Sample records for aeschynite

  1. Y,REE,Nb,Ta,Ti-oxide (AB 2O 6) minerals from REL-REE euxenite-subtype pegmatites of the Třebíč Pluton, Czech Republic; substitutions and fractionation trends

    NASA Astrophysics Data System (ADS)

    Škoda, Radek; Novák, Milan

    2007-04-01

    Aeschynite-group minerals (AGM) and euxenite-group minerals (EGM) occur in REL-REE euxenite-subtype pegmatites from the Třebíč Pluton, Czech Republic. They form strongly metamictized, light brown to black, equigranular to needle-like, subhedral to anhedral grains enclosed in blocky K-feldspar and less commonly in albite, and blocky quartz, and in the graphic unit (quartz and K-feldspar). Both AGM and EGM are homogeneous to slightly heterogeneous in BSE images. They are not commonly associated with the other primary Y,REE,Ti,Nb-bearing minerals, i.e. allanite-(Ce), monazite-(Ce), titanite, and ilmenite, which occur within the same textural-paragenetic unit. Aeschynite-(Y), aeschynite-(Ce), aeschynite-(Nd), nioboaeschynite-(Ce), tantalaeschynite-(Ce), vigezzite and polycrase-(Y) were identified using EMP and canonical discrimination analysis [Ercit, T.S., 2005a. Identification and alteration trends of granitic-pegmatite-hosted (Y,REE,U,Th)-(Nb,Ta,Ti) oxide minerals: a statistical approach. Can. Mineral. 43, 4 1291-1303.]. The exchange vector ACa B(Nb,Ta) A(Y,REE) - 1 BTi - 1 or its combination with the exchange vector ACa 2B(Nb,Ta) 3A(U,Th) - 1 A(Y,REE) - 1 BTi - 3 have been elucidated for the AGM. The exchange vector ACa A(U,Th) A(Y,REE) - 2 is predominant in the EGM. The AGM are enriched in HREE, whereas LREE are concentrated in the EGM. Weak to none-existent geochemical fractionations, as expressed by the U/(U + Th), Y/(Y + REE), Ta/(Ta + Nb) and (Nb + Ta)/(Ti + Nb + Ta) ratios, were noted for single grains from both the AGM and EGM, as well as in grains of polycrase-(Y) from four different textural-paragenetic units located in the Vladislav pegmatite. Simultaneous increase of U/(U + Th) and Y/(Y + REE) in the AGM during fractionation is typical. The Ta/(Ta + Nb) fractionation is usually weak and contradicts the Y/(Y + REE) and U/(U + Th) fractionation trends. This unusual behavior of Nb and Ta may be controlled by associated Ti-rich minerals (titanite, ilmenite, rutile), the composition of parental melt and/or by elevated F activity. The AGM and EGM from pegmatites of the Třebíč Pluton are quite similar in composition to those from REL-REE euxenite-subtype pegmatites in the Trout Creek Pass, Chaffee County, Colorado, USA, which are generally Ca,U,Th-depleted, show lower Ta/(Ta+Nb), and lower variation in HREE/LREE.

  2. Compositional and phase relations among rare earth element minerals

    NASA Technical Reports Server (NTRS)

    Burt, D. M.

    1990-01-01

    This paper discusses the compositional and phase relationships among minerals in which rare earth elements (REE) occur as essential constituents (e.g., bastnaesite, monazite, xenotime, aeschynite, allanite). Particular consideration is given to the vector representation of complex coupled substitutions in selected REE-bearing minerals and to the REE partitioning between minerals as related to the acid-base tendencies and mineral stabilities. It is shown that the treatment of coupled substitutions as vector quantities facilitates graphical representation of mineral composition spaces.

  3. Photoluminescence properties of aeschynite-type LaNbTiO6:RE3+ (RE = Tb, Dy, Ho) down-converting phosphors.

    PubMed

    Ma, Qian; Lu, Mengkai; Yang, Ping; Zhang, Aiyu; Cao, Yongqiang

    2014-06-01

    In this study, a series of LaNbTiO6:RE(3+) (RE = Tb, Dy, Ho) down-converting phosphors were synthesized using a modified sol-gel combustion method, and their photoluminescence (PL) properties were investigated as a function of activator concentration and annealing temperature. The resultant particles were characterized using X-ray diffraction, transmission electron microscopy, scanning electron microscopy, UV/Vis diffuse reflectance spectroscopy and PL spectra. The highly crystalline LaNbTiO6:RE(3+) (RE = Tb, Dy, Ho) phosphors with an average size of 200-300 nm obtained at 1100°C have an orthorhombic aeschynite-type structure and exhibit the highest luminescent intensity in our study range. The emission spectra of LaNbTiO6:RE(3+) (RE = Tb, Dy, Ho) phosphors under excitations at UV/blue sources are mainly composed of characteristic peaks arising from the f-f transitions of RE(3+), including 489 nm ((5) D4 → (7) F6) and 545 nm ((5) D4 → (7) F5) for Tb(3+), 476 and 482 nm ((4) F9/2 → (6) H15/2) and 571 nm ((4) F9/2 → (6) H13/2) for Dy(3+), and 545 nm ((5) F4 + (5) S2 → (5) I8) for Ho(3+), respectively. The luminescent mechanisms were further investigated. It can be expected that these phosphors are of intense interest and potential importance for many optical applications. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Compositional and phase relations among rare earth element minerals

    NASA Technical Reports Server (NTRS)

    Burt, D. M.

    1989-01-01

    A review is presented that mainly treats minerals in which the rare-earth elements are essential constituents, e.g., bastnaesite, monazite, xenotime, aeschynite, allanite. The chemical mechanisms and limits of REE substitution in some rock-forming minerals (zircon, apatite, titanite, garnet) are also derived. Vector representation of complex coupled substitutions in selected REE-bearing minerals is examined and some comments on REE-partitioning between minerals as related to acid-based tendencies and mineral stabilities are presented. As the same or analogous coupled substitutions involving the REE occur in a wide variety of mineral structures, they are discussed together.

  5. The origin of secondary heavy rare earth element enrichment in carbonatites: Constraints from the evolution of the Huanglongpu district, China

    NASA Astrophysics Data System (ADS)

    Smith, M.; Kynicky, J.; Xu, Cheng; Song, Wenlei; Spratt, J.; Jeffries, T.; Brtnicky, M.; Kopriva, A.; Cangelosi, D.

    2018-05-01

    The silico‑carbonatite dykes of the Huanglongpu area, Lesser Qinling, China, are unusual in that they are quartz-bearing, Mo-mineralised and enriched in the heavy rare earth elements (HREE) relative to typical carbonatites. The textures of REE minerals indicate crystallisation of monazite-(Ce), bastnäsite-(Ce), parisite-(Ce) and aeschynite-(Ce) as magmatic phases. Burbankite was also potentially an early crystallising phase. Monazite-(Ce) was subsequently altered to produce a second generation of apatite, which was in turn replaced and overgrown by britholite-(Ce), accompanied by the formation of allanite-(Ce). Bastnäsite and parisite where replaced by synchysite-(Ce) and röntgenite-(Ce). Aeschynite-(Ce) was altered to uranopyrochlore and then pyrochlore with uraninite inclusions. The mineralogical evolution reflects the evolution from magmatic carbonatite, to more silica-rich conditions during early hydrothermal processes, to fully hydrothermal conditions accompanied by the formation of sulphate minerals. Each alteration stage resulted in the preferential leaching of the LREE and enrichment in the HREE. Mass balance considerations indicate hydrothermal fluids must have contributed HREE to the mineralisation. The evolution of the fluorcarbonate mineral assemblage requires an increase in aCa2+ and aCO32- in the metasomatic fluid (where a is activity), and breakdown of HREE-enriched calcite may have been the HREE source. Leaching in the presence of strong, LREE-selective ligands (Cl-) may account for the depletion in late stage minerals in the LREE, but cannot account for subsequent preferential HREE addition. Fluid inclusion data indicate the presence of sulphate-rich brines during alteration, and hence sulphate complexation may have been important for preferential HREE transport. Alongside HREE-enriched magmatic sources, and enrichment during magmatic processes, late stage alteration with non-LREE-selective ligands may be critical in forming HREE-enriched carbonatites.

  6. Optical phonon characteristics of an orthorhombic-transformed polymorph of CaTa2O6 single crystal fibre

    NASA Astrophysics Data System (ADS)

    Almeida, R. M.; Andreeta, M. R. B.; Hernandes, A. C.; Dias, A.; Moreira, R. L.

    2014-03-01

    Infrared-reflectivity spectroscopy and micro-Raman scattering were used to determine the optical phonon features of orthorhombic calcium tantalite (CaTa2O6) single crystal fibres. The fibres, obtained by the Laser-Heated Pedestal Growth method, grew into an ordered cubic structure \\left( Pm\\bar{3} \\right). Long-time annealing was used to induce a polymorphic transformation to an aeschynite orthorhombic structure (Pnma space group). The phase transformation led to the appearance of structural domains and micro-cracks, responsible for diffuse scattering and depolarization of the scattered light in the visible range, but not in the infrared region. Thus, polarized infrared spectroscopy could be performed within oriented single domains, with an appropriate microscope, allowing us to determine all relevant polar phonons of the orthorhombic CaTa2O6. The obtained phononic dielectric response, {{\\epsilon }_{r}} = 22.4 and = 86 × 103 GHz, shows the appropriateness of the material for microwave applications. Totally symmetric Raman modes could be resolved by polarization, after re-polishing the cracked sample surface.

  7. Origin of heavy REE mineralisation in carbonatites: Constraints form the Huanglongpu Mo-HREE deposit, Qinling, China.

    NASA Astrophysics Data System (ADS)

    Smith, Martin; Cheng, Xu; Kynicky, Jindrich; Cangelosi, Delia; Wenlei, Song

    2017-04-01

    The carbonatite dykes of the Huanglongpu area, Lesser Qinling, China, are unusual in that they are quartz-bearing, Mo-mineralised and enriched in the heavy rare earth elements (HREE) relative to typical carbonatites. Carbonatite monazite (208.9±4.6 Ma to 213.6±4.0; Song et al., 2016) gives a comparable U-Pb radiometric age to molybdenite (220Ma; Stein et al., 1997), confirming interpretations that Mo is derived from the carbonatite, and not a subsequent overprint from regional porphyry-style mineralisation ( 141Ma). The sulphides in the carbonatites have mantle-like 34S ( 1‰) and low δ26Mg values (-1.89 to -1.07‰), similar to sedimentary carbonates, suggesting a recycled sediment contribution in their mantle sources that may be responsible for the Mo and HREE enrichment (Song et al., 2016). The textures of REE minerals indicate crystallisation of monazite-(Ce), bastnäsite-(Ce), parisite-(Ce) and aeschynite-(Ce) as magmatic phases. Monazite-(Ce) was subsequently altered to produce apatite, which was in turn replaced by britholite-(Ce), accompanied by the formation of allanite-(Ce). The REE-fluorcarbonates where replaced by synchysite-(Ce) and röntgenite-(Ce). Aeschynite-(Ce) was altered initially to uranopyrochlore and then pyrochlore with uraninite inclusions. The mineralogical evolution reflects the evolution from magmatic carbonatite, through to more silica-rich conditions during the magmatic-hydrothermal transition, to fully hydrothermal conditions accompanied by the formation of sulphate minerals. Each alteration stage resulted in the preferential leaching of the LREE and enrichment in the HREE. Mass balance considerations indicate that the HREE enrichment could not be a passive process, and that hydrothermal fluids must have contributed HREE to the system. The evolution of the fluorcarbonate mineral assemblage requires an increase in aCa2+ and aCO32- in the metasomatic fluid, and so breakdown of HREE-enriched calcite may have been the HREE source. Solubility products are lower for LREE minerals compared to HREE minerals, so leaching in the presence of strong, LREE-selective ligands (Cl-, CO32-) may account for the depletion in late stage minerals in the LREE, but cannot account for subsequent preferential HREE addition. Fluid inclusion data indicate the presence of sulphate-rich brines during late stage alteration, and hence sulphate complexation may have been important for preferential HREE transport, as sulphate has been shown to be non-LREE selective during the formation of complex ions. The combination of mantle source with a recycled oceanic sediment component, and REE enrichment during magmatic processes, and late stage alteration with non-LREE selective ligands such as sulphate may be critical in forming HREE-enriched carbonatites. Song et al., (2016) Origin of unusual HREE-Mo-rich carbonatites in the Qinling orogen, China. Scientific Reports, 6:37377 | DOI: 10.1038/srep37377. Stein et al. (1997) Highly precise and accurate Re-Os ages for molybdenite from the East Qinling-Dabie molybdenum belt, Shaanxi province, China. Econ. Geol. 92, 827-835 (1997)

  8. New data on carbonatites of the Il'mensky-Vishnevogorsky alkaline complex, the southern Urals, Russia

    NASA Astrophysics Data System (ADS)

    Nedosekova, I. L.

    2007-04-01

    Carbonatites that are hosted in metamorphosed ultramafic massifs in the roof of miaskite intrusions of the Il’mensky-Vishnevogorsky alkaline complex are considered. Carbonatites have been revealed in the Buldym, Khaldikha, Spirikha, and Kagan massifs. The geological setting, structure of carbonatite bodies, distribution of accessory rare-metal mineralization, typomorphism of rock-forming minerals, geochemistry, and Sr and Nd isotopic compositions are discussed. Dolomite-calcite carbonatites hosted in ultramafic rocks contain tetraferriphlogopite, richterite, accessory zircon, apatite, magnetite, ilmenite, pyrrhotite, pyrite, and pyrochlore. According to geothermometric data and the composition of rock-forming minerals, the dolomite-calcite carbonatites were formed under K-feldspar-calcite, albite-calcite, and amphibole-dolomite-calcite facies conditions at 575-300°C. The Buldym pyrochlore deposit is related to carbonatites of these facies. In addition, dolomite carbonatites with accessory Nb and REE mineralization (monazite, aeschynite, allanite, REE-pyrochlore, and columbite) are hosted in ultramafic massifs. The dolomite carbonatites were formed under chlorite-sericite-ankerite facies conditions at 300-200°C. The Spirikha REE deposit is related to dolomite carbonatite and alkaline metasomatic rocks. It has been established that carbonatites hosted in ultramafic rocks are characterized by high Sr, Ba, and LREE contents and variable Nb, Zr, Ti, V, and Th contents similar to the geochemical attributes of calcio-and magnesiocarbonatites. The low initial 87Sr/86Sr = 0.7044-0.7045 and ɛNd ranging from 0.65 to -3.3 testify to their derivation from a deep mantle source of EM1 type.

  9. Fluorbritholite-(Y) and yttrialite-(Y) from silexites of the Keivy alkali granites, Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Lyalina, L. M.; Zozulya, D. R.; Savchenko, Ye. E.; Tarasov, M. P.; Selivanova, E. A.; Tarasova, E.

    2014-12-01

    Investigation of the morphology, anatomy, and chemical composition of fluorbritholite-(Y) and yttrialite-(Y) from silexites of the Keivy alkali granites in Kola Peninsula has shown that these minerals are the main REE concentrators in this area and that their content reaches 10-15 vol %. Britholite and yttrialite are associated with zircon, aeschynite-(Y), chevkinite-(Ce), fergusonite-(Y), thorite, monazite-(Ce), xenotime-(Y) and bastnaesite-(Ce). Three morphological types of fluorbritholite-(Y) have been identified: (I) subhedral crystals and grains, (II) anhedral grains intergrown with yttrialite-(Y), and (III) poikilitic crystals and skeletal aggregates. These morphological types of fluorbritholite-(Y) are characterized by successive (I to III type) decreases in P content down to the pure silicate fluorbritholite-(Y). Crystals of the first type are heterogenous: the P content decreases and the HREE content increases from core to rim. The total REE content increases insignificantly from types I to II and drastically decreases in fluorbritholite-(Y) of type III. The successive prevalence of HREE over LREE indicates the hydrothermal conditions of mineral crystallization. The chemical composition of yttrialite-(Y) is distinguished by the relatively high Th content and depletion in Al. The compositional trend (from core to rim) in heterogeneous grains of yttrialite-(Y) testifies that their heterogeneity was caused by metasomatic alteration of the mineral. The interrelation of fluorbritholite-(Y) and yttrialite-(Y) indicate that fluorbritholite-(Y) of types II and III were formed later than yttrialite-(Y). Evidence for fluorbritholite-(Y) and yttrialite-(Y) formation suggests the significant role of hydrothermal processes in the genesis of silexites.

  10. Sedimentary carbonate-hosted giant Bayan Obo REE-Fe-Nb ore deposit of Inner Mongolia, China; a cornerstone example for giant polymetallic ore deposits of hydrothermal origin

    USGS Publications Warehouse

    Chao, E.C.T.; Back, J.M.; Minkin, J.A.; Tatsumoto, M.; Junwen, Wang; Conrad, J.E.; McKee, E.H.; Zonglin, Hou; Qingrun, Meng; Shengguang, Huang

    1997-01-01

    Detailed, integrative field and laboratory studies of the textures, structures, chemical characteristics, and isotopically determined ages and signatures of mineralization of the Bayan Obo deposit provided evidence for the origin and characteristics favorable for its formation and parameters necessary for defining giant polymetallic deposits of hydrothermal origin. Bayan Obo is an epigenetic, metasomatic, hydrothermal rare earth element (REE)-Fe-Nb ore deposit that is hosted in the metasedimentary H8 dolostone marble of the Middle Proterozoic Bayan Obo Group. The metasedimentary sequence was deposited on the northern continental slope of the North China craton. The mine area is about 100 km south of the suture marking Caledonian subduction of the Mongolian oceanic plate from the north beneath the North China craton. The mineralogy of the deposit is very complex, consisting of more than 120 different minerals, some of which are epigenetic minerals introduced by hydrothermal solutions, and some of which are primary and secondary metamorphic minerals. The major REE minerals are monazite and bastnaesite, whereas magnetite and hematite are the dominant Fe-ore minerals, and columbite is the most abundant Nb mineral. Dolomite, alkali amphibole, fluorite, barite, aegirine augite, apatite, phlogopite, albite, and microcline are the most widespread gangue minerals. Three general types of ores occur at Bayan Obo: disseminated, banded, and massive ores. Broad zoning of these ore types occurs in the Main and East Orebodies. Disseminated ores are in the outermost zone, banded ores are in the intermediate zone, and massive ores are in the cores of the orebodies. On the basis of field relations, host rocks, textures, structures, and mineral assemblages, many varieties of these three types of ores have been recognized and mapped. Isotopic dating of monazite, bastnaesite, aeschynite, and metamorphic and metasomatic alkali amphiboles associated with the deposit provides constraints on the ages of mineralization and the history of the deposit. Textural relations, differences in chemical composition, and 232Th/208Pb internal isochron ages of monazite and bastnaesite samples indicate that many episodes of REE mineralization occurred at Bayan Obo, ranging from about 555 Ma to about 398 Ma. Initial 208Pb/204Pb ratios suggest different sources of REE's for different generations of REE minerals. Relative ages of Fe mineralization were deduced from textural relationships of Fe minerals with other, dated mineral phases in the deposit. Most Nb mineralization was in the area of the West Orebodies and resulted in disseminated ore. Aeschynite, an early stage of Nb mineralization (438+-25.1 Ma), occurs with huanghoite and alkali amphiboles in veins. The 40Ar/39Ar ages of amphiboles, as well as petrographic textures, were used to distinguish three periods of regional metamorphism in the Bayan Obo mine area: (1) Late Proterozoic, about 890 Ma, which recrystallized H8 carbonate to marble and crystallized lineated alkali amphiboles along foliation planes in the marble; (2) Caledonian, about 425-395 Ma, which resulted in metamorphic and metasomatic-metamorphic alkali amphiboles; and (3) Hercynian, about 300 Ma, based on biotite 40Ar/39Ar analyses from biotite schist and folded banded ores. The 40Ar/39Ar ages of metasomatic alkali amphiboles also place time constraints on the hydrothermal history of the ore deposit. Metasomatic amphiboles represent periods of intense hydrothermal activity, which began as early as 1.26 Ga; that date is based on the age of amphibole from a vein that crosscuts the H6 quartzite that underlies the H8 dolostone marble. Although much of the metasomatic amphibole formed during periods that overlapped the peak period of REE mineralization of banded ores, REE and alkali amphibole phases generally occur in different mineral assemblages or are of very different ages in the same assemblage and, therefore, may have been derived from

  11. Geophysical interpretation of U, Th, and rare earth element mineralization of the Bokan Mountain peralkaline granite complex, Prince of Wales Island, southeast Alaska

    USGS Publications Warehouse

    McCafferty, Anne E.; Stoeser, Douglas B.; Van Gosen, Bradley S.

    2014-01-01

    A prospectivity map for rare earth element (REE) mineralization at the Bokan Mountain peralkaline granite complex, Prince of Wales Island, southeastern Alaska, was calculated from high-resolution airborne gamma-ray data. The map displays areas with similar radioelement concentrations as those over the Dotson REE-vein-dike system, which is characterized by moderately high %K, eU, and eTh (%K, percent potassium; eU, equivalent parts per million uranium; and eTh, equivalent parts per million thorium). Gamma-ray concentrations of rocks that share a similar range as those over the Dotson zone are inferred to locate high concentrations of REE-bearing minerals. An approximately 1300-m-long prospective tract corresponds to shallowly exposed locations of the Dotson zone. Prospective areas of REE mineralization also occur in continuous swaths along the outer edge of the pluton, over known but undeveloped REE occurrences, and within discrete regions in the older Paleozoic country rocks. Detailed mineralogical examinations of samples from the Dotson zone provide a means to understand the possible causes of the airborne Th and U anomalies and their relation to REE minerals. Thorium is sited primarily in thorite. Uranium also occurs in thorite and in a complex suite of ±Ti±Nb±Y oxide minerals, which include fergusonite, polycrase, and aeschynite. These oxides, along with Y-silicates, are the chief heavy REE (HREE)-bearing minerals. Hence, the eU anomalies, in particular, may indicate other occurrences of similar HREE-enrichment. Uranium and Th chemistry along the Dotson zone showed elevated U and total REEs east of the Camp Creek fault, which suggested the potential for increased HREEs based on their association with U-oxide minerals. A uranium prospectivity map, based on signatures present over the Ross-Adams mine area, was characterized by extremely high radioelement values. Known uranium deposits were identified in the U-prospectivity map, but the largest tract occurs over a radioelement-rich granite phase within the pluton that is likely not related to mineralization. Neither mineralization type displays a well-defined airborne magnetic signature.

Top