampicillin and carbenicillin. The mutant also showed attenuated virulence in both Brassica rapa pekinensis and Drosophila melanogaster infection models. The decreased virulence at least in part was due to decreased twitching motility in the mutant. These results indicate that the RND pump MuxABC-OpmB is associated with ampicillin and carbenicillin susceptibility and also involved in pathogenesis in P. aeruginosa.

  18. Potential virulence factors of Proteus bacilli.

    PubMed Central

    Rózalski, A; Sidorczyk, Z; Kotełko, K

    1997-01-01

    The object of this review is the genus Proteus, which contains bacteria considered now to belong to the opportunistic pathogens. Widely distributed in nature (in soil, water, and sewage), Proteus species play a significant ecological role. When present in the niches of higher macroorganisms, these species are able to evoke pathological events in different regions of the human body. The invaders (Proteus mirabilis, P. vulgaris, and P. penneri) have numerous factors including fimbriae, flagella, outer membrane proteins, lipopolysaccharide, capsule antigen, urease, immunoglobulin A proteases, hemolysins, amino acid deaminases, and, finally, the most characteristic attribute of Proteus, swarming growth, enabling them to colonize and survive in higher organisms. All these features and factors are described and commented on in detail. The questions important for future investigation of these facultatively pathogenic microorganisms are also discussed. PMID:9106365

  19. Understanding the regulation of Group B Streptococcal virulence factors

    PubMed Central

    Rajagopal, Lakshmi

    2009-01-01

    Bacterial infections remain a significant threat to the health of newborns and adults. Group B Streptococci (GBS) are Gram-positive bacteria that are common asymptomatic colonizers of healthy adults. However, this opportunistic organism can also subvert suboptimal host defenses to cause severe invasive disease and tissue damage. The increasing emergence of antibiotic-resistant GBS raises more concerns for sustained measures in treatment of the disease. A number of factors that are important for virulence of GBS have been identified. This review summarizes the functions of some well-characterized virulence factors, with an emphasis on how GBS regulates their expression. Regulatory and signaling molecules are attractive drug targets in the treatment of bacterial infections. Consequently, understanding signaling responses of GBS is essential for elucidation of pathogenesis of GBS infection and for the identification of novel therapeutic agents. PMID:19257847

  20. Review of virulence factors of enterococcus: an emerging nosocomial pathogen.

    PubMed

    Giridhara Upadhyaya, P M; Ravikumar, K L; Umapathy, B L

    2009-01-01

    Enterococcus, considered a normal commensal of intestinal tract, is fast emerging as a pathogen causing serious and life threatening hospital borne infections. This is attributed to acquisition of multi drug resistance and virulence factors of the organisms. The sequencing of Enterococcus faecalis has given a lot of insight into its genetic makeup. The E. faecalis strain V583, which has been sequenced, contains a total of 3182 open reading frames (ORFs) with 1760 of these showing similarity to known proteins and 221 of unknown functions. Strikingly unique to this genome is the fact that over 25% of the genome is made up of mobile and exogenously acquired DNA which includes a number of conjugative and composite transposons, a pathogenicity island, integrated plasmid genes and phage regions, and a high number of insertion sequence (IS) elements. This review addresses the genomic arrangement and the study of virulence factors that have occurred since the sequencing of the genome. PMID:19736397

  1. Virulence factors genes in enterococci isolated from beavers (Castor fiber).

    PubMed

    Lauková, Andrea; Strompfová, Viola; Kandričáková, Anna; Ščerbová, Jana; Semedo-Lemsaddek, Teresa; Miltko, Renata; Belzecki, Grzegorz

    2015-03-01

    Only limited information exists concerning the microbiota in beaver (Castor fiber). This study has been focused on the virulence factors genes detection in enterococci from beavers. In general, animals are not affected by enterococcal infections, but they can be a reservoir of, e.g. pathogenic strains. Moreover, detection of virulence factors genes in enterococci from beavers was never tested before. Free-living beavers (12), male and female (age 4-5 years) were caught in the north-east part of Poland. Sampling of lower gut and faeces was provided according to all ethical rules for animal handling. Samples were treated using a standard microbiological method. Pure bacterial colonies were identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) identification system. Virulence factors genes-gelE (gelatinase), agg (aggregation), cylA (cytolysin A), efaAfs (adhesin Enterococcus faecalis), efaAfm (adhesin Enterococcus faecium) and esp (surface protein) were tested by PCR. Moreover, gelatinase and antibiotic phenotypes were tested. Species detected were Enterococcus thailandicus, E. faecium, E. faecalis and Enterococcus durans. In literature, enterococcal species distribution was never reported yet up to now. Strains were mostly sensitive to antibiotics. Vancomycin-resistant E. faecalis EE9Tr1 possess cylA, efaAfs, esp and gelE genes. Strains were aggregation substance genes absent. Adhesin E. faecium (efaAfm) gene was detected in two of three E. faecium strains, but it was present also in E. thailandicus. Esp gene was present in EE9Tr1 and E. durans EDTr92. The most detected were gelE, efaAfm genes; in EF 4Hc1 also gelatinase phenotype was found. Strains with virulence factors genes will be tested for their sensitivity to antimicrobial enterocins.

  2. Role of Enteroaggregative Escherichia coli Virulence Factors in Uropathogenesis

    PubMed Central

    Boll, Erik J.; Struve, Carsten; Boisen, Nadia; Olesen, Bente; Stahlhut, Steen G.

    2013-01-01

    A multiresistant clonal Escherichia coli O78:H10 strain qualifying molecularly as enteroaggregative Escherichia coli (EAEC) was recently shown to be the cause of a community-acquired outbreak of urinary tract infection (UTI) in greater Copenhagen, Denmark, in 1991. This marks the first time EAEC has been associated with an extraintestinal disease outbreak. Importantly, the outbreak isolates were recovered from the urine of patients with symptomatic UTI, strongly implying urovirulence. Here, we sought to determine the uropathogenic properties of the Copenhagen outbreak strain and whether these properties are conferred by the EAEC-specific virulence factors. We demonstrated that through expression of aggregative adherence fimbriae, the principal adhesins of EAEC, the outbreak strain exhibited pronouncedly increased adherence to human bladder epithelial cells compared to prototype uropathogenic strains. Moreover, the strain was able to produce distinct biofilms on abiotic surfaces, including urethral catheters. These findings suggest that EAEC-specific virulence factors increase uropathogenicity and may have played a significant role in the ability of the strain to cause a community-acquired outbreak of UTI. Thus, inclusion of EAEC-specific virulence factors is warranted in future detection and characterization of uropathogenic E. coli. PMID:23357383

  3. The Animal Model Determines the Results of Aeromonas Virulence Factors

    PubMed Central

    Romero, Alejandro; Saraceni, Paolo R.; Merino, Susana; Figueras, Antonio; Tomás, Juan M.; Novoa, Beatriz

    2016-01-01

    The selection of an experimental animal model is of great importance in the study of bacterial virulence factors. Here, a bath infection of zebrafish larvae is proposed as an alternative model to study the virulence factors of Aeromonas hydrophila. Intraperitoneal infections in mice and trout were compared with bath infections in zebrafish larvae using specific mutants. The great advantage of this model is that bath immersion mimics the natural route of infection, and injury to the tail also provides a natural portal of entry for the bacteria. The implication of T3SS in the virulence of A. hydrophila was analyzed using the AH-1::aopB mutant. This mutant was less virulent than the wild-type strain when inoculated into zebrafish larvae, as described in other vertebrates. However, the zebrafish model exhibited slight differences in mortality kinetics only observed using invertebrate models. Infections using the mutant AH-1ΔvapA lacking the gene coding for the surface S-layer suggested that this protein was not totally necessary to the bacteria once it was inside the host, but it contributed to the inflammatory response. Only when healthy zebrafish larvae were infected did the mutant produce less mortality than the wild-type. Variations between models were evidenced using the AH-1ΔrmlB, which lacks the O-antigen lipopolysaccharide (LPS), and the AH-1ΔwahD, which lacks the O-antigen LPS and part of the LPS outer-core. Both mutants showed decreased mortality in all of the animal models, but the differences between them were only observed in injured zebrafish larvae, suggesting that residues from the LPS outer core must be important for virulence. The greatest differences were observed using the AH-1ΔFlaB-J (lacking polar flagella and unable to swim) and the AH-1::motX (non-motile but producing flagella). They were as pathogenic as the wild-type strain when injected into mice and trout, but no mortalities were registered in zebrafish larvae. This study demonstrates

  4. Bacillus pumilus of Palk Bay origin inhibits quorum-sensing-mediated virulence factors in Gram-negative bacteria.

    PubMed

    Nithya, Chari; Aravindraja, Chairman; Pandian, Shunmugiah Karutha

    2010-05-01

    The aim of the current study was to inhibit quoring-sensing(QS)-mediated virulence factors of representative Gram-negative bacteria by marine bacterial isolates. Bacteria isolated from Palk Bay sediments were screened for anti-QS activity. Eleven strains inhibited QS signals in Chromobacterium violaceum (ATCC 12472) and C. violaceum CV026. The marine bacterial strain S8-07 reduced the accumulation of N-acyl homoserine lactone (AHLs) and showed significant inhibition of LasA protease(76%), LasB elastase(84%), caseinase(70%), pyocyanin (84%), pyoverdin and biofilm formation(87%) in Pseudomonas aeruginosa PAO1. Strain S8-07 also showed highly significant reduction (90%) in prodigiosin, secreted casienase (92%), hemolytic activity (73%) and biofilm formation (61%) in Serratia marcescens. Strain S8-07, identified as Bacillus pumilus (accession number FJ584416), showed distinct profiles of inhibition against the virulence factors of both P. aeruginosa PAO1 (las, rhl) and S. marcescens (shl). Polar extraction and proteinase K treatment of the culture supernatant confirmed that the anti-QS activity of S8-07 was indeed due to a protein molecule. Acidification assay and HPLC analysis revealed that the degradation of AHL was not due to lactonase activity, but rather, was due to acylase activity of S8-07. Thus, novel anti-QS acylase activity is reported for the first time from a B. pumilus strain of marine origin.

  5. Unique Biofilm Signature, Drug Susceptibility and Decreased Virulence in Drosophila through the Pseudomonas aeruginosa Two-Component System PprAB

    PubMed Central

    Giraud, Caroline; Bernard, Christophe S.; Calderon, Virginie; Ewald, Friederike; Plésiat, Patrick; Nguyen, Cathy; Grunwald, Didier; Attree, Ina; Jeannot, Katy; Fauvarque, Marie-Odile

    2012-01-01

    Bacterial biofilm is considered as a particular lifestyle helping cells to survive hostile environments triggered by a variety of signals sensed and integrated through adequate regulatory pathways. Pseudomonas aeruginosa, a Gram-negative bacterium causing severe infections in humans, forms biofilms and is a fantastic example for fine-tuning of the transition between planktonic and community lifestyles through two-component systems (TCS). Here we decipher the regulon of the P. aeruginosa response regulator PprB of the TCS PprAB. We identified genes under the control of this TCS and once this pathway is activated, analyzed and dissected at the molecular level the PprB-dependent phenotypes in various models. The TCS PprAB triggers a hyper-biofilm phenotype with a unique adhesive signature made of BapA adhesin, a Type 1 secretion system (T1SS) substrate, CupE CU fimbriae, Flp Type IVb pili and eDNA without EPS involvement. This unique signature is associated with drug hyper-susceptibility, decreased virulence in acutely infected flies and cytotoxicity toward various cell types linked to decreased Type III secretion (T3SS). Moreover, once the PprB pathway is activated, decreased virulence in orally infected flies associated with enhanced biofilm formation and dissemination defect from the intestinal lumen toward the hemolymph compartment is reported. PprB may thus represent a key bacterial adaptation checkpoint of multicellular and aggregative behavior triggering the production of a unique matrix associated with peculiar antibiotic susceptibility and attenuated virulence, a particular interesting breach for therapeutic intervention to consider in view of possible eradication of P. aeruginosa biofilm-associated infections. PMID:23209420

  6. Genome Sequence of the Endosymbiont Rickettsia peacockii and Comparison with Virulent Rickettsia rickettsii: Identification of Virulence Factors

    PubMed Central

    Felsheim, Roderick F.; Kurtti, Timothy J.; Munderloh, Ulrike G.

    2009-01-01

    Rickettsia peacockii, also known as the East Side Agent, is a non-pathogenic obligate intracellular bacterium found as an endosymbiont in Dermacentor andersoni ticks in the western USA and Canada. Its presence in ticks is correlated with reduced prevalence of Rickettsia rickettsii, the agent of Rocky Mountain Spotted Fever. It has been proposed that a virulent SFG rickettsia underwent changes to become the East Side Agent. We determined the genome sequence of R. peacockii and provide a comparison to a closely related virulent R. rickettsii. The presence of 42 chromosomal copies of the ISRpe1 transposon in the genome of R. peacockii is associated with a lack of synteny with the genome of R. rickettsii and numerous deletions via recombination between transposon copies. The plasmid contains a number of genes from distantly related organisms, such as part of the glycosylation island of Pseudomonas aeruginosa. Genes deleted or mutated in R. peacockii which may relate to loss of virulence include those coding for an ankyrin repeat containing protein, DsbA, RickA, protease II, OmpA, ScaI, and a putative phosphoethanolamine transferase. The gene coding for the ankyrin repeat containing protein is especially implicated as it is mutated in R. rickettsii strain Iowa, which has attenuated virulence. Presence of numerous copies of the ISRpe1 transposon, likely acquired by lateral transfer from a Cardinium species, are associated with extensive genomic reorganization and deletions. The deletion and mutation of genes possibly involved in loss of virulence have been identified by this genomic comparison. It also illustrates that the introduction of a transposon into the genome can have varied effects; either correlating with an increase in pathogenicity as in Francisella tularensis or a loss of pathogenicity as in R. peacockii and the recombination enabled by multiple transposon copies can cause significant deletions in some genomes while not in others. PMID:20027221

  7. Proteomic analysis of keratitis-associated Pseudomonas aeruginosa

    PubMed Central

    Sewell, Abby; Dunmire, Jeffrey; Wehmann, Michael; Rowe, Theresa

    2014-01-01

    Purpose To compare the proteomic profile of a clinical isolate of Pseudomonas aeruginosa (P. aeruginosa) obtained from an infected cornea of a contact lens wearer and the laboratory strain P. aeruginosa ATCC 10145. Methods Antibiotic sensitivity, motility, biofilm formation, and virulence tests were performed using standard methods. Whole protein lysates were analyzed with liquid chromatography/ tandem mass spectrometry (LC-MS/MS) in triplicate, and relative protein abundances were determined with spectral counting. The G test followed by a post hoc Holm-Sidak adjustment was used for the statistical analyses to determine significance in the differential expression of proteins between the two strains. Results A total of 687 proteins were detected. One-hundred thirty-three (133) proteins were significantly different between the two strains. Among these, 13 were upregulated, and 16 were downregulated in the clinical strain compared to ATCC 10145, whereas 57 were detected only in the clinical strain. The upregulated proteins are associated with virulence and pathogenicity. Conclusions Proteins detected at higher levels in the clinical strain of P. aeruginosa were proteins known to be virulence factors. These results confirm that the keratitis-associated P. aeruginosa strain is pathogenic and expresses a higher number of virulence factors compared to the laboratory strain ATCC 10145. Identification of the protein profile of the corneal strain of P. aeruginosa in this study will aid in elucidating novel intervention strategies for reducing the burden of P. aeruginosa infection in keratitis. PMID:25221424

  8. Curation, integration and visualization of bacterial virulence factors in PATRIC

    PubMed Central

    Mao, Chunhong; Abraham, David; Wattam, Alice R.; Wilson, Meredith J.C.; Shukla, Maulik; Yoo, Hyun Seung; Sobral, Bruno W.

    2015-01-01

    Motivation: We’ve developed a highly curated bacterial virulence factor (VF) library in PATRIC (Pathosystems Resource Integration Center, www.patricbrc.org) to support infectious disease research. Although several VF databases are available, there is still a need to incorporate new knowledge found in published experimental evidence and integrate these data with other information known for these specific VF genes, including genomic and other omics data. This integration supports the identification of VFs, comparative studies and hypothesis generation, which facilitates the understanding of virulence and pathogenicity. Results: We have manually curated VFs from six prioritized NIAID (National Institute of Allergy and Infectious Diseases) category A–C bacterial pathogen genera, Mycobacterium, Salmonella, Escherichia, Shigella, Listeria and Bartonella, using published literature. This curated information on virulence has been integrated with data from genomic functional annotations, trancriptomic experiments, protein–protein interactions and disease information already present in PATRIC. Such integration gives researchers access to a broad array of information about these individual genes, and also to a suite of tools to perform comparative genomic and transcriptomics analysis that are available at PATRIC. Availability and implementation: All tools and data are freely available at PATRIC (http://patricbrc.org). Contact: cmao@vbi.vt.edu. Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25273106

  9. Epoxide-Mediated Differential Packaging of Cif and Other Virulence Factors into Outer Membrane Vesicles

    PubMed Central

    Ballok, Alicia E.; Filkins, Laura M.; Bomberger, Jennifer M.; Stanton, Bruce A.

    2014-01-01

    Pseudomonas aeruginosa produces outer membrane vesicles (OMVs) that contain a number of secreted bacterial proteins, including phospholipases, alkaline phosphatase, and the CFTR inhibitory factor (Cif). Previously, Cif, an epoxide hydrolase, was shown to be regulated at the transcriptional level by epoxides, which serve as ligands of the repressor, CifR. Here, we tested whether epoxides have an effect on Cif levels in OMVs. We showed that growth of P. aeruginosa in the presence of specific epoxides but not a hydrolysis product increased Cif packaging into OMVs in a CifR-independent fashion. The outer membrane protein, OprF, was also increased under these conditions, but alkaline phosphatase activity was not significantly altered. Additionally, we demonstrated that OMV shape and density were affected by epoxide treatment, with two distinct vesicle fractions present when cells were treated with epibromohydrin (EBH), a model epoxide. Vesicles isolated from the two density fractions exhibited different protein profiles in Western blotting and silver staining. We have shown that a variety of clinically or host-relevant treatments, including antibiotics, also alter the proteins packaged in OMVs. Proteomic analysis of purified OMVs followed by an analysis of transposon mutant OMVs yielded mutants with altered vesicle packaging. Finally, epithelial cell cytotoxicity was reduced in the vesicles formed in the presence of EBH, suggesting that this epoxide alters the function of the OMVs. Our data support a model whereby clinically or host-relevant signals mediate differential packaging of virulence factors in OMVs, which results in functional consequences for host-pathogen interactions. PMID:25112474

  10. Re-sequencing of a virulent strain of Campylobacter jejuni NCTC11168 reveals potential virulence factors.

    PubMed

    Cooper, Kerry K; Cooper, Margarethe A; Zuccolo, Andrea; Joens, Lynn A

    2013-01-01

    In vitro passage of Campylobacter jejuni strains results in phenotypic changes and a general loss of virulence, as is the case with the genome-sequenced strain C. jejuni NCTC11168. Re-sequencing of a virulent strain of NCTC11168 identified 41 SNPs or indels involving 20 genes, four intergenic regions and three pseudogenes. The genes include six motility genes, two chemotaxis genes, three hypothetical genes and a capsule biosynthesis gene, which might have a critical role in C. jejuni virulence. Additionally, we found an insertion in both Cj0676 and Cj1470c, pseudogenes in avirulent NCTC11168, but functional proteins in virulent NCTC11168.

  11. Epidemiology, virulence factors and management of the pneumococcus

    PubMed Central

    Feldman, Charles; Anderson, Ronald

    2016-01-01

    Pneumococcal infections continue to cause significant morbidity and mortality in patients throughout the world. This microorganism remains the most common bacterial cause of community-acquired pneumonia and is associated with a considerable burden of disease and health-care costs in both developed and developing countries. Emerging antibiotic resistance has been a concern because of its potential negative impact on the outcome of patients who receive standard antibiotic therapy. However, there have been substantial changes in the epidemiology of this pathogen in recent years, not least of which has been due to the use of pneumococcal conjugate vaccines in children, with subsequent herd protection in unvaccinated adults and children. Furthermore, much recent research has led to a better understanding of the virulence factors of this pathogen and their role in the pathogenesis of severe pneumococcal disease, including the cardiac complications, as well as the potential role of adjunctive therapy in the management of severely ill cases. This review will describe recent advances in our understanding of the epidemiology, virulence factors, and management of pneumococcal community-acquired pneumonia. PMID:27703671

  12. An Agrobacterium catalase is a virulence factor involved in tumorigenesis.

    PubMed

    Xu, X Q; Pan, S Q

    2000-01-01

    Most plant pathogenic bacteria adopt the type III secretion systems to secrete virulence factors and/or avirulence gene products, which trigger the plant hypersensitive response (HR) and the oxidative burst with hydrogen peroxide (H2O2) as the main component. However, the soil-borne plant pathogen Agrobacterium tumefaciens uses the type IV secretion pathway to deliver its oncogenic T-DNA that causes crown gall tumours on many plant species. A. tumefaciens does not elicit a typical HR on those plants. Here, we report that inactivation of one of A. tumefaciens catalases (which converts H2O2 to H2O and O2) by a transposon insertion highly attenuated the bacterial ability to cause tumours on plants and to tolerate H2O2 toxicity, but not the bacterial viability in the absence of exogenous H2O2. This provides the first genetic evidence that the Agrobacterium-plant interaction involves a plant defence response, such as H2O2 production, and that catalase is a virulence factor for a plant pathogen. PMID:10652101

  13. Epidemiology, virulence factors and management of the pneumococcus

    PubMed Central

    Feldman, Charles; Anderson, Ronald

    2016-01-01

    Pneumococcal infections continue to cause significant morbidity and mortality in patients throughout the world. This microorganism remains the most common bacterial cause of community-acquired pneumonia and is associated with a considerable burden of disease and health-care costs in both developed and developing countries. Emerging antibiotic resistance has been a concern because of its potential negative impact on the outcome of patients who receive standard antibiotic therapy. However, there have been substantial changes in the epidemiology of this pathogen in recent years, not least of which has been due to the use of pneumococcal conjugate vaccines in children, with subsequent herd protection in unvaccinated adults and children. Furthermore, much recent research has led to a better understanding of the virulence factors of this pathogen and their role in the pathogenesis of severe pneumococcal disease, including the cardiac complications, as well as the potential role of adjunctive therapy in the management of severely ill cases. This review will describe recent advances in our understanding of the epidemiology, virulence factors, and management of pneumococcal community-acquired pneumonia.

  14. Pseudomonas aeruginosa isolates in severe chronic obstructive pulmonary disease: characterization and risk factors

    PubMed Central

    2014-01-01

    Background Patients with severe chronic obstructive pulmonary disease (COPD) are at increased risk of infection by P. aeruginosa. The specific role of bronchiectasis in both infection and chronic colonization by this microorganism in COPD, however, remains ill defined. To evaluate the prevalence and risk factors for P. aeruginosa recovery from sputum in outpatients with severe COPD, characterizing P. aeruginosa isolates by pulsed-field gel electrophoresis (PFGE) and focusing on the influence of bronchiectasis on chronic colonization in these patients. Methods A case-cohort study of 118 patients with severe COPD attended at a Respiratory Day Unit for an acute infectious exacerbation and followed up over one year. High-resolution CT scans were performed during stability for bronchiectasis assessment and sputum cultures were obtained during exacerbation and stability in all patients. P. aeruginosa isolates were genotyped by PFGE. Determinants of the recovery of P. aeruginosa in sputum and chronic colonization by this microorganism were assessed by multivariate analysis. Results P. aeruginosa was isolated from 41 of the 118 patients studied (34.7%). Five of these 41 patients (12.2%) with P. aeruginosa recovery fulfilled criteria for chronic colonization. In the multivariate analysis, the extent of bronchiectasis (OR 9.8, 95% CI: 1.7 to 54.8) and the number of antibiotic courses (OR 1.7, 95% CI: 1.1 to 2.5) were independently associated with an increased risk of P. aeruginosa isolation. Chronic colonization was unrelated to the presence of bronchiectasis (p=0.75). In patients with chronic colonization the isolates of P. aeruginosa retrieved corresponded to the same clones during the follow-up, and most of the multidrug resistant isolates (19/21) were harbored by these patients. Conclusions The main risk factors for P. aeruginosa isolation in severe COPD were the extent of bronchiectasis and exposure to antibiotics. Over 10% of these patients fulfilled criteria for

  15. Hookworm virulence factors: making the most of the host.

    PubMed

    Periago, Maria V; Bethony, Jeffrey M

    2012-12-01

    Hookworm disease from Necator americanus and Ancylostoma duodenale affects approximately 700 million people, with N. americanus being the predominant species. Unlike other pathogens (e.g., bacterial infections), where "virulence" is described in regards to acute pathogenesis and case-fatality, hookworms are well-evolved, multicellular parasites that establish long-term infections in their human hosts with a subtle and chronic, but insidious, pathogenesis, usually in the form of iron deficiency anemia from parasite blood feeding that, over time, has devastating effects on the human host especially when it involves children or women of child bearing years. As such, many of the typical terms for "virulence factors" used in other reviews in this special edition cannot be applied to hookworm (e.g., "colonization", "invasion", "or "toxicity"); rather the virulence of hookworm infection comes in terms of their ability to maintain a chronic blood-feeding infection in the lumen of relatively healthy human hosts, an infection that is usually measured in years but can sometimes be measured in decades. In the current manuscript, we describe the routes of invasion hookworms take into their human hosts and the means by which they modulate the human immune system to maintain this long-term parasitism. Little data on hookworm infection comes from actual human infections; instead, much of the data is derived from observations of laboratory animal models, in which hookworms fail to establish this distinctive "chronic infection," either due to physiological or immunological responses of these animal models. Hence, the mode and effects of chronic immunity must be extrapolated from this very different sort of infection to humans. Herein, we aim to synthesize immunological information from both types of models in the context of immune regulation and protection in order to identify future research focuses for the development of new treatment alternatives (i.e. drugs and vaccines).

  16. Identification of outer membrane Porin D as a vitronectin-binding factor in cystic fibrosis clinical isolates of Pseudomonas aeruginosa

    PubMed Central

    Paulsson, Magnus; Singh, Birendra; Al-Jubair, Tamim; Su, Yu-Ching; Høiby, Niels; Riesbeck, Kristian

    2016-01-01

    Background Pseudomonas aeruginosa is a pathogen that frequently colonizes patients with cystic fibrosis (CF) or chronic obstructive pulmonary disease (COPD). Several pathogens are known to bind vitronectin to increase their virulence. Vitronectin has been shown to enhance P. aeruginosa adhesion to host epithelial cells. Methods We screened clinical isolates from the airways of CF patients and from the bloodstream of patients with bacteremia for binding of vitronectin. Two-dimensional SDS-PAGE and a proteomic approach was used to identify vitronectin-receptors in P. aeruginosa. Results P. aeruginosa from the airways of CF patients (n=27) bound more vitronectin than bacteremic isolates (n=15, p=0.025). Porin D (OprD) was identified as a vitronectin-binding protein. A P. aeruginosa oprD transposon insertion mutant had a decreased binding to soluble and immobilized vitronectin (p ≤ 0.001). Conclusions P. aeruginosa isolates obtained from CF patients significantly bound vitronectin. Porin D was defined as a novel P. aeruginosa vitronectin-receptor, and we postulate that the Porin D-dependent interaction with vitronectin may be important for colonization. PMID:26047937

  17. Systems analysis of multiple regulator perturbations allows discovery of virulence factors in Salmonella

    SciTech Connect

    Yoon, Hyunjin; Ansong, Charles; McDermott, Jason E.; Gritsenko, Marina A.; Smith, Richard D.; Heffron, Fred; Adkins, Joshua N.

    2011-06-28

    Background: Systemic bacterial infections are highly regulated and complex processes that are orchestrated by numerous virulence factors. Genes that are coordinately controlled by the set of regulators required for systemic infection are potentially required for pathogenicity. Results: In this study we present a systems biology approach in which sample-matched multi-omic measurements of fourteen virulence-essential regulator mutants were coupled with computational network analysis to efficiently identify Salmonella virulence factors. Immunoblot experiments verified network-predicted virulence factors and a subset was determined to be secreted into the host cytoplasm, suggesting that they are virulence factors directly interacting with host cellular components. Two of these, SrfN and PagK2, were required for full mouse virulence and were shown to be translocated independent of either of the type III secretion systems in Salmonella or the type III injectisome-related flagellar mechanism. Conclusions: Integrating multi-omic datasets from Salmonella mutants lacking virulence regulators not only identified novel virulence factors but also defined a new class of translocated effectors involved in pathogenesis. The success of this strategy at discovery of known and novel virulence factors suggests that the approach may have applicability for other bacterial pathogens.

  18. Novel microbial virulence factor triggers murine lyme arthritis.

    PubMed

    Yang, Xiuli; Qin, Jinhong; Promnares, Kamoltip; Kariu, Toru; Anderson, John F; Pal, Utpal

    2013-03-15

    Borrelia burgdorferi bba57 is a conserved gene encoding a potential lipoprotein of unknown function. Here we show that bba57 is up-regulated in vivo and is required for early murine infection and potential spirochete transmission process. Although BBA57 is dispensable for late murine infection, the mutants were unable to induce disease. We show that BBA57, an outer membrane and surface-exposed antigen, is a major trigger of murine Lyme arthritis; even in cases of larger challenge inocula, which allow their persistence in joints at a level similar to wild-type spirochetes, bba57 mutants are unable to induce joint inflammation. We further showed that BBA57 deficiency reduces the expression of selected "neutrophil-recruiting" chemokines and associated receptors, causing significant impairment of neutrophil chemotaxis. New approaches to combat Lyme disease may include strategies to interfere with BBA57, a novel virulence factor and a trigger of murine Lyme arthritis.

  19. Liposomes as novel anti-infectives targeting bacterial virulence factors?

    PubMed

    Azeredo da Silveira, Samareh; Perez, Antonio

    2015-05-01

    A recent report commissioned by Prime Minister David Cameron and chaired by former Goldman Sachs chief economist Jim O'Neill warns that the emergence, persistence and spread of antimicrobial resistance could lead to 10 million deaths per year and cause an economic burden as much as US$100 trillion by 2050. In the midst of this global crisis, unprecedented paths are being explored to combat bacterial infection. Virulence factors, and more particularly pore-forming toxins, play a key role in increasing morbidity and mortality caused by drug-resistant bacterial infections. Novel anti-infective liposomes specifically targeting and neutralizing these cytotoxic toxins are potential game-changers in the fight against deadly infections. PMID:25850805

  20. Evaluation of Risk Factors for Antibiotic Resistance in Patients with Nosocomial Infections Caused by Pseudomonas aeruginosa.

    PubMed

    Sonmezer, Meliha Cagla; Ertem, Gunay; Erdinc, Fatma Sebnem; Kaya Kilic, Esra; Tulek, Necla; Adiloglu, Ali; Hatipoglu, Cigdem

    2016-01-01

    Background. Pseudomonas aeruginosa (P. aeruginosa) is resistant to various antibiotics and can cause serious nosocomial infections with high morbidity and mortality. In this clinical study, we investigated the risk factors in patients who were diagnosed with P. aeruginosa-related nosocomial infection. Methods. A retrospective case control study including patients with P. aeruginosa-related nosocomial infection. Patients who were resistant to any of the six antibiotics (imipenem, meropenem, piperacillin-tazobactam, ciprofloxacin, amikacin, and ceftazidime) constituted the study group. Results. One hundred and twenty isolates were isolated. Various risk factors were detected for each antibiotic in the univariate analysis. In the multivariate analysis, previous cefazolin use was found as an independent risk factor for the development of imipenem resistance (OR = 3.33; CI 95% [1.11-10.0]; p = 0.03), whereas previous cerebrovascular attack (OR = 3.57; CI 95% [1.31-9.76]; p = 0.01) and previous meropenem use (OR = 4.13; CI 95% [1.21-14.07]; p = 0.02) were independent factors for the development of meropenem resistance. For the development of resistance to ciprofloxacin, hospitalization in the neurology intensive care unit (OR = 4.24; CI 95% [1.5-11.98]; p = 0.006) and mechanical ventilator application (OR = 11.7; CI 95% [2.24-61.45]; p = 0.004) were independent risk factors. Conclusion. The meticulous application of contact measures can decrease the rate of nosocomial infections. PMID:27656220

  1. Effect of environmental factors on allelopathic inhibition of Microcystis aeruginosa by berberine.

    PubMed

    Zhang, Shulin; Dai, Wei; Bi, Xiangdong; Zhang, Dajuan; Xing, Kezhi

    2013-01-01

    To understand how environmental conditions affect the allelopathic inhibition of toxic Microcystis aeruginosa by berberine, the independent effects of some environmental factors, including temperature, light, and aeration, on the growth and extracellular microcystin (MC) content of M. aeruginosa (FACHB 905) treated with 0.000 and 0.001% (w/v) berberine were investigated. The results showed that higher temperature and light density, and aeration in daytime were beneficial for the growth of M. aeruginosa under the measured environmental conditions. The allelopathic effects of berberine on M. aeruginosa were closely associated with the environmental conditions. Berberine had the best inhibitory effects when temperature, light and aeration were more optimal for growth. In darkness, no changes in the density of M. aeruginosa were observed with the prolongation of culture time and berberine could hardly exhibit algicidal effects. Disturbance in the photosynthesis process might be one of the main reasons responsible for algicidal function. Berberine could increase extracellular MC contents significantly via killing and lyzing algal cells. Other treatments coupled with berberine needed to be carried out to degrade or remove MC released from berberine-killed algal cells.

  2. Elucidation of sigma factor-associated networks in Pseudomonas aeruginosa reveals a modular architecture with limited and function-specific crosstalk.

    PubMed

    Schulz, Sebastian; Eckweiler, Denitsa; Bielecka, Agata; Nicolai, Tanja; Franke, Raimo; Dötsch, Andreas; Hornischer, Klaus; Bruchmann, Sebastian; Düvel, Juliane; Häussler, Susanne

    2015-03-01

    Sigma factors are essential global regulators of transcription initiation in bacteria which confer promoter recognition specificity to the RNA polymerase core enzyme. They provide effective mechanisms for simultaneously regulating expression of large numbers of genes in response to challenging conditions, and their presence has been linked to bacterial virulence and pathogenicity. In this study, we constructed nine his-tagged sigma factor expressing and/or deletion mutant strains in the opportunistic pathogen Pseudomonas aeruginosa. To uncover the direct and indirect sigma factor regulons, we performed mRNA profiling, as well as chromatin immunoprecipitation coupled to high-throughput sequencing. We furthermore elucidated the de novo binding motif of each sigma factor, and validated the RNA- and ChIP-seq results by global motif searches in the proximity of transcriptional start sites (TSS). Our integrated approach revealed a highly modular network architecture which is composed of insulated functional sigma factor modules. Analysis of the interconnectivity of the various sigma factor networks uncovered a limited, but highly function-specific, crosstalk which orchestrates complex cellular processes. Our data indicate that the modular structure of sigma factor networks enables P. aeruginosa to function adequately in its environment and at the same time is exploited to build up higher-level functions by specific interconnections that are dominated by a participation of RpoN. PMID:25780925

  3. [Extracellular matrix as a microbial virulence factor in the development of human diseases].

    PubMed

    Moryl, Magdalena

    2015-01-01

    Extracellular polymers which build a biofilm matrix possess a complicated structure, where the polysaccharide fraction, composed of homo- or heteropolysaccharides, is the largest. Other important components are proteins, eDNA, glycoproteins and lipids. The matrix has a protective function against the surrounding environment, plays a role in biofilm formation and maturation processes, stabilizes the biofilm structure, and also is a source of nutrients and water for the cells. It is noteworthy that the biofilm matrix is a virulence factor and plays an important role in the pathogenesis of many human diseases. Pseudomonas aeruginosa growing in the lungs of patients with cystic fibrosis produces three major exopolysaccharides (Pel, Psl and alginate) and synthesizes numerous proteins such as lectins and enzymes, e.g. PasP, chitinase, aminopeptidase, and protease IV, which facilitate the tissue colonization. Extracellular polymers play a significant role in the course of caries, which is associated with the development of multi-species biofilm on the teeth surface. The structure of the matrix surrounding that biofilm is complicated--different for each patient. The components of the matrix are constantly changing depending on the environmental conditions, e.g. the presence of sucrose affects the synthesis of mutan and dextran. Infections associated with biofilm formation on implants pose significant medical and economic problems. The main components of the matrices are saccharides (e.g., PIA, EC-TA), as well as surface and extracellular proteins. Studies on the matrix structure and the factors regulating its synthesis are necessary to develop techniques for biofilm eradication and better control of biofilm-related infections.

  4. Pyocycanin, a Contributory Factor in Haem Acquisition and Virulence Enhancement of Porphyromonas gingivalis in the Lung

    PubMed Central

    Benedyk, Malgorzata; Byrne, Dominic P.; Glowczyk, Izabela; Potempa, Jan; Olczak, Mariusz; Olczak, Teresa; Smalley, John W.

    2015-01-01

    Several recent studies show that the lungs infected with Pseudomonas aeruginosa are often co-colonised by oral bacteria including black-pigmenting anaerobic (BPA) Porphyromonas species. The BPAs have an absolute haem requirement and their presence in the infected lung indicates that sufficient haem, a virulence up-regulator in BPAs, must be present to support growth. Haemoglobin from micro-bleeds occurring during infection is the most likely source of haem in the lung. Porphyromonas gingivalis displays a novel haem acquisition paradigm whereby haemoglobin must be firstly oxidised to methaemoglobin, facilitating haem release, either by gingipain proteolysis or capture via the haem-binding haemophore HmuY. P. aeruginosa produces the blue phenazine redox compound, pyocyanin. Since phenazines can oxidise haemoglobin, it follows that pyocyanin may also facilitate haem acquisition by promoting methaemoglobin production. Here we show that pyocyanin at concentrations found in the CF lung during P. aeruginosa infections rapidly oxidises oxyhaemoglobin in a dose-dependent manner. We demonstrate that methaemoglobin formed by pyocyanin is also susceptible to proteolysis by P. gingivalis Kgp gingipain and neutrophil elastase, thus releasing haem. Importantly, co-incubation of oxyhaemoglobin with pyocyanin facilitates haem pickup from the resulting methemoglobin by the P. gingivalis HmuY haemophore. Mice intra-tracheally challenged with viable P. gingivalis cells plus pyocyanin displayed increased mortality compared to those administered P. gingivalis alone. Pyocyanin significantly elevated both methaemoglobin and total haem levels in homogenates of mouse lungs and increased the level of arginine-specific gingipain activity from mice inoculated with viable P. gingivalis cells plus pyocyanin compared with mice inoculated with P. gingivalis only. These findings indicate that pyocyanin, by promoting haem availability through methaemoglobin formation and stimulating of gingipain

  5. The NS1 protein: a multitasking virulence factor.

    PubMed

    Ayllon, Juan; García-Sastre, Adolfo

    2015-01-01

    The non-structural protein 1 of influenza virus (NS1) is a relatively small polypeptide with an outstanding number of ascribed functions. NS1 is the main viral antagonist of the innate immune response during influenza virus infection, chiefly by inhibiting the type I interferon system at multiple steps. As such, its role is critical to overcome the first barrier the host presents to halt the viral infection. However, the pro-viral activities of this well-studied protein go far beyond and include regulation of viral RNA and protein synthesis, and disruption of the host cell homeostasis by dramatically affecting general gene expression while tweaking the PI3K signaling network. Because of all of this, NS1 is a key virulence factor that impacts influenza pathogenesis, and adaptation to new hosts, making it an attractive target for control strategies. Here, we will overview the many roles that have been ascribed to the NS1 protein, and give insights into the sequence features and structural properties that make them possible, highlighting the need to understand how NS1 can actually perform all of these functions during viral infection. PMID:25007846

  6. Fusobacterium necrophorum infections: virulence factors, pathogenic mechanism and control measures.

    PubMed

    Tan, Z L; Nagaraja, T G; Chengappa, M M

    1996-01-01

    Fusobacterium necrophorum, a Gram-negative, non-spore-forming anaerobe, is a normal inhabitant of the alimentary tract of animals and humans. Two types of F. necrophorum, subspecies necrophorum (biotype A) and funduliforme (biotype B), have been recognized, which differ morphologically, biochemically, and biologically. The organism is an opportunistic pathogen that causes numerous necrotic conditions (necrobacillosis) such as bovine hepatic abscesses, ruminant foot abscesses and human oral infections. The pathogenic mechanism of F. necrophorum is complex and not well defined. Several toxins, such as leukotoxin, endotoxin, haemolysin, haemagglutinin and adhesin, have been implicated as virulence factors. Among these, leukotoxin and endotoxin are believed to be more important than other toxins in overcoming the host's defence mechanisms to establish the infection. F. necrophorum is encountered frequently in mixed infections and, therefore, synergisms between F. necrophorum and other pathogens may play an important role in infection. Several investigators have attempted to induce protective immunity against F. necrophorum using bacterins, toxoids, and other cytoplasmic components. Generally, none of the immunogens has afforded satisfactory protection against Fusobacterium infections. Because of the unavailability of suitable immunoprophylaxis, the control of F. necrophorum infection has depended mainly on the use of antimicrobial compounds.

  7. The NS1 protein: a multitasking virulence factor.

    PubMed

    Ayllon, Juan; García-Sastre, Adolfo

    2015-01-01

    The non-structural protein 1 of influenza virus (NS1) is a relatively small polypeptide with an outstanding number of ascribed functions. NS1 is the main viral antagonist of the innate immune response during influenza virus infection, chiefly by inhibiting the type I interferon system at multiple steps. As such, its role is critical to overcome the first barrier the host presents to halt the viral infection. However, the pro-viral activities of this well-studied protein go far beyond and include regulation of viral RNA and protein synthesis, and disruption of the host cell homeostasis by dramatically affecting general gene expression while tweaking the PI3K signaling network. Because of all of this, NS1 is a key virulence factor that impacts influenza pathogenesis, and adaptation to new hosts, making it an attractive target for control strategies. Here, we will overview the many roles that have been ascribed to the NS1 protein, and give insights into the sequence features and structural properties that make them possible, highlighting the need to understand how NS1 can actually perform all of these functions during viral infection.

  8. ANALYSIS OF AEROMONAS BY MASS SPECTROMETRY: SPECIATION AND VIRULENCE FACTORS

    EPA Science Inventory

    Introduction:

    A number of bacteria, including Aeromonas hydrophila, are listed on the Environmental Protection Agency's 1998 Contaminant Candidate List (CCL) as research needs. One research priority designated by the CCL is the identification of virulence activity facto...

  9. Biotypes and virulence factors of Gardnerella vaginalis isolated from cases of bacterial vaginosis.

    PubMed

    Udayalaxmi, J; Bhat, G K; Kotigadde, S

    2011-01-01

    The present study was conducted to correlate the biotypes of Gardnerella vaginalis strains isolated from cases of bacterial vaginosis and their virulence factors. Thirty-two strains of G. vaginalis isolated from cases of bacterial vaginosis were biotyped. Adherence to vaginal epithelial cells, biofilm production, surface hydrophobicity, phospholipase C and protease activity were tested on these isolates. Biotype 1 was the most prevalent (8; 25%), followed by biotype 2 (7; 21.9%) and biotypes 5 and 8 (5; 15.6%). We did not find any statistical correlation between G. vaginalis biotypes and its virulence factors. Virulence factors expressed by G. vaginalis were not associated with a single biotype.

  10. The Global Transcription Factor Lrp Controls Virulence Modulation in Xenorhabdus nematophila

    PubMed Central

    Hussa, Elizabeth A.; Casanova-Torres, Ángel M.

    2015-01-01

    ABSTRACT The bacterium Xenorhabdus nematophila engages in phenotypic variation with respect to pathogenicity against insect larvae, yielding both virulent and attenuated subpopulations of cells from an isogenic culture. The global regulatory protein Lrp is necessary for X. nematophila virulence and immunosuppression in insects, as well as colonization of the mutualistic host nematode Steinernema carpocapsae, and mediates expression of numerous genes implicated in each of these phenotypes. Given the central role of Lrp in X. nematophila host associations, as well as its involvement in regulating phenotypic variation pathways in other bacteria, we assessed its function in virulence modulation. We discovered that expression of lrp varies within an isogenic population, in a manner that correlates with modulation of virulence. Unexpectedly, although Lrp is necessary for optimal virulence and immunosuppression, cells expressing high levels of lrp were attenuated in these processes relative to those with low to intermediate lrp expression. Furthermore, fixed expression of lrp at high and low levels resulted in attenuated and normal virulence and immunosuppression, respectively, and eliminated population variability of these phenotypes. These data suggest that fluctuating lrp expression levels are sufficient to drive phenotypic variation in X. nematophila. IMPORTANCE Many bacteria use cell-to-cell phenotypic variation, characterized by distinct phenotypic subpopulations within an isogenic population, to cope with environmental change. Pathogenic bacteria utilize this strategy to vary antigen or virulence factor expression. Our work establishes that the global transcription factor Lrp regulates phenotypic variation in the insect pathogen Xenorhabdus nematophila, leading to attenuation of virulence and immunosuppression in insect hosts. Unexpectedly, we found an inverse correlation between Lrp expression levels and virulence: high levels of expression of Lrp

  11. Random T-DNA mutagenesis identifies a Cu-Zn-superoxide dismutase gene as a virulence factor of Sclerotinia sclerotiorum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agrobacterium-mediated transformation (AMT) was used to identify potential virulence factors in Sclerotinia sclerotiorum. Screening AMT transformants identified two mutants showing significantly reduced virulence. The mutants showed similar growth rate, colony morphology, and sclerotial and oxalate ...

  12. Production of virulence factors in Candida strains isolated from patients with denture stomatitis and control individuals.

    PubMed

    Pereira, Cristiane Aparecida; Domingues, Nádia; Araújo, Maria Izabel Daniel Santos Alves; Junqueira, Juliana Campos; Back-Brito, Graziella Nuernberg; Jorge, Antonio Olavo Cardoso

    2016-05-01

    The aim of this study was to evaluate the production of virulence factors in Candida isolates from the oral cavities of 50 patients with different degrees of denture stomatitis (DS, type I, II and III) and 50 individuals without signs of DS. We evaluated the enzymatic and hemolytic activities, the biofilm formation, and the cell surface hydrophobicity (CSH) in all isolates. Germ tube (GT) production was also evaluated in Candida albicans and Candida dubliniensis isolates. In C. albicans and C. dubliniensis the secretion of hemolysin and GT production was significantly different between isolates from patients with DS and individuals without DS. No significant difference was observed in the production of virulence factors by Candida glabrata isolates. Candida isolates expressed a wide range of virulence factors. However, in the majority of isolates from the type III lesions, the production of the virulence factors was higher than for the other groups.

  13. Structure and function of pectic enzymes: Virulence factors of plant pathogens

    PubMed Central

    Herron, Steven R.; Benen, Jacques A. E.; Scavetta, Robert D.; Visser, Jaap; Jurnak, Frances

    2000-01-01

    The structure and function of Erwinia chrysanthemi pectate lysase C, a plant virulence factor, is reviewed to illustrate one mechanism of pathogenesis at the molecular level. Current investigative topics are discussed in this paper. PMID:10922032

  14. Evaluation of Risk Factors for Antibiotic Resistance in Patients with Nosocomial Infections Caused by Pseudomonas aeruginosa

    PubMed Central

    Ertem, Gunay; Erdinc, Fatma Sebnem; Kaya Kilic, Esra; Adiloglu, Ali; Hatipoglu, Cigdem

    2016-01-01

    Background. Pseudomonas aeruginosa (P. aeruginosa) is resistant to various antibiotics and can cause serious nosocomial infections with high morbidity and mortality. In this clinical study, we investigated the risk factors in patients who were diagnosed with P. aeruginosa-related nosocomial infection. Methods. A retrospective case control study including patients with P. aeruginosa-related nosocomial infection. Patients who were resistant to any of the six antibiotics (imipenem, meropenem, piperacillin-tazobactam, ciprofloxacin, amikacin, and ceftazidime) constituted the study group. Results. One hundred and twenty isolates were isolated. Various risk factors were detected for each antibiotic in the univariate analysis. In the multivariate analysis, previous cefazolin use was found as an independent risk factor for the development of imipenem resistance (OR = 3.33; CI 95% [1.11–10.0]; p = 0.03), whereas previous cerebrovascular attack (OR = 3.57; CI 95% [1.31–9.76]; p = 0.01) and previous meropenem use (OR = 4.13; CI 95% [1.21–14.07]; p = 0.02) were independent factors for the development of meropenem resistance. For the development of resistance to ciprofloxacin, hospitalization in the neurology intensive care unit (OR = 4.24; CI 95% [1.5–11.98]; p = 0.006) and mechanical ventilator application (OR = 11.7; CI 95% [2.24–61.45]; p = 0.004) were independent risk factors. Conclusion. The meticulous application of contact measures can decrease the rate of nosocomial infections. PMID:27656220

  15. Evaluation of Risk Factors for Antibiotic Resistance in Patients with Nosocomial Infections Caused by Pseudomonas aeruginosa

    PubMed Central

    Ertem, Gunay; Erdinc, Fatma Sebnem; Kaya Kilic, Esra; Adiloglu, Ali; Hatipoglu, Cigdem

    2016-01-01

    Background. Pseudomonas aeruginosa (P. aeruginosa) is resistant to various antibiotics and can cause serious nosocomial infections with high morbidity and mortality. In this clinical study, we investigated the risk factors in patients who were diagnosed with P. aeruginosa-related nosocomial infection. Methods. A retrospective case control study including patients with P. aeruginosa-related nosocomial infection. Patients who were resistant to any of the six antibiotics (imipenem, meropenem, piperacillin-tazobactam, ciprofloxacin, amikacin, and ceftazidime) constituted the study group. Results. One hundred and twenty isolates were isolated. Various risk factors were detected for each antibiotic in the univariate analysis. In the multivariate analysis, previous cefazolin use was found as an independent risk factor for the development of imipenem resistance (OR = 3.33; CI 95% [1.11–10.0]; p = 0.03), whereas previous cerebrovascular attack (OR = 3.57; CI 95% [1.31–9.76]; p = 0.01) and previous meropenem use (OR = 4.13; CI 95% [1.21–14.07]; p = 0.02) were independent factors for the development of meropenem resistance. For the development of resistance to ciprofloxacin, hospitalization in the neurology intensive care unit (OR = 4.24; CI 95% [1.5–11.98]; p = 0.006) and mechanical ventilator application (OR = 11.7; CI 95% [2.24–61.45]; p = 0.004) were independent risk factors. Conclusion. The meticulous application of contact measures can decrease the rate of nosocomial infections.

  16. Cyclic Rhamnosylated Elongation Factor P Establishes Antibiotic Resistance in Pseudomonas aeruginosa

    PubMed Central

    Rajkovic, Andrei; Erickson, Sarah; Witzky, Anne; Branson, Owen E.; Seo, Jin; Gafken, Philip R.; Frietas, Michael A.; Whitelegge, Julian P.; Faull, Kym F.; Navarre, William; Darwin, Andrew J.

    2015-01-01

    ABSTRACT Elongation factor P (EF-P) is a ubiquitous bacterial protein that is required for the synthesis of poly-proline motifs during translation. In Escherichia coli and Salmonella enterica, the posttranslational β-lysylation of Lys34 by the PoxA protein is critical for EF-P activity. PoxA is absent from many bacterial species such as Pseudomonas aeruginosa, prompting a search for alternative EF-P posttranslation modification pathways. Structural analyses of P. aeruginosa EF-P revealed the attachment of a single cyclic rhamnose moiety to an Arg residue at a position equivalent to that at which β-Lys is attached to E. coli EF-P. Analysis of the genomes of organisms that both lack poxA and encode an Arg32-containing EF-P revealed a highly conserved glycosyltransferase (EarP) encoded at a position adjacent to efp. EF-P proteins isolated from P. aeruginosa ΔearP, or from a ΔrmlC::acc1 strain deficient in dTDP-l-rhamnose biosynthesis, were unmodified. In vitro assays confirmed the ability of EarP to use dTDP-l-rhamnose as a substrate for the posttranslational glycosylation of EF-P. The role of rhamnosylated EF-P in translational control was investigated in P. aeruginosa using a Pro4-green fluorescent protein (Pro4GFP) in vivo reporter assay, and the fluorescence was significantly reduced in Δefp, ΔearP, and ΔrmlC::acc1 strains. ΔrmlC::acc1, ΔearP, and Δefp strains also displayed significant increases in their sensitivities to a range of antibiotics, including ertapenem, polymyxin B, cefotaxim, and piperacillin. Taken together, our findings indicate that posttranslational rhamnosylation of EF-P plays a key role in P. aeruginosa gene expression and survival. PMID:26060278

  17. Inactivation of staphylococcal virulence factors using a light-activated antimicrobial agent

    PubMed Central

    2009-01-01

    Background One of the limitations of antibiotic therapy is that even after successful killing of the infecting microorganism, virulence factors may still be present and cause significant damage to the host. Light-activated antimicrobials show potential for the treatment of topical infections; therefore if these agents can also inactivate microbial virulence factors, this would represent an advantage over conventional antibiotic therapy. Staphylococcus aureus produces a wide range of virulence factors that contribute to its success as a pathogen by facilitating colonisation and destruction of host tissues. Results In this study, the ability of the light-activated antimicrobial agent methylene blue in combination with laser light of 665 nm to inactivate staphylococcal virulence factors was assessed. A number of proteinaceous virulence factors were exposed to laser light in the presence of methylene blue and their biological activities re-determined. The activities of V8 protease, α-haemolysin and sphingomyelinase were shown to be inhibited in a dose-dependent manner by exposure to laser light in the presence of methylene blue. Conclusion These results suggest that photodynamic therapy could reduce the harmful impact of preformed virulence factors on the host. PMID:19804627

  18. Virulence factors of Clostridium difficile and their role during infection.

    PubMed

    Janoir, Claire

    2016-02-01

    Clostridium difficile is the prominent etiological agent of healthcare-associated diarrhea. The disease symptoms range from mild diarrhea to life-threatening pseudomembranous colitis. The main risk factor for developing an infection after contamination by the resistant spores is the disruption of the gut microbiota, allowing the spores to germinate. The colonization of the gut is likely to be governed by the bacterial resistance to the host response and the bacterial adhesion to the mucosa. To date, several putative adhesins have been identified, most of them displaying MSCRAMM function, and studies of adhesin mutants have clearly underlined the multi-factorial feature of C. difficile adhesion to the host. Flagella have also been involved in the colonisation process, but their role depends on the tested strains. The clinical signs are mainly due to two large glucosylating toxins, TcdA and TcdB, which are essential for the disease manifestations. The importance of each toxin differs according to strains and experimental conditions, but TcdB seems to be the prominent one, as showed by mutant studies and the natural occurrence of pathogenic strains that do not produce TcdA. The role of the ADP ribosylating binary toxin expressed by some strains, including epidemic lineages, is not clearly established, although it has been related to higher morbidity and mortality. Production of low level of the glucosylating toxins and of the binary toxin seems to promote adhesion to host cells. Expression of the tcdA and tcdB genes is under the control of the second messenger c-di-GMP. This is also the case for other virulence factors, in particular for flagellar, pili type IV and some adhesin genes. Indeed, several studies using knock-out mutants suggest that C. difficile may undergo a switch between the adhesion phenotype and the motility phenotype during the course of infection, regulated by the c-di-GMP intracellular level. In vivo, this could result in biofilm formation that

  19. Sugar metabolism, an additional virulence factor in enterobacteria.

    PubMed

    Le Bouguénec, Chantal; Schouler, Catherine

    2011-01-01

    Enterobacteria display a high level of flexibility in their fermentative metabolism. Biotyping assays have thus been developed to discriminate between clinical isolates. Each biotype uses one or more sugars more efficiently than the others. Recent studies show links between sugar metabolism and virulence in enterobacteria. In particular, mechanisms of carbohydrate utilization differ substantially between pathogenic and commensal E. coli strains. We are now starting to gain insight into the importance of this variability in metabolic function. Studies using various animal models of intestinal colonization showed that the presence of the fos and deoK loci involved in the metabolism of short-chain fructoligosaccharides and deoxyribose, respectively, help avian and human pathogenic E. coli to outcompete with the normal flora and colonize the intestine. Both PTS and non-PTS sugar transporters have been found to modulate virulence of extraintestinal pathogenic E. coli strains. The vpe, GimA, and aec35-37 loci contribute to bacterial virulence in vivo during experimental septicemia and urinary tract infection, meningitis, and colibacillosis, respectively. However, in most cases, the sugars metabolized, and the precise role of their utilization in the expression of bacterial virulence is still unknown. The massive development of powerful analytical methods over recent years will allow establishing the knowledge of the metabolic basis of bacterial pathogenesis that appears to be the next challenge in the field of infectious diseases.

  20. Pseudomonas aeruginosa Lon and ClpXP proteases: roles in linking carbon catabolite repression system with quorum-sensing system.

    PubMed

    Yang, Nana; Lan, Lefu

    2016-02-01

    Quorum sensing (QS) plays critical roles in virulence gene expression and the pathogenesis of Pseudomonas aeruginosa, an important human pathogen. However, the regulatory effects, especially that occur directly upstream of the QS system, remain largely unknown. Here, we review recent advances in the understanding of the key component of carbon catabolite repression (CCR) system and protein quality control (PQC) system in regulating the QS system in P. aeruginosa. We propose that PQC proteases Lon and ClpXP may have an important role in linking CCR with QS, and thus contribute to the integration of nutritional cues into the regulatory network governing the virulence factors expression in P. aeruginosa.

  1. Analysis of the Pseudomonas aeruginosa Regulon Controlled by the Sensor Kinase KinB and Sigma Factor RpoN

    PubMed Central

    Damron, F. Heath; Owings, Joshua P.; Okkotsu, Yuta; Varga, John J.; Schurr, Jill R.; Goldberg, Joanna B.; Schurr, Michael J.

    2012-01-01

    Alginate overproduction by Pseudomonas aeruginosa, also known as mucoidy, is associated with chronic endobronchial infections in cystic fibrosis. Alginate biosynthesis is initiated by the extracytoplasmic function sigma factor (σ22; AlgU/AlgT). In the wild-type (wt) nonmucoid strains, such as PAO1, AlgU is sequestered to the cytoplasmic membrane by the anti-sigma factor MucA that inhibits alginate production. One mechanism underlying the conversion to mucoidy is mutation of mucA. However, the mucoid conversion can occur in wt mucA strains via the degradation of MucA by activated intramembrane proteases AlgW and/or MucP. Previously, we reported that the deletion of the sensor kinase KinB in PAO1 induces an AlgW-dependent proteolysis of MucA, resulting in alginate overproduction. This type of mucoid induction requires the alternate sigma factor RpoN (σ54). To determine the RpoN-dependent KinB regulon, microarray and proteomic analyses were performed on a mucoid kinB mutant and an isogenic nonmucoid kinB rpoN double mutant. In the kinB mutant of PAO1, RpoN controlled the expression of approximately 20% of the genome. In addition to alginate biosynthetic and regulatory genes, KinB and RpoN also control a large number of genes including those involved in carbohydrate metabolism, quorum sensing, iron regulation, rhamnolipid production, and motility. In an acute pneumonia murine infection model, BALB/c mice exhibited increased survival when challenged with the kinB mutant relative to survival with PAO1 challenge. Together, these data strongly suggest that KinB regulates virulence factors important for the development of acute pneumonia and conversion to mucoidy. PMID:22210761

  2. Effects of physical factors on the swarming motility of text itPseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Si, Tieyan; Ma, Zidong; Tang, Wai Shing; Yang, Alexander; Tang, Jay

    Many species of bacteria can spread over a semi-solid surface via a particular form of collective motion known as surface swarming. Using Pseudomonas aeruginosa as a model organism, we investigate physical factors that either facilitate or restrict the swarming motility. The semi-solid surface is typically formed by 0.5-1% agar containing essential nutrients for the bacterial growth and proliferation. Most bacterial species, including P. aeruginosa, synthesize bio-surfactants to aid in swarming. We found addition of exogenous surfactants such as triton into the agar matrix enhances the swarming. In contrast, increasing agar percentage, infusing osmolites, and adding viscous agents all decrease swarming. We propose that the swarming speed is restricted by the rate of water supply from within the agar gel and by the line tension at the swarm front involving three materials in contact: the air, the bacteria propelled liquid film, and the agar substrate.

  3. The Fimbrial Protein is a Virulence Factor and Potential Vaccine Antigen of Avibacterium paragallinarum.

    PubMed

    Liu, C-C; Ou, S-C; Tan, D-H; Hsieh, M-K; Shien, J-H; Chang, P-C

    2016-09-01

    Fimbriae are recognized as virulence factors and potential vaccine antigens of several pathogenic bacteria, but the function of the fimbriae from Avibacterium paragallinarum is not well known. In this study, a gene encoding the fimbrial protein FlfA was identified in A. paragallinarum . Sequencing analysis of the putative promoter region of flfA suggests that flfA expression in A. paragallinarum might be controlled by phase variation. The flfA gene from A. paragallinarum was expressed as a recombinant protein (r-FlfA) in Escherichia coli . Immunization with r-FlfA conferred chickens protection against challenge infection with A. paragallinarum . Virulence assays showed that the flfA-deficient mutants of A. paragallinarum were less virulent than their parental wild-type strains. These results indicated that the fimbrial protein FlfA is a virulence factor and potential vaccine antigen from A. paragallinarum . PMID:27610725

  4. Virulence Factors of the Oral Spirochete Treponema denticola

    PubMed Central

    Dashper, S.G.; Seers, C.A.; Tan, K.H.; Reynolds, E.C.

    2011-01-01

    There is compelling evidence that treponemes are involved in the etiology of several chronic diseases, including chronic periodontitis as well as other forms of periodontal disease. There are interesting parallels with other chronic diseases caused by treponemes that may indicate similar virulence characteristics. Chronic periodontitis is a polymicrobial disease, and recent animal studies indicate that co-infection of Treponema denticola with other periodontal pathogens can enhance alveolar bone resorption. The bacterium has a suite of molecular determinants that could enable it to cause tissue damage and subvert the host immune response. In addition to this, it has several non-classic virulence determinants that enable it to interact with other pathogenic bacteria and the host in ways that are likely to promote disease progression. Recent advances, especially in molecular-based methodologies, have greatly improved our knowledge of this bacterium and its role in disease. PMID:20940357

  5. Virulence Factors Associated with Pediatric Shigellosis in Brazilian Amazon

    PubMed Central

    da Cruz, Carolinie Batista Nobre; de Souza, Maria Carolina Scheffer; Serra, Paula Taquita; Santos, Ivanildes; Balieiro, Antonio; Pieri, Fabio Alessandro; Nogueira, Paulo Afonso; Orlandi, Patrícia Puccinelli

    2014-01-01

    Shigellosis is a global human health problem and the incidence is highest among children. In the present work, main Shigella virulence genes was examined by PCR and compared to symptoms of pediatric shigellosis. Thirty Shigella isolates were identified from an etiologic study at which 1,339 children ranging 0–10 years old were enrolled. S. flexneri was the most frequent species reaching 60.0% of isolates, 22.2% were S. sonnei, and 6.6% were both S. dysenteriae and S. boydii. All Shigella infected children had diarrhea, but not all were accompanied by others symptoms of bacillary dysentery. Among major virulence genes, the PCR typing revealed ipaBCD was present in all isolates, followed by IpaH7.8, set-1A, set-1B, sen/ospD3, virF, and invE. The pathogenic potential of the ShET-1B subunit was observed in relation to dehydration (P < 0.001) and ShET-2 related to the intestinal injury (P = 0.033) evidenced by the presence of bloody diarrhea. Our results show associations among symptoms of shigellosis and virulence genes of clinical isolates of Shigella spp. PMID:24877110

  6. Is Quorum Sensing Interference a Viable Alternative to Treat Pseudomonas aeruginosa Infections?

    PubMed Central

    García-Contreras, Rodolfo

    2016-01-01

    Quorum sensing (QS) coordinates the expression of multiple virulence factors in Pseudomonas aeruginosa; hence its inhibition has been postulated as a new alternative to treat its infections. In particular, QS interference approaches claim that they attenuate bacterial virulence without directly decreasing bacterial growth and suggest that in vivo the immune system would control the infections. Moreover, since in vitro experiments performed in rich medium demonstrate that interfering with QS decreases the production of virulence factors without affecting bacterial growth it was assumed than in vivo therapies will minimize the selection of resistant strains. Therefore, the underlying assumptions toward an effective implementation of a successful Quorum sensing interference (QSI) therapy for treating P. aeruginosa infections are that (i) QS only exerts important effects in the regulation of virulence genes but it does not affect metabolic processes linked to growth, (ii) the expression of virulence factors is only positively regulated by QS, (iii) inhibition of virulence factors in vivo do not affect bacterial growth, (iv) the immune system of the infected patients will be able to get rid of the infections, and (v) the therapy will be effective in the strains that are actively producing the infections. Nevertheless, for QSI in P. aeruginosa, substantial experimental evidence against the validity of most of these assumptions has accumulated during the past years, suggesting that a far better understanding of its virulence and its behavior during infections is needed in order to design truly solid QSI therapeutic alternatives to combat this remarkable pathogen. PMID:27683577

  7. Is Quorum Sensing Interference a Viable Alternative to Treat Pseudomonas aeruginosa Infections?

    PubMed

    García-Contreras, Rodolfo

    2016-01-01

    Quorum sensing (QS) coordinates the expression of multiple virulence factors in Pseudomonas aeruginosa; hence its inhibition has been postulated as a new alternative to treat its infections. In particular, QS interference approaches claim that they attenuate bacterial virulence without directly decreasing bacterial growth and suggest that in vivo the immune system would control the infections. Moreover, since in vitro experiments performed in rich medium demonstrate that interfering with QS decreases the production of virulence factors without affecting bacterial growth it was assumed than in vivo therapies will minimize the selection of resistant strains. Therefore, the underlying assumptions toward an effective implementation of a successful Quorum sensing interference (QSI) therapy for treating P. aeruginosa infections are that (i) QS only exerts important effects in the regulation of virulence genes but it does not affect metabolic processes linked to growth, (ii) the expression of virulence factors is only positively regulated by QS, (iii) inhibition of virulence factors in vivo do not affect bacterial growth, (iv) the immune system of the infected patients will be able to get rid of the infections, and (v) the therapy will be effective in the strains that are actively producing the infections. Nevertheless, for QSI in P. aeruginosa, substantial experimental evidence against the validity of most of these assumptions has accumulated during the past years, suggesting that a far better understanding of its virulence and its behavior during infections is needed in order to design truly solid QSI therapeutic alternatives to combat this remarkable pathogen.

  8. Agent-based dynamic knowledge representation of Pseudomonas aeruginosa virulence activation in the stressed gut: Towards characterizing host-pathogen interactions in gut-derived sepsis

    PubMed Central

    2011-01-01

    Background There is a growing realization that alterations in host-pathogen interactions (HPI) can generate disease phenotypes without pathogen invasion. The gut represents a prime region where such HPI can arise and manifest. Under normal conditions intestinal microbial communities maintain a stable, mutually beneficial ecosystem. However, host stress can lead to changes in environmental conditions that shift the nature of the host-microbe dialogue, resulting in escalation of virulence expression, immune activation and ultimately systemic disease. Effective modulation of these dynamics requires the ability to characterize the complexity of the HPI, and dynamic computational modeling can aid in this task. Agent-based modeling is a computational method that is suited to representing spatially diverse, dynamical systems. We propose that dynamic knowledge representation of gut HPI with agent-based modeling will aid in the investigation of the pathogenesis of gut-derived sepsis. Methodology/Principal Findings An agent-based model (ABM) of virulence regulation in Pseudomonas aeruginosa was developed by translating bacterial and host cell sense-and-response mechanisms into behavioral rules for computational agents and integrated into a virtual environment representing the host-microbe interface in the gut. The resulting gut milieu ABM (GMABM) was used to: 1) investigate a potential clinically relevant laboratory experimental condition not yet developed - i.e. non-lethal transient segmental intestinal ischemia, 2) examine the sufficiency of existing hypotheses to explain experimental data - i.e. lethality in a model of major surgical insult and stress, and 3) produce behavior to potentially guide future experimental design - i.e. suggested sample points for a potential laboratory model of non-lethal transient intestinal ischemia. Furthermore, hypotheses were generated to explain certain discrepancies between the behaviors of the GMABM and biological experiments, and new

  9. Common Virulence Factors and Tissue Targets of Entomopathogenic Bacteria for Biological Control of Lepidopteran Pests

    PubMed Central

    Castagnola, Anaïs; Stock, S. Patricia

    2014-01-01

    This review focuses on common insecticidal virulence factors from entomopathogenic bacteria with special emphasis on two insect pathogenic bacteria Photorhabdus (Proteobacteria: Enterobacteriaceae) and Bacillus (Firmicutes: Bacillaceae). Insect pathogenic bacteria of diverse taxonomic groups and phylogenetic origin have been shown to have striking similarities in the virulence factors they produce. It has been suggested that the detection of phage elements surrounding toxin genes, horizontal and lateral gene transfer events, and plasmid shuffling occurrences may be some of the reasons that virulence factor genes have so many analogs throughout the bacterial kingdom. Comparison of virulence factors of Photorhabdus, and Bacillus, two bacteria with dissimilar life styles opens the possibility of re-examining newly discovered toxins for novel tissue targets. For example, nematodes residing in the hemolymph may release bacteria with virulence factors targeting neurons or neuromuscular junctions. The first section of this review focuses on toxins and their context in agriculture. The second describes the mode of action of toxins from common entomopathogens and the third draws comparisons between Gram positive and Gram negative bacteria. The fourth section reviews the implications of the nervous system in biocontrol. PMID:24634779

  10. Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems.

    PubMed

    Singh, Braj R; Singh, Brahma N; Singh, Akanksha; Khan, Wasi; Naqvi, Alim H; Singh, Harikesh B

    2015-01-01

    Quorum sensing (QS) is a chemical communication process that Pseudomonas aeruginosa uses to regulate virulence and biofilm formation. Disabling of QS is an emerging approach for combating its pathogenicity. Silver nanoparticles (AgNPs) have been widely applied as antimicrobial agents against human pathogenic bacteria and fungi, but not for the attenuation of bacterial QS. Here we mycofabricated AgNPs (mfAgNPs) using metabolites of soil fungus Rhizopus arrhizus BRS-07 and tested their effect on QS-regulated virulence and biofilm formation of P. aeruginosa. Transcriptional studies demonstrated that mfAgNPs reduced the levels of LasIR-RhlIR. Treatment of mfAgNPs inhibited biofilm formation, production of several virulence factors (e.g. LasA protease, LasB elastrase, pyocyanin, pyoverdin, pyochelin, rhamnolipid, and alginate) and reduced AHLs production. Further genes quantification analyses revealed that mfAgNPs significantly down-regulated QS-regulated genes, specifically those encoded to the secretion of virulence factors. The results clearly indicated the anti-virulence property of mfAgNPs by inhibiting P. aeruginosa QS signaling. PMID:26347993

  11. Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems

    PubMed Central

    Singh, Braj R.; Singh, Brahma N.; Singh, Akanksha; Khan, Wasi; Naqvi, Alim H.; Singh, Harikesh B.

    2015-01-01

    Quorum sensing (QS) is a chemical communication process that Pseudomonas aeruginosa uses to regulate virulence and biofilm formation. Disabling of QS is an emerging approach for combating its pathogenicity. Silver nanoparticles (AgNPs) have been widely applied as antimicrobial agents against human pathogenic bacteria and fungi, but not for the attenuation of bacterial QS. Here we mycofabricated AgNPs (mfAgNPs) using metabolites of soil fungus Rhizopus arrhizus BRS-07 and tested their effect on QS-regulated virulence and biofilm formation of P. aeruginosa. Transcriptional studies demonstrated that mfAgNPs reduced the levels of LasIR-RhlIR. Treatment of mfAgNPs inhibited biofilm formation, production of several virulence factors (e.g. LasA protease, LasB elastrase, pyocyanin, pyoverdin, pyochelin, rhamnolipid, and alginate) and reduced AHLs production. Further genes quantification analyses revealed that mfAgNPs significantly down-regulated QS-regulated genes, specifically those encoded to the secretion of virulence factors. The results clearly indicated the anti-virulence property of mfAgNPs by inhibiting P. aeruginosa QS signaling. PMID:26347993

  12. A peptide factor secreted by Staphylococcus pseudintermedius exhibits properties of both bacteriocins and virulence factors

    PubMed Central

    Wladyka, Benedykt; Piejko, Marcin; Bzowska, Monika; Pieta, Piotr; Krzysik, Monika; Mazurek, Łukasz; Guevara-Lora, Ibeth; Bukowski, Michał; Sabat, Artur J.; Friedrich, Alexander W.; Bonar, Emilia; Międzobrodzki, Jacek; Dubin, Adam; Mak, Paweł

    2015-01-01

    Staphylococcus pseudintermedius is a common commensal bacterium colonizing the skin and mucosal surfaces of household animals. However, it has recently emerged as a dangerous opportunistic pathogen, comparable to S. aureus for humans. The epidemiological situation is further complicated by the increasing number of methicillin-resistant S. pseudintermedius infections and evidence of gene transmission driving antibiotic resistance between staphylococci colonizing human and zoonotic hosts. In the present study, we describe a unique peptide, BacSp222, that possesses features characteristic of both bacteriocins and virulence factors. BacSp222 is secreted in high quantities by S. pseudintermedius strain 222 isolated from dog skin lesions. This linear, fifty-amino-acid highly cationic peptide is plasmid-encoded and does not exhibit significant sequence similarities to any other known peptides or proteins. BacSp222 kills gram-positive bacteria (at doses ranging from 0.1 to several micromol/l) but also demonstrates significant cytotoxic activities towards eukaryotic cells at slightly higher concentrations. Moreover, at nanomolar concentrations, the peptide also possesses modulatory properties, efficiently enhancing interferon gamma-induced nitric oxide release in murine macrophage-like cell lines. BacSp222 appears to be one of the first examples of multifunctional peptides that breaks the convention of splitting bacteriocins and virulence factors into two unrelated groups. PMID:26411997

  13. A peptide factor secreted by Staphylococcus pseudintermedius exhibits properties of both bacteriocins and virulence factors.

    PubMed

    Wladyka, Benedykt; Piejko, Marcin; Bzowska, Monika; Pieta, Piotr; Krzysik, Monika; Mazurek, Łukasz; Guevara-Lora, Ibeth; Bukowski, Michał; Sabat, Artur J; Friedrich, Alexander W; Bonar, Emilia; Międzobrodzki, Jacek; Dubin, Adam; Mak, Paweł

    2015-09-28

    Staphylococcus pseudintermedius is a common commensal bacterium colonizing the skin and mucosal surfaces of household animals. However, it has recently emerged as a dangerous opportunistic pathogen, comparable to S. aureus for humans. The epidemiological situation is further complicated by the increasing number of methicillin-resistant S. pseudintermedius infections and evidence of gene transmission driving antibiotic resistance between staphylococci colonizing human and zoonotic hosts. In the present study, we describe a unique peptide, BacSp222, that possesses features characteristic of both bacteriocins and virulence factors. BacSp222 is secreted in high quantities by S. pseudintermedius strain 222 isolated from dog skin lesions. This linear, fifty-amino-acid highly cationic peptide is plasmid-encoded and does not exhibit significant sequence similarities to any other known peptides or proteins. BacSp222 kills gram-positive bacteria (at doses ranging from 0.1 to several micromol/l) but also demonstrates significant cytotoxic activities towards eukaryotic cells at slightly higher concentrations. Moreover, at nanomolar concentrations, the peptide also possesses modulatory properties, efficiently enhancing interferon gamma-induced nitric oxide release in murine macrophage-like cell lines. BacSp222 appears to be one of the first examples of multifunctional peptides that breaks the convention of splitting bacteriocins and virulence factors into two unrelated groups.

  14. A peptide factor secreted by Staphylococcus pseudintermedius exhibits properties of both bacteriocins and virulence factors.

    PubMed

    Wladyka, Benedykt; Piejko, Marcin; Bzowska, Monika; Pieta, Piotr; Krzysik, Monika; Mazurek, Łukasz; Guevara-Lora, Ibeth; Bukowski, Michał; Sabat, Artur J; Friedrich, Alexander W; Bonar, Emilia; Międzobrodzki, Jacek; Dubin, Adam; Mak, Paweł

    2015-01-01

    Staphylococcus pseudintermedius is a common commensal bacterium colonizing the skin and mucosal surfaces of household animals. However, it has recently emerged as a dangerous opportunistic pathogen, comparable to S. aureus for humans. The epidemiological situation is further complicated by the increasing number of methicillin-resistant S. pseudintermedius infections and evidence of gene transmission driving antibiotic resistance between staphylococci colonizing human and zoonotic hosts. In the present study, we describe a unique peptide, BacSp222, that possesses features characteristic of both bacteriocins and virulence factors. BacSp222 is secreted in high quantities by S. pseudintermedius strain 222 isolated from dog skin lesions. This linear, fifty-amino-acid highly cationic peptide is plasmid-encoded and does not exhibit significant sequence similarities to any other known peptides or proteins. BacSp222 kills gram-positive bacteria (at doses ranging from 0.1 to several micromol/l) but also demonstrates significant cytotoxic activities towards eukaryotic cells at slightly higher concentrations. Moreover, at nanomolar concentrations, the peptide also possesses modulatory properties, efficiently enhancing interferon gamma-induced nitric oxide release in murine macrophage-like cell lines. BacSp222 appears to be one of the first examples of multifunctional peptides that breaks the convention of splitting bacteriocins and virulence factors into two unrelated groups. PMID:26411997

  15. Insights from the predicted epitope similarity between Mycobacterium tuberculosis virulent factors and its human homologs

    PubMed Central

    Gutlapalli, Venkata Ravi; Sykam, Aparna; Nayarisseri, Anuraj; Suneetha, Sujai; Suneetha, Lavanya M

    2015-01-01

    Mycobacterium tuberculosis is known to be associated with several autoimmune diseases such as systemic lupus erythematous, rheumatoid arthritis and multiple sclerosis. This is attributed to sequence similarity between virulent factors and human proteins. Therefore, it is of interest to identify such regions in the virulent factors to assess potential autoimmune related information. M. tb specific virulent factors were downloaded from the VFDB database and its human homologs were identified using the sequence comparison search tool BLASTP. Both virulent proteins and their corresponding human homologs were further scanned for epitopes (B cell and HLA class I and II allele specific) using prediction programs (BCPRED and NETMHC). Data shows the presence of matching 22 B-cell, 79 HLA class II and 16 HLA class I specific predicted epitopes in these virulent factors having human homologs. A known peptide (HAFYLQYKNVKVDFA) associated with autoimmune atopic dermatitis is shown in the superoxide dismutase homolog structures of the bacterium (PDB ID: 1IDS) and human (PDB ID: 2QKC). This data provides insight into the understanding of infection-associated auto-immunity PMID:26770024

  16. RNA Helicase Important for Listeria monocytogenes Hemolytic Activity and Virulence Factor Expression

    PubMed Central

    Netterling, Sakura; Bäreclev, Caroline; Vaitkevicius, Karolis

    2015-01-01

    RNA helicases have been shown to be important for the function of RNA molecules at several levels, although their putative involvement in microbial pathogenesis has remained elusive. We have previously shown that Listeria monocytogenes DExD-box RNA helicases are important for bacterial growth, motility, ribosomal maturation, and rRNA processing. We assessed the importance of the RNA helicase Lmo0866 (here named CshA) for expression of virulence traits. We observed a reduction in hemolytic activity in a strain lacking CshA compared to the wild type. This phenomenon was less evident in strains lacking other RNA helicases. The reduced hemolysis was accompanied by lower expression of major listerial virulence factors in the ΔcshA strain, mainly listeriolysin O, but also to some degree the actin polymerizing factor ActA. Reduced expression of these virulence factors in the strain lacking CshA did not, however, correlate with a decreased level of the virulence regulator PrfA. When combining the ΔcshA knockout with a mutation creating a constitutively active PrfA protein (PrfA*), the effect of the ΔcshA knockout on LLO expression was negated. These data suggest a role for the RNA helicase CshA in posttranslational activation of PrfA. Surprisingly, although the expression of several virulence factors was reduced, the ΔcshA strain did not demonstrate any reduced ability to infect nonphagocytic cells compared to the wild-type strain. PMID:26483402

  17. Photodynamic inactivation of virulence factors of Candida strains isolated from patients with denture stomatitis.

    PubMed

    Pereira, Cristiane Aparecida; Domingues, Nádia; Silva, Michelle Peneluppi; Costa, Anna Carolina Borges Pereira; Junqueira, Juliana Campos; Jorge, Antonio Olavo Cardoso

    2015-12-01

    Candida species are major microorganisms isolated in denture stomatitis (DS), an inflammatory process of the mucosa underlying removable dental prostheses, and express a variety of virulence factors that can increase their pathogenicity. The potential of Photodynamic inactivation (PDI) in planktonic culture, biofilms and virulence factors of Candida strains was evaluated. A total of 48 clinical Candida isolates from individuals wearing removable maxillary prostheses with DS were included in the study. The effects of erythrosine (ER, 200 μM) and a green LED (λ 532 ± 10 nm, 237 mW/cm(2) and 42.63 J/cm(2)) in a planktonic culture were evaluated. The effect of the addition of ER at a concentration of 400 μM together with a green LED was evaluated in biofilms. The virulence factors of all of the Candida strains were evaluated before and after the PDI process in cells derived from biofilm and planktonic assays. All of the Candida species were susceptible to ER and green LED. However, the biofilm structures were more resistant to PDI than the planktonic cultures. PDI also promoted slight reductions in most of the virulence factors of C. albicans and some of the Candida tropicalis strains. These results suggest that the addition of PDI is effective for reducing yeasts and may also reduce the virulence of certain Candida species and decrease their pathogenicity.

  18. Analysis of quorum sensing-deficient clinical isolates of Pseudomonas aeruginosa.

    PubMed

    Schaber, J Andy; Carty, Nancy L; McDonald, Naomi A; Graham, Eric D; Cheluvappa, Rajkumar; Griswold, John A; Hamood, Abdul N

    2004-09-01

    Pseudomonas aeruginosa produces multiple virulence factors and causes different types of infections. Previous clinical studies identified P. aeruginosa isolates that lack individual virulence factors. However, the impact of losing several virulence factors simultaneously on the in vivo virulence of P. aeruginosa is not completely understood. The P. aeruginosa cell-to-cell communication system, or quorum sensing (QS), controls the production of several virulence factors. Animal studies using constructed QS mutants indicated that loss of the QS system severely impacts the virulence of P. aeruginosa. In this study, we tried to determine if deficiency within the QS system compromises the ability of P. aeruginosa to establish infections in humans. We have identified five QS-deficient strains through screening 200 isolates from patients with urinary tract, lower respiratory tract and wound infections. These strains lacked LasB and LasA activities and produced either no or very low levels of the autoinducers N-(3-oxododecanoyl) homoserine lactone and N-butyryl homoserine lactone. PCR analysis revealed that three isolates contained all four QS genes (lasI, lasR, rhlI and rhlR) while two isolates lacked both the lasR and rhlR genes. We also examined the five isolates for other virulence factors. The isolates produced variable levels of exotoxin A and, with one exception, were deficient in pyocyanin production. One isolate produced the type III secretion system (TTSS) effector proteins ExoS and ExoT, two isolates produced ExoT only and two isolates produced no TTSS proteins. The isolates produced weak to moderate biofilms on abiotic surfaces. Analysis of the patients' data revealed that two of the isolates represented a single strain that was isolated twice from the same patient within a 1 month interval. One QS-deficient clinical isolate (CI-1) lacked all tested virulence factors and produced a weak biofilm. These results suggest that naturally occurring QS

  19. Pathogen virulence factors as molecular probes of basic plant cellular functions.

    PubMed

    Speth, Elena Bray; Lee, Young Nam; He, Sheng Yang

    2007-12-01

    To successfully colonize plants, pathogens have evolved a myriad of virulence factors that allow them to manipulate host cellular pathways in order to gain entry into, multiply and move within, and eventually exit the host for a new infection cycle. In the past few years, substantial progress has been made in characterizing the host targets of viral and bacterial virulence factors, providing unique insights into basic plant cellular processes such as gene silencing, vesicle trafficking, hormone signaling, and innate immunity. Identification of the host targets of additional pathogen virulence factors promises to continue shedding light on fundamental cellular mechanisms in plants, thus enhancing our understanding of plant signaling, metabolism, and cell biology. PMID:17884715

  20. Color me bad: microbial pigments as virulence factors

    PubMed Central

    Liu, George Y.; Nizet, Victor

    2009-01-01

    A hallmark feature of several pathogenic microbes is the distinctive color of their colonies when propagated in the clinical laboratory. Such pigmentation comes in a variety of hues, and has often proven useful in presumptive clinical diagnosis. Recent advances in microbial pigment biochemistry and the genetic basis of pigment production has sometimes revealed a more sinister aspect to these curious materials that change the color of reflected light by selective light absorbance. In many cases, the microbial pigment contributes to disease pathogenesis by interfering with host immune clearance mechanisms or by exhibiting pro-inflammatory or cytotoxic properties. Here, we review several examples of pigments that promote microbial virulence, including the golden staphyloxanthin of Staphylococcus aureus, the blue-green pyocyanin of Pseudomonas spp., and the dark brown or black melanin pigments of Cryptococcus neoformans and Aspergillus spp. Targeted pigment neutralization may represent a viable concept to enhance treatment of certain difficult infectious disease conditions. PMID:19726196

  1. The red pigment prodigiosin is not an essential virulence factor in entomopathogenic Serratia marcescens.

    PubMed

    Zhou, Wei; Li, JingHua; Chen, Jie; Liu, XiaoYuan; Xiang, TingTing; Zhang, Lin; Wan, YongJi

    2016-05-01

    Although pigments produced by pathogenic microbes are generally hypothesized as essential virulence factors, the role of red pigment prodigiosin in the pathogenesis of entomopathogenic Serratia marcescens is not clear. In this study, we analyzed the pathogenicity of different pigmented S. marcescens strains and their non-pigmented mutants in silkworms. Each pigmented strain and the corresponding non-pigmented mutants showed very similar LD50 value (statistically no difference), but caused very different symptom (color of the dead larva). Our results clearly indicated that the red pigment prodigiosin is not an essential virulence factor in entomopathogenic S. marcescens.

  2. [Phenotypic characteristics and virulence factors in Aeromonas strains isolated from patients with diarrheic disease in Cuba].

    PubMed

    Bravo, Laura; Fernández, Anabel; Ledo, Judith; Ramírez, Margarita; Aguila, Adalberto; Núñez, Fidel A; Cabrera, Luis E; Cruz, Yanaika

    2011-04-01

    Fifty four strains of Aeromonas spp were isolated from patients with acute diarrheic episodes by using Aerokey II and Aeroesquema methods. In vitro antimicrobial susceptibility and virulence factors were analyzed. The most frequently isolated specie was Aeromonas caviae. Over 75% of strains exhibited resistance to penicillins and ce-phalosporins; for the other antibiotic groups resistance was under 20%. Twenty six strains (48.1 %) were multiresist-ant. At least one virulence factor among those evaluated in the study was present in 53 (98.1%) of the 54 strains. PMID:21720696

  3. Electrochemically monitoring the antibiotic susceptibility of Pseudomonas aeruginosa biofilms.

    PubMed

    Webster, Thaddaeus A; Sismaet, Hunter J; Chan, I-ping J; Goluch, Edgar D

    2015-11-01

    The condition of cells in Pseudomonas aeruginosa biofilms was monitored via the electrochemical detection of the electro-active virulence factor pyocyanin in a fabricated microfluidic growth chamber coupled with a disposable three electrode cell. Cells were exposed to 4, 16, and 100 mg L(-1) colistin sulfate after overnight growth. At the end of testing, the measured maximum peak current (and therefore pyocyanin concentration) was reduced by approximately 68% and 82% in P. aeruginosa exposed to 16 and 100 mg L(-1) colistin sulfate, respectively. Samples were removed from the microfluidic chamber, analyzed for viability using staining, and streaked onto culture plates to confirm that the P. aeruginosa cells were affected by the antibiotics. The correlation between electrical signal drop and the viability of P. aeruginosa cells after antibiotic exposure highlights the usefulness of this approach for future low cost antibiotic screening applications.

  4. Pseudomonas aeruginosa Diversification during Infection Development in Cystic Fibrosis Lungs-A Review.

    PubMed

    Sousa, Ana Margarida; Pereira, Maria Olívia

    2014-01-01

    Pseudomonas aeruginosa is the most prevalent pathogen of cystic fibrosis (CF) lung disease. Its long persistence in CF airways is associated with sophisticated mechanisms of adaptation, including biofilm formation, resistance to antibiotics, hypermutability and customized pathogenicity in which virulence factors are expressed according the infection stage. CF adaptation is triggered by high selective pressure of inflamed CF lungs and by antibiotic treatments. Bacteria undergo genetic, phenotypic, and physiological variations that are fastened by the repeating interplay of mutation and selection. During CF infection development, P. aeruginosa gradually shifts from an acute virulent pathogen of early infection to a host-adapted pathogen of chronic infection. This paper reviews the most common changes undergone by P. aeruginosa at each stage of infection development in CF lungs. The comprehensive understanding of the adaptation process of P. aeruginosa may help to design more effective antimicrobial treatments and to identify new targets for future drugs to prevent the progression of infection to chronic stages. PMID:25438018

  5. Pseudomonas aeruginosa Diversification during Infection Development in Cystic Fibrosis Lungs—A Review

    PubMed Central

    Sousa, Ana Margarida; Pereira, Maria Olívia

    2014-01-01

    Pseudomonas aeruginosa is the most prevalent pathogen of cystic fibrosis (CF) lung disease. Its long persistence in CF airways is associated with sophisticated mechanisms of adaptation, including biofilm formation, resistance to antibiotics, hypermutability and customized pathogenicity in which virulence factors are expressed according the infection stage. CF adaptation is triggered by high selective pressure of inflamed CF lungs and by antibiotic treatments. Bacteria undergo genetic, phenotypic, and physiological variations that are fastened by the repeating interplay of mutation and selection. During CF infection development, P. aeruginosa gradually shifts from an acute virulent pathogen of early infection to a host-adapted pathogen of chronic infection. This paper reviews the most common changes undergone by P. aeruginosa at each stage of infection development in CF lungs. The comprehensive understanding of the adaptation process of P. aeruginosa may help to design more effective antimicrobial treatments and to identify new targets for future drugs to prevent the progression of infection to chronic stages. PMID:25438018

  6. Lichen secondary metabolite evernic acid as potential quorum sensing inhibitor against Pseudomonas aeruginosa.

    PubMed

    Gökalsın, Barış; Sesal, Nüzhet Cenk

    2016-09-01

    Cystic Fibrosis is a genetic disease and it affects the respiratory and digestive systems. Pseudomonas aeruginosa infections in Cystic Fibrosis are presented as the main cause for high mortality and morbidity rates. Pseudomonas aeruginosa populations can regulate their virulence gene expressions via the bacterial communication system: quorum sensing. Inhibition of quorum sensing by employing quorum sensing inhibitors can leave the bacteria vulnerable. Therefore, determining natural sources to obtain potential quorum sensing inhibitors is essential. Lichens have ethnobotanical value for their medicinal properties and it is possible that their secondary metabolites have quorum sensing inhibitor properties. This study aims to investigate an alternative treatment approach by utilizing lichen secondary metabolite evernic acid to reduce the expressions of Pseudomonas aeruginosa virulence factors by inhibiting quorum sensing. For this purpose, fluorescent monitor strains were utilized for quorum sensing inhibitor screens and quantitative reverse-transcriptase PCR analyses were conducted for comparison. Results indicate that evernic acid is capable of inhibiting Pseudomonas aeruginosa quorum sensing systems.

  7. Crystal Structure of the Protease-Resistant Core Domain of Yersinia Pestis Virulence Factor Yopr

    SciTech Connect

    Schubot,F.; Cherry, S.; Austin, B.; Tropea, J.; Waugh, D.

    2005-01-01

    Yersinia pestis, the causative agent of the plague, employs a type III secretion system (T3SS) to secrete and translocate virulence factors into the cytoplasm of mammalian host cells. One of the secreted virulence factors is YopR. Little is known about the function of YopR other than that it is secreted into the extracellular milieu during the early stages of infection and that it contributes to virulence. Hoping to gain some insight into the function of YopR, we determined the crystal structure of its protease-resistant core domain, which consists of residues 38--149 out of 165 amino acids. The core domain is composed of five {alpha}-helices that display unexpected structural similarity with one domain of YopN, a central regulator of type III secretion in Y. pestis. This finding raises the possibility that YopR may play a role in the regulation of type III secretion.

  8. Streptolysin S-like virulence factors: the continuing sagA

    PubMed Central

    Molloy, Evelyn M.; Cotter, Paul D.; Hill, Colin; Mitchell, Douglas A.; Ross, R. Paul

    2014-01-01

    Streptolysin S (SLS) is a potent cytolytic toxin and virulence factor produced by nearly all Streptococcus pyogenes strains. Despite a 100-year history of research on this toxin, it has only recently been established that SLS represents the archetypal example of an extended family of post-translationally modified virulence factors also produced by some other streptococci and Gram-positive pathogens, such as Listeria monocytogenes and Clostridium botulinum. In this Review we describe the identification, genetics, biochemistry and various functions of SLS. We also discuss the shared features of the virulence-associated SLS-like peptides, as well as their place within the rapidly expanding family of thiazole/oxazole-modified microcins (TOMMs). PMID:21822292

  9. Flagella of Salmonella typhimurium are a virulence factor in infected C57BL/6J mice.

    PubMed Central

    Carsiotis, M; Weinstein, D L; Karch, H; Holder, I A; O'Brien, A D

    1984-01-01

    To determine whether flagella, chemotaxis, and motility of Salmonella typhimurium are virulence factors in infected C57BL/6J mice, we constructed isogenic pairs of derivatives of the nonfimbriated virulent strain SL3201. Of each pair, one member contained a mutation in a single gene that is required for expression of normal chemotactically directed motility, whereas the other member contained the wild-type form of the gene. No additional differences between the members of a pair were evident. The phenotypic parameters examined for all derivatives included in vitro growth rate, sensitivity to P22 phage, amino acid auxotrophy, and biotype. For a flagellated and nonflagellated pair, the electron microscopic appearance of each member was examined as well as its lipopolysaccharide and outer membrane profiles by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The virulence of the various derivatives was then assessed in mice challenged orally, intraperitoneally, or intravenously. The results established that flagella, whether functional or nonfunctional as organelles of motility, were S. typhimurium virulence factors and that neither chemotaxis nor motility was required for virulence. Images PMID:6389363

  10. High therapeutic index of factor C Sushi peptides: potent antimicrobials against Pseudomonas aeruginosa.

    PubMed

    Yau, Y H; Ho, B; Tan, N S; Ng, M L; Ding, J L

    2001-10-01

    Factor C protein isolated from the horseshoe crab, Carcinoscorpius rotundicauda, has endotoxin binding capability. Synthetic peptides of 34 amino acids based on the sequence of two regions of factor C (Sushi 1 and Sushi 3) as well as their corresponding mutants exhibited activities against 30 clinical isolates of Pseudomonas aeruginosa. Collectively, all four peptides demonstrated exceptionally effective bactericidal activity against P. aeruginosa with 90% minimal bactericidal concentrations (MBC(90)s) in the range of 0.06 to 0.25 microg/ml (16 to 63 nM). Viable bacteria were reduced by 90% after 7 min and were totally eradicated within 40 to 50 min. These peptides are minimally hemolytic against both rabbit and human erythrocytes even at concentrations up to 1,600-fold their MBC(90)s. Both in vitro and in vivo studies indicate that cytotoxic effects are small even at 1,000-fold their MBC(90)s. Furthermore, the Sushi peptides are tolerant of high-salt and adverse pH conditions. These findings demonstrate the promising therapeutic potential of the Sushi peptides.

  11. Crystal Structure of the Cystic Fibrosis Transmembrane Conductance Regulator Inhibitory Factor Cif Reveals Novel Active-Site Features of an Epoxide Hydrolase Virulence Factor

    SciTech Connect

    Bahl, C.; Morisseau, C; Bomberger, J; Stanton, B; Hammock, B; O' Toole, G; Madden, D

    2010-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif) is a virulence factor secreted by Pseudomonas aeruginosa that reduces the quantity of CFTR in the apical membrane of human airway epithelial cells. Initial sequence analysis suggested that Cif is an epoxide hydrolase (EH), but its sequence violates two strictly conserved EH motifs and also is compatible with other {alpha}/{beta} hydrolase family members with diverse substrate specificities. To investigate the mechanistic basis of Cif activity, we have determined its structure at 1.8-{angstrom} resolution by X-ray crystallography. The catalytic triad consists of residues Asp129, His297, and Glu153, which are conserved across the family of EHs. At other positions, sequence deviations from canonical EH active-site motifs are stereochemically conservative. Furthermore, detailed enzymatic analysis confirms that Cif catalyzes the hydrolysis of epoxide compounds, with specific activity against both epibromohydrin and cis-stilbene oxide, but with a relatively narrow range of substrate selectivity. Although closely related to two other classes of {alpha}/{beta} hydrolase in both sequence and structure, Cif does not exhibit activity as either a haloacetate dehalogenase or a haloalkane dehalogenase. A reassessment of the structural and functional consequences of the H269A mutation suggests that Cif's effect on host-cell CFTR expression requires the hydrolysis of an extended endogenous epoxide substrate.

  12. Enhancing the Feasibility of Microcystis aeruginosa as a Feedstock for Bioethanol Production under the Influence of Various Factors

    PubMed Central

    Lee, Moon Geon; Seo, Hyo Jin; Shin, Jin Hyuk; Shin, Tai Sun; Kim, Min Yong; Choi, Jong Il

    2016-01-01

    Microcystis aeruginosa, a freshwater microalga, is capable of producing and accumulating different types of sugars in its biomass which make it a good feedstock for bioethanol production. Present study aims to investigate the effect of different factors increasing growth rate and carbohydrates productivity of M. aeruginosa. MF media (modified BG11 media) and additional ingredients such as aminolevulinic acid (2 mM), lysine (2.28 mM), alanine (1 mM), and Naphthalene acetic acid (1 mM) as cytokine promoted M. aeruginosa growth and sugar contents. Salmonella showed growth-assisting effect on M. aeruginosa. Enhanced growth rate and carbohydrates contents were observed in M. aeruginosa culture grown at 25°C under red LED light of 90 μmolm−2s−1 intensity. More greenish and carbohydrates rich M. aeruginosa biomass was prepared (final OD660 nm = 2.21 and sugar contents 10.39 mM/mL) as compared to control (maximum OD660 nm = 1.4 and sugar contents 3 mM/mL). The final algae biomass was converted to algae juice through a specific pretreatment method. The resulted algae Juice was used as a substrate in fermentation process. Highest yield of bioethanol (50 mM/mL) was detected when Brettanomyces custersainus, Saccharomyces cerevisiae, and Pichia stipitis were used in combinations for fermentation process as compared to their individual fermentation. The results indicated the influence of different factors on the growth rate and carbohydrates productivity of M. aeruginosa and its feasibility as a feedstock for fermentative ethanol production. PMID:27556034

  13. Enhancing the Feasibility of Microcystis aeruginosa as a Feedstock for Bioethanol Production under the Influence of Various Factors.

    PubMed

    Khan, Muhammad Imran; Lee, Moon Geon; Seo, Hyo Jin; Shin, Jin Hyuk; Shin, Tai Sun; Yoon, Yang Ho; Kim, Min Yong; Choi, Jong Il; Kim, Jong Deog

    2016-01-01

    Microcystis aeruginosa, a freshwater microalga, is capable of producing and accumulating different types of sugars in its biomass which make it a good feedstock for bioethanol production. Present study aims to investigate the effect of different factors increasing growth rate and carbohydrates productivity of M. aeruginosa. MF media (modified BG11 media) and additional ingredients such as aminolevulinic acid (2 mM), lysine (2.28 mM), alanine (1 mM), and Naphthalene acetic acid (1 mM) as cytokine promoted M. aeruginosa growth and sugar contents. Salmonella showed growth-assisting effect on M. aeruginosa. Enhanced growth rate and carbohydrates contents were observed in M. aeruginosa culture grown at 25°C under red LED light of 90 μmolm(-2)s(-1) intensity. More greenish and carbohydrates rich M. aeruginosa biomass was prepared (final OD660 nm = 2.21 and sugar contents 10.39 mM/mL) as compared to control (maximum OD660 nm = 1.4 and sugar contents 3 mM/mL). The final algae biomass was converted to algae juice through a specific pretreatment method. The resulted algae Juice was used as a substrate in fermentation process. Highest yield of bioethanol (50 mM/mL) was detected when Brettanomyces custersainus, Saccharomyces cerevisiae, and Pichia stipitis were used in combinations for fermentation process as compared to their individual fermentation. The results indicated the influence of different factors on the growth rate and carbohydrates productivity of M. aeruginosa and its feasibility as a feedstock for fermentative ethanol production. PMID:27556034

  14. Functional genomic characterization of virulence factors from necrotizing fasciitis-causing strains of Aeromonas hydrophila.

    PubMed

    Grim, Christopher J; Kozlova, Elena V; Ponnusamy, Duraisamy; Fitts, Eric C; Sha, Jian; Kirtley, Michelle L; van Lier, Christina J; Tiner, Bethany L; Erova, Tatiana E; Joseph, Sandeep J; Read, Timothy D; Shak, Joshua R; Joseph, Sam W; Singletary, Ed; Felland, Tracy; Baze, Wallace B; Horneman, Amy J; Chopra, Ashok K

    2014-07-01

    The genomes of 10 Aeromonas isolates identified and designated Aeromonas hydrophila WI, Riv3, and NF1 to NF4; A. dhakensis SSU; A. jandaei Riv2; and A. caviae NM22 and NM33 were sequenced and annotated. Isolates NF1 to NF4 were from a patient with necrotizing fasciitis (NF). Two environmental isolates (Riv2 and -3) were from the river water from which the NF patient acquired the infection. While isolates NF2 to NF4 were clonal, NF1 was genetically distinct. Outside the conserved core genomes of these 10 isolates, several unique genomic features were identified. The most virulent strains possessed one of the following four virulence factors or a combination of them: cytotoxic enterotoxin, exotoxin A, and type 3 and 6 secretion system effectors AexU and Hcp. In a septicemic-mouse model, SSU, NF1, and Riv2 were the most virulent, while NF2 was moderately virulent. These data correlated with high motility and biofilm formation by the former three isolates. Conversely, in a mouse model of intramuscular infection, NF2 was much more virulent than NF1. Isolates NF2, SSU, and Riv2 disseminated in high numbers from the muscular tissue to the visceral organs of mice, while NF1 reached the liver and spleen in relatively lower numbers on the basis of colony counting and tracking of bioluminescent strains in real time by in vivo imaging. Histopathologically, degeneration of myofibers with significant infiltration of polymorphonuclear cells due to the highly virulent strains was noted. Functional genomic analysis provided data that allowed us to correlate the highly infectious nature of Aeromonas pathotypes belonging to several different species with virulence signatures and their potential ability to cause NF.

  15. Functional Genomic Characterization of Virulence Factors from Necrotizing Fasciitis-Causing Strains of Aeromonas hydrophila

    PubMed Central

    Grim, Christopher J.; Kozlova, Elena V.; Ponnusamy, Duraisamy; Fitts, Eric C.; Sha, Jian; Kirtley, Michelle L.; van Lier, Christina J.; Tiner, Bethany L.; Erova, Tatiana E.; Joseph, Sandeep J.; Read, Timothy D.; Shak, Joshua R.; Joseph, Sam W.; Singletary, Ed; Felland, Tracy; Baze, Wallace B.; Horneman, Amy J.

    2014-01-01

    The genomes of 10 Aeromonas isolates identified and designated Aeromonas hydrophila WI, Riv3, and NF1 to NF4; A. dhakensis SSU; A. jandaei Riv2; and A. caviae NM22 and NM33 were sequenced and annotated. Isolates NF1 to NF4 were from a patient with necrotizing fasciitis (NF). Two environmental isolates (Riv2 and -3) were from the river water from which the NF patient acquired the infection. While isolates NF2 to NF4 were clonal, NF1 was genetically distinct. Outside the conserved core genomes of these 10 isolates, several unique genomic features were identified. The most virulent strains possessed one of the following four virulence factors or a combination of them: cytotoxic enterotoxin, exotoxin A, and type 3 and 6 secretion system effectors AexU and Hcp. In a septicemic-mouse model, SSU, NF1, and Riv2 were the most virulent, while NF2 was moderately virulent. These data correlated with high motility and biofilm formation by the former three isolates. Conversely, in a mouse model of intramuscular infection, NF2 was much more virulent than NF1. Isolates NF2, SSU, and Riv2 disseminated in high numbers from the muscular tissue to the visceral organs of mice, while NF1 reached the liver and spleen in relatively lower numbers on the basis of colony counting and tracking of bioluminescent strains in real time by in vivo imaging. Histopathologically, degeneration of myofibers with significant infiltration of polymorphonuclear cells due to the highly virulent strains was noted. Functional genomic analysis provided data that allowed us to correlate the highly infectious nature of Aeromonas pathotypes belonging to several different species with virulence signatures and their potential ability to cause NF. PMID:24795370

  16. Discovery of Salmonella virulence factors translocated via outer membrane vesicles to murine macrophages.

    PubMed

    Yoon, Hyunjin; Ansong, Charles; Adkins, Joshua N; Heffron, Fred

    2011-06-01

    Salmonella enterica serovar Typhimurium, an intracellular pathogen and leading cause of food-borne illness, encodes a plethora of virulence effectors. Salmonella virulence factors are translocated into host cells and manipulate host cellular activities, providing a more hospitable environment for bacterial proliferation. In this study, we report a new set of virulence factors that is translocated into the host cytoplasm via bacterial outer membrane vesicles (OMV). PagK (or PagK1), PagJ, and STM2585A (or PagK2) are small proteins composed of ∼70 amino acids and have high sequence homology to each other (>85% identity). Salmonella lacking all three homologues was attenuated for virulence in a mouse infection model, suggesting at least partial functional redundancy among the homologues. While each homologue was translocated into the macrophage cytoplasm, their translocation was independent of all three Salmonella gene-encoded type III secretion systems (T3SSs)-Salmonella pathogenicity island 1 (SPI-1) T3SS, SPI-2 T3SS, and the flagellar system. Selected methods, including direct microscopy, demonstrated that the PagK-homologous proteins were secreted through OMV, which were enriched with lipopolysaccharide (LPS) and outer membrane proteins. Vesicles produced by intracellular bacteria also contained lysosome-associated membrane protein 1 (LAMP1), suggesting the possibility of OMV convergence with host cellular components during intracellular trafficking. This study identified novel Salmonella virulence factors secreted via OMV and demonstrated that OMV can function as a vehicle to transfer virulence determinants to the cytoplasm of the infected host cell.

  17. Identification of Novel Listeria monocytogenes Secreted Virulence Factors following Mutational Activation of the Central Virulence Regulator, PrfA▿ †

    PubMed Central

    Port, Gary C.; Freitag, Nancy E.

    2007-01-01

    Upon bacterial entry into the cytosol of infected mammalian host cells, the central virulence regulator PrfA of Listeria monocytogenes becomes activated and induces the expression of numerous factors which contribute to bacterial pathogenesis. The mechanism or signal by which PrfA becomes activated during the course of infection has not yet been determined; however, several amino acid substitutions within PrfA (known as PrfA* mutations) that appear to lock the protein into a constitutively activated state have been identified. In this study, the PrfA activation statuses of several L. monocytogenes mutant strains were subjected to direct isogenic comparison and the mutant with the highest activity, the prfA(L140F) mutant, was identified. The prfA(L140F) strain was subsequently used as a tool to identify gene products secreted as a result of PrfA activation. By use of two-dimensional gel electrophoresis followed by liquid chromatography-electrospray ionization-tandem mass spectroscopy analyses, 15 proteins were identified as up-regulated in the prfA(L140F) secretome, while the secretion of two proteins was found to be reduced. Although some of the proteins identified were known to be subject to direct regulation by PrfA, the majority have not previously been associated with PrfA regulation and their expression or secretion may be influenced indirectly by a PrfA-dependent regulatory pathway. Plasmid insertion inactivation of the genes encoding four novel secreted products indicated that three of the four have significant roles in L. monocytogenes virulence. The use of mutationally activated prfA alleles therefore provides a useful approach towards identifying gene products that contribute to L. monocytogenes pathogenesis. PMID:17938228

  18. An in-house multiplex pcr method to detect of putative virulence factors in aeromonas species

    PubMed Central

    Aguilera-Arreola, Ma. Guadalupe; Martínez, Alma Aidee Carmona; Castro-Escarpulli, Graciela

    2011-01-01

    A pentaplex PCR was developed and optimised to detect the genes that encode the five most important putative virulence factors in Aeromonas isolates. It seems to be more efficient than previously reported techniques and promises to be a powerful tool for more accurate risk assessments and for monitoring pathogenic strains. PMID:24031758

  19. Identification of novel secreted virulence factors from Xylella fastidiosa using a TRV expression system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Xylella fastidiosa is a bacterium that causes leaf scorch diseases of agriculturally important crops including grapevines and almonds. Little is known about virulence factors that are necessary for X. fastidiosa to grow and cause disease in the xylem vessels of a plant host. Any protein secreted by ...

  20. Alcaligenes faecalis ZD02, a Novel Nematicidal Bacterium with an Extracellular Serine Protease Virulence Factor

    PubMed Central

    Ju, Shouyong; Lin, Jian; Zheng, Jinshui; Wang, Shaoying; Zhou, Hongying

    2016-01-01

    Root knot nematodes (RKNs) are the world's most damaging plant-parasitic nematodes (PPNs), and they can infect almost all crops. At present, harmful chemical nematicides are applied to control RKNs. Using microbial nematicides has been proposed as a better management strategy than chemical control. In this study, we describe a novel nematicidal bacterium named Alcaligenes faecalis ZD02. A. faecalis ZD02 was isolated from Caenorhabditis elegans cadavers and has nematostatic and nematicidal activity, as confirmed by C. elegans growth assay and life span assay. In addition, A. faecalis ZD02 fermentation broth showed toxicity against C. elegans and Meloidogyne incognita. To identify the nematicidal virulence factor, the genome of strain ZD02 was sequenced. By comparing all of the predicted proteins of strain ZD02 to reported nematicidal virulence factors, we determined that an extracellular serine protease (Esp) has potential to be a nematicidal virulence factor, which was confirmed by bioassay on C. elegans and M. incognita. Using C. elegans as the target model, we found that both A. faecalis ZD02 and the virulence factor Esp can damage the intestines of C. elegans. The discovery that A. faecalis ZD02 has nematicidal activity provides a novel bacterial resource for the control of RKNs. PMID:26826227

  1. Electrical protein array chips for the detection of staphylococcal virulence factors.

    PubMed

    Quiel, Annett; Jürgen, Britta; Piechotta, Gundula; Le Foll, Anne-Pascale; Ziebandt, Anne-Kathrin; Kohler, Christian; Köster, Daniela; Engelmann, Susanne; Erck, Christian; Hintsche, Rainer; Wehland, Jürgen; Hecker, Michael; Schweder, Thomas

    2010-02-01

    A new approach for the detection of virulence factors of Staphylococcus aureus and Staphylococcus epidermidis using an electrical protein array chip technology is presented. The procedure is based on an enzyme-linked sandwich immunoassay, which includes recognition and binding of virulence factors by specific capture and detection antibodies. Detection of antibody-bound virulence factors is achieved by measuring the electrical current generated by redox recycling of an enzymatically released substance. The current (measured in nanoampere) corresponds to the amount of the target molecule in the analyzed sample. The electrical protein chip allows for a fast detection of Staphylococcus enterotoxin B (SEB) of S. aureus and immunodominant antigen A homologue (IsaA homologue) of S. epidermidis in different liquid matrices. The S. aureus SEB virulence factor could be detected in minimal medium, milk, and urine in a concentration of 1 ng/ml within less than 23 min. Furthermore, a simultaneous detection of SEB of S. aureus and IsaA homologue of S. epidermidis in a single assay could be demonstrated.

  2. Phenol-soluble modulins, hellhounds from the staphylococcal virulence-factor pandemonium.

    PubMed

    Tsompanidou, Eleni; Denham, Emma L; van Dijl, Jan Maarten

    2013-07-01

    Phenol-soluble modulins are secreted peptides with multiple functions in Staphylococcus aureus pathogenesis and spreading. Recent studies by Otto and coworkers show that these hellhounds of the staphylococcal virulence-factor pandemonium are unleashed through an essential ABC transporter, which represents an exciting new target for stopping the spread of this important pathogen.

  3. Production of N-acyl Homoserine Lactones and Virulence Factors of Waterborne Aeromonas hydrophila.

    PubMed

    Chu, Weihua; Liu, Yongwang; Jiang, Yan; Zhu, Wei; Zhuang, Xiyi

    2013-09-01

    Aeromonads are inhabitants of aquatic ecosystems and are described as being involved in intestinal disturbances and other infections. The purpose of this study was to investigate the production of N-acyl-homoserine lactone (AHL) signal molecules and some virulence factors, including hemolysins, proteases, extracellular nucleases production and cytotoxicity by waterborne Aeromonas hydrophila. A total of 24 strains isolated from fresh-water or diseased fish were used in the study. The majority A.hydrophila strains produce two AHL molecules (21/24), one is N-butanoyl homoserine lactone (BHL), and the other is N-hexanoyl homoserine lactone (HHL) according to thin-layer chromatography analysis. Among the virulence factors tested, more than 83 % of the isolates produced β haemolysin when inoculated on sheep blood agar, only 50 % of the isolates displayed DNase activity, 75 % of the isolates shown proteolytic activity on skimmed milk plate, and cytotoxic activity was detected in 20 of 24 of the isolates. The strains producing AHLs possessed one or more virulence factors. In conclusion, the production of quorum sensing signal molecules is common among the strains that we examined, and there seems to some relationships between quorum sensing signal production and virulence factors in A. hydrophila.

  4. 7-fluoroindole as an antivirulence compound against Pseudomonas aeruginosa.

    PubMed

    Lee, Jin-Hyung; Kim, Yong-Guy; Cho, Moo Hwan; Kim, Jung-Ae; Lee, Jintae

    2012-04-01

    The emergence of antibiotic resistance has necessitated new therapeutic approaches for combating persistent bacterial infection. An alternative approach is regulation of bacterial virulence instead of growth suppression, which can readily lead to drug resistance. The virulence of the opportunistic human pathogen Pseudomonas aeruginosa depends on a large number of extracellular factors and biofilm formation. Thirty-one natural and synthetic indole derivatives were screened. 7-fluoroindole (7FI) was identified as a compound that inhibits biofilm formation and blood hemolysis without inhibiting the growth of planktonic P. aeruginosa cells. Moreover, 7FI markedly reduced the production of quorum-sensing (QS)-regulated virulence factors 2-heptyl-3-hydroxy-4(1H)-quinolone, pyocyanin, rhamnolipid, two siderophores, pyoverdine and pyochelin. 7FI clearly suppressed swarming motility, protease activity and the production of a polymeric matrix in P. aeruginosa. However, unlike natural indole compounds, synthetic 7FI did not increase antibiotic resistance. Therefore, 7FI is a potential candidate for use in an antivirulence approach against persistent P. aeruginosa infection. PMID:22251040

  5. Structure of the catalytic domain of the Salmonella virulence factor SseI.

    PubMed

    Bhaskaran, Shyam S; Stebbins, C Erec

    2012-12-01

    SseI is secreted into host cells by Salmonella and contributes to the establishment of systemic infections. The crystal structure of the C-terminal domain of SseI has been solved to 1.70 Å resolution, revealing it to be a member of the cysteine protease superfamily with a catalytic triad consisting of Cys178, His216 and Asp231 that is critical to its virulence activities. Structure-based analysis revealed that SseI is likely to possess either acyl hydrolase or acyltransferase activity, placing this virulence factor in the rapidly growing class of enzymes of this family utilized by bacterial pathogens inside eukaryotic cells.

  6. Molecular detection of virulence factors among food and clinical Enterococcus faecalis strains in South Brazil.

    PubMed

    Medeiros, A W; Pereira, R I; Oliveira, D V; Martins, P D; d'Azevedo, P A; Van der Sand, S; Frazzon, J; Frazzon, A P G

    2014-01-01

    The present report aimed to perform a molecular epidemiological survey by investigating the presence of virulence factors in E. faecalis isolated from different human clinical (n = 57) and food samples (n = 55) in Porto Alegre, Brazil, collected from 2006 to 2009. In addition, the ability to form biofilm in vitro on polystyrene and the β-haemolytic and gelatinase activities were determined. Clinical strains presented a higher prevalence of aggregation substance (agg), enterococcal surface protein (esp) and cytolysin (cylA) genes when compared with food isolates. The esp gene was found only in clinical strains. On the other hand, the gelatinase (gelE) and adherence factor (ace) genes had similar prevalence among the strains, showing the widespread occurrence of these virulence factors among food and clinical E. faecalis strains in South Brazil. More than three virulence factor genes were detected in 77.2% and 18.2% of clinical and food strains, respectively. Gelatinase and β-haemolysin activities were not associated with the presence of gelE and cylA genes. The ability to produce biofilm was detected in 100% of clinical and 94.6% of food isolates, and clinical strains were more able to form biofilm than the food isolates (Student's t-test, p < 0.01). Results from the statistical analysis showed significant associations between strong biofilm formation and ace (p = 0.015) and gelE (p = 0.007) genes in clinical strains. In conclusion, our data indicate that E. faecalis strains isolated from clinical and food samples possess distinctive patterns of virulence factors, with a larger number of genes that encode virulence factors detected in clinical strains.

  7. Common virulence factors for Pseudomonas tolaasii pathogenesis in Agaricus and Arabidopsis.

    PubMed

    Chung, In-Young; Kim, Young-Kee; Cho, You-Hee

    2014-01-01

    Brown blotch of cultivatable mushrooms is a disease caused by the small peptide toxin (tolaasin) secreted by Pseudomonas tolaasii. Here we found that the wild type tolassin-producing P. tolaasii stain 6264 was capable of infection in Arabidopsis thaliana cotyledons, causing chlorotic symptoms and growth arrest as a result of bacterial proliferation. Seven virulence-attenuated mutants of P. tolaasii were isolated from the Agaricus bisporus screen using 2512 mariner-based transposon insertion mutants, and all of them displayed reduced virulence and bacterial proliferation in Arabidopsis infection as well. The transposon was inserted within the genes for tolassin biosynthesis and amino acid biosynthesis, and within an intergenic region between the genes of unknown function. The finding that some virulence factors are commonly required for both Agaricus and Arabidopsis infections suggests that Arabidopsis could be exploited to study the host-pathogen interaction involving P. tolaasii.

  8. Factors Affecting Comparative Resistance of Naturally Occurring and Subcultured Pseudomonas aeruginosa to Disinfectants

    PubMed Central

    Carson, L. A.; Favero, M. S.; Bond, W. W.; Petersen, N. J.

    1972-01-01

    A strain of Pseudomonas aeruginosa was isolated in pure culture from the reservoir of a hospital mist therapy unit by an extinction-dilution technique; its natural distilled water environment was used as a growth and maintenance medium. After a single subculture on Trypticase soy agar, the strain showed a marked decrease in resistance to inactivation by acetic acid, glutaraldehyde, chlorine dioxide, and a quaternary ammonium compound when compared with naturally occurring cells grown in mist therapy unit water. The following factors were observed to affect the relative resistances of naturally occurring and subcultured cells of the P. aeruginosa strain: (i) temperature at which the cultures were incubated prior to exposure to disinfectants, (ii) growth phase of the cultures at the time of exposure to disinfectants, (iii) nature of the suspending menstruum for disinfectants, and (iv) exposure to fluorescent light during incubation of inocula prior to testing. The applied significance of these findings may alter the present concepts of disinfectant testing as well as routine control procedures in the hospital environment. PMID:4624209

  9. Functional analysis of PvdS, an iron starvation sigma factor of Pseudomonas aeruginosa.

    PubMed

    Leoni, L; Orsi, N; de Lorenzo, V; Visca, P

    2000-03-01

    In Pseudomonas aeruginosa, iron modulates gene expression through a cascade of negative and positive regulatory proteins. The master regulator Fur is involved in iron-dependent repression of several genes. One of these genes, pvdS, was predicted to encode a putative sigma factor responsible for the transcription of a subset of genes of the Fur regulon. PvdS appears to belong to a structurally and functionally distinct subgroup of the extracytoplasmic function family of alternative sigma factors. Members of this subgroup, also including PbrA from Pseudomonas fluorescens, PfrI and PupI from Pseudomonas putida, and FecI from Escherichia coli, are controlled by the Fur repressor, and they activate transcription of genes for the biosynthesis or the uptake of siderophores. Evidence is provided that the PvdS protein of P. aeruginosa is endowed with biochemical properties of eubacterial sigma factors, as it spontaneously forms 1:1 complexes with the core fraction of RNA polymerase (RNAP, alpha(2)betabeta' subunits), thereby promoting in vitro binding of the PvdS-RNAP holoenzyme to the promoter region of the pvdA gene. These functional features of PvdS are consistent with the presence of structural domains predicted to be involved in core RNAP binding, promoter recognition, and open complex formation. The activity of pyoverdin biosynthetic (pvd) promoters was significantly lower in E. coli overexpressing the multicopy pvdS gene than in wild-type P. aeruginosa PAO1 carrying the single gene copy, and pvd::lacZ transcriptional fusions were silent in both pfrI (the pvdS homologue) and pfrA (a positive regulator of pseudobactin biosynthetic genes) mutants of P. putida WCS358, while they are expressed at PAO1 levels in wild-type WCS358. Moreover, the PvdS-RNAP holoenzyme purified from E. coli lacked the ability to generate in vitro transcripts from the pvdA promoter. These observations suggest that at least one additional positive regulator could be required for full activity of

  10. Evaluation of Virulence Factors and Antibiotic Sensitivity Pattern of Escherichia Coli Isolated from Extraintestinal Infections

    PubMed Central

    Vaish, Ritu; Pradeep, MSS; Setty, CR

    2016-01-01

    Introduction  Identification of virulence determinants among the clinically isolated microorganisms assumes greater significance in the patient management perspective. Among the hospitalized patients, extremes of age groups (neonatal and geriatric age patients), patients who are debilitated due to other associated medical conditions, patients taking immunosuppressive therapy, and patients undergoing major surgeries are prone to infections with previously nonpathogenic or opportunistic pathogens. Screening of the pathogenic potential of such bacteria and identifying their virulence factors and antimicrobial susceptibility patterns could be instrumental in better patient care and management. Materials & methods  In this study, we evaluated the virulence determinants and antimicrobial susceptibility patterns of 100 clinical isolates of E. coli collected from extraintestinal infections and 50 control strains of E. coli. Hemolysin production, serum resistance, cell surface hydrophobicity, and gelatinase production were tested using standard laboratory procedures. Results  Results showed that E. colistrains have a variable pattern of virulence markers that included hemolysin production (9%), cell surface hydrophobicity (9%), serum resistance (93%), and gelatinase production (2%). Antimicrobial susceptibility testing revealed a higher rate of resistance against cephalothin (84%) and ampicillin (98%). Susceptibility to amikacin (80%) and co-trimoxazole (47%) was variable and none of the test strains revealed resistance to imipenem. The control strains in contrast exhibited fewer virulence factors and the least resistance to antibiotics. Conclusion  In conclusion, the study results revealed that E. coli isolated from extraintestinal infections had demonstrated greater virulence and higher resistance to antibiotics as compared to the E. coli strains isolated from healthy individuals. PMID:27330872

  11. Characterization of N-butanoyl-L-homoserine lactone (C4-HSL) deficient clinical isolates of Pseudomonas aeruginosa.

    PubMed

    Boşgelmez-Tinaz, Gülgün; Ulusoy, Seyhan

    2008-01-01

    In the opportunistic pathogen Pseudomonas aeruginosa, the production of several virulence factors such as elastase, rhamnolipids and pyocyanin depends on cell-to-cell signaling or quorum sensing (QS) involving N-acylhomoserine lactone (AHL) signal molecules. In vitro studies with laboratory strains and virulence studies in animals with these same strains have demonstrated the contribution of QS to the pathogenesis of P. aeruginosa. However, the importance of P. aeruginosa QS systems in the development of human infections is not clearly known. In order to determine if deficiency within the QS system compromises the ability of P. aeruginosa to cause infections in humans, we collected 50 P. aeruginosa clinical isolates. Phenotypic characterization showed that isolates I-457, I-458, I-459 and I-461 were defective in the production of N-butanoyl-l-homoserine lactone (C4-HSL) signaling molecule and virulence factors elastase, protease, pyocyanin and rhamnolipids. Analysis of the sequences of the lasR, lasI, rhlR and rhlI genes of these four isolates showed that two of the four isolates had mutational defects in both rhlR and rhlI genes while other two isolates were only mutated in the rhlI gene. The combination of rhlR and rhlI mutations or only rhlI mutation probably explains their C4-HSL and virulence factors deficiencies. These observations suggest that QS deficient P. aeruginosa clinical isolates are able to cause infections and that in addition to known virulence factors, factors yet unidentified may contribute to the pathogenesis of P. aeruginosa.

  12. Presence of virulence factors in Enterococcus faecalis and Enterococcus faecium susceptible and resistant to vancomycin.

    PubMed

    Comerlato, Carolina Baldisserotto; Resende, Mariah Costa Carvalho de; Caierão, Juliana; d'Azevedo, Pedro Alves

    2013-08-01

    Despite the increasing importance of Enterococcus as opportunistic pathogens, their virulence factors are still poorly understood. This study determines the frequency of virulence factors in clinical and commensal Enterococcus isolates from inpatients in Porto Alegre, Brazil. Fifty Enterococcus isolates were analysed and the presence of the gelE, asa1 and esp genes was determined. Gelatinase activity and biofilm formation were also tested. The clonal relationships among the isolates were evaluated using pulsed-field gel electrophoresis. The asa1, gelE and esp genes were identified in 38%, 60% and 76% of all isolates, respectively. The first two genes were more prevalent in Enterococcus faecalis than in Enterococcus faecium, as was biofilm formation, which was associated with gelE and asa1 genes, but not with the esp gene. The presence of gelE and the activity of gelatinase were not fully concordant. No relationship was observed among any virulence factors and specific subclones of E. faecalis or E. faecium resistant to vancomycin. In conclusion, E. faecalis and E. faecium isolates showed significantly different patterns of virulence determinants. Neither the source of isolation nor the clonal relationship or vancomycin resistance influenced their distribution.

  13. Pseudomonas aeruginosa: assessment of risk from drinking water.

    PubMed

    Hardalo, C; Edberg, S C

    1997-01-01

    Pseudomonas aeruginosa is an ubiquitous environmental bacterium. It can be recovered, often in high numbers, in common food, especially vegetables. Moreover, it can be recovered in low numbers in drinking water. A small percentage of clones of P. aeruginosa possesses the required number of virulence factors to cause infection. However, P. aeruginosa will not proliferate on normal tissue but requires previously organs. Further narrowing the risk to human health is that only certain specific hosts are at risk, including patients with profound neutropenia, cystic fibrosis, severe burns, and those subject to foreign device installation. Other than these very well-defined groups, the general population is refractory to infection with P. aeruginosa. Because of its ubiquitous nature, it is not only not practical to eliminate P. aeruginosa from our food and drinking water, but attempts to do so would produce disinfection byproducts more hazardous than the species itself. Moreover, because there is no readily available sensitive and specific means to detect and identify P. aeruginosa available in the field, any potential regulation governing its control would not have a defined laboratory test measure of outcome. Accordingly, attempts to regulate P. aeruginosa in drinking water would not yield public health protection benefits and could, in fact, be counterproductive in this regard.

  14. Effect of Photodynamic Therapy on the Virulence Factors of Staphylococcus aureus

    PubMed Central

    Bartolomeu, Maria; Rocha, Sónia; Cunha, Ângela; Neves, M. G. P. M. S.; Faustino, Maria A. F.; Almeida, Adelaide

    2016-01-01

    Staphylococcus aureus is a Gram-positive bacterium that is present in the human microbiota. Nevertheless, these bacteria can be pathogenic to the humans. Due to the increasing occurrence of antibiotic-resistant S. aureus strains, new approaches to control this pathogen are necessary. The antimicrobial photodynamic inactivation (PDI) process is based in the combined use of light, oxygen, and an intermediary agent (a photosensitizer). These three components interact to generate cytotoxic reactive oxygen species that irreversibly damage vital constituents of the microbial cells and ultimately lead to cell death. Although PDI is being shown to be a promising alternative to the antibiotic approach for the inactivation of pathogenic microorganisms, information on effects of photosensitization on particular virulence factors is strikingly scarce. The objective of this work was to evaluate the effect of PDI on virulence factors of S. aureus and to assess the potential development of resistance of this bacterium as well as the recovery of the expression of the virulence factors after successive PDI cycles. For this, the photosensitizer 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin tetra-iodide (Tetra-Py+-Me) and six strains of S. aureus [one reference strain, one strain with one enterotoxin, two strains with three enterotoxins and two methicillin resistant strains (MRSA) – one with five enterotoxins and the other without enterotoxins] were used. The effect of photosensitization on catalase activity, beta hemolysis, lipases, thermonuclease, enterotoxins, coagulase production, and resistance/susceptibility to methicillin was tested. To assess the development of resistance after successive cycles of treatment, three strains of S. aureus (ATCC 6538, 2065 MA, and SA 3 MRSA) were used. The surviving colonies of a first cycle of PDI were collected from the solid medium and subjected to further nine consecutive cycles of PDI. The results indicate that the expression of

  15. Helicobacter pylori virulence genes and host genetic polymorphisms as risk factors for peptic ulcer disease.

    PubMed

    Miftahussurur, Muhammad; Yamaoka, Yoshio

    2015-01-01

    Helicobacter pylori infection plays an important role in the pathogenesis of peptic ulcer disease (PUD). Several factors have been proposed as possible H. pylori virulence determinants; for example, bacterial adhesins and gastric inflammation factors are associated with an increased risk of PUD. However, differences in bacterial virulence factors alone cannot explain the opposite ends of the PUD disease spectrum, that is duodenal and gastric ulcers; presumably, both bacterial and host factors contribute to the differential response. Carriers of the high-producer alleles of the pro-inflammatory cytokines IL-1B, IL-6, IL-8, IL-10, and TNF-α who also carry low-producer allele of anti-inflammatory cytokines have severe gastric mucosal inflammation, whereas carriers of the alternative alleles have mild inflammation. Recent reports have suggested that the PSCA and CYP2C19 ultra-rapid metabolizer genotypes are also associated with PUD.

  16. Helicobacter pylori virulence genes and host genetic polymorphisms as risk factors for peptic ulcer disease.

    PubMed

    Miftahussurur, Muhammad; Yamaoka, Yoshio

    2015-01-01

    Helicobacter pylori infection plays an important role in the pathogenesis of peptic ulcer disease (PUD). Several factors have been proposed as possible H. pylori virulence determinants; for example, bacterial adhesins and gastric inflammation factors are associated with an increased risk of PUD. However, differences in bacterial virulence factors alone cannot explain the opposite ends of the PUD disease spectrum, that is duodenal and gastric ulcers; presumably, both bacterial and host factors contribute to the differential response. Carriers of the high-producer alleles of the pro-inflammatory cytokines IL-1B, IL-6, IL-8, IL-10, and TNF-α who also carry low-producer allele of anti-inflammatory cytokines have severe gastric mucosal inflammation, whereas carriers of the alternative alleles have mild inflammation. Recent reports have suggested that the PSCA and CYP2C19 ultra-rapid metabolizer genotypes are also associated with PUD. PMID:26470920

  17. Microevolution of Pseudomonas aeruginosa to a chronic pathogen of the cystic fibrosis lung.

    PubMed

    Hogardt, Michael; Heesemann, Jürgen

    2013-01-01

    Pseudomonas aeruginosa is the leading pathogen of chronic cystic fibrosis (CF) lung infection. Life-long persistance of P. aeruginosa in the CF lung requires a sophisticated habitat-specific adaptation of this pathogen to the heterogeneous and fluctuating lung environment. Due to the high selective pressure of inflamed CF lungs, P. aeruginosa increasingly experiences complex physiological and morphological changes. Pulmonary adaptation of P. aeruginosa is mediated by genetic variations that are fixed by the repeating interplay of mutation and selection. In this context, the emergence of hypermutable phenotypes (mutator strains) obviously improves the microevolution of P. aeruginosa to the diverse microenvironments of the CF lung. Mutator phenotypes are amplified during CF lung disease and accelerate the intraclonal diversification of P. aeruginosa. The resulting generation of numerous subclonal variants is advantegous to prepare P. aeruginosa population for unpredictable stresses (insurance hypothesis) and thus supports long-term survival of this pathogen. Oxygen restriction within CF lung environment further promotes persistence of P. aeruginosa due to increased antibiotic tolerance, alginate production and biofilm formation. Finally, P. aeruginosa shifts from an acute virulent pathogen of early infection to a host-adapted chronic virulent pathogen of end-stage infection of the CF lung. Common changes that are observed among chronic P. aeruginosa CF isolates include alterations in surface antigens, loss of virulence-associated traits, increasing antibiotic resistances, the overproduction of the exopolysaccharide alginate and the modulation of intermediary and micro-aerobic metabolic pathways (Hogardt and Heesemann, Int J Med Microbiol 300(8):557-562, 2010). Loss-of-function mutations in mucA and lasR genes determine the transition to mucoidity and loss of quorum sensing, which are hallmarks of the chronic virulence potential of P. aeruginosa. Metabolic factors

  18. Septic arthritis of the pubic symphysis from Pseudomonas aeruginosa: reconsidering traditional risk factors and symptoms in the elderly patient

    PubMed Central

    To, Fergus; Tam, Penny; Villanyi, Diane

    2012-01-01

    A high-functioning 82-year-old man presented with lower lumbar pain and pubic tenderness. On admission he was afebrile with a normal white count. A grossly elevated C reactive protein was noted. CT scan of the pelvis showed a fluid collection anterior to the pubic symphysis and to the right of the midline measuring 2.0 × 2.2 cm. Pseudomonas aeruginosa was cultured from the fluid collection. The patient had no history of intravenous drug use, pelvic surgeries, malignancies or trauma. We report what we believe is the first documented case of P aeruginosa infection of the pubic symphysis in an elderly patient that did not have any of the traditional risk factors associated with neither P aeruginosa septic arthritis nor infections of the pubic symphysis. Instead, we propose that phimosis with chronic infection of the foreskin and balanitis may have led to septic arthritis. PMID:22922933

  19. Abiotic factors in colony formation: effects of nutrition and light on extracellular polysaccharide production and cell aggregates of Microcystis aeruginosa

    NASA Astrophysics Data System (ADS)

    Yang, Zhen; Kong, Fanxiang

    2013-07-01

    Colony morphology is important for Microcystis to sustain a competitive advantage in eutrophic lakes. The mechanism of colony formation in Microcystis is currently unclear. Extracellular polysaccharide (EPS) has been reported to play an important role in cell aggregate formation of some phytoplankton. Microcystis aeruginosa was cultivated under varied abiotic conditions, including different nutrient, light, and temperature conditions, to investigate their effects on EPS production and morphological change. The results show that nutrient concentration and light intensity have great effects on EPS productionin M. aeruginosa. There was a considerable increase in EPS production after M. aeruginosa was cultivated in adjusted culture conditions similar to those present in the field (28.9 mg C/L, 1.98 mg N/L, 0.65 mg P/L, light intensity: 100 μmol/(m2 · s)). These results indicate that abiotic factors might be one of the triggers for colony formation in Microcystis.

  20. Septic arthritis of the pubic symphysis from Pseudomonas aeruginosa: reconsidering traditional risk factors and symptoms in the elderly patient.

    PubMed

    To, Fergus; Tam, Penny; Villanyi, Diane

    2012-01-01

    A high-functioning 82-year-old man presented with lower lumbar pain and pubic tenderness. On admission he was afebrile with a normal white count. A grossly elevated C reactive protein was noted. CT scan of the pelvis showed a fluid collection anterior to the pubic symphysis and to the right of the midline measuring 2.0 × 2.2 cm. Pseudomonas aeruginosa was cultured from the fluid collection. The patient had no history of intravenous drug use, pelvic surgeries, malignancies or trauma. We report what we believe is the first documented case of P aeruginosa infection of the pubic symphysis in an elderly patient that did not have any of the traditional risk factors associated with neither P aeruginosa septic arthritis nor infections of the pubic symphysis. Instead, we propose that phimosis with chronic infection of the foreskin and balanitis may have led to septic arthritis. PMID:22922933

  1. Sequence Analysis of Hypothetical Proteins from Helicobacter pylori 26695 to Identify Potential Virulence Factors

    PubMed Central

    Naqvi, Ahmad Abu Turab; Anjum, Farah; Khan, Faez Iqbal; Islam, Asimul; Ahmad, Faizan

    2016-01-01

    Helicobacter pylori is a Gram-negative bacteria that is responsible for gastritis in human. Its spiral flagellated body helps in locomotion and colonization in the host environment. It is capable of living in the highly acidic environment of the stomach with the help of acid adaptive genes. The genome of H. pylori 26695 strain contains 1,555 coding genes that encode 1,445 proteins. Out of these, 340 proteins are characterized as hypothetical proteins (HP). This study involves extensive analysis of the HPs using an established pipeline which comprises various bioinformatics tools and databases to find out probable functions of the HPs and identification of virulence factors. After extensive analysis of all the 340 HPs, we found that 104 HPs are showing characteristic similarities with the proteins with known functions. Thus, on the basis of such similarities, we assigned probable functions to 104 HPs with high confidence and precision. All the predicted HPs contain representative members of diverse functional classes of proteins such as enzymes, transporters, binding proteins, regulatory proteins, proteins involved in cellular processes and other proteins with miscellaneous functions. Therefore, we classified 104 HPs into aforementioned functional groups. During the virulence factors analysis of the HPs, we found 11 HPs are showing significant virulence. The identification of virulence proteins with the help their predicted functions may pave the way for drug target estimation and development of effective drug to counter the activity of that protein. PMID:27729842

  2. Elongation Factor P and Modifying Enzyme PoxA Are Necessary for Virulence of Shigella flexneri

    PubMed Central

    Marman, Hannah E.; Mey, Alexandra R.

    2014-01-01

    Elongation factor P (EF-P) is a universally conserved bacterial translation factor. In many bacteria, EF-P is posttranslationally modified by PoxA, which covalently attaches a β-lysine to a conserved lysine residue of EF-P. Here we show that both EF-P and PoxA are necessary for virulence of the human diarrheal pathogen Shigella flexneri. Loss of either EF-P or PoxA leads to an impaired ability of S. flexneri to invade epithelial cells and form plaques in an epithelial cell monolayer. Proteomic analysis of efp and poxA deletion mutants revealed decreased levels of several virulence effector proteins, including IpaA, -B, and -C and IcsA. Additionally, mRNA levels of virB and virF, which encode master virulence regulators, were decreased in the efp mutant. The reduction in virF transcription was at least partially due to decreased levels of CpxA, which activates virF through the response regulator CpxR. The role of CpxAR in reduced synthesis of VirF and its downstream effectors was indicated by restoration of invasion when a mutation resulting in constitutively activated CpxR was introduced into the efp mutant. Thus, modified EF-P is required for appropriate synthesis of proteins involved in the virulence of this bacterial pathogen. PMID:24935977

  3. Elastase of Pseudomonas aeruginosa: Inactivation of Complement Components and Complement-Derived Chemotactic and Phagocytic Factors

    PubMed Central

    Schultz, Duane R.; Miller, Kent D.

    1974-01-01

    A purified elastase from Pseudomonas aeruginosa was highly destructive for fluid-phase and cell-bound C1 and C3 and fluid-phase C5, C8, and C9. Inactivation of C4, C2, C6, and C7 by the enzyme varied from 0 to 67%. Low concentrations of elastase generated, then inactivated, a chemotactic factor from human C5 but not from C3. Higher enzyme concentrations inactivated the C5 chemotactic activity at a faster rate. Elastase treatment of sensitized pseudomonads containing cell-bound C3 reduced the phagocytic indexes of polymorphonuclear leukocytes. The data support the proposed chemopathogenic role of the elastase in generation of the characteristic non-inflammatory Pseudomonas vasculitis. Images PMID:4210424

  4. Extracts of Cordia gilletii de wild (Boraginaceae) quench the quorum sensing of Pseudomonas aeruginosa PAO1

    PubMed Central

    Okusa, Philippe N.; Rasamiravaka, Tsiry; Vandeputte, Olivier; Stévigny, Caroline; Jaziri, Mondher El; Duez, Pierre

    2014-01-01

    Aim: The fight against infectious diseases and antimicrobial resistances needs the exploration of new active compounds with new proprieties like disrupting quorum sensing (QS) mechanisms, which is a cell-to-cell communication that regulates bacterial virulence factors. In this work, leaves and root barks extracts of a Congolese medicinal plant, Cordia gilletii, were investigated for their effect on the production of Pseudomonas aeruginosa major virulence factors regulated by QS. Materials and Methods: The effect of C. gilletii extracts on virulence factors of P. aeruginosa PAO1 was studied by the evaluation of the production of pyocyanine, elastase and biofilm; and by the measurement of the expression of QS-related genes. Results: The dichloromethane extract from root barks was found to quench the production of pyocyanin, a QS-dependent virulence factor in P. aeruginosa PAO1. Moreover, this extract specifically inhibits the expression of several QS-regulated genes (i.e. lasB, rhlA, lasI, lasR, rhlI, and rhlR) and reduces biofilm formation by PAO1. Conclusion: This study contributes to explain the efficacy of C. gilletii in the traditional treatment of infectious diseases caused by P. aeruginosa. PMID:26401363

  5. Diverse mechanisms shape the evolution of virulence factors in the potato late blight pathogen Phytophthora infestans sampled from China

    PubMed Central

    Wu, E-Jiao; Yang, Li-Na; Zhu, Wen; Chen, Xiao-Mei; Shang, Li-Ping; Zhan, Jiasui

    2016-01-01

    Evolution of virulence in plant pathogens is still poorly understood but the knowledge is important for the effective use of plant resistance and sustainable disease management. Spatial population dynamics of virulence, race and SSR markers in 140 genotypes sampled from seven geographic locations in China were compared to infer the mechanisms driving the evolution of virulence in Phytophthora infestans (P. infestans). All virulence types and a full spectrum of race complexity, ranging from the race able to infect the universally susceptible cultivar only to all differentials, were detected. Eight and two virulence factors were under diversifying and constraining selection respectively while no natural selection was detected in one of the virulence types. Further analyses revealed excesses in simple and complex races but deficiency in intermediate race and negative associations of annual mean temperature at the site from which pathogen isolates were collected with frequency of virulence to differentials and race complexity in the pathogen populations. These results suggest that host selection may interact with other factors such as climatic conditions in determining the evolutionary trajectory of virulence and race structure in P. infestans and global warming may slow down the emergence of new virulence in the pathogen. PMID:27193142

  6. Three Pseudomonas aeruginosa strains with different protease profiles.

    PubMed

    Andrejko, Mariola; Zdybicka-Barabas, Agnieszka; Janczarek, Monika; Cytryńska, Małgorzata

    2013-01-01

    The proteolytic activity of three Pseudomonas aeruginosa strains, ATCC 27853 - a reference strain, and two clinical isolates was tested. The activity was examined after culturing the bacteria in two different growth media: the minimal M9 medium and rich Luria-Bertani broth (LB). Based on zymograms and protease activity specific assays, it was concluded that the reference strain produced three proteolytic enzymes in the LB medium: protease IV, elastase B and elastase A, while alkaline protease was only produced in the M9 medium. The clinical isolates of P. aeruginosa produced elastase B and alkaline protease when grown in the LB medium and the minimal M9 medium, respectively. PCR analysis confirmed the presence of both the lasB gene encoding elastase B and aprA coding for alkaline protease in the genomes of the three P. aeruginosa strains analyzed. The expression of these genes coding for two important P. aeruginosa virulence factors was dependent on the growth conditions in all the strains studied. The contribution of the extracellular proteinases to the virulence of P. aeruginosa strains used in this study was investigated using an insect model, the greater wax moth Galleria mellonella.

  7. Helicobacter pylori infection: An overview of bacterial virulence factors and pathogenesis.

    PubMed

    Kao, Cheng-Yen; Sheu, Bor-Shyang; Wu, Jiunn-Jong

    2016-02-01

    Helicobacter pylori pathogenesis and disease outcomes are mediated by a complex interplay between bacterial virulence factors, host, and environmental factors. After H. pylori enters the host stomach, four steps are critical for bacteria to establish successful colonization, persistent infection, and disease pathogenesis: (1) Survival in the acidic stomach; (2) movement toward epithelium cells by flagella-mediated motility; (3) attachment to host cells by adhesins/receptors interaction; (4) causing tissue damage by toxin release. Over the past 20 years, the understanding of H. pylori pathogenesis has been improved by studies focusing on the host and bacterial factors through epidemiology researches and molecular mechanism investigations. These include studies identifying the roles of novel virulence factors and their association with different disease outcomes, especially the bacterial adhesins, cag pathogenicity island, and vacuolating cytotoxin. Recently, the development of large-scale screening methods, including proteomic, and transcriptomic tools, has been used to determine the complex gene regulatory networks in H. pylori. In addition, a more available complete genomic database of H. pylori strains isolated from patients with different gastrointestinal diseases worldwide is helpful to characterize this bacterium. This review highlights the key findings of H. pylori virulence factors reported over the past 20 years. PMID:27105595

  8. Genome-sequence analysis of Acinetobacter johnsonii MB44 reveals potential nematode-virulent factors.

    PubMed

    Tian, Shijing; Ali, Muhammad; Xie, Li; Li, Lin

    2016-01-01

    Acinetobacter johnsonii is generally recognized as a nonpathogenic bacterium although it is often found in hospital environments. However, a newly identified isolate of this species from a frost-plant-tissue sample, namely, A. johnsonii MB44, showed significant nematicidal activity against the model organism Caenorhabditis elegans. To expand our understanding of this bacterial species, we generated a draft genome sequence of MB44 and analyzed its genomic features related to nematicidal attributes. The 3.36 Mb long genome contains 3636 predicted protein-coding genes and 95 RNA genes (including 14 rRNA genes), with a G + C content of 41.37 %. Genomic analysis of the prediction of nematicidal proteins using the software MP3 revealed a total of 108 potential virulence proteins. Some of these proteins were homologous to the known virulent proteins identified from Acinetobacter baumannii, a pathogenic species of the genus Acinetobacter. These virulent proteins included the outer membrane protein A, the phospholipase D, and penicillin-binding protein 7/8. Moreover, one siderophore biosynthesis gene cluster and one capsular polysaccharide gene cluster, which were predicted to be important virulence factors for C. elegans, were identified in the MB44 genome. The current study demonstrated that A. johnsonii MB44, with its nematicidal activity, could be an opportunistic pathogen to animals. PMID:27429894

  9. Postgenomic analysis of bacterial pathogens repertoire reveals genome reduction rather than virulence factors.

    PubMed

    Merhej, Vicky; Georgiades, Kalliopi; Raoult, Didier

    2013-07-01

    In the pregenomic era, the acquisition of pathogenicity islands via horizontal transfer was proposed as a major mechanism in pathogen evolution. Much effort has been expended to look for the contiguous blocks of virulence genes that are present in pathogenic bacteria, but absent in closely related species that are nonpathogenic. However, some of these virulence factors were found in nonpathogenic bacteria. Moreover, and contrary to expectation, pathogenic bacteria were found to lack genes (antivirulence genes) that are characteristic of nonpathogenic bacteria. The availability of complete genome sequences has led to a new era of pathogen research. Comparisons of genomes have shown that the most pathogenic bacteria have reduced genomes, with less ribosomal RNA and unorganized operons; they lack transcriptional regulators but have more genes that encode protein toxins, toxin-antitoxin (TA) modules, and proteins for DNA replication and repair, when compared with less pathogenic close relatives. These findings questioned the paradigm of virulence by gene acquisition and put forward the notion of genomic repertoire of virulence.

  10. Prevalence of Virulence Factors and Drug Resistance in Clinical Isolates of Enterococci: A Study from North India

    PubMed Central

    Banerjee, Tuhina; Anupurba, Shampa

    2015-01-01

    Along with emergence of multidrug resistance, presence of several virulence factors in enterococci is an emerging concept. This study was undertaken to determine the prevalence of various virulence factors phenotypically and genotypically in enterococci and study their association with multidrug resistance. A total of 310 enterococcal isolates were studied, comprising 155 E. faecium and 155 E. faecalis. Antimicrobial susceptibility testing was done by disc diffusion and agar dilution method. Hemolysin, gelatinase, biofilm production, and haemagglutination were detected phenotypically and presence of virulence genes, namely, asa1, gelE, cylA, esp, and hyl, was detected by multiplex PCR. Of the total, 47.41% isolates were high level gentamicin resistant (HLGRE) and 7.09% were vancomycin resistant (VRE). All the virulence traits studied were found in varying proportions, with majority in E. faecalis (p > 0.05). Strong biofilm producers possessed either asa1 or gelE gene. gelE silent gene was detected in 41.37% (12/29). However, increase in resistance was associated with significant decrease in expression or acquisition of virulence genes. Further, acquisition of vancomycin resistance was the significant factor responsible for the loss of virulence traits. Though it is presumed that increased drug resistance correlates with increased virulence, acquisition of vancomycin resistance might be responsible for reduced expression of virulence traits to meet the “biological cost” relating to VRE. PMID:26366302

  11. Evaluation of Virulence Factors and Antifungal Susceptibility in Yeast Isolates from Postmortem Specimens.

    PubMed

    Yagmur, Gulhan; Sav, Hafize; Ziyade, Nihan; Elgormus, Neval; Sen, Sumeyye; Akkoyun Bilgi, Esma; Atan, Yusuf; Buyuk, Yalcin; Kiraz, Nuri

    2016-07-01

    Invasive fungal infections are a leading cause of morbidity and mortality in immunocompromised patients, especially in cases requiring a prolonged stay in the intensive care unit. A total of 99 yeast strains were isolated from 42 postmortem cases. In this study, virulence factors and antifungal susceptibility of these species were evaluated. The isolates were identified as Candida albicans (54), C. tropicalis (15), C. glabrata (12), C. parapsilosis (6), C. lipolytica (3), C. utilis (3), C. krusei (2), C. kefyr (1), and Cryptococcus neoformans (3). The most commonly isolated species was C. albicans, and no resistant species were determined. Despite the equal number of specimens, no secretion of significant virulence factors was associated with the postmortem specimen in the Candida species. Postmortem fungal investigations in forensic autopsies are useful in explaining cause of death in such cases, also may lead to protocols for the treatment of fungal infections and contribute to fungal pathogenesis and epidemiological data. PMID:27364280

  12. Distribution and dynamics of epidemic and pandemic Vibrio parahaemolyticus virulence factors.

    PubMed

    Ceccarelli, Daniela; Hasan, Nur A; Huq, Anwar; Colwell, Rita R

    2013-01-01

    Vibrio parahaemolyticus, autochthonous to estuarine, marine, and coastal environments throughout the world, is the causative agent of food-borne gastroenteritis. More than 80 serotypes have been described worldwide, based on antigenic properties of the somatic (O) and capsular (K) antigens. Serovar O3:K6 emerged in India in 1996 and subsequently was isolated worldwide, leading to the conclusion that the first V. parahaemolyticus pandemic had taken place. Most strains of V. parahaemolyticus isolated from the environment or seafood, in contrast to clinical strains, do not produce a thermostable direct hemolysin (TDH) and/or a TDH-related hemolysin (TRH). Type 3 secretion systems (T3SSs), needle-like apparatuses able to deliver bacterial effectors into host cytoplasm, were identified as triggering cytotoxicity and enterotoxicity. Type 6 secretion systems (T6SS) predicted to be involved in intracellular trafficking and vesicular transport appear to play a role in V. parahaemolyticus virulence. Recent advances in V. parahaemolyticus genomics identified several pathogenicity islands (VpaIs) located on either chromosome in both epidemic and pandemic strains and comprising additional colonization factors, such as restriction-modification complexes, chemotaxis proteins, classical bacterial surface virulence factors, and putative colicins. Furthermore, studies indicate strains lacking toxins and genomic regions associated with pathogenicity may also be pathogenic, suggesting other important virulence factors remain to be identified. The unique repertoire of virulence factors identified to date, their occurrence and distribution in both epidemic and pandemic strains worldwide are described, with the aim of highlighting the complexity of V. parahaemolyticus pathogenicity as well as its dynamic genome.

  13. Functional Metagenomics of Spacecraft Assembly Cleanrooms: Presence of Virulence Factors Associated with Human Pathogens

    PubMed Central

    Bashir, Mina; Ahmed, Mahjabeen; Weinmaier, Thomas; Ciobanu, Doina; Ivanova, Natalia; Pieber, Thomas R.; Vaishampayan, Parag A.

    2016-01-01

    Strict planetary protection practices are implemented during spacecraft assembly to prevent inadvertent transfer of earth microorganisms to other planetary bodies. Therefore, spacecraft are assembled in cleanrooms, which undergo strict cleaning and decontamination procedures to reduce total microbial bioburden. We wanted to evaluate if these practices selectively favor survival and growth of hardy microorganisms, such as pathogens. Three geographically distinct cleanrooms were sampled during the assembly of three NASA spacecraft: The Lockheed Martin Aeronautics' Multiple Testing Facility during DAWN, the Kennedy Space Center's Payload Hazardous Servicing Facility (KSC-PHSF) during Phoenix, and the Jet Propulsion Laboratory's Spacecraft Assembly Facility during Mars Science Laboratory. Sample sets were collected from the KSC-PHSF cleanroom at three time points: before arrival of the Phoenix spacecraft, during the assembly and testing of the Phoenix spacecraft, and after removal of the spacecraft from the KSC-PHSF facility. All samples were subjected to metagenomic shotgun sequencing on an Illumina HiSeq 2500 platform. Strict decontamination procedures had a greater impact on microbial communities than sampling location Samples collected during spacecraft assembly were dominated by Acinetobacter spp. We found pathogens and potential virulence factors, which determine pathogenicity in all the samples tested during this study. Though the relative abundance of pathogens was lowest during the Phoenix assembly, potential virulence factors were higher during assembly compared to before and after assembly, indicating a survival advantage. Decreased phylogenetic and pathogenic diversity indicates that decontamination and preventative measures were effective against the majority of microorganisms and well implemented, however, pathogen abundance still increased over time. Four potential pathogens, Acinetobacter baumannii, Acinetobacter lwoffii, Escherichia coli and Legionella

  14. The effects of environmental factors on the virulence of Trichomonas vaginalis.

    PubMed

    Figueroa-Angulo, Elisa E; Rendón-Gandarilla, Francisco J; Puente-Rivera, Jonathan; Calla-Choque, Jaeson S; Cárdenas-Guerra, Rosa E; Ortega-López, Jaime; Quintas-Granados, Laura I; Alvarez-Sánchez, M Elizbeth; Arroyo, Rossana

    2012-12-01

    This review focused on potential regulatory mechanisms of Trichomonas vaginalis virulence properties, cytoadherence, cytotoxicity, phagocytosis, hemolysis, induction of apoptosis, and immune evasion in response to environmental factors of the human urogenital tract, iron, zinc, and polyamines. Understanding the multifactorial nature of trichomonal pathogenesis and its regulation may help to unravel the survival strategies of trichomonads and to implement prevention policies, opportune diagnosis, and alternative treatments for control of trichomoniasis.

  15. Functional Metagenomics of Spacecraft Assembly Cleanrooms: Presence of Virulence Factors Associated with Human Pathogens.

    PubMed

    Bashir, Mina; Ahmed, Mahjabeen; Weinmaier, Thomas; Ciobanu, Doina; Ivanova, Natalia; Pieber, Thomas R; Vaishampayan, Parag A

    2016-01-01

    Strict planetary protection practices are implemented during spacecraft assembly to prevent inadvertent transfer of earth microorganisms to other planetary bodies. Therefore, spacecraft are assembled in cleanrooms, which undergo strict cleaning and decontamination procedures to reduce total microbial bioburden. We wanted to evaluate if these practices selectively favor survival and growth of hardy microorganisms, such as pathogens. Three geographically distinct cleanrooms were sampled during the assembly of three NASA spacecraft: The Lockheed Martin Aeronautics' Multiple Testing Facility during DAWN, the Kennedy Space Center's Payload Hazardous Servicing Facility (KSC-PHSF) during Phoenix, and the Jet Propulsion Laboratory's Spacecraft Assembly Facility during Mars Science Laboratory. Sample sets were collected from the KSC-PHSF cleanroom at three time points: before arrival of the Phoenix spacecraft, during the assembly and testing of the Phoenix spacecraft, and after removal of the spacecraft from the KSC-PHSF facility. All samples were subjected to metagenomic shotgun sequencing on an Illumina HiSeq 2500 platform. Strict decontamination procedures had a greater impact on microbial communities than sampling location Samples collected during spacecraft assembly were dominated by Acinetobacter spp. We found pathogens and potential virulence factors, which determine pathogenicity in all the samples tested during this study. Though the relative abundance of pathogens was lowest during the Phoenix assembly, potential virulence factors were higher during assembly compared to before and after assembly, indicating a survival advantage. Decreased phylogenetic and pathogenic diversity indicates that decontamination and preventative measures were effective against the majority of microorganisms and well implemented, however, pathogen abundance still increased over time. Four potential pathogens, Acinetobacter baumannii, Acinetobacter lwoffii, Escherichia coli and Legionella

  16. [Quorum sensing mechanism as a factor regulating virulence of Gram-negative bacteria].

    PubMed

    Myszka, Kamila; Czaczyk, Katarzyna

    2010-11-25

    The metabolism of a high density population of bacteria is regulated by a quorum sensing mechanism. Cell-to-cell communication of microorganisms regulates the process of production of pathogenicity factors including formation and differentiation of bacterial biofilms. The role of the quorum sensing system in the expression of virulence features is described in this paper. The possibility of application of the quorum sensing mechanism in medicine is also discussed.

  17. Induction of virulence factors in Giardia duodenalis independent of host attachment.

    PubMed

    Emery, Samantha J; Mirzaei, Mehdi; Vuong, Daniel; Pascovici, Dana; Chick, Joel M; Lacey, Ernest; Haynes, Paul A

    2016-01-01

    Giardia duodenalis is responsible for the majority of parasitic gastroenteritis in humans worldwide. Host-parasite interaction models in vitro provide insights into disease and virulence and help us to understand pathogenesis. Using HT-29 intestinal epithelial cells (IEC) as a model we have demonstrated that initial sensitisation by host secretions reduces proclivity for trophozoite attachment, while inducing virulence factors. Host soluble factors triggered up-regulation of membrane and secreted proteins, including Tenascins, Cathepsin-B precursor, cystatin, and numerous Variant-specific Surface Proteins (VSPs). By comparison, host-cell attached trophozoites up-regulated intracellular pathways for ubiquitination, reactive oxygen species (ROS) detoxification and production of pyridoxal phosphate (PLP). We reason that these results demonstrate early pathogenesis in Giardia involves two independent host-parasite interactions. Motile trophozoites respond to soluble secreted signals, which deter attachment and induce expression of virulence factors. Trophozoites attached to host cells, in contrast, respond by up-regulating intracellular pathways involved in clearance of ROS, thus anticipating the host defence response. PMID:26867958

  18. Induction of virulence factors in Giardia duodenalis independent of host attachment

    PubMed Central

    Emery, Samantha J.; Mirzaei, Mehdi; Vuong, Daniel; Pascovici, Dana; Chick, Joel M.; Lacey, Ernest; Haynes, Paul A.

    2016-01-01

    Giardia duodenalis is responsible for the majority of parasitic gastroenteritis in humans worldwide. Host-parasite interaction models in vitro provide insights into disease and virulence and help us to understand pathogenesis. Using HT-29 intestinal epithelial cells (IEC) as a model we have demonstrated that initial sensitisation by host secretions reduces proclivity for trophozoite attachment, while inducing virulence factors. Host soluble factors triggered up-regulation of membrane and secreted proteins, including Tenascins, Cathepsin-B precursor, cystatin, and numerous Variant-specific Surface Proteins (VSPs). By comparison, host-cell attached trophozoites up-regulated intracellular pathways for ubiquitination, reactive oxygen species (ROS) detoxification and production of pyridoxal phosphate (PLP). We reason that these results demonstrate early pathogenesis in Giardia involves two independent host-parasite interactions. Motile trophozoites respond to soluble secreted signals, which deter attachment and induce expression of virulence factors. Trophozoites attached to host cells, in contrast, respond by up-regulating intracellular pathways involved in clearance of ROS, thus anticipating the host defence response. PMID:26867958

  19. Bacillus thuringiensis metalloproteinase Bmp1 functions as a nematicidal virulence factor.

    PubMed

    Luo, Xiaoxia; Chen, Ling; Huang, Qiong; Zheng, Jinshui; Zhou, Wei; Peng, Donghai; Ruan, Lifang; Sun, Ming

    2013-01-01

    Some Bacillus thuringiensis strains have high toxicity to nematodes. Nematicidal activity has been found in several families of crystal proteins, such as Cry5, Cry6, and Cry55. The B. thuringiensis strain YBT-1518 has three cry genes that have high nematicidal activity. The whole genome sequence of this strain contains multiple potential virulence factors. To evaluate the pathogenic potential of virulence factors, we focused on a metalloproteinase called Bmp1. It encompasses a consecutive N-terminal signal peptide, an FTP superfamily domain, an M4 neutral protease GluZincin superfamily, two Big-3 superfamily motifs, and a Gram-positive anchor superfamily motif as a C-terminal domain. Here, we showed that purified Bmp1 protein showed metalloproteinase activity and toxicity against Caenorhabditis elegans (the 50% lethal concentration is 610 ± 9.37 μg/ml). In addition, mixing Cry5Ba with Bmp1 protein enhanced the toxicity 7.9-fold (the expected toxicity of the two proteins calculated from their separate toxicities) against C. elegans. Confocal microscopic observation revealed that Bmp1 protein was detected from around the mouth and esophagus to the intestine. Striking microscopic images revealed that Bmp1 degrades intestine tissues, and the Cry5Ba causes intestinal shrinkage from the body wall. Thus, the B. thuringiensis Bmp1 metalloproteinase is a nematicidal virulence factor. These findings give a new insight into the relationship between B. thuringiensis and its host nematodes.

  20. Nematicidal spore-forming Bacilli share similar virulence factors and mechanisms.

    PubMed

    Zheng, Ziqiang; Zheng, Jinshui; Zhang, Zhengming; Peng, Donghai; Sun, Ming

    2016-01-01

    In the soil environment, Bacilli can affect nematode development, fecundity and survival. However, although many Bacillus species can kill nematodes, the virulence mechanisms Bacilli utilize remain unknown. In this study, we collected 120 strains comprising 30 species across the Bacillaceae and Paenibacillaceae families of the Bacillales order and measured their nematicidal activities in vitro. Comparison of these strains' nematicidal capacities revealed that nine species, including Bacillus thuringiensis, B. cereus, B. subtilis, B. pumilus, B. firmus, B. toyonensis, Lysinibacillus sphaericus, Brevibacillus laterosporus and B. brevis, were highly nematicidal, the first of which showed the highest activity. Genome sequencing and analysis identified many potential virulence factors, which grouped into five types. At least four possible mechanisms were deduced on the basis of the combination of these factors and the bacterial nematicidal activity, including a pore-forming mechanism of crystal proteins, an inhibition-like mechanism of thuringiensin and a degradation mechanism of proteases and/or chitinases. Our results demonstrate that 120 spore-forming Bacilli across different families share virulence factors that may contribute to their nematicidal capacity. PMID:27539267

  1. Virulence factors in Proteus bacteria from biofilm communities of catheter-associated urinary tract infections.

    PubMed

    Hola, Veronika; Peroutkova, Tereza; Ruzicka, Filip

    2012-07-01

    More than 40% of nosocomial infections are those of the urinary tract, most of these occurring in catheterized patients. Bacterial colonization of the urinary tract and catheters results not only in infection, but also various complications, such as blockage of catheters with crystalline deposits of bacterial origin, generation of gravels and pyelonephritis. The diversity of the biofilm microbial community increases with duration of catheter emplacement. One of the most important pathogens in this regard is Proteus mirabilis. The aims of this study were to identify and assess particular virulence factors present in catheter-associated urinary tract infection (CAUTI) isolates, their correlation and linkages: three types of motility (swarming, swimming and twitching), the ability to swarm over urinary catheters, biofilm production in two types of media, urease production and adherence of bacterial cells to various types of urinary tract catheters. We examined 102 CAUTI isolates and 50 isolates taken from stool samples of healthy people. Among the microorganisms isolated from urinary catheters, significant differences were found in biofilm-forming ability and the swarming motility. In comparison with the control group, the microorganisms isolated from urinary catheters showed a wider spectrum of virulence factors. The virulence factors (twitching motility, swimming motility, swarming over various types of catheters and biofilm formation) were also more intensively expressed.

  2. Nematicidal spore-forming Bacilli share similar virulence factors and mechanisms

    PubMed Central

    Zheng, Ziqiang; Zheng, Jinshui; Zhang, Zhengming; Peng, Donghai; Sun, Ming

    2016-01-01

    In the soil environment, Bacilli can affect nematode development, fecundity and survival. However, although many Bacillus species can kill nematodes, the virulence mechanisms Bacilli utilize remain unknown. In this study, we collected 120 strains comprising 30 species across the Bacillaceae and Paenibacillaceae families of the Bacillales order and measured their nematicidal activities in vitro. Comparison of these strains’ nematicidal capacities revealed that nine species, including Bacillus thuringiensis, B. cereus, B. subtilis, B. pumilus, B. firmus, B. toyonensis, Lysinibacillus sphaericus, Brevibacillus laterosporus and B. brevis, were highly nematicidal, the first of which showed the highest activity. Genome sequencing and analysis identified many potential virulence factors, which grouped into five types. At least four possible mechanisms were deduced on the basis of the combination of these factors and the bacterial nematicidal activity, including a pore-forming mechanism of crystal proteins, an inhibition-like mechanism of thuringiensin and a degradation mechanism of proteases and/or chitinases. Our results demonstrate that 120 spore-forming Bacilli across different families share virulence factors that may contribute to their nematicidal capacity. PMID:27539267

  3. A Brucella Virulence Factor Targets Macrophages to Trigger B-cell Proliferation*

    PubMed Central

    Spera, Juan M.; Herrmann, Claudia K.; Roset, Mara S.; Comerci, Diego J.; Ugalde, Juan E.

    2013-01-01

    Brucella spp. and Trypanosoma cruzi are two intracellular pathogens that have no evolutionary common origins but share a similar lifestyle as they establish chronic infections for which they have to circumvent the host immune response. Both pathogens have a virulence factor (prpA in Brucella and tcPrac in T. cruzi) that induces B-cell proliferation and promotes the establishment of the chronic phase of the infectious process. We show here that, even though PrpA promotes B-cell proliferation, it targets macrophages in vitro and is translocated to the cytoplasm during the intracellular replication phase. We observed that PrpA-treated macrophages induce the secretion of a soluble factor responsible for B-cell proliferation and identified nonmuscular myosin IIA (NMM-IIA) as a receptor required for binding and function of this virulence factor. Finally, we show that the Trypanosoma cruzi homologue of PrpA also targets macrophages to induce B-cell proliferation through the same receptor, indicating that this virulence strategy is conserved between a bacterial and a protozoan pathogen. PMID:23720774

  4. Capsules, toxins and AtxA as virulence factors of emerging Bacillus cereus biovar anthracis.

    PubMed

    Brézillon, Christophe; Haustant, Michel; Dupke, Susann; Corre, Jean-Philippe; Lander, Angelika; Franz, Tatjana; Monot, Marc; Couture-Tosi, Evelyne; Jouvion, Gregory; Leendertz, Fabian H; Grunow, Roland; Mock, Michèle E; Klee, Silke R; Goossens, Pierre L

    2015-04-01

    Emerging B. cereus strains that cause anthrax-like disease have been isolated in Cameroon (CA strain) and Côte d'Ivoire (CI strain). These strains are unusual, because their genomic characterisation shows that they belong to the B. cereus species, although they harbour two plasmids, pBCXO1 and pBCXO2, that are highly similar to the pXO1 and pXO2 plasmids of B. anthracis that encode the toxins and the polyglutamate capsule respectively. The virulence factors implicated in the pathogenicity of these B. cereus bv anthracis strains remain to be characterised. We tested their virulence by cutaneous and intranasal delivery in mice and guinea pigs; they were as virulent as wild-type B. anthracis. Unlike as described for pXO2-cured B. anthracis, the CA strain cured of the pBCXO2 plasmid was still highly virulent, showing the existence of other virulence factors. Indeed, these strains concomitantly expressed a hyaluronic acid (HA) capsule and the B. anthracis polyglutamate (PDGA) capsule. The HA capsule was encoded by the hasACB operon on pBCXO1, and its expression was regulated by the global transcription regulator AtxA, which controls anthrax toxins and PDGA capsule in B. anthracis. Thus, the HA and PDGA capsules and toxins were co-regulated by AtxA. We explored the respective effect of the virulence factors on colonisation and dissemination of CA within its host by constructing bioluminescent mutants. Expression of the HA capsule by itself led to local multiplication and, during intranasal infection, to local dissemination to the adjacent brain tissue. Co-expression of either toxins or PDGA capsule with HA capsule enabled systemic dissemination, thus providing a clear evolutionary advantage. Protection against infection by B. cereus bv anthracis required the same vaccination formulation as that used against B. anthracis. Thus, these strains, at the frontier between B. anthracis and B. cereus, provide insight into how the monomorphic B. anthracis may have emerged.

  5. Capsules, Toxins and AtxA as Virulence Factors of Emerging Bacillus cereus Biovar anthracis

    PubMed Central

    Corre, Jean-Philippe; Lander, Angelika; Franz, Tatjana; Monot, Marc; Couture-Tosi, Evelyne; Jouvion, Gregory; Leendertz, Fabian H.; Grunow, Roland; Mock, Michèle E.; Klee, Silke R.; Goossens, Pierre L.

    2015-01-01

    Emerging B. cereus strains that cause anthrax-like disease have been isolated in Cameroon (CA strain) and Côte d’Ivoire (CI strain). These strains are unusual, because their genomic characterisation shows that they belong to the B. cereus species, although they harbour two plasmids, pBCXO1 and pBCXO2, that are highly similar to the pXO1 and pXO2 plasmids of B. anthracis that encode the toxins and the polyglutamate capsule respectively. The virulence factors implicated in the pathogenicity of these B. cereus bv anthracis strains remain to be characterised. We tested their virulence by cutaneous and intranasal delivery in mice and guinea pigs; they were as virulent as wild-type B. anthracis. Unlike as described for pXO2-cured B. anthracis, the CA strain cured of the pBCXO2 plasmid was still highly virulent, showing the existence of other virulence factors. Indeed, these strains concomitantly expressed a hyaluronic acid (HA) capsule and the B. anthracis polyglutamate (PDGA) capsule. The HA capsule was encoded by the hasACB operon on pBCXO1, and its expression was regulated by the global transcription regulator AtxA, which controls anthrax toxins and PDGA capsule in B. anthracis. Thus, the HA and PDGA capsules and toxins were co-regulated by AtxA. We explored the respective effect of the virulence factors on colonisation and dissemination of CA within its host by constructing bioluminescent mutants. Expression of the HA capsule by itself led to local multiplication and, during intranasal infection, to local dissemination to the adjacent brain tissue. Co-expression of either toxins or PDGA capsule with HA capsule enabled systemic dissemination, thus providing a clear evolutionary advantage. Protection against infection by B. cereus bv anthracis required the same vaccination formulation as that used against B. anthracis. Thus, these strains, at the frontier between B. anthracis and B. cereus, provide insight into how the monomorphic B. anthracis may have emerged. PMID

  6. The role of 2,4-dihydroxyquinoline (DHQ) in Pseudomonas aeruginosa pathogenicity

    PubMed Central

    Gruber, Jordon D.; Chen, Wei; Parnham, Stuart; Beauchesne, Kevin; Moeller, Peter; Flume, Patrick A.

    2016-01-01

    Bacteria synchronize group behaviors using quorum sensing, which is advantageous during an infection to thwart immune cell attack and resist deleterious changes in the environment. In Pseudomonas aeruginosa, the Pseudomonas quinolone signal (Pqs) quorum-sensing system is an important component of an interconnected intercellular communication network. Two alkylquinolones, 2-heptyl-4-quinolone (HHQ) and 2-heptyl-3-hydroxy-4-quinolone (PQS), activate transcriptional regulator PqsR to promote the production of quinolone signals and virulence factors. Our work focused on the most abundant quinolone produced from the Pqs system, 2,4-dihydroxyquinoline (DHQ), which was shown previously to sustain pyocyanin production and antifungal activity of P. aeruginosa. However, little is known about how DHQ affects P. aeruginosa pathogenicity. Using C. elegans as a model for P. aeruginosa infection, we found pqs mutants only able to produce DHQ maintained virulence towards the nematodes similar to wild-type. In addition, DHQ-only producing mutants displayed increased colonization of C. elegans and virulence factor production compared to a quinolone-null strain. DHQ also bound to PqsR and activated the transcription of pqs operon. More importantly, high extracellular concentration of DHQ was maintained in both aerobic and anaerobic growth. High levels of DHQ were also detected in the sputum samples of cystic fibrosis patients. Taken together, our findings suggest DHQ may play an important role in sustaining P. aeruginosa pathogenicity under oxygen-limiting conditions. PMID:26788419

  7. Transcriptome profiling reveals links between ParS/ParR, MexEF-OprN, and quorum sensing in the regulation of adaptation and virulence in Pseudomonas aeruginosa

    PubMed Central

    2013-01-01

    Background The ParS/ParR two component regulatory system plays critical roles for multidrug resistance in Pseudomonas aeruginosa. It was demonstrated that in the presence of antimicrobials, ParR enhances bacterial survival by distinct mechanisms including activation of the mexXY efflux genes, enhancement of lipopolysaccharide modification through the arn operon, and reduction of the expression of oprD porin. Results In this study, we report on transcriptomic analyses of P. aeruginosa PAO1 wild type and parS and parR mutants growing in a defined minimal medium. Our transcriptomic analysis provides the first estimates of transcript abundance for the 5570 coding genes in P. aeruginosa PAO1. Comparative transcriptomics of P. aeruginosa PAO1 and par mutants identified a total of 464 genes regulated by ParS and ParR. Results also showed that mutations in the parS/parR system abolished expression of the mexEF-oprN operon by down-regulating the regulatory gene mexS. In addition to the known effects on drug resistance genes, transcript abundances of the quorum sensing genes (rhlIR and pqsABCDE-phnAB) were higher in both parS and parR mutants. In accordance with these results, a significant portion of the ParS/ParR regulated genes belonged to the MexEF-OprN and quorum sensing regulons. Deletion of the par genes also led to increased phenazine production and swarming motility, consistent with the up-regulation of the phenazine and rhamnolipid biosynthetic genes, respectively. Conclusion Our results link the ParS/ParR two component signal transduction system to MexEF-OprN and quorum sensing systems in P. aeruginosa. These results expand our understanding of the roles of the ParS/ParR system in the regulation of gene expression in P. aeruginosa, especially in the absence of antimicrobials. PMID:24034668

  8. Detection of Methicillin Resistance and Various Virulence Factors in Staphylococcus aureus Strains Isolated from Nasal Carriers

    PubMed Central

    Dağı, Hatice Türk; Fındık, Duygu; Demirel, Gamze; Arslan, Uğur

    2015-01-01

    Background: Staphylococus aureus can be found as a commensal on skin and nasal flora or it may cause local and invasive infections. S. aureus has a large number of virulence factors. Aims: To investigate the methicillin resistance and frequency of various virulence factors in S. aureus nasal isolates. Study Design: Descriptive study. Methods: Nasal samples collected from university students were cultured in media. S. aureus was identified by conventional methods and the Staphyloslide latex test (Becton Dickinson, Sparks, USA). Antibiotic susceptibility tests were conducted, and the methicillin resistance was determined. The mecA, nuc, pvl and staphylococcal toxin genes were examined by polymerase chain reaction (PCR). Results: S. aureus was isolated in 104 of 600 (17.3%) nasal samples. In total, 101 (97.1%) S. aureus isolates were methicillin-sensitive and the remaining 3 (2.9%) were methicillin-resistant. Furthermore, all but five isolates carried at least one staphylococcal enterotoxin gene, with seg being predominant. The tst and eta genes were determined in 29 (27.9%), and 3 (2.9%) isolates, respectively. None of the S. aureus isolates harbored see, etb, and pvl genes. Conclusion: A moderate rate of S. aureus carriage and low frequency of MRSA were detected in healthy students. S. aureus isolates had a high prevalence of staphylococcal enterotoxin genes and the tst gene. In this study, a large number of virulence factors were examined in S. aureus nasal isolates, and the data obtained from this study can be used for monitoring the prevalence of virulence genes in S. aureus strains isolated from nasal carriers. PMID:26167341

  9. Pseudomonas aeruginosa and Its Bacterial Components Influence the Cytokine Response in Thymocytes and Splenocytes

    PubMed Central

    Zimmermann, Corinna; Mausberg, Anne K.; Dehmel, Thomas; Kieseier, Bernd C.; Hartung, Hans-Peter; Hofstetter, Harald H.

    2016-01-01

    Infections with Pseudomonas aeruginosa may cause many different diseases. The spectrum of such infections in general includes inflammation and bacterial sepsis. Hospital-acquired pneumonia, naturally resistant to a wide range of antibiotics, is associated with a particularly high mortality rate in mechanically ventilated patients. The pathogenesis of P. aeruginosa is complex and mediated by several virulence factors, as well as cell-associated factors. We have previously demonstrated that stimulation with different bacteria triggers the cytokine response of thymocytes. In this study, we investigated the effect of P. aeruginosa and its different components on the cytokine production of immature and mature immune cells. We found that the induced cytokine pattern in the thymus and the spleen after infections with P. aeruginosa is primarily mediated by lipopolysaccharide (LPS) of the outer cell membrane, but other components of the bacterium can influence the cytokine secretion as well. Stimulation with heat-killed P. aeruginosa and LPS does not influence the amount of cytokine-producing CD4+ T cells but instead suppresses the emergence of Th17 cells. However, stimulation with P. aeruginosa or its components triggers the interleukin-17 (IL-17) response both in thymocytes and in splenocytes. We conclude that infections with P. aeruginosa affect the cytokine secretion of immature and mature cells and that IL-17 and Th17 cells play only a minor role in the development of pathological systemic inflammatory disease conditions during P. aeruginosa infections. Therefore, other inflammatory immune responses must be responsible for septic reactions of the host. PMID:26902726

  10. Pseudomonas aeruginosa and Its Bacterial Components Influence the Cytokine Response in Thymocytes and Splenocytes.

    PubMed

    Weber, Andreas; Zimmermann, Corinna; Mausberg, Anne K; Dehmel, Thomas; Kieseier, Bernd C; Hartung, Hans-Peter; Hofstetter, Harald H

    2016-05-01

    Infections with Pseudomonas aeruginosa may cause many different diseases. The spectrum of such infections in general includes inflammation and bacterial sepsis. Hospital-acquired pneumonia, naturally resistant to a wide range of antibiotics, is associated with a particularly high mortality rate in mechanically ventilated patients. The pathogenesis of P. aeruginosa is complex and mediated by several virulence factors, as well as cell-associated factors. We have previously demonstrated that stimulation with different bacteria triggers the cytokine response of thymocytes. In this study, we investigated the effect of P. aeruginosa and its different components on the cytokine production of immature and mature immune cells. We found that the induced cytokine pattern in the thymus and the spleen after infections with P. aeruginosa is primarily mediated by lipopolysaccharide (LPS) of the outer cell membrane, but other components of the bacterium can influence the cytokine secretion as well. Stimulation with heat-killed P. aeruginosa and LPS does not influence the amount of cytokine-producing CD4(+) T cells but instead suppresses the emergence of Th17 cells. However, stimulation with P. aeruginosa or its components triggers the interleukin-17 (IL-17) response both in thymocytes and in splenocytes. We conclude that infections with P. aeruginosa affect the cytokine secretion of immature and mature cells and that IL-17 and Th17 cells play only a minor role in the development of pathological systemic inflammatory disease conditions during P. aeruginosa infections. Therefore, other inflammatory immune responses must be responsible for septic reactions of the host.

  11. Protective effect of recombinant murine granulocyte-macrophage colony-stimulating factor against Pseudomonas aeruginosa infection in leukocytopenic mice.

    PubMed Central

    Tanaka, T.; Okamura, S.; Okada, K.; Suga, A.; Shimono, N.; Ohhara, N.; Hirota, Y.; Sawae, Y.; Niho, Y.

    1989-01-01

    The effects of recombinant murine granulocyte-macrophage colony-stimulating factor (rmGM-CSF) against Pseudomonas aeruginosa infection in ICR mice were investigated. Mice were treated with cyclophosphamide (CPA) and were then injected intraperitoneally with rmGM-CSF three times daily, beginning on the day after CPA treatment, for 7 days. The number of peripheral blood leukocytes in both CPA- and rmGM-CSF-treated mice and control CPA-treated mice reached a nadir on day 4, when P. aeruginosa was injected intraperitoneally. The administration of rmGM-CSF significantly increased the proportion of survivors among mice infected with a lethal dose of P. aeruginosa. This effect was further analyzed by monitoring sequential changes in leukocyte count and bacterial growth in various organs. The number of bacteria in the peritoneal cavities, peripheral blood samples, and livers of GM-CSF-treated mice decreased to an undetectable level after a transient increase, and the number was significantly lower than that in control mice. In GM-CSF-treated mice, the neutrophil levels in peripheral blood started to increase 5 days after CPA administration and were consistently higher than those in controls. Furthermore, the neutrophils in GM-CSF-treated mice were more mature morphologically. Thus, the prophylactic effect of rmGM-CSF against P. aeruginosa infection may result from a rapid recovery of myelopoiesis and a partial enhancement of mature neutrophil function. PMID:2656523

  12. Regulation of Virulence of Entamoeba histolytica by the URE3-BP Transcription Factor.

    PubMed

    Gilchrist, Carol A; Moore, Ellyn S; Zhang, Yan; Bousquet, Christina B; Lannigan, Joanne A; Mann, Barbara J; Petri, William A

    2010-05-18

    It is not understood why only some infections with Entamoeba histolytica result in disease. The calcium-regulated transcription factor upstream regulatory element 3-binding protein (URE3-BP) was initially identified by virtue of its role in regulating the expression of two amebic virulence genes, the Gal/GalNac lectin and ferredoxin. Here we tested whether this transcription factor has a broader role in regulating virulence. A comparison of in vivo to in vitro parasite gene expression demonstrated that 39% of in vivo regulated transcripts contained the URE3 motif recognized by URE3-BP, compared to 23% of all promoters (P < 0.0001). Amebae induced to express a dominant positive mutant form of URE3-BP had an increase in an elongated morphology (30% +/- 6% versus 14% +/- 5%; P = 0.001), a 2-fold competitive advantage at invading the intestinal epithelium (P = 0.017), and a 3-fold increase in liver abscess size (0.1 +/- 0.1 g versus 0.036 +/- 0.1 g; P = 0.03). These results support a role for URE3-BP in virulence regulation.

  13. Proteases from Entamoeba spp. and Pathogenic Free-Living Amoebae as Virulence Factors.

    PubMed

    Serrano-Luna, Jesús; Piña-Vázquez, Carolina; Reyes-López, Magda; Ortiz-Estrada, Guillermo; de la Garza, Mireya

    2013-01-01

    The standard reference for pathogenic and nonpathogenic amoebae is the human parasite Entamoeba histolytica; a direct correlation between virulence and protease expression has been demonstrated for this amoeba. Traditionally, proteases are considered virulence factors, including those that produce cytopathic effects in the host or that have been implicated in manipulating the immune response. Here, we expand the scope to other amoebae, including less-pathogenic Entamoeba species and highly pathogenic free-living amoebae. In this paper, proteases that affect mucin, extracellular matrix, immune system components, and diverse tissues and cells are included, based on studies in amoebic cultures and animal models. We also include proteases used by amoebae to degrade iron-containing proteins because iron scavenger capacity is currently considered a virulence factor for pathogens. In addition, proteases that have a role in adhesion and encystation, which are essential for establishing and transmitting infection, are discussed. The study of proteases and their specific inhibitors is relevant to the search for new therapeutic targets and to increase the power of drugs used to treat the diseases caused by these complex microorganisms.

  14. Staphylococcus aureus nuclease is an SaeRS-dependent virulence factor.

    PubMed

    Olson, Michael E; Nygaard, Tyler K; Ackermann, Laynez; Watkins, Robert L; Zurek, Oliwia W; Pallister, Kyler B; Griffith, Shannon; Kiedrowski, Megan R; Flack, Caralyn E; Kavanaugh, Jeffrey S; Kreiswirth, Barry N; Horswill, Alexander R; Voyich, Jovanka M

    2013-04-01

    Several prominent bacterial pathogens secrete nuclease (Nuc) enzymes that have an important role in combating the host immune response. Early studies of Staphylococcus aureus Nuc attributed its regulation to the agr quorum-sensing system. However, recent microarray data have indicated that nuc is under the control of the SaeRS two-component system, which is a major regulator of S. aureus virulence determinants. Here we report that the nuc gene is directly controlled by the SaeRS two-component system through reporter fusion, immunoblotting, Nuc activity measurements, promoter mapping, and binding studies, and additionally, we were unable identify a notable regulatory link to the agr system. The observed SaeRS-dependent regulation was conserved across a wide spectrum of representative S. aureus isolates. Moreover, with community-associated methicillin-resistant S. aureus (CA MRSA) in a mouse model of peritonitis, we observed in vivo expression of Nuc activity in an SaeRS-dependent manner and determined that Nuc is a virulence factor that is important for in vivo survival, confirming the enzyme's role as a contributor to invasive disease. Finally, natural polymorphisms were identified in the SaeRS proteins, one of which was linked to Nuc regulation in a CA MRSA USA300 endocarditis isolate. Altogether, our findings demonstrate that Nuc is an important S. aureus virulence factor and part of the SaeRS regulon.

  15. Caenorhabditis elegans-based screen identifies Salmonella virulence factors required for conserved host-pathogen interactions.

    PubMed

    Tenor, Jennifer L; McCormick, Beth A; Ausubel, Frederick M; Aballay, Alejandro

    2004-06-01

    A Caenorhabditis elegans-Salmonella enterica host-pathogen model was used to identify both novel and previously known S. enterica virulence factors (HilA, HilD, InvH, SptP, RhuM, Spi4-F, PipA, VsdA, RepC, Sb25, RfaL, GmhA, LeuO, CstA, and RecC), including several related to the type III secretion system (TTSS) encoded in Salmonella pathogenicity island 1 (SPI-1). Mutants corresponding to presumptive novel virulence-related genes exhibited diminished ability to invade epithelial cells and/or to induce polymorphonuclear leukocyte migration in a tissue culture model of mammalian enteropathogenesis. When expressed in C. elegans intestinal cells, the S. enterica TTSS-exported effector protein SptP inhibited a conserved p38 MAPK signaling pathway and suppressed the diminished pathogenicity phenotype of an S. enterica sptP mutant. These results show that C. elegans is an attractive model to study the interaction between Salmonella effector proteins and components of the innate immune response, in part because there is a remarkable overlap between Salmonella virulence factors required for human and nematode pathogenesis.

  16. Proteases from Entamoeba spp. and Pathogenic Free-Living Amoebae as Virulence Factors

    PubMed Central

    Serrano-Luna, Jesús; Piña-Vázquez, Carolina; Reyes-López, Magda; Ortiz-Estrada, Guillermo

    2013-01-01

    The standard reference for pathogenic and nonpathogenic amoebae is the human parasite Entamoeba histolytica; a direct correlation between virulence and protease expression has been demonstrated for this amoeba. Traditionally, proteases are considered virulence factors, including those that produce cytopathic effects in the host or that have been implicated in manipulating the immune response. Here, we expand the scope to other amoebae, including less-pathogenic Entamoeba species and highly pathogenic free-living amoebae. In this paper, proteases that affect mucin, extracellular matrix, immune system components, and diverse tissues and cells are included, based on studies in amoebic cultures and animal models. We also include proteases used by amoebae to degrade iron-containing proteins because iron scavenger capacity is currently considered a virulence factor for pathogens. In addition, proteases that have a role in adhesion and encystation, which are essential for establishing and transmitting infection, are discussed. The study of proteases and their specific inhibitors is relevant to the search for new therapeutic targets and to increase the power of drugs used to treat the diseases caused by these complex microorganisms. PMID:23476670

  17. Src and PI3 K inhibitors affect the virulence factors of Entamoeba histolytica.

    PubMed

    López-Contreras, L; Hernández-Ramírez, V I; Flores-García, Y; Chávez-Munguía, B; Talamás-Rohana, P

    2013-02-01

    Protein kinases (PKs) of parasitic protozoa are being evaluated as drug targets. A large number of protein kinases within the protein kinome of Entamoeba histolytica strongly suggest that protein phosphorylation is a key component of pathogenesis regulation by this parasite. PI3 K and Src are kinases previously described in this parasite, but their role is poorly understood. Here, the effect of Src-1-inhibitor and PI3 K inhibitor (Wortmannin) on the virulence factors of E. histolytica was evaluated. Results show that both inhibitors affect the actin cytoskeleton and the amoebic movement. Also, the proteolytic activity is diminished by Wortmannin, but not by Src-inhibitor-1; however, the phagocytic capacity is diminished by Wortmannin and Src-1-inhibitor. Finally, we found that the virulence in vivo of E. histolytica is affected by Wortmannin but not by Src-1-inhibitor. This study opens the way for the design of anti-amoebic drugs based on kinase inhibition.

  18. Identification and Structural Basis of Binding to Host Lung Glycogen by Streptococcal Virulence Factors

    SciTech Connect

    Lammerts van Bueren,A.; Higgins, M.; Wang, D.; Burke, R.; Boraston, A.

    2007-01-01

    The ability of pathogenic bacteria to recognize host glycans is often essential to their virulence. Here we report structure-function studies of previously uncharacterized glycogen-binding modules in the surface-anchored pullulanases from Streptococcus pneumoniae (SpuA) and Streptococcus pyogenes (PulA). Multivalent binding to glycogen leads to a strong interaction with alveolar type II cells in mouse lung tissue. X-ray crystal structures of the binding modules reveal a novel fusion of tandem modules into single, bivalent functional domains. In addition to indicating a structural basis for multivalent attachment, the structure of the SpuA modules in complex with carbohydrate provides insight into the molecular basis for glycogen specificity. This report provides the first evidence that intracellular lung glycogen may be a novel target of pathogenic streptococci and thus provides a rationale for the identification of the streptococcal {alpha}-glucan-metabolizing machinery as virulence factors.

  19. Extracellular Vesicles from Trypanosoma brucei Mediate Virulence Factor Transfer and Cause Host Anemia.

    PubMed

    Szempruch, Anthony J; Sykes, Steven E; Kieft, Rudo; Dennison, Lauren; Becker, Allison C; Gartrell, Anzio; Martin, William J; Nakayasu, Ernesto S; Almeida, Igor C; Hajduk, Stephen L; Harrington, John M

    2016-01-14

    Intercellular communication between parasites and with host cells provides mechanisms for parasite development, immune evasion, and disease pathology. Bloodstream African trypanosomes produce membranous nanotubes that originate from the flagellar membrane and disassociate into free extracellular vesicles (EVs). Trypanosome EVs contain several flagellar proteins that contribute to virulence, and Trypanosoma brucei rhodesiense EVs contain the serum resistance-associated protein (SRA) necessary for human infectivity. T. b. rhodesiense EVs transfer SRA to non-human infectious trypanosomes, allowing evasion of human innate immunity. Trypanosome EVs can also fuse with mammalian erythrocytes, resulting in rapid erythrocyte clearance and anemia. These data indicate that trypanosome EVs are organelles mediating non-hereditary virulence factor transfer and causing host erythrocyte remodeling, inducing anemia. PMID:26771494

  20. A novel adhesive factor contributing to the virulence of Vibrio parahaemolyticus

    PubMed Central

    Liu, Ming; Chen, Sheng

    2015-01-01

    Bacterial adhesins play a pivotal role in the tight bacteria-host cells attachment to initiate the downstream processes and bacterial infection of hosts. In this study, we identified a novel adhesin, VpadF in V. parahaemolyticus. Deletion of VpadF in V. parahaemolyticus markedly impaired its attachment and cytotoxicity to epithelial cells, as well as attenuated the virulence in murine model. Biochemical studies revealed that VpadF recognized both fibronectin and fibrinogen. The binding of VpadF to these two host receptors was mainly dependent on the its fifth bacterial immunoglobulin-like group domain and its C-terminal tail. Our finding suggested that VpadF is a major virulence factor of V. parahaemolyticus and a potential good candidate for V. parahaemolyticus infection control for both vaccine development and drug target. PMID:26399174

  1. Candida bracarensis: Evaluation of Virulence Factors and its Tolerance to Amphotericin B and Fluconazole.

    PubMed

    Moreira, André; Silva, Sónia; Botelho, Cláudia; Sampaio, Paula; Pais, Célia; Henriques, Mariana

    2015-12-01

    Candida bracarensis is an uncommon Candida species found during an epidemiological study of candidiasis performed in Braga, Portugal. Initially, it was identified as C. glabrata, but recently detailed analyses pointed out their differences. So, little information is still available about C. bracarensis virulence factors and antifungal susceptibilities. Therefore, the main goal of this work is to evaluate the ability of C. bracarensis to form biofilms, to produce hydrolytic enzymes (proteases, phospholipases and hemolysins), as well as its susceptibility to amphotericin B and fluconazole. It was shown, for the first time, that all C. bracarensis strains were able to form biofilms and display proteinase and hemolytic activities. Moreover, although planktonic cells presented antifungal susceptibility, amphotericin B and fluconazole were unable to inhibit biofilm formation and eradicate pre-formed biofilms. Due to the propensity of C. bracarensis to display antifungal resistance and virulence attributes, the control of these emerging pathogens is recommended. PMID:26179982

  2. Candida bracarensis: Evaluation of Virulence Factors and its Tolerance to Amphotericin B and Fluconazole.

    PubMed

    Moreira, André; Silva, Sónia; Botelho, Cláudia; Sampaio, Paula; Pais, Célia; Henriques, Mariana

    2015-12-01

    Candida bracarensis is an uncommon Candida species found during an epidemiological study of candidiasis performed in Braga, Portugal. Initially, it was identified as C. glabrata, but recently detailed analyses pointed out their differences. So, little information is still available about C. bracarensis virulence factors and antifungal susceptibilities. Therefore, the main goal of this work is to evaluate the ability of C. bracarensis to form biofilms, to produce hydrolytic enzymes (proteases, phospholipases and hemolysins), as well as its susceptibility to amphotericin B and fluconazole. It was shown, for the first time, that all C. bracarensis strains were able to form biofilms and display proteinase and hemolytic activities. Moreover, although planktonic cells presented antifungal susceptibility, amphotericin B and fluconazole were unable to inhibit biofilm formation and eradicate pre-formed biofilms. Due to the propensity of C. bracarensis to display antifungal resistance and virulence attributes, the control of these emerging pathogens is recommended.

  3. Virulence Factors and O-Serogroups Profiles of Uropathogenic Escherichia Coli Isolated from Iranian Pediatric Patients

    PubMed Central

    Dormanesh, Banafshe; Safarpoor Dehkordi, Farhad; Hosseini, Sahar; Momtaz, Hassan; Mirnejad, Reza; Hoseini, Mohammad Javad; Yahaghi, Emad; Tarhriz, Vahideh; Khodaverdi Darian, Ebrahim

    2014-01-01

    Background: Uropathogenic Escherichia coli O- Serogroups with their virulence factors are the most prevalent causes of UTIs. Objectives: The present investigation was performed to study the virulence factors and O-Serogroups profiles of UPEC isolated from Iranian pediatric patients. Patients and Methods: This cross sectional investigation was performed on 100 urine samples collected from hospitalized pediatrics of Baqiyatallah Hospital, Tehran, Iran. Midstream urine was collected to decrease potential bacterial, cellular and artifactual contamination. All samples were cultured and those with positive results were subjected to polymerase chain reactions to detect pap, cnf1, afa, sfa and hlyA genes and various O- Serogroups. Results: We found that 37.5% of boys and 75% of girls had positive results for Escherichia coli. We also found that O1 (19.33%), O2 (13.33%), O6 (13.33%), O4 (11.66%), and O18 (11.66 %) were the most commonly detected Serogroups. Totally, the serogroup of 5% of all strains were not detected. In addition, all of these O- Serogroups were pap+, cnf1+, hlyA+, and afa+. Totally, pap (70 %), cnf1 (56.66 %), and hlyA (43.33 %) were the most commonly detected virulence genes in the both studied groups of children. The sfa (30 %) and afa (26.66 %) genes had the lowest incidence rates. Conclusions: Special health care should be performed on UTIs management in Iranian pediatric patients. Extended researches should be performed to evaluate relation between other O-Serogroups and virulent genes. PMID:24719745

  4. Effects of norspermidine on Pseudomonas aeruginosa biofilm formation and eradication.

    PubMed

    Qu, Lin; She, Pengfei; Wang, Yangxia; Liu, Fengxia; Zhang, Di; Chen, Lihua; Luo, Zhen; Xu, Huan; Qi, Yong; Wu, Yong

    2016-06-01

    Biofilms are defined as aggregation of single cell microorganisms and associated with over 80% of all the microbial infections. Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen capable of leading to various infections in immunocompromised people. Recent studies showed that norspermidine, a kind of polyamine, prevented and disrupted biofilm formation by some Gram-negative bacterium. In this study, the effects of norspermidine on P. aeruginosa biofilm formation and eradication were tested. Microtiter plate combined with crystal violet staining was used to study the effects of norspermidine on P. aeruginosa initial attachment, then we employed SEM (scanning electron microscope), qRT-PCR, and QS-related virulence factor assays to investigate how norspermidine prevent biofilm formation by P. aeruginosa. We reported that high-dose norspermidine had bactericide effect on P. aeruginosa, and norspermidine began to inhibit biofilm formation and eradicate 24-h mature biofilm at concentration of 0.1 and 1 mmol/L, respectively, probably by preventing cell-surface attachment, inhibiting swimming motility, and downregulating QS-related genes expression. To investigate the potential utility of norspermidine in preventing device-related infections, we found that catheters immersed with norspermidine were effective in eradicating mature biofilm. These results suggest that norspermidine could be a potent antibiofilm agent for formulating strategies against P. aeruginosa biofilm. PMID:26817804

  5. A Drug-Repositioning Screening Identifies Pentetic Acid as a Potential Therapeutic Agent for Suppressing the Elastase-Mediated Virulence of Pseudomonas aeruginosa

    PubMed Central

    Gi, Mia; Jeong, Junhui; Lee, Keehoon; Lee, Kang-Mu; Toyofuku, Masanori; Yong, Dong Eun

    2014-01-01

    Pseudomonas aeruginosa, a Gram-negative bacterium of clinical significance, produces elastase as a predominant exoprotease. Here, we screened a library of chemical compounds currently used for human medication and identified diethylene triamine penta-acetic acid (DTPA, pentetic acid) as an agent that suppresses the production of elastase. Elastase activity found in the prototype P. aeruginosa strain PAO1 was significantly decreased when grown with a concentration as low as 20 μM DTPA. Supplementation with Zn2+ or Mn2+ ions restored the suppressive effect of DTPA, suggesting that the DTPA-mediated decrease in elastase activity is associated with ion-chelating activity. In DTPA-treated PAO1 cells, transcription of the elastase-encoding lasB gene and levels of the Pseudomonas quinolone signal (PQS), a molecule that mediates P. aeruginosa quorum sensing (QS), were significantly downregulated, reflecting the potential involvement of the PQS QS system in DTPA-mediated elastase suppression. Biofilm formation was also decreased by DTPA treatment. When A549 alveolar type II-like adenocarcinoma cells were infected with PAO1 cells in the presence of DTPA, A549 cell viability was substantially increased. Furthermore, the intranasal delivery of DTPA to PAO1-infected mice alleviated the pathogenic effects of PAO1 cells in the animals. Together, our results revealed a novel function for a known molecule that may help treat P. aeruginosa airway infection. PMID:25246397

  6. Effects of ambroxol on alginate of mature Pseudomonas aeruginosa biofilms.

    PubMed

    Li, Fang; Yu, Jialin; Yang, Hua; Wan, Zhenyan; Bai, Dan

    2008-07-01

    Biofilm-forming bacteria Pseudomonas aeruginosa is a common pathogen in mechanically ventilated newborns, which can cause life-threatening infections. Alginate of mucoid Pseudomonas aeruginosa biofilms is considered an important virulence factor which contributes to the resistance to antibiotics. Traditionally, ambroxol is widely used in newborns with lung problems as a mucolytic agent and antioxidant agent as well. And there are few studies that demonstrated the anti-biofilm activity of ambroxol. In this study, we found that ambroxol can affect the structure of mucoid Pseudomonas aeruginosa biofilms. Further, we found that ambroxol reduces the production of alginate, the expression of the important genes and the activity of key enzyme guanosine diphospho-D-mannose dehydrogenase (GDP-mannose dehydrogenase; GMD) which were involved in alginate biosynthesis.

  7. Mitophagy confers resistance to siderophore-mediated killing by Pseudomonas aeruginosa.

    PubMed

    Kirienko, Natalia V; Ausubel, Frederick M; Ruvkun, Gary

    2015-02-10

    In the arms race of bacterial pathogenesis, bacteria produce an array of toxins and virulence factors that disrupt core host processes. Hosts mitigate the ensuing damage by responding with immune countermeasures. The iron-binding siderophore pyoverdin is a key virulence mediator of the human pathogen Pseudomonas aeruginosa, but its pathogenic mechanism has not been established. Here we demonstrate that pyoverdin enters Caenorhabditis elegans and that it is sufficient to mediate host killing. Moreover, we show that iron chelation disrupts mitochondrial homeostasis and triggers mitophagy both in C. elegans and mammalian cells. Finally, we show that mitophagy provides protection both against the extracellular pathogen P. aeruginosa and to treatment with a xenobiotic chelator, phenanthroline, in C. elegans. Although autophagic machinery has been shown to target intracellular bacteria for degradation (a process known as xenophagy), our report establishes a role for authentic mitochondrial autophagy in the innate immune defense against P. aeruginosa. PMID:25624506

  8. Loss of Lipid Virulence Factors Reduces the Efficacy of the BCG Vaccine.

    PubMed

    Tran, Vanessa; Ahn, Sang Kyun; Ng, Mark; Li, Ming; Liu, Jun

    2016-06-30

    Bacille Calmette-Guérin (BCG), an attenuated strain of Mycobacterium bovis, is the only vaccine available for tuberculosis (TB) control. BCG comprises a number of substrains that exhibit genetic and biochemical differences. Whether and how these differences affect BCG efficacy remain unknown. Compared to other BCG strains, BCG-Japan, -Moreau, and -Glaxo are defective in the production of phthiocerol dimycocerosates (PDIMs) and phenolic glycolipids (PGLs), two lipid virulence factors. To determine if the loss of PDIMs/PGLs affects BCG efficacy, we constructed a PDIM/PGL-deficient strain of BCG-Pasteur by deleting fadD28, and compared virulence, immunogenicity, and protective efficacy in animal models. SCID mouse infection experiments showed that ∆fadD28 was more attenuated than wild type (WT). The ∆fadD28 and WT strains induced equivalent levels of antigen specific IFN-γ by CD4(+) and CD8(+) T cells; however, ∆fadD28 was less effective against Mycobacterium tuberculosis challenge in both BALB/c mice and guinea pigs. These results indicate that the loss of PIDMs/PGLs reduces the virulence and protective efficacy of BCG. Since the loss of PDIMs/PGLs occurs naturally in a subset of BCG strains, it also suggests that these strains may have been over-attenuated, which compromises their effectiveness. Our finding has important implications for current BCG programs and future vaccine development.

  9. Loss of Lipid Virulence Factors Reduces the Efficacy of the BCG Vaccine

    PubMed Central

    Tran, Vanessa; Ahn, Sang Kyun; Ng, Mark; Li, Ming; Liu, Jun

    2016-01-01

    Bacille Calmette-Guérin (BCG), an attenuated strain of Mycobacterium bovis, is the only vaccine available for tuberculosis (TB) control. BCG comprises a number of substrains that exhibit genetic and biochemical differences. Whether and how these differences affect BCG efficacy remain unknown. Compared to other BCG strains, BCG-Japan, -Moreau, and -Glaxo are defective in the production of phthiocerol dimycocerosates (PDIMs) and phenolic glycolipids (PGLs), two lipid virulence factors. To determine if the loss of PDIMs/PGLs affects BCG efficacy, we constructed a PDIM/PGL-deficient strain of BCG-Pasteur by deleting fadD28, and compared virulence, immunogenicity, and protective efficacy in animal models. SCID mouse infection experiments showed that ∆fadD28 was more attenuated than wild type (WT). The ∆fadD28 and WT strains induced equivalent levels of antigen specific IFN-γ by CD4+ and CD8+ T cells; however, ∆fadD28 was less effective against Mycobacterium tuberculosis challenge in both BALB/c mice and guinea pigs. These results indicate that the loss of PIDMs/PGLs reduces the virulence and protective efficacy of BCG. Since the loss of PDIMs/PGLs occurs naturally in a subset of BCG strains, it also suggests that these strains may have been over-attenuated, which compromises their effectiveness. Our finding has important implications for current BCG programs and future vaccine development. PMID:27357109

  10. The conformation and function of a multimodular glycogen-degrading pneumococcal virulence factor.

    PubMed

    Lammerts van Bueren, Alicia; Ficko-Blean, Elizabeth; Pluvinage, Benjamin; Hehemann, Jan-Hendrik; Higgins, Melanie A; Deng, Lehua; Ogunniyi, A David; Stroeher, Uwe H; El Warry, Nahida; Burke, Robert D; Czjzek, Mirjam; Paton, James C; Vocadlo, David J; Boraston, Alisdair B

    2011-05-11

    SpuA is a large multimodular cell wall-attached enzyme involved in the degradation of glycogen by the pathogenic bacterium Streptococcus pneumoniae. The deletion of the gene encoding SpuA from the bacterium resulted in a strain with reduced competitiveness in a mouse model of virulence relative to the parent strain, linking the degradation of host-glycogen to the virulence of the bacterium. Through the combined use of X-ray crystallography, small-angle X-ray scattering, and inhibitor binding, the molecular features involved in substrate recognition by this complex protein are revealed. This uniquely illustrates the complexity of the active site, the conformational changes incurred during carbohydrate binding by this protein, and the interaction and cooperation of its composite modules during this process. New insight into the function of this particular pneumococcal virulence factor is provided along with substantial contributions to the nascent framework for understanding the structural and functional interplay between modules in multimodular carbohydrate-active enzymes.

  11. Loss of Lipid Virulence Factors Reduces the Efficacy of the BCG Vaccine.

    PubMed

    Tran, Vanessa; Ahn, Sang Kyun; Ng, Mark; Li, Ming; Liu, Jun

    2016-01-01

    Bacille Calmette-Guérin (BCG), an attenuated strain of Mycobacterium bovis, is the only vaccine available for tuberculosis (TB) control. BCG comprises a number of substrains that exhibit genetic and biochemical differences. Whether and how these differences affect BCG efficacy remain unknown. Compared to other BCG strains, BCG-Japan, -Moreau, and -Glaxo are defective in the production of phthiocerol dimycocerosates (PDIMs) and phenolic glycolipids (PGLs), two lipid virulence factors. To determine if the loss of PDIMs/PGLs affects BCG efficacy, we constructed a PDIM/PGL-deficient strain of BCG-Pasteur by deleting fadD28, and compared virulence, immunogenicity, and protective efficacy in animal models. SCID mouse infection experiments showed that ∆fadD28 was more attenuated than wild type (WT). The ∆fadD28 and WT strains induced equivalent levels of antigen specific IFN-γ by CD4(+) and CD8(+) T cells; however, ∆fadD28 was less effective against Mycobacterium tuberculosis challenge in both BALB/c mice and guinea pigs. These results indicate that the loss of PIDMs/PGLs reduces the virulence and protective efficacy of BCG. Since the loss of PDIMs/PGLs occurs naturally in a subset of BCG strains, it also suggests that these strains may have been over-attenuated, which compromises their effectiveness. Our finding has important implications for current BCG programs and future vaccine development. PMID:27357109

  12. Virulence factors produced by strains of Staphylococcus aureus isolated from urinary tract infections.

    PubMed

    Baba-Moussa, L; Anani, L; Scheftel, J M; Couturier, M; Riegel, P; Haïkou, N; Hounsou, F; Monteil, H; Sanni, A; Prévost, G

    2008-01-01

    Staphylococcus aureus infections are widely prevalent in West Africa and are often associated with urinary tract infections (UTIs). Virulence factors from S. aureus have rarely been described for such infections. The purpose of the current study was to determine the prevalence of toxins and adhesion factors obtained from S. aureus isolated from presumed primary UTIs at the Cotonou University Hospital (CUH) in Benin as compared with the Strasbourg University Hospital (SUH) in France. Both ambulatory and hospitalised patients were included in the study. Sixty-five independent strains of S. aureus from CUH and 35 strains from SUH were obtained over a four-month period. Virulence factors were characterised by immunodetection or multiplex polymerase chain reaction, and meticillin susceptibility was recorded. Approximately 50% of all isolates produced at least one enterotoxin. No isolate from SUH produced Panton-Valentine leucocidin (PVL), whereas 21.5% of the S. aureus isolates from CUH produced PVL (P<0.01). Six of 14 (43%) PVL-positive isolates were meticillin-resistant. At SUH, the incidence of MRSA (57%) was significantly higher (P<0.01) than at CUH (14%). Genes encoding clumping factor B, and elastin and laminin binding proteins were detected in almost all isolates (80%), irrespective of the geographical origin. The results for elastin binding protein differed significantly from published data regarding isolates from other clinical origins. Staphylococcal toxins and adhesion factors may be important in the physiopathology of UTI.

  13. Discovery of Salmonella Virulence Factors Translocated via Outer Membrane Vesicles to Murine Macrophages.

    SciTech Connect

    Yoon, Hyunjin; Ansong, Charles; Adkins, Joshua N.; Heffron, Fred

    2011-06-01

    We have previously shown that the regulators SpvR, FruR, IHF, PhoP/PhoQ, SsrA/SsrB, SlyA, Hnr, RpoE, SmpB, CsrA, RpoS, Crp, OmpR/EnvZ, and Hfq are essential for Salmonella Typhimurium virulence in mice. Here we use quantitative LC-MS-based proteomics profiling of in-frame deletion mutants of these 14 regulators to identify proteins that are coordinately regulated by these virulence regulators and are thus presumably novel factors contributing to Salmonella pathogenesis. Putative candidate proteins from proteomics analysis were determined, which exhibited similar abundance profiles to those of Salmonella pathogenicity island (SPI)-2 type III secretion system (TTSS) proteins. A subset of 5 proteins including STM0082, STM1548, PdgL, STM1633, and STM3595 was selected for further analysis. All 5 proteins were expressed inside macrophage cells and STM0082 (SrfN) was secreted into host cytoplasm. Furthermore, deletion of STM0082 attenuated virulence in mice when administered intraperitoneally as determined by competitive index. srfN transcription was positively regulated by SsrAB, however, secretion was independent of SPI-2 TTSS as well as SPI-1 TTSS and flagella. Proteins including PagK and STM2585A, which are positively regulated by PhoP/PhoQ, have sec signal peptides as predicted for SrfN and were secreted into macrophage cytoplasm regardless of SPI-2 TTSS. Isolation of outer membrane vesicles (OMVs) revealed the presence of SrfN, PagK, and STM2585A inside vesicle compartments. This result is the first case showing delivery of virulence effectors via OMVs in S. Typhimurium. Moreover, Hfq regulation of SrfN translation suggests that small non-coding RNAs may be responsible for regulating effector protein expression.

  14. Low-Molecular-Weight Metabolites Secreted by Paenibacillus larvae as Potential Virulence Factors of American Foulbrood

    PubMed Central

    Schild, Hedwig-Annabell; Fuchs, Sebastian W.

    2014-01-01

    The spore-forming bacterium Paenibacillus larvae causes a severe and highly infective bee disease, American foulbrood (AFB). Despite the large economic losses induced by AFB, the virulence factors produced by P. larvae are as yet unknown. To identify such virulence factors, we experimentally infected young, susceptible larvae of the honeybee, Apis mellifera carnica, with different P. larvae isolates. Honeybee larvae were reared in vitro in 24-well plates in the laboratory after isolation from the brood comb. We identified genotype-specific differences in the etiopathology of AFB between the tested isolates of P. larvae, which were revealed by differences in the median lethal times. Furthermore, we confirmed that extracts of P. larvae cultures contain low-molecular-weight compounds, which are toxic to honeybee larvae. Our data indicate that P. larvae secretes metabolites into the medium with a potent honeybee toxic activity pointing to a novel pathogenic factor(s) of P. larvae. Genome mining of P. larvae subsp. larvae BRL-230010 led to the identification of several biosynthesis gene clusters putatively involved in natural product biosynthesis, highlighting the potential of P. larvae to produce such compounds. PMID:24509920

  15. Functional Metagenomics of Spacecraft Assembly Cleanrooms: Presence of Virulence Factors Associated with Human Pathogens

    PubMed Central

    Bashir, Mina; Ahmed, Mahjabeen; Weinmaier, Thomas; Ciobanu, Doina; Ivanova, Natalia; Pieber, Thomas R.; Vaishampayan, Parag A.

    2016-01-01

    Strict planetary protection practices are implemented during spacecraft assembly to prevent inadvertent transfer of earth microorganisms to other planetary bodies. Therefore, spacecraft are assembled in cleanrooms, which undergo strict cleaning and decontamination procedures to reduce total microbial bioburden. We wanted to evaluate if these practices selectively favor survival and growth of hardy microorganisms, such as pathogens. Three geographically distinct cleanrooms were sampled during the assembly of three NASA spacecraft: The Lockheed Martin Aeronautics' Multiple Testing Facility during DAWN, the Kennedy Space Center's Payload Hazardous Servicing Facility (KSC-PHSF) during Phoenix, and the Jet Propulsion Laboratory's Spacecraft Assembly Facility during Mars Science Laboratory. Sample sets were collected from the KSC-PHSF cleanroom at three time points: before arrival of the Phoenix spacecraft, during the assembly and testing of the Phoenix spacecraft, and after removal of the spacecraft from the KSC-PHSF facility. All samples were subjected to metagenomic shotgun sequencing on an Illumina HiSeq 2500 platform. Strict decontamination procedures had a greater impact on microbial communities than sampling location Samples collected during spacecraft assembly were dominated by Acinetobacter spp. We found pathogens and potential virulence factors, which determine pathogenicity in all the samples tested during this study. Though the relative abundance of pathogens was lowest during the Phoenix assembly, potential virulence factors were higher during assembly compared to before and after assembly, indicating a survival advantage. Decreased phylogenetic and pathogenic diversity indicates that decontamination and preventative measures were effective against the majority of microorganisms and well implemented, however, pathogen abundance still increased over time. Four potential pathogens, Acinetobacter baumannii, Acinetobacter lwoffii, Escherichia coli and Legionella

  16. Functional Metagenomics of Spacecraft Assembly Cleanrooms: Presence of Virulence Factors Associated with Human Pathogens.

    PubMed

    Bashir, Mina; Ahmed, Mahjabeen; Weinmaier, Thomas; Ciobanu, Doina; Ivanova, Natalia; Pieber, Thomas R; Vaishampayan, Parag A

    2016-01-01

    Strict planetary protection practices are implemented during spacecraft assembly to prevent inadvertent transfer of earth microorganisms to other planetary bodies. Therefore, spacecraft are assembled in cleanrooms, which undergo strict cleaning and decontamination procedures to reduce total microbial bioburden. We wanted to evaluate if these practices selectively favor survival and growth of hardy microorganisms, such as pathogens. Three geographically distinct cleanrooms were sampled during the assembly of three NASA spacecraft: The Lockheed Martin Aeronautics' Multiple Testing Facility during DAWN, the Kennedy Space Center's Payload Hazardous Servicing Facility (KSC-PHSF) during Phoenix, and the Jet Propulsion Laboratory's Spacecraft Assembly Facility during Mars Science Laboratory. Sample sets were collected from the KSC-PHSF cleanroom at three time points: before arrival of the Phoenix spacecraft, during the assembly and testing of the Phoenix spacecraft, and after removal of the spacecraft from the KSC-PHSF facility. All samples were subjected to metagenomic shotgun sequencing on an Illumina HiSeq 2500 platform. Strict decontamination procedures had a greater impact on microbial communities than sampling location Samples collected during spacecraft assembly were dominated by Acinetobacter spp. We found pathogens and potential virulence factors, which determine pathogenicity in all the samples tested during this study. Though the relative abundance of pathogens was lowest during the Phoenix assembly, potential virulence factors were higher during assembly compared to before and after assembly, indicating a survival advantage. Decreased phylogenetic and pathogenic diversity indicates that decontamination and preventative measures were effective against the majority of microorganisms and well implemented, however, pathogen abundance still increased over time. Four potential pathogens, Acinetobacter baumannii, Acinetobacter lwoffii, Escherichia coli and Legionella

  17. Reduction of PCN biosynthesis by NO in Pseudomonas aeruginosa.

    PubMed

    Gao, Lei; Zhang, Yuying; Wang, Yan; Qiao, Xinhua; Zi, Jing; Chen, Chang; Wan, Yi

    2016-08-01

    Pyocyanin (PCN), a virulence factor synthesized by Pseudomonas aeruginosa, plays an important role during clinical infections. There is no study of the effect of nitric oxide (NO) on PCN biosynthesis. Here, the effect of NO on PCN levels in Pseudomonas aeruginosa strain PAO1, a common reference strain, was tested. The results showed that the NO donor sodium nitroprusside (SNP) can significantly reduce PCN levels (82.5% reduction at 60μM SNP). Furthermore, the effect of endogenous NO on PCN was tested by constructing PAO1 nor (NO reductase gene) knockout mutants. Compared to the wild-type strain, the Δnor strain had a lower PCN (86% reduction in Δnor). To examine whether the results were universal with other P. aeruginosa strains, we collected 4 clinical strains from a hospital, tested their PCN levels after SNP treatment, and obtained similar results, i.e., PCN biosynthesis was inhibited by NO. These results suggest that NO treatment may be a new strategy to inhibit PCN biosynthesis and could provide novel insights into eliminating P. aeruginosa virulence as a clinical goal.

  18. Pseudomonas aeruginosa PAO1 Kills Caenorhabditis elegans by Cyanide Poisoning

    PubMed Central

    Gallagher, Larry A.; Manoil, Colin

    2001-01-01

    In this report we describe experiments to investigate a simple virulence model in which Pseudomonas aeruginosa PAO1 rapidly paralyzes and kills the nematode Caenorhabditis elegans. Our results imply that hydrogen cyanide is the sole or primary toxic factor produced by P. aeruginosa that is responsible for killing of the nematode. Four lines of evidence support this conclusion. First, a transposon insertion mutation in a gene encoding a subunit of hydrogen cyanide synthase (hcnC) eliminated nematode killing. Second, the 17 avirulent mutants examined all exhibited reduced cyanide synthesis, and the residual production levels correlated with killing efficiency. Third, exposure to exogenous cyanide alone at levels comparable to the level produced by PAO1 killed nematodes with kinetics similar to those observed with bacteria. The killing was not enhanced if hcnC mutant bacteria were present during cyanide exposure. And fourth, a nematode mutant (egl-9) resistant to P. aeruginosa was also resistant to killing by exogenous cyanide in the absence of bacteria. A model for nematode killing based on inhibition of mitochondrial cytochrome oxidase is presented. The action of cyanide helps account for the unusually broad host range of virulence of P. aeruginosa and may contribute to the pathogenesis in opportunistic human infections due to the bacterium. PMID:11591663

  19. Genetic and Functional Diversity of Pseudomonas aeruginosa Lipopolysaccharide

    PubMed Central

    Lam, Joseph S.; Taylor, Véronique L.; Islam, Salim T.; Hao, Youai; Kocíncová, Dana

    2011-01-01

    Lipopolysccharide (LPS) is an integral component of the Pseudomonas aeruginosa cell envelope, occupying the outer leaflet of the outer membrane in this Gram-negative opportunistic pathogen. It is important for bacterium–host interactions and has been shown to be a major virulence factor for this organism. Structurally, P. aeruginosa LPS is composed of three domains, namely, lipid A, core oligosaccharide, and the distal O antigen (O-Ag). Most P. aeruginosa strains produce two distinct forms of O-Ag, one a homopolymer of D-rhamnose that is a common polysaccharide antigen (CPA, formerly termed A band), and the other a heteropolymer of three to five distinct (and often unique dideoxy) sugars in its repeat units, known as O-specific antigen (OSA, formerly termed B band). Compositional differences in the O units among the OSA from different strains form the basis of the International Antigenic Typing Scheme for classification via serotyping of different strains of P. aeruginosa. The focus of this review is to provide state-of-the-art knowledge on the genetic and resultant functional diversity of LPS produced by P. aeruginosa. The underlying factors contributing to this diversity will be thoroughly discussed and presented in the context of its contributions to host–pathogen interactions and the control/prevention of infection. PMID:21687428

  20. Lipase, protease, and biofilm as the major virulence factors in staphylococci isolated from acne lesions.

    PubMed

    Saising, Jongkon; Singdam, Sudarat; Ongsakul, Metta; Voravuthikunchai, Supayang Piyawan

    2012-08-01

    Staphylococci involve infections in association with a number of bacterial virulence factors. Extracellular enzymes play an important role in staphylococcal pathogenesis. In addition, biofilm is known to be associated with their virulence. In this study, 149 staphylococcal isolates from acne lesions were investigated for their virulence factors including lipase, protease, and biofilm formation. Coagulase-negative staphylococci were demonstrated to present lipase and protease activities more often than coagulase-positive staphylococci. A microtiter plate method (quantitative method) and a Congo red agar method (qualitative method) were comparatively employed to assess biofilm formation. In addition, biofilm forming ability was commonly detected in a coagulase-negative group (97.7%, microtiter plate method and 84.7%, Congo red agar method) more frequently than in coagulase-positive organisms (68.8%, microtiter plate method and 62.5%, Congo red agar method). This study clearly confirms an important role for biofilm in coagulasenegative staphylococci which is of serious concern as a considerable infectious agent in patients with acnes and implanted medical devices. The Congo red agar method proved to be an easy method to quickly detect biofilm producers. Sensitivity of the Congo red agar method was 85.54% and 68.18% and accuracy was 84.7% and 62.5% in coagulase-negative and coagulase-positive staphylococci, respectively, while specificity was 50% in both groups. The results clearly demonstrated that a higher percentage of coagulasenegative staphylococci isolated from acne lesions exhibited lipase and protease activities, as well as biofilm formation, than coagulase-positive staphylococci.

  1. Identification and Characterization of msf, a Novel Virulence Factor in Haemophilus influenzae.

    PubMed

    Kress-Bennett, Jennifer M; Hiller, N Luisa; Eutsey, Rory A; Powell, Evan; Longwell, Mark J; Hillman, Todd; Blackwell, Tenisha; Byers, Barbara; Mell, Joshua C; Post, J Christopher; Hu, Fen Z; Ehrlich, Garth D; Janto, Benjamin A

    2016-01-01

    Haemophilus influenzae is an opportunistic pathogen. The emergence of virulent, non-typeable strains (NTHi) emphasizes the importance of developing new interventional targets. We screened the NTHi supragenome for genes encoding surface-exposed proteins suggestive of immune evasion, identifying a large family containing Sel1-like repeats (SLRs). Clustering identified ten SLR-containing gene subfamilies, each with various numbers of SLRs per gene. Individual strains also had varying numbers of SLR-containing genes from one or more of the subfamilies. Statistical genetic analyses of gene possession among 210 NTHi strains typed as either disease or carriage found a significant association between possession of the SlrVA subfamily (which we have termed, macrophage survival factor, msf) and the disease isolates. The PittII strain contains four chromosomally contiguous msf genes. Deleting all four of these genes (msfA1-4) (KO) resulted in a highly significant decrease in phagocytosis and survival in macrophages; which was fully complemented by a single copy of the msfA1 gene. Using the chinchilla model of otitis media and invasive disease, the KO strain displayed a significant decrease in fitness compared to the WT in co-infections; and in single infections, the KO lost its ability to invade the brain. The singly complemented strain showed only a partial ability to compete with the WT suggesting gene dosage is important in vivo. The transcriptional profiles of the KO and WT in planktonic growth were compared using the NTHi supragenome array, which revealed highly significant changes in the expression of operons involved in virulence and anaerobiosis. These findings demonstrate that the msfA1-4 genes are virulence factors for phagocytosis, persistence, and trafficking to non-mucosal sites.

  2. Identification and Characterization of msf, a Novel Virulence Factor in Haemophilus influenzae.

    PubMed

    Kress-Bennett, Jennifer M; Hiller, N Luisa; Eutsey, Rory A; Powell, Evan; Longwell, Mark J; Hillman, Todd; Blackwell, Tenisha; Byers, Barbara; Mell, Joshua C; Post, J Christopher; Hu, Fen Z; Ehrlich, Garth D; Janto, Benjamin A

    2016-01-01

    Haemophilus influenzae is an opportunistic pathogen. The emergence of virulent, non-typeable strains (NTHi) emphasizes the importance of developing new interventional targets. We screened the NTHi supragenome for genes encoding surface-exposed proteins suggestive of immune evasion, identifying a large family containing Sel1-like repeats (SLRs). Clustering identified ten SLR-containing gene subfamilies, each with various numbers of SLRs per gene. Individual strains also had varying numbers of SLR-containing genes from one or more of the subfamilies. Statistical genetic analyses of gene possession among 210 NTHi strains typed as either disease or carriage found a significant association between possession of the SlrVA subfamily (which we have termed, macrophage survival factor, msf) and the disease isolates. The PittII strain contains four chromosomally contiguous msf genes. Deleting all four of these genes (msfA1-4) (KO) resulted in a highly significant decrease in phagocytosis and survival in macrophages; which was fully complemented by a single copy of the msfA1 gene. Using the chinchilla model of otitis media and invasive disease, the KO strain displayed a significant decrease in fitness compared to the WT in co-infections; and in single infections, the KO lost its ability to invade the brain. The singly complemented strain showed only a partial ability to compete with the WT suggesting gene dosage is important in vivo. The transcriptional profiles of the KO and WT in planktonic growth were compared using the NTHi supragenome array, which revealed highly significant changes in the expression of operons involved in virulence and anaerobiosis. These findings demonstrate that the msfA1-4 genes are virulence factors for phagocytosis, persistence, and trafficking to non-mucosal sites. PMID:26977929

  3. Identification and Characterization of msf, a Novel Virulence Factor in Haemophilus influenzae

    PubMed Central

    Kress-Bennett, Jennifer M.; Hiller, N. Luisa; Eutsey, Rory A.; Powell, Evan; Longwell, Mark J.; Hillman, Todd; Blackwell, Tenisha; Byers, Barbara; Mell, Joshua C.; Post, J. Christopher; Hu, Fen Z.; Ehrlich, Garth D.; Janto, Benjamin A.

    2016-01-01

    Haemophilus influenzae is an opportunistic pathogen. The emergence of virulent, non-typeable strains (NTHi) emphasizes the importance of developing new interventional targets. We screened the NTHi supragenome for genes encoding surface-exposed proteins suggestive of immune evasion, identifying a large family containing Sel1-like repeats (SLRs). Clustering identified ten SLR-containing gene subfamilies, each with various numbers of SLRs per gene. Individual strains also had varying numbers of SLR-containing genes from one or more of the subfamilies. Statistical genetic analyses of gene possession among 210 NTHi strains typed as either disease or carriage found a significant association between possession of the SlrVA subfamily (which we have termed, macrophage survival factor, msf) and the disease isolates. The PittII strain contains four chromosomally contiguous msf genes. Deleting all four of these genes (msfA1-4) (KO) resulted in a highly significant decrease in phagocytosis and survival in macrophages; which was fully complemented by a single copy of the msfA1 gene. Using the chinchilla model of otitis media and invasive disease, the KO strain displayed a significant decrease in fitness compared to the WT in co-infections; and in single infections, the KO lost its ability to invade the brain. The singly complemented strain showed only a partial ability to compete with the WT suggesting gene dosage is important in vivo. The transcriptional profiles of the KO and WT in planktonic growth were compared using the NTHi supragenome array, which revealed highly significant changes in the expression of operons involved in virulence and anaerobiosis. These findings demonstrate that the msfA1-4 genes are virulence factors for phagocytosis, persistence, and trafficking to non-mucosal sites. PMID:26977929

  4. Pseudomonas aeruginosa wound infection involves activation of its iron acquisition system in response to fascial contact

    PubMed Central

    Kim, M.; Christley, S.; Khodarev, N. N.; Fleming, I.; Huang, Y.; Chang, E.; Zaborina, O.; Alverdy, J.

    2015-01-01

    Background Wound infections are traditionally thought to occur when microbial burden exceeds the innate clearance capacity of host immune system. Here we introduce the idea that the wound environment itself plays a significant contributory role to wound infection. Methods We developed a clinically relevant murine model of soft tissue infection to explore the role of activation of microbial virulence in response to tissue factors as a mechanism by which pathogenic bacteria cause wound infections. Mice underwent abdominal skin incision and light muscle injury with a crushing forceps versus skin incision alone followed by topical inoculation of P. aeruginosa. Mice were sacrificed on postoperative day 6 and abdominal tissues analyzed for clinical signs of wound infection. To determine if specific wound tissues components induce bacterial virulence, P. aeruginosa was exposed to skin, fascia, and muscle. Results Gross wound infection due to P. aeruginosa was observed to be significantly increased in injured tissues vs non-injured (80% vs 10%) tissues (n=20/group, p<0.0001). Exposure of P. aeruginosa to individual tissue components demonstrated that fascia significantly induced bacterial virulence as judged by the production of pyocyanin, a redox-active phenazine compound known to kill immune cells. Whole genome transcriptional profiling of P. aeruginosa exposed to fascia demonstrated activation of multiple genes responsible for the synthesis of the iron scavenging molecule pyochelin. Conclusion We conclude that wound elements, in particular fascia, may play a significant role in enhancing the virulence of P. aeruginosa and may contribute to the pathogenesis of clinical wound infection. PMID:25807409

  5. The incidence of virulence factors in mesophilic Aeromonas species isolated from farm animals and their environment.

    PubMed Central

    Gray, S. J.; Stickler, D. J.; Bryant, T. N.

    1990-01-01

    Sixty-one isolates of Aeromonas spp. from the faeces of pigs, cows and a variety of associated environmental sources were examined for the characteristics that are reputed to have roles in pathogenicity. Most isolates of Aeromonas hydrophila were cytotoxic (96.4%) and were capable of producing cell elongation factor (75%) and haemagglutinins (67.9%). In contrast few of the Aeromonas caviae isolates produced these three markers (13.6%, 27.3% and 36.4% respectively). In general, Aeromonas sobria occupied an intermediate position (36.4%, 27.3% and 54.5%), but they did produce the highest mean invasion index for HEp-2 cells. Statistical analysis revealed significant associations between the carriage of these factors and it was clear that many isolates of aeromonads from water and animals possessed the full battery of putative virulence factors. PMID:2209733

  6. Pseudomonas aeruginosa uses T3SS to inhibit diabetic wound healing.

    PubMed

    Goldufsky, Josef; Wood, Stephen J; Jayaraman, Vijayakumar; Majdobeh, Omar; Chen, Lin; Qin, Shanshan; Zhang, Chunxiang; DiPietro, Luisa A; Shafikhani, Sasha H

    2015-01-01

    Diabetic foot ulcers are responsible for more hospitalizations than any other complication of diabetes. Bacterial infection is recognized as an important factor associated with impaired healing in diabetic ulcers. Pseudomonas aeruginosa is the most frequently detected Gram-negative pathogen in diabetic ulcers. P. aeruginosa infection has been shown to impair healing in diabetic wounds in a manner that correlates with its ability to form biofilm. While the majority of infections in diabetic ulcers are biofilm associated, 33% of infections are nonbiofilm in nature. P. aeruginosa is the most prevalent Gram-negative pathogen in all diabetic wound types, which suggests that the deleterious impact of P. aeruginosa on healing in diabetic wounds goes beyond its ability to form biofilm and likely involves other factors. The Type III Secretion System (T3SS) virulence structure is required for the pathogenesis of all P. aeruginosa clinical isolates, suggesting that it may also play a role in the inhibition of wound repair in diabetic skin ulcers. We evaluated the role of T3SS in mediating P. aeruginosa-induced tissue damage in the wounds of diabetic mice. Our data demonstrate that P. aeruginosa establishes a robust and persistent infection in diabetic wounds independent of its ability to form biofilm and causes severe wound damage in a manner that primarily depends on its T3SS.

  7. Dissecting the Machinery That Introduces Disulfide Bonds in Pseudomonas aeruginosa

    PubMed Central

    Arts, Isabelle S.; Ball, Geneviève; Leverrier, Pauline; Garvis, Steven; Nicolaes, Valérie; Vertommen, Didier; Ize, Bérengère; Tamu Dufe, Veronica; Messens, Joris; Voulhoux, Romé; Collet, Jean-François

    2013-01-01

    ABSTRACT Disulfide bond formation is required for the folding of many bacterial virulence factors. However, whereas the Escherichia coli disulfide bond-forming system is well characterized, not much is known on the pathways that oxidatively fold proteins in pathogenic bacteria. Here, we report the detailed unraveling of the pathway that introduces disulfide bonds in the periplasm of the human pathogen Pseudomonas aeruginosa. The genome of P. aeruginosa uniquely encodes two DsbA proteins (P. aeruginosa DsbA1 [PaDsbA1] and PaDsbA2) and two DsbB proteins (PaDsbB1 and PaDsbB2). We found that PaDsbA1, the primary donor of disulfide bonds to secreted proteins, is maintained oxidized in vivo by both PaDsbB1 and PaDsbB2. In vitro reconstitution of the pathway confirms that both PaDsbB1 and PaDsbB2 shuttle electrons from PaDsbA1 to membrane-bound quinones. Accordingly, deletion of both P. aeruginosa dsbB1 (PadsbB1) and PadsbB2 is required to prevent the folding of several P. aeruginosa virulence factors and to lead to a significant decrease in pathogenicity. Using a high-throughput proteomic approach, we also analyzed the impact of PadsbA1 deletion on the global periplasmic proteome of P. aeruginosa, which allowed us to identify more than 20 new potential substrates of this major oxidoreductase. Finally, we report the biochemical and structural characterization of PaDsbA2, a highly oxidizing oxidoreductase, which seems to be expressed under specific conditions. By fully dissecting the machinery that introduces disulfide bonds in P. aeruginosa, our work opens the way to the design of novel antibacterial molecules able to disarm this pathogen by preventing the proper assembly of its arsenal of virulence factors. PMID:24327342

  8. Challenge of investigating biologically relevant functions of virulence factors in bacterial pathogens.

    PubMed Central

    Moxon, R; Tang, C

    2000-01-01

    Recent innovations have increased enormously the opportunities for investigating the molecular basis of bacterial pathogenicity, including the availability of whole-genome sequences, techniques for identifying key virulence genes, and the use of microarrays and proteomics. These methods should provide powerful tools for analysing the patterns of gene expression and function required for investigating host-microbe interactions in vivo. But, the challenge is exacting. Pathogenicity is a complex phenotype and the reductionist approach does not adequately address the eclectic and variable outcomes of host-microbe interactions, including evolutionary dynamics and ecological factors. There are difficulties in distinguishing bacterial 'virulence' factors from the many determinants that are permissive for pathogenicity, for example those promoting general fitness. A further practical problem for some of the major bacterial pathogens is that there are no satisfactory animal models or experimental assays that adequately reflect the infection under investigation. In this review, we give a personal perspective on the challenge of characterizing how bacterial pathogens behave in vivo and discuss some of the methods that might be most relevant for understanding the molecular basis of the diseases for which they are responsible. Despite the powerful genomic, molecular, cellular and structural technologies available to us, we are still struggling to come to grips with the question of 'What is a pathogen?' PMID:10874737

  9. A novel metalloproteinase virulence factor is involved in Bacillus thuringiensis pathogenesis in nematodes and insects.

    PubMed

    Peng, Donghai; Lin, Jian; Huang, Qiong; Zheng, Wen; Liu, Guoqiang; Zheng, Jinshui; Zhu, Lei; Sun, Ming

    2016-03-01

    The Gram-positive soil bacterium Bacillus thuringiensis has been developed as the leading microbial insecticide for years. The pathogenesis of B. thuringiensis requires common extracellular factors that depend on the PlcR regulon, which regulates a large number of virulence factors; however, the precise role of many of these proteins is not known. In this study, we describe the complete lifecycle of a nematicidal B. thuringiensis strain in the free living nematode Caenorhabditis elegans using in vitro and in vivo molecular techniques to follow host and bacterial effectors during the infection process. We then focus on the metalloproteinase ColB, a collagenase, which was found highly important for destruction of the intestine thereby facilitates the adaptation and colonization of B. thuringiensis in C. elegans. In vivo green fluorescent protein (GFP) reporter-gene studies showed that ColB expression is highly induced and regulated by the global activator PlcR. Finally, we demonstrated that ColB also takes part in B. thuringiensis virulence in an insect model following injection and oral infection. Indeed, addition of purified ColB accelerates the action of Cry toxin proteins in insects, too. These results give novel insights into host adaptation for B. thuringiensis and other B. cereus group bacteria and highlight the role of collagenase metalloproteases to synergize infection process.

  10. New biological potential of abietane diterpenoids isolated from Salvia austriaca against microbial virulence factors.

    PubMed

    Sadowska, Beata; Kuźma, Łukasz; Micota, Bartłomiej; Budzyńska, Aleksandra; Wysokińska, Halina; Kłys, Arkadiusz; Więckowska-Szakiel, Marzena; Różalska, Barbara

    2016-09-01

    The increasing importance of multi-resistant strains and microbial biofilms in the development of chronic infections has driven the search for more effective alternative therapy including plant-origin preparations. The present study evaluates the broadly-defined antimicrobial activity of two abietane diterpenoids isolated from Salvia austriaca transformed roots: taxodone and 15-deoxy-fuerstione. The direct biostatic/biocidal effect of these phytocompounds and their influence on Staphylococcus aureus and Candida albicans virulence factors/mechanisms (adhesion, biofilm formation, agglutination in human plasma, survival in the blood, germ tube and mycelium formation) were tested using in vitro assays. Both phytocompounds significantly inhibited microbial adhesion and biofilm formation when used at ½ and ¼ MIC. Additionally, taxodone was able to limit staphylococcal survival in human blood, as well as C. albicans germ tube formation and hyphal growth. The tested diterpenoids express significant anti-biofilm activity against both staphylococci and yeast, and adversely affect their virulence factors/mechanisms, which are relevant in the course of the infection in vivo. Therefore, they demonstrate considerable biomedical potential as complements for classic therapy with antibiotics. PMID:27417191

  11. Staphylococcus aureus Formyl-Methionyl Transferase Mutants Demonstrate Reduced Virulence Factor Production and Pathogenicity

    PubMed Central

    Lewandowski, Thomas; Huang, Jianzhong; Fan, Frank; Rogers, Shannon; Gentry, Daniel; Holland, Reannon; DeMarsh, Peter; Zalacain, Magdalena

    2013-01-01

    Inhibitors of peptide deformylase (PDF) represent a new class of antibacterial agents with a novel mechanism of action. Mutations that inactivate formyl methionyl transferase (FMT), the enzyme that formylates initiator methionyl-tRNA, lead to an alternative initiation of protein synthesis that does not require deformylation and are the predominant cause of resistance to PDF inhibitors in Staphylococcus aureus. Here, we report that loss-of-function mutations in FMT impart pleiotropic effects that include a reduced growth rate, a nonhemolytic phenotype, and a drastic reduction in production of multiple extracellular proteins, including key virulence factors, such as α-hemolysin and Panton-Valentine leukocidin (PVL), that have been associated with S. aureus pathogenicity. Consequently, S. aureus FMT mutants are greatly attenuated in neutropenic and nonneutropenic murine pyelonephritis infection models and show very high survival rates compared with wild-type S. aureus. These newly discovered effects on extracellular virulence factor production demonstrate that FMT-null mutants have a more severe fitness cost than previously anticipated, leading to a substantial loss of pathogenicity and a restricted ability to produce an invasive infection. PMID:23571548

  12. Role of Uropathogenic Escherichia coli Virulence Factors in Development of Urinary Tract Infection and Kidney Damage

    PubMed Central

    Bien, Justyna; Sokolova, Olga; Bozko, Przemyslaw

    2012-01-01

    Uropathogenic Escherichia coli (UPEC) is a causative agent in the vast majority of urinary tract infections (UTIs), including cystitis and pyelonephritis, and infectious complications, which may result in acute renal failure in healthy individuals as well as in renal transplant patients. UPEC expresses a multitude of virulence factors to break the inertia of the mucosal barrier. In response to the breach by UPEC into the normally sterile urinary tract, host inflammatory responses are triggered leading to cytokine production, neutrophil influx, and the exfoliation of infected bladder epithelial cells. Several signaling pathways activated during UPEC infection, including the pathways known to activate the innate immune response, interact with calcium-dependent signaling pathways. Some UPEC isolates, however, might possess strategies to delay or suppress the activation of components of the innate host response in the urinary tract. Studies published in the recent past provide new information regarding how virulence factors of uropathogenic E. coli are involved in activation of the innate host response. Despite numerous host defense mechanisms, UPEC can persist within the urinary tract and may serve as a reservoir for recurrent infections and serious complications. Presentation of the molecular details of these events is essential for development of successful strategies for prevention of human UTIs and urological complications associated with UTIs. PMID:22506110

  13. PA-X is a virulence factor in avian H9N2 influenza virus.

    PubMed

    Gao, Huijie; Xu, Guanlong; Sun, Yipeng; Qi, Lu; Wang, Jinliang; Kong, Weili; Sun, Honglei; Pu, Juan; Chang, Kin-Chow; Liu, Jinhua

    2015-09-01

    H9N2 influenza viruses have been circulating worldwide in multiple avian species, and regularly infect pigs and humans. Recently, a novel protein, PA-X, produced from the PA gene by ribosomal frameshifting, was demonstrated to be an antivirulence factor in pandemic 2009 H1N1, highly pathogenic avian H5N1 and 1918 H1N1 viruses. However, a similar role of PA-X in the prevalent H9N2 avian influenza viruses has not been established. In this study, we compared the virulence and cytopathogenicity of H9N2 WT virus and H9N2 PA-X-deficient virus. Loss of PA-X in H9N2 virus reduced apoptosis and had a marginal effect on progeny virus output in human pulmonary adenocarcinoma (A549) cells. Without PA-X, PA was less able to suppress co-expressed GFP in human embryonic kidney 293T cells. Furthermore, absence of PA-X in H9N2 virus attenuated viral pathogenicity in mice, which showed no mortality, reduced progeny virus production, mild-to-normal lung histopathology, and dampened proinflammatory cytokine and chemokine response. Therefore, unlike previously reported H1N1 and H5N1 viruses, we show that PA-X protein in H9N2 virus is a pro-virulence factor in facilitating viral pathogenicity and that the pro- or antivirulence role of PA-X in influenza viruses is virus strain-dependent.

  14. Virulence factors genes of Staphylococcus spp. isolated from caprine subclinical mastitis.

    PubMed

    Salaberry, Sandra Renata Sampaio; Saidenberg, André Becker Simões; Zuniga, Eveline; Melville, Priscilla Anne; Santos, Franklin Gerônimo Bispo; Guimarães, Ednaldo Carvalho; Gregori, Fábio; Benites, Nilson Roberti

    2015-08-01

    The aim of this study was to investigate genes involved in adhesion expression, biofilm formation, and enterotoxin production in isolates of Staphylococcus spp. from goats with subclinical mastitis and associate these results with the staphylococcal species. One hundred and twenty-four isolates were identified and polymerase chain reaction (PCR) was performed to detect the following genes: cna, ebpS, eno, fib, fnbA, fnbB, bap, sea, seb, sec, sed and see. The most commonly Staphylococcus species included S. epidermidis, S. lugdunensis, S. chromogenes, S. capitis ss capitis and S. intermedius. With the exception of fnbB, the genes were detected in different frequencies of occurrence in 86.3% of the Staphylococcus spp. isolates. Eno (73.2%) and bap (94.8%) were more frequently detected in coagulase-negative staphylococci (CNS); ebpS (76%), fib (90.9%) and fnbA (87%) were the most frequent genes in coagulase-positive staphylococci (CPS). Regarding enterotoxins, genes sed (28.2%) and see (24.2%) had a higher frequency of occurrence; sec gene was more frequently detected in CPS (58.8%). There was no association between the presence of the genes and the Staphylococcus species. Different virulence factors genes can be detected in caprine subclinical mastitis caused by CNS and CPS. The knowledge of the occurrence of these virulence factors is important for the development of effective control and prevention measures of subclinical mastitis caused by CNS and CPS in goats.

  15. Staphylococcus aureus formyl-methionyl transferase mutants demonstrate reduced virulence factor production and pathogenicity.

    PubMed

    Lewandowski, Thomas; Huang, Jianzhong; Fan, Frank; Rogers, Shannon; Gentry, Daniel; Holland, Reannon; Demarsh, Peter; Aubart, Kelly; Zalacain, Magdalena

    2013-07-01

    Inhibitors of peptide deformylase (PDF) represent a new class of antibacterial agents with a novel mechanism of action. Mutations that inactivate formyl methionyl transferase (FMT), the enzyme that formylates initiator methionyl-tRNA, lead to an alternative initiation of protein synthesis that does not require deformylation and are the predominant cause of resistance to PDF inhibitors in Staphylococcus aureus. Here, we report that loss-of-function mutations in FMT impart pleiotropic effects that include a reduced growth rate, a nonhemolytic phenotype, and a drastic reduction in production of multiple extracellular proteins, including key virulence factors, such as α-hemolysin and Panton-Valentine leukocidin (PVL), that have been associated with S. aureus pathogenicity. Consequently, S. aureus FMT mutants are greatly attenuated in neutropenic and nonneutropenic murine pyelonephritis infection models and show very high survival rates compared with wild-type S. aureus. These newly discovered effects on extracellular virulence factor production demonstrate that FMT-null mutants have a more severe fitness cost than previously anticipated, leading to a substantial loss of pathogenicity and a restricted ability to produce an invasive infection.

  16. Virulence factors and strategies of Leptopilina spp.: selective responses in Drosophila hosts.

    PubMed

    Lee, Mark J; Kalamarz, Marta E; Paddibhatla, Indira; Small, Chiyedza; Rajwani, Roma; Govind, Shubha

    2009-01-01

    To ensure survival, parasitic wasps of Drosophila have evolved strategies to optimize host development to their advantage. They also produce virulence factors that allow them to overcome or evade host defense. Wasp infection provokes cellular and humoral defense reactions, resulting in alteration in gene expression of the host. The activation of these reactions is controlled by conserved mechanisms shared by other invertebrate and vertebrate animals. Application of genomics and bioinformatics approaches is beginning to reveal comparative host gene expression changes after infection by different parasitic wasps. We analyze this comparison in the context of host physiology and immune cells, as well as the biology of the venom factors that wasps introduce into their hosts during oviposition. We compare virulence strategies of Leptopilina boulardi and L. heterotoma, in relation to genome-wide changes in gene expression in the fly hosts after infection. This analysis highlights fundamental differences in the changes that the host undergoes in its immune and general physiology in response to the two parasitic wasps. Such a comparative approach has the potential of revealing mechanisms governing the evolution of pathogenicity and how it impacts host range. PMID:19773069

  17. Virulence Factors and Strategies of Leptopilina spp.: Selective Responses in Drosophila Hosts

    PubMed Central

    Lee, Mark J.; Kalamarz, Marta E.; Paddibhatla, Indira; Small, Chiyedza; Rajwani, Roma; Govind, Shubha

    2010-01-01

    To ensure survival, parasitic wasps of Drosophila have evolved strategies to optimize host development to their advantage. They also produce virulence factors that allow them to overcome or evade host defense. Wasp infection provokes cellular and humoral defense reactions, resulting in alteration in gene expression of the host. The activation of these reactions is controlled by conserved mechanisms shared by other invertebrate and vertebrate animals. Application of genomics and bioinformatics approaches is beginning to reveal comparative host gene expression changes after infection by different parasitic wasps. We analyze this comparison in the context of host physiology and immune cells, as well as the biology of the venom factors that wasps introduce into their hosts during oviposition. We compare virulence strategies of Leptopilina boulardi and L. heterotoma, in relation to genome-wide changes in gene expression in the fly hosts after infection. This analysis highlights fundamental differences in the changes that the host undergoes in its immune and general physiology in response to the two parasitic wasps. Such a comparative approach has the potential of revealing mechanisms governing the evolution of pathogenicity and how it impacts host range. PMID:19773069

  18. A novel metalloproteinase virulence factor is involved in Bacillus thuringiensis pathogenesis in nematodes and insects.

    PubMed

    Peng, Donghai; Lin, Jian; Huang, Qiong; Zheng, Wen; Liu, Guoqiang; Zheng, Jinshui; Zhu, Lei; Sun, Ming

    2016-03-01

    The Gram-positive soil bacterium Bacillus thuringiensis has been developed as the leading microbial insecticide for years. The pathogenesis of B. thuringiensis requires common extracellular factors that depend on the PlcR regulon, which regulates a large number of virulence factors; however, the precise role of many of these proteins is not known. In this study, we describe the complete lifecycle of a nematicidal B. thuringiensis strain in the free living nematode Caenorhabditis elegans using in vitro and in vivo molecular techniques to follow host and bacterial effectors during the infection process. We then focus on the metalloproteinase ColB, a collagenase, which was found highly important for destruction of the intestine thereby facilitates the adaptation and colonization of B. thuringiensis in C. elegans. In vivo green fluorescent protein (GFP) reporter-gene studies showed that ColB expression is highly induced and regulated by the global activator PlcR. Finally, we demonstrated that ColB also takes part in B. thuringiensis virulence in an insect model following injection and oral infection. Indeed, addition of purified ColB accelerates the action of Cry toxin proteins in insects, too. These results give novel insights into host adaptation for B. thuringiensis and other B. cereus group bacteria and highlight the role of collagenase metalloproteases to synergize infection process. PMID:26995589

  19. Virulence factors genes of Staphylococcus spp. isolated from caprine subclinical mastitis.

    PubMed

    Salaberry, Sandra Renata Sampaio; Saidenberg, André Becker Simões; Zuniga, Eveline; Melville, Priscilla Anne; Santos, Franklin Gerônimo Bispo; Guimarães, Ednaldo Carvalho; Gregori, Fábio; Benites, Nilson Roberti

    2015-08-01

    The aim of this study was to investigate genes involved in adhesion expression, biofilm formation, and enterotoxin production in isolates of Staphylococcus spp. from goats with subclinical mastitis and associate these results with the staphylococcal species. One hundred and twenty-four isolates were identified and polymerase chain reaction (PCR) was performed to detect the following genes: cna, ebpS, eno, fib, fnbA, fnbB, bap, sea, seb, sec, sed and see. The most commonly Staphylococcus species included S. epidermidis, S. lugdunensis, S. chromogenes, S. capitis ss capitis and S. intermedius. With the exception of fnbB, the genes were detected in different frequencies of occurrence in 86.3% of the Staphylococcus spp. isolates. Eno (73.2%) and bap (94.8%) were more frequently detected in coagulase-negative staphylococci (CNS); ebpS (76%), fib (90.9%) and fnbA (87%) were the most frequent genes in coagulase-positive staphylococci (CPS). Regarding enterotoxins, genes sed (28.2%) and see (24.2%) had a higher frequency of occurrence; sec gene was more frequently detected in CPS (58.8%). There was no association between the presence of the genes and the Staphylococcus species. Different virulence factors genes can be detected in caprine subclinical mastitis caused by CNS and CPS. The knowledge of the occurrence of these virulence factors is important for the development of effective control and prevention measures of subclinical mastitis caused by CNS and CPS in goats. PMID:26026835

  20. Various Enterotoxin and Other Virulence Factor Genes Widespread Among Bacillus cereus and Bacillus thuringiensis Strains.

    PubMed

    Kim, Min-Ju; Han, Jae-Kwang; Park, Jong-Su; Lee, Jin-Sung; Lee, Soon-Ho; Cho, Joon-Il; Kim, Keun-Sung

    2015-06-01

    Many strains of Bacillus cereus cause gastrointestinal diseases, and the closely related insect pathogen Bacillus thuringiensis has also been involved in outbreaks of diarrhea. The diarrheal diseases are attributed to enterotoxins. Sixteen reference strains of B. cereus and nine commercial and 12 reference strains of B. thuringiensis were screened by PCR for the presence of 10 enterotoxigenic genes (hblA, hblC, hblD, nheA, nheB, nheC, cytK, bceT, entFM, and entS), one emetogenic gene (ces), seven hemolytic genes (hlyA, hlyII, hlyIII, plcA, cerA, cerB, and cerO), and a pleiotropic transcriptional activator gene (plcR). These genes encode various enterotoxins and other virulence factors thought to play a role in infections of mammals. Amplicons were successfully generated from the strains of B. cereus and B. thuringiensis for each of these sequences, except the ces gene. Intriguingly, the majority of these B. cereus enterotoxin genes and other virulence factor genes appeared to be widespread among B. thuringiensis strains as well as B. cereus strains.

  1. Mp1p Is a Virulence Factor in Talaromyces (Penicillium) marneffei

    PubMed Central

    Zhang, Hongmin; Lo, Raymond K. C.; Cai, Jian-Pao; Au-Yeung, Rex K. H.; Ng, Wing-Fung; Tse, Herman; Wong, Samson S. Y.; Xu, Simin; Lam, Wai Hei; Tse, Man-Kit; Sze, Kong Hung; Kao, Richard Y.; Reiner, Neil E.; Hao, Quan; Yuen, Kwok-Yung

    2016-01-01

    Background Talaromyces marneffei is an opportunistic dimorphic fungus prevalent in Southeast Asia. We previously demonstrated that Mp1p is an immunogenic surface and secretory mannoprotein of T. marneffei. Since Mp1p is a surface protein that can generate protective immunity, we hypothesized that Mp1p and/or its homologs are virulence factors. Methodology/Principal Findings We examined the pathogenic roles of Mp1p and its homologs in a mouse model. All mice died 21 and 30 days after challenge with wild-type T. marneffei PM1 and MP1 complemented mutant respectively. None of the mice died 60 days after challenge with MP1 knockout mutant (P<0.0001). Seventy percent of mice died 60 days after challenge with MP1 knockdown mutant (P<0.0001). All mice died after challenge with MPLP1 to MPLP13 knockdown mutants, suggesting that only Mp1p plays a significant role in virulence. The mean fungal loads of PM1 and MP1 complemented mutant in the liver, lung, kidney and spleen were significantly higher than those of the MP1 knockout mutant. Similarly, the mean load of PM1 in the liver, lung and spleen were significantly higher than that of the MP1 knockdown mutant. Histopathological studies showed an abundance of yeast in the kidney, spleen, liver and lung with more marked hepatic and splenic necrosis in mice challenged with PM1 compared to MP1 knockout and MP1 knockdown mutants. Likewise, a higher abundance of yeast was observed in the liver and spleen of mice challenged with MP1 complemented mutant compared to MP1 knockout mutant. PM1 and MP1 complemented mutant survived significantly better than MP1 knockout mutant in macrophages at 48 hours (P<0.01) post-infection. The mean fungal counts of Pichia pastoris GS115-MP1 in the liver (P<0.001) and spleen (P<0.05) of mice were significantly higher than those of GS115 at 24 hours post-challenge. Conclusions/Significance Mp1p is a key virulence factor of T. marneffei. Mp1p mediates virulence by improving the survival of T. marneffei

  2. Agaricus blazei hot water extract shows anti quorum sensing activity in the nosocomial human pathogen Pseudomonas aeruginosa.

    PubMed

    Soković, Marina; Ćirić, Ana; Glamočlija, Jasmina; Nikolić, Miloš; van Griensven, Leo J L D

    2014-04-03

    The edible mushroom Agaricus blazei Murill is known to induce protective immunomodulatory action against a variety of infectious diseases. In the present study we report potential anti-quorum sensing properties of A. blazei hot water extract. Quorum sensing (QS) plays an important role in virulence, biofilm formation and survival of many pathogenic bacteria, including the Gram negative Pseudomonas aeruginosa, and is considered as a novel and promising target for anti-infectious agents. In this study, the effect of the sub-MICs of Agaricus blazei water extract on QS regulated virulence factors and biofilm formation was evaluated against P. aeruginosa PAO1. Sub-MIC concentrations of the extract which did not kill P. aeruginosa nor inhibited its growth, demonstrated a statistically significant reduction of virulence factors of P. aeruginosa, such as pyocyanin production, twitching and swimming motility. The biofilm forming capability of P. aeruginosa was also reduced in a concentration-dependent manner at sub-MIC values. Water extract of A. blazei is a promising source of antiquorum sensing and antibacterial compounds.

  3. Differences between Pseudomonas aeruginosa in a clinical sample and in a colony isolated from it: comparison of virulence capacity and susceptibility of biofilm to inhibitors.

    PubMed

    Ramos, A N; Peral, M C; Valdez, J C

    2010-05-01

    We study the differences between Pseudomonas aeruginosa from an infected wound (clinical strain) and a colony isolated from it. We assessed the in vitro inhibition of these P. aeruginosa biofilms by DNase and filtrate of Lactobacillus plantarum cultures (acid=AF and neutralize=NF) with crystal violet technique. Inhibition by AF was greatest than DNase for clinical and isolated strain (p<0.001) and greatest than NF for clinical (p<0.05) and isolated strain (p<0.001). Using a burn model in mice, we compared the infection producing by clinical and isolated strains in planktonic and biofilm form. Deaths were quantified and the infection was assessed by determining CFU/g of tissue in the lesion, spleen and liver. The infections with planktonic bacteria tended to become systemic and more deadly than biofilm infections. All infected wounds required the same healing period (30 days). These findings were independent of the origin of the bacteria (clinical or colony isolated strain).

  4. Crystallization and preliminary crystal structure analysis of the ligand-binding domain of PqsR (MvfR), the Pseudomonas quinolone signal (PQS) responsive quorum-sensing transcription factor of Pseudomonas aeruginosa

    PubMed Central

    Xu, Ningna; Yu, Shen; Moniot, Sébastien; Weyand, Michael; Blankenfeldt, Wulf

    2012-01-01

    The opportunistic bacterial pathogen Pseudomonas aeruginosa employs three transcriptional regulators, LasR, RhlR and PqsR, to control the transcription of a large subset of its genes in a cell-density-dependent process known as quorum sensing. Here, the recombinant production, crystallization and structure solution of the ligand-binding domain of PqsR (MvfR), the LysR-type transcription factor that responds to the Pseudomonas quinolone signal (PQS), a quinolone-based quorum-sensing signal that is unique to P. aeruginosa and possibly a small number of other bacteria, is reported. PqsR regulates the expression of many virulence genes and may therefore be an interesting drug target. The ligand-binding domain (residues 91–319) was produced as a fusion with SUMO, and hexagonal-shaped crystals of purified PqsR_91–319 were obtained using the vapour-diffusion method. Crystallization in the presence of a PQS precursor allowed data collection to 3.25 Å resolution on a synchrotron beamline, and initial phases have been obtained using single-wavelength anomalous diffraction data from seleno-l-methionine-labelled crystals, revealing the space group to be P6522, with unit-cell parameters a = b = 116–120, c = 115–117 Å. PMID:22949189

  5. Comprehensive identification of virulence factors required for respiratory melioidosis using Tn-seq mutagenesis

    PubMed Central

    Gutierrez, Maria G.; Yoder-Himes, Deborah R.; Warawa, Jonathan M.

    2015-01-01

    Respiratory melioidosis is a disease presentation of the biodefense pathogen, Burkholderia pseudomallei, which is frequently associated with a lethal septicemic spread of the bacteria. We have recently developed an improved respiratory melioidosis model to study the pathogenesis of Burkholderia pseudomallei in the lung (intubation-mediated intratracheal [IMIT] inoculation), which more closely models descriptions of human melioidosis, including prominent septicemic spread from the lung and reduced involvement of the upper respiratory tract. We previously demonstrated that the Type 3 Secretion System cluster 3 (T3SS3) is a critical virulence determinant for B. pseudomallei when delivered directly into the lung. We decided to comprehensively identify all virulence determinants required for respiratory melioidosis using the Tn-seq phenotypic screen, as well as to investigate which virulence determinants are required for dissemination to the liver and spleen. While previous studies have used Tn-seq to identify essential genes for in vitro cultured B. pseudomallei, this represents the first study to use Tn-seq to identify genes required for in vivo fitness. Consistent with our previous findings, we identified T3SS3 as the largest genetic cluster required for fitness in the lung. Furthermore, we identified capsular polysaccharide and Type 6 Secretion System cluster 5 (T6SS5) as the two additional major genetic clusters facilitating respiratory melioidosis. Importantly, Tn-seq did not identify additional, novel large genetic systems supporting respiratory melioidosis, although these studies identified additional small gene clusters that may also play crucial roles in lung fitness. Interestingly, other previously identified virulence determinants do not appear to be required for lung fitness, such as lipopolysaccharide. The role of T3SS3, capsule, and T6SS5 in lung fitness was validated by competition studies, but only T3SS3 was found to be important for respiratory

  6. Comprehensive identification of virulence factors required for respiratory melioidosis using Tn-seq mutagenesis.

    PubMed

    Gutierrez, Maria G; Yoder-Himes, Deborah R; Warawa, Jonathan M

    2015-01-01

    Respiratory melioidosis is a disease presentation of the biodefense pathogen, Burkholderia pseudomallei, which is frequently associated with a lethal septicemic spread of the bacteria. We have recently developed an improved respiratory melioidosis model to study the pathogenesis of Burkholderia pseudomallei in the lung (intubation-mediated intratracheal [IMIT] inoculation), which more closely models descriptions of human melioidosis, including prominent septicemic spread from the lung and reduced involvement of the upper respiratory tract. We previously demonstrated that the Type 3 Secretion System cluster 3 (T3SS3) is a critical virulence determinant for B. pseudomallei when delivered directly into the lung. We decided to comprehensively identify all virulence determinants required for respiratory melioidosis using the Tn-seq phenotypic screen, as well as to investigate which virulence determinants are required for dissemination to the liver and spleen. While previous studies have used Tn-seq to identify essential genes for in vitro cultured B. pseudomallei, this represents the first study to use Tn-seq to identify genes required for in vivo fitness. Consistent with our previous findings, we identified T3SS3 as the largest genetic cluster required for fitness in the lung. Furthermore, we identified capsular polysaccharide and Type 6 Secretion System cluster 5 (T6SS5) as the two additional major genetic clusters facilitating respiratory melioidosis. Importantly, Tn-seq did not identify additional, novel large genetic systems supporting respiratory melioidosis, although these studies identified additional small gene clusters that may also play crucial roles in lung fitness. Interestingly, other previously identified virulence determinants do not appear to be required for lung fitness, such as lipopolysaccharide. The role of T3SS3, capsule, and T6SS5 in lung fitness was validated by competition studies, but only T3SS3 was found to be important for respiratory

  7. A Shigella flexneri virulence plasmid encoded factor controls production of outer membrane vesicles.

    PubMed

    Sidik, Saima; Kottwitz, Haila; Benjamin, Jeremy; Ryu, Julie; Jarrar, Ameer; Garduno, Rafael; Rohde, John R

    2014-12-01

    Shigella spp. use a repertoire of virulence plasmid-encoded factors to cause shigellosis. These include components of a Type III Secretion Apparatus (T3SA) that is required for invasion of epithelial cells and many genes of unknown function. We constructed an array of 99 deletion mutants comprising all genes encoded by the virulence plasmid (excluding those known to be required for plasmid maintenance) of Shigella flexneri. We screened these mutants for their ability to bind the dye Congo red: an indicator of T3SA function. This screen focused our attention on an operon encoding genes that modify the cell envelope including virK, a gene of partially characterized function. We discovered that virK is required for controlled release of proteins to the culture supernatant. Mutations in virK result in a temperature-dependent overproduction of outer membrane vesicles (OMVs). The periplasmic chaperone/protease DegP, a known regulator of OMV production in Escherichia coli (encoded by a chromosomal gene), was found to similarly control OMV production in S. flexneri. Both virK and degP show genetic interactions with mxiD, a structural component of the T3SA. Our results are consistent with a model in which VirK and DegP relieve the periplasmic stress that accompanies assembly of the T3SA. PMID:25378474

  8. A Shigella flexneri Virulence Plasmid Encoded Factor Controls Production of Outer Membrane Vesicles

    PubMed Central

    Sidik, Saima; Kottwitz, Haila; Benjamin, Jeremy; Ryu, Julie; Jarrar, Ameer; Garduno, Rafael; Rohde, John R.

    2014-01-01

    Shigella spp. use a repertoire of virulence plasmid-encoded factors to cause shigellosis. These include components of a Type III Secretion Apparatus (T3SA) that is required for invasion of epithelial cells and many genes of unknown function. We constructed an array of 99 deletion mutants comprising all genes encoded by the virulence plasmid (excluding those known to be required for plasmid maintenance) of Shigella flexneri. We screened these mutants for their ability to bind the dye Congo red: an indicator of T3SA function. This screen focused our attention on an operon encoding genes that modify the cell envelope including virK, a gene of partially characterized function. We discovered that virK is required for controlled release of proteins to the culture supernatant. Mutations in virK result in a temperature-dependent overproduction of outer membrane vesicles (OMVs). The periplasmic chaperone/protease DegP, a known regulator of OMV production in Escherichia coli (encoded by a chromosomal gene), was found to similarly control OMV production in S. flexneri. Both virK and degP show genetic interactions with mxiD, a structural component of the T3SA. Our results are consistent with a model in which VirK and DegP relieve the periplasmic stress that accompanies assembly of the T3SA. PMID:25378474

  9. The serine protease Pic as a virulence factor of atypical enteropathogenic Escherichia coli.

    PubMed

    Abreu, Afonso G; Abe, Cecilia M; Nunes, Kamila O; Moraes, Claudia T P; Chavez-Dueñas, Lucia; Navarro-Garcia, Fernando; Barbosa, Angela S; Piazza, Roxane M F; Elias, Waldir P

    2016-01-01

    Autotransporter proteins (AT) are associated with bacterial virulence attributes. Originally identified in enteroaggregative Escherichia coli (EAEC), Shigella flexneri 2a and uropathogenic E. coli, the serine protease Pic is one of these AT. We have previously detected one atypical enteropathogenic E. coli strain (BA589) carrying the pic gene. In the present study, we characterized the biological activities of Pic produced by BA589 both in vitro and in vivo. Contrarily to other Pic-producers bacteria, pic in BA589 is located on a high molecular weight plasmid. PicBA589 was able to agglutinate rabbit erythrocytes, cleave mucin and degrade complement system molecules. BA589 was able to colonize mice intestines, and an intense mucus production was observed. The BA589Δpic mutant lost the capacity to colonize as well as the above-mentioned in vitro activities. Thus, Pic represents an additional virulence factor in aEPEC strain BA589, associated with adherence, colonization and evasion from the innate immune system.

  10. XbmR, a new transcription factor involved in the regulation of chemotaxis, biofilm formation and virulence in Xanthomonas citri subsp. citri.

    PubMed

    Yaryura, Pablo M; Conforte, Valeria P; Malamud, Florencia; Roeschlin, Roxana; de Pino, Verónica; Castagnaro, Atilio P; McCarthy, Yvonne; Dow, J Maxwell; Marano, María R; Vojnov, Adrián A

    2015-11-01

    Xanthomonas citri subsp. citri (Xcc) is the causal agent of citrus canker. Biofilm formation on citrus leaves plays an important role in epiphytic survival of Xcc. Biofilm formation is affected by transposon insertion in XAC3733, which encodes a transcriptional activator of the NtrC family, not linked to a gene encoding a sensor protein, thus could be considered as an 'orphan' regulator whose function is poorly understood in Xanthomonas spp. Here we show that mutation of XAC3733 (named xbmR) resulted in impaired structural development of the Xcc biofilm, loss of chemotaxis and reduced virulence in grapefruit plants. All defective phenotypes were restored to wild-type levels by the introduction of PA2567 from Pseudomonas aeruginosa, which encodes a phosphodiesterase active in the degradation of cyclic diguanosine monophosphate (c-di-GMP). A knockout of xbmR led to a substantial downregulation of fliA that encodes a σ(28) transcription factor, as well as fliC and XAC0350 which are potential member of the σ(28) regulon. XAC0350 encodes an HD-GYP domain c-di-GMP phosphodiesterase. These findings suggest that XbmR is a key regulator of flagellar-dependent motility and chemotaxis exerting its action through a regulatory pathway that involves FliA and c-di-GMP. PMID:25346091

  11. XbmR, a new transcription factor involved in the regulation of chemotaxis, biofilm formation and virulence in Xanthomonas citri subsp. citri.

    PubMed

    Yaryura, Pablo M; Conforte, Valeria P; Malamud, Florencia; Roeschlin, Roxana; de Pino, Verónica; Castagnaro, Atilio P; McCarthy, Yvonne; Dow, J Maxwell; Marano, María R; Vojnov, Adrián A

    2015-11-01

    Xanthomonas citri subsp. citri (Xcc) is the causal agent of citrus canker. Biofilm formation on citrus leaves plays an important role in epiphytic survival of Xcc. Biofilm formation is affected by transposon insertion in XAC3733, which encodes a transcriptional activator of the NtrC family, not linked to a gene encoding a sensor protein, thus could be considered as an 'orphan' regulator whose function is poorly understood in Xanthomonas spp. Here we show that mutation of XAC3733 (named xbmR) resulted in impaired structural development of the Xcc biofilm, loss of chemotaxis and reduced virulence in grapefruit plants. All defective phenotypes were restored to wild-type levels by the introduction of PA2567 from Pseudomonas aeruginosa, which encodes a phosphodiesterase active in the degradation of cyclic diguanosine monophosphate (c-di-GMP). A knockout of xbmR led to a substantial downregulation of fliA that encodes a σ(28) transcription factor, as well as fliC and XAC0350 which are potential member of the σ(28) regulon. XAC0350 encodes an HD-GYP domain c-di-GMP phosphodiesterase. These findings suggest that XbmR is a key regulator of flagellar-dependent motility and chemotaxis exerting its action through a regulatory pathway that involves FliA and c-di-GMP.

  12. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections

    PubMed Central

    Cornelis, Pierre; Dingemans, Jozef

    2013-01-01

    Pseudomonas aeruginosa is a Gram-negative γ-Proteobacterium which is known for its capacity to colonize various niches, including some invertebrate and vertebrate hosts, making it one of the most frequent bacteria causing opportunistic infections. P. aeruginosa is able to cause acute as well as chronic infections and it uses different colonization and virulence factors to do so. Infections range from septicemia, urinary infections, burn wound colonization, and chronic colonization of the lungs of cystic fibrosis patients. Like the vast majority of organisms, P. aeruginosa needs iron to sustain growth. P. aeruginosa utilizes different strategies to take up iron, depending on the type of infection it causes. Two siderophores are produced by this bacterium, pyoverdine and pyochelin, characterized by high and low affinities for iron respectively. P. aeruginosa is also able to utilize different siderophores from other microorganisms (siderophore piracy). It can also take up heme from hemoproteins via two different systems. Under microaerobic or anaerobic conditions, P. aeruginosa is also able to take up ferrous iron via its Feo system using redox-cycling phenazines. Depending on the type of infection, P. aeruginosa can therefore adapt by switching from one iron uptake system to another as we will describe in this short review. PMID:24294593

  13. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections.

    PubMed

    Cornelis, Pierre; Dingemans, Jozef

    2013-01-01

    Pseudomonas aeruginosa is a Gram-negative γ-Proteobacterium which is known for its capacity to colonize various niches, including some invertebrate and vertebrate hosts, making it one of the most frequent bacteria causing opportunistic infections. P. aeruginosa is able to cause acute as well as chronic infections and it uses different colonization and virulence factors to do so. Infections range from septicemia, urinary infections, burn wound colonization, and chronic colonization of the lungs of cystic fibrosis patients. Like the vast majority of organisms, P. aeruginosa needs iron to sustain growth. P. aeruginosa utilizes different strategies to take up iron, depending on the type of infection it causes. Two siderophores are produced by this bacterium, pyoverdine and pyochelin, characterized by high and low affinities for iron respectively. P. aeruginosa is also able to utilize different siderophores from other microorganisms (siderophore piracy). It can also take up heme from hemoproteins via two different systems. Under microaerobic or anaerobic conditions, P. aeruginosa is also able to take up ferrous iron via its Feo system using redox-cycling phenazines. Depending on the type of infection, P. aeruginosa can therefore adapt by switching from one iron uptake system to another as we will describe in this short review. PMID:24294593

  14. Transcriptome Analysis of the Entomopathogenic Oomycete Lagenidium giganteum Reveals Putative Virulence Factors

    PubMed Central

    Quiroz Velasquez, Paula F.; Abiff, Sumayyah K.; Fins, Katrina C.; Conway, Quincy B.; Salazar, Norma C.; Delgado, Ana Paula; Dawes, Jhanelle K.; Douma, Lauren G.

    2014-01-01

    A combination of 454 pyrosequencing and Sanger sequencing was used to sample and characterize the transcriptome of the entomopathogenic oomycete Lagenidium giganteum. More than 50,000 high-throughput reads were annotated through homology searches. Several selected reads served as seeds for the amplification and sequencing of full-length transcripts. Phylogenetic analyses inferred from full-length cellulose synthase alignments revealed that L giganteum is nested within the peronosporalean galaxy and as such appears to have evolved from a phytopathogenic ancestor. In agreement with the phylogeny reconstructions, full-length L. giganteum oomycete effector orthologs, corresponding to the cellulose-binding elicitor lectin (CBEL), crinkler (CRN), and elicitin proteins, were characterized by domain organizations similar to those of pathogenicity factors of plant-pathogenic oomycetes. Importantly, the L. giganteum effectors provide a basis for detailing the roles of canonical CRN, CBEL, and elicitin proteins in the infectious process of an oomycete known principally as an animal pathogen. Finally, phylogenetic analyses and genome mining identified members of glycoside hydrolase family 5 subfamily 27 (GH5_27) as putative virulence factors active on the host insect cuticle, based in part on the fact that GH5_27 genes are shared by entomopathogenic oomycetes and fungi but are underrepresented in nonentomopathogenic genomes. The genomic resources gathered from the L. giganteum transcriptome analysis strongly suggest that filamentous entomopathogens (oomycetes and fungi) exhibit convergent evolution: they have evolved independently from plant-associated microbes, have retained genes indicative of plant associations, and may share similar cores of virulence factors, such as GH5_27 enzymes, that are absent from the genomes of their plant-pathogenic relatives. PMID:25107973

  15. Detection of virulence factors and molecular typing of pathogenic Leptospira from capybara (Hydrochaeris hydrochaeris).

    PubMed

    Jorge, Sérgio; Monte, Leonardo G; Coimbra, Marco Antonio; Albano, Ana Paula; Hartwig, Daiane D; Lucas, Caroline; Seixas, Fabiana K; Dellagostin, Odir A; Hartleben, Cláudia P

    2012-10-01

    Leptospirosis is a globally prevalent zoonosis caused by pathogenic Leptospira spp.; several serologic variants have reservoirs in synanthropic rodents. The capybara is the largest living rodent in the world, and it has a wide geographical distribution in Central and South America. This rodent is a significant source of Leptospira since the agent is shed via urine into the environment and is a potential public health threat. In this study, we isolated and identified by molecular techniques a pathogenic Leptospira from capybara in southern Brazil. The isolated strain was characterized by partial rpoB gene sequencing and variable-number tandem-repeats analysis as L. interrogans, serogroup Icterohaemorrhagiae. In addition, to confirm the expression of virulence factors, the bacterial immunoglobulin-like proteins A and B expression was detected by indirect immunofluorescence using leptospiral specific monoclonal antibodies. This report identifies capybaras as an important source of infection and provides insight into the epidemiology of leptospirosis.

  16. Organized spirochetal behavior in human subgingival plaques - A virulence factor in periodontal infections?

    PubMed Central

    Keyes, Paul H.; Rams, Thomas E.

    2015-01-01

    The organization and behavior of spirochetes in human subgingival plaques was studied with phase-contrast microscopy. Wet-mounts of non-dispersed subgingival microbial specimens from deep pockets of 10 persons with untreated adult periodontitis revealed “brush formations” with outer coatings of closely-massed spirochetes exhibiting synchronized motility. Monolayers of closely-packed spirochetes co-aggregated with “brush formation” monofilaments were obtained by using mineral oil as a mounting medium for wet-mount preparations. Spirochetes were observed to produce collectively coordinated metachronal wave patterns with their cell movements along the outer surfaces of the “brush formation” monofilaments, rather than flexing independently and at random. Organized spirochetal activity in subgingival plaques may serve as a virulence factor contributing to the periodontopathic potential of spirochetes and/or other microbial species. PMID:26336331

  17. Role of virulence factors on host inflammatory response induced by diarrheagenic Escherichia coli pathotypes.

    PubMed

    Sanchez-Villamil, Javier; Navarro-Garcia, Fernando

    2015-01-01

    Pathogens are able to breach the intestinal barrier, and different bacterial species can display different abilities to colonize hosts and induce inflammation. Inflammatory response studies induced by enteropathogens as Escherichia coli are interesting since it has acquired diverse genetic mobile elements, leading to different E. coli pathotypes. Diarrheagenic E. coli secrete toxins, effectors and virulence factors that exploit the host cell functions to facilitate the bacterial colonization. Many bacterial proteins are delivered to the host cell for subverting the inflammatory response. Hereby, we have highlighted the specific processes used by E. coli pathotypes, by that subvert the inflammatory pathways. These mechanisms include an arrangement of pro- and anti-inflammatory responses to favor the appropriate environmental niche for the bacterial survival and growth. PMID:26059623

  18. Genotypic diversity and virulent factors of Staphylococcus epidermidis isolated from human breast milk.

    PubMed

    Begović, Jelena; Jovčić, Branko; Papić-Obradović, Milena; Veljović, Katarina; Lukić, Jovanka; Kojić, Milan; Topisirović, Ljubiša

    2013-02-22

    Staphylococcus epidermidis strains were isolated from the expressed human breast milk (EHM) of 14 healthy donor mothers. Genetic diversity was evaluated using RAPD-PCR REP-PCR and pulse-field gel electrophoresis (PFGE). PFGE allowed the best discrimination of the isolates, since it provided for the greatest diversity of the analyzed genomes. Among the S. epidermidis strains, resistance to gentamicin, tetracycline, erythromycin, clindamycin or vancomycin was detected, whilst four isolates were multiresistant. The results from our study demonstrate that staphylococci from EHM could be reservoirs of resistance genes, since we showed that tetK could be transferred from EHM staphylococci to Gram-negative Escherichia coli. Most of the staphylococcal strains displayed excellent proteolytic and lipolytic activities. Additionally, the presence of ica genes, which was related to their ability to form a biofilm on tissue culture plates, and the presence of virulence factors including autolysin/adhesin AtLE, point to their pathogenic potential.

  19. A Common Structural Motif in the Binding of Virulence Factors to Bacterial Secretion Chaperones

    SciTech Connect

    Lilic,M.; Vujanac, M.; Stebbins, C.

    2006-01-01

    Salmonella invasion protein A (SipA) is translocated into host cells by a type III secretion system (T3SS) and comprises two regions: one domain binds its cognate type III secretion chaperone, InvB, in the bacterium to facilitate translocation, while a second domain functions in the host cell, contributing to bacterial uptake by polymerizing actin. We present here the crystal structures of the SipA chaperone binding domain (CBD) alone and in complex with InvB. The SipA CBD is found to consist of a nonglobular polypeptide as well as a large globular domain, both of which are necessary for binding to InvB. We also identify a structural motif that may direct virulence factors to their cognate chaperones in a diverse range of pathogenic bacteria. Disruption of this structural motif leads to a destabilization of several chaperone-substrate complexes from different species, as well as an impairment of secretion in Salmonella.

  20. Identification of the Staphylococcus aureus vfrAB Operon, a Novel Virulence Factor Regulatory Locus

    PubMed Central

    Daly, Seth M.; Hall, Pamela R.; Bayles, Kenneth W.

    2014-01-01

    During a screen of the Nebraska Transposon Mutant Library, we identified 71 mutations in the Staphylococcus aureus genome that altered hemolysis on blood agar medium. Although many of these mutations disrupted genes known to affect the production of alpha-hemolysin, two of them were associated with an apparent operon, designated vfrAB, that had not been characterized previously. Interestingly, a ΔvfrB mutant exhibited only minor effects on the transcription of the hla gene, encoding alpha-hemolysin, when grown in broth, as well as on RNAIII, a posttranscriptional regulatory RNA important for alpha-hemolysin translation, suggesting that VfrB may function at the posttranscriptional level. Indeed, a ΔvfrB mutant had increased aur and sspAB protease expression under these conditions. However, disruption of the known secreted proteases in the ΔvfrB mutant did not restore hemolytic activity in the ΔvfrB mutant on blood agar. Further analysis revealed that, in contrast to the minor effects of VfrB on hla transcription when strains were cultured in liquid media, the level of hla transcription was decreased 50-fold in the absence of VfrB on solid media. These results demonstrate that while VfrB represses protease expression when strains are grown in broth, hla regulation is highly responsive to factors associated with growth on solid media. Intriguingly, the ΔvfrB mutant displayed increased pathogenesis in a model of S. aureus dermonecrosis, further highlighting the complexity of VfrB-dependent virulence regulation. The results of this study describe a phenotype associated with a class of highly conserved yet uncharacterized proteins found in Gram-positive bacteria, and they shed new light on the regulation of virulence factors necessary for S. aureus pathogenesis. PMID:24549328

  1. Identification of the Staphylococcus aureus vfrAB operon, a novel virulence factor regulatory locus.

    PubMed

    Bose, Jeffrey L; Daly, Seth M; Hall, Pamela R; Bayles, Kenneth W

    2014-05-01

    During a screen of the Nebraska Transposon Mutant Library, we identified 71 mutations in the Staphylococcus aureus genome that altered hemolysis on blood agar medium. Although many of these mutations disrupted genes known to affect the production of alpha-hemolysin, two of them were associated with an apparent operon, designated vfrAB, that had not been characterized previously. Interestingly, a ΔvfrB mutant exhibited only minor effects on the transcription of the hla gene, encoding alpha-hemolysin, when grown in broth, as well as on RNAIII, a posttranscriptional regulatory RNA important for alpha-hemolysin translation, suggesting that VfrB may function at the posttranscriptional level. Indeed, a ΔvfrB mutant had increased aur and sspAB protease expression under these conditions. However, disruption of the known secreted proteases in the ΔvfrB mutant did not restore hemolytic activity in the ΔvfrB mutant on blood agar. Further analysis revealed that, in contrast to the minor effects of VfrB on hla transcription when strains were cultured in liquid media, the level of hla transcription was decreased 50-fold in the absence of VfrB on solid media. These results demonstrate that while VfrB represses protease expression when strains are grown in broth, hla regulation is highly responsive to factors associated with growth on solid media. Intriguingly, the ΔvfrB mutant displayed increased pathogenesis in a model of S. aureus dermonecrosis, further highlighting the complexity of VfrB-dependent virulence regulation. The results of this study describe a phenotype associated with a class of highly conserved yet uncharacterized proteins found in Gram-positive bacteria, and they shed new light on the regulation of virulence factors necessary for S. aureus pathogenesis. PMID:24549328

  2. Virulence factors and genetic variability of Staphylococcus aureus strains isolated from raw sheep's milk cheese.

    PubMed

    Spanu, Vincenzo; Spanu, Carlo; Virdis, Salvatore; Cossu, Francesca; Scarano, Christian; De Santis, Enrico Pietro Luigi

    2012-02-01

    Contamination of dairy products with Staphylococcus aureus can be of animal or human origin. The host pathogen relationship is an important factor determining genetic polymorphism of the strains and their potential virulence. The aim of the present study was to carry out an extensive characterization of virulence factors and to study the genetic variability of S. aureus strains isolated from raw ewe's milk cheese. A total of 100 S. aureus strains isolated from cheese samples produced in 10 artisan cheese factories were analyzed for the presence of enterotoxins (sea-see) and enterotoxins-like genes (seh, sek, sel, sem, seo, sep), leukocidins, exfoliatins, haemolysins, toxic shock syndrome toxin 1 (TSST-1) and the accessory gene regulator alleles (agr). Strains were also typed using pulsed-field gel electrophoresis (PFGE). AMOVA analysis carried out on PFGE and PCR data showed that the major component explaining genetic distance between strains was the dairy of origin. Of the total isolates 81% had a pathogenicity profile ascribable to "animal" biovar while 16% could be related to "human" biovar. The biovar allowed to estimate the most likely origin of the contamination. Minimum inhibitory concentrations (MICs) of nine antimicrobial agents and the presence of the corresponding genes coding for antibiotic resistance was also investigated. 18 strains carrying blaZ gene showed resistance to ampicillin and penicillin and 6 strains carrying tetM gene were resistant to tetracycline. The presence of mecA gene and methicillin resistance, typical of strains of human origin, was never detected. The results obtained in the present study confirm that S. aureus contamination in artisan cheese production is mainly of animal origin.

  3. Phosphatidylinositol-specific phospholipase C, a possible virulence factor of Staphylococcus aureus.

    PubMed Central

    Marques, M B; Weller, P F; Parsonnet, J; Ransil, B J; Nicholson-Weller, A

    1989-01-01

    Phosphatidylinositol-specific phospholipase C (PIPLC), an enzyme that can specifically release phosphatidylinositol-linked proteins from host cells, is one of the extracellular enzymes produced by Staphylococcus aureus. To investigate whether PIPLC might be a virulence factor, we assessed PIPLC production by S. aureus strains that had been isolated from healthy carriers and from infected patients with or without toxic shock syndrome. Although none of five vaginal isolates from healthy women was a PIPLC producer, only 10 of 32 selected pathogenic strains that caused significant infections or toxic shock syndrome elaborated PIPLC enzyme activity. Seven of 24 toxic-shock-associated strains, compared with 3 of 8 non-toxic-shock-associated strains, were positive for PIPLC. The majority of strains that produced PIPLC were negative for toxic shock syndrome toxin 1 (P less than 0.05); this association between PIPLC production and strains negative for toxic shock syndrome toxin 1 was even stronger among strains isolated only from patients with toxic shock syndrome (P less than 0.01). Among all 32 pathogenic isolates, PIPLC-producing S. aureus strains were isolated from four of four patients developing adult respiratory distress syndrome and four of five patients with disseminated intravascular coagulation, suggesting a significant association between PIPLC production and adult respiratory distress syndrome and/or disseminated intravascular coagulation (P less than 0.002). On the basis of these results, we propose that PIPLC is a virulence factor of S. aureus and is implicated in the development of adult respiratory distress syndrome and disseminated intravascular coagulation. PMID:2808668

  4. Virulence Attributes of Low-Virulence Organisms

    PubMed Central

    1994-01-01

    The vast majority of infections involving female pelvic structures arise from organisms that are members of the normal flora. In addition, exogenous organisms that invade through the lower genital tract must interact with organisms that are part of the host's flora. In contrast to the concept that the normal flora is entirely innocuous, recent research has begun to identify what appear to be virulence attributes among these ordinarily low-virulence organisms. Most of our understanding of virulence has been derived from highly virulent organisms, of which Neisseria gonorrhoeae provides an example of relevance to the female genital tract. A review of the virulence factors of the gonococcus is presented to serve as an example of the variety of virulence properties associated with pathogenic bacteria. Molecular biology has begun to clarify one of the important paradigms of pathogenic bacteriology—that bacteria change their expression of virulence properties in response to their location within a host or to the stage of infection. Thus, infection involves not only the possession of virulence factors, but also the carefully controlled use of those factors. Virulence is often controlled by the coordinate expression of many virulence-associated genes in response to one environmental signal. With regard to low- virulence organisms present in the female lower genital tract, we are beginning to identify some of their virulence attributes. Examples from the work of our laboratory include the hemolysin of Gardnerella vaginalis and an immunosuppressive mycotoxin produced by Candida albicans. Demonstrating the coordinate expression (or other control mechanisms) of virulence factors in these sometimes innocuous and sometimes inimical organisms represents the next frontier in the study of normal vaginal microbiology. PMID:18475373

  5. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa.

    PubMed

    Pesci, E C; Milbank, J B; Pearson, J P; McKnight, S; Kende, A S; Greenberg, E P; Iglewski, B H

    1999-09-28

    Numerous species of bacteria use an elegant regulatory mechanism known as quorum sensing to control the expression of specific genes in a cell-density dependent manner. In Gram-negative bacteria, quorum sensing systems function through a cell-to-cell signal molecule (autoinducer) that consists of a homoserine lactone with a fatty acid side chain. Such is the case in the opportunistic human pathogen Pseudomonas aeruginosa, which contains two quorum sensing systems (las and rhl) that operate via the autoinducers, N-(3-oxododecanoyl)-L-homoserine lactone and N-butyryl-L-homoserine lactone. The study of these signal molecules has shown that they bind to and activate transcriptional activator proteins that specifically induce numerous P. aeruginosa virulence genes. We report here that P. aeruginosa produces another signal molecule, 2-heptyl-3-hydroxy-4-quinolone, which has been designated as the Pseudomonas quinolone signal. It was found that this unique cell-to-cell signal controlled the expression of lasB, which encodes for the major virulence factor, LasB elastase. We also show that the synthesis and bioactivity of Pseudomonas quinolone signal were mediated by the P. aeruginosa las and rhl quorum sensing systems, respectively. The demonstration that 2-heptyl-3-hydroxy-4-quinolone can function as an intercellular signal sheds light on the role of secondary metabolites and shows that P. aeruginosa cell-to-cell signaling is not restricted to acyl-homoserine lactones.

  6. EprS, an autotransporter serine protease, plays an important role in various pathogenic phenotypes of Pseudomonas aeruginosa.

    PubMed

    Kida, Y; Taira, J; Kuwano, K

    2016-02-01

    Pseudomonas aeruginosa possesses an arsenal of both cell-associated (flagella, pili, alginate, etc.) and extracellular (exotoxin A, proteases, type III secretion effectors, etc.) virulence factors. Among them, secreted proteases that damage host tissues are considered to play an important role in the pathogenesis of P. aeruginosa infections. We previously reported that EprS, an autotransporter protease of P. aeruginosa, induces host inflammatory responses through protease-activated receptors. However, little is known about the role of EprS as a virulence factor of P. aeruginosa. In this study, to investigate whether EprS participates in the pathogenicity of P. aeruginosa, we characterized various pathogenic phenotypes of the wild-type PAO1 strain and its eprS-disrupted mutant. The growth assays demonstrated that the growth of the eprS mutant was somewhat lower than that of the wild-type strain in a minimal medium containing BSA as the sole carbon and nitrogen source. Thus, these results indicate that eprS would have a role in the growth of P. aeruginosa in the presence of limited nutrients, such as a medium containing proteinaceous materials as a sole nutrient source. Furthermore, disruption of eprS resulted in a decreased production of elastase, pigments, autoinducers and surfactants, and a reduction of swimming and swarming motilities. In addition, the eprS mutant exhibited a reduction in the ability to associate with A549 cells and an attenuation of virulence in leucopenic mice as compared with the wild-type strain. Collectively, these results suggest that EprS exerts pleiotropic effects on various pathogenic phenotypes of P. aeruginosa. PMID:26678838

  7. Comparative secretomics reveals novel virulence-associated factors of Vibrio parahaemolyticus

    PubMed Central

    He, Yu; Wang, Hua; Chen, Lanming

    2015-01-01

    Vibrio parahaemolyticus is a causative agent of serious human seafood-borne gastroenteritis disease and even death. In this study, for the first time, we obtained the secretomic profiles of seven V. parahaemolyticus strains of clinical and food origins. The strains exhibited various toxic genotypes and phenotypes of antimicrobial susceptibility and heavy metal resistance, five of which were isolated from aquatic products in Shanghai, China. Fourteen common extracellular proteins were identified from the distinct secretomic profiles using the two-dimensional gel electrophoresis (2-DE) and liquid chromatography tandem mass spectrometry (LC-MS/MS) techniques. Of these, half were involved in protein synthesis and sugar transport of V. parahaemolyticus. Strikingly, six identified proteins were virulence-associated factors involved in the pathogenicity of some other pathogenic bacteria, including the translation elongation factor EF-Tu, pyridoxine 5′-phosphate synthase, σ54 modulation protein, dihydrolipoyl dehydrogenase, transaldolase and phosphoglycerate kinase. In addition, comparative secretomics also revealed several extracellular proteins that have not been described in any bacteria, such as the ribosome-recycling factor, translation elongation factor EF-Ts, phosphocarrier protein HPr and maltose-binding protein MalE. The results in this study will facilitate the better understanding of the pathogenesis of V. parahaemolyticus and provide data in support of novel vaccine candidates against the leading seafood-borne pathogen worldwide. PMID:26236293

  8. Effect of a Salmonella Group H1 R Factor on Virulence and Response of Infections to Antimicrobial Therapy

    PubMed Central

    Butler, Thomas; Shuster, C. W.; Franco, Amalia

    1979-01-01

    A group H1 R factor encoding resistance to chloramphenicol, streptomycin, sulfonamide, and tetracycline was transferred into Salmonella typhimurium LT-2. The virulence of LT-2 for mice, as assessed by intraperitoneal 50% lethal dose and the number of organisms in the spleen, was not affected by the R factor. On the other hand, the R factor conferred resistance in mouse infections to therapy with chloramphenicol and trimethoprim plus sulfamethoxazole. PMID:380460

  9. Comparison of Antibiotic Resistance and Virulence Factors among Escherichia coli Isolated from Conventional and Free-Range Poultry

    PubMed Central

    Koga, Vanessa L.; Scandorieiro, Sara; Vespero, Eliana C.; Oba, Alexandre; de Brito, Benito G.; de Brito, Kelly C. T.; Nakazato, Gerson; Kobayashi, Renata K. T.

    2015-01-01

    Microbiological contamination in commercial poultry production has caused concerns for human health because of both the presence of pathogenic microorganisms and the increase in antimicrobial resistance in bacterial strains that can cause treatment failure of human infections. The aim of our study was to analyze the profile of antimicrobial resistance and virulence factors of E. coli isolates from chicken carcasses obtained from different farming systems (conventional and free-range poultry). A total of 156 E. coli strains were isolated and characterized for genes encoding virulence factors described in extraintestinal pathogenic E. coli (ExPEC). Antimicrobial susceptibility testing was performed for 15 antimicrobials, and strains were confirmed as extended spectrum of β-lactamases- (ESBLs-) producing E. coli by phenotypic and genotypic tests. The results indicated that strains from free-range poultry have fewer virulence factors than strains from conventional poultry. Strains from conventionally raised chickens had a higher frequency of antimicrobial resistance for all antibiotics tested and also exhibited genes encoding ESBL and AmpC, unlike free-range poultry isolates, which did not. Group 2 CTX-M and CIT were the most prevalent ESBL and AmpC genes, respectively. The farming systems of poultries can be related with the frequency of virulence factors and resistance to antimicrobials in bacteria. PMID:26579536

  10. Iron concentration limits growth rate and the expression of virulence factors in hrp-inducing minimal medium with Pseudomonas syringae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although chemically-defined media have been developed and widely used to study the expression of virulence factors in the model plant pathogen, Pseudomonas syringae, it has been difficult to link specific medium components to the induction response. Using a chemostat system, we found that iron is th...

  11. Comparison of Antibiotic Resistance and Virulence Factors among Escherichia coli Isolated from Conventional and Free-Range Poultry.

    PubMed

    Koga, Vanessa L; Scandorieiro, Sara; Vespero, Eliana C; Oba, Alexandre; de Brito, Benito G; de Brito, Kelly C T; Nakazato, Gerson; Kobayashi, Renata K T

    2015-01-01

    Microbiological contamination in commercial poultry production has caused concerns for human health because of both the presence of pathogenic microorganisms and the increase in antimicrobial resistance in bacterial strains that can cause treatment failure of human infections. The aim of our study was to analyze the profile of antimicrobial resistance and virulence factors of E. coli isolates from chicken carcasses obtained from different farming systems (conventional and free-range poultry). A total of 156 E. coli strains were isolated and characterized for genes encoding virulence factors described in extraintestinal pathogenic E. coli (ExPEC). Antimicrobial susceptibility testing was performed for 15 antimicrobials, and strains were confirmed as extended spectrum of β-lactamases- (ESBLs-) producing E. coli by phenotypic and genotypic tests. The results indicated that strains from free-range poultry have fewer virulence factors than strains from conventional poultry. Strains from conventionally raised chickens had a higher frequency of antimicrobial resistance for all antibiotics tested and also exhibited genes encoding ESBL and AmpC, unlike free-range poultry isolates, which did not. Group 2 CTX-M and CIT were the most prevalent ESBL and AmpC genes, respectively. The farming systems of poultries can be related with the frequency of virulence factors and resistance to antimicrobials in bacteria.

  12. Dynamics of Escherichia coli virulence factors in dairy herds and farm environments in a longitudinal study in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy farms are known reservoirs of enteropathogenic E. coli (EPEC). EPEC, or the virulence factors associated with pathogenicity, have been detected in manure, milk, and the farm environment. It is unclear which farm compartments are reservoirs for EPEC and their long-term dynamics are not describe...

  13. Legionella pneumophila Effector LpdA Is a Palmitoylated Phospholipase D Virulence Factor.

    PubMed

    Schroeder, Gunnar N; Aurass, Philipp; Oates, Clare V; Tate, Edward W; Hartland, Elizabeth L; Flieger, Antje; Frankel, Gad

    2015-10-01

    Legionella pneumophila is a bacterial pathogen that thrives in alveolar macrophages, causing a severe pneumonia. The virulence of L. pneumophila depends on its Dot/Icm type IV secretion system (T4SS), which delivers more than 300 effector proteins into the host, where they rewire cellular signaling to establish a replication-permissive niche, the Legionella-containing vacuole (LCV). Biogenesis of the LCV requires substantial redirection of vesicle trafficking and remodeling of intracellular membranes. In order to achieve this, several T4SS effectors target regulators of membrane trafficking, while others resemble lipases. Here, we characterized LpdA, a phospholipase D effector, which was previously proposed to modulate the lipid composition of the LCV. We found that ectopically expressed LpdA was targeted to the plasma membrane and Rab4- and Rab14-containing vesicles. Subcellular targeting of LpdA required a C-terminal motif, which is posttranslationally modified by S-palmitoylation. Substrate specificity assays showed that LpdA hydrolyzed phosphatidylinositol, -inositol-3- and -4-phosphate, and phosphatidylglycerol to phosphatidic acid (PA) in vitro. In HeLa cells, LpdA generated PA at vesicles and the plasma membrane. Imaging of different phosphatidylinositol phosphate (PIP) and organelle markers revealed that while LpdA did not impact on membrane association of various PIP probes, it triggered fragmentation of the Golgi apparatus. Importantly, although LpdA is translocated inefficiently into cultured cells, an L. pneumophila ΔlpdA mutant displayed reduced replication in murine lungs, suggesting that it is a virulence factor contributing to L. pneumophila infection in vivo.

  14. Listeria monocytogenes virulence factor secretion: don't leave the cell without a chaperone

    PubMed Central

    Cahoon, Laty A.; Freitag, Nancy E.

    2014-01-01

    In Gram-positive bacteria, the secretion of proteins requires translocation of polypeptides across the bacterial membrane into the highly charged environment of the membrane-cell wall interface. Here, proteins must be folded and often further delivered across the matrix of the cell wall. While many aspects of protein secretion have been well studied in Gram-negative bacteria which possess both an inner and outer membrane, generally less attention has been given to the mechanics of protein secretion across the single cell membrane of Gram-positive bacteria. In this review, we focus on the role of a post-translocation secretion chaperone in Listeria monocytogenes known as PrsA2, and compare what is known regarding PrsA2 with PrsA homologs in other Gram-positive bacteria. PrsA2 is a member of a family of membrane-associated lipoproteins that contribute to the folding and stability of secreted proteins as they cross the bacterial membrane. PrsA2 contributes to the integrity of the L. monocytogenes cell wall as well as swimming motility and bacterial resistance to osmotic stress; however its most critical role may be its requirement for L. monocytogenes virulence and viability within host cells. A better understanding of the role of PrsA2 and PrsA-like homologs will provide insight into the dynamics of protein folding and stability in Gram-positive bacteria and may result in new strategies for optimizing protein secretion as well as inhibiting the production of virulence factors. PMID:24575392

  15. Virulence factors and mechanisms of antimicrobial resistance in Shigella strains from periurban areas of Lima (Peru)

    PubMed Central

    Lluque, Angela; Mosquito, Susan; Gomes, Cláudia; Riveros, Maribel; Durand, David; Tilley, Drake H.; Bernal, María; Prada, Ana; Ochoa, Theresa J.; Ruiz, Joaquim

    2015-01-01

    The study was aimed to describe the serotype, mechanisms of antimicrobial resistance, and virulence determinants in Shigella spp. isolated from Peruvian children. Eighty three Shigella spp. were serogrouped and serotyped being established the antibiotic susceptibility. The presence of 12 virulence factors (VF) and integrase 1 and 2, along with commonly found antibiotic resistance genes was established by PCR. S. flexneri was the most relevant serogroup (55 isolates, 66%), with serotype 2a most frequently detected (27 of 55, 49%), followed by S. boydii and S. sonnei at 12 isolates each (14%) and S. dysenteriae (4 isolates, 5%). Fifty isolates (60%) were multi-drug resistant (MDR) including 100% of S. sonnei and 64% of S. flexneri. Resistance levels were high to trimethoprim-sulfamethoxazole (86%), tetracycline (74%), ampicillin (67%), and chloramphenicol (65%). Six isolates showed decreased azithromycin susceptibility. No isolate was resistant to nalidixic acid, ciprofloxacin, nitrofurantoin, or ceftriaxone. The most frequent resistance genes were sul2 (95%), tet(B) (92%), cat (80%), dfrA1 (47%), blaOXA-1 like (40%), with intl1 and intl2 detected in 51 and 52% of the isolates, respectively. Thirty-one different VF profiles were observed, being the ipaH (100%), sen (77%), virA and icsA (75%) genes the most frequently found. Differences in the prevalence of VF were observed between species with S. flexneri isolates, particularly serotype 2a, possessing high numbers of VF. In conclusion, this study highlights the high heterogeneity of Shigella VF and resistance genes, and prevalence of MDR organisms within this geographic region. PMID:25998616

  16. RNA thermometer controls temperature-dependent virulence factor expression in Vibrio cholerae.

    PubMed

    Weber, Gregor G; Kortmann, Jens; Narberhaus, Franz; Klose, Karl E

    2014-09-30

    Vibrio cholerae is the bacterium that causes the diarrheal disease cholera. The bacteria experience a temperature shift as V. cholerae transition from contaminated water at lower temperatures into the 37 °C human intestine. Within the intestine, V. cholerae express cholera toxin (CT) and toxin-coregulated pilus (TCP), two main virulence factors required for disease. CT and TCP expression is controlled by the transcriptional activator protein ToxT. We identified an RNA thermometer motif in the 5' UTR of toxT, with a fourU anti-Shine-Dalgarno (SD) element that base pairs with the SD sequence to regulate ribosome access to the mRNA. RNA probing experiments demonstrated that the fourU element allowed access to the SD sequence at 37 °C but not at 20 °C. Moreover, mutations within the fourU element (U5C, U7C) that strengthened base-pairing between the anti-SD and SD sequences prevented access to the SD sequence even at 37 °C. Translation of ToxT-FLAG from the native toxT UTR was enhanced at 37 °C, compared with 25 °C in both Escherichia coli and V. cholerae. In contrast, the U5C, U7C UTR prevented translation of ToxT-FLAG even at 37 °C. V. cholerae mutants containing the U5C, U7C UTR variant were unable to colonize the infant mouse small intestine. Our results reveal a previously unknown regulatory mechanism consisting of an RNA thermometer that controls temperature-dependent translation of toxT, facilitating V. cholerae virulence at a relevant environmental condition found in the human intestine.

  17. Positive regulation of Shigella flexneri virulence genes by integration host factor.

    PubMed Central

    Porter, M E; Dorman, C J

    1997-01-01

    In Shigella flexneri, expression of the plasmid-encoded virulence genes is regulated via a complex cascade involving DNA topology, specific transactivators, and the nucleoid-associated protein H-NS, which represses transcription under inappropriate environmental conditions. We have investigated the involvement of a second nucleoid-associated protein, integration host factor (IHF), in virulence gene expression. We found that transcription of the invasion-specific genes is repressed in a strain harboring an ihfA mutation, particularly on entry into the stationary phase. Expression of the virB gene, whose product is required for the activation of these structural genes, is also enhanced by IHF in the stationary phase. In contrast, the virF gene, which encodes an activator of virB, is stimulated by IHF in both the logarithmic and early stationary phases of growth, as is another virF-regulated gene, icsA. We have identified regions of the virF, virB, and icsA promoters which form IHF-dependent protein-DNA complexes in vitro and have located sequences within these regions with similarity to the consensus IHF binding site. Moreover, results from experiments in which the virF or virB gene was expressed constitutively confirm that IHF has a direct input at the level of both virF and virB transcription. Finally, we provide evidence that at the latter promoter, the primary role of IHF may be to overcome repression by the H-NS protein. To our knowledge, this is the first report of a role for IHF in controlling gene expression in S. flexneri. PMID:9352898

  18. The RNA chaperone Hfq impacts growth, metabolism and production of virulence factors in Yersinia enterocolitica.

    PubMed

    Kakoschke, Tamara; Kakoschke, Sara; Magistro, Giuseppe; Schubert, Sören; Borath, Marc; Heesemann, Jürgen; Rossier, Ombeline

    2014-01-01

    To adapt to changes in environmental conditions, bacteria regulate their gene expression at the transcriptional but also at the post-transcriptional level, e.g. by small RNAs (sRNAs) which modulate mRNA stability and translation. The conserved RNA chaperone Hfq mediates the interaction of many sRNAs with their target mRNAs, thereby playing a global role in fine-tuning protein production. In this study, we investigated the significance of Hfq for the enteropathogen Yersina enterocolitica serotype O:8. Hfq facilitated optimal growth in complex and minimal media. Our comparative protein analysis of parental and hfq-negative strains suggested that Hfq promotes lipid metabolism and transport, cell redox homeostasis, mRNA translation and ATP synthesis, and negatively affects carbon and nitrogen metabolism, transport of siderophore and peptides and tRNA synthesis. Accordingly, biochemical tests indicated that Hfq represses ornithine decarboxylase activity, indole production and utilization of glucose, mannitol, inositol and 1,2-propanediol. Moreover, Hfq repressed production of the siderophore yersiniabactin and its outer membrane receptor FyuA. In contrast, hfq mutants exhibited reduced urease production. Finally, strains lacking hfq were more susceptible to acidic pH and oxidative stress. Unlike previous reports in other Gram-negative bacteria, Hfq was dispensable for type III secretion encoded by the virulence plasmid. Using a chromosomally encoded FLAG-tagged Hfq, we observed increased production of Hfq-FLAG in late exponential and stationary phases. Overall, Hfq has a profound effect on metabolism, resistance to stress and modulates the production of two virulence factors in Y. enterocolitica, namely urease and yersiniabactin.

  19. Growth of Acinetobacter baumannii in Pellicle Enhanced the Expression of Potential Virulence Factors

    PubMed Central

    Alexandre, Stéphane; Coquet, Laurent; Vila, Jordi; Jouenne, Thierry; Dé, Emmanuelle

    2011-01-01

    Background Interestingly, Acinetobacter baumannii presents an enhanced capacity to form biofilms (also named pellicles) at the air-liquid interface as compared to the other Acinetobacter species. This characteristic questions the contribution of this phenotype to an increased risk of clinical infections by this pathogen. Methodology/Principal Findings By a proteomic approach using 2-D gel electrophoresis-LC-MS/MS mass spectrometry, we compared the membrane protein patterns of A. baumannii 77, a pellicle-forming clinical isolate, grown in planktonic and in sessile modes. We identified 52 proteins with a differential expression, including 32 up-regulated and 20 down-regulated in the pellicle state. Several proteins, differentially expressed during pellicle development, were of particular interest. We determined the over-expression of four siderophore iron uptake systems including the acinetobactin and enterobactin receptors and confirmed that the development of this type of biofilm is promoted by ferric ions. Two over-expressed proteins, CarO and an OprD-homologue, putative carbapenem-resistance associated porins, would be involved in the transport of specific compounds, like ornithine, a biosynthesis precursor of a siderophore from the hydroxamate family. We evidenced the overexpression of a lipase and a transporter of LCFA that may be involved in the recycling of lipids inside the pellicle matrix. Finally, we demonstrated both by proteomic and by AFM studies that this particular type of biofilm required multiple pili systems to maintain this cohesive structure at the air-liquid interface; two of these systems have never been described in A. baumannii. Conclusions/Significance Our study demonstrated that several proteins, overexpressed at a late state of pellicle development, could be potentially involved in virulence processes. Therefore, regarding the number of potential virulence factors that are over-expressed in this growth mode, the pellicle-forming clinical

  20. Molecular epidemiology of adhesin and hemolysin virulence factors among uropathogenic Escherichia coli.

    PubMed

    Arthur, M; Johnson, C E; Rubin, R H; Arbeit, R D; Campanelli, C; Kim, C; Steinbach, S; Agarwal, M; Wilkinson, R; Goldstein, R

    1989-02-01

    The pap, prs, pil, and hly operons of the pyelonephritic Escherichia coli isolate J96 code for the expression of P, F, and type 1 adhesins and the production of hemolysin, respectively; the afaI operon of the pyelonephritic E. coli KS52 encodes an X adhesin. Using different segments of these operons as probes, colony hybridizations were performed on 97 E. coli urinary tract and 40 fecal clinical isolates to determine (i) the presence in the infecting bacteria of nucleotide sequences related to virulence operons, and (ii) the phenotypic properties associated with such sequences. Coexpression of P and F adhesins encoded by pap-related sequences was detected more frequently among isolates from patients with pyelonephritis (32 of 49, 65%) than among those with cystitis (11 of 48, 23%; P less than 0.0001) or from fecal specimens (6 of 40, 15%; P less than 0.0001). Therefore, the expression of both adhesins appears to be critical in the colonization of the upper urinary tract. In contrast, afaI-related sequences were detected significantly more frequently among isolates from patients with cystitis, suggesting that this class of X adhesin may have a role in lower urinary tract infections. Urinary tract isolates differed from fecal isolates by a low incidence of type 1 adhesin expression among pil probe-positive isolates. hly-related sequences were only detected in pap probe-positive isolates. The frequency of hemolysin production among pap probe-positive isolates was not associated with a particular pattern of infection. The distribution of these virulence factors was similar in the presence or absence of reflux, indicating that structural abnormalities of the urinary tract did not facilitate colonization by adhesin-negative isolates.

  1. Legionella pneumophila Effector LpdA Is a Palmitoylated Phospholipase D Virulence Factor

    PubMed Central

    Aurass, Philipp; Oates, Clare V.; Tate, Edward W.; Hartland, Elizabeth L.; Flieger, Antje

    2015-01-01

    Legionella pneumophila is a bacterial pathogen that thrives in alveolar macrophages, causing a severe pneumonia. The virulence of L. pneumophila depends on its Dot/Icm type IV secretion system (T4SS), which delivers more than 300 effector proteins into the host, where they rewire cellular signaling to establish a replication-permissive niche, the Legionella-containing vacuole (LCV). Biogenesis of the LCV requires substantial redirection of vesicle trafficking and remodeling of intracellular membranes. In order to achieve this, several T4SS effectors target regulators of membrane trafficking, while others resemble lipases. Here, we characterized LpdA, a phospholipase D effector, which was previously proposed to modulate the lipid composition of the LCV. We found that ectopically expressed LpdA was targeted to the plasma membrane and Rab4- and Rab14-containing vesicles. Subcellular targeting of LpdA required a C-terminal motif, which is posttranslationally modified by S-palmitoylation. Substrate specificity assays showed that LpdA hydrolyzed phosphatidylinositol, -inositol-3- and -4-phosphate, and phosphatidylglycerol to phosphatidic acid (PA) in vitro. In HeLa cells, LpdA generated PA at vesicles and the plasma membrane. Imaging of different phosphatidylinositol phosphate (PIP) and organelle markers revealed that while LpdA did not impact on membrane association of various PIP probes, it triggered fragmentation of the Golgi apparatus. Importantly, although LpdA is translocated inefficiently into cultured cells, an L. pneumophila ΔlpdA mutant displayed reduced replication in murine lungs, suggesting that it is a virulence factor contributing to L. pneumophila infection in vivo. PMID:26216420

  2. The RNA Chaperone Hfq Impacts Growth, Metabolism and Production of Virulence Factors in Yersinia enterocolitica

    PubMed Central

    Kakoschke, Tamara; Kakoschke, Sara; Magistro, Giuseppe; Schubert, Sören; Borath, Marc; Heesemann, Jürgen; Rossier, Ombeline

    2014-01-01

    To adapt to changes in environmental conditions, bacteria regulate their gene expression at the transcriptional but also at the post-transcriptional level, e.g. by small RNAs (sRNAs) which modulate mRNA stability and translation. The conserved RNA chaperone Hfq mediates the interaction of many sRNAs with their target mRNAs, thereby playing a global role in fine-tuning protein production. In this study, we investigated the significance of Hfq for the enteropathogen Yersina enterocolitica serotype O:8. Hfq facilitated optimal growth in complex and minimal media. Our comparative protein analysis of parental and hfq-negative strains suggested that Hfq promotes lipid metabolism and transport, cell redox homeostasis, mRNA translation and ATP synthesis, and negatively affects carbon and nitrogen metabolism, transport of siderophore and peptides and tRNA synthesis. Accordingly, biochemical tests indicated that Hfq represses ornithine decarboxylase activity, indole production and utilization of glucose, mannitol, inositol and 1,2-propanediol. Moreover, Hfq repressed production of the siderophore yersiniabactin and its outer membrane receptor FyuA. In contrast, hfq mutants exhibited reduced urease production. Finally, strains lacking hfq were more susceptible to acidic pH and oxidative stress. Unlike previous reports in other Gram-negative bacteria, Hfq was dispensable for type III secretion encoded by the virulence plasmid. Using a chromosomally encoded FLAG-tagged Hfq, we observed increased production of Hfq-FLAG in late exponential and stationary phases. Overall, Hfq has a profound effect on metabolism, resistance to stress and modulates the production of two virulence factors in Y. enterocolitica, namely urease and yersiniabactin. PMID:24454955

  3. Signature motifs identify an Acinetobacter Cif virulence factor with epoxide hydrolase activity.

    PubMed

    Bahl, Christopher D; Hvorecny, Kelli L; Bridges, Andrew A; Ballok, Alicia E; Bomberger, Jennifer M; Cady, Kyle C; O'Toole, George A; Madden, Dean R

    2014-03-14

    Endocytic recycling of the cystic fibrosis transmembrane conductance regulator (CFTR) is blocked by the CFTR inhibitory factor (Cif). Originally discovered in Pseudomonas aeruginosa, Cif is a secreted epoxide hydrolase that is transcriptionally regulated by CifR, an epoxide-sensitive repressor. In this report, we investigate a homologous protein found in strains of the emerging nosocomial pathogens Acinetobacter nosocomialis and Acinetobacter baumannii ("aCif"). Like Cif, aCif is an epoxide hydrolase that carries an N-terminal secretion signal and can be purified from culture supernatants. When applied directly to polarized airway epithelial cells, mature aCif triggers a reduction in CFTR abundance at the apical membrane. Biochemical and crystallographic studies reveal a dimeric assembly with a stereochemically conserved active site, confirming our motif-based identification of candidate Cif-like pathogenic EH sequences. Furthermore, cif expression is transcriptionally repressed by a CifR homolog ("aCifR") and is induced in the presence of epoxides. Overall, this Acinetobacter protein recapitulates the essential attributes of the Pseudomonas Cif system and thus may facilitate airway colonization in nosocomial lung infections. PMID:24474692

  4. Evaluation of Mannosidase and Trypsin Enzymes Effects on Biofilm Production of Pseudomonas aeruginosa Isolated from Burn Wound Infections

    PubMed Central

    Banar, Maryam; Emaneini, Mohammad; Satarzadeh, Mhboubeh; Abdellahi, Nafiseh; Beigverdi, Reza; van Leeuwen, Willem B.; Jabalameli, Fereshteh

    2016-01-01

    Biofilm is an important virulence factor in Pseudomonas aeruginosa and has a substantial role in antibiotic resistance and chronic burn wound infections. New therapeutic agents against P. aeruginosa, degrading biofilms in burn wounds and improving the efficacy of current antimicrobial agents, are required. In this study, the effects of α-mannosidase, β-mannosidase and trypsin enzymes on the degradation of P. aeruginosa biofilms and on the reduction of ceftazidime minimum biofilm eliminating concentrations (MBEC) were evaluated. All tested enzymes, destroyed the biofilms and reduced the ceftazidime MBECs. However, only trypsin had no cytotoxic effect on A-431 human epidermoid carcinoma cell lines. In conclusion, since trypsin had better features than mannosidase enzymes, it can be a promising agent in combatting P. aeruginosa burn wound infections. PMID:27736961

  5. A microfluidic-based genetic screen to identify microbial virulence factors that inhibit dendritic cell migration.

    PubMed

    McLaughlin, Laura M; Xu, Hui; Carden, Sarah E; Fisher, Samantha; Reyes, Monique; Heilshorn, Sarah C; Monack, Denise M

    2014-04-01

    Microbial pathogens are able to modulate host cells and evade the immune system by multiple mechanisms. For example, Salmonella injects effector proteins into host cells and evades the host immune system in part by inhibiting dendritic cell (DC) migration. The identification of microbial factors that modulate normal host functions should lead to the development of new classes of therapeutics that target these pathways. Current screening methods to identify either host or pathogen genes involved in modulating migration towards a chemical signal are limited because they do not employ stable, precisely controlled chemical gradients. Here, we develop a positive selection microfluidic-based genetic screen that allows us to identify Salmonella virulence factors that manipulate DC migration within stable, linear chemokine gradients. Our screen identified 7 Salmonella effectors (SseF, SifA, SspH2, SlrP, PipB2, SpiC and SseI) that inhibit DC chemotaxis toward CCL19. This method is widely applicable for identifying novel microbial factors that influence normal host cell chemotaxis as well as revealing new mammalian genes involved in directed cell migration.

  6. Structural Basis of the Novel S. pneumoniae Virulence Factor, GHIP, a Glycosyl Hydrolase 25 Participating in Host-Cell Invasion

    PubMed Central

    Niu, Siqiang; Luo, Miao; Tang, Jian; Zhou, Hua; Zhang, Yangli; Min, Xun; Cai, Xuefei; Zhang, Wenlu; Xu, Wenchu; Li, Defeng; Ding, Jingjin; Hu, Yonglin; Wang, Dacheng; Huang, Ailong

    2013-01-01

    Pathogenic bacteria produce a wide variety of virulence factors that are considered to be potential antibiotic targets. In this study, we report the crystal structure of a novel S. pneumoniae virulence factor, GHIP, which is a streptococcus-specific glycosyl hydrolase. This novel structure exhibits an α/β-barrel fold that slightly differs from other characterized hydrolases. The GHIP active site, located at the negatively charged groove in the barrel, is very similar to the active site in known peptidoglycan hydrolases. Functionally, GHIP exhibited weak enzymatic activity to hydrolyze the PNP-(GlcNAc)5 peptidoglycan by the general acid/base catalytic mechanism. Animal experiments demonstrated a marked attenuation of S. pneumoniae-mediated virulence in mice infected by ΔGHIP-deficient strains, suggesting that GHIP functions as a novel S. pneumoniae virulence factor. Furthermore, GHIP participates in allowing S. pneumoniae to colonize the nasopharynx and invade host epithelial cells. Taken together, these findings suggest that GHIP can potentially serve as an antibiotic target to effectively treat streptococcus-mediated infection. PMID:23874703

  7. Diversity of Virulence Factors Associated with West Australian Methicillin-Sensitive Staphylococcus aureus Isolates of Human Origin

    PubMed Central

    Waryah, Charlene Babra; Gogoi-Tiwari, Jully; Wells, Kelsi; Eto, Karina Yui; Masoumi, Elnaz; Costantino, Paul; Kotiw, Michael; Mukkur, Trilochan

    2016-01-01

    An extensive array of virulence factors associated with S. aureus has contributed significantly to its success as a major nosocomial pathogen in hospitals and community causing variety of infections in affected patients. Virulence factors include immune evading capsular polysaccharides, poly-N-acetyl glucosamine, and teichoic acid in addition to damaging toxins including hemolytic toxins, enterotoxins, cytotoxins, exfoliative toxin, and microbial surface components recognizing adhesive matrix molecules (MSCRAMM). In this investigation, 31 West Australian S. aureus isolates of human origin and 6 controls were analyzed for relative distribution of virulence-associated genes using PCR and/or an immunoassay kit and MSCRAMM by PCR-based typing. Genes encoding MSCRAMM, namely, Spa, ClfA, ClfB, SdrE, SdrD, IsdA, and IsdB, were detected in >90% of isolates. Gene encoding α-toxin was detected in >90% of isolates whereas genes encoding β-toxin and SEG were detectable in 50–60% of isolates. Genes encoding toxin proteins, namely, SEA, SEB, SEC, SED, SEE, SEH, SEI, SEJ, TSST, PVL, ETA, and ETB, were detectable in >50% of isolates. Use of RAPD-PCR for determining the virulence factor-based genetic relatedness among the isolates revealed five cluster groups confirming genetic diversity among the MSSA isolates, with the greatest majority of the clinical S. aureus (84%) isolates clustering in group IIIa. PMID:27247944

  8. [Investigation of the virulence factors of multidrug-resistant Acinetobacter baumannii isolates].

    PubMed

    Eraç, Bayrı; Yılmaz, Fethiye Ferda; Hoşgör Limoncu, Mine; Oztürk, Ismail; Aydemir, Söhret

    2014-01-01

    Acinetobacter baumannii is an opportunistic human pathogen which causes life-threatening nosocomial infections such as ventilator-associated pneumonia, bacteremia, meningitis, urinary tract and wound infections. Treatment options are very limited for infections caused by multi-drug resistant (MDR) A.baumannii strains. Until recently, the majority of studies related to A.baumannii have focused on antibiotic resistance, treatment protocols and epidemiological data, however, there have been few studies addressing the virulence factors of this organism. The features such as biofilm formation, serum resistance, motility, efflux pumps and iron acquisition mechanisms help the bacterium to survive in adverse environmental conditions and facilitate the development of an infection. The aim of the present study was to investigate the basic characteristics that contribute to the virulence of clinically important MDR A.baumannii isolates. Sixty-five ciprofloxacin-imipenem-trimethoprim/sulfamethoxazole-resistant A.baumannii strains isolated from various clinical specimens between December 2011 and March 2012 at Ege University Faculty of Medicine, Department of Medical Microbiology were included in the study. The clonal relationship of the isolates was analyzed by PCR using Enterobacterial repetitive intergenic consensus (ERIC)-2 primer. Biofilm formation, serum resistance, twitching and swarming motility, efflux pump and siderophore production were sought in representatives of each clone. Investigated MDR A.baumannii isolates were classified into seven main clusters, and the largest cluster included 86% of the strains. The virulence-associated features were investigated in 16 representative strains, including sub-groups. Twelve, three and one of the examined strains were determined to be strong, intermediate and weak biofilm producers, respectively. Siderophore production was not encountered in any of the isolates. Of the sixteen strains, two, one and thirteen isolates were

  9. Virulence factors in Escherichia coli strains isolated from Swedish piglets with diarrhea.

    PubMed Central

    Söderlind, O; Thafvelin, B; Möllby, R

    1988-01-01

    Parenteral vaccination of sows against Escherichia coli diarrhea in their newborn piglets has become more common during the last decade in Sweden, and the vaccination has generally had positive effects. For more than 20 years we have investigated E. coli strains isolated from piglets and weaned pigs with enteric disorders, noting the presence of O groups, enterotoxins, and adhesins. There has been a continuous change in the frequency of these virulence factors. The present study was performed during 1983 and 1984 to follow this change, since such information is essential for the proper choice of vaccines. A total of 856 E. coli strains were obtained from 683 herds divided into three age groups: 1 to 6 days old, 1 to 6 weeks old, and weaned pigs. O group 149 still dominated in the last two age groups, while O group 101 was, for the first time, the most frequent O group in neonatal piglets. All but four O149 strains carried the K88 antigen, which was found in only one other strain (O group 8). K99 antigen was most often found in O groups 101 and 64, and among all the K99 strains ST mouse was the most common (44 of 57), followed by ST mouse-ST pig strains (12 of 57). The 987P antigen was demonstrated in 26 strains belonging to O groups 141 and OX46 and nontypable strains. Two strains belonging to O group 101 were positive for F41 antigen; one of them also carried the K99 antigen. Among all non-O149 strains, ST mouse was the most common type of enterotoxigenic E. coli ( n = 88), followed in decreasing order by ST mouse-ST pig strains ( n = 69) and ST pig strains ( n = 33). In 114 strains producing enterotoxins no adhesive factor was found. Thus, vaccination of the Swedish sow population for more than 5 years with vaccines containing O149 and K88 antigens has apparently changed the pattern of enterotoxigenic E. coli in neonatal diarrhea. The frequency of O149:K88 strains has been reduced, and O101:K99:ST mouse strains now dominate. However, O149 strains remain the

  10. Real-Time Characterization of Virulence Factor Expression in Yersinia pestis Using a Green Fluorescent Protein Reporter System

    SciTech Connect

    Forde, C; Rocco, J; Fitch, J P; McCutchen-Maloney, S

    2004-06-09

    A real-time reporter system was developed to monitor the thermal induction of virulence factors in Yersinia pestis. The reporter system consists of a plasmid in Y. pestis in which the expression of green fluorescent protein (GFP) is under the control of the promoters for six virulence factors, yopE, sycE, yopK, yopT, yscN, and lcrE/yopN, which are all components of the Type III secretion virulence mechanism of Y. pestis. Induction of the expression of these genes in vivo was determined by the increase in fluorescence intensity of GFP in real time. Basal expression levels observed for the Y. pestis promoters, expressed as percentages of the positive control with GFP under the control of the lac promoter, were: yopE (15%), sycE (15%), yopK (13%), yopT (4%), lcrE (3.3%) and yscN (0.8%). The yopE reporter showed the strongest gene induction following temperature transition from 26 C to 37 C. The induction levels of the other virulence factors, expressed as percentages of yopE induction, were: yopK (57%), sycE (9%), yscN (3%), lcrE (3%), and yopT (2%). The thermal induction of each of these promoter fusions was repressed by calcium, and the ratios of the initial rates of thermal induction without calcium supplementation compared to the rate with calcium supplementation were: yopE (11 fold), yscN (7 fold), yopK (6 fold), lcrE (3 fold), yopT (2 fold), and sycE (2 fold). This work demonstrates a novel approach to quantify gene induction and provides a method to rapidly determine the effects of external stimuli on expression of Y. pestis virulence factors in real time, in living cells.

  11. Tasco®: A Product of Ascophyllum nodosum Enhances Immune Response of Caenorhabditis elegans Against Pseudomonas aeruginosa Infection

    PubMed Central

    Kandasamy, Saveetha; Khan, Wajahatullah; Evans, Franklin; Critchley, Alan T.; Prithiviraj, Balakrishnan

    2012-01-01

    The effects of Tasco®, a product made from the brown seaweed (Ascophyllum nodosum) were tested for the ability to protect Caenorhabditis elegans against Pseudomonas aeruginosa infection. A water extract of Tasco® (TWE) reduced P. aeruginosa inflicted mortality in the nematode. The TWE, at a concentration of 300 µg/mL, offered the maximum protection and induced the expression of innate immune response genes viz.; zk6.7 (Lypases), lys-1 (Lysozyme), spp-1 (Saponin like protein), f28d1.3 (Thaumatin like protein), t20g5.7 (Matridin SK domain protein), abf-1 (Antibacterial protein) and f38a1.5 (Lectin family protein). Further, TWE treatment also affected a number of virulence components of the P. aeuroginosa and reduced its secreted virulence factors such as lipase, proteases and toxic metabolites; hydrogen cyanide and pyocyanin. Decreased virulence factors were associated with a significant reduction in expression of regulatory genes involved in quorum sensing, lasI, lasR, rhlI and rhlR. In conclusion, the TWE-treatment protected the C. elegans against P. aeruginosa infection by a combination of effects on the innate immunity of the worms and direct effects on the bacterial quorum sensing and virulence factors. PMID:22363222

  12. Tasco®: a product of Ascophyllum nodosum enhances immune response of Caenorhabditis elegans against Pseudomonas aeruginosa infection.

    PubMed

    Kandasamy, Saveetha; Khan, Wajahatullah; Evans, Franklin; Critchley, Alan T; Prithiviraj, Balakrishnan

    2012-01-01

    The effects of Tasco®, a product made from the brown seaweed (Ascophyllum nodosum) were tested for the ability to protect Caenorhabditis elegans against Pseudomonas aeruginosa infection. A water extract of Tasco® (TWE) reduced P. aeruginosa inflicted mortality in the nematode. The TWE, at a concentration of 300 µg/mL, offered the maximum protection and induced the expression of innate immune response genes viz.; zk6.7 (Lypases), lys-1 (Lysozyme), spp-1 (Saponin like protein), f28d1.3 (Thaumatin like protein), t20g5.7 (Matridin SK domain protein), abf-1 (Antibacterial protein) and f38a1.5 (Lectin family protein). Further, TWE treatment also affected a number of virulence components of the P. aeuroginosa and reduced its secreted virulence factors such as lipase, proteases and toxic metabolites; hydrogen cyanide and pyocyanin. Decreased virulence factors were associated with a significant reduction in expression of regulatory genes involved in quorum sensing, lasI, lasR, rhlI and rhlR. In conclusion, the TWE-treatment protected the C. elegans against P. aeruginosa infection by a combination of effects on the innate immunity of the worms and direct effects on the bacterial quorum sensing and virulence factors. PMID:22363222

  13. Distinct Pathogenesis and Host Responses during Infection of C. elegans by P. aeruginosa and S. aureus

    PubMed Central

    Irazoqui, Javier E.; Troemel, Emily R.; Feinbaum, Rhonda L.; Luhachack, Lyly G.; Cezairliyan, Brent O.; Ausubel, Frederick M.

    2010-01-01

    The genetically tractable model host Caenorhabditis elegans provides a valuable tool to dissect host-microbe interactions in vivo. Pseudomonas aeruginosa and Staphylococcus aureus utilize virulence factors involved in human disease to infect and kill C. elegans. Despite much progress, virtually nothing is known regarding the cytopathology of infection and the proximate causes of nematode death. Using light and electron microscopy, we found that P. aeruginosa infection entails intestinal distention, accumulation of an unidentified extracellular matrix and P. aeruginosa-synthesized outer membrane vesicles in the gut lumen and on the apical surface of intestinal cells, the appearance of abnormal autophagosomes inside intestinal cells, and P. aeruginosa intracellular invasion of C. elegans. Importantly, heat-killed P. aeruginosa fails to elicit a significant host response, suggesting that the C. elegans response to P. aeruginosa is activated either by heat-labile signals or pathogen-induced damage. In contrast, S. aureus infection causes enterocyte effacement, intestinal epithelium destruction, and complete degradation of internal organs. S. aureus activates a strong transcriptional response in C. elegans intestinal epithelial cells, which aids host survival during infection and shares elements with human innate responses. The C. elegans genes induced in response to S. aureus are mostly distinct from those induced by P. aeruginosa. In contrast to P. aeruginosa, heat-killed S. aureus activates a similar response as live S. aureus, which appears to be independent of the single C. elegans Toll-Like Receptor (TLR) protein. These data suggest that the host response to S. aureus is possibly mediated by pathogen-associated molecular patterns (PAMPs). Because our data suggest that neither the P. aeruginosa nor the S. aureus–triggered response requires canonical TLR signaling, they imply the existence of unidentified mechanisms for pathogen detection in C. elegans, with

  14. A response regulator promotes Francisella tularensis intramacrophage growth by repressing an anti-virulence factor.

    PubMed

    Ramsey, Kathryn M; Dove, Simon L

    2016-08-01

    The orphan response regulator PmrA is essential for the intramacrophage growth and survival of Francisella tularensis. PmrA was thought to promote intramacrophage growth by binding directly to promoters on the Francisella Pathogenicity Island (FPI) and positively regulating the expression of FPI genes, which encode a Type VI secretion system required for intramacrophage growth. Using both ChIP-Seq and RNA-Seq we identify those regions of the F. tularensis chromosome occupied by PmrA and those genes that are regulated by PmrA. We find that PmrA associates with 252 distinct regions of the F. tularensis chromosome, but exerts regulatory effects at only a few of these locations. Rather than by functioning directly as an activator of FPI gene expression we present evidence that PmrA promotes intramacrophage growth by repressing the expression of a single target gene we refer to as priM (PmrA-repressed inhibitor of intramacrophage growth). Our findings thus indicate that the role of PmrA in facilitating intracellular growth is to repress a previously unknown anti-virulence factor. PriM is the first bacterially encoded factor to be described that can interfere with the intramacrophage growth and survival of F. tularensis. PMID:27169554

  15. [The role of persistence and virulence factors in microecological changes in a humans].

    PubMed

    Usviatsov, B Ia; Khusnutdinova, L M; Parshuta, L I; Khanina, E A; Dolgov, V A; Porshina, O V

    2006-01-01

    The patterns of persistence and virulence factors expression in the representatives of human microbial biocenosis depends on a complex of the environmental conditions: influence of microbes-symbionts, biotope peculiarities, properties of microorganisms located within eukaryotes. Interactions of symbionts in pairs "indigen-indigen" isolated from mucous membrane of tonsils in healthy persons, did not lead to changes in expression of pathogenic properties. Interinfluence in pairs "pathogen-indigen" and "indigen-indigen", isolated from patients with chronic tonsilitis were accompanied by an increase of anti-lysozyme, hemolytic and lecithovitellase activities. Migration of strains of non-enzymatized gram-negative bacteria (NEYNB) from nasal into tympanic cavity in experimental acute purulent otitis is connected with an earlier increase of their number in the nasal cavity and the expression of anti-lysozyme activity. In acute and chronic pyoderma, expression of ALA is more marked in bacteria from a perifocal damage in contrast to focal damage of normal skin. In conditions of interaction between erythrocytes and staphylococcal clones with different levels of expression of pathogenic factors, differences were observed in dynamics of hemolytic and anti-hemoglobin activities. PMID:16941873

  16. Helicobacter pylori virulence factor CagA promotes tumorigenesis of gastric cancer via multiple signaling pathways.

    PubMed

    Yong, Xin; Tang, Bo; Li, Bo-Sheng; Xie, Rui; Hu, Chang-Jiang; Luo, Gang; Qin, Yong; Dong, Hui; Yang, Shi-Ming

    2015-01-01

    Helicobacter pylori (H. pylori) infection is strongly associated with the development of gastric diseases but also with several extragastric diseases. The clinical outcomes caused by H. pylori infection are considered to be associated with a complex combination of host susceptibility, environmental factors and bacterial isolates. Infections involving H. pylori strains that possess the virulence factor CagA have a worse clinical outcome than those involving CagA-negative strains. It is remarkable that CagA-positive H. pylori increase the risk for gastric cancer over the risk associated with H. pylori infection alone. CagA behaves as a bacterial oncoprotein playing a key role in H. pylori-induced gastric cancer. Activation of oncogenic signaling pathways and inactivation of tumor suppressor pathways are two crucial events in the development of gastric cancer. CagA shows the ability to affect the expression or function of vital protein in oncogenic or tumor suppressor signaling pathways via several molecular mechanisms, such as direct binding or interaction, phosphorylation of vital signaling proteins and methylation of tumor suppressor genes. As a result, CagA continuously dysregulates of these signaling pathways and promotes tumorigenesis. Recent research has enriched our understanding of how CagA effects on these signaling pathways. This review summarizes the results of the most relevant studies, discusses the complex molecular mechanism involved and attempts to delineate the entire signaling pathway.

  17. Distribution of uropathogenic virulence factors among Escherichia coli strains isolated from dogs and cats.

    PubMed

    Yuri, K; Nakata, K; Katae, H; Yamamoto, S; Hasegawa, A

    1998-03-01

    A variety of virulence factors (VFs) such as type 1 fimbriae, pilus associated with pyelonephritis, S fimbriae, afimbrial adhesin, alpha-hemolysin, aerobactin and cytotoxic necrotizing factor 1 are associated with uropathogenic Escherichia coli. In this study, 80 uropathogenic E. coli strains in 50 dogs and 30 cats suffering from UTI. In addition, 60 E. coli strains were isolated from fecal samples from 30 each of healthy dogs and cats. The distribution of VFs of uropathogenic E. coli strains isolated from dogs and cats suffering from urinary tract infections (UTI) were examined by the colony hybridization test with seven DNA probes specific for VFs, and the results were compared with those obtained in the studies on strains from humans with UTI. In uropathogenic E. coli strains isolated from dogs and cats suffering from UTI, VFs were detected as frequently as in the strains isolated from humans with UTI. Although less frequently, genes encoding these VFs especially pap, sfa, hly, and cnf 1 genes were also associated with E. coli strains isolated from feces of healthy cats, in contrast to the distribution pattern of uropathogenic E. coli observed in humans. Furthermore, all VFs except pil were significantly more frequently detected in strains isolated from urine of animals with cystitis than in those isolated from feces of healthy humans. These results indicate that VFs of E. coli contribute to the pathogenesis of UTI in dogs and cats.

  18. Antibiofilm and Anti-Infection of a Marine Bacterial Exopolysaccharide Against Pseudomonas aeruginosa.

    PubMed

    Wu, Shimei; Liu, Ge; Jin, Weihua; Xiu, Pengyuan; Sun, Chaomin

    2016-01-01

    Pseudomonas aeruginosa is a well-known pathogenic bacterium that forms biofilms and produces virulence factors, thus leading to major problems in many fields, such as clinical infection, food contamination, and marine biofouling. In this study, we report the purification and characterization of an exopolysaccharide EPS273 from the culture supernatant of marine bacterium P. stutzeri 273. The exopolysaccharide EPS273 not only effectively inhibits biofilm formation but also disperses preformed biofilm of P. aeruginosa PAO1. High performance liquid chromatography traces of the hydrolyzed polysaccharides shows that EPS273 primarily consists of glucosamine, rhamnose, glucose and mannose. Further investigation demonstrates that EPS273 reduces the production of the virulence factors pyocyanin, exoprotease, and rhamnolipid, and the virulence of P. aeruginosa PAO1 to human lung cells A549 and zebrafish embryos is also obviously attenuated by EPS273. In addition, EPS273 also greatly reduces the production of hydrogen peroxide (H2O2) and extracellular DNA (eDNA), which are important factors for biofilm formation. Furthermore, EPS273 exhibits strong antioxidant potential by quenching hydroxyl and superoxide anion radicals. Notably, the antibiofouling activity of EPS273 is observed in the marine environment up to 2 weeks according to the amounts of bacteria and diatoms in the glass slides submerged in the ocean. Taken together, the properties of EPS273 indicate that it has a promising prospect in combating bacterial biofilm-associated infection, food-processing contamination and marine biofouling. PMID:26903981

  19. Antibiofilm and Anti-Infection of a Marine Bacterial Exopolysaccharide Against Pseudomonas aeruginosa

    PubMed Central

    Wu, Shimei; Liu, Ge; Jin, Weihua; Xiu, Pengyuan; Sun, Chaomin

    2016-01-01

    Pseudomonas aeruginosa is a well-known pathogenic bacterium that forms biofilms and produces virulence factors, thus leading to major problems in many fields, such as clinical infection, food contamination, and marine biofouling. In this study, we report the purification and characterization of an exopolysaccharide EPS273 from the culture supernatant of marine bacterium P. stutzeri 273. The exopolysaccharide EPS273 not only effectively inhibits biofilm formation but also disperses preformed biofilm of P. aeruginosa PAO1. High performance liquid chromatography traces of the hydrolyzed polysaccharides shows that EPS273 primarily consists of glucosamine, rhamnose, glucose and mannose. Further investigation demonstrates that EPS273 reduces the production of the virulence factors pyocyanin, exoprotease, and rhamnolipid, and the virulence of P. aeruginosa PAO1 to human lung cells A549 and zebrafish embryos is also obviously attenuated by EPS273. In addition, EPS273 also greatly reduces the production of hydrogen peroxide (H2O2) and extracellular DNA (eDNA), which are important factors for biofilm formation. Furthermore, EPS273 exhibits strong antioxidant potential by quenching hydroxyl and superoxide anion radicals. Notably, the antibiofouling activity of EPS273 is observed in the marine environment up to 2 weeks according to the amounts of bacteria and diatoms in the glass slides submerged in the ocean. Taken together, the properties of EPS273 indicate that it has a promising prospect in combating bacterial biofilm-associated infection, food-processing contamination and marine biofouling. PMID:26903981

  20. Elastase and alkaline protease production by Pseudomonas aeruginosa strains: comparison of two procedures.

    PubMed

    Yagci, A; Tuc, Y; Soyletir, G

    2002-04-01

    Pseudomonas aeruginosa is an opportunistic pathogen that can cause fatal infections in immunocompromised hosts. The virulence of P. aeruginosa is associated with the presence of various extracellular factors like elastase and alkaline protease. These enzymes are suggested to contribute to tissue destruction and assist bacterial invasion during infection. Therefore it seems likely that determination of these virulence factors will be an important prognostic marker in the near future especially for follow up of cystic fibrosis patients, to start antimicrobial agents that are directly or indirectly inhibit microbial growth or virulence factor production. Herein, we suggest a simple test procedure to be used in routine laboratories for estimation of elastase and alkaline protease levels and compare them with quantitative methods in the literature. We detected the amount of elastase and alkaline protease in 49 clinical P. aeruginosa isolates by comparing agar plate method and colorimetric assay. The resulting values were in the range reported in the literature and differed from one strain to another(elastase: 0-1390 mg/ml, alkaline protease: 0- 770 mg/ml). Linear relationships were found when assays compared in pairs and significant correlation coefficients were obtained(r>0.788 for alkaline protease, p<0.0001- r>0.926 for elastase, p<0.0001). Our method can be applied in laboratories regardless of the availability of technical equipment.

  1. FipB, an Essential Virulence Factor of Francisella tularensis subsp. tularensis, Has Dual Roles in Disulfide Bond Formation

    PubMed Central

    Qin, Aiping; Zhang, Yan; Clark, Melinda E.; Rabideau, Meaghan M.; Millan Barea, Luis R.

    2014-01-01

    FipB, an essential virulence factor of Francisella tularensis, is a lipoprotein with two conserved domains that have similarity to disulfide bond formation A (DsbA) proteins and the amino-terminal dimerization domain of macrophage infectivity potentiator (Mip) proteins, which are proteins with peptidyl-prolyl cis/trans isomerase activity. This combination of conserved domains is unusual, so we further characterized the enzymatic activity and the importance of the Mip domain and lipid modification in virulence. Unlike typical DsbA proteins, which are oxidases, FipB exhibited both oxidase and isomerase activities. FipA, which also shares similarity with Mip proteins, potentiated the isomerase activity of FipB in an in vitro assay and within the bacteria, as measured by increased copper sensitivity. To determine the importance of the Mip domain and lipid modification of FipB, mutants producing FipB proteins that lacked either the Mip domain or the critical cysteine necessary for lipid modification were constructed. Both strains replicated within host cells and retained virulence in mice, though there was some attenuation. FipB formed surface-exposed dimers that were sensitive to dithiothreitol (DTT), dependent on the Mip domain and on at least one cysteine in the active site of the DsbA-like domain. However, these dimers were not essential for virulence, because the Mip deletion mutant, which failed to form dimers, was still able to replicate intracellularly and retained virulence in mice. Thus, the Mip domains of FipB and FipA impart additional isomerase functionality to FipB, but only the DsbA-like domain and oxidase activity are essential for its critical virulence functions. PMID:25092026

  2. Functional and structural properties of a novel protein and virulence factor (Protein sHIP) in Streptococcus pyogenes.

    PubMed

    Wisniewska, Magdalena; Happonen, Lotta; Kahn, Fredrik; Varjosalo, Markku; Malmström, Lars; Rosenberger, George; Karlsson, Christofer; Cazzamali, Giuseppe; Pozdnyakova, Irina; Frick, Inga-Maria; Björck, Lars; Streicher, Werner; Malmström, Johan; Wikström, Mats

    2014-06-27

    Streptococcus pyogenes is a significant bacterial pathogen in the human population. The importance of virulence factors for the survival and colonization of S. pyogenes is well established, and many of these factors are exposed to the extracellular environment, enabling bacterial interactions with the host. In the present study, we quantitatively analyzed and compared S. pyogenes proteins in the growth medium of a strain that is virulent to mice with a non-virulent strain. Particularly, one of these proteins was present at significantly higher levels in stationary growth medium from the virulent strain. We determined the three-dimensional structure of the protein that showed a unique tetrameric organization composed of four helix-loop-helix motifs. Affinity pull-down mass spectrometry analysis in human plasma demonstrated that the protein interacts with histidine-rich glycoprotein (HRG), and the name sHIP (streptococcal histidine-rich glycoprotein-interacting protein) is therefore proposed. HRG has antibacterial activity, and when challenged by HRG, sHIP was found to rescue S. pyogenes bacteria. This and the finding that patients with invasive S. pyogenes infection respond with antibody production against sHIP suggest a role for the protein in S. pyogenes pathogenesis.

  3. Functional and Structural Properties of a Novel Protein and Virulence Factor (Protein sHIP) in Streptococcus pyogenes *

    PubMed Central

    Wisniewska, Magdalena; Happonen, Lotta; Kahn, Fredrik; Varjosalo, Markku; Malmström, Lars; Rosenberger, George; Karlsson, Christofer; Cazzamali, Giuseppe; Pozdnyakova, Irina; Frick, Inga-Maria; Björck, Lars; Streicher, Werner; Malmström, Johan; Wikström, Mats

    2014-01-01

    Streptococcus pyogenes is a significant bacterial pathogen in the human population. The importance of virulence factors for the survival and colonization of S. pyogenes is well established, and many of these factors are exposed to the extracellular environment, enabling bacterial interactions with the host. In the present study, we quantitatively analyzed and compared S. pyogenes proteins in the growth medium of a strain that is virulent to mice with a non-virulent strain. Particularly, one of these proteins was present at significantly higher levels in stationary growth medium from the virulent strain. We determined the three-dimensional structure of the protein that showed a unique tetrameric organization composed of four helix-loop-helix motifs. Affinity pull-down mass spectrometry analysis in human plasma demonstrated that the protein interacts with histidine-rich glycoprotein (HRG), and the name sHIP (streptococcal histidine-rich glycoprotein-interacting protein) is therefore proposed. HRG has antibacterial activity, and when challenged by HRG, sHIP was found to rescue S. pyogenes bacteria. This and the finding that patients with invasive S. pyogenes infection respond with antibody production against sHIP suggest a role for the protein in S. pyogenes pathogenesis. PMID:24825900

  4. Identification, antimicrobial susceptibility, and virulence factors of Enterococcus spp. strains isolated from Camels in Canary Islands, Spain.

    PubMed

    Tejedor Junco, María Teresa; Gonzalez-Martin, Margarita; Rodriguez Gonzalez, Noe Francisco; Gutierrez, Carlos

    2015-01-01

    This study investigated the presence of Enterococcus spp. strains in camel faeces, their virulence factors, and resistance to the antibiotics commonly used as therapy of enterococcal infections. One hundred and seventy three Enterococcus strains were isolated and identified to species level using polymerase chain reaction (PCR). Susceptibility to 11 antimicrobials was determined by disk diffusion method. Minimal Inhibitory Concentrations (MIC) of penicillin, ampicillin, vancomycin, teicoplanin, gentamicin, and streptomycin were all determined. Genes encoding resistance to vancomycin, tetracycline, and erythromycin as well as genes encoding some virulence factors were identified by PCR. Enterococcus hirae (54.3%) and Enterococcus faecium (25.4%) were the species most frequently isolated. None of the strains were resistant to vancomycin, teicoplanin, ampicillin or showed high level aminoglycoside resistance (HLAR). Strains resistant to rifampicin (42.42%) were those most commonly found followed those resistant to trimethoprim - sulfamethoxazole (33.33%). The genes tetM, tetL, vanC1, and vanC2-C3 were detected in some strains. Virulence genes were not detected. Monitoring the presence of resistant strains of faecal enterococci in animal used with recreational purposes is important to prevent transmission of those strains to humans and to detect resistance or virulence genes that could be transferred to other clinically important bacteria.

  5. Mass Spectrometry Analysis of Pseudomonas aeruginosa