Bulet, P; Cociancich, S; Reuland, M; Sauber, F; Bischoff, R; Hegy, G; Van Dorsselaer, A; Hetru, C; Hoffmann, J A
1992-11-01
The injection of low doses of bacteria into the aquatic larvae of dragonflies (Aeschna cyanea, Odonata, Paleoptera) induces the appearance in their hemolymph of a potent antibacterial activity. We have isolated a 38-residue peptide from this hemolymph which is strongly active against Gram-positive bacteria and also shows activity against one of the Gram-negative bacteria which was tested. The peptide is a novel member of the insect defensin family of inducible antibacterial peptides, which had so far only been reported from the higher insect orders believed to have evolved 100 million years after the Paleoptera. Aeschna defensin is more potent than defensin from the dipteran Phormia, from which its structure differs in several interesting aspects, which are discussed in the paper.
Tsuda, Mai; Ohsawa, Ryo; Tabei, Yutaka
2014-01-01
The impact of genetically modified canola (Brassica napus) on biodiversity has been examined since its initial stage of commercialization. Various research groups have extensively investigated crossability and introgression among species of Brassicaceae. B. rapa and B. juncea are ranked first and second as the recipients of cross-pollination and introgression from B. napus, respectively. Crossability between B. napus and B. rapa has been examined, specifically in terms of introgression from B. napus to B. rapa, which is mainly considered a weed in America and European countries. On the other hand, knowledge on introgression from B. napus to B. juncea is insufficient, although B. juncea is recognized as the main Brassicaceae weed species in Asia. It is therefore essential to gather information regarding the direct introgression of B. napus into B. juncea and indirect introgression of B. napus into other species of Brassicaceae through B. juncea to evaluate the influence of genetically modified canola on biodiversity. We review information on crossability and introgression between B. juncea and other related Brassicaseae in this report. PMID:24987292
Mazumder, Mrinmoy; Das, Srirupa; Saha, Upala; Chatterjee, Madhuvanti; Bannerjee, Kaushik; Basu, Debabrata
2013-09-01
This work addresses the changes in the phytohormonal signature in the recognition of the necrotrophic fungal pathogen Alternaria brassicicola by susceptible Brassica juncea and resistant Sinapis alba. Although B. juncea, S. alba and Arabidopsis all belong to the same family, Brassicaceae, the phytohormonal response of susceptible B. juncea towards this pathogen is unique because the latter two species express non-host resistance. The differential expression of the PR1 gene and the increased level of salicylic acid (SA) indicated that an SA-mediated biotrophic mode of defence response was triggered in B. juncea upon challenge with the pathogen. Compared to B. juncea, resistant S. alba initiated enhanced abscisic acid (ABA) and jasmonic acid (JA) responses following challenge with this pathogen, as revealed by monitoring the expression of ABA-related genes along with the concentration of ABA and JA. Furthermore, these results were verified by the exogenous application of ABA on B. juncea leaves prior to challenge with A. brassicicola, which resulted in a delayed disease progression, followed by the inhibition of the pathogen-mediated increase in SA response and enhanced JA levels. Therefore, it seems that A. brassicicola is steering the defence response towards a biotrophic mode by mounting an SA response in susceptible B. juncea, whereas the enhanced ABA response of S. alba not only counteracts the SA response but also restores the necrotrophic mode of resistance by enhancing JA biosynthesis. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Effect of Crotalaria juncea Amendment on Squash Infected with Meloidogyne incognita.
Wang, K-H; McSorley, R; Gallaher, R N
2004-09-01
Two greenhouse experiments were conducted to examine the effect of Crotalaria juncea amendment on Meloidogyne incognita population levels and growth of yellow squash (Cucurbita pepo). In the first experiment, four soils with a long history of receiving yard waste compost (YWC+), no-yard-waste compost (YWC-), conventional tillage, or no-tillage treatments were used; in the second experiment, only one recently cultivated soil was used. Half of the amount of each soil received air-dried residues of C. juncea as amendment before planting squash, whereas the other half did not. Crotalaria juncea amendment increased squash shoot and root weights in all soils tested, except in YWC+ soil where the organic matter content was high without the amendment. The amendment suppressed the numbers of M. incognita if the inoculum level was low, and when the soil contained relatively abundant nematode-antagonistic fungi. Microwaved soil resulted in greater numbers of M. incognita and free-living nematodes than frozen or untreated soil, indicating nematode-antagonistic microorganisms played a role in nematode suppression. The effects of C. juncea amendment on nutrient cycling were complex. Amendment with C. juncea increased the abundance of free-living nematodes and Harposporium anguillulae, a fungus antagonistic to them in the second experiment but not in the first experiment. Soil histories, especially long-term yard waste compost treatments that increased soil organic matter, can affect the performance of C. juncea amendment.
Zaier, Hanen; Ghnaya, Tahar; Lakhdar, Abelbasset; Baioui, Rawdha; Ghabriche, Rim; Mnasri, Majda; Sghair, Souhir; Lutts, Stanley; Abdelly, Chedly
2010-11-15
Lead phytoextraction from salty soils is a difficult task because this process needs the use of plants which are able to tolerate salt and accumulate Pb(2+) within in their shoots. It has recently been suggested that salt-tolerant plants are more suitable for heavy metals extraction than salt-sensitive ones commonly used in this approach. The aim of this study was to investigate Pb-phytoextraction potential of the halophyte Sesuvium portulacastrum in comparison with Brassica juncea commonly used in Pb-phytoextraction. Seedlings of both species were exposed in nutrient solution to 0, 200, 400, 800 and 1000 μM Pb(2+) for 21 days. Lead strongly inhibited growth in B. juncea but had no impact on S. portulacastrum. Exogenous Pb(2+) reduced nutrients uptake mainly in B. juncea as compared to S. portulacastrum. Lead was preferentially accumulated in roots in both species. S. portulacastrum accumulated more Pb(2+) in the shoot than B. juncea. Hence, the amounts of Pb(2+) translocated at 1000 μM Pb(2+) were 3400 μg g(-1) DW and 2200 μg g(-1) DW in S. portulacastrum and B. juncea, respectively. These results suggest that S. portulacastrum is more efficient to extract Pb(2+) than B. juncea. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.
Effect of Crotalaria juncea Amendment on Squash Infected with Meloidogyne incognita
Wang, K.-H.; McSorley, R.; Gallaher, R. N.
2004-01-01
Two greenhouse experiments were conducted to examine the effect of Crotalaria juncea amendment on Meloidogyne incognita population levels and growth of yellow squash (Cucurbita pepo). In the first experiment, four soils with a long history of receiving yard waste compost (YWC+), no-yard-waste compost (YWC-), conventional tillage, or no-tillage treatments were used; in the second experiment, only one recently cultivated soil was used. Half of the amount of each soil received air-dried residues of C. juncea as amendment before planting squash, whereas the other half did not. Crotalaria juncea amendment increased squash shoot and root weights in all soils tested, except in YWC+ soil where the organic matter content was high without the amendment. The amendment suppressed the numbers of M. incognita if the inoculum level was low, and when the soil contained relatively abundant nematode-antagonistic fungi. Microwaved soil resulted in greater numbers of M. incognita and free-living nematodes than frozen or untreated soil, indicating nematode-antagonistic microorganisms played a role in nematode suppression. The effects of C. juncea amendment on nutrient cycling were complex. Amendment with C. juncea increased the abundance of free-living nematodes and Harposporium anguillulae, a fungus antagonistic to them in the second experiment but not in the first experiment. Soil histories, especially long-term yard waste compost treatments that increased soil organic matter, can affect the performance of C. juncea amendment. PMID:19262819
Ngala, Bruno M; Haydock, Patrick P J; Woods, Simon; Back, Matthew A
2015-05-01
The viability of potato cyst nematode (PCN) populations (Globodera pallida) was evaluated in three field experiments using Brassica juncea, Raphanus sativus and Eruca sativa amendments. These species were summer cultivated and autumn incorporated in experiment 1; in experiment 2, overwintered brassicaceous cover crops were spring incorporated. Experiment 3 involved determination of effects of metconazole application on biomass/glucosinolate production by B. juncea and R. sativus and on PCN pre- and post-incorporation. Glucosinolate contents were determined before incorporation. Following cover crop incorporation, field plots were planted with susceptible potatoes to evaluate the biofumigation effects on PCN reproduction. In experiment 1, PCN population post-potato harvest was reduced (P = 0.03) in B. juncea-treated plots, while R. sativus prevented further multiplication, but in experiment 2 there were no significant effects on PCN reproduction. In experiment 3, B. juncea or R. sativus either untreated or treated with metconazole reduced PCN populations. Glucosinolate concentrations varied significantly between different plant regions and cultivation seasons. Metconazole application increased the sinigrin concentration in B. juncea tissues. Glucosinolate concentrations correlated positively with PCN mortality for summer-cultivated brassicaceous plants. The results demonstrated that B. juncea and R. sativus green manures can play an important role in PCN management, particularly if included in an integrated pest management scheme. © 2014 Society of Chemical Industry.
USDA-ARS?s Scientific Manuscript database
The effects and susceptibility of donkeys to Crotalaria juncea and Crotalaria retusa poisoning were determined at high and low doses. Seeds of C. juncea conaining 0.074% of dehyrdropyrrolizidine alkaloids (DHPAs) were administered to three donkeys at 0.3, 0.6 and 1 g/kg body weight daily for 365 day...
DNA fingerprinting of Brassica juncea cultivars using microsatellite probes.
Bhatia, S; Das, S; Jain, A; Lakshmikumaran, M
1995-09-01
The genetic variability in the Brassica juncea cultivars was detected by employing in-gel hybridization of restricted DNA to simple repetitive sequences such as (GATA)4, (GACA)4 and (CAC)5. The most informative probe/enzyme combination was (GATA)4/EcoRI, yielding highly polymorphic fingerprint patterns for the B. juncea cultivars. This technique was found to be dependable for establishing the variety specific patterns for most of the cultivars studied, a prerequisite for germplasm preservation. The results of the present study were compared with those reported in our earlier study in which random amplification of polymorphic DNA (RAPD) was used for assessing the genetic variability in the B. juncea cultivars.
Occurrence of metaxenia and false hybrids in Brassica juncea L. cv. Kikarashina × B. napus
Tsuda, Mai; Konagaya, Ken-ichi; Okuzaki, Ayako; Kaneko, Yukio; Tabei, Yutaka
2011-01-01
Imported genetically modified (GM) canola (Brassica napus) is approved by Japanese law. Some GM canola varieties have been found around importation sites, and there is public concern that these may have any harmful effects on related species such as reduction of wild relatives. Because B. juncea is distributed throughout Japan and is known to be high crossability with B. napus, it is assumed to be a recipient of B. napus. However, there are few reports for introgression of cross-combination in B. juncea × B. napus. To assess crossability, we artificially pollinated B. juncea with B. napus. After harvesting a large number of progeny seeds, we observed false hybrids and metaxenia of seed coats. Seed coat color was classified into four categories and false hybrids were confirmed by morphological characteristics and random amplified polymorphic DNA (RAPD) markers. Furthermore, the occurrence of false hybrids was affected by varietal differences in B. napus, whereas that of metaxenia was related to hybridity. Therefore, we suggest that metaxenia can be used as a marker for hybrid identification in B. juncea L. cv. Kikarashina × B. napus. Our results suggest that hybrid productivity in B. juncea × B. napus should not be evaluated by only seed productivity, crossability ought to be assessed the detection of true hybrids. PMID:23136472
Kumar, Pawan; Augustine, Rehna; Singh, Amarjeet Kumar; Bisht, Naveen C
2017-10-01
Differential accumulation of plant defence metabolites has been suggested to have important ecological consequence in the context of plant-insect interactions. Feeding of generalist pests on Brassica juncea showed a distinct pattern with selective exclusion of leaf margins which are high in glucosinolates. Molecular basis of this differential accumulation of glucosinolates could be explained based on differential expression profile of BjuMYB28 homologues, the major biosynthetic regulators of aliphatic glucosinolates, as evident from quantitative real-time PCR and promoter:GUS fusion studies in allotetraploid B. juncea. Constitutive overexpression of selected BjuMYB28 homologues enhanced accumulation of aliphatic glucosinolates in B. juncea. Performance of two generalist pests, Helicoverpa armigera and Spodoptera litura larvae, on transgenic B. juncea plants were poor compared to wild-type plants in a no-choice experiment. Correlation coefficient analysis suggested that weight gain of H. armigera larvae was negatively correlated with gluconapin (GNA) and glucobrassicanapin (GBN), whereas that of S. litura larvae was negatively correlated with GNA, GBN and sinigrin (SIN). Our study explains the significance and possible molecular basis of differential distribution of glucosinolates in B. juncea leaves and shows the potential of overexpressing BjuMYB28 for enhanced resistance of Brassica crops against the tested generalist pests. © 2017 John Wiley & Sons Ltd.
Kaur, Parwinder; Jost, Ricarda; Sivasithamparam, Krishnapillai; Barbetti, Martin John
2011-01-01
White rust, caused by Albugo candida, is a serious pathogen of Brassica juncea (Indian mustard) and poses a potential hazard to the presently developing canola-quality B. juncea industry worldwide. A comparative proteomic study was undertaken to explore the molecular mechanisms that underlie the defence responses of Brassica juncea to white rust disease caused by the biotrophic oomycete Albugo candida. Nineteen proteins showed reproducible differences in abundance between a susceptible (RH 819) and a resistant variety (CBJ 001) of B. juncea following inoculation with A. candida. The identities of all 19 proteins were successfully established through Q-TOF MS/MS. Five of these proteins were only detected in the resistant variety and showed significant differences in their abundance at various times following pathogen inoculation in comparison to mock-inoculated plants. Among these was a thaumatin-like protein (PR-5), a protein not previously associated with the resistance of B. juncea towards A. candida. One protein, peptidyl-prolyl cis/trans isomerase (PPIase) isoform CYP20-3, was only detected in the susceptible variety and increased in abundance in response to the pathogen. PPIases have recently been discovered to play an important role in pathogenesis by suppressing the host cell's immune response. For a subset of seven proteins examined in more detail, an increase in transcript abundance always preceded their induction at the proteome level. These findings are discussed within the context of the A. candida–Brassica juncea pathosystem, especially in relation to host resistance to this pathogen. PMID:21193577
Jana, Aditi; Ghosh, Manosij; De, Arpita; Sinha, Sonali; Jothiramajayam, Manivannan; Mukherjee, Anita
2017-11-01
Fly ash (FA) being a heterogeneous mixture of heavy metal affects plant system in various ways. Previous studies have shown bioaccumulation of toxic metals in the plants and disturbance in cellular activities. Here, we have studied the impacts of FA treatment through the life cycle of economically important, annual crop plant mustard (Brassica juncea and Brassica alba). Result revealed that FA did not alter germination rate and photosynthetic pigment levels. Tolerance index of B. juncea was higher compared to B. alba. Seed setting was significantly affected by FA in B. alba. Significant increase in DNA damage was observed in both B. alba and B. juncea. Proline accumulation was significantly higher in B. alba. In B. juncea catalase activity and reduced glutathione content declined in initial days which were restored at the end of experimental period. Significant decrease in non-enzymatic antioxidants was noted in B. alba. Higher accumulation of Pb and As was noted in shoot of B. juncea and in B. alba Cu, Pb, Cr and As accumulated in shoots. As observed from these results, both plants could translocate certain toxic heavy metals from roots to the shoot which affected the physiological and biochemical balance and induced genotoxic response. Copyright © 2017 Elsevier Ltd. All rights reserved.
(E)-β-farnesene gene reduces Lipaphis erysimi colonization in transgenic Brassica juncea lines
Verma, Shiv Shankar; Sinha, Rakesh Kumar; Jajoo, Anajna
2015-01-01
Aphids are the major concern that significantly reduces the yield of crops. (E)-β-farnesene (Eβf) is the principal component of the alarm pheromone of many aphids. The results of current research support the direct defense response of (E)-β-farnesene (Eβf) against aphid Lipaphis erysimi (L.) Kaltenbach in Brassica juncea. Eβf gene was isolated from Mentha arvensis and transformed into B. juncea, showed direct repellent against aphid colonization. The seasonal mean population (SMP) recorded under field condition showed significantly higher aphid colonization in wild type in comparison to most of the transgenic lines, and shows positive correlation with the repellency of transgenic plant expressing (E)-β-farnesene. The current research investigation provides direct evidence for aphid control in B. juncea using Eβf, a non-toxic mode of action. PMID:26251882
Hatono, Saki; Nishimura, Kaori; Murakami, Yoko; Tsujimura, Mai; Yamagishi, Hiroshi
2017-09-01
The complete sequence of the mitochondrial genome was determined for two cultivars of Brassica rapa . After determining the sequence of a Chinese cabbage variety, 'Oushou hakusai', the sequence of a mizuna variety, 'Chusei shiroguki sensuji kyomizuna', was mapped against the sequence of Chinese cabbage. The precise sequences where the two varieties demonstrated variation were ascertained by direct sequencing. It was found that the mitochondrial genomes of the two varieties are identical over 219,775 bp, with a single nucleotide polymorphism (SNP) between the genomes. Because B. rapa is the maternal species of an amphidiploid crop species, Brassica juncea , the distribution of the SNP was observed both in B. rapa and B. juncea . While the mizuna type SNP was restricted mainly to cultivars of mizuna (japonica group) in B. rapa , the mizuna type was widely distributed in B. juncea . The finding that the two Brassica species have these SNP types in common suggests that the nucleotide substitution occurred in wild B. rapa before both mitotypes were domesticated. It was further inferred that the interspecific hybridization between B. rapa and B. nigra took place twice and resulted in the two mitotypes of cultivated B. juncea .
Uptake, Distribution, and Speciation of Chromium in Brassica Juncea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bluskov, S.; Arocena, J.M.; Omotoso, O.O.
2008-06-09
Brassica juncea (Indian mustard) has been widely used in phytoremediation because of its capacity to accumulate high levels of chromium (Cr) and other metals. The present study was conducted to investigate mechanism(s) involved in Cr binding and sequestration by B. juncea. The plants were grown under greenhouse conditions in field-moist or air-dried soils, amended with 100 mg kg{sup -1} of Cr (III or VI). The plant concentrated Cr mainly in the roots. B. juncea removed an average of 48 and 58 {micro}g Cr per plant from Cr (III) and Cr (VI)-treated soils, respectively. The uptake of Cr was not affectedmore » by the moisture status of the soils. X-ray absorption near-edge spectroscopy measurements showed only Cr (III) bound predominantly to formate and acetate ligands, in the bulk and rhizosphere soils, respectively. In the plant tissues, Cr (III) was detected, primarily as acetate in the roots and oxalate in the leaves. X-ray microprobe showed the sites of Cr localization, and probably sequestration, in epidermal and cortical cells in the roots and epidermal and spongy mesophyll cells in the leaves. These findings demonstrate the ability of B. juncea to detoxify more toxic Cr (VI), thereby making this plant a potential candidate for phytostabilization.« less
{background-color:#d7dee6}.table-hover>tbody>tr.selected>td,.table-hover>tbody>tr.selected> ;th,.table-hover>tbody>tr:hover>td,.table-hover>tbody>tr:hover>th{background-color :#243c54;color:#fff;cursor:pointer}.affix{position:fixed;top:0;z-index:999}.lead,body,h1,h2,h3,h4,h5,h6
Monoculture and polyculture: Kenaf (Hibiscus cannabinus) and sunn hemp (Crotalaria juncea)
USDA-ARS?s Scientific Manuscript database
Kenaf (Hibiscus cannabinus L.) and sunn hemp (Crotalaria juncea L.) are fast growing summer annual crops with numerous commercial applications (fibers, biofuels, bioremediation, paper pulp, building materials, cover crops, and livestock forages). Field research was conducted in southeast Oklahoma (...
USDA-ARS?s Scientific Manuscript database
Kenaf (Hibiscus cannabinus L.) and sunn hemp (Crotalaria juncea L.) are fast growing summer annual crops with numerous commercial applications (fibers, biofuels, bioremediation, paper pulp, building materials, cover crops, and livestock forages). Field research was conducted in southeast Oklahoma (...
[Promotion effects of microorganisms on phytoremediation of heavy metals-contaminated soil].
Yang, Zhuo; Wang, Zhan-Li; Li, Bo-Wen; Zhang, Rui-Fang
2009-08-01
Taking Brassica juncea as a hyperaccumulator, a pot experiment was conducted to study the effects of Bacillusme gaterium - Bacillus mucilaginosus mixed agent and Aspergillus niger 30177 fermentation liquor on the phytoremediation of Cd, Pb, and Zn-contaminated soil. The B. gaterium - B. mucilaginosus mixed agent not only promoted the growth of B. juncea, but also increased the soil Cd, Pb, and Zn uptake by the hyperaccumulator, with the phytoremediation efficiency enhanced greatly. The enrichment amount of Cd, Pb and Zn in B. juncea on the soil added with soluble Cd, Pb and Zn increased by 1.18, 1.54 and 0.85 folds, while that on the soil added with Cd, Pb and Zn-contaminated sediment increased by 4.00, 0. 64 and 0. 65 folds, respectively, compared with the control. A. niger 30177 fermentation liquor increased the soil Cd, Pb, and Zn uptake by B. juncea. Comparing with the control, the enrichment amount of Cd, Pb and Zn in aboveground part of B. juncea on the soil added with soluble Cd, Pb and Zn increased by 88.82%, 129.04% and 16.80%, while that on the soil added with Cd, Pb and Zn-contaminated sediment increased by 78.95%, 113.63% and 33.85%, respectively. However, A. niger 30177 fermentation liquor decreased the B. juncea biomass greatly, having less effect in the enhancement of phytoremediation efficiency. The analysis of reversed-phase high performance liquid chromatography showed that the fermentation liquor of B. gaterium and B. mucilaginosus contained some organic acids such as oxalic acid and citric acid. These acids could dissolve the heavy metals to some degree, and accordingly, enhance the bioavailability of the metals.
Niazi, Nabeel Khan; Bibi, Irshad; Fatimah, Ayesha; Shahid, Muhammad; Javed, Muhammad Tariq; Wang, Hailong; Ok, Yong Sik; Bashir, Safdar; Murtaza, Behzad; Saqib, Zulfiqar Ahmad; Shakoor, Muhammad Bilal
2017-07-03
In this study, we examined the potential role of phosphate (P; 0, 50, 100 mg kg -1 ) on growth, gas exchange attributes, and photosynthetic pigments of Brassica napus and Brassica juncea under arsenic (As) stress (0, 25, 50, 75 mg kg -1 ) in a pot experiment. Results revealed that phosphate supplementation (P100) to As-stressed plants significantly increased shoot As concentration, dry biomass yield, and As uptake, in addition to the improved morphological and gas exchange attributes and photosynthetic pigments over P0. However, phosphate-assisted increase in As uptake was substantially (up to two times) greater for B. napus, notably due to higher shoot As concentration and dry biomass yield, compared to B. juncea at the P100 level. While phosphate addition in soil (P100) led to enhanced shoot As concentration in B. juncea, it reduced shoot dry biomass, primarily after 50 and 75 mg kg -1 As treatments. The translocation factor and bioconcentration factor values of B. napus were higher than B. juncea for all As levels in the presence of phosphate. This study demonstrates that phosphate supplementation has a potential to improve As phytoextraction efficiency, predominantly for B. napus, by minimizing As-induced damage to plant growth, as well as by improving the physiological and photosynthetic attributes.
Pulsed Thrust Method for Hover Formation Flying
NASA Technical Reports Server (NTRS)
Hope, Alan; Trask, Aaron
2003-01-01
A non-continuous thrust method for hover type formation flying has been developed. This method differs from a true hover which requires constant range and bearing from a reference vehicle. The new method uses a pulsed loop, or pogo, maneuver sequence that keeps the follower spacecraft within a defined box in a near hover situation. Equations are developed for the hover maintenance maneuvers. The constraints on the hover location, pulse interval, and maximum/minimum ranges are discussed.
Origins and diversity of rush Skeletonweed (Chondrilla juncea) from three continents
J. Gaskin; C. L. Kinter; M. Schwarzlander; G. P. Markin; S. Novak; J. F. Smith
2013-01-01
Rush skeletonweed (Chondrilla juncea L.) is an invasive apomictic perennial plant in Australia, South- and North America, accidentally introduced from Eurasia, which shows differential resistance/tolerance to some herbicides and classical biological control agents. Rush skeletonweed biotypes have been locally described using morphology, phenology, isozyme patterns, and...
USDA-ARS?s Scientific Manuscript database
Assessing the propagule pressure and geographic origins of invasive populations using molecular markers provides insights into the invasion process. Rush skeletonweed (Chondrilla juncea) is an apomictic perennial plant that is invasive in Australia, Argentina, Canada and the USA. Invasive biotypes...
Postfire invasion potential of rush skeletonweed (Chondrilla juncea)
Cecilia Lynn Kinter; Brian A. Mealor; Nancy L. Shaw; Ann L. Hild
2007-01-01
North American sagebrush steppe communities have been transformed by the introduction of invasive annual grasses and subsequent increase in fire size and frequency. We examined the effects of wildfires and environmental conditions on the ability of rush skeletonweed (Chondrilla juncea L.), a perennial Eurasian composite, to invade degraded sagebrush...
Lampis, Silvia; Ferrari, Anita; Cunha-Queda, A Cristina F; Alvarenga, Paula; Di Gregorio, Simona; Vallini, Giovanni
2009-09-01
Selenium is a trace metalloid of global environmental concern. The boundary among its essentiality, deficiency, and toxicity is narrow and mainly depends on the chemical forms and concentrations in which this element occurs. Different plant species-including Brassica juncea-have been shown to play a significant role in Se removal from soil as well as water bodies. Furthermore, the interactions between such plants, showing natural capabilities of metal uptake and their rhizospheric microbial communities, might be exploited to increase both Se scavenging and vegetable biomass production in order to improve the whole phytoextraction efficiency. The aim of the present study was to evaluate the capability of selenite removal of B. juncea grown in hydroponic conditions on artificially spiked effluents. To optimize phytoextraction efficiency, interactions between B. juncea and rhizobacteria were designedly elicited. Firstly, B. juncea was grown on water-filtering agriperlite beds in the presence of three different selenite concentrations, namely, 0.2, 1.0, and 2.0 mM. Plant growth was measured after 3 and 6 weeks of incubation in order to establish the selenite concentration at which the best plant biomass production could be obtained. Afterwards, water-filtering agriperlite beds were inoculated either with a selenium-acclimated microbial community deriving from the rhizosphere of B. juncea grown, erstwhile, in a selenite-amended soil or with axenic cultures of two bacterial strains, vicelike Bacillus mycoides SeITE01 and Stenotrophomonas maltophilia SeITE02, previously isolated and described for their high resistance to selenite. These latter were seeded separately or as a dual consortium. Selenite was amended at a final concentration of 1.0 mM. Total Se content in plant tissues (both shoots and roots), plant biomass production, and persistence of bioaugmented microbial inocula during the experimental time were monitored. Moreover, parameters such as bioconcentration factor (BF) and phytoextraction efficiency (PE) were determined at the end of the testing run to evaluate the effects of the different bioaugmentation strategies adopted on selenite phytoextraction efficiency of B. juncea. A general but significant increase in capacity to extract and transport selenium to the epigeous plant compartments was recorded in B. juncea grown in beds augmented with microbial inocula, except for the treatment with B. mycoides SeITE01 alone. Nevertheless, a severe decrease in vegetable biomass production was observed after all microbial treatments with the exception of the plants that had received only S. maltophilia SeITE02. Actually, an increase in selenium phytoextraction efficiency up to 65% was observed in B. juncea, when this bacterial strain was inoculated. Emendation of B. juncea grown in water-filtering beds with a Se(IV)-acclimated microbial community caused a higher Se uptake along with a reduction of plant biomass yield with respect to plants grown without addition of the same bacterial inoculum. The increase of selenium BF in shoots suggests that the Se(IV)-acclimated microbial community not only elicited the plant capacity to absorb selenite, but also did improve the capacity to transport the metalloid to the epigeous compartments. On the other hand, the reduction in plant biomass yield might be related exactly to this improved capability of B. juncea to accumulate selenium at concentrations that are actually toxic for plants. Differently, addition of two selenite-resistant bacterial strains, namely, S. maltophilia SeITE02 and B. mycoides SEITE01, had weaker effects on plant biomass production when compared to those recorded in the presence of the Se(IV)-adapted microbial community. In particular, inoculation of water-filtering beds with the SeITE02 strain alone was the sole strategy resulting in a positive effect on both plant biomass production in stressful conditions and the capacity of shoots to accumulate selenium. In fact, its putative ability of reducing Se(IV) to organo-Se compounds significantly enhanced either selenium absorption by the plants or active metalloid translocation to epigeous parts. Bioaugmentation with the bacterial strain S. malthophila SeITE02 is suggested to elicit selenite phytoextraction efficiency in B. juncea. Manipulation of synergistic interactions between plants having phytoextraction capabilities and their associated rhizobacteria may enhance already consolidated treatment processes aimed to detoxify selenite laden wastewater.
Bhattacharya, Surajit; Sinha, Saheli; Das, Natasha; Maiti, Mrinal K
2015-11-01
Fatty acids from dietary lipids can impart both beneficial and harmful health effects. The compositional balance between saturated and unsaturated fatty acids plays a decisive role in maintaining the physiological harmony, proper growth and development in the human system. In case of Brassica juncea seed oil, the level of saturated fatty acid, especially desirable stearate is very much lower than the recommended value, along with a high content of nutritionally undesirable erucic acid. Therefore, in order to shift the carbon flux towards the production of stearate at the expense of erucate, the MlFatB gene encoding a FatB thioesterase from Madhuca longifolia (latifolia) was expressed heterologously in seed tissues of B. juncea. The functional MlFatB competed with the highly active endogenous BjFatA thioesterase, and the transgenic B. juncea lines showed noteworthy changes in their seed fatty acid profiles. The proportion of stearate increased up to 16-fold, constituting almost 31% of the total fatty acids along with the production of arachidic acid in significant amount (up to ∼11%). Moreover, the content of erucate was reduced up to 71% in the seed oils of transgenic lines. Although a nutritionally desirable fatty acid profile was achieved, the transgenic seeds exhibit reduction or abolition of seed germination in addition to a decrease in seed lipid content. The findings of the present study revealing the stearoyl-ACP thioesterase-mediated enhancement of the stearate content that is associated with reduced germination frequency of transgenic B. juncea seeds, may explain why no natural or induced stearate-rich Brassica has been found or developed. Furthermore, this study also suggests that the newly characterized MlFatB is a potential candidate gene for refined metabolic engineering strategy in B. juncea or other plant species for increasing stearate content in seed oil. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The United State Department of Agriculture (USDA), Agricultural Research Service, (ARS), Plant Genetic Resources Conservation Unit’s (PGRCU) sunn hemp (Crotalaria juncea L.) germlasm collection consists of 22 accessions. Sixteen (16) accessions of the most seed productive were selected. These access...
N. L. Shaw; A. L. Hild; C. L. Kinter
2008-01-01
Chondrilla juncea L. (Asteraceae), an invasive Eurasian apomictic perennial weed that increases vegetatively and from seed, as spread from the Pacific Northwest, USA into Artemisia tridentata communities of the northern Great Basin. Over the last 150 years this region has been heavily impacted by excessive livestock grazing, the invasion of exotic annual grasses,...
USDA-ARS?s Scientific Manuscript database
A field study was conducted in 2008 and 2009 in Citra, Florida to evaluate the effects of seeding rate and removal of apical dominance of sunn hemp (Crotalaria juncea L.) on weed suppression and seed production of sunn hemp. Three seeding rates of sunn hemp were used; a representative seed producti...
USDA-ARS?s Scientific Manuscript database
Brassica leafy greens (Brassica juncea and Brassica rapa) represent one of the most economically important vegetable crop groups in the southeastern United States. In the last 10 years, numerous occurrences of a leaf blight disease on these leafy vegetables have been reported in several states. One ...
USDA-ARS?s Scientific Manuscript database
Soil physical conditions demonstrably affected allyl isothiocyanate (AITC) emitted from Brassica juncea cv Pacific Gold seed meal (SM) amended soil. The AITC concentration detected increased with an increase in temperature from 10 oC to 30 oC. AITC concentration also increased with an increase in so...
Rao, G U; Lakshmikumaran, M; Shivanna, K R
1996-05-01
Three intergeneric hybrids were produced between a cold-tolerant wild species, Erucastrum abyssinicum and three cultivated species of Brassica, B. juncea, B. carinata and B. oleracea, through ovary culture. The hybrids were characterized by morphology, cytology and DNA analysis. Amphiploidy was induced in all the F1 hybrids through colchicine treatment. Stable amphiploids and backcross progenies were obtained from two of the crosses, E. abyssinicum x B. juncea and E. abyssinicum x B. carinata. The amphiploid, E. abyssinicum x B. juncea was successfully used as a bridge species to produce hybrids with B. napus, B. campestris and B. nigra. These hybrids and backcross progenies provide useful genetic variability for the improvement of crop brassicas.
Dart, P. J.; Mercer, F. V.
1966-01-01
Dart, P. J. (University of Sydney, Sydney, Australia), and F. V. Mercer. Fine structure of bacteroids in root nodules of Vigna sinensis, Acacia longifolia, Viminaria juncea, and Lupinus angustifolius. J. Bacteriol. 91:1314–1319.—In nodules of Vigna sinensis, Acacia longifolia, and Viminaria juncea, membrane envelopes enclose groups of bacteroids. The bacteroids often contain inclusion granules and electron-dense bodies, expand little during development, and retain their rod form with a compact, central nucleoid area. The membrane envelope may persist around bacteroids after host cytoplasm breakdown. In nodules of Lupinus angustifolius, the membrane envelopes enclose only one or two bacteroids, which expand noticeably during development and change from their initial rod structure. Images PMID:5929757
Wing motion measurement and aerodynamics of hovering true hoverflies.
Mou, Xiao Lei; Liu, Yan Peng; Sun, Mao
2011-09-01
Most hovering insects flap their wings in a horizontal plane (body having a large angle from the horizontal), called `normal hovering'. But some of the best hoverers, e.g. true hoverflies, hover with an inclined stroke plane (body being approximately horizontal). In the present paper, wing and body kinematics of four freely hovering true hoverflies were measured using three-dimensional high-speed video. The measured wing kinematics was used in a Navier-Stokes solver to compute the aerodynamic forces of the insects. The stroke amplitude of the hoverflies was relatively small, ranging from 65 to 85 deg, compared with that of normal hovering. The angle of attack in the downstroke (∼50 deg) was much larger that in the upstroke (∼20 deg), unlike normal-hovering insects, whose downstroke and upstroke angles of attack are not very different. The major part of the weight-supporting force (approximately 86%) was produced in the downstroke and it was contributed by both the lift and the drag of the wing, unlike the normal-hovering case in which the weight-supporting force is approximately equally contributed by the two half-strokes and the lift principle is mainly used to produce the force. The mass-specific power was 38.59-46.3 and 27.5-35.4 W kg(-1) in the cases of 0 and 100% elastic energy storage, respectively. Comparisons with previously published results of a normal-hovering true hoverfly and with results obtained by artificially making the insects' stroke planes horizontal show that for the true hoverflies, the power requirement for inclined stroke-plane hover is only a little (<10%) larger than that of normal hovering.
Ram, Chet; Koramutla, Murali Krishna; Bhattacharya, Ramcharan
2017-07-01
Brassica juncea is a chief oil yielding crop in many parts of the world including India. With advancement of molecular techniques, RT-qPCR based study of gene-expression has become an integral part of experimentations in crop breeding. In RT-qPCR, use of appropriate reference gene(s) is pivotal. The virtue of the reference genes, being constant in expression throughout the experimental treatments, needs to be validated case by case. Appropriate reference gene(s) for normalization of gene-expression data in B. juncea during the biotic stress of aphid infestation is not known. In the present investigation, 11 reference genes identified from microarray database of Arabidopsis-aphid interaction at a cut off FDR ≤0.1, along with two known reference genes of B. juncea, were analyzed for their expression stability upon aphid infestation. These included 6 frequently used and 5 newly identified reference genes. Ranking orders of the reference genes in terms of expression stability were calculated using advanced statistical approaches such as geNorm, NormFinder, delta Ct and BestKeeper. The analysis suggested CAC, TUA and DUF179 as the most suitable reference genes. Further, normalization of the gene-expression data of STP4 and PR1 by the most and the least stable reference gene, respectively has demonstrated importance and applicability of the recommended reference genes in aphid infested samples of B. juncea. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Kumar, Vinod; Singh, Prashant; Jorquera, Milko A; Sangwan, Punesh; Kumar, Piyush; Verma, A K; Agrawal, Sanjeev
2013-08-01
Phytase-producing bacteria (PPB) is being investigated as plant growth promoting rhizobacteria (PGPR) to improve the phosphorus (P) nutrition and growth of plants grown in soil with high phytate content. Phytate is dominant organic P forms in many soils and must be hydrolyzed to be available for plants. Indian mustard (Brassica juncea) is a plant with economic importance in agriculture and phytoremediation, therefore biotechnological tools to improve growth and environmental stress tolerance are needed. In this study, we isolated and characterized PPB from Himalayan soils and evaluated their effect on growth and P uptake by B. juncea under greenhouse conditions. Sixty five PPB were isolated and based on phytate hydrolysis, three efficient PPB were chosen and identified as Acromobacter sp. PB-01, Tetrathiobacter sp. PB-03 and Bacillus sp. PB-13. Selected PPB showed ability to grow at wide range of pH, temperature and salt concentrations as well as to harbour diverse PGPR activities, such as: solubilization of insoluble Ca-phosphate (193-642 μg ml(-1)), production of phytohormone indole acetic acid (5-39 μg ml(-1)) and siderophore. Tetrathiobacter sp. PB-03 and Bacillus sp. PB-13 showed 50 and 70 % inhibition of phytopathogen Rhizoctonia solani, respectively. Greenhouse potting assay also showed that the bacterization of B. juncea seeds with Tetrathiobacter sp. PB-03 and Bacillus sp. PB-13 significantly increased the biomass and P content in 30 days old seedlings. This study reveals the potential of PPB as PGPR to improve the growth of B. juncea.
: "\\f106"; /* open - switch to fa-angle-up */ } @media(min-width:768px) { /* top level open */ } } /* top level open hover */ .navbar-dark .navbar-nav > li.open > a:hover, .navbar-dark .navbar-nav :768px) { /* top level open hover desktop*/ .navbar-dark .navbar-nav > li.open > a:hover, .navbar
USDA-ARS?s Scientific Manuscript database
A leafy-green mustard (Brassica juncea L.) cultivar designated ‘Carolina Broadleaf’ has been released by the Agricultural Research Service of the U.S. Dept. of Agriculture in 2015. This released cultivar is a narrow-based population of leafy-green mustard derived from a U.S. plant introduction (PI)...
USDA-ARS?s Scientific Manuscript database
A field study was conducted in 2008 and 2009 at the USDA, ARS, Plant Genetic Resources Conservation Unit in Griffin, GA to investigate weed suppression by sunn hemp (Crotalaria juncea L). The objectives were to: 1) evaluate the effects of apical meristem removal (AMR) at three dates [5, 6, and 7 wks...
USDA-ARS?s Scientific Manuscript database
Brassica leafy greens are one of the most economically important vegetable commodities grown in the southeastern United States, and more than 28,000 metric tons of these crops are harvested in the U.S. annually. Collards and kale (Brassica oleracea L.), mustard greens (Brassica juncea L.) and turni...
In vitro anti-biofilm and anti-bacterial activity of Junceella juncea for its biomedical application
Kumar, P; Selvi, S Senthamil; Govindaraju, M
2012-01-01
Objective To investigate the anti-biofilm and anti-bacterial activity of Junceella juncea (J. juncea) against biofilm forming pathogenic strains. Methods Gorgonians were extracted with methanol and analysed with fourier transform infrared spectroscopy. Biofilm forming pathogens were identified by Congo red agar supplemented with sucrose. A quantitative spectrophotometric method was used to monitor in vitro biofilm reduction by microtitre plate assay. Anti-bacterial activity of methanolic gorgonian extract (MGE) was carried out by disc diffusion method followed by calculating the percentage of increase with crude methanol (CM). Results The presence of active functional group was exemplified by FT-IR spectroscopy. Dry, black, crystalline colonies confirm the production of extracellular polymeric substances responsible for biofilm formation in Congo red agar. MGE exhibited potential anti-biofilm activity against all tested bacterial strains. The anti-bacterial activity of methanolic extract was comparably higher in Salmonella typhii followed by Escherichia coli, Vibrio cholerae and Shigella flexneri. The overall percentage of increase was higher by 50.2% to CM. Conclusions To conclude, anti-biofilm and anti-bacterial efficacy of J. juncea is impressive over biofilm producing pathogens and are good source for novel anti-bacterial compounds. PMID:23593571
Numerical study of insect free hovering flight
NASA Astrophysics Data System (ADS)
Wu, Di; Yeo, Khoon Seng; Lim, Tee Tai; Fluid lab, Mechanical Engineering, National University of Singapore Team
2012-11-01
In this paper we present the computational fluid dynamics study of three-dimensional flow field around a free hovering fruit fly integrated with unsteady FSI analysis and the adaptive flight control system for the first time. The FSI model being specified for fruitfly hovering is achieved by coupling a structural problem based on Newton's second law with a rigorous CFD solver concerning generalized finite difference method. In contrast to the previous hovering flight research, the wing motion employed here is not acquired from experimental data but governed by our proposed control systems. Two types of hovering control strategies i.e. stroke plane adjustment mode and paddling mode are explored, capable of generating the fixed body position and orientation characteristic of hovering flight. Hovering flight associated with multiple wing kinematics and body orientations are shown as well, indicating the means by which fruitfly actually maintains hovering may have considerable freedom and therefore might be influenced by many other factors beyond the physical and aerodynamic requirements. Additionally, both the near- and far-field flow and vortex structure agree well with the results from other researchers, demonstrating the reliability of our current model.
Das, Ayan; Ghosh, Prithwi; Das, Sampa
2018-06-01
Transgenic Brassica juncea plants expressing Colocasia esculenta tuber agglutinin (CEA) shows the non-allergenic nature of the expressed protein leading to enhanced mortality and reduced fecundity of mustard aphid-Lipaphis erysimi. Lipaphis erysimi (common name: mustard aphid) is the most devastating sucking insect pest of Indian mustard (Brassica juncea L.). Colocasia esculenta tuber agglutinin (CEA), a GNA (Galanthus nivalis agglutinin)-related lectin has previously been reported by the present group to be effective against a wide array of hemipteran insects in artificial diet-based bioassays. In the present study, efficacy of CEA in controlling L. erysimi has been established through the development of transgenic B. juncea expressing this novel lectin. Southern hybridization of the transgenic plants confirmed stable integration of cea gene. Expression of CEA in T 0 , T 1 and T 2 transgenic plants was confirmed through western blot analysis. Level of expression of CEA in the T 2 transgenic B. juncea ranged from 0.2 to 0.47% of the total soluble protein. In the in planta insect bioassays, the CEA expressing B. juncea lines exhibited enhanced insect mortality of 70-81.67%, whereas fecundity of L. erysimi was reduced by 49.35-62.11% compared to the control plants. Biosafety assessment of the transgenic B. juncea protein containing CEA was carried out by weight of evidence approach following the recommendations by FAO/WHO (Evaluation of the allergenicity of genetically modified foods: report of a joint FAO/WHO expert consultation, 22-25 Jan, Rome, http://www.fao.org/docrep/007/y0820e/y0820e00.HTM , 2001), Codex (Codex principles and guidelines on foods derived from biotechnology, Food and Agriculture Organization of the United Nations, Rome; Codex, Codex principles and guidelines on foods derived from biotechnology, Food and Agriculture Organization of the United Nations, Rome, 2003) and ICMR (Indian Council of Medical Research, guidelines for safety assessment of food derived from genetically engineered plants, http://www.icmr.nic.in/guide/Guidelines%20for%20Genetically%20Engineered%20Plants.pdf , 2008). Bioinformatics analysis, pepsin digestibility, thermal stability assay, immuno-screening and allergenicity assessment in BALB/c mice model demonstrated that the expressed CEA protein from transgenic B. juncea does not incite any allergenic response. The present study establishes CEA as an efficient insecticidal and non-allergenic protein to be utilized for controlling mustard aphid and similar hemipteran insects through the development of genetically modified plants.
Tsai, S; Kuit, V; Lin, Z G; Lin, C
2014-01-01
The establishment of coral sperm repositories which retain good post-rewarming viability and fertility play a vital role in species conservation. This study aimed at obtaining baseline information regarding the effects of cryoprotectant agents (CPAs) on gorgonian coral (Junceella juncea and J. fragilis) sperm sacs. The adenosine triphosphate assay was used to determine the energy level of the gorgonian sperm sacs as an indicator of sperm viability after exposure to cryoprotectants. The 'no observed effect concentrations' (NOECs) of methanol, dimethyl sulfoxide (DMSO), polypropylene glycol (PG), ethylene glycol (EG) and glycerol for J. juncea sperm sacs were 3 M, 3 M, 1 M, 2 M and 1 M respectively after 20 min exposure; whilst the NOECs for J. fragilis oocytes were 2 M, 3 M, 1 M, 2 M and 2 M, respectively. Methanol and DMSO had the least impact. PG was the most toxic CPA after 10 min exposure. ATP content of J. juncea and J. fragilis sperm sacs did not differ significantly from the control with incubation times of 10-20 min with 2 M EG. However, ATP content dropped significantly after exposing sperm sacs to 2 M EG for 40 min with average values of 2.34 +/- 0.12 and 1.97 +/- 0.48 microg/ml respectively. ATP content for J. juncea and J. fragilis sperm sacs was significantly decreased to 1.79 +/- 0.31 and 2.40 +/- 0.36 microg/ml after 20 min incubation in 2 M PG when compared to the control with 2.98 +/- 0.16 and 4.14 +/- 0.42 microg/ml respectively. Normalized ATP content for sperm sacs of two different gorgonian coral after incubation in methanol, DMSO, PG, EG and glycerol showed that J. juncea sperm sacs were slightly less tolerant to CPAs compared to J. fragilis sperm sacs. DMSO or methanol can be considered as efficient CPAs for gorgonian sperm sacs cryopreservation. The ATP luminescence assay provided sensitive and rapid quantification of mitochondrial activity in gorgonian coral sperm sacs. The study on the impact of CPA will contribute to the development of a cryopreservation protocol for coral sperm conservation.
Zhang, Chuan-Jie; Yook, Min-Jung; Park, Hae-Rim; Lim, Soo-Hyun; Kim, Jin-Won; Nah, Gyoungju; Song, Hae-Ryong; Jo, Beom-Ho; Roh, Kyung Hee; Park, Suhyoung; Kim, Do-Soon
2018-06-02
The cultivation of genetically modified (GM) crops has raised many questions regarding their environmental risks, particularly about their ecological impact on non-target organisms, such as their closely-related relative species. Although evaluations of transgene flow from GM crops to their conventional crops has been conducted under large-scale farming system worldwide, in particular in North America and Australia, few studies have been conducted under smallholder farming systems in Asia with diverse crops in co-existence. A two-year field study was conducted to assess the potential environmental risks of gene flow from glufosinate-ammonium resistant (GR) Brassica napus to its conventional relatives, B. napus, B. juncea, and Raphanus sativus under simulated smallholder field conditions in Korea. Herbicide resistance and simple sequence repeat (SSR) markers were used to identify the hybrids. Hybridization frequency of B. napus × GR B. napus was 2.33% at a 2 m distance, which decreased to 0.007% at 75 m. For B. juncea, it was 0.076% at 2 m and decreased to 0.025% at 16 m. No gene flow was observed to R. sativus. The log-logistic model described hybridization frequency with increasing distance from GR B. napus to B. napus and B. juncea and predicted that the effective isolation distances for 0.01% gene flow from GR B. napus to B. napus and B. juncea were 122.5 and 23.7 m, respectively. Results suggest that long-distance gene flow from GR B. napus to B. napus and B. juncea is unlikely, but gene flow can potentially occur between adjacent fields where the smallholder farming systems exist. Copyright © 2018. Published by Elsevier B.V.
Ali, Amjad; Guo, Di; Mahar, Amanullah; Wang, Zhen; Muhammad, Dost; Li, Ronghua; Wang, Ping; Shen, Feng; Xue, Quanhong; Zhang, Zengqiang
2017-10-01
The industrial expansion, smelting, mining and agricultural practices have increased the release of toxic trace elements (TEs) in the environment and threaten living organisms. The microbe-assisted phytoremediation is environmentally safe and provide an effective approach to remediate TEs contaminated soils. A pot experiment was conducted to test the potential of an Actinomycete, subspecies Streptomyces pactum (Act12) along with medical stone compost (MSC) by growing Brassica juncea in smelter and mines polluted soils of Feng County (FC) and Tongguan (TG, China), respectively. Results showed that Zn (7, 28%), Pb (54, 21%), Cd (16, 17%) and Cu (8, 10%) uptake in shoot and root of Brassica juncea was pronounced in FC soil. Meanwhile, the Zn (40, 14%) and Pb (82, 15%) uptake in the shoot and root were also increased in TG soil. Shoot Cd uptake remained below detection, while Cu decreased by 52% in TG soil. The Cd and Cu root uptake were increased by 17% and 33%, respectively. Results showed that TEs uptake in shoot increased with increasing Act12 dose. Shoot/root dry biomass, chlorophyll and carotenoid content in Brassica juncea were significantly influenced by the application of Act12 in FC and TG soil. The antioxidant enzymatic activities (POD, PAL, PPO and CAT) in Brassica juncea implicated enhancement in the plant defense mechanism against the TEs induced stress in contaminated soils. The extraction potential of Brasssica was further evaluated by TF (translocation factor) and MEA (metal extraction amount). Based on our findings, further investigation of Act12 assisted phytoremediation of TEs in the smelter and mines polluted soil and hyperaccumulator species are suggested for future studies. Copyright © 2017. Published by Elsevier Inc.
Sarkar, Poulami; Jana, Kuladip; Sikdar, Samir Ranjan
2017-11-01
Transgenic mustard plants ( Brassica juncea ) expressing non-allergenic and biologically safe RiD peptide show higher tolerance against Lipaphis erysimi. Rorippa indica defensin (RiD) has previously been reported as a novel insecticidal protein derived from a wild crucifer Rorippa indica. RiD was found to have an effective insecticidal property against mustard aphid, Lipaphis erysimi. In the present study, RiD was highly upregulated in R. indica during aphid infestation initiating a defense system mediated by jasmonic acid (JA), but not by salicylic acid (SA)/abscisic acid (ABA). RiD has also been assessed for biosafety according to the FAO/WHO guideline (allergenicity of genetically modified foods; Food And Agriculture Organisation of the United Nations, Rome, Italy, 2001) and Codex Alimentarius Guideline (Guidelines for the design and implementation of national regulatory food safety assurance programme associated with the use of veterinary drugs in food producing animals. Codex Alimentarius Commission. GL, pp 71-2009, 2009). The purified protein was used to sensitize BALB/c mice and they showed normal histopathology of lung and no elevated IgE level in their sera. As the protein was found to be biologically safe and non-allergenic, it was used to develop transgenic Brassica juncea plants with enhanced aphid tolerance, which is one of the most important oilseed crops and is mostly affected by the devastating pest-L. erysimi. The transgene integration was monitored by Southern hybridization, and the positive B. juncea lines were further analyzed by Western blot, ELISA, immunohistolocalization assays and in planta insect bioassay. Transgenic plants expressing RiD conferred a higher level of tolerance against L. erysimi. All these results demonstrated that RiD is a novel, biologically safe, effective insecticidal agent and B. juncea plants expressing RiD are important components of integrated pest management.
Stereopsis cueing effects on hover-in-turbulence performance in a simulated rotorcraft
NASA Technical Reports Server (NTRS)
Parrish, Russell V.; Williams, Steven P.
1990-01-01
The efficacy of stereopsis cueing in pictorial displays was assessed in a real-time piloted simulation experiment of a rotorcraft precision hover-in-turbulence task. Seven pilots endeavored to maintain a hover by visually aligning a set of inner and outer wickets (major elements of a real-world pictorial display, thus attaining the desired hover position, in a full factorial experimental design. The display conditions examined included the presence or absence of a velocity display element (a velocity head-up display) as well as the stereopsis cueing conditions, which included non-stereo (binoptic or monoscopic - no depth cues other than those provided by a perspective, real-world display), stereo 3-D, and hyper stereo (telestereoscopic). Subjective and objective results indicated that the depth cues provided by the stereo displays enhanced the situational awareness of the pilot and enabled improved hover performance to be achieved. The velocity display element also improved the hover performance, with the best hover performance being achieved with the combined use of stereo and the velocity display element. Pilot control input data revealed that less control action was required to attain the improved hover performance with the stereo displays.
Aerodynamic tricks for pitching oscillation and visual stabilization in a hovering bird
NASA Astrophysics Data System (ADS)
Su, Jian-Yuan; Ting, Shang-Chieh; Yang, Jing-Tang
2010-11-01
We experimentally investigate how small birds attain a stabilized vision and body posture during hovering. Wing-beats of finches and passerines executing asymmetrical hovering provide lift merely during the downstroke. The downstroke lift is significantly greater than the bird weight, thereby causing a pitch-up swing of the bird body. A hovering bird skillfully and unceasingly tunes the position and orientation of lift force to stabilize its vision, so that the eye displacement is approximately one-tenth less than the tail, causing an illusion that the bird body is rotating about the eye. The hovering birds also spread and fold periodically their tail with an evident phase relationship with respect to the beating wings. We found that hovering birds use their tail to intercept the strong downward air-flow induced by the downstroking wings, and sophisticatedly spread their tail upon the arrival of the downward air-flow, rendering a pitch-up moment that effectively counteracts the pitch-down body rotation. Hence during hovering the bird essentially undergoes a dynamically-stable pitching oscillation, and concurrently attains a stabilized vision.
Sinha, Somya; Raxwal, Vivek K.; Joshi, Bharat; Jagannath, Arun; Katiyar-Agarwal, Surekha; Goel, Shailendra; Kumar, Amar; Agarwal, Manu
2015-01-01
Low temperature is a major abiotic stress that impedes plant growth and development. Brassica juncea is an economically important oil seed crop and is sensitive to freezing stress during pod filling subsequently leading to abortion of seeds. To understand the cold stress mediated global perturbations in gene expression, whole transcriptome of B. juncea siliques that were exposed to sub-optimal temperature was sequenced. Manually self-pollinated siliques at different stages of development were subjected to either short (6 h) or long (12 h) durations of chilling stress followed by construction of RNA-seq libraries and deep sequencing using Illumina's NGS platform. De-novo assembly of B. juncea transcriptome resulted in 133,641 transcripts, whose combined length was 117 Mb and N50 value was 1428 bp. We identified 13,342 differentially regulated transcripts by pair-wise comparison of 18 transcriptome libraries. Hierarchical clustering along with Spearman correlation analysis identified that the differentially expressed genes segregated in two major clusters representing early (5–15 DAP) and late stages (20–30 DAP) of silique development. Further analysis led to the discovery of sub-clusters having similar patterns of gene expression. Two of the sub-clusters (one each from the early and late stages) comprised of genes that were inducible by both the durations of cold stress. Comparison of transcripts from these clusters led to identification of 283 transcripts that were commonly induced by cold stress, and were referred to as “core cold-inducible” transcripts. Additionally, we found that 689 and 100 transcripts were specifically up-regulated by cold stress in early and late stages, respectively. We further explored the expression patterns of gene families encoding for transcription factors (TFs), transcription regulators (TRs) and kinases, and found that cold stress induced protein kinases only during early silique development. We validated the digital gene expression profiles of selected transcripts by qPCR and found a high degree of concordance between the two analyses. To our knowledge this is the first report of transcriptome sequencing of cold-stressed B. juncea siliques. The data generated in this study would be a valuable resource for not only understanding the cold stress signaling pathway but also for introducing cold hardiness in B. juncea. PMID:26579175
Feasibility of Using Phytoextraction to Remediate a Compost-Based Soil Contaminated with Cadmium.
Parisien, Michele A; Rutter, Allison; Zeeb, Barbara A
2015-01-01
Greenhouse and in-situ field experiments were used to determine the potential for phytoextraction to remediate soil contaminated with Cd from municipal solid waste (MSW) and sewage sludge (SS) compost application at a Peterborough (Canada) site. For the greenhouse experiment, one native (Chenopodium album) and three naturalized (Poa compressa, Brassica juncea, Helianthus annuus) plant species were planted in soil containing no detectable Cd (<1.0 μg·g(-1)), and soil from the site containing low (5.0 ± 0.3 μg·g(-1) Cd), and high (16.5 ± 1.2 μg⋅g(-1) Cd) Cd concentrations. Plant uptake was low (root BAFs ≤0.5) for all species except P. compressa in the low Cd treatment (BAF 1.0). Only B. juncea accumulated Cd in its shoots, though uptake was low (BAF ≤0.3). For the field experiment, B. juncea was planted in-situ in areas of low and high Cd concentrations. Brassica juncea Cd uptake was low (root and shoot BAFs <0.2) in both treatments. Sequential extraction analysis indicated that Cd is retained primarily by low bioavailability soil fractions, and phytoextraction is therefore not feasible at this site. Though low Cd bioavailability has negative implications for Cd phytoextraction from MSW/SS compost-based soils, it may limit receptor exposure to Cd sufficiently to eliminate the potential for risk at this site.
Luo, Yuanli; Dong, Daiwen; Su, Yu; Wang, Xuyi; Peng, Yumei; Peng, Jiang; Zhou, Changyong
2018-05-01
Mustard clubroot, caused by Plasmodiophora brassicae, is a serious disease that affects Brassica juncea var. tumida Tsen, a mustard plant that is the raw material for a traditional fermented food manufactured in Chongqing, China. In our laboratory, we screened the antagonistic bacteria Zhihengliuella aestuarii against P. brassicae. To better understand the biocontrol mechanism, three transcriptome analyses of B. juncea var. tumida Tsen were conducted using Illumina HiSeq 4000, one from B. juncea only inoculated with P. brassicae (P), one inoculated with P. brassica and the biocontrol agent Z. aestuarii at the same time (P + B), and the other was the control (H), in which P. brassicae was replaced by sterile water. A total of 19.94 Gb was generated by Illumina HiSeq sequencing. The sequence data were de novo assembled, and 107,617 unigenes were obtained. In total, 5629 differentially expressed genes between biocontrol-treated (P + B) and infected (P) samples were assigned to 126 KEGG pathways. Using multiple testing corrections, 20 pathways were significantly enriched with Qvalue ≤ 0.05. The resistance-related genes, involved in the production of pathogenesis-related proteins, pathogen-associated molecular pattern-triggered immunity, and effector-triggered immunity signaling pathways, calcium influx, salicylic acid pathway, reactive oxygen intermediates, and mitogen-activated protein kinase cascades, and cell wall modification, were obtained. The various defense responses induced by the biocontrol strain combatted the P. brassicae infection. The genes and pathways involved in plant resistance were induced by a biocontrol strain. The transcriptome data explained the molecular mechanism of the potential biocontrol strain against P. brassicae. The data will also serve as an important public information platform to study B. juncea var. tumida Tsen and will be useful for breeding mustard plants resistant to P. brassicae.
Switching PD-based sliding mode control for hovering of a tilting-thruster underwater robot.
Jin, Sangrok; Bak, Jeongae; Kim, Jongwon; Seo, TaeWon; Kim, Hwa Soo
2018-01-01
This paper presents a switching PD-based sliding mode control (PD-SMC) method for the 6-degree-of-freedom (DOF) hovering motion of the underwater robot with tilting thrusters. Four thrusters of robot can be tilted simultaneously in the horizontal and vertical directions, and the 6-DOF motion is achieved by switching between two thruster configurations. Therefore, the tilting speed of thruster becomes the most essential parameter to determine the stability of hovering motion. Even though the previous PD control ensures stable hovering motion within a certain ranges of tilting speed, a PD-SMC is suggested in this paper by combining PD control with sliding mode control in order to achieve acceptable hovering performance even at the much lower tilting speeds. Also, the sign function in the sliding mode control is replaced by a sigmoid function to reduce undesired chattering. Simulations show that while PD control is effective only for tilting duration of 600 ms, the PD-based sliding mode control can guarantee the stable hovering motion of underwater robot even for the tilting duration of up to 1500 ms. Extensive experimental results confirm the hovering performance of the proposed PD-SMC method is much superior to that of PD method for much larger tilting durations.
Dasgupta-Schubert, N; Whelan, T; Reyes, M A; Lloren, C; Brandt, T T; Persans, M W
2007-01-01
The relationships between the concentration of metal in the growth medium, Cs, the concentration of metal absorbed by the plant, Cp, and the total biomass achieved, M, all of which are factors relevant to the efficiency of metal uptake and tolerance by the plant, have been investigated via the physiological response of Brassica juncea seedlings to Ni stress. The factorial growth experiments treated the Ni concentration in agar medium and the diurnal light quanta as independently variable parameters. Observations included the evidence of light enhancement of Ni toxicity in the root, as well as at the whole-plant level. The shoot mass index possibly is an indicator of the amount of shoot metal sequestration in B. juncea, as are the logarithmic variation of Cp with Cs and the power-law dependence of M on Cp. The sum total of these observations indicates that, for the Ni accumulating plant B. juncea, the overall metabolic allocation to either growth or metal tolerance of the plant is important. Neither a rapid biomass increase nor a high metal absorbed concentration favored the removal of high metal mass from the medium. Rather, the plants with a moderate rate of biomass growth and a moderate absorbed metal concentration demonstrated the ability to remove the maximum mass of metal from the medium. The implication of these results as related to the extant model of phyoextraction efficiency is discussed.
Sen, Rahul; Sharma, Sanjula; Kaur, Gurpreet; Banga, Surinder S
2018-01-31
Very few near-infrared reflectance spectroscopy (NIRS) calibration models are available for non-destructive estimation of seed quality traits in Brassica juncea. Those that are available also fail to adequately discern variation for oleic acid (C 18:1 ) , linolenic (C 18:3 ) fatty acids, meal glucosinolates and phenols. We report the development of a new NIRS calibration equation that is expected to fill the gaps in the existing NIRS equations. Calibrations were based on the reference values of important quality traits estimated from a purposely selected germplasm set comprising 240 genotypes of B. juncea and 193 of B. napus. We were able to develop optimal NIRS-based calibration models for oil, phenols, glucosinolates, oleic acid, linoleic acid and erucic acid for B. juncea and B. napus. Correlation coefficients (RSQ) of the external validations appeared greater than 0.7 for the majority of traits, such as oil (0.766, 0.865), phenols (0.821, 0.915), glucosinolates (0.951, 0.986), oleic acid (0.814. 0.810), linoleic acid (0.974, 0.781) and erucic acid (0.963, 0.943) for B. juncea and B. napus, respectively. The results demonstrate the robust predictive power of the developed calibration models for rapid estimation of many quality traits in intact rapeseed-mustard seeds which will assist plant breeders in effective screening and selection of lines in quality improvement breeding programmes. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Usherwood, James R
2009-03-01
Predictions from aerodynamic theory often match biological observations very poorly. Many insects and several bird species habitually hover, frequently flying at low advance ratios. Taking helicopter-based aerodynamic theory, wings functioning predominantly for hovering, even for quite small insects, should operate at low angles of attack. However, insect wings operate at very high angles of attack during hovering; reduction in angle of attack should result in considerable energetic savings. Here, I consider the possibility that selection of kinematics is constrained from being aerodynamically optimal due to the inertial power requirements of flapping. Potential increases in aerodynamic efficiency with lower angles of attack during hovering may be outweighed by increases in inertial power due to the associated increases in flapping frequency. For simple hovering, traditional rotary-winged helicopter-like micro air vehicles would be more efficient than their flapping biomimetic counterparts. However, flapping may confer advantages in terms of top speed and manoeuvrability. If flapping-winged micro air vehicles are required to hover or loiter more efficiently, dragonflies and mayflies suggest biomimetic solutions.
Lift estimation of Half-Rotating Wing in hovering flight
NASA Astrophysics Data System (ADS)
Wang, X. Y.; Dong, Y. P.; Qiu, Z. Z.; Zhang, Y. Q.; Shan, J. H.
2016-11-01
Half-Rotating Wing (HRW) is a new kind of flapping wing system with rotating flapping instead of oscillating flapping. Estimating approach of hovering lift which generated in hovering flight was important theoretical foundation to design aircraft using HRW. The working principle of HRW based on Half-Rotating Mechanism (HRM) was firstly introduced in this paper. Generating process of lift by HRW was also given. The calculating models of two lift mechanisms for HRW, including Lift of Flow Around Wing (LFAW) and Lift of Flow Dragging Wing (LFDW), were respectively established. The lift estimating model of HRW was further deduced, by which hovering lift for HRW with different angular velocity could be calculated. Case study using XFLOW software simulation indicates that the above estimating method was effective and feasible to predict roughly the hovering lift for a new HRW system.
NASA Technical Reports Server (NTRS)
Naumowicz, Tim; Hange, Craig; Olson, Lawrence E. (Technical Monitor)
1998-01-01
An external environment test for an AV-8B Harrier during hover and vertical operations was conducted at NAWCAD at Patuxent River, Maryland in July 1997. Four boundary layer rakes were instrumented with static and total pressures, and thermocouples for measuring temperatures. These rakes were installed at 30, 50, 75, and 100 foot from the hover center. The 50 ft and 100 ft rakes were offset 20 deg from the other two to minimize interference effects. In order to measure a complete flowfield footprint, it was necessary to have the Harrier change its heading relative to the rakes from 0 to 180 deg. A 20 deg increment in azimuth was used. This permitted the four rakes to measure the flowfield at 72 locations relative to the aircraft. However, as the Harrier burns fuel, the hover thrust must be reduced by the pilot in order to maintain a constant height above ground. The typical test procedure employed was: (1) vertical takeoff at an initial heading; (2) 20 second hover dwell at that heading; (3) pedal turn to a second heading, followed by a 20 second dwell hover; (4) pedal turn to a third heading, followed by a 20 second dwell hover; and (5) vertical landing at the third heading. Additional information is contained in the original extended abstract.
Andrew, Megan; Kim, Yusung; Ginader, Timothy; Smith, Brian J.; Sun, Wenqing
2018-01-01
Purpose To quantify the reduction of relative displacement between the implanted intracavitary applicator and the patient bony anatomy, due to the use of a hover transport system during the patient transports between the imaging table and the treatment table. Material and methods The displacement of the applicator inside the patient was measured by comparing the distance between the tip of the tandem and the pubic bone on X-ray radiography images taken before and after moving a patient to magnetic resonance/computed tomography imaging. Displacements were evaluated for 27 fractions of treatment using hover transport and 185 fractions of treatment using manual transport. Results The use of hover transport system reduced the percentage of fractions with displacements greater than 5 mm from 22.7% to 7.4%. The reduction of applicator displacement using hover transport is statistically significant, compared to the manual transport method (p-value 0.0086; mean displacement 3.41 mm [95% CI: 2.96-3.97] for manual transport, and 2.27 mm [95% CI: 1.71-2.97] for hover transport fractions). Conclusions This study indicates that the hover transport system is effectively reducing displacement between tandem and patient bony anatomy during patient transports. The potential improvement in dosimetric accuracy due to this reduction warrants further study. PMID:29619060
Size effects on insect hovering aerodynamics: an integrated computational study.
Liu, H; Aono, H
2009-03-01
Hovering is a miracle of insects that is observed for all sizes of flying insects. Sizing effect in insect hovering on flapping-wing aerodynamics is of interest to both the micro-air-vehicle (MAV) community and also of importance to comparative morphologists. In this study, we present an integrated computational study of such size effects on insect hovering aerodynamics, which is performed using a biology-inspired dynamic flight simulator that integrates the modelling of realistic wing-body morphology, the modelling of flapping-wing and body kinematics and an in-house Navier-Stokes solver. Results of four typical insect hovering flights including a hawkmoth, a honeybee, a fruit fly and a thrips, over a wide range of Reynolds numbers from O(10(4)) to O(10(1)) are presented, which demonstrate the feasibility of the present integrated computational methods in quantitatively modelling and evaluating the unsteady aerodynamics in insect flapping flight. Our results based on realistically modelling of insect hovering therefore offer an integrated understanding of the near-field vortex dynamics, the far-field wake and downwash structures, and their correlation with the force production in terms of sizing and Reynolds number as well as wing kinematics. Our results not only give an integrated interpretation on the similarity and discrepancy of the near- and far-field vortex structures in insect hovering but also demonstrate that our methods can be an effective tool in the MAVs design.
The wake of hovering flight in bats
Håkansson, Jonas; Hedenström, Anders; Winter, York; Johansson, L. Christoffer
2015-01-01
Hovering means stationary flight at zero net forward speed, which can be achieved by animals through muscle powered flapping flight. Small bats capable of hovering typically do so with a downstroke in an inclined stroke plane, and with an aerodynamically active outer wing during the upstroke. The magnitude and time history of aerodynamic forces should be reflected by vorticity shed into the wake. We thus expect hovering bats to generate a characteristic wake, but this has until now never been studied. Here we trained nectar-feeding bats, Leptonycteris yerbabuenae, to hover at a feeder and using time-resolved stereoscopic particle image velocimetry in conjunction with high-speed kinematic analysis we show that hovering nectar-feeding bats produce a series of bilateral stacked vortex loops. Vortex visualizations suggest that the downstroke produces the majority of the weight support, but that the upstroke contributes positively to the lift production. However, the relative contributions from downstroke and upstroke could not be determined on the basis of the wake, because wake elements from down- and upstroke mix and interact. We also use a modified actuator disc model to estimate lift force, power and flap efficiency. Based on our quantitative wake-induced velocities, the model accounts for weight support well (108%). Estimates of aerodynamic efficiency suggest hovering flight is less efficient than forward flapping flight, while the overall energy conversion efficiency (mechanical power output/metabolic power) was estimated at 13%. PMID:26179990
A unique facility for V/STOL aircraft hover testing. [Langley Impact Dynamics Research Facility
NASA Technical Reports Server (NTRS)
Culpepper, R. G.; Murphy, R. D.; Gillespie, E. A.; Lane, A. G.
1979-01-01
The Langley Impact Dynamics Research Facility (IDRF) was modified to obtain static force and moment data and to allow assessment of aircraft handling qualities during dynamic tethered hover flight. Test probe procedures were also established. Static lift and control measurements obtained are presented along with results of limited dynamic tethered hover flight.
NASA Astrophysics Data System (ADS)
ul Amin, Rooh; Aijun, Li; Khan, Muhammad Umer; Shamshirband, Shahaboddin; Kamsin, Amirrudin
2017-01-01
In this paper, an adaptive trajectory tracking controller based on extended normalized radial basis function network (ENRBFN) is proposed for 3-degree-of-freedom four rotor hover vehicle subjected to external disturbance i.e. wind turbulence. Mathematical model of four rotor hover system is developed using equations of motions and a new computational intelligence based technique ENRBFN is introduced to approximate the unmodeled dynamics of the hover vehicle. The adaptive controller based on the Lyapunov stability approach is designed to achieve tracking of the desired attitude angles of four rotor hover vehicle in the presence of wind turbulence. The adaptive weight update based on the Levenberg-Marquardt algorithm is used to avoid weight drift in case the system is exposed to external disturbances. The closed-loop system stability is also analyzed using Lyapunov stability theory. Simulations and experimental results are included to validate the effectiveness of the proposed control scheme.
Bhardwaj, Ankur R; Joshi, Gopal; Kukreja, Bharti; Malik, Vidhi; Arora, Priyanka; Pandey, Ritu; Shukla, Rohit N; Bankar, Kiran G; Katiyar-Agarwal, Surekha; Goel, Shailendra; Jagannath, Arun; Kumar, Amar; Agarwal, Manu
2015-01-21
Brassica juncea var. Varuna is an economically important oilseed crop of family Brassicaceae which is vulnerable to abiotic stresses at specific stages in its life cycle. Till date no attempts have been made to elucidate genome-wide changes in its transcriptome against high temperature or drought stress. To gain global insights into genes, transcription factors and kinases regulated by these stresses and to explore information on coding transcripts that are associated with traits of agronomic importance, we utilized a combinatorial approach of next generation sequencing and de-novo assembly to discover B. juncea transcriptome associated with high temperature and drought stresses. We constructed and sequenced three transcriptome libraries namely Brassica control (BC), Brassica high temperature stress (BHS) and Brassica drought stress (BDS). More than 180 million purity filtered reads were generated which were processed through quality parameters and high quality reads were assembled de-novo using SOAPdenovo assembler. A total of 77750 unique transcripts were identified out of which 69,245 (89%) were annotated with high confidence. We established a subset of 19110 transcripts, which were differentially regulated by either high temperature and/or drought stress. Furthermore, 886 and 2834 transcripts that code for transcription factors and kinases, respectively, were also identified. Many of these were responsive to high temperature, drought or both stresses. Maximum number of up-regulated transcription factors in high temperature and drought stress belonged to heat shock factors (HSFs) and dehydration responsive element-binding (DREB) families, respectively. We also identified 239 metabolic pathways, which were perturbed during high temperature and drought treatments. Analysis of gene ontologies associated with differentially regulated genes forecasted their involvement in diverse biological processes. Our study provides first comprehensive discovery of B. juncea transcriptome under high temperature and drought stress conditions. Transcriptome resource generated in this study will enhance our understanding on the molecular mechanisms involved in defining the response of B. juncea against two important abiotic stresses. Furthermore this information would benefit designing of efficient crop improvement strategies for tolerance against conditions of high temperature regimes and water scarcity.
Study of Army Design Hover Criteria
2017-09-01
SPECIAL REPORT RDMR-AE-17-02 STUDY OF ARMY DESIGN HOVER CRITERIA Douglas V. Horacek Command Analysis Directorate Aviation...OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS. TRADE NAMES USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT...Study of Army Design Hover Criteria 5. FUNDING NUMBERS 6. AUTHOR(S) Douglas V. Horacek and Mark E. Calvert 7. PERFORMING ORGANIZATION
Formal optimization of hovering performance using free wake lifting surface theory
NASA Technical Reports Server (NTRS)
Chung, S. Y.
1986-01-01
Free wake techniques for performance prediction and optimization of hovering rotor are discussed. The influence functions due to vortex ring, vortex cylinder, and source or vortex sheets are presented. The vortex core sizes of rotor wake vortices are calculated and their importance is discussed. Lifting body theory for finite thickness body is developed for pressure calculation, and hence performance prediction of hovering rotors. Numerical optimization technique based on free wake lifting line theory is presented and discussed. It is demonstrated that formal optimization can be used with the implicit and nonlinear objective or cost function such as the performance of hovering rotors as used in this report.
Toward understanding the mechanics of hovering in insects, hummingbirds and bats
NASA Astrophysics Data System (ADS)
Vejdani, Hamid; Boerma, David; Swartz, Sharon; Breuer, Kenneth
2016-11-01
We present results on the dynamical characteristics of two different mechanisms of hovering, corresponding to the behavior of hummingbirds and bats. Using a Lagrangian formulation, we have developed a dynamical model of a body (trunk) and two rectangular wings. The trunk has 3 degrees of freedom (x, z and pitch angle) and each wing has 3 modes of actuation: flapping, pronation/supination, and wingspan extension/flexion (only present for bats). Wings can be effectively massless (hummingbird and insect wings) or relatively massive (important in the case of bats). The aerodynamic drag and lift forces are calculated using a quasi-steady blade-element model. The regions of state space in which hovering is possible are computed by over an exhaustive range of parameters. The effect of wing mass is to shrink the phase space available for viable hovering and, in general, to require higher wingbeat frequency. Moreover, by exploring hovering energy requirements, we find that the pronation angle of the wings also plays a critical role. For bats, who have relatively heavy wings, we show wing extension and flexion is critical in order to maintain a plausible hovering posture with reasonable power requirements. Comparisons with biological data show good agreement with our model predictions.
Perception-based synthetic cueing for night vision device rotorcraft hover operations
NASA Astrophysics Data System (ADS)
Bachelder, Edward N.; McRuer, Duane
2002-08-01
Helicopter flight using night-vision devices (NVDs) is difficult to perform, as evidenced by the high accident rate associated with NVD flight compared to day operation. The approach proposed in this paper is to augment the NVD image with synthetic cueing, whereby the cues would emulate position and motion and appear to be actually occurring in physical space on which they are overlaid. Synthetic cues allow for selective enhancement of perceptual state gains to match the task requirements. A hover cue set was developed based on an analogue of a physical target used in a flight handling qualities tracking task, a perceptual task analysis for hover, and fundamentals of human spatial perception. The display was implemented on a simulation environment, constructed using a virtual reality device, an ultrasound head-tracker, and a fixed-base helicopter simulator. Seven highly trained helicopter pilots were used as experimental subjects and tasked to maintain hover in the presence of aircraft positional disturbances while viewing a synthesized NVD environment and the experimental hover cues. Significant performance improvements were observed when using synthetic cue augmentation. This paper demonstrates that artificial magnification of perceptual states through synthetic cueing can be an effective method of improving night-vision helicopter hover operations.
Tilt rotor hover aeroacoustics
NASA Technical Reports Server (NTRS)
Coffen, Charles David
1992-01-01
The methodology, results, and conclusions of a study of tilt rotor hover aeroacoustics and aerodynamics are presented. Flow visualization and hot wire velocity measurement were performed on a 1/12-scale model of the XV-15 Tilt Rotor Aircraft in hover. The wing and fuselage below the rotor cause a complex recirculating flow. Results indicate the physical dimensions and details of the flow including the relative unsteadiness and turbulence characteristics of the flow. Discrete frequency harmonic thickness and the loading noise mechanism were predicted using WOPWOP for the standard metal blades and the Advanced Technology Blades. The recirculating flow created by the wing below the rotor is a primary sound mechanism for a hovering tilt rotor. The effects of dynamic blade response should be included for fountain flow conditions which produce impulsive blade loading. Broadband noise mechanisms were studied using Amiet's method with azimuthally varying turbulence characteristics derived from the measurements. The recirculating fountain flow with high turbulence levels in the recirculating zone is the dominant source of broadband noise for a hovering rotor. It is shown that tilt rotor hover aeroacoustic noise mechanisms are now understood. Noise predictions can be made based on reasonably accurate aerodynamic models developed here.
Rawat, Sandhya; Ali, Sajad; Mittra, Bhabatosh; Grover, Anita
2017-03-01
Chitinases are the hydrolytic enzymes which belong to the pathogenesis-related (PR) protein family and play an important role not only in plant defense but also in various abiotic stresses. However, only a limited number of chitinase genes have been characterised in B. juncea . In this study, we have characterised B. juncea class IV chitinase gene (accession no EF586206) in response to fungal infection, salicylic acid (SA), jasmonic acid (JA) treatments and wounding. Gene expression studies revealed that the transcript levels of Bjchitinase ( BjChp ) gene increases significantly both in local and distal tissues after Alternaria infection. Bjchitinase gene was also induced by jasmonic acid and wounding but moderately by salicylic acid. A 2.5 kb class IV chitinase promoter of this gene was isolated from B. juncea by Genome walking (accession no KF055403.1). In-silico analysis of this promoter revealed a number of conserved cis -regulatory elements related to defense, wounding and signalling molecules like SA, and JA. For validation, chitinase promoter was fused to the GUS gene, and the resultant construct was then introduced into Arabidopsis plants. Histochemical analysis of T 2 transgenic Arabidopsis plants showed that higher GUS activity in leaves after fungal infection, wounding and JA treatment but weakly by SA. GUS activity was seen in meristematic tissues, young leaves, seeds and siliques. Finally investigation has led to the identification of a pathogen-inducible, developmentally regulated and organ-specific promoter. Present study revealed that Bjchitinase ( BjChp ) promoter is induced during biotic and environmental stress and it can be used in developing finely tuned transgenics.
Kajla, Sachin; Mukhopadhyay, Arundhati
2017-01-01
Sinapine is a major anti-nutritive compound that accumulates in the seeds of Brassica species. When ingested, sinapine imparts gritty flavuor in meat and milk of animals and fishy odor to eggs of brown egg layers, thereby compromising the potential use of the valuable protein rich seed meal. Sinapine content in Brassica juncea germplasm ranges from 6.7 to 15.1 mg/g of dry seed weight (DSW) which is significantly higher than the prescribed permissible level of 3.0 mg/g of DSW. Due to limited natural genetic variability, conventional plant breeding approach for reducing the sinapine content has largely been unsuccessful. Hence, transgenic approach for gene silencing was adopted by targeting two genes—SGT and SCT, encoding enzymes UDP- glucose: sinapate glucosyltransferase and sinapoylglucose: choline sinapoyltransferase, respectively, involved in the final two steps of sinapine biosynthetic pathway. These two genes were isolated from B. juncea and eight silencing constructs were developed using three different RNA silencing approaches viz. antisense RNA, RNAi and artificial microRNA. Transgenics in B. juncea were developed following Agrobacterium-mediated transformation. From a total of 1232 independent T0 transgenic events obtained using eight silencing constructs, 25 homozygous lines showing single gene inheritance were identified in the T2 generation. Reduction of seed sinapine content in these lines ranged from 15.8% to 67.2%; the line with maximum reduction had sinapine content of 3.79 mg/g of DSW. The study also revealed that RNAi method was more efficient than the other two methods used in this study. PMID:28787461
González, Luís
2014-01-01
Mine tailings represent a serious threat to the environment and human health; thus their restoration has become a major concern. In this study, the interactions between Brassica juncea and different mine soil treatments were evaluated in order to understand their effect on germination and early growth. Three soil treatments containing 25% and 50% of technosol and 30% of compost were prepared. Germination and early growth were assessed in soil and pore water extracts from the treatments. Unlike the untreated mine soil, the three treatments allowed germination and growth, achieving levels comparable to those of seedlings from the same species developed in normal conditions. The seedlings grown in 50% of technosol and 30% of compost exhibited greater germination percentages, higher growth, and more efficient mechanisms against oxidative stress, ascribed to the organic matter and nutrients content of these treatments. Considering the unequivocal ability of B. juncea for phytoremediation, the results suggest that technosol and compost may be an auspicious solution to allow the germination and early growth of this species in mine tailings. PMID:25386602
Effects of elemental sulphur on heavy metal uptake by plants growing on municipal sewage sludge.
Dede, Gulgun; Ozdemir, Saim
2016-01-15
In this study experiment was carried out to determine the phytoextraction potential of six plant species (Conium maculatum, Brassica oleraceae var. oleraceae, Brassica juncea, Datura stramonium, Pelargonium hortorum and Conyza canadensis) grown in a sewage sludge medium amended with metal uptake promoters. The solubility of Cu, Cd and Pb was significantly increased with the application of elemental S due to decrease of pH. Faecal coliform number was markedly decreased by addition of elemental sulphur. The extraction of Cu, Cr and Pb from sewage sludge by using B. juncea plant was observed as 65%, 65% and 54% respectively that is statistically similar to EDTA as sulphur. The bioaccumulation factors were found higher (>1) in the plants tested for Cu and Pb like B. juncea. Translocation index (TI) calculated values for Cd and Pb were greater than one (>1) in both C. maculatum and B. oleraceae var. oleraceae. The results cleared that the amendment of sludge with elemental sulphur showed potential to solubilize heavy metals in phytoremediation as much as EDTA. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sadhukhan, Suvra; Bhattacharjee, Annesha; Sarkar, Ujjaini; Baidya, Pabitra Kumar; Baksi, Sibashish
2018-05-01
The oil extracted from Crotalaria juncea (Sunn-hemp) contains 70% of gum. Several methods of degumming are attempted in order to maximize the yield of gum. During appropriate water induced degumming, about 95-98% of phosphatides are separated. The maximum oil yield for two types of degummimg processes are 0.59% and 0.69% corresponding to hot water and pure O-phosphoric acid (19.88 N) treatment respectively. The % oil yield obtained for TOP degumming is about 0.78%. Physico-chemical characteristics of the isolated gum such as moisture, ash, protein, fat and aqueous solubility along with FTIR and TGA analysis are studied in order to evaluate the effect of extraction process. The behaviour of gum on the molecular scale is evaluated through alcohol treatment. Chromatographic analysis determines the monosaccharide content of the gum with glucose: xylose: arabinose::54: 34:1. Rheological characterization shows that the juncea gum solutions are shear rate dependent and the behaviour is shear-thinning (or pseudoplastic). Results show that the temperature dependent viscosity decreases with increasing shear rate. Copyright © 2018 Elsevier B.V. All rights reserved.
Wallace, S K; Eigenbrode, Sanford D
2002-02-01
Optimal defense theory (ODT) predicts that plant defenses will be allocated to plant organs and tissues in proportion to their relative fitness values and susceptibilities to attack. This study was designed to test ODT predictions on the myrosinase-glucosinolate defense system in Brassica juncea by examining the relationships between the fitness value of B. juncea cotyledons and the levels and effectiveness of cotyledon defenses. Specifically, we estimated fitness value of cotyledons during plant development by measuring plant growth and seed production after cotyledon damage or removal at successive seedling ages. Cotyledon removal within five days of emergence had a significant impact on growth and seed production, but cotyledon removal at later stages did not. Consistent with ODT, glucosinolate and myrosinase levels in cotyledons also declined with seedling age, as did relative defenses against a generalist herbivore, Spodoptera eridania, as estimated by bioassay. Declines in glucosinolates were as predicted by a passive, allometric dilution model based on cotyledon expansion. Declines in myrosinase activity were significantly more gradual than predicted by allometric dilution, suggesting active retention of myrosinase activity as young cotyledons expand.
Spacecraft Station-Keeping Trajectory and Mission Design Tools
NASA Technical Reports Server (NTRS)
Chung, Min-Kun J.
2009-01-01
Two tools were developed for designing station-keeping trajectories and estimating delta-v requirements for designing missions to a small body such as a comet or asteroid. This innovation uses NPOPT, a non-sparse, general-purpose sequential quadratic programming (SQP) optimizer and the Two-Level Differential Corrector (T-LDC) in LTool (Libration point mission design Tool) to design three kinds of station-keeping scripts: vertical hovering, horizontal hovering, and orbiting. The T-LDC is used to differentially correct several trajectory legs that join hovering points. In a vertical hovering, the maximum and minimum range points must be connected smoothly while maintaining the spacecrafts range from a small body, all within the law of gravity and the solar radiation pressure. The same is true for a horizontal hover. A PatchPoint is an LTool class that denotes a space-time event with some extra information for differential correction, including a set of constraints to be satisfied by T-LDC. Given a set of PatchPoints, each with its own constraint, the T-LDC differentially corrects the entire trajectory by connecting each trajectory leg joined by PatchPoints while satisfying all specified constraints at the same time. Vertical and horizontal hover both are needed to minimize delta-v spent for station keeping. A Python I/F to NPOPT has been written to be used from an LTool script. In vertical hovering, the spacecraft stays along the line joining the Sun and a small body. An instantaneous delta-v toward the anti- Sun direction is applied at the closest approach to the small body for station keeping. For example, the spacecraft hovers between the minimum range (2 km) point and the maximum range (2.5 km) point from the asteroid 1989ML. Horizontal hovering buys more time for a spacecraft to recover if, for any reason, a planned thrust fails, by returning almost to the initial position after some time later via a near elliptical orbit around the small body. The mapping or staging orbit may be similarly generated using T-LDC with a set of constraints. Some delta-v tables are generated for several different asteroid masses.
Optimum performance and potential flow field of hovering rotors
NASA Technical Reports Server (NTRS)
Wu, J. C.; Sigman, R. K.
1975-01-01
Rotor and propeller performance and induced potential flowfields were studied on the basis of a rotating actuator disk concept, with special emphasis on rotors hovering out of ground effect. A new theory for the optimum performance of rotors hovering OGE is developed and presented. An extended theory for the optimum performance of rotors and propellers in axial motion is also presented. Numerical results are presented for the optimum distributions of blade-bound circulation together with axial inflow and ultimate wake velocities for the hovering rotor over the range of thrust coefficient of interest in rotorcraft applications. Shapes of the stream tubes and of the velocities in the slipstream are obtained, using available methods, for optimum and off-optimum circulation distributions for rotors hovering in and out of ground effect. A number of explicit formulae useful in computing rotor and propeller induced flows are presented for stream functions and velocities due to distributions of circular vortices over axi-symmetric surfaces.
A Fixed-Wing Micro Air Vehicle with Hovering Capability
2010-12-01
AFRL-AFOSR-UK-TR-2010-0001 A Fixed-Wing Micro Air Vehicle with Hovering Capability Jean-Marc Moschetta SUPAERO Dept of...06 July 2010 Air Force Research Laboratory Air Force Office of Scientific Research European Office of Aerospace Research and...To) 06 July 2007 - 06 July 2010 4. TITLE AND SUBTITLE A Fixed-Wing Micro Air Vehicle with Hovering Capability 5a. CONTRACT NUMBER FA8655-07
Wide-field motion tuning in nocturnal hawkmoths
Theobald, Jamie C.; Warrant, Eric J.; O'Carroll, David C.
2010-01-01
Nocturnal hawkmoths are known for impressive visually guided behaviours in dim light, such as hovering while feeding from nectar-bearing flowers. This requires tight visual feedback to estimate and counter relative motion. Discrimination of low velocities, as required for stable hovering flight, is fundamentally limited by spatial resolution, yet in the evolution of eyes for nocturnal vision, maintenance of high spatial acuity compromises absolute sensitivity. To investigate these trade-offs, we compared responses of wide-field motion-sensitive neurons in three species of hawkmoth: Manduca sexta (a crepuscular hoverer), Deilephila elpenor (a fully nocturnal hoverer) and Acherontia atropos (a fully nocturnal hawkmoth that does not hover as it feeds uniquely from honey in bees' nests). We show that despite smaller eyes, the motion pathway of D. elpenor is tuned to higher spatial frequencies and lower temporal frequencies than A. atropos, consistent with D. elpenor's need to detect low velocities for hovering. Acherontia atropos, however, presumably evolved low-light sensitivity without sacrificing temporal acuity. Manduca sexta, active at higher light levels, is tuned to the highest spatial frequencies of the three and temporal frequencies comparable with A. atropos. This yields similar tuning to low velocities as in D. elpenor, but with the advantage of shorter neural delays in processing motion. PMID:19906663
Dhakate, Priyanka; Tyagi, Shikha; Singh, Anupama; Singh, Anandita
2017-05-01
LEAFY plays a central role in regulation of flowering time and floral meristem identity in plants. Unfortunately, LFY function remains uncharacterized in agronomicaly important Brassicas. Herein, we illustrate fine-mapping of expression domains of LFY in 15 cultivars of 6 Brassica species and describe gain-of-function phenotypes in Arabidopsis and Brassica. We depict early flowering and altered fatty-acid composition in transgenic seed. The cDNA encoding BjuLFY (417aa) shared only 85% identity with reported homolog of B.juncea implying distinctness. Quantitative RT-PCR based coarse expression mapping of BjuLFY in tissue samples representing 3 time points at specific days after sowing (DAS), pre-flowering (30 DAS), flowering (75 DAS) and post-flowering (110 DAS), depicted an intense pulse of BjuLFY expression restricted to primary floral buds (75 DAS) which subsided in secondary floral buds (110 DAS); expression in root samples was also recorded implying neo-functionalization. Fine-mapping of expression during flowering confirmed tightly regulated LFY expression during early stages of bud development in 15 cultivars of 6 Brassica species implying functional conservation. Ectopic expression of BjuLFY in A. thaliana and B. juncea caused floral meristem defects and precocious flowering. B. juncea transgenics (T 1 ) over-expressing BjuLFY flowered 20days earlier produced normal flowers. GC-MS analysis of mature seed from Brassica transgenics showed an altered fatty-acid profile suggestive of seed maturation occurring at lower temperatures vis-à-vis control. Our findings implicate BjuLFY as a regulator of flowering in B. juncea and suggest its application in developing climate resilient crops. Copyright © 2017 Elsevier B.V. All rights reserved.
Heng, Shuangping; Liu, Sansan; Xia, Chunxiu; Tang, HongYu; Xie, Fei; Fu, Tingdong; Wan, Zhengjie
2018-01-01
KEY MESSAGE: oxa CMS is a new cytoplasmic male sterility type in Brassica juncea. oxa CMS is a cytoplasmic male sterility (CMS) line that has been widely used in the production and cultivation of stem mustard in the southwestern China. In this study, different CMS-type specific mitochondrial markers were used to confirm that oxa CMS is distinct from the pol CMS, ogu CMS, nap CMS, hau CMS, tour CMS, Moricandia arvensis CMS, orf220-type CMS, etc., that have been previously reported in Brassica crops. Pollen grains of the oxa CMS line are sterile with a self-fertility rate of almost 0% and the sterility strain rate and sterility degree of oxa CMS is 100% due to a specific flower structure and flowering habit. Scanning electron microscopy revealed that most pollen grains in mature anthers of the oxa CMS line are empty, flat and deflated. Semi-thin section further showed that the abortive stage of anther development in oxa CMS is initiated at the late uninucleate stage. Abnormally vacuolated microspores caused male sterility in the oxa CMS line. This cytological study combined with marker-assisted selection showed that oxa CMS is a novel CMS type in stem mustard (Brassica juncea). Interestingly, the abortive stage of oxa CMS is later than those in other CMS types reported in Brassica crops, and there is no negative effect on the oxa CMS line growth period. This study demonstrated that this novel oxa CMS has a unique flower structure with sterile pollen grains at the late uninucleate stage. Our results may help to uncover the mechanism of oxa CMS in Brassica juncea.
Role of an Ethanolic Extract of Crotalaria juncea L. on High-Fat Diet-Induced Hypercholesterolemia.
Kumar, Dinakaran Sathis; David, Banji; Harani, Avasarala; Vijay, Bhaskar
2014-01-01
To evaluate the antihypercholesterolemic effects of 50 mg/kg BW and 100 mg/kg BW per day of an ethanolic extract of Crotalaria juncea Linn (whole plant) by performing in vivo studies. The effects of oral administration of 50 mg/kg BW and 100 mg/kg BW per day of an ethanolic extract of Crotalaria juncea Linn (whole plant) in rats fed with a high-fat diet were investigated by evaluating parameters like food consumption, weight gain, fecal fat excretion, serum and liver lipids, and biochemical profiles as well as by histopathological studies. The results were compared to animals fed with the standard diet and animals fed with a high-fat diet and atorvastatin (10 mg/kg BW). The animal group administered with the ethanolic extract for 35 days showed decreased levels of TC, LDL, VLDL, TG, HDL+VLDL, VLDL+LDL, LDL/TC, AI, SGOT, SGPT, and elevated levels of HDL, HDL/TC, significantly (p<0.01 & p<0.05) in a dose-dependent manner. The evaluation of liver tissues of the animal groups treated with the herbal extract and standard had shown increased levels of SOD, GSH, and catalase, whereas levels of SGOT, SGPT, total glucose, HMG-CoA, lipase, amylase, and the percentage of malon-dialdehyde were decreased when compared with the high-fat diet-fed rats. Body weight and food intake in the treated groups were significantly lower than that in the model control. The present study showed that an ethanolic extract of Crotalaria juncea L. influences several blood lipid and metabolic parameters in rats, suggesting a potential benefit as an antihypercholesterolemic agent.
Hu, Xinkun; Dai, Shoufen; Song, Zhongping; Xu, Dongyang; Wen, Zhaojin; Wei, Yuming; Liu, Dengcai; Zheng, Youliang; Yan, Zehong
2018-06-01
Nine novel high-molecular-weight prolamins (HMW-prolamins) were isolated from Leymus multicaulis and L. chinensis. Based on the structure of the repetitive domains, all nine genes were classified as D-hordeins but not high-molecular-weight glutenin subunits (HMW-GSs) that have been previously isolated in Leymus spp. Four genes, Lmul 1.2, 2.4, 2.7, and Lchi 2.5 were verified by bacterial expression, whereas the other five sequences (1.3 types) were classified as pseudogenes. The four Leymus D-hordein proteins had longer N-termini than those of Hordeum spp. [116/118 vs. 110 amino acid (AA) residues], whereas three (Lmul 1.2, 2.4, and 2.7) contained shorter N-termini than those of the Ps. juncea (116 vs. 118 AA residues). Furthermore, Lmul 1.2 was identified as the smallest D-hordein, and Lmul 1.2 and 2.7 had an additional cysteines. Phylogenetic analysis supported that the nine D-hordeins of Leymus formed two independent clades, with all the 1.3 types clustered with Ps. juncea Ns 1.3, whereas the others were clustered together with the D-hordeins from Hordeum and Ps. juncea and the HMW-GSs from Leymus. Within the clade of four D-hordein genes and HMW-GSs, the HMW-GSs of Leymus formed a separated branch that served as an intermediate between the D-hordeins of Ps. juncea and Leymus. These novel D-hordeins may be potentially utilized in the improvement of food processing properties particularly those relating to extra cysteine residues. The findings of the present study also provide basic information for understanding the HMW-prolamins among Triticeae species, as well as expand the sources of D-hordeins from Hordeum to Leymus.
The need for higher-order averaging in the stability analysis of hovering, flapping-wing flight.
Taha, Haithem E; Tahmasian, Sevak; Woolsey, Craig A; Nayfeh, Ali H; Hajj, Muhammad R
2015-01-05
Because of the relatively high flapping frequency associated with hovering insects and flapping wing micro-air vehicles (FWMAVs), dynamic stability analysis typically involves direct averaging of the time-periodic dynamics over a flapping cycle. However, direct application of the averaging theorem may lead to false conclusions about the dynamics and stability of hovering insects and FWMAVs. Higher-order averaging techniques may be needed to understand the dynamics of flapping wing flight and to analyze its stability. We use second-order averaging to analyze the hovering dynamics of five insects in response to high-amplitude, high-frequency, periodic wing motion. We discuss the applicability of direct averaging versus second-order averaging for these insects.
Helicopter flight-control design using an H(2) method
NASA Technical Reports Server (NTRS)
Takahashi, Marc D.
1991-01-01
Rate-command and attitude-command flight-control designs for a UH-60 helicopter in hover are presented and were synthesized using an H(2) method. Using weight functions, this method allows the direct shaping of the singular values of the sensitivity, complementary sensitivity, and control input transfer-function matrices to give acceptable feedback properties. The designs were implemented on the Vertical Motion Simulator, and four low-speed hover tasks were used to evaluate the control system characteristics. The pilot comments from the accel-decel, bob-up, hovering turn, and side-step tasks indicated good decoupling and quick response characteristics. However, an underlying roll PIO tendency was found to exist away from the hover condition, which was caused by a flap regressing mode with insufficient damping.
Control of a human-powered helicopter in hover
NASA Technical Reports Server (NTRS)
Totah, Joseph J.; Patterson, William
1988-01-01
The study of a control system for the Da Vinci 2 human-powered helicopter in hovering flight is documented. This helicopter has two very large, slowly rotating rotor blades and is considered to be unstable in hover. The control system is designed to introduce stability in hover by maintaining level rotors through the use of rotor tip mounted control surfaces. A five degree of freedom kinematic model was developed to study this control system and is documented. Results of this study show that the unaugmented configuration is unstable due to the large Lock Number, and the augmented configuration is stable. The role of NASA in this study included the development and analysis of the kinematic model and control laws. Both analytical and numerical techniques were used.
Hummingbirds control hovering flight by stabilizing visual motion.
Goller, Benjamin; Altshuler, Douglas L
2014-12-23
Relatively little is known about how sensory information is used for controlling flight in birds. A powerful method is to immerse an animal in a dynamic virtual reality environment to examine behavioral responses. Here, we investigated the role of vision during free-flight hovering in hummingbirds to determine how optic flow--image movement across the retina--is used to control body position. We filmed hummingbirds hovering in front of a projection screen with the prediction that projecting moving patterns would disrupt hovering stability but stationary patterns would allow the hummingbird to stabilize position. When hovering in the presence of moving gratings and spirals, hummingbirds lost positional stability and responded to the specific orientation of the moving visual stimulus. There was no loss of stability with stationary versions of the same stimulus patterns. When exposed to a single stimulus many times or to a weakened stimulus that combined a moving spiral with a stationary checkerboard, the response to looming motion declined. However, even minimal visual motion was sufficient to cause a loss of positional stability despite prominent stationary features. Collectively, these experiments demonstrate that hummingbirds control hovering position by stabilizing motions in their visual field. The high sensitivity and persistence of this disruptive response is surprising, given that the hummingbird brain is highly specialized for sensory processing and spatial mapping, providing other potential mechanisms for controlling position.
Micro-PIXE studies of elemental distribution in Cd-accumulating Brassica juncea L.
NASA Astrophysics Data System (ADS)
Schneider, Thorsten; Haag-Kerwer, Angela; Maetz, Mischa; Niecke, Manfred; Povh, Bogdan; Rausch, Thomas; Schüßler, Arthur
1999-10-01
Brassica juncea L. is a high biomass producing crop plant, being able to accumulate Cd and other heavy metals in their roots and shoots. It is a good candidate for efficient phytoextraction of heavy metals - such as Cd - from polluted soils. PIXE and STIM analyses were applied to investigate Cd-uptake in roots and the resulting effects on the elemental distribution of Cd stressed plants. The axial distribution of trace elements as a function of distance from the root tip as well as the radial distribution within cross-sections were analysed. The results are compared with the elemental distribution in control plants.
Kanwar, Mukesh Kumar; Bhardwaj, Renu; Arora, Priya; Chowdhary, Sikandar Pal; Sharma, Priyanka; Kumar, Subodh
2012-01-01
Brassinosteroids (BRs) are involved in the amelioration of various biotic and abiotic stresses. With an aim to explore the role of BRs under heavy metal stress, plants of Brassica juncea L. were grown in pots. The plants were subjected to various concentrations of Nickel metal (0.0, 0.2, 0.4 and 0.6 mM) and harvested on 60th day in order to observe the expression of these hormones. The isolated BRs from the leaves of Brassica plants characterized by GC-MS include 24-Epibrassinolide (24-EBL), Castasterone, Dolicholide and Typhasterole. The effect of isolated 24-EBL was studied on Ni metal uptake and antioxidative defense system in 60 d old plants of Brassica. It was observed that 24-EBL significantly increased the activities of stress ameliorating enzymes and lowered the metal uptake in plants. This is the first report in B. juncea L. plants showing the expression of BRs under metal treatments and effect of the isolated 24-EBL on metal uptake and in oxidative stress management. Copyright © 2011 Elsevier Ltd. All rights reserved.
Liu, Yong-Bo; Tang, Zhi-Xi; Darmency, Henri; Stewart, C Neal; Di, Kun; Wei, Wei; Ma, Ke-ping
2012-01-01
Seed size has significant implications in ecology, because of its effects on plant fitness. The hybrid seeds that result from crosses between crops and their wild relatives are often small, and the consequences of this have been poorly investigated. Here we report on plant performance of hybrid and its parental transgenic oilseed rape (Brassica napus) and wild B. juncea, all grown from seeds sorted into three seed-size categories. Three seed-size categories were sorted by seed diameter for transgenic B. napus, wild B. juncea and their transgenic and non-transgenic hybrids. The seeds were sown in a field at various plant densities. Globally, small-seeded plants had delayed flowering, lower biomass, fewer flowers and seeds, and a lower thousand-seed weight. The seed-size effect varied among plant types but was not affected by plant density. There was no negative effect of seed size in hybrids, but it was correlated with reduced growth for both parents. Our results imply that the risk of further gene flow would probably not be mitigated by the small size of transgenic hybrid seeds. No fitness cost was detected to be associated with the Bt-transgene in this study.
Heng, Shuangping; Wei, Chao; Jing, Bing; Wan, Zhengjie; Wen, Jing; Yi, Bin; Ma, Chaozhi; Tu, Jinxing; Fu, Tingdong; Shen, Jinxiong
2014-04-30
Cytoplasmic male sterility (CMS) is not only important for exploiting heterosis in crop plants, but also as a model for investigating nuclear-cytoplasmic interaction. CMS may be caused by mutations, rearrangement or recombination in the mitochondrial genome. Understanding the mitochondrial genome is often the first and key step in unraveling the molecular and genetic basis of CMS in plants. Comparative analysis of the mitochondrial genome of the hau CMS line and its maintainer line in B. juneca (Brassica juncea) may help show the origin of the CMS-associated gene orf288. Through next-generation sequencing, the B. juncea hau CMS mitochondrial genome was assembled into a single, circular-mapping molecule that is 247,903 bp in size and 45.08% in GC content. In addition to the CMS associated gene orf288, the genome contains 35 protein-encoding genes, 3 rRNAs, 25 tRNA genes and 29 ORFs of unknown function. The mitochondrial genome sizes of the maintainer line and another normal type line "J163-4" are both 219,863 bp and with GC content at 45.23%. The maintainer line has 36 genes with protein products, 3 rRNAs, 22 tRNA genes and 31 unidentified ORFs. Comparative analysis the mitochondrial genomes of the hau CMS line and its maintainer line allowed us to develop specific markers to separate the two lines at the seedling stage. We also confirmed that different mitotypes coexist substoichiometrically in hau CMS lines and its maintainer lines in B. juncea. The number of repeats larger than 100 bp in the hau CMS line (16 repeats) are nearly twice of those found in the maintainer line (9 repeats). Phylogenetic analysis of the CMS-associated gene orf288 and four other homologous sequences in Brassicaceae show that orf288 was clearly different from orf263 in Brassica tournefortii despite of strong similarity. The hau CMS mitochondrial genome was highly rearranged when compared with its iso-nuclear maintainer line mitochondrial genome. This study may be useful for studying the mechanism of natural CMS in B. juncea, performing comparative analysis on sequenced mitochondrial genomes in Brassicas, and uncovering the origin of the hau CMS mitotype and structural and evolutionary differences between different mitotypes.
A simulator study on information requirements for precision hovering
NASA Technical Reports Server (NTRS)
Lemons, J. L.; Dukes, T. A.
1975-01-01
A fixed base simulator study of an advanced helicopter instrument display utilizing translational acceleration, velocity and position information is reported. The simulation involved piloting a heavy helicopter using the Integrated Trajectory Error Display (ITED) in a precision hover task. The test series explored two basic areas. The effect on hover accuracy of adding acceleration information was of primary concern. Also of interest was the operators' ability to use degraded information derived from less sophisticated sources. The addition of translational acceleration to a display containing velocity and position information did not appear to improve the hover performance significantly. However, displayed acceleration information seemed to increase the damping of the man machine system. Finally, the pilots could use translational information synthesized from attitude and angular acceleration as effectively as perfect acceleration.
Preliminary investigation of motion requirements for the simulation of helicopter hover tasks
NASA Technical Reports Server (NTRS)
Parrish, R. V.
1980-01-01
Data from a preliminary experiment are presented which attempted to define a helicopter hover task that would allow the detection of objectively-measured differences in fixed base/moving base simulator performance. The addition of heave, pitch, and roll movement of a ship at sea to the hover task, by means of an adaption of a simulator g-seat, potentially fulfills the desired definition. The feasibility of g-seat substitution for platform motion can be investigated utilizing this task.
NASA Technical Reports Server (NTRS)
Marr, R. L.; Sambell, K. W.; Neal, G. T.
1973-01-01
Stability and control tests of a scale model of a tilt rotor research aircraft were conducted. The characteristics of the model for hover, low speed, and conversion flight were analyzed. Hover tests were conducted in a rotor whirl cage. Helicopter and conversion tests were conducted in a low speed wind tunnel. Data obtained from the tests are presented as tables and graphs. Diagrams and illustrations of the test equipment are provided.
Fernández, María José; Driver, Marion E; Hedrick, Tyson L
2017-10-15
Flight performance is fundamental to the fitness of flying organisms. Whilst airborne, flying organisms face unavoidable wing wear and wing area loss. Many studies have tried to quantify the consequences of wing area loss to flight performance with varied results, suggesting that not all types of damage are equal and different species may have different means to compensate for some forms of wing damage with little to no cost. Here, we investigated the cost of control during hovering flight with damaged wings, specifically wings with asymmetric and symmetric reductions in area, by measuring maximum load lifting capacity and the metabolic power of hovering flight in hawkmoths ( Manduca sexta ). We found that while asymmetric and symmetric reductions are both costly in terms of maximum load lifting and hovering efficiency, asymmetric reductions are approximately twice as costly in terms of wing area lost. The moths also did not modulate flapping frequency and amplitude as predicted by a hovering flight model, suggesting that the ability to do so, possibly tied to asynchronous versus synchronous flight muscles, underlies the varied responses found in different wing clipping experiments. © 2017. Published by The Company of Biologists Ltd.
Direct Inverse Control using an Artificial Neural Network for the Autonomous Hover of a Helicopter
2014-10-05
that if r(t) is the command to hover; the output y(t) will simply track the input command and hold a hover for the helicopter. III. THE X- 4P ...being used to test the DIC techniques to simulate realistic flight conditions. The X- 4P was instrumented with a number of sensors and a data recording...research [1] for system identification. The X- 4P SISO transfer functions were developed by CIFER in order to compare results against the DIC control
1945-04-01
sustentation at various altitudes in the ground-effect region is shown in figure 2. A hovering point obtained at approximately 400 feet altitude and a...power required. DISCUSSION Ground-effect data.- The effect of rpm on the power— .— required for sustentation is clearly indicated by figure 2. A ret...Alfred ORIG. AGENCY : Langley Memorial Aeronautical Lab., Langley Field, Va. PUBLISHED BY : National Advisory Committee for Aeronautics
1959-08-15
XV-3 HOVERING ON RAMP. Flight Test of Bell XV-3 Convertiplane. Bell VTOL tilt-rotor aircraft hovering in front of building N-211 at Moffett Field. The XV-3 design combined a helicopter rotor and a wing. A 450 horsepower Pratt & Whitney piston engine drove the two rotors. The XV-3, first flown in 1955 , was the first tilt-rotor to achieve 100% tilting of rotors. The vehicle was underpowered, however, and could not hover out of ground effect. Note the large ventral fin, which was added to imrpove directional stability in cruse (Oct 1962)
Numerical simulation of a hovering rotor using embedded grids
NASA Technical Reports Server (NTRS)
Duque, Earl-Peter N.; Srinivasan, Ganapathi R.
1992-01-01
The flow field for a rotor blade in hover was computed by numerically solving the compressible thin-layer Navier-Stokes equations on embedded grids. In this work, three embedded grids were used to discretize the flow field - one for the rotor blade and two to convect the rotor wake. The computations were performed at two hovering test conditions, for a two-bladed rectangular rotor of aspect ratio six. The results compare fairly with experiment and illustrates the use of embedded grids in solving helicopter type flow fields.
The relationship between morphological and behavioral mimicry in hover flies (Diptera: Syrphidae).
Penney, Heather D; Hassall, Christopher; Skevington, Jeffrey H; Lamborn, Brent; Sherratt, Thomas N
2014-02-01
Palatable (Batesian) mimics of unprofitable models could use behavioral mimicry to compensate for the ease with which they can be visually discriminated or to augment an already close morphological resemblance. We evaluated these contrasting predictions by assaying the behavior of 57 field-caught species of mimetic hover flies (Diptera: Syrphidae) and quantifying their morphological similarity to a range of potential hymenopteran models. A purpose-built phylogeny for the hover flies was used to control for potential lack of independence due to shared evolutionary history. Those hover fly species that engage in behavioral mimicry (mock stinging, leg waving, wing wagging) were all large wasp mimics within the genera Spilomyia and Temnostoma. While the behavioral mimics assayed were good morphological mimics, not all good mimics were behavioral mimics. Therefore, while the behaviors may have evolved to augment good morphological mimicry, they do not advantage all good mimics.
Full scale hover test of a 25 foot tilt rotor
NASA Technical Reports Server (NTRS)
Helf, S.; Broman, E.; Gatchel, S.; Charles, B.
1973-01-01
The tilt rotor underwent a hover performance test on the Aero Propulsion Laboratory whirl stand at Wright-Patterson Air Force Base. The maximum thrust over density ratio measured at the design tip speed of 740 feet per second was 10,016 pounds. This occurred when the power over density ratio was 1721 horsepower. At the hover overspeed rpm, the thrust and power, over density ratio, were 11,008 pounds and 1866 horsepower. During the test, the maximum measured thrust coefficient was 0.177, and the rotor figure of merit exceeded 0.81. Measured lifting efficiency was 8.35 pounds per horsepower at the thrust a 13,000-pound aircraft would require for hover at sea level on a standard day. No effect of compressibility on performance is discernible in the test results (the range of tip Mach numbers tested was 0.55 to 0.71).
de Melo, Rangel Wesley; Schneider, Jerusa; de Souza, Costa Enio Tarso; Sousa, Soares Cláudio Roberto Fonsêca; Guimarães, Guilherme Luiz Roberto; de Souza, Moreira Fatima Maria
2014-01-01
Arbuscular mycorrhizal fungi (AMF) improve the tolerance of hosting plants to arsenic (As) in contaminated soils. This work assessed the phytoprotective effect of Glomus etunicatum, Acaulospora morrowiae, Gigaspora gigantea, and Acaulospora sp. on four leguminous species (Acacia mangium, Crotalaria juncea, Enterolobium contortisiliquum, and Stizolobium aterrimum) in an As-contaminated soil from a gold mining area. AMF root colonization, biomass production, As and P accumulation, as well as arsenic translocation index (TI) from roots to shoots were measured. The AMF phytoprotective effect was assessed by the P/As ratio and the activity of plant antioxidant enzymes. The AMF colonization ranged from 24 to 28%. In general, all leguminous species had low As TI when inoculated with AMF species. Inoculation of C. juncea with Acaulospora sp. improved significantly As accumulation in roots, and decreased the activity of ascorbate peroxidase (APX) and superoxide dismutase (SOD), highlighting its phytoprotective effect and the potential use of this symbiosis for phytoremediation of As-contaminated soils. However, S. aterrimum has also shown a potential for phytoremediation irrespectively of AMF inoculation. APX was a good indicator of the phytoprotective effect against As contamination in C. juncea and A. mangium. In general P/As ratio in shoots was the best indicator of the phytoprotective effect of all AMF species in all plant species.
Detection of feral transgenic oilseed rape with multiple-herbicide resistance in Japan.
Aono, Mitsuko; Wakiyama, Seiji; Nagatsu, Masato; Nakajima, Nobuyoshi; Tamaoki, Masanori; Kubo, Akihiro; Saji, Hikaru
2006-01-01
Repeated monitoring for escaped transgenic crop plants is sometimes necessary, especially in cases when the crop has not been approved for release into the environment. Transgenic oilseed rape (Brassica napus) was detected along roadsides in central Japan in a previous study. The goal of the current study was to monitor the distribution of transgenic oilseed rape and occurrence of hybridization of transgenic B. napus with feral populations of its closely related species (B. rapa and B. juncea) in the west of Japan in 2005. The progenies of 50 B. napus, 82 B. rapa and 283 B. juncea maternal plants from 95 sampling sites in seven port areas were screened for herbicide-resistance. Transgenic herbicide-resistant seeds were detected from 12 B. napus maternal plants growing at seven sampling sites in two port areas. A portion of the progeny from two transgenic B. napus plants had both glyphosate-resistance and glufosinate-resistance transgenes. Therefore, two types of transgenic B. napus plants are likely to have outcrossed with each other, since the double-herbicide-resistant transgenic strain of oilseed rape has not been developed intentionally for commercial purposes. As found in the previous study, no transgenic seeds were detected from B. rapa or B. juncea, and more extensive sampling is needed to determine whether introgression into these wild species has occurred.
Thakur, Ajay Kumar; Singh, Kunwar Harendra; Singh, Lal; Nanjundan, Joghee; Khan, Yasin Jeshima; Singh, Dhiraj
2018-01-01
Oilseed Brassica represents an important group of oilseed crops with a long history of evolution and cultivation. To understand the origin and evolution of Brassica amphidiploids, simple sequence repeat (SSR) markers were used to unravel genetic variations in three diploids and three amphidiploid Brassica species of U's triangle along with Eruca sativa as an outlier. Of 124 Brassica-derived SSR loci assayed, 100% cross-transferability was obtained for B. juncea and three subspecies of B. rapa , while lowest cross-transferability (91.93%) was obtained for Eruca sativa . The average % age of cross-transferability across all the seven species was 98.15%. The number of alleles detected at each locus ranged from one to six with an average of 3.41 alleles per primer pair. Neighbor-Joining-based dendrogram divided all the 40 accessions into two main groups composed of B. juncea / B. nigra/B. rapa and B. carinata/B. napus/B. oleracea . C-genome of oilseed Brassica species remained relatively more conserved than A- and B-genome. A- genome present in B. juncea and B. napus seems distinct from each other and hence provides great opportunity for generating diversity through synthesizing amphidiploids from different sources of A- genome. B. juncea had least intra-specific distance indicating narrow genetic base. B. rapa appears to be more primitive species from which other two diploid species might have evolved. The SSR marker set developed in this study will assist in DNA fingerprinting of various Brassica species cultivars, evaluating the genetic diversity in Brassica germplasm, genome mapping and construction of linkage maps, gene tagging and various other genomics-related studies in Brassica species. Further, the evolutionary relationship established among various Brassica species would assist in formulating suitable breeding strategies for widening the genetic base of Brassica amphidiploids by exploiting the genetic diversity present in diploid progenitor gene pools.
Niu, Yanxing; Rogiewicz, Anna; Wan, Chuyun; Guo, Mian; Huang, Fenghong; Slominski, Bogdan A
2015-04-01
A study was conducted to evaluate the effect of microwave heating on the efficacy of expeller pressing of rapeseed and mustard seed and the composition of expeller meals in two types of Brassica napus rapeseed (intermediate- and low-glucosinolate) and in Brassica juncea mustard (high-glucosinolate). Following microwave treatment, the microstructure of rapeseed using transmission electron microscopy showed a significant disappearance of oil bodies and myrosin cells. After 6 min of microwave heating (400 g, 800 W), the oil content of rapeseed expeller meal decreased from 44.9 to 13.5% for intermediate-glucosinolate B. napus rapeseed, from 42.6 to 11.3% for low-glucosinolate B. napus rapeseed, and from 44.4 to 14.1% for B. juncea mustard. The latter values were much lower than the oil contents of the corresponding expeller meals derived from the unheated seeds (i.e., 26.6, 22.6, and 29.8%, respectively). Neutral detergent fiber (NDF) contents showed no differences except for the expeller meal from the intermediate-glucosinolate B. napus rapeseed, which increased from 22.7 to 29.2% after 6 min of microwave heating. Microwave treatment for 4 and 5 min effectively inactivated myrosinase enzyme of intermediate-glucosinolate B. napus rapeseed and B. juncea mustard seed, respectively. In low-glucosinolate B. napus rapeseed the enzyme appeared to be more heat stable, with some activity being present after 6 min of microwave heating. Myrosinase enzyme inactivation had a profound effect on the glucosinolate content of expeller meals and prevented their hydrolysis to toxic breakdown products during the expelling process. It appeared evident from this study that microwave heating for 6 min was an effective method of producing expeller meal without toxic glucosinolate breakdown products while at the same time facilitating high yield of oil during the expelling process.
NASA Astrophysics Data System (ADS)
Pezzarossa, Beatrice; Petruzzelli, Gianniantonio; Grifoni, Martina; Rosellini, Irene; Malagoli, Mario; Schiavon, Michela
2013-04-01
Arsenic is recognised as a toxic metalloid and a strong pollutant in soils of many countries. Thus, the reclamation of contaminated areas is fundamental in order to protect both human health and agricultural production. This study is focused on the assisted phytoextraction, a technology for reclaiming polluted soils that takes advantage of the capability of some plants to extract inorganic elements from soils with the aid of additive agents. The nutrients phosphorus, as phosphate, and sulphur, as thiosulphate, can compete with the form more oxidised of arsenic, both in soil and plant. This study examined the capability of thiosulphate (Th) and phosphate (Ph) to promote the release of As from soil surfaces in order to improve the phytoavailability and thus the absorption of As by Brassica juncea plants. In the first experiment B. juncea plants were grown on a soil that had been sampled from an industrial area strongly contaminated by As (790 mg As kg-1 soil). The second experiment was carried out in hydroponics where As has been added at a concentration (100 microM) similar to the As available concentration measured in soil. In both trials ammonium thiosulphate (at the concentration of 0.27 M in soil, and 400 microM in hydroponics) and potassium hydrogen phosphate (at the concentration of 0.05 M in soil, and 112 microM in hydroponics) were added. The biomass of B. juncea was determined and the accumulation of P, S and As in root and in the above-ground tissues have been analyzed. Our results showed that thiosulphate and phosphate acted either as nutrients and detoxifying agents, due to the stimulation of plant defensive systems, and influenced either the biomass production and the As accumulation in plant tissues. In the plants grown in soil, As accumulated at higher levels in the above-ground part than in the roots and the addition of Th induced a higher biomass production and a higher total As accumulation (concentration x biomass) in the above-ground tissues. This might be due to the detoxifing capacity of sulphur and suggests the presence of interactions between the pollutant and the competitor elements both in soil and plant. Brassica juncea showed a potential as suitable specie in terms of assisted phytoextraction of As. Further clarifications of the existing relations between nutrients and plants are future goals in order to develop a more efficient technique of phytoremediation.
76 FR 56097 - Special Conditions: Pratt and Whitney Canada Model PT6C-67E Turboshaft Engine
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-12
...) power rating. This rating is primarily intended for high power hovering operations during search and... rotorcraft search and rescue missions that require extensive hover operations at high power. The use of 30...
Research requirements for development of improved helicopter rotor efficiency
NASA Technical Reports Server (NTRS)
Davis, S. J.
1976-01-01
The research requirements for developing an improved-efficiency rotor for a civil helicopter are documented. The various design parameters affecting the hover and cruise efficiency of a rotor are surveyed, and the parameters capable of producing the greatest potential improvement are identified. Research and development programs to achieve these improvements are defined, and estimated costs and schedules are presented. Interaction of the improved efficiency rotor with other technological goals for an advanced civil helicopter is noted, including its impact on engine noise, hover and cruise performance, one-engine-inoperative hover capability, and maintenance and reliability.
Wind tunnel tests of rotor blade sections with replications of ice formations accreted in hover
NASA Technical Reports Server (NTRS)
Lee, J. D.; Berger, J. H.; Mcdonald, T. J.
1986-01-01
Full scale reproductions of ice accretions molded during the documentation of a hover test program were fabricated by means of epoxy castings and used for a wind tunnel test program. Surface static pressure distributions were recorded and used to evaluate lift and pitching moment increments while drag was determined by wake surveys. Through the range of the tests, corresponding to those conditions encountered in hover and in flat pitch, integration of the pressure distributions showed negligible changes in lift and in pitching moment, but the drag was significantly increased.
A unique facility for V/STOL aircraft hover testing
NASA Technical Reports Server (NTRS)
Culpepper, R. G.; Murphy, R. D.
1979-01-01
The paper discusses the Navy's XFV-12A tethered hover testing capabilities utilizing NASA's Impact Dynamic Research Facility (IDRF) at Langley. The facility allows for both static and dynamic tethered hover test operations to be undertaken with safety. The installation which consists of the 'Z' system (tether), restraint system, static tiedowns and the control room and console, is presented in detail. Among the capabilities demonstrated were the ability to recover the aircraft anytime during a test, to rapidly and safely define control limits, and to provide a realistic environment for pilot training and proficiency in VTOL flight.
Flying in the rain: hovering performance of Anna's hummingbirds under varied precipitation.
Ortega-Jimenez, Victor Manuel; Dudley, Robert
2012-10-07
Flight in rain represents a greater challenge for smaller animals because the relative effects of water loading and drop impact are greater at reduced scales given the increased ratios of surface area to mass. Nevertheless, it is well known that small volant taxa such as hummingbirds can continue foraging even in extreme precipitation. Here, we evaluated the effect of four rain intensities (i.e. zero, light, moderate and heavy) on the hovering performance of Anna's hummingbirds (Calypte anna) under laboratory conditions. Light-to-moderate rain had only a marginal effect on flight kinematics; wingbeat frequency of individuals in moderate rain was reduced by 7 per cent relative to control conditions. By contrast, birds hovering in heavy rain adopted more horizontal body and tail positions, and also increased wingbeat frequency substantially, while reducing stroke amplitude when compared with control conditions. The ratio between peak forces produced by single drops on a wing and on a solid surface suggests that feathers can absorb associated impact forces by up to approximately 50 per cent. Remarkably, hummingbirds hovered well even under heavy precipitation (i.e. 270 mm h(-1)) with no apparent loss of control, although mechanical power output assuming perfect and zero storage of elastic energy was estimated to be about 9 and 57 per cent higher, respectively, compared with normal hovering.
Fully integrated aerodynamic/dynamic optimization of helicopter rotor blades
NASA Technical Reports Server (NTRS)
Walsh, Joanne L.; Lamarsh, William J., II; Adelman, Howard M.
1992-01-01
This paper describes a fully integrated aerodynamic/dynamic optimization procedure for helicopter rotor blades. The procedure combines performance and dynamics analyses with a general purpose optimizer. The procedure minimizes a linear combination of power required (in hover, forward flight, and maneuver) and vibratory hub shear. The design variables include pretwist, taper initiation, taper ratio, root chord, blade stiffnesses, tuning masses, and tuning mass locations. Aerodynamic constraints consist of limits on power required in hover, forward flight and maneuver; airfoil section stall; drag divergence Mach number; minimum tip chord; and trim. Dynamic constraints are on frequencies, minimum autorotational inertia, and maximum blade weight. The procedure is demonstrated for two cases. In the first case the objective function involves power required (in hover, forward flight, and maneuver) and dynamics. The second case involves only hover power and dynamics. The designs from the integrated procedure are compared with designs from a sequential optimization approach in which the blade is first optimized for performance and then for dynamics. In both cases, the integrated approach is superior.
Fully integrated aerodynamic/dynamic optimization of helicopter rotor blades
NASA Technical Reports Server (NTRS)
Walsh, Joanne L.; Lamarsh, William J., II; Adelman, Howard M.
1992-01-01
A fully integrated aerodynamic/dynamic optimization procedure is described for helicopter rotor blades. The procedure combines performance and dynamic analyses with a general purpose optimizer. The procedure minimizes a linear combination of power required (in hover, forward flight, and maneuver) and vibratory hub shear. The design variables include pretwist, taper initiation, taper ratio, root chord, blade stiffnesses, tuning masses, and tuning mass locations. Aerodynamic constraints consist of limits on power required in hover, forward flight and maneuvers; airfoil section stall; drag divergence Mach number; minimum tip chord; and trim. Dynamic constraints are on frequencies, minimum autorotational inertia, and maximum blade weight. The procedure is demonstrated for two cases. In the first case, the objective function involves power required (in hover, forward flight and maneuver) and dynamics. The second case involves only hover power and dynamics. The designs from the integrated procedure are compared with designs from a sequential optimization approach in which the blade is first optimized for performance and then for dynamics. In both cases, the integrated approach is superior.
Hover and forward flight acoustics and performance of a small-scale helicopter rotor system
NASA Technical Reports Server (NTRS)
Kitaplioglu, C.; Shinoda, P.
1985-01-01
A 2.1-m diam., 1/6-scale model helicopter main rotor was tested in hover in the test section of the NASA Ames 40- by 80- Foot Wind Tunnel. Subsequently, it was tested in forward flight in the Ames 7- by 10-Foot Wind Tunnel. The primary objective of the tests was to obtain performance and noise data on a small-scale rotor at various thrust coefficients, tip Mach numbers, and, in the later case, various advance ratios, for comparisons with similar existing data on full-scale helicopter rotors. This comparison yielded a preliminary evaluation of the scaling of helicopter rotor performance and acoustic radiation in hover and in forward flight. Correlation between model-scale and full-scale performance and acoustics was quite good in hover. In forward flight, however, there were significant differences in both performance and acoustic characteristics. A secondary objective was to contribute to a data base that will permit the estimation of facility effects on acoustic testing.
Assessment of JVX Proprotor Performance Data in Hover and Airplane-Mode Flight Conditions
NASA Technical Reports Server (NTRS)
Acree, C. W., Jr.
2016-01-01
A 0.656-scale V-22 proprotor, the Joint Vertical Experimental (JVX) rotor, was tested at the NASA Ames Research Center in both hover and airplane-mode (high-speed axial flow) flight conditions, up to an advance ratio of 0.562 (231 knots). This paper examines the two principal data sets generated by those tests, and includes investigations of hub spinner tares, torque/thrust measurement interactions, tunnel blockage effects, and other phenomena suspected of causing erroneous measurements or predictions. Uncertainties in hover and high-speed data are characterized. The results are reported here to provide guidance for future wind tunnel tests, data processing, and data analysis.
Yousuf, Peerzada Yasir; Ahmad, Altaf; Aref, Ibrahim M; Ozturk, Munir; Hemant; Ganie, Arshid Hussain; Iqbal, Muhammad
2016-11-01
Brassica juncea is mainly cultivated in the arid and semi-arid regions of India where its production is significantly affected by soil salinity. Adequate knowledge of the mechanisms underlying the salt tolerance at sub-cellular levels must aid in developing the salt-tolerant plants. A proper functioning of chloroplasts under salinity conditions is highly desirable to maintain crop productivity. The adaptive molecular mechanisms offered by plants at the chloroplast level to cope with salinity stress must be a prime target in developing the salt-tolerant plants. In the present study, we have analyzed differential expression of chloroplast proteins in two Brassica juncea genotypes, Pusa Agrani (salt-sensitive) and CS-54 (salt-tolerant), under the effect of sodium chloride. The chloroplast proteins were isolated and resolved using 2DE, which facilitated identification and quantification of 12 proteins that differed in expression in the salt-tolerant and salt-sensitive genotypes. The identified proteins were related to a variety of chloroplast-associated molecular processes, including oxygen-evolving process, PS I and PS II functioning, Calvin cycle and redox homeostasis. Expression analysis of genes encoding differentially expressed proteins through real time PCR supported our findings with proteomic analysis. The study indicates that modulating the expression of chloroplast proteins associated with stabilization of photosystems and oxidative defence plays imperative roles in adaptation to salt stress.
Anthocyanins facilitate tungsten accumulation in Brassica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, K.L.
2002-11-01
Accumulation of molybdenum in Brassica was recently found to be correlated with anthocyanin content, involving the formation of a blue complex. Here the role of anthocyanins in tungsten sequestration was investigated using three species of Brassica: B. rapa (cv. Fast plants), B. juncea (Indian mustard) and B. oleracea (red cabbage). Seedlings of B. rapa and B. juncea turned blue when supplied with colourless tungstate. The blue compound co-localized with anthocyanins in the peripheral cell layers, and the degree of blueness was correlated with anthocyanin content. The direct involvement of anthocyanins in the blue coloration was evident when purified anthocyanins showedmore » a colour change from pink to blue in vitro upon addition of tungstate, over a wide pH range. Anthocyanin production was upregulated 3-fold by W in B. juncea, possibly reflecting a function for anthocyanins in W tolerance or sequestration. The presence of anthocyanins facilitated W accumulation in B. rapa: anthocyanin-containing seedlings accumulated 3-fold more W than an anthocyaninless mutant. There was no correlation between anthocyanin content and W tolerance under these conditions. The nature of the interaction between anthocyanins and tungstate was investigated. X-ray absorption spectroscopy showed no change in the local chemical environment of Wupon uptake of tungstate by the plant; HPLC analysis of purified anthocyanin with or without tungstate showed no peak shift after metal treatment.« less
14 CFR 29.49 - Performance at minimum operating speed.
Code of Federal Regulations, 2014 CFR
2014-01-01
... minimum operating speed. (a) For each Category A helicopter, the hovering performance must be determined... helicopter, the hovering performance must be determined over the ranges of weight, altitude, and temperature...) The helicopter in ground effect at a height consistent with normal takeoff procedures. (c) For each...
14 CFR 29.49 - Performance at minimum operating speed.
Code of Federal Regulations, 2013 CFR
2013-01-01
... minimum operating speed. (a) For each Category A helicopter, the hovering performance must be determined... helicopter, the hovering performance must be determined over the ranges of weight, altitude, and temperature...) The helicopter in ground effect at a height consistent with normal takeoff procedures. (c) For each...
14 CFR 29.49 - Performance at minimum operating speed.
Code of Federal Regulations, 2012 CFR
2012-01-01
... minimum operating speed. (a) For each Category A helicopter, the hovering performance must be determined... helicopter, the hovering performance must be determined over the ranges of weight, altitude, and temperature...) The helicopter in ground effect at a height consistent with normal takeoff procedures. (c) For each...
Wing-wake interaction destabilizes hover equilibrium of a flapping insect-scale wing.
Bluman, James; Kang, Chang-Kwon
2017-06-15
Wing-wake interaction is a characteristic nonlinear flow feature that can enhance unsteady lift in flapping flight. However, the effects of wing-wake interaction on the flight dynamics of hover are inadequately understood. We use a well-validated 2D Navier-Stokes equation solver and a quasi-steady model to investigate the role of wing-wake interaction on the hover stability of a fruit fly scale flapping flyer. The Navier-Stokes equations capture wing-wake interaction, whereas the quasi-steady models do not. Both aerodynamic models are tightly coupled to a flight dynamic model, which includes the effects of wing mass. The flapping amplitude, stroke plane angle, and flapping offset angle are adjusted in free flight for various wing rotations to achieve hover equilibrium. We present stability results for 152 simulations which consider different kinematics involving the pitch amplitude and pitch axis as well as the duration and timing of pitch rotation. The stability of all studied motions was qualitatively similar, with an unstable oscillatory mode present in each case. Wing-wake interaction has a destabilizing effect on the longitudinal stability, which cannot be predicted by a quasi-steady model. Wing-wake interaction increases the tendency of the flapping flyer to pitch up in the presence of a horizontal velocity perturbation, which further destabilizes the unstable oscillatory mode of hovering flight dynamics.
A multimodal micro air vehicle for autonomous flight in near-earth environments
NASA Astrophysics Data System (ADS)
Green, William Edward
Reconnaissance, surveillance, and search-and-rescue missions in near-Earth environments such as caves, forests, and urban areas pose many new challenges to command and control (C2) teams. Of great significance is how to acquire situational awareness when access to the scene is blocked by enemy fire, rubble, or other occlusions. Small bird-sized aerial robots are expendable and can fly over obstacles and through small openings to assist in the acquisition and distribution of intelligence. However, limited flying space and densely populated obstacle fields requires a vehicle that is capable of hovering, but also maneuverable. A secondary flight mode was incorporated into a fixed-wing aircraft to preserve its maneuverability while adding the capability of hovering. An inertial measurement sensor and onboard flight control system were interfaced and used to transition the hybrid prototype from cruise to hover flight and sustain a hover autonomously. Furthermore, the hovering flight mode can be used to maneuver the aircraft through small openings such as doorways. An ultrasonic and infrared sensor suite was designed to follow exterior building walls until an ingress route was detected. Reactive control was then used to traverse the doorway and gather reconnaissance. Entering a dangerous environment to gather intelligence autonomously will provide an invaluable resource to any C2 team. The holistic approach of platform development, sensor suite design, and control serves as the philosophy of this work.
Flying in the rain: hovering performance of Anna's hummingbirds under varied precipitation
Ortega-Jimenez, Victor Manuel; Dudley, Robert
2012-01-01
Flight in rain represents a greater challenge for smaller animals because the relative effects of water loading and drop impact are greater at reduced scales given the increased ratios of surface area to mass. Nevertheless, it is well known that small volant taxa such as hummingbirds can continue foraging even in extreme precipitation. Here, we evaluated the effect of four rain intensities (i.e. zero, light, moderate and heavy) on the hovering performance of Anna's hummingbirds (Calypte anna) under laboratory conditions. Light-to-moderate rain had only a marginal effect on flight kinematics; wingbeat frequency of individuals in moderate rain was reduced by 7 per cent relative to control conditions. By contrast, birds hovering in heavy rain adopted more horizontal body and tail positions, and also increased wingbeat frequency substantially, while reducing stroke amplitude when compared with control conditions. The ratio between peak forces produced by single drops on a wing and on a solid surface suggests that feathers can absorb associated impact forces by up to approximately 50 per cent. Remarkably, hummingbirds hovered well even under heavy precipitation (i.e. 270 mm h−1) with no apparent loss of control, although mechanical power output assuming perfect and zero storage of elastic energy was estimated to be about 9 and 57 per cent higher, respectively, compared with normal hovering. PMID:22810431
Effect of Heavy Metals in Plants of the Genus Brassica
Mourato, Miguel P.; Moreira, Inês N.; Leitão, Inês; Pinto, Filipa R.; Sales, Joana R.; Louro Martins, Luisa
2015-01-01
Several species from the Brassica genus are very important agricultural crops in different parts of the world and are also known to be heavy metal accumulators. There have been a large number of studies regarding the tolerance, uptake and defense mechanism in several of these species, notably Brassica juncea and B. napus, against the stress induced by heavy metals. Numerous studies have also been published about the capacity of these species to be used for phytoremediation purposes but with mixed results. This review will focus on the latest developments in the study of the uptake capacity, oxidative damage and biochemical and physiological tolerance and defense mechanisms to heavy metal toxicity on six economically important species: B. juncea, B. napus, B. oleracea, B. carinata, B. rapa and B. nigra. PMID:26247945
Hovering Practices in and outside the Classroom
ERIC Educational Resources Information Center
Hirsch, Deborah; Goldberger, Ellen
2010-01-01
The term "helicopter parents" typically involves parents--most often, mothers--who "hover" over their children to shelter them from stress, resolve their problems, and offer unwavering, on-the-spot support and affirmation. The recipients of this attention are the generation who have had their play dates managed and have been…
DOT National Transportation Integrated Search
1995-08-01
A linear model structure applicable to identification of the UH-60 flight : dynamics in hover and forward flight without rotor-state data is developed. The : structure of the model is determined through consideration of the important : dynamic modes ...
Wing Download Results from a Test of a 0.658-Scale V-22 Rotor and Wing
NASA Technical Reports Server (NTRS)
Felker, Fort F.
1992-01-01
A test of a 0.658-scale V-22 rotor and wing was conducted in the 40 x 80 Foot Wind Tunnel at Ames Research Center. One of the principal objectives of the test was to measure the wing download in hover for a variety of test configurations. The wing download and surface pressures were measured for a wide range of thrust coefficients, with five different flap angles, two nacelle angles, and both directions or rotor rotation. This paper presents these results, and describes a new method for interpreting wing surface pressure data in hover. This method shows that the wing flap can produce substantial lift loads in hover.
Prediction of helicopter rotor noise in hover
NASA Astrophysics Data System (ADS)
Kusyumov, A. N.; Mikhailov, S. A.; Garipova, L. I.; Batrakov, A. S.; Barakos, G.
2015-05-01
Two mathematical models are used in this work to estimate the acoustics of a hovering main rotor. The first model is based on the Ffowcs Williams-Howkings equations using the formulation of Farassat. An analytical approach is followed for this model, to determine the thickness and load noise contributions of the rotor blade in hover. The second approach allows using URANS and RANS CFD solutions and based on numerical solution of the Ffowcs Williams-Howkings equations. The employed test cases correspond to a model rotor available at the KNRTUKAI aerodynamics laboratory. The laboratory is equipped with a system of acoustic measurements, and comparisons between predictions and measurements are to be attempted as part of this work.
Two Dimensional Mechanism for Insect Hovering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jane Wang, Z.
2000-09-04
Resolved computation of two dimensional insect hovering shows for the first time that a two dimensional hovering motion can generate enough lift to support a typical insect weight. The computation reveals a two dimensional mechanism of creating a downward dipole jet of counterrotating vortices, which are formed from leading and trailing edge vortices. The vortex dynamics further elucidates the role of the phase relation between the wing translation and rotation in lift generation and explains why the instantaneous forces can reach a periodic state after only a few strokes. The model predicts the lower limits in Reynolds number and amplitudemore » above which the averaged forces are sufficient. (c) 2000 The American Physical Society.« less
CMG-Augmented Control of a Hovering VTOL Platform
NASA Technical Reports Server (NTRS)
Lim, K. B.; Moerder, D. D.
2007-01-01
This paper describes how Control Moment Gyroscopes (CMGs) can be used for stability augmentation to a thrust vectoring system for a generic Vertical Take-Off and Landing platform. The response characteristics of the platform which uses only thrust vectoring and a second configuration which includes a single-gimbal CMG array are simulated and compared for hovering flight while subject to severe air turbulence. Simulation results demonstrate the effectiveness of a CMG array in its ability to significantly reduce the agility requirement on the thrust vectoring system. Albeit simplifying physical assumptions on a generic CMG configuration, the numerical results also suggest that reasonably sized CMGs will likely be sufficient for a small hovering vehicle.
Bassan, Priyanka; Bhushan, Sakshi; Kaur, Tajinder; Arora, Rohit; Arora, Saroj; Vig, Adarsh Pal
2018-05-01
Cruciferous vegetables are rich source of glucosinolates (GSLs), which in presence of myrosinase enzyme cause hydrolytic cleavage and result in different hydrolytic products like isothiocyanates, thiocyanates, nitriles and epinitriles. The GSLs hydrolytic products are volatile compounds, which are known to exhibit bioactivities like antioxidant, fungicidal, bioherbicidal and anticancer. Among the Brassicaceae family, Brassica juncea is very well known for high content of GSLs. In the present study, the isolation of volatile oil of B. juncea var. raya was done by hydrodistillation method using clevenger apparatus and further there extraction was done by solvents ethyl acetate and dichloromethane. The volatile compounds present in the extract were analysed by gas chromatography/gas chromatography-mass spectrometry (GC/GC-MS). Fatty acid esters, sulphur and/or nitrogen compounds, carbonyl compounds and some other volatile compounds were also identified. Besides the analytical studies, the extracts were analysed for their bioactivities including radical scavenging activity by using DNA nicking assay and cytotoxic effect using different human cancer cell lines viz. breast (MCF-7 and MDA-MB-231), prostate (PC-3), lung (A-549), cervix (HeLa) and colon (HCT116) by MTT assay. The oil extracts were efficiently able to reduce the increase of cancer cells in a dose-dependent manner. Among all cell lines, the most effective anticancer activity was observed in case of breast (MCF-7) cancer cell line. So, MCF-7 cells were used for further mechanistic studies for analysing the mechanism of anticancer activity. Confocal microscopy was done for analysing morphological changes in the cells and the images confirmed the features typical of apoptosis. For evaluating the mode of cell death, spectrofluorometric determination of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) was done. The volatile oil extract treated MCF-7 cells had a significant increase in number of ROS, also there was a rise in percentage of cells with increased disruption of MMP. So, the present study marks necessary indication that B. juncea (raya) oil extracts significantly induces apoptosis in all the above mentioned cancer cells lines through a ROS-mediated mitochondrial pathway and thus play a remarkable role in death of cancer cells.
Goel, Parul; Bhuria, Monika; Kaushal, Mamta
2016-01-01
In plants, several cellular and metabolic pathways interact with each other to regulate processes that are vital for their growth and development. Carbon (C) and Nitrogen (N) are two main nutrients for plants and coordination of C and N pathways is an important factor for maintaining plant growth and development. In the present work, influence of nitrogen and sucrose (C source) on growth parameters and expression of genes involved in nitrogen transport and assimilatory pathways was studied in B. juncea seedlings. For this, B. juncea seedlings were treated with four combinations of C and N source viz., N source alone (-Suc+N), C source alone (+Suc-N), with N and C source (+Suc+N) or without N and C source (-Suc-N). Cotyledon size and shoot length were found to be increased in seedlings, when nitrogen alone was present in the medium. Distinct expression pattern of genes in both, root and shoot tissues was observed in response to exogenously supplied N and C. The presence or depletion of nitrogen alone in the medium leads to severe up- or down-regulation of key genes involved in N-uptake and transport (BjNRT1.1, BjNRT1.8) in root tissue and genes involved in nitrate reduction (BjNR1 and BjNR2) in shoot tissue. Moreover, expression of several genes, like BjAMT1.2, BjAMT2 and BjPK in root and two genes BjAMT2 and BjGS1.1 in shoot were found to be regulated only when C source was present in the medium. Majority of genes were found to respond in root and shoot tissues, when both C and N source were present in the medium, thus reflecting their importance as a signal in regulating expression of genes involved in N-uptake and assimilation. The present work provides insight into the regulation of genes of N-uptake and assimilatory pathway in B. juncea by interaction of both carbon and nitrogen. PMID:27637072
Mapping of AFLP markers linked to seed coat colour loci in Brassica juncea (L.) Czern.
Sabharwal, V; Negi, M S; Banga, S S; Lakshmikumaran, M
2004-06-01
Association mapping of the seed-coat colour with amplified fragment length polymorphism (AFLP) markers was carried out in 39 Brassica juncea lines. The lines had genetically diverse parentages and varied for seed-coat colour and other morphological characters. Eleven AFLP primer combinations were used to screen the 39 B. juncea lines, and a total of 335 polymorphic bands were detected. The bands were analysed for association with seed-coat colour using multiple regression analysis. This analysis revealed 15 markers associated with seed-coat colour, obtained with eight AFLP primer combinations. The marker E-ACA/M-CTG(350 )explained 69% of the variation in seed-coat colour. This marker along with markers E-AAC/M-CTC(235 )and E-AAC/M-CTA(250) explained 89% of the total variation. The 15 associated markers were validated for linkage with the seed-coat colour loci using a recombinant inbred line (RIL) mapping population. Bands were amplified with the eight AFLP primer combinations in 54 RIL progenies. Of the 15 associated markers, 11 mapped on two linkage groups. Eight markers were placed on linkage group 1 at a marker density of 6.0 cM, while the remaining three were mapped on linkage group 2 at a marker density of 3.6 cM. Marker E-ACA/M-CTG(350 )co-segregated with Gene1 controlling seed-coat colour; it was specific for yellow seed-coat colour and mapped to linkage group 1. Marker E-AAC/M-CTC(235) (AFLP8), which had been studied previously, was present on linkage group 2; it was specific for brown seed-coat colour. Since AFLP markers are not adapted for large-scale applications in plant breeding, it is important to convert these to sequence-characterised amplified region (SCAR) markers. Marker E-AAC/M-CTC(235) (AFLP8) had been previously converted into a SCAR. Work is in progress to convert the second of the linked markers, E-ACA/M-CTG(350), to a SCAR. The two linked AFLP markers converted to SCARs will be useful for developing yellow-seeded B. juncea lines by means of marker-assisted selection.
NASA Technical Reports Server (NTRS)
Baron, S.; Lancraft, R.; Zacharias, G.
1980-01-01
The optimal control model (OCM) of the human operator is used to predict the effect of simulator characteristics on pilot performance and workload. The piloting task studied is helicopter hover. Among the simulator characteristics considered were (computer generated) visual display resolution, field of view and time delay.
ERIC Educational Resources Information Center
Galloway, Melinda
2006-01-01
There are two types of parenting styles when it comes to parent involvement in their children's education: the "hovering" type and the "dry cleaner" type. Hovering parents are always on hand for every landmark moment of their children while dry cleaner parents show up only when an emergency is imminent. In this article, the author relates her own…
Prediction techniques for jet-induced effects in hover on STOVL aircraft
NASA Technical Reports Server (NTRS)
Wardwell, Douglas A.; Kuhn, Richard E.
1991-01-01
Prediction techniques for jet induced lift effects during hover are available, relatively easy to use, and produce adequate results for preliminary design work. Although deficiencies of the current method were found, it is still currently the best way to estimate jet induced lift effects short of using computational fluid dynamics. Its use is summarized. The new summarized method, represents the first step toward the use of surface pressure data in an empirical method, as opposed to just balance data in the current method, for calculating jet induced effects. Although the new method is currently limited to flat plate configurations having two circular jets of equal thrust, it has the potential of more accurately predicting jet induced effects including a means for estimating the pitching moment in hover. As this method was developed from a very limited amount of data, broader applications of the method require the inclusion of new data on additional configurations. However, within this small data base, the new method does a better job in predicting jet induced effects in hover than the current method.
Piloted Evaluation of a UH-60 Mixer Equivalent Turbulence Simulation Model
NASA Technical Reports Server (NTRS)
Lusardi, Jeff A.; Blanken, Chris L.; Tischeler, Mark B.
2002-01-01
A simulation study of a recently developed hover/low speed Mixer Equivalent Turbulence Simulation (METS) model for the UH-60 Black Hawk helicopter was conducted in the NASA Ames Research Center Vertical Motion Simulator (VMS). The experiment was a continuation of previous work to develop a simple, but validated, turbulence model for hovering rotorcraft. To validate the METS model, two experienced test pilots replicated precision hover tasks that had been conducted in an instrumented UH-60 helicopter in turbulence. Objective simulation data were collected for comparison with flight test data, and subjective data were collected that included handling qualities ratings and pilot comments for increasing levels of turbulence. Analyses of the simulation results show good analytic agreement between the METS model and flight test data, with favorable pilot perception of the simulated turbulence. Precision hover tasks were also repeated using the more complex rotating-frame SORBET (Simulation Of Rotor Blade Element Turbulence) model to generate turbulence. Comparisons of the empirically derived METS model with the theoretical SORBET model show good agreement providing validation of the more complex blade element method of simulating turbulence.
The effect of chordwise flexibility on flapping foil propulsion in quiescent fluid
NASA Astrophysics Data System (ADS)
Shinde, Sachin; Arakeri, Jaywant
2010-11-01
Motivated to understand the role of wing flexibility of flying creatures during hovering, we experimentally study the effect of chordwise flexibility on the flow generated in quiescent fluid by a sinusoidally pitching rigid symmetrical foil with a flexible flap attached at the trailing edge. This foil produces a narrow, coherent jet containing reverse Karman vortex street, and a corresponding thrust. The thrust and flow is similar to that produced by a hovering bird or insect, however the mechanism seems to be different from known hovering mechanisms. Novelty of the present hovering mechanism is that the thrust generation is due to the coordinated pushing action of rigid foil and flexible flap. We identify the flow and vortex generation mechanism. This foil produces jet flows over a range of flapping frequencies and amplitudes. In contrast, the foil without flap i.e. with rigid trailing edge produces a weak, divergent jet that meanders randomly. Appending a flexible flap to the foil suppresses jet-meandering and strengthens the jet. Flexibility of flap is crucial in determining the flow structure. This study is useful in designing MAVs and thrusters.
The Effect of Laminar Flow on Rotor Hover Performance
NASA Technical Reports Server (NTRS)
Overmeyer, Austin D.; Martin, Preston B.
2017-01-01
The topic of laminar flow effects on hover performance is introduced with respect to some historical efforts where laminar flow was either measured or attempted. An analysis method is outlined using combined blade element, momentum method coupled to an airfoil analysis method, which includes the full e(sup N) transition model. The analysis results compared well with the measured hover performance including the measured location of transition on both the upper and lower blade surfaces. The analysis method is then used to understand the upper limits of hover efficiency as a function of disk loading. The impact of laminar flow is higher at low disk loading, but significant improvement in terms of power loading appears possible even up to high disk loading approaching 20 ps f. A optimum planform design equation is derived for cases of zero profile drag and finite drag levels. These results are intended to be a guide for design studies and as a benchmark to compare higher fidelity analysis results. The details of the analysis method are given to enable other researchers to use the same approach for comparison to other approaches.
A Flight Study of the Conversion Maneuver of a Tilt-Duct VTOL Aircraft
NASA Technical Reports Server (NTRS)
Tapscott, Robert J.; Kelley, Henry L.
1960-01-01
Flight records are presented from an early flight test of a wing-tip mounted tilting-ducted-fan, vertical-take-off and landing (VTOL) aircraft configuration. Time histories of the aircraft motions, control positions, and duct pitching-moment variation are presented to illustrate the characteristics of the aircraft in hovering, in conversion from hovering to forward flight, and in conversion from forward flight to hovering. The results indicate that during essentially continuous slow level- flight conversions, this aircraft experiences excessive longitudinal trim changes. Studies have shown that the large trim changes are caused primarily by the variation of aerodynamic moments acting on the duct units. Action of the duct-induced downwash on the horizontal stabilizer during the conversion also contributes to the longitudinal trim variations. Time histories of hovering and slow vertical descent in the final stages of landing in calm air show angular motions of the aircraft as great as +/- 10 deg. about all axes. Stick and pedal displacements required to control the aircraft during the landing maneuver were on the order of 50 to 60 percent of the total travel available.
Sapir, Nir; Elimelech, Yossef
2018-01-01
Birds usually moult their feathers in a particular sequence which may incur aerodynamic, physiological and behavioural implications. Among birds, hummingbirds are unique species in their sustained hovering flight. Because hummingbirds frequently hover-feed, they must maintain sufficiently high flight capacities even when moulting their flight feathers. A hummingbird wing consists of 10 primary flight feathers whose absence during moult may strongly affect wing performance. Using dynamic similarity rules, we compared time-accurate aerodynamic loads and flow field measurements over several wing geometries that follow the natural feather moult sequence of Calypte anna, a common hummingbird species in western North America. Our results suggest a drop of more than 20% in lift production during the early stages of the moult sequence in which mid-wing flight feathers are moulted. We also found that the wing's ability to generate lift strongly depended on the morphological integrity of the outer primaries and leading-edge. These findings may explain the evolution of wing morphology and moult attributes. Specifically, the high overlap between adjacent wing feathers, especially at the wing tip, and the slow sequential replacement of the wing feathers result in a relatively small reduction in wing surface area during moult with limited aerodynamic implications. We present power and efficiency analyses for hover flight during moult under several plausible scenarios, suggesting that body mass reduction could be a compensatory mechanism that preserves the energetic costs of hover flight. PMID:29515884
Short revolving wings enable hovering animals to avoid stall and reduce drag
NASA Astrophysics Data System (ADS)
Lentink, David; Kruyt, Jan W.; Heijst, Gertjan F.; Altshuler, Douglas L.
2014-11-01
Long and slender wings reduce the drag of airplanes, helicopters, and gliding animals, which operate at low angle of attack (incidence). Remarkably, there is no evidence for such influence of wing aspect ratio on the energetics of hovering animals that operate their wings at much higher incidence. High incidence causes aircraft wings to stall, hovering animals avoid stall by generating an attached vortex along the leading edge of their wings that elevates lift. Hypotheses that explain this capability include the necessity for a short radial distance between the shoulder joint and wing tip, measured in chord lengths, instead of the long tip-to-tip distance that elevates aircraft performance. This stems from how hovering animals revolve their wings around a joint, a condition for which the precise effect of aspect ratio on stall performance is unknown. Here we show that the attachment of the leading edge vortex is determined by wing aspect ratio with respect to the center of rotation-for a suite of aspect ratios that represent both animal and aircraft wings. The vortex remains attached when the local radius is shorter than 4 chord lengths, and separates outboard on more slender wings. Like most other hovering animals, hummingbirds have wing aspect ratios between 3 and 4, much stubbier than helicopters. Our results show this makes their wings robust against flow separation, which reduces drag below values obtained with more slender wings. This revises our understanding of how aspect ratio improves performance at low Reynolds numbers.
Achache, Yonathan; Sapir, Nir; Elimelech, Yossef
2018-02-01
Birds usually moult their feathers in a particular sequence which may incur aerodynamic, physiological and behavioural implications. Among birds, hummingbirds are unique species in their sustained hovering flight. Because hummingbirds frequently hover-feed, they must maintain sufficiently high flight capacities even when moulting their flight feathers. A hummingbird wing consists of 10 primary flight feathers whose absence during moult may strongly affect wing performance. Using dynamic similarity rules, we compared time-accurate aerodynamic loads and flow field measurements over several wing geometries that follow the natural feather moult sequence of Calypte anna , a common hummingbird species in western North America. Our results suggest a drop of more than 20% in lift production during the early stages of the moult sequence in which mid-wing flight feathers are moulted. We also found that the wing's ability to generate lift strongly depended on the morphological integrity of the outer primaries and leading-edge. These findings may explain the evolution of wing morphology and moult attributes. Specifically, the high overlap between adjacent wing feathers, especially at the wing tip, and the slow sequential replacement of the wing feathers result in a relatively small reduction in wing surface area during moult with limited aerodynamic implications. We present power and efficiency analyses for hover flight during moult under several plausible scenarios, suggesting that body mass reduction could be a compensatory mechanism that preserves the energetic costs of hover flight.
NASA Astrophysics Data System (ADS)
Mancuso, Peter Timothy
Fixed-wing unmanned aerial vehicles (UAVs) that offer vertical takeoff and landing (VTOL) and forward flight capability suffer from sub-par performance in both flight modes. Achieving the next generation of efficient hybrid aircraft requires innovations in: (i) power management, (ii) efficient structures, and (iii) control methodologies. Existing hybrid UAVs generally utilize one of three transitioning mechanisms: an external power mechanism to tilt the rotor-propulsion pod, separate propulsion units and rotors during hover and forward flight, or tilt body craft (smaller scale). Thus, hybrid concepts require more energy compared to dedicated fixed-wing or rotorcraft UAVs. Moreover, design trade-offs to reinforce the wing structure (typically to accommodate the propulsion systems and enable hover, i.e. tilt-rotor concepts) adversely impacts the aerodynamics, controllability and efficiency of the aircraft in both hover and forward flight modes. The goal of this research is to develop more efficient VTOL/ hover and forward flight UAVs. In doing so, the transition sequence, transition mechanism, and actuator performance are heavily considered. A design and control methodology was implemented to address these issues through a series of computer simulations and prototype benchtop tests to verify the proposed solution. Finally, preliminary field testing with a first-generation prototype was conducted. The methods used in this research offer guidelines and a new dual-arm rotor UAV concept to designing more efficient hybrid UAVs in both hover and forward flight.
Prediction of XV-15 tilt rotor discrete frequency aeroacoustic noise with WOPWOP
NASA Technical Reports Server (NTRS)
Coffen, Charles D.; George, Albert R.
1990-01-01
The results, methodology, and conclusions of noise prediction calculations carried out to study several possible discrete frequency harmonic noise mechanisms of the XV-15 Tilt Rotor Aircraft in hover and helicopter mode forward flight are presented. The mechanisms studied were thickness and loading noise. In particular, the loading noise caused by flow separation and the fountain/ground plane effect were predicted with calculations made using WOPWOP, a noise prediction program developed by NASA Langley. The methodology was to model the geometry and aerodynamics of the XV-15 rotor blades in hover and steady level flight and then create corresponding FORTRAN subroutines which were used an input for WOPWOP. The models are described and the simplifying assumptions made in creating them are evaluated, and the results of the computations are presented. The computations lead to the following conclusions: The fountain/ground plane effect is an important source of aerodynamic noise for the XV-15 in hover. Unsteady flow separation from the airfoil passing through the fountain at high angles of attack significantly affects the predicted sound spectra and may be an important noise mechanism for the XV-15 in hover mode. The various models developed did not predict the sound spectra in helicopter forward flight. The experimental spectra indicate the presence of blade vortex interactions which were not modeled in these calculations. A need for further study and development of more accurate aerodynamic models, including unsteady stall in hover and blade vortex interactions in forward flight.
Performance and Flowfield Measurements on a 10-inch Ducted Rotor VTOL UAV
NASA Technical Reports Server (NTRS)
Martin, Preston; Tung, Chee
2004-01-01
A ducted fan VTOL UAV with a 10-inch diameter rotor was tested in the US Army 7-by 10-Foot Wind Tunnel. The test conditions covered a range of angle of attack from 0 to 110 degrees to the freestream. The tunnel velocity was varied from 0 (simulating a hover condition) to 128 ft/sec in propeller mode. A six-component internal balance measured the aerodynamic loads for a range of model configurations. including the isolated rotor, the isolated duct, and the full configuration of the duct and rotor. For some conditions, hotwire velocity surveys were conducted along the inner and outer surface of the duct and across the downstream wake. In addition, fluorescent oil flow visualization allowed the flow separation patterns inside and outside of the duct to be mapped for a few test conditions. Two different duct shapes were tested to determine the performance effects of leading edge radius. For each duct, a range of rotor tip gap from 1%R to 4.5%R was tested to determine the performance penalty in hover and axial flight. Measured results are presented in terms of hover performance, hover performance in a crosswind, and high angle of attack performance in propeller mode. In each case, the effects of both tip gap and duct leading edge radius are illustrated using measurements. Some of the hover performance issues were also studied using a simple analytical method, and the results agreed with the measurements.
Hummingbirds generate bilateral vortex loops during hovering: evidence from flow visualization
NASA Astrophysics Data System (ADS)
Pournazeri, Sam; Segre, Paolo S.; Princevac, Marko; Altshuler, Douglas L.
2012-12-01
Visualization of the vortex wake of a flying animal provides understanding of how wingbeat kinematics are translated into the aerodynamic forces for powering and controlling flight. Two general vortex flow patterns have been proposed for the wake of hovering hummingbirds: (1) The two wings form a single, merged vortex ring during each wing stroke; and (2) the two wings form bilateral vortex loops during each wing stroke. The second pattern was proposed after a study with particle image velocimetry that demonstrated bilateral source flows in a horizontal measurement plane underneath hovering Anna's hummingbirds ( Calypte anna). Proof of this hypothesis requires a clear perspective of bilateral pairs of vortices. Here, we used high-speed image sequences (500 frames per second) of C. anna hover feeding within a white plume to visualize the vortex wake from multiple perspectives. The films revealed two key structural features: (1) Two distinct jets of downwards airflow are present under each wing; and (2) vortex loops around each jet are shed during each upstroke and downstroke. To aid in the interpretation of the flow visualization data, we analyzed high-speed kinematic data (1,000 frames per second) of wing tips and wing roots as C. anna hovered in normal air. These data were used to refine several simplified models of vortex topology. The observed flow patterns can be explained by either a single loop model with an hourglass shape or a bilateral model, with the latter being more likely. When hovering in normal air, hummingbirds used an average stroke amplitude of 153.6° (range 148.9°-164.4°) and a wingbeat frequency of 38.5 Hz (range 38.1-39.1 Hz). When hovering in the white plume, hummingbirds used shallower stroke amplitudes ( bar{x} = 129.8°, range 116.3°-154.1°) and faster wingbeat frequencies ( bar{x} = 41.1 Hz, range 38.5-44.7 Hz), although the bilateral jets and associated vortices were observed across the full kinematic range. The plume did not significantly alter the air density or constrain the sustained muscle contractile frequency. Instead, higher wingbeat frequencies likely incurred a higher metabolic cost with the possible benefit of allowing the birds to more rapidly escape from the visually disruptive plume.
Hummingbirds generate bilateral vortex loops during hovering: evidence from flow visualization
NASA Astrophysics Data System (ADS)
Pournazeri, Sam; Segre, Paolo S.; Princevac, Marko; Altshuler, Douglas L.
2013-01-01
Visualization of the vortex wake of a flying animal provides understanding of how wingbeat kinematics are translated into the aerodynamic forces for powering and controlling flight. Two general vortex flow patterns have been proposed for the wake of hovering hummingbirds: (1) The two wings form a single, merged vortex ring during each wing stroke; and (2) the two wings form bilateral vortex loops during each wing stroke. The second pattern was proposed after a study with particle image velocimetry that demonstrated bilateral source flows in a horizontal measurement plane underneath hovering Anna's hummingbirds ( Calypte anna). Proof of this hypothesis requires a clear perspective of bilateral pairs of vortices. Here, we used high-speed image sequences (500 frames per second) of C. anna hover feeding within a white plume to visualize the vortex wake from multiple perspectives. The films revealed two key structural features: (1) Two distinct jets of downwards airflow are present under each wing; and (2) vortex loops around each jet are shed during each upstroke and downstroke. To aid in the interpretation of the flow visualization data, we analyzed high-speed kinematic data (1,000 frames per second) of wing tips and wing roots as C. anna hovered in normal air. These data were used to refine several simplified models of vortex topology. The observed flow patterns can be explained by either a single loop model with an hourglass shape or a bilateral model, with the latter being more likely. When hovering in normal air, hummingbirds used an average stroke amplitude of 153.6° (range 148.9°-164.4°) and a wingbeat frequency of 38.5 Hz (range 38.1-39.1 Hz). When hovering in the white plume, hummingbirds used shallower stroke amplitudes ( bar{x} = 129.8°, range 116.3°-154.1°) and faster wingbeat frequencies ( bar{x} = 41.1 Hz, range 38.5-44.7 Hz), although the bilateral jets and associated vortices were observed across the full kinematic range. The plume did not significantly alter the air density or constrain the sustained muscle contractile frequency. Instead, higher wingbeat frequencies likely incurred a higher metabolic cost with the possible benefit of allowing the birds to more rapidly escape from the visually disruptive plume.
A Comparative Study of Soviet versus Western Helicopters. Part 1. General Comparison of Designs
1983-03-01
kid in hover and in forward flight may be considerably different. Consequently, the validity of using the hovering point in conjunction with the two...coefficients computed for two porn -weight values, using data from Fig. .. 17. ,:.:. assumed a being correct, and is shown in Table 5.5 with the corresponding
A Delicate Balance: Hovering Balloons in an Air Stream
ERIC Educational Resources Information Center
Gluck, Paul
2006-01-01
Science museums and popular physics shows often exhibit a blower in whose air stream a ball is held hovering in equilibrium some distance above the jet's orifice. The weight of the ball, "mg," is balanced by the drag force of the turbulent air stream, often written as ?Cv[superscript 2]A, where "?" and "v" are the…
}.afdc_pagination .disabled{border:1px solid #dddddd;line-height:1.4em;color:#aaaaaa}.afdc_pagination .current :1px solid #dddddd;line-height:1.4em;text-decoration:none}.afdc_pagination .page_info{color:#aaaaaa }.view_mode_buttons img{padding:5px}.odd:hover,.even:hover{background-color:#ddd}.card_view_in_list{border-top:0px
Investigation of outside visual cues required for low speed and hover
NASA Technical Reports Server (NTRS)
Hoh, R. H.
1985-01-01
Knowledge of the visual cues required in the performance of stabilized hover in VTOL aircraft is a prerequisite for the development of both cockpit displays and ground-based simulation systems. Attention is presently given to the viability of experimental test flight techniques as the bases for the identification of essential external cues in aggressive and precise low speed and hovering tasks. The analysis and flight test program conducted employed a helicopter and a pilot wearing lenses that could be electronically fogged, where the primary variables were field-of-view, large object 'macrotexture', and fine detail 'microtexture', in six different fields-of-view. Fundamental metrics are proposed for the quantification of the visual field, to allow comparisons between tests, simulations, and aircraft displays.
Wingtip mounted, counter-rotating proprotor for tiltwing aircraft
NASA Technical Reports Server (NTRS)
Wechsler, James K. (Inventor); Rutherford, John W. (Inventor)
1995-01-01
A tiltwing aircraft, capable of in-flight conversion between a hover and forward cruise mode, employs a counter-rotating proprotor arrangement which permits a significantly increased cruise efficiency without sacrificing either the size of the conversion envelope or the wing efficiency. A benefit in hover is also provided because of the lower effective disk loading for the counter-rotating proprotor, as opposed to a single rotation proprotor of the same diameter. At least one proprotor is provided on each wing section, preferably mounted on the wingtip, with each proprotor having two counter-rotating blade rows. Each blade row has a plurality of blades which are relatively stiff-in-plane and are mounted such that cyclic pitch adjustments may be made for hover control during flight.
Flowfield analysis of helicopter rotor in hover and forward flight based on CFD
NASA Astrophysics Data System (ADS)
Zhao, Qinghe; Li, Xiaodong
2018-05-01
The helicopter rotor field is simulated in hover and forward flight based on Computational Fluid Dynamics(CFD). In hover case only one rotor is simulated with the periodic boundary condition in the rotational coordinate system and the grid is fixed. In the non-lift forward flight case, the total rotor is simulated in inertia coordinate system and the whole grid moves rigidly. The dual-time implicit scheme is applied to simulate the unsteady flowfield on the movement grids. The k – ω turbulence model is employed in order to capture the effects of turbulence. To verify the solver, the flowfield around the Caradonna-Tung rotor is computed. The comparison shows a good agreement between the numerical results and the experimental data.
Investigation of the flight mechanics simulation of a hovering helicopter
NASA Technical Reports Server (NTRS)
Chaimovich, M.; Rosen, A.; Rand, O.; Mansur, M. H.; Tischler, M. B.
1992-01-01
The flight mechanics simulation of a hovering helicopter is investigated by comparing the results of two different numerical models with flight test data for a hovering AH-64 Apache. The two models are the U.S. Army BEMAP and the Technion model. These nonlinear models are linearized by applying a numerical linearization procedure. The results of the linear models are compared with identification results in terms of eigenvalues, stability and control derivatives, and frequency responses. Detailed time histories of the responses of the complete nonlinear models, as a result of various pilots' inputs, are compared with flight test results. In addition the sensitivity of the models to various effects are also investigated. The results are discussed and problematic aspects of the simulation are identified.
NASA Technical Reports Server (NTRS)
Lovell, Powell M., Jr.
1954-01-01
An experimental investigation has been conducted to determine the dynamic stability and control characteristics in hovering and transition flight of a 0.13-scale flying model of the Convair XFY-1 vertically rising airplane with the lower vertical tail removed. The purpose of the tests was to obtain a general indication of the behavior of a vertically rising airplane of the same general type as the XFY-1 but without a lower vertical tail in order to simplify power-off belly landings in an emergency. The model was flown satisfactorily in hovering flight and in the transition from hovering to normal unstalled forward flight (angle of attack approximately 30deg). From an angle of attack of about 30 down to the lowest angle of attack covered in the flight tests (approximately 15deg) the model became progressively more difficult to control. These control difficulties were attributed partly to a lightly damped Dutch roll oscillation and partly to the fact that the control deflections required for hovering and transition flight were too great for smooth flight at high speeds. In the low-angle-of-attack range not covered in the flight tests, force tests have indicated very low static directional stability which would probably result in poor flight characteristics. It appears, therefore, that the attainment of satisfactory directional stability, at angles of attack less than 10deg, rather than in the hovering and transition ranges of flight is the critical factor in the design of the vertical tail for such a configuration.
Effect of Turbulence Modeling on Hovering Rotor Flows
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan; Chaderjian, Neal M.; Pulliam, Thomas H.; Holst, Terry L.
2015-01-01
The effect of turbulence models in the off-body grids on the accuracy of solutions for rotor flows in hover has been investigated. Results from the Reynolds-Averaged Navier-Stokes and Laminar Off-Body models are compared. Advection of turbulent eddy viscosity has been studied to find the mechanism leading to inaccurate solutions. A coaxial rotor result is also included.
NASA Astrophysics Data System (ADS)
Hirohashi, Kensuke; Inamuro, Takaji
2017-08-01
Hovering and targeting flights of the dragonfly-like flapping wing-body model are numerically investigated by using the immersed boundary-lattice Boltzmann method. The governing parameters of the problem are the Reynolds number Re, the Froude number Fr, and the non-dimensional mass m. We set the parameters at Re = 200, Fr = 15 and m = 51. First, we simulate free flights of the model for various values of the phase difference angle ϕ between the forewing and the hindwing motions and for various values of the stroke angle β between the stroke plane and the horizontal plane. We find that the vertical motion of the model depends on the phase difference angle ϕ, and the horizontal motion of the model depends on the stroke angle β. Secondly, using the above results we try to simulate the hovering flight by dynamically changing the phase difference angle ϕ and the stroke angle β. The hovering flight can be successfully simulated by a simple proportional controller of the phase difference angle and the stroke angle. Finally, we simulate a targeting flight by dynamically changing the stroke angle β.
NASA Technical Reports Server (NTRS)
Balch, D. T.; Lombardi, J.
1985-01-01
A model scale hover test was conducted in the Sikorsky Aircraft Model Rotor hover Facility to identify and quantify the impact of the tail rotor on the demonstrated advantages of advanced geometry tip configurations. The existence of mutual interference between hovering main rotor and a tail rotor was acknowledged in the test. The test was conducted using the Basic Model Test Rig and two scaled main rotor systems, one representing a 1/5.727 scale UH-60A BLACK HAWK and the others a 1/4.71 scale S-76. Eight alternate rotor tip configurations were tested, 3 on the BLACK HAWK rotor and 6 on the S-76 rotor. Four of these tips were then selected for testing in close proximity to an operating tail rotor (operating in both tractor and pusher modes) to determine if the performance advantages that could be obtained from the use of advanced geometry tips in a main rotor only environment would still exist in the more complex flow field involving a tail rotor. This volume contains the test run log and tabulated data.
How neotropical hummingbird versus bat species generate lift to hover
NASA Astrophysics Data System (ADS)
Ingersoll, Rivers; Lentink, David
2017-11-01
Both hummingbirds and nectar bats evolved the ability to hover in front of flowers providing them access to energy rich nectar. Hummingbirds have been found to generate more than a quarter of their weight support during the upstroke by inverting their wings-much more than generalist birds during slow hovering flight. In contrast to hummingbirds, bats have membrane wings which they partially fold during the upstroke. It has been hypothesized that bats generate some vertical lift force during the upstroke although the complex wake structures make it hard to quantify upstroke function through flow measurement. To compare the kinematics and aerodynamic forces generated by both groups, we caught and trained over 100 individuals spanning 18 hummingbird and 3 bat species in Coto Brus, Costa Rica. We used 3D calibrated high-speed cameras to measure wingbeat kinematics and a novel aerodynamic force platform to measure the instantaneous vertical lift force in vivo. This data gives us new insight into how ecology shapes the evolution of hovering flight across taxa in the same ecosystem. This research is supported by NSF CAREER Award 1552419 and the KACST Center of Excellence for Aeronautics and Astronautics at Stanford.
NASA Technical Reports Server (NTRS)
Anusonti-Inthra, Phuriwat
2010-01-01
This paper presents validations of a novel rotorcraft analysis that coupled Computational Fluid Dynamics (CFD), Computational Structural Dynamics (CSD), and Particle Vortex Transport Method (PVTM) methodologies. The CSD with associated vehicle trim analysis is used to calculate blade deformations and trim parameters. The near body CFD analysis is employed to provide detailed near body flow field information which is used to obtain high-fidelity blade aerodynamic loadings. The far field wake dominated region is simulated using the PVTM analysis which provides accurate prediction of the evolution of the rotor wake released from the near body CFD domains. A loose coupling methodology between the CSD and CFD/PVTM modules are used with appropriate information exchange amongst the CSD/CFD/PVTM modules. The coupled CSD/CFD/PVTM methodology is used to simulate various rotorcraft flight conditions (i.e. hover, transition, and high speed flights), and the results are compared with several sets of experimental data. For the hover condition, the results are compared with hover data for the HART II rotor tested at DLR Institute of Flight Systems, Germany. For the forward flight conditions, the results are validated with the UH-60A flight test data.
Performance optimization for rotors in hover and axial flight
NASA Technical Reports Server (NTRS)
Quackenbush, T. R.; Wachspress, D. A.; Kaufman, A. E.; Bliss, D. B.
1989-01-01
Performance optimization for rotors in hover and axial flight is a topic of continuing importance to rotorcraft designers. The aim of this Phase 1 effort has been to demonstrate that a linear optimization algorithm could be coupled to an existing influence coefficient hover performance code. This code, dubbed EHPIC (Evaluation of Hover Performance using Influence Coefficients), uses a quasi-linear wake relaxation to solve for the rotor performance. The coupling was accomplished by expanding of the matrix of linearized influence coefficients in EHPIC to accommodate design variables and deriving new coefficients for linearized equations governing perturbations in power and thrust. These coefficients formed the input to a linear optimization analysis, which used the flow tangency conditions on the blade and in the wake to impose equality constraints on the expanded system of equations; user-specified inequality contraints were also employed to bound the changes in the design. It was found that this locally linearized analysis could be invoked to predict a design change that would produce a reduction in the power required by the rotor at constant thrust. Thus, an efficient search for improved versions of the baseline design can be carried out while retaining the accuracy inherent in a free wake/lifting surface performance analysis.
Design and implementation of a vision-based hovering and feature tracking algorithm for a quadrotor
NASA Astrophysics Data System (ADS)
Lee, Y. H.; Chahl, J. S.
2016-10-01
This paper demonstrates an approach to the vision-based control of the unmanned quadrotors for hover and object tracking. The algorithms used the Speed Up Robust Features (SURF) algorithm to detect objects. The pose of the object in the image was then calculated in order to pass the pose information to the flight controller. Finally, the flight controller steered the quadrotor to approach the object based on the calculated pose data. The above processes was run using standard onboard resources found in the 3DR Solo quadrotor in an embedded computing environment. The obtained results showed that the algorithm behaved well during its missions, tracking and hovering, although there were significant latencies due to low CPU performance of the onboard image processing system.
Smoother Conversion From Helicopter To Airplane
NASA Technical Reports Server (NTRS)
Stroub, Robert H.
1992-01-01
Proposed high-speed rotorcraft converts between rotating-wing flight and fixed-wing flight without high vibration. Functions both while hovering and moving at transonic or low supersonic speeds. Aircraft takes off and hovers like ordinary helicopter. After accelerating to sufficient forward speed for conversion, rotor blades retracted into large, rotating hub fairing. Rotation then stopped. Two blades extended to serve as wings, and aircraft accelerates to its cruising speed.
Using Automatic Identification System Technology to Improve Maritime Border Security
2014-12-01
digital selective calling EPIRB Emergency Position Indicting Radio Beacon EU European Union FAA Federal Aviation Administration GAO U. S. Government...that has visited a hovering vessel or received merchandise outside the territorial sea. A hovering vessel is defined as a vessel loitering offshore...often with the intent to introduce merchandise into the United States illegally. Departing the United States and transiting international or foreign
NASA Astrophysics Data System (ADS)
Bluman, James Edward
Insect wings are flexible. However, the influence of wing flexibility on the flight dynamics of insects and flapping wing micro air vehicles is unknown. Most studies in the literature consider rigid wings and conclude that the hover equilibrium is unstable. This dissertation shows that a flapping wing flyer with flexible wings exhibits stable natural modes of the open loop system in hover, never reported before. The free-flight insect flight dynamics is modeled for both flexible and rigid wings. Wing mass and inertia are included in the nonlinear equations of motion. The flapping wing aerodynamics are modeled using a quasi-steady model, a well-validated two dimensional Navier Stokes model, and a coupled, two dimensional Navier Stokes - Euler Bernoulli beam model that accurately models the fluid-structure interaction of flexible wings. Hover equilibrium is systematically and efficiently determined with a coupled quasi-steady and Navier-Stokes equation trimmer. The power and stability are reported at hover while parametrically varying the pitch axis location for rigid wings and the structural stiffness for flexible wings. The results indicate that the rigid wings possess an unstable oscillatory mode mainly due to their pitch sensitivity to horizontal velocity perturbations. The flexible wings stabilize this mode primarily by adjusting their wing shape in the presence of perturbations. The wing's response to perturbations generates significantly more horizontal velocity damping and pitch rate damping than in rigid wings. Furthermore, the flexible wings experience substantially less wing wake interaction, which, for rigid wings, is destabilizing. The power required to hover a fruit fly with actively rotating rigid wings varies between 16.9 and 34.2 W/kg. The optimal power occurs when the pitch axis is located at 30% chord, similar to some biological observations. Flexible wings require 23.1 to 38.5 W/kg. However, flexible wings exhibit more stable system dynamics and allow for simpler and lighter designs since they do not require pitch actuation mechanisms. This study is the first to evaluate the impact of wing flexibility on the hovering stability of flapping flyers, which can explain the ranges of flexibility seen in insects and can inform designs of synthetic flapping wing robots.
Flight Characteristics of a 1/4-Scale Model of the XFV-1 Airplane (TED No. NACA DE-378)
NASA Technical Reports Server (NTRS)
Kelly, Mark W.; Smaus, Louis H.
1952-01-01
A l/4-scale dynamically similar model of the XFV-1 airplane has been flown in the Ames 40- by 80-foot wind tunnel, using the trailing flight-cable technique. This investigation was devoted to establishing the flight characteristics of the model in forward flight from hovering to wing stall, and in yawed flight (wing span alined with the relative wind) from hovering to the maximum speed at which controlled flight could be maintained. Landings, take-offs, and hovering characteristics in flights close to the ground were also investigated.. Since the remote control system for the model was rather complicated and provided artificial damping about the pitch, roll, and yaw axes, sufficient data from the control-system calibration tests are included in this report to specify the performance of the control system in relation to both the model flight tests and the design of an automatic control system for the full-scale airplane. The model in hovering flight appeared to be neutrally stable. The response of the model to the controls was very rapid, and it was always necessary to provide some amount of artificial damping to maintain control. The model could be landed with little difficulty by hovering approximately a foot above the floor and then cutting the power. Take-offs were more difficult to perform, primarily because the rate of change in power to the model motors was limited by the characteristics of the available power source. The model was,capable of controlled yawed flight at translational velocities up to and including 20 feet per second. The effectiveness of the controls decreased with increasing speed, however, and at 25 fps control in pitch, and probably roll, was lost completely. The model was flown in controlled forward flight from hovering up to 70 fps. During these flights the model appeared to be more difficult to control in yaw than it was in pitch or roll. The flights of the model were recorded by motion picture cameras. These motion pictures are available on loan from NACA Headquarters as a film supplement to this report.
Yim, Bunlong; Nitt, Heike; Wrede, Andreas; Jacquiod, Samuel; Sørensen, Søren J.; Winkelmann, Traud; Smalla, Kornelia
2017-01-01
Nurseries producing apple and rose rootstock plants, apple orchards as well as rose production often experience replanting problems after several cultivations at the same site when a chemical soil disinfectant is not applied. The etiology of apple and rose replanting problems is most likely caused by soil-borne pathogen complex, defined as “replant disease (RD)”. Symptoms typical of RD are reduced shoot and root growth, a smaller leaf area, a significant decrease in plant biomass, yield and fruit quality and a shorter life span. In our previous study, we showed that RD symptoms were reduced when apple rootstock M106 were grown in RD soils treated either with the soil fumigant Basamid or after biofumigation by incorporating Brassica juncea or Raphanus sativus or by growing Tagetes under field conditions compared to untreated control soil. The present study aimed at identifying potential bacterial and fungal taxa that were affected by different soil treatments and linking bacterial and fungal responders to plant performance. Miseq® Illumina® sequencing of 16S rRNA gene fragments (bacteria) and ITS regions (fungi) amplified from total community DNA extracted from soil samples taken 4 weeks after treatments were performed. Soil properties and culture history of the two RD sites greatly influenced soil microbiomes. Several bacterial genera were identified that significantly increased in treated soils such as Arthrobacter (R. sativus, both sites), Curtobacterium (Basamid, both sites), Terrimonas (Basamid and R. sativus, site A) and Ferruginibacter (B. juncea, site K and R. sativus, site A) that were also significantly and positively correlated with growth of apple M106 plants. Only few fungal genera, such as Podospora, Monographella and Mucor, were significantly promoted in soils treated with B. juncea and R. sativus (both sites). The least pronounced changes were recorded for bacterial as well as fungal communities in the RD soils planted with Tagetes. The detection of bacterial and fungal genera that were significantly increased in relative abundance in response to the treatments and that were positively correlated with plant growth suggests that management of the soil microbial community could contribute to overcome the apple RD encountered at affected sites. PMID:28919882
Gao, Na; Aono, Hikaru; Liu, Hao
2011-02-07
Insects exhibit exquisite control of their flapping flight, capable of performing precise stability and steering maneuverability. Here we develop an integrated computational model to investigate flight dynamics of insect hovering based on coupling the equations of 6 degree of freedom (6DoF) motion with the Navier-Stokes (NS) equations. Unsteady aerodynamics is resolved by using a biology-inspired dynamic flight simulator that integrates models of realistic wing-body morphology and kinematics, and a NS solver. We further develop a dynamic model to solve the rigid body equations of 6DoF motion by using a 4th-order Runge-Kutta method. In this model, instantaneous forces and moments based on the NS-solutions are represented in terms of Fourier series. With this model, we perform a systematic simulation-based analysis on the passive dynamic stability of a hovering fruit fly, Drosophila melanogaster, with a specific focus on responses of state variables to six one-directional perturbation conditions during latency period. Our results reveal that the flight dynamics of fruit fly hovering does not have a straightforward dynamic stability in a conventional sense that perturbations damp out in a manner of monotonous convergence. However, it is found to exist a transient interval containing an initial converging response observed for all the six perturbation variables and a terminal instability that at least one state variable subsequently tends to diverge after several wing beat cycles. Furthermore, our results illustrate that a fruit fly does have sufficient time to apply some active mediation to sustain a steady hovering before losing body attitudes. Copyright © 2010 Elsevier Ltd. All rights reserved.
Opportunity's Arm in 'Hover-Stow' Position
NASA Technical Reports Server (NTRS)
2006-01-01
In January 2006, NASA's Mars Exploration Rover team adopted a new strategy for carrying Opportunity's robotic arm (the instrument deployment device with its turret of four tools at the end) when the rover is driving. On short drives over smooth terrain, Opportunity now holds the arm in a 'hover-stow' position as shown in this image taken by the navigation camera during the rover's 706th Martian day, or sol (Jan. 18, 2006), with elbow forward and the tool turret held above the rover deck. (In this image, the Moessbauer spectrometer is facing upwards, the alpha particle X-ray spectrometer faces to the right and the rock abrasion tool faces to the left). On longer or rougher drives, Opportunity still holds the arm in the original stow position used throughout the mission, tucked underneath the deck. During Opportunity's 654th sol (Nov. 25, 2005), symptoms began appearing that have been diagnosed as a broken wire in the motor windings for the azimuth actuator at the shoulder joint, a motor that moves the arm from side to side. The motor still works when given extra current, but the change in strategy for stowing the arm results from concern that, if the motor were to completely fail with the arm in the original stow position, the arm could no longer be unstowed for use. If that motor were to fail while the arm is in the hover-stow position, the arm could still be manipulated for full use of the tools on the turret. However, the hover-stow position gives less protection to the arm during drives. Concern about protecting the arm during drives led to the compromise strategy of using hover-stow only during short, smooth drives.Unsteady aerodynamic force mechanisms of a hoverfly hovering with a short stroke-amplitude
NASA Astrophysics Data System (ADS)
Zhu, Hao Jie; Sun, Mao
2017-08-01
Hovering insects require a rather large lift coefficient. Many insects hover with a large stroke amplitude (120°-170°), and it has been found that the high lift is mainly produced by the delayed-stall mechanism. However, some insects hover with a small stroke amplitude (e.g., 65°). The delayed-stall mechanism might not work for these insects because the wings travel only a very short distance in a stroke, and other aerodynamic mechanisms must be operating. Here we explore the aerodynamic mechanisms of a hoverfly hovering with an inclined stroke plane and a small stroke amplitude (65.6°). The Navier-Stokes equations are numerically solved to give the flows and forces and the theory of vorticity dynamics used to reveal the aerodynamic mechanisms. The majority of the weight-supporting vertical force is produced in the mid portion of the downstroke, a short period (about 26% of the stroke cycle) in which the vertical force coefficient is larger than 4. The force is produced using a new mechanism, the "paddling mechanism." During the short period, the wing moves rapidly downward and forward at a large angle of attack (about 48°), and strong counter clockwise vorticity is produced continuously at the trailing edge and clockwise vorticity at the leading edge, resulting in a large time rate of change in the first moment of vorticity, hence the large aerodynamic force. It is interesting to note that with the well known delayed stall mechanism, the force is produced by the relative motion of two vortices of opposite sign, while in the "paddling mechanism," it is produced by generating new vortices of opposite sign at different locations.
NASA Technical Reports Server (NTRS)
Hindson, William S.
1987-01-01
A flight investigation was conducted to evaluate a multi-mode flight control system designed according to the most recent recommendations for handling qualities criteria for new military helicopters. The modes and capabilities that were included in the system are those considered necessary to permit divided-attention (single-pilot) lowspeed and hover operations near the ground in poor visibility conditions. Design features included mode-selection and mode-blending logic, the use of an automatic position-hold mode that employed precision measurements of aircraft position, and a hover display which permitted manually-controlled hover flight tasks in simulated instrument conditions. Pilot evaluations of the system were conducted using a multi-segment evaluation task. Pilot comments concerning the use of the system are provided, and flight-test data are presented to show system performance.
Wing force and surface pressure data from a hover test of a 0.658-scale V-22 rotor and wing
NASA Technical Reports Server (NTRS)
Felker, Fort F.; Shinoda, Patrick R.; Heffernan, Ruth M.; Sheehy, Hugh F.
1990-01-01
A hover test of a 0.658-scale V-22 rotor and wing was conducted in the 40 x 80 foot wind tunnel at Ames Research Center. The principal objective of the test was to measure the surface pressures and total download on a large scale V-22 wing in hover. The test configuration consisted of a single rotor and semispan wing on independent balance systems. A large image plane was used to represent the aircraft plane of symmetry. Wing flap angles ranging from 45 to 90 degrees were examined. Data were acquired for both directions of the rotor rotation relative to the wing. Steady and unsteady wing surface pressures, total wing forces, and rotor performance data are presented for all of the configurations that were tested.
NASA Technical Reports Server (NTRS)
Yeager, W. T., Jr.; Hamouda, M. N. H.; Mantay, W. R.
1983-01-01
A research effort of analysis and testing was conducted to investigate the ground resonance phenomenon of a soft in-plane hingeless rotor. Experimental data were obtained using a 9 ft. (2.74 m) diameter model rotor in hover and forward flight. Eight model rotor configurations were investigated. Configuration parameters included pitch flap coupling, blade sweep and droop, and precone of the blade feathering axis. An analysis based on a comprehensive analytical model of rotorcraft aerodynamics and dynamics was used. The moving block was used to experimentally determine the regressing lead lag mode damping. Good agreement was obtained between the analysis and test. Both analysis and experiment indicated ground resonance instability in hover. An outline of the analysis, a description of the experimental model and procedures, and comparison of the analytical and experimental data are presented.
Design and development of flapping wing micro air vehicle
NASA Astrophysics Data System (ADS)
Hynes, N. Rajesh Jesudoss; Solomon, A. Jeffey Markus; Kathiresh, E.; Brighton, D.; Velu, P. Shenbaga
2018-05-01
Birds and insects have different methods of producing lift and thrust for hovering and forward flight. Most birds, however, cannot hover. Wing tips of birds follow simple paths in flight, whereas insects have very complicated wing tip paths, for hovering and forward flight, which vary with each species. FMAV based on avian flight. Development of Flapping Wing Air Vehicle (FWAV) is an on-going quest to master the natural flyers by mechanical means. It is characterized by unsteady aerodynamics, whose knowledge is still developing. The present work aims at include being capable of manoeuvring around and over obstacles by adjusting pitch, yaw, and roll, able to glide for five seconds under its own power, skilful at alternating between flapping and gliding with minimal disruption of flight pattern and being durable enough to withstand impacts with minimal to no damage.
NASA Technical Reports Server (NTRS)
Chung, W. Y. William; Borchers, Paul F.; Franklin, James A.
1995-01-01
A simulation model has been developed for use in piloted evaluations of takeoff, transition, hover, and landing characteristics of an advanced, short takeoff, vertical landing lift fan fighter aircraft. The flight/propulsion control system includes modes for several response types which are coupled to the aircraft's aerodynamic and propulsion system effectors through a control selector tailored to the lift fan propulsion system. Head-up display modes for approach and hover, tailored to their corresponding control modes are provided in the simulation. Propulsion system components modeled include a remote lift and a lift/cruise engine. Their static performance and dynamic response are represented by the model. A separate report describes the subsonic, power-off aerodynamics and jet induced aerodynamics in hover and forward flight, including ground effects.
Flow visualization studies of VTOL aircraft models during Hover in ground effect
NASA Technical Reports Server (NTRS)
Mourtos, Nikos J.; Couillaud, Stephane; Carter, Dale; Hange, Craig; Wardwell, Doug; Margason, Richard J.
1995-01-01
A flow visualization study of several configurations of a jet-powered vertical takeoff and landing (VTOL) aircraft model during hover in ground effect was conducted. A surface oil flow technique was used to observe the flow patterns on the lower surfaces of the model. There were significant configuration effects. Wing height with respect to fuselage, the presence of an engine inlet duct beside the fuselage, and nozzle pressure ratio are seen to have strong effects on the surface flow angles on the lower surface of the wing. This test was part of a program to improve the methods for predicting the hot gas ingestion (HGI) for jet-powered vertical/short takeoff and landing (V/STOL) aircraft. The tests were performed at the Jet Calibration and Hover Test (JCAHT) Facility at Ames Research Center.
Developing a Framework for Control of Agile Aircraft Platforms in Autonomous Hover
2009-03-01
profiles. Two dynamical systems are considered, a scale YAK -54 aerobatic remote control aircraft and the Flexrotor concept developed by Aerovel. Both models...System [28]. . . . . . . 2 1.2 A YAK -54 in hover in the Real Flight RC Simulator [24]. . . . . . . . 3 1.3 The Aerovel Flexrotor concept...17 3.1 A three-view of the YAK -54 showing all geometry and dimensions (in mm) [15
Into Turbulent Air: Hummingbird Aerodynamic Control in Unsteady Circumstances
2016-06-24
costs of flight. We have also completed studies of hummingbird hovering flight within a vertical wind tunnel to enable study of the vortex ring state...vertical wind tunnel to enable study of the vortex ring state, a well-known problem in helicopter descent. This work evaluated both ascending and...wakes. DISTRIBUTION A: Distribution approved for public release. Our work with hummingbirds hovering in a vertical wind tunnel has enabled
Helicopter noise in hover: Computational modelling and experimental validation
NASA Astrophysics Data System (ADS)
Kopiev, V. F.; Zaytsev, M. Yu.; Vorontsov, V. I.; Karabasov, S. A.; Anikin, V. A.
2017-11-01
The aeroacoustic characteristics of a helicopter rotor are calculated by a new method, to assess its applicability in assessing rotor performance in hovering. Direct solution of the Euler equations in a noninertial coordinate system is used to calculate the near-field flow around the spinning rotor. The far-field noise field is calculated by the Ffowcs Williams-Hawkings (FW-H) method using permeable control surfaces that include the blade. For a multiblade rotor, the signal obtained is duplicated and shifted in phase for each successive blade. By that means, the spectral characteristics of the far-field noise may be obtained. To determine the integral aerodynamic characteristics of the rotor, software is written to calculate the thrust and torque characteristics from the near-field flow solution. The results of numerical simulation are compared with experimental acoustic and aerodynamic data for a large-scale model of a helicopter main rotor in an open test facility. Two- and four-blade configurations of the rotor are considered, in different hover conditions. The proposed method satisfactorily predicts the aerodynamic characteristics of the blades in such conditions and gives good estimates for the first harmonics of the noise. That permits the practical use of the proposed method, not only for hovering but also for forward flight.
NASA Astrophysics Data System (ADS)
Nguyen, Quoc-Viet; Chan, Woei Leong; Debiasi, Marco
2015-03-01
We present our recent flying insect-inspired Flapping-Wing Micro Air Vehicle (FW-MAV) capable of hovering flight which we have recently achieved. The FW-MAV has wing span of 22 cm (wing tip-to-wing tip), weighs about 16.6 grams with onboard integration of radio control system including a radio receiver, an electronic speed control (ESC) for brushless motor, three servos for attitude flight controls of roll, pitch, and yaw, and a single cell lithium-polymer (LiPo) battery (3.7 V). The proposed gear box enables the FW-MAV to use one DC brushless motor to synchronously drive four wings and take advantage of the double clap-and-fling effects during one flapping cycle. Moreover, passive wing rotation is utilized to simplify the design, in addition to passive stabilizing surfaces for flight stability. Powered by a single cell LiPo battery (3.7 V), the FW-MAV flaps at 13.7 Hz and produces an average vertical force or thrust of about 28 grams, which is sufficient for take-off and hovering flight. Finally, free flight tests in terms of vertical take-off, hovering, and manual attitude control flight have been conducted to verify the performance of the FW-MAV.
Fundamental Characterization of Spanwise Loading and Trailed Wake Vortices
2016-07-01
the close interaction of the tip vortex with a following blade . Such vortex interactions are fundamental determinants of rotor performance, loads, and...wing loading distribution differs from a typical loading on a hovering rotor blade in that the maximum bound circulation occurs at the blade root...and not close to the tip; this is similar to a very highly twisted rotor blade , like a tilt-rotor, in hover. The wing-vortex interaction alters the
Detailed Measurements of the Aeroelastic Response of a Rigid Coaxial Rotor in Hover
2017-08-11
included: hover testing of single and CCR rotors (Year 1), deformation measurement and modal identification of rotor blades in the non -rotating and...the rotor blades, as well as the detailed experimental data were shared with Dr. Rajneesh Singh and Dr. Hao Kang at Vehicle Technology Directorate...VTD), Aberdeen Proving Grounds, MD. In this way, the experimental data could be used to validate US Army comprehensive analysis tools, specifically
Detached Eddy Simulation of the UH-60 Rotor Wake Using Adaptive Mesh Refinement
NASA Technical Reports Server (NTRS)
Chaderjian, Neal M.; Ahmad, Jasim U.
2012-01-01
Time-dependent Navier-Stokes flow simulations have been carried out for a UH-60 rotor with simplified hub in forward flight and hover flight conditions. Flexible rotor blades and flight trim conditions are modeled and established by loosely coupling the OVERFLOW Computational Fluid Dynamics (CFD) code with the CAMRAD II helicopter comprehensive code. High order spatial differences, Adaptive Mesh Refinement (AMR), and Detached Eddy Simulation (DES) are used to obtain highly resolved vortex wakes, where the largest turbulent structures are captured. Special attention is directed towards ensuring the dual time accuracy is within the asymptotic range, and verifying the loose coupling convergence process using AMR. The AMR/DES simulation produced vortical worms for forward flight and hover conditions, similar to previous results obtained for the TRAM rotor in hover. AMR proved to be an efficient means to capture a rotor wake without a priori knowledge of the wake shape.
NASA Technical Reports Server (NTRS)
Balch, D. T.; Saccullo, A.; Sheehy, T. W.
1983-01-01
To assist in identifying and quantifying the relevant parameters associated with the complex topic of main rotor/fuselage/tail rotor interference, a model scale hover test was conducted in the Model Rotor Hover Facility. The test was conducted using the basic model test rig, fuselage skins to represent a UH-60A BLACK HAWK helicopter, 4 sets of rotor blades of varying geometry (i.e., twist, airfoils and solidity) and a model tail rotor that could be relocated to give changes in rotor clearance (axially, laterally, and vertically), can't angle and operating model (pusher or tractor). The description of the models and the tests, data analysis and summary (including plots) are included. The customary system of units gas used for principal measurements and calculations. Expressions in both SI units and customary units are used with the SI units stated first and the customary units afterwords, in parenthesis.
Lift and Power Required for Flapping Wing Hovering Flight on Mars
NASA Astrophysics Data System (ADS)
Pohly, Jeremy; Sridhar, Madhu; Bluman, James; Kang, Chang-Kwon; Landrum, D. Brian; Fahimi, Farbod; Aono, Hikaru; Liu, Hao
2017-11-01
Achieving flight on Mars is challenging due to the ultra-low density atmosphere. Bio-inspired flapping motion can generate sufficient lift if bumblebee-inspired wings are scaled up between 2 and 4 times their nominal size. However, due to this scaling, the inertial power required to sustain hover increases and dominates over the aerodynamic power. Our results show that a torsional spring placed at the wing root can reduce the flapping power required for hover by efficiently storing and releasing energy while operating at its resonance frequency. The spring assisted reduction in flapping power is demonstrated with a well-validated, coupled Navier-Stokes and flight dynamics solver. The total power is reduced by 79%, whereas the flapping power is reduced by 98%. Such a reduction in power paves the way for an efficient, realizable micro air vehicle capable of vertical takeoff and landing as well as sustained flight on Mars. Alabama Space Grant Consortium Fellowship.
NASA Technical Reports Server (NTRS)
Hall, G. F.
1975-01-01
A numerical analysis was developed to determine the airloads on helicopter rotors operating under near-hovering flight conditions capable of producing impulsive noise. A computer program was written in which the solutions for the rotor tip vortex geometry, inflow, aeroelastic response, and airloads are solved in a coupled manner at sequential time steps, with or without the influence of an imposed steady ambient wind or transient gust. The program was developed for future applications in which predicted airloads would be incorporated in an acoustics analysis to attempt to predict and analyze impulsive noise (blade slap). The analysis was applied to a hovering full-scale rotor for which impulsive noise was recorded in the presence of ambient wind. The predicted tip vortex coordinates are in reasonable agreement with the test data, and the blade airload solutions converged to a periodic behavior for an imposed steady ambient wind conditions.
Identification and simulation evaluation of an AH-64 helicopter hover math model
NASA Technical Reports Server (NTRS)
Schroeder, J. A.; Watson, D. C.; Tischler, M. B.; Eshow, M. M.
1991-01-01
Frequency-domain parameter-identification techniques were used to develop a hover mathematical model of the AH-64 Apache helicopter from flight data. The unstable AH-64 bare-airframe characteristics without a stability-augmentation system were parameterized in the convectional stability-derivative form. To improve the model's vertical response, a simple transfer-function model approximating the effects of dynamic inflow was developed. Additional subcomponents of the vehicle were also modeled and simulated, such as a basic engine response for hover and the vehicle stick dynamic characteristics. The model, with and without stability augmentation, was then evaluated by AH-64 pilots in a moving-base simulation. It was the opinion of the pilots that the simulation was a satisfactory representation of the aircraft for the tasks of interest. The principal negative comment was that height control was more difficult in the simulation than in the aircraft.
Nonlinear flight dynamics and stability of hovering model insects
Liang, Bin; Sun, Mao
2013-01-01
Current analyses on insect dynamic flight stability are based on linear theory and limited to small disturbance motions. However, insects' aerial environment is filled with swirling eddies and wind gusts, and large disturbances are common. Here, we numerically solve the equations of motion coupled with the Navier–Stokes equations to simulate the large disturbance motions and analyse the nonlinear flight dynamics of hovering model insects. We consider two representative model insects, a model hawkmoth (large size, low wingbeat frequency) and a model dronefly (small size, high wingbeat frequency). For small and large initial disturbances, the disturbance motion grows with time, and the insects tumble and never return to the equilibrium state; the hovering flight is inherently (passively) unstable. The instability is caused by a pitch moment produced by forward/backward motion and/or a roll moment produced by side motion of the insect. PMID:23697714
Aeroelastic Stability of Modern Bearingless Rotors: A Parametric Investigation
NASA Technical Reports Server (NTRS)
Nguyen, Khanh Q.
1994-01-01
The University of Maryland Advanced Rotorcraft Code (UMARC) is utilized to study the effects of blade design parameters on the aeroelastic stability of an isolated modern bearingless rotor blade in hover. The McDonnell Douglas Advanced Rotor Technology (MDART) Rotor is the baseline rotor investigated. Results indicate that kinematic pitch-lag coupling introduced through the control system geometry and the damping levels of the shear lag dampers strongly affect the hover inplane damping of the baseline rotor blade. Hub precone, pitchcase chordwise stiffness, and blade fundamental torsion frequency have small to moderate influence on the inplane damping, while blade pre-twist and placements of blade fundamental flapwise and chord-wise frequencies have negligible effects. A damperless configuration with a leading edge pitch-link, 15 deg of pitch-link cant angle, and reduced pitch-link stiffness is shown to be stable with an inplane damping level in excess of 2.7 percent critical at the full hover tip speed.
NASA Technical Reports Server (NTRS)
Malcipa, Carlos; Decker, William A.; Theodore, Colin R.; Blanken, Christopher L.; Berger, Tom
2010-01-01
A piloted simulation investigation was conducted using the NASA Ames Vertical Motion Simulator to study the impact of pitch, roll and yaw attitude bandwidth and phase delay on handling qualities of large tilt-rotor aircraft. Multiple bandwidth and phase delay pairs were investigated for each axis. The simulation also investigated the effect that the pilot offset from the center of gravity has on handling qualities. While pilot offset does not change the dynamics of the vehicle, it does affect the proprioceptive and visual cues and it can have an impact on handling qualities. The experiment concentrated on two primary evaluation tasks: a precision hover task and a simple hover pedal turn. Six pilots flew over 1400 data runs with evaluation comments and objective performance data recorded. The paper will describe the experiment design and methodology, discuss the results of the experiment and summarize the findings.
Feigl, Gábor; Kolbert, Zsuzsanna; Lehotai, Nóra; Molnár, Árpád; Ördög, Attila; Bordé, Ádám; Laskay, Gábor; Erdei, László
2016-03-01
Zinc is an essential microelement, but its excess exerts toxic effects in plants. Heavy metal stress can alter the metabolism of reactive oxygen (ROS) and nitrogen species (RNS) leading to oxidative and nitrosative damages; although the participation of these processes in Zn toxicity and tolerance is not yet known. Therefore this study aimed to evaluate the zinc tolerance of Brassica organs and the putative correspondence of it with protein nitration as a relevant marker for nitrosative stress. Both examined Brassica species (B. juncea and B. napus) proved to be moderate Zn accumulators; however B. napus accumulated more from this metal in its organs. The zinc-induced damages (growth diminution, altered morphology, necrosis, chlorosis, and the decrease of photosynthetic activity) were slighter in the shoot system of B. napus than in B. juncea. The relative zinc tolerance of B. napus shoot was accompanied by moderate changes of the nitration pattern. In contrast, the root system of B. napus suffered more severe damages (growth reduction, altered morphology, viability loss) and slighter increase in nitration level compared to B. juncea. Based on these, the organs of Brassica species reacted differentially to excess zinc, since in the shoot system modification of the nitration pattern occurred (with newly appeared nitrated protein bands), while in the roots, a general increment in the nitroproteome could be observed (the intensification of the same protein bands being present in the control samples). It can be assumed that the significant alteration of nitration pattern is coupled with enhanced zinc sensitivity of the Brassica shoot system and the general intensification of protein nitration in the roots is attached to relative zinc endurance. Copyright © 2015 Elsevier Inc. All rights reserved.
Jaradat, Masrur R; Ruegger, Max; Bowling, Andrew; Butler, Holly; Cutler, Adrian J
2014-01-01
Asynchronous flowering of Brassica napus (canola) leads to seeds and siliques at varying stages of maturity as harvest approaches. This range of maturation can result in premature silique dehiscence (pod shattering), resulting in yield losses, which may be worsened by environmental stresses. Therefore, a goal for canola crop improvement is to reduce shattering in order to maximize yield. We performed a comprehensive transcriptome analysis on the dehiscence zone (DZ) and valve of Arabidopsis and Brassica siliques in shatter resistant and sensitive genotypes at several developmental stages. Among known Arabidopsis dehiscence genes, we confirmed that homologs of SHP1/2, FUL, ADPG1, NST1/3 and IND were associated with shattering in B. juncea and B. napus. We noted a correlation between reduced pectin degradation genes and shatter-resistance. Tension between lignified and non-lignified cells in the silique DZ plays a major role in dehiscence. Light microscopy revealed a smaller non-lignified separation layer in relatively shatter-resistant B. juncea relative to B. napus and this corresponded to increased expression of peroxidases involved in monolignol polymerization. Sustained repression of auxin biosynthesis, transport and signaling in B. juncea relative to B. napus may cause differences in dehiscence zone structure and cell wall constituents. Tension on the dehiscence zone is a consequence of shrinkage and loss of flexibility in the valves, which is caused by senescence and desiccation. Reduced shattering was generally associated with upregulation of ABA signaling and down-regulation of ethylene and jasmonate signaling, corresponding to more pronounced stress responses and reduced senescence and photosynthesis. Overall, we identified 124 cell wall related genes and 103 transcription factors potentially involved in silique dehiscence.
Jaradat, Masrur R; Ruegger, Max; Bowling, Andrew; Butler, Holly; Cutler, Adrian J
2014-01-01
Asynchronous flowering of Brassica napus (canola) leads to seeds and siliques at varying stages of maturity as harvest approaches. This range of maturation can result in premature silique dehiscence (pod shattering), resulting in yield losses, which may be worsened by environmental stresses. Therefore, a goal for canola crop improvement is to reduce shattering in order to maximize yield. We performed a comprehensive transcriptome analysis on the dehiscence zone (DZ) and valve of Arabidopsis and Brassica siliques in shatter resistant and sensitive genotypes at several developmental stages. Among known Arabidopsis dehiscence genes, we confirmed that homologs of SHP1/2, FUL, ADPG1, NST1/3 and IND were associated with shattering in B. juncea and B. napus. We noted a correlation between reduced pectin degradation genes and shatter-resistance. Tension between lignified and non-lignified cells in the silique DZ plays a major role in dehiscence. Light microscopy revealed a smaller non-lignified separation layer in relatively shatter-resistant B. juncea relative to B. napus and this corresponded to increased expression of peroxidases involved in monolignol polymerization. Sustained repression of auxin biosynthesis, transport and signaling in B. juncea relative to B. napus may cause differences in dehiscence zone structure and cell wall constituents. Tension on the dehiscence zone is a consequence of shrinkage and loss of flexibility in the valves, which is caused by senescence and desiccation. Reduced shattering was generally associated with upregulation of ABA signaling and down-regulation of ethylene and jasmonate signaling, corresponding to more pronounced stress responses and reduced senescence and photosynthesis. Overall, we identified 124 cell wall related genes and 103 transcription factors potentially involved in silique dehiscence. PMID:25523176
Sarwat, Maryam; Hashem, Abeer; Ahanger, Mohammad A.; Abd_Allah, Elsayed F.; Alqarawi, A. A.; Alyemeni, Mohammed N.; Ahmad, Parvaiz; Gucel, Salih
2016-01-01
Present work was carried out to investigate the possible role of arbuscular mycorrhizal fungi (AMF) in mitigating salinity-induced alterations in Brassica juncea L. Exposure to NaCl stress altered the morphological, physio-biochemical attributes, antioxidant activity, secondary metabolites and phytohormones in the mustard seedlings. The growth and biomass yield, leaf water content, and total chlorophyll content were decreased with NaCl stress. However, AMF-inoculated plants exhibited enhanced shoot and root length, elevated relative water content, enhanced chlorophyll content, and ultimately biomass yield. Lipid peroxidation and proline content were increased by 54.53 and 63.47%, respectively with 200 mM NaCl concentration. Further increase in proline content and decrease in lipid peroxidation was observed in NaCl-treated plants inoculated with AMF. The antioxidants, superoxide dismutase, ascorbate peroxidase, glutathione reductase, and reduced glutathione were increased by 48.35, 54.86, 43.85, and 44.44%, respectively, with 200 mM NaCl concentration. Further increase in these antioxidants has been observed in AMF-colonized plants indicating the alleviating role of AMF to salinity stress through antioxidant modulation. The total phenol, flavonoids, and phytohormones increase with NaCl treatment. However, NaCl-treated plants colonized with AMF showed further increase in the above parameters except ABA, which was reduced with NaCl+AMF treatment over the plants treated with NaCl alone. Our results demonstrated that NaCl caused negative effect on B. juncea seedlings; however, colonization with AMF enhances the NaCl tolerance by reforming the physio-biochemical attributes, activities of antioxidant enzymes, and production of secondary metabolites and phytohormones. PMID:27458462
BAAM Additive Manufacturing of Magnetically Levitated Wind Turbine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, Bradley S.; Noakes, Mark W.; Roschli, Alex C.
ORNL worked with Hover Energy LLC (Hover) on the design of Big Area Additive Manufacturing (BAAM) extrusion components. The objective of this technical collaboration was to identify and evaluate fabrication of components using alternative additive manufacturing techniques. Multiple candidate parts were identified. A design modification to fabricate diverters using additive manufacturing (AM) was performed and the part was analyzed based on anticipated wind loading. Scaled versions of two parts were printed using the BAAM for wind tunnel testing.
Hover performance tests of full scale variable geometry rotors
NASA Technical Reports Server (NTRS)
Rorke, J. B.
1976-01-01
Full scale whirl tests were conducted to determine the effects of interblade spatial relationships and pitch variations on the hover performance and acoustic signature of a 6-blade main rotor system. The variable geometry rotor (VGR) variations from the conventional baseline were accomplished by: (1) shifting the axial position of alternate blades by one chord-length to form two tip path planes; and (2) varying the relative azimuthal spacing from the upper rotor to the lagging hover rotor in four increments from 25.2 degrees to 62.1 degrees. For each of these four configurations, the differential collective pitch between upper and lower rotors was set at + or - 1 deg, 0 deg and -1 deg. Hover performance data for all configurations were acquired at blade tip Mach numbers of 0.523 and 0.45. Acoustic data were recorded at all test conditions, but analyzed only at 0 deg differential pitch at the higher rotor speed. The VGR configurations tested demonstrated improvements in thrust at constant power as high as 6 percent. Reductions of 3 PNdb in perceived noise level and of 4 db in blade passage frequency noise level were achieved at the higher thrust levels. Consistent correlation exists between performance and acoustic improvements. For any given azimuth spacing, performance was consistently better for the differential pitch condition of + or - 1 degree, i.e. with the upper rotor pitch one degree higher than the lower rotor.
Of hummingbirds and helicopters: hovering costs, competitive ability, and foraging strategies.
Altshuler, Douglas L
2004-01-01
Wing morphology and flight kinematics profoundly influence foraging costs and the overall behavioral ecology of hummingbirds. By analogy with helicopters, previous energetic studies have applied the momentum theory of aircraft propellers to estimate hovering costs from wing disc loading (WDL), a parameter incorporating wingspan (or length) and body mass. Variation in WDL has been used to elucidate differences either among hummingbird species in nectar-foraging strategies (e.g., territoriality, traplining) and dominance relations or among gender-age categories within species. We first demonstrate that WDL, as typically calculated, is an unreliable predictor of hovering (induced power) costs; predictive power is increased when calculations use wing length instead of wingspan and when actual wing stroke amplitudes are incorporated. We next evaluate the hypotheses that foraging strategy and competitive ability are functions of WDL, using our data in combination with those of published sources. Variation in hummingbird behavior cannot be easily classified using WDL and instead is correlated with a diversity of morphological and physiological traits. Evaluating selection pressures on hummingbird wings will require moving beyond wing and body mass measurements to include the assessment of the aerodynamic forces, power requirements, and power reserves of hovering, forward flight, and maneuvering. However, the WDL-helicopter dynamics model has been instrumental in calling attention to the importance of comparative wing morphology and related aerodynamics for understanding the behavioral ecology of hummingbirds.
Hummingbird wing efficacy depends on aspect ratio and compares with helicopter rotors
Kruyt, Jan W.; Quicazán-Rubio, Elsa M.; van Heijst, GertJan F.; Altshuler, Douglas L.; Lentink, David
2014-01-01
Hummingbirds are the only birds that can sustain hovering. This unique flight behaviour comes, however, at high energetic cost. Based on helicopter and aeroplane design theory, we expect that hummingbird wing aspect ratio (AR), which ranges from about 3.0 to 4.5, determines aerodynamic efficacy. Previous quasi-steady experiments with a wing spinner set-up provide no support for this prediction. To test this more carefully, we compare the quasi-steady hover performance of 26 wings, from 12 hummingbird taxa. We spun the wings at angular velocities and angles of attack that are representative for every species and measured lift and torque more precisely. The power (aerodynamic torque × angular velocity) required to lift weight depends on aerodynamic efficacy, which is measured by the power factor. Our comparative analysis shows that AR has a modest influence on lift and drag forces, as reported earlier, but interspecific differences in power factor are large. During the downstroke, the power required to hover decreases for larger AR wings at the angles of attack at which hummingbirds flap their wings (p < 0.05). Quantitative flow visualization demonstrates that variation in hover power among hummingbird wings is driven by similar stable leading edge vortices that delay stall during the down- and upstroke. A side-by-side aerodynamic performance comparison of hummingbird wings and an advanced micro helicopter rotor shows that they are remarkably similar. PMID:25079868
Optimal pitching axis location of flapping wings for efficient hovering flight.
Wang, Q; Goosen, J F L; van Keulen, F
2017-09-01
Flapping wings can pitch passively about their pitching axes due to their flexibility, inertia, and aerodynamic loads. A shift in the pitching axis location can dynamically alter the aerodynamic loads, which in turn changes the passive pitching motion and the flight efficiency. Therefore, it is of great interest to investigate the optimal pitching axis for flapping wings to maximize the power efficiency during hovering flight. In this study, flapping wings are modeled as rigid plates with non-uniform mass distribution. The wing flexibility is represented by a linearly torsional spring at the wing root. A predictive quasi-steady aerodynamic model is used to evaluate the lift generated by such wings. Two extreme power consumption scenarios are modeled for hovering flight, i.e. the power consumed by a drive system with and without the capacity of kinetic energy recovery. For wings with different shapes, the optimal pitching axis location is found such that the cycle-averaged power consumption during hovering flight is minimized. Optimization results show that the optimal pitching axis is located between the leading edge and the mid-chord line, which shows close resemblance to insect wings. An optimal pitching axis can save up to 33% of power during hovering flight when compared to traditional wings used by most of flapping wing micro air vehicles (FWMAVs). Traditional wings typically use the straight leading edge as the pitching axis. With the optimized pitching axis, flapping wings show higher pitching amplitudes and start the pitching reversals in advance of the sweeping reversals. These phenomena lead to higher lift-to-drag ratios and, thus, explain the lower power consumption. In addition, the optimized pitching axis provides the drive system higher potential to recycle energy during the deceleration phases as compared to their counterparts. This observation underlines the particular importance of the wing pitching axis location for energy-efficient FWMAVs when using kinetic energy recovery drive systems.
Moving-Base Simulation Evaluation of Control/Display Integration Issues for ASTOVL Aircraft
NASA Technical Reports Server (NTRS)
Franklin, James A.
1997-01-01
A moving-base simulation has been conducted on the Vertical Motion Simulator at Ames Research Center using a model of an advanced, short takeoff and vertical landing (STOVL) lift fan fighter aircraft. This experiment expanded on investigations during previous simulations with this STOVL configuration with the objective of evaluating (1) control law modifications over the low speed flight envelope, (2) integration of the throttle inceptor with flight control laws that provide direct thrust command for conventional flight, vertical and short takeoff, and flightpath or vertical velocity command for transition, hover, and vertical landing, (3) control mode blending for pitch, roll, yaw, and flightpath control during transition from wing-borne to jet-borne flight, and (4) effects of conformal versus nonconformal presentation of flightpath and pursuit guidance symbology on the out-the-window display for low speed STOVL operations. Assessments were made for takeoff, transition, hover, and landing, including precision hover and landing aboard an LPH-type amphibious assault ship in the presence of winds and rough seas. Results yielded Level 1 pilot ratings for the flightpath and vertical velocity command modes for a range of land-based and shipboard operation and were consistent with previous experience with earlier control laws and displays for this STOVL concept. Control mode blending was performed over speed ranges in accord with the pilot's tasks and with the change of the basic aircraft's characteristics between wing-borne and hover flight. Blending of yaw control from heading command in hover to sideslip command in wing-borne flight performed over a broad speed range helped reduce yaw transients during acceleration through the low speed regime. Although the pilots appreciated conformality of flightpath and guidance symbols with the external scene during the approach, increased sensitivity of the symbols for lateral path tracking elevated the pilots' control activity in the presence of turbulence. The pilots preferred the choice of scaling that was originally established during the display development and in-flight evaluations.
Control of Globodera spp. using Brassica juncea seed meal and seed meal extract
USDA-ARS?s Scientific Manuscript database
The eradication program for the potato cyst nematode, Globodera pallida, revolves around the use of soil fumigation. Alternative, integrated strategies are needed to continue to battle this invasive nematode. Laboratory, greenhouse, and field experiments were conducted with G. pallida and another cy...
Jagannath, Arun; Sodhi, Yashpal Singh; Gupta, Vibha; Mukhopadhyay, Arundhati; Arumugam, Neelakantan; Singh, Indira; Rohatgi, Soma; Burma, Pradeep Kumar; Pradhan, Akshay Kumar; Pental, Deepak
2011-04-01
Oil content and oil quality fractions (viz., oleic, linoleic and linolenic acid) are strongly influenced by the erucic acid pathway in oilseed Brassicas. Low levels of erucic acid in seed oil increases oleic acid content to nutritionally desirable levels, but also increases the linoleic and linolenic acid fractions and reduces oil content in Indian mustard (Brassica juncea). Analysis of phenotypic variability for oil quality fractions among a high-erucic Indian variety (Varuna), a low-erucic east-European variety (Heera) and a zero-erucic Indian variety (ZE-Varuna) developed by backcross breeding in this study indicated that lower levels of linoleic and linolenic acid in Varuna are due to substrate limitation caused by an active erucic acid pathway and not due to weaker alleles or enzyme limitation. To identify compensatory loci that could be used to increase oil content and maintain desirable levels of oil quality fractions under zero-erucic conditions, we performed Quantitative Trait Loci (QTL) mapping for the above traits on two independent F1 doubled haploid (F1DH) mapping populations developed from a cross between Varuna and Heera. One of the populations comprised plants segregating for erucic acid content (SE) and was used earlier for construction of a linkage map and QTL mapping of several yield-influencing traits in B. juncea. The second population consisted of zero-erucic acid individuals (ZE) for which, an Amplified Fragment Length Polymorphism (AFLP)-based framework linkage map was constructed in the present study. By QTL mapping for oil quality fractions and oil content in the ZE population, we detected novel loci contributing to the above traits. These loci did not co-localize with mapped locations of the fatty acid desaturase 2 (FAD2), fatty acid desaturase 3 (FAD3) or fatty acid elongase (FAE) genes unlike those of the SE population wherein major QTL were found to coincide with mapped locations of the FAE genes. Some of the new loci identified in the ZE population could be detected as 'weak' contributors (with LOD < 2.5) in the SE population in which their contribution to the traits was "masked" due to pleiotropic effects of erucic acid genes. The novel loci identified in this study could now be used to improve oil quality parameters and oil content in B. juncea under zero-erucic conditions.
Autonomous Micro Air Vehicles with Hovering Capabilities
2009-02-01
One MS thesis by Bharani Malladi was completed in December of 2007 and one PhD thesis by Bill Silin is in progress and expected by May 2009...transition from slow flight to hover flight in a way that can authorize building R Figure 1. Low-speed wind tunnel (left) and the 5-component micro...January 2007. 3Henry, J. I., Schwartz, D. R ., Soukup, M. A., Altman, A., “Design, Construction, and Testing of a Folding-Wing, Tube- Launched Micro Air
An Examination of a Pumping Rotor Blade Design for Brownout Mitigation
2015-05-18
and 60° above the horizontal axis. All blade designs were tested in a hovering state in ground effect at a blade loading coefficient of 0.08...were tested in a hovering state in ground effect at a blade loading coefficient, CT/σ, of 0.08. Additional measurements were performed on the baseline...comparison to the 0◦ pumping blade due to a negative thrust effect that resulted from mass flow through the pumping slots. When operating at the higher
Free Wake Analysis of Helicopter Rotor Blades in Hover Using a Finite Volume Technique
1988-10-01
inboard, and root) which were replaced by a far wake model after four revolutions. Murman and Stremel 1121 calculated j two-dimensional unsteady wake...distributed to a fixed mesh, on which the velocities were calculated by a finite difference solution of Laplace’s equation. Stremel [131 applied this two...Analysis of a Hovering Rotor," Vertica, Vol. 6, No. 2, 1982. 12. Murman, E.M., and Stremel , P.M., "A Vortex Wake Capturing Method Po- tential Flow
Photo - Apollo/Saturn (A/S)-11 - Water w/Helo Hovering Overhead
1969-01-01
S69-27919 (13 March 1969) --- Immediately after splashdown a recovery helicopter from the USS Guadalcanal hovers over the Apollo 9 spacecraft. Still inside the Command Module (CM) are astronauts James A. McDivitt, David R. Scott, and Russell L. Schweickart. Splashdown occurred at 12:00:53 p.m. (EST), March 13, 1969, only 4.5 nautical miles from the USS Guadalcanal, the prime recovery ship, to conclude a successful 10-day Earth-orbital mission in space.
USDA-ARS?s Scientific Manuscript database
Bacterial blight, caused by Pseudomonas cannabina pv. alisalensis, attacks the leaves of most brassica vegetables, including mustard greens (Brassica juncea). ‘Carolina Broadleaf,’ a new mustard cultivar, is resistant to bacterial blight. Acibenzolar-S-methyl (trade name Actigard) has been used to m...
USDA-ARS?s Scientific Manuscript database
While hydrotreated renewable jet fuel (HRJ) has been demonstrated for use in commercial and military aviation, a challenge to large-scale adoption is availability of cost competitive feedstocks. Brassica oilseed crops like Brassica napus, B. rapa, B. juncea, B. carinata, Sinapis alba, and Camelina s...
USDA-ARS?s Scientific Manuscript database
The phytomanagement of Se-polluted soil and water is one strategy that may be environmentally sustainable and cost-effective for soils and waters enriched with natural-occurring Se. Several plant species, including Indian mustard (Brassica juncea), pickleweed (Salicornia bigelovii), and other salt/S...
Helicopter payload gains utilizing water injection for hot day power augmentation
NASA Technical Reports Server (NTRS)
Stroub, R. H.
1972-01-01
An analytical investigation was undertaken to assess the gains in helicopter mission payload through the use of water injection to produce power augmentation in an altitude-hot day environment. Substantial gains are shown for two representative helicopters, the UH-lH and CH-47B. The UH-lH payload increased 86.7 percent for a 50 n.mi. (92.6 km) radius mission involving two out-of-ground effect (OGE) hover take-offs of 2 minutes each at 5000 ft. (1525 m) 35 C ambient conditions. The CH-47B payload increased 49.5 percent for a 50 n.mi. (92.6 km) radius mission with sling loaded cargo as the outbound payload and a 3000 lb. (1360 kg) internal cargo on the return leg. The mission included two 4 min. OGE hovers at 6000 ft. (1830 m) 35 C. An improvement in take off performance and maximum performance climb also resulted as a consequence of the OGE hover capability and higher maximum power available.
Stable hovering of a jellyfish-like flying machine
Ristroph, Leif; Childress, Stephen
2014-01-01
Ornithopters, or flapping-wing aircraft, offer an alternative to helicopters in achieving manoeuvrability at small scales, although stabilizing such aerial vehicles remains a key challenge. Here, we present a hovering machine that achieves self-righting flight using flapping wings alone, without relying on additional aerodynamic surfaces and without feedback control. We design, construct and test-fly a prototype that opens and closes four wings, resembling the motions of swimming jellyfish more so than any insect or bird. Measurements of lift show the benefits of wing flexing and the importance of selecting a wing size appropriate to the motor. Furthermore, we use high-speed video and motion tracking to show that the body orientation is stable during ascending, forward and hovering flight modes. Our experimental measurements are used to inform an aerodynamic model of stability that reveals the importance of centre-of-mass location and the coupling of body translation and rotation. These results show the promise of flapping-flight strategies beyond those that directly mimic the wing motions of flying animals. PMID:24430122
NASA Technical Reports Server (NTRS)
Menger, R. P.; Wood, T. L.; Brieger, J. T.
1983-01-01
A model test was conducted to determine the effects of aerodynamic interaction between main rotor, tail rotor, and vertical fin on helicopter performance and noise in hover out of ground effect. The experimental data were obtained from hover tests performed with a .151 scale Model 222 main rotor, tail rotor and vertical fin. Of primary interest was the effect of location of the tail rotor with respect to the main rotor. Penalties on main rotor power due to interaction with the tail rotor ranged up to 3% depending upon tail rotor location and orientation. Penalties on tail rotor power due to fin blockage alone ranged up to 10% for pusher tail rotors and up to 50% for tractor tail rotors. The main rotor wake had only a second order effect on these tail rotor/fin interactions. Design charts are presented showing the penalties on main rotor power as a function of the relative location of the tail rotor.
The investigation of a variable camber blade lift control for helicopter rotor systems
NASA Technical Reports Server (NTRS)
Awani, A. O.
1982-01-01
A new rotor configuration called the variable camber rotor was investigated numerically for its potential to reduce helicopter control loads and improve hover performance. This rotor differs from a conventional rotor in that it incorporates a deflectable 50% chord trailing edge flap to control rotor lift, and a non-feathering (fixed) forward portion. Lift control is achieved by linking the blade flap to a conventional swashplate mechanism; therefore, it is pilot action to the flap deflection that controls rotor lift and tip path plane tilt. This report presents the aerodynamic characteristics of the flapped and unflapped airfoils, evaluations of aerodynamics techniques to minimize flap hinge moment, comparative hover rotor performance and the physical concepts of the blade motion and rotor control. All the results presented herein are based on numerical analyses. The assessment of payoff for the total configuration in comparison with a conventional blade, having the same physical characteristics as an H-34 helicopter rotor blade was examined for hover only.
Hover Testing of the NASA/Army/MIT Active Twist Rotor Prototype Blade
NASA Technical Reports Server (NTRS)
Wilbur, Matthew L.; Yeager, William T., Jr.; Wilkie, W. Keats; Cesnik, Carlos E. S.; Shin, Sangloon
2000-01-01
Helicopter rotor individual blade control promises to provide a mechanism for increased rotor performance and reduced rotorcraft vibrations and noise. Active material methods, such as piezoelectrically actuated trailing-edge flaps and strain-induced rotor blade twisting, provide a means of accomplishing individual blade control without the need for hydraulic power in the rotating system. Recent studies have indicated that controlled strain induced blade twisting can be attained using piezoelectric active fiber composite technology. In order to validate these findings experimentally, a cooperative effort between NASA Langley Research Center, the Army Research Laboratory, and the MIT Active Materials and Structures Laboratory has been developed. As a result of this collaboration an aeroelastically-scaled active-twist model rotor blade has been designed and fabricated for testing in the heavy gas environment of the Langley Transonic Dynamics Tunnel (TDT). The results of hover tests of the active-twist prototype blade are presented in this paper. Comparisons with applicable analytical predictions of active-twist frequency response in hovering flight are also presented.
A comparative study of the hovering efficiency of flapping and revolving wings.
Zheng, L; Hedrick, T; Mittal, R
2013-09-01
Direct numerical simulations are used to explore the hovering performance and efficiency for hawkmoth-inspired flapping and revolving wings at Reynolds (Re) numbers varying from 50 to 4800. This range covers the gamut from small (fruit fly size) to large (hawkmoth size) flying insects and is also relevant to the design of micro- and nano-aerial vehicles. The flapping wing configuration chosen here corresponds to a hovering hawkmoth and the model is derived from high-speed videogrammetry of this insect. The revolving wing configuration also employs the wings of the hawkmoth but these are arranged in a dual-blade configuration typical of helicopters. Flow for both of these configurations is simulated over the range of Reynolds numbers of interest and the aerodynamic performance of the two compared. The comparison of these two seemingly different configurations raises issues regarding the appropriateness of various performance metrics and even characteristic scales; these are also addressed in the current study. Finally, the difference in the performance between the two is correlated with the flow physics of the two configurations. The study indicates that viscous forces dominate the aerodynamic power expenditure of the revolving wing to a degree not observed for the flapping wing. Consequently, the lift-to-power metric of the revolving wing declines rapidly with decreasing Reynolds numbers resulting in a hovering performance that is at least a factor of 2 lower than the flapping wing at Reynolds numbers less than about 100.
Wind tunnel test of a variable-diameter tiltrotor (VDTR) model
NASA Technical Reports Server (NTRS)
Matuska, David; Dale, Allen; Lorber, Peter
1994-01-01
This report documents the results from a wind tunnel test of a 1/6th scale Variable Diameter Tiltrotor (VDTR). This test was a joint effort of NASA Ames and Sikorsky Aircraft. The objective was to evaluate the aeroelastic and performance characteristics of the VDTR in conversion, hover, and cruise. The rotor diameter and nacelle angle of the model were remotely changed to represent tiltrotor operating conditions. Data is presented showing the propulsive force required in conversion, blade loads, angle of attack stability and simulated gust response, and hover and cruise performance. This test represents the first wind tunnel test of a variable diameter rotor applied to a tiltrotor concept. The results confirm some of the potential advantages of the VDTR and establish the variable diameter rotor a viable candidate for an advanced tiltrotor. This wind tunnel test successfully demonstrated the feasibility of the Variable Diameter rotor for tilt rotor aircraft. A wide range of test points were taken in hover, conversion, and cruise modes. The concept was shown to have a number of advantages over conventional tiltrotors such as reduced hover downwash with lower disk loading and significantly reduced longitudinal gust response in cruise. In the conversion regime, a high propulsive force was demonstrated for sustained flight with acceptable blade loads. The VDTR demonstrated excellent gust response capabilities. The horizontal gust response correlated well with predictions revealing only half the response to turbulence of the conventional civil tiltrotor.
The effects of artificial wing wear on the flight capacity of the honey bee Apis mellifera.
Vance, Jason T; Roberts, Stephen P
2014-06-01
The wings of bees and other insects accumulate permanent wear, which increases the rate of mortality and impacts foraging behavior, presumably due to effects on flight performance. In this study, we investigated how experimental wing wear affects flight performance in honey bees. Variable density gases and high-speed videography were used to determine the maximum hovering flight capacity and wing kinematics of bees from three treatment groups: no wing wear, symmetric and asymmetric wing wear. Wing wear was simulated by clipping the distal-trailing edge of one or both of the wings. Across all bees from treatment groups combined, wingbeat frequency was inversely related to wing area. During hovering in air, bees with symmetric and asymmetric wing wear responded kinematically so as to produce wingtip velocities similar to those bees with no wing wear. However, maximal hovering flight capacity (revealed during flight in hypodense gases) decreased in direct proportion to wing area and inversely to wing asymmetry. Bees with reduced wing area and high asymmetry produced lower maximum wingtip velocity than bees with intact or symmetric wings, which caused a greater impairment in maximal flight capacity. These results demonstrate that the magnitude and type of wing wear affects maximal aerodynamic power production and, likely, the control of hovering flight. Wing wear reduces aerodynamic reserve capacity and, subsequently, the capacity for flight behaviors such as load carriage, maneuverability, and evading predators. Copyright © 2014 Elsevier Ltd. All rights reserved.
Precise Trajectory Reconstruction of CE-3 Hovering Stage By Landing Camera Images
NASA Astrophysics Data System (ADS)
Yan, W.; Liu, J.; Li, C.; Ren, X.; Mu, L.; Gao, X.; Zeng, X.
2014-12-01
Chang'E-3 (CE-3) is part of the second phase of the Chinese Lunar Exploration Program, incorporating a lander and China's first lunar rover. It was landed on 14 December, 2013 successfully. Hovering and obstacle avoidance stages are essential for CE-3 safety soft landing so that precise spacecraft trajectory in these stages are of great significance to verify orbital control strategy, to optimize orbital design, to accurately determine the landing site of CE-3, and to analyze the geological background of the landing site. Because the time consumption of these stages is just 25s, it is difficult to present spacecraft's subtle movement by Measurement and Control System or by radio observations. Under this background, the trajectory reconstruction based on landing camera images can be used to obtain the trajectory of CE-3 because of its technical advantages such as unaffecting by lunar gravity field spacecraft kinetic model, high resolution, high frame rate, and so on. In this paper, the trajectory of CE-3 before and after entering hovering stage was reconstructed by landing camera images from frame 3092 to frame 3180, which lasted about 9s, under Single Image Space Resection (SISR). The results show that CE-3's subtle changes during hovering stage can be emerged by the reconstructed trajectory. The horizontal accuracy of spacecraft position was up to 1.4m while vertical accuracy was up to 0.76m. The results can be used for orbital control strategy analysis and some other application fields.
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Mccarthy, Thomas R.; Madden, John F., III
1992-01-01
An optimization procedure is developed for the design of high speed prop-rotors to be used in civil tiltrotor applications. The goal is to couple aerodynamic performance, aeroelastic stability, and structural design requirements inside a closed-loop optimization procedure. The objective is to minimize the gross weight and maximize the propulsive efficiency in high speed cruise. Constraints are imposed on the rotor aeroelastic stability in both hover and cruise and rotor figure of merit in hover. Both structural and aerodynamic design variables are used.
CAA modeling of helicopter main rotor in hover
NASA Astrophysics Data System (ADS)
Kusyumov, Alexander N.; Mikhailov, Sergey A.; Batrakov, Andrey S.; Kusyumov, Sergey A.; Barakos, George
In this work rotor aeroacoustics in hover is considered. Farfield observers are used and the nearfield flow parameters are obtained using the in house HMB and commercial Fluent CFD codes (identical hexa-grids are used for both solvers). Farfield noise at a remote observer position is calculated at post processing stage using FW-H solver implemented in Fluent and HMB. The main rotor of the UH-1H helicopter is considered as a test case for comparison to experimental data. The sound pressure level is estimated for different rotor blade collectives and observation angles.
Charts Showing Relations Among Primary Aerodynamic Variables for Helicopter-performance Estimation
NASA Technical Reports Server (NTRS)
Talkin, Herbert W
1947-01-01
In order to facilitate solutions of the general problem of helicopter selection, the aerodynamic performance of rotors is presented in the form of charts showing relations between primary design and performance variables. By the use of conventional helicopter theory, certain variables are plotted and other variables are considered fixed. Charts constructed in such a manner show typical results, trends, and limits of helicopter performance. Performance conditions considered include hovering, horizontal flight, climb, and ceiling. Special problems discussed include vertical climb and the use of rotor-speed-reduction gears for hovering.
On the design of decoupling controllers for advanced rotorcraft in the hover case
NASA Technical Reports Server (NTRS)
Fan, M. K. H.; Tits, A.; Barlow, J.; Tsing, N. K.; Tischler, M.; Takahashi, M.
1991-01-01
A methodology for design of helicopter control systems is proposed that can account for various types of concurrent specifications: stability, decoupling between longitudinal and lateral motions, handling qualities, and physical limitations of the swashplate motions. This is achieved by synergistic use of analytical techniques (Q-parameterization of all stabilizing controllers, transfer function interpolation) and advanced numerical optimization techniques. The methodology is used to design a controller for the UH-60 helicopter in hover. Good results are achieved for decoupling and handling quality specifications.
A summary of wind tunnel research on tilt rotors from hover to cruise flight
NASA Technical Reports Server (NTRS)
Poisson-Quinton, PH.; Cook, W. L.
1972-01-01
An experimental research program has been conducted on a series of tilt rotors designed for a range of blade twist in various wind tunnel facilities. The objective was to obtain precise results on the influence of blade twist and aeroelasticity on tilt rotor performance, from hover to high speed cruise Mach number of about 0.7. global forces on the rotor, local loads and blade torsional deflection measurements were compared with theoretical predictions inside a large Reynolds-Mach envelope. Testing techniques developed during the program are described.
A Variable Diameter Short Haul Civil Tiltrotor
NASA Technical Reports Server (NTRS)
Wang, James M.; Jones, Christopher T.; Nixon, Mark W.
1999-01-01
The Short-Haul-Civil-tiltrotor (SHCT) component of the NASA Aviation System Capacity Program is an effort to develop the technologies needed for a potential 40-passenger civil tiltrotor. The variable diameter tiltrotor (VDTR) is a Sikorsky concept aimed at improving tiltrotor hover and cruise performance currently limited by disk loading that is much higher in hover than conventional helicopter, and much lower in cruise than turbo-prop systems. This paper describes the technical merits of using a VDTR on a SHCT aircraft. The focus will be the rotor design.
Sunn Hemp Biomass and Nitrogen Production for Different Planting Dates and Seeding Rates
USDA-ARS?s Scientific Manuscript database
Elevated nitrogen (N) fertilizer costs have renewed interest in alternative N sources, such as legumes. Sunn hemp (Crotalaria juncea L.) is a tropical legume capable of producing considerable biomass in a short period of time. A randomized complete block design with a split-plot restriction and fou...
Mustard seed meal for management of root-knot nematode and weeds in tomato production
USDA-ARS?s Scientific Manuscript database
Mustard seed meals of indian mustard [InM (Brassica juncea)] and yellow mustard [YeM (Sinapis alba)], alone and combined, were tested for effects on tomato (Solanum lycopersicum) plants and for suppression of southern root-knot nematode [RKN (Meloidogyne incognita)] and weed populations. In the gree...
2006-06-01
oils typically are derived from: • canola ( Brassica napus or B. rapa) • crambe (Crambe abysinica) • mustard ( Brassica juncea) • rapeseed... Brassica napus) • safflower (Carthamus tinctorus) • sunflower (Heliothus annus). The oils are easily derived by crushing the seed and extracting the oils
Vera Tomé, F; Blanco Rodríguez, P; Lozano, J C
2009-01-01
Seedlings of Helianthus annuus L. (HA) and Brassica juncea (BJ) were used to test the effect of the pH, the presence of phosphates, and the addition of ethylene-diamine-tetraacetic acid (EDTA) or citrate on the uptake and the translocation of uranium isotopes ((238)U, (235)U, and (234)U) and (226)Ra. The results indicated that the presence of phosphates generally reduces the uptake and transfer of uranium from the roots to the shoots of HA. In the case of BJ, while phosphate enhanced the retention of uranium by roots, the translocation was poorer. Likewise, for (226)Ra, the best translocation was in the absence of phosphates for both species. The addition of citrate increased the translocation of uranium for both species, but had no clear effect on the transfer of (226)Ra. The effect of EDTA was much more moderate both for uranium and for (226)Ra, and for both plant species. Only noticeable was a slightly better uptake of (226)Ra by BJ at neutral pH, although the translocation was lower.
Palle-Reisch, Monika; Cichna-Markl, Margit; Hochegger, Rupert
2014-06-15
The paper presents a duplex real-time PCR assay for the simultaneous detection of three potentially allergenic mustard species commonly used in food: white mustard (Sinapis alba), black mustard (Brassica nigra) and brown mustard (Brassica juncea). White mustard is detected in the "green" and black/brown mustard in the "yellow" channel. The duplex real-time PCR assay does not show cross-reactivity with other Brassicaceae species including broccoli, cauliflower, radish and rapeseed. Low cross-reactivities (difference in the Ct value ⩾ 11.91 compared with the positive control) were obtained with cumin, fenugreek, ginger, rye and turmeric. When applying 500 ng DNA per PCR tube, the duplex real-time PCR assay allowed the detection of white, black and brown mustard in brewed model sausages down to a concentration of 5mg/kg in 10 out of 10 replicates. The duplex real-time PCR assay was applied to verify correct labelling of commercial foodstuffs. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sinha, Sarita; Sinam, Geetgovind; Mishra, Rohit Kumar; Mallick, Shekhar
2010-09-01
In agricultural fields, heavy metal contamination is responsible for limiting the crop productivity and quality. This study reports that the plants of Brassica juncea L. cv. Pusa bold grown on contaminated substrates [Cu, Cr(VI), As(III), As(V)] under simulated field conditions have shown translocation of metals to the upper part and its sequestration in the leaves without significantly affecting on oil yield, except for Cr and higher concentration of As(V), compared to control. Decrease in the oil content in As(V) treated plants was observed in a dose dependent manner; however, maximum decrease was recorded in Cr treated plants. Among all the metal treatments, Cr was the most toxic as evident from the decrease in oil content, growth parameters and antioxidants. The accumulation of metals was below the detection limit in the seeds grown on 10 and 30 mg kg(-1) As(III) and Cr(VI); 10 mg kg(-1) As(V)) and thus can be recommended only for oil cultivation. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Lin, Long-Ze; Sun, Jianghao; Chen, Pei; Harnly, James
2013-01-01
An UHPLC-PDA-ESI/HRMS/MSn profiling method was used for a comprehensive study of the phenolic components of red mustard greens (Brassica juncea Coss variety) and identified 67 anthocyanins, 102 flavonol glycosides, and 40 hydroxycinnamic acid derivatives. The glycosylation patterns of the flavonoids were assigned on the basis of direct comparison of the parent flavonoid glycosides with reference compounds. The putative identifications were obtained from tandem mass data analysis and confirmed by the retention time, elution order, and UV–vis and high-resolution mass spectra. Further identifications were made by comparing the UHPLC-PDA-ESI/HRMS/MSn data with those of reference compounds in the polyphenol database and in the literature. Twenty-seven acylated cyanidin 3-sophoroside-5-diglucosides, 24 acylated cyanidin 3-sophoroside-5- glucosides, 3 acylated cyanidin triglucoside-5-glucosides, 37 flavonol glycosides, and 10 hydroxycinnamic acid derivatives were detected for the first time in brassica vegetables. At least 50 of them are reported for the first time in any plant materials. PMID:21970730
Muijres, Florian T; Bowlin, Melissa S; Johansson, L Christoffer; Hedenström, Anders
2012-02-07
Many small passerines regularly fly slowly when catching prey, flying in cluttered environments or landing on a perch or nest. While flying slowly, passerines generate most of the flight forces during the downstroke, and have a 'feathered upstroke' during which they make their wing inactive by retracting it close to the body and by spreading the primary wing feathers. How this flight mode relates aerodynamically to the cruising flight and so-called 'normal hovering' as used in hummingbirds is not yet known. Here, we present time-resolved fluid dynamics data in combination with wingbeat kinematics data for three pied flycatchers flying across a range of speeds from near hovering to their calculated minimum power speed. Flycatchers are adapted to low speed flight, which they habitually use when catching insects on the wing. From the wake dynamics data, we constructed average wingbeat wakes and determined the time-resolved flight forces, the time-resolved downwash distributions and the resulting lift-to-drag ratios, span efficiencies and flap efficiencies. During the downstroke, slow-flying flycatchers generate a single-vortex loop wake, which is much more similar to that generated by birds at cruising flight speeds than it is to the double loop vortex wake in hovering hummingbirds. This wake structure results in a relatively high downwash behind the body, which can be explained by the relatively active tail in flycatchers. As a result of this, slow-flying flycatchers have a span efficiency which is similar to that of the birds in cruising flight and which can be assumed to be higher than in hovering hummingbirds. During the upstroke, the wings of slowly flying flycatchers generated no significant forces, but the body-tail configuration added 23 per cent to weight support. This is strikingly similar to the 25 per cent weight support generated by the wing upstroke in hovering hummingbirds. Thus, for slow-flying passerines, the upstroke cannot be regarded as inactive, and the tail may be of importance for flight efficiency and possibly manoeuvrability.
Introduction of the M-85 high-speed rotorcraft concept
NASA Technical Reports Server (NTRS)
Stroub, Robert H.
1991-01-01
As a result of studying possible requirements for high-speed rotorcraft and studying many high-speed concepts, a new high-speed rotorcraft concept, designated as M-85, was derived. The M-85 is a helicopter that is reconfigured to a fixed-wing aircraft for high-speed cruise. The concept was derived as an approach to enable smooth, stable conversion between fixed-wing and rotary-wing while retaining hover and low-speed flight characteristics of a low disk loading helicopter. The name, M-85, reflects the high-speed goals of 0.85 Mach number at high altitude. For a high-speed rotorcraft, it is expected that a viable concept must be a cruise-efficient, fixed-wing aircraft so it may be attractive for a multiplicity of missions. It is also expected that a viable high-speed rotorcraft concept must be cruise efficient first and secondly, efficient in hover. What makes the M-85 unique is the large circular hub fairing that is large enough to support the aircraft during conversion between rotary-wind and fixed-wing modes. With the aircraft supported by this hub fairing, the rotor blades can be unloaded during the 100 percent change in rotor rpm. With the blades unloaded, the potential for vibratory loads would be lessened. In cruise, the large circular hub fairing would be part of the lifting system with additional lifting panels deployed for better cruise efficiency. In hover, the circular hub fairing would slightly reduce lift potential and/or decrease hover efficiency of the rotor system. The M-85 concept is described and estimated forward flight performance characteristics are presented in terms of thrust requirements and L/D with airspeed. The forward flight performance characteristics reflect recent completed wind tunnel tests of the wing concept. Also presented is a control system technique that is critical to achieving low oscillatory loads in rotary-wing mode. Hover characteristics, C(sub p) versus C(sub T) from test data, is discussed. Other techniques pertinent to the M-85 concept such as passively controlling inplane vibration during starting and stopping of the rotor system, aircraft control system, and rotor drive technologies are discussed.
Numerical investigations on aerodynamic forces of deformable foils in hovering motions
NASA Astrophysics Data System (ADS)
Su, Xiaohui; Yin, Zhen; Cao, Yuanwei; Zhao, Yong
2017-04-01
In this paper, the aerodynamic forces of deformable foils for hovering flight are numerically investigated by a two-dimensional finite-volume arbitrary Lagrangian Eulerian Navier-Stokes solver. The effects of deformation on the lift force generation mechanisms of deformable wings in hovering flight are studied by comparison and analysis of deformable and rigid wing results. The prescribed deformation of the wings changes their morphing during hovering motion in both camber and angle of incidence. The effects of deflection amplitude, deflection phase, and rotation location on the aerodynamic performances of the foils, as well as the associated flow structures, are investigated in details, respectively. Results obtained show that foil morphing changes both Leading Edge Vortex (LEV) and Trailing Edge Vortex (TEV) generation and development processes. Consequently, the lift force generation mechanisms of deformable wings differ from those of rigid foil models. For the full deformation foil model studied, the effect of foil deformation enhances its lift force during both wake capture and delayed stall. There is an optimized camber amplitude, which was found to be 0.1*chord among those cases simulated. Partial deformation in the foil does not enhance its lift force due to unfavorable foil camber. TEV is significantly changed by the local angle of attack due to the foil deformation. On the other hand, Trailing Edge Flap (TEF) deflection in the hinge connected two-rigid-plate model directly affects the strength of both the LEV and TEV, thus influencing the entire vortex shedding process. It was found that lift enhancement can reach up to 33.5% just by the TEF deflection alone.
On the quasi-steady aerodynamics of normal hovering flight part I: the induced power factor
Nabawy, Mostafa R. A.; Crowther, William J.
2014-01-01
An analytical treatment to quantify the losses captured in the induced power factor, k, is provided for flapping wings in normal hover, including the effects of non-uniform downwash, tip losses and finite flapping amplitude. The method is based on a novel combination of actuator disc and lifting line blade theories that also takes into account the effect of advance ratio. The model has been evaluated against experimental results from the literature and qualitative agreement obtained for the effect of advance ratio on the lift coefficient of revolving wings. Comparison with quantitative experimental data for the circulation as a function of span for a fruitfly wing shows that the model is able to correctly predict the circulation shape of variation, including both the magnitude of the peak circulation and the rate of decay in circulation towards zero. An evaluation of the contributions to induced power factor in normal hover for eight insects is provided. It is also shown how Reynolds number can be accounted for in the induced power factor, and good agreement is obtained between predicted span efficiency as a function of Reynolds number and numerical results from the literature. Lastly, it is shown that for a flapping wing in hover k owing to the non-uniform downwash effect can be reduced to 1.02 using an arcsech chord distribution. For morphologically realistic wing shapes based on beta distributions, it is shown that a value of 1.07 can be achieved for a radius of first moment of wing area at 40% of wing length. PMID:24522785
Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach
Nakata, Toshiyuki; Liu, Hao
2012-01-01
Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements. PMID:21831896
On the quasi-steady aerodynamics of normal hovering flight part I: the induced power factor.
Nabawy, Mostafa R A; Crowther, William J
2014-04-06
An analytical treatment to quantify the losses captured in the induced power factor, k, is provided for flapping wings in normal hover, including the effects of non-uniform downwash, tip losses and finite flapping amplitude. The method is based on a novel combination of actuator disc and lifting line blade theories that also takes into account the effect of advance ratio. The model has been evaluated against experimental results from the literature and qualitative agreement obtained for the effect of advance ratio on the lift coefficient of revolving wings. Comparison with quantitative experimental data for the circulation as a function of span for a fruitfly wing shows that the model is able to correctly predict the circulation shape of variation, including both the magnitude of the peak circulation and the rate of decay in circulation towards zero. An evaluation of the contributions to induced power factor in normal hover for eight insects is provided. It is also shown how Reynolds number can be accounted for in the induced power factor, and good agreement is obtained between predicted span efficiency as a function of Reynolds number and numerical results from the literature. Lastly, it is shown that for a flapping wing in hover k owing to the non-uniform downwash effect can be reduced to 1.02 using an arcsech chord distribution. For morphologically realistic wing shapes based on beta distributions, it is shown that a value of 1.07 can be achieved for a radius of first moment of wing area at 40% of wing length.
Welch, Kenneth C; Altshuler, Douglas L; Suarez, Raul K
2007-06-01
The stoichiometric relationship of ATP production to oxygen consumption, i.e. the P/O ratio, varies depending on the nature of the metabolic substrate used. The latest estimates reveal a P/O ratio approximately 15% higher when glucose is oxidized compared with fatty acid oxidation. Because the energy required to produce aerodynamic lift for hovering is independent of the metabolic fuel oxidized, we hypothesized that the rate of oxygen consumption, VO2, should decline as the respiratory quotient, RQ (VCO2/VO2), increases from 0.71 to 1.0 as hummingbirds transition from a fasted to a fed state. Here, we show that hovering VO2 values in rufous (Selasphorus rufus) and Anna's hummingbirds (Calypte anna) are significantly greater when fats are metabolized (RQ=0.71) than when carbohydrates are used (RQ=1.0). Because hummingbirds gained mass during our experiments, making mass a confounding variable, we estimated VO2 per unit mechanical power output. Expressed in this way, the difference in VO2 when hummingbirds display an RQ=0.71 (fasted) and an RQ=1.0 (fed) is between 16 and 18%, depending on whether zero or perfect elastic energy storage is assumed. These values closely match theoretical expectations, indicating that a combination of mechanical power estimates and ;indirect calorimetry', i.e. the measurement of rates of gas exchange, enables precise estimates of ATP turnover and metabolic flux rates in vivo. The requirement for less oxygen when oxidizing carbohydrate suggests that carbohydrate oxidation may facilitate hovering flight in hummingbirds at high altitude.
Yang, Jing-Hua; Zhang, Ming-Fang; Yu, Jing-Quan
2009-02-01
The transcriptional patterns of mitochondrial respiratory related genes were investigated in cytoplasmic male-sterile and fertile maintainer lines of stem mustard, Brassica juncea. There were numerous differences in nad2 (subunit 2 of NADH dehydrogenase) between stem mustard CMS and its maintainer line. One novel open reading frame, hereafter named orfB gene, was located at the downstream of mitochondrial nad2 gene in the CMS. The novel orfB gene had high similarity with YMF19 family protein, orfB in Raphanus sativus, Helianthus annuus, Nicotiana tabacum and Beta vulgaris, orfB-CMS in Daucus carota, atp8 gene in Arabidopsis thaliana, 5' flanking of orf224 in B. napus (nap CMS) and 5' flanking of orf220 gene in CMS Brassica juncea. Three copies probed by specific fragment (amplified by primers of nad2F and nad2R from CMS) were found in the CMS line following Southern blotting digested with HindIII, but only a single copy in its maintainer line. Meanwhile, two transcripts were shown in the CMS line following Northern blotting while only one transcript was detected in the maintainer line, which were probed by specific fragment (amplified by primers of nad2F and nad2R from CMS). Meanwhile, the expression of nad2 gene was reduced in CMS bud compared to that in its maintainer line. We thus suggested that nad2 gene may be co-transcripted with CMS-associated orfB gene in the CMS. In addition, the specific fragment that was amplified by primers of nad2F and nad2R just spanned partial sequences of nad2 gene and orfB gene. Such alterations in the nad2 gene would impact the activity of NADH dehydrogenase, and subsequently signaling, inducing the expression of nuclear genes involved in male sterility in this type of cytoplasmic male sterility.
NASA Technical Reports Server (NTRS)
Balch, D. T.; Lombardi, J.
1985-01-01
A model scale hover test was conducted in the Sikorsky Aircraft Model rotor hover Facility to identify and quantify the impact of the tail rotor on the demonstrated advantages of advanced geometry tip configurations. The test was conducted using the Basic Model Test Rig and two scaled main rotor systems, one representing a 1/5.727 scale UH-60A BLACK HAWK and the others a 1/4.71 scale S-76. Eight alternate rotor tip configurations were tested, 3 on the BLACK HAWK rotor and 6 on the S-76 rotor. Four of these tips were then selected for testing in close proximity to an operating tail rotor (operating in both tractor and pusher modes) to determine if the performance advantages that could be obtained from the use of advanced geometry tips in a main rotor only environment would still exist in the more complex flow field involving a tail rotor. The test showed that overall the tail rotor effects on the advanced tip configurations tested are not substantially different from the effects on conventional tips.
NASA Technical Reports Server (NTRS)
Tosti, Louis P.
1959-01-01
An experimental investigation has been conducted to determine the dynamic stability and control characteristics of a tilt-wing vertical-take-off-and-landing aircraft with the use of a remotely controlled 1/4-scale free-flight model. The model had two propellers with hinged (flapping) blades mounted on the wing which could be tilted up to an incidence angle of nearly 90 deg for vertical take-off and landing. The investigation consisted of hovering flights in still air, vertical take-offs and landings, and slow constant-altitude transitions from hovering to forward flight. The stability and control characteristics of the model were generally satisfactory except for the following characteristics. In hovering flight, the model had an unstable pitching oscillation of relatively long period which the pilots were able to control without artificial stabilization but which could not be considered entirely satisfactory. At very low speeds and angles of wing incidence on the order of 70 deg, the model experienced large nose-up pitching moments which severely limited the allowable center-of-gravity range.
Fruit fly scale robots can hover longer with flapping wings than with spinning wings.
Hawkes, Elliot W; Lentink, David
2016-10-01
Hovering flies generate exceptionally high lift, because their wings generate a stable leading edge vortex. Micro flying robots with a similar wing design can generate similar high lift by either flapping or spinning their wings. While it requires less power to spin a wing, the overall efficiency depends also on the actuator system driving the wing. Here, we present the first holistic analysis to calculate how long a fly-inspired micro robot can hover with flapping versus spinning wings across scales. We integrate aerodynamic data with data-driven scaling laws for actuator, electronics and mechanism performance from fruit fly to hummingbird scales. Our analysis finds that spinning wings driven by rotary actuators are superior for robots with wingspans similar to hummingbirds, yet flapping wings driven by oscillatory actuators are superior at fruit fly scale. This crossover is driven by the reduction in performance of rotary compared with oscillatory actuators at smaller scale. Our calculations emphasize that a systems-level analysis is essential for trading-off flapping versus spinning wings for micro flying robots. © 2016 The Author(s).
Improvements in hover display dynamics for a combat helicopter
NASA Technical Reports Server (NTRS)
Eshow, Michelle M.; Schroeder, Jeffery A.
1993-01-01
This paper describes a piloted simulation conducted on the NASA Ames Vertical Motion Simulator. The objective of the experiment was to investigate the handling qualities benefits attainable using new display law design methods for hover displays. The new display laws provide improved methods to specify the behavior of the display symbol that predicts the vehicle's ground velocity in the horizontal plane; it is the primary symbol that the pilot uses to control aircraft horizontal position. The display law design was applied to the Apache helmet-mounted display format, using the Apache vehicle dynamics to tailor the dynamics of the velocity predictor symbol. The representations of the Apache vehicle used in the display design process and in the simulation were derived from flight data. During the simulation, the new symbol dynamics were seen to improve the pilots' ability to maneuver about hover in poor visual cuing environments. The improvements were manifested in pilot handling qualities ratings and in measured task performance. The paper details the display design techniques, the experiment design and conduct, and the results.
Hawkmoth flight performance in tornado-like whirlwind vortices.
Ortega-Jimenez, Victor Manuel; Mittal, Rajat; Hedrick, Tyson L
2014-06-01
Vertical vortex systems such as tornadoes dramatically affect the flight control and stability of aircraft. However, the control implications of smaller scale vertically oriented vortex systems for small fliers such as animals or micro-air vehicles are unknown. Here we examined the flapping kinematics and body dynamics of hawkmoths performing hovering flights (controls) and maintaining position in three different whirlwind intensities with transverse horizontal velocities of 0.7, 0.9 and 1.2 m s(-1), respectively, generated in a vortex chamber. The average and standard deviation of yaw and pitch were respectively increased and reduced in comparison with hovering flights. Average roll orientation was unchanged in whirlwind flights but was more variable from wingbeat to wingbeat than in hovering. Flapping frequency remained unchanged. Wingbeat amplitude was lower and the average stroke plane angle was higher. Asymmetry was found in the angle of attack between right and left wings during both downstroke and upstroke at medium and high vortex intensities. Thus, hawkmoth flight control in tornado-like vortices is achieved by a suite of asymmetric and symmetric changes to wingbeat amplitude, stroke plane angle and principally angle of attack.
Design and implementation of a control system for a quadrotor MAV
NASA Astrophysics Data System (ADS)
Bawek, Dean
The quadrotor is a 200 g MAV with rapid-prototyped rotors that are driven by four brushless electric motors, capable of a collective thrust of around 400 g using an 11 V battery. The vehicle is compact with its largest dimension at 188 mm. Without any feedback control, the quadrotor is unstable. For flight stability, the vehicle incorporates a linear quadratic regulator to augment its dynamics for hover. The quadrotor's nonlinear dynamics are linearized about hover in order to be used in controller formulation. Feedback comes both directly from sensors and a Luenberger observer that computes the rotor velocities. A Simulink simulation uses hardware and software properties to serve as an environment for controller gain tuning prior to flight testing. The results from the simulation generate stabilizing control gains for the on-board attitude controller and for an off-board PC autopilot that uses the Vicon computer vision system for position feedback. Through the combined effort of the on-board and off-board controllers, the quadrotor successfully demonstrates stable hover in both nominal and disturbed conditions.
Simulation and flight test evaluation of head-up-display guidance for harrier approach transitions
NASA Technical Reports Server (NTRS)
Dorr, D. W.; Moralez, E., III; Merrick, V. K.
1994-01-01
Position and speed guidance displays for STOVL aircraft curved, decelerating approaches to hover and vertical landing have been evaluated for their effectiveness in reducing pilot workload and improving performance. The NASA V/STOL Systems Research Aircraft, a modified YAV-8B Harrier prototype, was used to evaluate the displays in flight, whereas the NASA Ames Vertical Motion Simulator was used to extend the flight test results to instrument meteorological conditions (IMC) and to examine performance in various conditions of wind and turbulence. The simulation data showed close correlation with the flight test data, and both demonstrated the feasibility of the displays. With the exception of the hover task in zero visibility, which was level-3, averaged Copper-Harper handling qualities ratings given during simulation were level-2 for both the approach task and the hover task in all conditions. During flight tests in calm and clear conditions, the displays also gave rise to level-2 handling qualities ratings. Pilot opinion showed that the guidance displays would be useful in visual flight, especially at night, as well as in IMC.
Vision-Based Target Finding and Inspection of a Ground Target Using a Multirotor UAV System.
Hinas, Ajmal; Roberts, Jonathan M; Gonzalez, Felipe
2017-12-17
In this paper, a system that uses an algorithm for target detection and navigation and a multirotor Unmanned Aerial Vehicle (UAV) for finding a ground target and inspecting it closely is presented. The system can also be used for accurate and safe delivery of payloads or spot spraying applications in site-specific crop management. A downward-looking camera attached to a multirotor is used to find the target on the ground. The UAV descends to the target and hovers above the target for a few seconds to inspect the target. A high-level decision algorithm based on an OODA (observe, orient, decide, and act) loop was developed as a solution to address the problem. Navigation of the UAV was achieved by continuously sending local position messages to the autopilot via Mavros. The proposed system performed hovering above the target in three different stages: locate, descend, and hover. The system was tested in multiple trials, in simulations and outdoor tests, from heights of 10 m to 40 m. Results show that the system is highly reliable and robust to sensor errors, drift, and external disturbance.
NASA Technical Reports Server (NTRS)
Gupta, N. K.; Bryson, A. E., Jr.
1973-01-01
An autopilot logic is designed here for controlling a helicopter with a hanging load. A 16th order model for the system is decoupled into four subsystems: (1) a second order system for yawing motion, (2) a second order system for vertical motion, (3) a sixth order system for longitudinal motion, and (4) a sixth order system for lateral motion. A measuring scheme, which could be used in remote areas, is developed and filters are designed to estimate the state variables from these measurements. The autopilot can be used to move the load over short distances without retracting the cables. This is done by automatically shifting the autopilot modes from position-hold (hover) to acceleration-hold to velocity-hold (cruise) to deceleration-hold to velocity-hold (near hover) to position-hold (hover). Use of such an autopilot might save considerable turnaround time. The Sikorsky S-61 helicopter is chosen as an example vehicle. The performance of the controlled system is studied in the presence of longitudinal and lateral winds.
NASA Technical Reports Server (NTRS)
Mirick, Paul H.
1988-01-01
Seven cases were selected for correlation from a 1/5.86 Froude-scale experiment that examined several rotor designs which were being considered for full-scale flight testing as part of the Bearingless Main Rotor (BMR) program. The model rotor hub used in these tests consisted of back-to-back C-beams as flexbeam elements with a torque tube for pitch control. The first four cases selected from the experiment were hover tests which examined the effects on rotor stability of variations in hub-to-flexbeam coning, hub-to-flexbeam pitch, flexbeam-to-blade coning, and flexbeam-to-blade pitch. The final three cases were selected from the forward flight tests of optimum rotor configuration as defined during the hover test. The selected cases examined the effects of variations in forward speed, rotor speed, and shaft angle. Analytical results from Bell Helicopter Textron, Boeing Vertol, Sikorsky Aircraft, and the U.S. Army Aeromechanics Laboratory were compared with the data and the correlations ranged from poor-to-fair to fair-to-good.
Fruit fly scale robots can hover longer with flapping wings than with spinning wings
Lentink, David
2016-01-01
Hovering flies generate exceptionally high lift, because their wings generate a stable leading edge vortex. Micro flying robots with a similar wing design can generate similar high lift by either flapping or spinning their wings. While it requires less power to spin a wing, the overall efficiency depends also on the actuator system driving the wing. Here, we present the first holistic analysis to calculate how long a fly-inspired micro robot can hover with flapping versus spinning wings across scales. We integrate aerodynamic data with data-driven scaling laws for actuator, electronics and mechanism performance from fruit fly to hummingbird scales. Our analysis finds that spinning wings driven by rotary actuators are superior for robots with wingspans similar to hummingbirds, yet flapping wings driven by oscillatory actuators are superior at fruit fly scale. This crossover is driven by the reduction in performance of rotary compared with oscillatory actuators at smaller scale. Our calculations emphasize that a systems-level analysis is essential for trading-off flapping versus spinning wings for micro flying robots. PMID:27707903
Effect of Propeller Angle Relative to Flow on Aerodynamic Characteristics
NASA Astrophysics Data System (ADS)
Schueller, Joseph; Hubner, Paul
2017-11-01
As the interest in small unmanned air systems (UASs) for delivery and surveillance grows, new hybrid designs are being studied to take advantage of both quadcopters and fixed-wing aircraft. The tiltrotor design is able to combine the vertical take-off, hover, and landing of a multi-rotor copter with the efficiency of forward flight of a conventional airplane. However, literature documenting aerodynamic performance of the rotor as it rotates between the forward-flight and hover positions, especially in this low Reynolds number range, is limited. This data is critical for validating computational models and developing safe transition corridors. The objective of this research was to design, build and test a rotor thrust stand capable of rotating between the forward-flight and hover configurations suitable for senior design studies at low Reynolds number research. The poster covers the design of the rotating mechanism, the range and resolution of the load cell, and the thrust, torque and efficiency results for a conventional UAS motor and propeller for various advance ratios and thrust-line orientations. NSF Grant: EEC 1659710.
NASA Technical Reports Server (NTRS)
Mansur, M. Hossein; Tischler, Mark B.
1997-01-01
Historically, component-type flight mechanics simulation models of helicopters have been unable to satisfactorily predict the roll response to pitch stick input and the pitch response to roll stick input off-axes responses. In the study presented here, simple first-order low-pass filtering of the elemental lift and drag forces was considered as a means of improving the correlation. The method was applied to a blade-element model of the AH-64 APache, and responses of the modified model were compared with flight data in hover and forward flight. Results indicate that significant improvement in the off-axes responses can be achieved in hover. In forward flight, however, the best correlation in the longitudinal and lateral off-axes responses required different values of the filter time constant for each axis. A compromise value was selected and was shown to result in good overall improvement in the off-axes responses. The paper describes both the method and the model used for its implementation, and presents results obtained at hover and in forward flight.
Aeromechanical stability of helicopters with composite rotor blades in forward flight
NASA Technical Reports Server (NTRS)
Smith, Edward C.; Chopra, Inderjit
1992-01-01
The aeromechanical stability, including air resonance in hover, air resonance in forward flight, and ground resonance, of a helicopter with elastically tailored composite rotor blades is investigated. Five soft-inplane hingeless rotor configurations, featuring elastic pitch-lag, pitch-flap and extension-torsion couplings, are analyzed. Elastic couplings introduced through tailored composite blade spars can have a powerful effect on both air and ground resonance behavior. Elastic pitch-flap couplings (positive and negative) strongly affect body, rotor and dynamic inflow modes. Air resonance stability is diminished by elastic pitch-flap couplings in hover and forward flight. Negative pitch-lag elastic coupling has a stabilizing effect on the regressive lag mode in hover and forward flight. The negative pitch-lag coupling has a detrimental effect on ground resonance stability. Extension-torsion elastic coupling (blade pitch decreases due to tension) decreases regressive lag mode stability in both airborne and ground contact conditions. Increasing thrust levels has a beneficial influence on ground resonance stability for rotors with pitch-flap and extension-torsion coupling and is only marginally effective in improving stability of rotors with pitch-lag coupling.
Air and ground resonance of helicopters with elastically tailored composite rotor blades
NASA Technical Reports Server (NTRS)
Smith, Edward C.; Chopra, Inderjit
1993-01-01
The aeromechanical stability, including air resonance in hover, air resonance in forward flight, and ground resonance, of a helicopter with elastically tailored composite rotor blades is investigated. Five soft-inplane hingeless rotor configurations, featuring elastic pitch-lag, pitch-flap and extension-torsion couplings, are analyzed. Elastic couplings introduced through tailored composite blade spars can have a powerful effect on both air and ground resonance behavior. Elastic pitch-flap couplings (positive and negative) strongly affect body, rotor and dynamic inflow modes. Air resonance stability is diminished by elastic pitch-flap couplings in hover and forwrad flight. Negative pitch-lag elastic coupling has a stabilizing effect on the regressive lag mode in hover and forward flight. The negative pitch-lag coupling has a detrimental effect on ground resonance stability. Extension-torsion elastic coupling (blade pitch decreases due to tension) decreases regressive lag mode stability in both airborne and ground contact conditions. Increasing thrust levels has a beneficial influence on ground resonance stability for rotors with pitch-flap and extension-torsion coupling and is only marginally effective in improving stability of rotors with pitch-lag coupling.
Handling Qualities of a Large Civil Tiltrotor in Hover using Translational Rate Command
NASA Technical Reports Server (NTRS)
Malpica, Carlos A.; Theodore, Colin R.; Lawrence, Ben; Lindsey, James; Blanken, Chris
2012-01-01
A Translational Rate Command (TRC) control law has been developed to enable low speed maneuvering of a large civil tiltrotor with minimal pitch changes by means of automatic nacelle angle deflections for longitudinal velocity control. The nacelle actuator bandwidth required to achieve Level 1 handling qualities in hover and the feasibility of additional longitudinal cyclic control to augment low bandwidth nacelle actuation were investigated. A frequency-domain handling qualities criterion characterizing TRC response in terms of bandwidth and phase delay was proposed and validated against a piloted simulation conducted on the NASA-Ames Vertical Motion Simulator. Seven experimental test pilots completed evaluations in the ADS-33E-PRF Hover Mission Task Element (MTE) for a matrix of nacelle actuator bandwidths, equivalent rise times and control response sensitivities, and longitudinal cyclic control allocations. Evaluated against this task, longitudinal phase delay shows the Level 1 boundary is around 0.4 0.5 s. Accordingly, Level 1 handling qualities were achieved either with a nacelle actuator bandwidth greater than 4 rad/s, or by employing longitudinal cyclic control to augment low bandwidth nacelle actuation.
Pressure Sensitive Paint Measurements on 15% Scale Rotor Blades in Hover
NASA Technical Reports Server (NTRS)
Wong, Oliver D.; Watkins, Anthony Neal; Ingram, JoAnne L.
2005-01-01
This paper describes a proof of concept test to examine the feasibility of using pressure sensitive paint (PSP) to measure the pressure distributions on a rotor in hover. The test apparatus consisted of the US Army 2-meter Rotor Test Stand (2MRTS) and 15% scale swept tip rotor blades. Two camera/rotor separations were examined: 0.76 and 1.35 radii. The outer 15% of each blade was painted with PSP. Intensity and lifetime based PSP measurement techniques were attempted. Data were collected from all blades at thrust coefficients ranging from 0.004 to 0.009.
Research requirements for development of regenerative engines for helicopters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semple, R.D.
1976-12-01
The improved specific fuel consumption of the regenerative engine was compared to a simple-cycle turboshaft engine. The performance improvement and fuel saving are obtained at the expense of increased engine weight, development and production costs, and maintenance costs. Costs and schedules are estimated for the elements of the research and development program. Interaction of the regenerative engine with other technology goals for an advanced civil helicopter is examined, including its impact on engine noise, hover and cruise performance, helicopter empty weight, drive-system efficiency and weight, one-engine-inoperative hover capability, and maintenance and reliability.
Research requirements for development of regenerative engines for helicopters
NASA Technical Reports Server (NTRS)
Semple, R. D.
1976-01-01
The improved specific fuel consumption of the regenerative engine was compared to a simple-cycle turboshaft engine. The performance improvement and fuel saving are obtained at the expense of increased engine weight, development and production costs, and maintenance costs. Costs and schedules are estimated for the elements of the research and development program. Interaction of the regenerative engine with other technology goals for an advanced civil helicopter is examined, including its impact on engine noise, hover and cruise performance, helicopter empty weight, drive-system efficiency and weight, one-engine-inoperative hover capability, and maintenance and reliability.
Experimental Investigations of Generalized Predictive Control for Tiltrotor Stability Augmentation
NASA Technical Reports Server (NTRS)
Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Piatak, David J.; Kvaternik, Raymond G.; Bennett, Richard L.; Brown, Ross K.
2001-01-01
A team of researchers from the Army Research Laboratory, NASA Langley Research Center (LaRC), and Bell Helicopter-Textron, Inc. have completed hover-cell and wind-tunnel testing of a 1/5-size aeroelastically-scaled tiltrotor model using a new active control system for stability augmentation. The active system is based on a generalized predictive control (GPC) algorithm originally developed at NASA LaRC in 1997 for un-known disturbance rejection. Results of these investigations show that GPC combined with an active swashplate can significantly augment the damping and stability of tiltrotors in both hover and high-speed flight.
Visual cueing aids for rotorcraft landings
NASA Technical Reports Server (NTRS)
Johnson, Walter W.; Andre, Anthony D.
1993-01-01
The present study used a rotorcraft simulator to examine descents-to-hover at landing pads with one of three approach lighting configurations. The impact of simulator platform motion upon descents to hover was also examined. The results showed that the configuration with the most useful optical information led to the slowest final approach speeds, and that pilots found this configuration, together with the presence of simulator platform motion, most desirable. The results also showed that platform motion led to higher rates of approach to the landing pad in some cases. Implications of the results for the design of vertiport approach paths are discussed.
USDA-ARS?s Scientific Manuscript database
Organic production in Puerto Rico is at an early stage and research is needed to validate the sustainability of different management practices. This research initiated evaluation of selected soil properties including the microbial communities to evaluate the effects of Tropic sunn (Crotalaria juncea...
Production of the sunn hemp cultivars 'AU Golden' and 'AU Durbin developed by Auburn University
USDA-ARS?s Scientific Manuscript database
Sunn hemp (Crotalaria juncea L.) is the fastest growing species of the genus Crotalaria and is the most widely grown green manure in the tropics. Sunn hemp is also adapted to a wide range of conditions and soil types, while still producing high biomass yields. These characteristics enable the crop...
Seed biology of rush skeletonweed in sagebrush steppe
Julia D. Liao; Stephen B. Monsen; Val Jo Anderson; Nancy L. Shaw
2000-01-01
Rush skeletonweed (Chondrilla juncea L.) is an invasive, herbaceous, long-lived perennial species of Eurasian or Mediterranean origin now occurring in many locations throughout the world. In the United States, it occupies over 2.5 million ha of rangeland in the Pacific Northwest and California. Despite the ecological and economic significance of this species, little is...
USDA-ARS?s Scientific Manuscript database
The effect of carbon source on efficacy of anaerobic soil disinfestation (ASD) toward suppression of apple root infection by Rhizoctonia solani AG-5 and Pratylenchus penetrans was examined. Orchard grass (GR), rice bran (RB), ethanol (ET), composted steer manure (CM) and Brassica juncea seed meal (S...
Natural Product Chemistry of Gorgonian Corals of Genus Junceella—Part II
Wu, Yang-Chang; Su, Jui-Hsin; Chou, Tai-Ting; Cheng, Yin-Pin; Weng, Ching-Feng; Lee, Chia-Hung; Fang, Lee-Shing; Wang, Wei-Hsien; Li, Jan-Jung; Lu, Mei-Chin; Kuo, Jimmy; Sheu, Jyh-Horng; Sung, Ping-Jyun
2011-01-01
The structures, names, bioactivities, and references of 81 new secondary metabolites obtained from gorgonian corals belonging to the genus Junceella are described in this review. All compounds mentioned in this review were obtained from sea whip gorgonian corals Junceella fragilis and Junceella juncea, collected from the tropical and subtropical Indo-Pacific Ocean. PMID:22363249
Particle size affects Brassica seed meal-induced pathogen suppression of Rhizoctonia solani AG-5
USDA-ARS?s Scientific Manuscript database
R. solani AG-5 is a component of the pathogen complex that incites apple replant disease, and is suppressed via multiple mechanisms in response to B. juncea seed meal (SM) amendment. Allyl isothiocyanate (AITC) functions in suppression of this pathogen during the initial 24 h period post-seed meal a...
USDA-ARS?s Scientific Manuscript database
Leafy Brassica crops: collard (Brassica oleracea L.), mustard (B. juncea L.) and turnip (B. rapa) greens are important commercial and culinary vegetables; especially in the southern United States. However, almost no information on essential human-health vitamins [ascorbic acid (vit C), folate (vit...
USDA-ARS?s Scientific Manuscript database
An UHPLC-PDA-ESI/HRMS/MSn profiling method was used for a comprehensive study of the polyphenols in red mustard greens and identified 209 phenolic compounds: 67 anthocyanin, 102 flavonol glycosides, and 40 hydroxycinnamic acid derivatives. The glycosylation patterns of the flavonoids were assigned ...
Locomotion of a bioinspired flyer powered by one pair of pitching foils
NASA Astrophysics Data System (ADS)
Zhang, Xiang; He, Guowei; Wang, Shizhao; Zhang, Xing
2018-01-01
We numerically investigate the flight dynamics and aerodynamics of a two-dimensional model for the jellyfishlike ornithopter recently devised by Ristroph and Childress [L. Ristroph and S. Childress, J. R. Soc. Interface 11, 20130992 (2014), 10.1098/rsif.2013.0992]. This simplified model is composed of two rigid thin foils which are forced to pitch in antiphase fashion. The Navier-Stokes equations for the fluid and the dynamics equations for the flyer are solved together in the simulations. We first consider the constrained-flying condition where the flyer model is only allowed to move in the vertical direction. The influences of the control parameters on the hovering performance are studied. With the variations in parameter values, three different locomotion states, i.e., ascending, descending, and approximate hovering, are identified. The wake structures corresponding to these three locomotion states are explored. It is found that the approximate hovering state cannot persist due to the occurrence of wake symmetry breaking after long-time simulation. We then consider the free-flying condition where the motions in three degrees of freedom are allowed. We study the postural stability of a flyer, with its center of gravity located at the geometric center. The responses of the flyer at different locomotion states to physical and numerical perturbations are examined. Our results show that the ascending state is recoverable after the perturbation. The descending state is irrecoverable after the perturbation and a mixed fluttering and tumbling motion which resembles that of a falling card emerges. The approximate hovering state is also irrecoverable and it eventually transits to the ascending state after the perturbation. The research sheds light on the lift-producing mechanism and stability of the flyer and the results are helpful in guiding the design and optimization of the jellyfishlike flying machine.
Optimal flapping wing for maximum vertical aerodynamic force in hover: twisted or flat?
Phan, Hoang Vu; Truong, Quang Tri; Au, Thi Kim Loan; Park, Hoon Cheol
2016-07-08
This work presents a parametric study, using the unsteady blade element theory, to investigate the role of twist in a hovering flapping wing. For the investigation, a flapping-wing system was developed to create a wing motion of large flapping amplitude. Three-dimensional kinematics of a passively twisted wing, which is capable of creating a linearly variable geometric angle of attack (AoA) along the wingspan, was measured during the flapping motion and used for the analysis. Several negative twist or wash-out configurations with different values of twist angle, which is defined as the difference in the average geometric AoAs at the wing root and the wing tip, were obtained from the measured wing kinematics through linear interpolation and extrapolation. The aerodynamic force generation and aerodynamic power consumption of these twisted wings were obtained and compared with those of flat wings. For the same aerodynamic power consumption, the vertical aerodynamic forces produced by the negatively twisted wings are approximately 10%-20% less than those produced by the flat wings. However, these twisted wings require approximately 1%-6% more power than flat wings to produce the same vertical force. In addition, the maximum-force-producing twisted wing, which was found to be the positive twist or wash-in configuration, was used for comparison with the maximum-force-producing flat wing. The results revealed that the vertical aerodynamic force and aerodynamic power consumption of the two types of wings are almost identical for the hovering condition. The power loading of the positively twisted wing is only approximately 2% higher than that of the maximum-force-producing flat wing. Thus, the flat wing with proper wing kinematics (or wing rotation) can be regarded as a simple and efficient candidate for the development of hovering flapping-wing micro air vehicle.
An Investigation of Large Tilt-Rotor Hover and Low Speed Handling Qualities
NASA Technical Reports Server (NTRS)
Malpica, Carlos A.; Decker, William A.; Theodore, Colin R.; Lindsey, James E.; Lawrence, Ben; Blanken, Chris L.
2011-01-01
A piloted simulation experiment conducted on the NASA-Ames Vertical Motion Simulator evaluated the hover and low speed handling qualities of a large tilt-rotor concept, with particular emphasis on longitudinal and lateral position control. Ten experimental test pilots evaluated different combinations of Attitude Command-Attitude Hold (ACAH) and Translational Rate Command (TRC) response types, nacelle conversion actuator authority limits and inceptor choices. Pilots performed evaluations in revised versions of the ADS-33 Hover, Lateral Reposition and Depart/Abort MTEs and moderate turbulence conditions. Level 2 handling qualities ratings were primarily recorded using ACAH response type in all three of the evaluation maneuvers. The baseline TRC conferred Level 1 handling qualities in the Hover MTE, but there was a tendency to enter into a PIO associated with nacelle actuator rate limiting when employing large, aggressive control inputs. Interestingly, increasing rate limits also led to a reduction in the handling qualities ratings. This led to the identification of a nacelle rate to rotor longitudinal flapping coupling effect that induced undesired, pitching motions proportional to the allowable amount of nacelle rate. A modification that counteracted this effect significantly improved the handling qualities. Evaluation of the different response type variants showed that inclusion of TRC response could provide Level 1 handling qualities in the Lateral Reposition maneuver by reducing coupled pitch and heave off axis responses that otherwise manifest with ACAH. Finally, evaluations in the Depart/Abort maneuver showed that uncertainty about commanded nacelle position and ensuing aircraft response, when manually controlling the nacelle, demanded high levels of attention from the pilot. Additional requirements to maintain pitch attitude within 5 deg compounded the necessary workload.
Wide speed range turboshaft study
NASA Technical Reports Server (NTRS)
Dangelo, Martin
1995-01-01
NASA-Lewis and NASA-Ames have sponsored a series of studies over the last few years to identify key high speed rotorcraft propulsion and airframe technologies. NASA concluded from these studies that for near term aircraft with cruise speeds up to 450 kt, tilting rotor rotorcraft concepts are the most economical and technologically viable. The propulsion issues critical to tilting rotor rotorcraft are: (1) high speed cruise propulsion system efficiency and (2) adequate power to hover safely with one engine inoperative. High speed cruise propeller efficiency can be dramatically improved by reducing rotor speed, yet high rotor speed is critical for good hover performance. With a conventional turboshaft, this wide range of power turbine operating speeds would result in poor engine performance at one or more of these critical operating conditions. This study identifies several wide speed range turboshaft concepts, and analyzes their potential to improve performance at the diverse cruise and hover operating conditions. Many unique concepts were examined, and the selected concepts are simple, low cost, relatively low risk, and entirely contained within the power turbine. These power turbine concepts contain unique, incidence tolerant airfoil designs that allow the engine to cruise efficiently at 51 percent of the hover rotor speed. Overall propulsion system efficiency in cruise is improved as much as 14 percent, with similar improvements in engine weight and cost. The study is composed of a propulsion requirement survey, a concept screening study, a preliminary definition and evaluation of selected concepts, and identification of key technologies and development needs. In addition, a civil transport tilting rotor rotorcraft mission analysis was performed to show the benefit of these concepts versus a conventional turboshaft. Other potential applications for this technology are discussed.
NASA Technical Reports Server (NTRS)
Robuck, Mark; Wilkerson, Joseph; Snyder, Christopher A.; Zhang, Yiyi; Maciolek, Bob
2013-01-01
In a series of study tasks conducted as a part of NASA's Fundamental Aeronautics Program, Rotary Wing Project, Boeing and Rolls-Royce explored propulsion, drive, and rotor system options for the NASA Large Civil Tilt Rotor (LCTR2) concept vehicle. The original objective of this study was to identify engine and drive system configurations to reduce rotor tip speed during cruise conditions and quantify the associated benefits. Previous NASA studies concluded that reducing rotor speed (from 650 fps hover tip speed) during cruise would reduce vehicle gross weight and fuel burn. Initially, rotor cruise speed ratios of 54% of the hover tip speed were of most interest during operation at cruise air speed of 310 ktas. Interim results were previously reported1 for cruise tip speed ratios of 100%, 77%, and 54% of the hover tip speed using engine and/or gearbox features to achieve the reduction. Technology levels from commercial off-the-shelf (COTS), through entry-in-service (EIS) dates of 2025 and 2035 were considered to assess the benefits of advanced technology on vehicle gross weight and fuel burn. This technical paper presents the final study results in terms of vehicle sizing and fuel burn as well as Operational and Support (O&S) costs. New vehicle sizing at rotor tip speed reduced to 65% of hover is presented for engine performance with an EIS 2035 fixed geometry variable speed power turbine. LCTR2 is also evaluated for missions range cases of 400, 600, 800, 1000, and 1200 nautical miles and cruise air speeds of 310, 350 and 375 ktas.
USDA-ARS?s Scientific Manuscript database
Sunn hemp (Crotalaria juncea L.) is a tropical legume that produces plant biomass and nitrogen (N) quickly. Our objectives were to assess the growth of a new sunn hemp cultivar breed to produce seed in a temperate climate and determine the residual N effect on a subsequent rye (Secale cereale L.) wi...
Lithium, Vanadium and Chromium Uptake Ability of Brassica juncea from Lithium Mine Tailings.
Elektorowicz, M; Keropian, Z
2015-01-01
The potential for phytoremediation and phytostabilization of lithium in lieu with vanadium and chromium on a formulated acidic heterogeneous growth media engineered around lithium mine tailings, was investigated in four phases: (1) overall efficiency of the removal of the three metals, (2) bioaccumulation ratios of the three metals, (3) overall relative growth rate, and (4) translocation index of the three metals in the physiology of the hyperaccumulator plant. A pot study was conducted to assess the suitability of Brassica juncea (Indian mustard) in a phytoremediation process whereby it was lingered for eighty-six days under homogeneous growth conditions and irrigated bidaily with organic fertilizer amended with LiCl. A post harvest data analysis was achieved through ashing and the implementation of cold digestion procedure in a concentrated hydrochloric acidic matrix. In physiological efficiency parameters, the hyperaccumulator plant was twice as able to phytostabilize chromium and four times was able to phytostabilize vanadium in comparison to lithium. Moreover, it was extremely efficient in translocating and accumulating lithium inside its upper physiological sites, more so than chromium and vanadium, thereby demonstrating Indian mustard, as a hyperaccumulator plant, for phytoextraction and phytostabilization in an acidic heterogeneous rhizosphere, with an extremely low relative growth rate.
NASA Technical Reports Server (NTRS)
Watkins, A. Neal; Leighty, Bradley D.; Lipford, William E.; Wong, Oliver D.; Oglesby, Donald M.; Ingram, JoAnne L.
2007-01-01
This paper will describe the results from a proof of concept test to examine the feasibility of using Pressure Sensitive Paint (PSP) to measure global surface pressures on rotorcraft blades in hover. The test was performed using the U.S. Army 2-meter Rotor Test Stand (2MRTS) and 15% scale swept rotor blades. Data were collected from five blades using both the intensity- and lifetime-based approaches. This paper will also outline several modifications and improvements that are underway to develop a system capable of measuring pressure distributions on up to four blades simultaneously at hover and forward flight conditions.
Rotorcraft aeroelastic stability
NASA Technical Reports Server (NTRS)
Ormiston, Robert A.; Warmbrodt, William G.; Hodges, Dewey H.; Peters, David A.
1988-01-01
Theoretical and experimental developments in the aeroelastic and aeromechanical stability of helicopters and tilt-rotor aircraft are addressed. Included are the underlying nonlinear structural mechanics of slender rotating beams, necessary for accurate modeling of elastic cantilever rotor blades, and the development of dynamic inflow, an unsteady aerodynamic theory for low-frequency aeroelastic stability applications. Analytical treatment of isolated rotor stability in hover and forward flight, coupled rotor-fuselage stability in hover and forward flight, and analysis of tilt-rotor dynamic stability are considered. Results of parametric investigations of system behavior are presented, and correlation between theoretical results and experimental data from small and large scale wind tunnel and flight testing are discussed.
Effects of static equilibrium and higher-order nonlinearities on rotor blade stability in hover
NASA Technical Reports Server (NTRS)
Crespodasilva, Marcelo R. M.; Hodges, Dewey H.
1988-01-01
The equilibrium and stability of the coupled elastic lead/lag, flap, and torsion motion of a cantilever rotor blade in hover are addressed, and the influence of several higher-order terms in the equations of motion of the blade is determined for a range of values of collective pitch. The blade is assumed to be untwisted and to have uniform properties along its span. In addition, chordwise offsets between its elastic, tension, mass, and aerodynamic centers are assumed to be negligible for simplicity. The aerodynamic forces acting on the blade are modeled using a quasi-steady, strip-theory approximation.
Predicting power-optimal kinematics of avian wings
Parslew, Ben
2015-01-01
A theoretical model of avian flight is developed which simulates wing motion through a class of methods known as predictive simulation. This approach uses numerical optimization to predict power-optimal kinematics of avian wings in hover, cruise, climb and descent. The wing dynamics capture both aerodynamic and inertial loads. The model is used to simulate the flight of the pigeon, Columba livia, and the results are compared with previous experimental measurements. In cruise, the model unearths a vast range of kinematic modes that are capable of generating the required forces for flight. The most efficient mode uses a near-vertical stroke–plane and a flexed-wing upstroke, similar to kinematics recorded experimentally. In hover, the model predicts that the power-optimal mode uses an extended-wing upstroke, similar to hummingbirds. In flexing their wings, pigeons are predicted to consume 20% more power than if they kept their wings full extended, implying that the typical kinematics used by pigeons in hover are suboptimal. Predictions of climbing flight suggest that the most energy-efficient way to reach a given altitude is to climb as steeply as possible, subjected to the availability of power. PMID:25392398
Experimental and numerical studies of beetle-inspired flapping wing in hovering flight.
Van Truong, Tien; Le, Tuyen Quang; Park, Hoon Cheol; Byun, Doyoung
2017-05-17
In this paper, we measure unsteady forces and visualize 3D vortices around a beetle-like flapping wing model in hovering flight by experiment and numerical simulation. The measurement of unsteady forces and flow patterns around the wing were conducted using a dynamically scaled wing model in the mineral-oil tank. The wing kinematics were directly derived from the experiment of a real beetle. The 3D flow structures of the flapping wing were captured by using air bubble visualization while forces were measured by a sensor attached at the wing base. In comparison, the size and topology of spiral leading edge vortex, trailing edge vortex and tip vortex are well matched from experimental and numerical studies. In addition, the time history of forces calculated from numerical simulation is also similar to that from theforce measurement. A difference of average force is in order of 10 percent. The results indicate that the leading edge vortex due to rotational acceleration at the end of the stroke during flapping wing causes significant reduction of lift. The present study provides useful information on hover flight to develop a beetle-like flapping wing Micro Air Vehicle.
Bias Momentum Sizing for Hovering Dual-Spin Platforms
NASA Technical Reports Server (NTRS)
Lim, Kyong B.; Shin, Jong-Yeob; Moerder, Daniel D.
2006-01-01
An atmospheric flight vehicle in hover is typically controlled by varying its thrust vector. Achieving both levitation and attitude control with the propulsion system places considerable demands on it for agility and precision, particularly if the vehicle is statically unstable, or nearly so. These demands can be relaxed by introducing an appropriately sized angular momentum bias aligned with the vehicle's yaw axis, thus providing an additional margin of attitude stability about the roll and pitch axes. This paper describes a methodical approach for trading off angular momentum bias level needed with desired levels of vehicle response due to the design disturbance environment given a vehicle's physical parameters. It also describes several simplifications that provide a more physical and intuitive understanding of dual-spin dynamics for hovering atmospheric vehicles. This approach also mitigates the need for control torques and inadvertent actuator saturation difficulties in trying to stabilize a vehicle via control torques produced by unsteady aerodynamics, thrust vectoring, and unsteady throttling. Simulation results, based on a subscale laboratory test flying platform, demonstrate significant improvements in the attitude control robustness of the vehicle with respect to both wind disturbances and off-center of gravity payload changes during flight.
Tytell, Eric D; Ellington, Charles P
2003-01-01
The vortex wake structure of the hawkmoth, Manduca sexta, was investigated using a vortex ring generator. Based on existing kinematic and morphological data, a piston and tube apparatus was constructed to produce circular vortex rings with the same size and disc loading as a hovering hawkmoth. Results show that the artificial rings were initially laminar, but developed turbulence owing to azimuthal wave instability. The initial impulse and circulation were accurately estimated for laminar rings using particle image velocimetry; after the transition to turbulence, initial circulation was generally underestimated. The underestimate for turbulent rings can be corrected if the transition time and velocity profile are accurately known, but this correction will not be feasible for experiments on real animals. It is therefore crucial that the circulation and impulse be estimated while the wake vortices are still laminar. The scaling of the ring Reynolds number suggests that flying animals of about the size of hawkmoths may be the largest animals whose wakes stay laminar for long enough to perform such measurements during hovering. Thus, at low advance ratios, they may be the largest animals for which wake circulation and impulse can be accurately measured. PMID:14561347
Application of empirical and linear methods to VSTOL powered-lift aerodynamics
NASA Technical Reports Server (NTRS)
Margason, Richard; Kuhn, Richard
1988-01-01
Available prediction methods applied to problems of aero/propulsion interactions for short takeoff and vertical landing (STOVL) aircraft are critically reviewed and an assessment of their strengths and weaknesses provided. The first two problems deal with aerodynamic performance effects during hover: (1) out-of-ground effect, and (2) in-ground effect. The first can be evaluated for some multijet cases; however, the second problem is very difficult to evaluate for multijets. The ground-environment effects due to wall jets and fountain flows directly affect hover performance. In a related problem: (3) hot-gas ingestion affects the engine operation. Both of these problems as well as jet noise affect the ability of people to work near the aircraft and the ability of the aircraft to operate near the ground. Additional problems are: (4) the power-augmented lift due to jet-flap effects (both in- and out-of-ground effects), and (5) the direct jet-lift effects during short takeoff and landing (STOL) operations. The final problem: (6) is the aerodynamic/propulsion interactions in transition between hover and wing-borne flight. Areas where modern CFD methods can provide improvements to current computational capabilities are identified.
Numerical Investigations on Aerodynamic Forces of Deformable Foils in Hovering Motions
NASA Astrophysics Data System (ADS)
Zhao, Yong; Yin, Zhen; Su, Xiaohui; Zhang, Jiantao; Cao, Yuanwei
2017-09-01
The aerodynamic effects of wing deformation for hover flight are numerically investigated by a two-dimensional finite-volume (FV) Arbitrary Langrangian Eulerian (ALE) Navier-Stokes solver. Two deformation models are employed to study these effects in this paper, which are a full deformation model and a partial deformation one. Attentions are paid to the generation and development of leading edge vortex (LEV) and trailing edge vortex (TEV) which may illustrate the differences of lift force generation mechanisms from those of rigid wings. Moreover, lift coefficient Cl, drag coefficient Cd, and figure of merit, as well as energy consumption in hovering motion for different deformation foil models, are also studied. The results show that the deformed amplitude, 0.1*chord, among the cases simulated is an optimized camber amplitude for full deformation. The results obtained from the partial deformation foil model show that both Cl and Cd decrease with the increase of camber amplitude. It is found that the effect of deformation in the partial deformation model does not enhance lift force due to unfavorable camber. But TEV is significantly changed by the local AOA due to the deformation of the foil. Introduction.
J. L. Littlefield; J. Birdsall; J. Helsley; G. Markin
2000-01-01
Rush skeletonweed, Chondrilla juncea L. (Asteraceae), is considered a noxious weed in many western states and is currently a target for biological control. Bradyrrhoa gilveolella (Treitschke) (Lepidoptera: Pyralidae) is a root-feeding moth being considered for use in the biological control of rush skeletonweed. This organism will...
The release and recovery of Bradyrrhoa gilveolella on rush skeletonweed in southern Idaho
J. L. Littlefield; G. Markin; J. Kashefi; A. de Meij; J. Runyon
2013-01-01
Rush skeletonweed (Chondrilla juncea L.) is a major noxious weed in Idaho and other areas of the Pacific Northwest. A biological control program was implemented during the late 1970s in an attempt to manage infestations of rush skeletonweed and to limit its spread into new areas. Three agents, Cystiphora schmidti (Rübsaamen) (a gall midge), Aceria chondrillae (...
Pessoa, C R M; Pessoa, A F A; Maia, L A; Medeiros, R M T; Colegate, S M; Barros, S S; Soares, M P; Borges, A S; Riet-Correa, F
2013-09-01
The effects and susceptibility of donkeys to Crotalaria juncea and Crotalaria retusa poisoning were determined at high and low doses. Seeds of C. juncea containing 0.074% of dehydropyrrolizidine alkaloids (DHPAs) (isohemijunceines 0.05%, trichodesmine 0.016%, and junceine 0.008%) were administered to three donkeys at 0.3, 0.6 and 1 g/kg body weight (g/kg) daily for 365 days. No clinical signs were observed and, on liver and lung biopsies, the only lesion was a mild liver megalocytosis in the donkeys ingesting 0.6 and 1 g/kg/day. Two other donkeys that received daily doses of 3 and 5 g seed/kg showed initial respiratory signs 70 and 40 days after the start of the administration, respectively. The donkeys were euthanized following severe respiratory signs and the main lung lesions were proliferation of Clara cells and interstitial fibrosis. Three donkeys ingested seeds of C. retusa containing 5.99% of monocrotaline at daily doses of 0.025, 0.05 and 0.1 g/kg for 365 days. No clinical signs were observed and, on liver and lung biopsies, the only lesion was moderate liver megalocytosis in each of the three donkeys. One donkey that received a single dose of 5 g/kg of C. retusa seeds and another that received 1 g/kg daily for 7 days both showed severe clinical signs and died with diffuse centrilobular liver necrosis. No lung lesions were observed. Another donkey that received a single dose of 2.5 g/kg of C. retusa seeds showed no clinical signs. The hepatic and pneumotoxic effects observed are consistent with an etiology involving DHPAs. Furthermore, the occurrence of lung or liver lesions correlates with the type of DHPAs contained in the seeds. Similarly as has been reported for horses, the data herein suggest that in donkeys some DHPAs are metabolized in the liver causing liver disease, whereas others are metabolized in the lung by Clara cells causing lung disease. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zasada, Inga A.; Orisajo, Samuel B.; Morra, Matthew J.
2011-01-01
Meals produced when oil is extracted from seeds in the Brassicaceae have been shown to suppress weeds and soilborne pathogens. These seed meals are commonly used individually as soil amendments; the goal of this research was to evaluate seed meal mixes of Brassica juncea (Bj) and Sinapis alba (Sa) against Meloidogyne incognita. Seed meals from Bj ‘Pacific Gold’ and Sa ‘IdaGold’ were tested alone and in combinations to determine rates and application times that would suppress M. incognita on pepper (Capsicum annuum) without phytotoxicity. Rates of soil application (% w/w) for the phytotoxicity study were: 0.5 Sa, 0.2 Bj, 0.25 Sa + 0.25 Bj, 0.375 Sa + 0.125 Bj, 0.125 Sa + 0.375 Bj, and 0, applied 0 – 5 weeks before transplant. Overall, 0.2% Bj was the least toxic meal to pepper seedlings. By comparison, 0.5% S. alba seed meal did not reduce lettuce (Lactuca sativa) seed germination at week 0, but all seed meal treatments containing B. juncea prevented or significantly reduced germination at week 0. The seed meals did not affect lettuce seed germination at weeks 1-5, but hypocotyl growth was reduced by all except 0.2% Bj at weeks 1, 4 and 5. Brassica juncea and Sa meals were tested for M. incognita suppression at 0.2, 0.15, 0.1 and 0.05%; mixtures were 0.1% Sa + 0.1% Bj, 0.15% Sa + 0.05% Bj, and 0.05% Sa + 0.15% Bj. All treatments were applied 2 weeks before transplant. The 0.2% Bj and 0.05% Sa + 0.15% Bj treatments overall had the longest shoots and highest fresh weights. Eggs per g root were lowest with 0.1 – 0.2% Bj amendments and the seed meal mixtures. The results indicate that Bj and some Bj + Sa mixtures can be applied close to transplant to suppress M. incognita populations on pepper; consequently, a seed meal mixture could be selected to provide activity against more than one pest or pathogen. For pepper, care should be taken in formulating mixtures so that Sa rates are low compared to Bj. PMID:22791910
Performance and loads data from an outdoor hover test of a Lynx tail rotor
NASA Technical Reports Server (NTRS)
Signor, David B.; Yamauchi, Gloria K.; Smith, Charles A.; Hagen, Martin J.
1989-01-01
A Lynx tail rotor was tested in hover at the Outdoor Aerodynamic Research Facility at NASA Ames Research Center. The test objectives were to measure the isolated rotor performance to provide a baseline for subsequent testing, and to operate the rotor throughout the speed and collective envelope before testing in the NFAC 40- by 80-Foot Wind Tunnel. Rotor forces and blade bending moments were measured at ambient wind conditions from zero to 6.23 m/sec. The test envelope was limited to rotor speeds of 1550 to 1850 rpm and minus 13 deg to plus 20 deg of blade collective pitch. The isolated rotor performance and blade loads data are presented.
NASA Technical Reports Server (NTRS)
1985-01-01
In the conference proceedings are 24 presented papers, their discussions, and material given in two panels. The presented papers address the general areas of the dynamics of rotorcraft or helicopters. Specific topics include the stability of rotors in hover and forward flight, the stability of coupled rotor-fuselage systems in hover, the loads on a rotor in forward flight including new developments in rotor loads calculations, and the calculation of rotorcraft vibration and means for its control or suppression. Material in the first panel deals with the successful application of dynamics technology to engineering development of flight vehicles. Material in the second panel is concerned with large data bases in the area of rotorocraft dynamics and how they are developed, managed, and used.
Moving base simulation evaluation of translational rate command systems for STOVL aircraft in hover
NASA Technical Reports Server (NTRS)
Franklin, James A.; Stortz, Michael W.
1996-01-01
Using a generalized simulation model, a moving-base simulation of a lift-fan short takeoff/vertical landing fighter aircraft has been conducted on the Vertical Motion Simulator at Ames Research Center. Objectives of the experiment were to determine the influence of system bandwidth and phase delay on flying qualities for translational rate command and vertical velocity command systems. Assessments were made for precision hover control and for landings aboard an LPH type amphibious assault ship in the presence of winds and rough seas. Results obtained define the boundaries between satisfactory and adequate flying qualities for these design features for longitudinal and lateral translational rate command and for vertical velocity command.
The Spartan 207 free-flyer is held in a low-hover mode above its berth in the Space Shuttle
NASA Technical Reports Server (NTRS)
1996-01-01
STS-77 ESC VIEW --- The Spartan 207 free-flyer is held in a low-hover mode above its berth in the Space Shuttle Endeavour's cargo bay in the grasp of the Remote Manipulator System (RMS). The free-flyer was re-captured by the six crew members on May 21, 1996. The crew has spent a portion of the early stages of the mission in various activities involving the Spartan 207 and the related Inflatable Antenna Experiment (IAE). The Spartan project is managed by NASA's Goddard Space Flight Center (GSFC) for NASA's Office of Space Science, Washington, D.C. GMT: 09:51:29.
Computational Analysis of Multi-Rotor Flows
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan; Lee, Henry C.; Pulliam, Thomas H.
2016-01-01
Interactional aerodynamics of multi-rotor flows has been studied for a quadcopter representing a generic quad tilt-rotor aircraft in hover. The objective of the present study is to investigate the effects of the separation distances between rotors, and also fuselage and wings on the performance and efficiency of multirotor systems. Three-dimensional unsteady Navier-Stokes equations are solved using a spatially 5th order accurate scheme, dual-time stepping, and the Detached Eddy Simulation turbulence model. The results show that the separation distances as well as the wings have significant effects on the vertical forces of quadroror systems in hover. Understanding interactions in multi-rotor flows would help improve the design of next generation multi-rotor drones.
Hovering of a jellyfish-like flying machine
NASA Astrophysics Data System (ADS)
Ristroph, Leif; Childress, Stephen
2013-11-01
Ornithopters, or flapping-wing aircraft, offer an alternative to helicopters in achieving maneuverability at small scales, although stabilizing such aerial vehicles remains a key challenge. Here, we present a hovering machine that achieves self-righting flight using flapping wings alone, without relying on additional aerodynamic surfaces and without feedback control. We design, construct, and test-fly a prototype that opens and closes four wings, resembling the motions of swimming jellyfish more so than any insect or bird. Lift measurements and high-speed video of free-flight are used to inform an aerodynamic model that explains the stabilization mechanism. These results show the promise of flapping-flight strategies beyond those that directly mimic the wing motions of flying animals.
NASA Technical Reports Server (NTRS)
Wardwell, Douglas A.; Corsiglia, Victor R.; Kuhn, Richard E.
1992-01-01
NASA Ames Research Center has been conducting a program to improve the methods for predicting the jet-induced lift loss (suckdown) and hot gas ingestion on jet Short Takeoff and Vertical Landing (STOVL) aircraft during hover near the ground. As part of that program, small-scale hover tests were conducted to expand the current data base and to improve upon the current empirical methods for predicting jet-induced lift loss and hot gas ingestion (HGI) effects. This report is one of three data reports covering data obtained from hover tests conducted at Lockheed Aeronautical Systems, Rye Canyon Facility. It will include dynamic (time dependent) test data for both lift loss and HGI parameters (height, nozzle temperature, nozzle pressure ratio, and inlet location). The flat plate models tested were tandem jet configurations with three planform variations and variable position side-by-side sucking inlets mounted above the planform. Temperature time lags from 8-15 seconds were observed before the model temperatures stabilize. This was larger than the expected 1.5-second lag calculated from literature. Several possible explanations for the flow temperatures to stabilize may include some, or all, of the following: thermocouple lag, radiation to the model surface, and heat loss to the ground board. Further investigations are required to understand the reasons for this temperature lag.
Hovering hummingbird wing aerodynamics during the annual cycle. I. Complete wing
Sapir, Nir; Elimelech, Yossef
2017-01-01
The diverse hummingbird family (Trochilidae) has unique adaptations for nectarivory, among which is the ability to sustain hover-feeding. As hummingbirds mainly feed while hovering, it is crucial to maintain this ability throughout the annual cycle—especially during flight-feather moult, in which wing area is reduced. To quantify the aerodynamic characteristics and flow mechanisms of a hummingbird wing throughout the annual cycle, time-accurate aerodynamic loads and flow field measurements were correlated over a dynamically scaled wing model of Anna’s hummingbird (Calypte anna). We present measurements recorded over a model of a complete wing to evaluate the baseline aerodynamic characteristics and flow mechanisms. We found that the vorticity concentration that had developed from the wing’s leading-edge differs from the attached vorticity structure that was typically found over insects’ wings; firstly, it is more elongated along the wing chord, and secondly, it encounters high levels of fluctuations rather than a steady vortex. Lift characteristics resemble those of insects; however, a 20% increase in the lift-to-torque ratio was obtained for the hummingbird wing model. Time-accurate aerodynamic loads were also used to evaluate the time-evolution of the specific power required from the flight muscles, and the overall wingbeat power requirements nicely matched previous studies. PMID:28878971
Measured Boundary Layer Transition and Rotor Hover Performance at Model Scale
NASA Technical Reports Server (NTRS)
Overmeyer, Austin D.; Martin, Preston B.
2017-01-01
An experiment involving a Mach-scaled, 11:08 f t: diameter rotor was performed in hover during the summer of 2016 at NASA Langley Research Center. The experiment investigated the hover performance as a function of the laminar to turbulent transition state of the boundary layer, including both natural and fixed transition cases. The boundary layer transition locations were measured on both the upper and lower aerodynamic surfaces simultaneously. The measurements were enabled by recent advances in infrared sensor sensitivity and stability. The infrared thermography measurement technique was enhanced by a paintable blade surface heater, as well as a new high-sensitivity long wave infrared camera. The measured transition locations showed extensive amounts, x=c>0:90, of laminar flow on the lower surface at moderate to high thrust (CT=s > 0:068) for the full blade radius. The upper surface showed large amounts, x=c > 0:50, of laminar flow at the blade tip for low thrust (CT=s < 0:045). The objective of this paper is to provide an experimental data set for comparisons to newly developed and implemented rotor boundary layer transition models in CFD and rotor design tools. The data is expected to be used as part of the AIAA Rotorcraft SimulationWorking Group
Calculation of the rotor induced download on airfoils
NASA Technical Reports Server (NTRS)
Lee, C. S.
1989-01-01
Interactions between the rotors and wing of a rotary wing aircraft in hover have a significant detrimental effect on its payload performance. The reduction of payload results from the wake of lifting rotors impinging on the wing, which is at 90 deg angle of attack in hover. This vertical drag, often referred as download, can be as large as 15 percent of the total rotor thrust in hover. The rotor wake is a three-dimensional, unsteady flow with concentrated tip vortices. With the rotor tip vortices impinging on the upper surface of the wing, the flow over the wing is not only three-dimensional and unsteady, but also separated from the leading and trailing edges. A simplified two-dimensional model was developed to demonstrate the stability of the methodology. The flow model combines a panel method to represent the rotor and the wing, and a vortex method to track the wing wake. A parametric study of the download on a 20 percent thick elliptical airfoil below a rotor disk of uniform inflow was performed. Comparisons with experimental data are made where the data are available. This approach is now being extended to three-dimensional flows. Preliminary results on a wing at 90 deg angle of attack in free stream is presented.
NASA Technical Reports Server (NTRS)
Hodges, D. H., Roberta.
1976-01-01
The stability of elastic flap bending, lead-lag bending, and torsion of uniform, untwisted, cantilever rotor blades without chordwise offsets between the elastic, mass, tension, and areodynamic center axes is investigated for the hovering flight condition. The equations of motion are obtained by simplifying the general, nonlinear, partial differential equations of motion of an elastic rotating cantilever blade. The equations are adapted for a linearized stability analysis in the hovering flight condition by prescribing aerodynamic forces, applying Galerkin's method, and linearizing the resulting ordinary differential equations about the equilibrium operating condition. The aerodynamic forces are obtained from strip theory based on a quasi-steady approximation of two-dimensional unsteady airfoil theory. Six coupled mode shapes, calculated from free vibration about the equilibrium operating condition, are used in the linearized stability analysis. The study emphasizes the effects of two types of structural coupling that strongly influence the stability of hingeless rotor blades. The first structural coupling is the linear coupling between flap and lead-lag bending of the rotor blade. The second structural coupling is a nonlinear coupling between flap bending, lead-lag bending, and torsion deflections. Results are obtained for a wide variety of hingeless rotor configurations and operating conditions in order to provide a reasonably complete picture of hingeless rotor blade stability characteristics.
Hovering hummingbird wing aerodynamics during the annual cycle. I. Complete wing.
Achache, Yonathan; Sapir, Nir; Elimelech, Yossef
2017-08-01
The diverse hummingbird family (Trochilidae) has unique adaptations for nectarivory, among which is the ability to sustain hover-feeding. As hummingbirds mainly feed while hovering, it is crucial to maintain this ability throughout the annual cycle-especially during flight-feather moult, in which wing area is reduced. To quantify the aerodynamic characteristics and flow mechanisms of a hummingbird wing throughout the annual cycle, time-accurate aerodynamic loads and flow field measurements were correlated over a dynamically scaled wing model of Anna's hummingbird ( Calypte anna ). We present measurements recorded over a model of a complete wing to evaluate the baseline aerodynamic characteristics and flow mechanisms. We found that the vorticity concentration that had developed from the wing's leading-edge differs from the attached vorticity structure that was typically found over insects' wings; firstly, it is more elongated along the wing chord, and secondly, it encounters high levels of fluctuations rather than a steady vortex. Lift characteristics resemble those of insects; however, a 20% increase in the lift-to-torque ratio was obtained for the hummingbird wing model. Time-accurate aerodynamic loads were also used to evaluate the time-evolution of the specific power required from the flight muscles, and the overall wingbeat power requirements nicely matched previous studies.
Flowfield analysis of modern helicopter rotors in hover by Navier-Stokes method
NASA Technical Reports Server (NTRS)
Srinivasan, G. R.; Raghavan, V.; Duque, E. P. N.
1991-01-01
The viscous, three-dimensional, flowfields of UH60 and BERP rotors are calculated for lifting hover configurations using a Navier-Stokes computational fluid dynamics method with a view to understand the importance of planform effects on the airloads. In this method, the induced effects of the wake, including the interaction of tip vortices with successive blades, are captured as a part of the overall flowfield solution without prescribing any wake models. Numerical results in the form of surface pressures, hover performance parameters, surface skin friction and tip vortex patterns, and vortex wake trajectory are presented at two thrust conditions for UH60 and BERP rotors. Comparison of results for the UH60 model rotor show good agreement with experiments at moderate thrust conditions. Comparison of results with equivalent rectangular UH60 blade and BERP blade indicates that the BERP blade, with an unconventional planform, gives more thrust at the cost of more power and a reduced figure of merit. The high thrust conditions considered produce severe shock-induced flow separation for UH60 blade, while the BERP blade develops more thrust and minimal separation. The BERP blade produces a tighter tip vortex structure compared with the UH60 blade. These results and the discussion presented bring out the similarities and differences between the two rotors.
Hover Acoustic Characteristics of the XV-15 with Advanced Technology Blades
NASA Technical Reports Server (NTRS)
Conner, David A.; Wellman, J. Brent
1993-01-01
An experiment has been performed to investigate the far-field hover acoustic characteristics of the XV-15 aircraft with advanced technology blades (ATB). An extensive, high-quality, far-field acoustics data base was obtained for a rotor tip speed range of 645-771 ft/s. A 12-microphone, 500-ft radius semicircular array combined with two aircraft headings provided acoustic data over the full 360-deg azimuth about the aircraft with a resolution of 15 deg. Altitude variations provided data from near in-plane to 45 deg below the rotor tip path plane. Acoustic directivity characteristics in the lower hemisphere are explored through pressure time histories, narrow-band spectra, and contour plots. Directivity patterns were found to vary greatly with azimuth angle, especially in the forward quadrants. Sharp positive pressure pulses typical of blade-vortex interactions were found to propagate aft of the aircraft and were most intense at 45 deg below the rotor plane. Modest overall sound pressure levels were measured near in-plane indicating that thickness noise is not a major problem for this aircraft when operating in the hover mode with ATB. Rotor tip speed reductions reduced the average overall sound pressure level (dB (0.0002 dyne/cm(exp 2)) by nearly 8 dB in-plane, and 12.6 deg below the rotor plane.
NASA Technical Reports Server (NTRS)
Carpenter, Paul J.; Paulnock, Russell S.
1949-01-01
An investigation has been conducted with the Langley helicopter tower to obtain basic performance and control characteristics of the Raman rotor system. Blade-pitch control is obtained in this configuration by utilizing an auxiliary flap to twist the blades. Rotor thrust and power required were measured for the hovering condition and over a range of wind velocities from 0 to 30 miles per hour. The control characteristics and the transient response of the rotor to various control movements were also measured. The hovering-performance data are presented as a survey of the wake velocities and the variation of torque coefficient with thrust coefficient. The power required for the test rotor to hover at a thrust of 1350 pounds and a rotor speed of 240 rpm is approximately 6.5 percent greater than that estimated for a conventional rotor of the same diameter and solidity. It is believed that most of this difference is caused by th e flap servomechanism. The reduction in total power required for sustentation of the single-rotor configuration tested at various wind velocities and at the normal operating rotor thrust was found to be similar to the theoretical and experimental results for ro tors with conventionally actuated pitch. The control effectiveness was determined as a function of rotor speed. Sufficient control was available to give a thrust range of 0 to 1500 pounds and a rotor tilt of plus or minus 7 degrees. The time lag between flap motion and blade-pitch response is approximately 0.02 to 0.03 second. The response of the rotor following the blade-pitch response is similar to that of a rotor with conventionally actuated pitch changes. The over-all characteristics of the rotor investigated indicate that satisfactory performance and control characteristics were obtained.
Aerodynamic analysis of natural flapping flight using a lift model based on spanwise flow
NASA Astrophysics Data System (ADS)
Alford, Lionel D., Jr.
This study successfully described the mechanics of flapping hovering flight within the framework of conventional aerodynamics. Additionally, the theory proposed and supported by this research provides an entirely new way of looking at animal flapping flight. The mechanisms of biological flight are not well understood, and researchers have not been able to describe them using conventional aerodynamic forces. This study proposed that natural flapping flight can be broken down into a simplest model, that this model can then be used to develop a mathematical representation of flapping hovering flight, and finally, that the model can be successfully refined and compared to biological flapping data. This paper proposed a unique theory that the lift of a flapping animal is primarily the result of velocity across the cambered span of the wing. A force analysis was developed using centripetal acceleration to define an acceleration profile that would lead to a spanwise velocity profile. The force produced by the spanwise velocity profile was determined using a computational fluid dynamics analysis of flow on the simplified wing model. The overall forces on the model were found to produce more than twice the lift required for hovering flight. In addition, spanwise lift was shown to generate induced drag on the wing. Induced drag increased both the model wing's lift and drag. The model allowed the development of a mathematical representation that could be refined to account for insect hovering characteristics and that could predict expected physical attributes of the fluid flow. This computational representation resulted in a profile of lift and drag production that corresponds to known force profiles for insect flight. The model of flapping flight was shown to produce results similar to biological observation and experiment, and these results can potentially be applied to the study of other flapping animals. This work provides a foundation on which to base further exploration and hypotheses regarding flapping flight.
Hovering of model insects: simulation by coupling equations of motion with Navier-Stokes equations.
Wu, Jiang Hao; Zhang, Yan Lai; Sun, Mao
2009-10-01
When an insect hovers, the centre of mass of its body oscillates around a point in the air and its body angle oscillates around a mean value, because of the periodically varying aerodynamic and inertial forces of the flapping wings. In the present paper, hover flight including body oscillations is simulated by coupling the equations of motion with the Navier-Stokes equations. The equations are solved numerically; periodical solutions representing the hover flight are obtained by the shooting method. Two model insects are considered, a dronefly and a hawkmoth; the former has relatively high wingbeat frequency (n) and small wing mass to body mass ratio, whilst the latter has relatively low wingbeat frequency and large wing mass to body mass ratio. The main results are as follows. (i) The body mainly has a horizontal oscillation; oscillation in the vertical direction is about 1/6 of that in the horizontal direction and oscillation in pitch angle is relatively small. (ii) For the hawkmoth, the peak-to-peak values of the horizontal velocity, displacement and pitch angle are 0.11 U (U is the mean velocity at the radius of gyration of the wing), 0.22 c=4 mm (c is the mean chord length) and 4 deg., respectively. For the dronefly, the corresponding values are 0.02 U, 0.05 c=0.15 mm and 0.3 deg., much smaller than those of the hawkmoth. (iii) The horizontal motion of the body decreases the relative velocity of the wings by a small amount. As a result, a larger angle of attack of the wing, and hence a larger drag to lift ratio or larger aerodynamic power, is required for hovering, compared with the case of neglecting body oscillations. For the hawkmoth, the angle of attack is about 3.5 deg. larger and the specific power about 9% larger than that in the case of neglecting the body oscillations; for the dronefly, the corresponding values are 0.7 deg. and 2%. (iv) The horizontal oscillation of the body consists of two parts; one (due to wing aerodynamic force) is proportional to 1/cn2 and the other (due to wing inertial force) is proportional to wing mass to body mass ratio. For many insects, the values of 1/cn2 and wing mass to body mass ratio are much smaller than those of the hawkmoth, and the effects of body oscillation would be rather small; thus it is reasonable to neglect the body oscillations in studying their aerodynamics.
The EDTA Amendment in Phytoextraction of (134)Cs From Soil by Indian Mustard (Brassica juncea).
Tjahaja, Poppy Intan; Sukmabuana, Putu; Roosmini, Dwina
2015-01-01
Soil contamination with radiocaesium is a significant problem at any countries when a nuclear accident occurred. Recently, phytoextraction technique is developed to remediate the contaminated environment. However, the application is limited by the availability of the contaminant for root uptake. Therefore, a green house trial experiment of soil amendment with ethylene diamine tetraacetic acid (EDTA) has been conducted to examine (134)Cs availability for root uptake. Two groups of Indian mustard (Brassica juncea) were cultivated in (134)Cs contaminated soil. The soil in the first group was treated with EDTA amendment, while the other was not. Plant growth was observed gravimetrically and the (134)Cs concentration in soil as well as plants were determined using gamma spectrometry. The plant uptake capacity was determined as transfer factor (Fv), and the Fv values of 0.22 ± 0.0786 and 0.12 ± 0.039 were obtained for the soil treated with and without EDTA amendment, respectively. The phytoextraction efficiency of the plant cultivated in (134)Cs contaminated soil both with and without EDTA amendment was low. The EDTA amendment to the soil seems to enhance the (134)Cs availability for root uptake of Indian mustard and can still be considered to assist the field phytoremediation of contaminated soil.
Xiong, Zhi-ting; Lu, Ping
2002-04-01
When EDTA was added alone in the Pb-contaminated sand, the plant biomass and the total Pb amount in Plant decreased in both species, Brassica pekinensis and B. juncea var. multiceps, though the shoot Pb amount increased. In contrast, when (NH4)2SO4 was added alone in the Pb-contaminated sand, little effect was observed on the shoot Pb amount, though the root Pb amount was significantly increased in B. juncea var. multiceps. When amending EDTA and (NH4)2SO4 in combination, however, the shoot Pb amount in both species substantially increased, being, on an average, 2 times and 9 times higher than that in EDTA alone or (NH4)2SO4 alone amended treatment, respectively. The two amendments showed antagonism for plant growth, but synergism for Pb bioaccumulation. B. pekinensis showed its highest level of shoot and total Pb amount in the treatment amended with EDTA and (NH4)2SO4 only a half as much as in the other treatments. It is inferred that the mechanisms responsible for the joint-enhanced Pb accumulation might be concerned with the acidification of the growth medium, cation exchange reaction and relieving EDTA induced toxicity as results by amending ammonium sulfate.
Molnár, Árpád; Feigl, Gábor; Trifán, Vanda; Ördög, Attila; Szőllősi, Réka; Erdei, László; Kolbert, Zsuzsanna
2018-01-01
Selenium phytotoxicity involves processes like reactive nitrogen species overproduction and nitrosative protein modifications. This study evaluates the toxicity of two selenium forms (selenite and selenate at 0µM, 20µM, 50µM and 100µM concentrations) and its correlation with protein tyrosine nitration in the organs of hydroponically grown Indian mustard (Brassica juncea L.). Selenate treatment resulted in large selenium accumulation in both Brassica organs, while selenite showed slight root-to-shoot translocation resulting in a much lower selenium accumulation in the shoot. Shoot and root growth inhibition and cell viability loss revealed that Brassica tolerates selenate better than selenite. Results also show that relative high amounts of selenium are able to accumulate in Brassica leaves without obvious visible symptoms such as chlorosis or necrosis. The more severe phytotoxicity of selenite was accompanied by more intense protein tyrosine nitration as well as alterations in nitration pattern suggesting a correlation between the degree of Se forms-induced toxicities and nitroproteome size, composition in Brassica organs. These results imply the possibility of considering protein tyrosine nitration as novel biomarker of selenium phytotoxicity, which could help the evaluation of asymptomatic selenium stress of plants. Copyright © 2017 Elsevier Inc. All rights reserved.
Katsuta, Kensuke; Matsuo, Kazuhito; Yoshimura, Yasuyuki; Ohsawa, Ryo
2015-01-01
Genetically modified, herbicide-tolerant (GMHT) Brassica napus plants originating from seed spill have recently been found along roadsides leading from Japanese ports that unload oilseed rape. Such introductions have potential biodiversity effects (as defined by the Cartagena Protocol): these include replacement of native elements in the biota through competitive suppression or hybridization. We conducted surveys in the period 2006–2011 to assess such threats. We examined shifts in the population distribution and occurrence of GMHT plants in 1,029 volunteer introduced assemblages of B. napus, 1,169 of B. juncea, and 184 of B. rapa around 12 ports. GMHT B. napus was found around 10 of 12 ports, but its proportion in the populations varied greatly by year and location. Over the survey period, the distributions of a pure non-GMHT population around Tobata and a pure GMHT population around Hakata increased significantly. However, there was no common trend of population expansion or contraction around the 12 ports. Furthermore, we found no herbicide tolerant B. juncea and B. rapa plants derived from crosses with GMHT B. napus. Therefore, GMHT B. napus is not invading native vegetation surrounding its populations and not likely to cross with congeners in Japanese environment. PMID:26175624
Prabhudesai, V; Bhaskaran, S
1993-03-01
An efficient culture system has been developed for repeated cycles of somatic embryogenesis in microspore-derived embryos of Brassica juncea without a callus phase. Haploid embryos produced through anther culture showed a high propensity for direct production of somatic embryos in response to 2 mgL(-1) BA and 0.1 mgL(-1) NAA. The embryogenic cultures which comprised the elongated embryonal axis of microspore-derived embryos when explanted and grown on the medium of same composition produced a large number of secondary embryos. These somatic embryos in turn underwent axis elongation and produced more somatic embryos when explanted and cultured. This cycle of repetitive somatic embryogenesis continued with undiminished vigour passage after passage and was monitored for more than a year. Somatic embryos from any passage when isolated at cotyledonary stage and grown on auxin-free medium for 5 days and then on a medium containing NAA (0.1 mgL(-1)), developed into complete plants with a profuse root system and were easily established in the soil. The cytology of the root tips of these plants confirmed their haploid nature. The total absence of callus phase makes the system ideal for continuous cloning of androgenic lines, Agrobacterium-mediated transformation and mutation induction studies.
Wang, Z-Y; Bell, J; Lehmann, D
2004-07-01
Russian wildrye (Psathyrostachys juncea (Fisch.) Nevski) is a cool-season forage species well adapted to semi-arid climates. We are interested in developing biotechnological methods to improve this monocot forage species. Single genotype-derived embryogenic suspension cultures were established from the Russian wildrye cultivar Bozoisky-Select, and were used as target cells for biolistic transformation. A chimeric hygromycin phosphotransferase gene (hph) was used as the selectable marker, and a chimeric beta-glucuronidase (gusA) gene was co-transformed with hph. Resistant calli were obtained from 29% of the bombarded dishes after selection with 200 mg/l hygromycin. Plants were regenerated from 45% of the hygromycin resistant calli. Thirty-six transgenic Russian wildrye plants were recovered after microprojectile bombardment of suspension cells and subsequent hygromycin selection. The transgenic nature of the regenerated plants was demonstrated by Southern hybridization analysis using undigested and digested genomic DNA samples. When a second gene (gusA) was co-transformed with hph, a reasonably high co-transformation frequency of 78% was observed. Transgenic expression of gusA was confirmed by GUS staining of shoot and leaf tissues. Fertile transgenic plants were obtained after two winters of vernalization under field conditions. This is the first report on the generation of transgenic plants in Russian wildrye.
Carrasco, L; Azcón, R; Kohler, J; Roldán, A; Caravaca, F
2011-02-15
The aim of this study was to assess the effectiveness of inoculation with a native arbuscular mycorrhizal (AM) fungus, Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe, or a filamentous fungus, Penicillium aurantiogriseum Dierckx 1901, on the establishment of Coronilla juncea L. seedlings grown in a polluted, semiarid soil. For that, root and shoot biomass, nutrient uptake, mycorrhizal colonisation and nitrate reductase (NR) and phosphatase activities were analysed. Six months after planting, the shoot biomass of C. juncea was increased only by the inoculation with G. mosseae (by about 62% compared with non-mycorrhizal plants). The shoot NR and root acid phosphatase activities were increased more by inoculation with G. mosseae than with P. aurantiogriseum inoculation. The root NR activity and foliar nutrient contents were increased only by the inoculation with the AM fungus. The root Zn and Cu decreased with the AM fungus. In conclusion, the autochthonous AM fungus was an effective inoculant with regard to stimulating growth and alleviating heavy metal toxicity for plants growing on a soil contaminated by multiple heavy metals. Inoculation with an autochthonous, filamentous fungus does not seem to be a good strategy for phytoremediation of such problematic sites. Copyright © 2011 Elsevier B.V. All rights reserved.
Ratanapariyanuch, Kornsulee; Tyler, Robert T; Shim, Youn Young; Reaney, Martin Jt
2012-01-12
Large volumes of treated process water are required for protein extraction. Evaporation of this water contributes greatly to the energy consumed in enriching protein products. Thin stillage remaining from ethanol production is available in large volumes and may be suitable for extracting protein rich materials. In this work protein was extracted from ground defatted oriental mustard (Brassica juncea (L.) Czern.) meal using thin stillage. Protein extraction efficiency was studied at pHs between 7.6 and 10.4 and salt concentrations between 3.4 × 10-2 and 1.2 M. The optimum extraction efficiency was pH 10.0 and 1.0 M NaCl. Napin and cruciferin were the most prevalent proteins in the isolate. The isolate exhibited high in vitro digestibility (74.9 ± 0.80%) and lysine content (5.2 ± 0.2 g/100 g of protein). No differences in the efficiency of extraction, SDS-PAGE profile, digestibility, lysine availability, or amino acid composition were observed between protein extracted with thin stillage and that extracted with NaCl solution. The use of thin stillage, in lieu of water, for protein extraction would decrease the energy requirements and waste disposal costs of the protein isolation and biofuel production processes.
2012-01-01
Large volumes of treated process water are required for protein extraction. Evaporation of this water contributes greatly to the energy consumed in enriching protein products. Thin stillage remaining from ethanol production is available in large volumes and may be suitable for extracting protein rich materials. In this work protein was extracted from ground defatted oriental mustard (Brassica juncea (L.) Czern.) meal using thin stillage. Protein extraction efficiency was studied at pHs between 7.6 and 10.4 and salt concentrations between 3.4 × 10-2 and 1.2 M. The optimum extraction efficiency was pH 10.0 and 1.0 M NaCl. Napin and cruciferin were the most prevalent proteins in the isolate. The isolate exhibited high in vitro digestibility (74.9 ± 0.80%) and lysine content (5.2 ± 0.2 g/100 g of protein). No differences in the efficiency of extraction, SDS-PAGE profile, digestibility, lysine availability, or amino acid composition were observed between protein extracted with thin stillage and that extracted with NaCl solution. The use of thin stillage, in lieu of water, for protein extraction would decrease the energy requirements and waste disposal costs of the protein isolation and biofuel production processes. PMID:22239856
NASA Technical Reports Server (NTRS)
Morris, C. E. K., Jr.; Stevens, D. D.; Tomaine, R. L.
1980-01-01
A flight investigation was conducted using a teetering-rotor AH-1G helicopter to obtain data on the aerodynamic behavior of main-rotor blades with the NLR-1T blade section. The data system recorded blade-section aerodynamic pressures at 90 percent rotor radius as well as vehicle flight state, performance, and loads. The test envelope included hover, forward flight, and collective-fixed maneuvers. Data were obtained on apparent blade-vortex interactions, negative lift on the advancing blade in high-speed flight and wake interactions in hover. In many cases, good agreement was achieved between chordwise pressure distributions predicted by airfoil theory and flight data with no apparent indications of blade-vortex interactions.
NASA Technical Reports Server (NTRS)
Dasilva, C.
1982-01-01
The reduction of the O(cu epsilon) integro differential equations to ordinary differential equations using a set of orthogonal functions is described. Attention was focused on the hover flight condition. The set of Galerkin integrals that appear in the reduced equations was evaluated by making use of nonrotating beam modes. Although a large amount of computer time was needed to accomplish this task, the Galerkin integrals so evaluated were stored on tape on a permanent basis. Several of the coefficients were also obtained in closed form in order to check the accuracy of the numerical computations. The equilibrium solution to the set of 3n equations obtained was determined as the solution to a minimization problem.
NASA Technical Reports Server (NTRS)
Wang, James M.
1991-01-01
The aeroelastic stability of a shaft-fixed bearingless rotor is analyzed in wind-tunnel tests for a wide range of operating conditions in order to determine whether such a system could be made aeroelastically stable without incorporating auxiliary dampers. The model rotor and blade properties are determined and used as an input to a bearingless-rotor analysis. Theoretical predictions are compared with experimental results in hover and forward flights. The analysis predicts the lag mode damping satisfactorily for collective pitch between 5 deg and 10 deg; however, the quasi-steady linear aerodynamic modeling overpredicts the damping values for higher collective pitch settings. It is noted that soft blade pitch links improve aeroelastic stability in hover and at low advance ratio.
The acoustics of a small-scale helicopter rotor in hover
NASA Technical Reports Server (NTRS)
Kitaplioglu, Cahit
1989-01-01
A 2.1 m diameter, 1/6-scale model helicopter main rotor was tested in hover in the test section of the NASA Ames 40- by 80-foot wind tunnel. Performance and noise data on a small-scale rotor at various thrust coefficients and tip Mach numbers were obtained for comparison with existing data on similar full-scale helicopter rotors. These data form part of a data base to permit the estimation of scaling effects on various rotor noise mechanisms. Another objective was to contribute to a data base that will permit the estimation of facility effects on acoustic testing. Acoustic 1/3-octave-band spectra are presented, together with variations of overall acoustic levels with rotor performance, microphone distance, and directivity angle.
NASA Technical Reports Server (NTRS)
Mcneill, Walter, E.; Chung, William W.; Stortz, Michael W.
1995-01-01
A piloted motion simulator evaluation, using the NASA Ames Vertical Motion Simulator, was conducted in support of a NASA Lewis Contractual study of the integration of flight and propulsion systems of a STOVL aircraft. Objectives of the study were to validate the Design Methods for Integrated Control Systems (DMICS) concept, to evaluate the handling qualities, and to assess control power usage. The E-7D ejector-augmentor STOVL fighter design served as the basis for the simulation. Handling-qualities ratings were obtained during precision hover and shipboard landing tasks. Handling-qualities ratings for these tasks ranged from satisfactory to adequate. Further improvement of the design process to fully validate the DMICS concept appears to be warranted.
Performance of Advanced Heavy-Lift, High-Speed Rotorcraft Configurations
NASA Technical Reports Server (NTRS)
Johnson, Wayne; Yeo, Hyeonsoo; Acree, C. W., Jr.
2007-01-01
The aerodynamic performance of rotorcraft designed for heavy-lift and high-speed cruise is examined. Configurations considered include the tiltrotor, the compound helicopter, and the lift-offset rotor. Design conditions are hover and 250-350 knot cruise, at 5k/ISA+20oC (civil) or 4k/95oF (military); with cruise conditions at 4000 or 30,000 ft. The performance was calculated using the comprehensive analysis CAMRAD II, emphasizing rotor optimization and performance, including wing-rotor interference. Aircraft performance was calculated using estimates of the aircraft drag and auxiliary propulsion efficiency. The performance metric is total power, in terms of equivalent aircraft lift-to-drag ratio L/D = WV/P for cruise, and figure of merit for hover.
Surpassing Mt. Everest: extreme flight performance of alpine bumble-bees.
Dillon, Michael E; Dudley, Robert
2014-02-01
Animal flight at altitude involves substantial aerodynamic and physiological challenges. Hovering at high elevations is particularly demanding from the dual perspectives of lift and power output; nevertheless, some volant insects reside and fly at elevations in excess of 4000 m. Here, we demonstrate that alpine bumble-bees possess substantial aerodynamic reserves, and can sustain hovering flight under hypobaria at effective elevations in excess of 9000 m, i.e. higher than Mt. Everest. Modulation of stroke amplitude and not wingbeat frequency is the primary means of compensation for overcoming the aerodynamic challenge. The presence of such excess capacity in a high-altitude bumble-bee is surprising and suggests intermittent behavioural demands for extreme flight performance supplemental to routine foraging.
Measurements of atmospheric turbulence effects on tail rotor acoustics
NASA Technical Reports Server (NTRS)
Hagen, Martin J.; Yamauchi, Gloria K.; Signor, David B.; Mosher, Marianne
1994-01-01
Results from an outdoor hover test of a full-scale Lynx tail rotor are presented. The investigation was designed to further the understanding of the acoustics of an isolated tail rotor hovering out-of-ground effect in atmospheric turbulence, without the effects of the main rotor wake or other helicopter components. Measurements include simultaneous rotor performance, noise, inflow, and far-field atmospheric turbulence. Results with grid-generated inflow turbulence are also presented. The effects of atmospheric turbulence ingestion on rotor noise are quantified. In contradiction to current theories, increasing rotor inflow and rotor thrust were found to increase turbulence ingestion noise. This is the final report of Task 13A--Helicopter Tail Rotor Noise, of the NASA/United Kingdom Defense Research Agency cooperative Aeronautics Research Program.
Handling Qualities of Large Rotorcraft in Hover and Low Speed
NASA Technical Reports Server (NTRS)
Malpica, Carlos; Theodore, Colin R.; Lawrence , Ben; Blanken, Chris L.
2015-01-01
According to a number of system studies, large capacity advanced rotorcraft with a capability of high cruise speeds (approx.350 mph) as well as vertical and/or short take-off and landing (V/STOL) flight could alleviate anticipated air transportation capacity issues by making use of non-primary runways, taxiways, and aprons. These advanced aircraft pose a number of design challenges, as well as unknown issues in the flight control and handling qualities domains. A series of piloted simulation experiments have been conducted on the NASA Ames Research Center Vertical Motion Simulator (VMS) in recent years to systematically investigate the fundamental flight control and handling qualities issues associated with the characteristics of large rotorcraft, including tiltrotors, in hover and low-speed maneuvering.
An experimental investigation of hingeless helicopter rotor-body stability in hover
NASA Technical Reports Server (NTRS)
Bousman, W. G.
1978-01-01
Model tests of a 1.62 m diameter rotor were performed to investigate the aeromechanical stability of coupled rotor-body systems in hover. Experimental measurements were made of modal frequencies and damping over a wide range of rotor speeds. Good data were obtained for the frequencies of the rotor lead-lag regressing mode. The quality of the damping measurements of the body modes was poor due to nonlinear damping in the gimbal ball bearings. Simulated vacuum testing was performed using substitute blades of tantalum that reduced the effective lock number to 0.2% of the model scale value while keeping the blade inertia constant. The experimental data were compared with theoretical predictions, and the correlation was in general very good.
The Spartan 207 free-flyer is held in a low-hover mode above its berth in the Space Shuttle
NASA Technical Reports Server (NTRS)
1996-01-01
STS-77 ESC VIEW --- The Spartan 207 free-flyer is held in a low-hover mode above its berth in the Space Shuttle Endeavour's cargo bay in the grasp of the Remote Manipulator System (RMS). The Spacehab module can be seen in the foreground. The free-flyer was re-captured by the six crew members on May 21, 1996. The crew has spent a portion of the early stages of the mission in various activities involving the Spartan 207 and the related Inflatable Antenna Experiment (IAE). The Spartan project is managed by NASA's Goddard Space Flight Center (GSFC) for NASA's Office of Space Science, Washington, D.C. GMT: 09:51:50.
NASA Technical Reports Server (NTRS)
Devasia, Santosh
1996-01-01
A technique to achieve output tracking for nonminimum phase linear systems with non-hyperbolic and near non-hyperbolic internal dynamics is presented. This approach integrates stable inversion techniques, that achieve exact-tracking, with approximation techniques, that modify the internal dynamics to achieve desirable performance. Such modification of the internal dynamics is used (1) to remove non-hyperbolicity which an obstruction to applying stable inversion techniques and (2) to reduce large pre-actuation time needed to apply stable inversion for near non-hyperbolic cases. The method is applied to an example helicopter hover control problem with near non-hyperbolic internal dynamic for illustrating the trade-off between exact tracking and reduction of pre-actuation time.
Documentation of the Recirculation in a Closed-Chamber Rotor Hover Test
NASA Technical Reports Server (NTRS)
McCoy, Miranda; Wadcock, Alan J.; Young, Larry A.
2016-01-01
A rotor hover test was performed inside the JPL 25-foot-diameter Space Simulator. The 40-inch-diameter rotor was tested at two locations in the chamber-on the chamber centerline and 2m off-axis. The rotor was tested in both upright and inverted configurations for 500 < RPM < 2000. Fluorescent tufts were used to identify regions of recirculation. Velocities on the entrainment side of the rotor were measured. Tabulated values for the mean entrainment velocity components and the corresponding root mean square velocity fluctuations are provided. Unsteady velocity measurements provide a description of the turbulence ingested into the rotor plane and quantify the unsteady velocity field that the Mars Scout Helicopter can expect to encounter during free flight inside the Space Simulator.
NASA Astrophysics Data System (ADS)
Kelly, Ryan T.
Aero-optical disturbances produced from turbulent compressible flow-fields can seriously degrade the performance of an optical signal. At compressible flight speeds these disturbances stem from the density variations present in turbulent boundary layers and free shear layers; however helicopters typically operate at incompressible speeds, which nearly eliminates the aberrating effect of these flows. For helicopter platforms the sources of aberration originate from the high subsonic flow-field near the rotor blade tips in the form of rotor-tip vortices and from the high temperatures of the engine effluence. During hover the shed rotor-tip vortices and engine effluence convect with the rotor wake encircling the airframe and subsequently a helicopter mounted optical system. The aero-optical effects of the wake beneath a hovering helicopter were analyzed using a combination of Unsteady RANS (URANS) and Large-Eddy Simulations (LES). The spatial and temporal characteristics of the numerical optical wavefronts were compared to full-scale aero-optic experimental measurements. The results indicate that the turbulence of the rotor-tip vortices contributes to the higher order aberrations measured experimentally and that the thermal exhaust plumes effectively limit the optical field-of-regard to forward- and side-looking beam directions. This information along with the computed optical aberrations of the wake can be used to guide the development of adaptive-optic systems or other beam-control approaches.
Flow structure and aerodynamic performance of a hovering bristled wing in low Re
NASA Astrophysics Data System (ADS)
Lee, Seunghun; Lahooti, Mohsen; Kim, Daegyoum
2017-11-01
Previous studies on a bristled wing have mainly focused on simple kinematics of the wing such as translation or rotation. The aerodynamic performance of a bristled wing in a quasi-steady phase is known to be comparable to that of a smooth wing without a gap because shear layers in the gaps of the bristled wing are sufficiently developed to block the gaps. However, we point out that, in the starting transient phase where the shear layers are not fully developed, the force generation of a bristled wing is not as efficient as that of a quasi-steady state. The performance in the transient phase is important to understand the aerodynamics of a bristled wing in an unsteady motion. In the hovering motion, due to repeated stroke reversals, the formation and development of shear layers inside the gaps is repeated in each stroke. In this study, a bristled wing in hovering is numerically investigated in the low Reynolds number of O(10). We especially focus on the development of shear layers during a stroke reversal and its effect on the overall propulsive performance. Although the aerodynamic force generation is slightly reduced due to the gap vortices, the asymmetric behavior of vortices in a gap between bristles during a stroke reversal makes the bristled wing show higher lift to drag ratio than a smooth wing.
Flow Field Characteristics and Lift Changing Mechanism for Half-Rotating Wing in Hovering Flight
NASA Astrophysics Data System (ADS)
Li, Q.; Wang, X. Y.; Qiu, H.; Li, C. M.; Qiu, Z. Z.
2017-12-01
Half-rotating wing (HRW) is a new similar-flapping wing system based on half-rotating mechanism which could perform rotating-type flapping instead of oscillating-type flapping. The characteristics of flow field and lift changing mechanism for HRW in hovering flight are important theoretical basis to improve the flight capability of HRW aircraft. The driving mechanism and work process of HRW were firstly introduced in this paper. Aerodynamic simulation model of HRW in hovering flight was established and solved using XFlow software, by which lift changing rule of HRW was drawn from the simulation solution. On the other hand, the development and shedding of the distal vortex throughout one stroke would lead to the changes of the lift force. Based on analyzing distribution characteristics of vorticity, velocity and pressure around wing blade, the main features of the flow field for HRW were further given. The distal attached vortex led to the increase of the lift force, which would gradually shed into the wake with a decline of lift in the later downstroke. The wake ring directed by the distal end of the blade would generate the downward accelerating airflow which produced the upward anti-impulse to HRW. The research results mentioned above illustrated that the behavior characteristics of vortex formed in flow field were main cause of lift changing for HRW.
Flowfield And Download Measurements And Computation of a Tiltrotor Aircraft In Hover
NASA Technical Reports Server (NTRS)
Brand, Albert G.; Peryea, Martin A.; Wood, Tom L.; Meakin, Robert L.
2001-01-01
A multipart study of the V-22 hover flowfield was conducted. Testing involved a 0.15-scale semispan model with multiple independent force balance systems. The velocity flowfield surrounding the airframe was measured using a robotic positioning system and anemometer. Both time averaged and cycle-averaged results are reported. It is shown that the fuselage download in hover can be significantly reduced using a small download reduction device. Measurements indicate that the success of the device is attributed to the substantial elimination of tiltrotor fountain flow. As part of.the study, an unsteady CFD prediction is time-averaged, and shown to have excellent agreement in predicting the baseline configuration fountain flow. Some discrepancies at the outboard edge of the rotor are discussed. An &&sessment of an advanced tip shape rotor comp"'Ietes the study. Derived from a nonrotating study, the advanced tip shape rotor was developed and tested on the Bell 0.15 scale semi-span V-22 model. The tip shape was intended to diffuse the tip vortex and reduce BVI noise. Rotor wake vorticity is extracted from the measured velocity dam to show that the advanced tip shape produces a tip vortex that is only slightly more diffuse than the baseline tip blade. The results indicate that nonrotating tests may overpredict the amount of tip vortex diffusion achieved by tip shape design in a rotating environment.
NASA Astrophysics Data System (ADS)
Oh, Sehyeong; Lee, Boogeon; Park, Hyungmin; Choi, Haecheon
2017-11-01
We investigate a hovering rhinoceros beetle using numerical simulation and blade element theory. Numerical simulations are performed using an immersed boundary method. In the simulation, the hindwings are modeled as a rigid flat plate, and three-dimensionally scanned elytra and body are used. The results of simulation indicate that the lift force generated by the hindwings alone is sufficient to support the weight, and the elytra generate negligible lift force. Considering the hindwings only, we present a blade element model based on quasi-steady assumptions to identify the mechanisms of aerodynamic force generation and power expenditure in the hovering flight of a rhinoceros beetle. We show that the results from the present blade element model are in excellent agreement with numerical ones. Based on the current blade element model, we find the optimal wing kinematics minimizing the aerodynamic power requirement using a hybrid optimization algorithm combining a clustering genetic algorithm with a gradient-based optimizer. We show that the optimal wing kinematics reduce the aerodynamic power consumption, generating enough lift force to support the weight. This research was supported by a Grant to Bio-Mimetic Robot Research Center Funded by Defense Acquisition Program Administration, and by Agency for Defense Development (UD130070ID) and NRF-2016R1E1A1A02921549 of the MSIP of Korea.
Experimental investigation of a quad-rotor biplane micro air vehicle
NASA Astrophysics Data System (ADS)
Bogdanowicz, Christopher Michael
Micro air vehicles are expected to perform demanding missions requiring efficient operation in both hover and forward flight. This thesis discusses the development of a hybrid air vehicle which seamlessly combines both flight capabilities: hover and high-speed forward flight. It is the quad-rotor biplane, which weighs 240 grams and consists of four propellers with wings arranged in a biplane configuration. The performance of the vehicle system was investigated in conditions representative of flight through a series of wind tunnel experiments. These studies provided an understanding of propeller-wing interaction effects and system trim analysis. This showed that the maximum speed of 11 m/s and a cruise speed of 4 m/s were achievable and that the cruise power is approximately one-third of the hover power. Free flight testing of the vehicle successfully highlighted its ability to achieve equilibrium transition flight. Key design parameters were experimentally investigated to understand their effect on overall performance. It was found that a trade-off between efficiency and compactness affects the final choice of the design. Design improvements have allowed for decreases in vehicle weight and ground footprint, while increasing structural soundness. Numerous vehicle designs, models, and flight tests have proven system scalability as well as versatility, including an upscaled model to be utilized in an extensive commercial package delivery system. Overall, the quad-rotor biplane is proven to be an efficient and effective multi-role vehicle.
NASA Technical Reports Server (NTRS)
Franklin, James A.
1997-01-01
This report describes revisions to a simulation model that was developed for use in piloted evaluations of takeoff, transition, hover, and landing characteristics of an advanced short takeoff and vertical landing lift fan fighter aircraft. These revisions have been made to the flight/propulsion control system, head-up display, and propulsion system to reflect recent flight and simulation experience with short takeoff and vertical landing operations. They include nonlinear inverse control laws in all axes (eliminating earlier versions with state rate feedback), throttle scaling laws for flightpath and thrust command, control selector commands apportioned based on relative effectiveness of the individual controls, lateral guidance algorithms that provide more flexibility for terminal area operations, and a simpler representation of the propulsion system. The model includes modes tailored to the phases of the aircraft's operation, with several response types which are coupled to the aircraft's aerodynamic and propulsion system effectors through a control selector tailored to the propulsion system. Head-up display modes for approach and hover are integrated with the corresponding control modes. Propulsion system components modeled include a remote lift fan and a lift-cruise engine. Their static performance and dynamic responses are represented by the model. A separate report describes the subsonic, power-off aerodynamics and jet induced aerodynamics in hover and forward flight, including ground effects.
Robust Crossfeed Design for Hovering Rotorcraft
NASA Technical Reports Server (NTRS)
Catapang, David R.
1993-01-01
Control law design for rotorcraft fly-by-wire systems normally attempts to decouple angular responses using fixed-gain crossfeeds. This approach can lead to poor decoupling over the frequency range of pilot inputs and increase the load on the feedback loops. In order to improve the decoupling performance, dynamic crossfeeds may be adopted. Moreover, because of the large changes that occur in rotorcraft dynamics due to small changes about the nominal design condition, especially for near-hovering flight, the crossfeed design must be 'robust'. A new low-order matching method is presented here to design robust crossfeed compensators for multi-input, multi-output (MIMO) systems. The technique identifies degrees-of-freedom that can be decoupled using crossfeeds, given an anticipated set of parameter variations for the range of flight conditions of concern. Cross-coupling is then reduced for degrees-of-freedom that can use crossfeed compensation by minimizing off-axis response magnitude average and variance. Results are presented for the analysis of pitch, roll, yaw and heave coupling of the UH-60 Black Hawk helicopter in near-hovering flight. Robust crossfeeds are designed that show significant improvement in decoupling performance and robustness over nominal, single design point, compensators. The design method and results are presented in an easily used graphical format that lends significant physical insight to the design procedure. This plant pre-compensation technique is an appropriate preliminary step to the design of robust feedback control laws for rotorcraft.
14 CFR 29.1049 - Hovering cooling test procedures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... minutes after the occurrence of the highest temperature recorded; and (b) With maximum continuous power... five minutes after the occurrence of the highest temperature recorded. Induction System ...
14 CFR 29.1049 - Hovering cooling test procedures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... minutes after the occurrence of the highest temperature recorded; and (b) With maximum continuous power... five minutes after the occurrence of the highest temperature recorded. Induction System ...
14 CFR 29.1049 - Hovering cooling test procedures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... minutes after the occurrence of the highest temperature recorded; and (b) With maximum continuous power... five minutes after the occurrence of the highest temperature recorded. Induction System ...
14 CFR 29.1049 - Hovering cooling test procedures.
Code of Federal Regulations, 2011 CFR
2011-01-01
... minutes after the occurrence of the highest temperature recorded; and (b) With maximum continuous power... five minutes after the occurrence of the highest temperature recorded. Induction System ...
14 CFR 29.1049 - Hovering cooling test procedures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... minutes after the occurrence of the highest temperature recorded; and (b) With maximum continuous power... five minutes after the occurrence of the highest temperature recorded. Induction System ...
Rotor Hover Performance and Flowfield Measurements with Untwisted and Highly-Twisted Blades
NASA Technical Reports Server (NTRS)
Ramasamy, Manikandan; Gold, Nili P.; Bhagwat, Mahendra J.
2010-01-01
The flowfield and performance characteristics of highly-twisted blades were analyzed at various thrust conditions to improve the fundamental understanding relating the wake effects on rotor performance. Similar measurements made using untwisted blades served as the baseline case. Twisted blades are known to give better hover performance than untwisted blades at high thrust coefficients typical of those found in full-scale rotors. However, the present experiments were conducted at sufficiently low thrust (beginning from zero thrust), where the untwisted blades showed identical, if not better, performance when compared with the highly-twisted blades. The flowfield measurements showed some key wake differences between the two rotors, as well. These observations when combined with simple blade element momentum theory (also called annular disk momentum theory) helped further the understanding of rotor performance characteristics.
Analysis of a Hovering Rotor in Icing Conditions
NASA Technical Reports Server (NTRS)
Narducci, Robert; Kreeger, Richard E.
2012-01-01
A high fidelity analysis method is proposed to evaluate the ice accumulation and the ensuing rotor performance degradation for a helicopter flying through an icing cloud. The process uses computational fluid dynamics (CFD) coupled to a rotorcraft comprehensive code to establish the aerodynamic environment of a trimmed rotor prior to icing. Based on local aerodynamic conditions along the rotor span and accounting for the azimuthal variation, an ice accumulation analysis using NASA's Lewice3D code is made to establish the ice geometry. Degraded rotor performance is quantified by repeating the high fidelity rotor analysis with updates which account for ice shape and mass. The process is applied on a full-scale UH-1H helicopter in hover using data recorded during the Helicopter Icing Flight Test Program.
Prediction of high-speed rotor noise with a Kirchhoff formula
NASA Technical Reports Server (NTRS)
Purcell, Timothy W.; Strawn, Roger C.; Yu, Yung H.
1987-01-01
A new methodology has been developed to predict the impulsive noise generated by a transonic rotor blade. The formulation uses a full-potential finite-difference method to obtain the pressure field close to the blade. A Kirchhoff integral formulation is then used to extend these finite-difference results into the far-field. This Kirchhoff formula is written in a blade-fixed coordinate system. It requires initial data across a plane at the sonic radius. This data is provided by the finite-difference solution. Acoustic pressure predictions show excellent agreement with hover experimental data for two hover cases of 0.88 and 0.90 tip Mach number, the latter of which has delocalized transonic flow. These results represent the first successful prediction technique for peak pressure amplitudes using a computational code.
Application of the ABC helicopter to the emergency medical service role
NASA Technical Reports Server (NTRS)
Levine, L. S.
1981-01-01
Attention is called to the use of helicopters in transporting the sick and injured to medical facilities. It is noted that the helicopter's speed of response and delivery increases patient survival rates and may reduce the cost of medical care and its burden on society. Among the vehicle characteristics desired for this use are a cruising speed of 200 knots, a single engine hover capability at 10,000 ft, and an absence of a tail rotor. Three designs for helicopters incorporating such new technologies as digital/optical control systems, all composite air-frames, and third-generation airfoils are presented. A sensitivity analysis is conducted to show the effect of design speed, mission radius, and single engine hover capability on vehicle weight, fuel consumption, operating costs, and productivity.
Theoretical study of the effect of ground proximity on the induced efficiency of helicopter rotors
NASA Technical Reports Server (NTRS)
Heyson, H. H.
1977-01-01
A study of rotors in forward flight within ground effect showed that the ground-induced interference is an upwash and a decrease in forward velocity. The interference velocities are large, oppose the normal flow through the rotor, and have large effects on the induced efficiency. Hovering with small ground clearances may result in significant blade stall. As speed is increased from hover in ground effect, power initially increases rather than decreases. At very low heights above the ground, the power requirements become nonlinear with speed as a result of the streamwise interference. The streamwise interference becomes greater as the wake approaches the ground and eventually distorts the wake to form the ground vortex which contributes to certain observed directional stability problems.
Rotor/Wing Interactions in Hover
NASA Technical Reports Server (NTRS)
Young, Larry A.; Derby, Michael R.
2002-01-01
Hover predictions of tiltrotor aircraft are hampered by the lack of accurate and computationally efficient models for rotor/wing interactional aerodynamics. This paper summarizes the development of an approximate, potential flow solution for the rotor-on-rotor and wing-on-rotor interactions. This analysis is based on actuator disk and vortex theory and the method of images. The analysis is applicable for out-of-ground-effect predictions. The analysis is particularly suited for aircraft preliminary design studies. Flow field predictions from this simple analytical model are validated against experimental data from previous studies. The paper concludes with an analytical assessment of the influence of rotor-on-rotor and wing-on-rotor interactions. This assessment examines the effect of rotor-to-wing offset distance, wing sweep, wing span, and flaperon incidence angle on tiltrotor inflow and performance.
Iqbal, Noushina; Umar, Shahid; Khan, Nafees A
2015-04-15
Proline content and ethylene production have been shown to be involved in salt tolerance mechanisms in plants. To assess the role of nitrogen (N) in the protection of photosynthesis under salt stress, the effect of N (0, 5, 10, 20 mM) on proline and ethylene was studied in mustard (Brassica juncea). Sufficient N (10 mM) optimized proline production under non-saline conditions through an increase in proline-metabolizing enzymes, leading to osmotic balance and protection of photosynthesis through optimal ethylene production. Excess N (20 mM), in the absence of salt stress, inhibited photosynthesis and caused higher ethylene evolution but lower proline production compared to sufficient N. In contrast, under salt stress with an increased demand for N, excess N optimized ethylene production, which regulates the proline content resulting in recovered photosynthesis. The effect of excess N on photosynthesis under salt stress was further substantiated by the application of the ethylene biosynthesis inhibitor, 1-aminoethoxy vinylglycine (AVG), which inhibited proline production and photosynthesis. Without salt stress, AVG promoted photosynthesis in plants receiving excess N by inhibiting stress ethylene production. The results suggest that a regulatory interaction exists between ethylene, proline and N for salt tolerance. Nitrogen differentially regulates proline production and ethylene formation to alleviate the adverse effect of salinity on photosynthesis in mustard. Copyright © 2015 Elsevier GmbH. All rights reserved.
Sarker, Nandita; Chowdhury, Muhammed Alamgir Zaman; Fakhruddin, Abu Naieum Muhammad; Fardous, Zeenath; Moniruzzaman, Mohammed; Gan, Siew Hua
2015-01-01
The present study was undertaken to determine the heavy metal levels and the physicochemical parameters (pH, electrical conductivity (EC), and ash, moisture, and total sugar content) of honeys from Bangladesh. Three different floral honeys were investigated, namely, khalsi (Aegiceras corniculatum), mustard (Brassica juncea), and litchi (Litchi chinensis) honeys. The heavy metals in the honeys were determined by using a High Temperature Dry Oxidation method followed by Atomic Absorption Spectroscopy. The mean pH, EC, and ash, moisture, and total sugar contents of the investigated honeys were 3.6, 0.51 mS/cm, 0.18%, 18.83%, and 68.30%, respectively. Iron was the most abundant among all the investigated heavy metals, ranging from 13.51 to 15.44 mg/kg. The mean concentrations of Mn and Zn in the investigated honeys were 0.28 mg/kg and 2.99 mg/kg, respectively. Cd was below the detection limit, and lead was found in some honey samples, but their contents were below the recommended Maximum Acceptable Level. Cr was also found in all of the samples, but its concentration was within the limit. The physicochemical analysis of the honey samples yielded levels within the limits set by the international honey legislation, indicating that the honey samples were of good quality and had acceptable values for maturity, purity, and freshness. PMID:26618176
Sarker, Nandita; Chowdhury, Muhammed Alamgir Zaman; Fakhruddin, Abu Naieum Muhammad; Fardous, Zeenath; Moniruzzaman, Mohammed; Gan, Siew Hua
2015-01-01
The present study was undertaken to determine the heavy metal levels and the physicochemical parameters (pH, electrical conductivity (EC), and ash, moisture, and total sugar content) of honeys from Bangladesh. Three different floral honeys were investigated, namely, khalsi (Aegiceras corniculatum), mustard (Brassica juncea), and litchi (Litchi chinensis) honeys. The heavy metals in the honeys were determined by using a High Temperature Dry Oxidation method followed by Atomic Absorption Spectroscopy. The mean pH, EC, and ash, moisture, and total sugar contents of the investigated honeys were 3.6, 0.51 mS/cm, 0.18%, 18.83%, and 68.30%, respectively. Iron was the most abundant among all the investigated heavy metals, ranging from 13.51 to 15.44 mg/kg. The mean concentrations of Mn and Zn in the investigated honeys were 0.28 mg/kg and 2.99 mg/kg, respectively. Cd was below the detection limit, and lead was found in some honey samples, but their contents were below the recommended Maximum Acceptable Level. Cr was also found in all of the samples, but its concentration was within the limit. The physicochemical analysis of the honey samples yielded levels within the limits set by the international honey legislation, indicating that the honey samples were of good quality and had acceptable values for maturity, purity, and freshness.
Adediran, Gbotemi A; Ngwenya, Bryne T; Mosselmans, J Frederick W; Heal, Kate V
2016-01-01
Some plant growth promoting bacteria (PGPB) are enigmatic in enhancing plant growth in the face of increased metal accumulation in plants. Since most PGPB colonize the plant root epidermis, we hypothesized that PGPB confer tolerance to metals through changes in speciation at the root epidermis. We employed a novel combination of fluorophore-based confocal laser scanning microscopic imaging and synchrotron based microscopic X-ray fluorescence mapping with X-ray absorption spectroscopy to characterize bacterial localization, zinc (Zn) distribution and speciation in the roots of Brassica juncea grown in Zn contaminated media (400 mg kg−1 Zn) with the endophytic Pseudomonas brassicacearum and rhizospheric Rhizobium leguminosarum. PGPB enhanced epidermal Zn sequestration relative to PGBP-free controls while the extent of endophytic accumulation depended on the colonization mode of each PGBP. Increased root accumulation of Zn and increased tolerance to Zn was associated predominantly with R. leguminosarum and was likely due to the coordination of Zn with cysteine-rich peptides in the root endodermis, suggesting enhanced synthesis of phytochelatins or glutathione. Our mechanistic model of enhanced Zn accumulation and detoxification in plants inoculated with R. leguminosarum has particular relevance to PGPB enhanced phytoremediation of soils contaminated through mining and oxidation of sulphur-bearing Zn minerals or engineered nanomaterials such as ZnS. PMID:26263508
Findings on the phytoextraction and phytostabilization of soils contaminated with heavy metals.
Cheraghi, M; Lorestani, B; Khorasani, N; Yousefi, N; Karami, M
2011-12-01
As a result of human activities such as mining, metal pollution has become one of the most serious environmental problems today. Phytoremediation, an emerging cost-effective, non-intrusive, and aesthetically pleasing technology that uses the remarkable ability of plants to concentrate elements can be potentially used to remediate metal-contaminated sites. The aim of this work was to assess the extent of metal accumulation by plants found in a mining area in Hamedan province with the ultimate goal of finding suitable plants for phytoextraction and phytostabilization (two processes of phytoremediation). To this purpose, shoots and roots of the 12 plant species and the associated soil samples were collected and analyzed by measurement of total concentrations of some elements (Fe, Mn, Zn, and Cu) using atomic absorption spectrophotometer and then biological absorption coefficient, bioconcentration factor, and translocation factor parameters calculated for each element. Our results showed that none of the plants were suitable for phytoextraction and phytostabilization of Fe, Zn, and Cu, while Chenopodium botrys, Stipa barbata, Cousinia bijarensis, Scariola orientalis, Chondrila juncea, and Verbascum speciosum, with a high biological absorption coefficient for Mn, were suitable for phytoextraction of Mn, and C. bijarensis, C. juncea, V. speciosum, S. orientalis, C. botrys, and S. barbata, with a high bioconcentration factor and low translocation factor for Mn, had the potential for the phytostabilization of this element.
Shen, B-C; Stewart, C N; Zhang, M-Q; Le, Y-T; Tang, Z-X; Mi, X-C; Wei, W; Ma, K-P
2006-09-01
Gene flow from transgenic oilseed rape (BRASSICA NAPUS) might not be avoidable, thus, it is important to detect and quantify hybridization events with its relatives in real time. Data are presented showing the correlation between genetically linked green fluorescent protein (GFP) with BACILLUS THURINGIENSIS (Bt) CRY1AC gene expression in hybrids formed between transgenic B. NAPUS "Westar" and a wild Chinese accession of wild mustard (B. JUNCEA) and hybridization between transgenic B. NAPUS and a conspecific Chinese landrace oilseed rape. Hybrids were obtained either by spontaneous hybridization in the field or by hand-crossing in a greenhouse. In all cases, transgenic hybrids were selected by GFP fluorescence among seedlings originating from seeds harvested from B. JUNCEA and the Chinese oilseed rape plants. Transgenicity was confirmed by PCR detection of transgenes. GFP fluorescence was easily and rapidly detected in the hybrids under greenhouse and field conditions. Results showed that both GFP fluorescence and Bt protein synthesis decreased as either plant or leaf aged, and GFP fluorescence intensity was closely correlated with Bt protein concentration during the entire vegetative lifetime in hybrids. These findings allow the use of GFP fluorescence as an accurate tool to detect gene-flow in time in the field and to conveniently estimate BT CRY1AC expression in hybrids on-the-plant.
Kaur, Harpreet; Sirhindi, Geetika; Bhardwaj, Renu; Alyemeni, M N; Siddique, Kadambot H M; Ahmad, Parvaiz
2018-06-07
Brassinosteroids (BRs) are a group of naturally occurring plant steroid hormones that can induce plant tolerance to various plant stresses by regulating ROS production in cells, but the underlying mechanisms of this scavenging activity by BRs are not well understood. This study investigated the effects of 28-homobrassinolide (28-HBL) seed priming on Brassica juncea seedlings subjected to the combined stress of extreme temperatures (low, 4 °C or high, 44 °C) and salinity (180 mM), either alone or supplemented with 28-HBL treatments (0, 10 -6 , 10 -9 , 10 -12 M). The combined temperature and salt stress treatments significantly reduced shoot and root lengths, but these improved when supplemented with 28-HBL although the response was dose-dependent. The combined stress alone significantly increased H 2 O 2 content, but was inhibited when supplemented with 28-HBL. The activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APOX), glutathione reductase (GR), dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR) increased in response to 28-HBL. Overall, the 28-HBL seed priming treatment improved the plant's potential to combat the toxic effects imposed by the combined temperature and salt stress by tightly regulating the accumulation of ROS, which was reflected in the improved redox state of antioxidants.
Li, Xiaonan; Ramchiary, Nirala; Dhandapani, Vignesh; Choi, Su Ryun; Hur, Yoonkang; Nou, Ill-Sup; Yoon, Moo Kyoung; Lim, Yong Pyo
2013-01-01
Brassica rapa is an important crop species that produces vegetables, oilseed, and fodder. Although many studies reported quantitative trait loci (QTL) mapping, the genes governing most of its economically important traits are still unknown. In this study, we report QTL mapping for morphological and yield component traits in B. rapa and comparative map alignment between B. rapa, B. napus, B. juncea, and Arabidopsis thaliana to identify candidate genes and conserved QTL blocks between them. A total of 95 QTL were identified in different crucifer blocks of the B. rapa genome. Through synteny analysis with A. thaliana, B. rapa candidate genes and intronic and exonic single nucleotide polymorphisms in the parental lines were detected from whole genome resequenced data, a few of which were validated by mapping them to the QTL regions. Semi-quantitative reverse transcriptase PCR analysis showed differences in the expression levels of a few genes in parental lines. Comparative mapping identified five key major evolutionarily conserved crucifer blocks (R, J, F, E, and W) harbouring QTL for morphological and yield components traits between the A, B, and C subgenomes of B. rapa, B. juncea, and B. napus. The information of the identified candidate genes could be used for breeding B. rapa and other related Brassica species. PMID:23223793
Mercury-induced oxidative stress in Indian mustard (Brassica juncea L.).
Shiyab, Safwan; Chen, Jian; Han, Fengxiang X; Monts, David L; Matta, Fank B; Gu, Mengmeng; Su, Yi; Masad, Motasim A
2009-10-01
Mercury, a potent neurotoxin, is released to the environment in significant amounts by both natural processes and anthropogenic activities. No natural hyperaccumulator plant has been reported for mercury phytoremediation. Few studies have been conducted on the physiological responses of Indian mustard, a higher biomass plant with faster growth rates, to mercury pollution. This study investigated the phytotoxicity of mercury to Indian mustard (Brassica juncea L.) and mercury-induced oxidative stress in order to examine the potential application of Indian mustard to mercury phytoremediation. Two common cultivars (Florida Broadleaf and Longstanding) of Indian mustard were grown hydroponically in a mercury-spiked solution. Plant uptake, antioxidative enzymes, peroxides, and lipid peroxidation under mercury stress were investigated. Antioxidant enzymes (catalase, CAT; peroxidase, POD; and superoxide dismutase, SOD) were the most sensitive indices of mercury-induced oxidative response of Indian mustard plants. Indian mustard effectively generated an enzymatic antioxidant defense system (especially CAT) to scavenge H(2)O(2), resulting in lower H(2)O(2) in shoots with higher mercury concentrations. These two cultivars of Indian mustard demonstrated an efficient metabolic defense and adaptation system to mercury-induced oxidative stress. A majority of Hg was accumulated in the roots and low translocations of Hg from roots to shoots were found in two cultivars of Indian mustard. Thus Indian mustard might be a potential candidate plant for phytofiltration/phytostabilization of mercury contaminated waters and wastewater.
Cassina, L; Tassi, E; Pedron, F; Petruzzelli, G; Ambrosini, P; Barbafieri, M
2012-09-15
Mercury-contaminated soils from a petrochemical plant in southern Italy were investigated to assess the phytoextraction efficiency of crop plants treated with the phytohormone, cytokinine (CK foliar treatment), and with the thioligand, ammonium thiosulfate (TS, soil application). Plant biomass, evapotranspiration, Hg uptake and distribution in plant tissues following treatment were compared. Results indicate the effectiveness of CK in increasing plant biomass and the evapotranspiration rate while TS treatment promoted soil Hg solubility and availability. The simultaneous addition of CK and TS treatments increased Hg uptake and translocation in both tested plants with up to 248 and 232% in Brassica juncea (Indian mustard) and Helianthus annuus (sunflower) respectively. B. juncea was more effective in Hg uptake, whereas H. annuus gave better response regarding plant biomass production. The effectiveness of the treatments was confirmed by the calculation of Hg phytoextraction and evaluation of labile-Hg residue in the soil after plant growth. In one growing cycle the plants subject to simultaneous CK and TS treatment significantly reduced labile-Hg pools that were characterized by the soil sequential extraction, but did not significantly affect the pseudototal metal content in the soil. Results support the use of plant growth regulators in the assisted phytoextraction process for Hg-contaminated soils. Copyright © 2012 Elsevier B.V. All rights reserved.
Su, Yi; Han, Fengxiang X; Chen, Jian; Sridhar, B B Maruthi; Monts, David L
2008-01-01
The objective of this research was to screen and search for suitable plant species to phytoextract mercury-contaminated soil. Our effort focused on using some of the known metal-accumulating wild-type plants since no natural plant species with mercury-hyperaccumulat ing properties has yet been identified. Three plant species were evaluated for their uptake efficiency for mercury: Indian mustard (Brassica juncea), beard grass (Polypogon monospeliensis), and Chinese brake fern (Pteris vittata). Four sets of experiments were conducted to evaluate the phytoremediation potential of these three plant species: a pot study with potting mix where mercury was provided daily as HgCl2 solution; experiments with freshly mercury-spiked soil; and a study with aged soils contaminated with different mercury sources (HgCl2, Hg(NO3)2, and HgS). Homemade sunlit chambers were also used to study foliar uptake of Hg from ambient air. Among the three plant species, Chinese brake fern showed the least stress symptoms resulting from mercury exposure and had the highest mercury accumulation. Our results indicate that Chinese brake fern may be a potential candidate for mercury phytoextraction. We found that mercury contamination is biologically available for plant uptake and accumulation, even if the original and predominating mercury form is HgS, and also after multiple phytoremediation cycles.
NASA Technical Reports Server (NTRS)
Marr, Greg; Cooley, Steve; Roithmayr, Carlos; Kay-Bunnell, Linda; Williams, Trevor
2004-01-01
The Autonomous NanoTechnology Swarm (ANTS) is a generic mission architecture based on spatially distributed spacecraft, autonomous and redundant components, and hierarchical organization. The ANTS Prospecting Asteroid Mission (PAM) is an ANTS application which will nominally use a swarm of 1000 spacecraft. There would be 10 types of "specialists" with common spacecraft buses. There would be 10 subswarms of approximately 100 spacecraft each or approximately 10 of each specialist in each swarm. The ANTS PAM primary objective is the exploration of the asteroid belt in search of resources and material with astrobiologically relevant origins and signatures. The ANTS PAM spacecraft will nominally be released from a station in an Earth-Moon L1 libration point orbit, and they will use Solar sails for propulsion. The sail structure would be highly flexible, capable of changing morphology to change cross-section for capture of sunlight or to form effective "tip vanes" for attitude control. ANTS PAM sails would be capable of full to partial deployment, to change effective sail area and center of pressure, and thus allow attitude control. Results of analysis of a transfer trajectory from Earth to a sample target asteroid will be presented. ANTS PAM will require continuous coverage of different asteroid locations as close as one to two asteroid "diameters" from the surface of the asteroid for periods of science data collection during asteroid proximity operations. Hovering spacecraft could meet the science data collection objectives. The results of hovering analysis will be presented. There are locations for which hovering is not possible, for example on the illuminated side of the asteroid. For cases where hovering is not possible, the results of utilizing asteroid formations to orbit the asteroid and achieve the desired asteroid viewing will be presented for sample asteroids. The ability of ANTS PAM to reduce the area of the solar sail during asteroid proximity operations is critical to the maintenance of orbiting formations for a period of time. Results of analysis of potential "traffic" problems during asteroid proximity operations will be presented.
The Aerodynamics of Hovering Insect Flight. III. Kinematics
NASA Astrophysics Data System (ADS)
Ellington, C. P.
1984-02-01
Insects in free flight were filmed at 5000 frames per second to determine the motion of their wings and bodies. General comments are offered on flight behaviour and manoeuvrability. Changes in the tilt of the stroke plane with respect to the horizontal provides kinematic control of manoeuvres, analogous to the type of control used for helicopters. A projection analysis technique is described that solves for the orientation of the animal with respect to a camera-based coordinate system, giving full kinematic details for the longitudinal wing and body axes from single-view films. The technique can be applied to all types of flight where the wing motions are bilaterally symmetrical: forward, backward and hovering flight, as well as properly banked turns. An analysis of the errors of the technique is presented, and shows that the reconstructed angles for wing position should be accurate to within 1-2^circ in general. Although measurement of the angles of attack was not possible, visual estimations are given. Only 11 film sequences show flight velocities and accelerations that are small enough for the flight to be considered as `hovering'. Two sequences are presented for a hover-fly using an inclined stroke plane, and nine sequences of hovering with a horizontal stroke plane by another hover-fly, two crane-flies, a drone-fly, a ladybird beetle, a honey bee, and two bumble bees. In general, oscillations in the body position from its mean motion are within measurement error, about 1-2% of the wing length. The amplitudes of oscillation for the body angle are only a few degrees, but the phase relation of this oscillation to the wingbeat cycle could be determined for a few sequences. The phase indicates that the pitching moments governing the oscillations result from the wing lift at the ends of the wingbeat, and not from the wing drag or inertial forces. The mean pitching moment of the wings, which determines the mean body angle, is controlled by shifting the centre of lift over the cycle by changing the mean positional angle of the flapping wings. Deviations of the wing tip path from the stroke plane are never large, and no consistent pattern could be found for the wing paths of different insects; indeed, variations in the path were even observed for individual insects. The wing motion is not greatly different from simple harmonic motion, but does show a general trend towards higher accelerations and decelerations at either end of the wingbeat, with constant velocities during the middle of half-strokes. Root mean square and cube root mean cube angular velocities are on average about 4 and 9% lower than simple harmonic motion. Angles of attack are nearly constant during the middle of half-strokes, typically 35^circ at a position 70% along the wing length. The wing is twisted along its length, with angles of attack at the wing base some 10-20^circ greater than at the tip. The wings rotate through about 110^circ at either end of the wingbeat during 10-20% of the cycle period. The mean velocity of the wing edges during rotation is similar to the mean flapping velocity of the wing tip and greater than the flapping velocity for more proximal wing regions, which indicates that vortex shedding during rotation is comparable with that during flapping. The wings tend to rotate as a flat plate during the first half of rotation, which ends just before, or at, the end of the half-stroke. The hover-fly using an inclined stroke plane provides a notable exception to this general pattern: pronation is delayed and overlaps the beginning of the downstroke. The wing profile flexes along a more or less localized longitudinal axis during the second half of rotation, generating the `flip' profile postulated by Weis-Fogh for the hover-flies. This profile occurs to some extent for all of the insects, and is not exceptionally pronounced for the hover-fly. By the end of rotation the wings are nearly flat again, although a slight camber can sometimes be seen. Weis-Fogh showed that beneficial aerodynamic interference can result when the left and right wings come into contact during rotation at the end of the wingbeat. His `fling' mechanism creates the circulation required for wing lift on the subsequent half-stroke, and can be seen on my films of the Large Cabbage White butterfly, a plume moth, and the Mediterranean flour moth. However, their wings `peel' apart like two pieces of paper being separated, rather than fling open rigidly about the trailing edges. A `partial fling' was found for some insects, with the wings touching only along posterior wing areas. A `near fling' with the wings separated by a fraction of the chord was also observed for many insects. There is a continuous spectrum for the separation distance between the wings, in fact, and the separation can vary for a given insect during different manoeuvres. It is suggested that these variants on Weis-Fogh's fling mechanism also generate circulation for wing lift, although less effectively than a complete fling, and that changes in the separation distance may provide a fine control over the amount of lift produced.
Supergiant Star Near Giraffe Hind Foot
2011-02-19
NASA Wide-field Infrared Survey Explorer captured this colorful image of the nebula BFS 29 surrounding the star CE-Camelopardalis, found hovering in the band of the night sky comprising the Milky Way.
14 CFR 29.87 - Height-velocity envelope.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Weight from the maximum weight (at sea level) to the highest weight approved for takeoff and landing at each altitude. For helicopters, this weight need not exceed the highest weight allowing hovering out-of...
14 CFR 29.87 - Height-velocity envelope.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Weight from the maximum weight (at sea level) to the highest weight approved for takeoff and landing at each altitude. For helicopters, this weight need not exceed the highest weight allowing hovering out-of...
14 CFR 29.87 - Height-velocity envelope.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Weight from the maximum weight (at sea level) to the highest weight approved for takeoff and landing at each altitude. For helicopters, this weight need not exceed the highest weight allowing hovering out-of...
14 CFR 29.87 - Height-velocity envelope.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Weight from the maximum weight (at sea level) to the highest weight approved for takeoff and landing at each altitude. For helicopters, this weight need not exceed the highest weight allowing hovering out-of...
; } input:hover { background:#ACF7AF; } select { cursor:pointer; } table.data td table.noborders, table.data td ; } table.controls th { padding:10px; } table.controls select { margin-top:.3em; } table.controls, table.graphs
An approximate closed-form solution for lead lag damping of rotor blades in hover
NASA Technical Reports Server (NTRS)
Peters, D. A.
1975-01-01
Simple stability methods are used to derive an approximate, closed-form expression for the lead-lag damping of rotor blades in hover. Destabilizing terms are shown to be a result of two dynamic mechanisms. First, the destabilizing aerodynamic forces that can occur when blade lift is higher than a critical value are maximized when the blade motion is in a straight line equidistant from the blade chord and the average direction of the air flow velocity. This condition occurs when the Coriolis terms vanish and when the elastic coupling terms align the blade motion with this least stable direction. Second, the nonconservative stiffness terms that result from pitch-flap or pitch-lag coupling can add or subtract energy from the system depending upon whether the motion of the blade tip is clockwise or counterclockwise.
Convergence issues in domain decomposition parallel computation of hovering rotor
NASA Astrophysics Data System (ADS)
Xiao, Zhongyun; Liu, Gang; Mou, Bin; Jiang, Xiong
2018-05-01
Implicit LU-SGS time integration algorithm has been widely used in parallel computation in spite of its lack of information from adjacent domains. When applied to parallel computation of hovering rotor flows in a rotating frame, it brings about convergence issues. To remedy the problem, three LU factorization-based implicit schemes (consisting of LU-SGS, DP-LUR and HLU-SGS) are investigated comparatively. A test case of pure grid rotation is designed to verify these algorithms, which show that LU-SGS algorithm introduces errors on boundary cells. When partition boundaries are circumferential, errors arise in proportion to grid speed, accumulating along with the rotation, and leading to computational failure in the end. Meanwhile, DP-LUR and HLU-SGS methods show good convergence owing to boundary treatment which are desirable in domain decomposition parallel computations.
NASA Technical Reports Server (NTRS)
Yost, J. H.
1976-01-01
The research and technology demonstration requirements to achieve emergency-power capability for a civil helicopter are documented. The goal for emergency power is the ability to hover with one engine inoperative, transition to minimum-power forward flight, and continue to a safe landing where emergency power may or may not be required. The best method to obtain emergency power is to augment the basic engine power by increasing the engine's speed and turbine-inlet temperature, combined with water-alcohol injection at the engine inlet. Other methods, including turbine boost power and flywheel energy, offer potential for obtaining emergency power for minimum time durations. Costs and schedules are estimated for a research and development program to bring emergency power through a hardware-demonstration test. Interaction of engine emergency-power capability with other helicopter systems is examined.
Prototype Common Bus Spacecraft: Hover Test Implementation and Results. Revision, Feb. 26, 2009
NASA Technical Reports Server (NTRS)
Hine, Butler Preston; Turner, Mark; Marshall, William S.
2009-01-01
In order to develop the capability to evaluate control system technologies, NASA Ames Research Center (Ames) began a test program to build a Hover Test Vehicle (HTV) - a ground-based simulated flight vehicle. The HTV would integrate simulated propulsion, avionics, and sensors into a simulated flight structure, and fly that test vehicle in terrestrial conditions intended to simulate a flight environment, in particular for attitude control. The ultimate purpose of the effort at Ames is to determine whether the low-cost hardware and flight software techniques are viable for future low cost missions. To enable these engineering goals, the project sought to develop a team, processes and procedures capable of developing, building and operating a fully functioning vehicle including propulsion, GN&C, structure, power and diagnostic sub-systems, through the development of the simulated vehicle.
Influence of Lift Offset on Rotorcraft Performance
NASA Technical Reports Server (NTRS)
Johnson, Wayne
2009-01-01
The influence of lift offset on the performance of several rotorcraft configurations is explored. A lift-offset rotor, or advancing blade concept, is a hingeless rotor that can attain good efficiency at high speed by operating with more lift on the advancing side than on the retreating side of the rotor disk. The calculated performance capability of modern-technology coaxial rotors utilizing a lift offset is examined, including rotor performance optimized for hover and high-speed cruise. The ideal induced power loss of coaxial rotors in hover and twin rotors in forward flight is presented. The aerodynamic modeling requirements for performance calculations are evaluated, including wake and drag models for the high-speed flight condition. The influence of configuration on the performance of rotorcraft with lift-offset rotors is explored, considering tandem and side-by-side rotorcraft as well as wing-rotor lift share.
An entropy and viscosity corrected potential method for rotor performance prediction
NASA Technical Reports Server (NTRS)
Bridgeman, John O.; Strawn, Roger C.; Caradonna, Francis X.
1988-01-01
An unsteady Full-Potential Rotor code (FPR) has been enhanced with modifications directed at improving its drag prediction capability. The shock generated entropy has been included to provide solutions comparable to the Euler equations. A weakly interacted integral boundary layer has also been coupled to FPR in order to estimate skin-friction drag. Pressure distributions, shock positions, and drag comparisons are made with various data sets derived from two-dimensional airfoil, hovering, and advancing high speed rotor tests. In all these comparisons, the effect of the nonisentropic modification improves (i.e., weakens) the shock strength and wave drag. In addition, the boundary layer method yields reasonable estimates of skin-friction drag. Airfoil drag and hover torque data comparisons are excellent, as are predicted shock strength and positions for a high speed advancing rotor.
Optimal control theory (OWEM) applied to a helicopter in the hover and approach phase
NASA Technical Reports Server (NTRS)
Born, G. J.; Kai, T.
1975-01-01
A major difficulty in the practical application of linear-quadratic regulator theory is how to choose the weighting matrices in quadratic cost functions. The control system design with optimal weighting matrices was applied to a helicopter in the hover and approach phase. The weighting matrices were calculated to extremize the closed loop total system damping subject to constraints on the determinants. The extremization is really a minimization of the effects of disturbances, and interpreted as a compromise between the generalized system accuracy and the generalized system response speed. The trade-off between the accuracy and the response speed is adjusted by a single parameter, the ratio of determinants. By this approach an objective measure can be obtained for the design of a control system. The measure is to be determined by the system requirements.
NASA Technical Reports Server (NTRS)
Schroeder, J. A.; Merrick, V. K.
1990-01-01
Several control and display concepts were evaluated on a variable-stability helicopter prior to future evaluations on a modified Harrier. The control and display concepts had been developed to enable precise hover maneuvers, station keeping, and vertical landings in simulated zero-visibility conditions and had been evaluated extensively in previous piloted simulations. Flight evaluations early in the program revealed several inadequacies in the display drive laws that were later corrected using an alternative design approach that integrated the control and display characteristics with the desired guidance law. While hooded, three pilots performed landing-pad captures followed by vertical landings with attitude-rate, attitude, and translation-velocity-command control systems. The latter control system incorporated a modified version of state-rate-feedback implicit-model following. Precise landing within 2 ft of the desired touchdown point were achieved.
NASA Technical Reports Server (NTRS)
Peterson, R. L.; Warmbrodt, W.
1984-01-01
A hover test of a full-scale, hingeless rotor system was conducted in the NASA Ames 40- by 80-foot wind tunnel. The rotor was tested on the Ames rotor test apparatus. Rotor aeroelastic stability, performance, and loads at various rotational speeds and thrust coefficients were investigated. The primary objective was to determine the inplane stability characteristics of the rotor system. Rotor inplane damping data were obtained for operation between 350 and 425 rpm (design speed), and for thurst coefficients between 0.0 and 0.12. The rotor was stable for all conditions tested. At constant rotor rotational speed, a minimum inplane dampling level was obtained at a thrust coefficient approximately = 0.02. At constant rotor lift, a minimum in rotor inplane damping was measured at 400 rpm.
Influence of Lift Offset on Rotorcraft Performance
NASA Technical Reports Server (NTRS)
Johnson, Wayne
2008-01-01
The influence of lift offset on the performance of several rotorcraft configurations is explored. A lift-offset rotor, or advancing blade concept, is a hingeless rotor that can attain good efficiency at high speed, by operating with more lift on the advancing side than on the retreating side of the rotor disk. The calculated performance capability of modern-technology coaxial rotors utilizing a lift offset is examined, including rotor performance optimized for hover and high-speed cruise. The ideal induced power loss of coaxial rotors in hover and twin rotors in forward flight is presented. The aerodynamic modeling requirements for performance calculations are evaluated, including wake and drag models for the high speed flight condition. The influence of configuration on the performance of rotorcraft with lift-offset rotors is explored, considering tandem and side-by-side rotorcraft as well as wing-rotor lift share.
Time-Spectral Rotorcraft Simulations on Overset Grids
NASA Technical Reports Server (NTRS)
Leffell, Joshua I.; Murman, Scott M.; Pulliam, Thomas H.
2014-01-01
The Time-Spectral method is derived as a Fourier collocation scheme and applied to NASA's overset Reynolds-averaged Navier-Stokes (RANS) solver OVERFLOW. The paper outlines the Time-Spectral OVERFLOWimplementation. Successful low-speed laminar plunging NACA 0012 airfoil simulations demonstrate the capability of the Time-Spectral method to resolve the highly-vortical wakes typical of more expensive three-dimensional rotorcraft configurations. Dealiasing, in the form of spectral vanishing viscosity (SVV), facilitates the convergence of Time-Spectral calculations of high-frequency flows. Finally, simulations of the isolated V-22 Osprey tiltrotor for both hover and forward (edgewise) flight validate the three-dimensional Time-Spectral OVERFLOW implementation. The Time-Spectral hover simulation matches the time-accurate calculation using a single harmonic. Significantly more temporal modes and SVV are required to accurately compute the forward flight case because of its more active, high-frequency wake.
Hovering Dual-Spin Vehicle Groundwork for Bias Momentum Sizing Validation Experiment
NASA Technical Reports Server (NTRS)
Rothhaar, Paul M.; Moerder, Daniel D.; Lim, Kyong B.
2008-01-01
Angular bias momentum offers significant stability augmentation for hovering flight vehicles. The reliance of the vehicle on thrust vectoring for agility and disturbance rejection is greatly reduced with significant levels of stored angular momentum in the system. A methodical procedure for bias momentum sizing has been developed in previous studies. This current study provides groundwork for experimental validation of that method using an experimental vehicle called the Dual-Spin Test Device, a thrust-levitated platform. Using measured data the vehicle's thrust vectoring units are modeled and a gust environment is designed and characterized. Control design is discussed. Preliminary experimental results of the vehicle constrained to three rotational degrees of freedom are compared to simulation for a case containing no bias momentum to validate the simulation. A simulation of a bias momentum dominant case is presented.
Navier-Stokes simulation of rotor-body flowfield in hover using overset grids
NASA Technical Reports Server (NTRS)
Srinivasan, G. R.; Ahmad, J. U.
1993-01-01
A free-wake Navier-Stokes numerical scheme and multiple Chimera overset grids have been utilized for calculating the quasi-steady hovering flowfield of a Boeing-360 rotor mounted on an axisymmetric whirl-tower. The entire geometry of this rotor-body configuration is gridded-up with eleven different overset grids. The composite grid has 1.3 million grid points for the entire flow domain. The numerical results, obtained using coarse grids and a rigid rotor assumption, show a thrust value that is within 5% of the experimental value at a flow condition of M(sub tip) = 0.63, Theta(sub c) = 8 deg, and Re = 2.5 x 10(exp 6). The numerical method thus demonstrates the feasibility of using a multi-block scheme for calculating the flowfields of complex configurations consisting of rotating and non-rotating components.
Comprehensive Analysis Modeling of Small-Scale UAS Rotors
NASA Technical Reports Server (NTRS)
Russell, Carl R.; Sekula, Martin K.
2017-01-01
Multicopter unmanned aircraft systems (UAS), or drones, have continued their explosive growth in recent years. With this growth comes demand for increased performance as the limits of existing technologies are reached. In order to better design multicopter UAS aircraft, better performance prediction tools are needed. This paper presents the results of a study aimed at using the rotorcraft comprehensive analysis code CAMRAD II to model a multicopter UAS rotor in hover. Parametric studies were performed to determine the level of fidelity needed in the analysis code inputs to achieve results that match test data. Overall, the results show that CAMRAD II is well suited to model small-scale UAS rotors in hover. This paper presents the results of the parametric studies as well as recommendations for the application of comprehensive analysis codes to multicopter UAS rotors.
Prediction and measurement of low-frequency harmonic noise of a hovering model helicopter rotor
NASA Technical Reports Server (NTRS)
Aggarawal, H. R.; Schmitz, F. H.; Boxwell, D. A.
1989-01-01
Far-field acoustic data for a model helicopter rotor have been gathered in a large open-jet, acoustically treated wind tunnel with the rotor operating in hover and out of ground-effect. The four-bladed Boeing 360 model rotor with advanced airfoils, planform, and tip shape was run over a range of conditions typical of today's modern helicopter main rotor. Near in-plane acoustic measurements were compared with two independent implementations of classical linear theory. Measured steady thrust and torque were used together with a free-wake analysis (to predict the thrust and drag distributions along the rotor radius) as input to this first-principles theoretical approach. Good agreement between theory and experiment was shown for both amplitude and phase for measurements made in those positions that minimized distortion of the radiated acoustic signature at low-frequencies.
Jet-induced ground effects on a parametric flat-plate model in hover
NASA Technical Reports Server (NTRS)
Wardwell, Douglas A.; Hange, Craig E.; Kuhn, Richard E.; Stewart, Vearl R.
1993-01-01
The jet-induced forces generated on short takeoff and vertical landing (STOVL) aircraft when in close proximity to the ground can have a significant effect on aircraft performance. Therefore, accurate predictions of these aerodynamic characteristics are highly desirable. Empirical procedures for estimating jet-induced forces during the vertical/short takeoff and landing (V/STOL) portions of the flight envelope are currently limited in accuracy. The jet-induced force data presented significantly add to the current STOVL configurations data base. Further development of empirical prediction methods for jet-induced forces, to provide more configuration diversity and improved overall accuracy, depends on the viability of this STOVL data base. The data base may also be used to validate computational fluid dynamics (CFD) analysis codes. The hover data obtained at the NASA Ames Jet Calibration and Hover Test (JCAHT) facility for a parametric flat-plate model is presented. The model tested was designed to allow variations in the planform aspect ratio, number of jets, nozzle shape, and jet location. There were 31 different planform/nozzle configurations tested. Each configuration had numerous pressure taps installed to measure the pressures on the undersurface of the model. All pressure data along with the balance jet-induced lift and pitching-moment increments are tabulated. For selected runs, pressure data are presented in the form of contour plots that show lines of constant pressure coefficient on the model undersurface. Nozzle-thrust calibrations and jet flow-pressure survey information are also provided.
Robust crossfeed design for hovering rotorcraft. M.S. Thesis
NASA Technical Reports Server (NTRS)
Catapang, David R.
1993-01-01
Control law design for rotorcraft fly-by-wire systems normally attempts to decouple angular responses using fixed-gain crossfeeds. This approach can lead to poor decoupling over the frequency range of pilot inputs and increase the load on the feedback loops. In order to improve the decoupling performance, dynamic crossfeeds may be adopted. Moreover, because of the large changes that occur in rotorcraft dynamics due to small changes about the nominal design condition, especially for near-hovering flight, the crossfeed design must be 'robust.' A new low-order matching method is presented here to design robost crossfeed compensators for multi-input, multi-output (MIMO) systems. The technique identifies degrees-of-freedom that can be decoupled using crossfeeds, given an anticipated set of parameter variations for the range of flight conditions of concern. Cross-coupling is then reduced for degrees-of-freedom that can use crossfeed compensation by minimizing off-axis response magnitude average and variance. Results are presented for the analysis of pitch, roll, yaw, and heave coupling of the UH-60 Black Hawk helicopter in near-hovering flight. Robust crossfeeds are designed that show significant improvement in decoupling performance and robustness over nominal, single design point, compensators. The design method and results are presented in an easily-used graphical format that lends significant physical insight to the design procedure. This plant pre-compensation technique is an appropriate preliminary step to the design of robust feedback control laws for rotorcraft.
Binder, Thomas R.; Thompson, Henry T.; Muir, Andrew M.; Riley, Stephen C.; Marsden, J. Ellen; Bronte, Charles R.; Krueger, Charles C.
2015-01-01
Spawning behavior of lake trout, Salvelinus namaycush, is poorly understood, relative to stream-dwelling salmonines. Underwater video records of spawning in a recovering population from the Drummond Island Refuge (Lake Huron) represent the first reported direct observations of lake trout spawning in the Laurentian Great Lakes. These observations provide new insight into lake trout spawning behavior and expand the current conceptual model. Lake trout spawning consisted of at least four distinct behaviors: hovering, traveling, sinking, and gamete release. Hovering is a new courtship behavior that has not been previously described. The apparent concentration of hovering near the margin of the spawning grounds suggests that courtship and mate selection might be isolated from the spawning act (i.e., traveling, sinking, and gamete release). Moreover, we interpret jockeying for position displayed by males during traveling as a unique form of male-male competition that likely evolved in concert with the switch from redd-building to itinerant spawning in lake trout. Unlike previous models, which suggested that intra-sexual competition and mate selection do not occur in lake trout, our model includes both and is therefore consistent with evolutionary theory, given that the sex ratio on spawning grounds is skewed heavily towards males. The model presented in this paper is intended as a working hypothesis, and further revision may become necessary as we gain a more complete understanding of lake trout spawning behavior.
Near- and far-field aerodynamics in insect hovering flight: an integrated computational study.
Aono, Hikaru; Liang, Fuyou; Liu, Hao
2008-01-01
We present the first integrative computational fluid dynamics (CFD) study of near- and far-field aerodynamics in insect hovering flight using a biology-inspired, dynamic flight simulator. This simulator, which has been built to encompass multiple mechanisms and principles related to insect flight, is capable of 'flying' an insect on the basis of realistic wing-body morphologies and kinematics. Our CFD study integrates near- and far-field wake dynamics and shows the detailed three-dimensional (3D) near- and far-field vortex flows: a horseshoe-shaped vortex is generated and wraps around the wing in the early down- and upstroke; subsequently, the horseshoe-shaped vortex grows into a doughnut-shaped vortex ring, with an intense jet-stream present in its core, forming the downwash; and eventually, the doughnut-shaped vortex rings of the wing pair break up into two circular vortex rings in the wake. The computed aerodynamic forces show reasonable agreement with experimental results in terms of both the mean force (vertical, horizontal and sideslip forces) and the time course over one stroke cycle (lift and drag forces). A large amount of lift force (approximately 62% of total lift force generated over a full wingbeat cycle) is generated during the upstroke, most likely due to the presence of intensive and stable, leading-edge vortices (LEVs) and wing tip vortices (TVs); and correspondingly, a much stronger downwash is observed compared to the downstroke. We also estimated hovering energetics based on the computed aerodynamic and inertial torques, and powers.
Noise characteristics of eight helicopters
DOT National Transportation Integrated Search
1977-07-01
This report describes the noise characteristics of Eight Helicopters during level flyovers, simulated approaches, and hover. The data was obtained during an FAA/DOT Helicopter Noise Program to acquire a data base for possible helicopter noise regulat...
2013-01-28
NASA Cassini spacecraft simultaneously peers through the haze in Titan equatorial region down to its surface and captures the vortex of clouds hovering over its south pole just to the right of the terminator on the moon dark side.
Some wake-related operational limitations of rotorcraft
NASA Technical Reports Server (NTRS)
Heyson, H. H.
1980-01-01
Wind tunnel measurements show that the wake of a rotor, except at near hovering speeds, is not like that of a propeller. The wake is more like that of a wing except that, because of the slow speeds, the wake velocities may be much greater. The helicopter can produce a wake hazard to following light aircraft that is disproportionately great compared to an equivalent fixed wing aircraft. This hazard should be recognized by both pilots and airport controllers when operating in congested areas. Ground effect is generally counted as a blessing since it allows overloaded takeoffs; however, it also introduces additional operation problems. These problems include premature blade stall in hover, settling in forward transition, shuddering in approach to touchdown and complicatons with yaw control. Some of these problems were treated analytically in an approximate manner and reasonable experiment agreement was obtained. An awareness of these effects can prepare the user for their appearance and their consequences.
NASA Technical Reports Server (NTRS)
Kuhn, Richard E.
1986-01-01
The current understanding of the effects of ground proximity on V/STOL and STOL aircraft is reviewd. Areas covered include (1) single jet suckdown in hover, (2) fountain effects on multijet configurations, (3) STOL ground effects including the effect of the ground vortex flow field, (4) downwash at the tail, and (5) hot gas ingestion in both hover and STOL operation. The equipment needed for large scale testing to extend the state of the art is reviewed and developments in three areas are recommended as follows: (1) improve methods for simulating the engine exhaust and inlet flows; (2) develop a model support system that can simulate realistic rates of climb and descent as well as steady height operation; and (3) develop a blowing BLC ground board as an alternative to a moving belt ground board to properly simulate the flow on the ground.
Deepening psychoanalytic listening: the marriage of Buddha and Freud.
Rubin, Jeffrey B
2009-06-01
Freud (1912) delineated the ideal state of mind for therapists to listen, what he called "evenly hovering" or "evenly suspended attention." No one has ever offered positive recommendations for how to cultivate this elusive yet eminently trainable state of mind. This leaves an important gap in training and technique. What Buddhism terms meditation-non-judgmental attention to what is happening moment-to-moment-cultivates exactly the extraordinary, yet accessible, state of mind Freud was depicting. But genuine analytic listening requires one other quality: the capacity to decode or translate what we hear on the latent and metaphoric level-which meditation does not do. This is a crucial weakness of meditation. In this chapter I will draw on the best of the Western psychoanalytic and Eastern meditative traditions to illuminate how therapists could use meditation to cultivate "evenly hovering attention" and how a psychoanalytic understanding of the language and logic of the unconscious complements and enriches meditative attention.
Comparison of calculated and measured model rotor loading and wake geometry
NASA Technical Reports Server (NTRS)
Johnson, W.
1980-01-01
The calculated blade bound circulation and wake geometry are compared with measured results for a model helicopter rotor in hover and forward flight. Hover results are presented for rectangular tip and ogee tip planform blades. The correlation is quite good when the measured wake geometry characteristics are used in the analysis. Available prescribed wake geometry models are found to give fair predictions of the loading, but they do not produce a reasonable prediction of the induced power. Forward flight results are presented for twisted and untwisted blades. Fair correlation between measurements and calculations is found for the bound circulation distribution on the advancing side. The tip vortex geometry in the vicinity of the advancing blade in forward flight was predicted well by the free wake calculation used, although the wake geometry did not have a significant influence on the calculated loading and performance for the cases considered.
XV-15 Tiltrotor Low Noise Terminal Area Operations
NASA Technical Reports Server (NTRS)
Conner, David A.; Marcolini, Michael A.; Edwards, Bryan D.; Brieger, John T.
1998-01-01
Acoustic data have been acquired for the XV-15 tiltrotor aircraft performing a variety of terminal area operating procedures. This joint NASA/Bell/Army test program was conducted in two phases. During Phase 1 the XV-15 was flown over a linear array of microphones, deployed perpendicular to the flight path, at a number of fixed operating conditions. This documented the relative noise differences between the various conditions. During Phase 2 the microphone array was deployed over a large area to directly measure the noise footprint produced during realistic approach and departure procedures. The XV-15 flew approach profiles that culminated in IGE hover over a landing pad, then takeoffs from the hover condition back out over the microphone array. Results from Phase 1 identify noise differences between selected operating conditions, while those from Phase 2 identify differences in noise footprints between takeoff and approach conditions and changes in noise footprint due to variation in approach procedures.
Performance optimization of helicopter rotor blades
NASA Technical Reports Server (NTRS)
Walsh, Joanne L.
1991-01-01
As part of a center-wide activity at NASA Langley Research Center to develop multidisciplinary design procedures by accounting for discipline interactions, a performance design optimization procedure is developed. The procedure optimizes the aerodynamic performance of rotor blades by selecting the point of taper initiation, root chord, taper ratio, and maximum twist which minimize hover horsepower while not degrading forward flight performance. The procedure uses HOVT (a strip theory momentum analysis) to compute the horse power required for hover and the comprehensive helicopter analysis program CAMRAD to compute the horsepower required for forward flight and maneuver. The optimization algorithm consists of the general purpose optimization program CONMIN and approximate analyses. Sensitivity analyses consisting of derivatives of the objective function and constraints are carried out by forward finite differences. The procedure is applied to a test problem which is an analytical model of a wind tunnel model of a utility rotor blade.
NASA Astrophysics Data System (ADS)
Mishra, Sanjeev Kumar; Prasad, K. Durga
2018-07-01
Understanding surface modifications at landing site during spacecraft landing on planetary surfaces is important for planetary missions from scientific as well as engineering perspectives. An attempt has been made in this work to numerically investigate the disturbance caused to the lunar surface during soft landing. The variability of eject velocity of dust, eject mass flux rate, ejecta amount etc. has been studied. The effect of lander hovering time and hovering altitude on the extent of disturbance is also evaluated. The study thus carried out will help us in understanding the surface modifications during landing thereby making it easier to plan a descent trajectory that minimizes the extent of disturbance. The information about the extent of damage will also be helpful in interpreting the data obtained from experiments carried on the lunar surface in vicinity of the lander.
Blade Tip Pressure Measurements Using Pressure Sensitive Paint
NASA Technical Reports Server (NTRS)
Wong, Oliver D.; Watkins, Anthony Neal; Goodman, Kyle Z.; Crafton, James; Forlines, Alan; Goss, Larry; Gregory, James W.; Juliano, Thomas J.
2012-01-01
This paper discusses the application of pressure sensitive paint using laser-based excitation for measurement of the upper surface pressure distribution on the tips of rotor blades in hover and simulated forward flight. The testing was conducted in the Rotor Test Cell and the 14- by 22-ft Subsonic Tunnel at the NASA Langley Research Center on the General Rotor Model System (GRMS) test stand. The Mach-scaled rotor contained three chordwise rows of dynamic pressure transducers for comparison with PSP measurements. The rotor had an 11 ft 1 in. diameter, 5.45 in. main chord and a swept, tapered tip. Three thrust conditions were examined in hover, C(sub T) = 0.004, 0.006 and 0.008. In forward flight, an additional thrust condition, C(sub T) = 0.010 was also examined. All four thrust conditions in forward flight were conducted at an advance ratio of 0.35.
Wind-tunnel evaluation of an advanced main-rotor blade design for a utility-class helicopter
NASA Technical Reports Server (NTRS)
Yeager, William T., Jr.; Mantay, Wayne R.; Wilbur, Matthew L.; Cramer, Robert G., Jr.; Singleton, Jeffrey D.
1987-01-01
An investigation was conducted in the Langley Transonic Dynamics Tunnel to evaluate differences between an existing utility-class main-rotor blade and an advanced-design main-rotor blade. The two rotor blade designs were compared with regard to rotor performance oscillatory pitch-link loads, and 4-per-rev vertical fixed-system loads. Tests were conducted in hover and over a range of simulated full-scale gross weights and density altitude conditions at advance ratios from 0.15 to 0.40. Results indicate that the advanced blade design offers performance improvements over the baseline blade in both hover and forward flight. Pitch-link oscillatory loads for the baseline rotor were more sensitive to the test conditions than those of the advanced rotor. The 4-per-rev vertical fixed-system load produced by the advanced blade was larger than that produced by the baseline blade at all test conditions.
Optimum performance of hovering rotors
NASA Technical Reports Server (NTRS)
Wu, J. C.; Goorjian, P. M.
1972-01-01
A theory for the optimum performance of a rotor hovering out of ground effect is developed. The performance problem is formulated using general momentum theory for an infinitely bladed rotor, and the effect of a finite number of blades is estimated. The analysis takes advantage of the fact that a simple relation exists between the radial distributions of static pressure and angular velocity in the ultimate wake, far downstream of the rotor, since the radial velocity vanishes there. This relation permits the establishment of an optimum performance criterion in terms of the ultimate wake velocities by introducing a small local perturbation of the rotational velocity and requiring the resulting ratio of thrust and power changes to be independent of the radial location of the perturbation. This analysis fully accounts for the changes in static pressure distribution and axial velocity distribution throughout the wake as the result of the local perturbation of the rotational velocity component.
NASA Technical Reports Server (NTRS)
Bartie, K.; Alexander, H.; Mcveigh, M.; Lamon, S.; Bishop, H.
1986-01-01
Rotor hover performance data were obtained for two full-scale rotor systems designed for the XV-15 Tilt Rotor Research Aircraft. One rotor employed the rectangular planform metal blades (rotor solidity = 0.089) which were used on the initial flight configuration of the XV-15. The second rotor configuration examined the nonlinear taper, composite-construction, Advanced Technology Blade (ATB), (rotor solidity = 0.10) designed to replace the metal blades on the XV-15. Variations of the baseline ATB tip and cuff shapes were also tested. A new six-component rotor force and moment balance designed to obtain highly accurate data over a broad range of thrust and torque conditions is described. The test data are presented in nondimensional coefficient form for the performance results, and in dimensional form for the steady and alternating loads. Some wake and acoustic data are also shown.
Coupling the Leidenfrost effect and elastic deformations to power sustained bouncing
NASA Astrophysics Data System (ADS)
Waitukaitis, Scott R.; Zuiderwijk, Antal; Souslov, Anton; Coulais, Corentin; van Hecke, Martin
2017-11-01
The Leidenfrost effect occurs when an object near a hot surface vaporizes rapidly enough to lift itself up and hover. Although well understood for liquids and stiff sublimable solids, nothing is known about the effect with materials whose stiffness lies between these extremes. Here we introduce a new phenomenon that occurs with vaporizable soft solids--the elastic Leidenfrost effect. By dropping hydrogel spheres onto hot surfaces we find that, rather than hovering, they energetically bounce several times their diameter for minutes at a time. With high-speed video during a single impact, we uncover high-frequency microscopic gap dynamics at the sphere/substrate interface. We show how these otherwise-hidden agitations constitute work cycles that harvest mechanical energy from the vapour and sustain the bouncing. Our findings suggest a new strategy for injecting mechanical energy into a widely used class of soft materials, with potential relevance to fields such as active matter, soft robotics and microfluidics.
VTOL controls for shipboard landing. M.S.Thesis
NASA Technical Reports Server (NTRS)
Mcmuldroch, C. G.
1979-01-01
The problem of landing a VTOL aircraft on a small ship in rough seas using an automatic controller is examined. The controller design uses the linear quadratic Gaussian results of modern control theory. Linear time invariant dynamic models are developed for the aircraft, ship, and wave motions. A hover controller commands the aircraft to track position and orientation of the ship deck using only low levels of control power. Commands for this task are generated by the solution of the steady state linear quadratic gaussian regulator problem. Analytical performance and control requirement tradeoffs are obtained. A landing controller commands the aircraft from stationary hover along a smooth, low control effort trajectory, to a touchdown on a predicted crest of ship motion. The design problem is formulated and solved as an approximate finite-time linear quadratic stochastic regulator. Performance and control results are found by Monte Carlo simulations.
V/STOL and STOL ground effects and testing techniques
NASA Technical Reports Server (NTRS)
Kuhn, R. E.
1987-01-01
The ground effects associated with V/STOL operation were examined and an effort was made to develop the equipment and testing techniques needed for that understanding. Primary emphasis was on future experimental programs in the 40 x 80 and the 80 x 120 foot test sections and in the outdoor static test stand associated with these facilities. The commonly used experimental techniques are reviewed and data obtained by various techniques are compared with each other and with available estimating methods. These reviews and comparisons provide insight into the limitations of past studies and the testing techniques used and identify areas where additional work is needed. The understanding of the flow mechanics involved in hovering and in transition in and out of ground effect is discussed. The basic flow fields associated with hovering, transition and STOL operation of jet powered V/STOL aircraft are depicted.
NASA Technical Reports Server (NTRS)
Bousman, William G.
1988-01-01
Three cases were selected for correlation from an experiment that examined the aeromechanical stability of a small-scale model of a hingeless rotor and fuselage in hover. The first case examined the stability of a configuration with 0 degree blade pitch so that coupling between dynamic modes was minimized. The second case was identical to the first except the blade pitch was set to 9 degrees which provides flap-lag coupling of the rotor modes. The third case had 9 degrees of blade pitch and also included negative pitch-lag coupling, and therefore was the most highly coupled configuration. Analytical calculations were made by Bell Helicopter Textron, Boeing Vertol, Hughes Helicopters, Sikorsky Aircraft, the U.S. Army Aeromechanics Laboratory, and NASA Ames Research Center and compared to some or all of the experimental cases. Overall, the correlation ranged from very poor-to-poor to good.
NASA Technical Reports Server (NTRS)
Yeager, William T., Jr.; Noonan, Kevin W.; Singleton, Jeffrey D.; Wilbur, Matthew L.; Mirick, Paul H.
1997-01-01
An investigation was conducted in the Langley Transonic Dynamics Tunnel to obtain data to permit evaluation of paddle-type tip technology for possible use in future U.S. advanced rotor designs. Data was obtained for both a baseline main-rotor blade and a main-rotor blade with a paddle-type tip. The baseline and paddle-type tip blades were compared with regard to rotor performance, oscillatory pitch-link loads, and 4-per-rev vertical fixed-system loads. Data was obtained in hover and forward flight over a nominal range of advance ratios from 0.15 to 0.425. Results indicate that the paddle-type tip offers no performance improvements in either hover or forward flight. Pitch-link oscillatory loads for the paddle-type tip are higher than for the baseline blade, whereas 4-per-rev vertical fixed-system loads are generally lower.
Quadrotor Control in the Presence of Unknown Mass Properties
NASA Astrophysics Data System (ADS)
Duivenvoorden, Rikky Ricardo Petrus Rufino
Quadrotor UAVs are popular due to their mechanical simplicity, as well as their capability to hover and vertically take-off and land. As applications diversify, quadrotors are increasingly required to operate under unknown mass properties, for example as a multirole sensor platform or for package delivery operations. The work presented here consists of the derivation of a generalized quadrotor dynamic model without the typical simplifying assumptions on the first and second moments of mass. The maximum payload capacity of a quadrotor in hover, and the observability of the unknown mass properties are discussed. A brief introduction of L1 adaptive control is provided, and three different L 1 adaptive controllers were designed for the Parrot AR.Drone quadrotor. Their tracking and disturbance rejection performance was compared to the baseline nonlinear controller in experiments. Finally, the results of the combination of L1 adaptive control with iterative learning control are presented, showing high performance trajectory tracking under uncertainty.
Demonstration of frequency-sweep testing technique using a Bell 214-ST helicopter
NASA Technical Reports Server (NTRS)
Tischler, Mark B.; Fletcher, Jay W.; Diekmann, Vernon L.; Williams, Robert A.; Cason, Randall W.
1987-01-01
A demonstration of frequency-sweep testing using a Bell-214ST single-rotor helicopter was completed in support of the Army's development of an updated MIL-H-8501A, and an LHX (ADS-33) handling-qualities specification. Hover and level-flight (V sub a = 0 knots and V sub a = 90 knots) tests were conducted in 3 flight hours by Army test pilots at the Army Aviation Engineering Flight Activity (AEFA) at Edwards AFB, Calif. Bandwidth and phase-delay parameters were determined from the flight-extracted frequency responses as required by the proposed specifications. Transfer function modeling and verification demonstrates the validity of the frequency-response concept for characterizing closed-loop flight dynamics of single-rotor helicopters -- even in hover. This report documents the frequency-sweep flight-testing technique and data-analysis procedures. Special emphasis is given to piloting and analysis considerations which are important for demonstrating frequency-domain specification compliance.
The effect of morphologically representative corrugation on hovering insect flight
NASA Astrophysics Data System (ADS)
Feaster, Jeffrey; Battaglia, Francine; Bayandor, Javid
2017-11-01
The present work explores the influence of morphologically representative wing corrugation in three-dimensional symmetric hovering. The kinematics are applied to a processed μCT scan of a Bombus pensylvanicus and compared with a wing utilizing the same planform but a flat, rectangular cross-section. The Bombus pensylvanicus wing used in the present study was captured in Virginia, killed with Ethyl acetate dying with wings extended with the fore and hind wings connected by the wing humuli. The aerodynamics resulting from geometric differences between the true wing and flat plate are quantified using CL and CD, and qualified using slices of vorticity and pressure. Three-dimensional flow structures are visualized using vorticity magnitude and streamlines. The present analysis is to begin to determine and understand the effects of insect wing venation on aerodynamic performance and further, to better understand the effects of assuming a simplified cross-sectional geometry.
An Augmentation of G-Guidance Algorithms
NASA Technical Reports Server (NTRS)
Carson, John M. III; Acikmese, Behcet
2011-01-01
The original G-Guidance algorithm provided an autonomous guidance and control policy for small-body proximity operations that took into account uncertainty and dynamics disturbances. However, there was a lack of robustness in regards to object proximity while in autonomous mode. The modified GGuidance algorithm was augmented with a second operational mode that allows switching into a safety hover mode. This will cause a spacecraft to hover in place until a mission-planning algorithm can compute a safe new trajectory. No state or control constraints are violated. When a new, feasible state trajectory is calculated, the spacecraft will return to standard mode and maneuver toward the target. The main goal of this augmentation is to protect the spacecraft in the event that a landing surface or obstacle is closer or further than anticipated. The algorithm can be used for the mitigation of any unexpected trajectory or state changes that occur during standard mode operations
NASA Technical Reports Server (NTRS)
Kelley, Henry L.
1990-01-01
Performance of a 27 percent scale model rotor designed for the AH-64 helicopter (alternate rotor) was measured in hover and forward flight and compared against and AH-64 baseline rotor model. Thrust, rotor tip Mach number, advance ratio, and ground proximity were varied. In hover, at a nominal thrust coefficient of 0.0064, the power savings was about 6.4 percent for the alternate rotor compared to the baseline. The corresponding thrust increase at this condition was approx. 4.5 percent which represents an equivalent full scale increase in lift capability of about 660 lbs. Comparable results were noted in forward flight except for the high thrust, high speed cases investigated where the baseline rotor was slightly superior. Reduced performance at the higher thrusts and speeds was likely due to Reynolds number effects and blade elasticity differences.
NASA Technical Reports Server (NTRS)
Jenkins, Luther N.; Yao, Chung-Sheng; Bartram, Scott M.; Harris, Jerome; Allan, Brian; Wong, Oliver; Mace, W. Derry
2009-01-01
A Large Field-of-View Particle Image Velocimetry (LFPIV) system has been developed for rotor wake diagnostics in the 14-by 22-Foot Subsonic Tunnel. The system has been used to measure three components of velocity in a plane as large as 1.524 meters by 0.914 meters in both forward flight and hover tests. Overall, the system performance has exceeded design expectations in terms of accuracy and efficiency. Measurements synchronized with the rotor position during forward flight and hover tests have shown that the system is able to capture the complex interaction of the body and rotor wakes as well as basic details of the blade tip vortex at several wake ages. Measurements obtained with traditional techniques such as multi-hole pressure probes, Laser Doppler Velocimetry (LDV), and 2D Particle Image Velocimetry (PIV) show good agreement with LFPIV measurements.
A variable structure approach to robust control of VTOL aircraft
NASA Technical Reports Server (NTRS)
Calise, A. J.; Kramer, F.
1982-01-01
This paper examines the application of variable structure control theory to the design of a flight control system for the AV-8A Harrier in a hover mode. The objective in variable structure design is to confine the motion to a subspace of the total state space. The motion in this subspace is insensitive to system parameter variations and external disturbances that lie in the range space of the control. A switching type of control law results from the design procedure. The control system was designed to track a vector velocity command defined in the body frame. For comparison purposes, a proportional controller was designed using optimal linear regulator theory. Both control designs were first evaluated for transient response performance using a linearized model, then a nonlinear simulation study of a hovering approach to landing was conducted. Wind turbulence was modeled using a 1052 destroyer class air wake model.
Jain, A; Bhatia, S; Banga, S S; Prakash, S; Lakshmikumaran, M
1994-04-01
RAPD assays were performed, using 34 arbitrary decamer oligonucleotide primers and six combinations of two primers, to detect inherent variations and genetic relationships among 12 Indian and 11 exotic B. juncea genotypes. Of 595 amplification products identified, 500 of them were polymorphic across all genotypes. A low level of genetic variability was detected among the Indian genotypes, while considerable polymorphism was present among the exotic ones. Based on the pair-wise comparisons of amplification products the genetic similarity was calculated using Jaccard's similarity coefficients and a dendrogram was constructed using an unweighted pair group method was arithmetical averages (UPGMA). On the basis of this analysis the genotypes were clustered into two groups, A and B. Group A comprised only exotic genotypes, whereas all the Indian genotypes and four of the exotic genotypes were clustered in group B. Almost similar genotypic rankings could also be established by computing as few as 200 amplification products. In general, a high per cent of heterosis was recorded in crosses involving Indian x exotic genotypes. On the other hand, when crosses were made amongst Indian or exotic genotypes, about 80% of them exhibited negative heterosis. Results from this study indicate that, despite the lack of direct correlation between the genetic distance and the degree of heterosis, genetic diversity forms a very useful guide not only for investigating the relationships among Brassica genotypes but also in the selection of parents for heterotic hybrid combinations.
Gaskin, John F; Schwarzländer, Mark; Kinter, C Lynn; Smith, James F; Novak, Stephen J
2013-09-01
Assessing propagule pressure and geographic origins of invasive species provides insight into the invasion process. Rush skeletonweed (Chondrilla juncea; Asteraceae) is an apomictic, perennial plant that is invasive in Australia, South America (Argentina), and North America (Canada and the United States). This study comprehensively compares propagule pressure and geographic structure of genotypes to improve our understanding of a clonal invasion and enhance management strategies. • We analyzed 1056 native range plants from Eurasia and 1156 plants from three invaded continents using amplified fragment length polymorphism (AFLP) techniques. We used measures of diversity (Simpson's D) and evenness (E), analysis of molecular variance, and Mantel tests to compare invasions, and genotype similarity to determine origins of invasive genotypes. • We found 682 unique genotypes in the native range, but only 13 in the invaded regions. Each invaded region contained distinct AFLP genotypes, suggesting independent introduction events, probably with different geographic origins. Relatively low propagule pressure was associated with each introduction around the globe, but levels of among-population variation differed. We found exact AFLP genotype matches between the native and invaded ranges for five of the 13 invasive genotypes. • Invasion dynamics can vary across invaded ranges within a species. Intensive sampling for molecular analyses can provide insight for understanding intraspecific invasion dynamics, which can hold significance for the management of plant species, especially by finding origins and distributions of invasive genotypes for classical biological control efforts.
Musiał, Krystyna; Kościńska-Pająk, Maria
2017-07-01
Total absence of callose in the ovules of diplosporous species has been previously suggested. This paper is the first description of callose events in the ovules of Chondrilla juncea, which exhibits meiotic diplospory of the Taraxacum type. We found the presence of callose in the megasporocyte wall and stated that the pattern of callose deposition is dynamically changing during megasporogenesis. At the premeiotic stage, no callose was observed in the ovules. Callose appeared at the micropylar pole of the cell entering prophase of the first meioticdivision restitution but did not surround the megasporocyte. After the formation of a restitution nucleus, a conspicuous callose micropylar cap and dispersed deposits of callose were detected in the megasporocyte wall. During the formation of a diplodyad, the micropylar callose cap decreased and the walls of a newly formed megaspores showed scattered distribution of callose. Within the older diplodyad, callose was mainly accumulated in the wall between megaspores, as well as in the wall of the micropylar cell; however, a dotted fluorescence of callose was also visible in the wall of the chalazal megaspore. Gradual degradation of callose in the wall of the chalazal cell and intense callose accumulation in the wall of the micropylar cell were related to the selection of the functional megaspore. Thus, our findings may suggest that callose fulfills a similar role both during megasporogenesis in sexual angiosperms and in the course of meiotic diplospory in apomicts and seems to form a regulatory interface between reproductive and somatic cells.
Increased resistance to a generalist herbivore in a salinity-stressed non-halophytic plant
Renault, Sylvie; Wolfe, Scott; Markham, John; Avila-Sakar, Germán
2016-01-01
Plants often grow under the combined stress of several factors. Salinity and herbivory, separately, can severely hinder plant growth and reproduction, but the combined effects of both factors are still not clearly understood. Salinity is known to reduce plant tissue nitrogen content and growth rates. Since herbivores prefer tissues with high N content, and biochemical pathways leading to resistance are commonly elicited by salt-stress, we hypothesized that plants growing in saline conditions would have enhanced resistance against herbivores. The non-halophyte, Brassica juncea, and the generalist herbivore Trichoplusia ni were used to test the prediction that plants subjected to salinity stress would be both more resistant and more tolerant to herbivory than those growing without salt stress. Plants were grown under different NaCl levels, and either exposed to herbivores and followed by removal of half of their leaves, or left intact. Plants were left to grow and reproduce until senescence. Tissue quality was assessed, seeds were counted and biomass of different organs measured. Plants exposed to salinity grew less, had reduced tissue nitrogen, protein and chlorophyll content, although proline levels increased. Specific leaf area, leaf water content, transpiration and root:shoot ratio remained unaffected. Plants growing under saline condition had greater constitutive resistance than unstressed plants. However, induced resistance and tolerance were not affected by salinity. These results support the hypothesis that plants growing under salt-stress are better defended against herbivores, although in B. juncea this may be mostly through resistance, and less through tolerance. PMID:27169610
GIS assessment of the risk of gene flow from Brassica napus to its wild relatives in China.
Dong, Jing-Jing; Zhang, Ming-Gang; Wei, Wei; Ma, Ke-Ping; Wang, Ying-Hao
2018-06-16
Risk of gene flow from canola (Brassica napus) to species of wild relatives was used as an example to evaluate the risk of gene flow of transgenic crops. B. juncea and B. rapa were the most common weedy Brassica species in China, which were both sexually compatible with canola. Data on canola cultivation in China were collected and analyzed using geographic information system (GIS), and the distribution of its wild relatives was predicted by MaxEnt species distribution model. Based on biological and phenological evidence, our results showed that gene flow risk exists in most parts of the country, especially in places with higher richness of wild Brassica species. However, risk in dominant canola cultivation regions is relatively low owing to the reduced distribution density of wild species in these regions. Three regions of higher risk of gene flow had been identified. Risk of gene flow is relatively high in certain areas. China has been assumed to be the original center of B. juncea and B. rapa, and gene flow may lead to negative effects on the conservation of biodiversity of local species. Strategies had been proposed to reduce the possibility of gene flow either by monitoring introgression from crops to wild relatives in the areas of high adoption of the crop or by taking measures to limit the releasing of new crops or varieties in the areas with abundant wild relatives.
Shiller, Jason; Van de Wouw, Angela P.; Taranto, Adam P.; Bowen, Joanna K.; Dubois, David; Robinson, Andrew; Deng, Cecilia H.; Plummer, Kim M.
2015-01-01
Venturia inaequalis and V. pirina are Dothideomycete fungi that cause apple scab and pear scab disease, respectively. Whole genome sequencing of V. inaequalis and V. pirina isolates has revealed predicted proteins with sequence similarity to AvrLm6, a Leptosphaeria maculans effector that triggers a resistance response in Brassica napus and B. juncea carrying the resistance gene, Rlm6. AvrLm6-like genes are present as large families (>15 members) in all sequenced strains of V. inaequalis and V. pirina, while in L. maculans, only AvrLm6 and a single paralog have been identified. The Venturia AvrLm6-like genes are located in gene-poor regions of the genomes, and mostly in close proximity to transposable elements, which may explain the expansion of these gene families. An AvrLm6-like gene from V. inaequalis with the highest sequence identity to AvrLm6 was unable to trigger a resistance response in Rlm6-carrying B. juncea. RNA-seq and qRT-PCR gene expression analyses, of in planta- and in vitro-grown V. inaequalis, has revealed that many of the AvrLm6-like genes are expressed during infection. An AvrLm6 homolog from V. inaequalis that is up-regulated during infection was shown (using an eYFP-fusion protein construct) to be localized to the sub-cuticular stroma during biotrophic infection of apple hypocotyls. PMID:26635823
Functional characterization of Rorippa indica defensin and its efficacy against Lipaphis erysimi.
Sarkar, Poulami; Jana, Jagannath; Chatterjee, Subhrangshu; Sikdar, Samir Ranjan
2016-01-01
Rorippa indica, a wild crucifer, has been previously reported as the first identified plant in the germplasm of Brassicaceae known to be tolerant towards the mustard aphid Lipaphis erysimi Kaltenbach. We herein report the full-length cloning, expression, purification and characterization of a novel R. indica defensin (RiD) and its efficacy against L. erysimi. Structural analysis through homology modeling of RiD showed longer α-helix and 3rd β-sheet as compared to Brassica juncea defensin (BjD). Recombinant RiD and BjD was purified for studying its efficacy against L. erysimi. In the artificial diet based insect bioassay, the LC50 value of RiD against L. erysimi was found to be 9.099 ± 0.621 µg/mL which is far lower than that of BjD (43.51 ± 0.526 µg/mL). This indicates the possibility of RiD having different interacting partner and having better efficacy against L. erysimi over BjD. In the transient localization studies, RiD signal peptide directed the RiD: yellow fluorescent protein (YFP) fusion protein to the apoplastic regions which indicates that it might play a very important role in inhibiting nutrient uptake by aphids which follow mainly extracellular route to pierce through the cells. Hence, the present study has a significant implication for the future pest management program of B. juncea through the development of aphid tolerant transgenic plants.
Cook, Tessa S; Oh, Seong Cheol; Kahn, Charles E
2017-09-01
The increasing availability of personal health portals has made it easier for patients to obtain their imaging results online. However, the radiology report typically is designed to communicate findings and recommendations to the referring clinician, and may contain many terms unfamiliar to lay readers. We sought to evaluate a web-based interface that presented reports of knee MRI (magnetic resonance imaging) examinations with annotations that included patient-oriented definitions, anatomic illustrations, and hyperlinks to additional information. During a 7-month observational trial, a statement added to all knee MRI reports invited patients to view their annotated report online. We tracked the number of patients who opened their reports, the terms they hovered over to view definitions, and the time hovering over each term. Patients who accessed their annotated reports were invited to complete a survey. Of 1138 knee MRI examinations during the trial period, 185 patients (16.3%) opened their report in the viewing portal. Of those, 141 (76%) hovered over at least one term to view its definition, and 121 patients (65%) viewed a mean of 27.5 terms per examination and spent an average of 3.5 minutes viewing those terms. Of the 22 patients who completed the survey, 77% agreed that the definitions helped them understand the report and 91% stated that the illustrations were helpful. A system that provided definitions and illustrations of the medical and technical terms in radiology reports has potential to improve patients' understanding of their reports and their diagnoses. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Range and Endurance Tradeoffs on Personal Rotorcraft Design
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.
2016-01-01
Rotorcraft design has always been a challenging tradeoff among overall size, capabilities, complexity, and other factors based on available technology and customer requirements. Advancements in propulsion, energy systems and other technologies have enabled new vehicles and missions; complementary advances in analysis methods and tools enable exploration of these enhanced vehicles and the evolving mission design space. A system study was performed to better understand the interdependency between vehicle design and propulsion system capabilities versus hover loiter requirements and range capability. Three representative vertical lift vehicles were developed to explore the tradeoff in capability between hover efficiency versus range and endurance capability. The vehicles were a single-main rotor helicopter, a tilt rotor, and a vertical take-off and landing (VTOL) aircraft. Vehicle capability was limited to two or three people (including pilot or crew) and maximum range within one hour of flight (100-200 miles, depending on vehicle). Two types of propulsion and energy storage systems were used in this study. First was traditional hydrocarbon-fueled cycles (such as Otto, diesel or gas turbine cycles). Second was an all-electric system using electric motors, power management and distribution, assuming batteries for energy storage, with the possibility of hydrocarbon-fueled range extenders. The high power requirements for hover significantly reduced mission radius capability. Loiter was less power intensive, resulting in about 12 the equivalent mission radius penalty. With so many design variables, the VTOL aircraft has the potential to perform well for a variety of missions. This vehicle is a good candidate for additional study; component model development is also required to adequately assess performance over the design space of interest.
Range and Endurance Tradeoffs on Personal Rotorcraft Design
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.
2016-01-01
Rotorcraft design has always been a challenging tradeoff among overall size, capabilities, complexity, and other factors based on available technology and customer requirements. Advancements in propulsion, energy systems and other technologies have enabled new vehicles and missions; complementary advances in analysis methods and tools enable exploration of these enhanced vehicles and the evolving mission design space. A system study was performed to better understand the interdependency between vehicle design and propulsion system capabilities versus hover / loiter requirements and range capability. Three representative vertical lift vehicles were developed to explore the tradeoff in capability between hover efficiency versus range and endurance capability. The vehicles were a single-main rotor helicopter, a tilt rotor, and a vertical take-off and landing (VTOL) aircraft. Vehicle capability was limited to two or three people (including pilot or crew) and maximum range within one hour of flight (100-200 miles, depending on vehicle). Two types of propulsion and energy storage systems were used in this study. First was traditional hydrocarbon-fueled cycles (such as Otto, diesel or gas turbine cycles). Second was an all-electric system using electric motors, power management and distribution, assuming batteries for energy storage, with the possibility of hydrocarbon-fueled range extenders. The high power requirements for hover significantly reduced mission radius capability. Loiter was less power intensive, resulting in about 1/2 the equivalent mission radius penalty. With so many design variables, the VTOL aircraft has the potential to perform well for a variety of missions. This vehicle is a good candidate for additional study; component model development is also required to adequately assess performance over the design space of interest.
Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft
DOT National Transportation Integrated Search
1995-04-01
This report describes the aerodynamics model used in a simulation model of : an advanced short takeoff and vertical landing lift-far fighter aircraft. The : simulation model was developed for use in piloted evaluations of transition and : hover fligh...
-color:#5e6a71;border-top:3px solid #62d2ff}header .logo{background-position:center center}@media (min -position:center right}}header a.app-name,header a.app-name:hover,header a.app-name:visited{color:#fff
77 FR 48058 - Special Conditions: Eurocopter France, EC130T2; Use of 30-Minute Power Rating
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-13
..., generally intended to be used for hovering at increased power for search and rescue missions. The applicable....gov , including any personal information the commenter provides. Using the search function of the...
: translate(0, -50%); -ms-transform: translate(0, -50%); transform: translate(0, -50%); cursor: pointer; color , .slick-next:hover, .slick-next:focus { color: transparent; outline: none; background: transparent : .75; color: white; -webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; } .slick
2015-06-30
This still image from an animation from NASA GSFC Solar Dynamics Observatory shows dark strands of plasma hovering above the Sun surface beginning to interact with each other in a form of tug of war over two and a half days June 28-30, 2015.
Saturn Ring Observer Mission Concept: Closer Than We Thought
NASA Astrophysics Data System (ADS)
Spilker, T. R.; Nicholson, P.; Tiscareno, M. S.; Spilker, L. J.; Sro Study Team
2010-12-01
The Saturn Ring Observer (SRO) mission concept would have a spacecraft hover directly over the rings, performing the first high-resolution studies of microphysical interactions between particles in Saturn's rings, at a scale of 1-10 centimeters. A new study suggests such a mission might be feasible sooner than previously thought. As part of the 2012 Planetary Science Decadal Survey (PSDS) deliberations, NASA-appointed teams conducted several dozen mission studies requested by PSDS Panels. A study requested by the PSDS Giant Planets Panel and performed in April 2010 addressed the SRO concept and technologies that could enable it. The Panel specified two study objectives: 1) Investigate the method(s) by which such a spacecraft might be placed in a tight circular orbit around Saturn, using chemical or nuclear-electric propulsion or aerocapture in Saturn’s atmosphere; and 2) Identify technological developments for the next decade that would enable such a mission in the post-2023 time frame (after the next saturnian equinox), with a particular focus on power and propulsion technologies. The “tight circular orbit” is a non-Keplerian orbit displaced 2-3 km perpendicular to the mean ring plane. A spacecraft in such an orbit would appear to “hover” over the ring particles orbiting Saturn directly “beneath” it, so this was dubbed the “hover orbit”. Operations technologies were found to be important drivers so they were examined also. Such a mission, with narrow-angle optical remote sensing instrumentation allowing resolution in the 1 to 10 cm range, would observe individual ring particles and their motions, and aggregate motions, measuring such fundamental quantities as relative velocities, spin states, and coefficients of restitution. A wider-angle instrument would observe aggregate behavior such as waves, self-gravity wakes, and ring edges. The study’s science team found that the kronocentric radial range covered during the mission is a useful metric for the relative science value of different mission options. Previous work on such missions focused on the difficulty of delivery from Saturn approach to “hover orbit initiation” (HOI), i.e. positioning the spacecraft to begin the hover orbit. Thus prior to the new study, SRO was considered a “far horizon” mission. This study identified new trajectories, based on the relatively new technique of “propulsive V-infinity leveraging”, that would be capable of delivering a spacecraft from Saturn approach to HOI with a delta-V budget of ~3.5 km/s, within the performance capability of a single standard chemical bipropellant stage. Power and propulsion technologies needed for the hover orbit were found to be much less challenging than NEP or aerocapture, potentially moving this concept’s horizon nearer in time, though significant issues involving spacecraft autonomous operations technologies (i.e. autonomous navigation and hazard avoidance) remain to be addressed. Other technologies such as Titan aerogravity assists would enhance the science return by providing a greater traversal range across the rings. This paper summarizes the new study’s results, including science options and performance curves for propulsion and power technology options.
Gemini-Titan 3 spacecraft in water after flight
NASA Technical Reports Server (NTRS)
1965-01-01
The Gemini-Titan 3 spacecraft is shown in the water after the March 23rd four hour and 53 minute flight. Two helicopters from the recovery ship, the U.S.S. Intrepid, hover over the scene for the pickup of the astronauts.
Sensory Coordination of Insect Flight
2009-12-29
begun to study how fruit flies pinpoint the location of an odor source ( banana mash placed within a black pole, a strong visual landmark against a...hover feeding, flower tracking, odor tracking etc. Figure 4: Extracting wing and body kinematics from freely flying Drosophila melanogaster. (A
NASA Astrophysics Data System (ADS)
Bodlak, Eric
Within the last decade, multi-rotor aircraft have become the most prevalent form of unmanned aerial vehicle (UAV), with applications in the military, commercial, and civilian sectors. This is due primarily to advances in electronics that allow small-scale aircraft systems to be produced and controlled in an affordable manner. Such systems are maneuvered by precisely varying the thrust and torque of individual rotors to produce flight control forces, thereby eliminating much of the mechanical complexity inherent in conventional helicopter configurations. Although many UAV missions exploit the ability to hover in place, many also require the ability to quickly and efficiently dash from point to point. Rotorcraft, in general, are limited in this capacity, since rotor thrust must also be used to produce lift. Transitional aircraft represent an alternative that blends the vertical take-off and landing (VTOL) capabilities of rotorcraft with the forward flight performance of fixed-wing aircraft, but they often rely on cumbersome mechanisms, such as additional or rotating powerplants. UAVs, however, have no need to maintain cockpit orientation. Consequently, a tailsitting quadcopter concept was devised by Dr. Ron Barrett to combine quadcopter hovering performance with the high-speed flight of fixed-wing craft. This paper lays out the arguments for such an aircraft--the XQ-139 --and examines the performance of XQ-139 variants with installed power values ranging from 100 W to 10,000 kW. Battery-electric, rotary engine, turboprop, and hybrid propulsive options are considered, and the merits of each discussed. Additionally, an XQ-139 prototype was designed and constructed, and stationary test was used to compare the aircraft's installed efficiency with that of a typical quadcopter. The prototype was found to be approximately 5% more efficient in hover mode than the quadcopter to which it was compared.
Aerodynamic effects of corrugation and deformation in flapping wings of hovering hoverflies.
Du, Gang; Sun, Mao
2012-05-07
We investigated the aerodynamic effects of wing deformation and corrugation of a three-dimensional model hoverfly wing at a hovering condition by solving the Navier-Stokes equations on a dynamically deforming grid. Various corrugated wing models were tested. Insight into whether or not there existed significant aerodynamic coupling between wing deformation (camber and twist) and wing corrugation was obtained by comparing aerodynamic forces of four cases: a smooth-plate wing in flapping motion without deformation (i.e. a rigid flat-plate wing in flapping motion); a smooth-plate wing in flapping motion with deformation; a corrugated wing in flapping motion without deformation (i.e. a rigid corrugated wing in flapping motion); a corrugated wing in flapping motion with deformation. There was little aerodynamic coupling between wing deformation and corrugation: the aerodynamic effect of wing deformation and corrugation acting together was approximately a superposition of those of deformation and corrugation acting separately. When acting alone, the effect of wing deformation was to increase the lift by 9.7% and decrease the torque (or aerodynamic power) by 5.2%, and that of wing corrugation was to decrease the lift by 6.5% and increase the torque by 2.2%. But when acting together, the wing deformation and corrugation only increased the lift by ~3% and decreased the torque by ~3%. That is, the combined aerodynamic effect of deformation and corrugation is rather small. Thus, wing corrugation is mainly for structural, not aerodynamic, purpose, and in computing or measuring the aerodynamic forces, using a rigid flat-plate wing to model the corrugated deforming wing at hovering condition can be a good approximation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sridhar, Madhu; Kang, Chang-kwon
2015-05-06
Fruit flies have flexible wings that deform during flight. To explore the fluid-structure interaction of flexible flapping wings at fruit fly scale, we use a well-validated Navier-Stokes equation solver, fully-coupled with a structural dynamics solver. Effects of chordwise flexibility on a two dimensional hovering wing is studied. Resulting wing rotation is purely passive, due to the dynamic balance between aerodynamic loading, elastic restoring force, and inertial force of the wing. Hover flight is considered at a Reynolds number of Re = 100, equivalent to that of fruit flies. The thickness and density of the wing also corresponds to a fruit fly wing. The wing stiffness and motion amplitude are varied to assess their influences on the resulting aerodynamic performance and structural response. Highest lift coefficient of 3.3 was obtained at the lowest-amplitude, highest-frequency motion (reduced frequency of 3.0) at the lowest stiffness (frequency ratio of 0.7) wing within the range of the current study, although the corresponding power required was also the highest. Optimal efficiency was achieved for a lower reduced frequency of 0.3 and frequency ratio 0.35. Compared to the water tunnel scale with water as the surrounding fluid instead of air, the resulting vortex dynamics and aerodynamic performance remained similar for the optimal efficiency motion, while the structural response varied significantly. Despite these differences, the time-averaged lift scaled with the dimensionless shape deformation parameter γ. Moreover, the wing kinematics that resulted in the optimal efficiency motion was closely aligned to the fruit fly measurements, suggesting that fruit fly flight aims to conserve energy, rather than to generate large forces.
Nabawy, Mostafa R. A.; Crowther, William J.
2014-01-01
This paper introduces a generic, transparent and compact model for the evaluation of the aerodynamic performance of insect-like flapping wings in hovering flight. The model is generic in that it can be applied to wings of arbitrary morphology and kinematics without the use of experimental data, is transparent in that the aerodynamic components of the model are linked directly to morphology and kinematics via physical relationships and is compact in the sense that it can be efficiently evaluated for use within a design optimization environment. An important aspect of the model is the method by which translational force coefficients for the aerodynamic model are obtained from first principles; however important insights are also provided for the morphological and kinematic treatments that improve the clarity and efficiency of the overall model. A thorough analysis of the leading-edge suction analogy model is provided and comparison of the aerodynamic model with results from application of the leading-edge suction analogy shows good agreement. The full model is evaluated against experimental data for revolving wings and good agreement is obtained for lift and drag up to 90° incidence. Comparison of the model output with data from computational fluid dynamics studies on a range of different insect species also shows good agreement with predicted weight support ratio and specific power. The validated model is used to evaluate the relative impact of different contributors to the induced power factor for the hoverfly and fruitfly. It is shown that the assumption of an ideal induced power factor (k = 1) for a normal hovering hoverfly leads to a 23% overestimation of the generated force owing to flapping. PMID:24554578
Goyret, Joaquín; Kelber, Almut
2012-01-01
Most visual systems are more sensitive to luminance than to colour signals. Animals resolve finer spatial detail and temporal changes through achromatic signals than through chromatic ones. Probably, this explains that detection of small, distant, or moving objects is typically mediated through achromatic signals. Macroglossum stellatarum are fast flying nectarivorous hawkmoths that inspect flowers with their long proboscis while hovering. They can visually control this behaviour using floral markings known as nectar guides. Here, we investigate whether this is mediated by chromatic or achromatic cues. We evaluated proboscis placement, foraging efficiency, and inspection learning of naïve moths foraging on flower models with coloured markings that offered either chromatic, achromatic or both contrasts. Hummingbird hawkmoths could use either achromatic or chromatic signals to inspect models while hovering. We identified three, apparently independent, components controlling proboscis placement: After initial contact, 1) moths directed their probing towards the yellow colour irrespectively of luminance signals, suggesting a dominant role of chromatic signals; and 2) moths tended to probe mainly on the brighter areas of models that offered only achromatic signals. 3) During the establishment of the first contact, naïve moths showed a tendency to direct their proboscis towards the small floral marks independent of their colour or luminance. Moths learned to find nectar faster, but their foraging efficiency depended on the flower model they foraged on. Our results imply that M. stellatarum can perceive small patterns through colour vision. We discuss how the different informational contents of chromatic and luminance signals can be significant for the control of flower inspection, and visually guided behaviours in general.
Floquet stability analysis of the longitudinal dynamics of two hovering model insects
Wu, Jiang Hao; Sun, Mao
2012-01-01
Because of the periodically varying aerodynamic and inertial forces of the flapping wings, a hovering or constant-speed flying insect is a cyclically forcing system, and, generally, the flight is not in a fixed-point equilibrium, but in a cyclic-motion equilibrium. Current stability theory of insect flight is based on the averaged model and treats the flight as a fixed-point equilibrium. In the present study, we treated the flight as a cyclic-motion equilibrium and used the Floquet theory to analyse the longitudinal stability of insect flight. Two hovering model insects were considered—a dronefly and a hawkmoth. The former had relatively high wingbeat frequency and small wing-mass to body-mass ratio, and hence very small amplitude of body oscillation; while the latter had relatively low wingbeat frequency and large wing-mass to body-mass ratio, and hence relatively large amplitude of body oscillation. For comparison, analysis using the averaged-model theory (fixed-point stability analysis) was also made. Results of both the cyclic-motion stability analysis and the fixed-point stability analysis were tested by numerical simulation using complete equations of motion coupled with the Navier–Stokes equations. The Floquet theory (cyclic-motion stability analysis) agreed well with the simulation for both the model dronefly and the model hawkmoth; but the averaged-model theory gave good results only for the dronefly. Thus, for an insect with relatively large body oscillation at wingbeat frequency, cyclic-motion stability analysis is required, and for their control analysis, the existing well-developed control theories for systems of fixed-point equilibrium are no longer applicable and new methods that take the cyclic variation of the flight dynamics into account are needed. PMID:22491980
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.
1986-01-01
The process of performing an automated stability analysis for an elastic-bladed helicopter rotor is discussed. A symbolic manipulation program, written in FORTRAN, is used to aid in the derivation of the governing equations of motion for the rotor. The blades undergo coupled bending and torsional deformations. Two-dimensional quasi-steady aerodynamics below stall are used. Although reversed flow effects are neglected, unsteady effects, modeled as dynamic inflow are included. Using a Lagrangian approach, the governing equations are derived in generalized coordinates using the symbolic program. The program generates the steady and perturbed equations and writes into subroutines to be called by numerical routines. The symbolic program can operate on both expressions and matrices. For the case of hovering flight, the blade and dynamic inflow equations are converted to equations in a multiblade coordinate system by rearranging the coefficients of the equations. For the case of forward flight, the multiblade equations are obtained through the symbolic program. The final multiblade equations are capable of accommodating any number of elastic blade modes. The computer implementation of this procedure consists of three stages: (1) the symbolic derivation of equations; (2) the coding of the equations into subroutines; and (3) the numerical study after identifying mass, damping, and stiffness coefficients. Damping results are presented in hover and in forward flight with and without dynamic inflow effects for various rotor blade models, including rigid blade lag-flap, elastic flap-lag, flap-lag-torsion, and quasi-static torsion. Results from dynamic inflow effects which are obtained from a lift deficiency function for a quasi-static inflow model in hover are also presented.
NASA Technical Reports Server (NTRS)
Sekula, Martin K.
2012-01-01
Projection moir interferometry (PMI) was employed to measure blade deflections during a hover test of a generic model-scale rotor in the NASA Langley 14x22 subsonic wind tunnel s hover facility. PMI was one of several optical measurement techniques tasked to acquire deflection and flow visualization data for a rotor at several distinct heights above a ground plane. Two of the main objectives of this test were to demonstrate that multiple optical measurement techniques can be used simultaneously to acquire data and to identify and address deficiencies in the techniques. Several PMI-specific technical challenges needed to be addressed during the test and in post-processing of the data. These challenges included developing an efficient and accurate calibration method for an extremely large (65 inch) height range; automating the analysis of the large amount of data acquired during the test; and developing a method to determinate the absolute displacement of rotor blades without a required anchor point measurement. The results indicate that the use of a single-camera/single-projector approach for the large height range reduced the accuracy of the PMI system compared to PMI systems designed for smaller height ranges. The lack of the anchor point measurement (due to a technical issue with one of the other measurement techniques) limited the ability of the PMI system to correctly measure blade displacements to only one of the three rotor heights tested. The new calibration technique reduced the data required by 80 percent while new post-processing algorithms successfully automated the process of locating rotor blades in images, determining the blade quarter chord location, and calculating the blade root and blade tip heights above the ground plane.
A Quasi-Steady Lifting Line Theory for Insect-Like Hovering Flight
Nabawy, Mostafa R. A.; Crowthe, William J.
2015-01-01
A novel lifting line formulation is presented for the quasi-steady aerodynamic evaluation of insect-like wings in hovering flight. The approach allows accurate estimation of aerodynamic forces from geometry and kinematic information alone and provides for the first time quantitative information on the relative contribution of induced and profile drag associated with lift production for insect-like wings in hover. The main adaptation to the existing lifting line theory is the use of an equivalent angle of attack, which enables capture of the steady non-linear aerodynamics at high angles of attack. A simple methodology to include non-ideal induced effects due to wake periodicity and effective actuator disc area within the lifting line theory is included in the model. Low Reynolds number effects as well as the edge velocity correction required to account for different wing planform shapes are incorporated through appropriate modification of the wing section lift curve slope. The model has been successfully validated against measurements from revolving wing experiments and high order computational fluid dynamics simulations. Model predicted mean lift to weight ratio results have an average error of 4% compared to values from computational fluid dynamics for eight different insect cases. Application of an unmodified linear lifting line approach leads on average to a 60% overestimation in the mean lift force required for weight support, with most of the discrepancy due to use of linear aerodynamics. It is shown that on average for the eight insects considered, the induced drag contributes 22% of the total drag based on the mean cycle values and 29% of the total drag based on the mid half-stroke values. PMID:26252657
Nabawy, Mostafa R A; Crowther, William J
2014-05-06
This paper introduces a generic, transparent and compact model for the evaluation of the aerodynamic performance of insect-like flapping wings in hovering flight. The model is generic in that it can be applied to wings of arbitrary morphology and kinematics without the use of experimental data, is transparent in that the aerodynamic components of the model are linked directly to morphology and kinematics via physical relationships and is compact in the sense that it can be efficiently evaluated for use within a design optimization environment. An important aspect of the model is the method by which translational force coefficients for the aerodynamic model are obtained from first principles; however important insights are also provided for the morphological and kinematic treatments that improve the clarity and efficiency of the overall model. A thorough analysis of the leading-edge suction analogy model is provided and comparison of the aerodynamic model with results from application of the leading-edge suction analogy shows good agreement. The full model is evaluated against experimental data for revolving wings and good agreement is obtained for lift and drag up to 90° incidence. Comparison of the model output with data from computational fluid dynamics studies on a range of different insect species also shows good agreement with predicted weight support ratio and specific power. The validated model is used to evaluate the relative impact of different contributors to the induced power factor for the hoverfly and fruitfly. It is shown that the assumption of an ideal induced power factor (k = 1) for a normal hovering hoverfly leads to a 23% overestimation of the generated force owing to flapping.
NASA Astrophysics Data System (ADS)
McGill, Karen Ashley Jean
Reconfigurable systems are a class of systems that can be transformed into different configurations, generally to perform unique functions or to maintain operational efficiency under distinct conditions. A UAV can be considered a reconfigurable system when coupled with various useful features such as vertical take-off and landing (VTOL), hover capability, long-range, and relatively large payload. Currently, a UAV having these capabilities is being designed by the UTSA Mechanical Engineering department. UAVs such as this one have the following potential uses: emergency response/disaster relief, hazard-critical missions, offshore oil rig/wind farm delivery, surveillance, etc. The goal of this thesis is to perform experimental thrust and power measurements for the propulsion system of this fixed-wing UAV. Focus was placed on a rotating truss arm supporting two brushless motors and rotors that will later be integrated to the ends of the UAV wing. These truss arms will rotate via a supporting shaft from 0° to 90° to transition the UAV between a vertical take-off, hover, and forward flight. To make this hover/transition possible, a relationship between thrust, arm angle, and power drawn was established by testing the performance of the arm/motor assembly at arm angles of 0°, 15°, 30°, 45°, 60°, 75°, and 90°. Universal equations for this system of thrust as a function of the arm angle were created by correlating data collected by a load cell. A Solidworks model was created and used to conduct fluid dynamics simulations of the streamlines over the arm/motor assembly.
Ahmad, Parvaiz; Sarwat, Maryam; Bhat, Nazir Ahmad; Wani, Mohd Rafiq; Kazi, Alvina Gul; Tran, Lam-Son Phan
2015-01-01
Calcium (Ca) plays important role in plant development and response to various environmental stresses. However, its involvement in mitigation of heavy metal stress in plants remains elusive. In this study, we examined the effect of Ca (50 mM) in controlling cadmium (Cd) uptake in mustard (Brassica juncea L.) plants exposed to toxic levels of Cd (200 mg L(-1) and 300 mg L(-1)). The Cd treatment showed substantial decrease in plant height, root length, dry weight, pigments and protein content. Application of Ca improved the growth and biomass yield of the Cd-stressed mustard seedlings. More importantly, the oil content of mustard seeds of Cd-stressed plants was also enhanced with Ca treatment. Proline was significantly increased in mustard plants under Cd stress, and exogenously sprayed Ca was found to have a positive impact on proline content in Cd-stressed plants. Different concentrations of Cd increased lipid peroxidation but the application of Ca minimized it to appreciable level in Cd-treated plants. Excessive Cd treatment enhanced the activities of antioxidant enzymes superoxide dismutase, ascorbate peroxidase and glutathione reductase, which were further enhanced by the addition of Ca. Additionally, Cd stress caused reduced uptake of essential elements and increased Cd accumulation in roots and shoots. However, application of Ca enhanced the concentration of essential elements and decreased Cd accumulation in Cd-stressed plants. Our results indicated that application of Ca enables mustard plant to withstand the deleterious effect of Cd, resulting in improved growth and seed quality of mustard plants.
Increased resistance to a generalist herbivore in a salinity-stressed non-halophytic plant.
Renault, Sylvie; Wolfe, Scott; Markham, John; Avila-Sakar, Germán
2016-01-01
Plants often grow under the combined stress of several factors. Salinity and herbivory, separately, can severely hinder plant growth and reproduction, but the combined effects of both factors are still not clearly understood. Salinity is known to reduce plant tissue nitrogen content and growth rates. Since herbivores prefer tissues with high N content, and biochemical pathways leading to resistance are commonly elicited by salt-stress, we hypothesized that plants growing in saline conditions would have enhanced resistance against herbivores. The non-halophyte, Brassica juncea, and the generalist herbivore Trichoplusia ni were used to test the prediction that plants subjected to salinity stress would be both more resistant and more tolerant to herbivory than those growing without salt stress. Plants were grown under different NaCl levels, and either exposed to herbivores and followed by removal of half of their leaves, or left intact. Plants were left to grow and reproduce until senescence. Tissue quality was assessed, seeds were counted and biomass of different organs measured. Plants exposed to salinity grew less, had reduced tissue nitrogen, protein and chlorophyll content, although proline levels increased. Specific leaf area, leaf water content, transpiration and root:shoot ratio remained unaffected. Plants growing under saline condition had greater constitutive resistance than unstressed plants. However, induced resistance and tolerance were not affected by salinity. These results support the hypothesis that plants growing under salt-stress are better defended against herbivores, although in B. juncea this may be mostly through resistance, and less through tolerance. Published by Oxford University Press on behalf of the Annals of Botany Company.
Morris, J Bradley; Chase, Carlene; Treadwell, Danielle; Koenig, Rosie; Cho, Alyssa; Morales-Payan, Jose Pable; Murphy, Tim; Antonious, George F
2015-01-01
A field study was conducted in 2008 and 2009 at the USDA, ARS, Plant Genetic Resources Conservation Unit in Griffin, GA, to investigate weed suppression by sunn hemp (Crotalaria juncea L). The objectives were to (1) evaluate the effects of apical meristem removal (AMR) at three dates [5, 6, and 7 wks after planting (WAP) on May 14, 2008 and May 21, 2009] and (2) assess the impact of seeding rates (11, 28, and 45 kg ha(-1)) on weed biomass reduction. Weed species were identified at 4, 8, and 12 wks after sunn hemp planting. Sunn hemp cutting date had no significant effect on weed suppression in 2008 but significant differences for grass weeds at 4, 8, and 12 WAP and for yellow nutsedge at 8 and 12 WAP did occur when compared to the control in 2009. In comparison to the sunn hemp-free control plot in 2009, all three seeding rates had reduced grass weed dry weights at 4, 8, and 12 WAP. The total mass of yellow nutsedge when grown with sunn hemp was reduced compared to the total mass of yellow nutsedge grown in the weedy check for all seeding rates at 8 and 12 WAP. Lower grass weed biomass was observed by 12 WAP for cutting dates and seeding rates during 2008 and 2009. Sunn hemp cutting date and seeding rate reduced branch numbers in both years. The reduction in sunn hemp seeding rates revealed a decrease in weed populations.
Goodyear aerospace conceptual design maritime patrol airship ZP3G. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, N.D.
1979-04-01
A Conceptual design of a modern technology airship with precision hover capability for use in maritime patrol is described. The size and major characteristics are established by a series of United States Coast Guard missions set forth by the contracting agency.
GEMINI-TITAN (GT)-3 - RECOVERY (HELICOPTER) - ATLANTIC
1965-03-23
S65-19229 (23 March 1965) --- The Gemini-Titan 3 spacecraft is shown in the water after the March 23rd four-hour and 53-minute flight. Two helicopters from the recovery ship, the USS Intrepid, hover over the scene for the pickup of the astronauts.
ERIC Educational Resources Information Center
Tomaino, Robert
2011-01-01
This article discusses Roses for Autism, a program that provides training, guidance and employment opportunities for older students and adults on the autistic spectrum. Roses for Autism tackles one of the biggest challenges currently facing the autism community--a disproportionally high unemployment rate that hovers around 88 percent. Although a…
Aerodynamic sound generation of flapping wing.
Bae, Youngmin; Moon, Young J
2008-07-01
The unsteady flow and acoustic characteristics of the flapping wing are numerically investigated for a two-dimensional model of Bombus terrestris bumblebee at hovering and forward flight conditions. The Reynolds number Re, based on the maximum translational velocity of the wing and the chord length, is 8800 and the Mach number M is 0.0485. The computational results show that the flapping wing sound is generated by two different sound generation mechanisms. A primary dipole tone is generated at wing beat frequency by the transverse motion of the wing, while other higher frequency dipole tones are produced via vortex edge scattering during a tangential motion. It is also found that the primary tone is directional because of the torsional angle in wing motion. These features are only distinct for hovering, while in forward flight condition, the wing-vortex interaction becomes more prominent due to the free stream effect. Thereby, the sound pressure level spectrum is more broadband at higher frequencies and the frequency compositions become similar in all directions.
Scaling law and enhancement of lift generation of an insect-size hovering flexible wing
Kang, Chang-kwon; Shyy, Wei
2013-01-01
We report a comprehensive scaling law and novel lift generation mechanisms relevant to the aerodynamic functions of structural flexibility in insect flight. Using a Navier–Stokes equation solver, fully coupled to a structural dynamics solver, we consider the hovering motion of a wing of insect size, in which the dynamics of fluid–structure interaction leads to passive wing rotation. Lift generated on the flexible wing scales with the relative shape deformation parameter, whereas the optimal lift is obtained when the wing deformation synchronizes with the imposed translation, consistent with previously reported observations for fruit flies and honeybees. Systematic comparisons with rigid wings illustrate that the nonlinear response in wing motion results in a greater peak angle compared with a simple harmonic motion, yielding higher lift. Moreover, the compliant wing streamlines its shape via camber deformation to mitigate the nonlinear lift-degrading wing–wake interaction to further enhance lift. These bioinspired aeroelastic mechanisms can be used in the development of flapping wing micro-robots. PMID:23760300
Kang, Chang-kwon; Shyy, Wei
2014-01-01
In the analysis of flexible flapping wings of insects, the aerodynamic outcome depends on the combined structural dynamics and unsteady fluid physics. Because the wing shape and hence the resulting effective angle of attack are a priori unknown, predicting aerodynamic performance is challenging. Here, we show that a coupled aerodynamics/structural dynamics model can be established for hovering, based on a linear beam equation with the Morison equation to account for both added mass and aerodynamic damping effects. Lift strongly depends on the instantaneous angle of attack, resulting from passive pitch associated with wing deformation. We show that both instantaneous wing deformation and lift can be predicted in a much simplified framework. Moreover, our analysis suggests that resulting wing kinematics can be explained by the interplay between acceleration-related and aerodynamic damping forces. Interestingly, while both forces combine to create a high angle of attack resulting in high lift around the midstroke, they offset each other for phase control at the end of the stroke. PMID:25297319
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats; Langston, Chester W.; Mirick, Paul H.; Singleton, Jeffrey D.; Wilbur, Matthew L.; Yeager, William T., Jr.
1991-01-01
The sensitivity of blade tracking in hover to variations in root pitch was examined for two rotor configurations. Tests were conducted using a four bladed articulated rotor mounted on the NASA-Army aeroelastic rotor experimental system (ARES). Two rotor configurations were tested: one consisting of a blade set with flexible fiberglass spars and one with stiffer (by a factor of five in flapwise and torsional stiffnesses) aluminum spars. Both blade sets were identical in planform and airfoil distribution and were untwisted. The two configurations were ballasted to the same Lock number so that a direct comparison of the tracking sensitivity to a gross change in blade stiffness could be made. Experimental results show no large differences between the two sets of blades in the sensitivity of the blade tracking to root pitch adjustments. However, a measurable reduction in intrack coning of the fiberglass spar blades with respect to the aluminum blades is noted at higher rotor thrust conditions.
NASA Technical Reports Server (NTRS)
Dugan, Daniel C.; Delamer, Kevin J.
2005-01-01
Because of increasing accident rates in Army helicopters in hover and low speed flight, a study was made in 1999 of accidents which could be attributed to inadequate stability augmentation. A study of civil helicopter accidents from 1993-2004 was then undertaken to pursue the issue of poor handling qualities in helicopters which, in almost all cases, had no stability augmentation. The vast majority of the mishaps studied occurred during daylight in visual meteorological condition, reducing the impact of degraded visual environments (DVE) on the results. Based on the Cooper-Harper Rating Scale, the handling qualities of many of the helicopters studied could be described as having from "very objectionable" to "major" deficiencies. These costly deficiencies have resulted in unnecessary loss of life, injury, and high dollar damage. Low cost and lightweight augmentation systems for helicopters have been developed in the past and are still being investigated. They offer the potential for significant reductions in the accident rate.
Analysis of stall flutter of a helicopter radar blade
NASA Technical Reports Server (NTRS)
Crimi, P.
1973-01-01
A study of rotor blade aeroelastic stability was carried out, using an analytic model of a two-dimensional airfoil undergoing dynamic stall and an elastomechanical representation including flapping, flapwise bending and torsional degrees of freedom. Results for a hovering rotor demonstrated that the models used are capable of reproducing both classical and stall flutter. The minimum rotor speed for the occurrence of stall flutter in hover, was found to be determined from coupling between torsion and flapping. Instabilities analogous to both classical and stall flutter were found to occur in forward flight. However, the large stall-related torsional oscillations which commonly limit aircraft forward speed appear to be the response to rapid changes in aerodynamic moment which accompany stall and unstall, rather than the result of an aeroelastic instability. The severity of stall-related instabilities and response was found to depend to some extent on linear stability. Increasing linear stability lessens the susceptibility to stall flutter and reduced the magnitude of the torsional response to stall and unstall.
Beam-Riding Analysis of a Parabolic Laser-thermal Thruster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scharring, Stefan; Eckel, Hans-Albert; Roeser, Hans-Peter
2011-11-10
Flight experiments with laser-propelled vehicles (lightcrafts) are often performed by wire-guidance or with spin-stabilization. Nevertheless, the specific geometry of the lightcraft's optics and nozzle may provide for inherent beam-riding properties. These features are experimentally investigated in a hovering experiment at a small free flight test range with an electron-beam sustained pulsed CO{sub 2} high energy laser. Laser bursts are adapted with a real-time control to lightcraft mass and impulse coupling for ascent and hovering in a quasi equilibrium of forces. The flight dynamics is analyzed with respect to the impulse coupling field vs. attitude, given by the lightcraft's offset andmore » its inclination angle against the beam propagation axis, which are derived from the 3D-reconstruction of the flight trajectory from highspeed recordings. The limitations of the experimental parameters' reproducibility and its impact on flight stability are explored in terms of Julia sets. Solution statements for dynamic stabilization loops are presented and discussed.« less
NASA Technical Reports Server (NTRS)
Jordon, D. E.; Patterson, W.; Sandlin, D. R.
1985-01-01
The XV-15 Tilt Rotor Research Aircraft download phenomenon was analyzed. This phenomenon is a direct result of the two rotor wakes impinging on the wing upper surface when the aircraft is in the hover configuration. For this study the analysis proceeded along tow lines. First was a method whereby results from actual hover tests of the XV-15 aircraft were combined with drag coefficient results from wind tunnel tests of a wing that was representative of the aircraft wing. Second, an analytical method was used that modeled that airflow caused gy the two rotors. Formulas were developed in such a way that acomputer program could be used to calculate the axial velocities were then used in conjunction with the aforementioned wind tunnel drag coefficinet results to produce download values. An attempt was made to validate the analytical results by modeling a model rotor system for which direct download values were determinrd..
Simulation evaluation of two VTOL control/display systems in IMC approach and shipboard landing
NASA Technical Reports Server (NTRS)
Merrick, V. K.
1984-01-01
Two control/display systems, which differed in overall complexity but were both designed for VTOL flight operations to and from small ships in instrument meteorological conditions (IMC), were tested using the Ames Flight Simulator for Advanced Aircraft (FSAA). Both systems have attitude command in transition and horizontal-velocity command in hover; the more complex system also has longitudinal-acceleration and flightpath-angle command in transition, and vertical-velocity command in hover. The most important overall distinction between the two systems for the viewpoint of implementation is that in one - the more complex - engine power and nozzle position are operated indirectly through flight controllers, whereas in the other they are operated directly by the pilot. Simulated landings were made on a moving model of a DD 963 Spruance-class destroyer. Acceptable transitions can be performed in turbulence of 3 m/sec rms using either system. Acceptable landings up to sea state 6 can be performed using the more complex system, and up to sea state 5 using the other system.
Uspal, W E; Popescu, M N; Dietrich, S; Tasinkevych, M
2015-01-21
Micron-sized particles moving through a solution in response to self-generated chemical gradients serve as model systems for studying active matter. Their far-reaching potential applications will require the particles to sense and respond to their local environment in a robust manner. The self-generated hydrodynamic and chemical fields, which induce particle motion, probe and are modified by that very environment, including confining boundaries. Focusing on a catalytically active Janus particle as a paradigmatic example, we predict that near a hard planar wall such a particle exhibits several scenarios of motion: reflection from the wall, motion at a steady-state orientation and height above the wall, or motionless, steady "hovering." Concerning the steady states, the height and the orientation are determined both by the proportion of catalyst coverage and the interactions of the solutes with the different "faces" of the particle. Accordingly, we propose that a desired behavior can be selected by tuning these parameters via a judicious design of the particle surface chemistry.
Numerical analysis of a variable camber rotor blade as a lift control device
NASA Technical Reports Server (NTRS)
Awani, A. O.; Stroub, R. H.
1984-01-01
A new rotor configuration called the variable camber rotor was numerically investigated as a lift control device. This rotor differs from a conventional (baseline) rotor only in the blade aft section. In this configuration, the aft section or flap is attached to the forward section by pin joint arrangement, and also connected to the rotor control system for the control of rotor thrust level and vectoring. Pilot action to the flap deflection controls rotor lift and tip path plane tilt. The drag due to flaps is presented and the theoretical result correlated with test data. The assessment of payoff for the variable camber rotor in comparison with conventional (baseline) rotor was examined in hover. The variable camber rotor is shown to increase hover power required by 1.35%, but such a minimal power penalty is not significant enough to be considered a negative result. In forward flight, the control needs of the variable camber rotor were evaluated.
NASA Technical Reports Server (NTRS)
Heineck, James; Schairer, Edward; Ramasamy, Manikandan; Roozeboom, Nettie
2016-01-01
This paper describes simultaneous optical measurements of a sub-scale helicopter rotor in the U.S. Army Hover Chamber at NASA Ames Research Center. The measurements included thermal imaging of the rotor blades to detect boundary layer transition; retro-reflective background-oriented schlieren (RBOS) to visualize vortices; and stereo photogrammetry to measure displacements of the rotor blades, to compute spatial coordinates of the vortices from the RBOS data, and to map the thermal imaging data to a three-dimensional surface grid. The test also included an exploratory effort to measure flow near the rotor tip by tomographic particle image velocimetry (tomo PIV)an effort that yielded valuable experience but little data. The thermal imaging was accomplished using an image-derotation method that allowed long integration times without image blur. By mapping the thermal image data to a surface grid it was possible to accurately locate transition in spatial coordinates along the length of the rotor blade.
Square tracking sensor for autonomous helicopter hover stabilization
NASA Astrophysics Data System (ADS)
Oertel, Carl-Henrik
1995-06-01
Sensors for synthetic vision are needed to extend the mission profiles of helicopters. A special task for various applications is the autonomous position hold of a helicopter above a ground fixed or moving target. As a proof of concept for a general synthetic vision solution a restricted machine vision system, which is capable of locating and tracking a special target, was developed by the Institute of Flight Mechanics of Deutsche Forschungsanstalt fur Luft- und Raumfahrt e.V. (i.e., German Aerospace Research Establishment). This sensor, which is specialized to detect and track a square, was integrated in the fly-by-wire helicopter ATTHeS (i.e., Advanced Technology Testing Helicopter System). An existing model following controller for the forward flight condition was adapted for the hover and low speed requirements of the flight vehicle. The special target, a black square with a length of one meter, was mounted on top of a car. Flight tests demonstrated the automatic stabilization of the helicopter above the moving car by synthetic vision.
A two dimensional study of rotor/airfoil interaction in hover
NASA Technical Reports Server (NTRS)
Lee, Chyang S.
1988-01-01
A two dimensional model for the chordwise flow near the wing tip of the tilt rotor in hover is presented. The airfoil is represented by vortex panels and the rotor is modeled by doublet panels. The rotor slipstream and the airfoil wake are simulated by free point vortices. Calculations on a 20 percent thick elliptical airfoil under a uniform rotor inflow are performed. Variations on rotor size, spacing between the rotor and the airfoil, ground effect, and the influence upper surface blowing in download reduction are analyzed. Rotor size has only a minor influence on download when it is small. Increase of the rotor/airfoil spacing causes a gradual decrease on download. Proximity to the ground effectively reduces the download and makes the wake unsteady. The surface blowing changes the whole flow structure and significantly reduces the download within the assumption of a potential solution. Improvement on the present model is recommended to estimate the wall jets induced suction on the airfoil lower surface.
A Comparison of Computational Aeroacoustic Prediction Methods for Transonic Rotor Noise
NASA Technical Reports Server (NTRS)
Brentner, Kenneth S.; Lyrintzis, Anastasios; Koutsavdis, Evangelos K.
1996-01-01
This paper compares two methods for predicting transonic rotor noise for helicopters in hover and forward flight. Both methods rely on a computational fluid dynamics (CFD) solution as input to predict the acoustic near and far fields. For this work, the same full-potential rotor code has been used to compute the CFD solution for both acoustic methods. The first method employs the acoustic analogy as embodied in the Ffowcs Williams-Hawkings (FW-H) equation, including the quadrupole term. The second method uses a rotating Kirchhoff formulation. Computed results from both methods are compared with one other and with experimental data for both hover and advancing rotor cases. The results are quite good for all cases tested. The sensitivity of both methods to CFD grid resolution and to the choice of the integration surface/volume is investigated. The computational requirements of both methods are comparable; in both cases these requirements are much less than the requirements for the CFD solution.
Flow visualization and flow field measurements of a 1/12 scale tilt rotor aircraft in hover
NASA Technical Reports Server (NTRS)
Coffen, Charles D.; George, Albert R.; Hardinge, Hal; Stevenson, Ryan
1991-01-01
The results are given of flow visualization studies and inflow velocity field measurements performed on a 1/12 scale model of the XV-15 tilt rotor aircraft in the hover mode. The complex recirculating flow due to the rotor-wake-body interactions characteristic of tilt rotors was studied visually using neutrally buoyant soap bubbles and quantitatively using hot wire anemometry. Still and video photography were used to record the flow patterns. Analysis of the photos and video provided information on the physical dimensions of the recirculating fountain flow and on details of the flow including the relative unsteadiness and turbulence characteristics of the flow. Recirculating flows were also observed along the length of the fuselage. Hot wire anemometry results indicate that the wing under the rotor acts to obstruct the inflow causing a deficit in the inflow velocities over the inboard region of the model. Hot wire anemometry also shows that the turbulence intensities in the inflow are much higher in the recirculating fountain reingestion zone.
Synthesis of hover autopilots for rotary-wing VTOL aircraft
NASA Technical Reports Server (NTRS)
Hall, W. E.; Bryson, A. E., Jr.
1972-01-01
The practical situation is considered where imperfect information on only a few rotor and fuselage state variables is available. Filters are designed to estimate all the state variables from noisy measurements of fuselage pitch/roll angles and from noisy measurements of both fuselage and rotor pitch/roll angles. The mean square response of the vehicle to a very gusty, random wind is computed using various filter/controllers and is found to be quite satisfactory although, of course, not so good as when one has perfect information (idealized case). The second part of the report considers precision hover over a point on the ground. A vehicle model without rotor dynamics is used and feedback signals in position and integral of position error are added. The mean square response of the vehicle to a very gusty, random wind is computed, assuming perfect information feedback, and is found to be excellent. The integral error feedback gives zero position error for a steady wind, and smaller position error for a random wind.
: -99999999px; } .ui-helper-reset { margin: 0; padding: 0; border: 0; outline: 0; line-height: 1.3; text ----------------------------------*/ /* states and images */ .ui-icon { display: block; text-indent: -99999px; overflow: hidden; background , .ui-state-default a:visited { color: #555555; text-decoration: none; } .ui-state-hover, .ui-widget
{background-color:#5e6a71;border-top:3px solid #62d2ff}@media (min-width: 768px){header{border-bottom:9px a.app-name:hover{color:#fff;display:block;font-family:Roboto;font-size:30px;line-height:1.2em;margin:0 0
Smart helicopter rotor with active blade tips
NASA Astrophysics Data System (ADS)
Bernhard, Andreas Paul Friedrich
2000-10-01
The smart active blade tip (SABT) rotor is an on-blade rotor vibration reduction system, incorporating active blade tips that can be independently pitched with respect to the main blade. The active blade tip rotor development included an experimental test program culminating in a Mach scale hover test, and a parallel development of a coupled, elastic actuator and rotor blade analysis for preliminary design studies and hover performance prediction. The experimental testing focussed on a small scale rotor on a bearingless Bell-412 hub. The fabricated Mach-scale active-tip rotor has a diameter of 1.524 m, a blade chord of 76.2 mm and incorporated a 10% span active tip. The nominal operating speed is 2000 rpm, giving a tip Mach number of 0.47. The blade tips are driven by a novel piezo-induced bending-torsion coupled actuator beam, located spanwise in the hollow mid-cell of the main rotor blade. In hover at 2000 rpm, at 2 deg collective, and for an actuation of 125 Vrms, the measured blade tip deflection at the first four rotor harmonics is between +/-1.7 and +/-2.8 deg, increasing to +/-5.3 deg at 5/rev with resonant amplification. The corresponding oscillatory amplitude of the rotor thrust coefficient is between 0.7 · 10-3 and 1.3 · 10-1 at the first four rotor harmonics, increasing to 2.1 · 10-3 at 5/rev. In general, the experimental blade tip frequency response and corresponding rotor thrust response are well captured by the analysis. The flexbeam root flap bending moment is predicted in trend, but is significantly over-estimated. The blade tips did not deflect as expected at high collective settings, because of the blade tip shaft locking up in the bearing. This is caused by the high flap bending moment on the blade tip shaft. Redesign of the blade tip shaft assembly and bearing support is identified as the primary design improvement for future research. The active blade tip rotor was also used as a testbed for the evaluation of an adaptive neural-network based control algorithm. Effective background vibration reduction of an intentional 1/rev hover imbalance was demonstrated. The control algorithm also showed the capability to generate desired multi-frequency control loads on the hub, based on artificial signal injection into the vibration measurement. The research program demonstrates the technical feasibility of the active blade tip concept for vibration reduction and warrants further investigation in terms of closed loop forward flight tests in the windtunnel and full scale design studies.
Mercury-Atlas 9 'Faith 7' spacecraft splashdown in the Pacific Ocean
NASA Technical Reports Server (NTRS)
1971-01-01
The Mercury-Atlas 9 'Faith 7' spacecraft, with Astronaut L. Gordon Cooper Jr. aboard, splashdown in the Pacific Ocean to conclude a 22 orbit mission lasting 34 hours and 20.5 minutes. The capsules parachute is fully deployed in this view. A rescue helicopter hovers overhead
2011-03-31
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, an ominous thunderstorm cloud hovers over the Vehicle Assembly Building in the Launch Complex 39 area. Severe storms associated with a frontal system are moving through Central Florida, producing strong winds, heavy rain, frequent lightning and even funnel clouds. Photo credit: NASA/Kim Shiflett
2011-03-31
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, dark clouds hover over the Vehicle Assembly Building in the Launch Complex 39 area. Severe storms associated with a frontal system are moving through Central Florida, producing strong winds, heavy rain, frequent lightning and even funnel clouds. Photo credit: NASA/Jack Pfaller
2011-03-31
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, dark clouds hover over the Vehicle Assembly Building in the Launch Complex 39 area. Severe storms associated with a frontal system are moving through Central Florida, producing strong winds, heavy rain, frequent lightning and even funnel clouds. Photo credit: NASA/Jack Pfaller
U.S.S. Hornet moves toward the Apollo 12 Command Module to retrieve it
1969-11-24
U.S.S. Hornet, prime recovery vessel for the Apollo 12 lunar landing mission, moves toward the Apollo 12 Command Module to retrieve the spacecraft. A helicopter from the recovery ship, which took part in the recovery operations, hovers over the scene of the splashdown.
14 CFR 136.13 - Helicopter performance plan and operations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... for the approach to and transition from a hover for the purpose of takeoff and landing, or during... the caution/warning/avoid area of the limiting height/velocity diagram. (c) Except for the approach to... into consideration the maximum density altitude for which the operation is planned, in order to...
14 CFR 136.13 - Helicopter performance plan and operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... for the approach to and transition from a hover for the purpose of takeoff and landing, or during... the caution/warning/avoid area of the limiting height/velocity diagram. (c) Except for the approach to... into consideration the maximum density altitude for which the operation is planned, in order to...
The Relationship between Self-Efficacy and Persistence in Adult Remedial Education
ERIC Educational Resources Information Center
Holmquist, Carol L.
2013-01-01
Despite the need, persistence in remediation hovers at 50% (NCES, 2002) while nearly one third of community college enrollees arrive under-prepared (Hess, 2009). Persistence is correlated with academic preparation (Nash & Kallenbach, 2009), and barriers to persistence include a number of demographic barriers (Education, 2006; Labaree, 2006).…
Helicopter Parents Help Students, Survey Finds
ERIC Educational Resources Information Center
Lipka, Sara
2007-01-01
Helicopter parents, notorious for hovering over their college-age children, may actually help students thrive, according to this year's National Survey of Student Engagement. Students whose parents intervene on their behalf--38 percent of freshmen and 29 percent of seniors--are more active in and satisfied with college, says the monstrous annual…
14 CFR 29.1047 - Takeoff cooling test procedures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... minutes after the occurence of the highest temperature recorded. (5) The cooling test must be conducted at... takeoff and subsequent climb as follows: (1) Each temperature must be stabilized while hovering in ground...; and (iii) The maximum weight. (2) After the temperatures have stabilized, a climb must be started at...
14 CFR 29.1047 - Takeoff cooling test procedures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... minutes after the occurance of the highest temperature recorded. (5) The cooling test must be conducted at... takeoff and subsequent climb as follows: (1) Each temperature must be stabilized while hovering in ground...; and (iii) The maximum weight. (2) After the temperatures have stabilized, a climb must be started at...
14 CFR 29.1047 - Takeoff cooling test procedures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... minutes after the occurance of the highest temperature recorded. (5) The cooling test must be conducted at... takeoff and subsequent climb as follows: (1) Each temperature must be stabilized while hovering in ground...; and (iii) The maximum weight. (2) After the temperatures have stabilized, a climb must be started at...
14 CFR 29.1047 - Takeoff cooling test procedures.
Code of Federal Regulations, 2011 CFR
2011-01-01
... minutes after the occurence of the highest temperature recorded. (5) The cooling test must be conducted at... takeoff and subsequent climb as follows: (1) Each temperature must be stabilized while hovering in ground...; and (iii) The maximum weight. (2) After the temperatures have stabilized, a climb must be started at...
14 CFR 29.1047 - Takeoff cooling test procedures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... minutes after the occurence of the highest temperature recorded. (5) The cooling test must be conducted at... takeoff and subsequent climb as follows: (1) Each temperature must be stabilized while hovering in ground...; and (iii) The maximum weight. (2) After the temperatures have stabilized, a climb must be started at...
Visual Neuroscience: Unique Neural System for Flight Stabilization in Hummingbirds.
Ibbotson, M R
2017-01-23
The pretectal visual motion processing area in the hummingbird brain is unlike that in other birds: instead of emphasizing detection of horizontal movements, it codes for motion in all directions through 360°, possibly offering precise visual stability control during hovering. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hubble Against Earth Horizon 1997
1997-10-10
The Hubble Space Telescope hovers at the boundary of Earth and space in this picture, taken after Hubble second servicing mission in 1997. Hubble drifts 353 miles (569 km) above the Earth's surface, where it can avoid the atmosphere and clearly see objects in space. http://photojournal.jpl.nasa.gov/catalog/PIA18165
ERIC Educational Resources Information Center
Wills, Denise Kersten
2007-01-01
No hovering administrators. No high-stakes tests. No pestering parents. Barb Hagen teaches murderers and sex offenders, and she loves her work. This article describes the experiences of Barb Hagen, a prison education teacher. Barb Hagen could not save the troubled middle-schoolers she taught for 20 years. Now she helps inmates get their lives back…
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ventilation. 27.831 Section 27.831... the presence of excessive quantities of fuel fumes and carbon monoxide. (b) The concentration of carbon monoxide may not exceed one part in 20,000 parts of air during forward flight or hovering in still...
14 CFR 27.49 - Performance at minimum operating speed.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Performance at minimum operating speed. 27... minimum operating speed. (a) For helicopters— (1) The hovering ceiling must be determined over the ranges... climb at the minimum operating speed must be determined over the ranges of weight, altitude, and...
14 CFR 27.49 - Performance at minimum operating speed.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Performance at minimum operating speed. 27... minimum operating speed. (a) For helicopters— (1) The hovering ceiling must be determined over the ranges... climb at the minimum operating speed must be determined over the ranges of weight, altitude, and...
14 CFR 29.49 - Performance at minimum operating speed.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Performance at minimum operating speed. 29... minimum operating speed. (a) For each Category A helicopter, the hovering performance must be determined... than helicopters, the steady rate of climb at the minimum operating speed must be determined over the...
14 CFR 29.49 - Performance at minimum operating speed.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Performance at minimum operating speed. 29... minimum operating speed. (a) For each Category A helicopter, the hovering performance must be determined... than helicopters, the steady rate of climb at the minimum operating speed must be determined over the...
Parental Involvement in U.S. Study Abroad: Helicopters or Helpers
ERIC Educational Resources Information Center
Dostal Dauer, Kevin Lorenz
2017-01-01
Parental involvement in higher education has received much attention since the 1990s, though mostly through mainstream media sources. The term "helicopter parents" is now used to describe over-involved parents who "hover" over their children, intent on ensuring that their children's needs are addressed. The perception within…
Reflections of Women Leading Community Colleges
ERIC Educational Resources Information Center
Eddy, Pamela L.
2008-01-01
As the "people's college," community colleges have a reputation of being more welcoming of women--as students, faculty, and administrators (Townsend & Twombly, 2006). However, the current percentage of women leading community colleges, which is hovering at 29% (American Council on Education, 2007), begs the question of why parity is not witnessed…
; } .stage .controls a:link, .stage .controls a:visited { color:#000000; display:block; border:1px solid #ccc ; background-color:#fff; padding:1em 1em; text-align:center; text-decoration:none; } .stage .controls a:hover { background-color:#ccc; text-decoration:none; } .stage .controls a.active { background-color:#ccc; } .stage
{ background-color:#fff; padding-bottom:20px; } .navbar-default ul li { background-color:#1E8728; margin: 0 , .navbar-default .navbar-nav > .active > a:focus { background-color: #004C09; color: #fff; } .navbar -default .navbar-nav > li > a { color:#fff; } .navbar-default .navbar-nav > li > a:hover
You've Been Served: Surviving a Deposition
ERIC Educational Resources Information Center
Wodarz, Nan
2010-01-01
School business managers are in the unique position of supervising the areas of the operation that present the greatest opportunities for legal issues to arise. New construction and renovation projects are strewn with legal land mines. The possibility of lawsuits hovers like a black cloud over personnel issues. Opportunities for transportation or…
14 CFR 27.1383 - Landing lights.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Landing lights. 27.1383 Section 27.1383... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1383 Landing lights. (a) Each required landing or hovering light must be approved. (b) Each landing light must be installed so that— (1) No...
14 CFR 29.1383 - Landing lights.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Landing lights. 29.1383 Section 29.1383... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1383 Landing lights. (a) Each required landing or hovering light must be approved. (b) Each landing light must be installed so that— (1) No...
14 CFR 29.1383 - Landing lights.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Landing lights. 29.1383 Section 29.1383... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1383 Landing lights. (a) Each required landing or hovering light must be approved. (b) Each landing light must be installed so that— (1) No...
14 CFR 27.1383 - Landing lights.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Landing lights. 27.1383 Section 27.1383... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1383 Landing lights. (a) Each required landing or hovering light must be approved. (b) Each landing light must be installed so that— (1) No...
14 CFR 29.1383 - Landing lights.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Landing lights. 29.1383 Section 29.1383... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1383 Landing lights. (a) Each required landing or hovering light must be approved. (b) Each landing light must be installed so that— (1) No...
14 CFR 29.1383 - Landing lights.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Landing lights. 29.1383 Section 29.1383... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1383 Landing lights. (a) Each required landing or hovering light must be approved. (b) Each landing light must be installed so that— (1) No...
14 CFR 27.1383 - Landing lights.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Landing lights. 27.1383 Section 27.1383... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1383 Landing lights. (a) Each required landing or hovering light must be approved. (b) Each landing light must be installed so that— (1) No...